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Editorial on the Research Topic
Ecological intensification and sustainable intensification: increasing
benefits to and reducing impacts on the environment to improve future
agricultural and food systems

Sustainable agricultural systems are pivotal to future agriculture’s capacity to support the
projected global population of 9 billion people by 2050. Future agricultural food systems must
effectively tackle pressing sustainability challenges that adversely affect both food production and
the environment. These challenges encompass heightened land demand, sustainable use of
synthetic nitrogen, declining soil carbon pool, and biodiversity loss. This Research Topic
collection highlights different approaches to improving the environmental sustainability of
agricultural systems around the world. Changes in climate require regional to farm-level
approaches to climate change adaptation. From 2009 to 2018, maize production in China
has been impacted by changes in climate but this is regionally dependent (Zhang et al.). Strategies
to reduce agriculture’s environmental impact also depend on the region evaluated and the farm or
agricultural stakeholder group involved. Within this context, the concepts of sustainable
intensification (SI) and ecological intensification (EI) play important roles (Figure 1). SI of
agricultural systems involves more efficiently using resources in order to spare future degradation
of natural habitat. Meanwhile, EI diversifies farming systems which can not only improve
agricultural production, but also enhance agro-ecosystems.

Typically, SI involves specific changes to component(s) of specialized conventional agricultural
systems such as encouraging water conservation, adopting low-carbon agriculture, and increasing
the efficiency of inputs used on-farm. Water conserving irrigation adoption in drier agricultural
regions such as Iran’s Fars province with networks of reservoir and canals was low among surveyed
farmers (37%), but could be improved by reducing the interest rate paid for such capital
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investments from the current 18%–8% (Mirzaei et al.). Low-carbon
agriculture adoption potential is influenced by regional support
networks. Central and western regions in China, which are more
rural and less connected to other regions, require more support than
eastern China which has more developed networks, a more central
network position relative to other regions, and more control over
resources used for low-carbon agriculture (Fang et al.). The ecological
efficiency of input use can be enhanced by using agricultural inputs
such as nitrogen fertilizers and fungicides with less adverse
environmental impacts. Use of older machinery results in higher
fuel consumption and greenhouse gas emissions. Najafabadi et al.
modeled such ecological efficiency increases using data envelope
analysis (DEA) and the material balance principle (MBP) applied
to a slacks-based measure (SBM)model for saffron production in Iran.

EI can be adopted for both settled agriculture and shifting
cultivation. Zhao et al. found adoption of green agricultural
technologies (e.g., physical control technology, pollution-free
pesticides, soil formula fertilization, agricultural film for water
conservation, water/fertilizer integration technology, grafting) for
smallholder farmers relocated due to construction of the Three
Gorges Reservoir are positively associated with adoption of
e-commerce to market and sell agricultural products. This was
based on 688 surveyed re-settlers with 37.7% adopting four or
more of these six green agricultural technologies. Long-term hay
and maize rotations in Vermont, USA from 2009 to 2021 analyzed
by White et al. suggest that environmental goals can be balanced
with maintaining adequate crop yield. In this long-term experiment,
continuous corn, a short rotation (4 years hay, 6 years corn), and a
long rotation (8 years hay, 2 years corn) were evaluated. Here, the
short rotation did not significantly reduce corn dry matter yields.
Meanwhile soil organic matter, respiration, aggregate stability, and

forage crude protein increased compared to continuous corn,
especially with more years of hay in the rotation. However, active
carbon and forage digestibility were lower for corn-hay rotations
compared to continuous corn.

Shifting agriculture (i.e., swidden) is an older method of
agricultural production where small areas in the forest are burned
for short-term agricultural production and after farming is abandoned,
the area is reclaimed by forest as other areas are used. However, the
area selected can have significant implications in reducing or
increasing adverse environmental impacts. For example, in northern
Thailand, lower slope for burned areas in shifting agricultural
production was associated with less soil loss and more soil organic
carbon and nitrogen, electrical conductivity, as well as exchangeable
magnesium and calcium (Arunrat et al.). Therefore, swidden in flatter
areas can improve environmental sustainability.

EI can also be used to diversify farm enterprises and to preserve
high conservation value areas. Total green factor productivity can be
associated with enterprise diversification such as agro-tourism. Wang
et al. documented greener, circular agricultural productivity is
associated with agro-tourism in China based on data from
30 province-level administrative divisions from 2008 to 2019.
Preservation of high conservation value areas can use jurisdictional
approaches, taking into account environmental metrics to prioritize
areas for conservation. In a case study jurisdiction in Indonesia,
Padmanaba et al. show greater coordination between government
agencies is required at different jurisdictional spatial scales in order
to define high conservation value areas outside of oil palmplantations in
native forests.

The findings of these studies suggest that making informed choices
when selecting tools and equipment, implementing alterations in land-
use patterns, and adopting innovative management practices/processes

FIGURE 1
Economics versus environmental impact of (A) sustainable intensification pathway to (B) long-run sustainability, (C) unsustainable agricultural
systems, and (D) ecological intensification and pathway to (B). Pictures provided by Gabriel Rezende Faria, a journalist and public relations officer at
Embrapa, Brazil.
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that minimize environmental harm are not only feasible but also pivotal
steps toward achieving collaborative, sustainable, and resilient regional
food systems. Embracing EI and employing appropriate SI approaches
both play a pivotal role in environmental sustainability and global food
security. To ensure success, it is imperative to disseminate accurate
information to stakeholders at the right stages of agricultural operations.
Proactive communication is essential for reducing overuse of both
natural and synthetic resources, which could otherwise lead to further
detrimental environmental effects.

Additionally, effective collaboration between research organizations
and government or private entities is crucial for establishing poignant
guidelines, regulations, and policies that facilitate sustainable
transitions. Public policies such as government subsidies can
incentivize the technologies/practices showcased in this Research
Topic for SI/EI enhancements. This collaborative effort is influential
in achieving SI and EI strategies that can yield positive outcomes for
both society and the environment, help mitigate existing negative
impacts, prevent further depletion of soil organic carbon, restore
ecological equilibrium, and enhance biodiversity. These practical
strategies combined with public policy support can help achieve the
ambitious goal of global food security by 2030.
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Continuous warming climate conditions have triggered numerous extreme

weather events, exerting an unprecedented impact on agricultural and food

production. Based on the panel data of 3,050 small farmers engaged in maize

planting from 2009 to 2018 and collected by the National Rural Fixed

Observation Point in China, this study uses the Transcendental Logarithmic

Production Function model to estimate the impact of temperature,

precipitation, and sunshine hours on maize output. Further, considering

climate condition heterogeneity, this study analyzes the development

potential of five major maize production areas in China. Results show that

temperature and precipitation have a positive impact on maize output and that

insufficient sunshine hour is an obstacle to the growth of maize output. Five

major maize production areas are affected by climate condition differently,

entailing the need for tailored response measures. Additionally, land, labor, and

material capital input are key factors affecting maize output. Based on

conclusion, we put forward the following suggestions to promote

sustainable agricultural production, including strengthening the prediction of

temperature, precipitation, and sunshine hours in major maize production

areas, optimizing the agricultural production layout and the planting

structure based on local endowment, enhancing farmers’ adaptive behavior

training toward climate change, developing irrigation and water conservation

projects.

KEYWORDS

climate change, maize output, major production area, transcendental logarithmic
production function, coping measures
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1 Introduction

The global temperature has been rising in recent decades and

climate warming has been accelerating. Continuously warming

climate conditions have also triggered more extreme weather

events that affect agricultural production, which is highly

sensitive to natural resources (Crost et al., 2018). Research

suggests that climate change is placing great pressure on

agricultural production (Wilson et al., 2022). Under the stress

of climate change, food production has been facing prominent

negative shocks (e.g., the increase in disaster areas and food

production reductions), which may lead to hunger and

malnutrition. Thus, these issues have been catapulted into the

forefront of international discussions across numerous countries.

Indeed, researchers propose that various countries urgently need

to look for effective strategies to address the adverse effects of

climate change, such as promoting the training for farmers on

climate change adaptation behaviors (Moore and Lobell, 2014),

enhancing the irrigation facilities (Aragón et al., 2021), and

further developing a “climate-smart food system” (Wheeler

and von Braun, 2013).

China is one of the countries most affected by climate

disasters. Meteorological changes and extreme weather

adversely affect China’s agricultural production and have a

negative impact on agricultural total factor productivity and

input utilization rate. Global warming has also caused huge

economic losses to the country’s grain output (Chen et al.,

2016). Furthermore, China is one of the most populous

countries in the world. According to the data of National

Bureau of Statistics of China, in 2020, the national population

reached 1.41 billion, accounting for about 18% of the world’s

total population. Feeding more than one billion people entails

many problems, and solving these problems is important for both

the national economy and people’s livelihoods. Accordingly, the

impact of climate change on the food supply in China cannot be

ignored. Furthermore, climate change’s influence on agricultural

output leads to changes in market prices, which impacts the

livelihood of agricultural producers and causes social problems.

From this perspective, assessing the impact of climate change on

agricultural production is of great significance for studying the

relationships among climate change, agricultural product supply,

market prices, and other economic issues, as well as for effectively

formulating policies to tackle climate change (Aragón et al., 2021;

Filho et al., 2022; Oyinlola et al., 2022; Wheeler and von Braun,

2013).

Recent research on the effects of climate change on food

production mainly focus on natural and economic aspects.

Regarding the research on natural aspects, they mainly focus

on how to build crop models for the dynamic simulation of crop

growth and on the impact of climate change on crop growth

(Hasegawa et al., 2022; Hawkins et al., 2013; Tonnang et al., 2022;

Wang et al., 2022). Nonetheless, these studies require many

hypothetical parameters to be set, which may lead to

uncertain evidence (Carr et al., 2022). This may be the

limitation of research in this field. Regarding the research

focusing on economic aspects, for example, Lin et al. (2011)

used household data and a nonlinear production function model

to calculate the output elasticity of changes in temperature,

precipitation, and average sunshine hours for three major

food crops. In the United States of America, Coffel et al.

(2022) calculated the output elasticity of changes in

temperature, precipitation, and sunshine for maize and

soybean crops. In China, Song et al. (2022) calculated the

economic impact of climate change on maize yields based on

the Ricardian model. Despite these studies providing valuable

insights, they didn’t reach a consistent conclusion owing to

differences in data sets and methods. Other researchers show

that farmers can adjust their behavior to adapt to climate change

by collecting relevant information on the topic (Tazeze et al.,

2012). Based on these remarks, some scholars discuss the

influencing factors and effectiveness of farmers’ measures to

deal with climate change from the perspective of farmers’

subjective initiatives (Huang et al., 2015; Rijal et al., 2022;

Shariatzadeh and Bijani, 2022; Zobeidi et al., 2022).

These research highlights the significance of current studies,

mainly focusing on maize. According to the data of National

Bureau of Statistics of China, maize is the largest grain crop

regarding sowing area and output in China. Maize is also an

important feed and industrial raw material (Shukla and Cheryan,

2001; Klopfenstein et al., 2013). With the rapid development of

China’s economy, the dietary structure of national residents has

changed and the demand for meat has increased rapidly,

stimulating the development of animal husbandry and the

“rigid” growth trend of feed grain demand (Shimokawa, 2015;

Fukase and Martin, 2016). Accordingly, it is of great practical

significance to provide data for stakeholders that enables them to

effectively ensure maize output, reasonably plan maize

production areas according to local conditions, and optimize

the allocation of agricultural resources.

The above research has mainly given us the conclusion about

climate change’s influence on the agricultural output from the

regional level. However, few relevant studies have explored the

impact of climate change on China’s maize output using a

national scale panel data comprising data at the micro level

(e.g., farmer household level). Compared with previous studies

that assess the impact of climate change based on a regional level,

it is more meaningful to study the impact of climate change from

the farmers’ perspective. Farmers are themain bodymost directly

affected by climate change, especially for developing countries

like China, where small farmers are the main body. Whether

farmers can respond to climate change in a timely and effective

manner is crucial. Therefore, exploring the impact of climate

change on maize output at the farmer household level can more

accurately project the actual impact of climate change on

agricultural output in developing countries. This paper uses a

nationally representative farmer household-level panel data and
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employs the fixed-effect model to control for time-invariant

factors, such as the management ability of agricultural

producers, the quality of household contracted farmland and

other factors to more accurately identify the impact of climate

change on maize output.

Accordingly, using data including 3,050 small farmers

engaged in planting maize for 10 consecutive years from

National Rural Fixed Observation Point of China, and based

on the macro-overview of China’s maize production and climate

change, this study first tests the impact of temperature,

precipitation, and sunshine hours on farmers’ maize

production at the national level. Then, the heterogeneous

characteristics of the climate conditions of the five major

maize production areas in China are considered, and the

methods to stimulate the future development potential of

maize in each production area are employed. Finally, relevant

countermeasures and suggestions are presented.

2 Maize output change and climate
change in China

2.1 Output change in the five major maize
production areas in China

Maize has a variety of uses in the grain, economics, forage,

fruit, and energy fields. It is a grain crop with the longest

industrial chain in China and holds a great strategic

significance for the country. From 2009 to 2018, maize output

increasing from 163.97 to 257.17 million tons (growth rate:

56.84%) in the country (Supplementary Table A1). Maize is

playing an increasingly prominent role in the national

agricultural production.

Furthermore, this grain crop is widely planted across

31 provinces (autonomous regions and municipalities) of

China. In fact, by combining The Atlas of Growth Periods of

Major Crops in China with the available data, the country can be

divided into the northern spring sowing maize area (hitherto

Production area 1), HuangHuai Plain spring and summer sowing

maize area (hitherto Production area 2), southwest hilly maize

area (hitherto Production area 3), southern hilly maize area

(hitherto Production area 4), and northwest inland maize area

(hitherto Production area 5).

Supplementary Table A1 shows that Production area 1 is the

largest maize production area in China, accounting for nearly

50% of the country’s total maize output. From 2009 to 2018, its

maize output shows an increase from 67.17 to 119.64million tons

(growth rate: 78.12%). Production area 2 is the second-largest

maize production area, accounting for approximately 30% of the

country’s total maize output. From 2009 to 2018, its maize output

shows an increase from 58.53 to 80.19 million tons (growth rate:

37.01%). In the other production areas, the total maize output

accounted for approximately 20% of the total output during this

same period, as well as show an increase from 38.26 to

57.36 million tons (growth rate: 49.89%). Overall, China’s

maize shows a steady output increase over the analyzed

period, with slight fluctuations across the years.

2.2 Climate change in the five major maize
production areas in China

Generally, human activity relies on the natural environment,

and agriculture is one such activity that is highly sensitive to

climate change. Therefore, the impact of climate change onmaize

output cannot be ignored. Temperature, precipitation, and

sunshine are basic elements of the climate, as well as key

factors affecting maize output. The abnormal temperature and

water imbalance due to abnormal climate conditions have

different effects on maize growth. With the available data,

Supplementary Tables A2–A4 show the changes in

temperature, precipitation, and sunshine hours in the five

major maize production areas of China.

Supplementary Table A2 shows that from 2009 to 2018, the

monthly average temperature is the highest in Production area 4

(16.88°C) and the lowest in Production area 1 (7.81°C). Further,

Production areas 3, 2, and 5 show an monthly average

temperature of 16.15°C, 12.95°C, and 9.95°C, respectively.

Supplementary Table A3 shows that from 2009 to 2018, the

monthly average precipitation is the highest in Production area 4

(98.92 mm) and the lowest in Production area 5 (29.33 mm).

Further, Production areas 3, 1, and 2 show a monthly average

precipitation of 86.37, 51.36, and 49.27 mm, respectively.

Supplementary Table A4 shows that from 2009 to 2018, the

monthly average sunshine hour is the highest in Production area

5 (206.59 h) and the lowest in Production area 3 (125.62 h).

Further, Production areas 1, 2, and 4 show monthly average

sunshine hours of 195.62 h, 188.58 h, and 135.07 h, respectively.

In summary, Production area 1 has longer sunshine hours,

average precipitation levels, and the lowest temperature over the

analyzed period. Production area 2 has average temperature,

sunshine hours, and less precipitation. The temperature and

precipitation conditions in Production area 3 are high, but

sunshine hours are the lowest. Production area 4 has the

highest temperature and precipitation conditions, but

sunshine hours are shorter. Finally, Production area 5 has the

longest sunshine hours, cooler temperatures, and less

precipitation.

3 Model settings and data source

3.1 Model setting

Theoretically, input factors are key elements affecting maize

output, and they include land input, labor input, andmaterial inputs
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(e.g., seeds, fertilizers, pesticides, agricultural film, agricultural

machinery, and irrigation). Land is the material basis for maize

growth, and in theory, the sown area has an important positive

impact on maize output. Labor is also an important factor affecting

maize output. In this study, the number ofworking days is used as an

indicator of labor input in maize output. Materials are the main

input factors for maize output, and upon considering that the

quantity of different types of materials is not comparable, we

used total costs to reflect material input in maize output.

Based on previous research (Jones and Thornton, 2003; Lobell

andAsner, 2003; Lin et al., 2011), crop growth is affected not only by

the input of production factors but also by climate change. Hence,

maize growth results from the joint action of sunshine hours,

temperature, precipitation, and other factors. Although these

factors are not directly invested in maize production, they affect

the efficiency of the production factors.

In addition, researchers have shown that there may be a

quadratic relationship between climate factors and grain crop

output (Kabubo-Mariara and Karanja, 2007; Schlenker and

Roberts, 2009; Adhikari et al., 2015). A Cobb-Douglas

production function calculates the relationship between

production output and inputs (factors), which is used to

predict technological change (Zellner et al., 1966). Compared

to C-D production function, Translog production function may

be more general and flexible, which has been widely applied to

the area of agricultural production accounting. Compared to the

fixed elasticity of various input factors and output in C-D

production function, Translog production function can relax

this hypothesis, thereby more accurately estimating the impact of

climate change on agricultural output.

In this paper, controlling for the fixed effects of farmer

household and year, two-way fixed-effects model is used to

evaluate the impact of temperature, precipitation, and

sunshine hour variation on maize output. Farmer household

fixed effect denotes the farmer household-level time-invariant

unobservable factors which may be related to maize output, such

as farmer’s labor capacity and cropland quality; Year fixed effect

denotes the time-variant factors, including the other climate and

social factors. In summary, we constructed a transcendental

logarithmic production function of variable elasticity that is

easy to estimate and highly inclusive, as shown in Eq. 1:

LnY � α0 + α1LnS + α2LnL + α3LnK + α4

2
(LnS)2 + α5

2
(LnL)2

+α6
2
(LnK)2 + α7LnS × LnL + α8LnS × LnK + α9LnL × LnK

+α10LnTe + α11LnRa + α12LnSu + α13
2
(LnTe)2 + α14

2
(LnRa)2

+α15
2
(LnSu)2 + α16T + μ (1)

where Y is a farmer’s total maize output; S is the farmer’s sown

area of maize; L is the number of working days for maize

production; K is the material cost for maize production; Te is

the temperature condition (°C); Ra is the precipitation condition

(mm); Su is the number of sunshine hours; and T is the time

trend variable. We selected a two-way fixed-effects panel data

model for the analysis.

Notably, following previous literature (Rurinda et al., 2015;

Ureta et al., 2020; Wu et al., 2021), there are multiple reasons to

use maize output rather than maize productivity as dependent

variable. First, China’s small farmer households are still the main

body of cropping maize, and their production decisions are

mainly based on maize planting area and output (Huang and

Ding, 2016). Thus, using maize output is more in line with

Chinese farmers’ production condition. Second, in Translog

production function, maize planting area has been absorbed

as land input factors, which also helps to better estimate

maize output.

Since this study focuses on the contribution of different

factors to maize output changes, we also calculate the

contribution of factor changes to maize output changes by

obtaining the output elasticity of factors (i.e., the ratio of

output increases when factor input increases by 1%, while

other conditions remain constant).

3.2 Data sources

For the empirical analysis, we use farmer household-level

data from the National Rural Fixed Observation Point. The

National Rural Fixed Observation Point are a micro-level

panel data set based on farmer households. The survey

began in 1986 and now covers 31 provinces (autonomous

regions and municipalities), 368 counties, 375 sample villages,

23,000 account-keeping agricultural (pastoral) households,

and more than 1,600 new agricultural management

subjects. The survey covers all aspects of farmers’

production, operation, consumption, and investment.

Especially in grain production, detailed and reliable survey

records are available for the output, sown area, and

expenditure of related inputs of each crop. We selected

farmers who had been producing maize for 10 consecutive

years (from 2009 to 2018) as the sample for the empirical

analysis, totalizing 3,050 households. The climate data sources

are the monthly data of the China National Meteorological

Observatory from 2009 to 2018, which is provided by the

China Meteorological Science Data Sharing Network.

According to the coordinates of the county center point

and the meteorological observation point, based on the

principle of the shortest spatial distance, the connection

between the farmer household data set and the

meteorological data set is realized. It should be stated that

we use maize growing season data (The growing season of

Production area 1 is from May to October; the growing season

of Production area 2 is from June to October; the growing

season of Production area 3 is from March to September; the
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growing season of Production area 4 is from March to August;

the growing season of Production area 5 is from April to

September).

The main variables and their meanings are shown in

Supplementary Table A5. Farmers’ average total maize output

is 4,587 kg. Regarding inputs, farmers’ average sown area of

maize is 8.24 mu, labor input is 59.92 days, and material input

is 2,251.71 yuan. Regarding climate, during growing season the

monthly average temperature in the area where the sample

farmers are located is 20.65°C, the monthly average

precipitation is 97.15 mm, and the monthly average sunshine

hours are 188.14 h.

4 Results

4.1 Analysis of estimated results

4.1.1 Estimation results of the model of
influencing factors of maize output

For estimations using the 10-year farmer household panel

data set, we use a two-way fixed-effect model regression method.

Missing variables and time changes are controlled as much as

possible (through individual fixed-effects and time fixed-effects,

respectively) to identify the impact of climate change more

accurately on maize output. Supplementary Table A6 presents

the results of the influencing factor model for maize output. The

adjusted R2 of the entire model is 0.8962, indicating that the

independent variables explain 89.62% of the dependent variables.

In addition, we also conducted an over identification test and

rejected the assumption of using the random-effect model.

Furthermore, as shown in Supplementary Table A7, the

mean values of output elasticity of land, labor, and material

input (main input factors) are 0.6740, 0.0531, and 0.2470,

respectively. That is, for every 1% increase in land, labor, and

material input, maize output increases by 0.67%, 0.05%, and

0.25%, respectively. Overall, land inputs (sown area) remain the

most important factors affecting maize output, followed by

material and labor inputs. With the continuous development

of society and the economy, the problems of non-agricultural

land competition, non-grain use of farmland, and land

abandonment have become increasingly prominent. Further,

industrial and domestic pollution have led to a decline in the

quality of arable land and to a small number of farmlands with

high and stable outputs. Therefore, great importance should be

attached to stabilizing grain cultivation areas. Simultaneously,

under the influence of economic laws, the opportunity cost of

labor for agricultural production continues to increase, and more

farmers choose to work to increase their income. On the one

hand, this leads to reduced labor input; on the other, this leads to

a more aged and feminized labor force (Palacios-López and

López, 2015; Liu et al., 2019; Rigg et al., 2020), which in turn

reduces the quality of labor input and is not conducive to maize

output improvements. In addition, researchers have thoroughly

demonstrated the important role of agricultural capital

investment in promoting agricultural technological progress,

meaning that an increase in physical capital plays an

important role in promoting agricultural output (Binswanger

and Rosenzweig, 1986; Smith, 2004; Syed and Miyazako, 2013).

Regarding climate factors, temperature, precipitation, and

sunshine hours have significant effects on maize output, meaning

that climate change will increase maize output fluctuation. The

output elasticities of temperature, precipitation, and sunshine

hours are 0.3940, 0.0153, and −0.0515, respectively

(Supplementary Table A7). As maize is a temperature-loving

crop, it is very sensitive to temperature fluctuations, with an

increase in this variable being beneficial for maize output.

Precipitation has a significant positive impact on maize

output, indicating that an appropriate increase in precipitation

levels can also increase maize output. From the model results, the

output elasticity of sunshine hours is negative, meaning that there

is insufficient lighting to some extent.

4.1.2 Contribution of various factors to maize
output growth

In this section, the output elasticity of each factor is

multiplied by the change rate of the factor within the sample

year, and then divided by the change rate of maize output within

the sample year. This serves to express the contribution of factors

to maize output. The results are presented in Supplementary

Table A7.

Supplementary Table A7 shows the contribution of input and

climate factors to maize output. Regarding input factors, the

contribution rates of material, land, and labor input to maize

output are 53.71%, 46.33%, and −3.47%, respectively. These

results further illustrate the roles of land and material input in

maize output, which is in line with previous literature (Sheng

et al., 2019; Qiu et al., 2021). Regarding climate factors, the

contribution rates of temperature, precipitation, and sunshine

hours to maize output are 2.20%, 0.58%, and −0.51%,

respectively, indicating that these variables have limited

contributions to maize output. This may be because of the

high concentration of production in the analyzed areas.

Specifically, Production areas 1 and 2 account for nearly 80%

of the country’s total maize output, and both are less affected by

climate change. Therefore, it is necessary to further subdivide and

understand the impact of climate change in each area to propose

more effective measures to deal with climate change and ensure

the supply of maize in China.

4.2 Heterogeneity test

Since China has a vast territory, different production areas

have different natural conditions and socioeconomic

characteristics. In the process of maize production, farmers

Frontiers in Environmental Science frontiersin.org05

Zhang et al. 10.3389/fenvs.2022.954940

11

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.954940


are affected not only by their own characteristics (individual

effects) but also by their living environment, that is,

environmental background effects. Accordingly, this section

further divides the sample into the five production areas,

repeats the analyses, and focuses on the impact of climate

factors on maize output. This serves to determine the

characteristics of the impact of climate change on maize

output in different production areas, grasp the future trend of

maize production layout, and put forward targeted policy

recommendations for stakeholders to reference.

Supplementary Table A8 presents the model estimation results

by area. The calculations for output elasticity of the climate

factors in each area and their contribution rate to maize output

growth (Supplementary Table A9) are based on the results

described in Supplementary Table A8.

In Production area 1, the impact of climate factors on maize

output is small, with temperature having a negative effect on the

output elasticity and contribution to maize output. This is mainly

because although Production area 1 has climate conditions that

are very suitable for maize growth and unique climate resources,

low temperatures and chilling damage are among the main agro-

meteorological disasters affecting this area. Hence, temperature

fluctuation is an important factor for changes in maize output. In

most regions of Production area 1, the temperature in spring is

relatively low, and there is the problematic phenomenon of “cold

springs.” Insufficient accumulated temperature leads to slow

maize growth, indicating another important explanation for

the negative output elasticity and contribution rate of

temperature in this production area.

In Production area 2, output elasticities for precipitation and

sunshine hours are negative, while the contributions to maize

output for temperature and precipitation are positive. Production

area 2 has a warm and semi-humid climate with abundant

rainfall, providing sufficient conditions for crop irrigation.

Accordingly, maize planting methods are more diverse in this

area, and intercropping and multiple cropping can coexist.

However, in two cycles of multiple cropping, the utilization of

solar thermal resources was low, only early maturing maize

varieties can be planted, resulting in a low maize output

(Wang et al., 2020; Zhai et al., 2017; Zhai et al., 2021). In

addition, owing to the high temperature and humidity in

summer, Production area 2 is prone to diseases and insect

disasters, which adversely affect its maize output.

In Production area 3, output elasticities for temperature and

precipitation are positive, and the contributions to maize output

for sunshine hours are negative. The topography of Production

area 3 is relatively complex when considering its natural

landscape. Specifically, mountains, hills, and plateaus account

for more than 90% of the total land area. Accordingly, regional

differences in ecological conditions are very large and production

conditions are poor. Due to the high temperature and humidity

in the growing season of maize in Production area 3, as well as the

lack of sunshine in the area, the problems of pests and diseases

tend to be more serious, and this situation is not conducive to

maize output and crop quality. From this point of view,

Production area 3 is not suitable for maize growth.

In Production area 4, output elasticities for temperature and

precipitation are positive, and contributions to maize output for

temperature is negative. Around 10°C is a suitable temperature

for the growth and development of maize, but Production area

4 has a higher temperature and abundant rainfall, which are more

suitable for rice cultivation. Accordingly, the climate conditions

in autumn and winter in Production area 4 are more favorable for

maize production.

In Production area 5, output elasticities for temperature,

precipitation, and sunshine hours are positive, and contributions

to maize output for sunshine hours is negative. Production area 5 is

characterized by dryness, and precipitation depends mainly on the

melting of snow or river irrigation systems in the region. This area

also has the advantage of abundance in heat resources, having great

potential for improving maize quality and increasing income. Still, it

is necessary to ensure appropriate supply of irrigation water. Since

the contribution of sunshine hours tomaize output is negative in this

area, attention should be paid to the selection of newmaize varieties

that are density-tolerant, high-output, drought-resistant, and

suitable for machine harvesting.

5 Analysis of the changes in maize
production in the five major
production areas in China

This section analyses the climate conditions and maize

production inputs and outputs characteristics in the five major

production areas at the farmer household level from 2009 to 2018. It

also investigates the future layouts of these five production areas and

proposes targeted countermeasures and suggestions.

5.1 Changes in the input of production
factors in the five production areas

Regarding land input changes, a horizontal comparison of

production areas shows that the average maize sown area per

household in Production area 1 (15.18 mu) is prominently higher

than that in other areas, being 193.27%, 433.82.32%, 479.90%,

and 295.38% higher than that in Production area 2, 3, 4, and 5,

respectively. Then, a vertical comparison of production areas

shows an overall upward trend from 2009 to 2018 for maize sown

area per household. In Production areas 1, 2, 3, and 5, the average

maize sown area per household in 2018 is 27.68%, 29.53%,

24.60%, and 25.71%, respectively, higher than that in 2009.

The exception is Production area 4, as its average maize sown

area per household diminished by 20.22% during this period.

Regarding labor force changes, a horizontal comparison of

production areas shows that the average labor force input per
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household in Production area 1 is the highest, followed by

Production areas 5, 2, 3, and 4. Vertical comparison of

production areas shows an overall downward trend from

2009 to 2018 for average labor force input per household. In

Production areas 1, 2, 3, and 4, the average labor force per

household in 2018 is 29.09%, 25.79%, 6.10%, and 47.66%,

respectively, lower than that in 2009. The exception is

Production area 5, which shows an increase of 15.86% in the

average labor force input per household during this period.

Regarding material input changes, a horizontal comparison

of production areas shows that the average material costs of

maize production per household in 2018 is the highest in

Production area 1 (4,296.29 yuan), followed by Production

areas 2 (1,359.00 yuan), 5 (1,237.92 yuan), 3 (577.79 yuan),

and 4 (539.49 yuan). Vertical comparison of production areas

shows an overall upward trend from 2009 to 2018 for average

material cost of maize production per household, except for

Production area 4 (the average material cost of maize production

per household in 2018 is 0.03% lower than that in 2009). In

Production areas 2, 3, 1, and 5, the average material cost of maize

production per household in 2018 is 125.92%, 104.98%, 75.03%,

and 64.61%, respectively, higher than that in 2009. Regarding the

average cost per household, Production area 5 shows the smallest

increase margin and Production area 1 shows the largest absolute

value during this period.

5.2 Climate changes in the five production
areas

Regarding temperature changes from 2009 to 2018, there is a

rise in the monthly average temperature during the growing

season in Production area 1 of 0.64°C (increase of 3.46%), and the

temperature fluctuation is 0.23°C. For Production area 2, these

values are 0.40°C (increase of 1.79%) and 0.34°C. In Production

area 3, these values are 0.03°C (increase of 0.15%) and 0.25°C. In

Production area 4, these values are 0.77°C (increase of 3.58%) and

0.50°C. In Production area 5, these values are 0.09°C (increase of

0.48%) and 0.28°C. In general, the temperature remained stable

across areas with a relative upward trend, especially in

Production areas 1 and 2, the two largest maize production

areas in China. This temperature increase has advantages, such as

the promotion of maize growth.

Regarding precipitation changes from 2009 to 2018, the

monthly average precipitation during the growing season in

Production area 1 increased by 20.90 mm (increase of 26.89%)

with a standard deviation of 10.62 mm. For Production area 2,

these values are −0.57 mm (decrease of 0.63%) and 11.90 mm. In

Production area 3, these values are 34.90 mm (increase of

30.96%) and 14.31 mm. In Production area 4, these values

are −13.18 mm (decrease of 9.82%) and 16.80 mm. In

Production area 5, these values are 32.13 mm (increase of

91.62%) and 10.49 mm. In general, the precipitation in

Production areas 1, 3, and 5 show an increase from 2009 to

2018, and this increase is significant in Production areas 3 and 5.

Further, the increase in precipitation in Production area 3, which

generally has sunny days, led to maize production damages.

Therefore, measures need to be taken to deal with the difficulties

related to pests and diseases caused by high precipitation.

Nonetheless, in Production area 5, which generally has a

relatively arid climate, the increase in precipitation is

beneficial because it promotes the potential for greater local

maize output. Meanwhile, the precipitation in Production

areas 2 and 4 decreased slightly from 2009 to 2018, with more

obvious fluctuations appearing in Production area 4.

Regarding sunshine hours changes from 2009 to 2018, the

monthly average sunshine hours during the growing season in

Production area 1 and 2, 7 years show numbers lower than those

in 2009. In Production area 3, there is only 1 year with lower

numbers. In Production area 4 and 5, there are 4 years with lower

numbers. In general, sunshine hours in northern China are

significantly higher than those in southern China during the

period, and they are the highest in the northwest. Recently, due to

human activity intensification, the decrease in sunshine hours

has become more obvious. This emphasizes the need to develop

reasonable planting structures that enable the full use of solar

energy resources.

5.3 Maize output changes in the five
production areas

Production factors and climate factors jointly affect maize

output. A horizontal comparison of the production areas shows

that climate factors in Production area 1 are suitable for maize

crops, as well as that the land, labor, and material inputs are

higher, leading to a high maize output. Specifically, in 2018,

Production area 1 shows an average maize output per household

of 9,610.43 kg, which is 237.59%, 739.14%, 1288.90%, and

384.15% higher than that of Production areas 2, 3, 4, and 5,

respectively. This further verifies that production area 1 is the

largest dominant production area. Production area 5 has the

advantage of heat, and the increase in precipitation from 2009 to

2018 is conducive to solving the irrigation problems in the region;

therefore, Production area 5 has great potential for maize output,

albeit the small planting area per household is an obstacle.

A vertical comparison shows an upward trend for average

maize output per household from 2009 to 2018. In Production

areas 1, 2, 3, and 5, the average maize output per household in

2018 is 38.21%, 48.94%, 23.46%, and 61.76%, respectively, higher

than that in 2009. The exception here is Production are 4, which

shows a value in 2018 that is 32.74% lower than that in 2009.

Based on the analyses in this section, it seems necessary to adjust

the agricultural structure for maize production by local

conditions. Further, for regions where the natural conditions

are not suitable for maize cultivation, it is essential to emphasize
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their comparative advantages and improve agricultural

production efficiency as much as possible.

6 Conclusion and countermeasures

Usingmicro-level household data of the National Rural Fixed

Observation Point from 2009 to 2018, this study incorporates

climate factors such as temperature, precipitation, and sunshine

hours into the transcendental logarithmic production function

and constructs a two-way fixed effect model. With the

econometric model, then we empirically study the impact of

climate change on maize output in China and the changes in

farmers’ maize production in different production areas.

Furthermore, we analyse the developmental potential of each

main maize production area in China. The main conclusion are

as follows.

First, temperature, precipitation, and sunshine hours show

significant effects on maize output. The output elasticity of

temperature is 0.3940, that of precipitation is 0.0153, and that

of sunshine hours is −0.0515. Maize is a crop that likes

temperature and light and is most sensitive to temperature

fluctuations. An appropriate increase in precipitation can also

increase maize output, but there is the potential problem of

insufficient sunshine hours that may also hinder output.

Second, temperature and precipitation generally positively

contribute to maize output, and sunshine hours negatively

contribute to maize output. The contribution rates of

temperature, precipitation, and sunshine hours to maize

output are 2.20%, 0.58%, and −0.51%.

Third, from a subregional perspective, different

production areas are affected differently by the climate.

Production area 1 has climate conditions that are very

suitable for maize growth and is generally not greatly

affected by climate, but attention should be paid to

problems related to low temperature and chilling damage.

The climate of Production area 2 is hot and humid in summer,

easily leading to plant diseases, insect disasters, and adversely

affecting maize output. The geomorphic environment of

Production area 3 is complex, and in the growing season of

maize, high temperatures are usually reported together with

wet and rainy weather conditions, and these characteristics are

not conducive to improvements in maize output and quality.

The climate conditions of Production area 4 are suitable for

rice production. Production area 5 is characterized by

sufficient light for maize production, and it is also dry and

has little precipitation; therefore, attention should be paid to

ensuring the supply of irrigation water to maize crops.

Fourth, different production areas must take different

measures to deal with climate change. Regarding temperature

changes, the temperature conditions of the production areas are

generally stable and show an upward trend from 2008 to 2019 in

general. Regarding precipitation changes, the total precipitation

in Production areas 1, 3, and 5 increased. Production area

3 experienced adverse impacts related to the increase,

highlighting the necessity to strengthen pest control in the

region. In Production area 5, nonetheless, higher precipitation

can effectively alleviate the problem of droughts. Meanwhile,

Production areas 2 and 4 show a decrease in precipitation levels

over the studied period. Regarding sunshine hours changes,

human activities have caused a reduction in sunshine hours,

which are generally higher in the north than in the south; this

emphasizes the need for the development of a reasonable

planting structure and making full use of the available solar

energy resources.

Fifth, land, labor, and material input remain key factors

affecting maize output. Overall, the output elasticities of land,

labor, and material input are 0.6740, 0.0531, and 0.2470,

respectively. The opportunity cost of the labor force engaged

in agricultural production is increasing, and material capital

input has become an effective substitute for labor input.

Different production areas have various divergent advantages,

showcasing that the agricultural structure should be adjusted

according to local conditions and agricultural production

efficiency should be improved as much as possible.

Based on these conclusion, this study proposes relevant

countermeasures and suggestions: In terms of the agricultural

production layout, adjust the planting structure according to

local endowments and match the local climate and economic

condition during the process of crop selection. In terms of

farmer’s response to climate change, enhance technology

training for farmers’ adaptive behaviours toward climate

change and minimize the damage to farmers from climate

shocks. In terms of agricultural infrastructure constructure,

develop farmland and water conservation projects and further

strengthen irrigation facilities in areas with insufficient rainfall.

In terms of sustainable agriculture development, prevent soil

pollution and hardening from excessive application of pesticides

and fertilizers and thereby ensure the planting area of maize and

the cropland quality.
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Low-carbon agricultural development in China is a prerequisite for rural

revitalization and a key to achieving socio-economic green transformation.

This paper used agricultural data from 30Chinese provinces from 2001 to 2020,

considering both carbon emissions from farming and livestock, agricultural

low-carbon total factor productivity (ALTFP) was measured using the RSBM-

GML index. Based on this, the network characteristics and driving mechanisms

of low-carbon synergistic development in agriculture were explored with the

help of an improved gravity model and social network analysis, and the

dominant provinces in low-carbon synergistic development in agriculture

are identified. The study revealed that the spatially linked network of ALTFP

in China exhibits multi-threaded characteristics of spillover to non-adjacent

provinces, and the whole network has a sparse structure and hierarchy. The

eastern regions such as Beijing, Tianjin, Shanghai, Jiangsu, and Zhejiang are at

the core of the network, with closer ties to other regions and a stronger role in

allocating resources. While the western regions such as Xinjiang, Qinghai, and

Gansu are located at the periphery of the network, with weaker access to the

resources. Meanwhile, the spatial proximity of provinces, the widening of

differences in urbanization levels and differences in financial support for

agriculture, and the narrowing of differences in the educational attainment

of rural labor have significantly contributed to the formation of provincial spatial

linkages. This study reveals that China’s government needs to give full play to

the role of core regions as “leaders”, and promote the balanced and coordinated

regional development of low-carbon agriculture in China. In addition, policy

makers should further optimize the spatial allocation of agricultural resource

elements between provinces. The findings of the study provide reference

suggestions for the development of regionally differentiated agricultural

low-carbon development plans.
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1 Introduction

In recent years, the problem of excessive carbon emissions

has attracted the attention of the global public, governments, and

academia. To reduce carbon emissions, countries are actively

taking measures (Yu and Wu, 2018; Zhao et al., 2018). China is

currently the largest carbon-emitting country in the world, and

the Chinese government has committed to reaching peak carbon

emissions around 2030, enacting a series of laws and regulations

to break down energy conservation and emission reduction in

various regions and industries (Zhou et al., 2020; Yang et al.,

2022a).

Agriculture is one of the core sectors in a country to ensure

the security of food supply and maintain socioeconomic stability,

and its sustainable development is closely related to people’s

welfare. China’s total agricultural output value of 139.7 billion

RMB increasing to 147013.40 billion RMB in 2021. However, the

tremendous achievement has been accompanied by a transition

in resource consumption and a surge in agricultural carbon

emissions (Xu and Lin, 2017; Zhang L. et al., 2019).

Agricultural carbon emissions account for about one-fifth of

China’s total carbon emissions (Guan et al., 2008; Liu et al.,

2021), as the second largest source of carbon emissions in China,

agricultural production activities generate 50% of CH4, 70% of

N2O and 28.5% of CO2 (Zhang X. et al., 2019; Yue et al., 2021).

Hence, low carbon agricultural development for China and

emerging economies like China means adopting a low carbon

emission development model while maintaining total economic

output and low carbon emissions (Ang and Su, 2016; Wu J. et al.,

2020; Hamid and Wang, 2022).

The impact of China’s agroecology deserves high priority (Li

and Wu, 2022; Wu et al., 2022). The relevant documents guiding

the work of “agriculture, the countryside and farmers” further

emphasize the promotion of green transformation of agriculture

in 2022. With the development of agricultural mechanization

and agricultural intensification, China’s agricultural production

activities have become increasingly dependent on the use of

chemical materials such as fertilizers, pesticides, and plastic

films (Zhen et al., 2017), which are important sources of

excessive CO2 emissions (Wang L. et al., 2022). In addition,

advances in farming technology and increased demand for meat

have led to a significant increase in CH4 and N2O emissions from

livestock (Qian et al., 2018). In previous studies, the

environmental and social impacts of livestock production

patterns have been largely ignored (Escribano et al., 2022).

Therefore, integrated consideration of carbon emissions from

farming and livestock is important for China to achieve

sustainable agricultural development (Paul et al., 2019). This

paper examines agricultural carbon emissions based on the broad

scope of agriculture. It refers to the greenhouse gas emissions

directly or indirectly caused by the agricultural production

process, including carbon emissions caused by agricultural

land use activities such as fertilizers, pesticides, and CH4 and

N2O from enteric fermentation and manure management in

livestock.

Uneven regional development is a challenge for many

developing countries, and the gap between backward and

developed regions is not only an economic issue but also a

source of social conflicts. The practice of poverty reduction in

China proves that it is particularly important to focus on

coordinated regional development. With the improvement of

the national market mechanism and the free flow of factors

across regions, the spatial connection between regions is getting

closer and closer, the process of regional economic integration is

advancing (Hao et al., 2021), and the exchange and cooperation

of agricultural development between regions are no longer

limited to neighboring areas, but presents the characteristics

of a complex network, and there is a spatial interaction effect

of agricultural carbon emissions between regions (Cui et al., 2021;

Liu and Yang, 2021; Wu et al., 2021). In reality, there is extensive

communication among farmers, and contacts between farmers or

rural neighbors are the main channel to obtain agricultural

technology information (Tze Ling et al., 2011; Genius et al.,

2014). Social networks promote green technology diffusion by

enhancing communication among farmers and are an effective

way for agricultural technology to spread (Li et al., 2017; Cai

et al., 2022). Agriculture has strong positive inter-regional

spillover effects, so expanding inter-regional cooperation in

agricultural research can increase efficiency, and in particular,

training researchers in less productive areas can increase TFP

(Zhan et al., 2017).

The contributions of this study are threefold. First, we

incorporate both carbon emissions from farming and livestock

into the research framework of green agricultural development

and use them as non-expected outputs to accurately examine the

spatial network characteristics of low-carbon agricultural

development in China and its evolutionary trends. Second, we

adopt an alternative research idea different from linear causality

analysis-social network analysis, focusing on the two-way

interaction between research objects, breaking the gap

between micro and macro, and eliminating all kinds of

dichotomous problems. The roles and functions of each

region in the spatial network structure of agricultural low-

carbon development were further screened. It provides a

reference basis for promoting the balance and coordination of

regional low-carbon development. Third, we further explore the

influence of the spatially linked network characteristics of regions

on their green development and analyzed the drivers of network

formation, we find space for the development of green agriculture

in China. As a result, this study examines the inter-regional

interactions, aiming to further promote inter-regional spatial

linkages and achieve inter-regional complementarities and

coordinated development. It not only provides referenceable

suggestions to promote the formation of China’s agricultural

carbon reduction policy and the construction of a cross-regional

green synergistic governance mechanism but also provides
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experience value to the economic transformation and stable

development of other emerging real economies like China.

The rest of the paper is described as follows: Section 2

composes the relevant literature on research progress, and

Section 3 includes the methodology and data sources used. In

Section 4, we present the main findings and some brief

discussions, and Section 5 provides an empirical analysis of

the relevant network drivers. In Section 6, we provide the

conclusions and policy implications of the study.

2 Literature review

Accurate analysis of ALTFP growth is crucial for designing

policies to obtain their effectiveness (Shen et al., 2019), especially

for one of the world’s largest food producers and food consumers like

China, where production efficiency that takes into account

environmental factors is important for achieving sustainable

agricultural development (Dakpo et al., 2016; Wang et al., 2018;

Liu et al., 2022). In terms of calculationmethods for agricultural TFP,

most scholars use data envelopment analysis (DEA) (Gong, 2020)

and stochastic Frontier analysis (SFA) approaches (Zhang L. et al.,

2019). Environmental factors were not considered in earlier studies

(Suhariyanto and Thirtle, 2001; Bai et al., 2012). With the increasing

environmental constraints in agricultural production, scholars have

started to work on agricultural green TFP that takes environmental

factors into account (Zhong et al., 2021). In subsequent empirical

studies, scholars have identified some limitations of the traditional

ML index (Battese et al., 2004); A global measurement technique

index that uses all measurement periods as a benchmark for the

efficiency Frontier surface was proposed (Pastor and Lovell, 2005;

Fukuyama and Weber, 2009). The global measurement technique

and theMLmeasurement technique were combined based on Pastor

and Lovell to form the Global Malmquist-Luenberger (GML) index

(Oh, 2010), it is gradually used by Frontier researchers in this field

(Ren et al., 2022). Compared with the traditionalML index, the GML

index can effectively solve the problem of linear programming

without feasible solutions. The research process considers group

heterogeneity, divides the sample into several groups, and introduces

the concept of common Frontier and group Frontier, which is more

suitable for regional variance analysis (O’Donnell et al., 2008). In this

paper, the Super-efficiency ray slacks-based measure (Super-RSBM)

model and the GML index were chosen for further calculations.

At present, research on the assessment of the low carbon

development level of Chinese agriculture and its influencing

factors has yielded fruitful results. Cheng et al. (2016) and Qin

et al. (2022) studied from the perspective of single-factor productivity,

and examined the agricultural carbon productivity of 31 provinces

and regions in mainland China during the period 1997–2012. Ji and

Xia (2020), Guo and Liu (2021) analyzed the spatial and temporal

convergence of agricultural green TFP in China from a dynamic

perspective. Yang et al. (2019) explored the degree of spatial

divergence of agricultural green TFP. The main influencing

factors of low carbon development in agriculture are crop

insurance (Carter et al., 2016; Fang et al., 2021), digital inclusive

finance (Gao et al., 2022), agricultural financial subsidies (Li et al.,

2021), industrial agglomeration (Wu J. et al., 2020), farmers’

characteristics, economic development level, farmers’ income level,

financial support to agriculture (Adnan et al., 2018), agricultural

structure, resource utilization, and environmental pollution control

level (Liu et al., 2021), the foreign trade of agricultural products, and

foreign direct investment in agriculture and agricultural technology

input (Chen Y. et al., 2022), all of which showed that the agricultural

green development in China showed a good trend, but the inter-

provincial differences widened, and the spatial distribution gradually

became uneven, with significant spatial dependence. Hence, it is

necessary to pay attention to the spatial interaction effect between

regions and gradually reduce the regional disparity in agricultural

development (Li et al., 2019).

In the study of spatial linkage in carbon emissions, a portion

of scholars has used spatial measures. Spatial measurement only

considers the influence of “quantity”, but not the influence of

“relationship”. The social network approach can overcome the

shortcomings of the spatial measurement approach and is

increasingly used in the spatial relationship of carbon

emissions. For example, He et al. (2020) constructed a

spatially correlated network of carbon emissions from the

power sector in each province of China, Bai et al. (2020)

examined the structure of the spatially correlated network of

carbon emissions from transportation in China and its drivers,

Liu and Xiao (2021) studied the spatial correlation of carbon

emissions from industry in China, Huo et al. (2022) andWang Z.

et al. (2022) examined the spatially correlated network structure

of carbon emissions from buildings in China network structure

and its drivers, and Song et al. (2019) explored the spatial

structure pattern and correlation effects of carbon emissions

in the Chengdu-Chongqing urban agglomeration. However, few

studies have applied social network analysis methods to carbon

emission relationships in agriculture.

The current research on low-carbon development in

agriculture has achieved richer results, but there is still room

for further improvement and supplementation. First, in the

measurement of ALTFP, most studies have taken farming as

the main object and selected six aspects of agricultural

production: fertilizer, pesticide, agricultural film, tillage,

machinery use, and irrigation as carbon sources to measure

agricultural carbon emissions. However, the fact that farming

and livestock have long each accounted for half of China’s total

agricultural carbon emissions, so carbon emissions from

livestock should also be taken seriously. Second, the spatial

linkage of ALTFP is mostly based on “attribute data”, which

results in local relationships, and the variables need to satisfy the

assumption of independent interconnectedness. Third, many

research results empirically proved the existence of spatial

linkages in low-carbon agricultural development in China but

did not further clarify the reasons for the formation of spatial
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linkages. Therefore, the study firstly measured China’s ALTFP

from 2001 to 2020 with the Super-RSB model from the

perspective of farming and livestock. Secondly, drawing on the

modified gravity model, the spatially linked network structure of

green agricultural development in different provinces was

analyzed using social network analysis. Finally, using the

Quadratic Assignment Procedure (QAP) to explore the

driving factors of low-carbon development in agriculture, and

analyze the reasons that led to the unbalanced development of

regional low-carbon agriculture.

3 Methodology and data allocation

3.1 Calculation of ALTFP

Green/low carbon total factor productivity has become an

important basis for judging the sustainability of the economy1(Liu

et al., 2021; Hao et al., 2022). While earlier DEA models could

measure environmental efficiency with undesired outputs, the weak

disposable relationship that exists between undesired and desired

outputs was ignored. The introduction of a DEA model with a

directional distance function partially corrects this deficiency.

However, the designation of direction vectors is subjective, the

improvement of each decision-making unit (DMU) may not be

unique, and these models do not take into account the weak

disposable relationship between desired and undesired outputs, to

solve this problem, Song et al. (2018) introduced polarity theory into

the SBMmodel and proposed the RSBMmodel. In this paper, RGML

index is used tomeasure ALTFP, whichwasmeasured by referring to

Song et al. (2018). The constructed Super-RSBM model is:

δpo � min δo �
1 + 1

m
∑m

i�1
s−i
xio

1 − 1
s + 1

(∑s

r�1
s+r
yro

+ s−‖z‖
zo

)
s.t. ∑n

j�1,j ≠ 0

λjxij + s−i ≤ xio, i � 1, 2, . . . ,m

∑n
j�1,j ≠ 0

λjyij − s+r ≥ yro, r � 1, 2, . . . , s

∑n
j�1,j ≠ 0

λj‖zj
���������� − s−‖z‖ ≤ zo

1 − 1
s + 1

⎛⎝∑s
r�1

s+r
yro

+ s−‖z‖
zo

⎞⎠> 0

λj, s
−
i , s

�
r , s

−
‖z‖ ≥ 0, j � 1, 2, . . . , n

(1)

Where s−i , s+r , s−‖z‖ represent the slack in inputs, desired, and

undesired outputs. In slack variables, the objective function is

monotonically decreasing. For the effective DMUO to be

evaluated, the DEA unit is effective only when δ*o ≥ 1, while

the higher the value δ*o the higher the efficiency.

The above equation can calculate the efficiency value of the

evaluated unit under certain technical conditions, but technical

efficiency at this point is a static analysis that cannot reflect the

direct impact of productivity changes on agricultural production

and development. For this reason, the GML index is introduced.

Compared with the ML index, the GML index can effectively

solve the problem of linear programming without feasible

solutions. Referring to (Oh, 2010), the RGML index is defined

as follows:

RGMLt,t+1(xt+1, yt+1, bt+1;xt, yt, bt) � 1 +DT
G(xt, yt, bt)

1 +DT
G(xt+1, yt+1, bt+1)

(2)
If RGMLt,t+1<1, then desired output decreases and non-

desired output increases, and ALTFP is lower than the

previous period level, conversely, the ALTFP is higher than

the previous period level. When Rgmlt,t+1 taking the non-

negative value and its value is greater than 1, it indicates that

ALTFP increases. Considering that Malmquist is a chain

index, which is a dynamic growth rate, this paper

transforms ALTFP into a fixed base index to reflect the

cumulative trend of ALTFP.

ALTFP2001 � ALTFP2000 × Mal2001, The ALTFP in 2000 is

1 and Mal2001 is the Malmquist index in 2001. By analogy

with this formula, we can obtain the TFP values for all years,

with 2000 as the base period and excluded in the empirical test

summary.

3.2 Determination of spatial correlation of
ALTFP

Determining the spatial linkages of ALTFP is the key to

effective analysis, and this paper draws on an improved trade

gravity model to determine. Provinces are the points in the

association network, and inter-regional linkage relationships

are the lines in the network, thus constituting the spatial

network of regional development. According to the existing

literature, most scholars generally use vector autoregressive

(VAR) models, gravity models, and Moran’s I index to

determine spatial relationships. However, the VAR model is

deficient in providing reasonable economic theoretical

explanations, it cannot reflect the simultaneous relationships

between variables or portray the evolutionary trends of spatial

structures, and it is too sensitive to the choice of lag order, which

can seriously degrade the network structure characteristics (Lui

et al., 2007). Gravity models can integrate relevant economic

geographic factors and reveal the evolutionary characteristics of

1 In this paper, we mainly measure agricultural green/low carbon total
factor productivity with agricultural carbon emissions as non-expected
output, which is also the currently adopted method, and all will appear
in the paper as agricultural low carbon TFP for conceptual clarity.
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spatially linked relationships in time series and cross-sections. In

our study, the gravity model was introduced into the field of

agricultural green development concerning (Chen Z. et al., 2022).

To improve the applicability of the model, the model was

modified as in Eq. 3:

Gij � kij
ALTFAPLTFPj[Dij/(gi − gj)]2, kij �

ALTFPi

ALTFPi + ALTFPj
(3)

Where Gij denotes the association strength of ALTFP in

provinces i and j. ALTFPi is the ALTFP for province i, Dij is

the geographical distance expressed as the spherical distance

between the capital cities of province i and province j. (gi − gj) is
the economic distance expressed in terms of the GDP per capita

of the two provinces. kij is the gravitational constant, usually take

1. However, considering the inter-provincial differences in

resource endowments and development approaches. There is a

two-way and non-reciprocal spatial correlation in ALTFP, so we

use the proportion of ALTFP to correct kij.

The spatial correlation matrix of inter-provincial ALTFP is

obtained from the modified gravity model, and the average value

of each row of the gravity matrix is taken as the threshold value.

When greater than the threshold than 1, it indicates a correlation

between the provinces in each row and the provinces in this

column for ALTFP; otherwise, it takes 0, which means there is no

correlation between this row and the provinces in this column.

3.3 Social network analysis

With the gradual deepening of regional coordination strategy

and the enhancement of the mobility of market factors, the

spatial correlation effect of the regional economy is becoming

more andmore significant, and there are complex economic links

between regions. The same is true of the agricultural economy.

Spatially linked networks of low-carbon economies in agriculture

are an important part of the economic network, its inner

mechanism of formation is a network organization system

combining points, lines, and surfaces of capital, resources,

labor, low-carbon technologies, and management methods

under the guidance of the concept of low-carbon development

and the role of several mechanisms, such as factor gathering and

dispersal, market regulation, government control, and circular

feedback.

Specifically, due to the spatial heterogeneity of geographical

location, factor endowments, agricultural development patterns,

and agricultural low-carbon technologies in each region, the

agricultural economy does not develop in a balanced manner,

which leads to a certain “potential energy difference” in the

development of agricultural low-carbon economy in each region,

providing a “source of power” for the flow of various factors

between regions. In this process, the market regulation

mechanism guides the flow of agricultural low-carbon

development factors to regions with high marginal benefits

through supply and demand and prices, forming the core and

peripheral areas of a low-carbon economy. The government’s

macro-control mechanism is mainly through financial transfer

payments, a performance appraisal system, and a regional

coordinated development strategy to guide the “reverse

gradient” flow of factors, promote regional advantages to

complement each other, and achieve balanced and

coordinated regional development (Yang et al., 2022b).

Therefore, the factors of agricultural low-carbon development

are constantly flowing and reconfiguring in space with human,

logistics, and information technology flows as carriers,

conducting and radiating to neighboring and other regions, it

forms a complex spatially linked network of inter-regional

agricultural low-carbon economic development. At the same

time, under the role of the circular feedback mechanism, the

low-carbon economy linkage network will also have an impact on

the efficiency of agricultural green development in each region

and the “potential energy difference” of inter-regional factor

flow, which will eventually promote the accumulation of low-

carbon agricultural economy cycle and gradual evolution.

The social network approach is unique in that the unit of

analysis is not primarily the actors (e.g., individuals, groups,

organizations, etc.), but rather the relationships between the

actors. From the “relational” point of view, the object of study

can be behavioral, political, social, and economic structures, so

this approach is widely used in different fields. The RGML

spatially relevant metrics in this paper are relational data,

since relational data do not satisfy the “assumption of

independence of variables” in the conventional statistical

sense, multivariate statistical methods in the general sense do

not apply to the analysis of relational data. Social network

analysis was used to analyze overall network characteristics,

regional network characteristics, and individual network

characteristics, and the influence of network structure was

tested empirically.

3.3.1 Whole network characteristics
Assessing the whole network characteristics of the spatial

association network of ALTFP in Chinese agriculture using

network density (D), network connectedness (C), network

efficiency (E), and network hierarchy (H). Among them, D

reflects the closeness of the connections between individuals

in the network. The greater the network density, the greater

the network’s influence on the individuals. C reflects the

robustness of the network, mainly measuring the reachability

of each node, and if C is equal to 1, the network is robust. E

reflects the number of redundant lines in the spatial network, the

lower the network efficiency, the more stable the network. H

reflects the position of each region in the spatial network, and the

higher it is, the higher the position of a region in the ALTFP

spatial association network. The calculation of network density
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(D), network connectedness (C), network efficiency (E), and

network hierarchy (H) is as presented in Eq. 4:

D � M

[N × (N − 1)]

C � 1 − [ V
N(N − 1)/2]

E � 1 − L
max(L)

H � 1 − K
max(K)

(4)

M is the number of relations existing in the network, N is the

total number of network nodes, V is the number of unreachable

point pairs in the network, L is the number of redundant lines in

the network, and K is the logarithm of symmetric reachable

points.

