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If biology in the 20th century was characterized by an explosion of new experimental 
technologies, that of the 21st has seen an equally exuberant proliferation of 
mathematical and computational methods. We are now living through the 
consolidation of a new paradigm where experimental data goes hand in hand with 
computational analysis and we must meet the challenge of fusing these two aspects 
of the new biology into a consistent theoretical framework. Whether systems biology 
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will survive as a field or be washed away by the tides of future fads will ultimately 
depend on its success to achieve this type of synthesis. The famous quote attributed 
to Kurt Lewin comes to mind: “there is nothing more practical than a good theory”. 
This book presents a wide assortment of articles on systems biology in an attempt 
to capture the variety of current methods in systems biology and show how they 
can help to find answers to the challenges of modern biology.
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Editorial on the Research Topic

Foundations of Theoretical Approaches in Systems Biology

The importance of systemic approaches in understanding biology was recognized as early as in the
nineteenth century (Bernard and Dagonet, 2013). Around the 1920s and over the next few decades
Briggs and Haldane (1925); von Bertalanffy (1962) and others Savageau (1969); Michaelis and
Menten (2013) showed that such systemic views were both scientific and necessary in the biological
sciences. Still, the only technology that could accurately perform biological studies integrating a
large number of molecular components was mathematical modeling. This limitation remained in
place until the late 1990s, making these studies hard to validate experimentally.

This pre-history of Systems Biology would end when full genome sequencing and the high
throughput methods that would follow flooded every biological discipline with more data than
could be analyzed. As a consequence, many discarded the usefulness of mathematical modeling
under the assumption that there is no need to simulate what can be measured. Over time this view
was understood as simplistic, and it became clear that mathematical and statistical modeling is
essential to distill the sheer amount of molecular data available into “general biological laws” that
explain how molecular components come together and form biological systems. We are leaving
an era where large scale measurements of all molecular components in a cell dominated the field
and entering a new wave of methodological development to integrate all those measurements into
meaningful mathematical descriptions.

This integration needs to be multilevel. We need accurate methods that use experimental
and qualitative information to perform whole-genome network reconstruction at the metabolic,
signaling and the gene regulation level. We need general techniques that automatically derive
and analyze mathematical models of such reconstructed networks. This Frontiers research topic,
“Foundations of Theoretical Approaches in Systems Biology,” aims at paving the way to investigate
if this set of approaches is mature enough to coalesce into a coherent body of knowledge.

In line with this, Torres and Santos introductory paper outlines the traditional modeling process
as three-stage framework. In the first stage the biological system is framed as a conceptual model.
In the second stage, the model is represented using a formal mathematical description. In the final
stage the mathematical description is parameterized and studied through analytical and simulation
methods to understand the dynamic behavior and regulation of the system. Lomnitz and Savageau
recognize the limitations implicit to that classical approach. They describe a method in which all
possible qualitatively different types of dynamical behavior, or phenotypes, of the system can be
mapped from the conceptual representation and identify the parameter ranges that make each
phenotype realizable. They also contribute a toolbox that enables modelers to try that method.

Other contributions to the topic describe and analyze the diversity of modeling being used
and emphasize some of the commonalities and differences among them. At the level of network
reconstruction, where little quantitative information is available, network centrality measures

5
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determined using graph theoretical approaches can help in
identifying the key elements in the network, as is reviewed by
Jalili et al.. As the causal structure of the network becomes clearer,
logic modeling can offer testable dynamical and regulatory
insights about the way in which, for example, signaling and gene
regulation networks work (Khan et al., 2017). Abou-Jaoudé et al.
review and discuss the potential of this type of modeling to
reconstruct and analyze large, intricate biochemical networks.

Moving to models that describe biological systems using
linear mathematics and steady state approximations, Müller
and Regensburger explores the concept of elementary flux
modes, a defining set for every possible flux distribution in a
biochemical network. They use combinatorial mathematics and
polyhedral geometry (Rockafellar, 1969) to propose alternative
ways to search for flux modes in metabolic network analysis.
Dolatshahi and Voit explore and discuss strategies for model
parameters estimation that extend the use of dynamic flux
estimation method for the analysis of metabolic time series data
to general, slightly underdetermined metabolic networks. This
method establishes a bridge between constraint-based models,
which can be formulated with minimal information, and kinetic
models that can be used to analyze transient data.

Hahl and Kremling examine the parallels and discrepancies
between deterministic (ordinary differential equations) and
stochastic approaches (chemical master equation) of molecular
systems, discussing when to choose one or the other.

Overall, choosing a modeling framework is a trade-off that
should consider the question being addressed as well as the
data that is available to inform model creation. Models for
bacterial lung infection (Cantone et al.) and cyanobacteria
(Westermark and Steuer) are used to illustrate the advantages and
disadvantages of alternative approaches, and to point out ways in
which those approaches can be combined to create multi-level
models.

Another important issue in mathematical modeling is that of
model reduction. This is the process of identifying simpler but
accurate enough versions of a larger model. Classical approaches
to model reduction can be found in the field of enzyme

kinetics. This field combines graph theoretical approaches with
considerations about the differences between the characteristic

time scale of individual chemical reactions or between the
concentrations of the various species in a network to derive
single equations that describe the dynamic behavior of fairly
complex networks. Rosenblatt and coworkers (Rosenblatt et al.)
present a graph-theoretical algorithm for deriving steady-state
expressions by stepwise removal of cyclic dependencies between
the network model variables. In parallel Löwe et al. and Koch et
al. provide examples that illustrate the importance of choosing
the appropriate mathematical formalism and how that formalism
can be used to develop efficient approaches to model reduction.

Coming full circle, Kimura et al. illustrate that dynamic
mathematical models can also be used for inferring network
structure and refining the initial conceptual model on which the
mathematical model is based.

Together, the collection of papers under the research
topic “Foundations of Theoretical Approaches in Systems
Biology” shows how theoreticians are exploring many different
avenues to interpret experimental data and distill them
into “biological laws.” In addition, this topic contributes
to understand where those approaches overlap and where
they complement one another. Only through such an effort
can we avoid fragmentation and minimize duplication of
efforts, and thus contribute to the consolidation of Systems
Biology as a field of knowledge rather than an assortment of
techniques.
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2 Instituto de Tecnología Biomédica, CIBICAN, San Cristóbal de La Laguna, Spain

In this communication, we introduce a general framework and discussion on the role
of models and the modeling process in the field of biosciences. The objective is to
sum up the common procedures during the formalization and analysis of a biological
problem from the perspective of Systems Biology, which approaches the study of
biological systems as a whole. We begin by presenting the definitions of (biological)
system and model. Particular attention is given to the meaning of mathematical model
within the context of biology. Then, we present the process of modeling and analysis
of biological systems. Three stages are described in detail: conceptualization of the
biological system into a model, mathematical formalization of the previous conceptual
model and optimization and system management derived from the analysis of the
mathematical model. All along this work the main features and shortcomings of the
process are analyzed and a set of rules that could help in the task of modeling any
biological system are presented. Special regard is given to the formative requirements
and the interdisciplinary nature of this approach. We conclude with some general
considerations on the challenges that modeling is posing to current biology.

Keywords: biosciences, biological system, model, mathematical model, systems biology

INTRODUCTION

A theory has only the alternative of being right or wrong. A model has a third possibility: it may be right,
but irrelevant.

Manfred Eigen. The Origins of Biological Information.

There are many definitions of science (Popper, 1935; Kuhn, 1962, 1965; Lakatos, 1970), but
all of them refer to a body of knowledge obtained through a particular method based on the
observation of the physical world, linked to systematically structured reasoning, strategies by which
general principles and laws are deduced. That particular method is the “ScientificMethod”, defined
by the Oxford English Dictionary as “. . .the procedure. . ., consisting in systematic observation,
measurement, and experiment, and the formulation, testing, and modification of hypotheses.” In the
above statements there are two core ideas which are relevant here and that derive directly fromwhat
science is: the first one is that any scientific activity requires measurements and thus, quantification
of real magnitudes. The second is that any scientific activity makes sense only if it allows us to gain
“knowledge”; that is understanding, predicting and control. In science these goals are achieved
through the building of models and theories. Both serve, with different degrees of generality, to
explain the observed facts and predict with high probability the evolution and behavior of natural
systems.

Frontiers in Genetics | www.frontiersin.org December 2015 | Volume 6 | Article 3547

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://dx.doi.org/10.3389/fgene.2015.00354
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fgene.2015.00354
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2015.00354&domain=pdf&date_stamp=2015-12-22
http://journal.frontiersin.org/article/10.3389/fgene.2015.00354/abstract
http://loop.frontiersin.org/people/147833/overview
http://loop.frontiersin.org/people/278395/overview
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Torres and Santos The (Mathematical) Modeling Process in Biosciences

Biological Systems and Models
Before describing the modeling process, it is advisable to clarify
the meaning of two key concepts, “biological system” and
“model” that we assume are inextricably linked.

Any biological system is composed of a set of elements,
physical objects, usually numerous and diverse, that influence
each other (i.e., they interact) and that are physically and
functionally separated from their environment. The physical
separation is a frontier, which can be real (e.g., a membrane)
or imaginary, which is permeable to matter, and energy (i.e.,
an open system). The functional separation is a consequence
of the fact that biological systems are far from thermodynamic
equilibrium, in contrast with the environment. The interchange
of matter and energy with the environment is indeed a necessary
requisite to sustain the chemical–physical processes that occur
far from equilibrium. Thus defined, a living system involves
a reference to the environment in which it is located and
with which it interacts. It is worth noting here that when
we focus solely on the elements, disregarding the interactions
between them and with the environment, the system disappears,
because a set of entities devoid of interaction is a mere
aggregation of elements. This is the essence of “system”, a
holistic approach to research as opposite to a reductionist
view.

For our purposes here, a model is a conceptual or
mathematical representation of a system that serves to
understand and quantify it. The difference between conceptual
and mathematical resides only on the way the representation
is formulated. A model is always a simplified representation of
the reference system, which the scientist wishes to understand
and quantify. It ultimately serves as a means of systematizing the
available knowledge and understanding of a given phenomenon
and the facts concerning it.

A first step in any model-building attempt is the simple
verbalization of statements about the biological system. Soon
this phase leads to a more productive one, where observations
and hypothesis transform the observations and data into an
organized core, the so-called “conceptual” model. Conceptual
models constitute, thus, a first level of qualitative integration
of the information on the system under scrutiny. Conceptual
models are so ingrained in our everyday life that we usually do not
make a distinction betweenmodels and the real thing. Very often,
they come as diagrams, words or physical structures, which deal
with either the structure and/or the function of the real system.
The causal diagrams are examples of suitable tools that help in
dealing with the conceptual models (Voit, 1992; Minegishi and
Thiel, 2000; Allender et al., 2015).

A key feature of the conceptual models is that they only
make a qualitative description of the real system. Examples of
such conceptual models in biology range from the typical plant
or animal cell diagram (one that integrates many observations
of multiple types of cells obtained through a great variety of
techniques) to the models about enzyme action and metabolic
pathways. The enzyme action model describes how the substrate
attaches to the active site of the enzyme, and how the enzyme
structure changes in different molecular environments. Another
ubiquitous conceptual model is that of metabolic pathways;

they represent the coordinated and sequential activities and
regulatory features of many enzymes. The main value of
the conceptual models is that, as the result of the (tough)
complex process involved in its development, it allows the
integration of disperse information obtained from different
sources. However, their origin renders them imprecise, and
conceptual models can be interpreted differently by different
people.

A further refinement in the process of system understanding
is given by the translation of the conceptual model into a form
subject to a quantitative description, evaluation and validation.
This form is the mathematical model. A mathematical model
is the formalized description of the system derived from a
previous conceptual model. Mathematical models may be very
diverse in nature. Dynamical models consider changes in the
elements with time, and can be categorized into deterministic
and stochastic. In the deterministic ones, the velocities only
depend on the concentration of the elements and the parameters
of the model. The opposite are the stochastic ones, in which
the velocities also depend on the random noise of the system,
due to the uncertainty present in systems containing statistically
non-abundant elements. On the other hand, static models try to
understand the structure of the interconnection of the elements,
which remains constant during time under specific conditions
(Voit, 2012).

The mathematical models not only help us to understand
the system, but also are instrumental to yield insight into the
complex processes involved in biological systems by extracting
the essential meaning of the hypotheses (Wimsatt, 1987; Bedau,
1999; Schank, 2008) and allows to study the effects of changes in
its components and/or environmental conditions on the system’s
behavior; that is, they allow the control and optimization of the
system.

Mathematical Models in Biology
The usefulness of mathematical models in physics and
technology is well documented; in fact they can be traced back
to the very origins of physics. Since the days of Galileo, Kepler
and Newton scientists have striven to develop their models by
means of mathematical formalism. What we want to present and
develop here is the tenet that modeling in general, but specifically
mathematical modeling, particularly in biology –as well as in
science in general- is the only way to attain such quantitative
understanding and control. Mathematical modeling should thus
be an essential and inseparable part of any scientific endeavor in
the realm of XXI century bioscience.

It has been claimed that the maturity of a scientific field
correlates positively with how often mathematical models are
developed and used to understand and control the real system
(Weidlich, 2003; Medio, 2006; Brauer and Castillo-Chavez, 2010;
Gunawardena, 2011). In this regard, it has not been until recently
that dynamic mathematical models in biology have become a
common feature. Besides the well-known cases of the Michaelis–
Menten model to describe the dynamics of the enzyme-catalyzed
reactions (Michaelis and Menten, 1913) and its subsequent
development for the case of allosteric enzymes (Monod et al.,
1965), the Hodgkin–Huxley model of the action potentials in
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neurons (Hodkin and Huxley, 1952), the Lotka–Volterra model
about the interaction of species (Lotka, 1920; Volterra, 1926) and
the epidemiological models of epidemics (Ross, 1915;MacDonald
et al., 1968), the emergence and widespread recognition of the
role and importance of mathematical models in biology is a
recent phenomenon.

It is easy to understand why only until very late in scientific
research mathematical modeling of biological systems has been
put in use. Biological systems, by their nature, are refractory
to precise quantitative and mathematical description. They are
composed by many elements closely interconnected by processes
and interactions that take place at different levels of organization
(molecular, cellular, in tissue, whole animals and ecological).
At the same time, these processes occur in an open system
as a result of the existence of multiple gradients far from
the thermodynamic equilibrium, which in the end produce
very complicated non-linear dynamics between the elements of
the system (Prigogine, 1961). This situation has impaired the
quantitative and dynamic approach to the understanding of
biological systems through the use of mathematical models.

However, two technological advancements that have made
feasible the construction and resolution of mathematical models
for biological systems have been developed in the last decades.
There is a general accessibility and almost universal ubiquity
of the computational power required for the management of
information and the calculation of large systems. On the other
hand, the development of the high throughput techniques and the
emergence of the “omics” sciences (genomics, transcriptomics,
proteomics, signalomics, and metabolomics) have generated a
great deal of dynamic information on the structure and behavior
of the biological systems. This information has become easier and
cheaper to acquire, process and store than ever before.

All the above have been instrumental to the arrival of Systems
Biology, as the XXI century approach to the quantitative and
interdisciplinary study of the complex interactions and the
collective behavior of a cell, an organism or an ecosystem. The
distinctive feature of Systems Biology is the concern with the
organization and biological function. This approach goes beyond
the classical reductionist approach, where the researcher seeks
to understand the systems by breaking them down into their
constituent elements and analyzing them separately or, in a novel
version of the old paradigm facilitated by the high throughput
techniques, by collecting every piece of accessible information.
In the Systems Biology approach, research is focussed not on
the parts considered individually, but on the relationships that
exist between the structural components of biological systems
and their function, and on the characteristics of the interactions
that occur between different sub-systems. This method allows the
detection of emerging higher levels of structural and functional
organization. In contrast with the reductionist approach, Systems
Biology deals with the reconstructive and integrative task upon
the available biological information. And it is here where
models and modeling becomes a central tenet in Systems
Biology.

In the following section we will develop a general framework
where the role of models and the modeling process within the
scientific activity in biosciences is highlighted. Also, a set of rules

that help the modeling activity is presented together with some
general considerations on the challenges that modeling currently
poses.

A MODEL OF THE MODELING PROCESS
IN BIOSCIENCES

The purpose of models is not to fit the data but to sharpen the
questions.

Samuel Karlin

The Figure 1 summarizes the set of activities and elements
involved in the development of models, as organized following
the Scientific Method.

I. Conceptualization
The first stage of the scientific modeling process is the
conceptualization phase. In any research process all activities
are organized around the Real System, which is the compulsory,
continuous reference in the whole process. This central position
is represented in Figure 1 as a circle.

The first step in the conceptualization stage is to formulate,
from the very first observations of the phenomenon
(Observation; see Figure 1), generally made in an unsystematic
form, an explanatory hypothesis of it: the first version of the
conceptual model. This is a critical task where it is necessary
to coordinate, to contrast and discuss many issues with the
aim of making the best decisions. Some of the questions that
should be addressed at this stage are: what aspects of the real
system should be incorporated into the model? What features
should/can be ignored? Or, what hypotheses can support the
observations/information rendered by the system?

Given that any model is an instrument designed for a purpose,
the very first question that should be posed at this stage is: what
is the model for? That is, the objective of the model. No model
makes sense or is justified for its own sake. Thus, what first defines
a model is the specific question that it is going to answer.

Trying to develop a model to explain all aspects of a
biological phenomenon will be practically impossible, a very
complex and highly unmanageable task. However, a model
with a limited purpose will be feasible, and easier to be
analyzed and managed. At this stage of modeling, our thinking
process uses the categories of space, time, substance (namely,
material components, and elements), quality, quantity, and
relationship. These categories help us to bring order to the
perceived complexity of the real world. Nevertheless, this act
of classification and identification differ considerably from one
scientific discipline to another.

The meaning and significance of the modeling process is
rooted in the core of the scientific process: from the observation
of some part of the biological world some questions arise, the
model being the tool that eventually would serve to provide an
answer. As can be seen, any modeling exercise forces, from the
very beginning, to define and make explicit the focus of our
research and to keep, all along the way, our attention on the main
objective.
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FIGURE 1 | The modeling process in biosciences. The main activities
involved in this procedure are observation followed by mathematical modeling;
simulation, analysis, optimization and back to observation. In this cycle the
mathematical model occupies, just after the real system, the center position. I.
Conceptualization. Having chosen the subject of research and after some
initial observations are made, the biologist should reflect on the model to be
built. From the information available and a set of well-founded hypothesis, it
will build a first version of the model that presents a first selection of variables,
processes and interactions considered relevant (conceptual model). The
iteration of this process constitutes the classical version of the scientific
method (light pink arrows). II. Mathematical formalization. From this
proposal the first mathematical formulation of the model is derived
(Mathematical model). Getting to this point has required an exercise of
integration of hypotheses and information that yields a new, deeper degree of
knowledge about the system not reached before (light blue arrows). III.
Management and optimization. As a result of these two phases the
information needed to validate the model becomes evident, which in turn
suggests new experimental designs that propitiate a new round of
improvement cycle (purple arrows). As can be seen the process of building a
model, itself determines the path to a greater and coherent understanding of
the system that makes feasible its rational control and management. See text
for more information.

The conceptualization stage is where modeling becomes very
often an art, a subjective task. The choice of the essential
attributes of the real system and the omission of irrelevant
ones requires a selective perception that you cannot specify
through an algorithm. There is some dosage of freedom and
arbitrariness at this stage since different researchers equally
well informed can define different models. As we are educated
in a specific biological scientific discipline, we are trained to

observe the real world in the light of a certain conceptual
framework.

In some instances, the discussion of contrasting opinions
addressed to demarcate the border between the system and
its environment, or to discriminate between different possible
scenarios or to evaluate the importance of the experimental error
associated with the observed values, leads to different versions
of the model. Based on the final selection of hypotheses, the
next step is to carry out experiments (Experimental design;
see Figure 1) devised to obtain experimental data to test
the chosen hypothesis. From the analysis of the experimental
results, the hypothesis can be reformulated or discarded (Model
refinement; see Figure 1), thereby initiating a virtuous cycle
(pink arrows) that leads to an improved conceptual model.
Eventually, this refined model version is expected to answer,
though qualitatively, the questions initially raised. At this stage,
the need to change the initial hypothesis, far from being a failure,
should be understood as progress toward a better understanding
of the behavior of the system. This allows to rule out some
proposals, which will be replaced by new ones that might
be more effective in the building process of the conceptual
model.

The above sequence illustrates the fact that observation and
science are not the same thing. The aim of the scientific
method is not to describe but to explain the observed, to
understand and interpret the observations. It is here where the
collaboration between the modeling part and the field experts
becomes essential. And it is at this stage where interdisciplinarity
occurs. The best version of the modeling task results when
it is a team effort, where the competences and expertise of
different specialists blend. Those with the best knowledge on
the particular subject should be able to communicate with the
modeler. They must be able to understand each other; the expert
presenting the whole picture and selecting from it the elements,
interactions, processes, and values that are deemed relevant in
the light of the model’s objective. At this point the modeler
should translate this selection into a conceptual representation
that usually takes de form of a mechanistic picture where the
elements and their relations are represented. To be useful, this
picture should be explicit enough to be translated into a series
of elementary steps representing the individual mechanisms.
The modeler here is instrumental in defining which are the
magnitudes considered as variables and which are not; this is a
critical distinction that determines to a great extent the model’s
output.

The development of the modeling approach has at this point
one of its great challenges, because it requires that the different
specialists share a common language. There is a need, on the
side of the modeler, to become acquainted with the features and
nuances of the system under scrutiny, and to speak in terms easy
to understand by the non-modeler party. On the other side, the
specialist should adopt an integrative way of thinking and be able
to make explicit his knowledge and express it in the most precise
terms.

More often than not, it is necessary to repeat the
conceptualization stage of discussion and analysis several
times, before the proposed model becomes able to respond
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successfully to all the objections that could be raised by the
experts who come in contact with the model. Once you have
reached an acceptable version you will be able to consider the
next stage: the mathematical formalization.

At this phase of the model building process it could happen
that the modeler may be tempted by the challenge of building
a wholly comprehensive model system, that is, one that takes
into account, if not all, most of the characteristics of the real
system. Besides the misunderstanding of the modeling process
that this shows, this attitude has additional costs, because if two
models serve to give the desired answers, the simpler one is better.
A modeler intending to include all variables and parameters
described would also be faced with the task of analyzing the
influence of all the parameters on all the variables. This in turn
would require an additional, usually non-negligible effort for its
interpretation, making the model more difficult to understand.
In modeling, more and harder is not necessarily better. In fact
it sometimes happens that the largest and most complicated
model may be the poorest in attaining its objectives or expressing
necessary or meaningful details of the reality. A nice illustration
of this point is the very simple model of the signaling pathway
of NF-κβ, in which with only three elements it is reproduced
the main dynamical behavior of the original system (Krishna
et al., 2006). In other words, we should try to make the complex
as uncomplicated as possible. Despite this, the discussion of
its results can enrich the conceptual model building when
considering the traits and characteristics that were not initially
included.

Related with this is the fact that the developments of the
conceptual model force the analysis and the systematic review
of available knowledge about the system and its behavior. As a
result of this exercise of verbalization of the knowledge -often
unconscious- that experts have about the system, a new light is
shed on the phenomenon, which very often contributes to a better
understanding of the system.

It may happen that some gaps of information about
interactions or relevant parts that had hitherto gone unnoticed
become evident. This usually suggests new avenues of exploration
and ultimately contributes to a better understanding of the
observed reality. Also, the discussions on the variables or the
processes involved help to change previous assumptions or
facilitates a new view and understanding of some facts that
previously remained without an explanation. As an example,
Cheong et al. (2008) review the contributions of mathematical
modeling on the understanding of the NF-κβ pathway. It is
also very common to become aware of contradictions in the
understanding of biological mechanisms. Most of the knowledge
or information about an issue may pass through several authors
undisputed, but when all this is mathematically formalized,
problems to join all in a single framework emerge. Mathematical
thinking forces to reconsider every piece of knowledge.

Finally, there is a modeling principle that should be
commented here: “If the hypotheses of the model are erroneous,
the conclusions raised from it will be wrong too.” As obvious as it
may be, this principle is not less important. This principle should
be taken into account all along the model-building process,
particularly in the mathematical formalization that follows,

because the resulting model should be faithful to the proposed
hypothesis.

II. The Mathematical Formalization
Mathematical Translation
The first question to be addressed in this new phase is about
which mathematical formalism is best suited to represent the
system (Translation; see Figure 1). There are many formal
modeling approaches, based on differential equations, Bayesian
equations, stochastic systems, agent-based modeling, etc. (for
a review, see ElKalaawy and Wassal, 2015). Each of these has
unique strengths and limitations. The choice heavily depends on
the nature of the model. It often happens that a research group
ends up enslaved by the modeling techniques which it dominates
or prefers. For example, a teamwith experience inmodeling using
differential equations may tend to approach every problem from
the standpoint of this technique, when in fact not all biological
problems are deterministic. It is natural to preferentially use the
methods that are best known and previously proven fruitful. But
the ideal attitude is to adapt the specific modeling technique to
the nature of the problem.

The task of developing a model is a process of approximation
due to the simplifications that must be introduced. These
simplifications should make sense in terms of the physical–
chemical processes being studied, but must also be valid form
a mathematical point of view. The general approach to the
mathematical formulation usually involves the definition of the
key variables and the expression of their functional relationship
with the other variables of the system. Equations are then
derived establishing the actual mathematical relationship among
the variables. This derivation can be done empirically (data-
driven), through the use of statistical methods (curve fitting)
analytically o numerically, or by deriving the equations from
theoretical considerations (model-driven). A classic example of
model-driven is given by Michaelis and Menten (1913) kinetics.
Other common techniques of data-driven modeling are shown
in Janes and Yaffe (2006). In the model we should make
clear the differences among the variables (concentrations of
biochemical compounds of the investigated network: metabolites,
proteins, messenger RNAs, etc.) and the parameters. Variables
can be dependent, being the elements which vary over time
according to the state of the system (also called states); and
independent, being the ones that can be controlled during
the experiment (light, pH, etc.). The parameters set internal
and external constraints on the system. The specific numerical
values for the parameters are determined using prior biological
knowledge, such as information about the basal steady states of
the system (Voit, 2000), or experimental data from dynamical
perturbations (Vera et al., 2007, 2008). Usually the models
integrate kinetic data and other available information about
the elements of the process, as well as fluxes obtained from
experimental observations.

It often happens that an existing model is used to describe
another system. This strategy, although tempting, should be used
with caution. Each new system should be studied in their specific
conditions of environment and structure. It is also necessary to
consider that a model not only depends on the system that it
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represents and the techniques used for its construction, but also
from the motivations and objectives of their creators. Therefore
one must always beware from attributing the motivations and
objectives of others to our own model.

The process of developing a mathematical formulation of the
conceptual model forces the investigator to describe the system
in simple terms. At this stage the research team must take
into account details about the system which might otherwise
go unnoticed, which contribute to the improvement of the
model. Also, a healthy consequence of the formalization process
is that the explanations of the initial, sometimes unexamined
assumptions reveal processes and features that remained
unrecognized under the less precise conceptual formulations.

The interpretation and understanding of the system has an
additional resource in the mathematical expression of it (see
Figure 1). The set of equations of the mathematical model
is likely to be discussed with the plethora of techniques and
mathematical tools that allow the description and analysis of
the complex interrelated processes that occur in the real system;
these techniques can help to elucidate the structure, properties,
and dynamic behavior of the system. These analyses can reveal
details about the behavior of a model such as the occurrence
of oscillations or other complex behaviors that are often the
motivating force for studying these systems.

Parameter Estimation and Quality Assessment
Once the conceptual model has been translated to its
mathematical form, the model should be provided with the
values of its parameters. Parameter estimation or model
calibration is a recurrent issue in the model building process; it
deals with the finding of the numerical values which characterize
the mathematical representation of a given system from
experimental data (Park et al., 1997). A key feature of these
experimental measurements is that they must come from
variables representing their main features both at a given
particular time, as well as along its evolution over time (Polisety
and Voit, 2006; van Riel, 2006; Ashyraliyev et al., 2008; Banga,
2008). In addition, the quality of the model should be tested
through some numerical quality assessments. The quality
assessment of the model includes the evaluation of aspects such
as the stability of steady states, a prerequisite for any model
describing actual biological systems; and the robustness of the
model, a test to evaluate whether the model is able to tolerate
small structural changes (Savageau, 1971; Hsiung et al., 2008) and
the dynamic features that characterize the transient responses
to temporary perturbations or permanent alterations (Wu et al.,
2008). These analyses often pinpoint problems of consistency
and reliability of the mathematical representation (Okamoto and
Savageau, 1984, 1986; Ni and Savageau, 1996a,b); this constitutes
by itself a further cycle of model refinement (Figure 1, light
blue cycle). These changes result in improvements of the initial
conceptual model. The conceptual model so improved will in
turn suggest further experimentation leading to a new refined
version that is enriched from the formalization phase.