3.3.2 Regional network characteristics
The E-I distribution index is used to analysis of regional

development differences of ALTFP spatial association network in

Chinese agriculture, it is equal to the ratio of subgroup density to

overall density, so the index takes a threshold value in the interval

[−1, +1]. The closer the index is to 1, the closer the district

subgroups are to each other (external relations) and the less

factional forestry. The closer the index is to -1, the less inter-

subgroup (external relationships) and the more relationships

tend to occur between subgroups, implying a greater degree of

factionalism. The closer the index is to 0, the more the number of

relationships inside and outside the subgroups is similar, and the

relationships tend to be randomly distributed, making it

impossible to distinguish between subgroups. The formula for

measuring the E-I distribution index is as follows:

E − I � EL − IL
EL + IL

(5)

EL represents the number of relationships between

subgroups and IL represents the number of relationships

between subgroups within。

3.3.3 Individual network characteristics
The degree-centrality (Dc), betweenness-centrality (Bc), and

closeness-centrality (Cc) are used to analyze the individual

network characteristics. Whereas, the degree-centrality reflects

the local centrality index of the research subject, and measures

the ability of individuals in the network to connect themselves to

other individuals, without considering whether they can control

others. In a directed network, the degree of each point can be

divided into out-degree centrality (Oc) and in-degree centrality

(Ic). The in-degree centrality indicates the extent to which the

province is influenced by others, the out-degree centrality

indicates the ability of the province to influence other

provinces, and if the in-degree is greater than the out-degree,

it shows a net benefit effect, and vice versa. Is a net spillover effect.

Bc measures the actor’s control over resources, in other words, a

point is said to have a high Bc if it is on a shortcut to multiple

other pairs of points, indicating that this point plays an important

mediating role, and is therefore an index of control. Cc is a

measure of control by others, if the “distance” between a point in

the network and other points " are short, then the point is said to

have a high Cc and is stronger in terms of its ability to transmit

information. The expressions of degree-centrality (Dc),

betweenness-centrality (Bc) and closeness-centrality (Cc) are

respectively as follows:

Dc � (Ic +Oc)/(2n − 2)

Bc � ∑n
j

∑n
k

gjk(i)
gjk

, j ≠ k ≠ ij< k

Cc � ∑n
j�1
dij

(6)

n is the total number of network nodes, gjk is the number of

shortcuts that exist between point j and point k, gjk(i) is the

number of shortcuts that exist between point j and point k

through the third point i, dij is the distance of the shortcut

between point i and point j (the number of lines contained in the

shortcut).

3.3.4 The analysis of QAP
To investigate the influencing factors of Chinese

ALTFP spatial association networks with the help of the

Quadratic Assignment Procedure. Agricultural carbon

emissions and subject to multiple and complex factors,

the correlation between independent variables is a key

issue affecting the reliability of regression results. QAP is

based on the permutation of matrix data, and the

similarity analysis of each element in the two matrices

is performed to obtain the similarity coefficients, while the

coefficients are tested nonparametrically. It does not

require the assumption of mutual independence

between explanatory variables, thus it can well deal

with the endogeneity of relational data. It mainly

includes QAP correlation analysis and QAP regression

analysis.

In performing QAP correlation analysis, QAP first permutes the

rows and columns of amatrix simultaneously and then calculates the

correlation coefficient between the permuted matrix and the other

matrix, which guarantees that the independent and dependent

variable matrices have interdependence in rows and columns, and

then calculates the significance and the probability that the

magnitude of the correlation coefficient is either smaller or

smaller than the actual coefficient. In the QAP regression analysis,

the first step is to perform a conventional multiple regression

estimation for the long vector elements corresponding to the

independent and dependent variable matrices, and the second
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part is to perform a random permutation of the rows and columns of

the dependent variable matrix simultaneously, and then re-estimate

and save the estimated coefficient values and R2 values. The

procedure is repeated several hundred times to obtain the

standard error of the estimated statistic.

3.4 Panel quantile regression model

To further examine the evolutionary process of the change in

the coefficient of influence of network structural characteristics

on ALTFP, a fixed effects panel quantile regression is used with

reference to (Powell, 2020). Five representative quartiles were

estimated: 10%, 25%, 50%, 75%, and 90%.

QRGML(τ|X) � σ + φ(τ)X (7)

whereQRGMLis the conditional quantile of τ for a given condition
of X, X denotes all explanatory and control variables, and φ(τ) is
the quantile regression coefficient.

3.5 Data allocation

3.5.1 ALTFP
The data description of input and output variables in the

calculation of ALTFP is shown in Table 1.

Among them, the undesired outputs are mainly carbon

emissions from farming and livestock, which is calculated by

the following formula:

E1 � ∑Ei � ∑Ti × δi (8)

E1 is the total carbon emissions from farming, Ei is the carbon

emissions from all types of carbon sources, Ti is the amount of

each type of carbon source, δi is the emission factor for each type

of carbon source.

The sources of carbon emissions from livestock are

mainly methane (CH4) emissions from ruminant

gastrointestinal fermentation and livestock manure

management anoxia and nitrous oxide (N2O) emissions

from livestock manure collection, storage, and composting

processes, calculated as:

E2 � ∑GWPCH4 × Di × δ1i +∑GWPCH4 × Di × δ2i

+∑GWPN2O × Di × δ3i (9)

E2 is the total carbon emissions from livestock, GWPCH4,

GWPN2O are the greenhouse benefit indices of CH4 and N2O,

Di is the average annual stocking of livestock, δ1i, δ2i, δ3iare

emission factors for livestock gastrointestinal fermentation

CH4, manure fermentation CH4 and N2O. The carbon

sources and emission factors for each type of carbon

emission are shown in Table 2.

3.5.2 Data sources
The data were obtained from the public data of the

China Statistical Yearbook, China Population and

Employment Statistical Yearbook, China Agricultural

Yearbook, China Rural Statistical Yearbook, China

Agricultural Statistics, China Environmental Yearbook,

and some provincial and municipal statistical yearbooks

from 2001 to 2020. The geographical distances between

provincial capitals were calculated with the help of

ArcGIS10.8.

4 Results and discussions

4.1 Dynamic distribution of ALTFP in China

The RGML index of ALTFP was measured according to

Eqs. 8, 9, and the probability distribution of the RGML index

in different regions is plotted in Figure 1. Overall, the RGML

index is highest in the east, followed by the west, and lowest in

the northeast. In terms of the dispersion of values, there are

more discrete values of high loci in the eastern region, while

ALTFPs in other regions are not high and are more evenly

distributed, especially the smallest and most concentrated

TABLE 1 Description of agricultural production input and output variables.

Classification of indicators Carve metrics Indicator description

Input Indicators Labor Number of people working in agriculture, forestry, livestock and fishery

Capital Capital stock of agriculture, forestry and fisheries

Machinery Total power of agricultural machinery

Land Crop sown area and aquaculture area

Natural Resources Irrigated area measures water inputs

Outputs Indicators Desired output Total agricultural output Total output value of agriculture, forestry, livestock and fishery at constant prices in 2000

Non-desired outputs Agricultural carbon emissions Carbon emissions from farming and livestock
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values in the northeastern region. In terms of temporal

trends, ALTFP gradually increases over time, and in 2001,

the RGML indices among the four major regions were all low

but with small differences, and in 2005, the RGML indices in

the central and western regions tended to converge, while the

discrete values of the low loci in the northeast increased.

Starting from 2015, the RGML index in the eastern region

further increased, accompanied by an increase in the discrete

values of the high points. In other regions, the increase of

RGML index is smaller than that in the eastern region, but the

dispersion value decreases, it indicates that the balanced

development of the region has achieved some success.

Note: Violin diagram as a combination of box line diagram

and kernel density diagram, The box line plot shows the location

of the quantile, and the violin plot shows the density at any

location. The white dots are the medians, the red box shapes

range from the lower to upper quartiles, and the thin blue lines

indicate whiskers. The external shape is the kernel density

estimate.

4.2 Spatial association network
characteristics and evolutionary trends

Inspired by Luo et al. (2021), we used ArcGIS to conduct a

comparable analysis. Figure 2 visualizes the intensity of spatial

association of provincial ALTFP in China in 2020. According to

Eq. 6, considering the bidirectional and asymmetric nature of

provincial ALTFP, if two provinces are connected by only one

line, the difference in the magnitude of their bidirectional

association cannot be reflected. Therefore, if the left graph in

Figure 1 shows the gravitational intensity of province i to

TABLE 2 Carbon sources, emission factors and sources of agricultural carbon emissions.

Carbon
sources

Emission factors Unit References sources

Fertilizer 0.8956 Kg/Kg Oak Ridge National Laboratory (2009)

Pesticides 4.9341 Kg/Kg Oak Ridge National Laboratory (2009)

Agricultural film 5.1800 Kg/Kg Agricultural Resources and Ecological Environment Institute, Nanjing
Agricultural University

Diesel 0.5927 Kg/Kg The Intergovernmental Panel on Climate Change (2006)

Plowing 3.1260 Kg/hm2 School of Biology and Technology, China Agricultural University

Irrigation 25.0000 Kg/Cha Dubey (2009)

Carbon sources Emission factors of CH4 Emission factors
of N2O

Kg/head/
year

All coefficients are from The Intergovernmental Panel on Climate
Change (2006), where the CH4 greenhouse efficiency index is taken as
25, and The N2O greenhouse efficiency index was taken as 298

Gastrointestinal
fermentation

Fermentation of
manure

Pig 1.00 4.00 0.53 Kg/head/
year

Rabbit 0.25 0.08 0.02 Kg/head/
year

Poultry 0.00 0.02 0.02 Kg/head/
year

Dairy cattle 61.00 18.00 1.00 Kg/head/
year

Non-Dairy
cattle

51.40 1.50 1.39 Kg/head/
year

Horse 18.00 1.64 1.39 Kg/head/
year

Donkey 10.00 0.90 1.39 Kg/head/
year

Mule 10.00 0.90 1.39 Kg/head/
year

Goat 5.00 0.17 0.33 Kg/head/
year

Sheep 5.00 0.15 0.33 Kg/head/
year

Camelot 46.00 1.92 1.39 Kg/head/
year
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province j, the right graph shows the gravitational intensity of

province j to province i.

In Figure 2, the spatial association network of ALTFP in

China’s province has broken the traditional geographical

limitation of neighbor as friend, has a complex, multi-

threaded spatial association network overflowing to non-

neighboring provinces, showing a situation of “dense in the

east and sparse in the west”. From the gravitational strength

of the line colors, the whole network forms a radiation network

with Shanghai and Beijing as the south and north centers, and the

association strength of Beijing-Tianjin-Hebei and Yangtze River

Delta urban agglomeration is significantly higher than that of

other regions.

Further, to analyze the spatial association network structure

morphology of ALTFP, the spatial association intensity data

obtained from Eq. 6 were binarized to turn the attribute-based

data into relational data, and the spatial network topology of

Chinese ALTFP in 2001 and 2020 was plotted using the

visualization tool Net draw of UCINET (Figure 3). It can be

seen that from 2001 to 2020, the density of the spatial association

network of China’s ALTFP has increased significantly, and the

inter-regional connections have gradually become closer. Among

them, Beijing, Shanghai, and Tianjin have been in the core

position in the whole network, while most of the western

provinces are at the edge of the network and have less

connection with other provinces. Mainly because these regions

have strong economic development capacity, strong capital,

talent, and agricultural green innovation base, and have good

transportation infrastructure and strong factor mobility. This

greatly reduces the cost of green technology spillovers and thus

forms the core region of the spatially linked network of

agricultural green development.

4.2.1 The whole network characteristics
In terms of network density (Figure 4), network relevance

and network density maintain the same evolutionary trend

during the sample period, showing an “inverted U-shape”

evolutionary trend that slopes first and then decreases. In

terms of specific values, the number of network relationships

was 150 in 2001, peaked at 187 in 2017, and dropped to 181 in

2020. Correspondingly, the overall network density increased

from 0.17 in 2001 to 0.22 in 2015, and then decreased to 0.21 in

2020, it still has a large gap between the maximum number of

possible network relationships (870) and the maximum possible

network density 1, indicating that the spatial correlation of

ALTFP is still at a low level and the linkage spillover effect

between them is low.

In terms of network relevance, we adopt network

connectedness, network efficiency, and network hierarchy to

reflect the connectedness of the spatially connected network

FIGURE 1
Dynamic distribution of ALTFP from 2001 to 2020.
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structure of ALTFP in China (Figure 5). The network

connectedness showed an obvious stepwise upward trend

from 0.776 in 2001 to 0.871 in 2020, indicating that the

connectivity and robustness of the network were gradually

strengthened, and provinces could be spatially linked

through direct and indirect means. In terms of network

hierarchy, the value declined from 0.385 to 0.245 from

2001 to 2020, showing a stepwise decline, indicating that the

hierarchy structure of Chinese ALTFP is gradually loosening,

but there is still a hierarchy gradient and the network structure

needs to be further optimized. In terms of network efficiency,

the network efficiency declined from 0.783 in 2001 to 0.727 in

2020, with a less pronounced decline than the network

hierarchy, indicating that although the connectivity of inter-

provincial nodes is gradually increasing, there is still a high

number of redundant relationship numbers, and there is an

obvious phenomenon of overlapping association in the network

of each province.

FIGURE 2
Spatial correlation intensity of ALTFP in China in 2020. Note: The map is made based on the standard map downloaded from the standard map
service website of the National Bureau of Surveying, Mapping and Geographic Information, with the review number GS (2019) 1,673 and no
modification of the base map (https://service.tianditu.gov.cn/#/).

FIGURE 3
Structure of ALTFP in China in 2001 (A) and 2020 (B).
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4.2.2 Regional network structure characteristic
The study shows that there are significant differences in

economic and social development between regions in China (Wu

H. et al., 2020), and the regional differences in agricultural carbon

emission rates mainly come from the regional differences

between East-Central-West. To further investigate the spatial

correlations of low-carbon agricultural development between

regions, the 30 provinces in China were divided into four

regions: eastern, central, northeastern, and western. The

association network E-I index and the density matrix of each

zone of the Chinese ALTFP were obtained by measuring the four

major sectors as a unit.

The degree of faction throughout the network from 2001 to

2020 of ALTFP shows a narrowing trend (Figure 6). The E-I

association index of the entire network of China’s ALTFP was

0.543 in 2020, indicating that relationships tend to occur

among the four major segments, with a smaller degree of

factional forestry. In terms of regional density (Table 3), the

FIGURE 4
Network association and network density.

FIGURE 5
Network association, network efficiency, and network hierarchy.
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northeastern network has the highest density of 0.67,

indicating that resources are more closely linked to

agricultural development in the northeast. The density of

0.40 in the eastern region may be confined to the obvious

natural resource-dependent attributes of agricultural

development, the large north-south span, the different

natural resource attributes, and the north-south policy

differences, thus reducing the spatially linked network

density of ALTFP in the eastern region. The density in the

central and western regions is smaller, which may be limited

by the regional economic development base and natural

resource endowment differences.

In terms of inter-regional connections, the East is more

strongly connected to the Midwest and generally connected to

the Northeast. The Central region has strong connectivity with

the East, little connectivity with the West, and almost no

connectivity with the Northeast. The western region also has

almost no connection with other regions except for the strong

connection with the east. The northeast is only connected to the

east. It is found that the four major regions are spatially

connected, with the eastern region being more closely

connected to other regions, while the central, western, and

northeastern regions have very few connections with each

other. Combined with the spatial linkage density of the

regions themselves, the East is more connected both

internally and externally, with the Northeast having a higher

density value of its internal connections than that of its

connections with other regions, indicating that the

northeastern region has formed a “cohesive subgroup”

locally. The central and western regions, on the other hand,

are highly factionalized, with relatively few internal and

external linkages.

4.2.3 Individual network structure
characteristics

To further illustrate the position and role of each province in

the spatially linked network of agricultural low-carbon

development, we measured the centrality of each province.

The results show that there are no significant changes in the

indicators for each province during the sampling period;

therefore, we analyzed the indicators for 2020 as an example,

which are reported in Table 4.

First, degree centrality is used to discriminate whether each

province is at the center of the ALTFP spatial network. The

results show that six provinces are higher than the mean value of

32.18 of the degree-centrality, and all of these provinces are

located in the economically developed areas of the eastern coastal

region of China. Indicating that the eastern coastal region is more

closely related to other provinces in the ALTFP network and is in

the central dominant position in the spatially linked network of

ALTFP. However, Anhui, Jilin, Liaoning, Shanxi, Xinjiang,

Hubei, and Heilongjiang are in the last positions and are at

the edge of the network. The in-degree is greater than the out-

degree in 7 provinces, Beijing, Tianjin, Shanghai, Jiangsu,

Zhejiang, Fujian and Anhui in 2020. It shows that these

provinces benefit from the driving effect of ALTFP in other

provinces, and their high level of agricultural low-carbon

development can effectively attract resource elements of

agricultural green development and transform them effectively

to promote ALTFP, showing a significant spatial polarization

effect.

Second, closeness-centrality was used to discriminate the

ease of ALTFP spatial association generation among provinces.

The mean value of closeness-centrality is 60.81, and the

provinces that exceed the mean value and rank in the top

five are Shanghai, Beijing, Tianjin, Jiangsu, and Zhejiang,

indicating that these provinces have shorter distances from

other provinces, and can quickly make connections with other

provinces, and are central actors in the ALTFP spatial

association network. This may be because these provinces

are located in the eastern region with high inter-provincial

resource mobility, and developed economic strength and

accessibility expand access and capacity to agricultural

development resources. In contrast, Xinjiang, Shanxi,

Liaoning, Jilin, Anhui, Hebei, and Henan are ranked low,

mainly because these provinces are mainly located in the

geographical periphery of China and have weak links with

other provinces, playing a marginal role in the linkage network.

Finally, the betweenness-centrality is used to reflect the

ability of each province to control resources and information

in the process of low-carbon development of agriculture. The

mean value of betweenness-centrality is 2.42, with Shanghai,

Tianjin, Beijing, Jiangsu, and Zhejiang exceeding the mean value.

It shows that these provinces play the role of “intermediary” and

“bridge” in the linkage network, have strong control and

dominant role in the flow of talent, technology, and capital in

low-carbon agricultural development, and are the important

hubs in the linkage network. These provinces are located in

the economically developed eastern region, with a high level of

technological innovation and relatively high government

regulation of extensiveness. It is easier to absorb the inflow of

green development factor resources from other provinces and

achieve strong control over other provinces. In contrast, Shanxi,

Hubei, Xinjiang, Jilin, and Shanxi have lower betweenness-

centrality and rank lower, indicating that these provinces are

TABLE 3 Spatial correlation density matrix of ALTFP in four major
regions of China in 2020.

Region East Middle West Northeast

East 0.40 0.55 0.56 0.40

Middle 0.55 0.00 0.02 0.00

West 0.56 0.02 0.22 0.00

Northeast 0.40 0.00 0.00 0.67
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in the marginal position of “dominated” in the correlation

network.

4.3 Network structure effect analysis

Spatially linked networks are not only networks of

relationships between regions, but also spatial flows and

connections that contain knowledge and technology. The

characteristics of the spatial network structure reflect the

region’s access to resources and the degree of connection

with other regions, therefore, different characteristics of the

network structure will affect the level of development of the

region.

The indicators of overall network structural

characteristics, regional network structural characteristics,

and individual network structural characteristics were

obtained using the previous calculations as explanatory

variables, the agricultural low carbon TFP was selected as

the explanatory variable for the sample survey period, and

Ordinary Least Squares (OLS) was used to estimate. The

explanatory and explanatory variables were treated using a

logit strategy to avoid differences between indicators and

multicollinearity. In addition, to examine the evolutionary

process of the change in the impact effect of network structure,

further fixed-effects panel quantile regressions were used to

estimate representative five quartiles:10%, 25%, 50%, 75%,

and 90%, as shown in Table 5. Among them, the estimation

TABLE 4 Centrality of spatially linked networks of ALTFP in China in 2020.

Provinces Degree-centrality Closeness-
centrality

Betweenness-
centrality

Out-degree In-degree Degree No. Degree No. Degree No.

Beijing 7 23 79.310 3 82.857 3 13.003 3

Tianjing 6 24 82.759 2 85.294 2 14.862 2

Hebei 3 3 13.793 28 53.704 28 0.022 29

Shanxi 5 3 17.241 24 54.717 24 0.091 26

Neimenggu 6 6 31.034 7 59.184 7 0.732 7

Liaoning 4 2 17.241 25 54.717 25 0.071 27

Jilin 5 1 17.241 26 54.717 26 0.132 24

Heilongjiang 6 0 20.690 20 55.769 20 0.305 19

Shanghai 4 27 93.103 1 93.548 1 23.484 1

Jiangsu 5 19 65.517 4 74.359 4 7.514 4

Zhejiang 3 16 55.172 5 69.048 5 4.559 5

Anhui 4 5 17.241 27 54.717 27 0.126 25

Fujian 6 9 37.931 6 61.702 6 1.706 6

Jiangxi 7 5 24.138 16 56.863 16 0.359 16

Shandong 3 2 10.345 30 52.727 30 0.022 30

Henan 4 3 13.793 29 53.704 29 0.050 28

Hubei 6 2 20.690 21 55.769 21 0.196 20

Hunan 7 2 24.138 17 56.863 17 0.359 17

Guangdong 7 7 27.586 12 58.000 12 0.647 8

Guangxi 8 3 31.034 8 59.184 8 0.589 9

Hainan 8 1 27.586 13 58.000 13 0.359 18

Chongqing 9 5 31.034 9 59.184 9 0.545 10

Sichuan 9 1 31.034 10 59.184 10 0.528 11

Guizhou 8 4 31.034 11 59.184 11 0.528 12

Yunnan 8 2 27.586 14 58.000 14 0.528 13

Shanxi 5 2 20.690 22 55.769 22 0.170 23

Gansu 7 1 24.138 18 56.863 18 0.190 21

Qinghai 8 2 27.586 15 58.000 15 0.383 15

Ningxia 6 1 20.690 23 55.769 23 0.190 22

Xinjiang 7 0 24.138 19 56.863 19 0.410 14
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results of the 50% quantile are only slightly different from the

results of the other quantile in terms of coefficient magnitude,

and the direction of the coefficient is consistent with the

estimation results of the other quantile, so it is not shown

in Table 5.

4.3.1 Impact of overall network structure on
ALTFP

Table 5 reports the estimation results of the impact of

overall network structure on ALTFP. Where model (1) is the

result of OLS estimation and models (2) to (5) are the

results of panel quantile estimation. It can be seen that the

OLS estimated coefficients of network density, network

connectedness, network hierarchy, and network efficiency

are 5.045, 8.050, −2.008, and −0.147, all of which pass the

1% significance test, indicating that the overall network

structure has a significant effect on the level of ALTFP.

Increasing network density and network relevance,

reducing network hierarchy and network efficiency can

significantly improve the level of low carbon TFP in

agriculture. The quantile regression estimation results

showed that each indicator of network structure

characteristics passed the 1% significance test at each

quantile, and the signs were all consistent with the OLS

estimation results, further indicating the reliability of the

above results. This result is consistent with the findings of

Qu and Huang (2021) and Chen Z. et al. (2022).

This may be because, firstly, the increase in network

density indicates an increase in the number of associated

relationships in the network, and the core provinces will

exert a strong diffusion effect to drive the development of

inter-provincial complementarities, ultimately promoting

the growth of the ALTFP. Second, increased network

connectivity can enhance the robustness and inter-

regional connectivity of the network, all provinces can

join the network, there is no isolated area, and the

enhanced spatial spillover effect promotes the growth of

ALTFP. Again, the reduction of network hierarchy can

make the original one-way connected provinces develop

into two-way connectivity, the advantageous provinces

and the disadvantaged provinces gradually tend to be

equal, and the provincial-led low-carbon TFP

development model with the high level of economic

development and rich agricultural science and technology

resources changes to the overall agricultural green and

coordinated development model, thus improving the

overall agricultural green development level. Finally, the

reduction of network efficiency has increased the

connections in the relevant networks, that is, the network

hierarchy has been reduced, thus reducing the factor

endowment differences among provinces in agricultural

low-carbon development, lowering the inter-provincial

flow costs of agricultural low-carbon development factors,

enhancing the relevance of regional resources to agricultural

low-carbon development, and significantly improving the

overall level of ALTFP.

4.3.2 Effect of regional network structure on
ALTFP

The E-I index reflects the severity of regional assignment,

and as shown in Table 6, regional network structure under

OLS estimation significantly affects ALTFP at the 5% level

with a coefficient of 0.380, indicating that the weakening of

regional factional forestry is conducive to promoting

agricultural low-carbon development. The quantile

regression results show that the regional network structure

can only play a role in the enhancement of ALTFP if the level

of ALTFP is at the 75%.

TABLE 5 Results of the impact of the overall network structure on ALTFP.

Variables Density Connectedness

(1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90 (1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90

Whole network 5.045*** 4.468*** 4.479*** 4.534*** 6.288*** 8.050*** 7.904*** 8.727*** 8.216*** 8.500***

(0.540) (0.330) (0.421) (1.260) (0.917) (0.908) (0.833) (1.350) (1.240) (0.978)

R2 0.828 0.746 0.722 0.527 0.539 0.814 0.542 0.533 0.617 0.650

N 20 20 20 20 20 20 20 20 20 20

Variables Hierarchy Efficiency

(1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90 (1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90

Whole network −2.008*** −1.999*** −1.783*** −2.027*** −2.189*** −0.147*** −0.124*** −0.129*** −0.135*** −0.157***

(0.248) (0.270) (0.362) (0.327) (0.302) (0.134) (0.007) (0.009) (0.023) (0.021)

R2 0.785 0.514 0.450 0.592 0.617 0.863 0.785 0.765 0.585 0.538

N 20 20 20 20 20 20 20 20 20 20

Notes: ***, ** and * show the significance level at 1%, 5%, and 10%. The values in parentheses are standard errors. Same below.
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4.3.3 Effect of individual network structure on
ALTFP

Model (1) in Table 7 is an OLS estimation using a panel data

model, and models (2) to (3) are panel quantile regressions under

the adaptive Monte Carlo method. Among them, the estimation

results for the 25%, 50%, and 75% quantile points differ only

slightly from those for the 10% and 90% quantile points in terms

of the magnitude of the coefficients and are otherwise basically

the same, so they are not shown in Table 7.

The OLS regression coefficients of degree-centrality,

closeness-centrality, and betweenness-centrality are 0.418,

4.734, and 0.129, all of which are significant at the 1%

significance level, indicating a significant positive effect of

provincial centrality on increasing the level of ALTFP. This

finding is consistent with that of Chen Z. et al. (2022).

Possible reasons are: firstly, the higher the centrality, the

closer the relationship between a province and other provinces,

and accordingly the higher the degree of local relevance, the

more favorable it is that all provinces can benefit from the whole

network structure and improve their ALTFP. Secondly, higher

closeness-centrality means that the greater the sum of shortcut

distances between a province and other provinces, the less likely

the province’s agricultural low-carbon development is

constrained by other provinces, the closer the inter-

provincial relationship, the higher the degree of inter-

provincial communication and cooperation, the lower the

cost of factor flow and resource allocation, and the

increasing level of the province’s agricultural low-carbon

development. Finally, the provinces with higher

betweenness-centrality have obvious comparative advantages

in the ALTFP network, which can effectively guide the rational

allocation of resource factors, effectively control the correlation

effect with other provinces, and make the huge network

structure regionally effective and reasonable, thus

contributing to regional agricultural low-carbon development.

5 The analysis of driving factors about
spatial differences of ALTFP

5.1 Analysis of driving factors of spatial
association network of ALTFP

According to the mechanism analysis, the “potential

energy difference” due to the difference between regions is

the main driving force for the spatial closeness of the

association of ALTFP. Next, the factors affecting the spatial

association network are discussed, and the following nine

relational variables are selected to examine the factors

affecting the spatial association: 1) spatial proximity of

Provincial adjacency (RO) is expressed as 1 if the two

provinces are adjacent, otherwise it is 0. It has been

confirmed that low carbon efficiency in agriculture between

neighboring regions affects each other (Wu et al., 2015); 2)

agricultural industry structure differences (ST) are expressed

by the proportion of the output value of the farming in the

TABLE 6 Results of the regional network structure influencing the effects.

Explained variables ALTFP

Estimation methods (1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90

E-I index 0.380** 0.155 0.215 0.453* 0.139

(0.147) (0.267) (0.292) (0.226) (0.221)

R2 0.998 0.966 0.964 0.956 0.953

N 20 20 20 20 20

TABLE 7 Results for individual network structure effects.

Variables (1)OLS (2)Q10 (3)Q90 (1)OLS (2)Q10 (3)Q90 (1)OLS (2)Q10 (3)Q90

Degree-centrality 0.418*** 0.179*** 0.181***

(0.041) (0.004) (0.005)

Closeness-centrality 4.734*** 1.087*** 1.088***

(0.776) (0.057) (0.045)

Betweenness-centrality 0.129*** 0.056*** 0.055***

(0.012) (0.002) 0.002)

N 600 600 600 600 600 600 600 600 600
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total output value of agriculture, forestry, livestock, and

fishery. Different crops differ in terms of resource

consumption, marginal benefits, and carbon effects.

Accordingly, the structure of farmland use determines the

input mix, desirable output, and environmental burden.

Therefore, the restructuring of farmland use may affect the

flow and allocation of factors, which in turn affects

agricultural low-carbon development generating spatial

correlations (Zhu et al., 2019); 3) urbanization level

differences (UR) are expressed by the proportion of the

urban resident population to the total population. The

essence of the urbanization process is a multidimensional

transmutation process accompanied by the flow of capital,

labor, technology, and other factors from the countryside to

the city, and the reconfiguration of factors between urban and

rural areas, which has a great impact on the production scale

and cultivation structure of agriculture (Tian et al., 2016;

Xiong et al., 2020; Joséf, 2022); 4) rural labor education

level differences (ED) is expressed by the average years of

education of rural residents. The labor force is the decision

maker of agricultural production methods and its level of

education has a significant impact on the adoption and

application of pioneering technologies (Wang et al., 2019;

Wu et al., 2021; Khanh and Nguyen, 2022); 5) financial

development level differences (FI) is expressed by the ratio

of deposit and loan balance of financial institutions to GDP, a

sound financial service system can provide financial support

for agricultural transformation and upgrading and green

technology progress (Huang et al., 2014; Cao et al., 2022;

Gao et al., 2022); 6) agricultural irrigation water utilization

rate differences (WA) is expressed by the ratio of effective

irrigated area to cultivated area in each region, agricultural

irrigation water use efficiency can affect agricultural carbon

emissions and output efficiency by changing inter-regional

agricultural production costs and intra-agricultural

production structure (Xu et al., 2022); 7) farmland

operation scale differences (SC) is expressed by the per

capita crop sown area, it has been proven that the scale of

agricultural production leads to differences in the cost of

adoption of agricultural technology, and that larger scale of

operation makes it easier to obtain economies of scale and

adopt advanced technology (Helfand and Taylor, 2021; Mao

et al., 2021); 8) financial support differences (IN) is expressed

by the proportion of local financial expenditure on

agriculture, many scholars have found that financial

support for agriculture significantly affects agricultural

carbon emissions (Guo et al., 2022); 9) marketization level

differences (MA) is expressed by the marketization index

measurements, according to (Fan et al., 2011). The level of

marketization determines the flow and allocation of

production factors and therefore has an impact on the

spatial association network (Guo et al., 2021). The model

was constructed as follows:

R � f(RO, ST,UR,ED, FI,WA, SC, IN,MA) (10)

Where R is the spatial correlation matrix of ALTFP after

binarization, the rest of the indicator data are

variance matrices consisting of the absolute differences in

the mean values of the corresponding indicators for each

province from 2001 to 2020. Figure 7 shows the results of

the QAP analysis of the driving factors, it can be seen that

there are different degrees of correlation between the drivers,

implying that the impact of the driving factors on the spatial

correlation network overlaps significantly and there is a high

degree of multicollinearity among the driving factors, further

indicating that the QAP regression analysis is more

appropriate.

5.2 QAP correlation analysis

The correlation coefficients of each influencing factor with

the structure of the spatial correlation network of low-carbon

TFP in Chinese agriculture were first tested using the QAP

method of the quadratic assignment procedure, as shown in

Table 8. It can be seen that the correlation coefficients for

province adjacency, differences in urbanization levels,

differences in the education level of the rural labors,

differences in financial development levels, and differences

in agricultural irrigation water utilization rates are all

significant, indicating that these influencing factors had a

significant impact on the formation of the spatial

correlation network. In contrast, the correlation coefficients

of differences in agricultural industry structure, the scale of

farmland operation, financial support to agriculture, and the

level of marketization are not significant, indicating that their

inter-provincial differences do not play a significant role in the

spatial association structure of ALTFP.

5.3 QAP regression analysis

Using QAP regression to analyze the relationship between

the spatial association network and the drivers, the results of

regression fitting were obtained by 2000 random permutations

(Table 8). The adjusted decision coefficient was 0.301, indicating

that the drivers could explain about 30.10% of the variation in the

structure of the spatial association.

The spatial proximity of provinces, differences in

urbanization, differences in financial support for

agriculture, differences in financial development levels, and

differences in marketization have a positive effect on the

formation of spatially linked networks. Among them: the

coefficient of spatial proximity is significantly positive, which

indicates that inter-provincial geographical proximity can

break down the barriers to resource flow and promote
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provincial mobility for low-carbon agricultural development.

The specific reason may be the geographical proximity of the

location with many similar characteristics, such as

geographical environment, resource endowment,

cultivation structure, and technology level, etc. These

similarities reduce the cost of production factor flow and

low-carbon technology diffusion and promote closer inter-

regional linkages. The coefficient of urbanization differences

is significantly positive, which indicates that provinces with

greater urbanization differences are more likely to have

economic linkages between regions, probably mainly

because of the difference in urbanization levels, with

FIGURE 6
The trend of the E-I index of ALTFP in China from 2001 to 2020.

FIGURE 7
Heat map of correlation coefficients of driving factors.
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factors such as labor and capital tending to flow more from

provinces with low levels of urbanization to those with high

levels of urbanization, in the process promoting the spread of

technological progress and radiation to neighboring regions.

The coefficient of the difference in fiscal support to

agriculture is significantly positive, which indicates that

the greater the difference in the level of fiscal support to

agriculture between provinces, the more likely it is to cause

spatial correlation, mainly because finance provides the

foundation for agricultural production, infrastructure, and

advanced technology, the higher the level of financial support

for agriculture in a province, the more it helps the region to

establish a model for low-carbon agricultural development,

attracting regions that are lagging behind in development to

learn from and exchange with these regions, and promoting

policy references and the diffusion and application of low-

carbon technologies among provinces. And the regression

coefficients of differences in the level of financial

development and differences in the level of marketization

are not significant (p > 0.1), indicating that inter-provincial

differences do not yet significantly affect the formation of

ALTFP spatial association networks in China.

Differences in the education level of rural labor, differences in

irrigation water use efficiency in agriculture, differences in

agricultural industry structure, and differences in agricultural

production scale have negative effects on the formation of spatial

association networks. Among them: the coefficient of influence of

the difference in the education level of the rural labor is

significantly negative, which indicates that the greater the

difference in the education level of the regional rural labor

force, the fewer its agricultural economic linkages, this is

mainly because agricultural human capital largely affects the

application of advanced agricultural technologies, and if the

difference in human capital between regions is too large, it is

not conducive to the absorption and digestion of technological

overflows from advanced regions by regions with relatively low

technology levels and will hinder the spread of advanced

agricultural production technologies, thus not conducive to

the formation of ALTFP spatially linked networks. Regression

coefficients for differences in agricultural irrigation water use

efficiency, differences in agricultural industry structure, and

differences in agricultural production scale are not significant

(p > 0.1), indicating that inter-provincial differences do not yet

significantly affect the formation of ALTFP spatial association

networks in China.

Agricultural irrigation water use efficiency reflects

resource endowment. Generally speaking, the greater the

difference in resource endowment, the stronger the

complementarity between regions, and the more frequent

the flow of logistics, capital, and technology with resource

flow as the carrier, the more conducive to the formation and

development of a spatially linked network of green economic

efficiency. However, the results of this paper show that the

effect of differences in agricultural irrigation water use

efficiency on the spatial linkage network is not significant,

probably because the role of resource endowment differences

on the spatial linkage of green economic efficiency has been

reduced in recent years as the development approach has

shifted from factor-driven to innovation-driven, and

technology substitution effects have become prominent.

The main reasons for the insignificant effect of agro-

industrial structure and marketization on the association

network are: Due to the sticky nature of agricultural

production and the inherent characteristics of

agriculture such as strong dependence on natural resources

and environmental endowments and weak risk resistance, the

internal industrial structure of agriculture is more

stable, resulting in the slow development of agricultural

factor markets. At the same time, Chinese agriculture has

been a distinctive “big country, small farmer” model since

TABLE 8 The analysis of driving factors of spatial association network of ALTFP.

Variables QAP correlation analysis QAP regression analysis

Correlation coefficient p-value p ≥ 0 p < 0 Regression coefficient p-value PA PB

RO 0.127 0.001 0.001 0.999 0.180 0.000 0.000 1.000

ST −0.067 0.140 0.860 0.140 −0.233 0.176 0.825 0.176

UR 0.467 0.000 0.000 1.000 0.018 0.057 0.000 1.000

ED −0.013 0.014 0.987 0.014 −0.138 0.001 1.000 0.001

FI 0.239 0.003 0.003 0.997 0.012 0.402 0.402 0.599

WA 0.123 0.063 0.063 0.937 −0.124 0.419 0.581 0.419

SC −0.063 0.176 0.724 0.176 −0.022 0.235 0.766 0.235

IN 0.084 0.124 0.124 0.876 1.397 0.086 0.086 0.915

MA −0.031 0.326 0.675 0.326 0.003 0.435 0.435 0.566

Notes: PA, represents the probability that the regression coefficient from random substitution is not smaller than the observed regression coefficient in the two-tailed test, and PB, represents

the probability that the regression coefficient from random substitution is not larger than the observed regression coefficient.
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ancient times, so the impact of differences in agricultural

production scale on spatial association networks is not obvious.

The smaller penetration of financial development into the

agricultural economy compared to other sectors may be the

reason for the insignificant effect of differences in financial

development on spatial association relationships.

6 Conclusion and implications

6.1 Conclusion

In our study, by examining the ALTFP of 30 Chinese provinces

from 2001 to 2020, we explored the network characteristics and

driving mechanisms of spatially linked relationships with the help of

UCINET visualization tools and social network analysis methods,

and we mainly obtained the following conclusions and insights.

1) In terms of network structural characteristics, the spatially

linked network of low-carbon development in China’s agriculture

has broken the traditional geographical limitation of “neighbors as

friends” and exhibited a complex network of links. However, the

overall network structure is relatively loose, and there is still much

room for improving the coordinated development of low-carbon

agriculture between provinces. The connectivity and robustness of

the network are gradually strengthened, but the network still has a

certain hierarchical gradient and some redundant relationship

numbers, the network structure needs to be further optimized.

In terms of regional network structure characteristics, the

correlations of China’s agricultural low-carbon development

during 2001–2020 tend to occur among the four major plates in

the east, center, west, and northeast, with a smaller degree of

factional forestry, the eastern region is more connected to other

regions, while there are fewer connections between the central,

western and northeastern. Individual network characteristics show

that there is a significant “Matthew effect” in China’s agricultural

low-carbon development. The eastern provinces of Shanghai,

Beijing, Tianjin, Jiangsu, Zhejiang, and Fujian are at the heart of

the entire network and have a stronger role in allocating resources

needed for agricultural low-carbon development, while remote

provinces such as Xinjiang, Jilin, Liaoning, and Anhui are at the

edge of the network and have aweaker ability to access resources for

agricultural low-carbon development.

2) The analysis of the network structure effect shows that

network structure has a significant effect on the level of

low carbon in agriculture, and increasing the overall network

density and network relevance, decreasing the network

hierarchy and network efficiency can significantly increase

the ALTFP. The weakening of regional factional forestry is

conducive to promoting low-carbon agricultural development.

The province’s central position in the network and its

dominance and control over resources and factors in low-

carbon agricultural development are conducive to increasing

the ALTFP. The panel quantile regression model further

verified the reliability of the above findings.

3) The QAP results show that the spatial proximity of

provinces, the widening of differences in urbanization

levels and differences in financial support for

agriculture, and the narrowing of differences in the

educational attainment of the rural labor have

significantly contributed to the formation of provincial

spatial linkages And differences in the level of financial

development, differences in the level of marketization,

differences in the efficiency of agricultural irrigation water

use, differences in the structure of agricultural industries

and differences in the scale of agricultural production do

not have significant effects on the spatial correlation

network of ALTFP, and their response mechanisms and

response effects need to be further explored.

6.2 Implications

Firstly, inter-provincial geographical proximity can break down

barriers to resource flows and facilitate provincial flows of low-

carbon development in agriculture, for example, the development of

city clusters such as Yangtze River Delta and Pearl River Delta is

conducive to promoting the formation of related networks, so the

linkage leading effect of China’s city clusters and metropolitan areas

should be accelerated. At the same time, it is necessary to promote

the construction of agricultural low-carbon development

demonstration areas, strengthen the interconnection of core and

peripheral regions, eliminate the Matthew effect of agricultural low-

carbon TFP, and give full play to the role of the “leader” of Beijing-

Tianjin-Hebei and the Yangtze River Delta, which are regions with

high levels of economic development, to radiate and drive the

balanced development of the region, to narrow the gap between

provinces in the spatially linked network of green economy in terms

of capital, technology, and management methods, effectively reduce

the network hierarchy, and realize the spatial synergy of green

economy development.

Secondly, the central and western regions need to

strengthen spatial ties with developed regions, ride on the

coattails of the urbanization process, undertake the overflow

of factor resources such as capital, industry, and technology

from the eastern regions, and formulate more precise regional

policies to enable the flow of factors to the central and western

regions under the guidance of market mechanisms. At the

same time, the construction of agricultural low-carbon

development demonstration regions within the central and

western regions should also be accelerated to form a

polycentric pattern of agricultural low-carbon

development, which reduces the rising transaction costs in

the central and western regions and accelerates the flow of

agricultural resources and factor capital in the marginal

regions.
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Finally, local governments should clarify the position and

role of each region in the low-carbon development of agriculture,

give full play to the role of government macro-control and market

regulation mechanisms to promote the spatial correlation of green

economic development, minimize the intervention in the financial

system leading to financial distortion, and effectively guide the

financial expenditure to support the low-carbon development of

agriculture. At the same time, we should also focus on the

improvement of education level in the backward areas and

gradually narrow the gap between the educational level of the

labor force in the backward areas and the developed areas.

6.3 Research deficiencies and future
directions

Although the paper makes an obvious contribution to the low

carbon development of agriculture, there are still some

limitations: First, considering the limitation of data availability,

this paper examines the spatial correlation network of low carbon

development of Chinese agriculture from the provincial level, and

the results are relatively rough; in the subsequent research, the data

should be further explored in depth to refine the research results

and make the paper more valuable in the application. Second, for

the analysis of spatially linked network drivers of low carbon

development in agriculture, the paper selects nine aspects of

influencing factors, and inevitably there are other influencing

factors, such as climate and soil type, which should continue to

be explored more deeply in future studies.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding authors.

Author contributions

FF conducted data collection and measurement, and wrote

the text. JZ conceived of the research, made the structure,

supervised this research work. LZ provided guidance on the

methodology and an overall grasp of the logical structure of the

text provided. JD provided a great deal of assistance in data

collection and organization, and in writing the text.

Acknowledgments

We thank the National Social Science Foundation of China

“Research on intellectual property innovation mechanism of

rural tourism cultural industry” (19XJY018) and the Graduate

“Silk Road” Research Innovation Project of Xinjiang University

“Regional Differences and Dynamic Evolution of Agricultural

Green Total Factor Productivity” (SL2022007) for financial

support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Adnan, N., Nordin, S. M., and Ali, M. (2018). A solution for the sunset
industry: Adoption of green fertiliser technology amongst Malaysian
paddy farmers. Land Use Policy 79, 575–584. doi:10.1016/j.landusepol.
2018.08.033

Ang, B.W., and Su, B. (2016). Carbon emission intensity in electricity production:
A global analysis. Energy Policy 94, 56–63. doi:10.1016/j.enpol.2016.03.038

Bai, C., Zhou, L., Xia, M., and Feng, C. (2020). Analysis of the spatial
association network structure of China’s transportation carbon emissions and
its driving factors. J. Environ. Manag. 253, 109765. doi:10.1016/j.jenvman.
2019.109765

Bai, L., Wan, Z., Luo, Q., Lin, W., and Fang, W. (2012). Analysis of changes
of Chinese agricultural total factor productivity and its
convergencefrom the 1996-2010 annual malmquist index approach. Res.
Agric. Mod. 33 (5), 552–555.

Battese, G. E., Rao, D. S. P., and O’Donnell, C. J. (2004). A metafrontier
production function for estimation of technical efficiencies and technology gaps
for firms operating under different technologies. J. Prod. analysis 21 (1), 91–103.
doi:10.1023/B:PROD.0000012454.06094.29

Cai, L., Wu, X., and Du, Z. (2022). The spatio-temporal pattern of
environmentally-friendly agricultural technology diffusion and its influencing
factors: From the social network perspective. Geogr. Res. 41 (1), 63–78.

Cao, J., Law, S. H., Bin Abdul Samad, A. R., Binti W Mohamad, W. N.,
Wang, J., and Yang, X. (2022). Effect of financial development and
technological innovation on green growth—analysis based on
spatial durbin model. J. Clean. Prod. 365, 132865. doi:10.1016/j.jclepro.
2022.132865

Carter, M. R., Cheng, L., and Sarris, A. (2016). Where and how index insurance
can boost the adoption of improved agricultural technologies. J. Dev. Econ. 118,
59–71. doi:10.1016/j.jdeveco.2015.08.008

Chen, Y., Fu, W., and Wang, J. (2022a). Evaluation and influencing factors of
China’s agricultural productivity from the perspective of environmental constraints.
Sustainability 14 (5), 2807. doi:10.3390/su14052807

Chen, Z., Sarkar, A., Rahman, A., Li, X., and Xia, X. (2022b). Exploring the drivers
of green agricultural development (gad) in China: A spatial association network
structure approaches. Land use policy 112, 105827. doi:10.1016/j.landusepol.2021.
105827

Frontiers in Environmental Science frontiersin.org20

Fang et al. 10.3389/fenvs.2022.1014652

36

https://doi.org/10.1016/j.landusepol.2018.08.033
https://doi.org/10.1016/j.landusepol.2018.08.033
https://doi.org/10.1016/j.enpol.2016.03.038
https://doi.org/10.1016/j.jenvman.2019.109765
https://doi.org/10.1016/j.jenvman.2019.109765
https://doi.org/10.1023/B:PROD.0000012454.06094.29
https://doi.org/10.1016/j.jclepro.2022.132865
https://doi.org/10.1016/j.jclepro.2022.132865
https://doi.org/10.1016/j.jdeveco.2015.08.008
https://doi.org/10.3390/su14052807
https://doi.org/10.1016/j.landusepol.2021.105827
https://doi.org/10.1016/j.landusepol.2021.105827
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1014652


Cheng, L., Zhang, J., Zeng, Y., and Wu, X. (2016). Analysis on the dynamic
evolution and spatial club convergence of national agricultural carbon productivity.
J. China Agric. Univ. 21 (7), 121–132.

Cui, Y., Khan, S. U., Deng, Y., Zhao, M., and Hou, M. (2021). Environmental
improvement value of agricultural carbon reduction and its spatiotemporal
dynamic evolution: Evidence from China. Sci. Total Environ. 754, 142170.
doi:10.1016/j.scitotenv.2020.142170

Dakpo, K. H., Jeanneaux, P., and Latruffe, L. (2016). Modelling pollution-
generating technologies in performance benchmarking: Recent developments,
limits and future prospects in the nonparametric framework. Eur. J. Operation.
Res. 250 (2), 347–359. doi:10.1016/j.ejor.2015.07.024

Escribano, M., Horrillo, A., and Mesías, F. J. (2022). Greenhouse gas emissions
and carbon sequestration in organic dehesa livestock farms. Does technical-
economic management matters? J. Clean. Prod. 372, 133779. doi:10.1016/j.
jclepro.2022.133779

Fan, G., Wang, X., and Ma, G. (2011). The contribution of marketization to
China’s economic growth. Econ. Res. J. 46 (9), 4–16.

Fang, L., Hu, R., Mao, H., and Chen, S. J. (2021). How crop insurance influences
agricultural green total factor productivity: Evidence from Chinese farmers.
J. Clean. Prod. 321, 128977. doi:10.1016/j.jclepro.2021.128977

Fukuyama, H., and Weber, W. L. (2009). Estimating indirect allocative
inefficiency and productivity change. J. Operation. Res. Soc. 60 (11), 1594–1608.
doi:10.1057/jors.2009.62

Gao, Q., Cheng, C., Sun, G., and Li, J. (2022). The impact of digital inclusive
finance on agricultural green total factor productivity: Evidence from China. Front.
Ecol. Evol. 10, 905644. doi:10.3389/fevo.2022.905644

Genius, M., Koundouri, P., Nauges, C., and Tzouvelekas, V. (2014). Information
transmission in irrigation technology adoption and diffusion: Social learning,
extension services, and spatial effects. Am. J. Agric. Econ. 96 (1), 328–344.
doi:10.1093/ajae/aat054

Gong, B. (2020). Agricultural productivity convergence in China. China Econ.
Rev. 60. doi:10.1016/j.chieco.2020.101423

Guan, D., Hubacek, K., Weber, C. L., Peters, G. P., and Reiner, D. M. (2008). The
drivers of Chinese Co2 emissions from 1980 to 2030. Glob. Environ. Change 18 (4),
626–634. doi:10.1016/j.gloenvcha.2008.08.001

Guo, H., and Liu, X. (2021). Spatial and temporal differentiation and convergence
of China’s agricultural green total factor productivity. Quantitative Tech. Econ. 38
(10), 65–84. doi:10.13653/j.cnki.jqte.2021.10.004

Guo, L., Guo, S., Tang, M., Su, M., and Li, H. (2022). Financial support for
agriculture, chemical fertilizer use, and carbon emissions from agricultural
production in China. Int. J. Environ. Res. Public Health 19 (12), 7155. doi:10.
3390/ijerph19127155

Guo, L., Li, H., Cao, X., Cao, A., and Huang, M. (2021). Effect of agricultural
subsidies on the use of chemical fertilizer. J. Environ. Manag. 299, 113621. doi:10.
1016/j.jenvman.2021.113621

Hamid, S., and Wang, K. (2022). Environmental total factor productivity of
agriculture in south asia: A generalized decomposition of luenberger-hicks-
moorsteen productivity indicator. J. Clean. Prod. 351, 131483. doi:10.1016/j.
jclepro.2022.131483

Hao, A., Tan, J., Ren, Z., and Zhang, Z. (2022). A spatial empirical examination of
the relationship between agglomeration and green total-factor productivity in the
context of the carbon emission peak. Front. Environ. Sci. 10, 829160. doi:10.3389/
fenvs.2022.829160

Hao, Y., Ba, N., Ren, S., and Wu, H. (2021). How does international
technology spillover affect China’s carbon emissions? A new
perspective through intellectual property protection. Sustain. Prod.
Consum. 25, 577–590. doi:10.1016/j.spc.2020.12.008

He, Y., Wei, Z., Liu, G., and Zhou, P. (2020). Spatial network analysis of carbon
emissions from the electricity sector in China. J. Clean. Prod. 262, 121193. doi:10.
1016/j.jclepro.2020.121193

Helfand, S. M., and Taylor, M. P. H. (2021). The inverse relationship between
farm size and productivity: Refocusing the debate. Food Policy 99, 101977. doi:10.
1016/j.foodpol.2020.101977

Huang, J., Lv, H., and Wang, L. (2014). Mechanism of financial development
influencing regional green development:based on eco-efficiency and spatial
econometrics. Geogr. Res. 33 (3), 532–545. doi:10.11821/dlyj201403012

Huo, T., Cao, R., Xia, N., Hu, X., Cai, W., and Liu, B. (2022). Spatial correlation
network structure of China’s building carbon emissions and its driving factors: A
social network analysis method. J. Environ. Manag. 320, 115808. doi:10.1016/j.
jenvman.2022.115808

Ji, C., and Xia, H. (2020). Study on the impact of agricultural science and
technology service on agricultural green total factor productivity in China. J. China
Agric. Resour. Regional Plan. 41 (12), 136–134.

Joséf, A., Cassman, K. G., Rattalino Edreira, J. I., Agus, F., Bala, A., Deng, N., et al.
(2022). Impact of urbanization trends on production of key staple crops. Ambio 51
(5), 1158–1167. doi:10.1007/s13280-021-01674-z

Khanh, C., and Nguyen, T. (2022). Driving factors for green innovation in
agricultural production: An empirical study in an emerging economy. J. Clean.
Prod. 368, 132965. doi:10.1016/j.jclepro.2022.132965

Li, C., and Wu, J. (2022). Land use transformation and eco-environmental effects
based on production-living-ecological spatial synergy: Evidence from shaanxi
province, China. Environ. Sci. Pollut. Res. 29 (27), 41492–41504. doi:10.1007/
s11356-022-18777-z

Li, Q., Li, G., Gao, X., and Yin, C. (2019). Analysis of regional gap and spatital
convergence of agricultural total factor productivity growth. J. China Agric. Resour.
Regional Plan. 40 (7), 28–36.

Li, Y., Lu, Q., and Guo, G. (2017). Effects of social network on water-saving
irrigation technology adoption: Homogeneity or heterogeneity. Res. Agric. Mod. 38
(6), 978–986. doi:10.13872/j.1000-0275.2017.0048

Li, Z., Li, X., Sun, Q., and Ye, W. (2021). Will financial subsidies for agriculture
effectively increase the total factor productivity of food: The moderate effect of
agricultural technology environment. J. China Agric. Univ. 26 (8), 236–252.