At all instances it should be borne in mind that both the
parameters and the structure of real systems change over time.
Therefore, a given model, which can be satisfactory at one time

or certain conditions, may lose its effectiveness at another time
or in other conditions. But the equations by themselves do
not contribute much to the understanding of the system. It is
necessary to solve the equations for some representative values
of the parameters. Accordingly, the model is submitted to the
simulation and validation processes.

Simulation and Prediction
The mathematical model should be programmed in the
computer. The computer program is the translation of the
mathematical model to another language useful for computing
purposes. There are many computer languages and platforms
to deal with this task; advances in computer numerical analysis
have made the solution of complicated systems fast and accurate.
It is at this point where computation becomes critical, since
the equations describing biological processes nearly always
involve control and regulatory mechanisms that have non-
linear components. In contrast with linear differential equations
that often can be solved analytically, non-linearities make it
generally impossible. But through the use of numerical methods
implemented on computers we can obtain good estimates and
model predicted data.

Model Validation
Validation stands here as the correspondence between the real
system and the mathematical model. A model can be considered
good and useful only if its predictions in a given scenario agree
with the experimental observations made on the actual system
setting. As it is shown in the Figure 1, we can accept the model as
a plausible representation of the system under scrutiny only when
the comparison of the predicted outputs with the real ones yields
similar results (and when this occurs in a significant number of
situations).

The validation process can only be based on comparative
observations of the output values and trajectories of the model
and the real system, under certain given experimental conditions.
As it is shown in the Figure 1, for validation purposes, a first cycle
of calibration and quality assessment is needed, and then a second
one, with new experimental data from a different condition. As
a result, the model might require some modification in order to
minimize the observed discrepancies.

There are several ways to perform the validation process. One
is to compare the evolution of the variables from some, other
initial conditions; with data obtained by different, other research
groups in similar systems. Another way is to use all available data
in some given conditions, not for the development of our own
model, but to use these data for the comparison with our model’s
predictions instead (Santos and Torres, 2013). In some cases,
a useful technique is to vary some model’s parameters within
the range of biologically plausible values, and observe how the
system responds in relation to its actual behavior (Segre et al.,
2002). Finally, a technique that can be used in some instances
involves subjecting the model to extreme conditions, deliberately
looking for their failures. The logic behind this is that, if a model
represents the system well in extreme conditions, so it will under
normal conditions. In any instance the observed discrepancies
indicate errors in the assumptions used in the building of the
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mathematical and/or the conceptual model. The discrepancies
may be large enough as to require the revision and change of
the hypothesis of the conceptual model, or the introduction of
only slight modifications in the parameters of the mathematical
version.

It should be recalled that the quality of a model depends
directly on the quality of the information on which it is based.
This statement is just the translation to the modeling context of
the classical motto: “garbage in, garbage out”. A mathematical
model logically processes the information with which it has been
built; it cannot recognize or correct errors in the definitions or
the input information. The model predictions are the result of the
assumptions used, hence the extreme importance of caring for the
conceptualization phase and the quality of the initial information.

Very often the most important results of this phase are
negative: a well-crafted model would serve to discard a particular
mechanism as the explanation for experimental observations.
After sufficient validation, we will eventually arrive to a
mathematical version of the model that can be used to perform
experiments in much the same manner as in the real system.
A model is considered valid in this respect when the decisions
made using the mathematical model are “similar” to those that
would have been made by physically experimenting with the real
system.

This model version and its computer counterpart allow testing
conditions that may be difficult to attain in the laboratory, or
that have not yet been examined in actual experiments. Each
numerical solution of the model provides a simulation of a
real or potential experiment carried out on the Real System.
As an example of mathematical simulations which were useful
to understand the dynamics of the cell membrane, a biological
process elusive under laboratory experiments see Marrink and
Tieleman (2013).

In this phase, starting from a first version of the mathematical
model we come to an improved, validated version, through a
new virtuous cycle (light blue arrows) that sum up to the first
one (light pink arrows). Repeated excursion through this research
loop can result in further improvements in both themathematical
and the conceptual model that provides an unbiased test of
the hypothesis involved in the conceptual model. This type of
feedback loops, which are an essential part of the process of
developing a model (and indeed of the scientific method), must,
however, stop at some point. The validation phase often leads to
a situation in which a slight increase in the trust of the model
requires a huge effort. In these cases, it is advisable to stop the
process at this point.

Model Refinement and Interpretation
Once we have reached a sound mathematical version of the real
system we can advance in its interpretation and understanding.
At this stage, there is an opportunity to debate and criticize
the validity of the consequences and results of the model. The
ultimate aim should be to achieve plausible associations between
the model and the real system. At this point it should be clear
that, if the conceptualization process was successful, the logical
conclusions are as valid as rigorous the mathematical techniques
employed, given that the model’s results are a direct consequence

of the hypotheses and concepts defined in the conceptualization
phase.

III. Management and Optimization
A model fulfills its objective if it is useful and fruitful for
the purpose for which it was developed. The availability of
such a model has then additional benefits: it allows informed
management of the system and its optimization. In this vein,
mathematical modeling can be combined with operations
research in order to support bio-scientists in the improvement of
bioprocesses with technological or biomedical purposes (Torres
and Voit, 2002; Vera and Torres, 2003; Vera et al., 2010). These
type of questions can be rationally answered using mathematical
modeling in combination with data mining and operations
research, that have been shown to be a promising approach in
fields such as drug discovery (Vera et al., 2007) and operations
research (Vera et al., 2010).

The optimized model, as any candidate model, should be
evaluated in terms of its numerical quality in the same terms
as presented above, to be a proven suitable representation of a
real system (see the Parameter estimation and quality assessment
section). And, as usual in these cases (see the parameter
estimation and quality assessment section above) these analyses
contribute to the refinement of the model through another
iterative virtuous cycle (purple arrows) that superimposes to the
previous one, leading to a further improved conceptual model.

CONCLUDING REMARKS

Mathematical modeling was made possible as early as the 17th
century, but it is with today’s techniques that it has become
available to natural (and even social) scientists. There is already
an ample evidence of the value and usefulness of the modeling
approach in solving relevant problems in biosciences (Hübner
et al., 2011; Lanza et al., 2012; Visser et al., 2014). However, in
order to place modeling at the core of biological research it is
necessary for the new generations of bio-scientists to be prepared
to be able to build models. Currently, there are two conditions
that must be met for this trend to accelerate. First, it is a
matter of fact that the ecumenical nature of the training required
by the modeling task in biosciences has impaired this desired
evolution. The paradigm shift that involves the incorporation
of the integrative approach requires shaping and expanding the
training base of the new bioscience graduates with elements
that include a broad and solid background in mathematics,
thermodynamics, and scientific computing, among other new
disciplines, in addition to the classic as chemistry, genetics and
bioinformatics. Mathematical modeling of bioprocesses also has
severe limitations for development and generalization because
of the lack of training in math observed in many bioscience
postgraduates (Watters and Watters, 2006; Koenig, 2011). It is
our view that the best way to overcome this flaw is through the
inclusion of two elements that are, at least not well developed in
the curricula of the biosciences graduates, if not absent. One is the
appropriate, and properly adapted mathematical contents, which
could deal with the normally underdeveloped mathematical
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thinking of the students. There is some discussion as to what
contents and to what extent the biosciences students should be
exposed to (Voit and Kemp, 2009). But what seems unavoidable
is the fact that the biological scientist of the XXI century
should be fluent not only in mathematics (in statistics and also
in other mathematical concepts such as ordinary differential
equations) but also in modeling techniques. Fortunately, there
is an increasing awareness in this regard and some material is
already available to fill this gap (Voit, 2012; Torres, 2013).

The understanding of the system through the use of the
mathematical tools that allow the description and analysis of
the complex systems can help to deepen the knowledge of
the structure, properties and dynamic behavior of the system.
However, the collaboration with experienced mathematicians
is required for analyses such as the choice of the proper
numerical methods, and the selection of the valid simplifications
of complicated models. This is the area where most of the typical
modeling projects develop: the fertile interface among established
disciplines such as cellular biology, biochemistry, genetics and
mathematics, and others. In this task all parties are benefited from
valuable insight from the interdisciplinary experience. Modeling
implies the definition of the model’s objectives, and the curation
of the available information. It facilitates not only the finding of
previously unsuspected areas of exploration, but the proposition
of new questions that were not at all evident from the reductionist
approach. The systematic practice of modeling in this context
also naturally facilitates the fusion of scientific disciplines; this
unifying tension is felt not only among biological specialties
(e.g., biochemistry, cell biology, microbiology, and genetics) but
also with other (seemingly) distant ones, as operational research,
computer science and mathematical analysis.

Most of the modelers are well between two extreme positions.
On one side lie the idealistic ones who consider model building as
a mental process in which the inductive dimension is not valued.
For them the mathematical structure obtained represents reality.
Opposed to this is the one with a pragmatic view, for whom the
goal is to adjust the model to the actual data but without paying
attention to a better understanding of reality. The right position
would be that in which the model is adjusted to the data, but

reaching an understanding of the observed reality is always the
aim. The optimum position of a good modeler is halfway between
the most pragmatic and utilitarian view of an engineer and the
more general outlook of the philosopher.

Finally, it should be noted that although the most common
approach in the current biological research is the study of the
design of living organisms by observing examples available in
nature, there is an inductive, subsequent task that should not be
forgotten. We refer to the derivation of general principles from
these examples. Efforts are being carried out to gain insight into
what is possible in biological design (Savageau, 1976; Alon, 2006;
Salvado et al., 2011; Wolkenhauer and Green, 2013) that may
lead to practical techniques for generating designs for biological
systems intended to carry out particular tasks.
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Mathematical models of biochemical systems provide a means to elucidate the link

between the genotype, environment, and phenotype. A subclass of mathematical

models, known as mechanistic models, quantitatively describe the complex non-linear

mechanisms that capture the intricate interactions between biochemical components.

However, the study of mechanistic models is challenging because most are analytically

intractable and involve large numbers of system parameters. Conventional methods to

analyze them rely on local analyses about a nominal parameter set and they do not reveal

the vast majority of potential phenotypes possible for a given system design. We have

recently developed a new modeling approach that does not require estimated values

for the parameters initially and inverts the typical steps of the conventional modeling

strategy. Instead, this approach relies on architectural features of the model to identify

the phenotypic repertoire and then predict values for the parameters that yield specific

instances of the system that realize desired phenotypic characteristics. Here, we present

a collection of software tools, the Design Space Toolbox V2 based on the System Design

Space method, that automates (1) enumeration of the repertoire of model phenotypes,

(2) prediction of values for the parameters for any model phenotype, and (3) analysis of

model phenotypes through analytical and numerical methods. The result is an enabling

technology that facilitates this radically new, phenotype-centric, modeling approach. We

illustrate the power of these new tools by applying them to a synthetic gene circuit that

can exhibit multi-stability. We then predict values for the system parameters such that the

design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins

of attraction reveals that the circuit can count between three stable states by transient

stimulation through one of two input channels: a positive channel that increases the

count, and a negative channel that decreases the count. This example shows the power

of these new automated methods to rapidly identify behaviors of interest and efficiently

predict parameter values for their realization. These tools may be applied to understand

complex natural circuitry and to aid in the rational design of synthetic circuits.

Keywords: biochemical systems theory, gene regulatory circuits, System Design Space, synthetic biology,

code:python
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INTRODUCTION

One of the current challenges in biology is to understand
the mapping between a particular genotype and a particular
phenotype in the context of a specific environment. The
overarching goal, with important consequences to science,
biotechnology, and medicine, is to predict the phenotypes
that arise from changes in the genotype, the environment

or both. However, phenotypes emerge from complex systems

of biochemical components that are inherently non-linear,

with intricate interactions that cannot be understood through
intuition. Thus, it is no surprise that the “genotype-to-

phenotype” problem is commonly regarded as one of the grand
challenges in modern biology (Brenner, 2000).

A prominent approach to address this difficult challenge is

to formulate mathematical models and analyze them to gain

detailed insight into the design principles underlying biochemical
mechanisms (Savageau, 2009). However, most mathematical
models of biological mechanisms are analytically intractable and

therefore their study tends to be uniquely tailored and limited in
scope.

The conventional strategy for the analysis of mathematical

models of non-linear phenomena typically begins with a

combination of experimentally measured values for a subset of
system parameters and mathematically estimated values for the
(often many) remaining parameters (e.g., Sun et al., 2012). The
result is an established set of parameter values that serves as
the focus for analyses that provide local information regarding
system behavior. Thus, this conventional strategy might be
termed a parameter-centric approach. When the number of
parameters is small and the data is rich, this approach can
be very successful. However, it is most often the case that
the available experimental data is limited and the number of
system parameters is large. Consequently, this approach has
severe limitations when attempting to discover the repertoire of
potential phenotypes latent in a particular system design.

We have recently developed a radically new modeling strategy
that—unlike the parameter-centric approach—does not depend
on specific values for the parameters (Lomnitz and Savageau,
2015). This new, phenotype-centric, approach builds on and
extends the System Design Space method (Savageau et al.,
2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 2013)
by (1) enumerating the repertoire of model phenotypes latent
in a particular system design, (2) identifying phenotypes that
exhibit characteristics of interest, and (3) predicting parameter
values for the realization of a specific instance of the system
exhibiting the characteristics of interest (Lomnitz and Savageau,
2015).

Here, we present a collection of software tools, the Design
Space Toolbox V2, that automates the most difficult steps of this
strategy. These software tools build on a previous iteration, the
Design Space Toolbox for Matlab R©, that formalized automatic
construction of the design space for biochemical systems
(Fasani and Savageau, 2010). The new tools we present here
automate the deconstruction of amodel into qualitatively distinct
phenotypes—thereby automatically enumerating the phenotypic
repertoire of the system (Lomnitz and Savageau, 2015). These

tools improve upon the previous iteration by addressing key
bottlenecks and expanding upon its capabilities through new
technologies that enable analyses not previously possible.

The most important contributions from these new tools
include (1) a complete redesign for improved resource
management and parallelization of the algorithms for concurrent
analysis of model phenotypes; (2) automation of the analysis of
local stability through an expansion of the analytical capabilities
of the tools; (3) automation of the prediction of parameter
values for phenotypes of the system, and (4) automating the
co-localization of cases to determine the simultaneous realization
and visualization of ensembles of model phenotypes (Lomnitz
and Savageau, 2015).

We illustrate the capabilities of these new tools and the
thought process guiding the newmodeling approach by means of
an example. Although we use a model with specified mechanisms
for illustrative purposes, in practice one will undoubtedly have
only partial information about the underlying mechanisms
and one must fill in the missing information by making
hypotheses that need to be tested. In our method one need
only postulate the architectural information: the topology, signs,
and stoichiometry of the interactions. As we have discussed
elsewhere (Lomnitz and Savageau, 2015), these are the features
of a model that are most readily obtained by experiment
or by means of sampling a small number of integers. The
more difficult values to determine are rate constants and
binding constants, which our method handles automatically
in the process of testing the hypotheses. Our method allows
for the efficient testing of alternative models by automatic
enumeration of the phenotypic repertoire and prediction of
model parameters without numerical estimation or sampling
of a high-dimensional parameter space. In a recent application
we tested 40 different models (hypotheses) and found only five
that were consistent with the experimental data (Lomnitz and
Savageau, in review).

Following the detailed illustration of the methods, we
apply them to a mechanistic model for a new synthetic gene
circuit, proposed here, that can exhibit multi-stability involving
up to four steady states. Furthermore, we show that this
circuit can alternate between three distinct states in a step-
wise fashion through the transient stimulation in one of two
input channels—a positive channel that results in forward
transitions through the three states and a negative channel that
results in reverse transitions through the three states. In this
way, we describe a genetic counter that can count between
three states that—unlike other genetic counters that can count
transiently (e.g., see Friedland et al., 2009)—can retain its count
indefinitely.

This example shows the power of these new automated
tools to provide insight into the underlying design principles
of a system involving complex non-linear interactions that are
ubiquitous in biology. We also have shown that these tools are
useful for designing novel synthetic gene circuits that may be
important for a variety of applications from biotechnology (e.g.,
Martin et al., 2003) to medicine (e.g., Ro et al., 2006), and
for gaining insights into more complex natural circuitry (e.g.,
Benner and Sismour, 2005; Stricker et al., 2008; Mukherji and
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van Oudenaarden, 2009; Tigges et al., 2009; Kim and Forger,
2012).

BACKGROUND

In this section, we review key concepts and definitions from
the System Design Space methodology (Savageau et al., 2009)
that deconstructs systems based on differences in phenotypes
(Lomnitz and Savageau, 2014). As a vehicle to facilitate
presentation of the basic concepts, we apply the System Design
Space method to a simple example involving a single gene
regulator that is autogenously controlled via a positive feedback
loop that exhibits the potential for bistability. In a later section,
we build on this simple example to show how our automated
tools can be applied to a more complex circuit.

We analyze the system by (1) formulating amechanisticmodel
of a simple biochemical system; (2) recasting the model into the
generic Generalized Mass Action (GMA) form; (3) constructing
the design space for the recast GMA-System; (4) enumerating
the phenotypic repertoire of the model; and (5) analyzing model
phenotypes to identify their phenotypic characteristics.

Formulating a Mechanistic Model of a
Biochemical System
Mathematical modeling of biochemical phenomena usually
begins with the synthesis of available knowledge from the
literature and experimental data that together provide a
foundation for generating a particular hypothesis. The hypothesis
is usually represented by a conceptual model that contains
qualitative information regarding the key components and their
interactions, typically visualized using some sort of diagram. An
example of a conceptual model for a simple gene regulatory
circuit is represented in Figure 1.

Once the qualitative aspects of a system and its interactions
have been realized in a conceptual model, we formulate
mathematical models by hypothesizing specific biochemical
mechanisms involving the elementary rate laws of chemical
kinetics and the rational function rate laws of biochemical
kinetics (Lomnitz and Savageau, 2013). The result is a system of
non-linear differential equations that is analytically intractable in
all but the simplest cases (Lomnitz and Savageau, 2014).

In general, the exponents in the power laws that characterize
classical chemical kinetics are small integer values, as are the
exponents in the rational functions that characterize classical
biochemical kinetics. In the case of an enzymatic reaction, the
largest exponent in the rate law is equal to the number of
reactant binding sites on the enzyme (Wyman, 1964), and this
is typically equal to the number of subunits in a multimeric
protein (Monod et al., 1965). In the case of a regulator that
is a multimeric DNA binding protein, the largest exponent
is equal to the number of subunits in the regulator molecule
multiplied by the number of specific sites on the DNA to
which it binds. Experimental evidence indicates that regulators
function as multimeric, typically dimeric, molecules that bind a
single recognition site, or possibly a small number of such sites
cooperatively, for each transcriptional unit controlled (Mandal

FIGURE 1 | Conceptual model for the design of a gene regulatory

circuit exhibiting positive autogenous regulation. (A) A cartoon of the

proposed design showing an autogenously activated gene regulator in green.

The regulator is fused with a dimerization domain shown in purple.

Homodimerization leads to the active form of the regulator. A repressor,

represented by the red capsule, sterically hinders activator binding. (B) Binding

to a second protein with a complementary dimerization domain leads to a

heterodimer that is degraded by cellular proteases or other machinery. (C)

Abstract representation of the gene circuit design. The activator X1, which

corresponds to the green protein in the cartoon, autogenously activates its

own expression. The bimolecular reaction of X1 and X2 leads to the

heterodimer, which corresponds to the blue-green protein in the cartoon, that

is then degraded. The repressor X3, which corresponds to the red protein in

the cartoon, blocks binding of the activtor to its DNA control region.

et al., 1990; Kim and Little, 1992). If the mechanisms in the
model are known, then the exponents will be known; if one has
to hypothesize a mechanism, then one has only to sample a small
number of fixed integer values for the exponents to characterize
the model.

The aspects of a mathematical model that remain fixed for
a particular mechanism—independent of the specific values for
the parameters that characterize a particular instantiation—are
defined as its architectural features (Lomnitz and Savageau, 2015).
These features include (a) the network topology of interactions,
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(b) the signs of the interactions, and (c) the number of binding
sites involved in the interactions that in turn manifests itself in
the exponents found in the power laws of chemical kinetics and
in the rational functions of biochemical kinetics, which, as noted
above, are fixed integers for a particular mechanism.

A mathematical model for the conceptual system shown in
Figure 1 is represented by the following ordinary differential
equation (ODE),

dX1

dt
= α1







1+ ρ1

(

X1
K1

)2
+ X3

K3

1+
(

X1
K1

)2
+ X3

K3






− β1X1 − kX1X2 (1)

where X1 represents the dependent activator protein; X2

represents a protein with a complimentary heterodimerization
domain, X3 represents the repressor protein, and their values are
treated as independent variables; α1 represents the basal level of
expression for the synthesis of X1; β1 represents the first-order
rate constant for the loss of X1 by dilution due to exponential
growth; ρ1 represents the capacity for activation of X1 synthesis;
K1 represents the concentration of X1 for the half-maximal rate
of synthesis; K3 represents the concentration of X3 that results in
half-maximal repression; and k represents the rate constant for
X1–X2 heterodimer formation.

This model makes conventional assumptions found in
the literature regarding the mechanisms for the control of
transcription, and for the translation and loss of stable proteins by
dilution due to exponential growth. However, if the mechanisms
were unknown, one could postulate alternative mechanisms, as
outlined in the Introduction, and test the hypothesized models
against experimental data.

Recasting Equations into a Generic Form
The System Design Space method provides a novel approach
to deconstruct mathematical models of biochemical systems
(Savageau et al., 2009). At its core, this approach utilizes
an innovative definition for model phenotypes that is based
on dominant processes that produce sub-systems exhibiting
qualitatively-distinct behavior (Savageau et al., 2009).

In order to apply the System Design Space method, the system
must first be recast into the canonical GMA form involving
a system of differential equations plus algebraic constraints
expressed mathematically as,

dX1
dt

=
P1
∑

k= 1

α1k

n+m
∏

j= 1
X
g1jk
j −

Q1
∑

k= 1

β1k

n+m
∏

j= 1
X
h1jk
j

...

dXnt
dt

=

Pnt
∑

k= 1

αntk

n+m
∏

j= 1
X
gnt jk
j −

Qnt
∑

k= 1

βntk

n+m
∏

j= 1
X
hnt jk
j

(2)

0 =

Pnt+1
∑

k= 1

α(nt+1)k

n+m
∏

j= 1
X
g(nt+1)jk

j −

Qnt + 1
∑

k= 1

β(nt+1)k

n+m
∏

j= 1
X
h(nt+1)jk

j

...

0 =
Pn
∑

k= 1

αnk

n+m
∏

j= 1
X
gnjk
j −

Qn
∑

k= 1

βnk

n+m
∏

j= 1
X
hnjk
j

(3)

where nt represents the number of dynamic variables; nc
represents the number of auxiliary variables; n = nt + nc
represents the number of dependent variables; m represents the
number of independent variables; αik represents the rate constant
for the k-th positive term of the i-th equation; β ik represents the
rate constant for the k-th negative term of the i-th equation; Pi
and Qi represent the number of positive and negative terms for
the i-th equation, respectively; gijk and hijk represents the kinetic
order for the influence of the j-th variable on the k-th positive
and negative term of the i-th equation, respectively; Xj represent
the j-th variable such that the first nt variables are the dynamic
variables, the second nc are the auxiliary variables and the last m
variables are the independent variables.

Mechanistic models of biochemical phenomena can be recast
exactly into this form by following a well-defined series of steps
(Savageau and Voit, 1987). Furthermore, for most biochemical
systems the recasting process is straight-forward and involves
five simple steps: (1) expanding terms in the numerator by
multiplying through by common factors; (2) defining auxiliary
variables for each denominator that has multiple terms; (3)
rearranging terms in the equation for the auxiliary variables so
that the left-hand side is equal to 0; (4) substituting the auxiliary
variables for the corresponding denominators; and (5) defining
a new system of differential-algebraic equations involving the
modified differential equations and the algebraic equations for
the auxiliary variables.

We illustrate the process by recasting into the GMA form
Equation (1), which involves a typical rational function from
biochemical kinetics.
Step 1. Expand the numerator of the equation for X1 by
multiplying through by the α parameter.

dX1

dt
=

α1 + α1ρ1

(

X1
K1

)2
+ α1

X3
K3

1+
(

X1
K1

)2
+ X3

K3

− β1X1 − kX1X2 (4)

Step 2. Define an auxiliary variable, X100, equal to the expression
in the denominator.

X100 = 1+

(

X1

K1

)2

+
X3

K3
(5)

Step 3. Rearrange terms in the new equation so that the left-hand
side of the equation is equal to 0.

0 = 1+

(

X1

K1

)2

+
X3

K3
− X100 (6)

Step 4. Substitute the auxiliary variable for the denominator of
the equation from Step 1.

dX1

dt
= α1X

−1
100 + α1ρ1X

2
1K

−2
1 X−1

100 + α1X3K
−1
3 X−1

100

−β1X1 − kX1X2 (7)
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Step 5.Define a new system by including the algebraic constraint
from Step 3.

dX1

dt
= α1X

−1
100 + α1ρ1X

2
1K

−2
1 X−1

100 + α1X3K
−1
3 X−1

100

−β1X1 − kX1X2 (8)

0 = 1+ X2
1K

−2
1 + X3K

−1
3 − X100 (9)

The result is a differential-algebraic system in a generic form
consisting of linear combinations of non-linear terms having a
very specific structure (products of power laws) that is capable of
representing a broad range of non-linear systems (Lomnitz and
Savageau, 2013). It should be noted that from a mathematical
perspective both independent variables and system parameters
are treated equally within the context of the System Design Space
method (Fasani and Savageau, 2010); thus, in this article we use
the terms independent variables and parameters interchangeably
to refer to their combined set.

Mathematical Definition of
Qualitatively-Distinct Phenotypes
The system of equations in the GMA form can be analyzed
by using the novel System Design Space method. This method
deconstructs complex non-linear systems into a finite number of
qualitatively-distinct, non-linear, sub-systems (S-Systems). The
qualitatively-distinct phenotypes are mathematically defined in
terms of these sub-system equations (Savageau et al., 2009;
Lomnitz and Savageau, 2013) and their system behavior is
tractable for a variety of system properties (Savageau, 2009; Voit,
2013).

Grouping of Terms
The mathematical definition of qualitatively-distinct phenotype
originates from the structure of the GMA-system. Inspection of
this generalized form, shown in Equations (2) and (3), reveals
a regular structure: for any i-th equation, the right-hand side is
a sum of Pi positive terms and Qi negative terms. Therefore, a
system will have a system signature that involves a listing of the
number of positive and negative terms, i.e., (P1Q1P2Q2 . . .PnQn)
(Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and
Savageau, 2015).

Dominant Terms
At any given point in the combined variable and parameter
space of the system, where each variable and parameter has a
specific value, the magnitude of the terms in each equation can
be quantified and the terms with a given sign can be ranked
based on their relative magnitude. A dominant term is defined
as the largest term of a given sign for an equation of the GMA-
system; and the dominant terms with positive and negative signs
are the dominant positive term and the dominant negative term,
respectively (Savageau et al., 2009).

The dominant terms can be uniquely identified based on
the index in their corresponding summations. The combination
of indices for dominant terms for all the equations yields
a unique case signature that involves a listing of indices of
dominant positive and dominant negative terms in order, i.e.,

[p1q1p2q2 . . .pnqn] (Savageau et al., 2009; Fasani and Savageau,
2010; Lomnitz and Savageau, 2015), where pi and qi are the
indices of the dominant positive term and dominant negative
term of the i-th equation, respectively. Note that the system
signature (surrounded by parentheses) is differentiated from the
case signatures (surrounded by square brackets).

Dominant S-Systems
Any point in the variable plus parameter space has a
corresponding combination of dominant terms. Because the
possible combinations of dominant terms are finite, with the
maximum determined by

∏n
i PiQi, this partitions the space into

a set of discrete “chunks” that are identifiable by their unique
case signature (Savageau et al., 2009; Fasani and Savageau, 2010;
Lomnitz and Savageau, 2013). Each discrete chunk has a unique
combination of dominant terms and, by retaining only the
dominant terms and neglecting the non-dominant terms, we can
define a dominant sub-system that is characteristic of a particular
“chunk.”

The dominant sub-systems, defined by retaining only the
dominant terms, have a very special structure. These equations
are S-Systems that have a single positive term and a single negative
term that are products of power laws given by the following
equations,

dX1
dt

= α1p1

n+m
∏

j= 1
X
g1jp1
j − β1q1

n+m
∏

j= 1
X
h1jq1
j

...

dXnt
dt

= α1pnt

n+m
∏

j= 1
X
g1jpnt
j − β1qnt

n+m
∏

j= 1
X
h1jqnt
j

(10)

0 = α1p(nt+1)

n+m
∏

j= 1
X
g1jp(nt+1)
j − β1q(nt+1)

n+m
∏

j= 1
X
h1jq

(nt+1)
j

...

0 = α1pn

n+m
∏

j= 1
X
g1jpn
j − β1qn

n+m
∏

j= 1
X
h1jqn
j

(11)

The steady-state equations for S-Systems are non-linear but
tractable because they become linear when transformed into
logarithmic coordinates (Savageau, 2009; Voit, 2013).

Dominance Conditions
If we had to sample the full (n + m)-dimensional space of
a system—where n is the number of dependent variables plus
auxiliary variables andm is the number of independent variables
plus parameters—to identify the regions associated with each
qualitatively-distinct phenotype, the usefulness of this approach
would be limited. However, the fact that each term is a product
of power laws makes possible more extensive analysis of the
conditions that partition the continuous variable and parameter
space into discrete regions that define the design space of a
system.

Dominance can be expressed mathematically through a series
of inequalities. The inequalities for the dominant terms of the i-th
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equation are given by,

αipi

n+m
∏

j= 1

X
gijpi
j > αik

n+m
∏

j= 1

X
gijk
j ∀k =

{

1, 2, 3, . . . , Pi|k 6= pi
}

(12)

βiqi

n+m
∏

j= 1

X
hijqi
j > βik

n+m
∏

j= 1

X
hijk
j ∀k =

{

1, 2, 3, . . . , Pi|k 6= qi
}

(13)

which can be transformed to yield a series of linear inequalities in
the logarithm of the variables,

logαipi +

n+m
∑

j= 1

gijpi logXj > logαik +

n+m
∑

j= 1

gijk logXj

∀k =
{

1, 2, 3, . . . , Pi|k 6= pi
}

(14)

logβiqi +

n+m
∑

j= 1

hijqi logXj > logβik +

n+m
∑

j= 1

hijk logXj

∀k =
{

1, 2, 3, . . . , Pi|k 6= qi
}

(15)

Because these inequalities are linear, they have the following
characteristics: (1) each condition defines a half-space of the (n+
m)-dimensional space (i.e., half the (n + m)-dimensional space);
and (2) the intersection of all the half-spaces yields either (a) an
(n + m)-dimensional dominance polytope (i.e., there is a feasible
region for the phenotype in the state plus parameter space) or (b)
a null region (i.e., there is no feasible region for the phenotype
anywhere in the combined state plus parameter space). The
validity of the dominance polytope can be determined very
efficiently and is typically the first phase of a linear programming
problem (Vanderbei, 1996).

Boundary Conditions
The steady-state solution of a dominant S-System is linear
in logarithmic coordinates (Savageau, 2009). The boundary
conditions for validity of the corresponding phenotype are
obtained by substituting the linear solution for the steady
state into the linear dominance conditions, to yield boundaries
for the dominant sub-system that are linear in logarithmic
space (Savageau et al., 2009; Fasani and Savageau, 2010). Each
boundary condition defines an m-dimensional half-space and
the intersection of these half-spaces yields an m-dimensional
phenotypic polytope.

From a geometric perspective, the steady-state solution
defines anm-dimensional solution hyperplane that “cuts” through
the (n + m)-dimensional dominance polytope. The boundary
conditions are the edges at the intersection between the solution
hyperplane and the dominance polytope, which yields the
phenotypic polytope of the system.

However, the boundary conditions may not necessarily yield a
feasible region because of two reasons: (a) the dominant S-System
is underdetermined and has no steady-state solution or (b) the
solution hyperplane and the dominance polytope do not intersect
anywhere in the (n + m)-dimensional space. The validity of

the feasible region can be determined in the same way as the
validity of the dominance polytope by using linear programming
methods (Fasani and Savageau, 2010).

Qualitatively Distinct Phenotypes
The dominant S-Systems capture the behavior of the system’s
dominant processes contributing to the synthesis and loss for
each species. These non-linear sub-systems, with particular
phenotypic characteristics, capture the dominant behaviors of
the full system. These sub-systems are valid representations of
the system behavior within mathematically defined boundaries
that are analytically determined by the system equations
themselves. The combination of a characteristic sub-system and
mathematically defined boundaries partitions parameter space
into a finite number of regions where the system behavior has
a series of characteristic traits. The result is a mathematical
definition for qualitatively-distinct phenotypes that is based on
the processes of a given system that are dominant in a particular
context (Savageau et al., 2009; Lomnitz and Savageau, 2015).

Phenotypic Repertoire
The phenotypic repertoire is defined as the collection of
qualitatively-distinct phenotypes (valid phenotypic polytopes),
integrated into a space-filling structure known as the system
design space (Lomnitz and Savageau, 2015).

DESIGN SPACE TOOLBOX V2

It is widely recognized that the phenotype-to-genotype challenge
is difficult in large part because the tools available for the
analysis of non-linear systems have little power to explore
the global landscape of system behavior. Thus, most analyses
rely on estimating values for the parameters and analyzing
the system at a local level. The System Design Space method
addresses some of these limitations by providing detailed
information about the system behavior from a global perspective
(Lomnitz and Savageau, 2014). It does this by enumerating the
repertoire of a system’s qualitatively-distinct phenotypes and
identifying a subset of phenotypes of interest. It achieves this by
deconstructing intractable non-linear systems into tractable non-
linear sub-systems that can be reassembled to define a system’s
design space (Savageau et al., 2009).

We have recently applied this methodology to a variety of
biochemical systems that exhibit rich behaviors including multi-
stability (Savageau and Fasani, 2009; Martínez-Antonio et al.,
2012; Fasani and Savageau, 2013) and oscillations (Lomnitz
and Savageau, 2013, 2014, 2015). Other examples involve
natural gene circuits that play crucial roles in the transitions
between alternative modes of biological operation [e.g., aerobic
to anaerobic growth (Tolla and Savageau, 2010, 2011; Tolla
et al., 2015), growth phase transitions (Martínez-Antonio et al.,
2012) and phage λ transition between lysogenic and lytic
growth (Savageau and Fasani, 2009)]. However, in each of
these examples, the construction and analysis of the system’s
design space was significantly simplified by automating and
systematizing the System Design Space method. This was first
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made possible via a collection of software tools known as the
Design Space Toolbox for Matlab R© (Fasani and Savageau, 2010).

The Design Space Toolbox for Matlab R© provided a series of
innovations that systematized the analysis of complex systems:
it automated (1) construction of a System Design Space;
(2) enumeration of the qualitatively-distinct phenotypes of a
given system; and (3) the local analyses of the dominant S-
System equations. Through these innovations it has provided
insight into the fundamental principles underlying a variety of
natural systems (Savageau and Fasani, 2009; Tolla and Savageau,
2011). Although these tools have paved the way for more
complicated systems to be analyzed by the System Design
Space method, it was clear that the implementation of these
tools had severe limitations as it pertains to performance when
analyzing larger systems. Here we present a second iteration of
software tools, the Design Space Toolbox V2, that redesigns the
computational approach, enables more complex circuitry to be
analyzed, and extends the possible analyses through additional
functionality.

Technology Overview
The original toolbox was built within Matlab R© as a collection
of .m scripts. There were many advantages that resulted from
this decision: The Matlab R© environment provided access to
a variety of tools for symbolic algebra, linear algebra and
linear optimization. Furthermore, it provides a rich scientific
programming platform with its own interpreted language
for rapid iterations between model formulation and model
analysis. Furthermore, it provides fast vectorized operations that
performed much better than iterated loops in its own language.
These properties of the environment were critical in the design
choices for the original toolbox, which improved performance
by applying vector operations where possible and by providing
an application programming interface that was part of the larger
Matlab R© ecosystem.

However, with these design choices come several limitations:
The Matlab R© environment provides access to limited system
resources and its use of vectorized operations for faster
performance had huge memory requirements that limited
feasibility for larger problems.

Here, we present a novel set of tools using very different design
choices. This new collection of tools is comprised of a stand-
alone library, written in the C language, that implements its own
symbolic algebra engine and leverages open-source compiled
libraries for linear algebra (Gough, 2009) and linear optimization
(via the GLPK library). This new toolbox applies concurrent
approaches to leverage the “embarrassingly parallelizable” nature
of the System Design Space approach by analyzing each
qualitatively-distinct phenotype of the system independently
from every other qualitatively-distinct phenotype using multi-
threaded concurrent algorithms. A visual representation of the
technology in the Design Space Toolbox V2 is shown in Figure 2.

This new software library applies many of the same concepts
and theory of the previous version to automate the construction
of a system design space, but involves a complete redesign of
the tools for better memory management and parallelization
for concurrent analysis. It also extends the original toolbox by
providing an extensive library, with over 648 exposed functions,
for the analysis of the system and its phenotypes. The new
functionality of the toolbox includes: (1) automating the local
stability analysis for model phenotypes; (2) enumerating the
vertices of the feasible regions in up to three dimensions, both
numerically and symbolically; (3) extending the capabilities
of the symbolic algebra component to facilitate the analytical
discovery of design principles; (4) defining constraints on the
dependent variables and parameters of the system (i.e., to define
architectural constraints and biological constraints), among
many others.

The most important innovation provided by these new
software tools is the enabling of a radically new modeling
strategy. It does this by facilitating prediction of values for
the parameters that can be used to focus computational effort
on regions of parameter space that exhibit characteristics
of particular interest. It achieves this automatically by (1)
enumerating the repertoire of model phenotypes; (2) predicting
sets of parameter values for any model phenotype; (3) predicting
sets of parameter values for the simultaneous realization
and visualization of an ensemble of model phenotypes; and
(4) predicting sets of parameter values for the simultaneous
realization of an ensemble of model phenotypes that are phased

FIGURE 2 | Overview of the Design Space Toolbox V2. Components are represented by rectangles, stacks represent component dependencies. Different

component types are represented by color: Python packages (green); C library (orange); C/Python wrapper (purple); and third-party dependencies (gray).
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to achieve a specific progression of behaviors (Lomnitz and
Savageau, 2015).

Using this approach, we have been able to identify parameter
values for a class of systems that display rich behaviors including
monostability, bistability, sustained oscillations, and bifurcations
among them (Lomnitz and Savageau, 2013, 2014, 2015).

Analysis via the Python Package
In this sub-section we illustrate the steps involved in constructing
and analyzing a mechanistic model by an application of the
toolbox to the simple example given by Equations (8) and (9).
These methods will then be applied to a more complicated
circuit that exhibitsmore interested behaviors in Section Example
Applied to a Synthetic MemoryModule. The simple example and
the examples found later in this article illustrate the use of the
Python Package within the Design Space Toolbox V2. This level
of the toolbox offers access to most of the power of the C library
within an interpreted environment similar to Matlab R© for rapid
scientific programming and prototype analyses.

The Design Space Toolbox V2 also includes a graphical
user interface embedded within the IPython Notebook that
facilitates its use by new users, with examples readily available
online. However, the analyses presented in this Article are not
reproducible using the graphical user interface and require the
Python Package that has greater access to a wider set of functions.

Construction of the System Design Space
The first step in the analysis using the Design Space Toolbox V2
is to prepare the Python environment, which requires importing
the python package into the current session:

import dspace

Once the environment has been initialized, the next step is to
construct the appropriate computational objects that are used
to formulate and analyze the mechanistic model. This entails
refactoring the system of equations into a computer-readable
format, simply a list of equations using a string representation (∗

represents multiplication, r̂epresents power operator., represents
d/dt). The differential equations and algebraic constraints are
expressed explicitly by defining both sides of the equations.
For example, the system described by Equations (8) and (9) is
represented using the following string representation,

string_eq = [‘X1. = a1*X100^-1\

+ a1*rho1*X1^2*K1^-2*X100^-1\

+ a1*X3*K3^-1*X100^-1\

- b1*X1\

- k*X1*X2’,

‘0 = 1 + X1^2*K1^-2 + X3*K3^-1 - X100’

]

and then the equations are parsed by the symbolic algebra
component to construct an object of the Equations class that
represents the system equations including auxiliary variables,
which must be defined explicitly:

equations = dspace.Equations(string_eq,

axuliary_variables=[‘X100’])

At this point, each string is used to construct an object of
the Expression class, which parses the string and builds
an abstract syntax tree representation that handles symbolic
manipulation and evaluation of mathematical expressions within
the design space toolbox. TheEquations class can then be used
to construct an object of the DesignSpace class,

ds = dspace.DesignSpace(string_eq)

that handles the majority of the steps involved in the
System Design Space method. It calculates the maximum
number of phenotypes, constructs objects that represent
qualitatively-distinct phenotypes, and provides utility functions
for visualization of the system design space. By convention, the
DesignSpace object that represents the biochemical system
being analyzed is named ds—a short name for convenience
because it is the starting point for so many analyses.

Enumeration of the Phenotypic Repertoire
As mentioned in the previous sub-section, the DesignSpace
object for a particular system is the starting point for most
analyses. Among these analyses, perhaps the most important, is
automatic enumeration of the phenotypic repertoire for a system.
This is achieved by instructing the ds object to identify all its
valid cases,

ph = ds.valid_cases()

where the output, stored in the “ph” variable, contains a list
of case numbers for all the cases that have a feasible region
somewhere in parameter space. These represent the qualitatively-
distinct phenotypes of the system and together they define its
phenotypic repertoire.

It should be noted that the ds object enumerates the
phenotypic repertoire in parallel by creating a pool of cases that
need to be tested, spawning n threads (where n is the number of
processors available) that each request a case from the pool, and
analyzing each case for validity. The results from each thread are
returned to the ds object so it can assemble, sort and return the
results. It should be noted that this is typically one of the most
costly operations in an analysis and the results are stored by the
ds object to eliminate excessive work following consecutive calls.

This can be applied to the example system and the number of
valid phenotypes counted,

len(ph)

to show that it has a total of 10 qualitatively-distinct phenotypes
that are valid somewhere in design space, as shown by the cases
in Table 1.
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TABLE 1 | Enumeration of the phenotypic repertoire for the simple system

shown in Figure 1.

Case Case ∂ log X1/∂ log X2 ∂ log X1/∂ log X3 Stability

number signature

1 [1111] 0.0 0.0 S

4 [1211] −1.0 0.0 S

7 [2111] 0.0 0.0 U

8 [2121] 0.0 0.0 S

9 [2131] 0.0 1.0 U

10 [2211] 1.0 0.0 U

11 [2221] −1.0 0.0 S

12 [2231] 1.0 1.0 U

15 [3131] 0.0 0.0 S

18 [3231] −1.0 0.0 S

Phenotypic Characteristics of
Qualitatively-Distinct Phenotypes
The qualitatively-distinct phenotypes of the system can be
analyzed for a variety of system properties, or phenotypic
characteristics, such as those previously discussed in Section
Mathematical Definition of Qualitatively-Distinct Phenotypes.
Many phenotypic characteristics are automatically determined
by the toolbox and these are typically determined by analyzing
instances of the Case class that represent different cases of the
design space. Instances of the Case class are obtained by calls to
the ds object using a case identifier. For example, we can create a
Case object representing Case 1 by calling the ds object with the
case number 1 (or ‘1’),

case1 = ds(1)

or with the case signature [1111],

case1 = ds(‘1111’, by_signature=True)

The phenotypic characteristics of a qualitatively-distinct
phenotype typically fall within one of two categories:
characteristics of the phenotype in the context of system
design space (e.g., the boundaries of validity and global tolerance
of the system to large qualitative changes; Coelho et al., 2009) or
characteristics of the phenotype as they pertain to sub-system
behavior (e.g., stability of the steady state and local robustness
(insensitivity) of the system to small quantitative changes). In
particular, our methods provide a novel means of characterizing
global robustness, which we term “global tolerance” to clearly
distinguish it from local robustness. Global tolerance is defined
as the largest change in parameter values before there is a
qualitative change in the phenotype (Coelho et al., 2009).
This is determined automatically for each parameter and
phenotype. Local robustness also is determined automatically by
means of conventional parameter (in)sensitivities (local relative
derivatives) for each parameter and phenotype. Some examples
showing how this information is utilized in a stochastic context
can be found in Fasani and Savageau (2013, 2015).

In general, characteristics in the context of system design
space are determined from the Case object, and characteristics

in terms of sub-system behavior can be acquired from instances
of the SSystem class that represent the dominant S-System of a
particular case. The SSystem object representing the dominant
S-System for a case is a property of the Case object. For example,
the SSystem instance of Case 1 can be retrieved by

ssys = case1.ssystem

and the properties of the dominant S-System can be readily
determined. For example, we can view the equations of the
dominant S-System,

ssys.equations

which returns

[X1.=X100^-1*a1-X1*b1, X100=1]

a list of Expression objects represented using strings. Similarly,
the steady-state solution for the SSystem object can also be viewed
using the

ssys.solution

command that returns

[X1=a1*b1^-1, X100=1]

The SSystem class can be used to show (1) the sub-system
equations, (2) analytical steady-state solution—in Cartesian and
logarithmic coordinates, (3) numerical values for the steady-
state solution at a given point, (4) the steady-state fluxes at a
given point, (5) local factors like logarithmic gains for signal
amplification and parameter sensitivities for local robustness, and
(6) information concerning the local stability of the system.

In the last three columns of Table 1 we show the logarithmic
gains for X1 with respect to X2 and X3 and the stability of
a representative fixed point for a particular case. These two
types of characteristics are acquired for the sub-system from the
SSystem object. We begin by showing how an instance of the
SSystem class can be analyzed for its phenotypic characteristics.

Automated Analysis of Log-Gain Factors and

Parameter Sensitivities
The logarithmic gains and parameter sensitivities are purely a
function of the kinetic orders of an S-System (Savageau, 2009).
In the context of System Design space, the kinetic orders are
architectural features of the system and thus for any particular
system design are assumed to be constant (Lomnitz and
Savageau, 2015); therefore, the log-gain factors and parameter
sensitivities are constant for a particular dominant S-System.
Furthermore, because independent variables and parameters of
the system are treated equally, the parameter sensitivities are
obtained in the same way as log-gain factors.

The logarithmic gain of X1 relative to X3 for Case 1 of the
example is determined by

ssys.log_gain(‘X1’, ‘X3’)

which, as shown in Table 1, is equal to 0—indicating that X1

is uncoupled from X3 and thus a change in X3 does not elicit
a change in X1 as long as Case 1 is the qualitatively-distinct
phenotype of interest.
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Automated Analysis of Local Stability
As discussed previously, the SSystem class automates the
determination of local stability for the S-Systems. However,
for conventional eigenvalue analysis, the first step involves
converting the dominant S-Systems into a purely dynamical
system by removing any algebraic constraints. This is necessary
because most dominant S-Systems include algebraic constraints
originating from the recasting process. The algebraic constraints
can typically be removed by virtue of the fact that S-System
equations have tractable steady-state solutions; hence, the
auxiliary variables can be solved in terms of the dynamic variables
and system parameters, and their solution can then be used to
eliminate the algebraic constraints. Here, we show how a solution
for the auxiliary variables can be determined using the algebraic
constraints to create a new representation of the dominant S-
System that is purely dynamical.

Removing algebraic constraints from differential-algebraic

S-Systems
We begin with the equations for a dominant S-System composed
of ODEs and algebraic constraints, as shown in Equations (10)
and (11). The algebraic constraints, shown in Equation (11), are
equivalent to nc equations of an S-System at steady state, where nc
is the number of auxiliary variables. The steady-state solution for
the S-System equations can be readily obtained by transforming
the system into logarithmic coordinates (Savageau, 2009) that are
represented in matrix notation by the following equation

Gy+ a = Hy+ b (16)

where G and H are nc × (n + m) matrices of kinetic orders
for the positive and negative terms of the algebraic equations,
respectively—such that Gij = gijpi and Hij = hijqi ; y is an (n +

m)-column vector—such that yi = logXi; a and b are nc-column
vectors of the logarithm of the rate constants for the positive and
negative terms of the algebraic equations—such that ai = logαipi

and bi = logβiqi .
Next, we partition the G and H matrices into sub-matrices

corresponding to dynamic, auxiliary and independent variables,
represented by the t, c and I subscripts. Likewise, we partition
the y vector into vectors corresponding to dynamic, auxiliary and
independent variables,

y =





yt
yc
yI



 (17)

G =
[

Gt Gc GI

]

(18)

H =
[

Ht Hc HI

]

(19)

which yields the following system of equations in matrix
notation,

Gtyt + Gcyc + GIyI + a = Htyt +Hcyc +HIyI + b (20)

We rearrange the terms so that the auxiliary variables are on the
left-hand side of the equation and all other variables are on the
right-hand side,

Acyc = −Atyt −HIyI + B (21)

where B= b− a, and Ai = Gi − Hi for i= {t, c, I}.
We find the inverse of Ac, defined as Mc, and multiply both

sides of the equation, which yields the following equation for the
auxiliary variables,

yc = −Ryt − SyI + U (22)

where R = Mc At is an nc × nt matrix; S = Mc AI is an nc × m
matrix; andU =McB is an nc-column vector. The solution for the
i-th auxiliary variables, in Cartesian coordinates, is therefore

Xi = ui

nt
∏

j= 1

X
rij
j

n+m
∏

j= n

X
sij
j (23)

where ui is the entry in the i-th row of theU vector; rij is the entry
in the i-th row and (j–nt)-th column of the Rmatrix; and sij is the
entry in the i-th row and (j–n)-th column of the Smatrix.

Substituting the solution for the auxiliary variables into the
dynamic equations of the dominant S-System yields the following
system of nt ODEs,

dXi
dt

= αipi

nc
∏

j= 1
u
gijpi
j

nt
∏

j= 1
X

gijpi−
n
∑

k= nt

gikpi rkj

j

n+m
∏

j= n
X

gijpi−
n
∑

k= nt

gikpi skj

j

−βiqi

nc
∏

j= 1
u
hijqi
j

nt
∏

j= 1
X

hijqi−
n
∑

k= nt

hikqi rkj

j

n+m
∏

j= n
X

hijqi−
n
∑

k= nt

hikqi skj

j

(24)

which no longer has algebraic constraints and thus can be
analyzed using conventional S-System analysis for local stability
(Savageau, 2009).

To remove algebraic constraints for an instance of the
SSystem class, we use the following command,

alt_ssystem = ssys.remove_algebraic_

constraints()

which creates a new instance of the SSystem class that is
equivalent mathematically, but does not have the auxiliary
variables and associated algebraic constraints. The equation of
the SSystem object representing the dominant S-System for
Case 1, without the algebraic constraints, is

[X1.=a1-X1*b1]

Analyzing purely dynamical S-Systems for local stability
The SSystem object, without algebraic constraints, is then
analyzed for its local stability using one of two methods: standard
eigenvalue analysis or by applying the Routh criteria for stability
(Routh, 1877; Yang, 2002). In either case, the stability of a
dynamical system depends on a particular set of values for the
parameters.

Starting with a reference parameter set, stored in the pvals
variable of the VariablePool class, that represents a point in
design space for the S-System, we determine the eigenvalues for
the system,
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alt_ssystem.eigenvalues(pvals)

or we can quickly get the number of eigenvalues with positive real
part,

alt_ssystem.positive_roots(pvals)

The stability of Case 1, at this representative point, is stable, as
shown in Table 1, given that it has 0 eigenvalues with positive
real part.

Automated Analysis of Global Tolerance
The Global Tolerance for a parameter and phenotype can
be determined automatically from the Case object. From
a geometric perspective, the global tolerance from a point
is defined as the distance to the nearest boundaries of the
enclosing phenotypic region in logarithmic coordinates (Fasani
and Savageau, 2010). This can be calculated by performing
a series of 1-D linear programming problems where all the
parameters are fixed except for the parameter of interest.

The complete set of global tolerances for the example Case 1
at the starting reference parameter set is determined by

tolerances = Case1.measure_tolerances(pvals)

which returns a dictionary of key-value pairs, where the keys
are the names of the parameters and the values are tuples with
fold-decrease and fold-increase values representing the global
tolerances in arithmetic coordinates, such that

tolerances[‘X3’]

yields the tuple (1e-20, 10.0). The first value indicates that a
fold-decrease of 20 orders of magnitude are necessary to elicit a
qualitative change in system behavior, whereas a 10 fold-increase
results in a qualitative change in system behavior. Note that
the value of 1e-20 is in fact bounded by the program, and
typically corresponds to an infinitely large global tolerance—
hence a qualitative change in system behavior cannot be achieved
by only decreasing the value of X3. Other large but fixed values
may be determined by physical constraints such as the solubility
limits for a metabolite or the diffusion limit for a particular
rate constant. The set of global tolerances for Case 1, given a
representative interior point, are shown in Table 2.

For this property, as for local stability in the previous section,
starting from a representative point begs the question: How do
we find this representative point?

Predicting Phenotype-Specific Parameter
Sets
One of the challenges when analyzing non-linear systems is
finding parameter values that realize a particular behavior
or, in the context of the System Design Space method, a
particular qualitatively-distinct phenotype of the system. For
example, this mathematical model has a total of 12 independent
variables/parameters that together define a 12-dimensional space.
The naive approach might be to sample this space to try and
find a combination that yields a particular phenotype of interest.
However, even if we were to sample five values for each of the

TABLE 2 | Global tolerances for Case 1 of the system in Figure 1

measured as the fold-difference for a qualitative change in phenotype.

Parameter Global tolerance

Fold-decrease Fold-increase

α1 1× 10−20 3.162

β1 0.316 1× 1020

ρ1 0.1 10.0

K1 0.316 1× 1020

K3 0.1 1× 1020

k 1× 10−20 10.0

X2 1× 10−20 10.0

X3 1× 10−20 10.0

12 parameters, the number of combinations we would have to
test would be enormous—512 = 244,140,625; thus, this approach
to search for values that realize a phenotype of the system is
not feasible for most biological systems that have many more
independent variables/parameters.

We have recently developed methods within the framework
of the System Design Space approach that automatically predict
representative values for any phenotype of the system (Lomnitz
and Savageau, 2015). This is automated by the Design Space
Toolbox V2 using linear programming techniques that can
quickly and efficiently find the solution for the optimization
of a linear function within a feasible region delimited by
linear bounds (Vanderbei, 1996). Our software tools predict
a set of values for the parameters of Case 1 using a simple
instruction,

pvals = case1.valid_parameter_set()

that results in a parameter set near a vertex of the feasible region.
Alternatively, parameter sets within the interior of the feasible
region of a phenotype can be obtained by a variety of methods
(e.g., see Lomnitz and Savageau, 2015) and is done using the
following command:

pvals = case1.valid_interior_parameter_

set()

The results for the local stability of the qualitatively distinct
phenotypes shown in the last column of Table 1were determined
by predicting a set of parameter values in the interior and
calculating the number of eigenvalues with positive real part.
The particular parameter set predicted for Case 1 is: K1 = 1.00;
K3 = 10.00; X2 = 1.00; X3 = 1.00; α1 = 1.00; β1 = 10.00; ρ1 =
10.00.

The possible sets of values that our tools can predict are
effectively limitless. To focus the choices, we can (1) impose
power law constraints on the dependent and independent
variables of the system, (2) optimize a power law objective
function, and (3) impose bounds on the permissible values for
each of the parameters and independent variables. Each of these
options is a simple command, e.g.,

case1 = ds(1, constraints=[‘X1 > 100’])
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pvals = case1.valid_parameter_set

(p_bounds={‘X3’:[1e-3, 1e3]},

optimize=‘X1^2*X2^2*X3^-2’

)

Predicting Ensemble-Specific Parameter
Sets
We have previously developed methods that enable the
prediction of parameter values for the simultaneous realization
of an ensemble of model phenotypes (Lomnitz and Savageau,
2015). The types of ensembles for which these tools can predict a
corresponding set of parameter values fall within three categories:
(1) intersections of phenotypes at a single point in design space;
(2) co-localization of phenotypes within a slice of design space;
and (3) arrangement of phenotypes phased within a slice of
design space to exhibit a particular progression of behaviors.

Predicting Parameter Sets for Case Intersections
The validity of the intersection of multiple cases in design space
can be readily determined using linear programming methods
(Fasani and Savageau, 2010). This is achieved by combining
the Ni boundary conditions of n different qualitatively-distinct
phenotypes (Fasani and Savageau, 2010). This is particularly
useful to determine if a system can exhibit multi-stability such
as bistable regimes for hysteretic switches. The Design Space
Toolbox V2 extends the analysis of intersecting cases beyond
determining their validity. It enables prediction of values for the
parameters that yield such an intersection. We begin by defining
an object of the CaseIntersection class, that inherits many
of its properties from the Case class.