Liu, M., and Yang, L. (2021). Spatial pattern of China’s agricultural carbon
emission performance. Ecol. Indic. 133, 108345. doi:10.1016/j.ecolind.2021.108345

Liu, S., and Xiao, Q. (2021). An empirical analysis on spatial correlation
investigation of industrial carbon emissions using sna-ice model. Energy 224,
120183. doi:10.1016/j.energy.2021.120183

Liu, X., Li, Q., Wu, C., Ma, J., Hong, Z., Zheng, K., et al. (2022). EGF signaling
promotes the lineage conversion of astrocytes into oligodendrocytes. Mol. Med. 43
(1), 50–59. doi:10.1186/s10020-022-00478-5

Liu, Y., Ouyang, Y., and Cai, H. (2021). Evaluation of China’s agricultural green
tfp and its spatiotemporal evolution characteristics. Quantitative Tech. Econ. 38 (5),
39–56. doi:10.13653/j.cnki.jqte.2021.05.003

Lui, G. C. S., Li, W. K., Leung, K. M. Y., Lee, J. H. W., and Jayawardena, A. W.
(2007). Modelling algal blooms using vector autoregressive model with exogenous
variables and long memory filter. Ecol. Model. 200 (1), 130–138. doi:10.1016/j.
ecolmodel.2006.06.017

Luo, X., Yang, J., Sun, W., and He, B. (2021). Suitability of human settlements in
mountainous areas from the perspective of ventilation: A case study of the main
urban area of chongqing. J. Clean. Prod. 310, 127467. doi:10.1016/j.jclepro.2021.
127467

Mao, H., Zhou, L., Ying, R., and Pan, D. (2021). Time preferences and green
agricultural technology adoption: Field evidence from rice farmers in China. Land
Use Policy 109, 105627. doi:10.1016/j.landusepol.2021.105627

O’Donnell, C. J., Rao, D. S. P., and Battese, G. E. (2008). Metafrontier frameworks
for the study of firm-level efficiencies and technology ratios. Empir. Econ. 34 (2),
231–255. doi:10.1007/s00181-007-0119-4

Oh, D.-h. (2010). A global malmquist-luenberger productivity index. J. Product.
Anal. 34 (3), 183–197. doi:10.1007/s11123-010-0178-y

Pastor, J. T., and Lovell, C. A. K. (2005). A global malmquist productivity index.
Econ. Lett. 88 (2), 266–271. doi:10.1016/j.econlet.2005.02.013

Paul, C., Techen, A. K., Robinson, J. S., and Helming, K. (2019). Rebound effects
in agricultural land and soil management: Review and analytical framework. J. f
Clean. Prod. 227, 1054–1067. doi:10.1016/j.jclepro.2019.04.115

Powell, D. (2020). Quantile treatment effects in the presence of covariates. Rev.
Econ. Statistics 102 (5), 994–1005. doi:10.1162/rest_a_00858

Qian, Y., Song, K., Hu, T., and Ying, T. (2018). Environmental status of livestock
and poultry sectors in China under current transformation stage. Sci. Total Environ.
622, 702–709. doi:10.1016/j.scitotenv.2017.12.045

Qin, Q., Yan, H., Liu, J., Chen, X., and Ye, B. (2022). China’s agricultural ghg
emission efficiency: Regional disparity and spatial dynamic evolution. Environ.
Geochem. Health 44 (9), 2863–2879. doi:10.1007/s10653-020-00744-7

Ren, S., Li, L., Han, Y., Hao, Y., andWu, H. (2022). The emerging driving force of
inclusive green growth: Does digital economy agglomeration work? Bus. Strategy
Environ. 31 (4), 1656–1678. doi:10.1002/bse.2975

Shen, Z., Baležentis, T., and Ferrier, G. D. (2019). Agricultural productivity
evolution in China: A generalized decomposition of the luenberger-hicks-
moorsteen productivity indicator. China Econ. Rev. 57, 101315. doi:10.1016/j.
chieco.2019.101315

Frontiers in Environmental Science frontiersin.org21

Fang et al. 10.3389/fenvs.2022.1014652

37

https://doi.org/10.1016/j.scitotenv.2020.142170
https://doi.org/10.1016/j.ejor.2015.07.024
https://doi.org/10.1016/j.jclepro.2022.133779
https://doi.org/10.1016/j.jclepro.2022.133779
https://doi.org/10.1016/j.jclepro.2021.128977
https://doi.org/10.1057/jors.2009.62
https://doi.org/10.3389/fevo.2022.905644
https://doi.org/10.1093/ajae/aat054
https://doi.org/10.1016/j.chieco.2020.101423
https://doi.org/10.1016/j.gloenvcha.2008.08.001
https://doi.org/10.13653/j.cnki.jqte.2021.10.004
https://doi.org/10.3390/ijerph19127155
https://doi.org/10.3390/ijerph19127155
https://doi.org/10.1016/j.jenvman.2021.113621
https://doi.org/10.1016/j.jenvman.2021.113621
https://doi.org/10.1016/j.jclepro.2022.131483
https://doi.org/10.1016/j.jclepro.2022.131483
https://doi.org/10.3389/fenvs.2022.829160
https://doi.org/10.3389/fenvs.2022.829160
https://doi.org/10.1016/j.spc.2020.12.008
https://doi.org/10.1016/j.jclepro.2020.121193
https://doi.org/10.1016/j.jclepro.2020.121193
https://doi.org/10.1016/j.foodpol.2020.101977
https://doi.org/10.1016/j.foodpol.2020.101977
https://doi.org/10.11821/dlyj201403012
https://doi.org/10.1016/j.jenvman.2022.115808
https://doi.org/10.1016/j.jenvman.2022.115808
https://doi.org/10.1007/s13280-021-01674-z
https://doi.org/10.1016/j.jclepro.2022.132965
https://doi.org/10.1007/s11356-022-18777-z
https://doi.org/10.1007/s11356-022-18777-z
https://doi.org/10.13872/j.1000-0275.2017.0048
https://doi.org/10.1016/j.ecolind.2021.108345
https://doi.org/10.1016/j.energy.2021.120183
https://doi.org/10.1186/s10020-022-00478-5
https://doi.org/10.13653/j.cnki.jqte.2021.05.003
https://doi.org/10.1016/j.ecolmodel.2006.06.017
https://doi.org/10.1016/j.ecolmodel.2006.06.017
https://doi.org/10.1016/j.jclepro.2021.127467
https://doi.org/10.1016/j.jclepro.2021.127467
https://doi.org/10.1016/j.landusepol.2021.105627
https://doi.org/10.1007/s00181-007-0119-4
https://doi.org/10.1007/s11123-010-0178-y
https://doi.org/10.1016/j.econlet.2005.02.013
https://doi.org/10.1016/j.jclepro.2019.04.115
https://doi.org/10.1162/rest_a_00858
https://doi.org/10.1016/j.scitotenv.2017.12.045
https://doi.org/10.1007/s10653-020-00744-7
https://doi.org/10.1002/bse.2975
https://doi.org/10.1016/j.chieco.2019.101315
https://doi.org/10.1016/j.chieco.2019.101315
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1014652


Song, J., Cho, C., and Won, Y. (2019). Analysis of operating system identification
via fingerprinting andmachine learning.Comput. Electr. Eng. 78, 1–10. doi:10.1016/
j.compeleceng.2019.06.012

Song, M., Peng, J., Wang, J., and Zhao, J. (2018). Environmental efficiency and
economic growth of China: A ray slack-based model analysis. Eur. J. Operational.
Res. 269 (1), 51–63. doi:10.1016/j.ejor.2017.03.073

Suhariyanto, K., and Thirtle, C. (2001). Asian agricultural productivity and
convergence. J. Agric. Econ. 52 (3), 96–110. doi:10.1111/j.1477-9552.2001.
tb00941.x

Tian, J., Yang, H., Xiang, P., Liu, D., and Li, L. (2016). Drivers of agricultural
carbon emissions in hunan province, China. Environ. Earth Sci. 75 (2), 121. doi:10.
1007/s12665-015-4777-9

Tze Ling, N., Eheart, J. W., Cai, X., and Braden, J. B. (2011). An agent-based
model of farmer decision-making and water quality impacts at the watershed scale
under markets for carbon allowances and a second-generation biofuel crop.Water.
Resour. Res. 47. doi:10.1029/2011WR010399

Wang, K., Wei, Y.-M., and Huang, Z. (2018). Environmental efficiency and
abatement efficiency measurements of China’s thermal power industry: A data
envelopment analysis based materials balance approach. Eur. J. Operation. Res. 269
(1), 35–50. doi:10.1016/j.ejor.2017.04.053

Wang, L., Zhu, R., Yin, Z., Chen, Z., Lu, R., and Fang, C. (2022a). Quantifying the
spatial–temporal patterns and influencing factors of agricultural carbon emissions
based on the coupling effect of water–land resources in arid inland regions. Front.
Environ. Sci. 10. doi:10.3389/fenvs.2022.908987

Wang, S., Huang, J., Wang, X., and Tuan, F. (2019). Are China’s regional
agricultural productivities converging: How and why? Food Policy 86, 101727.
doi:10.1016/j.foodpol.2019.05.010

Wang, Z., Zhou, Y., Zhao, N., Wang, T., and Zhang, Z. (2022b). Spatial
correlation network and driving effect of carbon emission intensity in China’s
construction industry. Buildings 12 (2), 201. doi:10.3390/buildings12020201

Wu, H., Xu, L., Ren, S., Hao, Y., and Yan, G. (2020a). How do energy
consumption and environmental regulation affect carbon emissions in China?
New evidence from a dynamic threshold panel model. Resour. Policy 67, 101678.
doi:10.1016/j.resourpol.2020.101678

Wu, H., Xue, Y., Hao, Y., and Ren, S. (2021). How does internet development
affect energy-saving and emission reduction? Evidence from China. Energy Econ.
103, 105577. doi:10.1016/j.eneco.2021.105577

Wu, J., Ge, Z., Han, S., Xing, L., Zhu, M., Zhang, J., et al. (2020b). Impacts of
agricultural industrial agglomeration on China’s agricultural energy efficiency: A
spatial econometrics analysis. J. Clean. Prod. 260, 121011. doi:10.1016/j.jclepro.
2020.121011

Wu, Y., Rahman, R. A., and Yu, Q. (2022). Analysis of the spatial characteristics
and influencing factors of agricultural eco-efficiency: Evidence from anhui
province, china, during the period 2011-2018. Environ. Monit. Assess. 194 (3),
154. doi:10.1007/s10661-022-09817-9

Wu, X., Zhang, J., Cheng, L., and Tian, Y. (2015). Potential of agricultural carbon
reduction under climate change and its spatial correlation characteristics in China:
Based on the spatial durbin model. China Popul. Resour. Environ. 25 (6), 53–61.

Xiong, C., Chen, S., and Xu, L. (2020). Driving factors analysis of agricultural
carbon emissions based on extended stirpat model of Jiangsu province, China.
Growth Change 51 (3), 1401–1416. doi:10.1111/grow.12384

Xu, B., and Lin, B. (2017). Factors affecting CO2 emissions in China’s agriculture
sector: Evidence from geographically weighted regression model. Energy policy 104,
404–414. doi:10.1016/j.enpol.2017.02.011

Xu, H., Zhu, S., and Shi, H. (2022). Is it possible to reduce agricultural carbon
emissions through more efficient irrigation: Empirical evidence from China.Water
14, 1218. doi:10.3390/w14081218

Yang, Q., Wang, J., Li, C., and Liu, X. (2019). The spatial differentiation of
agricultural green total factor productivity and its driving factor recognition in
China. Quantitative Tech. Econ. 36 (10), 21–37. doi:10.13653/j.cnki.jqte.2019.
10.002

Yang, X., Su, X., Ran, Q., Ren, S., Chen, B., Wang, W., et al. (2022a). Assessing the
impact of energy internet and energy misallocation on carbon emissions: New
insights from China. Environ. Sci. Pollut. Res. 29 (16), 23436–23460. doi:10.1007/
s11356-021-17217-8

Yang, X., Wang, W., Su, X., Ren, S., Ran, Q., Wang, J., et al. (2022b). Analysis of
the influence of land finance on haze pollution: An empirical study based on
269 prefecture-level cities in China. Growth Change. doi:10.1111/grow.12638

Qiu, Y., and Huang, D. (2021). The structural characteristics of trade networks
along the “belt and Road” and their impacts on technological progress——An study
based on social network analysis. Econ. Theory Bus. Manag. 41 (6), 66–80.

Yu, J., andWu, J. (2018). The sustainability of agricultural development in China:
The agriculture-environment nexus. Sustainability 10 (6), 1776. doi:10.3390/
su10061776

Yue, D., Sarkar, A., Yu, C., Qian, L., and Minjuan, Z. (2021). The evolution of
factors influencing green technological progress in terms of carbon reduction: A
spatial-temporal tactic within agriculture industries of China. Front. Energy Res.
9doi. doi:10.3389/fenrg.2021.661719

Zhan, J., Tian, X., Zhang, Y., Yang, X., Qu, Z., and Tan, T. (2017). The effects of
agricultural R&D on Chinese agricultural productivity growth: New evidence of
convergence and implications for agricultural R&D policy. Can. J. Agric. Economics/
Revue Can. d’agroeconomie. 65 (3), 453–475. doi:10.1111/cjag.12137

Zhang, L., Pang, J., Chen, X., and Lu, Z. (2019a). Carbon emissions, energy
consumption and economic growth: Evidence from the agricultural sector of
China’s main grain-producing areas. Sci. Total. Environ. 665, 1017–1025. doi:10.
1016/j.scitotenv.2019.02.162

Zhang, X., Meng, F., Li, H., Wang, L., Wu, S., Xiao, G., et al. (2019b). Optimized
fertigation maintains high yield and mitigates N2o and No emissions in an
intensified wheat–maize cropping system. Agric. Water Manag. 211, 26–36.
doi:10.1016/j.agwat.2018.09.045

Zhao, R., Liu, Y., Tian, M., Ding, M., Cao, L., Zhang, Z., et al. (2018). Impacts of
water and land resources exploitation on agricultural carbon emissions: The water-
land-energy-carbon nexus. Land Use Policy 72, 480–492. doi:10.1016/j.landusepol.
2017.12.029

Zhen, W., Qin, Q., and Wei, Y.-M. (2017). Spatio-temporal patterns of energy
consumption-related ghg emissions in China’s crop production systems. Energy
Policy 104, 274–284. doi:10.1016/j.enpol.2017.01.051

Zhong, S., Li, Y., Li, J., and Yang, H. (2021). Measurement of total factor
productivity of green agriculture in China: Analysis of the regional
differences based on China. Plos One 16 (9), e0257239. doi:10.1371/journal.
pone.0257239

Zhou, Y., Jiang, J., Ye, B., Zhang, Y., and Yan, J. (2020). Addressing climate change
through a market mechanism: A comparative study of the pilot emission trading
schemes in China. Environ. Geochem. Health 42 (3), 745–767. doi:10.1007/s10653-
019-00258-x

Zhu, B., Zhang, M., Zhou, Y., Wang, P., Sheng, J., He, K., et al. (2019). Exploring
the effect of industrial structure adjustment on interprovincial green development
efficiency in China: A novel integrated approach. Energy Policy 134, 110946. doi:10.
1016/j.enpol.2019.110946

Frontiers in Environmental Science frontiersin.org22

Fang et al. 10.3389/fenvs.2022.1014652

38

https://doi.org/10.1016/j.compeleceng.2019.06.012
https://doi.org/10.1016/j.compeleceng.2019.06.012
https://doi.org/10.1016/j.ejor.2017.03.073
https://doi.org/10.1111/j.1477-9552.2001.tb00941.x
https://doi.org/10.1111/j.1477-9552.2001.tb00941.x
https://doi.org/10.1007/s12665-015-4777-9
https://doi.org/10.1007/s12665-015-4777-9
https://doi.org/10.1029/2011WR010399
https://doi.org/10.1016/j.ejor.2017.04.053
https://doi.org/10.3389/fenvs.2022.908987
https://doi.org/10.1016/j.foodpol.2019.05.010
https://doi.org/10.3390/buildings12020201
https://doi.org/10.1016/j.resourpol.2020.101678
https://doi.org/10.1016/j.eneco.2021.105577
https://doi.org/10.1016/j.jclepro.2020.121011
https://doi.org/10.1016/j.jclepro.2020.121011
https://doi.org/10.1007/s10661-022-09817-9
https://doi.org/10.1111/grow.12384
https://doi.org/10.1016/j.enpol.2017.02.011
https://doi.org/10.3390/w14081218
https://doi.org/10.13653/j.cnki.jqte.2019.10.002
https://doi.org/10.13653/j.cnki.jqte.2019.10.002
https://doi.org/10.1007/s11356-021-17217-8
https://doi.org/10.1007/s11356-021-17217-8
https://doi.org/10.1111/grow.12638
https://doi.org/10.3390/su10061776
https://doi.org/10.3390/su10061776
https://doi.org/10.3389/fenrg.2021.661719
https://doi.org/10.1111/cjag.12137
https://doi.org/10.1016/j.scitotenv.2019.02.162
https://doi.org/10.1016/j.scitotenv.2019.02.162
https://doi.org/10.1016/j.agwat.2018.09.045
https://doi.org/10.1016/j.landusepol.2017.12.029
https://doi.org/10.1016/j.landusepol.2017.12.029
https://doi.org/10.1016/j.enpol.2017.01.051
https://doi.org/10.1371/journal.pone.0257239
https://doi.org/10.1371/journal.pone.0257239
https://doi.org/10.1007/s10653-019-00258-x
https://doi.org/10.1007/s10653-019-00258-x
https://doi.org/10.1016/j.enpol.2019.110946
https://doi.org/10.1016/j.enpol.2019.110946
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1014652


Nomenclature

Super-RSBM Super-efficiency Ray Slacks-Based Model

GML Global Malmquist-Luenberger

RGML Super-RSBM method to characterize the low carbon TFP

level in agriculture

RSBM-GML Super-efficiency Ray Slacks-Based Model - Global

Malmquist-Luenberger

ALTFP low carbon TFP of agriculture.
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Does e-commerce participation
affect green agrotechnology
adoption among reservoir
resettlers? The case of China’s
Three Gorges Reservoir area

Xu Zhao1,2*, Zhuo Cui2 and Feifei Zhao2

1Research Center for Reservoir Resettled, China Three Gorges University, Yichang, China, 2College of
Economics and Management, China Three Gorges University, Yichang, China

This study explores how promoting e-commerce participation impacts the

adoption of green agrotechnology by resettlers in China’s Three Gorges

Reservoir area and helps rural revitalization and the realization of value from

ecological produce. First, we combine induced innovation model theory with

the risk perception factor of expected utility theory. A model of resettlers’ green

agrotechnology adoption under different levels of e-commerce participation is

constructed, and research hypotheses are proposed accordingly. Survey data

gathered from resettled farmers in Zigui, the first county of the studied area, are

tested empirically with an ordered probit model. The results show first, that

e-commerce participation significantly and positively affects the level of green

agrotechnology adoption at the 1% level; and second, that expectations of the

ecological value of agricultural products and the agrotechnology support

provided by e-commerce are important driving factors. The promotion

effect of different modes of e-commerce participation on agrotechnology

adoption differ. The risk-averse behavior of resettlers can weaken the

promotion effect of e-commerce participation on agrotechnology adoption.

KEYWORDS

e-commerce participation, green agrotechnology adoption, risk perception, reservoir
resettlers, ordered-probit model

1 Introduction

The increasing number of hydropower plants being built around the world to achieve

clean energy has led to a large number of compulsory population movements, resulting in

the emergence of resettled farmers as a group. In accordance with the World Bank’s

resettled guidelines, rural resettlers in China are mostly resettled in the back-to-back

mode of “returning land to land and agriculture to agriculture” for the sake of continuing

their original livelihoods (Yan et al., 2018). However, due to the limited resource-carrying

capacity of the Three Gorges Reservoir area, the arable land available there has become

increasingly scarce. Most of the compensation land received by resettlers is fragmented

and low in quality, causing not only limited output but also significant increases in the cost
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of crop cultivation (Zhang 2021). Chinese rural re-settlers’ per

capita income was only about 76% of that of ordinary farmers in

2014. Therefore, fewer than 30% of resettlers actually cultivate

the land that the government transferred to them at a high cost,

and many tend to abandon the land and go out to work instead

(Ni and Shao 2013). Currently, in the context of natural capital

stock constraint, the only way to guarantee that resettlers can

increase their income from local farming is by applying and

promoting green agrotechnology.

Green agricultural technology aims to solve environmental

problems and promote sustainable agricultural development. It

will improve the soil by reducing pollution, leverage the

ecological value of agricultural products, and raise crop yields

(Zuo and Fu 2021). The waste of resources and environmental

pollution caused by the unscientific nature of traditional

agricultural technology hinders the green development of

agriculture in resettlement areas. Achieving a green

transformation of agricultural development is an important

way to solve the current agricultural development challenges

in resettlement areas. As resettlers’ livelihoods are highly

vulnerable and they struggle to withstand the ex-post effects

of risks, they mainly choose to avoid risk. Their conservative

behavior in agricultural production hinders the adoption of green

agrotechnology to a certain extent. Therefore, a long-term

mechanism of green agrotechnology adoption is needed to

solve the current problem of low level of green

agrotechnology in resettlement areas and to achieve

sustainable development of resettlement areas and individual

income of resettlers.

For involuntary resettlers with impaired livelihood capital

and broken social networks of origin, rural e-commerce, a new

rural industry with convenient participation channels and an

almost zero threshold for resource consumption, has become the

first choice to improve the production and marketing of

agricultural products (Yin and Choi 2022). For example, in

the Three Gorges Reservoir area of China, the town of

Xingshan is located in a mountainous area with a low land

stock, but resettlers have achieved an average daily sale of

100,000 kg of citrus by using live streaming. The strong

development of Internet technology has enriched agricultural

e-commerce models, with traditional e-commerce, social

e-commerce, and live e-commerce all expanding in scale

(Chen et al., 2022). Heterogeneous participation in rural

e-commerce brings innovation to the traditional agricultural

products business model and concept while effectively

enhancing the income of resettled households. At the same

time, the online sales model requires quality standardization

and ecological branding, which will certainly promote the

application of green agrotechnology and bring high-quality

change to resettled areas (Xiao et al., 2021).

Current research on empowering rural agents to promote the

adoption of green agrotechnology focuses on three aspects. The

first is the promotion of environmental regulations and

government subsidies, which can be used to guide technology

application behavior in agricultural production. Reducing the

costs involved in such production will support and guarantee the

sustainable application of green agrotechnology (Dong et al.,

2022). Second, research has explored the contribution of regional

resource endowments, where the level of development, farming

history, and soil quality are direct factors determining individual

adoption intentions and behaviors (Zeng et al., 2019; Wu and

Zhou 2021), while population aging and the stock of agricultural

technicians have obvious indirect effects (Natkhov and Vasilenok

2021). A third stream, focusing on the role of rural households

and individual characteristics, has found that the degree of green

agrotechnology adoption is constrained by farmers’ relational

capital (Wang et al., 2020), socioeconomic status (Bidogeza et al.,

2009), and learning and training opportunities (Chatzimichael

et al., 2014).

In contrast, risk preferences play a dominant role in

individual production decision behavior (Gao and Niu 2019),

and risk perceptions, in turn, positively moderate the degree of

association between risk preferences and agrotechnology

adoption (Qiu et al., 2020). For example, perceived risk from

agricultural production affects the use of irrigation technology

(Koundouri et al., 2006), fertilizers (Adnan et al., 2019), etc. Since

it is difficult for individuals to fully understand the benefits

associated with the use of green agrotechnology, they tend to

have doubts about the risks they need to take in technology

adoption (Chavas and Nauges 2020). However, further studies

have shown that farmers may use subjective risk judgements to

weigh the pros and cons; that is, there is a negative relationship

between the perceived risk of using green agrotechnology and the

probability of adoption (Duong et al., 2019). The research

outlined above is limited by the fact that the paths between

variables have only been tested empirically, while specific

influence mechanisms have not yet been theoretically

deduced. Hence, such mechanisms are based only on the

summary of phenomena and experiences and lack a scientific

basis. Further exploration is required of such mechanisms and

the paths whereby the interactive feedback model of e-commerce

operation–agrotechnology application–income enhancement

can be realized.

The Chinese government has implemented appropriate

support policies for Reservoir resettlers, and the livelihood

level and social integration of this group have been

significantly improved. Ensuring the sustainable self-

development of involuntary project resettlers has attracted

research attention globally (Karimi and Taifur 2013). The

current research was conducted as follows. First, we

constructed a model of the benefits of green agrotechnology

adoption by resettled households under different e-commerce

participation scenarios, based on utility optimization theory

and induced agricultural technological innovation theory.

Second, we introduced risk perception as a moderating

variable and combined it with expected utility theory to
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improve the multi-factor influence mechanism model of

resettled technology adoption. Third, we proposed research

hypotheses according to the theoretical derivation and

empirically tested the theoretical model using the ordered

probit model with survey data gathered from resettled

farmers in Zigui, Hubei province, China, the first county in

the Three Gorges Reservoir area. Next, we explored how the

promotion of rural e-commerce participation affects the

adoption of green agrotechnology by resettlers and the core

elements within this process and investigated the perturbing

influence of the particular risk preferences of involuntarily

relocated populations in regard to promoting modern

agricultural technology and achieving sustainable livelihood

development. Last, we provide support for decision making

in regard to compensating and supporting resettlers in water

conservancy and hydropower projects.

2 Theories and hypothesis

In the theory of agricultural supply chain integration, in

response to the impact of the agricultural business segment on

the production segment, induced agricultural technological

innovation theory was proposed at the start of the 20th

century. This theory argues that the business model is closely

related to agricultural technological innovation (Cowan et al.,

2015) and that a proposed increase, decrease, or change of

production and business factors will necessarily bring about

technological innovation (Schultz 1987). Accordingly, it is

clear that the promotion of Internet technologies and the

development of rural e-commerce will inevitably promote

changes in production by farmers, namely the use of green

technologies in agriculture. On the one hand, the combination

of e-commerce and the digital economy completes the

construction of a digital system for the agricultural industry

which is more conducive to the value-added and market demand

transfer of green agricultural products and allows for more

convenient mining and teaching of green agricultural

technologies (Fu and Zhang 2022). On the other hand, the

expansion of agricultural product sales by e-commerce and

logistics platforms has led to a surge in the number of end

customers with green consumption needs. The trend of

standardization and branding of agricultural products has led

to increasingly stringent requirements for the production

process, which has also forced the improvement and

standardization of the use of resettled agricultural technologies

(Dong et al., 2021) as shown in Figure 1.

In the process of compulsory relocation, Reservoir resettlers

lose their livelihood capital, livelihood capacity, and social

network. Thus, the focus of subsequent development has been

on how to achieve maximum benefits under resource constraints

(Zhang 2021). It is a requirement of the principle of

developmental resettled for hydropower projects in China that

the post-resettled production and living standards of resettlers

should not be lower than those before relocation. Therefore,

whether resettled farmers can promote the application of green

agrotechnology in agricultural production after participating in

rural e-commerce is mainly determined by the related profit, so it

can be judged according to the profit function corresponding to

different participation situations of e-commerce, as shown in

Eq. 1.

πi � TR(Q) − TC(Q) (1)
where πi is the profit of resettlers selling household agricultural

products; i � 0 means through an online e-commerce channel,

and i � 1 means along the traditional offline channel. Q is the

agricultural production level of resettled households in the

resettled area, TR(Q) is the total income derived from

agricultural cultivation, and TC(Q) is the corresponding total

expenditure. Here, it is assumed that the production level Q of

resettled households can be expressed by Eq. 2.

Q � f[I(g), g] (2)

In the above equation, g is the degree of green agrotechnology

adoption by resettled households, and I is other agricultural

production factor inputs. The degree of households’ inputs is

closely related to the level of agrotechnology they use, so the latter

can be expressed in the functional form I(g). Assuming that the

price of agricultural production factor I is P0 and the unit price of

green agrotechnology input is P1, the profit of resettled

agricultural output can be shown as in Eq. 3.

πi � TR(Q) − TC(Q) � PiQ − P0I(g) − P1g (3)

At this point, it is necessary to find the optimal level of

adoption of green agrotechnology for resettlers under the profit

maximization condition, which is the derivative of profit πi to the

degree of adoption of agrotechnology g as shown in Eq. 4.

dπi

dg
� Pi · [zQ

zI
· dI
dg

+ dQ

dg
] − P0 · dI

dg
− P1 � 0 (4)

In the above equation, Pi · dQ/dg can be regarded as the

marginal benefit of green agrotechnology adoption by resettlers,

denoted as MRi, while P0 · dl/dg + P1 is the marginal cost of

agrotechnology adoption, denoted as MCi. While the network

direct sales model allows customers to sell their products directly,

it also allows customers to obtain ecological and high-quality

agricultural products more conveniently (Tian et al., 2022). Then

it feeds this demand to resettled households quickly, which becomes

a source of motivation for this group to apply green agricultural

technology. For example, in the resettled area of Guojiaba Township,

Zigui County in the Three Gorges Reservoir area, a water and

fertilizer integrated navel orange planting base was built with the

help of an e-commerce platform, and the track from the orchard to

the road was electrified and a full production cycle traceability

system with an integrated QR code was designed.
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The results calculated from Eq. 4 is shown in Figure 2. In the

case of resettled households participating in e-commerce, when

MC1 � MR1, the optimal green agrotechnology adoption level is

g1, and when resettled households do not participate in

e-commerce, the optimal value of green agrotechnology adoption

at this point can be obtained fromMC0 � MR0 as g0. The current

participation of resettlers in e-commerce will significantly increase

the sales price of agricultural products. For example, the traditional

channel sale price of pomegranate in Yunnan reservoir area of the

lower Jinsha River hydropower station in 2021 was 0.5 USD/

kilogram (kg). While through e-commerce do boutique retailing,

it can be sold at 0.62 USD/kilogram (kg), an increase of more than

20%. So, when P1 >P0, there is g1 >g0, and the following research

hypothesis can be proposed.

Hypothesis 1. Participation in e-commerce has a catalytic effect

on resettled growers’ green agrotechnology adoption behavior.

Different e-commerce participation models will have

different benefits for resettled households as the participating

subjects and circulation links vary. This paper classifies resettled

households’ e-commerce participation model as either platform

e-commerce or social e-commerce, according to the survey data.

The platform e-commerce model refers to resettled households

selling through online trading platforms, such as Taobao and

Jindong. The social e-commerce model refers to such households

selling through a network of acquaintances to form a fixed source

of online customers, such as through WeChat or QQ. The

platform e-commerce model may obtain higher product

revenue as a large number of merchants are participating:

While the platform products are highly competitive barriers to

entry, the requirements for technical investment are also higher.

The social e-commerce model has price advantages, but resettled

households have a limited network group of acquaintances, and

the fact that e-commerce has a limited effect on increasing

income leads to less willingness to adopt technical innovation

and lower rates of green agrotechnology adoption. Accordingly,

the following research hypothesis can be proposed.

Hypothesis 2. There are differences in the promotion of green

agrotechnology adoption among resettled households according

to various e-commerce participation models, with the platform

e-commerce model outperforming the social e-commerce model.

FIGURE 1
Analytical framework based on induced agricultural technological innovation theory.

FIGURE 2
Linkages between e-commerce participation and resettlers’
green agrotechnology adoption.
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However, a single profit-seeking factor is not sufficient in

explaining the motivation of resettled households when they

adopt green agrotechnology (Adnan et al., 2021). The increased

vulnerability of livelihood and the relatively scarce livelihood

capital led to a weakening in the ability of involuntary resettled

groups to tackle risks to their livelihoods (Gong et al., 2020).

However, the application of green agrotechnology may also give

rise to additional risks, including technological, natural, and

market risks. For example, compared with chemical pesticides,

organic pesticides are difficult to operate and highly targeted.

Resettlers faced with planting new crops in resettled areas may be

vulnerable to yield reduction after application of a new

technology. Especially if they are not familiar with pesticide

selection, application dosage, and application time (Fang et al.,

2021). In addition, resettlers whose original social networks are a

great distance away from the resettled area and who have poor

information channels may face failure to achieve high quality and

high prices for their agricultural products, and with high

technology costs (Lu et al., 2018). Therefore, resettlers have a

lot of uncertainty when adopting green agrotechnology, and thus

perceive the existence of risks, and in view of their relatively weak

risk tolerance, they are mostly risk-averse subjects. In other

words, the greater levels of risk perception in the resettlers’

technology adoption behavior will directly affect the role

played by e-commerce in the promotion of such behavior.

From the expectation-utility theory, the utility function of

resettlers’ participation in rural e-commerce is shown in Eq. 5.

U(W − e) � E[U(W + ε)] (5)

Where U and E are the utility and expected utility functions of

resettled households, respectively, W is the production and

marketing input, ε is the stochastic return, and e is the risk

premium, which indicates the degree of resistance to green

agrotechnology among resettled e-commerce participants. In

order to analyze whether risk perception affects the propulsive

effect of e-commerce on agrotechnology adoption behavior, the

relationship between resettled risk perception and risk preference

e must first be clarified. It is assumed that the benefit utility

U(W) of resettled e-merchants is second-order derivable. Then a

Taylor series expansion is carried out for both sides of Eq. 5 based

on the point W. The results are shown in Eq. 6.

E[U(W) + U′(W)ε + 1
2
U″(W)ε2 + R] � U(W) + U′(W)e + R

(6)
R in the above equation is the higher order remainder term of

Eq. 6, and the process of transforming the resettled participation

in the electric utility U in Eq. 5 by the equation is shown in Eq. 7.

U(W − e) � U(W) + U′(W)e + R ≈ U(W) + U′(W)e (7)

Similarly, an equation transformation of the resettled

expected utility function E in Eq. 5 is shown in Eq. 8.

E[U(W + ε)] � E[U(W) + U′(W)ε + 1
2
U″(W)ε2 + R]

≈ U(W) + U′(W)E(ε) + 1
2
U″(W)E(ε2) (8)

Since resettlers are mostly risk-averse after experiencing loss

of livelihood, R is basically negligible and has E(ε) � 0, therefore

at this point, E(ε2) � Var(ε). According to Eqs 5, 7, 8 are

equivalent by association, which leads to Eq. 9.

U(W) + 1
2
U″(W)Var(ε) � U(W) − U′(W)e (9)

An equation transformation of Eq. 9 can locate the

willingness to resist green agrotechnology e of e-commerce

resettled households, as shown in Eq. 10.

e � −1
2
U″(W)
U′(W) Var(ε) �

1
2
k(e)Var(ε) (10)

It can be calculated that U″(W)/U′(W) � k(e) in the above

equation, while Var(ε) represents the external factors affecting
resettlers’ returns. This is the variance of random returns, which

can be considered as being the perceived income risk held by

resettled households. In the case that resettled households tend

towards risk-aversion, k(e) is relatively stable. If the degree of

resettled risk perceptionVar(ε) is higher, the value of e increases,
indicating that resettlers are more resistant to green farming

techniques. According to the above analysis, the following

research hypothesis can be proposed:

Hypothesis 3. Individual risk perceptions will constrain the

degree to which e-commerce participation promotes the

adoption of green agrotechnology by resettled households.

3 Data, models and variables

3.1 Location selection and data sources

The Three Gorges Reservoir has flooded 260 km2 of arable

land, and there are 354,000 rural resettlers settled in the area. This

has resulted in an extremely limited environmental capacity to

produce food. Zigui County in Hubei, at the head of the Three

Gorges Project Reservoir, is both a resettled area and classed as a

“national poverty-stricken county,” with 25% of its total

population being Reservoir resettlers. As the climate and soil

environment are very suitable for the growth of Navel oranges,

Zigui County has become famous as China’s “Navel Orange

Township.” Therefore, in recent years, through the Three Gorges

resettled support funds and other promotional projects, Zigui

County has been encouraged to adopt green agriculture. At

present, the Zigui navel orange production area covers

23,200 ha and has an annual output of 605,000 metric tons.

Across the area’s 12 towns and 116 villages, about 198,000 people
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are engaged in related industries, and this is the only national

citrus production area that produces fresh fruit throughout

the year.

In order to solve the difficulties caused by the lack of land to

compensate resettlers in the county, as well as a lack of social

resources and the low premium capacity of agricultural products,

Zigui County took the lead in innovating an e-commerce

development model in 2014 and was selected as one of the

second batch of national “e-commerce-demonstrating rural

counties” in 2019. In recent years, the proportion of online sales

of Navel oranges has accounted for about 55% of total sales, and the

per capita net income of orange farmers increased from 1,967 USD

in 2014 to 3,372 USD in 2018, becoming an important way to

enhance the income of resettlers. In addition, e-commerce promotes

the adoption of solar pest control lights, water and fertilizer

integration, Internet of Things (IoT, through which things are

connected through the Internet) management, and other green

agrotechnology, using networks to strengthen the ecological

brand marketed as “a river of clear water, green mountains on

both sides of the river, four seasons of fresh oranges.”

The data used in this study come from the Navel orange

electric business and green agrotechnical survey conducted in the

resettlement area of Zigui County, Hubei Province during

December 2020. The sampling points were selected from a

total of 34 resettlement villages and groups in three towns

and one township, namely Maoping Town, Guojiaba Town,

Guizhou Town, and Shuitianba Township. At present, each of

the four has an electric e-commerce logistics center, an

e-commerce service center, and other infrastructure and

service facilities and has several green agrotechnology

demonstration orchards or planting bases, such as the

Bajiaolou Green Technology Tour Park, the Flying Green

Plant Protection base in Guogutai Village, Guojiaba

Township, and the Alibaba Group’s Future Farm in

Choumushu Village, Shuitianba Township. All these were

sampled.

The specific sampling method was to randomly select eight to

10 sample villages in each township, then randomly conduct

household surveys. A total of 688 resettlers were interviewed.

After samples with no response or doubtful key information were

excluded, 660 valid questionnaires were obtained. The number of

resettled households’ adoption of various green agricultural

technologies is shown in Table 1.

According to the list of technical systems in the “Technical

Guidelines for Green Agricultural Development (2018–2030),”

resettled households mainly apply six types of green

agrotechnologies: physical control technology, pollution-free

pesticide technology, soil formula fertilizer technology, film

and water control technology, water and fertilizer integration

technology, and grafting technology. Of these, 120 households

(18.2%) have adopted two kinds of technologies, and

249 households (37.7%) have adopted four or more kinds of

technologies, which shows that green agrotechnologies are in the

emerging stage in the resettlement area.

3.2 Model construction

Using Li et al. (2020) classification of degree of

agrotechnology adoption, we divided resettlers’ agrotechnology

adoption into five categories, from low to high, and assigned

them the following values: lower adoption = 1, low adoption = 2,

moderate adoption = 3, high adoption = 4, and higher adoption =

5. Since, as an explanatory variable, the degree of resettlers’

agrotechnology adoption g is a multi-valued ordered variable,

we used the ordered probit model to explore the influencing

factors involved, and the underlying regression model

constructed is shown in Eq. 11.

gp
i � α1 + β1EPi + β2GPEi + β3TTSi + λ1CVi + σ i (11)

In Eq. 11, EPi, GPEi, and TTSi represent e-commerce

participation, agricultural price expectation, and

agrotechnology training of the ith resettled household,

respectively, while CVi represents a series of control variables

and σ i is a random disturbance term. gp
i is a latent variable of the

degree of green agrotechnology adoption of resettled household i.

Let C1<C2<C3<C4<C5 be the threshold, then gi values can be

discretized by gp
i as shown in Eq. 12.

TABLE 1 Number of resettled households’ adoption of various green agricultural technologies.

Sample
townships

Resettlers E-commerce
participation

Physical
control

Pollution-
free
pesticides

Soil
testing
fertilizer

Laminated
water
control

Grafting Fertilizer
integration

Maoping 159 126 54 48 36 27 51 9

Guojiaba 240 153 126 129 126 24 192 21

Guizhou 186 81 105 114 93 24 156 18

Shuitianba 75 39 51 30 36 3 57 18

Tatal 660 399 336 321 291 66 456 66
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gi �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 gp
i ≤C1

2 C1 ≤gp
i ≤C2

3 C2 ≤gp
i ≤C3

4 C3 ≤gp
i ≤C4

5 C4 ≤gp
i ≤C5

(12)

If the random disturbance term σ i obeys the standard normal

distribution, X is a vector of actual observations of sample

households for all independent variables, and ϕ denotes the

cumulative distribution function. The impact mechanism of

each adoption degree is shown in Eq. 13.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(gi � 1
∣∣∣∣X) � P(gp

i ≤C1) � Φ1

P(gi � 2
∣∣∣∣X) � P(C1 ≤gp

i ≤C2) � Φ2

P(gi � 3
∣∣∣∣X) � P(C2 ≤gp

i ≤C3) � Φ3

P(gi � 4
∣∣∣∣X) � P(C3 ≤gp

i ≤C4) � Φ4

P(gi � 5
∣∣∣∣X) � P(C4 ≤gp

i ≤C5) � Φ5

(13)

After an ordered-probit model is constructed in Eq. 13, the

regression coefficients can be estimated using the maximum

likelihood estimation (MLE) method. In addition, we

conducted additional analyses independent of the probit

model. To analyze the extent to which e-commerce

participation drives the adoption of agricultural technologies,

we analyze the marginal effects of each independent variable, as

shown in Eq. 14.

zP(gi � n
∣∣∣∣X)/zxj � −Φnβj (14)

Where n = 1,2,......5 represents the five degrees of resettled green

agrotechnology adoption, xij is the jth independent variable of

sample i, and βij is the coefficient to be estimated for xij. The

marginal effects were analyzed according to the sign and

coefficients of the results.

3.3 Variable selection

3.3.1 The dependent variables of this paper is
resettled households’ adoption of green
technologies in navel orange cultivation

The specific measurement has six categories of green

agricultural technologies adopted by resettled households, and

the value is assigned as 1 if adopted, and 0 if not. Due to

variations in natural capital among resettled households, it is

not suitable to use equal weighting among the categories because

of limitations placed on the use of different green agricultural

technologies. Therefore, the four dimensions of economic

benefits, resource saving degree, ecological benefits, and

operational feasibility are considered comprehensively, and the

entropy value method is applied to determine their weighting

coefficients. The steps are as follows: 1)Calculate the indicator

weight pij � Xij/∑m
i�1Xij for item i under the jth indicator of

resettled household Xij, where m is the number of evaluation

dimensions. 2) Measure the entropy value of indicator j

ej � −∑m
i�1pij lnpij/ lnm. 3) Derive the entropy weight wj �

(1 − ej)/∑n
j�1(1 − ej) of the jth indicator. 4) Obtain the weight

coefficients by calculating the weight of each secondary indicator

of the evaluation dimensions, as shown in Table 2.

3.3.2 Independent variables
According to the model deduction of the previous theoretical

analysis, it can be seen that the participation behavior of

e-commerce. The expected sales price of agricultural products

are the keys to promoting the adoption of green agrotechnology

among resettlers. The improvement of agrotechnology

application capacity through training is also an important

factor (Liu et al., 2022).

3.3.3 Moderating and controlling variables
According to the aforementioned theoretical model, it is

clear that the perceived risk factors of resettled households have

an impact on e-commerce’s promotion of the use of

agrotechnology. These involve various aspects and varying

degrees of perception, such as natural conditions, market

environment, and technical capacity. According to previous

studies, there are two main types of control variables. One is

demographic characteristics, including gender, age, and the

level of education of respondents. The other is household

endowment, including the maximum years of education of

members, the proportion of household labor force, annual

household income, navel orange planting area, and support

from local cooperative organizations.

The definition and descriptive statistics of each variable are

shown in Table 3, in which the mean value of adoption of green

agrotechnology is 1.763. The overall application degree still needs

to be improved; however, participation in e-commerce is more

than half, indicating that resettlers generally have enthusiasm to

engage in e-commerce. At the same time, the current support for

training in the use of agricultural technology is still insufficient

with the mean value is 0.414. The risk perception of the

application of agricultural technology is around the mean

value, which needs to be controlled and further development

of e-commerce is required to promote the popularity of green

agricultural technology in resettled areas.

4 Empirical results

4.1 Impact of e-commerce participation
behavior on the degree of green
agrotechnology adoption

Before testing the role of e-commerce participation behavior

in the promotion of the application of resettled farming

techniques, a multiple cointegration test between the relevant

independent variables was required. The resulting variance

inflation factor (VIF) was far below 10, without cointegration
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problems. We then examined whether the original data satisfied

the parallel regression hypothesis and found that the chi-square

value was not significant. This meant the hypothesis was valid for

analysis using the ordered-probit model. Finally, regression

models were constructed when no-control variables (Model I),

household head characteristics (Model II), and household head

characteristics and household endowment (Model III) were

added. The regression models are shown in Table 4.

As shown in Table 4, e-commerce participation significantly

and positively influenced resettled navel orange growers’ green

agrotechnology adoption behavior at the 1% level,

i.e., Hypothesis 1 holds. To analyze the influence mechanism,

the relationship between e-commerce participation behavior,

agricultural price expectation, and technical training support

was further investigated here, as shown in Table 5. The

regression results show that there is a significant positive

correlation between participation in e-commerce and factors

that support technology adoption support regarding such as

price expectation of agricultural products and technical

training support.

According to the model regression results above,

participation in e-commerce has a significant positive effect

on resettled households’ adoption of green agrotechnology.

Specifically, various government subsidies and agricultural

policies increased their green agricultural product price

expectations after participating in e-commerce. For example,

Zigui County has successively issued documents such as

“Implementation Opinions on Accelerating E-commerce

Development” and “Implementation Plan of E-commerce in

Rural Areas Project,” which have greatly enhanced the

information used by resettlers in their agrotechnology inputs.

At the same time, resettlers have been given more technical

training opportunities. For example, platforms such as Suning

University and Jingdong Business School dispatched lecturers to

TABLE 2 Evaluation indicators and weights of the degree of adoption of various types of green agrotechnology by resettled households.

Target layer Level 1 indicators Secondary
indicators

Secondary indicator
weights

Weighting of
primary
indicators

Degree of adoption of green
agrotechnology

Physical control technology Economic benefits 0.019 0.075

Resource conservation
degree

0.019

Eco-friendly effect 0.018

Operability 0.019

Pollution-free pesticide technology Economic benefits 0.018 0.070

Resource conservation
degree

0.018

Eco-friendly effect 0.017

Operability 0.017

Soil testing and fertilizer technology Economic benefits 0.014 0.056

Resource conservation
degree

0.014

Eco-friendly effect 0.014

Operability 0.014

Lamination and water control
technology

Economic benefits 0.096 0.383

Resource conservation
degree

0.095

Eco-friendly effect 0.096

Operability 0.096

Water and fertilizer integration
technology

Economic benefits 0.095 0.386

Resource conservation
degree

0.098

Eco-friendly effect 0.096

Operability 0.097

Grafting and splicing technology Economic benefits 0.007 0.030

Resource conservation
degree

0.007

Eco-friendly effect 0.007

Operability 0.009
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12 townships in Zigui County to teach e-commerce production

and operation.

Based on the Hypothesis 1 test, the degree of resettlers’ agro

technology adoption under the role of each factor was further

analyzed to explore whether the marginal effects of different

degree types affected were sensitive, as shown in Table 6.

The results in Table 6 show that the percentage of resettled

households with low technology adoption will decrease by 25%

after they participate in e-commerce, while resettled households

with moderate, higher, and high adoption will increase by 6.3%,

3.7%, and 7.4%, respectively. It is confirmed that the awareness

and adoption of green farming techniques among resettlers are

TABLE 3 Definition of variables and descriptive statistics.

Variable
types

Variable name Variable definition and
assignment

Average Standard
deviation

Dependent
variable

Level of adoption of green
agrotechnology

Comprehensive calculation of the application of each type of agrotechnology
(entropy method)

1.763 1.113

Independent
variables

E-commerce participation Participation = 1; No participation = 0 0.605 0.490

Green product price expectations Very low = 1; relatively low = 2; average = 3. relatively high = 4; very high = 5 3.436 0.648

Technical training support Accepted = 1; Not accepted = 0 0.414 0.494

Moderating
variables

Risk perception Perceived risk in green agrotechnology application: very small = 1; relatively
small = 2; average = 3; relatively large = 4; very large = 5

2.782 1.076

Gender Male = 1, Female = 0 0.664 0.474

Age Actual age (years) 48.514 11.316

Education level Years of education (years) 9.777 2.925

Control variables Maximum number of years of
education for members

Maximum number of years of education for family members (years) 12.891 3.059

Household labor force ratio Ratio of labor force population to total population 0.725 0.235

Annual household income Total household income in 2020 (USD) 1.892 2.272

Orange planting area Household-owned orange cultivation area in 2020 (hectare) 0.7367 4.5678

Local partner organizations support Yes = 1; No = 0 0.164 0.371

TABLE 4 Regression results of the impact of green farming technology adoption among resettled orange growers.

Variable types Variable name Model I Model II Model III

Coefficient (robust
standard
error)

Coefficient (robust
standard
error)

Coefficient (robust
standard
error)

Independent
variables

E-commerce participation 0.821*** (0.191) 0.793*** (0.210) 0.859*** (0.211)

Green product price expectations 0.647*** (0.135) 0.648*** (0.135) 0.664*** (0.136)

Technical training support 0.516*** (0.168) 0.533*** (0.169) 0.481*** (0.175)

Control variables Risk perception −0.217 (0.176) −0.151 (0.182)

Gender 0.003 (0.009) 0.002 (0.010)

Age 0.026 (0.035) 0.029 (0.037)

Education level 0.002 (0.037)

Maximum number of years of education for
members

−0.164 (0.369)

Household labor force ratio −0.021** (0.009)

Annual household income 0.001 (0.001)

Orange planting area −0.081 (0.228)

Pseudo-R2 0.1467 0.1505 0.1635

Observed values 660 660 660

Note: *, **, and *** are statistically significant at the 10%, 5%, and 1% levels, respectively.
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enhanced under the e-commerce model. Resettled households

with a low level of green agrotechnology application also

decreased by 19.8% and 15.8%, respectively, as the price of

agricultural products improved and agrotechnology training

grew in popularity, but it was not as significant as the effect

of e-commerce participation.

4.2 The impact of e-commerce
participation model on the degree of
adoption of green agricultural technology

To analyze the heterogeneity in the impact of different

e-commerce participation models, this paper further

empirically tested the impact of e-commerce participation

models on resettled households’ green farming skills.

Statistics found that, among the sampled households

participating in e-commerce, 153 (38.3%) used the platform

e-commerce model sample and 246 (62.7%) used the social

e-commerce model sample. The empirical results are shown in

Table 7. According to the level of technology adoption classified

by the previous section (1–5), from the overall sample, the

degree of increase in agrotechnology adoption by farmers

participating in e-commerce was 0.527, while the degrees of

increase for the platform e-commerce and social e-commerce

models were 1.286 and 0.531, respectively. The results indicate

that the degree of increase for the platform e-commerce model

was greater, suggesting that it could bring about a greater

increase in agrotechnology adoption than the social

e-commerce model.

4.3 Results of the moderating effect of risk
perception

To verify the moderating role of risk perception in resettled

agrotechnology adoption, Model IV was constructed by

introducing the interaction term between e-commerce

participation and risk perception. The results are shown in

Table 8, which indicate that while e-commerce participation

significantly increases the adoption of green agrotechnology, risk

perception has a significant negative correlation to it. Indeed, the

negative coefficient of the interaction term confirms that risk

perception weakens the positive relationship between

e-commerce participation and agrotechnology adoption, so

Hypothesis 3 is valid.

TABLE 5 Correlation between e-commerce participation and green agrotechnology adoption support elements for resettled households.

Dependent variable Green product price
expectations

Technical training support

Independent variables E-commerce participation 0.733*** (0.180) 0.542***(0.209)

Control variables Controlled Controlled

Pseudo-R2 0.575 0.0988

TABLE 6 Marginal effects of each influencing factor on the degree of resettlers’ adoption of agricultural technology.

Very low
adoption type

Low adoption
type

Moderate adoption
type

High adopted
type

Very high
adoption type

E-commerce participation −0.252*** (0.052) 0.076*** (0.017) 0.063*** (0.018) 0.037** (0.015) 0.074*** (0.024)

Green product price expectations −0.198*** (0.037) 0.060*** (0.015) 0.050*** (0.013) 0.029*** (0.011) 0.059*** (0.017)

Technical training support −0.158*** (0.049) 0.048*** (0.017) 0.040*** (0.015) 0.023** (0.010) 0.047*** (0.018)

TABLE 7 Differences in the impact of different e-commerce participation models on resettlers’ green agrotechnology adoption.

Group Processing effects Processing group Control group Difference Standard error t-test value

Overall sample ATT 2.092 1.565 0.527 0.210 2.50

Platform e-commerce model ATT 2.551 1.265 1.286 0.319 4.03

Social e-commerce model ATT 1.815 1.284 0.531 0.258 2.06
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For example, when the rainfall in Zigui and other places reached

historical extremes in the summer of 2021, to ensure the taste of

fresh navel oranges was maintained, the local migration

management recommended the adoption of land mulching

technology in the selenium-rich planting bases of Seven

Princesses, Shi Wai Tian Yuan and other major e-commerce

companies. However, if the residual film cannot be effectively

recovered or is uncovered too late, the film will be left in the soil

by weathering and decaying, and its long-term accumulation will

result in serious damage and pollution to the soil. This means that

the households with high soil quality requirements are cautious

about employing this technology. Hypothesis 3 also illustrates that

both the objective risk caused by external shocks and the subjective

risk caused by incomplete information after relocation may have a

significant impact on agricultural production decisions. Resettled

households with weak resilience to potential risks to their livelihood,

especially, are often forced to make careful trade-offs between low

risk and high profit.

4.4 Robustness test

To test the robustness of our empirical results, one method

was to construct another ordered-logit model (Model V) for the

ordered variable of degree of resettlers’ green farming technology

adoption to conduct a regression analysis. The other was to

extract 80% of resettlers’ sample households and test them again

through the ordered-probit model (Model VI). The results of

both are shown in Table 8. As displayed in Table 8, there is

essentially no difference in the sign (positive and negative values)

of the regression coefficients for Models V and VI, or the

significance level of the coefficients. This indicates the strong

robustness of the hypotheses derived from the theoretical model,

as well as the mechanisms of influence of the selected

independent and control variables on the dependent variable.

5 Discussion

Based on relevant theories, this study reveals the impact of

resettled households’ e-commerce participation on their green

technological innovations, determines the impact mechanisms,

and conducts an empirical test. Our results summarize the results

and experiences of modernizing involuntary among Three

Gorges Reservoir area in China, which may provide a

modellable case study for future rural revitalization in China.

This may solve the sustainable livelihood problems of

involuntary resettlers in other countries.

Due to the limited environmental capacity in the resettlement

area, participation in social e-commerce among Reservoir

resettlers is high, and it has gradually replaced the traditional

agricultural cooperatives as the first choice to expand the

distribution channels of agricultural products and generate

family income. At the same time, although the adoption of

green agrotechnology among resettlers is gradually expanding,

adoption levels remain low to medium. Previous studies have

mostly focused on the income-generating effects of e-commerce

and the adoption factors and environmental effects of green

agrotechnology (Takahashi and Muraoka 2019; Peng et al., 2021;

Li et al., 2022), with less research on the interrelationship

between the two, but the huge impact of e-commerce on

agricultural production cannot be ignored. Our results show

that e-commerce participation significantly increases the level of

resettlers’ green agrotechnology adoption, shrinks the proportion

of households with low adoption, and increases the proportion of

resettled households with high adoption. This is similar to the

findings of Li et al. (2021). Specifically, agricultural price

expectations and related agrotechnology training support from

e-commerce were the most important agrotechnology adoption

drivers, and the former was more sensitive, indicating that

resettlers urgently need to rely on green agricultural

development to cope with an industrial hollowing-out in the

TABLE 8 Analysis of moderating effects of risk perception.

Variable types Variable name Model IV Model V Model VI

Coefficient (robust
standard
error)

Coefficient (robust
standard
error)

Coefficient (robust
standard
error)

Independent
variables

E-commerce participation 1.971*** (0.562) 3.748*** (0.642) 2.220*** (0.425)

Risk perception −0.174** (0.151)

Green product price expectations 1.016*** (0.246) 0.558*** (0.154)

Technical training support 0.744** (0.308) 0.352* (0.199)

Interaction items E-commerce participation * Risk
perception

−0.361** (0.184) −0.799*** (0.195) −0.518*** (0.129)

Control variables Controlled Controlled Controlled

Pseudo-R2 0.1538 0.1991 0.1987

Observed values 660 660 528
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Three Gorges Reservoir area due to natural capital loss and

compensation resource constraints. However, green value-added

agricultural products and e-commerce-assisted agrotechnical

training mainly act on resettled households with low

agrotechnical skills and, without the participation of

e-commerce, will have limited impact effects.

Heterogeneous e-commerce participation models impact

agrotechnology adoption differently. Many studies have

shown that as e-commerce continues to develop, different

e-commerce models, such as social e-commerce and platform

e-commerce, are available (Luo 2022). Because the platform

e-commerce model requires high household endowment, which

is difficult for resettled households to afford, most such

households choose the social e-commerce model. Chinese

people value social relationships and are very good at using

them (Zhang and Yang 2022). Resettled households share

product information through social networks and word of

mouth and can expand their product sales network more

simply. Resettlers’ awareness and adoption of green farming

techniques have increased under various e-commerce models.

Of these, platform e-commerce participation brings the greatest

degree of enhancement; the traditional e-commerce

participation model has more intense market competition

and consumers’ product requirements are higher (Heuer

et al., 2015), which pushes resettled households to

continuously improve the level of green agrotechnology

adoption. In contrast, due to the limited network of resettled

households’ acquaintances, the demand for green

agrotechnology adoption driven by social e-commerce is

lower, as is the degree of improvement it brings.

Related studies have shown that uncertainty in the

application and use of technologies when new technologies

are introduced will also cause uncertainty in income (Chavas

and Shi 2015; Hörner and Wolln 2022). Involuntary resettlers

have a tendency to avoid livelihood risks and fear their own lack

of resilience, thus, if they perceive risks in technology

application, they are likely to weaken the green

agrotechnology promotion effect brought about by

e-commerce participation. Theoretical improvements and

innovations are often not convincing to farmers (Bozzola

and Finger 2020), especially when the technical barriers to

green agrotechnology application are high or the

effectiveness of use is uncertain, which will lead to higher

risk perceptions in technology adoption and thus make

e-commerce resettlers cautious about green agrotechnology.

Some shortcomings must be acknowledged. First, the

agrotechnology selected in this paper is citrus cultivation

technology, and the significance of other agricultural

products still needs to be verified. Second, we tested limited

factors influencing green agrotechnology. Government

regulation and incentives, the role of markets, and individual

capabilities still need to be further verified. Third, the rho-

squared value is not at a high degree, so the model in this paper

can continue to be improved. Subsequent studies can improve

on the above aspects.

6 Conclusion and policy
recommendations

Based on previous technology adoption theories, this paper

constructs a theoretical model of green agrotechnology adoption

by resettled households in the development of e-commerce in

hydropower project reservoirs, taking into account the

characteristics of Chinese involuntary project resettlers, the

objective of maximizing expected returns, and the perceived

risk to technology application posed by resettlers’ livelihood

risk resistance. Drawing on survey data from resettled

households in Zigui, the first county in the Three Gorges

Reservoir area, the hypotheses derived from the theoretical

model were tested empirically by using the ordered probit

model. The conclusions are as follows: Green agrotechnology

has become more popular among resettlers, but the overall

adoption level is still low; participation in e-commerce has a

significant positive impact on the adoption of green

agrotechnology at the 1% level. The ecological value

expectation of agricultural products and the agrotechnology

support provided by e-commerce are the most important

driving factors, but their current effects are mostly limited to

resettled households with a low level of agrotechnology.

Compared with the social e-commerce participation model,

platform e-commerce brings more significant improvements

in technology adoption. The risk perception in resettled

households’ agrotechnology application weakens the

promotion effect of e-commerce participation on

agrotechnology adoption, while the risk perception of

e-commerce participation weakens the promotion effect of the

latter on the adoption of green agrotechnology.

Based on these findings, the following policy

recommendations are proposed: 1) supporting fund should be

used to improve network and logistics infrastructure. Through

the combination of e-commerce policy and late-stage supporting

system for resettlers, we can increase the participation rate of

e-commerce and promote the application of green agricultural

technology. 2) On the basis of the regional brand of the products

in the resettled area, we embed the spirit of resettlers and create a

special brand. On the one hand, it can realize the traceability of

the whole growth cycle of agricultural products, and on the other

hand, it can do the whole cycle of product development and

expand a variety of products. This can enhance the agronomic

value expectation of resettlers by adding value to agricultural

products. 3) The government-led e-commerce associations in

resettled areas should promote each other with the informal

business organizations of resettlers formed by e-commerce

platforms. It is necessary to provide green agrotechnology

training more precisely. However, it is necessary to promote
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close interaction between resettlers and local residents through

joint participation in e-commerce. Through small-scale

technology demonstration and field guidance, the

dissemination and exchange of tacit knowledge in the

application of agricultural technology in resettler

communities should be promoted. 4) To address the risk-

averse tendency of reservoir resettlers in the application of

green agricultural technology, the government of resettled areas

should strengthen the publicity and popularize the knowledge

of technical risks to avoid excessive precautionary behavior by

resettlers. Meanwhile, the government should cooperate with

insurance agencies to encourage farmers to purchase

agricultural insurance policies. Such insurance policies are

specifically used to share the technical costs incurred by

resettler groups during the medium- and long-term growth

periods of agricultural products and are incorporated into late-

stage systems of risk sharing. This can reduce resettlers’

hesitancy to adopt green agrotechnologies.
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Long term influence of alternative
corn cropping practices and
corn-hay rotations on soil health,
yields and forage quality
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Modifications to continuous corn production systems can reduce environmental
impacts and soil degradation, yet the social viability of thesemodifications is linked
to the degree to which they also influence yields and crop quality. In this study, we
focus on forage production systems and evaluate how yields, crop quality, soil
health indicators, and associated ecosystem services are influenced by corn-hay
rotation treatments, cover cropping, and tillage reduction in silage production
using a unique 10-year dataset from Borderview Research Farm in Vermont,
United States. Physical, chemical, and biological soil health indicators were
monitored annually alongside yields and crop quality in a randomized
complete block design experiment. We use a mixed model analysis of variance
approach to demonstrate significant influences of time and treatments on yields,
crop quality and soil health parameters (at p < 0.05). The winter rye cover crop
treatment had no significant influence in this study. No-till significantly increased
aggregate stability and had no significant effect on othermetrics. When cover crop
and no-till were combined, they significantly increased soil organic matter
content, respiration and aggregate stability. The cover crop, no-till, and no-till
cover crop combination treatments had no significant effect on yields or forage
quality, suggesting these conservation practices can be adopted without
sacrificing yields. Our study also found that corn-hay rotations can significantly
increase soil organic matter, respiration, aggregate stability, and crude protein
content compared to continuous corn, but they can negatively influence active
carbon, total drymatter yield and digestibility. The length of rotation influences the
degree to which corn-hay rotations maintain or reduce yields when compared to
continuous corn. Shorter rotations of perennial forages (4 years of hay, 6 years of
corn) can sustain dry matter yields that are not significantly different from
continuous corn, but longer perennial forage rotations (8 years of hay, 2 years
of corn) will significantly reduce overall dry matter yields. Among the treatments,
no-till in combination with cover cropping in corn silage fields, and a rotation of
4 years of hay to 6 years of corn are likely to achieve the greatest overall benefits in
forage production systems.
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1 Introduction

Human resource use currently exceeds planetary boundaries
(O’Neill et al., 2018) and the sustainable intensification of
agriculture is one of the most important pathways to ensure a
livable future for humankind. Sustainable intensification broadly
refers to increasing or sustaining the production of food while
reducing inputs and sustaining the natural resource base (FA0,
2004) and while there are debates about the nuances of this
definition, there is consensus that attempts to meet goals of
sustainable intensification are rife with tradeoffs (Struik and
Kuyper, 2017). Each production type, climate and food system
context present different challenges and opportunities to meet
goals of sustainability.

In recent years there has been renewed interest in the
reintegration of crop and livestock systems as an alternative to
continuous annual crop production. This diversification is hoped to
sustainably intensify food production while benefiting producer
income, crop production, soil properties, and increase
environmental and socioeconomic resilience (Kumar et al., 2019).
Benefits include closing the loop in nutrient cycles through the
provision of manure, improving soil structure and water retention,
and decreasing biocide requirements (Garrett et al., 2017).
Integrating crops and livestock has been the norm in agricultural
history, however, shifts in agricultural research and policy since the
industrial revolution have resulted in more specialized and
segregated approaches (Garrett et al., 2017). For example,
United States farms were substantially more diversified and
integrated in the 1970s than they are today. In 1974, 52% of the
agricultural area and 19% of the farms utilized a crop-grazing
rotation (USDA, 2007), but by 2012, this applied to only 7% of
the farms and <2% of the area. Remote sensing studies confirm this
trend toward homogenization, with mixed use areas being rapidly
converted to continuous annual crops (Lark et al., 2015; Garrett
et al., 2017).

The Intergovernmental Panel on Climate Change (IPCC) has
identified crop-livestock integration as a resource-efficient and cost-
effective agricultural adaptation strategy to sustainably maintain or
increase food production (IPCC, 2018). Integrated crop-livestock
systems have been shown to increase soil quality, crop yield, and
economic returns compared to monoculture crop production in the
Unites States (Sekaran et al., 2021). The majority of research to date
has focused on the impacts of rotating annual crop production with
grazing of forage crops, cover crops, crop residues, and winter
grazing with summer crop production (Kumar et al., 2019).
However, region-specific issues have a major impact on how
crop-livestock systems can be implemented. For example, in
colder climates with a short grazing season, livestock
performance is strongly related to winter feed management,
which can be a significant cost. Stored forage production (such
as hay, haylage, and corn silage) is therefore an integral aspect of
crop-livestock integration in these climates (Kumar et al., 2019). Yet,
the practice of rotating annual crops such as corn with perennial
forage has been limited in the United States, and the costs and
benefits of these systems are presently understudied.

Aligning production goals with environmental sustainability
is critical to achieving sustainable intensification, and
environmental stewardship is one of many factors considered

by farmers when making agricultural management decisions,
alongside financial limitations which constrain their options
(White A. et al., 2021; White et al., 2022a). Agricultural
sustainability goals can be achieved alongside environmental
sustainability goals through improvements in soil health
(Neher et al., 2022). Soil health is defined as the continued
capacity of a soil to function as a vital living ecosystem that
sustains plants, animals, and humans (USDA-NRCS, 2022). This
definition acknowledges the role that biological processes play in
influencing dynamic soil properties and soil functions that are
foundational to sustainability (Neher et al., 2022). Measures of
biological, physical and chemical soil health parameters are now
widely used as indicators of ecosystem functions and ecosystem
services from changes in farming practices and can help assess
the effectiveness of conservation practices in meeting multiple
goals (Wall et al., 2012; Abbott and Manning, 2015; Adhikari and
Hartemink, 2016; White A. et al., 2021; White A. C. et al., 2021;
Neher et al., 2022).

The integration of conservation practices, crop
diversification, or crop rotation may help farmers protect
against weather-related crop stress and increase crop yield
while improving soil health and underlying ecosystem services
(Nunes et al., 2018; Page et al., 2020; Yang et al., 2020). For
example, practices that increase organic matter can mitigate flood
damage through increased water holding capacity (Bhadha et al.,
2017), increased aggregate stability can decrease erosion (Barthès
and Roose, 2017), soil organic carbon increases can contribute to
mitigating climate change (Lal et al., 1999) and cover crops can
reduce erosion by providing physical cover (De Baets, et al.,
2011). However, the nuances of site conditions, soil texture, and
the way conservation practices are implemented influence these
outcomes, meaning that both synergies and tradeoffs are possible
(Palm et al., 2014; Nunes et al., 2018; Page et al., 2020). Context-
specific and usable information tailored to realistic production
methods, and relevant information on cropping system
modifications and subsequent influence on yield and
ecosystem services, are needed in every region of the world to
support farmers’ decisions.

Corn silage and perennial grass/legume forage cropping
systems are prevalent across most dairy producing agricultural
areas such as Vermont, United States. For example, corn silage
covers 65,560 ha in Vermont, accounting for 13.5% of the
agricultural landscape (USDA, 2021). Hay and pasture cover
22.9% (111.290 ha) of the agricultural land (USDA, 2021). Dairy
operations feed a mix of annual and perennial forages to meet the
dietary requirements of cows, often including a hay, haylage, corn
silage, pasture, and various grain concentrates. Conventional
management of corn for silage in these systems is
characterized as continuous corn planted at a high seeding
density. Unlike corn grown for grain, the production of corn
silage requires the entire aboveground biomass to be harvested
and removed from the field, leaving no crop residue to protect the
soil from weather elements through the fall, winter, and spring
before the next crop is planted. This can lead to significant soil
erosion and declining soil organic matter levels over time (Balík
et al., 2020). The sustainable intensification of these annual
forage systems has been challenging in Northern New
England, primarily a result of a short growing season and
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difficult landscape. Heavy, cold, and wet soils in the spring
encourage spring tillage, providing limited opportunity for
adoption of no-till. Rocky and steep slopes limit the land-base
available for corn and hay rotations, leading to the best soils being
reserved for continuous corn. Silage corn varieties typically
require 2,200–2,800 growing degree units (GDUs) to reach
maturity and the 30-year average GDD (base 10 °C) in
Burlington, Vermont is 2,549 (NOAA, 2022). This means that
the time available after harvest to implement conservation
practices and establish a cover crop before winter is very
limited. In the coming years, variability in precipitation
patterns associated with climate change may mean fewer field
working days due to wet soil conditions (Tomasek et al., 2017),
exacerbating challenges associated with an already short, cold
and wet growing season.

In light of these challenges, greater adoption of forage crop
rotation, no-till, and cover cropping, may help farmers
simultaneously increase soil health, enhance resilience to
climate change, and stabilize yields for forage management in
integrated livestock systems. Rotation from annual to perennial
production systems can increase soil health, and rotating from
perennial to annual can give a boost in yields (Stanger and Lauer,
2008; Undersander and Barnett, 2008; Darby et al., 2019). Hay
and pasture fields in Vermont have higher soil carbon socks and
soil health than corn fields (White et al., 2022b). Extensive
research has found that cover cropping increases the overall
health of agricultural systems by scavenging excess nutrients
(Clark, 2010), increasing water infiltration (Haruna et al.,
2018), reducing surface runoff (De Baets, et al., 2011),
alleviating compaction pressure (Chen and Weil, 2011),
building soil tilth, increasing biodiversity, and building
organic matter. Furthermore, cover cropping can help enhance
the benefits of other farming practices, such as no-till planting,
creating synergies that increase farm financial and environmental
sustainability. For example, Sapkota et al. (2012) found that
compared to conventional till, no-till systems had 1.12%
higher soil organic matter content, 71% more soil microbial
biomass, 44% higher soil respiration, greater arthropod
abundance, and improved soil structure stability. Long-term
no-till corn in the northeastern United States has
demonstrated soil health benefits alongside yield increases or
maintenance of yields (Nunes et al., 2018).

The goal of this study was therefore to evaluate forage crop
yield and quality and soil health metrics in alternative cropping
systems that incorporate annual and perennial forage crop
rotation, cover crops, and no-tillage, compared to continuous
corn silage. We present the results of long-term research on
annual production systems in northern New England
United States with a novel focus on forage production, which
is a critical element of crop-livestock integration in this region.
Using a unique 10-year dataset from Borderview Research Farm
in Vermont, United States, we evaluate the degree to which these
conservation practices and perennial-annual rotations influence
dimensions of soil conservation, ecosystem service provisioning
and forage production over time. We hypothesize that integrating
perennial forage rotations, cover crops, and no till will improve
soil health indicators, carbon sequestration, and crop quality and
yield in continuous corn production systems, but that temporal

tradeoffs and synergies are likely to exist when implementing
these practices.

2 Materials and methods

2.1 Study design

Our research draws on data from a long-term replicated plot
research trial on corn cropping systems which was established at
Borderview Research Farm in Vermont, United States. The
experiment was established in 2009. Soil health data was
collected alongside yields starting in 2012 and monitored
annually until 2021. Forage quality was analyzed starting in
2014 and evaluated annually until 2021.

The experimental design was a randomized complete block with
replicated treatments of corn grown in various cropping systems
(Table 1). In 2009, there were three treatments each in 6.10 × 15.2 m
plots. Four plots were continuous corn (CC 2009) which reflects
typical agronomic practices of that time with tillage and no-cover
crops. Another four plots were continuous corn with over wintering
cover crop (WCCC 2009) which reflects a rotation of continuous
tilled corn planted with fall cover crop. There were 12 perennial
forage (PF) plots that were planted with a mixture of alfalfa and
meadow fescue in 2008. In 2011, a fourth treatment was added when
four PF plots were transitioned to no-till corn plots (NT 2011) which
reflects continuous corn with no-till practices. The two final
treatments (fifth and sixth treatments) are corn-hay rotations
with similar management patterns, but in staggered rotation
years. In the first rotation (ROTC 2014) four PF plots were
transitioned to new corn plots in 2014, and then seeded into PF
again in 2020. The second rotation treatment (ROTC 2020) was in
PF until it was rotated into corn in 2020. Additionally, in the fall of
2020 the NT plots were split (6.05 × 15.2 m) to maintain NT plots
and introduce plots with combined no-till and cover crop practices
which will benefit future research.

2.1.1 Site description
This research takes place in Alburgh, VT (long. 45.009072,

lat. −73.307,830) on Amenia silt loam soil (loam skective, mesic,
Lithic Eutrudepts). According to the Köppen climate classification
system, this region is “humid continental mild summer, wet all year”
(Dfb) (PlantMaps, 2022). The 30-year average temperature is 8.22 °C
with a 30-year average of 2,625 growing degree days (base 10.0 °C).
The 30-year average precipitation amount is 95.0 cm with an
additional 216 cm of snow (base 10.0 °C) (NOAA, 2022). The
average 30-year winter temperature (December-February)
is −4.94 °C (NOAA, 2022).

2.1.2 Field practices
The CC 2009, WCCC 2009, ROTC 2014, and ROTC2020 plots

were tilled between 6-May and 16-May with Pottinger Terra Disc
(Valparaiso, IN) at 20–25 cm depth for field bed preparation and
weed control when in corn. Corn was planted between 7-May and
25-May at an average rate of 84,000 seeds hectare-1 in 76 cm rows
with a John Deere 1750 corn planter (Moline, IL). In 2018, a planter
malfunction resulted in a seeding rate of 42,000 seeds ha-1. Silage
varieties varied over the years with an average relative maturity
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(RM) of 94, minimum of 86 and maximum of 105. Typical corn
starter was applied 4, 8, 8 kg ha-1 of nitrogen N), phosphorus P), and
potassium K), respectively. Corn was side-dressed according to the
highest nitrate soil test result which was an average of 125 kg ha-1 N
when corn was in the V4 stage (between 17-Jun and 5-Jul). Winter
cover crop was typically planted in late September with cereal rye
(Secale cereale) at a rate of 110 kg ha-1. Cover crops were terminated
in NTCC2020 plots with herbicide before corn planting. For early
season weed control, herbicide was applied between 14-May and 5-
Jun. Later season weed control was achieved through spot spraying
with systemic herbicides. Corn was typically harvested between 3-
Sep and 18 September It should be noted that in 2020, corn in the
ROTC2020 plots was planted after first cut of PF and thus with a
later planting date, matured later and had a later harvest date (29-
Sep) than any of the other corn plots which were harvested on
3-Sep).

The PF (perennial forage) plots were established with 16.0 kg ha-
1 mixture of 30% alfalfa and 70% tall fescue. On 6-May 2020, PF in
the ROTC2014 plots was established with 22.5 kg ha-1 mixture of
60% alfalfa and 40% tall fescue. Typically, forage plots were fertilized
with an application of 4, 8, 8 kg ha-1 of N, P, and K, respectively after
first cut and 60.5 kg ha-1 K after second cut. With the exception of a
rotation year into corn where only first cut was taken (ROTC 2020)
or rotation into perennial forage (ROTC 2014) when harvest
occurred only twice during the first 2 years to encourage
establishment of the new forage seeding. Perennial forage plots
were harvested three times a year between late May and mid-
September.

2.1.3 Sampling and analysis procedures
Indicators of soil health were measured annually. Numerous

approaches to assessment of soil health have been developed that
move beyond chemical analyses to include biological and physical
indicators as well. Our study used the widely adopted
Comprehensive Assessment of Soil Health developed by Cornell
University’s Soil Health Lab to measure a suite of biological,
chemical and physical indicators of soil health (Meobius-Clune
et al., 2016). Soil samples were collected from each plot between
26-April and 15-May annually from 2012 to 2021 using the methods
described in Moebius-Clune et al. (2016). Composite soil samples
were then submitted to the Cornell Soil Health Laboratory for the
Comprehensive Assessment of Soil Health (CASH) analysis
(Ithaca, NY).

Percent aggregate stability was measured by Cornell Sprinkle
Infiltrometer and indicates ability of soil to resist erosion. Predicted

percent available water capacity and predicted soil protein (N mg/
soil g) was calculated with a Random Forest model from a suite of
measured parameters and soil texture (van Es et al., 2019). Percent
organic matter was measured by loss on ignition when soils are dried
at 105 °C to remove water then ashed for two hours at 500 °C (CASH
adaptation from Broadbent, 1965). Total nitrogen is measured with
DUMAS combustion methodology. It measured organic (living and
non-living) and inorganic (mineral) forms of nitrogen. Active
carbon (active C mg/soil kg) was measured with potassium
permanganate and is used as an indicator of available carbon
(i.e., food source) for the microbial community. Soil respiration
(CO2 mg/soil g) is measured by amount of CO2 released over a four-
day incubation period and is used to quantify metabolic activity of
the soil microbial community (Zibilske, 1994).

Corn silage was harvested with a John Deere 2-row chopper
(Moline, IL) and yields weighed in a wagon fitted with scales.
Perennial forage was harvested and weighed with a Carter Forage
Harvester (Brookston, IN) fitted with scales in one 0.914-m x 15.2-m
strips. Dry matter yields were calculated with an approximate two-
pound subsample of the harvested material from each strip was
collected, weighed, dried and reweighed.

Forage quality was analyzed using the FOSS NIRS (near infrared
reflectance spectroscopy) DS2500 Feed and Forage analyzer. Dried
and coarsely-ground plot samples were brought to the UVM’s
Cereal Grain Testing Laboratory where they were reground using
a cyclone sample mill (1 mm screen) from the UDY Corporation.
The samples were then analyzed using the FOSS NIRS DS2500 for
crude protein (CP), neutral detergent fiber (NDF), and neutral
detergent fiber digestibility in 30 h (NDFD30).

2.1.4 Weather data
Monthly total precipitation records for 2012 through 2021 from

the weather station in Burlington Vermont, United States were
obtained from the NOAA National Weather Service. Precipitation
levels for months prior to sampling were summed and plotted to
assess relationships with soil health measurements.

2.1.5 Interpretation as ecosystem services
Ecosystem services provide a framework for assessing

sustainability of socially relevant ecological outcomes and
processes. It is recommended that indicators of ecosystem
services be easily measured, sensitive to changes in the system
and capture the connection between biophysical changes and
socially relevant outcomes (Dale and Polasky, 2007; Olander
et al., 2018). In this study we drew from prior work by Neher

TABLE 1 Corn cropping system treatments evaluated for yield, forage quality and soil health in this study.

Crop Management method Treatment abbreviation

Corn silage Continuous corn, tilled CC2009

Corn silage Winter cover crop, tilled WCCC2009

Corn silage No-till corn, established into PF plots in 2011 NT2011

Corn silage No-till corn with cover crops, established in 2020 within plots that had been in no-till since 2011 NTCC2020

Corn silage & Perennial Forage Perennial forage, rotated into continuous corn in 2014, and then rotated back to perennial forage in 2020 ROTC2014

Corn silage & Perennial Forage Perennial forage, rotated into continuous corn in 2020 ROTC2020
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et al. (2022), Dube et al., 2022, White A. et al. (2021) andWhite A.
C. et al. (2021) to interpret benefit-relevant soil health parameters
as ecosystem services. Supporting ecosystem services are defined
as those that underpin other ecosystem functions and services
(Dominati, 2013). Measures of respiration and active carbon
directly reflect the microbial, metabolic, and nutrient cycling
activity in the soil that underpin other soil functions and
ecosystem services (Meobius-Clune et al., 2016), and are thus
interpreted as indicators of soil health supporting ecosystem
services. Regulating ecosystem services are the benefits
obtained from regulation of ecosystem processes, including
climate regulation, water regulation, erosion control, and more
(Leemans and De Groot, 2003). In our study, aggregate stability
was measured using a simulated rainfall-based test (Meobius-
Clune et al., 2016), and is interpreted as a direct indicator of soil
conservation and resilience to extreme precipitation (White A.
et al., 2021). Soil organic matter content is a direct measure of the
dynamic portion of soil carbon content, and net changes in
organic carbon content over time is interpreted as an
indicator of climate regulation services through carbon storage
and sequestration (Dube et al., 2022). Available water capacity is
a direct measure of plant available water in soil and was
interpreted as an indicator of drought resilience (White A.
et al., 2021). Finally, we interpret both yield and forage quality
as indicators of impacts of food provisioning services. Identifying
ecosystem services in this way is a useful lens to highlight the
socially relevant aspects of natural resources and ecosystem
functions. In the presentation of results, we bring focus to
significant influences and directionality of impact on
ecosystem services as in White A. et al. (2021).

2.2 Statistical analysis

We used linear mixed models with repeated measures to
evaluate the influence of time and treatment on soil health and
yields. This analysis was followed by ANOVA and prediction of
treatment means to support our interpretation, inference and
conclusions (Gezan and Carvalho, 2018). In addition to
evaluating a dependent variable of each metric as observed, we
also detrended the data by calculating the ‘deviation from
continuous corn’ for each observation, taking the difference
between that observation and the mean value for the continuous
corn plots in that year. This removed the effects of interannual
variability and allowed our analysis to focus on the way the
treatments differ from conventional practices (continuous corn).
For example, when analyzing aggregate stability, we ran our
statistical analysis methods on aggregate stability as measured, as
well as the deviation in aggregate stability from continuous corn
each year.

2.2.1 Model specifications
We fit linear mixed models in R (Rstudio Team, 2022) using

the lme4 package (Bates et al., 2015) to identify the influence of
time and treatment on soil health characteristics, yields and forage
quality. Treatment, year and block were considered fixed effects.
Plot was considered a random effect. Interaction terms between
year and treatment, block and plot were considered. The model

was refined to include only interactions between year and
treatment, by stepwise removal of non-significant terms, to
optimize Akaike’s Information Criterion (AIC), resulting in a
best fit model as follows:

y � μ + Yr + Trt + Trt × Yr + Blk + Pl

Where Yr is the year, Trt is the treatment, Trt xYr is the interaction
between year and treatment, Blk is the block, and Pl is the plot as a
random effect. ANOVA (Type II Wald F tests with Kenward-Roger
df) was then conducted on model results using the car package in R
(Fox and Weisberg, 2019). Effects were considered significant at a
level of p = 0.05. Where significant impacts among treatments were
identified, comparisons of means were conducted.

2.2.2 Post hoc tests
To support interpretation of the mixed model analysis, we

conducted mean comparison tests where significant influences
were identified. For variables with significant time:treatment
interactions we ran Holm corrected pairwise t-test comparisons
with the continuous corn treatment over time. A p-level of 0.05 was
used to determine significant differences between treatments. These
post hoc tests are considered secondary and supplemental to the
model-based analysis.

3 Results

3.1 Summary

Our observations identified significant temporal, treatment and
time:treatment interactions that influenced soil and yield
characteristics. Treatments evaluated in our study significantly
influenced soil health characteristics, total dry matter yield, and
CP and NDF in comparison to continuous corn, but did not
significantly influence corn yields, NDF30 or soil available water
capacity (Table 2; Table 3). In treatments which rotated corn with
perennial forages, overall DM yield was less than in continuous corn,
but only significantly less in the ROTC2020 treatment (Table 4).
Significant time:treatment interactions indicate that the impact of
corn cropping systems on soil health and yield are complex,
dynamic, and can be variably affected by management practices.
Details of the temporal influence on significant relationships among
treatments is supported by secondary analysis in Tables 5 and
Table 6.

3.2 Soil health

3.2.1 Aggregate stability
Aggregate stability was significantly influenced by time (p <

0.001), treatments (p < 0.001), and interactions between time and
treatments (p < 0.001) (Table 2). Model outputs indicate
deviation in aggregate stability from CC was significantly
increased by NTCC (p < 0.001), NT (p = 0.034), ROTC 2014
(p < 0.001), and ROTC 2020 (p < 0.001), but not the WCCC
treatment. Significant interactions between time and NT, ROTC
2014, and ROT2020 treatments is reflected in the model output
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(Supplementary Material S3). The difference in aggregate
stability between the ROTC2014 and CC was 23% at the start
of the study (2012), and the difference declined after the
ROTC2014 rotated into corn in 2014, getting to 9.43% in 2020
(Figure 1, Supplementary Material S2). In the ROTC 2020,
aggregate stability relative to CC increased over time, starting
at 19.7% more aggregate stability in 2012, and ending at 45.7%
more than continuous corn in 2014.

3.2.2 Available water capacity
Treatments had no effect on available water capacity.

Available water capacity was significantly influenced only by
year (p < 0.001) across the study, but the deviation in
available water capacity from continuous corn was not
significantly influenced by time. Block (p < 0.05) was the only
significant influence on the way AWC deviated from
continuous corn.

TABLE 2 Significant influences on soil health parameters; ANOVA p-values and Marginal R2 values of repeated measures linear mixed models of soil health
parameters, and the deviance of soil health parameters from continuous corn (CC).

Soil health indicators Year Treatment Block Treatment:Year interaction Marginal R2

Aggregate stability ** *** 0.483 *** 0.658

Difference in aggregate stability from CC *** *** 0.489 *** 0.817

SOM *** *** *** ** 0.655

Difference in SOM from CC * *** *** *** 0.699

Available water capacity *** 0.364 0.992 0.86 0.232

Difference in available water capacity from CC 0.623 0.427 0.943 0.567 0.107

Surface hardness *** * 0.511 0.123 0.509

Difference in surface hardness from CC *** *** 0.173 ** 0.330

Subsurface hardness *** 0.458 0.27 0.719 0.394

Difference in subsurface hardness from CC 0.595 * * 0.13 0.166

Active carbon *** * * 0.187 0.242

Difference in active carbon from CC 0.346 ** * ** 0.320

Respiration ** *** 0.156 *** 0.686

Difference in respiration from CC 0.553 *** 0.167 *** 0.734

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

TABLE 3 Significant influences on yields and forage quality; ANOVA p-values and Marginal R2 values of repeated measures linear mixed models of corn yield (35%
DM), dry matter yield for corn and forage, and forage quality, as well as the deviance in those metrics from continuous corn (CC).

Yield and quality parameters Year Treatment Block Treatment:Year interaction Marginal R2

Corn yield (35% DM) * 0.213 0.614 0.694 0.122

Difference in corn yield from CC 0.818 0.217 0.633 0.602 0.133

DM yield (perennial and annual) 0.14 *** 0.840 * 0.249

Difference in DM yield from CC 0.09 *** 0.704 ** 0.359

Crude protein *** *** 0.726 *** 0.657

Difference in crude protein from CC 0.498 *** 0.706 *** 0.665

Neutral detergent fiber content (NDF) *** *** 1.0 *** 0.495

Difference in NDF from CC 0.335 *** 0.993 *** 0.472

Neutral detergent fiber content at 30 h (NDFD30) 0.219 0.260 1.0 0.953 0.051

Difference in NDFD30 from CC 0.693 0.289 0.999 0.871 0.051

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1
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3.2.3 Surface and subsurface hardness
Subsurface hardness was significantly influenced by year (p <

0.001) only, yet the detrended data shows that the deviation in
subsurface hardness from that of continuous corn was
significantly influenced by treatment (p < 0.001), and block
(p < 0.01). The deviation in surface hardness from that of
continuous corn was significantly influenced by year (p <
0.001), treatment (p < 0.001), and an interaction between
year and treatment (p < 0.001) (Table 2). Deviation in surface
hardness from continuous corn was significantly influenced by
the ROTC2014 treatment (p < 0.001) and the WCCC treatment
(p = 0.045). Significant interactions between time and the
ROTC2014 and WCCC treatments were also observed
(Supplementary Material S3). In the ROTC2014 treatment,
surface hardness was 69 psi greater than continuous corn
treatment at the start of the data collection when the rotation
was in perennial forages. Following the rotation into corn,
surface hardness in the ROTC2014 treatment became more
similar to surface hardness in the continuous corn plot. The
average difference from continuous corn was 40.6 psi in 2014,
8.12 psi in 2015, and -36 psi in 2016 (Figure 1, Supplementary
Material S2). The WCCC treatment experienced a similar trend
(Figure 1), starting at 20.5 psi greater than continuous corn in
2012, dropping to 27.75 psi less than continuous corn in 2016,
and ending at 12 psi less than continuous corn in 2021. These
trends track with the antecedent moisture conditions during
sampling time plotted, alongside surface hardness in Figure 2.

3.2.4 Organic matter
Soil organic matter was significantly influenced by time (p <

0.01), treatment (p < 0.001), block (p < 0.001) and interactions
between time and treatment (p < 0.001) (Table 2). Model outputs

indicate that the deviation in organic matter content from CC was
significantly increased by the NTCC treatment (p = 0.019) and the
ROTC2014 treatment (p < 0.001). A significant interaction between
time and the ROTC2014 treatment was observed (Supplementary
Material S3). In 2021, the NTCC treatment had 0.26% more organic
matter than the CC treatment (Supplementary Material S2). In 2013,
the ROTC2014 treatment had 1.26% more soil organic matter than
the CC treatment, and this difference declined annually after it was
transitioned to corn in 2014, and 6 years later, in 2019, the
ROTC2014 treatment had only 0.19% more organic matter.
Following return to perennial forages, the organic matter levels
increased slightly to 0.26% greater than the CC treatment (Figure 3,
Supplementary Material S2). Organic matter levels were highest in
ROTC2020 in all years, but not captured as significant in the model.

3.2.5 Active carbon
Active carbon was significantly influenced by year (p < 0.001),

treatment (p < 0.001), and block (p < 0.001) (Table 2). The
deviation in active carbon from that of CC was significantly
influenced by treatment (p < 0.001) and the interaction of
treatment and year (p < 0.001). Deviation in active carbon from
CC was significantly influenced by the ROTC2014 treatment, and
the interaction of time with the ROTC2014 treatment
(Supplementary Material S3). Our results indicate that active
carbon levels were both positively and negatively influenced by
the rotation. Active carbon levels were 118 ppm greater in
ROTC2014 than CC in 2013, and this difference was reduced
over time when the rotation was planted with corn. In 2020, the
ROTC2014 treatment had 5.36 ppm active carbon less than the CC
treatment, and after it was rotated into perennial forage again the
active carbon levels increased to 40 ppm greater than the CC
treatment (Figure 3, Supplementary Material S2).

TABLE 4 Significant influences on ecosystem service provisioning by treatment compared to continuous corn (CC). This is based on the repeated measure mixed
model that incorporates that influences of treatments, time and time:treatment interactions from 2012 to 2021. The “−” symbol is a negative impact, the “+”
symbol is a positive impact, the “~” symbol indicates is is not significant, and “ −/+” indicates a variable impact depending on year.

Ecosystem service Indicator Treatment

NT NTCC WCCC ROTC2014 ROTC2020

Climate regulation through carbon storage Soil organic matter (%) ~ + ~ + ~

Soil health supporting services Active carbon (ppm) ~ ~ ~ −/+ ~

Respiration (mg CO2 g
-1 dry weight) ~ + ~ ~ +

Soil conservation Aggregate stability (%) + + ~ + +

Resilience to extreme precipitation Aggregate stability (%) + + ~ + +

Drought resilience Available water capacity (g g-1) ~ ~ ~ ~ ~

Food provisioning Corn yield (35% DM) ~ ~ ~ ~ ~

Dry matter yield, annual and perennial (kg hectare-1) ~ ~ ~ ~ −

Crude protein (% DM) ~ ~ ~ + +

NDF (% DM) ~ ~ ~ ~ −

NDF30 (% NDF) ~ ~ ~ ~ ~

Among the treatment abbreviations; NT, is no till; NTCC, is no till and winter cover crop; WCCC, is winter cover crop, ROTC2014 is 2 years hay-6, years corn-2 years hay, and ROTC2020 is 7

years hay-3, years corn.

Frontiers in Environmental Science frontiersin.org07

White et al. 10.3389/fenvs.2023.1061013

60

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1061013


3.2.6 Respiration
Respiration was significantly influenced by year (p < 0.01),

treatment (p < 0.001), and an interaction between treatment and
time (p < 0.001). The difference in respiration between treatments
and CC was influenced by treatment (p < 0.001) and an interaction
between treatment and time (p < 0.001) (Table 2). The deviation
from CC in respiration was significantly increased by the NTCC and
ROTC2020 treatments, and the interaction of time with the
ROTC2020 treatment (Supplementary Material S3).

3.3 Yields and forage quality

3.3.1 Corn yield
Corn yields were significantly influenced only by year (p < 0.01)

(Table 3). The difference in yield from continuous corn was not
significantly influenced by any treatment. This was not calculated
for rotation treatments in years when they did not harvest corn, so
overall dry matter yields (next section) are a more appropriate
comparison.

TABLE 5 Significance level of post hocHolm corrected pairwise t-test comparisons with continuous corn treatment over time for soil variables with significant time:
treatment interactions. NA is no data for that year, ns is not significant, * is significant to 0.05, ** is significant to 0.01, and *** is significant to 0.001 or less. Mean
values over the entire timeframe are in the farm right column.

Treatment Significant difference from continuous corn by year Mean

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Aggregate stability (%)

NTCC2020 NA NA NA NA NA NA NA NA NA ** 24.8

NT2011 * ns ns ns ** ** ns ** ** ns 24.0

ROTC2014 * ns ns ns ns ns ns ns ns ns 16.3

ROTC2020 * ns ns ** * * * *** ** ** 32.7

WCCC2009 ns ns ns ns ns ns ns ns ns ns 3.4

Organic matter (%)

NTCC2020 NA NA NA NA NA NA NA NA NA ns 0.26

NT2011 ns ns ns ns ns ns ns ns ns ** 0.30

ROTC2014 ns ns ** ns ns ns ns ns ns ns 0.42

ROTC2020 ns * ns ns ns ns ns ns * ns 0.88

WCCC2009 ns ns ns ns ns ns ns ns ns ns 0.00

Surface hardness (psi)

NTCC2020 NA NA NA NA NA NA NA NA NA ns −6.00

NT2011 ns ns ns ns ns ns ns ns ns ns 24.87

ROTC2014 ns ns ns ns * ns ns ns ns ns 13.26

ROTC2020 ns ns ns ns ns ** ns * ns ns 42.66

WCCC2009 ns * ns ns ns ns ns ns ns ns 10.47

Active carbon (ppm)

NTCC2020 NA NA NA NA NA NA NA NA NA ns −13.2

NT2011 ns ns ns ns ns ns ns ns ns ns 21.9

ROTC2014 ns ns ns ns ns ns ns ns ns ns 19.2

ROTC2020 ns ns ns ns ns ns ns ns * ns 74.6

WCCC2009 ns ns ns ns ns ns ns ns ns ns −16.7

Respiration (CO2 mg/g)

NTCC2020 NA NA NA NA NA NA NA NA NA ns 0.16

NT2011 NA NA ns * ns ns * ns ns ns 0.11

ROTC2014 NA NA ** ns ns ns ns ns ns ns 0.13

ROTC2020 NA NA ns * ** * ns ns ns ** 0.40

WCCC2009 NA NA ns ns ns ns ns ns ns ns 0.06
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3.3.2 Dry matter yields
The difference in dry matter (DM) yield from continuous

corn was significantly influenced by treatment (p < 0.001) and the
interaction of treatments over time (p < 0.001) (Table 3). The
model results indicate that only the ROTC2020 treatment
significantly influenced the difference in DM yields from
continuous corn (Supplementary Material S3). While in
perennial forage, the ROTC2020 treatment yielded between
1,793 kg ha-1 and 11,591 kg ha-1 less than the continuous corn
treatment, and was significantly less in most years (Table 6). In
2020, the year that rotation returned to corn, it yielded 314 kg ha-
1 of dry matter more than the CC treatment. The DM yield
differentials were greatest in years when the rotation was planted
with perennial forages (Figure 4). Cumulative DM yields over the
10 years of this study were greatest in the WCCC treatment,
followed by CC, then NT, ROTC 2014, and then ROTC 2020
(Figure 5).

3.3.3 Crude protein
Treatments and the interaction of treatments with time

significantly influence the deviation of CP from CC (p <
0.001) (Table 3). Model results indicate that the
ROTC2014 and ROTC2020 treatments significantly influenced
differences in CP from continuous corn. In years when perennial
forage was harvested from these treatments, CP levels were

significantly greater, at levels between 63 and 122 g kg-1 more
than CC treatment means (Figure 6; Table 6, Supplementary
material S2).

3.3.4 NDF
The deviation from continuous corn in NDF concentrations was

significantly influenced by treatments and the interaction of
treatments with time (p < 0.001) (Table 3). Model results indicate
the ROTC2020 treatment significantly influenced differences in NDF.
The ROTC2020 had higher NDF values indicating that it was lower
quality and could potentially limit dry matter intake of livestock. Post
hoc comparison of means show the ROTC2020 treatment was
significantly higher in 2014, 2016 and 2017, years when it was in
hay (Table 6). Similarly, the ROTC2014 was significantly higher in
2020, a year when it was planted in hay (Table 6).

3.3.5 NDF30
Significant influences on NDFD30were not observed in this

study (Table 3).

3.4 Ecosystem services

Here we interpret each treatment’s influence on ecosystem
service provisioning through the indicators monitored in this

TABLE 6 Significance level of post hoc Holm corrected pairwise t-test comparisons with continuous corn treatment over time for yield variables with significant
time:treatment interactions. NA is no data for that year, ns is not significant, * is significant to 0.05, ** is significant to 0.01, and *** is significant to 0.001 or less.
Mean values over the entire timeframe are in the farm right column.

Treatment Significant difference from continuous corn by year Mean

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Dry matter (Yield at 35% dry kg ha-1)

NTCC2020 NA NA NA NA NA NA NA NA NA ns 0.49

NT2011 ns ns ns ns ns ns ns ns ns ns −0.43

ROTC2014 ns ** ns ns ns ns ns ns * ns −0.90

ROTC2020 * * ns * * * ns ** ns ns −2.7

WCCC2009 ns ns ns ns ns ns ns ns ns ns 0.41

Crude protein (Standardized dm/ha)

NTCC2020 NA NA NA NA NA NA NA NA NA ns 0.88

NT2011 NA NA ns ns ns ns ns ns ns ns 0.18

ROTC2014 NA NA ns ns ns ns ns ns *** ** 23.98

ROTC2020 NA NA ** * ** *** ** ** ns ns 70.07

WCCC2009 NA NA ns ns ns ns ns ns ns ns −0.76

NDF (% of DM)

NTCC2020 NA NA NA NA NA NA NA NA NA ns −9.95

NT2011 NA NA ns ns ns ns ns ns ns ns −2.34

ROTC2014 NA NA ns ns ns ns ns ns *** ns 25.35

ROTC2020 NA NA * ns * * ns ns ns ns 103.30

WCCC2009 NA NA ns ns ns ns ns ns ns ns −4.07
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study (Table 4). The NT treatment was associated with
significant improvements in aggregate stability compared to
continuous corn, and therefore enhanced soil conservation
and resilience to extreme precipitation ecosystem services
relative to continuous corn. The WCCC treatment was not
significantly associated with any changes in ecosystem
services provisioning in this experiment. The NTCC
treatment enhanced climate regulation through carbon
storage, soil health, soil conservation and resilience to

extreme precipitation ecosystem services through increases in
soil organic matter, respiration and aggregate stability relative to
continuous corn.

The two rotation treatments also influenced indicators of
food provisioning. The ROTC2014 treatment increased soil
organic matter, aggregate stability and crude protein in
comparison to continuous corn but reduced active carbon.
This means that the ROTC2014 treatment enhanced climate
regulation through carbon storage, soil conservation, resilience

FIGURE 1
Loess plots (locally weighted smoothing) show deviation in soil physical characteristics from continuous corn by treatment from 2012 to 2021: (A)
Surface hardness (B) Subsurface hardness (C) Available water capacity (D) Aggregate stability.
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to extreme precipitation, and food provisioning ecosystem
services, but reduced one aspect of soil health supporting
ecosystem services. The ROTC2020 treatment enhanced
respiration, aggregate stability, crude protein and NDF relative
to continuous corn, but reduced DM yields. This means that the
ROTC2020 treatment enhanced soil health, soil conservation,
and resilience to extreme precipitation, but had mixed impacts on
indicators of food provisioning, where protein content was
enhanced but overall DM yields and digestibility was reduced.

4 Discussion

We used a mixed model analysis of variance approach to evaluate
the influence of conservation practices and perennial forage rotations
on soil health indicators, yields and forage quality over 10 years. Our
analysis method centers on the way alternative practices deviate from
the performance of continuous corn, and our results indicate that
conservation practices and rotations can be implemented to sustain
yields while also enhancing aspects of soil health in temperate northern
climates similar to Vermont, United States. This is evidence that corn
cropping systems can enhance climate regulation, climate resilience, soil
health, soil conservation, and food provisioning services through
alternative management to continuous corn, however careful
consideration of rotation timings and practices in combination is
necessary to achieve this potential. The quantification of these
benefits as ecosystem services is valuable to informing the
effectiveness and impact of conservation programs. Importantly, in
the absence of significant increases in yields over conventional
management of continuous corn silage, the benefits of the
management practices we evaluated accrue primarily to the
environment and society, not the farm. Although farmers in

Vermont have a strong stewardship ethic towards soil conservation
and ecosystem services, their capability to prioritize and invest in these
broader public benefits is limited by theirfinancial capacity (White et al.,
2022a). Thus, our research implies that conservation incentive and cost-
share programs are critical to enabling farms to incur the additional
expenses associated with adoption of these identified practices that
provide ecosystem services to public beneficiaries. Foremost, our
research suggests that no-till in combination with cover cropping in
corn silage fields, and a rotation of 4 years of hay to 6 years of corn are
likely to achieve the greatest overall benefits in forage production
systems.

4.1 Influence of treatments on dimensions of
soil health

In many ways, our results confirm that conservation practices
and rotations can enhance some aspects of soil health (i.e., Bottinelli
et al., 2017; Sharma et al., 2012; Sharma et al., 2018; VandenBygaart,
et al., 2003;Wulanningtyas et al., 2021; Nunes et al., 2018). These soil
health enhancements are often associated with sustaining corn
yields (Kane, et al., 2021) and forage quality. However, various
meta-studies examine research that indicates neutral or negative
impacts of conservation practices on soil health, crop yield, or crop
quality are possible, and that these outcomes may be influenced by
weather, soil type, and other management practices (Marcillo and
Miguez, 2017; Lu, 2020; Miner, et al., 2020). Our study joins the
growing body of research detailing complexity and tradeoffs
associated with the outcomes of conservation practices and the
multifaceted reality of soil health. Within the physical soil health
characteristics, aggregate stability was positively influenced by some
of the conservation practices and lowest in the continuous corn

FIGURE 2
Antecedent moisture condition during spring soil sample collection and surface hardness measurements by year. Antecedent moisture condition is
total precipitation in April and May months for each year recorded at Burlington International Airport weather station in VT, United States.

Frontiers in Environmental Science frontiersin.org11

White et al. 10.3389/fenvs.2023.1061013

64

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1061013


treatment, whereas surface and subsurface hardness were best in the
continuous corn treatment and no significant impact on available
water capacity was observed.

Surface hardness was significantly influenced by year, treatment
and a year:treatment interaction in our study. Mean surface
hardness across the 10-year study was between 10 and 42 psi
greater in the no-till, rotation and cover crop treatments than
continuous corn (Table 5). Although we expected to see
improvements in surface hardness from tillage reduction and
surface cover, this pattern likely reflects the effect of annual
tillage in the continuous corn plots, which loosens the top layer
of soil. Our study evaluates corn silage forage systems, which
removes all aboveground plant biomass during harvest, leaving
little crop residue post-harvest. Although some treatments
eliminate tillage, there is no added organic matter to help protect
the top layer of soil. If there were manure additions or crop residues,
those might provide protection to the top layer of soil minimizing
compaction from rainfall and equipment. Precipitation patterns
likely also play a role in this observed pattern. We used total
precipitation in months of April and May at our study site to
approximate antecedent soil moisture levels and rainfall impact

on the soil surface prior to sampling (Figure 2) and in years that had
more spring rainfall conditions conservation treatments showed
greater surface hardness, and an opposite pattern in drier spring
seasons.

Increases in tillage have been shown to reduce penetrometer
resistance (Mochizuki et al., 2007) and although some research
posits that compaction may be alleviated by earthworms and
biological processes (Yvan et al., 2012), long term research has
shown reduced tillage to increase compaction without evidence of
plow pan recovery after 25 years (Schlüter et al., 2018) In our study,
subsurface hardness was lowest in the continuous corn treatment.
Subsurface hardness was measured with a penetrometer and was
highest in plots with perennial or winter roots. It is likely that the
dense perennial roots, and even winter cover crop roots, provided
resistance to the tool. In future research, bulk density may be a more
accurate measure to capture the changes in physical soil
characteristics that reflect compaction. The mean winter cover
crop treatment was 20.8 psi greater than the continuous corn
treatment, and the corn-hay rotation treatments had mean value
of 23.5 and 34.5 psi greater than continuous corn. Although the
trends for this metric were weak in our study (Figure 1) the potential

FIGURE 3
Loess plots (locally weighted smoothing) show deviation in soil biological parameters from continuous corn by treatment from 2012 to 2021: (A) Soil
organic matter content (B) Respiration (C) Active carbon.
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FIGURE 4
Loess plots (locally weighted smoothing) show deviation in (A) corn yield and (B) dry matter from continuous corn by treatment from 2012 to 2021.

FIGURE 5
Total dry matter yields over the duration of the study by treatment, including dry matter in perennial forage and corn yields.
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compaction trade-offs associated with reduced tillage are important
to consider in this region, as compaction may restrict root growth
and lower yields in the long term.

Cover cropping with winter rye alone had no significant influence
on any soil healthmetrics over a 10-year period of time when compared
to continuous corn. This differs from previous research that suggests
that cover crops can increase aggregate stability (Ruiz-Comenero et al.,
2010). Similarly, although cover crops can supply additions of organic
matter, many studies do not correlate cover crops with an increase in
soil organic matter (Clark, 2010). This suggests that winter rye cover
alone is not sufficient to achieving the respiration or organic matter
increases expected based on other research, and highlights that
variations on cover crop implementation and management are
important to achieving expected benefits of cover crops.

The NT treatment significantly enhanced aggregate stability in
our study by an additional 24%. Increases in aggregation have been
previously linked to increases in soil biological activity and organic
matter gains (i.e., Bottinelli et al., 2017; Kumar et al., 2012), but the
NT treatment in our study was not significantly linked to increases
in respiration, active carbon or organic matter gains. It has been
strongly established that reductions in tillage, or any kind of

disturbance, protects the structure of soil, the production of root
exudates and the associated microbial activity that lead to
aggregation, and these changes are easily detected via increased
percentage of water stable aggregates (Wright et al., 1999; Kumar
et al., 2012; Nouwakpo et al., 2018).

Despite the limited performance of the WCCC and NT
treatments in this study, our analysis identifies the added benefits
of combining cover crops with reduced tillage. A single year of no-till
with cover cropping introduced at the end of our study significantly
enhanced soil respiration by 0.16 CO2 mg/g, aggregate stability by
24.8%, and organic matter by 0.26% in comparison to the
continuous corn treatment, suggesting that combinations of
conservation practices may have synergistic effects to enhance
ecosystem service provisioning without compromising yields or
crop quality, as has been identified by Kinoshita, et al. (2017)
and Nunes et al. (2018). Specifically, the presence of plant roots,
aboveground cover crop residues and no-till management have a
synergistic effect on organic matter gains and aggregate stability
through the production of glomalin by arbuscular mycorrhizal fungi
associated with the roots of plants (Wright et al., 1999; Kumar et al.,
2012). Tillage increases microbially mediated decomposition of

FIGURE 6
Loess plots (locally weighted smoothing) show deviation in forage quality parameters from continuous corn by treatment from 2012 to 2021: (A)
Crude protein (B) NDF (C) NDF30.
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organic matter and carbon losses by activating respiration with
increased oxygen and release of CO2. Soil aggregation also influences
SOM decomposition. Aggregation physically protects SOM from
microbial decomposition, and controls plant-derived SOM by
occluding it into aggregates (Lagomarsino et al., 2012). In our
study the measurable soil health benefits of cover cropping alone
may have been negated by tillage. Conversely, the treatment with no-
till alone lacked organic matter inputs or living roots and only
influenced one soil health indicator.

Although reductions in tillage and disturbance can slow organic
matter degradation and loss (Six and Paustian, 2014) the limited
return of crop residues, and lack of manure or other organic matter
inputs is likely key to explaining some of our findings across
treatments. Corn crop residues and organic matter additions
have been previously linked to the improvement of aggregate
stability and organic matter (Nouwakpo et al., 2018). Return of
crop residues is also linked to increases in soil organic matter
content in no-till systems (Wang et al., 2020). Meta-analysis has
linked crop residues to a 5% increase in yields (Lu, 2020). Due to the
limited crop residue return in corn silage systems, the incorporation
of cover crops or organic matter inputs to no-till systems is crucial to
achieving the soil organic matter, carbon storage, and yield
enhancements associated with long term no-till in other studies.

In our study a corn-hay rotation, with 2 years hay-6 years
corn −2 years in hay (ROTC 2014), had significantly higher organic
matter, and aggregate stability compared to CC in all years of the
study. Enhanced aggregate stability and organic matter observed in
perennial hay and corn rotation treatments align with established
mechanistic understandings of soil qualities. Perennial crops have
deeper, longer and stronger root systems than annual crops, which
improves aggregate stability and can address compaction
(Franzluebbers et al., 2000). The continuous supply of root
exudates and root biomass in perennial systems that feeds
biological activity in the soil, provides added organic matter and
improves aeration and enhances nutrient cycling (Kumar et al.,
2017).

The overall trend in organic matter in our study suggests that the
reduction of organic matter decomposition through reduced tillage
has a primary influence on organic matter gains in our study. Our
study observed the WCCC treatment had a 10-year average of 0.0%
additional organic matter, followed by the single year of NTCC with
0.26%more, andNTwith 0.30%more. The treatment with perennial
hay in rotation had the highest levels of organic matter.
ROTC2020 had a 10-year average of 0.88% more, and
ROTC2014 had 0.42% more. Organic carbon additions via roots
and aboveground biomass are important to make greater gains, and
align with aforementioned mechanisms of the synergistic influence
between reduced disturbance and carbon additions to feed soil
biology while also slowing losses (Six and Paustian, 2014; Kumar
et al., 2017; Wang et al., 2020; Nunes et al., 2018).

Active carbon measures in the final year and across the 10-year
average reflect the same pattern (Supplementary Material S2), with
ROTC2020 having the highest level, then ROTC 2014, NT, NTCC,
and WCCC with the lowest, although active carbon was only
significantly influenced by the ROTC2014 treatment and the
interaction of time with the ROTC2014 treatment. The model
outputs, figure and mean detrended data over time indicate the
effect of the treatment was variable over time, reflecting the rotation

(Figure 3, Supplementary Material S2, Supplementary Material S3).
Active carbon levels were 118 ppm greater in ROTC2014 than CC in
2013, and this difference was reduced over time when the rotation
was planted with corn. In 2020, the ROTC2014 treatment had
5.36 ppm active carbon less than the CC treatment, and after it
was rotated into perennial forage again the active carbon levels
increased to 40 ppm greater than the CC treatment (Figure 3,
Supplementary Material S2). Active carbon is a measure of
biologically active soil carbon which is more sensitive to
management effects than total organic carbon and is closely
related to other measures of biological activity and organic
carbon (Weil et al., 2003). Here, it illustrates that perennial hay
has higher levels of biologically active carbon than continuous corn.
When perennial grasses are rotated into corn there is legacy active
carbon from the perennial grass plot which lasts approximately
2 years before reaching a similar level to continuous corn (Figure 3,
Supplementary Material S2).

Our study found that available water capacity was only
influenced by year. No-till, cover cropping, and even rotations
with perennial grasses in corn silage forage production systems
over a period of 10 years had no influence on the soil’s capacity to
infer drought resilience. This is likely due to the limited organic
matter returns in these systems. Additions of manure, other organic
matter sources, or higher biomass cover cropping could address this
aspect of these annual forage productions systems and deserves
more research.

4.2 Influence of treatments on yields and
forage quality

The treatments NT, NTCC, WCCC, and ROTC2014 treatments
evaluated in our study showed neither significant increase or
decrease in overall dry matter yields. The long hay rotation,
ROTC 2020, had significantly reduced yields compared to
continuous corn. Perennial forages in rotation with corn may
enhance ecosystem services and crop quality, but the length of
time in rotation influences dry matter yields. Total dry matter yields
were significantly reduced in the ROTC2020 treatment, with a 10-
year average of 2.7 kg ha-1 less than continuous corn but were not
significantly less over the 10-year time frame in the
ROTC2014 treatment. Our evidence suggests that shorter
rotations of perennial forages (4 years of hay, 6 years of corn)
can sustain dry matter yields that are not significantly different from
continuous corn over a 10-year time frame, but longer perennial
forage rotations (8 years of hay, 2 years of corn) will significantly
reduce overall dry matter yields over the 10-year time frame.
Optimizing rotation durations for a balance of yields and
ecosystem services is possible, and further research to optimize
rotation length requires more inquiry and long-term research.

This ROTC2014 rotation did not significantly influence dry
matter yields over the 10-year period when compared to CC
treatments but had significantly higher CP concentrations. The
ROTC2014 had a 10-year mean of 24.0% greater CP content
than CC. At the annual level, significant differences were
observed for both ROTC treatments in years which they were in
hay (Table 6). In general, CP tends to be higher in cool-season
grasses like meadow fescue than warm-season grasses like corn (Ball

Frontiers in Environmental Science frontiersin.org15

White et al. 10.3389/fenvs.2023.1061013

68

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1061013


et al., 2001). The addition of legume in a perennial forage crop also
increases CP and alfalfa is comparatively high in protein (Aponte
et al., 2019). According to Capstaff and Miller (2018), “. . .alfalfa is
the highest-yielding perennial forage legume and produces more
protein per unit area than other forage legumes.” This suggests that
dairy farms in northern temperate climates could transition from
continuous corn to corn-hay rotations without compromising
overall yield and would improve forage quality, and at the same
time enhance the soil’s resilience to extreme precipitation events and
storage of carbon. Species composition of hay plantings influences
CP levels and should be researched in combination with hay-corn
rotations to optimize forage system yields and quality. Rotations can
help to diversify forage quality to meet the overall needs of livestock.
Farmers seek to balance a feed ration that has significant energy and
protein to maximize milk production and quality components.
Protein and digestible fiber are produced by growing cool-season
grass and legumes mixes (Ball et al., 2001; Aponte et al., 2019).
Energy is produced by growing the starch found in corn silage.
Additional grain is imported onto the farm to balance any
nutritional shortfalls. As expected, rotations with perennial forage
increased overall CP concentrations. Although perennial forage can
be high in protein, an important component necessary for herd
health, milk production, and quality milk, and has comparatively
healthier soil and provisioning of associated ecosystem services, due
to its lower yields and the need to grow energy, corn acres can take
priority especially on prime agricultural land. This has implications
for farm systems that move from continuous corn to perennial
forage and expansion of land or conversion of land to agricultural
production. Thus, optimizing rotations that sustain yields while
increasing forage quality can reduce farm inputs and overall
landscape footprint.

4.3 Future research needs

The results of our research provide rich fodder for future
research on the sustainability of silage corn cropping
management. Foremost, our study reflected typical
management practice implementation for dairy farmers in the
region of study, except that manure applications were not
incorporated in the study. This allowed our research to focus
on the impact of the practices of interest, but similar research that
includes manure additions is needed, as manures are likely to
influence soil health parameters though organic matter additions,
as well as yields and crop quality through nutrient availability.
Second, the limited impact of cover cropping identified in this
study suggests that research on modifications to cover cropping
implementation in these corn silage production systems is
needed in order to establish practice standards among the
farming community that will have both environmental and
farm benefits. Alternative styles of cover cropping with greater
species diversity, biomass, establishment dates or termination
methods may enhance ecosystem services and yields in these
systems, but carefully executed research is needed to identify
which modifications provide the desired impacts. Third, our
findings imply research on combinations of conservation
practices (sometimes referred to as stacking) that quantify the
benefits of management systems, rather than single practices, are

needed to inform farmers, and conservation incentive program
priorities.

Our research identified a corn-hay rotation that enhanced
ecosystem services and sustained yields, but further research is
needed to explore the optimization of rotation timings. This kind
of research could explore optimization of rotations for yields while
still enhancing ecosystem services, or optimization of rotations for
ecosystem services that do not reduce yields. For example, there may
be a “sweet spot” of a rotation with a longest possible interval of
perennial forage yield which does not impact overall dry matter
yields. Alternatively, there may be a low threshold for the interval of
perennial forages in a rotation which prioritized yields but also
sustains increases soil carbon storage over time.

Future research on corn cropping systems should also prioritize
evaluation of how practices influence biological diversity, water
quality, infiltration, and greenhouse gas emissions, preferably in
long enough time frames to capture the temporal dynamics of
rotations on outcomes of interest. As well, future research should
replicate studies like ours to confirm these findings in different
climates and soil types, as those factors often have a dominating
influence on soil health characteristics and crop performance.

Our study identified a limited influence on yields from the
cropping system adjustments in our study. If conservation practices
do not result in increased yield or quality, farmers may have little
incentive or financial capacity to adopt them. The costs incurred as
labor, time, money, and stress to enhance ecosystem services
provisioning are likely to limit adoption (White A. et al., 2021;
White et al., 2022a). Incentivizing conservation practice
implementation through market recognition, payment for
ecosystem services program, land rental, or cost share programs
is needed in light of our findings, and specific transdisciplinary
research that identifies the economics costs of practices and the
conservation inventive program preferences of farmers is needed to
complement our findings.

5 Conclusion

Conservation practices and rotations can be implemented to
sustain yields in corn silage production systems while also
enhancing climate regulation, climate resilience, aspects of soil
health, soil conservation and forage quality in temperate
northern climates similar to Vermont, United States. However, in
the absence of significant increases in yields over conventional
management of continuous corn silage, conservation incentive
programs are needed to enable farms to adopt these management
changes that provide ecosystem services to society. Where farmers
are limited in their land access and unable to accommodate
perennial forage rotations on all fields, our research suggests that
continuous corn silage production systems with low crop residue
can be adjusted to enhance ecosystem services without
compromising yields. Cover cropping with winter rye alone had
no influence on ecosystem services, yields, or crop quality when
compared to continuous corn. Despite the limited performance of
the winter cover crop treatment in this study, our analysis identifies
the added benefits of combining cover crops with reduced tillage.
The inclusion of no-till management in corn production systems
enhanced aggregate stability in our study, and therefore soil
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conservation and resilience to extreme precipitation, without
compromising yields or crop quality. Thus, a combination of
multiple conservation practices should be implemented together
to achieve the greatest benefits, and more research that explores the
long-term dynamics of practices in combination is needed. No-till in
combination with cover cropping in corn silage fields, and a rotation
of 4 years of hay to 6 years of corn are likely to achieve the greatest
overall benefits in forage production systems. Dairy farms in
northern temperate climates could transition from continuous
corn to corn-hay rotations without compromising overall yield
and would improve forage quality, and at the same time enhance
the soil’s resilience to extreme precipitation events and storage of
carbon.

Our study identifies modifications to silage corn cropping
agroecosystem management which can enhance ecological
benefits, without sacrificing yields and forage quality, however
careful consideration of rotation timings and practices in
combination is necessary to achieve this potential. Significant
time:treatment interactions indicate that the impact of corn
cropping systems on soil health and yield are complex,
dynamic, and can be variably affected by management practices.
The quantification of these benefits as ecosystem services is
valuable to informing the effectiveness and impact of
conservation programs, and understanding trade-offs in
dimensions of soil health. This highlights the importance of
long-term datasets such as this in advancing our understanding
of the environmental and economic implications of alternative
cropping practices.
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adopt a water-energy-food nexus
pattern by farmers: Application of
optimization and agent-based
models

Abbas Mirzaei1*, Niloofar Ashktorab1 and Mohammad Noshad2

1Department of Agricultural Economics, Agricultural Sciences and Natural Resources University of
Khuzestan, Mollasani, Iran, 2Department of Food Science and Technology, Agricultural Sciences and
Natural Resources University of Khuzestan, Mollasani, Iran

In recent years, water-scarce regions (WSRs) have faced many challenges in order to
achieve sustainable economicdevelopment. Sustainable economicdevelopment in the
agricultural sector of WSRs is possible by paying attention to the water-energy-food
nexus (WEFN) concept. WEFN determined using consumption, physical productivity,
and economic productivity criteria of water and energy resources. According to the
goals of physical and economic productivity of water and energy resources, it will be
very difficult to implement WEF nexus patterns in WSRs with severe water resource
crisis. The present study is aimed in WSRs to extract the resource allocation pattern
based on the goals of the WEFN system using multi-criteria decision making (MCDM)
tools and evaluate the cooperative behavior of farmers with this pattern under
government’s policy options using an agent-based model (ABM). The results for
Doroodzan dam irrigation network as a WSR revealed that the pattern based on
WEFN will lead to a 200 and 18 percent increase in physical and economic water
productivity and a 156 and 67 percent increase in physical and economic energy
productivity compared to the base pattern, but the implementation of this pattern
requires 33%morewater consumption. Therefore, it is very necessary towater resource
management policies such as usingmodern irrigation technologies under government
policy options in order to implement the pattern basedonWEFN inWSRs. In this regard,
the inflexibility of thegovernment’s policieswill prevent thewidespread implementation
of the pattern based on WEFN and sustainable economic development at the regional
level. Also, it can be concluded that the expansion of sustainable patterns in the
agricultural sector will not be possible without considering the situation of the region
from the point of view of water resources and also the cooperative behavior of the
farmers. Finally, the framework of the present study is recommended to achieve the
goals of sustainable economic development of the agricultural sector in WSRs.

KEYWORDS

water-energy-food nexus (WEFN), water-scarce regions (WSRs), multi-criteria decision
making (MCDM), agent-based model (ABM), water-scarce regions
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1 Introduction

In recent years, the increase in demand for agricultural
products arising from population growth, economic
development and urbanization has resulted into an increase in
water and energy use for food production (Karabulut et al., 2016;
Radmehr et al., 2021). A global shortage of food caused by
increasing competition for the consumption of limited water
and energy resources in the agricultural sector along with climate
change is a predictable event (Steffen et al., 2015; Pastor et al.,
2019; Abdelkader and Elshorbagy, 2021). Agriculture accounts
for about 90% of fresh water consumption and about 30% of
energy use around the world (FAO, 2011). On the other hand,
agricultural irrigation provides about 40% of the world’s food (Li
et al., 2022). Thus, water, energy and food, as the basic needs of
human life, are regarded as important components for
sustainable economic development studies of human
communities (Wen et al., 2022).