Using the example DesignSpace object defined in
Construction of the System Design Space, with the phenotypic
repertoire shown in Table 1, we can determine if the intersection
of different ensembles of cases are mathematically possible
and, if so, predict values for the parameters that lead to their
realization. To illustrate the CaseIntersection class, we
apply it to identify intersections of three phenotypes consistent
with bistable regimes. We choose the first two stable cases, Cases
1 and 4, and the first unstable case, Case 7, as shown in the last
column of Table 1,

case1, case4, case7 = ds([1, 4, 7])

in = dspace.CaseIntersection([case1, case4,

case7])

With the CaseIntersection object, we can determine
validity as if it were a Case object by using the following
command,

in.is_valid()

which yields False. This indicates that the intersection of
Cases 1, 4, and 7 does not exist - regardless of values for the
parameters. We can select an alternative intersection of three
cases by selecting the next possible stable case, Case 8, instead
of Case 4,

case8 = ds(8)

alt = dspace.CaseIntersection([case1,

case7, case8])

and we determine its validity,

alt.is_valid()

which yields True. This indicates that the intersection of Cases
1, 7, and 8 exists and we can now proceed to predict a set
of values for the parameters that results in the realization of
this intersection. As with the Case object, we can predict a
set of values using the valid_parameter_set method or
valid_interior_parameter_setmethod,

pvals = alt.valid_interior_parameter_set()

which yields the following set of values for the parameters: K1 =

1.00; K3 = 10.00; X2 = 1.00; X3 = 1.00; α1 = 0.32; β1 = 10.00;
ρ1 = 100.00.

Predicting Parameter Sets for Case Co-Localizations
An extension of the Case Intersection concept is Case Co-
localization. This concept involves identifying an ensemble
of n phenotypes that are simultaneously realized, hence they
are valid, within a slice of design space for which a given
number of parameters or independent variables are allowed to
change. These variables, known as slice variables, define an s
dimensional slice through design space, where s is the number
of slice variables (Lomnitz and Savageau, 2015). The qualitatively
distinct phenotypes, Cases as we have defined them, are the
phenotypes associated with parameter values located within a
particular polytope in system design space. Such polytopes may
abut one another, or they might be completely separated; the
situation is difficult to visualize in a high-dimensional space. The
objective of the case co-localization function is to find a set of
parameter values, if it exists, that yields a “slice” through the
high-dimensional space that allows simultaneous visualization of
selected polytopes. An intuitive example would be to determine
if two phenotypes, e.g., a wild type and diseased phenotype, are
simultaneously realized and the transition visualized within a
2D slice, where one axis represents a genotypically determined
parameter and the other an environmentally determined
variable.

We have previously shown that the validity of case co-
localizations can be determined without sampling parameter
space, it can be used for an arbitrary number of phenotypes and
can be done in an arbitrary number of dimensions (Lomnitz
and Savageau, 2015). We begin by duplicating and renaming
the slice variables for each case in the ensemble and combining
the boundaries for each case with the newly defined variables
(Lomnitz and Savageau, 2015). The result is an (m + n (s −
1))-dimensional convex polytope in logarithmic space, where
s is the number of slice variables that can be analyzed in
the same way as the feasible regions for Cases and Case
Intersections.

The CaseColocalization class inherits properties from
the CaseIntersection class and can be analyzed in the same
way as a CaseIntersection object. As an example, we define
an ensemble of phenotypes, composed of cases 8, 12, 15, and 18
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and applymethods similar to those described in the previous sub-
section. This ensemble for co-localization, with X2 as the slice
variable, is created as follows:

c8,c12,c15,c18 = ds([8, 12, 15, 18])

co = dspace.CaseColocalization([c8, c12,

c15, c18], [‘X2’])

With the CaseColocalization object, we can determine
validity of the ensemble by using the following command:

co.is_valid()

In this example it yields True. This indicates that there
is a simultaneous realization of these behaviors within a
slice of parameter space, and that there are sets of values
for the parameters capable of realizing this ensemble.
Moreover, the sets can be determined automatically
by using the valid_parameter_set method or
valid_interior_parameter_setmethod,

co.valid_interior_parameter_set()

which yields the following sets of values for the parameters: K1 =

1.00;K3 = 0.10;X3 = 1.00; α1 = 0.10; β1 = 10.00; ρ1 = 10000.00;
X2,8 = 1.00; X2,12 = 100.00; X2,15 = 1.00; X2,18 = 100.00—
where X2,i represents the value for the X2 variable within the
feasible region for Case i.

Predicting Parameter Sets for Specific Arrangements

of Cases
The method of case co-localization determines if an ensemble of
cases can be simultaneously realized within some s-dimensional
slice of parameter space, automatically and independent of
sampling this infinitely large space. However, it does not yield
any information about how the cases in the ensemble are
located in the s-dimensional slice relative to each other or
other important landmarks in the system design space. However,
because these co-localizations are extensions of the methods
that analyze cases in design space, we can apply the same
methods. In particular, recall that the validity of cases in
design space can be determined within particular constraints,
as shown briefly at the end of Predicting Phenotype-Specific
Parameter Sets. These same methods can be applied to objects
of the CaseColocalization class to achieve a particular
progression of behaviors (Lomnitz and Savageau, 2015), by
imposing a set of power law constraints among all variables
including replicated slice variables.

To illustrate this, we will create an ensemble of cases 8, 12,
15, and 18 arranged in ascending numerical order, such that
X2,8 < X2,12 < X2,15 < X2,18, are located from left to right
in the design space of the system. We can determine whether
this arrangement is possible somewhere in parameter space
and predict values for the parameters that yield this particular
arrangement.

An arrangement is created in the Design Space Toolbox V2
by introducing a new co-localization and adding constraints
between the replicated slice variables representing X2 when

defining the co-localization. The replicated slice variables
representing X2 are defined with special notation using
the following format: $<slice variable>_<index in

colocalization>. In this example, the slice variable is X2

and the indices in the co-localization for cases 8, 12, 15, and
18 are 0, 1, 2, and 3, respectively. Thus, the arrangement is
constructed by

c8,c12,c15,c18 = ds([8, 12, 15, 18])

arr = dspace.CaseColocalization

([c8, c12, c15, c18],

[‘X2’],

constraints =[‘$X2_0 < $X2_1’,

‘$X2_1 < $X2_2’,

‘$X2_2 < $X2_3’,

)

The arrangement is simply a Case Co-localization plus additional
constraints; thus, we determine validity and predict values for the
parameters in the same way as we did for co-localization,

arr.is\_valid()

which yields False. The result is that the specific arrangement
that we specified is not possible, regardless of values for the
parameters. Using the same cases, we can try different relative
arrangements and additional constraints as long as both sides
of the inequality defining the constraints are power laws. As an
example, consider another arrangement involving Cases 8, 12, 15,
and 18 with a different order by flipping the sign for one of the
inequalities,

c8,c12,c15,c18 = ds([8, 12, 15, 18])

arr = dspace.CaseColocalization

([c8, c12, c15, c18],

[‘X2’],

constraints = [‘$X2_0 < $X2_1’,

‘$X2_1 > $X2_2’,

‘$X2_2 < $X2_3’,

‘$X2_1 > $X2_3’]

)

The validity of this co-localization yields True and thus, we can
predict a set of values that realizes this arrangement: K1 =

1.00; K3 = 0.10; X3 = 1.00; α1 = 0.01; β1 = 1.00; ρ1

= 10000.00; X2,8 = 0.10; X2,12 = 10.00; X2,15 = 0.10;
X2,18 = 10.00.

Frontiers in Genetics | www.frontiersin.org July 2016 | Volume 7 | Article 11828

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Lomnitz and Savageau Software Enabling a Novel Modeling Strategy

Visualizing the Design Space of
Biochemical Systems
One of the powerful features of the System Design Space
method is that it partitions parameter space into regions and
this structure reveals breakpoints in the characteristics of the
system. This structured space, the design space of a system, can
readily be visualized to gain insight into the landscape of possible
phenotypes that a system can exhibit. These software tools enable
visualization through the matplotlib package, the NumPy
package and the SciPy package (Oliphant, 2007; Millman and
Aivazis, 2011; van der Walt et al., 2011). We illustrate the Design
Space Toolbox V2 visualization tools by applying them to the
example system using the parameter set from the intersection
of Cases 1, 7, and 8. In addition, we show the visualization of
the stability showing the number of eigenvalues with positive real
part.

The first step is to import the matplotlib plotting package into
the python environment,

from matplotlib.pyplot import *

and import the plotting extension for the dspace classes,

import dspace.plotutils

The typical way of visualizing a design space is by showing
the qualitatively-distinct phenotypes in a 2D plot, where
the x- and y-axes represent slice variables and the z-
axis represents different cases identified by different colored
regions.

Using the example DesignSpace object from the previous
sub-sections, and the parameters predicted for the intersection of
Cases 1, 7, and 8, these tools create the plot of the 2-D slice by the
command

ds.draw_2D_slice(gca(), #:1

pvals, #:2

‘X2’, #:3

‘b1’, #:4

[1e-3, 1e3], #:5

[1e-3, 1e3], #:6

intersections = [1, 3] #:7

)

as shown in Figure 3A. The first argument is a matplotlib
axis object for a plot canvas; the second argument is an
instance of the VariablePool class with the values for the
parameters; the third is the name of the x-axis; the fourth
argument is the name of the y-axis; the fifth argument is
the range of the x-axis in Cartesian coordinates; the sixth
argument is the range of the y-axis in Cartesian coordinates;
the seventh argument indicates the number of intersections

FIGURE 3 | Visualization of the system design space and a phenotypic

trait for the simple synthetic gene circuit in Figure 1. (A,B) The x-axis

represents the concentration of the complimentary protein, X2. The y-axis

represents the rate constant for X1 loss from either dilution or active

degradation. (A) System design space showing the qualitatively-distinct

phenotypes by color on the z-axis. Regions of overlap, represented by regions

with multiple qualitatively-distinct phenotypes as shown in the colorbar,

correspond to regions with multiple fixed points. (B) Stability plot showing the

number of eigenvalues with positive real part on the z-axis. Blue corresponds

to monostability; Red corresponds to bistability. Note that the regions of

bistability in (B) correspond to the regions of overlap in (A).

of cases to be drawn, where [1, 3] indicates it will display
regions associated with individual phenotypes and with three
phenotypes consistent with bi-stability (i.e., 2 stable and 1
unstable).

The stability of the fixed points also can be visualized. This is
achieved by using a different command, but with mostly the same
set of arguments,

ds.draw_2D_positive_roots(gca(), #:1

pvals, #:2

‘X2’, #:3

‘b1’, #:4

[1e-3, 1e3], #:5

[1e-3, 1e3], #:6

)

as shown in Figure 3B.
The toolbox provides additional tools to visualize dominant

eigenvalues, steady-state concentrations, steady-state fluxes, and

Frontiers in Genetics | www.frontiersin.org July 2016 | Volume 7 | Article 11829

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Lomnitz and Savageau Software Enabling a Novel Modeling Strategy

mathematical functions evaluated at steady state. It also provides
tools to visualize 1-D slices and 1-D response curves including
stability information for bifurcation plots.

EXAMPLE APPLIED TO A SYNTHETIC
MEMORY MODULE

In this Section, we illustrate the general capabilities of the
Design Space Toolbox V2 by applying it to a two-gene synthetic
circuit involving two transcriptional activators. This example
serves the dual purpose of highlighting the novel, phenotype-
centric, modeling strategy we have recently developed that inverts
many of the typical steps in the conventional, parameter-centric,
modeling approach (Lomnitz and Savageau, 2015).

The novel modeling approach begins by enumerating the
phenotypic repertoire for a global perspective of system
behavior; then predicting phenotype-specific or ensemble-
specific parameter sets that realize phenotypic characteristics of
interest; and finally focusing computational effort on localized
regions of the parameter space for detailed analysis of the
full system. The Design Space Toolbox V2 enables this novel
modeling approach by automating the most difficult steps in the
process.

The synthetic gene circuit, proposed and analyzed here, is
intended to serve as a genetic hysteretic switch that can exhibit
multistability. We show that this circuit can “count” between
three distinct states in a positive direction that increases the
counter and in a negative direction that decreases the counter.
We show that by coupling the circuit with a target gene, a
reporter, it can transition between three distinct intensity levels
in a step-wise manner.

In the following sub-sections we (1) describe the design of the
synthetic gene circuit; (2) formulate a mathematical model that
captures the mechanistic details of the interactions; (3) analyze
the system using our phenotype-centric modeling strategy; and
(4) show examples of instances of the system at predicted points
in the system’s design space that exhibit a variety of behaviors.

Synthetic Gene Circuit Design
Synthetic gene circuits have been constructed to serve a variety
of purposes (Lu et al., 2009). One prominent use for synthetic
biology is to forward engineer biological systems to gain
insight into fundamental design principles (Mukherji and van
Oudenaarden, 2009). Some examples that apply principles from
engineering to biological systems include rationally designed
synthetic oscillators (Elowitz and Leibler, 2000; Atkinson et al.,
2003; Tigges et al., 2009) and bistable switches (Gardner et al.,
2000; Atkinson et al., 2003).

We apply similar principles for the design of a system with
the potential to exhibit multistability. This implies that there are
instances of the system that have multiple stable fixed points, also
known as steady-state attractors, with an associated set of initial
conditions that define the basin of attraction within which the
system gravitates toward a particular fixed point in state space.

The design of the synthetic gene circuit, represented in
Figure 4, is composed of two transcriptional activators, X1 and

X2 that autogenously control expression of their own genes; the
result is two seemingly independent positive feedback loops. The
X1 andX2 regulators are translationally fused with a dimerization
domain that causes X1 monomers to form heterodimers with
X2 monomers. The X1–X2 dimers are inactive and targeted
for degradation by cellular proteases, which results in a strong
thermodynamic potential that makes heterodimer formation
essentially irreversible. Transcription of the activator genes is
repressed by a third regulator, X3, that binds to the upstream
region of the gene for both X1 and X2, sterically hindering the
auto-activation. The role of this repressor in the system is to tune
the behavior of the system. A cartoon of the proposed construct
is shown in Figure 4A, and an abstraction of the gene circuit with
the key interactions is shown in Figure 4C.

Mathematical Model
We formulate a mathematical model composed of ODEs for the
synthetic gene circuit design in Figure 4. Given that there is a fast
turnover of mRNA relative to protein, we assume that synthesis
of protein directly tracks mRNA expression. Thus, we model
modulation of transcription as having a direct effect on the rate
of protein synthesis. The mathematical model is described by the
following system of non-linear equations,

dX1

dt
= α1







1+ ρ1

(

X1
K1

)2
+ X3

K3

1+
(

X1
K1

)2
+ X3

K3






− β1X1 − kX1X2 (25)

dX2

dt
= α2







1+ ρ2

(

X2
K2

)2
+ X3

K3

1+
(

X2
K2

)2
+ X3

K3






− β2X2 − kX1X2 (26)

where αi represents the basal level of expression for the synthesis
of the i-th regulator; β i represents the rate constant for loss
of the i-th regulator by dilution due to exponential growth;
ρi represents the capacity for activation by the i-th regulator;
Ki represents the concentration of the i-th regulator for half-
maximal regulation; and k represents the rate constant for X1–X2

heterodimer formation.

Recasting Equations into the Generic GMA Form
We recast the mathematical model into the generic GMA form
using the 5-step approach outlined in Recasting Equations into a
Generic Form, which yields the following system of differential-
algebraic equations,

dX1

dt
= α1X

−1
100 + α1ρ1X

2
1K

−2
1 X−1

100 + α1X3K
−1
3 X−1

100

−β1X1 − kX1X2 (27)

dX2

dt
= α2X

−1
200 + α2ρ2X

2
2K

−2
2 X−1

200 + α2X3K
−1
3 X−1

200

−β2X2 − kX1X2 (28)

0 = 1+ X2
1K

−2
1 + X3K

−1
3 − X100 (29)

0 = 1+ X2
2K

−2
2 + X3K

−1
3 − X200 (30)

where X100 and X200 are the auxiliary variables defined for the
denominators in Equations (25) and (26), respectively. These
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equations are then used as input to the Design Space Toolbox V2
for analysis as described in Section Construction of the System
Design Space.

Computer-Aided Novel Modeling Strategy
We analyze the system using the phenotype-centric modeling
strategy (Lomnitz and Savageau, 2015) that involves (1)
establishing criteria for what constitutes the model phenotypes of
interest, (2) enumerating the repertoire of model phenotypes, (3)
identifying model phenotypes that exhibit the characteristics of
interest, and (4) predicting values for the parameters that realize
the desired behavior. We have previously used this strategy to
identify phenotypes that exhibit the potential for oscillation (e.g.,
see Lomnitz and Savageau, 2015) or specific couplings between
inputs and outputs to achieve binary logic functions (Lomnitz
and Savageau, in press). Here, the phenotype-centric modeling
strategy is applied to identify a variety of phenotypes including
bistability, tristability and quadrastability.

Criteria for Model Phenotypes of Interest
The first step in the phenotype-centric modeling strategy
is to establish criteria for what constitutes a phenotype of
interest based on a set of phenotypic characteristics. Typical
characteristics include the coupling between input and output,
stability of the fixed points, quantitative local robustness to small

changes in system parameters, and qualitative global tolerance to
large changes in system parameters.

The design for the synthetic gene circuit in Figure 4 is
expected to have the potential to exhibit multistability; therefore,
there should be multiple fixed points, some of which are stable
and some unstable, at a single point in parameter space. In the
context of a system’s design space, multistability involves an
overlap or intersection of multiple cases (Savageau and Fasani,
2009; Fasani and Savageau, 2010; Martínez-Antonio et al., 2012).

Although multistability involves a combination of cases
exhibiting either unstable or stable fixed points, we are interested
in those that are stable; thus, the first criterion for what
constitutes a phenotype of interest is that it be locally stable.
Furthermore, a desirable property is that the fixed points be
locally insensitive to unintended signals; thus, a second and third
criterion is that bothX1 andX2 are uncoupled from the repressor,
X3. In summary, we are looking for cases that are locally stable,
have X1 uncoupled from X3 [L(X1, X3) = 0], and have X2

uncoupled from X3 [L(X2, X3)= 0].

Enumerating the Repertoire of Phenotypes
of Interest
The mechanistic model for the synthetic gene circuit is
analyzed here following the outline in Section Design Space
Toolbox V2: we (1) refactor the system equation into the

FIGURE 4 | Conceptual model for the design of a synthetic gene circuit with 2-, 3-, and 4-state memory. (A) A cartoon of the proposed design for a gene

circuit with two autogenously regulated activators, each similar to that in Figure 1. The first is represented in green with a purple dimerization domain and the second

is represented in blue with a yellow dimerization domain. Homodimerization of each leads to the active form of the regulator. A repressor, represented by the red

capsule, sterically hinders the binding of each activator. (B) Binding of monomers from each of the two activators through complementary dimerization domains leads

to a heterodimer that is rapidly degraded by cellular proteases or other machinery. (C) Abstract representation of the synthetic construct. The two activators X1, green

in the cartoon, and X2, blue in the cartoon, heterodimerise to create a complex that is degraded, each activates its own expression by binding to target DNA, and this

binding is sterically hindered by the common repressor X3, red in the cartoon.
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computer-readable format to construct a DesignSpace object,
which we call ds (e.g., Section Construction of the System
Design Space), (2) enumerate the valid phenotypes of the
system using the ds.valid_cases() method (e.g., Section
Enumeration of the Phenotypic Repertoire), and (3) determine
the phenotypic characteristics of each valid phenotype to
identify (a) the number of eigenvalues with positive real
part at a representative point, (b) L(X1, X3), and (c) L(X2,
X3) (e.g., Section Phenotypic Characteristics of Qualitatively-
Distinct Phenotypes). The representative point to identify the
number of eigenvalues with positive real part is predicted using
the valid_interior_parameter_set() method of an
instance of the Case class as described in Section Predicting
Phenotype-Specific Parameter Sets. The number of phenotypes
that satisfy our criteria are 21 of the 59 valid phenotypes, a
portion of which is shown in Table 3.

Alternative Realizations of the Synthetic
Gene Circuit
Maximizing the Number of Stable States
In Sections Predicting Phenotype-Specific Parameter Sets and
Predicting Ensemble-Specific Parameter Sets we showed that
our tools are able to predict values for the parameters that
are specific to a phenotype or to an ensemble of phenotypes—
either Case intersections at a single point in design space,
Case co-localizations in a slice of design space, or Case
specific arrangements in a slice of design space. Among these
ensembles, Case intersections are particularly useful to identify
the existence of multistability (Fasani and Savageau, 2010), and
the ability of our tools to predict parameter values for their
realization, as shown in Section Predicting Parameter Sets for
Case Intersections, offers some interesting possibilities.

The first possibility we explore is the ability to identify the
maximum number of stable phenotypes that can intersect in
the system’s design space, as this corresponds to the maximum
number of steady-state attractors the system can exhibit. The
general strategy on how to identify case intersections of n cases
has been previously described (Fasani and Savageau, 2010). Here,
we use this same approach but only apply it to the cases that
are stable given that we are not interested in the cases that are
unstable.

If the cases that satisfy the criteria are stored in the cases
variable, our tools can list all the intersection of k = {2, 3, 4, . . . ,

TABLE 3 | Enumeration of the phenotypic repertoire for the system shown

in Figure 2.

Case number Case signature L(X1, X3) L(X2, X3) Stability

1 11111111 0.0 0.0 S

10 11121111 0.0 0.0 S

19 11211111 0.0 0.0 U

… … … … …

297 32213131 1.0 1.0 U

306 32223131 0.5 0.5 U

315 32313131 0.0 0.0 S

n} cases. If for some value of k there are no intersections, the
program stops and the value of k–1 is the maximum number of
case intersections. The first step of finding all the intersections of
k= {2, 3, 4, . . . , n} cases is achieved by

attractors = ds.intersecting_cases

(range(2, 22),cases)

and the result is a list of all possible intersections involving
combinations of 2 up to 21 cases. These are stored in the
attractors variable and used to identify the largest number of
intersecting cases,

max([len(i._cases) for i in attractors])

which yields a maximum of four cases with stable fixed points
that can be simultaneously realized at a single point in design
space. Therefore, this design for a genetic memory module can
have up to four steady state attractors for quadrastablity.

Predicting Parameter Sets for Realization of

Multi-Stability
The gene circuit design has a maximum of four steady-state
attractors in which X1 and X2 can be high or low at any given
time. This result might not be surprising, given that the system
has two positive feedback loops that appear to be independent
from each other. However, these positive feedback loops are part
of an integrated system and can interact to produce interesting
behaviors. One could speculate that an increase in either X1 or
X2 might lead to a decrease in X2 or X1, respectively, due to
the formation of X1–X2 heterodimers. Here, we explore a series
of alternative behaviors for bistable, tristable and quadrastable
switches including a stable counter with three different levels.

The System Design Space method we have described can
be applied for a deconstruction of dynamic behaviors in state
space. This deconstruction, which is still in the early phases
of its development, partitions state space into regions that
exhibit qualitatively-distinct trajectories that provide valuable
information regarding the system’s basins of attraction and
response to transient perturbations. The dominance conditions
define (n + m)-dimensional polytopes, where n is the number
of dependent variables and m is the number of independent
variables/parameters. For each equation in the Dominant S-
System, we can identify regions where the positive term is greater
than the negative term and thus a region with a qualitatively-
defined trajectory. The particular arrangement of steady states
and the trajectories around these steady states can be represented
visually, as shown in the left panels of Figure 5, and can be
compared with the basins of attraction for the original system
of equations, as shown in the right panels of Figure 5. In each of
these examples, our automated tools provide rich information for
rapid identification of interesting properties for the system. The
results can then be refined by applying conventional methods to
the full system.

Predicting bistable genetic switches
The Design Space Toolbox V2 can be used to predict values for
the parameters that result in instances of the system that are only
bistable switches. We achieve this in two steps: we identify all the
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FIGURE 5 | Dynamic behavior for the bistable, tristable, and

quadrastable instances of the synthetic gene circuit in Figure 4.

(A–C) The x-axis represents the logarithm of the concentration of the first

activator, X1; the y-axis represents the logarithm of the concentration of the

second activator, X2. The axes are normalized with respect to the mean of the

values for X1 and X2 for each of the stable steady states in a given instance,

respectively. The dynamic behaviors and basins of attraction for each of the

stable states for instances of the system exhibiting (A) bistability, (B) tristability,

and (C) quadrastability. The steady states of the system are represented by

black circles (stable) and white circles (unstable). (Left panels) State-space

deconstruction of the gene circuit by system design space showing

qualitatively-distinct trajectories. Different colored regions represent areas

where the dynamics of the system follow a particular trajectory: southwest

(purple); southeast (green); northwest (orange); and northeast (blue). (Right

Panels) Different colored regions represent values for the activators that are

attracted to a unique steady-state (•). The boundaries between the basins of

attraction are obtained by refinement using the original equations.

valid ensembles of two stable phenotypes satisfying our criteria,
and then predict representative parameter values and identify
those instances that have only two steady-state attractors—to
eliminate ensembles thatmight be part of higher-order ensembles
with more steady-state attractors.

The first step is most easily achieved using the same command
as in Section Alternative Realizations of the Synthetic Gene
Circuit, modified to return only Case Intersections involving two
stable phenotypes,

en2 = ds.intersecting_cases([2],cases)

where en2 stores all the ensembles of two stable phenotypes at a
single point.

The second step is achieved by iterating through each
ensemble [for en in en2:]; predicting a representative
point that realizes an ensemble [pvals=en.valid_

interior_parameter_set()]; identifying the cases valid
at the representative point [all_cases = ds(ds.valid_

cases(p_bounds=pvals))]; and counting the number
of cases that are locally stable [sum([case.positive_

roots() == 0 for case in all_cases])]. An
example from among the six showing a bistable instance of the
design, as predicted following these steps, is shown Figure 5A.

Predicting tristable genetic switches
We identify instances of the system that exhibit tristability using
the same approach used to identify bistability—we identify the
valid ensembles of three stable phenotypes and select those that
have only three steady-state attractors.We change the first step by
identifying the ensembles with Case Intersections of three stable
phenotypes,

en3 = ds.intersecting_cases([3],cases)

and proceed with the same steps used for the bistable case. We
find eight ensembles that exhibit tristability, an example of which
is shown in Figure 5B.

Predicting quadrastable genetic switches
Because the maximum number of stable phenotypes that can
intersect at a given point in design space is 4, the task of
identifying instances of the system that exhibit quadrastability is
simpler than the bistable and tristable examples. Here, all we need
to do is identify ensembles of four stable phenotypes,

en4 = ds.intersecting_cases([4],cases)

which yields a total of 18 that can exhibit quadrastability. An
example is shown in Figure 5C.

Predicting State-Space Arrangements of the

Steady-State Attractors
As we discussed in Section Predicting Phenotype-Specific
Parameter Sets, we can add constraints to the system and thus the
number of parameter sets we can predict is effectively limitless.
Here, we show how constraints can be impose to identify relative
arrangements of the steady-state attractors that are permissible in
state space. To achieve this, we define new independent variables
that partition state space into four quadrants [i.e., (–,–), (−,+),
(+,−), and (+,+)] and apply our tools to determine which
combination of quadrants the stable-state attractors can occupy.

We define two variables, Xr,1 and Xr,2, that partition state
space into the four quadrants with the boundaries X1 = Xr,1

and X2 = Xr,2, such that the (−,−) quadrant is given by X1 <

Xr,1 and X2 < Xr,2. Then, we reconstruct a new instance of the
DesignSpace class with the independent variables explicitly
defined to include the Xr,1 and Xr,2 variables.

The new instance of the DesignSpace class can create
new instances of the Case class with added constraints, as
shown in Section Predicting Phenotype-Specific Parameter Sets.
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From Section Predicting Parameter Sets for Realization of Multi-
Stability we identified all the ensembles of four stable phenotypes
that result in a quadrastable instance of the system. We then
test the validity of each of these ensembles with constraints
imposed on its constitutive cases. For example, if we have four
cases with case identifiers represented by the variables case0,
case1, case2, and case3 that comprise an ensemble for
a quadrastable system, we impose constraints on these cases to
ensure that each is in a separate quadrant as follows,

C0 = ds(case0, constraints = [‘X1 < Xr1’,

‘X2 < Xr2’])

C1 = ds(case1, constraints = [‘X1 < Xr1’,

‘X2 > Xr2’])

C2 = ds(case2, constraints = [‘X1 > Xr1’,

‘X2 < Xr2’])

C3 = ds(case3, constraints = [‘X1 > Xr1’,

‘X2 > Xr2’])

ensemble = space.CaseIntersection([C0,

C1, C2, C3])

and validity of the ensemble can be tested as shown in Section
Predicting Ensemble-Specific Parameter Sets. We apply this to
test each of the 35 combinations of criteria like that in the
example above. We find that 24 of the 35 can satisfy their
relevant criteria and that the remaining 11 are unable to satisfy
their relevant criteria regardless of values for the parameters and
thresholds for the quadrants.

Predicting a Stable Counter With Positive and

Negative Channels
One arrangement of particular interest has one steady-state
attractor that occupies each of the quadrants—consistent with
four binary boolean states, represented by (−,−), (−,+),
(+,−), and (+,+). We find that all of the ensembles identified
in Section Predicting Parameter Sets for Realization of Multi-
Stability are able to yield this particular arrangement of steady-
state attractors, an example of which is shown in Figure 6, where
Xr,1 = 1 and Xr,2 = 1.