The analysis of the water-energy-food nexus (WEFN) is
necessary for sustainable management of water and energy
resources in the agricultural sector and ensures food security,
namely in water-scarce regions (WSRs) around the world
(Stephan et al., 2018; Mirzaei et al., 2022a). The WEFN term
was proposed in early 2010 for the integrated management of the
three critical resources of water, energy and food (Hoff, 2011;
Scott et al., 2015; Vanham et al., 2019; Guan et al., 2020). Several
conceptual frameworks have been designed to analyze the WEFN
(Gain et al., 2015; Mayor et al., 2015; Guan et al., 2020). In various
studies, WEFN has been analyzed through life cycle (Albrecht
et al., 2018), water footprint theory (Hung, 2002; Ramaswami
et al., 2017; Zhang et al., 2019; Lee et al., 2020), optimization
models (Jalilov et al., 2016; González-Bravo et al., 2018; Li et al.,
2019a; Li et al., 2019b; Wicaksono and Kang, 2019; Sun et al.,
2020; Yu et al., 2020; Radmehr et al., 2021; Mirzaei et al., 2022a; Li
et al., 2022), input-output data (Xiao et al., 2019), social analysis
(White et al., 2017) composite sustainability indices (Dizdaroglu,
2017; El-Gafy et al., 2017; Farinha et al., 2019; Nhamo et al., 2020;
Sadeghi et al., 2020; Saray et al., 2022) and system dynamics
models (Wa’el et al., 2018; Hu et al., 2019; Tan and Yap, 2019;
Wen et al., 2022).

Considering the relationship between water, energy and
agriculture sectors and the different goals of these sectors
(Chen et al., 2017; Yu et al., 2020), it is necessary to use
multi-objective and multi-criteria decision-making models,
because considering only the goal of one sector of the three
sectors of water, energy and food, may result into misleading
results (Bizikova et al., 2013). Therefore, providing a composite
index by including all criteria related to water, energy and food
can be used as a comprehensive tool to examine the aspects and
concerns related to all three sectors (El-Gafy et al., 2017; Nhamo
et al., 2020; Sadeghi et al., 2020). For example, Nhamo et al.
(2020) estimated the WEFN index using Analytical hierarchy
process (AHP) method as a multi-criteria decision-making
method. In this study, the WEFN index was calculated as a
sustainable development index for South Africa in the two
time periods of 2015 and 2018 and the sustainability condition

was also evaluated. Radmehr et al. (2021) used the multi-
objective optimization model with the goal of maximizing the
benefits of the agricultural, urban and industrial sectors and
minimizing the destruction of groundwater resources with the
restrictions of water and energy resources, and extracted a set of
optimal Pareto solutions. Also, by using multi-criteria decision-
making methods, and the criteria related to WEFN, they selected
the best solution and proposed the appropriate cropping pattern.
Sadeghi et al. (2020), Mirzaei et al. (2022a) and Saray et al. (2022)
combined the criteria related to the linkage between the water,
energy and food sectors, and calculated the WEFN index for
different crops in a studied area and then maximized the WEFN
index along with other economic and environmental goals using
the optimization models.

On the other hand, the optimal agricultural management with the
WEFN approach will not be efficient without considering the
cooperative behavior of farmers (Radmehr et al., 2021). Hoolohan
et al. (2018) argued that stakeholders play a very important role in the
development of WEFN tools. Thus, the main focus of this study is the
analysis of farmers’ cooperation with the extracted patterns obtained
from the goals of theWEFN system. By determining an optimal pattern
without the adequate cooperation of farmers to implement this model,
we observe failure at the operating level definitely. In other words, it is
necessary to examine the operational and applicability of the optimal
patterns at the regional level, as agent-based models (ABM) are used to
simulate these behavioral and social complexities on a wide scale,
namely in the water resources management (Bandini et al., 2009;
Akhbari and Grigg, 2013; Farhadi et al., 2016; Mirzaei and Zibaei,
2021; Mirzaei and Azarm, 2022). For example, Akhbari and Grigg
(2013) investigated consumer conflict resolution in the San Joaquin
watershed in California using the ABM. In this study, the three
objectives of maximizing water withdrawal for agricultural purposes,
maximizing the water output to the wetland and minimizing the salt
loaded by the water used in agriculture were considered as the purposes
of the study and an optimal and applicable solution at the basin level
was presented. Farhadi et al. (2016) used an ABM framework for the
sustainable management of groundwater in Darayan, Maharlo, Tashk
and Bakhtegan lakes in Fars province in Iran. For this purpose, a multi-
objective optimization model was used with the purpose of reducing
irrigation water, increasing equality in water allocation and reducing
groundwater extraction in order to achieve Pareto optimal solution and
Nash bargaining model to achieve a consensus among the stakeholders.
Then, an ABM model was implemented to examine social factors and
policy mechanism to encourage stakeholders to participate in
management decisions. Using the ABM, Mirzaei and Zibaei (2021)
evaluated the participatory behavior of farmers with optimal patterns
under the effect of adaptive strategies to climate change in the Halil
River basin with the aim of reviving the Jazmourian wetland in this
basin.

According to the literature review, multi-objective mathematical
programming methods have been applied in order to achieve the
goals of the WEFN and to determine an appropriate pattern for
these goals. However, the present study attempts to determine the
pattern of resources optimal allocation in a WSR by using multi-
criteria decision-making methods and considering the goals of the
WEFN. Despite multi-objective mathematical programming
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methods, this evaluation method formulates complex issues, criteria
and goals simply, and extracts suitable solutions by considering the
opinion of experts and decision makers (Nhamo et al., 2020). On the
other hand, no study has been conducted in the world to examine
the participatory behavior of farmers with patterns extracted from
the WEFN system, and this study is considered the first one in this
field. Thus, the present study is aimed to extract the cropping pattern
and resources allocation based on the goals and criteria of theWEFN
system in an arid and semi-arid region with serious water resource
scarcity (WSR) through multi-criteria decision-making methods
and then analyzing the cooperative behavior of farmers and the
government’s policy options to encourage farmers with an
extracting model. For this purpose, the irrigation network of
Doroodzan dam in Fars province, Iran is considered as a WSR.

2 The study area

Fars province in Iran is one of the most important
agricultural regions, and it is considered one of the WSRs of

the world. The average rainfall in this province was about
322 mm during the years 1992–2013, and this province
encountered severe droughts between 2003 and 2011
(Mirzaei et al., 2022b). Also, predictions indicate that in the
future, the temperature will increase and soil moisture will
decrease in Fars province (Gandomkar and Dehghani, 2012).
Doroodzan Dam basin in Fars province is one of the most
important regions in Iran, and Bakhtegan Lake is located at the
end of this region. This lake is the second largest lake in Iran in
terms of size and is classified as a national park (Tarazkar,
2016). This lake is fed by Kor River, which originates from the
heights of the Zagros mountains. Doroodzan dam’s irrigation
network (Ramjerd plain irrigation network) is one of the
important agricultural areas in this basin, which is
considered as the study area. This irrigation network is
located in the northwest of Fars province and is fed from the
outlet of Doroodzan Dam (Figure 1). The water released from
the Doroodzan Dam enters the main channel of the irrigation
network of the Doroodzan and before reaching the water
distribution structure, a part of water is allocated for

FIGURE 1
Location of irrigation network of doroodzan dam in fars province, Iran.
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drinking and industrial purposes. Also, the Abraj canal is
located before the distribution water structure. In the
distribution water structure, the water branches into 4, main,
left, Hamon and Ordibehesht canals. Abaraj canal, which is
located before the water distribution structure, has a length of
about 5 km and this canal covers 1934 ha of agricultural land.
The canals branched from the distribution water structure
include the main, left, Hamoon and Ordibehesht canals,
which have a length of 22, 67, 34 and 22 km, respectively,
and each of these canals cover about 6,108, 22,096,
15,946 and 5,430 ha of agricultural fields (Figure 2).

3 Materials and methods

3.1 Data

In the present study, the data required to extract the
resources allocation pattern based on the WEFN, including
the information related to the technical coefficients of the
production inputs and the crops production cost, were
extracted from the farmers of the study area via the design of
questionnaires and interviews. For this purpose, a sample of
farmers supported by the irrigation network of Doroodzan
Dam was chosen using multi-stage random sampling method.
In this way, at first, the villages covered by this irrigation
network were divided into three categories, low, medium
and high by the clustering method, based on the amount of
water withdrawal. Then, some villages were selected

using simple random sampling from each category according
to the total number of villages in that category. Finally,
100 sample farmers were determined based on the population
of farmers in the villages using the simple random sampling
method. Also, the data related to the cultivation area, the
amount of water resource consumption, crop yield and the
amount of consumption of other production inputs per unit
area, are based on agricultural service centers, agricultural jihad
and Fars regional water Company. Then, a pair-wise
comparison questionnaire of the WEFN criteria was
completed via 10 economic and environmental experts and,
the weight of the WEFN criteria was calculated in accordance
with this information. Ultimately, in order to analyze the ABM,
interviews were conducted with the sample farmers in the study
area and the given policy options were shared with them.

3.2 Conceptual framework

The conceptual framework of the study is depicted in
Figure 3. The criteria related to the WEFN were determined
according to the review of the literature in this field (El-Gafy
et al., 2017; González-Bravo et al., 2018; Nhamo et al., 2020;
Sadeghi et al., 2020; Radmehr et al., 2021; Mirzaei et al., 2022a;
Saray et al., 2022). The energy consumption data in the
production of different crops can be calculated via the energy
equivalent of the consumption production inputs (El-Gafy et al.,
2017; Sadeghi et al., 2020). The water and energy physical
productivity criteria (Wp and Ep) for different crops (c) are

FIGURE 2
Schematic of the irrigation network channels of doroodzan dam.
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obtained from the ratio of crop yield (Y) to the amount of water
and energy consumption (W and E) of that crop per unit area.

Wpc � Yc

Wc
(1)

Epc � Yc

Ec
(2)

The water and energy economic productivity measures (Wep
and Eep) were also obtained from the ratio of the gross margin (GM)
of the crop to water and energy consumption of that product per
area unit.

Wepc � GMc

Wc
(3)

Eepc � GMc

Ec
(4)

In the second stage, the weight of the importance of these
criteria was obtained from the experts’ opinion (Nhamo et al.,
2020). For this purpose, the WEFN index was calculated by
separating the crops in the cropping pattern using the fuzzy
analytic hierarchy process (FAHP) method and then the TOPSIS

method. In the third step, based on the existing cultivation area,
the cropping pattern was determined according to the WEFN
index. In the final stage, the resources allocation pattern based on
the WEFN along with the policy options was shared with the
given sample farmers and the cooperation or non-cooperation of
farmers with the proposed model with and without the
government’s policy options was evaluated by the ABM.
(Akhbari and Grigg, 2013; Akhbari and Grigg, 2015; Guo
et al., 2022; Mirzaei and Azarm, 2022).

FIGURE 3
Conceptual framework of the present study.

TABLE 1 The performance matrix of TOPSIS method.

Crops Criteria 1 Criteria 2 . . . Criteria m

Crop 1 a11 a12 . . . a1m

Crop 2 a21 a22 . . . a2m

. . . . . . . . . . . . . . .

Crop n an1 an2 . . . anm

Weight of criteria W1 W2 . . . Wm
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3.3 Research methods

3.3.1 FAHP and TOPSIS
In the present study, the Fuzzy Analytic Hierarchy Process

(FAHP) is used which was presented by Chang in 1996 as a
quantitative analysis method (Chang, 1996). All the calculations
related to the FAHP process are based on the decision maker’s initial
judgment in the form of pairwise comparison matrices. The
compatibility indices were used in order to evaluate the
compatibility of decision makers’ responses. After calculating the
value and weight of the relative importance of WEFN criteria for
different crops, the performance matrix was formed and, it was
prioritized and determined the share of crop cultivation using the
TOPSIS method (Table 1).

According to Table 1, W denotes the importance weight of
criteria calculated via FAHP method and elements anm are the
calculated values of each crop for different criteria. The TOPSIS
method, which selects the shortest distance from the ideal solution
as the best option, is part of the category of compromise or
agreement methods with the following steps:

1) At first, the maximum value is the best for some criteria, and the
minimum is the best for other criteria. Therefore, the ideal
alternative is as follow:

A+ � A+
1 , A

+
2 , ..., A

+
j{ } (5)

2) In the second stage, for the best maximum criteria, the lowest
value and for the minimum best criteria, the highest value was
identified and the anti-ideal alternative was formed.

A− � A−
1 , A

−
2 , ..., A

−
j{ } (6)

3) In the last step, the proximity index related to each option
(product) was calculated through the following formula:

CI � R( )−
R( )+ + R( )− (7)

Where R− is the distance of each alternative from the worst
option and R+ is the distance of each alternative from the ideal
option. Next, to evaluate the share of each crop in the cropping
pattern, the closeness index was normalized. Thus, the closeness
index of each crop was divided by the sum closeness index of the
crops and the share of each crop in the cropping pattern based on
WEFN was calculated.

3.3.2 Agent based model (ABM)
The ABM was used to investigate the cooperative behavior of

farmers with the resources allocation pattern based on WEFN
system. Since the proposed pattern based on the WEFN is
obtained through multi-criteria methods, it does not consider
the limitation of water resources like mathematic programming
models. Thus, in a region with water scarcity crisis, there are
many challenges to implement the proposed resources
allocation pattern. Therefore, in order to implement the
resources allocation pattern based on WEFN in a WSR, it is
necessary to evaluate the strategies to increase water efficiency
along by incentive policies.

The key factors in the implementing of ABM model are
(Makall and North, 2006): 1) definition of agents, 2) precise
determination of agents behaviors, 3) definition of the
environment in which agents are located, 4) determination of
the relationship between agents, and the development of a
theory about the interaction of agents with each other
and with the environment, 5) the development of data
related to agents, 6) the appropriate presentation of the
interaction of agents with each other and agents with the
environment, 7) evaluation of the accuracy of the behavioral
model agents.

The ABM proposed in the present study is planned to provide
a tool that helps to find effective policies options to encourage
farmers to cooperate with a cultivation pattern based on WEF
nexus. In this ABM model, agents include farmers and
government or policy-making organizations in the agricultural
sector. Farmers seek to maximize their utility from crop
cultivation, and policy-making organizations seek to encourage
farmers to follow the proposed cultivation pattern. The
environment in the present study determines the proposed
cultivation pattern, which is an optimal and sustainable
pattern based on WEF nexus objectives. The interaction of
farmers with each other are defined based on social pressures
and the relationship between farmers and the government/policy-
making organizations are designed based on incentive policy
options. Data related to agents are obtained based on existing
policy conditions and questions from farmers. In the end, a
triangular utility function is used to validate the model, based
on which it is possible to understand whether the policy options
can increase the utility of farmers compared to the existing
conditions and encourage them to follow the proposed
cultivation pattern more.

Figure 4 shows the structure of the proposed ABM to
formulate this model. At first, farmers’ decisions are based on
profit of proposed pattern compared to current profit. Therefore,
if the profit of the proposed model is more than the current
model, they participate with the proposed pattern and vice versa.
Then, the effects of the social pressures of farmers on each other
and the changes in farmers’ decisions are evaluated. In the third
stage, the government’s incentive policies options are investigated
in order to encourage the cooperative farmers to continue their
decision and incite no-cooperative farmers to change their
decision.

Farmers’ utility to continue or change their behavior was
measured based on the social pressures and government policy
options (Edwards et al., 2005; Farhadi et al., 2016; Mirzaei and
Zibaei, 2021; Mirzaei and Azarm, 2022).

Ui � max
Ui C → C( ) � a × Si C( ) + Pm

Ui C → NC( ) � b × Si NC( ){ } (8)

Ui � max
Ui NC → C( ) � c × Si C( ) + Pm

Ui NC → NC( ) � d × Si NC( ){ } (9)

As shown in the equations, the cooperative farmer decides to
continue his behavior or change his cooperative behavior according
to the utility obtained. For a cooperative farmer, Ui(C → C) and
Ui(C → NC) indicate the desirability of this farmer, respectively by
continuing cooperative behavior and changing behavior from
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cooperation to non-cooperative with the proposed pattern (Eq. 4).
Also, for a non-cooperative farmer, Ui(NC → C) and
Ui(NC → NC) indicate the utility of this farmer by changing his
behavior towards cooperation and continuing non-cooperative
behavior, respectively (Eq. 5). In these Equations, utility is a
function of social pressures and incentive policies of the
government. To calculate social pressures, Si(C) and Si (NC) are
the ratio of cooperative and non-cooperative farmers to the total
farmers in the present sample, respectively. Parameters a and b are
equal to 0.7 and parameters c and d are equal to 0.3 (Edwards et al.,
2005; Akhbari and Grigg, 2013; Farhadi et al., 2016; Mirzaei and
Zibaei, 2021). Pm also indicates the incentive policy options of the
government. The lack of Pm in the utility function indicates the
absence of policy options to persuade farmers to participate in the
proposed pattern. For quantification of the government’s incentive
policy options, it is necessary to calculate the level of farmers’ utility
with each of the policy options. It is worth to mention that there are

many different incentive strategies; however, incentive solutions
should be acceptable by the government and government
institutions. Thus, in the present study, the motivational solution
of granting facilities to develop the use of new irrigation technologies
is taken into consideration. Then, the farmers were asked three basic

FIGURE 4
ABM formulation structure.

FIGURE 5
- Farmers’ utility function.
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questions to extract the utility function with and without this
motivational solution as:

A) The interest rate of the facility, on that value or above it, no
utility is obtained.

B) The interest rate of the facility in which the maximum utility is
achieved.

C) The interest rate of the facility, as on that amount and lower than
that, no utility is obtained (Based on this value, you feel that the
banks and the government will be at loss, and you do not
consider this value to be reasonable for the progress of the
project in the long term). Therefore, the given utility function is
a triangular function (Figure 5).

4 Results and discussion

According to the concept of WEFN, water and energy
consumption criteria, water and energy physical productivity, and
water and energy economic productivity were calculated in the
Doroodzan Dam irrigation network (Table 2). It is worth noting
that the amount of energy consumption of different crops is
calculated by the equivalent energy consumption and the
consumption of production inputs of machinery, labor, fertilizers
and pesticides, electricity, fuel, irrigation water and seed. The energy
consumption of different inputs in the manufacturing of products is
also based on the study done by Sadeghi et al. (2020).

The total cropping area covered by the irrigation network of
Doroodzan Dam is about 51,514 ha, and the major crops in Table 2
cover 50,997 ha of these fields (about 99%). According to the results
of Table 2, the largest amount of cropping area is dedicated to wheat
with about 71% share of the cropping pattern. Rice and barley have
the highest and lowest water consumption with 28,000 and
9,445 cubic meters per hectare, respectively. The highest and
lowest amount of energy consumption is related to the two crops
of tomato and barley with 47,556 and 37,524 MJ per hectare. The
highest amount of water physical productivity is dedicated to the
two crops of green-maize and tomato with 4.467 and 3.582 Kg/M3

respectively, and the rice crop has the lowest amount of water
physical productivity with 0.154 Kg/M3. In the studies of El-Gafy
et al. (2017), El-Gafy (2017) and Radmehr et al. (2021), water
physical productivity for tomato crop was evaluated more than
other crops, and the high level of physical productivity of water for

green-maize in the studies of Mirzaei et al. (2022a) and Saray et al.
(2022) has been indicated. In addition, green-maize and rapeseed
crops have the highest and lowest energy physical productivity with
1.606 and 0.082 kg/MJ, respectively. Energy physical productivity
for green-maize in the studies of Mirzaei et al. (2022b) and Saray
et al. (2022) is also examined more than other crops. Finally, based
on both criteria of water and energy economic productivity, tomato
has the highest value among the studied crops with 0.0472 dollars
per M3 of water economic productivity and 0.0283 dollars per Mj of
energy economic productivity. Despite tomato, rapeseed has the

TABLE 2 The current cultivation area and calculated criteria of WEFN.

Crops Area (ha) WC (M3/ha) EC (Mj/ha) WP (kg/m3) EP (kg/Mj) WEP ($/M3) EEP ($/Mj)

Wheat 36,060 11,562 46,260 0.429 0.107 0.0311 0.0078

Barley 5,151 9,445 37,524 0.333 0.084 0.0240 0.0060

Rapeseed 515 10,450 39,321 0.308 0.082 0.0226 0.0060

Rice 2061 28,000 46,776 0.154 0.092 0.0472 0.0283

Tomato 2060 20,728 47,556 3.582 1.561 0.0467 0.0204

Green-maize 5,150 14,017 38,985 4.467 1.606 0.0315 0.0113

WC, water consumption; EC, energy consumption; WP, water physical productivity; EP, energy physical productivity; WEP, water economic productivity; and EEP, energy economic

productivity.

TABLE 3 The normalized performance matrix of TOPSIS method.

Crops WC EC WP EP WEP EEP

weight 0.17 0.07 0.24 0.12 0.26 0.14

Wheat 0.277 0.440 0.074 0.048 0.360 0.203

Barley 0.226 0.357 0.058 0.037 0.278 0.156

Rapeseed 0.250 0.374 0.053 0.036 0.262 0.156

Rice 0.671 0.445 0.027 0.041 0.547 0.736

Tomato 0.497 0.452 0.622 0.695 0.541 0.531

Green-maize 0.336 0.371 0.775 0.715 0.365 0.294

TABLE 4 Theweighted normalized performancematrix and ideal and anti-ideal
alternatives.

Crops WC EC WP EP WEP EEP

Wheat 0.047 0.031 0.018 0.006 0.094 0.028

Barley 0.038 0.025 0.014 0.004 0.072 0.022

Rapeseed 0.043 0.026 0.013 0.004 0.068 0.022

Rice 0.114 0.031 0.006 0.005 0.142 0.103

Tomato 0.084 0.032 0.149 0.083 0.141 0.074

Green-maize 0.057 0.026 0.186 0.086 0.095 0.041

Action min min max max max max

Ideal 0.038 0.025 0.186 0.086 0.142 0.103

Anti-Ideal 0.114 0.032 0.006 0.004 0.068 0.022

Frontiers in Environmental Science frontiersin.org08

Mirzaei et al. 10.3389/fenvs.2023.1139565

80

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1139565


lowest economic productivity of water and energy with 0.0226 and
0.0060, respectively. In the studies conducted by El-Gafy et al. (2017)
and El-Gafy (2017), two crops of onion and tomato have the highest
economic productivity of water and energy. However, in the study of
Sadeghi et al. (2020), onion has the highest economic productivity of
water and energy among crops.

According to the information in Table 2 and also the weight of
the importance of WEFN index criteria, the value of the index was
calculated separately for different crops. For this purpose, at first, the
weights of the WEFN criteria were calculated via the FAHPmethod,
and then the closeness index of the crops was calculated using the
TOPSIS method based on the examined criteria, which indicates the
WEFN index for different crops. Thus, first the normalized
performance matrix was calculated (Table 3). Then, the weighted
normalized performance matrix was extracted from the product of
the weights of the criteria in the resulting normalized values and
ideal and anti-ideal alternatives were extracted based on the action of
each criterion (Table 4). Finally, the closeness index of crops, and the
share and amount of crops in the proposed cropping pattern were
determined (Table 5).

The results of Table 5 showed that the share of tomato,
green-maize and rice in the cropping pattern is higher than

other crops. Based on this finding, the proposed pattern based
on WEFN does not necessarily recommend reducing the share
of water-intensive crops in the cropping pattern. In the studies
done by El-Gafy et al. (2017), Nahidul Karim and Daher (2021),
Saray et al. (2022), and Li et al. (2022), the high share of the
cropping area of water-intensive crops in the proposed pattern
based on WEFN is confirmed. For example, Li et al. (2022)
argued that if there are adequate water resources in a region, the
share of rice crop in the WEFN is increased. In the study of
Saray et al. (2022), the high share of the cultivated area of green-
maize in the WEFN-based cropping pattern has also proved.
However, in the studies of Yu et al. (2020), Sadeghi et al. (2020),
Radmehr et al. (2021) and, Mirzaei et al. (2022a) due to the
limitation of water resources in the mathematical programming
model, the WEFN-based cropping pattern suggested reducing
the share of the cultivated area of water-intensive crops.
Therefore, it is concluded that the implementation of the
pattern based on WEFN at the level of the irrigation network
of Doroodzan Dam, which is encountering a water resource
crisis, may not be possible. For a better understand of the
conditions of resources allocation, the WEFN criteria in this
pattern was compared with the current cultivation pattern
(Figure 6).

Figure 6. Showed that in the proposed pattern based on
WEFN, all the criteria except the water consumption criterion
will be improved compared to the current pattern. Water
consumption is such that in the pattern based on WEFN, it
will increase by 33% compared to the current conditions. Also,
among the criteria, the physical productivity of water and
energy experiences the highest improvement with 200% and
156%, respectively. The WEFN pattern is an optimal pattern
from the perspective of sustainability due to the improvement of
the physical and economic productivity criteria of water and
energy, but the water consumption in this pattern is increased
compared to the current conditions. Hence, the
operationalization of this pattern will not be possible due to

TABLE 5 The closeness index of crops, share and amount of cultivated area of
crops based on WEFN.

Crops (R)+ (R)- CI S Area

Wheat 0.207 0.073 0.261 0.101 5,151

Barley 0.218 0.076 0.259 0.101 5,151

Rapeseed 0.221 0.072 0.246 0.096 4,896

Rice 0.211 0.110 0.342 0.133 6,782

Tomato 0.066 0.188 0.741 0.288 14,687

Green-maize 0.080 0.208 0.722 0.281 14,330

FIGURE 6
Comparison of current and proposed WEFN-based patterns.
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the conditions of water resources in arid and semi-arid regions.
In this study, we should implement policies to reduce water
consumption to achieve the WEFN-based pattern. For this
purpose, the policies of adopting new irrigation technologies,
improving water transfer channels to farms, plastic covering of
crops on the farm, etc. Can reduce water consumption in order
to achieve the WEFN-based model (Mirzaei and Zibaei, 2021).
For example, the policy of developing the use of new irrigation
technologies at the farm level was evaluated considering the
farmers’ behavior in order to analyze the implementation of the
WEFN-based pattern. To do this, the sample farmers of the
study area were asked about their cooperation and non-
cooperation in using new irrigation technologies and
implementing the pattern based on the WEFN in order to
reduce water consumption and achieve the goals of the
WEFN (Table 6).

Table 6 indicated that 37 individuals (percent) of the farmers
in the present sample adopt new irrigation technologies as an
approach to reduce water consumption, and 63 individuals
(percent) of them do not use this strategy. In other words, the
strategy of developing the use of new irrigation technologies is
encountered with the resistance of most farmers in this region.
Also, the implementation of the proposed pattern based on the
WEFN was shared with the farmers in the present sample and it
was found that 81 individuals (percent) of the farmers considered
the water scarcity as the main problem for the implementation of
such a pattern and stated that by increasing the water allocation,
this pattern is implemented. The reason for the high adoption of

the proposed pattern is that this pattern provides good economic
returns to farmers (the results of Figure 6 indicated that the
economic return in the proposed pattern based on the WEFN has
increased by about 53% compared to the current pattern). Also,
19 farmers in the present sample are not willing to participate
despite the high productivity of the proposed pattern based on
WEFN, which is due to the resistance and inflexibility of these
farmers to change cropping from a crop such as wheat to some
crops such as tomatoes and green-maize. Finally, the
simultaneous adoption of expansion of the use of new
irrigation technologies and the implementation of the
proposed pattern based on the WEFN to achieve the goals of
reducing water consumption and sustainable development were
asked and it was found that only 24 individuals (percent) of the
sample participated in this project. Therefore, it can be found that
the implementation of new irrigation technologies combined
with the WEFN pattern will not be applicable due to the
mental resistance of farmers to changing the irrigation
technology and cropping pattern. Thus, it is required to
evaluate the social pressures of farmers on each other as well
as the incentive policies of the government in order to change the
attitude of farmers towards participation with the plan. Granting
facilities to farmers to develop new irrigation technologies is one
of the most prevalent incentive policies in Iran. Therefore, the
behavior of 24 cooperative farmers and 76 non-cooperative
farmers was analyzed based on the effects of farmers’ social
pressures on each other and the policy of granting facilities
with different interest rates (Figures 7, 8).

The results demonstrated that the granting of facilities in an
interest rate of 18% (the rate of the majority of facilities given in
Iran) causes that only six cooperative farmers remain in a
cooperative state and 18 of them have changed their behavior
and they are not willing to accept the proposed plan. Despite the
encouraging scenario of granting facilities for the development of
new irrigation technologies, this behavior change is caused by the
social pressures of farmers, because the attitude of the majority of the
present sample is not cooperative (76 people out of 100) and this will
lead to a change in the behavior of cooperative farmers. As shown in
Figure 7, the reduction of the interest rate of facility makes more

TABLE 6 The level of cooperation and non-cooperation of farmers with policy
options.

Title S1a S2b S1 and S2

Number of Cooperatives 37 81 24

Number of Non-Cooperatives 63 19 76

Total 100 100 100

a: S1 is Irrigation modern technologies.
b: S2 is pattern based on WEFN.

FIGURE 7
Analysis of the behavior of cooperative farmers with S1 and
S2 policies. (C to C: Continue cooperative behavior and C to NC:
Changing from cooperative to non-cooperative behavior).

FIGURE 8
Analysis of the behavior of non-cooperative farmers with S1 and
S2 policies. (NC to C: Changing from non-cooperative to cooperative
behavior and NC to NC: Continue non-cooperative behavior).

Frontiers in Environmental Science frontiersin.org10

Mirzaei et al. 10.3389/fenvs.2023.1139565

82

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1139565


cooperating farmers continue their cooperative behavior with the
proposed plan. In the interest rate of 12%, the number of farmers
who will continue to participate in the proposed plan will be more
than the number of non-cooperative farmers, and in the interest rate
of 8%, all the cooperative farmers will remain in a cooperative state
without changing their behavior.

According to Figure 8, granting facilities in an interest rate of
18% cannot persuade non-cooperative farmers to participate in the
proposed policies. However, out of 76 non-cooperative farmers, only
five individuals were willing to change their behavior towards
participation. However, with the reduction of interest rate, more
farmers are encouraged to change their behavior and adopt the
proposed policies. At the interest rate of 14%, the number of farmers
who change their behavior and participate in the proposed policies
are more than the farmers who remain in the non-cooperative state.
Also, the scenario of granting facilities in an interest rate of 10% is
considered as a suitable incentive to change the behavior of non-
cooperating farmers and can make all non-accepting farmers accept
the proposed policies.

Also, Figure 9 showed that granting facilities for the
development of new irrigation technologies with the current
interest rate of facilities in Iran (18%) cannot lead farmers to
adopt these technologies as well as the proposed pattern based
on the WEFN. Based on the obtained results, reducing the
interest rate of granted facilities to 14% will make it possible
to accept the proposed policies by more than half of the farmers
in the present sample of study. Also, at an interest rate of 8%, all
farmers are willing to adopt the proposed pattern based on the
WEFN to achieve the goals of sustainable economic
development and use new irrigation technologies to reduce
water consumption. In general, it can be said that not
considering the cooperative behavior of farmers in WSRs can
result into to the failure of the proposed programs and pattern,
and farmers should be encouraged to participate more in water
resources management plans (Akhbari and Grigg, 2015; Farhadi
et al., 2016; Mirzaei and Zibaei, 2021; Mirzaei and Azarm,
2022).

5 Conclusion

Sustainable economic development in the agricultural
sector will not be achieved without paying attention to the
sustainable consumption of resources such as water and
energy in this sector. In this regard, the resources allocation
pattern based on the WEFN can make it possible to achieve
sustainable economic development in the agricultural sector.
At the same time, the implementation of pattern based on
WEFN in WSRs faces many challenges. The lack of water
resources to improve the physical and economic productivity
of water and energy as the main criteria in the WEFN will lead
to farmers not adopting these patterns. Therefore, in the
present study, the implementation analysis of the pattern
based on the WEFN in WSRs was analyzed. For this
purpose, the irrigation network of Doroodzan Dam in Fars
province in Iran was selected as a WSR and the pattern based
on WEFN was extracted using the combination of FAHP and
TOPSIS methods. The results showed that the proposed
pattern based on the WEFN will improve the physical and
economic productivity of water and energy, but will not reduce
water consumption. Therefore, the use of the WEFN-based
pattern by farmers in the WSR requires encouraging farmers
to reduce the consumption of water resources through
government policy options. In this study, the policy of
granting facilities at different interest rates to expand the
use of new irrigation technologies was evaluated. In this
regard, the ABM was used to analyze the cooperative
behavior of farmers with incentive policy options. The
results showed that the farmers of the studied area are
resistant and would not be willing to accept the use of new
irrigation technologies and the pattern based on the WEFN.
This is despite the fact that reducing the interest rate of
granted facilities can encourage cooperative farmers to
continue this behavior and non-cooperative farmers to
change their behavior. In general, it can be concluded that
only the extraction of patterns based on the WEFN cannot lead
to the sustainable economic development of the agricultural
sector, and the evaluation of the implementation of these
patterns is of great importance, especially in regions with
water resource crisis. Therefore, it seems necessary to pay
attention to the status of water resources in the studied
agricultural regions as well as the behavior of farmers in
those regions. Finally, it is suggested that for future studies,
the conceptual framework of the present study should be used
to apply researches in the field of WEFN. In addition, it is
suggested that due to the effect of climate change on the
proposed cultivation pattern and the subsequent change in
the agents’ behavior, in future studies, the role of this
important factor in modeling the WEF nexus is addressed.
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Does the integration of agriculture
and tourism promote agricultural
green total factor productivity?
—Province-level evidence from
China
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1Economic College, Hunan Agricultural University, Changsha, China, 2Business College, Hunan University
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The integrated development of agriculture and tourism is conducive to the
realization of agricultural ecological value, which will promote the green
development of agriculture and improve the green total factor productivity of
agriculture as well. Based on panel data in China from 2008 to 2019, the super-
efficiency SBMmethod and the coupling coordination degreemodel were used to
estimate the agricultural green total factor productivity (AGTFP) and the
integration level of agriculture and tourism (ATL). The dynamic spatial Durbin
model and threshold effect model were used to demonstrate the effects and
characteristics of the agriculture and tourism integration on AGTFP. Results
showed that: 1) During the study period, AGTFP and ATL increased steadily,
and showed obvious spatial agglomeration characteristics; 2) The integration
of agriculture and tourism will directly promote the improvement of AGTFP in
the local region, and this impact has a spatial spillover effect. The direct effect in
the central region in China is the strongest, and the spillover effect in the eastern
region is the largest. 3) The influence of the agriculture and tourism integration on
AGTFP was enhanced with the improvement of ATL, showing a threshold
characteristic. From the perspective of subregion, the threshold value of ATL in
the eastern region is the lowest, while the threshold value in the western region is
the highest. The results of this study provide useful enlightenment for promoting
the deep integration of agriculture and tourism and improvement of AGTFP so as
to promote the green development of agriculture.

KEYWORDS

integration of agriculture and tourism, agricultural green total factor productivity,
impact, dynamic spatial Durbin model, dynamic threshold model

1 Introduction

Since the United Nations (UN) promulgated the Declaration on the Human
Environment in 1972, most countries in the world have begun to pay general attention
to the problem of agricultural pollution (UNEP, 2008). This is because it not only relates to
the sustainable development of agriculture but also determines the wellbeing of all humanity.
In 2019, the UN Food and Agriculture Organization (FAO) released a report entitled “The
State of Land and Water Resources in the World’s Food and Agriculture Systems on the
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Verge of Collapse”. This indicated that the consumption and
pollution of soil, land, and water had increased dramatically in
the past ten years, and that it will be difficult to meet the food
demands of nearly 10 billion people in the world in 2050 (Zhang
et al., 2022). Therefore, the green and sustainable development of
agriculture has attracted much attention across the world.

As a traditional agricultural country, China has made
remarkable achievements in agriculture since the implementation
of the reform and opening policy. Statistics show that China’s total
grain production increased from 430.7 million tons in 2003 to
686.53 million tons in 2022—19 consecutive years of growth.
However, in the process of China’s rapid agricultural
modernization, problems such as excessive use of pesticides,
irrational use of agricultural wastes, high consumption of fossil
energy, and soil destruction have led to serious agricultural non-
point source pollution and carbon emissions. According to the
Second National Survey of Pollution Sources in 2021, chemical
oxygen demand was 10.676 million tons, accounting for 49.77% of
major pollutants discharged from agricultural production, while the
amount of ammonia nitrogen was 1.415 million tons, accounting for
46.52% of major pollutants (Sun, 2022). Agricultural production has
thus become a major source of pollution in China.

At the same time, as one of the world’s most populous
developing countries, China must feed nearly 21% of the world’s
population with only 9% of the world’s arable land. Against this
background, China’s realization of green and sustainable
agricultural development is a necessary choice to ensure food
security and economic and social stability (Shen et al., 2019).
Therefore, the central government of China has attached great
importance to the green transformation of agriculture. In 2015, it
first proposed the concept of green development. In 2017, the “No.
1 Document” of the Communist Party’s Central Committee
proposed “promoting the green production mode and enhancing
sustainable agricultural development ability.” In 2021, the Ministry
of Agriculture and Rural Affairs formulated the 14th Five-Year Plan
for National Agricultural Green Development, which clearly called
for accelerating the establishment of a green, low-carbon, and
circular agricultural industry system, the strengthening of the
treatment of non-point agricultural source pollution, and the
promotion of carbon reduction and sequestration in agriculture
and in rural areas. Improving agricultural green total factor
productivity (AGTFP) has become an important way of solving
the dilemma of “resource–energy–environment–sustainable
growth” in agriculture and of realizing agricultural green
development. Therefore, the transformation of agriculture from
extensive growth-driven factors to green growth driven by green
total factor productivity has become a problem that must be solved
for green agricultural development. Hence, it is of great significance
to explore possible influencing factors for promoting AGTFP.

In recent years, promoting the integrated development of rural
industries has been regarded as an important priority in the
agricultural modernization of China. In 2015, the General Office
of the State Council issued “Guiding Opinions on Promoting the
Integrated Development of Primary, Secondary, and Tertiary
Industries in Rural Areas”. As an important means of rural
industrial integration, the integration of agriculture and tourism
has been developing rapidly. According to data released by the
Ministry of Agriculture and Rural Affairs, the number of agro-

tourism operators, including leisure and sightseeing farms, had
reached more than 300,000, and more than 7,300 farmer
cooperatives were involved in leisure agriculture or rural tourism
by the end of 2019. In addition, the scale of the agro-tourism market
has also been expanding. In 2019, agro-tourism received 3.2 billion
tourists and generated more than 850 billion yuan in revenue, the
total number of agro-tourists accounted for 53.28% of the total
number of visitors in the whole domestic tourism industry, and its
operating revenue accounted for 14.83% of the total operating
revenue of China’s domestic tourism1. According to data from
1,000 key rural tourism villages in China in 2022, the average
contribution of agro-tourism integration to rural employment
was 47.1%, and other indicators of promoting infrastructure
construction were also prominent.

Agro-tourism activities are deeply affected by agricultural
ecological resources, which are the prerequisite of integration
(Van Zyl and Van Der Merwe, 2021). When the potential of
agro-ecological resources is realized through the development of
agro-tourism products, agricultural producers will then be
encouraged to practice green and environmentally friendly
production methods and reduce harmful inputs (Koscak, 1998;
Lupi et al., 2017). In the process of integration, vertical
correlation is formed between the agricultural and tourism
industries, which promotes the spillover of knowledge,
technology, and management among industrial-related operations
(Jiang, 2022). Meanwhile, the extension of the industrial chain and
the integration of the value chain also optimize the allocation of
agricultural production factors, such as agricultural labor and land
resources. Consequently, the efficiency of agricultural output will
increase. The integrated development of agriculture and tourism, in
turn, has a positive impact on agricultural green development.

Compared with other industries, cross-regional operation is an
important feature of the tourism industry because of its strong
mobility. China’s vast territory and distinct regional variations in
crop growth cycles make it possible to operate cross-regional agro-
tourism. At the same time, cross-regional operations are beneficial
for expanding market scale and further deepening the vertical
division of labor in the whole agricultural system so that it can
realize economies of scale (Pitrova et al., 2020). In addition, the
seasonal nature of crop production enhances the mobility of agro-
tourists, thus promoting the efficiency of information and
technology exchange between regions. Therefore, the impact of
agro-tourism integration on agricultural green development may
have a spillover effect.

In the process of the integration of agriculture and tourism,
agriculture’s ecological premium is realized. However, in the early
stages of this integration, the agricultural ecological premium is not
so high so that agricultural production is mostly carried out in
traditional production modes (Hu and Zhong, 2019). At this stage,
agricultural production mainly aims at improving agricultural
production efficiency and rarely actively reduces the input of
harmful environmental factors such as fertilizers and pesticides.
Therefore, the promotion effect of low-level integration on AGTFP

1 Data of 2020–2022were not taken into account due to impact of COVID-
19 pandemic.
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is not so significant. With more in-depth development of this
integration, agriculture’s ecological premium will be more fully
realized (Jiang, 2022). This can encourage agricultural producers
to reduce harmful inputs and to adopt green production methods.
They will thus pay increasing attention to the green and sustainable
development of agriculture to obtain a higher
agricultural–ecological premium. Therefore, increased agriculture
and tourism integration has an enhanced positive effect on AGTFP.

Existing studies have paid little attention to the impact of
agriculture–tourism integration on the green development of
agriculture. There are few empirical studies on the effect of
agriculture and tourism integration on AGTFP, especially on its
spillover and non-linear effects. Therefore, the main purposes of this
paper are to 1) assess the level of agricultural green total factor
productivity (AGTFP) accurately, based on the super efficiency SBM
method with provincial data from China; 2) measure the integration
level of agriculture and tourism (ATL) with the coupling
coordination degree model to better identify the linkage of
agriculture and tourism; 3) demonstrate the spillover and non-
linear effects of agriculture–tourism integration on AGTFP based on
the dynamic spatial model and threshold model respectively; 4)
propose specific policy recommendations for improving
agriculture–tourism integration to promote AGTFP. The study
also makes more marginal contributions. First, it demonstrates
the impact of the integration of agriculture and tourism on
AGTFP with empirical analysis, providing a new perspective for
exploring factors which may affect agricultural green development.
Second, it focuses on the environmental effect of
agriculture–tourism integration—while most studies concern its
economic impacts—and thus expands the scope of research on
the effect of this integration. Third, the spatial spillover and non-
linear effects of agriculture–tourism integration on AGTFP are
demonstrated by using the dynamic spatial Durbin and dynamic
threshold models, which can more scientifically reveal the impact of
agriculture–tourism integration on AGTFP. Additionally, the
dynamic characteristics of AGTFP are considered in the
estimation of the impact of agriculture–tourism integration on
AGTFP, thus effectively avoiding the endogeneity problem.

The remaining parts of this paper are structured as follows.
Section 2 reviews the literature on agro-tourism integration and
AGTFP and also constructs a theoretical framework. Section 3
provides model selection, variable measures, and data
descriptions. Section 4 presents the empirical results and
discusses them in detail. Finally, this paper proposes precise
policy implications for promoting AGTFP based on the results of
the empirical analysis.

2 Literature review and theoretical
framework

2.1 Literature review

2.1.1 The integration of agriculture and tourism
There is a strong linkage between tourism and agriculture

(Ammirato et al., 2020). Tourism activities create a demand for
tourism products, thus determining the production of agricultural
products and food in the process of tourism consumption (Ristić

et al., 2019). On the other hand, agricultural production processes
and seasonal characteristics affect the content of tourism supply
(Sanches-Pereira et al., 2017; SoleimannejadAlibaygi and Salehi,
2021). Given the strong linkage between tourism and agriculture,
increasing attention has been given to agriculture–tourism
integration (Gilbert and Hudson, 2000; Streifeneder, 2016; Ristić
et al., 2019). Based on symbiosis theory, Chen (2014) argued that the
integrated development of tourism and agriculture is the
internalization of the inter-industry division of labor and the
sharing of products, markets, and resources by the two
industries, thus realizing their developing symbiosis. Nie and Fan
(2019) argued that such integration is a process in which the
internalization is the inter-industrial division of labor and the
sharing of products, markets, and resources, and that it is driven
by market demand, economic growth, and competition.

Increasing attention has been paid to the impact of the
integrated development of agriculture and tourism on the rural
economy, society, and the environment. In terms of its economic
effects, research has found that establishing effective links between
agriculture and tourism not only leads to new market space and
consumer demand but also promotes high-quality tourism and
agricultural products (Tew and Barbieri, 2012; Testa et al., 2019).
Although the agricultural products required by tourism are only a
small part of total agricultural productivity, they still play a key role
in ensuring the quality of these products (Valdivia and Barbieri,
2014). Many scholars have empirically tested the effect of
agriculture–tourism integration on rural and regional economic
growth (Van Sandt and Thilmany Mcfadden, 2016). In terms of
its social effects, they argue that the development of agro-tourism
can provide economic incentives and stability for farmers and
improve the quality of life of rural populations in mountainous
areas, thus meeting challenges of population migration and
economic change (Dax et al., 2019). This is also conducive to
strengthening urban–rural links and preserving natural and
cultural heritage (Streifeneder, 2016). In terms of its
environmental effects, scholars hold different views on the
ecological effect of agriculture–tourism integration. Some argue
that tourism provides agriculture with another source of income,
which is conducive to sustainable agricultural development. The
development of agro-tourism draws part of the agricultural labor
force and provides funds for farmers to adopt innovative
technologies such as fertilizers, allowing them to expand
production without increasing tillage frequency or clearing new
land to indirectly reduce environmental degradation (Guaita
Martínez et al., 2019). However, drawing labor from agriculture
may also lead to a loss of farmers with land management skills,
leading to deterioration in the agricultural ecological environment
(SoleimannejadAlibaygi and Salehi, 2021). Overall, above studies
have come to opposite conclusions, so whether the integration of
agriculture and tourism can promote AGTFP needs to be further
verified.

2.1.2 Agricultural green total factor productivity
The sustainable and high-quality development of agriculture

depends, on one hand, on the continuous increase of labor,
machinery, equipment, land, and other factors of production, and
on the improvement of the efficient use of production factors on the
other hand. Agricultural total factor productivity is one of the main
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indicators for measuring the efficiency of production factors. As
environmental pollution becomes more and more serious, the
addition of environmental and resource factors to the traditional
agricultural total factor productivity framework has become an
academic research hotspot, begetting the concept of agricultural
green total factor productivity (AGTFP). Research on AGTFP is
mainly done into the following aspects.

The DEA and SFA methods are widely used for the
measurement of AGTFP (Adetutu and Ajayi, 2020; Chen et al.,
2021; Wang et al., 2023). Compared with SFA’s parametric method,
DEA is non-parametric, does not need specific production functions
and inefficiency items in advance, and is less subject to subjective
influence (Gong, 2020). Emrouznejad and Yang (2018) reviewed the
literature from 1978 to 2016 and found that DEA has high
applicability in measuring agricultural production efficiency. In
the early literature, angular and radial DEA models were used to
measure agricultural total factor productivity, which required the
selection of input or output angles of the model and required these to
change in the same proportion, which was inconsistent with actual
production. To avoid this problem, the slacks-based measurement
(SBM) model proposed by Tone (2001) was used to evaluate
AGTFP. However, when there are more than two effective units
in the same period, the SBM standard efficiency model cannot sort
them. So Tone (2002) further proposed the super efficiency SBM
model. When considering undesirable outputs, the SBM super
efficiency model incorporating undesirable output is commonly
used to measure AGTFP.

With the improvement of AGTFP measurement methods,
scholars began to pay attention to the influencing factors of
AGTFP. According to Sheng et al. (2020), agricultural economic
development level, agricultural production structure, and

agricultural technology levels are important factors affecting
AGTFP (Sheng et al., 2020). Regional characteristics also affect
the growth of AGTFP. Gao and Niu (2018) observed that different
regional economic development factors in China lead to regional
differences in AGTFP. Other studies have found that agricultural tax
reduction (Liang and Long, 2015), rural financial development (Li,
2021), environmental regulation (Huang et al., 2021), and
agricultural informatization (Gao and Niu, 2018) can promote
AGTFP, while urbanization and agricultural trade could inhibit it
(Liang and Long, 2015). However, few studies have analyzed the
factors that influence AGTFP from the perspective of industry
integration. Only Wang et al. (2022) have tested the linear
influence of agro-tourism industry agglomeration on AGTFP, but
without considering the possible spatial spillover and non-linear
characteristics of this influence.

2.2 Theoretical framework

The integration of agriculture and tourism refers to the process
of developing agricultural tourism resources and managing
agricultural tourism products by relevant stakeholders to
maximize economic, social, and ecological effects under certain
rural economic and social backgrounds. Therefore, the
integration of agriculture and tourism not only plays a role in
promoting the development of the rural economy but also has an
impact on improving AGTFP, which is mainly reflected in the
following aspects (Figure 1).

First, this integration promotes progress in agricultural
technology. Agriculture–tourism integration promotes the spatial
agglomeration of business units and promotes the flow of talent and

FIGURE 1
Impact mechanism of agriculture–tourism integration on improving AGTFP.
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technological interaction. Advanced technology and management
experience in tourism enterprises also share their knowledge,
technology, and management skills with related or cooperative
agricultural operation subjects so that the technical level of
agricultural production and operation can be improved (Ristić
et al., 2019).

Second, the integration promotes optimal resource and
element allocation. Under traditional agricultural management,
the function of agricultural resources and products is relatively
simple, and the application scope is relatively narrow. The
allocation framework of agricultural factors is mainly reflected
in the level of limited capital, abundant land, and primary labor
resources, which makes for a relatively inefficient allocation of
agricultural production factors. In the process of
agriculture–tourism integration, the capital, technology,
talents, information, and management elements of the two
industries realize a market-oriented flow and full interaction,
thus promoting a higher optimal allocation of various production
factors and effectively improving the allocation efficiency of
agricultural factors (Fleischer and Tchetchik, 2002; Ammirato
et al., 2020).

Third, this integration promotes the optimization and
upgrading of the agricultural industrial structure. The integral
development of agriculture and tourism has enriched the
development of rural tourism and created a large number of
rural tourism products or service formats with rich content (Hsu
et al., 2013). For example, a variety of new business formats have
appeared in practice, such as national agricultural parks, leisure
farms, rural camps, rural museums, citizen agricultural parks, and
rural homestays. Driven by demand, the adjustment of the allocation
of agricultural production factors has led to the optimization of the
quality and variety of the agricultural production (Amsden and
McEntee, 2011).

Fourth, integration contributes to the realization of
diversified values of agriculture, resulting in increased
agricultural output. It is helpful to expand the tourism
function of agricultural resources and promote appreciation
of the value of agricultural products, the natural ecology, and
human resources as tourism products (Fleischer and Tchetchik,
2002). Therefore, the integration of agriculture and tourism
effectively expands income growth in agricultural production
and management activities. Moreover, agriculture–tourism
integration contributes to the cultivation of agricultural
products and regional brands, thus enhancing the popularity
and reputation of agricultural products; this plays an important
role in enhancing the added value of agricultural product sales
(Pillay and Rogerson, 2013).

Accordingly, we propose the following research hypothesis:
“The integrated development of agriculture and tourism has a
positive effect on the improvement of AGTFP.”

3 Methods and materials

3.1 The Super-SBM method

The super efficiency SBM model (super-SBM) is used in this
study to calculate China’s AGTFP. Compared with the radial and

angular DEA and SBM models, super-SBM can effectively evaluate
and rank multiple fully effective decision units (Tone, 2002). Here,
360 decision-making units (DUS) from 30 provinces from 2008 to
2019 were used. If the kth decision unit (j = 1, 2, . . ., n) has input
vectors x ∈ RM, expected output vector yg ∈ Rs1 , undesired output
vector yg ∈ Rs2 , respectively. Also, define the matrix
X � [x1, x2, · · ·, xn] ∈ Rm × n, Yg � [yg

1 , y
g
2 , · · ·yg

n ] ∈ Rs1 × n,
Yb � [yb

1, y
b
2, · · ·yb

n] ∈ Rs2 × n. For the measured decision unit k,
in Formula 1:

min ρ �
1 + 1

m
∑m
i�1

S−i
xik

1 − 1
s1 + s2

∑S1
r�1
(Sgr/yg

rk
) +∑S2

t�1
(Sbt/yb

tk
)⎛⎝ ⎞⎠

s.t. ∑n
j�1,j ≠ k

xijλj − s−i ≤ xik

∑n
j�1,j ≠ k

yrjλj + sgr ≥yg
rk

∑n
j�1,j ≠ k

ytjλj − sbt ≤yb
tk

λ≥ 0, sg ≥ 0, sb ≥ 0, s− ≥ 0,

(1)

where λ is the weight vector, and s−i 、 sgr、 sbt are slack variables.
1
m∑m

i�1
s−i
xik

represents the average inefficiency of inputs, and
1

s1+s2 (∑s1

r�1S
g
r /y

g
rk +∑s2

t�1S
b
t /y

b
tk) represents the average inefficiency

of outputs. ρ is the efficiency value of a decision unit and
can be greater than 1, so the effective decision unit can be
distinguished.

3.2 The coupling coordination degreemodel

In an open industrial system, different industries may lead
to industrial coupling due to resource complementarity, which
makes the industrial system evolve toward an advanced and
orderly state (Nie, 2019). Chen (2014) believes that although
the concepts of industrial coupling and industrial convergence
are different, industrial coupling reflects the dynamic process
of gradual integration between industries, while industrial
convergence reflects the internal interaction and correlation
between industries. However, the two have the same effect and
the deep-level theories are similar. Many scholars use the
coupling coordination degree model (CCDM) to evaluate
the degree of industrial integration. For example, Su (2020)
used it to measure the integration level of producer services
and manufacturing in China from 2005 to 2018. Xu and Chen
(2020) built an evaluation index system of coupling
coordination for the development of the sports and tourism
industries based on CCDM and discussed the comprehensive
level and coupling coordination degree of these industries in
31 provinces in mainland China. Wang (2018) calculated the
integration degree of agriculture and tourism based on this
model. In general, CCDM has good applicability and is also
used to construct the integration level measurement model of
the agriculture and tourism industries in this study. The
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construction process of the CCDM for the agriculture and
tourism industry is as follows:

① Standardize the data of the evaluation index:

When the evaluation index is a positive index:

yij � xij −min xj

maxxj −minxj
. (2)

When the evaluation index is a negative index:

yij � x max − xj

maxxj −minxj.
(3)

② Calculate the information entropy:

hj � −k∑m
i�1
pijInpij(Wherepij � yij

∑m
i�1
yij

, k � 1
Inm

). (4)

Define the weight of the jth indicator as

wj � 1 − hj

∑n
j�1

1 − hj( ) (Wherewj ∈ 0, 1[ ], and∑n
j�1
wj � 1). (5)

③ Calculate the development level of the agriculture and tourism
industries. The agricultural comprehensive evaluation function
was determined and established according to the linear weighting
method:

A x( ) � ∑n
j�1
wjMij. (6)

In Formula 6, j is the number of evaluation indexes of
agricultural development level, wj is the weight of indexes, and
Mij is the standardized value of the jth agricultural index in the ith
year. The higher the value of A(x), the higher the level of
comprehensive agricultural development will be, and vice versa.
Similarly, the comprehensive evaluation function of tourism
industry is established

T y( ) � ∑n
i�1
wjNij. (7)

The interpretation of each indicator in Formula 7 is similar to
that in Formula 6. The larger the value of T(y), the higher the
development level of tourism will be, and vice versa.

④ The CCDM of agriculture and tourism industry is established
as follows:

C �
�������������
A x( ) · T y( )
A x( ) + T y( )( )22

√
. (8)

D � β · A x( ) + γ · T y( ). (9)
ATL � U � �����

C ·D√
. (10)

In Formula 10, C is the coupling degree, C ∈ [0,1]. The greater the
value of C, the more ideal the degree of the integration of the two
industries will be, and vice versa. The coupling degreeC only reflects the
interaction and cross state of the agriculture and tourism industries and
cannot accurately reflect their actual integration and development level.

In order to avoid the illusion that the development level of the two
subsystems is not high but the coupling degree of them is, the coupling
coordination degree U is used to represent the integration level of
agriculture and tourism (ATL). The larger the U value, the better the
coupling coordination will be. Generally speaking, the greater the value
of coupling coordination degree, the higher the degree of integration
between industries will be (Su, 2020). In Formula 9, β and γ are
undetermined coefficients, and D is the comprehensive coordination
index of the agriculture and tourism industries. In view of the
interactional relationship between the agriculture and tourism
industry system in the process of integration, this paper follows the
view of Wang (2018), making β = γ = 0.5.

3.3 Empirical models

3.3.1 The spatial econometric model
3.3.1.1 Global Moran’s I Index

According to the first law of geography, regional economy is an
open system. There are various kinds of material and immaterial
connections between regions, which lead to mutual influence and
interdependence among regions, thus leading to mutual influence
and interdependence. The economic growth of a region no longer
only depends on its initial conditions but also closely on the
economic activities of neighboring regions (Mitchell et al., 2012).
Therefore, an analysis of the impact of agriculture–tourism
integration on AGTFP without considering spatial factors may
lead to biased results and even overestimate the impact. Whether
it is necessary to introduce spatial effect into the regression model
depends on the existence of spatial correlation of economic
variables. Whether there exist spatial effects among economic
variables can be examined by the global Moran’s I index, which
is defined as

Moran ′Iglobal �
∑n
i�1
∑m
j�1
Wij Yi − �Y( ) Yi − �Y( )

S2∑n
i�1
∑m
j�1
Wij

. (11)

In the aforementioned formula, Yi and Yj represent the observed
value of the integration level of agriculture and tourism (ATL) or
agricultural green ecological efficiency (AGTFP) in region i and j,
respectively. Wij is the spatial weight matrix. The value of Moran’s I
index belongs to [−1, 1]. When the index is greater than 0, it indicates
that Y has a positive spatial correlation. When the index is less than 0, it
has negative spatial correlation. Otherwise, there is no spatial correlation.

3.3.1.2 The Dynamic Spatial Durbin Model
Spatial models mainly include spatial lag models (SLMs) and

spatial error models (SEMs) (Anselin, 1998). If both the explained
and the explanatory variables are spatially dependent, it is the spatial
Durbin model (SDM). In view of the spatial dependence of the
explained variable AGTFP and explanatory variable ATL, the spatial
Durbin model is constructed in this study. Because AGTFP is also
affected by the previous phase state, the term lagging one stage
(AGTFPi,t-1) is included in the equation, which can effectively solve
the endogenous problem of the model. The dynamic spatial Durbin
model is constructed as follows:
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AGTFPit � α0 + τAGTFPi,t−1 + ρ∑n
j�1
WijAGTFPjt + βXit

+ θ∑n
j�1
WijXjt + μi + υt + εit. (12)

In the aforementioned formula, AGTFPit and Xit represent the
explained and the explanatory variables (including control
variables) respectively. The subscripts i and t denote the
province and year, respectively. ρ is the spatial correlation
coefficient, and Wij is the spatial weight matrix. τ, β, γ, θ, and ξ

are the parameters to be estimated, ui is the spatial effect, vt is the
time effect, and εit is the spatial error term. The spatial weight
matrix includes two types: ① The geographical distance spatial
weight matrix (W1), which is usually calculated by the reciprocal of
the square of the actual geographical distance between the two
regions:Wij � 1/d2ij(i ≠ j). dij is represented by the direct distance
between the two provincial capitals. W1 is selected as the
benchmark spatial weight matrix. ② The economic geographic
nested spatial weight matrix (W2) is calculated by the following
formula:Wij � 1/|�Yi − �Yj + 1|e−dij , (i ≠ j). �Yi and �Yj represent the
per capita GDP of the ith and jth province, respectively. dij is also
represented by the direct distance between the two provincial
capitals. W2 is used for model robustness analysis.

3.3.2 The dynamic panel threshold model
With the continuous deepening of agriculture–tourism

integration, the ecological premium of agriculture will be fully
realized, further strengthening the green production behavior of
producers and thus further improving AGTFP. The influence of
agricultural and tourism integration on AGTFP may be enhanced
with the improved integration. Therefore, the influence of
agriculture–tourism integration on AGTFP may have a non-
linear relationship, so we take ATL as the threshold variable to
test this non-linear relationship. As well as considering that
AGTFP has the characteristics of dynamic persistence, this

paper included AGTFP with one stage lag as an explanatory
variable. Due to the lack of mature methods to combine the
spatial econometric model and the threshold regression model,
the common dynamic panel threshold regression model is finally
established thus:

AGTFPit �α0 + ρAGTFPi,t−1 + β11ATLit × I ATLit ≤ θ1( ) + β12ATLit

× I θ1 <ATLit ≤ θ2( ) + · · · + β1,nATLit × I θn−1 <ATLit ≤ θn( )
+ β1,n+1ATLit × I ATLit > θn( ) +∑n

k�1
λkCit,k + μi + ξit

.

(13)

Among these, θ1, θ2, . . ., and θn are threshold values, there were
n+1 threshold intervals, β11, β12, . . ., and β1,n are regression
coefficients under different threshold intervals. I(·) is the
indicative function. t-1 means one phase lag behind, and other
indicators are defined by reference to Formula 12.

3.4 Variable selection

3.4.1 Explained variable
When the super-SBM model is used to calculate the AGTFP

considering undesirable output and expected output, the
undesirable output and the input indexes should be determined first.

(1) Input indicators. According to Guo and Liu (2021), a
measurement system of agricultural input indicators
integrating “resources, energy, environment, and economy”
must be constructed (Table 1). As for the importance of
variable indicators, the entropy weight method is adopted to
assign weights to all indicators to reflect the importance of the
indicators. Agricultural input factors include labor, land, capital,
water resources, and electrical energy, which are the necessary
conditions for agricultural development. Labor input is
measured by the number of people employed in agriculture,

TABLE 1 Measuring indicators of AGTFP.

Type of variables Evaluation of indicator Unit

Input indicators Input of labor Number of people employed in agriculture, forestry, husbandry, and fishery 10 thousand people

Input of land Crop sown area and aquaculture area 1 thousand hectares

Input of capital Total power of agricultural machinery 1 million kw

Application amount of converted agricultural chemical fertilizer 10 thousand tons

Pesticide usage 10 thousand tons

Agricultural film usage Ton

Input of energy Agricultural diesel usage 10 thousand tons

Agricultural electricity consumption Kw·h

Input of water Agricultural water consumption 100 million m3

Output indicators Desirable output Total output value of agriculture, forestry, husbandry, and fishery 100 million CNY

Undesirable output Agricultural carbon emission 10 thousand tons

Agricultural pollution composite index __
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forestry, husbandry, and fisheries at the end of the year. Land
input is measured as the sum of the crop-sown area and
aquaculture area. The selection of capital input variables
differs from the existing literature, which mainly considers
the radial and non-radial relationships between agricultural
input and output. Chemical fertilizer, machinery, pesticides,
agricultural film, and diesel oil are selected as capital inputs.
Compared with the existing literature, draft animals were not
included because the sample study period of this study was
2008–2019 after the cancellation of agricultural subsidies by the
United Nations. During this period, the agricultural
mechanization level was gradually improved, which had a
strong substituting effect on draft animals. Water resource
input is measured by total agricultural water use. Agricultural
electricity consumption represents the input of electrical energy.

(2) Output indicators. The desirable output indicator is represented
by the total output value of agriculture, forestry, husbandry, and
fisheries and is adjusted to 2008 prices. Agricultural undesirable
outputs mainly refer to various environmental pollution
emissions, including chemical oxygen demand in water, total
nitrogen and total phosphorus loss, carbon dioxide emissions in
agricultural production, and ineffective pesticide utilization and
agricultural film residues in soil. Among these, water pollution
and soil pollutant residues were calculated by unit investigation
and evaluationmethod (Chen et al., 2006). In addition, in order to
adapt to the required ratio between the input–output index and
the decision-making unit of the DEAmodel, this paper combined
the variables of water and soil pollution into the comprehensive
index of agricultural pollution by using the entropy weight
method based on Jiang and Wang, (2019). At the same time,
in order to further consider the greenhouse gas emissions caused
by various production factors in agricultural production, the
carbon emissions of four agricultural production activities that
lead to agricultural carbon emissions were calculated according to
West andMarland (2002). In this paper, the agricultural pollution
composite index and agricultural carbon emissions treated by the
entropy weight method are included in the super-SBM model as
non-expected output to measure AGTFP. All indicators for
measuring AGTFP are shown in Table 1.

3.4.2 Explanatory variable
As discussed in the literature review, the integrated development of

agriculture and tourism refers to the process of forming a distinctive
brand of agriculture and tourism based on a certain theme or regional
characteristics of agricultural resources in combination with
agricultural resource endowment. Characteristic agricultural tourism
brands such as agricultural tourism towns, key tourism villages, leisure
agriculture, and rural tourism demonstration counties formed around
agricultural geographic indication products can best reflect the
characteristics and elements of the integrated development of
agriculture and tourism. Therefore, this study used published data
that can represent the development level of the agricultural tourism
industry to replace the general indicators in the statistical yearbook,
such as tourism income and agricultural output value, so as tomake the
measured integration level of agriculture and tourism more targeted
and reasonable. Based on Yang et al. (2022), five indicators were
selected to measure the development level of characteristic agriculture
and another five tomeasure the development level of rural tourism. All
indicators are shown in Table 2.

3.4.3 Control variables
Since many other factors affect AGTFP, this paper selected several

control variables to alleviate, as much as possible, the endogeneity
problem caused by missing variables: 1) Agricultural industrial
structure (AIS), expressed as the proportion of the added value of
the plantation industry in the added value of agriculture, forestry,
animal husbandry, and fishery. Generally speaking, the higher the
proportion of the planting industry, the higher the degree of
agricultural production agglomeration—AIS is thus expected to
have a positive impact on AGTFP. 2) Income distribution (INC),
expressed as the ratio of urban per capita disposable income to rural
per capita net income. The greater the income gap between urban and
rural residents often means that a regional government does not pay
enough attention to agricultural development, or that agricultural
resource endowment is poor. Moreover, in order to increase income,
agricultural producers will choose to ignore the externalities in the
process of agricultural production. Therefore, the impact of income
distribution on AGTFP may be negative. 3) Trade dependency (TRD),
expressed as the ratio of the total amount of regional agricultural

TABLE 2 Indicators for measuring the integration level of agriculture and tourism.

Elements Indicators Attribute Data sources

Characteristic agriculture Number of geographical indications of agricultural products + Ministry of Agriculture and Rural Affairs

Number of brands in the “One Brand in One Village” Project +

Output value of characteristic agricultural products (1 billion CNY) +

Number of advantaged agricultural products with local characteristics +

Area of fruit orchards (1 thousand hectares) + China Rural Statistical Yearbook

Rural tourism Number of A-level scenic spots + Ministry of Culture and Tourism

Number of key villages and towns for rural tourism in China +

Number of demonstration counties for leisure agriculture and rural tourism +

Revenue of rural tourism and leisure agriculture (1 billion CNY) +

Number of famous towns and villages of national characteristic landscape tourism +
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imports and exports to the gross agricultural product. The agricultural
trade situation will affect the regional AGTFP by affecting the income
of agricultural producers and the agricultural production
environment; the direction of its influence is unknown. 4)
Disaster-affected degree (DIS) is expressed by the proportion of
a disaster-affected area in a total sown area of crops. Generally
speaking, the higher the degree of disaster, the greater the damage
to farmers’ income and the production environment, which is
expected to negatively affect AGTFP. 5) The educational level of
the labor force (EDU) is represented by the average years of
schooling based on the practice. By using the calculation
method of Liu and Xu (2010), the average years of schooling
for residents with primary, middle, high, secondary, and tertiary
education were set as 6, 9, 12, and 16 years, respectively. Thus,
EDU = prim × 6 + midd × 9 + high × 12 + univ × 16, where prim,
midd, high, and univ represent the proportion of residents with
education above primary, middle, high, and university in the
population aged 6 and above in the region, respectively. Generally
speaking, the higher the educational level of agricultural
producers, the more beneficial this will be to mastering
production skills and the rational use of chemical factors; thus,
EDU will theoretically have a positive effect on AGTFP. All
relevant variables and their descriptions are shown in Table 3.

3.5 Data sources and descriptive statistics

The empirical analysis is based on panel data from 30 provinces in
China from 2008 to 2019. Hong Kong, Macao, Taiwan, and Tibet
Autonomous Region are excluded due to missing data. Since the
beginning of 2020, the tourism industry has been significantly
impacted by the COVID-19 epidemic. Therefore, data from 2020 to
2022 are not considered in the study period. The data sources are
mainly drawn from China Rural Yearbooks, the China Statistical
Yearbook, and the China Tourism Statistical Yearbook. In addition,
the National Bureau of Statistics, the Ministry of Culture and Tourism,
the Ministry of Agriculture, and official provincial websites are used as
supplementary sources of data. All datameasured inmonetary units are
deflated based on constant price levels of 2008. R and GeoDa software
were used for quantitative analysis andmodel estimation. The results of
descriptive statistics for each variable are shown in Table 4.

3.6 Characteristics of AGTFP and ATL in
China

According to results of super-SBM to calculate AGTFP, the
change trend of annual mean AGTFP in 30 provinces and four

TABLE 3 Relevant variables and descriptions.

Variable Variable name Unit Calculation method Data source

Explained variable AGTFP _ Calculated by super-SBM method Shown in Table 1

Core explanatory
variable

ATL _ Calculated by coupling coordination degree model Shown in Table 2

Control variable Agriculture industrial
structure (AIT)

% Represented by proportion of the added value of plantation industry in
added value of agriculture, forestry, animal husbandry, and fishery

China Rural Statistical Yearbook

Disaster-affected
degree (DIS)

% Represented by proportion of disaster-affected area in total sown area
of crops

Income distribution (INC) % Represented by ratio of urban per capita disposable income to rural per
capita net income

China Statistical Yearbook

Trade dependency (TRD) % Represented by ratio of the total amount of regional agricultural
imports and exports to gross agricultural product

China Agricultural Yearbook and
China Agricultural Trade report

Educational level of the
labor force (EDU)

% Represented by average years of schooling China Population and Employment
Statistical Yearbook

TABLE 4 Description of variables in the specification model.

Variables Observations Mean Median Std. Dev Max Min

AGTFP 360 1.0933 1.074 0.069 1.367 0.876

ATL 360 0.656 0.651 0.078 0.783 0.454

AIT 360 0.569 0.447 0.585 0.769 0.304

INC 360 2.916 3.154 0.083 5.113 1.854

TRD 360 0.311 0.325 0.008 0.364 0.010

DIS 360 0.244 0.238 0.157 0.872 0.000

EDU 360 7.554 7.512 0.839 9.211 4.895
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regions from 2008 to 2019 is shown in Figure 2. The annual mean of
AGTFP in the whole region fluctuated roughly between 0.967 and
1.235 from 2008 to 2019, reaching its maximum in 2019. In recent
years, the central government has attached great importance to
environmental protection and targeted agricultural pollution.
Governments at all levels have thus formulated a series of control
measures to effectively promote agricultural clean production
technology. Overall, China’s AGTFP showed an upward trend
from 2008 to 2019, with an average annual growth rate of 2.26%.
For four different regions, AGTFP is greater than 1 in most years.
The average annual growth rates of AGTFP in the eastern, central,
western, and northeastern regions during the study period were

2.06%, 2.31%, 2.53%, and 2.10%, respectively. The growth rate of
AGTFP in the western region is higher than in other regions, which
may be due to the long-term undeveloped level of agricultural
production there. In recent years, with the introduction of
advanced green production technology, AGTFP in this region
has rapidly grown.

Meanwhile, ATL was measured with panel data based on the
coupling coordination degree model. Results show that the mean
value of ATL in eastern China is the highest, while the mean value of
ATL in western and northeastern China is relatively lower among
the four regions (Table 5). From Table 5, we can see that the average
of ATL in the eastern region is the highest among all regions over the

FIGURE 2
Development trend of AGTFP in China from 2008 to 2019.

TABLE 5 Change trends of annual average of ATL in different regions.

Year Whole region Eastern region Central region Western region Northeast region

2008 0.572 0.609 0.563 0.564 0.541

2009 0.593 0.612 0.586 0.579 0.563

2010 0.611 0.631 0.597 0.611 0.592

2011 0.631 0.655 0.629 0.627 0.602

2012 0.648 0.670 0.632 0.631 0.611

2013 0.655 0.684 0.634 0.642 0.621

2014 0.661 0.687 0.655 0.651 0.633

2015 0.674 0.691 0.671 0.666 0.647

2016 0.693 0.703 0.678 0.671 0.658

2017 0.699 0.715 0.681 0.676 0.665

2018 0.714 0.732 0.708 0.683 0.678

2019 0.722 0.743 0.721 0.699 0.688

Mean value 0.656 0.678 0.646 0.642 0.625
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study period. The annual average of ATL of the whole research
region continuously improved over time, with average annual
growth rates of 2.14%. The average annual growth rates of ATL
in eastern, central, western, and northeastern regions during the
study period were 1.83%, 2.29%, 1.97%, and 2.22%, respectively. The
growth rate of ATL in the central region is higher than in other
regions. The integration of agriculture and tourism is an important
form of rural industry integration that can promote rural economic
growth and rural revitalization. Thus, it is also strongly supported by
the government. With the strong support of an integrated
development policy, the integration level of agriculture and
tourism in different regions showed an obvious growth trend.

4 Results and discussion

4.1 Results of spatial Durbin model and
analysis

4.1.1 Global spatial autocorrelation analysis
From Table 6, it can be seen that the global Moran’ I values of

ATL and AGTFP over the years are positive, and all pass the
significance test, indicating that ATL and AGTFP have significant
spatial correlation. From the perspective of time, the mean values
of the global Moran’ I values of ATL and AGTFP basically
increased year by year. It can be concluded that the spatial
agglomeration trend of the integrated development of
agriculture and tourism and the green development of
agriculture are constantly strengthening.

4.1.2 Identification of spatial models
First, the multi-collinearity and stationarity of variables were

tested. Variance inflation factor (VIF) results show that the
maximum value of variable VIF is less than 6, with no multi-
collinearity. According to Im et al. (2003), LLC, Fisher-ADF, and
PP-Fisher are used to test the stationarity of the time series, with the
results showing that the null hypothesis was rejected at the
significance level of 5%, and that the original series is stationary.

Second, the optimal form of the spatial panel model is identified.
The aforementioned spatial auto-correlation test shows that both
AGTFP and ATL have strong spatial correlation characteristics, so

spatial factors should be considered when studying the relationship
between them. We then followed the “two-step method” proposed
by Elhorst (2003) to determine the appropriate spatial econometric
model. The first step was to judge whether the non-spatial panel
model is applicable. LM test results show that the SEM and SAR
models are applicable because the test statistics of LM-lag, robust
LM-lag, LM-error, and robust LM-error all passed the significance
test, indicating that the null hypothesis that SPM or SEM do not
exist can be rejected. In the second step, Wald and LR statistics were
combined to determine which spatial econometric model to use. The
results show that bothWald and LR statistics passed the significance
test, indicating that SDM cannot be simplified into SLM and that it is
more reasonable to use SDM to fit sample data. The aforementioned
test results of the panel econometric model based on the
geographical distance spatial weight matrix (W1) are shown in
Table 7. The Hausman test rejects the null hypothesis at the 1%
level; in order to avoid the influence of unobserved time changes on
the estimation results, the spatio-temporal dual-fixed SDM was
finally selected for empirical analysis.

4.1.3 Results of spatial models
Based on different spatial matrices, the regression results for the

static and dynamic spatial Durbin models are shown in Table 8. In
all four models, ATL has a significantly positive effect on AGTFP,
indicating that the estimation model is robust and reliable. In terms
of the fitting degree R2 of the model, the fitting degree of the dynamic
spatial Durbin model is higher than that of the static spatial Durbin
model, indicating that the dynamic spatial Durbin model is more
ideal. This is mainly because the static spatial Durbin model does not
consider the dynamic effect of AGTFP in the process of regression,

TABLE 6 Global Moran’s I values of ATL and AGTFP 2008–2019.

Global Moran’s I values of ATL Global Moran’s I values of AGTFP

Year Moran’s I p-value Year Moran’s I p-value Year Moran’s I p-value Year Moran’s I p-value

2008 0.233** 0.041 2014 0.269** 0.022 2008 0.321* 0.078 2014 0.383* 0.075

2009 0.234*** 0.002 2015 0.273** 0.034 2009 0.334* 0.019 2015 0.401* 0.083

2010 0.247* 0.085 2016 0.271*** 0.008 2010 0.331* 0.096 2016 0.415* 0.064

2011 0.248* 0.097 2017 0.269*** 0.003 2011 0.345** 0.045 2017 0.411** 0.019

2012 0.253** 0.039 2018 0.284*** 0.004 2012 0.363** 0.021 2018 0.422*** 0.004

2013 0.258*** 0.002 2019 0.289*** 0.008 2013 0.371** 0.044 2019 0.434*** 0.001

Note: *, **, and *** respectively denote significance at confidence levels of 10%, 5%, and 1%, respectively.

TABLE 7 Test results of spatial models.

Test methods Statistics Test methods Statistics

LM-lag test 45.543*** Wald-spatial lag test 198.654***

Robust LM-lag test 43.655*** LR-spatial lag test 89.087***

LM-error test 148.553*** Wald-spatial error test 65.437***

Robust LM-error test 68.643*** LR-spatial error test 79.086***

Note: *** denote significance at confidence level of 1%.
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which will also lead to estimation errors. In the regression results of
the dynamic spatial panel model, the coefficients of AGTFPi,t-1 are
positive and pass the significance test of 1%, which fully indicates
that AGTFP has a significantly dynamic effect. Agricultural
production is a continuous and dynamic economic system, and
input and accumulation in its early stage will inevitably be reflected
in economic development, technical level, human capital quality,
and other factors, which will directly affect the agricultural
production activities of this and the following periods.

The dynamic spatial Durbin model based on the geographic
distance matrix has the highest degree of fitting, so we mainly
analyze the regression results of Model 3 in Table 8. The coefficient
of ATL is 0.254 (significant at the confidence level 1%), indicating
that agriculture–tourism integration has a positive impact on
AGTFP. The integrated development of agriculture and tourism
always adheres to the “agriculture-oriented” principle and the
ecological development concept, taking agriculture and rural
areas as the basic support. The process of integration promotes
the intensification, clean production, and management of
agriculture, ultimately promoting AGTFP. The coefficient of ATL
is significantly lower than that of the static space Durbin model,
indicating that this model overestimates the positive effect of ATL
on AGTFP. The coefficient of the spatial lag term of ATL (W*ATL)
is significantly positive at the 5% confidence level, indicating that
there is an interprovincial interaction of ATL and that local ATL will
affect the AGTFP of neighboring provinces. It is thus established
that ATL has spatial spillover effect on AGTFP.

As far as control variables are concerned, the agricultural
industrial structure has a significantly positive effect on AGTFP
according to Table 8. At the same time, agricultural production has
ecological and economic benefits. Increasing the proportion of the
planting industry not only improves the agricultural ecological
environment but also effectively increases agricultural output

value, thus improving AGTFP. Income distribution has a
significantly negative impact on AGTFP. The greater the income
gap between urban and rural residents, the more obvious the priority
of industrial and service development is, while agricultural
development lags behind. Moreover, the widening income
distribution gap will also prompt agricultural producers to focus
on increasing income, leading to the excessive use of chemical
elements and the increase of pollution emissions. Trade
dependence has a significantly positive impact on AGTFP. The
higher the trade dependence, the higher the degree of the
region’s participation in international economic cooperation will
be, which not only helps agricultural producers absorb and apply
international advanced production technology—increasing the
competitive advantage of agricultural products and agricultural
producers’ profits—but also reduces pollution emissions. Disaster-
affected degree has a significantly negative impact on AGTFP. The
expansion of the disaster area will not only cause the loss of
agricultural output and farmers’ income but also damage the
agricultural production environment. The educational level of the
labor force has a significantly positive impact on AGTFP. The
improvement of average education levels not only strengthens the
environmental awareness of agricultural producers and improves
their production skills but also promotes the optimization of the
input factor utilization efficiency of producers, thus improving
AGTFP.

Due to the spatial spillover effect, the coefficient of ATL can no
longer be interpreted as the marginal effect on AGTFP alone.
Therefore, the estimated results need to be decomposed to better
reveal the direct (local) and indirect (spatial spillover) effects of ATL
on AGTFP. The decomposition results of spatial effects are shown in
Table 9. The direct (local) effect of ATL on AGTFP is 0.182
(significant at the 5% confidence level), which indicates that the
growth of ATL in a region can cause its AGTFP to increase by

TABLE 8 Estimation results of spatial Durbin model.

Variable Static spatial Durbin model Dynamic spatial Durbin model

Model 1 (W1) Model 2 (W2) Model 3 (W1) Model 4 (W2)

AGTFPi,t-1 0.298***(3.379) 0.243***(3.670)

ATLit 0.358**(3.909) 0.311***(3.487) 0.254***(4.652) 0.223***(4.094)

AISit 0.203**(3.113) 0.132***(4.191) 0.132***(4.926) 0.287**(3.151)

INCit −0.144* (-1.969) −0.075** (−3.103) −0.123* (-2.158) −0.111** (-3.125)

TRDit 0.304*** (3.743) 0.273*** (4.211) 0.219** (2.765) 0.186*** (4.176)

DISit −0.212* (−2.180) −0.152* (−2.041) −0.231** (−3.045) −0.234** (−3.240)

EDUit 0.114* (2.496) 0.185** (2.989) 0.201* (2.393) 0.132** (2.599)

W*ATLit 0.171** (3.197) 0.181* (2.153) 0.234** (3.195) 0.179** (3.135)

Adj R2 0.811 0.786 0.821 0.781

ρ 0.411*** (3.841) 0.306*** (4.635) 0.225*** (4.819) 0.243*** (5.032)

Log L 142.321 109.043 156.453 142.542

Note: *, **, and *** respectively denote significance at confidence levels of 10%, 5%, and 1%with T values shown in brackets. This table does not report the spatial interaction coefficient of control

variables in the SDM mode.
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0.182%. The indirect (spillover) effect of ATL on AGTFP is 0.130
(significant at the 10% confidence level), indicating that a 1%
increase of ATL in a region can contribute to a 1.30% increase of
AGTFP in its neighboring regions. With the further development
and improvement of agro-tourism infrastructure, regions that
are the first to overcome the difficulties due to the
implementation of a differentiated management mode will be
favored by consumers, attracting more consumers from their
own and neighboring regions in the short term (Zhang and Gu,
2013). On the other hand, under the pressure of competition,
neighboring regions will also make use of local tourism resources
to create unique business models. Therefore, the integrated
development of agriculture and tourism in a region not only
directly drives the development of agro-tourism in a region but
also drives neighboring regions to catch up and innovate. The
integrated development of agriculture and tourism leads to the
upgrading of agricultural infrastructure and the transformation
of economic development in a region, thus leading to changes in
labor distribution, agricultural industry layout, capital element
flow, and modes of land transfer in neighboring areas, and
improving the quality of ecological environment protection
and agricultural development in neighboring areas, which is
beneficial for the improvement of their AGTFP. It should be
noted that, although indirect effects pass the significance test,

their significance level is 5%, which is lower than the 1%
significance of direct effects. The possible reason for this is
that the fierce homogeneous competition in China’s agro-
tourism market is relatively serious, coupled with the
interference of consumers’ aesthetic fatigue, difficulty in
choosing, and psychological gap, so that the spatial spillover
effect of ago-tourism integration is limited.

4.1.4 Results of regional heterogeneity analysis
In view of the great differences in tourism and agricultural

development among different regions in China, this study divided
the whole research region into east, middle, west, and northeast for
empirical testing. The model estimation adopted the dual-ways
fixed SDMmodel based on the geographical distance spatial weight
matrix, with results in Table 10. As can be seen from the analysis
results, the estimation results of the four regions are basically
consistent with the whole region’s samples: the direct (local) effect
and the spatial spillover effect are both significant. This shows that
the aforementioned research results are relatively robust. The
coefficients of AGTFPi,t-1 all passed the significance test,
indicating that all regional AGTFP was affected by the
efficiency of the previous stage. All the four regional spatial
autocorrelation coefficients ρ are greater than 0 and pass the
significance test, which indicates the existence of the spatial

TABLE 9 Decomposition results of spatial effects.

Variable ATLit AISit INCit TRDit DISit EDUit

Direct effect 0.182** (3.043) 0.116*** (3.316) −0.101** (−2.639) 0.194** (3.242) −0.299** (−2.916) 0.172** (2.684)

Indirect effect 0.130* (2.143) 0.105*** (4.027) −0.026** (−2.734) 0.095* (2.293) −0.040 (−0.021) 0.071* (2.459)

Total effect 0.312* (2.283) 0.221*** (3.982) −0.137* (−1.999) 0.289* (2.235) −0.339** (−3.164) 0.243** (2.961)

Note: *, **, and *** respectively denote significance at confidence levels of 10%, 5%, and 1% with T values shown in brackets.

TABLE 10 Estimated results of different regions.

Variable Eastern region Central region Western region Northeast region

AGTFPi,t-1 0.385*** (4.279) 0.376*** (3.770) 0.343*** (4.379) 0.365*** (4.760)

ATLit 0.276** (2.578) 0.314** (3.213) 0.191** (3.174) 0.166** (2.665)

AITit 0.155* (2.113) 0.145* (1.995) 0.129* (2.411) 0.137* (1.997)

INCit −0.114* (−1.985) −0.154* (−2.011) −0.143* (−2.341) −0.151* (−2.168)

TRDit 0.281** (3.241) 0.276** (3.186) 0.164 (1.663) 0.149* (2.086)

DISit −0.232* (−2.132) −0.265** (−3.211) −0.309** (−3.042) −0.215** (−3.121)

EDUit 0.302* (2.215) 0.265** (3.164) 0.209 (1.223) 0.246** (3.214)

W*ATLit 0.272* (2.332) 0.155** (2.575) 0.149** (2.791) 0.093 (1.175)

Adj R2 0.8911 0.8432 0.8224 0.7857

ρ 0.214** (2.841) 0.243** (2.601) 0.197** (2.645) 0.146** (2.635)

Log L 115.632 143.721 119.654 74.054

Note: *, **, and *** respectively denote significance at confidence levels of 10%, 5%, and 1% with T values shown in brackets.
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spillover effect of AGTFP. In addition, the coefficients of W*ATLit
in the eastern, central, and western regions are significantly
positive, indicating that the ATL of a local region can have a
positive spatial spillover effect on the AGTFP of its neighboring
regions, although this effect is not significant in the northeast
region.

At the same time, the direct (local) effect and spatial spillover
effect of ATL on AGTFP are considered the difference of the
spillover effect in different regions. The results of spatial effect
decomposition are shown in Table 11. In terms of direct (local)
effect, the central region has the strongest direct (local) effect
(coefficient = 0.312, significant at 5% confidence level). The
spillover effect of ATL on improving AGTFP in eastern region
(the = 0.131, significant at 5% confidence level) is greater than those
of other regions. Comparatively speaking, the eastern region has a
good economic foundation and infrastructure, so tourism,
information, and factor flows can operate conveniently and
efficiently. Therefore, the spillover effect in the eastern region is
more prominent.

4.2 Results of dynamic threshold regression
model and analysis

First, the threshold value and number of threshold variables
should be determined. The threshold value of ATL obtained by 300-
times self-sampling using the Bootstrap method is shown in
Table 12. The results show that the F statistic of a single
threshold of ATL passes the test at a 5% significance level, with a
threshold value of 0.603. Because neither double nor triple
thresholds pass the significance test, a single threshold panel
threshold regression model for empirical testing was thus
established.

Biased results will be obtained if the OLS method used to
estimate the threshold regression model contains lagged items of
explained variables. Therefore, the system generalized method of
moments (GMM) method is used here for estimation, with
regression results shown in Table 13. When ATL (of the whole
research region) is lower than the threshold value of 0.603, its
regression coefficient is 0.207 (significant at 5% confidence level),
which passes the test at 5% significance level. When ATL exceeds
0.603, the regression coefficient is 0.394 (significant at 5%
confidence level). This indicates that, with increased
agricultural–tourism integration, its effect on AGTFP is generally
enhanced.

At the same time, the dynamic panel threshold effects were
estimated for four different regions, and the number of threshold
values and variables in different regions were determined. It was
found that there was just one threshold value in each of the four
regions (Table 13). As shown in Table 13, the eastern region has the
lowest threshold value (ATL = 0.573) of the four regions. When ATL
is less than the threshold value, its regression coefficient is 0.221
(significant at 1% confidence level), and, when ATL crosses the
threshold value, its coefficient increases to 0.416 (significant at 1%
confidence level). The eastern region has convenient transportation,
suitable climate, and a higher urbanization and economic level, so its
residents have a higher demand for agro-tourism. With improved
integration of agriculture and tourism, the agricultural ecological
value is further highlighted, which also enhances of the ecological
consciousness of agricultural producers. They will therefore take the
initiative to adopt green production methods and strengthen
agricultural ecological and environmental behavior to enhance
AGTFP. The western region has the highest threshold value
(ATL = 0.621). When ATL is less than the threshold value, its
influence coefficient is not significant, but when it crosses the
threshold value, its coefficient increases to 0.289 (significant at

TABLE 11 Decomposition results of spatial effect in different regions.

Variable Eastern region Central region Western region Northeast region

Direct effect 0.251** (3.195) 0.312** (2.947) 0.137** (3.191) 0.123** (3.131)

Indirect effect 0.131** (2.931) 0.099** (3.125) 0.076** (2.626) 0.045 (1.005)

Total effect 0.382** (2.814) 0.411** (3.163) 0.203** (2.853) 0.168** (1.982)

Note: ** denotes significance at confidence level of 5%.

TABLE 12 Threshold effect test.

Threshold variable Model test Threshold estimate F statistic p-value Critical values

1% 5% 10%

ATL Single threshold 0.603 28.117*** 0.001 26.097 15.654 9.813

Double threshold Threshold 1:0.603 0.098 0.298 13.911 7.987 4.874

Threshold 2:0.702

Triple threshold 0.581 2.432 0.198 8.987 6.686 4.116

Note: *** denotes significance at confidence levels of 1%.
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5% confidence level). This indicates that, when the level of
agricultural–tourism integration in western China is relatively
low, it cannot significantly promote the growth of AGTFP; only
when ATL climbs to a higher level is its impact on improving
AFTGP significant. This is mainly because most western provinces
are economically underdeveloped, so it is difficult to promote
advanced agricultural technology, and the market space of
agricultural tourism is relatively limited. In addition, natural
resources and climate conditions in this region are poor, so it is
more difficult to promote agriculture–tourism integration.
Therefore, ATL has no significant influence on AGTFP in the
early stage of integration. When ATL exceeds the threshold of
0.621, agro-ecological capital can create more value for
agricultural producers, leading them to pay more attention to
agricultural green development. They will then consciously
reduce the input of harmful environmental elements in the
production process, ultimately improving AGTFP and enhancing
the effect of ATL on AGTFP.

5 Conclusion and policy
recommendation

5.1 Conclusion

Based on the panel data of 30 provinces in China from 2008 to
2019, this study used the dynamic spatial Durbin model and
threshold model to verify whether the integration of agriculture
and tourism can promote AGTFP. The conclusions of this
study are

(1) During the study period, AGTFP in the whole study area
showed an upward trend, though there were fluctuations,
and the average annual growth rate was 2.26%. The average
annual growth rates of AGTFP in the eastern, central,
western, and northeastern regions during the study
period were 2.06%, 2.31%, 2.53%, and 2.10%, respectively.
In recent years, the central government has attached great

importance to environmental protection, aimed at
agricultural pollution, which has greatly contributed to
the growth of AGTFP.

(2) The impact of agriculture–tourism integration on AGTFP has a
spatial spillover effect. The improvement of this integration in
adjacent areas is conducive to increased AGTFP in the local
region. For the whole research region, the direct (local) effect of
ATL on AGTFP is 0.181, indicating that the growth of ATL in a
region can lead a region’s AGTFP to increase by 0.181%. The
spillover effect of ATL on AGTFP is 0.130, indicating that a 1%
increase of a region’s ATL contributes to a 1.30% increase of
AGTFP in its neighboring region. As for different regions, the
central region has the strongest direct (local) effect, while the
spillover effect of ATL on AGTFP in the eastern region is the
greatest of the four regions.

(3) There is a threshold effect of agriculture–tourism integration
on AGTFP, and there is a single threshold in the whole area
and four different subdivisions. When the ATL of the whole
research region is lower than the threshold value of 0.603, the
regression coefficient of ATL is 0.207; however, when ATL
exceeds 0.603, the regression coefficient increases to 0.394.
This indicates that, with the increase in ATL, its effect on
AGTFP is enhanced. Among the four regions, the eastern
region has the lowest threshold value (ATL = 0.573), while the
threshold value of ATL in the western region is the highest
(ATL = 0.621). When the ATL of the western region is below
the threshold value, its effect on AGTFP does not pass the
significance test; only when it exceeds the threshold value
does it have a significantly positive effect on AGTFP.
Therefore, improving ATL is important for promoting
AGTFP.

5.2 Policy recommendation

The conclusions of this study provide the following
recommendations for promoting agriculture–tourism integration
and giving full play to its role in improving AGTFP:

TABLE 13 Threshold effect estimation results.

Region Explanatory variable Threshold estimate Coefficient T value Standard error

Whole region ATL ATL≤0.603 0.207** 3.035 0.001

ATL>0.603 0.394** 2.986 0.025

Eastern region ATL ATL≤0.573 0.221*** 5.098 0.007

ATL>0.573 0.416*** 3.805 0.087

Central region ATL ATL≤0.581 0.298*** 4.981 0.002

ATL>0.581 0.411*** 3.912 0.011

Western region ATL ATL≤0.621 0.177 1.093 0.132

ATL>0.621 0.289** 2.775 0.014

Northeast region ATL ATL≤0.594 0.172* 2.313 0.072

ATL>0.594 0.207** 3.211 0.032

Note: *, **, and *** denote significance at confidence levels of 10%, 5%, and 1%, respectively.
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(1) Top-level design of policies and institutions should be
optimized and improved. Incorporating the integrated
development of agriculture and tourism into the framework
of agricultural green development should be taken into
consideration. All regions should fully combine the
characteristics of resource endowment and systematically
plan and jointly develop agricultural and tourism resources
and elements. It is very important to promote the effective
integration of the industrial and value chains of agriculture and
tourism and to promote the deeply integrated development of
the two industries. It is also necessary to build an integrated
agglomeration area of agriculture and tourism to achieve
industrial agglomeration.

(2) Considering the positive spatial spillover effect of the
integration of agriculture and tourism, the timely
promotion of regional coordination mechanisms by
exploring a reasonable development model for dividing
economic zones and administrative regions is necessary.
Practical regional cooperation should be strengthened by
signing strategic cooperation agreements and promoting
effective cooperation between administrative regions in
many ways, such as platform construction, industrial
integration, public services, and personnel exchanges.
Difficulties such as the consolidation of interests,
homogenization of competition, lagging administrative
control, and lagging institutions in trans-regional
governance should be resolved effectively.

(3) We should find ways to innovate the development of
agriculture–tourism integration, thus promoting the
upgrading of the agro-tourism association. Promoting the
knowledge, management, and technology of
agriculture–tourism integration spills over into relevant
agricultural operating subjects. We can thus optimize the
allocation of agricultural labor, land, capital, technology,
management, and other production factors to improve the
overall agricultural technological progress and efficiency, thus
also improving AGTFP.

(4) Rural human capital cultivation should be strengthened.
Promoting the integrated development of agriculture and
tourism requires the support of high-quality skills.
Developing agro-tourism requires flexible measures and
recruiting talent, basic skilled personnel, middle or senior
management, and operations personnel. At the same time,
rural vocational and technical education should be
strengthened, agricultural technology should be
promoted, and the vocational skills of local laborers
should be improved to enhance the level of rural human
capital, which will better help agricultural–tourism
integration promote AGTFP.

Although this study has determined the spatial and non-
linear effects of agriculture and tourism integration on AGTFP, it
has some limitations. First, we only conducted a theoretical
analysis of the influence mechanism of the integration of
agriculture and tourism on AGTFP, which should be further
empirically tested. Second, the study period in this paper ends in
2019. Considering the huge impact of COVID-19 on tourism

since 2020, official statistical data from 2020 and later were not
included in the research observation period of this paper. In the
future, statistical data should be continuously tracked and
updated, especially focusing on the integrated development
and evolution of agriculture and tourism after the start of the
14th Five-Year Plan of China. Third, due to data limitations, we
conducted the empirical research at the provincial level; in future,
more micro-analysis will be carried out by selecting typical cases,
such as national demonstration counties of leisure agriculture
and rural tourism or key villages of rural tourism, so as to improve
the accuracy of the research conclusions.
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Introduction: During the last decades, environmental pollution has been
considered one of the challenges of the agricultural sector, which has affected
the relationship between the ecological and economic performance of
agricultural products.

Methods: In this study, the DEA-MBP approach based on the SBMmodel has been
used to investigate the eco-efficiency of saffron farms in Iran. Themain purpose of
this approach is to decrease GHG emissions by mitigating the use of highly
polluting production inputs.

Results: The results showed that the average eco-efficiency is estimated at 74%
and is 12% lower than technical efficiency without considering environmental
issues. Therefore, saffron producers are 26% far from full efficiency, and theymust
change their consumption of inputs and production of inputs according to
environmental issues in order to achieve it. Excessive use of diesel fuel and
fungicides is cause of GHG emissions in these farms.

Discussion: The use of sustainable and ecological cultivation methods in farms in
order to reduce the consumption of chemical fertilizers and fungicides should be
considered. Replacing old machinery and repairing them can also considerably
reduce fuel consumption and GHG emissions.

KEYWORDS

data envelopment analysis, undesirable output, chemical fertilizer, excess carbon
dioxide, Ghayenat County

1 Introduction

One of the important and complex problems in agriculture is considering the mutual
relationship between economic development and the environment. Although agricultural
activities are essential to human society and have some advantages such as food supply,
income for farmers, and the growth and development of rural areas, these activities have
caused the 26% of GHG emissions and climate change at the international level from 2006 to
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2016 (FAO (2018). Maintaining environmental quality and balance
between human activities to pursue the objectives of economic
development and the capacity of natural regenerative resources is
one of the global challenges. For this purpose, several international
organizations such as the UN and the UNFCCC have pushed for the
realization of the sustainable development paradigm. However, the
prevalence of unsustainable agriculture in most countries has raised
widespread concerns in the international arena. It has turned the
need to consider the increasing economic gains given the
importance of sustainable development as one of the challenges
for researchers and policymakers (Martinsson & Hansson, 2021).

Estimating ecological and economic efficiency (EEE) or eco-
efficiency in different sectors of agriculture has received much
attention from researchers on how to increase sustainability in
agriculture. Eco-efficiency was introduced as an operational concept
to assess sustainability in 1990 (Schaltegger, 1996), and it was revised by
the World Trade Council for Sustainable Development to encourage
producers to compete and be more environmentally friendly in
1992 and 2000 (Schmidheiny, 1992; WBCSD, 2000). In fact, by
estimating EEE, it is determined to what extent environmental
damage can be reduced and, by minimizing damage to the
environment, sustainable development can be improved in economic
enterprises (Pang et al., 2016; Güngör et al., 2022).

Eco-efficiency can be used at bothmacro andmicro levels. At the
macro level, the concept of EEE reminds us that GDP growth should
not be related to negative effects on the environment as much as
possible. Besides being satisfied with the increase in consumption of
goods, society should benefit from a good quality environment
(Zhong et al., 2022). At the micro level, EEE means that greater
economic value can be achieved with less environmental damage. It
should be mentioned that since this measure is relative, its
improvement does not necessarily guarantee the production’s
sustainability, and to ensure sustainability, definite amounts of
pressure imposed on the environment should be considered
(Huppes & Ishikawa, 2005). However, despite the limitations of
EEE, this measure is very important and popularity. One of the
advantages of EEE is the identification of actionable policy goals
rather than mandatory activities such as limiting the level of
economic activity. Improving EEE includes units that often do
not produce at the economic efficiency Frontier; Therefore, in
addition to reducing environmental effects, there is an
opportunity to save production costs (Ekins, 2005).

Saffron planting is considered a strategic and vital component of
the national economy of Iran due to its unique position in job
creation in the agricultural sector and the creation of significant
foreign exchange income for this country. Some of the particular
advantages of saffron are low irrigation, high product durability,
exploitation for 5–7 years in one planting period, ease of
transportation, productive employment, and significant currency
enhancement, which has led to the development of its cultivated area
in Iran, especially in areas without agricultural potential (Saeidi
et al., 2022). The product’s compatibility has made Iran the largest
producer of saffron in the world, producing 430 tons of saffron in
2019, more than 90% of global production and 3.5% of global market
share (Statista, 2020). Given the benefits of saffron cultivation,
increasing the production and yield of this product also has
caused many environmental problems. The negative
consequences of saffron cultivation have been estimated as GHG

emissions and nitrogen and phosphorus flow of 18.54, 8.18, and
5.18 million tons per year, respectively, in Khorasan Razavi
province, Iran (Bakhtiari et al., 2015). Thus, considering the
environmental pollution in calculating the efficiency of saffron-
producing units can identify the units that have been active in
economic saffron production and have caused the least damage to
the environment, and introduce them as a suitable model for others.
In this regard, the present study examined this criterion at the level
of saffron farms and identified the inputs that had the most
significant impact on eco-inefficiency by determining the factors
related to eco-inefficiency.

1.1 Review of literature

To estimate efficiency, there are two main approaches,
parametric and non-parametric. Parametric approaches are
specified by a functional form, while non-parametric approaches
do not require an specific functional form (Mardani Najafabadi
et al., 2023). Currently, one of the most widely used methods of
evaluating efficiency in agricultural production is data envelopment
analysis (DEA), which is known as a non-parametric approach. The
main advantage of this method is the ability to use multiple inputs
and outputs to measure the relative efficiency of a set of
homogeneous decision-making units or DMUs (Sabouhi &
Mardani, 2017). On the other hand, one of the topics that have
been the focus of researchers in the field of efficiency evaluation with
regard to environmental issues is the Material Balance Principle
(MBP). The law of conservation of matter/energy is a basic
biophysical condition that states that the flow leaving or entering
the environment is equal or balanced. However, Lauwers (2009)
stated that MBP had been neglected in most studies conducted in
this field. One of the most common models in the field of
introducing undesirable data into efficiency measurement models
is the Directional Distance Functions (DDF) introduced by Chung
et al. (1997). However, despite the popularity of this model and
many models of EEE estimation, Coelli et al. (2007) raised many
criticisms that these models are not compatible with MBP.

Many studies have been conducted in examining EEE and various
efficiency indicators have been used for this purpose. The first studies in
this field have generally attentive to the effect of pollution control on
economic growth at the macro level (Christainsen & Haveman, 1981;
Gollop & Roberts, 1983; Färe et al., 1989). Using this method, several
limited studies have been performed at the micro level, including the
study of Pashigian (1984) and Pittman (1981). Later, Pittman (1983)
calculated the EEE of Wisconsin paper factories by incorporating
environmental variables into common productivity indicators. In this
method, pollution is considered a cost variable. The important point
about adjusted productivity indicators is that, unlike conventional inputs
and outputs (IOs), the price of undesirable variables such as pollution is
not known, and some proxies (observed indicators such as pollution
taxes) should be used for the price of these variables (Coelli et al., 2007).
The first studies that included environmental variables were also
evaluated on the assumption that reducing pollution is a costly activity.

In general, environmental efficiency studies can be classified
into two important categories by considering environmental
pressure variables as undesirable inputs or outputs (Long,
2021). A large part of the first studies in this field have
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incorporated environmental pressures such as pollution or waste
increase as undesirable inputs or outputs into efficiency
measurement models (Tyteca, 1997), and the other part
focused on the explanation of EEE as the economic value ratio
and environmental damage (Kuosmanen & Kortelainen, 2005),
much attention was paid to ecological characteristics, and unlike
the first category models in which physical IOs entered the model
directly, only economic value added and environmental variables
were included in the model (Kuosmanen & Kortelainen, 2005;
Picazo-Tadeo et al., 2011; Martinsson & Hansson, 2021).

Many studies in the first category have used Frontier models
to measure the EEE introduced by Tyteca (1997). These models
are placed in two categories of parametric and nonparametric
Frontier approaches. Lauwers (2009) in his study showed that
most studies on efficiency measurement models, including
nonparametric Frontier models, have not considered the
MBP. Coelli et al. (2007) also examined some studies in EEE
with DEA models (Färe et al., 1989; Färe et al., 1996; Reinhard
et al., 2000) and showed that these studies are only compatible
with MBP requirements in certain conditions and do not comply
with this principle in general. In this regard, Coelli et al. (2007)
criticized the DEA models used in these papers, including the
DDF model that is matchable with MBP requirements. In
another study, the network DDF model combined with the
MBP was used to estimate the EEE of coal-fired power plants
in the US (Färe et al., 2013).

Among the drawbacks of the DEA-MBP model presented by
Coelli et al. (2007) model is that, first, it does not consider the actual
amount of pollution that is difficult to find in agriculture. Also, this
model cannot show the difficulty of the production and disposal of
pollutants. Finally, when the number of inputs is too large, the
validity of the results is severely influenced (Arabi et al., 2017).
Overall, a more inclusive and MBP-compliant model is needed to
measure EEE. Later, Arabi et al. (2017) provided a complete model,
including input-orientation and easy application of others, and the
inability of distance models and Slacks-Based models (SBM)
introduced by Färe et al. (2013) in determining the optimal
composition of fuels.

According to review studies done by Zhou et al. (2018) and
Emrouznejad and Yang (2018), the agriculture sector had the
highest focus of studies during 2015–2016. Many studies have
also applied the DEA approach in this area, including Grassauer
et al. (2021) who used a combination of DEA and LCA approaches
to estimate the EEE of Austrian farmers with different types of
agricultural activities.

Martinsson and Hansson (2021) examined the EEE of the dairy
farmers in Austria and used zero net emissions by 2045 to
determine a specific emissions threshold. Some research shows
that most industrialized countries such as China have low EEF
(Yao et al. (2018); Pang et al. (2016) examined the EEE of the
agricultural sector in China. For this purpose, he used the DEA
technique and the Theil index. In this study, non-radial SBM
models have been used, and several undesirable outputs of total
nitrogen, total phosphorus and agricultural plastic waste have been
considered; Gómez-Limón et al. (2012) calculated the EEE of olive
farms using the DDF and distinguished in Andalusia (Spain).
Picazo-Tadeo et al. (2011) examined the EEE of drip-irrigation
farms in Castilla y León (Spain). The study of several

environmental indicators and the calculation of deficiency and
excess of these indicators for production units were among the
innovations of his study.

Selecting environmental-economic variables based on type of
activity is one of the important issues in the study of EEE. In some
studies, various variables have been used as environmental pressure
indicators. Nemecek et al. (2011) divided environmental indicators
into three main groups: resource, nutrient, and pollution indicators.
Each category considers different aspects of the environment and
different management options. For example, Martinsson and
Hansson (2021) considered the cost of fuel, heating equipment,
and the cost of fertilizers as indicators of environmental pressure.
Grassauer et al. (2021) used cumulative energy demand, normalized
eutrophication potential, and global warming potential. Urdiales
et al. (2016) used carbon dioxide emission data. Arabi et al. (2017)
applied sulfate gas produced in a power plant over a 1-year period as
an indicator. Mulwa et al. (2012) selected excess nitrogen and
phosphate fertilizers as the environmental pressure indicators.

After thorough research on different past studies and
environmental data, we applied excess carbon dioxide equivalent
as an environmental pressure indicator in the present study. It is
worth mentioning that no study has been done so far to calculate the
EEE of saffron, and only in some, environmental issues of cultivation
of this crop have been investigated. For example, in the study of
Bakhtiari et al. (2015), the emission rate equivalent to carbon dioxide
in the saffron production cycle during 5 years was calculated using
conversion coefficients of inputs. Feizi et al. (2015) investigated the
energy efficiency of saffron in Khorasan Razavi province. According
to their study, saffron farms had an stable and efficient system
(economically) in the Khorasan Razavi province.

Thus, this study aimed to investigate the EEE of saffron producers
using the DEA-MBP model. In addition, examining the difference
between the optimal consumption of inputs in the two cases, with and
without considering the environmental pressure is another goal. In
general, this study has contributed to the literature in two aspects. First,
the DEA-MBP method has not been used in agriculture so far. Second,
the calculatingmethod of the environmental pollutant variable has been
introduced for the first time; thus, the interaction of the environmental
and economic variables is better indicated. In addition, this type of
calculation is consistent with the limitations of the lack of proportionate
GHG emission data from agricultural activities and provides valuable
information to the researcher.

1.2 Case study

Saffron is widely cultivated in Iran due to its high added value.
The main centers of saffron production in this country are the
Khorasan Razavi and South Khorasan provinces and 76% of Iranian
saffron is produced in these two provinces (Statista, 2020). South
Khorasan province ranks second in saffron cultivation with
17,000 ha of cultivated area and production of 66 tons of this
product. Meanwhile, Ghaen County is considered the saffron
capital of Iran and with an global brand in saffron production in
terms of the quality of this product (Bazrafshan et al., 2019). This
County is located in the east of Iran and the north of South Khorasan
province at latitude: 15.33 and longitude: 34 and 38.58–56.60
(Figure 1). The climate of this County is highly influenced by the
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heights of the mountains are stretched in the vicinity of that. Ghaen
County is located such that at the beginning of the cold season, it is
announced as the coldest point in Iran (Khanali et al., 2017). The
average annual rainfall in this County is 180 mm, and it is
recognized as the rainiest County in the province. The
fluctuations and changes in temperature are high in Qaen both
temporally and spatially. The range of average monthly temperature
changes during the year is 23.5°C. The absolute maximum and
minimum are 41oC and 28°C, respectively. Due to the geographical
and climatic location of this County, the cultivation capability of
strategic crops such as saffron is of great importance (Statistical
Center of Iran, 2020).

2 Materials and methods

In this study, to calculate the EEE at the farm level, the DEA-
MBP model developed by Arabi et al. (2017) was selected and
adjusted based on the IOs of saffron production and the appropriate
environmental pressure index. In this section, first, the DEA model
and the MBP were explained, and the integration of MBP
requirements in DEA models was also discussed. Then, a
comprehensive model of EEE, considering the inputs in three
categories of high and low pollutants and independent variables
are presented. Finally, the IOs used in the research and how to
estimate them are explained. The conceptual framework of the steps
to determine the EEE of saffron is shown in Figure 2. The following
presents the additional explanations of this Figure.

2.1 Data envelopment analysis (DEA)

DEA is a non-parametric method that determine the efficiency
of those DMUs that have similar IOs using the linear programming
and does consider the basic assumption of a consequential
relationship between IOs (Mardani Najafabadi & Taki, 2020). As

this approach encompasses all numbers and information, it is
known as comprehensive data analysis. This method is used in
the study of Charnes et al. (1978) based on Farrell’s approach. Then,
efficiency calculations in different conditions were invented and
introduced by different DEA models (Emrouznejad & Yang, 2018).

2.1.1 The conditions of DEA-MBP models
In the following, first the conditions of material balance and

incompatibility of DDF model with these conditions are expressed.
To use MBP Equations, if α and b are defined as the non-negative
coefficients, the amount of pollution can be calculated as:

Z � α′X − b′y (1)
Where X, y and Z are inputs, outputs and pollution rate per unit

of production, respectively.
The DDF model is that the model seeks the maximum amount

of θ that can keep the vector X, y + θy, and Z − θZ within
production possibility set. If these vectors are substituted in Eq.
1, we obtain: Z − θZ � α′X − b′(y + θy).

For efficient units, if � 0 , the unit is located on the Frontier and
the MBP is established.

The Coelli et al. (2007) model can be represented as model (2) by
considering N DMUs:

∑N
n�1

λnXni ≤Xe
oi i � 1, . . . ., I

∑N
n�1

λnynj ≤yoj j � 1, . . . ., J

λn ≥ 0, n � 1, . . . , N

(2)

where o represents the DMU under study, Xe
oi is calculated to find

the best input to produce the lowest amount of pollution, Xni and
ynj represent the ith input and jth output of n unit, respectively, and
λn is the unit vector of fixed values. Despite This DEA-MBP model
benefits, as mentioned earlier, some of its limitations cause
inadequacy in application for some industries.

FIGURE 1
Geographical location of Ghaen County.

Frontiers in Environmental Science frontiersin.org04

Mardani Najafabadi et al. 10.3389/fenvs.2023.1184458

107

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1184458


2.1.2 Modified DEA-MBP model
There are several models that comply with the MBP

requirements. Here is an SBM model for calculating inefficiency
as model (3) (Färe & Grosskopf, 2010):

Do x, y( ) � Max ∑I
i�1
ai+∑J

j�1
βj

S.t.

∑N
n�1

λnXni ≤Xio − ai.1; i � 1, . . . ., I

∑N
n�1

λnyjn ≥yjo + βj.1 ; j � 1, . . . ., J

λn ≥ 0, βj ≥ 0, ai ≥ 0; i � 1, . . . ., I, j � 1, . . . ., J, n � 1, . . . , N

(3)

Finally, in order to model EEE in a wider way and to solve the
defects of model 3, the inputs are classified into two categories of
high and low pollutants. Based on this, the EEE model is presented
as an alternative to model (4):

Do X, y, Z( ) � Max∑L
l�1
alL+∑H

h�1
ahh+∑M

m�1
am+∑J

j�1
βj+∑K

k�1
γk

S.t.

∑N
n�1

λnxl ln ≤xllo + all · 1; l � 1, . . . ., L

∑N
n�1

λnxhhn ≤ xhho − ahh · 1; h � 1, . . . ., H

∑N
n�1

λnxn ≤ xmo − am · 1 ; m � 1, . . . .,M

∑N
n�1

λnyjn ≥yjo + βj · 1 ; j � 1, . . . ., J

∑N
n�1

λnzkn � zko − γk · 1 ; k � 1, . . . ., K

γk −∑J
j�1
bjkβj �∑H

h�1
ahhkahh −∑L

l�1
allkall; k � 1, 2, . . . ., K

λn ≥ 0, all ≥ 0, ahh ≥ 0, γk ≥ 0, am ≥ 0, βj ≥ 0; n � 1, . . . , N, i � 1, . . . ., I,

k � 1, . . . ., K,m � 1, . . . ,M, h � 1, . . . ., H, l � 1, . . . ., L, j � 1, . . . , J

(4)

FIGURE 2
Conceptual framework to determine the EEE of saffron.
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The definition of symbols in this model is as follows:

xh: high pollution inputs
xl: low pollution inputs
x: non-polluting inputs
αh: rates of reduction and expansion of high emissions
αl: rates of reduction and expansion of low emissions
α: rate of reduction of non-polluting inputs
ah: The share of inputs pollution with high pollution
al: The share of inputs pollution with low pollution

Obviously, we should have αh> al, because if have αh � al, there
is no need to distinguish between high and low pollution. Thus, as
one of the requirements of mathematical programming models,H +
L + M = I should be here, where I indicates the total number of
inputs.

2.2 Statistical sampling

The statistical population of this research is saffron producers in
Ghaen County in South Khorasan province in Iran. The data used
for the DEA-MBP model (Eq. 4) is cross-sectional. Therefore, the
information needed to calculate the EEE was collected by
completing 237 questionnaires by saffron growers in the region
in 2020 using random sampling.

2.3 Input and output (IO) data

The input and output data used inModel (4) are explained below. In
past studies in the field of investigating the efficiency of saffron farms,
these variables have been used as themain inputs and outputs (Bakhtiari
et al., 2015; Feizi et al., 2015). In this model, the inputs used were
classified into three groups of inputs with high pollution, low pollution,
and independent variables. Thus, to achieve greater EEE, we can replace
low-emission inputs with high-emission inputs. Also, the environmental
pressure variable enters the model as an undesirable output, to increase
the desired output (economic variable) and minimize environmental
pollution. In the present study, the equivalent carbon dioxide excess is
considered as a variable of environmental pressure (Nemecek et al., 2011;
Picazo-Tadeo et al., 2011; Urdiales et al., 2016; Grassauer et al., 2021;
Martinsson & Hansson, 2021). In order to calculate this variable, the
conventional DEAmodel was first estimated and the input consumption
excess was calculated. Finally, using theGHGconversion coefficients, the
CO2 equivalent of pollutant inputs was calculated and its sum as the
undesirable output entered the model (Figure 2). Also, based on the EEE
model, the inputs used were divided into three categories of inputs with
high pollution, low pollution and independent variables. The
classification of these inputs was performed according to the
conversion coefficients of GHG. Thus, the inputs with a conversion
coefficient higher than 1, was assigned to highly-pollutant inputs and
inputs with a coefficient of less than 1 were dedicated to the low-
pollutant inputs (Guo et al., 2022). Also, two inputs of water and seed are
independent inputs in this study.

2.3.1 Production inputs
1- Seed: Saffron cormis the main factor in the growth of saffron
flowers and choosing a good daughter corms frommother corms

is one of the most significant factors affecting the quality of
saffron. This corm is usually oval-shaped and contains brown
straws that protect it from dryness and soil heat by absorbing
moisture.
2-Water: Suitable water supply in terms of quantity, quality and
irrigation schedule is a key strategy in achieving appropriate
saffron yield. Saffron has high irrigation efficiency and drought
tolerance, and although it needs irrigation in arid regions such as
Iran, it has less irrigation requirement than other conventional
agricultural products. Experts believe that plants that have more
main root length, number of lateral roots, root length density and
root-to-shoot ratio are more resistant to drought tolerance
(Farooq et al., 2009).
3- Chemical fertilizers: Phosphate, nitrogen, and phosphorus
fertilizers are the most widely used chemical fertilizers in saffron
cultivation. The determination of the amount of use of these
fertilizers, according to the amount of these elements in the farm
soil and also their timely use, in addition to affecting the amount
and quality of saffron, it is effective on the amount of GHG
emissions and pollution of water resources.
4- Animal manure: Animal manure is used to provide the
organic matter needed by the saffron plant. The replacement
rate of this fertilizer with chemical fertilizers and determining the
appropriate time of its use affects the quality and quantity of
saffron products.
5- Fungicides: The color, smell and taste of saffron are attractive
to many rodents, birds, insects, etc. One of the methods to fight
against pests and diseases of saffron is to disinfect the bulbs with
fungicides and acaricides before planting. Also, the fungicides are
useful to prevent or minimize the attacks of fungi as Fusarium
oxysporum and Rhizoctonia violacea.
6-Manpower: This variable is the number of hours of manpower
use per hectare during the production period of saffron. In Iran,
for saffron cultivation, high manpower is used compared to
conventional crops such as wheat. However, according to
some studies, the number of manpower decreases with
increasing land size, which indicates an increase in
dependence on machinery with increasing land size.
7- Machinery: In different stages of planting, growing and
harvesting saffron products, different machines are used along
with manpower and as a substitute for manpower. The total
hours of use of these machines per hectare has been used as a
machineries variable in estimating the efficiency of saffron.
8-Diesel fuel: The use of agricultural machinery from fossil fuels
is one of the main causes of GHG emissions. The amount of
diesel fuel used per hectare has been used as one of the input
variables in calculating efficiency. The use of old and
disproportionate machines with agricultural operations and
farm area is one of the factors of high fuel consumption in
saffron fields.