This combination of (−,−), (+,−), (−,+), and (+,+)
binary boolean states makes this design useful as a control switch
where the expression of target genes are regulated by X1, X2 or
both. For example, this synthetic circuit, controlling a reporter
gene whose synthesis is directly coupled to X1 and inversely
coupled to X2, can effectively count from 0 to 3 at well-defined
levels for its expression. Such a reporter under the control of this
module is modeled mathematically by the following ODE

dX4

dt
= α4

(

ρ41X
2
1 + K2

1

X2
1 + K2

1

)

(

ρ−1
42 X

2
2 + K2

2

X2
2 + K2

2

)

− β4X4 (31)

where X4 represents concentration of the reporter protein; α4

represents the rate of synthesis of X4 at an unrepressed and
inactivated state; β1 represents the rate constant for loss of X4 by

FIGURE 6 | Dynamic behavior of a quadrastable instance of the

synthetic gene circuit. (A,B) The x-axis represents the logarithm of the

concentration of the first activator, X1; the y-axis represents the logarithm of

the concentration of the second activator, X2. (A) State-space deconstruction

of the gene circuit by system design space showing qualitatively-distinct

trajectories. The steady states of the system are represented by black circles

(stable) and white circles (unstable). The colors of the different regions

correspond to regions with different qualitatively-distinct trajectories as

described in the caption of Figure 5. (B) The basin of attraction, represented

by the colored regions, represent the domains of state space that are attracted

to a particular stable steady state (black circles). The boundaries between the

basins of attraction are obtained by refinement using the original equations.

dilution due to exponential growth; ρ41 represents the capacity
for activation of X4 synthesis by X1; ρ42 represents the capacity
for repression of X4 synthesis by X2.

The ability of this design to perform as a stable counter arises
from the X1–X2 heterodimer formation in combination with the
seemingly independent positive feedback loops for X1 and X2.
For example, a transient increase in one species elicits a transient
drop in the other that, in combination with the positive feedback
loops, can lead to a switch from a stable “+” state to a stable “−”
state.

This is reflected in the teardrop-shaped basin of attraction
for the steady-state attractor in the (+,+) quadrant: when the
system is at the (+,+) attractor and there is a transient increase
in the concentration of either X1 or X2, the dynamics of the
system are such that it leaves the basin of attraction for the
(+,+) attractor and enters the basin of attraction for the (+,−)
or (−,+) attractor, respectively. A visual representation of the
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FIGURE 7 | Basins of attraction for a 4-state genetic counter. The x-axis

represents the logarithm of the concentration of the first activator, X1; the

y-axis represents the logarithm of the concentration of the second activator,

X2. Different colored regions represent values for the activators that converge

to a unique steady-state attractor. Transitions from an initial steady state (white

circle) to a new steady state (black circle) following an equal size bolus

(275µM) in one of the two activators. The top panels show transient

simulations following a bolus of X1 (green arrows). The bottom panels show

transient simulations following a bolus of X2 (red arrows). Left and right

sub-panels show the transitions from different initial steady-state attractors.

transitions between the steady-state attractors following transient
stimulation is shown in Figure 7.

Assume that the system is poised at the attractor in the (−,+)
quadrant; if X1 is added in some amount, i.e., 275µM, the system
transitions to the attractor in the (+,+) quadrant; then if X1 is
added again in the same amount, a transition to the attractor
in the (+,−) quadrant ensues; therefore, by adding the same
bolus of X1 twice, in a step-wise fashion, the system has switched
between an equal number of steps, which bears the signature of a
genetic counter.

Now, assume the system is poised at the opposite attractor
in the (+,−) quadrant; if X2 is added in the same amount the
system transitions to the attractor in the (+,+) quadrant; then if
X2 is added again in the same amount, a transition to the attractor
in the (+,−) quadrant ensues; therefore, by adding the same
bolus of X2 twice, in a step-wise fashion, the system has reverted
back to the original state.

These traits show that the system has two distinct channels
that enable two sequences of transitions between the same three
states but in the opposite order. A positive channel for (−,+)
→ (+,+) → (+,−) and a negative channel for (+,−) →

(+,+)→ (−,+). By coupling themodule with the reporter gene,
we show that the system is capable of counting between three
levels of reporter concentration and can perform basic arithmetic
using values 0, 1, and 2. An example showing a sequence of

FIGURE 8 | Simulation of the counter following stimulation of the

positive and negative channels. Simulation of system behavior following a

series of transient stimulations at regular intervals of 20 time units (dashed

vertical lines). (A) Lines represent the concentrations of the reporter

corresponding to the counter X4; (B) the positive channel X1; and (C) the

negative channel X2. Transient stimulation of the positive channel, green

vertical lines in (B), results in an increase in the counter state, green

background in (A). Transient stimulation of the negative channel, red vertical

lines in (C), results in a decrease in the counter, red background in (A). Time

intervals without stimulation through either channel show that the count is

stable, as shown by the white background in (A).

additions and subtractions following transient addition of X1 and
X2, respectively, is shown in Figure 8.

CONCLUSIONS

The Design Space Toolbox V2 is a compendium of tools
designed to aid in the analysis and design of biochemical
systems. It is particularly useful for the characterization of system
design principles. Indeed, each of the “landmarks” in system
design space—boundaries and vertices—are rigorously defined
by particular constellations of parameter values that represent
the “design principles” of the system (e.g., Savageau and Fasani,
2009). These constellations are not at all obvious and would
be difficult to discover by trial and error, but are automatically
determined with our tools. As in other engineering disciplines,
knowing such design principles allows one to control the system
in a more rational fashion.

These tools have already proven useful for understanding
complex natural circuitry (Savageau, 2013) and for rationally
designing and engineering new synthetic gene circuits (Lomnitz
and Savageau, 2013, 2014, 2015) described by models composed
of power functions from chemical kinetics and rational functions
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from biochemical kinetics. However, the full scope of models that
can be analyzed by these new tools has yet to be explored.

These tools automate the construction and analysis of the
design space of biochemical systems in a manner similar to
a previous iteration of software tools known as the design
space toolbox for Matlab R©. However, this new iteration is a
complete redesign of the approach that expands the scope of
applicable systems beyond what was previously possible due to
limits on both time and computational resources. The most
important contribution provided by these tools is the enabling
of a radically new phenotype-centric modeling strategy (Lomnitz
and Savageau, 2015) that inverts the steps in the conventional
parameter-centric strategy and automates those that are most
difficult.

To illustrate our software tools, we applied them to the design
of a synthetic two-gene circuit that has positive feedback loops
with the potential for hysteretic-switch behavior. However, unlike
other hysteretic switch designs that exhibit typical bistability (e.g.,
Gardner et al., 2000; Atkinson et al., 2003), this circuit has two
seemingly independent positive feedback loops that are coupled
by a fused heterodimerization domain. In an automated analysis,
we show that this design can be tuned to exhibit up to four
stable steady states. Furthermore, our tools predict multiple sets
of values for the parameters that realize specific instances of the
system that exhibit bistability, tristability and quadrastability.

Further analysis of a quadrastable instance of the system
reveals that it can alternate between three of the steady states
following transient stimulation in one of two input channels: a
positive channel that results in the forward transition between
these states; and a negative channel that results in the reverse
transition between these same states. By coupling this network

to a reporter gene, we have shown that this circuit can effectively
count between three levels of fluorescence intensity in a step-wise
manner.

These examples show the power of our new tools and
illustrate how they enable a radically new modeling strategy
that does not rely on first establishing nominal values for the
parameters. Instead, this phenotype-centric strategy enumerates
the phenotypic repertoire, identifies phenotypes of interest
according to specific criteria, and then predicts sets of parameter
values for realizing the phenotypes of interest. By assembling a
variety of criteria, these tools can predict instances of a system
that displays a rich assortment of behaviors.
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INTRODUCTION

Current breakthroughs in high-throughput technologies have propelled the development of
databases that systematically store knowledge of how genes, proteins, and metabolites interact.
To elucidate the mechanisms of molecular interaction, such data can be represented through
networks where nodes are biological entities (e.g., gene, protein, miRNA, transcription factor, and
metabolites) and edges are associations/interactions between them (e.g., co-expression, signaling,
regulation, and physical interaction). One approach to use such networks is to analyze their
topological structure and try to relate this to biological function.

Topological analysis hints at the possible behavior of a network in the regulation of biological
processes or phenotypes and help in unveiling the core mechanisms. Broadly speaking, topological
parameters can be used to explore: (1) collective behaviors (global properties such as diameter,
small-world and scale-free properties of a network), (2) subnetwork behaviors (functional motif
discovery), and (3) individual behaviors (prioritization of important nodes by centrality indices) of
various network components (Ma and Gao, 2012).

One of the first attempts found in the literature considered centrality related to lethality, and
is known as the centrality–lethality rule proposed by Jeong et al. indicating a positive correlation
between connectivity and indispensability in the yeast protein-protein interactionmap (Jeong et al.,
2001). Similarly,Wagner and Fell analyzed the structure of a largemetabolic network of E. coli using
metabolite node degree and shortest mean path length and observed small world like properties
that follow power-law distributions (Wagner and Fell, 2001). In these two comprehensive studies,
an old metric system (centrality index) was applied with different strategies, aiming to answer the
following question: Do centrality indices predict the essential nodes in the biological networks?

Remarkably, topological analyses carried out in transcriptional regulatory (TR) and metabolic
networks have been a valuable guide to identify those biological components, called essential nodes,
that play a major role in vital functional activities for some microorganisms (Resendis-Antonio
et al., 2005, 2012). The relationship between nodes topological features, such as their degree, and
their essentiality remains however debated (Coulomb et al., 2005).

Prediction of essential proteins is a challenging task because it needs experimental approaches
that are expensive, time-consuming, and laborious (Zhong et al., 2013; Li et al., 2014). To
optimize the search of essential nodes in biological networks, a series of computational methods
that include topological criteria have been proposed. In this paper, we review the cutting edge
computational methods by categorizing them according to their underlying strategies to identify
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essential components. In each case, we discuss their predictive
experimental power and identify shortcomings.

FIRST STRATEGY: USE OF INDIVIDUAL

CLASSICAL CENTRALITY INDEX

The most commonly used centrality index is the degree centrality
which is calculated as the number of direct connections to a
node. Many studies suggested that highly connected nodes or
“hubs” are more likely to be essential (Hahn and Kern, 2005;
Joyce and Palsson, 2008). For instance, in 2005, Hann and Kern
compared centrality and essentiality in yeast, worm and fly PPI
networks and concluded that a protein connectivity has an effect
on the probability of being essential (Hahn and Kern, 2005).
Nevertheless, high connectivity does not necessarily imply its
essentiality. In 2005, Mahadevan and Palsson, indicated that
in genome-scale metabolic models of E. coli, S. cerevisiae, and
Geobacter sulfurreducens, the essentiality is not correlated with
node connectivity (Mahadevan and Palsson, 2005). In addition,
in 2007, Tew et al. concluded that in the PPI network a low-
connectivity node could also be considered as essential (Tew
et al., 2007). To improve upon this, other metrics were suggested
to predict essential genes. Thus, almost all classic centrality
indices (Freeman, 1979) that were developed for characterizing
social networks (such as the degree, closeness, and betweenness
centralities) were applied to biological networks. For instance,
in 2004, Koschützki and Schreiber applied five centrality indices
(degree, eccentricity, closeness, random walk betweenness, and
Bonacich’s eigenvector) to the PPI network of Homo sapiens
and gene regulatory network of E. coli. They showed that
eccentricity and eigenvector are highly correlated in the PPI
network while within the TR network a strong correlation
between eigenvector and closeness was observed (Koschützki
and Schreiber, 2004). Betweenness centrality is based upon
the frequency with which a node lies between the shortest
communication path of all other possible pairs of nodes within a
network and highlights the gatekeepers of communication within
the network. Eccentricity centrality of a node is calculated as the
reciprocal of the maximum of shortest path lengths from that
node to all other nodes in the network. Thus, the node with
highest eccentric centrality is considered as the most central node
in a network. In contrast the closeness centrality is measured
by the reciprocal of sum of the geodesic distances from that
node to all other nodes in the network. The basic idea behind
the eigenvector centrality of a node was the assumption that
centrality index of a node is not only determined by its position
in the network but also by the neighboring nodes. Overall degree,
betweenness and closeness centrality measurements were among
the most common topological parameters investigated in terms
of biological network analyses. Potapov et al. introduced a new
centrality measurement, named pairwise disconnectivity index,
to qualify the importance of individual nodes and/or interactions
for sustaining the communications between connected pairs
of nodes in a directed network (Potapov et al., 2008). The
authors discussed some of the limitations of the betweenness
centrality index, mainly the identification of the shortest path

for the communication between a pair of nodes. They argued
that the importance of a path does not depend on the length
but on other factors, such as the concentration of the species,
rate constant etc. Thus, even the longer path can be faster
and efficient in biological scenarios. Moreover, the peripheral
nodes were not considered. However, in 2014, Raman et al.
analyzed the PPI network of a diverse set of 20 organisms. They
computed parameters such as degree, betweenness, closeness,
and pairwise disconnectivity indices and demonstrated that
degree and betweenness centralities correlate with lethality in
many organisms but closeness and pairwise disconnectivity
indices are not strong indicators of essentiality (Raman et al.,
2014).

SECOND STRATEGY: COMBINATION OF

CLASSICAL CENTRALITY MEASURES

Some researchers have also attempted to combine the individual
centrality matrices to achieve more accurate results. They believe
that a single measure of centrality does not solely predict the
essential nodes in biological networks. Therefore, combining
different centrality indices could yield better results. Examples
of such studies include the work of Gabriel del Rio et al.
in 2009 on the prediction of essential genes using a new
score based on the combination of two or more existing
centrality indices (del Rio et al., 2009). They analyzed 16
different centrality measures on 18 reconstructed metabolic
networks for S. cerevisiae and explained that no single centrality
measure identifies essential genes while the combination of
at least two centrality measures achieves a reliable prediction.
More specifically, they observed that combining “1/clustering
coefficient” with either closeness, excentricity, 1/excentricity or
radiality resulted in significant prediction of essential genes
while no improvement was achieved when three or four
centrality measures were combined together (del Rio et al., 2009).
Wang et al. performed principal component analysis (PCA) to
combine eight centralities, and generated a new integrative node
importance measure, structurally dominant proteins index, to
find more important nodes in the PPI networks. The proposed
integrative measure is strongly correlated with eigenvector, semi-
local, network motif, degree, and betweenness measures (Wang
et al., 2014). The most recent study, named composite centrality,
offered a unified scale to measure node, and edge centralities for
general weighted and direct complex evolving networks (Joseph
and Chen, 2014).

THIRD STRATEGY: USE OF NOVEL

CENTRALITY CONCEPTS

In addition to the use of individual classical centrality measures
and their combinations to identify essential/lethal nodes in
biological networks, new indices were designed using other
features associated with nodes in biological networks. For
instance, Yu et al. in 2004 introduced the notion of marginal
essentiality which states that the essentiality of a gene is directly
associated to its connectivity and the number of functions of
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that gene (Yu et al., 2004). Estrada and Rodriguez-Velazquez,
in 2005 proposed a new index, subgraph centrality (SC) which
characterizes the contribution of each node in all subgraphs
of a network. The authors claimed that SC index is better in
discriminating the nodes of a network than alternate classical
measures such as degree, closeness, betweenness, and eigenvector
centralities and is more highly correlated with the lethality of
individual proteins removed from the proteome (Estrada and
Rodriguez-Velazquez, 2005). Tew et al. defined a functional
centrality as the topological centrality within a subnetwork of
proteins with similar functions, called neighborhood functional
centrality (NFC). NFC predicted the lethal proteins in four S.
cerevisiae PPI datasets and was able to detect low connectivity
lethal proteins that were previously undetected by conventional
methods (Tew et al., 2007). Then, Koschutzki and Schreiber
demonstrated that motif-based centralities yield better results
in gene regulatory networks (Koschützki and Schreiber, 2008).
Efforts were made to better predict and improve the existing
methods for new insights of centrality usage in biology.
For example, Hart et al. used an unsupervised probabilistic
scoring scheme on large-scale yeast mass-spectrometry data,
emphasizing that essentiality is the product of protein complexes
rather than individual proteins (Hart et al., 2007). Piraveenan
et al. used topological connectivity, as well as the percolation
states of individual nodes in network percolation scenarios (such
as infection transmission in a social network of individuals) to
quantify relative impact of nodes (Piraveenan et al., 2013). Simko
and Csermely applied game centrality to design more competent
interventions in cellular networks (Simko and Csermely, 2013),
and Szalay and Csermely developed perturbation centrality to
provide a large variety of novel options to assess signaling,
drug action, environmental, and social interventions (Szalay
and Csermely, 2013). Wuchty recently determined minimum
dominating sets (MDSet) as optimized subsets of proteins that
play a role in the control of the underlying networks by enabling
remaining proteins to be reached in one step.MDSet are enriched
with essential, cancer-related, and virus-targeted genes. The
author also compared the MDSet proteins with hub proteins and
showed a higher impact of MDSet proteins on network resilience
(Wuchty, 2014).

FOURTH STRATEGY: INTEGRATION OF

OMICS DATA WITH CENTRALITY

MEASURES

Until now, we reviewed how mathematical combinations of
various centralities generated from complex networks can predict
essential genes (Roy, 2012). It seems that the integration of
biological knowledge into topological features could create an
improved centrality index to find essential nodes. Some studies
have also been done in that direction; in 2010, Li et al. improved
the prediction of essential proteins 20% more than closeness
and subgraph centralities by construction of a weighted PPI
based on the combination of logistic regression-based model and
function similarity (Li et al., 2010). Li et al. in 2012 introduced
and validated a new centrality measure (PeC) by integration
of gene expression into the yeast PPI network. In this new

method, a weighting of the PPI network was proposed based
on the probability of two proteins to be co-clustered and co-
expressed in a given biological scenario. PeC predicted the
essential proteins significantly better than the other previously
proposed 15 centrality measures: degree, betweenness, closeness,
subgraph, eigenvector, information, bottle neck, density of
maximum neighborhood component, local average connectivity-
based method, sum of edge clustering coefficient, range-limited,
L-index, leader rank, moduland, and normalized α-centralities.
Above all, the enhancement of PeC over the classic centralities
(betweenness, closeness, subgraph, eigenvector, and bottle neck
centralities) is more than 50% for the first 500 predictions (Li
et al., 2012).

Very recently, Jiang et al. in 2015 developed a network-
based method named NEST (Network Essentiality Scoring Tool)
that improved the performance of centrality over previous
related methods. NEST predicted the essential genes according
to the expression level of neighbor genes connected in protein
interaction network. The results obtained by the current
integration showed that the predictive power of essential protein
according to this strategy is much better than the classic
centralities (Jiang et al., 2015).

DISCUSSION

Essential genes (and their products, proteins) imply an intricate
role in a cell survival and development. Topological network
analyses provide opportunities for essential nodes prediction,
evaluation of disease genes, and the discovery of potential drug
targets (Rosamond and Allsop, 2000). Inspired by previous
works in social network analysis (Freeman, 1979; Borgatti et al.,
2009), it was assumed that centrality measures could predict
essential nodes and several strategies have been offered to find
out the relative importance of a node in complex biological
networks. However, the structure of biological networks differs
fundamentally from social networks especially with respect
to modularity (Newman and Park, 2003). Another issue is
the dynamic nature of biological entity relationships. For
instance, not all relationships may exist simultaneously even
in a perfectly mapped network (Han et al., 2004). Therefore,
the results of centrality indices in the prediction of essential
nodes were not satisfactory in various studies. One of the
proposed solutions is to apply functional methods in this
context according to the type of biological networks to be
analyzed. Such methods integrating other aspects of biological
knowledge could be very helpful. In addition, ranking genes
or proteins through more biologically driven features such as
physicochemical properties of bio macromolecules, intrinsic
disorder property of proteins, co-expression of biological entities,
gene clusters, protein complexes, protein localization, gene
ontology, enrichment analysis, two-dimensional annotation of
genomes, different types of promoters, and epistatic interaction
will be of interest. Now that more biological data is available,
it is time to improve over the pure topological measures and
redefine the concept of centrality on the basis of specific
properties of biological functions. A systematic look into the
biological concepts is required; implying that several features
could be involved and their combination would result in
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an improved biological centrality. More detailed analyses and
discussions among researchers are needed to decide upon
the parameters to be combined with different centrality
measures for the prediction of essential genes in context
specific biological networks. There is no particular reason
to expect an exact match between network topology and
biological functions. As such these tools provide the basis for
“intelligent guessing.” In view of the complexity of biological

networks and the difficulties to generate experimental data
for other analyses, providing hints can prove already very
useful.
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The logical (or logic) formalism is increasingly used to model regulatory and signaling

networks. Complementing these applications, several groups contributed various

methods and tools to support the definition and analysis of logical models. After an

introduction to the logical modeling framework and to several of its variants, we review

here a number of recent methodological advances to ease the analysis of large and

intricate networks. In particular, we survey approaches to determine model attractors

and their reachability properties, to assess the dynamical impact of variations of external

signals, and to consistently reduce large models. To illustrate these developments, we

further consider several published logical models for two important biological processes,

namely the differentiation of T helper cells and the control of mammalian cell cycle.

Keywords: regulatory and signaling networks, logical modeling, discrete dynamics, attractors, reachability

analysis, simulation, T cells activation and differentiation, cell cycle control

1. INTRODUCTION

As computational modeling is increasingly recognized as a necessary and valuable approach to
understand dynamical features of complex biological processes, the logical framework has proved
to be particularly successful to model and analyze regulatory and signaling networks (Samaga and
Klamt, 2013; Albert and Thakar, 2014; Le Novère, 2015; Naldi et al., 2015). Back in 1961, following
the discovery of specific gene regulation mechanisms and the delineation of the first regulatory
circuits in bacteria (Jacob andMonod, 1961; Monod and Jacob, 1961), several researchers proposed
to use Boolean algebra to model cellular circuits. Mitoyosi Sugita was the first to present an
explicit modeling of bacterial genetic circuits with symbolic logic, applying the methods and
tools of mathematics and electronics, and coining the term molecular automaton (Sugita, 1963).
Soon after, Stuart Kauffman engaged in a thorough analysis of the dynamical properties of
generic Boolean network models, using a synchronous update and focusing on asymptotical
properties (Kauffman, 1969; Glass and Kauffman, 1973). In parallel, René Thomas rather addressed
the modeling of specific regulatory circuits, in particular the network controlling lysis-lysogeny
decision in bacteriophage lambda, using an asynchronous update, and progressively refining the
logical formalism with the introduction of multi-valued variables, the explicit consideration of
threshold values, the definition of logical parameters, etc. (Thomas, 1973; Thomas et al., 1976;
Thomas, 1978). By and large, the studies of Kauffman and Thomas converged in showing that
alternative stable states (or more generally alternative attractors) can be associated with different
cell types, and that logical state transitions can be associated with gene expression changes over
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time. While Kauffman emphasized how connectivity and specific
kinds of logical functions have an impact on the asymptotic
network behavior, Thomas focused more specifically on the
dynamical roles of simple, positive vs. negative regulatory
circuits embedded in more complex networks. Altogether, these
contributions laid the foundation for a wealth of studies
demonstrating the versatility and power of logical modeling in
molecular biology and beyond (see e.g., Thomas and D’Ari, 1990;
Kauffman, 1993).

Briefly, in a logical model, each component is associated with
a discrete variable, which is a logical (often Boolean i.e., binary)
abstraction of its level of activity (or concentration). A logical
function defines the next value of this variable, depending on
the current levels of the regulators of that component. Such a
model defines a discrete dynamical system where the state of
the network (the component levels) evolves stepwise. Besides
scalability (logical models with few hundreds components have
been simulated), the appeal of this framework relies on its
qualitative nature, as kinetic parameters and other precise
knowledge about the molecular mechanisms at stake are not
required. Despite this coarse grained abstraction, the resulting
behaviors presumably capture the most salient properties of
the modeled systems (Samaga and Klamt, 2013; Albert and
Thakar, 2014; Le Novère, 2015). As a matter of fact, the
logical framework proved useful in a wide range of biological
applications: cell differentiation in developmental processes (for
instance, drosophila development as in González et al., 2008;
Sánchez et al., 2008; Fauré et al., 2014), haematopoiesis (Bonzanni
et al., 2013), T lymphocyte activation and differentiation (see
Section 5.1), cell cycle control (see Section 5.2) and more
generally cell fate decisions such as proliferation, growth arrest,
apoptosis, senescence, etc. (see e.g., Schlatter et al., 2009; Grieco
et al., 2013; Mombach et al., 2014; Cohen et al., 2015).

Alternative modeling frameworks explicitly refer to sets of
reaction rules (denoting molecular consumption and production
processes) tomodel and analyze cellular networks (see Le Novère,
2015 for further details and references). In this respect, a logical
model can be considered as an abstraction focusing on signed
interactions denoting positive or negative influences between
network components (defining the regulatory graph, which is
completed by logical rules specifying the compositional effects of
these influences). The logical framework is thus primarily used
for signaling and gene regulation modeling.

For a general overview of the logical modeling of biological
networks, we refer to existing reviews (Samaga and Klamt, 2013;
Albert and Thakar, 2014; Le Novère, 2015; Naldi et al., 2015).
Here, we emphasize the versatility of the logical formalism, as
well as the relevance of a range of methods and tools. We
first present formal definitions of (multi-valued) models and
their associated dynamics, depending on a variety of updating
schemes. As attractors and their reachability are of utmost
interest when analyzing models of biological networks (see e.g.,
Huang et al., 2009), we particularly focus on approaches to
determine model attractors and their reachability properties, as
well as on the impact of variations of external signals on model
behaviors. To demonstrate the relevance of the logical modeling
and of the associated methodological advances, we survey several

published logical models dealing with two important biological
processes: (i) the activation and differentiation of T cells, and (ii)
the control of cell proliferation.

The regulatory network controlling mammalian T helper (Th)
lymphocyte activation and differentiation is of particular interest
from the modeling point of view. First, this system has been
largely studied experimentally, leading to the identification of
many of the key molecular components involved. Furthermore,
Th cell activation and differentiation are controlled by complex
and intertwined intracellular signaling pathways and regulatory
circuits, which ultimately enable the differentiation of Th cells
into multiple functional subtypes, depending on the signals
present in their microenvironment.

Also challenging and well studied are the networks controlling
the initiation of cell division and the progression of cells along
the main phases of mitotic cell cycles. Initially investigated
in model organisms such as budding and fission yeasts, these
networks have been deciphered in various other species, up to
mammals. Models have been built to assess the implementation
of the various cell cycle check points and the achievement of
coordinated and robust oscillations in the activities of molecular
components. Moreover, as defects of the cell cycle engine are
one of the bases of cancer, many studies currently focus on
mammalian cell cycle control networks.

In Section 2, we formally introduce the basics of the logical
formalism and its main variants. The core of this paper
demonstrates the assets of the framework with advancedmethods
and tools to analyze behavioral properties (Section 3), as well as
to support data integration into models (Section 4). Finally, we
illustrate these assets on T cell signaling and cell cycle control
networks (Section 5).

2. FUNDAMENTALS OF THE LOGICAL
FORMALISM

We formally introduce the logical framework, defining models
and their dynamics. Most common variants are presented, in
particular regarding updating schemes and their impacts on
dynamical properties. A selection of computational tools is then
briefly presented.

2.1. Model Definition
The basic concepts presented in this section are illustrated in
Figure 1. A logical model (G,K) of a regulatory network is
defined by:

• A set of n regulatory components G = {g1, g2, . . . gn}, each gi
being associated with an integer variable, which takes its values
in {0, . . .maxi}, defining a discrete mapping of the range of
the component functional levels (of activity or concentration).
The (finite) state space S is defined as the cartesian product
5i=1,...n{0, . . .maxi} and a model state is thus a vector g =

(g1, . . . gn).
• For each gi, a discrete functionKi defines its values, depending

on the model states: Ki : S → {0, . . .maxi}. The transition
function K : S → S with K(g) = (K1(g), . . .Kn(g)) thus
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FIGURE 1 | Illustration of the basics of the logical formalism—Model definition. (A) The regulatory graph defines the topology of the regulatory structure,

where nodes denote regulatory components and edges represent regulatory effects (activations are denoted by green edges, whereas inhibitions are represented in

red). (B,C) The evolution of the variables associated with the regulatory components is defined by the logical functions, which are written in the form of logical formulas

or, alternatively, in the form of truth tables. “∧,” “∨,” and “!” stand for the logical operators AND, OR and NOT, respectively. Note that the regulatory graph in (A) can be

recovered from the logical functions defined in (B,C), but the reverse is not true (see main text). (D) Hypergraph as an alternative definition of the Boolean model of

(A–C) (merged arrows denote AND operator). (E) Example motivating the introduction of a multi-valued variable; here G1 activates G2 and G3 at different thresholds

and activates G4 when it is at level 1, but inhibits it at level 2 (see also Supplementary Figure S1).

defines the model behavior, but also the underlying regulatory
graph (see below).