2.3.2 Production outputs
As mentioned before, in this study, saffron stigma is considered

as a desirable output and the equivalent carbon dioxide excess GHG
as an undesirable output.

1- Saffron stigma: Saffron stigma is the most important part of
saffron that is used as coloring and flavoring agent. Therefore, the
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yield of stigmas harvested per hectare is considered as the
desirable output.
2- The carbon dioxide equivalent excess of inputs: Due to the
lack of comprehensive information on the net emission of GHG
from saffron farms, the total carbon dioxide equivalent of GHG
from the consumption of inputs was applied according to
previous studies (Nemecek et al., 2011; Urdiales et al., 2016;
Grassauer et al., 2021; Martinsson & Hansson, 2021). Since some
of these inputs are absorbed by the plant, in this paper, only the
excess consumption of polluting inputs is considered as
undesirable output for each farm. Thus, this variable, instead
of measuring the pollution potential of inputs, has been
calculated according to the f excess farm consumption of
these inputs. This indicates the effect of technical inefficiency
of farms on the level of environmental pressure and the
relationship between economic and environmental issues is
emphasized.

2.4 Data processing

In order to calculate the undesirable output mentioned in the
above paragraph, first, the envelopment analysis model of
conventional output-oriented data was estimated and based on
that, the excess consumption of inputs was calculated using the
output and inputs referred in the research. Then, the excess carbon
dioxide equivalent consumption of GHG emission inputs was
calculated using the GHG conversion coefficients of each input
and their sum was entered into the model as undesirable output. The
GHG conversion ratio of the inputs used in this research is shown in
Table 1.

A statistical description of the IOs defined above is given in
Table 2. As mentioned earlier, the inputs used are divided into three
categories of high-pollution, low-pollution and independent inputs,
which are categorized according to the size of the GHG conversion
coefficients of each input (Table 1). Thus, the inputs with a

TABLE 1 GHG conversion coefficients of saffron production inputs.

Inputs Unit Equivalent to kg of CO2 per unit Sources

Potassium kg 0.15 Lal (2004)

Nitrogen kg 1.3 Lal (2004)

Phosphate kg 0.2 Lal (2004)

Manure Ton 0.005 Mohammadi et al. (2014)

Fungicides kg 3.9 Lal (2004)

Machinery MJ 0.071 Khoshnevisan, Rafiei, et al. (2013a)

Fuel Liter 2.76 Khoshnevisan, Rafiei, et al. (2013b)

Electricity kWh 0.608 Khoshnevisan, Rafiei, et al. (2013a)

Manpower hour 0.7 Nguyen & Hermansen (2012)

TABLE 2 Statistical description of IOs used in saffron cultivation in Ghaen County per hectare.

Unit Average Minimum Maximum Coefficient of variation

Inputs Low-Polluting Potassium kg 5.67 0 96 277.96

Phosphate kg 11.17 0 250 275.70

Manure Ton 32.19 10 90 53.20

Manpower hour 972.56 227 3,024 45.59

Electricity kWh 22,383.01 8,384 39,300 18.38

High-Polluting Nitrogen kg 62.37 0 350 79.87

Fungicides kg 1.72 0 3 48.80

Machinery MJ 41.96 8.67 93.33 39.04

Fuel Liter 535.16 94 1,535 42.37

Independent Seed kg 5,682.74 500 50,000 78.51

Water Cubic meter 4,901.33 3,000 6,500 23.55

Outputs Desirable Yield (stigma) kg 8.39 5 12 18.42

Undesirable Carbon dioxide equivalent kg 7,714.53 0 17,300.23 62.01
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conversion coefficient greater than 1 kg/unit are selected as high
pollutant inputs and inputs with a conversion coefficient of less than
1 are low pollutant inputs. This classification enables the model to
replace high-polluting with low-polluting inputs, in addition to
minimizing the consumption of inputs (product maximization).

According to Table 2, among the inputs, the highest coefficient
of variation is assigned to chemical fertilizers of potassium (277.96),
phosphate (275.70) and nitrogen (79.78), and after seed input,
animal manure has the highest variation coefficient. This can be
due to the replacement of chemical fertilizers with each other and
with animal manure in different farms. It is worth to mention that
the carbon dioxide equivalent, which is considered as the potential of
each unit in environmental pollution, also has a high coefficient of
variation, which indicates the difference between the use of units of
different inputs and with different polluting percentage. Therefore, it
can be concluded that modifying the method by which units use
different inputs and considering environmental factors, can have a
significant effect on reducing environmental pollution.

3 Results

In this section, the results of estimating the EEE based on the
model of Arabi et al. (2017) and also, the results of technical
efficiency (TE) by non-radial SBM method are depicted in
Table 3. According to the results, the average TE of saffron
growers in Ghaen is equal to 86%, but by considering
environmental pollution, their TE is reduced to 74%. In other
words, neglecting environmental issues causes the efficiency of
saffron producers to be calculated 12% higher than its actual
value. The number of efficient units in the estimation of EEE and
TE are 97 and 51 units, respectively. The efficiency of 46 additional
units (97–51 = 46) in EEE shows that although these producers are
inefficient considering only technical efficiency factors, when
environmental issues are also considered, these units are efficient
in terms of EEE. This means that even though these units have lower
output production or higher input consumption, they have lower
GHG emissions than the other units. In other words, the reduction
in environmental pressure has compensated for the lack of product
production or excess consumption of inputs. However, the average

value of TE is higher than EEE, and the reason is that the number of
units with an efficiency score below 50% is 0 and 49 units for TE and
EEE, respectively. In other words, about 22% of the units have an
efficiency score of less than 50% in EEE, which has caused a sharp
decrease in this type of efficiency.

Then, the average of the actual and desired amount of
consumption IOs produced was calculated using the deficits
and excesses extracted from the models and the results are
presented in Table 4. The percentage change of the average
optimal consumption compared to the actual consumption of
low-polluting inputs in the EEE model is positive. In other words,
inefficient units should increase the consumption of these inputs
in order to achieve efficiency. As expected, the percentage change
in polluting inputs is negative and consumption of these inputs in
inefficient units should be decreased. Among polluting inputs,
nitrogen fertilizer has the highest change percentage, and
inefficient units should reduce their nitrate fertilizer
consumption by about 42% to achieve EEE.

Given that the slack-based models are not radial and calculate
efficiency from both the maximization of outputs and the
minimization of inputs, the excess or deficient amount of outputs
can also be observed. In the SBM model, inefficient producers have
the maximum production of saffron due to the consumption of
inputs and the percentage of changes in the optimal production of
saffron output is zero compared to the current production of
producers. In the EEE model, the percentage of changes in
saffron output is very small and indicates that the production of
saffron is optimal, but in order to achieve this efficiency, Ghaen
saffron growers should reconsider the consumption of input and, on
average, reduce their carbon dioxide emissions by 7.27 percent. The
percentage of changes in the consumption of inputs compared to the
actual value obtained from the TE model indicates that the highest
percentage of changes is assigned to the three inputs of phosphate,
potassium, and nitrogen. The percentage change of the average
optimal consumption was −91, −74 and −67 percent, respectively, in
relation to their value for these three inputs. Therefore, without
considering the amount of environmental pollution, farmers can
greatly increase their TE by reducing the consumption of these three
inputs. The lowest percentage of changes is assigned to three inputs
of water (−22), fungicide (−26) and animal manure (−27).

TABLE 3 Results of TE and EEE of saffron producers in Ghaen County.

TE EEE

Statistical description of efficiency Average 0.862 0.744

Minimum 0.689 0.011

Maximum 1 1

Coefficient of variation 44.1 0.1738

Fully efficient units 51 (22.60%)a 97 (42.90%)

Categorized efficiency <0.2 0 14 (6.2%)

0.2–0.5 0 35 (15.5%)

0.5–0.8 61 (27%) 60 (26.5%)

0.8–1 165 (73%) 117 (51.8%)

aThe numbers in parentheses indicate the percentage of the DMUs.
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According to the results in Table 4, the highest percentage of
changes in the average optimal consumption compared to the actual
value was obtained from the EEE model regarding phosphate input.
However, it should be mentioned that the average optimal amount
of phosphate consumption in this model is higher than the average

actual value. Thus, in order to increase their EEE, farmers should
increase their consumption of the low-polluting input by 64%.
However, for nitrogen fertilizer, which is a highly polluting input,
farmers should reduce their consumption by 42% to achieve full
efficiency. The third eco-inefficiency factor of input is seed, and

TABLE 4 The average optimal consumption of inputs and the percentage of their changes to the actual consumption.

TE EEE

Actual value Optimal value Changes (%) Optimal value Changes (%)

Inputs Low-Polluting Potassium 5.67 1.46 −74.25 6.22 9.71

Phosphate 11.17 1.02 −90.89 18.34 64.23

Manure 32.19 23.51 −26.95 32.38 0.61

Manpower 972 488 −49.77 981 0.91

Electricity 22,383 12,278 −45.14 22,383 0.003

High-Polluting Nitrogen 62.37 20.89 −66.51 36.18 −41.99

Fungicides 1.72 1.27 −26.24 1.32 −23.23

Machinery 41.96 27.87 −33.59 30.74 −26.75

Fuel 535.16 323.57 −39.54 359.66 −32.79

Independent Seed 5,682 2,349 −58.66 2,937 −48.30

Water 4,901 3,816 −22.13 3,948 −19.43

Outputs Desirable Yield (stigma) 8.38 8.38 0 8.39 0.09

Undesirable Carbon dioxide equivalent 7,714 - - 7,153 −7.27

FIGURE 3
Percentage of changes in the optimal average of IOs relative to their actual value.
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farmers should reduce seed consumption by 48% to achieve
efficiency. The optimal consumption of this input in the TE
model was on average 58% lower than the average actual
consumption. Also, the lowest percentage of changes was related
to electricity, animal manure and labor inputs, and farmers had to
increase the amount of these inputs as small 0.003, 0.61, and 0.91,
respectively.

For better indication of the eco-inefficiency factors of inefficient
units, the percentage change of pollutant inputs and undesirable
output is shown in Figure 3. According to this figure, the most
important factor of inefficiency of saffron producers in Ghaen
Country is the shortage of phosphate fertilizer consumption and
then the excess consumption of nitrogen fertilizer, diesel fuel and
machinery. Also, on average, inefficient producers should reduce
their carbon dioxide equivalent output by 7.27 percent. Among these
inputs, electricity with a percentage change of 0.003%, manure
(0.61), and labor (0.91), had the least effect on inefficiency of
producers and should slightly increase the consumption of these
inputs.

4 Discussion

In this study, the EEE was evaluated according to the GHG
emission from agricultural activities in saffron cultivation. In this
section, the results obtained from this model are investigated and
compared with the results of studies performed in this field.
According to the results, the resulting EEE is 12% lower than the
TE of saffron growers and its average has reduced from 86% to 74%.
In other words, without considering the environmental issues and
GHG emissions associated with crop production, TE is estimated to
be 12% higher than actual value. In addition, the minimum
efficiency obtained in the TE model is 68% and is 1% in the EEE
model, and even 22% of the units in this model have an efficiency of

less than 50%. Also, the difference in indicating the number of units
with the efficiency higher than 80% is 22%. This means that 48 units
represent efficiencies above 80% by mistake, regardless of
environmental pressure. Absolute attention to producing the
maximum possible output using the minimum input may lead to
maximum technical efficiency for DMUs, but this action may
increase the amount of environmental pressure and lead to low
EEE. Therefore, in estimating EEE, inputs with less pollution are
replaced by inputs with high pollution.

According to the results of calculating the deficiency and
excess consumption of inputs and production of outputs from the
SBM-based models, in both models of TE and EEE, chemical
fertilizers were the most important factors of unit inefficiency.
However, in the first model, phosphate and potassium fertilizers
should be reduced and in the second model, they are increased.
This is logical as phosphate and potassium fertilizers produce less
GHG than highly polluting inputs such as nitrogen. In other
words, these inputs replace high-polluting inputs to reduce the
damage to the environment (undesirable output) by keeping or
increasing the economic value of the activity (desirable output).
In a study done by Picazo-Tadeo et al. (2011), Nitrogen has been
one of the most important causes of eco-inefficiency of the
studied farmers. It is worth to mention that considering
different indicators for measuring environmental pressure also
leads to different EEE outcomes (Grassauer et al., 2021). For
example, the present study emphasizes on reducing nitrogen
input and increasing the input of phosphate fertilizers in
order to reduce GHG emissions, but if the phenomenon of
Eutrophication is considered as an indicator of environmental
pressure, as phosphate fertilizers are effective on this index
(Khoshnevisan, Rafiee, et al., 2013b), different results may be
obtained. However, the amount of phosphate fertilizer in the
studied saffron farms (average, 11.7 kg/ha) is less than this
amount in studies on other areas (Feizi et al., 2015).

FIGURE 4
Relationship between TE and EEE.
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In the EEEmodel used in this study, it is attempted to change the
way of using inputs and replace high-polluting inputs with low-
polluting inputs, while maintaining the desirable output as possible,
the GHG emissions can be reduced. As shown in Table 4, the average
optimal amount of production by considering the environmental
pressure, has been approximately equal to this rate in the
conventional efficiency model. However, to achieve optimal
efficiency, inefficient units should, on average, reduce the carbon
dioxide equivalent produced from their GHG as 560.81 kg (27.7%).
This change is achieved by replacing high-polluting inputs with low-
polluting inputs. Therefore, in the conventional TE model, the
percentage change of the optimal average consumption value is
lower than the actual consumption value of all inputs, while in the
EEE model, this value is increasing for low-polluting inputs and
decreasing for high-polluting inputs. Therefore, in order to achieve
full efficiency, inefficient farmers should reduce their consumption
of polluting inputs such as nitrogen, diesel fuel machines and
fungicides, and instead increase the use of electricity, manpower,
animal manure, phosphate and potassium inputs.

The relationship between TE and EEE is depicted in Figure 4.
According to this figure, the correlation between TE and EEE has
been positive. Also, among the rankings obtained from the two
calculated efficiency criteria, Spearman coefficient was equal to
0.775 and significant at the level of 1%. Therefore, as mentioned
before, EEE only calculates and analyzes the relative pressure on the
environment, and the amount of reduction in polluting inputs
should be higher than the amount calculated. Indeed, this
criterion by considering economic issues along with
environmental issues, is an easier and more appropriate approach
to be used by policy makers. This is especially evident in third world
countries with lower levels of economic prosperity.

5 Conclusion

Considering the importance of the environmental sustainability
conservation, this study aimed to calculate the EEE of saffron growers in
Ghaen County in Iran. Given the importance of compliance with the
requirements of the MBP in estimating the EEE, the efficiency model
consistent with theMBP of Arabi et al. (2017) was used and the amount
of GHG emissions (carbon dioxide equivalent) was used as an
undesirable output in this model. Unlike the conventional DEA
model, in these models, farm efficiency is also affected by
environmental variables, besides the economic variables, and the
units have EEE that in addition to maximum production, and using
the minimum input, can create the least environmental pollution.
Comparing the results of the mentioned model with the
conventional SBM model showed that there is a difference of 12%
between the average EEE and TE. Therefore, not considering the
environmental issues in estimating efficiency presents incorrect
results and leads to the continuation of inefficient and unorganized
use of inputs. Another result of this study is that the inconsistent use of
chemical fertilizers of phosphate and nitrogenwith the environment has
been one of the most important eco-inefficiencies of saffron growers in

the study area. This indicates the importance of using fertilizers
correctly and replacing them with manure. In addition, high diesel
fuel consumption is the second cause of eco-inefficiency. The main
reason for this is the use of old machines, disproportionate to the
cultivation level in saffron farms in Iran, and in order to achieve
sustainable cultivation of this crop, we should modify the equipment
used in the cultivation of this product. Field, 1994.
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Variations of soil properties and
soil surface loss after fire in
rotational shifting cultivation in
Northern Thailand
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Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan

Since fire is still necessary for rotational shifting cultivation (RSC), the vertical
distribution and slope effect on soil properties and soil surface loss after a fire
remain unclear. To address these research gaps, the study aims to achieve the
following objectives: 1) investigating post-fire soil properties and soil surface loss
in RSC, and 2) assessing the vertical distribution and slope effect on soil properties
and soil surface loss in RSC. Soil samples were collected from two stages of RSC:
6 years (RSC-6Y) and 12 years (RSC-12Y), located in ChiangMai Province, Northern
Thailand. A continuous 15-year left fallow field (CF-15Y) was used as the reference
site. Soil samples were collected from the upper, middle, and lower slopes at
depths of 0–5, 5–10, 10–20, and 20–30 cm at five different time points: before
burning, 5 min, 3 months, 6 months, and 9 months post-fire. The results indicated
that older fallow fields had a tendency to accumulate more soil organic carbon
(SOC) and soil organic nitrogen (STN). The color of the ash was altered by the fire,
resulting in dark reddish-brown ash with higher levels of pH, organic matter (OM),
electrical conductivity, total nitrogen, and soil nutrients when compared to gray
and white ashes. The combustion of OM during the fire was found to release soil
nutrients, which could explain the increase after burning. SOC stock increased at
deeper layers (5–10 cm) with higher values than pre-burning levels, especially at
lower slope positions, while STN stock decreased at the surface soil post-fire but
increased in deeper layers at all slope positions. The average soil surface loss
ranged from 1.6 to 3.1 cm, with the highest loss observed 9 months after the fire
(during the rainy season) at the upper slope. In terms of the impact of slope on soil
properties following the fire event, our study indicated a significant correlation
between lower slopes and variables including SOC, STN, electrical conductivity,
nitrate–nitrogen (NO3-N), ammonium nitrogen (NH4-N), exchangeable calcium,
and exchangeable magnesium. Further study is required to investigate and
develop appropriate post-fire management strategies to effectively reduce
nutrient loss and minimize soil surface erosion.
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1 Introduction

Shifting cultivation is indeed one of the most complex and
diverse forms of agriculture globally, with multiple aspects of land
use systems developing since as early as 10,000 BC (Thrupp et al.,
1997). The hill tribe population in Thailand traditionally depends on
shifting agriculture. Prior to the 1960s, two major types of shifting
cultivation were commonly practiced: pioneer and rotational. The
pioneer shifting system was practiced by Hmong, Lahu, Lisu, Akha
and Yao tribes, where fields were cleared, burned, and cropped until
crop production decreased, indicating low soil fertility. People then
abandoned the fields and relocated to a new site. In the rotational
system, fields were cut, burned, cropped for one season, abandoned
for recovery, and then returned for cropping, usually practiced by
Karen and Lua tribes (Bass and Morrison, 1994; Rerkasem and
Rerkasem, 1994). Currently, the practice of pioneer shifting
cultivation has been restricted to forested areas due to the
increase in population density and forest conservation policy,
which have made this practice impossible in Thailand. Moreover,
voluntary village relocation is extremely rare, and long fallow
shifting cultivation has mostly disappeared. As a result, shifting
cultivation in Thailand now mainly consists of the rotational system
(Arunrat et al., 2022a; 2023).

The practice of rotational shifting cultivation (RSC) is reported
to cause anthropogenic forest disturbances and soil degradation
(Curtis et al., 2018), as it reduces both above and below ground
biomass from natural vegetation (van Straaten et al., 2015).
Furthermore, the use of fire for land preparation in RSC can
have a negative impact on the topsoil (Pennington et al., 2001).
Fire tends to decrease soil carbon by burning organic matter (OM)
and reducing OM inputs (Jhariya and Singh, 2021), leading to
reduced soil water and available nutrients (Phillips et al., 2000).
After a fire, soil pH and electrical conductivity (ECe) often increase
(Arunrat et al., 2021). Lauber et al. (2009) revealed that soils with
close to neutral pH typically exhibit higher bacterial diversity
compared to more acidic or basic soils. Additionally, soil
nitrogen can be lost through volatilization (Zavala et al., 2014),
which in turn can decrease soil microbial activity (Fierer et al., 2012).
However, Christensen and Muller (1975) indicated that a rapid
increase in nitrogen mineralization rates can promote increased
microbial activity during the initial post-fire periods. Post-fire soil
nutrients can be lost through leaching, soil erosion, and runoff (Faria
et al., 2015), or increased from chars and ashes (Alcañiz et al., 2016).
A reduction in the fallow cycle can cause a decline in soil fertility,
increase soil loss, and decrease crop production. Gafur et al. (2000)
found that approximately 27% of the soil nutrients were removed
from the topsoil (10 cm) due to soil loss in shifting cultivation in
Bangladesh, while these nutrients were deposited in the watershed.
Mishra and Ramakrishnan (1983) investigated total sediment yields
in shifting cultivation in northeastern India and found 49.7 and
56.3 t ha-1 year-1 in 10 and 5 fallow years, respectively. Thus, the
changes in soil surface after a fire need to be investigated, but there is
still a lack of studies on this aspect in Thailand.

Soil organic carbon (SOC) serves as both a source and sink of
CO2, storing the largest pool in terrestrial ecosystems, which is two-
thirds larger than the atmosphere (Smith, 2004). Lal (2003) revealed
that even a small percentage change in soil carbon can significantly
alter CO2 concentrations in the atmosphere. However, RSC and

shortened cultivation cycles have been shown to have negative
impacts on soil fertility, OM content, and erosion occurrence
(McDonald et al., 2002; Gafur et al., 2003). Wairiu and Lal
(2003) used SOC concentration as an indicator for soil erosion
on sloping lands, showing that slash-and-burn agriculture resulted
in higher losses of SOC in the topsoil than natural forest due to
strong erosion. On the other hand, previous studies have reported
the positive effects of biochar and ash after fire, which can increase
SOC, soil fertility, and crop productivity (Lehmann et al., 2003;
Dempster et al., 2012; Agegnehu et al., 2015; Reed et al., 2017;
Moragues-Saitua et al., 2023). Although soil erosion can lead to
carbon loss in eroded areas (Haj-Amor et al., 2022), it can also
induce carbon sink due to the movement of carbon from eroded soil
surface areas to depositional positions (Van Oost et al., 2007).
Moreover, SOC can be transported to deeper soil layers due to
intrinsic factors (e.g., climate, parent material, and topography) and
extrinsic factors (e.g., vegetation, practice, and land use) (Teng et al.,
2017). Deep SOC is important because it has a high potential for
storage, with unsaturated carbon concentrations and slow turnover
times (Trumbore, 2009). It has been reported that most deep SOC
comes from vertical transport of dissolved organic carbon, carbon
input by root penetration, and clay-bound organic carbon (Rumpel
and Kögel-Knabner, 2011). However, the vertical dynamics of SOC
and soil nutrients at the soil surface (0–30 cm) in RSC remain poorly
understood. This lack of understanding is attributed to the fact that
most of the root zone of upland rice is typically concentrated at the
soil surface in RSC.

To this end, understanding the variations in soil properties and
soil surface loss in RSC is crucial for assessing dynamics and
developing appropriate management strategies. A fallow period is
necessary for recovering soil nutrients; however, it is unknown how
long it takes to reach the initial level, as it varies depending on factors
such as topography, weather conditions, soil types, and land
management. To date, there are limited studies on soil properties
and soil surface loss before and after burning in RSC in Thailand.
Furthermore, the variation of soil properties and soil surface loss
throughout the cultivation cycle has not been reported. Therefore,
the objectives of this study are 1) to investigate post-fire soil
properties and soil surface loss in RSC and 2) to assess the
vertical distribution and slope effect on soil properties and soil
surface loss in RSC. This study provides the crucial knowledge on
soil properties and soil surface loss dynamics, leading to the
development of proper post-fire landmanagement strategies in RSC.

2 Material and methods

2.1 Study area and field selection

The research was carried out in Ban Mae Pok, Ban Thab
Subdistrict, Mae Chaem District, Chiang Mai Province, located in
Northern Thailand, as shown in Figure 1. The study sites are situated
in a mountainous area, with an elevation ranging from 700 to
1,000 m a.s.l. The rainy season usually starts from May until
October. Winter season occurs from October to February,
whereas summer season is from February to May (Trisurat et al.,
2010; Department of Mineral Resources, 2015). Based on data from
the Thai Meteorological Department’s weather stations in Doi Ang
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Khang and Mueang Chiang Mai, the total rainfall during March to
December 2022 was 2,227.5 mm. The highest amount of rainfall
occurred in September (525.6 mm), while the lowest was recorded in
November (16.0 mm). Soils in the highlands of Thailand (with
slopes greater than 35%) are classified as slope complex series,
which mostly includes mountainous areas (LDD, 1992; USAID,
1993). The topsoil (0–10 cm) is sandy loam, and the subsoils
(10–30 cm) are sandy clay loam and sandy loam, mostly
composed of reddish-brown lateritic soil. The soil pH varies from
5.63 to 6.65, and the OM content ranges from 2.75% to 5.53%
(Arunrat et al., 2022a).

In this study, two RSC fields were selected, which were
previously used for upland rice cultivation and then left fallow to
allow for the recovery of secondary forest vegetation (Figure 1). The
RSC-12Y (18°23′12.03″N, 98°11′39.56″E), at an elevation of 692 m
a.s.l and with a slope gradient of 28% was left fallow for 12 years after
upland rice harvesting, and in 2022, it was cleared, burnt, and
cultivated with upland rice. The RSC-6Y (18°23′11.5″N,
98°11′33.56″E), at an elevation of 729 m a.s.l and with a slope
gradient of 31% was left fallow for 6 years after upland rice
harvesting, and in 2022, it was also cleared, burnt, and cultivated
with upland rice. We also used a reference site, the 15-year
continuous left fallow (CF-15Y) (18°23′10.11″N, 98°11′44.29″E),
at an elevation of 640 m a.s.l and with a slope gradient of 30%, where

no cultivation or burning was carried out and the soil properties
continued to recover naturally.

To grow upland rice in RSC-6Y and RSC-12Y fields, upland rice
seeds (~125.0 kg ha-1) were dropped by hand using spades or
planting sticks to dig shallow holes. The water source was rainfall
only. Upland rice was harvested by hand, and the residues were left
in the fields. The fields were then abandoned to allow for the
recovery of secondary forest vegetation.

2.2 Experimental design and fire
measurements

In 2022, the RSC-12Y (75 m × 170 m) and RSC-6Y (45 m ×
150 m) fields were selected to cultivate based on the village rotation
cycle. The boundaries of each RSC field were marked, and grasses,
shrubs, woods, and saplings were cut and left in the field to dry in the
sunlight for around 30–45 days. Firebreaks were created around the
fields with a width of 5–7 m to prevent the spread of fire during
burning. Each RSC field was divided into three slope positions -
upper slope, middle slope, and lower slope (Figure 1). At each RSC
field, the 20 iron sticks (30 cm length) with label scale were installed
in 20 positions to measure the soil surface changes by installing at
0 cm of soil surface. Two transects were established vertically,

FIGURE 1
Study area. The aerial image was taken from Google Earth on 29 July 2023.
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spanning from the upper to the lower slope positions, and nine
additional transects were marked horizontally. At the intersection of
these vertical and horizontal transects, iron sticks were installed, with
spacing of approximately 35 m × 20 m and 25 m × 15 m for RSC-12Y
and RSC-6Y, respectively (Figure 1). Three plots were marked for
measuring fire temperature, soil temperature, and soil sampling.

The burning of the RSC fields started at 3:00 p.m. and ended at
around 5:00 p.m. after obtaining permission from the Mae Chaem
District Office. During the burning process, the fire temperature at
each pit of each RSC field was measured using an infrared
thermometer (PONPE 470IR). Soil temperature and moisture
were measured before (pre-burning) and 5 min after burning at
each pit of each RSC field at the depth of 5, 10, 20, and 30 cm using a
Thermocouple Type K (PONPE 422 PR) and moisture meter,
respectively. The fire temperature, soil temperature, and soil
moisture of RSC fields were presented in Supplementary Table S1.

2.3 Soil and ash sampling and analysis

Soil samples were collected from the upper slope, middle slope,
and lower slope of RSC-12Y and RSC-6Y fields at depths of 0–5,
5–10, 10–20, and 20–30 cm at five different time points: before
burning (March 2022), 5 min after burning (March 2022), 3 months
after burning (June 2022), 6 months after burning (September 2022),
and 9 months after burning (harvest, December 2022). Soil samples
from the CF-15Y field were collected at four time points: March
2022, 3 months after RSC fields burning, 6 months after RSC fields
burning, and 9 months after RSC fields burning.

A total of 360 soil samples were collected from the RSC fields, with
2 RSC fields, 3 plots, 4 depths, 5 time points, and 3 slope positions. In
addition, 48 soil samples were taken from the CF-15Y site, with 1 CF
site, 3 plots, 4 depths, and 4 time points. At each slope position of each
RSC field, soil samples were collected from the same three plots at each
time point. At each plot (20 × 20 m), soil samples of each depth were
taken from five pits and mixed to obtain one composite sample per
depth per plot. Stones, grasses, roots, and residues were removed
manually, and around 1 kg of soil was placed in a plastic bag. Ash
colors were determined using theMunsell soil color charts after the fire.
A steel spoon was used to meticulously collect ash of each color from
the respective sample plots. The chemical properties of ash were
provided in Supplementary Table S2. Furthermore, a steel soil core
(5.0 cm width × 5.5 cm length) was used to collect a soil sample from
each depth to determine soil bulk density after drying at 105 °C for 24 h.

Soil texture was determined using the hydrometer method, while
soil pH and ash pH were measured using a pH meter with a 1:1 and
1:10 suspension of solids in water, respectively (National Soil Survey
Center, 1996). Electrical conductivity (ECe) was determined by
measuring the saturation paste extracts using an EC meter
(USDA, 1954). The cation exchange capacity (CEC) was
measured by the NH4OAc pH 7.0 method. Total nitrogen (TN)
was analyzed using the micro-Kjeldahl method. Ammonium
nitrogen (NH4-N) and nitrate–nitrogen (NO3-N) were measured
by the KCL extractionmethod. The exchangeable calcium (exch.Ca),
magnesium (exch.Mg), and potassium (exch.K) values were
analyzed using atomic absorption spectrometry with NH4OAc
pH 7.0 extraction. Available phosphorus (avail.P) was measured
using the molybdate blue method (Bray II extraction) (Bray and

Kurtz, 1945). Organic carbon (OC) content was analyzed following
the method of Walkley and Black (1934) using potassium
dichromate (K2Cr2O7) in sulfuric acid, and the results were
reported as organic matter (OM) by multiplying with 1.724.

2.4 Soil organic carbon and total nitrogen
estimation

The SOC stock was estimated using the following equation:

SOCstock � ∑n

i�1 BDi × Li × OCi × 10, 000( ) (1)

where SOCstock is the soil organic carbon stock (Mg C ha-1), OCi is
the organic carbon content (%), BDi is the soil bulk density (Mg m-

3), Li is the soil thickness m), and i represents the ith layer.
The STN stock was calculated using the following equation:

STNstock � ∑n

i�1 BDi × Li × TNi × 10, 000( ) (2)

where STNstock is the soil total nitrogen (Mg N ha-1), TNi is the total
nitrogen content (%), BDi is the soil bulk density (Mg m-3), Li is the
soil thickness m), and i represents the ith layer.

To eliminate the potential impact of varying soil bulk density
over time, which could lead to errors in estimating SOC stock, we
employed the equivalent soil mass approach (Ellert and Bettanym,
1995) to adjust the SOC stock calculations using the following
equation:

Soil mass � BD × L (3)
where Soil mass is the mass of the soil sample (kg soil m-2).

The adjusted soil thickness m) for each RSC field was calculated
using the following equation (Arunrat et al., 2021):

Adjusted soil thickness � Massinitial −Massend
BD

(4)

whereMassinitial is the soil mass at the commencement of the study
(March 2022), and Massend is the soil mass at the end of study
(December 2022).

2.5 Soil surface loss measurement

At each RSC field, the level of soil surface changes was recorded
by measuring the label scale on 20 iron sticks. The 0 cm of soil
surface level was recorded before burning in March 2022, and the
label scales were recorded again at 5 min after burning in March
2022, 3 months after burning in June 2022, 6 months after burning
in September 2022, and at harvest in December 2022. For the CF-15
site, a total of 20 iron sticks were also installed to monitor the level of
soil surface at four time points: March 2022, 3 months after RSC
fields burning, 6 months after RSC fields burning, and 9 months
after RSC fields burning.

2.6 Statistical analysis

Statistical analysis was performed using the R environment
(v.4.0.2). Soil physiochemical properties were compared among
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TABLE 1 Variation in soil properties: bulk density (BD) (Mgm-3), electrical conductivity (ECe) (dS m-1), organic matter (OM) (%), organic carbon (OC) (%), total nitrogen (TN) (%), and proportion of sand, silt and clay (%) with land
use, position, soil depth, and chronological time of burning.

Variable Category pH (1:1) ECe BD OM OC TN %Sand %Silt %Clay

Mean std Mean std Mean std Mean std Mean std Mean std Mean std Mean std Mean std

RSC field CF-15Y 4.83b 0.02 0.12c 0.11 1.36b 0.05 4.27a 0.28 2.47a 0.16 0.23a 0.07 26.43a 4.41 45.55b 3.88 28.03a 7.09

6-year fallow 5.37a 0.15 0.23b 0.26 1.40a 0.06 3.34b 0.26 1.94b 0.15 0.13c 0.04 17.42b 4.35 45.89b 6.23 36.70b 8.72

12-year fallow 5.25a 0.18 0.33a 0.30 1.35c 0.05 3.49b 0.29 2.02b 0.17 0.17b 0.07 20.40c 4.31 47.46a 3.79 32.17c 7.11

Position Lower slope 5.46a 0.03 0.32a 0.32 1.37 0.06 3.74a 0.28 2.17a 0.16 0.17a 0.06 19.53a 3.99 46.33b 5.06 34.14a 7.40

Middle slope 5.17b 0.02 0.20b 0.21 1.37 0.06 3.33b 0.04 1.93b 0.02 0.13b 0.05 19.24a 4.43 47.68a 5.19 33.10b 7.75

Upper slope 5.30b 0.07 0.33a 0.30 1.38 0.06 3.18b 0.16 1.84b 0.09 0.15a 0.07 18.17b 5.11 46.05b 5.14 35.80c 9.20

Soil depth 0-5 cm 5.49a 0.48 0.45a 0.38 1.31d 0.04 6.52a 1.49 3.78a 0.86 0.22a 0.09 24.45a 5.08 50.90a 3.03 24.68a 4.38

5-10 cm 5.10b 0.15 0.21b 0.14 1.36c 0.04 3.87b 0.52 2.25b 0.30 0.20a 0.07 20.48b 4.50 49.08a 3.13 30.47b 3.60

10-20 cm 4.92b 0.58 0.14c 0.08 1.40b 0.05 2.56c 0.04 1.49c 0.02 0.15b 0.04 19.30bc 3.53 45.54b 2.63 35.16c 4.32

20-30 cm 5.08b 0.12 0.11c 0.05 1.41a 0.05 1.85d 0.08 1.07d 0.05 0.13c 0.03 16.02d 4.03 40.60c 3.60 43.38d 6.52

Condition Pre-burning 4.98D 0.14 0.12D 0.08 1.36B 0.05 3.71C 0.70 2.15C 0.41 0.19A 0.07 20.15A 5.33 46.19C 4.35 33.66C 8.34

Post-burning 5 mins 5.46A 0.10 0.25C 0.27 1.36B 0.06 3.09D 0.15 1.79D 0.09 0.17AB 0.08 20.20A 5.86 46.35C 4.46 33.53C 8.94

3 months 5.31C 0.31 0.31B 0.29 1.35B 0.05 3.71C 0.68 2.15C 0.40 0.16C 0.04 17.98C 3.63 48.24A 5.63 33.78C 8.07

6 months 5.15C 0.28 0.36A 0.32 1.35B 0.05 3.73B 0.22 2.16B 0.13 0.18BC 0.05 18.16C 3.67 47.28B 5.52 34.56B 8.00

9 months 5.18B 0.34 0.37A 0.32 1.43A 0.05 3.87A 0.23 2.24A 0.14 0.10D 0.03 18.52B 3.74 45.38D 5.30 36.09A 7.86

a-e, A-E Uppercase letters denote significant statistical differences (p ≤ 0.05), as analyzed by using One-way ANOVA and repeated measures One-way ANOVA with post-hoc Tukey’s HSD
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the CF-15, RSC-6Y, and RSC-12Y sites with varying positions and
soil depths using Analysis of Variance (ANOVA). When the
ANOVA result was significant at p ≤ 0.05, the Tukey Honestly
Significant Difference (HSD) test was employed to perform multiple
post hoc mean comparisons. The effect of the area position on soil
properties was explained by Redundancy Analysis (RDA). The
impact of each RSC field’s slope position on soil properties was
analyzed using RDA, focusing on the position-based variation rather
than individual layers. To ensure the integrity of our analysis, all
explanatory variables underwent transformation and
standardization through the application of the Hellinger method.
Addressing concerns related to non-significant variables and
collinearity, we adopted the forward selection method for
variable selection. The R packages “tidyverse,” “agricolae,”
“vegan,” “fastDummies,” and “ggplot2” were used for data
arrangement, ANOVA and post hoc tests, data transformation,
and data visualization.

3 Results

3.1 Variation of soil physical properties

The soil bulk densities among all fallow soils exhibited
significant differences, with RSC-6Y showing the highest bulk
density at 1.40 Mg m-3. The OM percentage was notably elevated
in CF-15Y, while no significant difference in OM content was
observed between the remaining RSC-6Y and RSC-12Y fields. Silt
content was highest across all fallow soils, whereas the clay
percentage in RSC-6Y was comparatively elevated compared to
the other two sites (Table 1).

The topography positions have an impact on the soil physical
properties in all RSC fields. The highest OM content was
observed in the lower slope with 3.74%. Among the three
types of soil particles, silt occupied the largest portion, and it
was the richest in the middle slope with 47.68%. The percentages
of sand in the lower and middle slopes were not significantly
different, while the highest percentage of clay was found in the
upper slope (Table 1).

The levels of OM exhibited significant differences after burning,
displaying a pronounced decrease after 5 min of burning.
Subsequently, there was a significant increase that persisted until
9 months after the fire, surpassing the pre-fire levels. However, soil
bulk density and soil texture remained unaltered following the fire
(Table 1).

3.2 Variation of soil chemical properties

The variation in soil chemical properties is influenced by the
differences in fallow period. While CF-15Y exhibited a low pH value
of 4.83, there was no significant difference in pH between RSC-6Y
and RSC-12Y. It is important to note that there was a notable
difference in ECe among the three types of fallow soil. TN had the
highest proportion in CF-15Y, while its content was comparatively
lower in RSC-6Y (Table 1). CEC was significantly higher in CF-15Y
compared to RSC-6Y and RSC-12Y. There was no significant
difference in available P between CF-15Y and RSC-6Y, while its

content varied significantly in the 6- and 12-year fallow soils.
Available K was most abundant in RSC-12Y, whereas RSC-6Y
exhibited the highest available Ca content. Additionally, available
Mg content was significantly higher in RSC-6Y compared to the
other two types of fallow soil. It is worth mentioning that NH4-N
and NO3-N levels differed significantly between CF-15Y and RSC-
6Y, with both constituents being most abundant in RSC-12Y
(Table 2).

Topography, especially hillslopes, can have a significant impact
on soil chemical properties. Soil pH was observed to be highest in the
lower slope, whereas ECe exhibited relatively lower values in the
middle slope. TN content was comparatively lower in the middle
slope (Table 1). The upper slope had the highest concentration of
available P, while the middle slope exhibited comparatively lower
levels of available K. Available Ca andMgwere most abundant in the
lower slope (Table 2).

After burning, the soil pH showed a significant increase at the 5-
min post-burning stage, reaching a value of 5.46. The highest ECe
was observed 9 months after burning. TN content exhibited a
continuous decline after the fire (Table 1). Available P content
was notably high 5 min after burning, with a value of 11.18 mg kg-1,
while a remarkably high level of available K was found at the 3-
month post-burning stage. Notably, available Ca contents in all
post-burning stages displayed significant differences. A significant
increase in available Mg was observed 3 months after burning,
reaching a value of 100.51 mg kg-1. Both NH4-N and NO3-N
contents in all post-burning stages were also significantly
different (Table 2).

3.3 Variation of soil organic carbon and soil
total nitrogen stocks

The results of the ANOVA analysis indicated that there were
significant differences in SOC and STN due to various factors,
including RSC field, time point, topography position, and soil
depth (Table 3). Significant differences in STN were observed for
all individual variables, except for the interaction with the
topography position. This indicates that the effect of each
variable is not dependent on the topography level, and each
variable has a separate impact on STN (Table 3).

SOC and STN levels can exhibit seasonal variability due to a
range of factors across different slope positions. In CF-15Y, the SOC
was highest at the 3-month stage after the fire, measuring
90.30 Mg C ha-1, while it was lowest at the 6-month stage
(Figure 2; Table 4). Across all slopes of RSC-12Y, there was no
significant difference in SOC between the pre-burning stage and the
5-min post-burning stage. However, in the three slopes of RSC-12Y,
the highest SOC was observed at the 9-month post-burning stage.
The amount of SOC was notably high in the lower slope of the RSC-
6Y field 9 months after burning, totaling 95.48 Mg C ha-1 (Figure 3;
Table 4). In CF-15Y, there was no significant difference in STN
between the 3-, 6-, and 9-month stages, but the highest STN was
recorded at the 9-month stage, reaching 10.16 Mg N ha-1. Among
the three slopes of RSC-12Y, the STN was highest at the 6-month
post-burning stage (Figure 4; Table 5). Notably, the STN was
remarkably high in the middle slope of RSC-6Y at the 5-min
post-burning stage (Figure 5; Table 5).
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TABLE 2 Variation in soil properties: cation exchange capacity (CEC) (meq 100 g-1); available P (mg kg-1); exchangeable K, Ca, and Mg (mg kg-1), NH4-N, and NO3-N (mg kg-1) content with land use, position, soil depth, and
chronological time of burning.

Variable Category CEC Avail. P Exch. K Exch. Ca Exch. Mg NH4-N NO3-N

mean std mean std mean std mean std mean std mean std mean std

RSC field CF-15Y 13.29a 3.26 3.16b 3.35 135.90b 61.85 106.67b 133.94 61.12b 67.76 18.83b 6.90 11.73b 4.68

6-years fallow 9.22b 2.59 5.62b 9.18 140.12b 67.91 234.80a 272.62 93.86a 64.81 15.03b 11.40 10.28b 7.24

12-years fallow 9.01b 1.98 8.50a 15.92 156.20a 91.96 115.92b 152.14 69.84b 53.27 23.89a 20.22 19.21a 20.19

Position Lower slope 9.10 2.0 6.39ab 7.53 129.58b 69.02 206.21a 296.45 82.20 65.77 22.08 19.74 19.72a 24.21

Middle slope 9.13 2.24 6.00b 11.69 124.82b 75.36 170.05ab 215.10 79.70 68.58 18.30 18.37 11.96b 8.69

Upper slope 9.08 2.64 9.00a 17.70 189.02a 82.90 146.96b 149.85 82.50 44.59 18.71 12.59 13.50b 10.52

Soil depth 0-5 cm 11.73a 3.60 17.72a 19.84 216.01a 89.91 426.15a 287.01 153.13a 62.42 33.83a 24.70 22.27a 25.34

5-10 cm 9.45b 2.15 5.23b 6.24 137.91b 60.79 124.84b 86.88 76.59b 43.02 17.90b 9.37 15.40b 10.00

10-20 cm 8.63b 1.78 2.01c 1.55 114.58c 43.80 62.45c 41.12 46.26c 27.74 13.59c 5.01 11.08c 5.79

20-30 cm 8.61b 2.0 1.26c 1.10 117.86c 68.11 40.61c 21.09 37.83c 22.31 12.68 4.43 8.99c 3.99

Condition Pre-burning 9.78 2.27 1.42E 1.48 138.28D 67.54 112.39E 113.07 65.70C 43.21 14.80E 7.80 14.71D 26.30

Post-burning 5 mins 10.68 3.05 11.18A 15.72 171.72B 100.43 228.79A 293.68 90.37B 67.79 21.44B 22.10 8.65E 8.18

3 months 9.81 2.53 9.46B 17.09 177.65A 84.36 219.11B 279.63 100.51A 72.37 24.87A 20.83 16.98B 12.54

6 months 9.04 1.60 8.77C 14.37 157.56C 75.06 192.38C 232.80 92.75B 62.50 20.73C 15.17 17.86A 12.39

9 months 8.25 1.44 5.61D 9.20 100.83E 48.04 123.12D 149.00 59.36D 40.00 16.55D 15.38 15.27C 12.01

a-e, A-E Uppercase letters denote significant statistical differences (p ≤ 0.05), as analyzed by using One-way ANOVA and repeated measures One-way ANOVA with post-hoc Tukey’s HSD
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TABLE 3 Results of one-way repeated measures ANOVA for soil organic carbon (SOC) and total nitrogen (STN) according to RSC field, time point, topography
position, soil depth, and their interactions among variables

Variable df SOC STN

MSE F p MSE F p

RSC field (L) 2 117.30 48.05 *** 15.47 218.31 ***

Time point (T) 4 398.20 163.19 *** 4.44 62.66 ***

Topography position (P) 2 231.70 94.97 *** 2.87 40.48 ***

Soil depth (D) 3 1620.40 664.04 *** 15.84 223.58 ***

L × T 4 41.90 17.15 *** 0.28 3.99 ***

L × P 2 120.60 49.42 *** 0.17 9.66 0.09

L × D 6 126.00 51.64 *** 0.69 9.95 ***

T × P 8 43.30 17.76 *** 0.71 2.36 ***

T × D 12 138.10 56.59 *** 0.32 4.52 ***

P × D 6 42.80 17.53 *** 0.42 5.95 ***

L × T × P 7 18.50 7.58 *** 0.12 1.63 0.13

L × T × D 12 13.70 5.61 *** 0.18 2.55 ***

L × P × D 6 84.10 34.46 *** 0.44 6.27 ***

T × P × D 24 11.20 4.61 *** 0.10 1.34 0.14

L × T × P × D 21 23.10 9.47 *** 0.11 1.59 0.05

Error 288 2.40 0.07

df: degree of freedom (n-1), MSE: Mean sum of squares, ** values are significant at 0.05, *** values are significant at 0.001

FIGURE 2
Soil organic carbon (Mg C ha-1) of 0–5, 5–10, 10–20, and 20–30 cm soil depth during pre-burning, and different time post-burning: 5-min, 3-
month, 6-month, and 9-month under 6-year and 12-year left fallow for all slope positions compared with continues fallow 15-year. a–b and x–z denote
significant differences among time period of each field (p ≤ 0.05).

Frontiers in Environmental Science frontiersin.org08

Arunrat et al. 10.3389/fenvs.2023.1213181

124

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1213181


TABLE 4 Average soil organic carbon (Mg C ha-1) of sample soil: CF-15Y, RSC-12Y and RSC-6Y fields with different left fallow period (year) of RSC, position, soil
depth, and chronological time of burning

RSC field Soil depth (cm) Time period

pre-burning 5- minutes 3-months 6- months 9- months

CF-15Y 0-5 33.90 - 33.45 29.21 29.74

5-10 18.87 - 18.54 16.28 16.44

10-20 22.96a - 23.12a 19.35b 18.77b

20-30 14.55 - 15.19 13.19 15.36

Total 90.27Aa - 90.30Aa 78.03Ab 80.31Ab

RSC-12Y Upper slope 0-5 22.51a 20.27a 15.16b 16.16b 16.79b

5-10 15.21 15.04 12.89 14.57 14.84

10-20 15.67a 15.80a 24.07b 24.75b 25.58b

20-30 10.57a 10.44a 17.77b 23.30c 24.64c

Total 63.96Ba 61.55Aa 69.88Eb 78.78Ab 81.85Ac

Middle slope 0-5 28.25a 24.87a 21.43b 21.88b 21.29b

5-10 10.99a 10.71a 14.11b 14.30b 15.18b

10-20 15.15a 14.75a 16.18a 19.89b 21.28b

20-30 10.07a 9.99a 12.47ab 14.66b 17.57b

Total 64.45Ba 60.32Aa 64.19Ca 70.74Bb 75.32Bb

Lower slope 0-5 27.57a 22.20b 20.26b 22.39b 24.38b

5-10 11.43a 11.36a 13.74a 18.12b 21.15b

10-20 16.39a 16.29a 18.80a 23.83b 34.28c

20-30 11.53a 11.43a 14.66ab 16.21b 27.73c

Total 66.92Ca 61.27Ab 67.47Bc 80.55Cd 107.54Ce

RSC-6Y Upper slope 0-5 22.33 19.37 20.17 21.42 22.17

5-10 8.99a 8.95a 15.21b 15.49b 15.61b

10-20 13.51a 13.37a 16.43b 17.09bc 19.65c

20-30 9.35a 9.46a 9.77a 14.89b 18.40c

Total 54.18Da 51.15Ba 61.57Db 68.88Dc 75.83Bd

Middle slope 0-5 23.14a 19.80b 19.62b 20.44a 21.05a

5-10 12.93a 12.74a 15.08b 14.94ab 16.58b

10-20 19.22 19.22 21.12 21.27 22.61

20-30 12.56a 12.59a 15.89ab 15.53ab 17.95b

Total 67.85Ca 64.34Ca 71.71Eb 72.18Bb 78.18Dc

Lower slope 0-5 27.50a 21.52b 19.72b 20.35b 21.65b

5-10 15.57 15.31 12.46 14.49 16.12

10-20 21.33a 20.90a 27.68b 29.56b 31.90b

20-30 10.47a 10.39a 24.10b 23.90b 25.81b

Total 74.88Ea 68.12Db 83.95Fc 88.30Ed 95.48Ee

A-F denotes significant differences among fields and positions (p ≤ 0.05), a-c indicates significant differences among time period of each field (p ≤ 0.05), analyzed by post-hoc Tukey’s HSD
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The vertical distribution of SOC and STN stocks is important
aspect of soil health and productivity (Figure 3, Figure 5). In CF-
15Y, the highest SOC values were observed in March and at the 3-
, 6-, and 9-month post-burning stages, specifically within the
0–5 cm depth, with corresponding values of 33.90, 33.45, 29.21,
and 29.74 Mg C ha-1. Similarly, SOC was also the highest in

RSC-6Y and RSC-12Y fields. It is noteworthy that SOC was
higher at the pre-burning stage compared to the post-burning
stages in RSC-6Y and RSC-12Y soils (Table 4). At the depth
of 10–20 cm in RSC-6Y and RSC-12Y fields, SOC stocks
were significantly higher in the lower slope than the surface
layer (Figure 3). The STN stock in CF-15Y significantly
increased at 9 months post-burning, particularly at a soil
depth of 10–30 cm. Although STN stocks in the RSC-6Y site
slightly increased at a soil depth of 10–30 cm at 3 and 6 months
after burning, STN stock significantly declined at 9 months after
the fire for all soil depths. At deeper layers (10–30 cm)
of the upper slope, higher STN stocks were observed
compared to the middle and lower slope positions. Moreover,
the RSC-12Y field exhibited its highest STN stock at a soil depth
of 10–20 cm, both in the upper and lower slope positions
(Figure 5; Table 5).

3.4 Multivariable analysis

Redundancy analysis revealed that there were varying
relationships between SOC and STN and soil properties in
different topographic positions (Figures 6A,B). In Figure 6A,
the RDA plot explains 51.88% of the variation in the position of
RSC-6Y (adj. R2 = 0.48). Three topographic positions were
separated along the first axis, with middle and upper slope
areas (21.2%) separated from the lower slope area, while the
second axis separated the middle slope area (30.6%) from the
other two positions. Figure 6A clearly illustrates the significant
impact of slope position on the SOC in the RSC-6Y site. The

FIGURE 3
Variation of soil organic carbon (Mg C ha-1) with soil depth in
different area position under 6-year and 12-year left fallow compared
with continues fallow 15-year.

FIGURE 4
Soil total nitrogen (Mg N ha-1) of 0–5, 5–10, 10–20, and 20–30 cm soil depth during pre-burning, and different time post-burning: 5-min, 3-month,
6-month, and 9-month under 6-year and 12-year left fallow for all slope positions compared with continues fallow 15-year. a–b, i–ii, and x–z denote
significant differences among time period of each field (p ≤ 0.05).
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TABLE 5 Average soil total nitrogen (Mg N ha-1) of sample soil: CF-15Y, RSC-12Y and RSC-6Y fields with different left fallow period (year) of RSC, position, soil
depth, and chronological time of burning

RSC field Soil depth (cm) Time period

pre-burning 5- minutes 3-months 6- months 9- months

CF-15Y 0-5 2.43 - 2.18 2.20 2.41

5-10 1.48a - 1.44a 1.54a 1.81b

10-20 2.11a - 1.97a 2.55b 3.12c

20-30 2.01a - 2.01a 2.20a 2.81b

Total 8.03Aa - 7.59Aa 8.49Aa 10.16Ab

RSC-12Y Upper slope 0-5 1.61a 1.20a 1.06ab 0.89b 0.62b

5-10 1.41 1.32 1.35 1.46 0.99

10-20 2.75a 2.75a 2.03ab 2.48a 1.72b

20-30 2.30a 2.44a 1.43b 1.63b 1.10b

Total 8.07Aa 7.71Aa 5.87Bb 6.46Ab 4.43Bb

Middle slope 0-5 1.51a 1.10a 0.85ab 0.74b 0.51b

5-10 1.21a 2.43b 1.12a 1.30a 0.90a

10-20 2.45a 2.40a 1.13b 1.54b 1.05b

20-30 1.73a 1.82a 1.41a 1.41a 0.92b

Total 6.90Ba 7.75Aa 4.51Bb 4.99Bb 3.38Bb

Lower slope 0-5 1.98a 1.33b 1.49ab 1.56ab 1.08b

5-10 1.74a 1.57a 1.50a 1.60a 1.11b

10-20 2.25a 2.39a 2.43ab 2.65b 1.82a

20-30 1.93a 1.98a 1.98a 1.98a 1.38b

Total 7.91Aa 7.26Aa 7.40Aa 7.79Aa 5.40Bb

RSC-6Y Upper slope 0-5 1.34a 0.86a 0.62b 0.69b 0.46b

5-10 1.11 1.07 0.97 1.16 0.79

10-20 2.14a 2.14a 2.14a 2.22a 1.55b

20-30 1.64ab 1.83a 1.83a 1.88a 1.27b

Total 6.22Ba 5.89Bab 5.56Bab 5.96Bb 4.07Bb

Middle slope 0-5 1.23a 0.68ab 0.54b 0.45b 0.30b

5-10 0.91a 0.86a 0.76a 0.73a 0.48b

10-20 1.81a 1.95a 1.91a 1.90a 1.26b

20-30 1.06a 1.39a 1.44ab 1.53b 1.01a

Total 5.00Ba 4.88Ba 4.64Ba 4.62Ba 3.05Bb

Lower slope 0-5 1.73a 1.23b 0.91b 1.27ab 0.88b

5-10 1.47a 1.40a 1.19a 1.37a 0.94b

10-20 1.63a 1.75a 1.71a 1.95a 1.34b

20-30 1.27a 1.30a 1.44a 1.44a 0.94b

Total 6.10Ba 5.68Ba 5.26Ba 6.03Ba 4.10Bb

A-F denotes significant differences among fields and positions (p ≤ 0.05), a-c indicates significant differences among time period of each field (p ≤ 0.05), analyzed by post-hoc Tukey’s HSD
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results demonstrate that SOC is highly influenced by the lower
slope position, while the upper slope position exhibits an
opposite effect. The following factors have a similar trend as
SOC: pH and OM, while sand content and ECe have a less
pronounced effect. On the other hand, bulk density and exch.
K exhibit an opposing trend to SOC across the different slope
positions. Meanwhile, nitrogen compounds (STN, NO3-N and
TN) were closly associated with both upper and lower slope
position.

For the RSC-12Y, the RDA plot used two axes to explain
48.32% of the variation in the three topographic positions
(adj.R2 = 0.45, as shown in Figure 6B). The results indicate
that NO3-N, STN, SOC, exch. Ca, and NH4-N were highly
influenced by the lower slope position. On the other hand,
Exch. K, Avail. P, sand content, and ECe were positively
associated with the upper slope, while silt content and CEC
were associated with the middle slope.

3.5 Soil surface loss

In the RSC-6Y, noticeable soil surface loss occurred in the
middle and upper slopes 9 months after burning, even though the
losses in these two slopes at the same post-burning stage did not
display significant differences. In the RSC-12Y, the highest
amount of soil surface loss was observed in the upper slope at
the 9-month post-burning stage, totaling 4.98 cm lost. Notably,
soil surface loss in the same fallow was significantly lower in the
lower slope at all post-burning stages. In CF-15Y, a slight soil
surface gain of 0.6 cm was noted in June, whereas this fallow
experienced soil surface losses of 1.0 cm in September and 1.8 cm
in December (Figure 7).

4 Discussion

4.1 Effect of fallow periods on soil properties
and soil surface loss

The results indicate that the CF-15Y had the highest OM and
SOC stocks, particularly in the surface layer (0–5 cm) (Figure 2,
Figure 3; Table 4). This trend was also observed for STN stocks
(Figure 4, Figure 5; Table 5). Older fallow fields accumulate more
leaf litter and other organic debris from above and below-ground
biomass (Murovhi et al., 2012). In addition, the roots of weeds and
grasses are a significant source of OM in the surface layer (Arunrat
et al., 2023). This finding is consistent with Sharma et al. (2022), who
reported that higher OM inputs from persistent vegetation cover in
older fallow fields contribute to the higher OC content compared to

FIGURE 5
Variation of soil total nitrogen (Mg N ha-1) with soil depth in
different area position under 6-year and 12-year left fallow compared
with continues fallow 15-year.

FIGURE 6
Redundancy analysis (RDA) of soil samples (0–30 cm) using soil
properties response variables and quantitative explanatory variables
under (A) 6-year left fallow and (B) 12-year left fallow in different
position: lower, middle, and upper slopes.
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younger fallow fields. The lower soil pH in CF-15Y compared to
RSC-6Y and RSC-12Y (Table 3) suggests that it is rich in OM and
undergoes more organic acid production during decomposition
processes, which is consistent with Hong et al. (2019).

Currently, the fallow period of RSC fields has shortened due to
population pressures and forest laws and regulations. As a result,
most of the long-term fallow fields (>10 years) have become
secondary natural forests, making it difficult to identify evidence
of their previous boundaries. Thus, those fields eventually were no
longer RSC fields; instead, they became natural forests. The shorter
fallow cycle diminishes the ability of RSC to recover the ecosystem
due to the loss of soil fertility through runoff and leaching, as
observed in the current study (Figure 6). Prokop and Poreba (2012)
found that 32–79 Mg ha–1 year–1 of soils were lost in the short fallow
period of root crop cultivation on steep slopes in Northeast India.
On the other hand, the loss of soil under natural forest was reported
to range from 0.04 to 0.52 t ha-1 year-1 in Meghalaya, India (Saha
et al., 2011). Arunrat et al. (2022b) found that the average soil
erodibility at the topsoil (0–30 cm) of natural forest in northern
Thailand was 0.1337 t h MJ-1 mm-1, the lowest value compared to
crop lands. It takes several years for the restoration of topsoil
nutrients after the conversion of natural forest to cropland. In
northern Vietnam, Dung et al. (2008) estimated that the recovery
of nitrogen and phosphorus would require more than 30 years and
more than 6 years, respectively. In northern Thailand, Arunrat et al.
(2023) observed that SOC and STN stocks had not reached pre-fire
levels even after 2 years had passed. Meanwhile, a longer cycle
duration allowed the germination of weed seeds and regrowth,
which enhances the recovery of soil nutrients and reduces soil
loss (Figure 7). Yadav (2013) found that the losses of carbon and
nutrients in older fallow fields did not significantly affect crop
productivity compared to younger fallow fields. Nevertheless, the
findings of our current study, as depicted in Figure 7, demonstrate
that CF-15Y experienced soil loss during the rainy season, with soil

surface losses ranging from 1.0 to 1.8 cm. This phenomenon could
be attributed to the substantial rainfall and resultant runoff, which
likely led to soil deposition at the lowest slope position.

4.2 Effect of fire on soil properties and soil
surface loss

The effects of fire on soil are primarily confined to the upper
10 cm of soil, where it can reduce soil moisture and increase soil
temperature (Supplementary Table S1). This is because the increase
in soil temperature can be attributed to the removal of canopy cover,
loss of OM insulation, and deposition of black ash on the soil surface
caused by the fire, which subsequently led to higher rates of
evaporation (Cooperdock et al., 2020). The different heating
temperatures during the fire altered the color of the ash, resulting
in dark, reddish-brown ash that contained higher levels of pH,
organic matter, electrical conductivity, total nitrogen, and soil
nutrients (except available calcium) when compared to gray and
white ashes (Supplementary Table S2). Black ash, which is the
product of incomplete combustion of the litter containing a high
proportion of carbon, is typically produced at low temperatures
(<300 °C) (Úbeda et al., 2009). The reddish color of ash is due to the
oxidation of iron minerals at low temperatures (Markl et al., 2006),
while gray or white ash indicates high fire severity and more
complete combustion of litter, which occurs at temperatures
above 500 °C (Kuzyakov et al., 2018).

There is significant concern that shifting cultivation practices
could deplete soil carbon and consequently increase CO2 levels in
the atmosphere (Bruce et al., 1999). Detwiler (1986) estimated that
shifting cultivation could lead to an average loss of 40% of soil
carbon within 5 years. The current study found similar results to
previous research, which showed a decline in SOC stocks in the
surface layer (0–5 cm) at both RSC-6Y and RSC-12Y sites (as shown

FIGURE 7
Soil surface loss (cm) of lower, middle, and upper slope during different time post-burning: 5-min, 3-month, 6-month, and 9-month under 6-year
and 12-year left fallow compared with continues fallow 15-year.
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in Figure 2, Figure 3). This decline can be attributed to the
combustion of OM in the soil, which is released into the
atmosphere as CO2. The decline in STN stock after a fire
(Figure 4, Figure 5) is attributed to the oxidation of OM through
oxidized nitrogen gases and dinitrogen (N2) (Saplalrinliana et al.,
2016). The decline in STN stocks continued even 9 months after
burning in both RSC-6Y and RSC-12Y sites, as shown in Figure 4,
Figure 5. This could be attributed to soil leaching and erosion caused
by heavy rainfall, as the soil was left uncovered after burning.
According to Bechmann (2014), nitrogen is highly susceptible to
loss through surface and subsurface runoff in sloped areas. This can
result in nutrient depletion and subsequently lead to reduced plant
growth and productivity. Soil pH and ECe can increase after burning
due to the release of basic cations (such as calcium, magnesium, and
potassium) and the accumulation of ash, which contains alkaline
materials (Table 1). The post-fire increase in ECe can also be
attributed to the leaching of salts from the ash and the
subsequent increased availability of nutrients that contribute to
ion exchange processes in the soil (Da Silva Neto et al., 2019).
The combustion of OM during a fire can release soil nutrients, such
as Avail. P, Exch. K, Exch. Ca, Exch. Mg, and NH4-N, which could
explain their increase after burning (Table 2). The increase in soil
nutrients can be attributed to the ash generated from the
combustion of vegetation, which contains essential nutrients that
can replenish the soil (Saplalrinliana et al., 2016).

The loss of soil surface in RSC areas is a major concern not
only for the loss of sediment but also for the decline in soil
nutrients, as evidenced in the current study (Figure 7; Table 2).
The burning of vegetation by fire strips away its protective cover,
leaving the soil susceptible to erosion by wind and water. In
addition, the heat generated by the fire can induce soil
hydrophobicity, making it more prone to water repellency and
erosion. Further, soil OM and structure loss due to burning can
make the soil more vulnerable to erosion and result in a decline in
soil nutrient availability. Our findings are also consistent with the
study by Dass et al. (2010) who reported that soil nutrient losses
of N, P, and K were primarily due to runoff and erosion in
southern Orissa, India. Following the 3-month period post-
burning, a discernible trend of rising SOC stocks was
observed, persisting through the upland rice harvest stage at
9 months after burning, as depicted in Figure 2 and detailed in
Table 1 (refer to OC values). The ash and charcoal left after
burning can act as a source of nutrients and OM, leading to
increased SOC levels. Chatterjee et al. (2022) reported an increase
in SOC in shifting cultivation systems in India during the crop
growing and fallow stages, which was attributed to the addition of
OM from the regrowth of vegetation. Weeds and grasses can help
to restore soil fertility during the fallowing phase (Xiao et al.,
2022).

4.3 Vertical distribution and slope effect on
soil properties and soil surface loss

The properties of soil can differ according to the depth in the soil
profile, primarily attributed to the accumulation of OM, changes in
soil texture and structure, and climate. Moreover, the topography of
the land can also play a significant role in soil properties and surface

loss, impacting factors such as soil erosion and nutrient availability.
In RSC-6Y, an increase in SOC stock was observed at deeper layers
(5–10 cm) after burning, resulting in higher levels than those before
burning. At a depth of 10–30 cm, SOC stocks were significantly
higher at lower slopes compared to the surface layer (Figure 3).
There are two possible reasons for the increase in SOC and STN in
deeper layer after a fire: ash deposition and vegetation changes.
During a fire, OM is burned, and carbon is released into the
atmosphere as CO2. However, some carbon remains in the form
of charcoal or ash, which contains high levels of carbon and other
plant nutrients, such as Ca, Mg, and K. When deposited in the soil,
ash can be incorporated into deeper layers over time through
erosion, bioturbation, or leaching (Bodí et al., 2014). After a fire,
some plant species may be replaced by others with higher root
biomass. These new plants can add OM to the soil through litterfall
and root exudates, contributing to an increase in SOC and STN.
They may also allocate more carbon to belowground biomass, such
as roots, resulting in an increase in SOC and STN in deeper soil
layers (Deng and Shangguan, 2017; Gross and Harrison, 2019).
Sheikh et al. (2009) reported that the decline in SOC and STN with
increasing soil depth could be attributed to the decomposition of
plant residues, which were primarily located on the soil surface. The
occurrence of heavy rainfall can lead to a decline in soil nutrients
from the topsoil to the subsoil layer due to leaching losses, which can
in turn promote the rapid growth of invasive weeds, as observed in
the study conducted by Wapongnungsang et al. (2019).

Soil surface loss after a fire in sloped areas can have significant
impacts on soil physicochemical properties (Figure 6). These
impacts can be far-reaching and have long-term consequences
for the growth and productivity of plants, as well as for the health
and functioning of ecosystem. In sloped areas, the upper slope
generally experiences greater erosion rates and soil surface loss
compared to the lower slope or foothill areas. This is because the
upper slope is more exposed to erosive forces such as rainfall and
surface runoff, and the steeper gradient of the slope increases the
velocity of water flowing over the soil surface. As a result, the
upper slope tends to have thinner topsoil and lower OM and TN
contents compared to the lower slope or foothill areas. The study
conducted by Neergaard et al. (2008) supports the current study,
as it revealed that the soil base-forming cations (K, Ca, Mg, and
Na) and ECe exhibited significantly higher values in downslope
soils when compared to upslope soils. Another possible
mechanism, as explained by Bruun et al. (2006), is the loss of
ash from the upper slope towards the foot of the slope. Gafur et al.
(2003) also found that soil nutrients were washed away from the
upper 10 cm and accumulated as sediments in the lower slope of
shifting cultivation. Li et al. (2019) reported that depositional
profiles at subsoil depth had significantly higher levels of SOC
compared to non-eroding or eroding profiles, indicating greater
SOC storage in those profiles. Furthermore, the slope can affect
the rates of water infiltration and runoff. As the slope increases,
the larger surface area and faster water flow lead to a decrease in
infiltration. This results in a reduction of soil moisture content in
deeper layers due to increased runoff and evaporation rates
(Florinsky, 2012). However, future research could explore the
vertical distribution and slope effects on soil properties and soil
surface loss in RSC. This includes investigating the long-term
effects of land use changes on soil properties, elucidating the
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physical and chemical processes contributing to soil erosion, and
understanding how these processes vary across different slopes
and soil types, as well as the effects of soil microbial communities.
Such research efforts can provide a better understanding of the
relationships between slope, depth, soil properties, and erosion
rates, and inform sustainable land use and management practices
that promote soil health and productivity.

5 Conclusion

Our study found that the SOC stock increased at 6- and 9-
month post-burning, which were higher than the pre-burning
levels. At deeper layers (5–10 cm), there was an upward trend in
SOC stock resulting in higher values than pre-burning levels. The
depth of 10–20 cm showed an increase in SOC stocks at lower
slopes and higher than the surface layer. In contrast, STN stock
decreased at the surface soil post-fire, while it increased in deeper
layers at all slope positions. During the rainy season (September),
the highest soil surface losses were observed after the fire, with
the greatest losses occurring at the upper slope and the lowest at
the lower slope. Additionally, lower slopes were found to be
closely associated with SOC, STN, ECe, NO3-N, NH4-N, Exch.
Ca, and Exch. Mg. To mitigate the negative effects on soil
properties after fire, it is crucial to explore and implement
effective post-fire management strategies.
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Agricultural expansion is the primary driver of tropical deforestation and
ecological degradation. Certification schemes for sustainable agricultural
supply chains, such that of the Roundtable on Sustainable Palm Oil (RSPO),
seek to address this issue by identifying and protecting High Conservation
Value (HCV) areas within concessions. Although RSPO certification of individual
concessions has been beneficial, it has had limited efficacy in arresting systemic
ecological degradation at larger scales. In response, certification at a regional,
‘jurisdictional’ scale concordant with local environmental regulation has been
proposed as an alternative to conventional, piecemeal certification. Jurisdictional
certification schemes require alignment with local legislation to ensure integration
with governmental environmental and land-use planning; yet, questions of which
legislation, and at which level of government, have remained unaddressed. Here,
we report on a pilot jurisdictional RSPO certification scheme implemented by an
Indonesian district, based on environmental carrying capacity assessments (ECCA)
as legislated by the district government. Using the ECCA, we identified likely HCV
areas across the district and considered their distributions with respect to three
factors of feasible HCV management: (a) similarity with alternative HCV areas
identified by a conventional HCV Screening method, (b) sensitivity to aspects of
underlying legislation, and (c) scope for unilateral district-wide management.
Likely HCV areas were generally similar between the ECCA and HCV Screening
method, as each set spanned ~90% of the district. However, higher-confidence
HCV areas according to the ECCA were much less extensive, at 51% of the district,
and uniquely extensive across oil-palm concessions. HCV area designation was
highly sensitive to the legislated parameters of the ECCA, namely, the selection
and estimation of key ecosystem services. Potentially, subtle variations to ECCA
implementation, such as those proposed by agro-industrial lobbyists, would
significantly affect jurisdictional HCV designations. Finally, some three-quarters
of all HCV areas and higher-confidence HCV areas designated by the ECCA fell
outside of the exclusive administrative authority of the district government, being
confined to agricultural zones. In politically-decentralised Indonesia, jurisdictional

OPEN ACCESS

EDITED BY

Daniel Abreu,
Federal University of Mato Grosso, Brazil

REVIEWED BY

Mohamed R. Abonazel,
Cairo University, Egypt
Jennifer Rushlow,
Illinois Wesleyan University, United States

*CORRESPONDENCE

Michael Padmanaba,
mpadmanaba@kaleka.id

Sean Sloan,
sean.sloan@viu.ca

†These authors have contributed equally
to this work and share first authorship

RECEIVED 20 May 2023
ACCEPTED 29 August 2023
PUBLISHED 12 September 2023

CITATION

Padmanaba M, Sloan S, Watts JD,
Irawan S, Lee JSH, Pasaribu KN,
Wiratama CGW, Watson E and Utami NP
(2023), Jurisdictional approaches to High
Conservation Value area designation
using regulatory instruments: an
Indonesian pilot project.
Front. Environ. Sci. 11:1226070.
doi: 10.3389/fenvs.2023.1226070

COPYRIGHT

© 2023 Padmanaba, Sloan, Watts, Irawan,
Lee, Pasaribu, Wiratama, Watson and
Utami. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 12 September 2023
DOI 10.3389/fenvs.2023.1226070

134

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1226070/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1226070/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1226070/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1226070/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1226070/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2023.1226070&domain=pdf&date_stamp=2023-09-12
mailto:mpadmanaba@kaleka.id
mailto:mpadmanaba@kaleka.id
mailto:sean.sloan@viu.ca
mailto:sean.sloan@viu.ca
https://doi.org/10.3389/fenvs.2023.1226070
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2023.1226070


HCV areamanagement would therefore be narrowly confined to agricultural areas,
or cooperation between district, provincial, and central governments would be
essential to the protection of HCV areas generally across districts.

KEYWORDS

environmental assessment, HCV screening, sustainable oil palm, jurisdiction, ecosystem
service

1 Introduction

Tropical biodiversity is besieged by many threats, including the
over-exploitation of forests (Maxwell et al., 2016), hunting (Tilker
et al., 2019), pollution (Hölker et al., 2010), fire (Kelly et al., 2020),
climate change (Sintayehu, 2018), invasive species (Doherty et al.,
2016), and habitat destruction (Hanski, 2011). In recent decades,
increased global demand for agricultural and forest commodities has
driven most tropical deforestation and ecological degradation
(Gibbs et al., 2010; Hosonuma et al., 2012; Sloan and Sayer,
2015; Austin et al., 2017a; Austin et al., 2017b). In Indonesia,
host to two global biodiversity hotspots (Sloan et al., 2014), the
main drivers of deforestation since the early 2000s are the
development of industrial-scale concessions for pulp and paper,
timber, and especially oil-palm plantations (Carlson et al., 2013;
Gaveau et al., 2014; Gaveau et al., 2016; Gaveau et al., 2022; Abood
et al., 2015). This deforestation has had detrimental effects for
ecosystem service provision, such as fire mitigation (Nikonovas
et al., 2020), biodiversity (Sodhi et al., 2004; Edwards et al., 2010;
Corlett, 2014), and water regulation (Casagrande et al., 2021).

Commodity-driven deforestation and environmental
degradation in Indonesia has led to civil-society campaigns, such
as global consumer boycotts, which have affected policies in
countries importing Indonesian timber, palm oil, and other
commodities (Lambin et al., 2018). For instance, in 2016 the
European Union adopted the Forest Law Enforcement,
Governance and Trade (FLEGT) regulations to exclusively import
Indonesian timber that is certified as legally sourced (Tacconi, 2007;
van Heeswijk and Turnhout, 2013). Commodity producers, in turn,
have responded to such economic and regulatory pressures via
various sustainable-production initiatives, such as corporate zero-
deforestation pledges (Furumo and Lambin, 2020; Carodenuto and
Buluran, 2021), fire-free production schemes (Carbon Conservation,
2017; Watts et al., 2019; Sloan et al., 2021), and commodity supply-
chain certification schemes (Kadarusman and Herabadi, 2018).
Supply-chain certification schemes, including the well-known
Forest Stewardship Council (FSC) and the Roundtable on
Sustainable Palm Oil (RSPO), entail the identification and
protection of High Conservation Value (HCV) areas within
otherwise productive concessions to avoid their unsustainable
conversion. HCV areas are variously defined as host to high
biodiversity, rare species and/or critical habitats, and/or as
providing significant ecosystem services, and/or as having high
socio-cultural importance to local communities (Edwards et al.,
2011; Austin, et al., 2017).

The RSPO’s Principles and Criteria guide member oil-palm
growers in producing certifiable sustainable palm-oil production
(RSPO, 2021a), including stipulating the identification and
protection of HCV areas (e.g., Principle 7) (RSPO, 2018).

Amongst various considerations covered by these Principles and
Criteria, RSPO certification requires that HCV areas be identified by
accredited third-party environmental consultants, both in existing
concessions and those to be established. Thereafter, the individual
concessionaire is charged with the monitoring and protection of its
HCV areas in order to retain its RSPO certification. To date, the
RSPO Principles and Criteria have been applied in 92 countries,
including Indonesia, by far the world’s foremost oil-palm producer
(Statista Research Department, 2022). While current RSPO-
certification practices have ostensibly lowered overall
deforestation, they have proven less effective at reducing
generalized ecological degradation, as with respect to biodiversity
loss, burning, and peatland conversion (Ruysschaert and Salles,
2014; Azhar et al., 2015; Carlson et al., 2017; Morgans et al.,
2018; Scriven et al., 2019). Amongst other shortcomings, RSPO
Principles and Criteria implementation has been highly piecemeal.
HCV areas have been identified at the level of individual
concessions, culminating in ecologically and administratively
disjointed conservation planning across the multiple concessions
and forested areas within a given region (Runting et al., 2015; Sloan
et al., 2019). More geographically and ecologically holistic
approaches to HCV-area designation are necessary.

In response, the RSPO launched a new certification initiative in
2018, known as the Jurisdictional Approach (JA) (RSPO, 2021b).
The JA seeks to scale the application of RSPO Principles and Criteria
from the concession to a regional, ‘jurisdictional’ scale. In theory, the
JA would entail a single designation of HCV areas across a given
administrative jurisdiction1, allowing for greater coordination
amongst concessionaires and local governmental environmental
regulators with respect to RSPO certification standards.
Theoretical advantages of the JA include a greater total extent of
Principles and Criteria implementation; regulatory support of
market forces for sustainability; increased market access for
producers by virtue of their ‘collective certification’ (Watts and
Irawan, 2018), and economies of scale for financial and
administrative aspects of HCV designation and RSPO compliance
generally, particularly amongst smaller producers (RSPO 2021).

The JA to RSPO certification arguably necessitates that HCV
designations are based on, or otherwise compatible with, local
regulatory instruments. Thus, local governments would realise
jurisdictional HCV designations or otherwise integrate them

1 According to RSPO (2021b, p. 8), a jurisdiction is defined as “a government
administrative area where a system of laws is applied, it could mean a
country, a state, a province, or a district, led by an authority that has the
power or right to govern and to interpret and apply the law. Jurisdictions
operate according to a set of regulations, which define the mandates and
authorities in planning, budgeting and implementation of programmes and
activities”.
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seamlessly with official land-use planning. This practicable aspect of
the RSPO JA has been largely neglected to date. Indeed, recent
guidelines for jurisdictional HCV Screening issued by the High
Conservation Value Network (Watson, 2020) would effectively
‘scale up’ conventional RSPO HCV-assessment methods intended
for concession-level application.While HCV Screening is potentially
beneficial as an input to jurisdictional land-use planning, no means
of integrating HCV Screening with Indonesian environmental
planning are immediately apparent.

An alternative approach to jurisdictional HCV-area designation
is to adapt existing environmental regulatory instruments to identify
and protect HCV areas. Questions of which instrument, and at
which administrative scale, have remain entirely unaddressed. In
Indonesia, the jurisdiction with the authority to regulate agricultural
commodity production is typically the district (kabupaten) (Irawan
et al., 2019; Seymour et al., 2020). Amongst Indonesian districts, one
regulatory instrument amenable to the JA is the Environmental
Carrying Capacity Assessment (ECCA). Since 2009, Indonesian law2

on Environmental Protection and Management requires all district
and provincial authorities to undertake a detailed, spatially-
explicitly, wall-to wall ECCA to ensure that planned socio-
economic development (including agricultural expansion) will
not adversely impact the provision of key ecosystem services
(Watts and Irawan, 2018). Local governments must incorporate
ECCA outputs into their environmental protection and
management plans, medium-term development plans, and land-
use/development plans to avoid or mitigate the negative ecological
effects of development. To date, no more than 20% of district and
provincial authorities have undertaken ECCAs.

Here, for an Indonesian district piloting a JA to RSPO
certification, we explore how, and how well, its ECCA may
identify likely HCV areas compared to the conventional HCV
Screening method currently advanced for jurisdictional
applications. We adapted this district’s ECCA to realise a
jurisdictional HCV-area designation and then considered the
distribution of resultant HCV areas in relation to three factors
bearing on the feasibility of jurisdictional HCV-area
management, namely, (1) the similarity of resultant HCV areas
compared to HCV areas identified by the HCV Screening method,
(2) the sensitivity of resultant HCV-area designations to the
selection and estimation of ecosystem services as legislated by the
ECCA, and (3) the scope for unilateral district-wide management of
the HCV areas in the context of Indonesian political
decentralization.

2 Materials and methods

2.1 Study area

Seruyan District of southern Central Kalimantan Province,
Indonesia (Figure 1) is one of three jurisdictions selected globally
for pilot implementation of the RSPO JA, alongside Sabah State,
Malaysia and the whole of Ecuador. Encompassing 16,404 km2, this

district spans mostly lowlands, although undulating terrain covered
with dense forest also occurs within its northern reaches. The central
part of the district is mostly lowland oil-palm plantations onmineral
soils, while the southern part is comprised by lowland forest, peat
swamp forest, and mangrove, some of which fall within the Tanjung
Puting National Park.

Deforestation and forest fragmentation have been expanding in
Seruyan District since the early 1990s (Figure 1), mirroring trends
for Kalimantan and Indonesia generally (Miettinen et al., 2016;
Watts and Irawan, 2018; Watts et al., 2019). Since 1990, and
particularly since 2000, after Indonesia’s political decentralization,
forest in the southern and central parts of the district declined by
4,822 km2, or approximately 55% of the official Indonesian Forest
Estate of the district as of 1990, due to logging and/or subsequent
conversion to oil palm (Figure 1) (MoEF, 2019a). The district’s
forests are home to endangered species including Bornean
orangutans, proboscis monkey, clouded leopard, and helmeted
hornbill (Matsuda et al., 2009; Manduell et al., 2011; Cheyne
et al., 2013), populations of which are scattered in forest
fragments for which conservation is increasingly essential for
species’ viability (Gaston and Fuller, 2008). Biodiversity in
Seruyan District is relatively understudied, compared to
elsewhere in Kalimantan, which may undermine the scientific
basis of potential conservation policies locally. In this context,
Seruyan District declared its commitment to pilot the RSPO JA
in 2015 and issued supporting regulations to initiate the process in
2016 (Watts and Irawan, 2018; Seymour et al., 2020).

2.2 Methodological overview

In collaboration with the government of Seruyan District, we
adapted its recent ECCA for the district as a jurisdictional approach
towards the identification of likely HCV areas. We then compared
these HCV areas against those identified for the same district using
conventional methods of the HCV Screening Method advanced by
the HCV Network (Table 1). Additionally, we quantified the degree
to which HCV areas according to the ECCA are dependent on
particular ecological services surveyed by the ECCA and, therefore,
are sensitive to the selection and/or estimation of such ecological
services. Finally, we quantified the degree to which HCV areas
according to the ECCA span areas under the exclusive authority of
the district government versus other administrative levels of
Indonesian government.

2.3 Environmental carrying capacity
assessment (ECCA)

We worked with the Seruyan District Environmental Agency to
conduct a district-wide ECCA following guidelines developed by the
Ministry of Environment and Forestry (MoEF, 2019b). Of
18 ecosystem services prescribed by MoEF ECCA guidelines, the
district’s ECCA ultimately surveyed seven services deemed most
relevant to sustainability planning and for which empirical
observations were relatively confident, according to the Seruyan
District government and following its consultation with the MoEF.
The seven ecosystem services are: (i) food provisioning, (ii) water2 National law 32/2009 on Environmental Protection and Management.
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FIGURE 1
Land-use/cover change in Seruyan District, 1990—2016. Source: MoEF (2019a). Notes: Secondary forests according to Ministry of Environment and
Forestry refers to any forested area that has been logged.

TABLE 1 A comparison the environmental carrying capacity assessment (ECCA) and HCV Screening method with regard to HCV identification.

ECCA HCV screening

Unit/level Jurisdiction area (i.e., district or provincial administrative area) Conventional HCV assessments focused on the concession level, while the
HCV Screening focuses on a landscape or jurisdiction, to be defined as part
of the screening exercise.

User Government bodies (national and local level) Government bodies, NGOs, donors, and investors, for example, to meet
objectives of spatial planning, jurisdictional certification or supply chain
risk management.

Regulation Compulsory (Act 32/2009 on Environmental protection and management
plan)

Voluntary; there is no regulation mandating HCV Screening

Data source Guidelines and parameters are mostly from the Indonesian Ministry of
Environment and Forestry (MoEF), including spatial data (landscape,
natural vegetation, land cover). Non-spatial data can come from other
sources (e.g., Seruyan District Statistic, expert consultation)

Spatial and non-spatial data, including socio-culture-economic and
biodiversity data from disparate global datasets, reports, and publications
from government bodies (e.g., MoEF, Geospatial Agency, spatial planning),
NGOs, research institutions, and expert consultations.

Spatial resolution Medium spatial resolution of input data (e.g., SPOT and Landsat satellite
sensor processed as 1:250,000 scale); relatively high spatial detail or nuance
in HCV-area designation

High to medium resolution of input data; relatively low spatial variation or
nuance to HCV-area designations depending on the data available

Implementation Desktop study, ideally alongside biodiversity survey and ground check Desktop study—can be combined with targeted field work and consultation

HCV indicators Indicators of likely HCV area are defined for the jurisdiction as a whole. The
selection of ecosystem services for analysis, and the thresholds for their
estimation, is guided by official regulation.

Indicators are static, typically presence/absence variables, and selected
specifically for each HCV classes (HCV 1—6). Indicators selection reflects
analyst judgement and data availability.

Outputs Delineation of where HCV areas are relatively more or less likely to be
present, by ecosystem service

Delineation of where HCV areas are relatively more or less likely to be
present, by HCV class; summaries of HCV threats; overlay of HCV
likelihood and threats to define ‘HCV priority areas’

Post-analysis
actions

Incorporate HCV assessment into regional development planning Discuss screening result implications with stakeholders and determine next
steps

Advantage Regionally holistic; allows for gradations of HCV likelihood; backed by
regulation to ensure protection and management at jurisdiction scale

Amenable to a wide range of data sources; flexible criteria for HCV-area
designation

Disadvantage Potential subjectivity in weighing and scoring variables of ecological
integrity/threat; potential cullity to the inclusion or estimation of certain
ecosystem services

Uncertain adoption by government development plans; inconsistent
implementation between regions or contexts
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provisioning, (iii) water regulation, (iv) climate regulation, (v) flood
mitigation, (vi) landslide mitigation, and (vii) fire mitigation. Future
ECCAs, either in Seryuan District or other districts, could well
reflect a different set of the 18 prescribed ecosystem services,
according to local priorities and analytical capacities.

For each ecosystem service separately, the ECCA employed a
spatially-explicit index to quantify the capacity of a given unit of
land to sustain the ecosystem service. The index is defined by the
weighted sum of scores for the classes of each of three categorial
variables—landscape type (e.g., alluvial plain, peatland, karst hill,
denuded mountain, etc.), vegetation type (e.g., lowland dipterocarps,
limestone forest, mangrove, etc.), and land cover type (e.g., primary
dryland forest, shrub, plantation, settlement, etc.), each observed
spatially at 1:250,000 scale (GIA, 2016; MoEF, 2019a). Higher index
scores denote a greater capacity for sustainable ecosystem service
provision. Formally, the index, hereafter termed the Environmental
Service Index (ESIj) for a given ecosystem service j, is given by Eq. 1:

ESIj � ws × ss( ) + wv × sv( ) + wc × sc( ) (1)
where, for ecosystem service j:

ss, sv, and sc denote the scores for each class of the variables
landscape type, vegetation type, and land-cover type, respectively, and

ws, wv, and wc denote the weights for each class of the variables
landscape type, vegetation type, and land-cover type, respectively.

Thus, for each ecosystem service j separately, scores and weights
are combined to create one ESIJ index value for a given spatial unit of
observation.

Scores reflect the influence of each class of each variable to
provide environmental services generally. Each class of each variable
has a different score of range 1–5, where 1 and 5 denote the lowest
and highest capacity to provide environmental services, respectively.
Unlike scores, weights for the classes of variables vegetation type,
landscape type, and landcover type vary between the seven ecosystem
services observed here. Variation amongst the weights serves to
recognize the varying relative importance of one variable compared
to another in the context of a given ecosystem service j. The sum of
weights is equal to 1.

The ESI of Eq. 1 thus describes a non-denominational index of
the potential for a given area to sustainably provide ecosystem
service j, where the area in question is defined by the spatial
intersection of the classes of the variables landscape type,
vegetation type, and land-cover type. Supplementary Information
S1 reports the scores and weights for each class of each variable for
each of the seven ecosystem services considered here. Index values
for ecosystem service j were subsequently classified into five classes
of HCV-area likelihood: very low (1–1.8), low (1.81–2.6), moderate
(2.61–3.4), high (3.41–4.2), and very high (4.21–5), where the
threshold ESIj values defining these classes reflected official
guidance (MoEF, 2019b). HCV areas for Seruyan District are
designated wherever ESI value was “high” or “very high” for a
given ecosystem service j. Hereafter, HCV areas identified by either
“high” or ‘very high’ ESI values are denoted as “higher confidence”
HCV areas, and all other HCV areas are denoted as “lower
confidence”.

Scores and weights for each class of the three variables of Eq. 1
were initially determined by expert opinion gathered via a series of
focus-group discussions. Experts consisted of principal
environmental scientists of the Indonesian Institute of Science as

well as local academics, all of whom have knowledge of and
experience with environmental assessment and were involved in
the development of the ECCA guidelines (MoEF, 2019b). Focus
groups sought to ascribe scores and weights by consensus amongst
participating experts. For a given ecosystem service, the experts
discussed and determined scores and weights based on the role of a
given class or variable in providing the ecosystem service. This
approach sought to recognize the highly uneven potential for
ecosystem service provision amongst the classes of a given
variable. For instance, the ecosystem service of fire mitigation is
minimal on degraded and cultivated lands, where most burning
occurs (Ravi et al., 2009), and conversely it is maximal in closed-
canopy forests, where burning is rare (Nikonovas et al., 2020).
Similarly, the multi-variate nature of the ESI index allows for
relatively nuanced determinations of HCV-area likelihood. For
instance, whereas peatland generally burn extensively (Sloan
et al., 2022), and so might merit a low score for fire mitigation,
areas of primary peatswamp forest within peatland landscapes
would still have a high mitigating effect (Nikonovas et al., 2020),
increasing local fire-mitigation scores accordingly. Following the
focus groups, the scores and weights were expressed cartographically
to solicit feedback from a broader audience of government
representatives, local academics, and environmental practitioners
engaged with environmental assessments and ECCAs. Feedback
typically entailed the affirmation of the original scores and weights;
only rarely were they adjusted.

2.4 HCV screening

HCV Screening is a desktop analysis used to identify and
prioritize potential HCV areas for protection at regional scales.
First outlined in 2019 and then updated in 2020 by the HCV
Network (Watson, 2020), HCV Screening adopts HCV
assessment methods developed at the concession level
(Areendran et al., 2020) but scales their application to the
jurisdictional level. HCV Screening protocols therefore purport a
more regionally holistic or consistent approach to HCV assessment
than standard, concession-level assessments (Watson, 2020). Unlike
HCV areas identified by the ECCA, HCV areas identified by HCV
Screening are not based on land-use planning regulations particular
to Seruyan District, notwithstanding an explicit recognition of
legally protected areas or similar, such as national parks or
designated production forests (Table 1). Also, in contrast to the
ECCA, the HCV Screening method disaggregates the total HCV area
into six thematic classes, labelled HCV 1 though to HCV 6 in
Table 2, pertaining to endangered species, ecosystem services, and
community needs, amongst other themes.

HCV Screening as realised here entailed a straightforward two-
stage process. In the first stage, available secondary spatial data and
contextual information (i.e., reports, published studies, official
spatial data) pertaining to key indicators of HCV areas were
compiled for each HCV thematic class (Table 3). For example,
spatial data on remnant forest cover (MoEF, 2019a) and endangered
orangutan sightings (Santika et al., 2017) were compiled and
considered as indicators of the HCV 1 class (rare, threatened,
endangered species) (Table 3). In this study, we consider only
HCV thematic areas of classes HCV 1 through HCV 4 (Table 2),
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which pertain exclusively to environmental conditions, since their
remit corresponds most closely with that of the ECCA.

In the second stage, a threshold value/class was determined for
each HCV indicator, based on the literature and/or expert opinion,
to distinguish areas with higher versus lower likelihoods of HCV
area (Table 3). For example, since remnant forest
fragments >12,500 ha are deemed able to support viable
populations of Borneo orangutans, fragments greater than this
threshold were designated of a higher likelihood of HCV for the
HCV 1 class, while those less than this threshold were designated as
a lower likelihood of HCV (Watson, 2020). Indicator thresholds
were typically described by a simple binary state, such as for (a) the
presence or absence of a given indicator (e.g., a Ramsar site), (b) the
occurrence of natural or non-natural vegetation of interest (e.g.,
wetlands, peatlands), or (c) by the presence or absence of a buffer
distance around a feature of interest (e.g., rivers) (Table 3). For a
given HCV thematic class as a whole (e.g., HCV 1), a higher
likelihood of HCV area is said to occur when at least one HCV
indicator is of a higher likelihood. Similarly, for all four HCV
thematic classes considered here (i.e., HCV 1 through HCV 4), a
HCV area is said to be of a higher likelihood when any indicator of
any HCV class is of a higher likelihood. Hereafter, HCV areas
identified as a ‘higher likelihood’ are denoted ‘higher confidence’
HCV areas, and otherwise as ‘lower confidence’ HCV areas, for
consistency with the ECCA terminology.

2.5 Higher confidence HCV areas of the
ECCA versus HCV screening

While the ECCA and HCV Screening methods both
emphasise similar aspects of similar environmental features
or conditions, e.g., intact forests, they clearly also differ in
various respects, empirically, methodologically, and
conceptually. Such differences between ECCA and HCV
Screening would manifest as differences to the HCV areas
identified by each methodology, perhaps especially with
respect to higher-confidence HCV areas meant to prioritise
jurisdictional vetting of potential HCV areas. At least two key
differences between the ECCA and HCV Screening methods are

apparent. First, HCV Screening explicitly prioritises areas that
are nominally natural, intact, critical habitat, and/or
biodiversity rich, whereas the ECCA does not. In this study,
HCV Screening reflects distributions of threatened orangutans,
as well as the presence of biodiversity-rich Ramsar sites and
protected areas (Table 3). The current ECCA did not quantify
biodiversity as an ecosystem service, though future ECCAs will
likely do so. Second, the ECCA reflects a relatively wide range of
ecosystem services and is relatively disposed to recognise their
provision in human-modified, semi-natural landscapes,
depending on the service. Fire mitigation and climate
regulation, in particular, are afforded to moderate or high
degrees by many modified landscapes, e.g., production
forests, which might be discounted by HCV Screening for
lack of strictly natural, intact forest. Higher-confidence HCV
areas according to each method are compared directly in
Section 3.

3 Results

3.1 HCV areas of the ECCA vs. HCV screening

The ECCA and HCV Screening methods produced very similar
delineations of overall HCV area. Whereas the ECCA method
classified 92% of Seruyan District as potential HCV area
(Figure 2A), the HCV Screening method classified 87% as
potential HCV area (Figure 2B). Both methods designated a
common 87% of the district as HCV area (Figure 3A) and had a
similarly high level of agreement across oil-palm and forestry
concessions overall (Figures 4A, B). This strong agreement of
overall HCV area between the two methods (Figure 3A) is due to
the fact that, nominally, most of Seruyan District is HCV (Figure 2),
including in many cleared and/or concession areas (Figures 4A–D).
These results are consistent with a precautionary approach to initial
HCV-area identification whereby designated HCV areas are
ultimately validated as such, as via field visits, prior to their final
adoption for jurisdictional land-use planning.

Forestry and agricultural concessions featured prominently in
HCV-area designations. HCV areas designated by both the ECCA

TABLE 2 Six thematic classes of High Conservation Value as per the HCV Screening method.

Class Description

HCV 1 Rare, threatened, endangered species Concentrations of biological diversity, including endemic, rare, threatened, or endangered species

HCV 2 Landscape-level ecosystems Large landscape-level ecosystems, ecosystem mosaics, and Intact Forest Landscapes (IFL), which contain viable
populations of the great majority of naturally-occurring species

HCV 3 Rare, threatened, endangered ecosystems and
habitats

Rare, threatened, or endangered ecosystems, habitats and refugia

HCV 4 Ecosystem services Basic ecosystem services in critical situations, including protection of water catchments and control of erosion of
vulnerable soils and slopes

HCV 5 Community needs Sites and resources fundamental for satisfying the basic necessities of local communities or indigenous peoples (for
livelihoods, health, nutrition, water, etc.)

HCV 6 Cultural values Sites, resources, habitats and landscapes of global or national cultural, archaeological or historical significance,
and/or of critical cultural, ecological, economic or religious/sacred importance for local communities or
indigenous peoples

Source: Watson (2020).
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and HCV Screening were extensive across the district’s oil-palm,
logging, andmining concessions (Figures 4A, B). Also, virtually all of
the HCV areas identified by the ECCA but not HCV Screening
(Figure 3B), comprising 5% of the district, are located within oil-
palm concessions in central Seruyan District (Figure 4A). Similarly,
virtually all of the higher-confidence HCV areas identified
exclusively by the ECCA (Figure 3B) are located within the oil-
palm concessions in central Seruyan District (Figure 4C). This
concentration of HCV areas unique to the ECCA within oil-palm
concessions (Figures 4A, C) is seemingly due exclusively to high ESI
values for the fire mitigation (Figure 6G) and/or climate regulation
(Figure 6D) ecosystem services, identified below as factors of

disproportionate influence to the ECCA HCV-area delineation
(Section 3.2).

The geography of HCV areas according to the ECCA poses
political challenges for implementation or, indeed,
opportunities for its derailment. The near ubiquity of all
HCV areas across the district (Figure 2) and its concessions
(Figures 4A, B) would likely prove excessively onerous and
politically fraught for any land-use planning that would seek
to recognise all such HCV areas. A validation of the nominal
HCV areas prior to their official adoption would prove essential
in this respect, both to cull the total HCV area and buttress any
decision to conserve particular HCV areas. Further, in contrast

TABLE 3 Indicators of HCV thematic classes HCV 1-4 and the likelihood of their presence (confidence classes) modified fromHCV Screening guide (Watson, 2020) in
Seruyan District.

HCV indicator Higher confidence of HCV
presence

Lower confidence of HCV
presence

Data source

HCV 1—Rare, threatened, endangered species

Protected areas (protected forest,
conservation areas)

With natural forest cover With no forest cover Seruyan District Spatial Planning Regent
of Seruyan Decree (2019)

Patch size of natural forest ≥ 12500 ha > 250 ha and < 12500 ha Official land-cover maps MoEF (2019a)

Orangutan population Estimated > 200 orangutans within village
administrative boundary with natural
forest cover

Estimated > 200 orangutans within village
area with non-forest natural vegetation

Orangutan population Santika et al.
(2017); Land cover MoEF (2019a);
Administration boundary GIA (2016)

Riparian area 1 km buffer of Seruyan River, or 100 m
buffer of other rivers and lakes, with
natural forest cover

1 km buffer of Seruyan River, or 100 m
buffer of other rivers and lakes, with non-
forest natural vegetation

River and lake map GIA (2016)

HCV 2—Landscape-level ecosystems

Intact Forest Landscape (IFL) Areas which qualify as IFL Areas that are not IFL Intact Forest Landscapes (https://
intactforests.org/)

Ramsar sites Ramsar wetland Not Ramsar wetland Ramsar Sites Information Services
(https://rsis.ramsar.org/)

Wetlands Wetlands with natural forest cover area
(primary and secondary swamp forest)

Degraded wetlands Official land-cover maps MoEF (2019a)

Production forest With natural forest cover patches >100 ha With natural forest cover patches <100 ha Seruyan District Spatial Planning Regent
of Seruyan Decree (2019)

HCV 3—Rare, threatened, endangered ecosystems and habitats

Natural Forest Covered by natural forest Covered by non-natural forest cover (e.g.,
plantation)

Official land-cover maps MoEF (2019a)

Existing Mangrove Intact/healthy mangroves Degraded, fragmented mangroves Official land-cover maps MoEF (2019a)

Swamp Area Intact/healthy swamp area Degraded, fragmented swamp Official land-cover maps MoEF (2019a)

Peatland With natural forest cover Degraded/drained peatland Peatland maps MoEF (2019a); Official
land-cover maps MoEF (2019a)

HCV 4—Ecosystem services

Wetlands Intact/healthy wetlands Fragmented, potentially polluted, wetlands Official land-cover maps MoEF (2019a)

Steep slope areas Slopes of > 40% with natural forest cover Slopes of 25%–40% with natural forest
cover

SRTM data Jarvis et al. (2018); Official
land-cover maps MoEF (2019a)

Swamp areas Present Absent Official land-cover maps MoEF (2019a)

River River ≥ 50 m width, good water quality River < 50 m width, polluted, suffering
siltation

River map GIA (2016)

Lake Permanent Lake Seasonal Lake Lake map GIA (2016)
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to the ubiquity of all HCV areas (Figure 2), higher-confidence
HCV areas exhibited much greater disagreement between the
ECCA and HCV Screening methods (Figure 3), particularly
within oil-palm concessions (Figures 4A, C). Although the
ECCA and HCV Screening method both designated roughly
half of the district as higher-confidence HCV area, at 51% and
42%, respectively, the proportion of these extents exclusive to a
given method was appreciable, at 45% for the ECCA [all of
which occurs in oil-palm concessions (Figure 4C)] and 35% for
HCV Screening. The fact that these discrepancies are centered
on oil-palm concessions could conceivably be exploited by
vested interests seeking to challenge the basis of ECCA HCV
areas. Once again, a validation of HCV areas would be essential
to ensure politically feasible conservation.

3.2 HCV areas of the ECCA by ecosystem
service and bioregion

The ECCA underlying HCV-area designations is highly
sensitive to ‘capture’ by a single ecosystem service and/or
the estimation of its ESI, as indicated by marked
dissimilarities between the frequency distributions and
geographies of ESI values amongst the seven surveyed
ecosystem service. In general, the capacity for ecosystem-
services provision was greater in the northern, forested,
upland region of the district than in its relatively deforested
central and southern lowlands (Figures 5, 6), which are

dominated by oil palm (Figure 4A). However, the ecosystem
services of climate regulation, and especially fire mitigation,
were notable exceptions to this geographical pattern, given
their near-ubiquitous “high” and “very high” ESI values,
respectively (Figures 6D, G; Figure 7). Correspondingly,
these two ecosystem services alone would account for 84%–

93% of the total HCV area estimated for the district by the
ECCA (Figure 2A). Similarly, the frequency distributions of the
five ESI classes ranging from “very low” to “very high” vary
drastically between the seven ecosystem services considered by
the ECCA (Figure 7). Whereas only 3%–18% of Seruyan
District would merit HCV-area designation on the basis of
ESI values for water regulation, water provision, or food
provision, some 65%–93% of the district would merit HCV-
area designation on the basis of ESI values for the remaining
ecosystem services, again especially climate regulation (84%)
and fire mitigation (93%) (Figure 7).

The near ubiquity of high and very high ESI values for
climate regulation and fire mitigation are not necessarily
suggestive of an imprecise or ‘exaggerated’ ESI estimation.
Indeed, there is no reason to expect comparable geographies
or frequency distributions of ESI values across the ecosystem
services within any jurisdiction. Amongst the seven ecosystem
services considered here, large discrepancies in their frequency
distributions and geographies do however underscore how a
single ecosystem service with near-ubiquitously higher ESI
values (e.g., Figure 6G) may alone underlie HCV-area
designations across an entire jurisdiction (Figure 2A). Such

FIGURE 2
HCV areas of lower and higher confidence accord to (A) the Environmental Carrying Capacity Assessment and (B) HCV Screening.
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an outcome is equally possible for HCV Screening, provided
discrepancies amongst its four HCV thematic classes, but is not
apparent here (Figure 8). Such a case of “capture” by a relative
few ecosystem services would still be in keeping with the
precautionary principles of HCV designation (Areendran
et al., 2020), but would also drastically increase the potential
for subtle but significant manipulations of the parameters of the
ECCA by vested economic or political interests.

3.3 Jurisdictional authority for HCV-area
management

HCV-area designation according to the ECCA or similar
jurisdictional approaches to commodity supply-chain
certification are challenged by spatial disagreements between
HCV areas and the administrative authority of local
government. In Indonesia, district-level governments have
exclusive jurisdiction over lands legally designated for
agricultural or similar non-forestry land uses outside the
official Forest Estate. Hence, the Seruyan District
government would have jurisdiction over HCV areas within
its oil-palm concessions, and areas of potential oil-palm
concessions, which by law are granted on lands outside of
the Forest Estate. The district government would have no

jurisdiction over HCV areas within logging concessions, or
potential logging concessions, as these concessions are granted
within the Forest Estate.

Of the total HCV area designated by the ECCA in Seruyan
District (Figure 2A), only 22% falls under the immediate and
sole administrative authority of the district government
(Table 4). Such areas are relatively devoid of intact forest
cover and disproportionately orientated towards agricultural
concessions, as expected. The remaining 68% and 9% of nominal
HCV areas fall under the administrative jurisdictions of the
provincial and national governments, respectively (Table 4).
These areas are relatively forested and encompass forest
concessions. ECCA areas falling under national jurisdiction
occur within nature reserves and protected areas, e.g.,
national parks, which are managed by the national Ministry
of Environment and Forestry. HCV areas under provincial
jurisdiction similarly occur within forests legally designated
for protection, production, or conversion that here are
presumed to have operational forest management units,
i.e., community-minded cooperative forest management
administrations (Sahide et al., 2016a). While these areas of
legally designated forest use are originally under the
jurisdiction of the national Ministry of Environment and
Forestry, authority over forest management units devolves to
a supervisory provincial government.

FIGURE 3
Agreement of HCV areas identified by either the Environmental Carrying Capacity Assessment or the HCV Screening method, for (A) all HCV areas
and (B) higher confidence HCV areas.
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In summary, the Seruyan District government would have
exclusive authority to recognize HCV areas within its oil-palm
production zones, but would have little to no authority in
other, relatively forested, and often adjacent conservation and
forestry zones, which host 72% of higher-confidence HCV

areas across the district (Table 4; Figure 2A; Figures 4A, C).
Such uneven jurisdictional geography in relation to forest
extent and concession type would necessitate inter-
governmental cooperation for truly district-wide,
coordinated HCV management.

FIGURE 4
HCV area distribution within concessions, bymethod of HCV identification and HCV confidence class: All HCV area within palm-oil concessions (A),
All HCV area within logging and mining concessions (B), Higher confidence HCV area within palm-oil concessions (C), Higher confidence HCV area
within logging and mining concessions (D).
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4 Discussion

4.1 Jurisdictional approaches and certifiably
sustainable commodity supply chains

Protecting the world’s remaining natural terrestrial ecosystems
requires halting deforestation and degradation caused largely by
agricultural commodity supply chains (Austin et al., 2017a; 2017b;
Garrett et al., 2019). Current approaches to reducing commodity-driven
deforestation focus on identifying sites of deforestation, linking these to
‘downstream’ agents in supply chains (e.g., mills, exporters), and
documenting how international companies further downstream in
the supply chain are connected to these sites and agents (Gardner
et al., 2019). Companies implicated by supply chains can either choose
to improve the environmental standards of their upstream suppliers, or
they can exclude suppliers with environmentally destructive practices
(Lambin et al., 2018). Commodity certification schemes, such as RSPO,

offer pathways for companies to improve the sustainability of
production while offering assurances to buyers regarding which
companies to patronize (Loconto and Fouilleux, 2014; DeFries et al.,
2017; Lambin and Thorlakson, 2018).

Notwithstanding well-established supply chain certification
schemes for certain commodities, such as timbers, there remains
appreciable variation in scheme effectiveness among commodities
and regions (Seymour and Harris, 2019), and commodity-driven
tropical deforestation apparently remains undiminished overall
(Curtis et al., 2018). Reasons given for the apparent ineffectiveness
of current supply chain certification models are largely economic. They
include the limited adoption of certification schemes due to limited
markets for certified products (Tayleur et al., 2018; Tayleur et al., 2017);
a low marginal price increment for certified commodities, especially at
the farm gate (VanWey and Richards, 2014; Tey et al., 2020); and low
demand for certified commodities among key buyer countries,
especially China and India (Schleifer and Sun, 2018). Political and

FIGURE 5
Forest cover in Seruyan District. Source: MoEF (2019a).

Frontiers in Environmental Science frontiersin.org11

Padmanaba et al. 10.3389/fenvs.2023.1226070

144

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1226070


FIGURE 6
Environmental carrying capacity assessment results in Seruyan District with respect to the geography of seven ecosystem services: (A) water
provisioning, (B) food provisioning, (C) water regulation, (D) climate regulation, (E) flood mitigation, (F) landslide mitigation, and (G) fire mitigation.

FIGURE 7
Environmental carrying capacity assessment results in Seruyan District with respect to the frequency distribution of carrying capacities for seven
ecosystem services.

Frontiers in Environmental Science frontiersin.org12

Padmanaba et al. 10.3389/fenvs.2023.1226070

145

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1226070


corporate marketing initiatives are however arguably shifting such
economic factors. Consumer countries, especially in Europe, have
begun introducing regulatory requirements intended to prevent
unsustainable commodities from entering their markets (Sellare
et al., 2022). Similarly, in response to consumers’ perceived
weaknesses of certification schemes, their environmental criteria
have sometimes been made more stringent, as when the RSPO
introduced no-deforestation and no-exploitation commitments for

peatlands in 2018 (Jong, 2018). Such political and corporate
initiatives are still nascent, and their impact on the demand for
certified, sustainable commodities remains unknown.

Jurisdictional approaches to certifying commodity production have
been proposed as a relatively environmentally stringent and economically
efficient means of reducing commodity-driven deforestation.
Underpinning this approach is the fact that local governments,
supported by multi-stakeholder industry groups (e.g., the RSPO), have

FIGURE 8
The distribution of the four HCV thematic classes of HCV Screening in Seruyan District, individually (HCV 1, HCV 2, HCV 3, HCV 4) and combined
(HCV 1–4), by HCV confidence. Notes: Areas of classes HCV 1-4 by HCV confidence level are reported in Supplementary Information S4.

TABLE 4 HCV area identified by the ECCA, by level of government with jurisdiction over the HCV area.

Governmental level Percentage of HCV area in Seruyan district

Lower confidence HCV Higher confidence HCV Total HCV

District 8.0 14.2 22.2

Provincial 31.5 36.6 68.0

National 8.6 0.4 9.0
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the authority, means, and interest to reduce commodity-driven
deforestation (Busch and Amarjargal, 2020; Boshoven et al., 2021;
Essen and Lambin, 2021). Initially promoted in Latin America with a
focus on soy and cattle (Nepstad et al., 2014; Nepstad et al., 2013),
jurisdictional approaches to sustainable commodity production have
proliferated globally and now encompass a range of commodities,
including palm oil, cocoa, timber, and pulp and paper (Seymour
et al., 2020; Essen and Lambin, 2021). The resultant plurality of
jurisdictional approaches and commodities means that there is no
single standard for measuring the soundness of jurisdictional
approaches and, consequently, whether commodities sourced from
certified regions can credibly be deemed to be sustainable. This is in
contrast to conventional, non-jurisdictional supply chain certification
schemes whereby principles, criteria, and indicators for sustainable
production at a given site are explicitly delineated, often by multi-
stakeholder groups such as the RSPO or the Forest Stewardship
Council (Loconto and Fouilleux, 2014).

Our findings demonstrate that a careful adoption of an
existing regulatory instrument, here the ECCA, to scale the
principles and criteria of supply-chain certification schemes
(RSPO, 2021a), can produce results similar to current best-
practice approaches to this same end, namely, HCV Screening
(Watson, 2020). Although the ECCA regulatory instrument
focused on one element of the RSPO Principles and Criteria,
namely, the identification and protection of HCV areas
(Areendran et al., 2020), a similar approach is conceivably
possible for other environmental, social, and governmental
aspects of these principles and criteria (Pacheco et al., 2020).
The legality and legitimacy of the ECCA, and its alignment with
official land-use planning and environmental-management
processes, increase the likelihood that HCV areas will be
officially adopted and efficiently protected. This process of
transitioning from an ECCA to vetted, protected HCV areas is
not exact, nor even assured, however. Below we identify several
factors contributing to uncertain or inefficacious transitions.

4.2 Transitioning from regulatory instrument
to HCV area

In a given jurisdiction, a regulatory instrument adapted to
support jurisdictional supply-chain certification may well have
been originally designed for very different purposes and so may
prove to be of limited relevance to HCV identification per se. In
the case of the ECCA, it is based on a supply-and-demand
approach to ecosystem-service assessment, whereby
environmental carrying capacity is said to be exceeded when
the estimated supply for ecosystem services exceeds the estimated
demand (Świąder et al., 2020a; Nepstad et al., 2020b). In contrast,
the HCV Screening approach focused on HCV areas defined from
a conservation perspective, supplemented with consideration of
land use and potential threats to habitat (Senior et al., 2015;
Areendran et al., 2020). Despite these methodological
differences, the ECCA provided results similar to those of the
HCV Screening in terms of overall HCV area, notwithstanding
discrepancies observed amongst higher-confidence HCV areas.
The similarity of overall HCV areas may simply reflect the fact
that each method designated the vast majority of our study

district as HCV area (Figure 2), which may not be the case
elsewhere or for other regulatory instruments. Further, in the
case of our ECCA, the extensiveness with which it designated
HCV areas was highly dependent on the particular selection and/
or estimation of ecosystem services, of which two alone (fire
mitigation and climate regulation) could account for nearly all
HCV areas (Figure 6).

A further consideration for the transition from regulatory
instrument to HCV area is, obviously, the administrative scale of
the regulatory instrument. Indonesia provides an illustrative
example regarding sustainable oil-palm certification. An
Indonesian regulatory instrument seemingly more aligned with
HCV designation than the ECCA is the Essential Ecosystem
Areas (EEA) instrument, which seeks to identify and protect
important ecosystems outside conventional conservation areas
(Sahide et al., 2020). The EEA instrument falls under the
authority of the federal Indonesian Ministry of Environment and
Forestry, with management devolved to provincial governments,
such that district governments have neither authority for EEA
designation nor management (Steni, 2021). Consequently,
although thematically aligned with HCV conservation, EEAs
cannot be used for oil-palm certification at the district level, at
least not directly, despite oil-palm concessions being granted and
managed by district governments. Land-use planning (i.e., spatial
planning laws) and similar district-level instruments, including
ECCAs, do however allow district governments to designate
Strategic Environmental Areas (SEAs) that are similar to EEAs.
The utility of SEAs and EEAs for HCV designation merits
consideration in the future.

Finally, the choice of regulatory instrument must consider that
the instrument, or its administration, may not grant jurisdictional
authority over many of the HCV areas that the instrument would
ultimately designate. In the case of the ECCA in Seruyan District,
77% of the total HCV area identified (Figure 2A) fell within the
Indonesian Forest Estate, the administration of which is beyond the
authority of the district government (Brockhaus et al., 2012; Sahide
et al., 2016b). Ironically, the management of only those HCV areas
falling under the jurisdiction of the district government would likely
engender the same critiques of disjointed, piecemeal conservation as
levelled previously against conventional RSPO certification realized
at the concession scale. Although district governments cannot
directly manage most forests and protected areas, they can
support forest and habitat integrity through the creation of buffer
zones (Jotikapukkana et al., 2010) and ecological corridors (van
Noordwijk et al., 2012). Perhaps especially in Indonesia, where
environmental governance is relatively decentralised and closely
reflects the geography of forest resources, a major challenge for any
jurisdictional approach to HCV identification is whether a local
government has the authority to manage designated HCV areas and,
if not, whether intergovernmental cooperation is likely to be
effective.

5 Conclusion

A jurisdictional approach to the certification of sustainable palm
oil supply chains aims to apply RSPO principles and criteria for
sustainable production at the scale of local governmental

Frontiers in Environmental Science frontiersin.org14

Padmanaba et al. 10.3389/fenvs.2023.1226070

147

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1226070


environmental regulation and planning. To ensure compliance with
these principles and criteria, High Conservation Value (HCV) areas
must be identified and protected across the jurisdiction, at least in
areas eligible for oil-palm production, ideally seamlessly with
environmental planning. Here, for an Indonesian district piloting
jurisdictional approaches to RSPO certification, we adopted its
Environmental Carrying Capacity Assessment (ECCA) to
illustrate how, and how well, an existing regulatory instrument
may identify likely HCV areas compared to the conventional
HCV Screening method currently recommended for jurisdictional
certification (Watson, 2020). Such use of existing regulatory
instruments for HCV-area designation aspires to correct for key
shortcomings of conventional RSPO certification, including its
piecemeal implementation and poor integration with the local
environmental regulation.

Our results indicate that the overall HCV-area designation
according to the ECCA is geographically virtually equivalent to
that based onHCV Screening. For eachmethod, HCV areas spanned
virtually the entire district, underscoring how initial HCV
delineations require vetting and validation prior to official
adoption, and how any ambitious adoption of all HCV areas
would likely prove impracticable. In contrast, higher-confidence
HCV areas according to the ECCA spanned roughly half of the
district, were largely discrepant from higher-confidence HCV areas
of the HCV Screening method, and uniquely spanned oil-palm
concessions.

The Seruyan District government has exclusive authority
over ~40% of all high-confidence HCV areas, which occur
within zones of current or potential oil-palm production. The
remaining ~60% of higher-confidence HCV areas designated by
the ECCA occurred outside the exclusive authority of the district
government, in zones designated for conservation of forestry.
Intergovernmental cooperation may therefore prove essential to
truly district-wide, comprehensive HCV-area delineation and
management.

HCV areas according to the ECCA are sensitive to the
selection of ecosystem services surveyed, and to the estimation
of their provision (i.e., the ESI). Indeed, the very set of ecosystem
services surveyed by an ECCA is at least somewhat flexible
according to local development priorities and analytical
capacities. The selection and estimation of ecosystem services
should therefore be highly transparent, and ideally aligned with
sustainability certification standards, such as those of the RSPO.
The sensitivity and flexibility of ECCA HCV-area designations,
as well as their ubiquity or discrepancies noted above, may invite
challenges by vested interests seeking to influence HCV-area
designations.

We stress that our results are particular to the ECCA
conducted for Seruyan district. Our finding would likely vary
given a different selection of ecosystem services and/or changes
to geographic and politico-legal context. Future research on

jurisdictional HCV-area delineation for RSPO certification
should therefore quantify the implications of variation to (a)
the selection of ecosystem services inherent to an ECCA, (b) the
land-cover geography of Indonesian districts implementing a
JA, and (c) political-legal contexts of land-use planning, as
between the three RSPO JA pilot projects underway in Sabah,
Ecuador, and Indonesia.
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