While a Boolean discretization is generally enough (i.e., maxi =
1 for all i), a regulatory component may operate at different
levels on distinct targets, or yet, depending on its level, may have
different effects on a given target. In such cases, it is necessary to
consider a multi-valued variable whose maximal value is greater
than 1 (see Figure 1E). Note that the discrete functions Ki are
referred to as logical functions, even in the case of multi-valued
variables. This denomination originates in Thomas and Snoussi’s
seminal work defining their generalized kinetic logic (Thomas and
D’Ari, 1990).

The regulatory graph, denoted (G,R), is often available
early on. It encompasses nodes denoting model components
(regulatory components, elements of G), along with signed,
directed edges, denoting regulatory activations or inhibitions
(elements of R). The logical rules precisely encode these
interactions. In other words, (G,R) can be deduced from K.
Note, however, that several sets of logical rules can be compliant
with a regulatory graph, which therefore defines a family of
logical models.

There is a functional interaction from gj to gi (denoted
(gj, gi) ∈ R) if and only if there exists a pair of neighboring states
that only differ on the value of gj and for which the function Ki

takes a different value, thus indicating that a variation of gj has
an effect on the value of its target gi. More formally, assuming for
simplicity that gj is a Boolean variable, (gj, gi) ∈ R if and only
if there exist two states g = (g1, . . . gj−1, 1, gj+1, . . . gn) and g =

(g1, . . . gj−1, 0, gj+1, . . . gn) such that Ki(g) 6= Ki(g). Moreover,
if Ki(g) < Ki(g), this interaction is an activation (because when
gj = 0 as in state g, the function Ki defines a lower value for gi
than when gj = 1 as in state g), otherwise it is an inhibition.

Specific classes of Boolean regulatory functions have been
considered in the literature. The simplest specifies that a
component is activated (its associated variable tends to 1) in the
presence of at least one of its activators and in the absence of all
of its inhibitors (e.g., Mendoza and Xenarios, 2006). Threshold
networks constitute another popular class of Boolean models,
in which the regulatory function is defined by comparing the
(possibly weighted) sum of positive and negative regulatory
contributions with a specific threshold (Li et al., 2004; Bornholdt,
2008). Finally, relying on the fact that any Boolean function
can be written in a disjunctive normal form (a disjunction
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of conjunctive clauses, thus using exclusively the operators
AND, OR and NOT), an alternative, refined representation
uses hypergraphs (Klamt et al., 2009; Samaga and Klamt, 2013,
Figure 1D).

2.2. Model Dynamics
A logical model defines a discrete dynamics over its state space
S . Given a state g, the transition functionK specifies the possible
changes of the model variables: if K(g) 6= g, there is at least one
variable gi called to update toward the target value Ki(g). Note
that multi-valued variables are modified stepwise, i.e., if Ki(g)
differs from the current value of gi by a value greater than 1, the
next value of gi is increased (or decreased) by 1. If K(g) = g then
g is a stable state, in which each component value is maintained
constant. Input components, which typically embody external
signals, have no regulators and hence no associated logical rules.
They are generally considered as being constant (their values
representing a fixed environmental condition). However, how the
model evolves upon input variations is of particular interest and
is discussed in Section 3.2.

Model dynamics are conveniently represented in terms of
State Transition Graphs (STG), where nodes denote states, while
directed edges represent state transitions (Figure 2). Since the
number of states is finite, model simulations always end up in
a stable state or in a (potentially branched) cyclic trajectory.
Stable states (devoid of transitions to other states) often represent
cell differentiated states (cf. Section 5.1) or other kind of
relevant, perduring situations. In contrast, cyclic trajectories
may denote a biologically relevant periodic behavior, as in the
case of cell cycle (cf. Section 5.2) or circadian rhythms. The
mathematical counterparts of such asymptotic behaviors are
called attractors, which are defined in the context of the logical
formalism as terminal Strongly Connected Components (SCC) of
the STG, i.e., maximal sets of mutually reachable states, with
no transitions leaving the set. The set of states from which
trajectories (exclusively) lead to an attractor is called its (strict)
basin of attraction. Basins of attraction are particularly relevant
since they define the reachable attractor(s) depending on the
chosen initial state(s).

Dynamical properties of interest predominantly relate to the
existence and reachability of the attractors. These are properties
hard to assess in large models because the size of the state space
(and thus of the STG) grows exponentially with the number
of regulatory components. Section 3 presents several recent
methods to identify attractors and to check their reachability
properties.

If at state g, several variables are called to change their values
(because their current values differ from the values returned by
the corresponding logical functions), one has to specify how these
changes should be performed. The two most common schemes
are the synchronous and asynchronous updates. According to the
first, all the variable updates are performed synchronously (i.e.,
simultaneously). Hence, the resulting deterministic dynamics
defines, at each time step t (or iteration), the successor state of
g(t):

g(t + 1) =
(

gi(t)+ sign
(

Ki(g(t))− gi(t)
)

)

i=1,...n
, (1)

where sign(p) equals to 1 if p > 0, −1 if p < 0, and 0
otherwise. According to Equation (1), a successor state is defined
by increasing or decreasing by 1 all the variables whose current
values differ from the values specified by their logical functions.
Note that if all the variables are Boolean, this equation can
be written simply as g(t + 1) = K(g(t)). Given a state g,
the synchronous update yields exactly one transition toward a
successor state, which can be g itself, if all the variables are stable
in g, i.e., Ki(g) = gi, for all gi ∈ G.

In contrast, with the asynchronous update, each variable
is modified independently, yielding as many transitions (and
successor states) as the number of updated variables (and hence
potentially non-deterministic dynamics). At state g(t), for all gi ∈
G such that Ki(g(t)) 6= gi(t), an asynchronous successor g(t + 1)
of g(t) is defined as follows:

gi(t + 1) = gi(t)+ sign
(

Ki

(

g(t)
)

− gi(t)
)

,

gj(t + 1) = gj(t) for all j 6= i.
(2)

Note that, according to this definition, a stable state has
no successor. However, for any updating scheme, one may
alternatively consider that a stable state is its own successor (with
a self-loop transition).

In the context of asynchronous dynamics, priority classes,
deterministic and stochastic schemes have been proposed,
taking into account additional knowledge to penalize or
discard unrealistic trajectories. Indeed, update classes can be
defined, grounded on the nature of the processes involved, e.g.,
different time scales associated with transcriptional and post-
translational processes (Chaves et al., 2005). At each time step
(or iteration), the selection of updated variables is directed by
their associated priority classes (Fauré et al., 2006), absolute ranks
or probabilities (e.g., Albert and Thakar, 2014 and references
therein). Generalizing the logical framework with a probabilistic
interpretation, a finite Markov chain can be derived from the
dynamics of a logical model. Considering the asynchronous
update, Stoll et al. (2012) defined continuous or discrete time
Markov processes by associating stochastic rates with the updates
of the model components, and relied on a Gillespie algorithm to
simulate the time evolution of component levels. This allows to
get a more quantitative view of the model behavior (cf. Section
5.2). In Cell Collective, synchronous simulations also result in
a Markov chain when the input components are associated
with a probability (see Section 3.2 and Todd and Helikar,
2012).

When following a unique trajectory (defined by a synchronous
update or selecting specific transitions among multiple
asynchronous, concurrent trajectories), a natural alternative to
the STG consists in displaying the evolution of the individual
variables over time (see Figure 2C). To provide a different
view of the model behavior, it has been also proposed to
consider the mean values g̃i of a model variable gi over a
sliding window of (user-defined) length w (Helikar and Rogers,
2009):

∀gi ∈ G,∀t ≥ 0, g̃i(t) =

∑

0≤k<min(w,t) gi(t − k)

min(w, t)
. (3)
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FIGURE 2 | Illustration of the basics of the logical formalism—Model dynamics. (A) The asynchronous State Transition Graph (STG) of the model defined in

Figure 1 (A–C), with the input G4 maintained constant and concurrent transitions from states in which several variables are called to update their values. The yellow

state 1101 (i.e., x1 = x2 = x4 = 1 and x3 = 0) is a stable state, the set of states in blue corresponds to a cyclic attractor. (B) The synchronous STG in which variables

are simultaneously updated; the stable state is conserved, whereas a new terminal cycle appears (in pink). (C) Synchronous dynamics starting from the state 1000

and maintaining the input constant to 0 (activity levels are given in %, from 0 to 100%). For a sliding window of length w = 1 (see Equation 3), the curves conform the

terminal cycle of (B) (in blue), the four variables oscillate between 0 and 1, with a period of 6; for w = 4, the mean values oscillate between 0.25 and 0.75; for w = 6,

the mean values are constant to 0.5. (D) Illustration of the effect of different input variations (G4 value). When G4 is active with a probability 0.25, oscillations of the

remaining components are altered (only G3 values are displayed, for legibility). The plot on the right shows the effect of varying the probability of G4 activity (from 0 to

1) on the mean values of the remaining components in the long term (i.e., in the attractor).

It is worth recalling that different updating schemes lead to
different dynamics, thus impacting related properties (e.g., see
Albert and Thakar, 2014). Briefly, compared to the synchronous
scheme, asynchronous dynamics are more realistic in accounting
for delays between updating orders and their executions. While

stable states are the same for both the synchronous and
asynchronous schemes, a striking example of how the resulting
dynamics can differ is that of isolated regulatory circuits,
for which the synchronous scheme leads to the appearance
of additional cyclic attractors (Remy et al., 2003). Not only
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cyclical attractors may be different, but reachability properties are
also modified. The asynchronous scheme generates concurrent
trajectories, some of which are potentially unfeasible in regard
to well-grounded choices between concurrent events. Hence,
refined asynchronous schemes have been considered, such as
priorities, fixed ranks or probabilities, which may also affect
attractors and their reachability properties. Indeed, as some
trajectories are preempted, transient oscillatory behaviors may be
turned into cyclic attractors.

By way of conclusion, beyond the model definition as
presented in Section 2.1, modelers need to specify an updating
scheme and make this choice explicit when presenting their
results. Moreover, model robustness could be assessed by probing
different updating schemes and their impacts on attractors and
their reachability properties.

2.3. A Selection of Computational Tools
Here, we focus on the software tools used to generate
results reported in the remaining sections. The web page
http://colomoto.org/software/ provides a more comprehensive
overview of available networkmodeling tools based on the logical
framework.

GINsim (http://ginsim.org) supports the definition of multi-
valued logical models, under the synchronous, asynchronous and
priority updating schemes. Besides the explicit construction of
STG (for reasonable sizes, i.e., in the order of a few million
states), GINsim provides a number of methods to analyze model
properties and supports model exports into various formats, in
particular for model checking (see Section 3.1) (Chaouiya et al.,
2012; Bérenguier et al., 2013).

Cell Collective (http://cellcollective.org) is a web-based
software with a user friendly interface for model construction,
simulation and analyses in a collaborative fashion. Its model
repository provides a way for users to directly use and/or expand
any of the 50 or so available models. Cell Collective supports
Booleanmodels, considers synchronous updates, stochastic input
simulations, and semi-continuous dose-response (input-output)
analyses as shown in Section 5.2 (Helikar et al., 2012, 2013b).

CellNetOptimizer (CellNOpt, http://www.cellnopt.org)
permits to define models of signaling networks as Boolean
synchronous models. It further supports constrained fuzzy
logic (Morris et al., 2011) and systems of differential
equations (Wittmann et al., 2009). CellNOpt specificity
is that, starting from a Prior Knowledge Network (i.e., a
candidate topology of the signaling network under study),
it creates a model by fitting its behavior to high-throughput
biochemical data (MacNamara et al., 2012; Terfve et al.,
2012).

MaBoSS (http://maboss.curie.fr) is a command-line tool
simulating continuous/discrete time Markov processes induced
by Boolean models (Stoll et al., 2012). Stochastic rates are
associated with model component updates and a Gillespie
algorithm is used to simulate the time evolution of component
levels. Time evolutions of probabilities are estimated and global
and semi-global characterizations of the whole system dynamics
are further provided.

3. MODEL ANALYSIS

In this section we focus on a selection of methods to assess
dynamical properties of logical models. Usage and relevance of
thesemethods are illustrated in Section 5.We refer toMorris et al.
(2010), Samaga and Klamt (2013), Albert and Thakar (2014), and
Naldi et al. (2015) for further overviews.

3.1. Identifying the Attractors and
Analyzing Their Reachability
As previously mentioned, properties of interest relate to
attractors and their reachability properties. In small models (up
to a dozen components), such properties can be easily recovered
directly by constructing and analyzing the State Transition Graph
(STG). However, for larger models, a variety of approaches based
on different algorithmic techniques and efficient data structures
have been proposed to handle the combinatorial explosion of the
number of states.

Stable states, which do not depend on updating schemes, are
relatively easy to identify because they correspond to the fixed
points of the transition function. The algorithm implemented in
GINsim relies on (multi-valued) decision diagrams to represent
the (Boolean) stability function of each component gi (which is
true iff Ki(g) = gi). Proper manipulations of this data structure
enable the identification of all the stable states of a logical model
of up to about hundred components (Naldi et al., 2007).

Identification of complex attractors is harder. Those are
composed of several states and depend on the selected
updating scheme (cf. Figure 2). In a synchronous dynamics, they
correspond to terminal, elementary cycles (i.e., closed dynamical
cycles in which each state has a unique successor), whose states
are fixed points of the pth iterate of K, for a cycle of length p
(note that p is not known in advance). Hence, most existing
methods sample or explorethe whole STG. Binary Decision
Diagrams proved effective to perform such an exploration (Garg
et al., 2008). Avoiding exploration of the state space, methods to
identify stable subspaces (i.e., regions of the space space in which
the model dynamics is trapped and thus contain attractors) have
been recently proposed (Zañudo and Albert, 2013; Klarner et al.,
2015).

Hierarchical Transition Graphs (HTG) have been defined as
STG compactions revealing crucial properties of the dynamics
(Bérenguier et al., 2013). Briefly, a HTG gathers (i) states
that belong to the same SCC, and (ii) states that define
trivial SCCs (i.e., if reached once, they cannot be revisited)
and from which the same set of attractors and SCCs can be
reached (cf. Supplementary Figure S1). Hence a HTG provides
an informative view of the dynamics in terms of attractors and
their basins of attraction.

To quantify attractor reachability, Mendes et al. (2014)
presented Avatar, a Monte Carlo simulation algorithm adapted
to speed up exit from transient cycles and to identify complex
attractors if those are not known beforehand. Avatar allows to
estimate the probability of reaching an attractor from an initial
state or from any initial state (i.e., sampling the state space) under
the assumption of equiprobability of concurrent transitions. In
turn, MaBoSS, mentioned in Section 2.3, provides an estimation
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of state probabilities over time (cf. Section 5.2), along with further
characterizations of the whole dynamics.

Model checking was proposed in the early 1980s to verify a
(set of) specification(s) against very largemodels of hardware and
software systems. Since then, methodologies have been improved
as well as their ranges of applicability. Notably, in the mid 2000s,
model checking started to be applied in Systems Biology, mainly
to verify qualitative systems dynamics (e.g., Chabrier and Fages,
2003; Batt et al., 2005; Arellano et al., 2011; Abou-Jaoudé et al.,
2015), but also for hybrid systems considering continuous time
or continuous state variables (e.g., Hinton et al., 2006; Clarke
et al., 2008; see also Brim et al., 2013 for an overview). A model
checker verifies whether a model of a system satisfies a set of
properties, answering true/false for each property. The dynamics
is represented as a specific transition system and properties are
specified by temporal logic formulas. Different temporal logics
exist, each with specific operators to explicitly reason about time
or about precedence relationships between states. The temporal
logics mostly used relate to the latter: the Linear Time Logic
(LTL), in which time is considered linear, and the Computation
Tree Logic (CTL) in which alternative time lines are considered
(Clarke et al., 1999).

In the asynchronous dynamics of a logical model, a state may
have multiple successors and hence lead to alternative paths,
which makes CTL particularly useful. To check reachability
properties, as illustrated in Section 5.2, we use CTL temporal
operators, with the following syntax and semantics (see Clarke
et al., 1999 for a complete reference of CTL operators):

• EF(8), there is at least one path leading to a state satisfying the
property 8;

• E[9U8], there is at least one path satisfying 9 until it reaches
a state satisfying 8.

In the verification of software/hardware systems, a property is
true if and only if it is true for every state in the set of initial
states. However, when verifying biological systems, one is often
interested in the existence of a reachability path from at least one
of the initial states. The solution lies in the specification of the
negated property (i.e., absence of reachability), which forces the
model checker to answer false if there is at least one reachability
path (used in Section 5.2).

A popular model checker is NuSMV (Cimatti et al., 2002).
GINsim provides an export into a NuSMV description with
the model rules, updating scheme and a (set of) initial
state(s), together with other optional parameters. In a NuSMV
description, the (set of) initial state(s) is specified using the
keyword INIT, and the (set of) properties is specified using the
keyword SPEC (cf. Section 5).

3.2. Assessing Model Behaviors upon Input
Variations
Recall that input components have no associated regulatory
function and are thus generally kept constant throughout
simulation. This means that there are no transitions between
states of the STG differing on values of input components (see
Figure 2). However, these disconnected STG sub-graphs can be

connected by adding bi-directional transitions, which account for
unconstrained variations of the input components. Using model
checking tools, it is then possible to check properties for which
inputs freely vary along a simulation. In order to account for a
distinct semantics of inputs and internal (regulated) components,
the Action Restricted Computation Tree Logic (ARCTL) is used
(Lomuscio et al., 2007; Monteiro and Chaouiya, 2012). ARCTL
extends CTL, imposing an additional path restriction on a subset
of inputs while letting the remaining inputs to freely vary.
This temporal logic was implemented in NuSMV-ARCTL, which
extends NUSMV. In Section 5.1, we take advantage of a subset
of ARCTL operators with the following syntax and semantics
(see Lomuscio et al., 2007 for a complete description of ARCTL
operators):

• EAF(α)(8), there is at least one path leading to a state
satisfying8, and the input restriction α must be satisfied along
this path;

• AAG(α)(8), all the states of all paths must satisfy 8, and the
input restriction α must be satisfied along these paths.

Other approaches have been developed to simulate Boolean
models under stochastic and continuous environments (Helikar
and Rogers, 2009; Helikar et al., 2012). Considering a
synchronous update, a model input can be allocated a probability
to be in its active state at each simulation step (see Figure 2D).
This probability may represent finer levels of external signals.
Furthermore, once a Boolean network has reached an attractor,
the average active/inactive states of each component over the
entire attractor can be calculated providing a characterization
of the component activity level in this attractor (Todd and
Helikar, 2012). Varying continuously the probabilities of input
states (from 0 to 1), input-output dose-response (titration)
curves can be generated, similar to those traditionally produced
in experimental studies, for example to study the effects of
different concentrations of a drug (Madrahimov et al., 2013) or
of different concentrations of receptor ligands as in Figure 6

(Helikar et al., 2013a). Currently, this approach is supported
by the Cell Collective (cf. Section 2.3), and by the stand-alone
command-line simulation engine, ChemChains (Helikar and
Rogers, 2009).

3.3. Model Reduction
A natural solution to lessen the combinatorial explosion issue
is to reduce the size of the model. Any reduction potentially
alters the properties of a model by modifying its dynamics.
However, when the reduction impacts on the dynamics are
well mastered, the analysis of a reduced model can be used
to deduce interesting properties of the original model. This is
the case of the reduction method that removes components
while properly modifying the logical functions of their targets,
which thus become directly affected by the regulators of the
removed components (Naldi et al., 2011, 2012; Saadatpour et al.,
2013). As a consequence, a self-regulated component cannot be
removed, firstly because this definition is not applicable, but
also because regulatory circuits are known to drive important
dynamical properties and thus should not be concealed (Thieffry,
2007). The key point about this reduction is that it does not
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generate novel trajectories and thus reachability properties that
are verified in the reduced model are also true in the original
model. Furthermore, Naldi et al. (2011) demonstrated that all the
stable states and elementary cyclic attractors of the asynchronous
dynamics are preserved. Because transitions of the original
STG may be discarded (removing a component amounts to
consider that its evolution is faster than that of the concurrent
components), more complex attractors may be split in two
or more complex attractors, while transient SCC may become
terminal. However, Saadatpour et al. (2013) showed that, for
constant input values, all the attractors are preserved when
reducing input and pseudo-input components (i.e., components
that are only regulated by inputs or by pseudo-inputs), as well
as mediator components (which are characterized by a unique
regulator and a unique target). Furthermore, both attractors and
reachability properties are preserved when reducing output and
pseudo-output components (i.e., components with no target, or
whose targets are only outputs or pseudo-outputs, see Naldi et al.,
2012).

3.4. Perturbation Analyses
In the logical framework, it is straightforward to define
perturbations. Perturbations affecting model components often
merely amount to force the corresponding variables to take
specific values. For example, to specify a knock-out, it suffices
to set the variable to 0, whereas for an ectopic expression the
variable is set to its maximal value. Stimulation of a signaling
pathway at the receptor level can be simulated by setting the
variable describing the receptor to 1, and blockage with a drug of
a protein by setting it to 0. By modifying the regulatory functions,
subtler perturbations can be defined as, for example mutations in
a promoter region, turning a component insensitive to a given
regulator (cf. Section 5.2).

4. MODEL AND DATA INTEGRATION

4.1. Integration of Experimental Data
Because logical models provide a flexible framework to encode
different biological events, with various granularities, they
are particularly well suited to examine experimental data.
Perturbations (genetic alterations, treatment with drugs or
ligands, etc.), can be easily encoded in the model (cf. Section
3.4), and simulation results can then be mapped to the
measured values of specific biological components upon these
perturbations.

Different types of experimental data have been integrated
within logical models. Genetic data are commonly used to
define models and simulations (e.g., mutations or knockdown
conditions), for various model organisms, from microbes
(Thieffry and Thomas, 1995), to cancer (Remy et al., 2015),
and many others. The data type used as readout depends
on the system under study. In the case of gene regulatory
networks, gene expression data are typically used, while for signal
transduction, protein phosphorylation data are normally used. It
is also possible to include non-molecular data, such as phenotypic
measurements like growth, which is useful e.g., to connect the

effect of a drug on a signaling pathway with its effect on cellular
growth (Kirouac et al., 2013; Flobak et al., 2015).

The integration of experiments and model can occur at
different levels: (i) a priori in the building phase, to define or
refine themodel, (ii) a posteriori, to fit a generic model and obtain
a model specific to certain conditions, and (iii) to (in)validate
a model by challenging it to predict experimental data under
specific conditions.

Model fitting to data allows to refine a given model structure
relying on dedicated experiments. Because general network
information is often not cell or context specific, such refinements
lead to models that describe more accurately specific cellular
situations. Such model adjustment can be done manually, by
iteratively changing the model and testing how well the resulting
model matches experimental data. For high-throughput data sets,
this process has been automatized by casting it as an optimization
problem (Saez-Rodriguez et al., 2009). This methodology can be
applied in multiple biological contexts and to different types of
data. In the case of signaling, as stated above, proteomic data are
particularly adequate and can be obtained with antibody based
platforms, such as protein arrays or luminex (Saez-Rodriguez
et al., 2009), or using mass spectrometry (Terfve et al., 2015).
Gene expression data can also be used (Crespo et al., 2013; Keller
et al., 2016).

In addition to using experimental data for logical model
construction, various types of data available in many databases
can be exploited, in turn, to interpret simulation experiments
and further validate the models and associated predictions.
The advantage of dynamical models is that they can generate
hypotheses about any targeted component, or about the system
as a whole. For example, Puniya et al. (2016) interrogated a
comprehensive signal transduction network model under all
possible knock-in and knock-out perturbations, resulting in the
identification and ranking of the most and least influential model
components. These components were further mapped on various
databases, resulting in the prediction of a new combinatorial drug
target in a cancer setting.

In practical terms, standardized names and proper
annotations using controlled vocabularies are essential for
a correct integration of models and data. This issue is discussed
in the next section.

4.2. Exchange Formats and Model
Documentation
As the popularity of logical modeling increases, standardization
issues have to be tackled. To this intent, the informal consortium
CoLoMoTo (http://www.colomoto.org) gathers researchers
developing logical models, methods and tools (Naldi et al.,
2015). The definition of a common file format was identified as
a primary requirement to allow model exchange and software
interoperability. Model encoding in a standard format facilitates
model reuse for extension or composition. In the context of
SBML Level 3 (Systems Biology Markup Language Hucka et al.,
2003), the SBML Qual (for qualitative) package has been defined
to store logical models (Chaouiya et al., 2013, 2015). This format
is currently supported by a number of software tools, including
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GINsim, Cell Collective, CellNOpt, the tools mentioned in this
paper. Hence, models stored in the SBML qual format can be
exchanged between these tools. Thanks to the LogicalModel
library, GINsim also provides an export of Boolean models to
MaBOSS, in addition to several other formats (Chaouiya et al.,
2013).

To allow reproducibility of in silico experiments, simulation
settings must be specified along with the model itself. These
settings include the initial condition(s) and a precise description
of the updating scheme. Model perturbations may be also
considered as specific simulation settings. For example, the
software GINsim allows to store all this information in the
form of a set of parameter settings (or simulation scenarios).
Cell Collective stores simulation settings in a database. The
Simulation Experiment Description Markup Language (SED-
ML) has been defined as a standard format for encoding
simulation experiments (Waltemath et al., 2011). One objective
of CoLoMoTo is to promote the use of such a format, possibly by
extending it to support specificities of logical modeling.

Proper documentation and annotation are crucial for reuse
and expansion of computational models by the community.
Often, published models lack information (evidence and/or clear
assumptions) documenting model components, interactions
and rules. Several efforts already exist to address this issue.
The Minimum Information Requested In the Annotation
of biochemical Models (MIRIAM) (Le Novère et al., 2005)
was developed to standardize the type of information (e.g.,
connections to controlled vocabularies as well as to various
databases) that should be included as model metadata. While
MIRIAM (and other standards) provides minimal guidelines
to ensure model reproducibility, additional efforts are needed
to increase the overall quality (breadth and detail) of model
documentation. For instance, modelers and curators can provide
detailed and exhaustive evidences supporting model components
and interactions when available, or assumptions in the case of
unavailable experimental observations. This is facilitated in Cell
Collective, which provides a Knowledge Base for each model.

Finally, BioModels database (Chelliah et al., 2015) and other
model repositories such as those of GINsim and Cell Collective
are also essential to ensure that models are available to the
community for reproducibility of the results as well as for model
reuse.

5. LOGICAL MODELING AND ANALYSES
OF TWO DISTINCTIVE APPLICATIONS

5.1. Application 1: T Cell Signaling
T lymphocytes play a central role in the adaptive immune
response in mammals. Cytotoxic CD8+ T cells kill cells infected
by viruses or malignant cells, whereas CD4+ T helper (Th)
cells orchestrate the function of a large diversity of effector
immune cells (including B cells, macrophages, granulocytes,
and NK cells) (Murphy et al., 2012). Activation of T cells and
their subsequent differentiation into effector or regulatory cells
result from the integration of a large panel of signals from
their microenvironment. Initially in a naïve state, T cells are

activated by three main types of signals: (i) T cell receptor (TCR)
activation, through the specific recognition of foreign antigens
presented by antigen presenting cells (APCs), (ii) co-inhibitory
and co-stimulatory signals, and (iii) cytokines. The integration of
these multiple signals initiates a plethora of signaling cascades,
regulating complex and intertwined networks, which ultimately
control T cell activation, proliferation and differentiation into
effector or regulatory cells expressing specific markers.

For example, Th1 subtype is characterized by the production
of interferon gamma (IFN-γ ), leading to the clearance of
intracellular pathogens, whereas Th2 cells secrete the cytokines
interleukin-4 (IL-4), IL-5 and IL-13, involved in the elimination
of helminths. Recently, additional Th subsets (e.g., Th17, Treg,
Tfh, Th9, Th22) have been characterized. Furthermore, recent
experimental evidences emphasize the diversity and plasticity of
T cells, challenging the classical picture of irreversible branching
differentiation (Nakayamada et al., 2012).

In order to decipher the mechanisms underlying T
lymphocyte activation and differentiation, various logical
models have been proposed, each addressing specific aspects
(cf. Table 1). Hereafter, we discuss a sample of these modeling
efforts to emphasize specific aspects of modeling and analysis,
as well as insights into the regulation of T cell activation and
differentiation.

Relying on the initial identification of Th1 and Th2
dichotomy, Mendoza (2006) proposed a logical model of the
differentiation network accounting for some aspects of Th
commitment toward these two cell types. The author could
capture Th1 and Th2 cellular types in terms of stables states
of the model, and got further insights into the intracellular
circuits involved in the delineation of the corresponding basins
of attractions. Naldi et al. (2010) extended Mendoza’s model
to cover additional signaling pathways and Th subsets (Th17,
Treg), using GINsim for model construction and analysis. As the
model was too large for a direct analysis of its dynamics, the
authors applied a reduction method (cf. Section 3.3), which led
to a model encompassing 34 components, amenable to analysis
through systematic simulations. Following the identification
of all the stable states, these were grouped according to
relevant phenotypic Th markers, abstracting away input values.
The model accounts for the canonical Th1, Th2, Th17, and
Treg subtypes, as well as for additional hybrid Th subtypes
coexpressing combinations of canonical Th markers. Finally,
the authors assessed the stability of the identified Th subtypes,
under specific polarizing environmental conditions (defined by
model input values), by iterating rounds of simulation of the
reduced model dynamics. Interestingly, this reachability analysis
emphasized the plasticity of the Th subtypes upon environmental
changes, with some cell types predicted to be highly labile (Th17,
Treg) whereas other are shown to be more robust (Th1, Th2).

Extending this model, Abou-Jaoudé et al. (2015) proposed a
multi-valued model accounting for novel canonical Th subtypes,
namely Th9, Th22, Tfh, with the integration of additional
transcription factors (e.g., PU.1, Bcl6) and cytokine pathways
involved in Th cell commitment. Following the approach of
Naldi et al. (2010) and considering a reduced version of the
model (cf. Figure 3), all the stable states were identified and
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TABLE 1 | Selected logical models of T cell signal transduction and gene regulation.

Publication Characteristics (nb components) Dynamics Availability

Mendoza, 2006 Multilevel model; CD4+ T cell differentiation

regulatory network (17)

Stable state analysis, perturbation

analysis, circuit analysis

GINsim

Saez-Rodriguez et al., 2007 Boolean model; T cell receptor signal

transduction network (94)

Stable state analysis, input and

perturbation analysis

Cell Collective

Zhang et al., 2008; Saadatpour

et al., 2011

Boolean model; T cell survival signal

transduction network (60)

Asynchronous update, perturbation

analysis, model reduction, attractor

identification

GINsim

Cell Collective

Naldi et al., 2010 Multilevel model; CD4+ T cell differentiation

regulatory network (65)

Asynchronous update, model reduction,

circuit analysis, Th cell plasticity

GINsim

Martínez-Sosa and Mendoza,

2013

Boolean model; CD4+ and CD8+ T cells

regulatory network (50)

Synchronous update, attractor analysis,

perturbation analysis

Cell Collective

Miskov-Zivanov et al., 2013 Multilevel model; TCR signaling pathways (38) Random asynchronous update,

introduction of delays, duration of input

stimuli modeled as a number of updating

rounds

Cell Collective

Conroy et al., 2014 Boolean model; TCR and integrin signaling

network and T cell differentiation regulatory

network (188)

Synchronous update, stochastic inputs,

perturbation effects on downstream

components

Cell Collective

Oyeyemi et al., 2015 Boolean model; HIV-T cell interaction

network (137)

Stable state analysis, perturbation analysis Cell Collective

Abou-Jaoudé et al., 2015 Multilevel model; CD4+ T cell differentiation

regulatory network (101)

Asynchronous update, model reduction,

stable state analysis, model checking, Th

cell plasticity

GINsim

Martinez-Sanchez et al., 2015 Boolean model; CD4+ T cell differentiation

regulatory network (85)

Model reduction, attractor analysis,

perturbation analysis, Th cell plasticity

Cell Collective

BioModels DB (non-curated branch)

grouped according to phenotypic markers, thereby defining
expression patterns associated with each canonical Th subtype.
This analysis allowed to capture the novel canonical subtypes and
predicted hybrid subtypes in terms of stable states. Noteworthy,
the interpretation of the input dependency of the stability of these
states is hindered by the gigantic number of input configurations
(221 value combinations of the 21 binary inputs). To cope with
this combinatorial explosion, one can further cluster these stable
states according to relevant input signatures.

Abou-Jaoudé et al. (2015) used model checking to efficiently
analyze Th cell plasticity under relevant polarizing conditions.
More precisely, using NuSMV-ARCTL (cf. Section 3.2),
reachability properties between the canonical Th subtypes
were systematically analyzed, considering relevant cytokinic
environmental conditions. The following generic ARCTL
property was specified to verify the existence of a reachability
path from a canonical Th pattern c1 toward a (stable) canonical
Th pattern c2 under an input condition e (the & operator denotes
the conjunction):

INIT c1;SPEC EAF(e)(c2&AAG(e)(c2)).

Results were synthetically represented in the form of
a reprogramming graph, which reproduces various
polarizing events experimentally observed and uncovers
many reprogramming scenarios between Th subtypes (see
Figure 4). In particular, several strategies allowing Th1 vs. Th2
interconversions could be identified, in accordance with recent
experimental observations challenging Th1-Th2 dichotomy
(Antebi et al., 2013).

Other scenarios where a Th subtype can follow distinct
fates under the same environmental conditions were also
unraveled by this analysis. To get comprehensive insights into
the alternative trajectories underlying different cell decisions,
a HTG representation of the dynamics can be used. Figure 5
provides an example of such a representation starting from Th22
cells and immersing them into a Treg polarizing environmental
condition. We see here that three stable states can be reached,
one corresponding to a Th17 cell type, and two corresponding
to Treg cell types. The cell decision between these phenotypes
mainly depends on the concurrent activation of Rorgt (themaster
regulator of Th17 cells) and Foxp3 (the master regulator of Treg
cells). Further insight into the reachability of the three attractors
can be extracted by performing a reachability analysis with the
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FIGURE 4 | Reprogramming graph considering the canonical Th subtypes (generated with the model checker NuSMV-ARCTL; adapted from

Abou-Jaoudé et al., 2015). Ellipses gather all subtypes that, under the same environmental condition, differentiate toward a particular stable subtype (defined in

Table 3 in Abou-Jaoudé et al., 2015). Dashed arrows connect ellipses to a (set of) differentiated state(s) and are labeled with the corresponding environmental

conditions. Solid arrows denote specific reachability conditions between pairs of subtypes, under a particular environmental condition. Colors of arrows and ellipses

indicate the environmental conditions of the corresponding subtype color. For example: from Th2, Th22, Th9, Th0, Treg, and Th17 subtypes (gathered in the pink

ellipse), a “proTfh” condition leads to reprogramming into both Tfh (pink node) and Th1 subtypes; while from Th22, a “proTreg” condition leads to reprogramming into

both Th17 and Treg subtypes.

Avatar algorithm, quantifying the reachability probability of each
attractor (Mendes et al., 2014). A thousand Avatar simulations
were enough to observe a stabilization of the reachability
probabilities of the three stable states. These indicated a higher
probability to reach the Treg stable states (0.642) than the Th17
state (0.358), suggesting that a Treg environment would favor
Th22 cells reprogramming toward a Treg rather than a Th17
phenotype (Figure 5).

Othermodeling works have focused on the signaling pathways
underlying T cell activation, survival and proliferation. Saez-
Rodriguez et al. (2007) established a Boolean model of T cell
activation following the engagement of TCR and co-stimulatory
receptor CD4 and CD28, using CellNetAnalyzer for model
definition and analysis. Here, an analysis based on steady-state
approximation was used. The reasoning being that in signal
transduction several different time scales operate; a first wave of
activation occurs upon stimulation with ligands and drugs, which
often takes only a few minutes, and this is followed by feedback
processes, which are typically slower. This approximation is
clearly not accurate, but it permits the consideration of large
networks in a simple and efficient manner. The model was
able to recapitulate a large number of published data in both
wild-type and knock-out conditions, as well as to predict
unexpected signaling patterns after specific stimulation of the
co-receptor CD28 and knock-out of the kinase Fyn, which were
subsequently experimentally validated (Saez-Rodriguez et al.,
2007).

Finally, several logical models were proposed to analyze T
cell signaling networks in pathogenic situations, in particular
in the context of T cell leukemia, a disease characterized
by an abnormal proliferation of T cells (Zhang et al., 2008;
Saadatpour et al., 2011; Conroy et al., 2014). Specifically,
Conroy et al. (2014) developed a logical model to better
understand the role of caveolin-1 (Cav1; an important regulator
of endocytosis) in T-cell leukemia. Figure 6 illustrates input-
output simulations and analyses demonstrating the ability of
the model to correctly reproduce previously described and
documented relationships between different components of the
modeled network. Besides, the model allowed to identify the
protein products most affected by CAV1+/+, CAV1+/−, and
CAV1−/− under immunocompetent and immunocompromised
conditions. Simulation results suggested that CAV1 expression
regulates Ras-related C3 botulinum toxin substrate 1 (RAC1),
B-cell lymphoma/leukemia 10 (BCL10), GATA-binding protein
3 (GATA3), CD26, and CD28. In addition to validating
these predictions in Cav1 knock-out mice, model results were
further successfully validated against gene expression signatures
obtained from the Gene Expression Omnibus (GEO) database.

5.2. Application 2: Cell Cycle Control
Tightly controlled by a sophisticated regulatory network
involving transcriptional regulations and protein modifications,
cell proliferation involves successive phases governing genome
replication (S phase) and cell division (mitosis or M phase),
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FIGURE 5 | Hierarchical Transition Graph (HTG) generated with GINsim considering an asynchronous simulation of the model shown in Figure 3

(Abou-Jaoudé et al., 2015). The bottom nodes correspond to the stable states, which are reachable starting from the initial conditions corresponding to the set of

states characterizing Th22 cell type, under a Treg polarizing environment (upper node). The states reachable from the initial conditions, except the stable states, are

grouped together into irreversible transient components (in green), the symbol ♯ precedes the number of states composing these nodes. The HTG encompasses 10

nodes (in contrast with the 2528 states of the corresponding STG). The labels associated with the arcs highlight the crucial transitions involved in the choice between

the attractors (see Supplementary Figure S1). Each stable state is annotated with the probability in red of being reached from Th22 subtype under the Treg polarizing

condition, considering 1000 simulations (computed with the software Avatar). The components are ordered as follows: first the external input cytokines IL1B, IFNG,

IL2, IL4, IL6, IL10, IL12, IL15, IL21, IL23, IL27, TGFB, IL36, IL33, IL18, IL25, IFNB, IFNA, IL1A, IL29, followed by the component representing the Antigen Presenting

Cells, then the transcription factors TBET, GATA3, RORGT, FOXP3, BCL6, followed by the secreted cytokines IFNG, IL4, IL2, IL10, IL21, IL6, followed by the

transcription factors STAT3 and PU1, then the secreted cytokine TGFB, followed by a node denoting the proliferation of Th cells and finally the secreted cytokine IL25.

FIGURE 6 | Examples of dose-response analyses in a signal transduction and gene regulatory model in Cell Collective (adapted from Conroy et al.,

2014). (A) Stimulation of filamentous actin polymerization in response to varying levels of cellular interaction with extracellular matrix (ECM). (B) Stimulation of the

mitogen-activated protein kinase (MAPK) pathway in response to Cav1 activation. (C) Activation of the MAPK pathway in response to stimulation by

antigen-presenting cells (APC).

separated by regulated irreversible transitions (checkpoints).
The main components and regulatory interactions controlling
cell cycle were initially identified in simplified model systems,
including fission and budding yeasts, as well as early Xenopus
zygotic mitoses. The underlying core networks have been
modeled using differential equations, leading to novel insights
into their organization and dynamical properties (see Ferrell

et al., 2011; Tyson and Novák, 2015 for recent reviews). However,
extension and analysis of such differential models become really
difficult as the number of experimentally identified components
and interactions increases. This led several groups to consider
Boolean or more sophisticated logical formalisms to build
comprehensive models of cell cycle control networks (Table 2).
Cell cycle networks present particular difficulties from the point
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TABLE 2 | Selected logical models of cell cycle networks in different organisms.

Publication Organism Characteristics (nb components) Dynamics Availability

Li et al., 2004 Budding Yeast Boolean model; Threshold logical

functions (11)

Synchronous update, G1 stable state

attracting most trajectories

GINsim (adapted model)

Fauré et al., 2006 Mammals Boolean model; Regulatory graph and

standard logical functions (10)

Synchronous, asynchronous and mixed

updating scheme; cyclic attractor plus

quiescent stable state

GINsim

Cell Collective

Davidich and Bornholdt,

2008

Fission Yeast Boolean model; Threshold logical

functions (10)

Synchronous update, G1 stable state

attracting most trajectories

GINsim (adapted model)

Irons, 2009 Budding Yeast Boolean model; Regulatory graph with 4

phenomenological nodes and standard

logical functions (18)

Synchronous and temporized updating

schemes, single cyclic attractor

GINsim

Cell Collective

Fauré et al., 2009 Budding Yeast Multilevel model; Regulatory graph and

standard logical functions (32)

Priority classes, single cyclic attractor GINsim

Sahin et al., 2009 Human Boolean model; Regulatory graph and

standard logical functions (20)

Asynchronous update, 3 stable states,

transient oscillations

GINsim

Cell Collective

Todd and Helikar, 2012 Budding Yeast Boolean model; based on Irons (2009)’s

model (20)

Analysis over variation of inputs, which are

allocated probaiblities to be active

Cell Collective

Flobak et al., 2015 Human Boolean model; Regulatory graph and

standard logical functions, no input (77)

Asynchronous update on a reduced

model, a single stable state denoting cell

proliferation

GINsim

of view of logical modeling. On the one hand, cell cycling
behavior tentatively corresponds to a cyclic attractor, or at least to
some multiple state pathway in the STG (rather than to a logical
stable state as for the Th subtypes mentioned above), which
are hard to compute. On the other hand, of most importance
is the precise succession of component switches along the
cell cycle, ensuring the proper temporal articulation of the
molecular processes required for successful genome replication
and repartition, along with timely and balanced cell division.

The studies listed in Table 2 rely on different modeling
assumptions (e.g., using generic or specific rules, and considering
specific updating schemes). By and large, relying on qualitative
information, the authors were able to capture the succession
of key events involved in cell cycle. Moreover, several studies
recapitulate the effect of various kinds of perturbations (losses-
or gains-of-function, see e.g., Fauré et al., 2006; Fauré et al.,
2009; Irons, 2009). Fauré and Thieffry (2009) published a
comparative review of cell cycle logical models (predating
2009). An interesting observation was the conservation of
a functional negative regulatory circuit at the core of the
cell cycle engine, involving cyclin B and Cdc20 (or their
orthologs in other species), as well as of several coupled positive
regulatory circuits. Here, we restrict ourselves to a few studies
in order to emphasize specific aspects of logical modeling
analyses.

Based on the differential model proposed by Novák and Tyson
(2004) and Fauré et al. (2006) defined a Boolean model for
the core network driving the entry of mammalian cells into
cell cycle. This model accounts for the existence of a quiescent

stable state (in the absence of growth factors, represented by the
shutoff of cyclin D, the input component), as well as for a cyclic
attractor characterized by the periodic activities of the cyclins
A, B and E, which drive the cell cycle through key transitions
by enabling the phosphorylation of a number of substrates by
their catalytic partners, the cyclin-dependent kinases (CDKs).
This model further includes the three main inhibitors of the cell
cycle: the retinoblastoma protein Rb, the CDK inhibitor p27/Kip1
and the proteasome complex represented by its two co-activators
Cdh1 and Cdc20. Finally, this model accounts for the role of the
E2 ubiquitin conjugating enzyme UbcH10, which participates in
Cdh1 dependent degradation of cyclin A. This extension of the
original differential model explains how the auto-ubiquitination
of UbcH10 probably prevents cyclin A from degradation by the
APC in G1 phase. Complex formation and protein sequestration
were modeled in terms of logical rules associated with the
target proteins, which enabled the author to keep the number
of components considered to the low end (ten components).
Although very simplified, this model broadly reproduced the
sequence of molecular events along the normal cell cycle, for both
synchronous and asynchronous updating schemes. The authors
further considered a list of documented perturbations to validate
their model. Although the simulations of various perturbations
were shown to match experimental observations, it was not
the case for some documented perturbations, including for a
knock-out of cyclin E.

Traynard et al. (2015) revisited this model to solve the
remaining discrepancies in the light of recent data (see Figure 7).
As hinted already in the seminal study by Fauré et al. (2006),
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FIGURE 7 | Regulatory graph of the mammalian cell cycle model

(Traynard et al., 2015). The input node, CycD accounts for the positive

signal, as Cyclin D is activated by growth factors. All components are Boolean,

except Rb and p27 (see Text). Interactions requiring the higher threshold (value

2) or having different effect depending on the threshold value (1/2) are labeled

accordingly.

the authors considered the use of a ternary variable for the cell
cycle inhibitor Rb, which can be phosphorylated at multiple
sites, associated with different activities. Similarly, they associated
a ternary variable with p27 to account for its significant but
incomplete degradation in the presence of CycD and in the
absence of CycA and CycE. They further included the F-box
protein Skp2 in the model. Skp2 promotes the degradation of
phosphorylated p27 and thereby enables its degradation. Skp2
degradation is promoted by Rb binding to Cdh1. Skp2 thus
links the two cell cycle repressors Rb and p27, and provides
an additional mechanism by which Rb can arrest the cell cycle.
In order to assess the benefits of each modification, model
checking was used to verify the existence (or the absence) of
specific trajectories characteristic of the cell cycle dynamics. More
specifically, a generic CTL temporal logical formula (see Section
3.1) was used to verify the existence of a trajectory complying
with a sequence S1, S2, S3, ..., Sn−1, Sn, each denoting a set of
states defined by constraints on some of the model components:

INIT S1; SPEC !E[(S1)U (S2 &E[(S2)U

(S3 & ...E[(Sn−1)U (Sn)])])].

Here, the negation (denoted by the operator !) is used to
obtain a counter-example, from the model checker, whenever
the property is false, containing the desired trajectory complying
with a sequence S1, S2, S3, ..., Sn−1, Sn. As a result, the authors
obtained a generic multi-valued logical model of the mammalian
cell cycle that qualitatively matches the most salient dynamical
properties of the normal cell cycle, in particular at the G1/S
transition, as well as the phenotypes of many mutants (Traynard
et al., 2015).

More quantitative characterizations of asymptotic behaviors
can be provided by stochastic simulations using MaBoSS (see
Section 2.3). As MaBoSS is restricted to Boolean models, the
ternary node Rb was split into two Boolean nodes Rb1 and Rb2,
associated with the first and second Rb thresholds, respectively
(and similarly for p27). The stochastic trajectories computed
for this model reflect the kinetics of the cell cycle progression
driven by the input cyclin D (see Figure 8). Transient oscillations
can be observed as the trajectories all start in G0 (with Rb1,
Rb2, p27, and Cdh1 the only active nodes) and progressively
desynchronize. It is particularly interesting to compare the
trajectories obtained for wild type (WT) vs. perturbed conditions.
The trajectories obtained for five perturbations illustrate the
role of Rb and of the pathway Rb-Skp2-p27 in the model
(Figure 8). Two perturbations were considered for Rb: the full
loss-of-function (Rb KO), and a partial loss-of-function, where
Rb loses its ability to repress E2F, but conserves its repressing
activity on Skp2 (Rb R661W). The resulting stochastic trajectories
highlight the role of Rb in the sequential activation of cyclin
E and cyclin A, ensured by the repressing activity of the two
underphosphorylated forms of Rb on E2F: in the WT case, the
activation of cyclin A is clearly delayed relatively to the activation
of cyclin E. In contrast, in the absence of the repressing effect of
Rb on E2F, cyclin E and cyclin A are activated at the same time.
The lack of significant difference between the trajectories of Rb
R661W and Rb KO suggests that the repression of Skp2 by Rb
has no major impact on the cell cycle. However, this interaction
is necessary to ensure the quiescent state in the absence of
cyclin D. Skp2 loss-of-function (Skp2 KO) arrests the cell cycle
(Figure 8), presumably due to the stabilization of p27. Indeed, the
oscillations are restored in the double mutant Skp2 KO p27 KO.

In an independent study focusing on Yeast cell cycle control,
Todd and Helikar (2012) built on the model of Irons (2009)
and showed that cell phenotypes can be modeled as ergodic
sets irreducible sets of states of the corresponding Markov
chain; i.e., set of states that cannot be left once reached), by
defining probabilities for the input components to be active
and modeling these signals as continuous variables. In this
work, the cell cycle was analyzed as a sequence of models,
each accounting for a specific phase of the cycle, which allowed
to characterize the (continuous) dynamics of all regulatory
components along each phase, and more closely compare them
to various experimental observations. Modeling extracellular
signals as continuous variables (i.e., cell size) resulted in the
finding that the yeast cell cycle network is stable under different
patterns of cell growth. That is, as long as the checkpoints are
appropriately activated (i.e., the environment is stable enough
for the successful completion of the current phase), the modeled
cell progresses through the cycle, independently of its size.
Furthermore, the continuous dynamics of themodel components
were found consistent with various experimental studies.

6. DISCUSSION

After introducing the logical modeling framework and a range
of methodological advances to analyze dynamical properties of
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FIGURE 8 | Stochastic trajectories simulated with MaBoSS for each component of the model of Figure 7, with equal rates for all transitions. From top

left to bottom right: simulations without perturbation (wild-type); with a perturbation corresponding to the partial mutation RbR661W annihilating the repressing activity

of Rb on E2F; Rb loss-of-function; Skp2 loss-of-function; p27 loss-of-function; combination of Skp2 and p27 loss-of-functions (Traynard et al., 2015). Rb_b1 and

Rb_b2 are the two Boolean variables used to represent the levels of Rb (0,1, and 2). Similarly, p27_b1 and p27_b2 account for the levels of p27.

these discrete models, we have presented a number of assets
of this approach through two important case studies. Here, we
discuss further issues and complementary approaches.

Besides the consideration of probabilistic input values, we
have focused on non-stochastic models (recall that asynchronous
dynamics is non-deterministic but not random). However,
several methods have been proposed to include noise in
Boolean models. For example, accounting for uncertainty in
the regulatory functions, Shmulevich et al. (2002) associate
each component with a set of regulatory functions, one being
randomly selected at each step of the simulation. Another option
consists in randomly taking the complements of the regulatory
function outcomes (Alvarez-Buylla et al., 2008). In Garg et al.
(2009), the authors consider potential failures of the regulatory
functions. For all these stochastic variants, the synchronous
scheme was adopted.

It is worth mentioning that several continuous transpositions
of logical models have been proposed, for example considering
fuzzy logic (Aldridge et al., 2009; Morris et al., 2011),
or transforming Boolean models into ordinary differential
equations (Mendoza and Xenarios, 2006; Wittmann et al., 2009).
The reverse transformation has been formally addressed for the

specific class of piecewise affine differential models (Batt et al.,
2008; Chaves et al., 2010).

As shown in Section 3 with the usage of model checking,
logical models are amenable to sophisticated formal methods.
Initially developed for software and hardware systems,
these techniques are indeed well adapted for logical model
identification (e.g., constraint programming, see Corblin et al.,
2010 and Answer Set Programming, see Videla et al., 2015)
and for model analysis (e.g., satisfiability problem (SAT) for the
identification of the attractors of Boolean models, see Dubrova
and Teslenko, 2011).

Although progress has beenmade with the definition of SBML
qual, the SBML Level 3 Qualitative Models Package (Chaouiya
et al., 2013), further efforts are needed to ensure model exchange,
reuse and extension. A first issue concerns reproducibility of
modeling studies. This can be achieved first by providing model
files, in BioModels database (Chelliah et al., 2015), or in model
repositories such as those provided by Cell Collective or GINsim
(see Section 2.3). Second, modeling assumptions and simulation
settings should be precisely described. For example, we have
underlined that model properties can vary depending on the
adopted updating scheme (Section 2.2). Furthermore, model
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extensions often simply refer to the addition of components,
but it can also consists in refining the model with a stochastic
extension (e.g., with probabilistic input values as in Figure 6).
The different formalism extensions evoked above together with
many others still need to be precisely characterized, managed
within a control vocabulary and supported in a future SBML qual
version. Further integration with core SBML Level 3 concepts will
be needed to support the encoding of hybrid models combining
features of both discrete and continuous formalisms. It is the
purpose of CoLoMoTo (the Consortium for Logical Models and
Tools) to stimulate and coordinate such developments.
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A fundamental result in metabolic pathway analysis states that every flux mode can

be decomposed into a sum of elementary modes. However, only a decomposition

without cancelations is biochemically meaningful, since a reversible reaction cannot have

different directions in the contributing elementary modes. This essential requirement

has been largely overlooked by the metabolic pathway community. Indeed, every flux

mode can be decomposed into elementary modes without cancelations. The result

is an immediate consequence of a theorem by Rockafellar which states that every

element of a linear subspace is a conformal sum (a sum without cancelations) of

elementary vectors (support-minimal vectors). In this work, we extend the theorem, first

to “subspace cones” and then to general polyhedral cones and polyhedra. Thereby, we

refine Minkowski’s and Carathéodory’s theorems, two fundamental results in polyhedral

geometry. We note that, in general, elementary vectors need not be support-minimal; in

fact, they are conformally non-decomposable and form a uniqueminimal set of conformal

generators. Our treatment is mathematically rigorous, but suitable for systems biologists,

since we give self-contained proofs for our results and use concepts motivated by

metabolic pathway analysis. In particular, we study cones defined by linear subspaces

and nonnegativity conditions — like the flux cone — and use them to analyze general

polyhedral cones and polyhedra. Finally, we review applications of elementary vectors

and conformal sums in metabolic pathway analysis.

Keywords: Minkowski’s theorem, Carathéodory’s theorem, s-cone, polyhedral cone, polyhedron, conformal

generators

1. INTRODUCTION

Cellular metabolism is the set of biochemical reactions which transform nutrients from the
environment into all the biomolecules a living cell consists of. Most metabolic reactions are
catalyzed by enzymes, the expression and activity of which is controlled by gene and allosteric
regulation, respectively.

A metabolic network together with enzymatic reaction rates gives rise to a nonlinear dynamical
system for the metabolite concentrations. However, for genome-scale networks, quantitative
knowledge of the underlying kinetics is not available, and amathematical analysis is not practicable.
Instead, one considers only stoichiometric information and studies the system of linear equalities
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and inequalities for the fluxes (net reaction rates), arising
from the pseudo steady-state assumption and irreversibility
constraints.

A metabolic network is given by n internal metabolites, r
reactions, and the corresponding stoichiometric matrix N ∈

R
n×r , which contains the net stoichiometric coefficients of each

metabolite in each reaction. The set of irreversible reactions is
given by I ⊆ {1, . . . , r}. One is interested in the flux cone

C = {f ∈ R
r | Nf = 0 and fi ≥ 0 for i ∈ I},

which is a polyhedral cone defined by the null-space of the
stoichiometric matrix and nonnegativity conditions. Its elements
are called flux modes.

As a running example, we consider a small network, taken
from Schuster et al. (2002), the corresponding stoichiometric
matrix, and the resulting flux cone:

∗
1 // X1

2 //
OO

4

��

X2
3 // ∗

∗

N =

(

1 −1 0 −1
0 1 −1 0

)

,

C = {f ∈ R
4 | Nf = 0 and f1, f2, f3 ≥ 0}.

The network consists of two internal metabolites X1,X2 and four
chemical reactions. Reaction 1 imports X1 from the environment
(indicated by the symbol ∗) which yields the first column (1, 0)T

of the stoichiometric matrix N. Reaction 2 transforms X1 into
X2 which gives the column (−1, 1)T , and reaction 3 exports
X2 which gives (0,−1)T . The first three reactions are assumed
to be irreversible which yields the nonnegativity constraints
f1, f2, f3 ≥ 0 in the definition of the flux coneC. Finally, reaction 4
is reversible and exports/imports X1.

Metabolic pathway analysis aims to identify biochemically/
biologically/biotechnologically meaningful routes in a network,
in particular, the smallest routes. Several definitions for minimal
metabolic pathways have been given in the literature, with
elementary modes (EMs) being the fundamental concept both
biologically and mathematically Klamt and Stelling (2003);
Llaneras and Picó (2010). Formally, EMs are defined as support-
minimal (or, equivalently, support-wise non-decomposable) flux
modes Schuster and Hilgetag (1994); Schuster et al. (2002).
Clearly, a positive multiple of an EM is also an EM since it fulfills
the steady-state condition and the irreversibility constraints.

In the example, the EMs are given by e1 = (1, 0, 0, 1)T , e2 =

(0, 1, 1,−1)T , e3 = (1, 1, 1, 0)T , and their positive multiples. It
is easy to check that e1, e2, and e3 are flux modes (elements of the
flux cone) and support-minimal. Note that e3 = e1 + e2.

A fundamental result in metabolic pathway analysis states
that every flux mode can be decomposed into a sum of
EMs Schuster et al. (2002). However, only a decomposition
without cancelations is biochemically meaningful, since a
reversible reaction cannot have different directions in the

contributing EMs. This essential requirement has been largely
overlooked by the metabolic pathway community. Indeed, as we
will show in this work, every flux mode can be decomposed into
EMs without cancelations, that is,

(0) if a component of the flux mode is zero, then this
component is zero in the contributing EMs,

(+) if a component of the flux mode is positive, then this
component is positive or zero in the contributing EMs,

(−) if a component of the flux mode is negative, then this
component is negative or zero in the contributing EMs.

In mathematical terms, every nonzero element of a “subspace
cone” (defined by a linear subspace and nonnegativity
conditions) is a conformal sum of elementary vectors, cf.
Theorem 3. The result is stated in Urbanczik and Wagner (2005)
and Urbanczik (2007); part (0) has been shown in Schuster et al.
(2002) and guarantees a decomposition without cancelations in a
weaker sense Llaneras and Picó (2010); Zanghellini et al. (2013).

In the example, the flux mode f = (2, 1, 1, 1)T can be
decomposed into EMs in two ways:

f =









2
1
1
1









= 2 e1 + e2 =









2
0
0
2









+









0
1
1
−1









= e1 + e3 =









1
0
0
1









+









1
1
1
0









.

The first sum involves a cancelation in the last component of
the flux. The last reaction is reversible, however, it cannot have
a net rate in different directions at the same time. Hence, only
the second sum is biochemically meaningful. As stated above, a
decomposition without cancelations is always possible.

In convex analysis, elementary vectors of a linear subspace
were introduced as support-minimal vectors by Rockafellar
in 1969. He proves that every vector is a conformal sum
(originally called harmonious superposition) of elementary
vectors (Rockafellar, 1969, Theorem 1). For proofs and
generalizations in the settings of polyhedral geometry and
oriented matroids (see Ziegler, 1995, Lemma 6.7) and (Bachem
and Kern, 1992, Theorem 5.36). Rockafellar points out that
this result is easily shown to be equivalent to Minkowski’s
theorem Minkowski (1896) for pointed polyhedral cones, stating
that every nonzero vector is a nonnegative linear combination
of extreme vectors. Moreover, the result immediately implies
Carathéodory’s theorem Carathéodory (1911), stating that the
number of extreme vectors in such a nonnegative linear
combination need not exceed the dimension of the cone. In fact,
Rockafellar writes: “This is even a convenient route for attaining
various important facts about polyhedral convex cones, since the
direct proof [...] for Theorem 1 is so elementary.”

In metabolic pathway analysis, decompositions without
cancelations were introduced by Urbanczik and Wagner (2005).
The corresponding elementary vectors are defined by intersecting
a polyhedral cone with all closed orthants of maximal dimension.
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By applying Minkowski’s theorem for pointed polyhedral cones,
every vector is a sum of extreme vectors without cancelations.
Urbanczik further extended this approach to polyhedra arising
from flux cones and inhomogeneous constraints Urbanczik
(2007).

In polyhedral geometry, it seems that conformal
decompositions of general cones and polyhedra have not yet
been studied. In this work, following Rockafellar, we first extend
his result to cones defined by linear subspaces and nonnegativity
conditions (Theorem 3). For subspace cones, support-minimality
is equivalent to conformal non-decomposability. As it turns
out, for general polyhedral cones, elementary vectors have to be
defined as conformally non-decomposable vectors. However,
these are in one-to-one correspondence with elementary
vectors of a higher-dimensional subspace cone, and, by our
result for subspace cones, we obtain a conformal refinement
of Minkowski’s and Carathéodory’s theorems for polyhedral
cones (Theorem 8). In particular, there is an upper bound
on the number of elementary vectors needed in a conformal
decomposition of a vector. Finally, by taking into account
vertices and conformal convex combinations, we further extend
our result to polyhedra (Theorem 13). We note that elementary
vectors do not form a minimal generating set (of an s-cone, a
general polyhedral cone, or a polyhedron). However, they form a
unique minimal set of conformal generators (Proposition 17).

2. DEFINITIONS

We denote the nonnegative real numbers by R≥. For x ∈ R
n, we

write x ≥ 0 if x ∈ R
n
≥. Further, we denote the support of a vector

x ∈ R
n by supp(x) = {i | xi 6= 0}.

2.1. Sign Vectors
For x ∈ R

n, we define the sign vector sign(x) ∈ {−, 0,+}n by
applying the sign function component-wise, that is, sign(x)i =

sign(xi) for i = 1, . . . , n. The relations 0 < − and 0 < + induce
a partial order on {−, 0,+}n: for X,Y ∈ {−, 0,+}n, we write
X ≤ Y if the inequality holds component-wise. For x, y ∈ R

n,
we say that x conforms to y, if sign(x) ≤ sign(y). For example, let
x = (−1, 0, 2)T and y = (−2,−1, 1). Then,

sign





−1
0
2



 =





−

0
+



 ≤





−

−

+



 = sign





−2
−1
1



 ,

that is, sign(x) ≤ sign(y), and x conforms to y. Let X ∈

{−, 0,+}n. The corresponding closed orthant O ⊂ R
n is defined

as O = {x | sign(x) ≤ X}.

2.2. Convex Cones
A nonempty subset C of a vector space is a convex cone, if

x, y ∈ C and µ, ν > 0 imply µx+ νy ∈ C,

or, equivalently, if

λC = C for all λ > 0 and C + C = C.

A convex cone C is called pointed if C∩−C = {0}. It is polyhedral
if

C = {x | Ax ≥ 0} for some A ∈ R
m×r,

that is, if it is defined by finitely many homogeneous inequalities.
Hence, a polyhedral cone is pointed if and only if ker(A) = {0}.

2.3. Special Vectors
We recall the definitions of support-minimal vectors and
extreme vectors, which play an important role in both
polyhedral geometry and metabolic pathway analysis. We
also introduce support-wise non-decomposable vectors, which
serve as elementary modes for flux cones (in the original
definition), and conformally non-decomposable vectors, which
serve as elementary vectors for general polyhedral cones (see
Subsection 3.2).

Let C be a convex cone. A nonzero vector x ∈ C is called

• support-minimal, if

for all nonzero x′ ∈ C,

supp(x′) ⊆ supp(x) implies supp(x′) = supp(x), (SM)

• support-wise non-decomposable, if

for all nonzero x1, x2 ∈ C with supp(x1), supp(x2) ⊆ supp(x),

x = x1 + x2 implies supp(x1) = supp(x2), (swND)

• conformally non-decomposable, if

for all nonzero x1, x2 ∈ C with sign(x1), sign(x2) ≤ sign(x),

x = x1 + x2 implies x1 = λx2 with λ > 0, (cND)

• and extreme, if

for all nonzero x1, x2 ∈ C,

x = x1 + x2 implies x1 = λx2 with λ > 0. (EX)

From the definitions, we have the implications

SM ⇒ swND ⇐ EX ⇒ cND.

If x ∈ C is extreme, then {λx | λ > 0} is called an extreme ray
of C. In fact, C has an extreme ray if and only if C is pointed. If C
is contained in a closed orthant (and hence pointed), we have the
equivalence cND ⇔ EX.

3. MATHEMATICAL RESULTS

We start by extending a result on conformal decompositions
into elementary vectors from linear subspaces to special cases
of polyhedral cones, including flux cones in metabolic pathway
analysis.
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3.1. Linear Subspaces and S-cones
We consider linear subspaces with optional nonnegativity
constraints as special cases of polyhedral cones. Let S ⊆ R

r be
a linear subspace and 0 ≤ d ≤ r. We define the resulting s-cone
(subspace cone, special cone) as

C(S, d) = {
( x
y

)

∈ R
(r−d)+d |

( x
y

)

∈ S, y ≥ 0}.

Clearly, C(S, 0) = S and C(S, r) = S ∩ R
r
≥.

Definition 1. Let C(S, d) be an s-cone. A vector e ∈ C(S, d) is
called elementary if it is support-minimal.

For linear subspaces, the definition of elementary vectors
(EVs) as SM vectors was given in Rockafellar (1969). For
flux cones, where S = ker(N), the definition of elementary
modes (EMs) as SM vectors was given in Schuster et al. (2002).
Interestingly, the choice of the same adjective for the closely
related concepts of elementary vectors and elementary modes
was coincidental Schuster (2015).

In the proofs of Theorem 3 and Propositions 4 and 5, we use
the following argument.

Lemma 2. Let C(S, d) be an s-cone and x, x′ ∈ C(S, d) be nonzero
vectors which are not proportional. If supp(x′) ⊆ supp(x), then
there exists a nonzero vector

x′′ = x− λx′ ∈ C(S, d) with λ ∈ R

such that

sign(x′′) ≤ sign(x) and supp(x′′) ⊂ supp(x).

If sign(x′) ≤ sign(x), then λ > 0 in x′′.

Proof. Clearly, x′′ = x−λx′ is nonzero for all λ ∈ R. There exists
a largest λ > 0 (in case sign(−x′) ≤ sign(x) a smallest λ < 0)
such that sign(x′′) ≤ sign(x). For this λ, x′′ ∈ C(S, d) and
supp(x′′) ⊂ supp(x).

For linear subspaces, the following fundamental result was
proved in Rockafellar (1969 Theorem 1). We extend it to s-cones.

Theorem 3. Let C(S, d) be an s-cone. Every nonzero vector x ∈

C(S, d) is a conformal sum of EVs. That is, there exists a finite set
E ⊆ C(S, d) of EVs such that

x =
∑

e∈E

e with sign(e) ≤ sign(x).

The set E can be chosen such that its elements are linearly
independent, in particular, they can be ordered such that every
e ∈ E has a component which is nonzero in e, but zero in its
predecessors (in the ordered set). Then, |E| ≤ dim(S) and |E| ≤
| supp(x)|.

Proof. We proceed by induction on the cardinality of supp(x).
Either, x is SM (and E = {x}) or there exists a nonzero vector

x′ ∈ C(S, d) with supp(x′) ⊂ supp(x), but not necessarily with
sign(x′) ≤ sign(x). However, by Lemma 2, there exists a nonzero
vector x′′ ∈ C(S, d) with sign(x′′) ≤ sign(x) and supp(x′′) ⊂

supp(x). By the induction hypothesis, there exists a SM vector
e∗ with sign(e∗) ≤ sign(x′′) and hence sign(e∗) ≤ sign(x). By
Lemma 2 again, there exists a nonzero vector

x∗ = x− λe∗ ∈ C(S, d) with λ > 0

such that sign(x∗) ≤ sign(x) and supp(x∗) ⊂ supp(x). By the
induction hypothesis, there exists a finite set E∗ of SM vectors
such that

x∗ =
∑

e∈E∗

e with sign(e) ≤ sign(x∗)

and hence sign(e) ≤ sign(x). We have constructed a finite set
E = E∗ ∪ {λe∗} of SM vectors such that

x = x∗ + λe∗ =
∑

e∈E∗

e+ λe∗ =
∑

e∈E

e with sign(e) ≤ sign(x).

By the induction hypothesis, the set E∗ can be chosen such that
its elements are linearly independent and ordered such that every
e ∈ E∗ has a component which is nonzero in e, but zero in all
its predecessors. By construction, λe∗ has a component which is
nonzero, but zero in x∗ and hence in all e ∈ E∗. Obviously, the
elements of E = E∗ ∪ {λe∗} are linearly independent and can be
ordered accordingly.

The statement about the support of the EVs was too strong in
Rockafellar (1969, Theorem 1). It was claimed that every EV has
a nonzero component which is zero in all other EVs.∗

Theorem 3 is a conformal refinement of Minkowski’s and
Carathéodory’s theorems for s-cones. In fact, it remains to show
that there are finitely many EVs.

Proposition 4. Let C(S, d) be an s-cone. If two SM vectors x, x′ ∈
C(S, d) have the same sign vector, sign(x) = sign(x′), then x = λx′

with λ > 0. As a consequence, there are finitely many SM vectors
up to positive scalar multiples.

Proof. Assume there are two SM vectors with the same sign
vector which are not proportional. Then, by Lemma 2, there
exists a vector with smaller support.

∗ For a counterexample, consider the subspace S = ker(1,−1,−1, 1) ⊆ R
4. Its

nonnegative EVs are

e1 =









1

1

0

0









, e2 =









1

0

1

0









, e3 =









0

1

0

1









, e4 =









0

0

1

1









,

and their positive multiples. Then x = (1, 2, 3, 4)T is not a conformal sum of

EVs with the claimed property. (Every conformal decomposition of x consists of at

least 3 EVs, and every set of 3 EVs contains 1 EV which does not have a nonzero

component which is zero in the other EVs.)

Frontiers in Genetics | www.frontiersin.org May 2016 | Volume 7 | Article 9065

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Müller and Regensburger Elementary Vectors and Conformal Sums

We conclude by showing that, for s-cones, EVs can be
equivalently defined as SM, swND, or cND vectors.

Proposition 5. For an s-cone, support-minimality, support-wise
non-decomposability, and conformal non-decomposability are
equivalent. That is,

s-cone : SM ⇔ swND ⇔ cND.

Proof. SM ⇒ swND: By definition.
swND ⇒ cND: Let C(S, d) be an s-cone and assume that

x ∈ C(S, d) is conformally decomposable, that is, x = x1 + x2

with nonzero x1, x2 ∈ C(S, d), sign(x1), sign(x2) ≤ sign(x),
and x1, x2 being not proportional. By Lemma 2, there exists a
nonzero x′ = x − λx1 ∈ C(S, d) such that supp(x′) ⊂ supp(x).
Hence supp(x′) 6= supp(x1), and x = x′ + λx1 is support-wise
decomposable.

cND ⇒ SM: Let C(S, d) be an s-cone and assume that x ∈

C(S, d) is not SM, that is, there exists a nonzero x′ ∈ C(S, d) with
supp(x′) ⊂ supp(x). Then, there exists a largest λ > 0 such that
x1 = 1

2x + λx′ and x2 = 1
2x − λx′ fulfill sign(x1), sign(x2) ≤

sign(x). For this λ, either supp(x1) ⊂ supp(x) or supp(x2) ⊂

supp(x); in any case, x1, x2 ∈ C(S, d) and supp(x1) 6= supp(x2).
Hence, x = x1 + x2 is conformally decomposable.

If an s-cone is contained in a closed orthant, then further
cND ⇔ EX, and all definitions of special vectors are equivalent.

3.2. General Polyhedral Cones
Let C be a polyhedral cone, that is,

C = {x ∈ R
r | Ax ≥ 0} for some A ∈ R

m×r .

For s-cones, we defined elementary vectors (EVs) via support-
minimality which, in this case, turned out to be equivalent to
conformal non-decomposability. For general polyhedral cones,
only the latter concept allows to extend Theorem 3.

Definition 6. Let C be a polyhedral cone. A vector e ∈ C is called
elementary if it is conformally non-decomposable.

In order to apply Theorem 3, we define an s-cone related to a
polyhedral cone C. We introduce the subspace

S̃ = {
(

x
Ax

)

∈ R
r+m | x ∈ span(C)}

with dim(S̃) = dim(C) and the s-cone

C̃ = C(S̃,m)

= {
(

x
Ax

)

∈ R
r+m | x ∈ span(C) and Ax ≥ 0}

= {
(

x
Ax

)

∈ R
r+m | x ∈ C}.

Hence,

x ∈ C ⇔
(

x
Ax

)

∈ C̃.

Moreover, the cND vectors of C and C̃ are in one-to-one
correspondence.

Lemma 7. Let C = {x | Ax ≥ 0} be a polyhedral cone and
C̃ = {

(

x
Ax

)

| Ax ≥ 0} the related s-cone. Then,

x ∈ C is cND ⇔
(

x
Ax

)

∈ C̃ is cND.

Proof. First, we show the equivalence of the premises in the
definitions of conformal non-decomposability for C and C̃.
Indeed,

x = x1 + x2 with x1, x2 ∈ C

⇔

(

x
Ax

)

=
(

x1

Ax1

)

+
(

x2

Ax2

)

with
(

x1

Ax1

)

,

(

x2

Ax2

)

∈ C̃.

Assuming x = x1+x2 with x1, x2 ∈ C (and henceAx1,Ax2,Ax ≥

0), we have

sign(x1), sign(x2) ≤ sign(x)

⇔

sign
(

x1

Ax1

)

, sign
(

x2

Ax2

)

≤ sign
(

x
Ax

)

.

It remains to show the equivalence of the conclusions in the two
definitions. In fact,

x1 = λx2 with λ > 0 ⇔
(

x1

Ax1

)

= λ

(

x2

Ax2

)

with λ > 0.

Now, we can extend Theorem 3 to general polyhedral cones.

Theorem 8. Let C = {x | Ax ≥ 0} be a polyhedral cone. Every
nonzero vector x ∈ C is a conformal sum of EVs. That is, there
exists a finite set E ⊆ C of EVs such that

x =
∑

e∈E

e with sign(e) ≤ sign(x).

The set E can be chosen such that |E| ≤ dim(C) and |E| ≤

| supp(x)| + | supp(Ax)|.

Proof. Let A ∈ R
m×r . Define the subspace

S̃ = {
(

x
Ax

)

∈ R
r+m | x ∈ span(C)}

and the s-cone

C̃ = {
(

x
Ax

)

∈ R
r+m | x ∈ C}.

Let x ∈ C be nonzero. By Theorem 3,
(

x
Ax

)

∈ C̃ is a conformal

sum of EVs. That is, there exists a finite set Ẽ ⊆ C̃ of EVs such
that

(

x
Ax

)

=
∑

( e
Ae

)

∈Ẽ

(

e
Ae

)

with sign
(

e
Ae

)

≤ sign
(

x
Ax

)

.

By Lemma 7, the EVs of C and C̃ are in one-to-one
correspondence. Hence, there exists a finite set E = {e |

(

e
Ae

)

∈

Ẽ} ⊆ C of EVs such that

x =
∑

e∈E

e with sign(e) ≤ sign(x).
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The set Ẽ (and hence E) can be chosen such that |E| = |Ẽ| ≤

dim(S̃) = dim(C) and |E| = |Ẽ| ≤ | supp
(

x
Ax

)

| = | supp(x)| +
| supp(Ax)|.

Theorem 8 is a conformal refinement of Minkowski’s and
Carathéodory’s theorems for polyhedral cones. In fact, it remains
to show that there are finitely many EVs.

Proposition 9. For a polyhedral cone, there are finitely many
cND vectors up to positive scalar multiples.

Proof. Let C be a polyhedral cone and C̃ the related s-cone.
By Lemma 7, the cND vectors of C and C̃ are in one-to-one
correspondence. By Proposition 5, the cND and SM vectors of
C̃ coincide, and by Proposition 4, there are finitely many SM
vectors.

In Urbanczik and Wagner (2005), EVs of a polyhedral cone
C were equivalently defined as extreme vectors of intersections
of C with closed orthants of maximal dimension. Indeed, the
following equivalence holds for closed orthants, not necessarily
of maximal dimension.

Proposition 10. Let C ⊆ R
r be a polyhedral cone, x ∈ C, and

O ⊂ R
r a closed orthant with x ∈ O. Then,

x ∈ C is cND ⇔ x ∈ C ∩ O is EX.

Proof. We show the equivalence of the premises in the
definitions of conformal non-decomposability for C and
extremity for C ∩ O. (The conclusions are identical.) Indeed,
assuming x = x1 + x2, we have

x1, x2 ∈ C with sign(x1), sign(x2) ≤ sign(x)

⇔

x1, x2 ∈ C ∩ O.

3.3. Polyhedra
Let P be a polyhedron, that is,

P = {x ∈ R
r | Ax ≥ b} for some A ∈ R

m×r and b ∈ R
m.

In order to extend Theorem 3 to polyhedra, we introduce
corresponding special vectors.

3.3.1. Special Vectors

Let P be a polyhedron. A vector x ∈ P is called

• a vertex, if

for all x1, x2 ∈ P and 0 < λ < 1,

x = λx1 + (1− λ)x2 implies x1 = x2, (VE)

• and convex-conformally non-decomposable, if

for all x1, x2 ∈ P with sign(x1), sign(x2) ≤ sign(x) and

0 < λ < 1, x = λx1 + (1− λ)x2 implies x1 = x2. (ccND)

From the definitions, we have

VE ⇒ ccND.

For a polyhedral cone, we defined elementary vectors (EVs) via
conformal non-decomposability. For a polyhedron, we require
two sorts of EVs: convex-conformally non-decomposable vectors
of the polyhedron and conformally non-decomposable vectors of
its recession cone.

Definition 11. Let P = {x ∈ R
r | Ax ≥ b} be a polyhedron

and Cr = {x ∈ R
r | Ax ≥ 0} its recession cone. A vector

e ∈ Cr ∪ P is called an elementary vector of P if either e ∈ Cr

is conformally non-decomposable or e ∈ P is convex-conformally
non-decomposable.

In order to apply Theorem 3, we define an s-cone related to
a polyhedron P = {x ∈ R

r | Ax ≥ b}. We introduce the
homogenization

Ch = {
( x

ξ

)

∈ R
r+1 | ξ ≥ 0 and Ax− ξb ≥ 0}

of the polyhedron, the subspace

S̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ span(Ch)}

with dim(S̃) = dim(Ch) = dim(P)+ 1, and the s-cone

C̃ = C(S̃, 1+m)

= {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ span(Ch), ξ ≥ 0, and

Ax− ξb ≥ 0}

= {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ Ch}.

Hence,

( x
ξ

)

∈ Ch ⇔

(

x
ξ

Ax−ξ b

)

∈ C̃.

Moreover, the cND vectors of Cr and the ccND vectors of P (as
the cND vectors of Ch) are in one-to-one correspondence with
the cND vectors of C̃.

Lemma 12. Let P = {x | Ax ≥ b} be a polyhedron, Cr = {x |

Ax ≥ 0} its recession cone, and

C̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m | ξ ≥ 0 and Ax− ξb ≥ 0}

the related s-cone. Then,

x ∈ Cr is cND ⇔
(

x
0
Ax

)

∈ C̃ is cND

and

x ∈ P is ccND ⇔
( x

1
Ax−b

)

∈ C̃ is cND.
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Proof. See Appendix.

Now, we can extend Theorem 3 to polyhedra.

Theorem 13. Let P = {x | Ax ≥ b} be a polyhedron and
Cr = {x | Ax ≥ 0} its recession cone. Every vector x ∈ P is a
conformal sum of EVs. That is, there exist finite sets E0 ⊆ Cr and
E1 ⊆ P of EVs such that

x =
∑

e∈E0

e+
∑

e∈E1

λee with sign(e) ≤ sign(x),

λe ≥ 0, and
∑

e∈E1
λe = 1. (Hence, |E1| ≥ 1.)

The set E = E0 ∪ E1 can be chosen such that |E| ≤ dim(P)+ 1
and |E| ≤ | supp(x)| + | supp(Ax)| + 1.

Proof. By defining an s-cone related to P, applying Theorem 3,
and using Lemma 12. See Appendix.

Theorem 13 is a conformal refinement of Minkowski’s and
Carathéodory’s theorems for polyhedra. In fact, it remains to
show that there are finitely many EVs.

Proposition 14. For a polyhedron, there are finitely many ccND
vectors.

Proof. Let P be a polyhedron and C̃ the related s-cone.
By Lemma 12, the ccND vectors of P are in one-to-
one correspondence with a subset of cND vectors of
C̃. By Proposition 5, the cND and SM vectors of C̃
coincide, and by Proposition 4, there are finitely many SM
vectors.

EVs of a polyhedron P can be equivalently defined as vertices
of intersections of P with closed orthants.

Proposition 15. Let P ⊆ R
r be a polyhedron, x ∈ P, and O ⊂ R

r

a closed orthant with x ∈ O. Then,

x ∈ P is ccND ⇔ x ∈ P ∩ O is VE.

Proof. We show the equivalence of the premises in the
definitions of convex-conformal non-decomposability for P and
of a vertex for P ∩ O. (The conclusions are identical.) Indeed,
assuming x = λx1 + (1− λ)x2 with 0 < λ < 1, we have

x1, x2 ∈ P with sign(x1), sign(x2) ≤ sign(x)

⇔

x1, x2 ∈ P ∩ O.

We conclude by noting that Theorem 8 is a special case
of Theorem 13. If a polyhedron is also a cone, then
P = Cr , E1 = {0}, and

∑

e∈E1
λee = 0. However, we do

not use Theorem 8 to prove Theorem 13. In classical proofs
of Minkowski’s and Carathéodory’s theorems, one first studies
polyhedral cones and then extends the results to polyhedra
by a method called homogenization/dehomogenization; (see
e.g., Ziegler, 1995).

3.4. Minimal Generating Sets
For a pointed polyhedral cone, the extreme rays form a minimal
set of generators with respect to addition. The set is minimal
in the sense that no proper subset forms a generating set and
minimal in the even stronger sense that it is contained in every
other generating set. Hence, the extreme rays form a unique
minimal set of generators.

For a general polyhedral cone, there are minimal sets of
generators (minimal in the sense that no proper subset forms a
generating set), but there is no unique minimal generating set.
However, there is a unique minimal set of conformal generators,
namely the set of elementary vectors.

Recall that elementary vectors of a polyhedral cone are
defined as conformally non-decomposable vectors. Indeed, every
nonzero element of a polyhedral cone is a conformal sum of
elementary vectors (Theorem 8), and every elementary vector is
contained in a set of conformal generators.

We make the above argument more formal.

Definition 16. Let C be a polyhedral cone. A subset G ⊆ C is
called a conformal generating set if (i) every nonzero vector x ∈ C
is a conformal sum of vectors in G, that is, if there exists a finite set
Gx ⊂ G such that

x =
∑

g∈Gx

g with sign(g) ≤ sign(x),

and (ii) if λG = G for all λ > 0.

Proposition 17. Let C be a polyhedral cone, E ⊆ C the set of
elementary vectors, and G ⊆ C a conformal generating set. Then,
E ⊆ G.

Proof. Let e ∈ C be an elementary vector. Since G is a conformal
generating set, we have

e = g∗ + h with sign(g∗), sign(h) ≤ sign(x),

where we choose a nonzero g∗ ∈ Ge ⊂ G and write h =
∑

g∈Ge\{g∗}
g ∈ C. If |Ge| = 1, then h = 0 and e = g∗ ∈ G.

Otherwise, since e is an elementary vector (a cND vector), we
have h = λg∗ with λ > 0 and hence e = (1+ λ)g∗ ∈ G.

Analogously, for a polyhedron, there is a unique minimal set
of conformal generators, namely the set of elementary vectors.

3.5. Examples
We illustrate our results by examples of polyhedral cones and
polyhedra in two dimensions, and we return to the running
example from the introduction.

Example 1. The s-cone C = {x | x1 ≥ 0, x2 ≥ 0}.
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x1

x2

r1

r2

Its EVs (SM vectors) are elements of the rays r1 = {x | x1 >

0, x2 = 0} and r2 = {x | x1 = 0, x2 > 0} (indicated by arrows).
Every nonzero vector x ∈ C is a conformal sum of EVs. That is,

x = e1 + e2,

where e1 ∈ r1 and e2 ∈ r2.

Example 2. The general polyhedral cone

C = {x |

(

3 1
−1 1

) (

x1
x2

)

≥ 0}.

x1

x2

r1 r2 r3

Its EVs (cND vectors) are elements of the rays r1, r2, and r3. Note
that r2 is not an extreme ray of C, but an extreme ray of C ∩ R

2
≥,

the intersection of the cone with the nonnegative orthant. Every
nonzero vector x ∈ C is a conformal sum of EVs. In particular, if
x ∈ C ∩ R

2
≥, then

x = e2 + e3,

where e2 ∈ r2 and e3 ∈ r3.

Example 3. The polyhedron

P = {x |





3 1
−3 3
0 2





(

x1
x2

)

≥





1
−1
1



}.

x1

x2

r1 r2 r3

e4

e5 e6

Its EVs are elements of the rays r1, r2, and r3 (cND vectors of the
recession cone) and the vectors e4, e5, and e6 (ccND vectors of the
polyhedron). Note that e4 is not a vertex of P, but a vertex of P∩R

2
≥,

the intersection of the polyhedron with the nonnegative orthant.
Every vector x ∈ P is a conformal sum of EVs. In particular, if
x ∈ P ∩ R

2
≥, then

x = (e2 + e3)+ (λ4e
4 + λ5e

5 + λ6e
6),

where e2 ∈ r2, e3 ∈ r3 and λ4, λ5, λ6 ≥ 0 with λ4 + λ5 + λ6 = 1.

Finally, we return to the running example from the
introduction. We restate the underlying network, the
corresponding stoichiometric matrix and the resulting flux
cone:

∗
1 // X1

2 //
OO

4

��

X2
3 // ∗

∗

N =

(

1 −1 0 −1
0 1 −1 0

)

,

C = {f ∈ R
4 | Nf = 0 and f1, f2, f3 ≥ 0}.

Its EVs (SM vectors) are

e1 =









1
0
0
1









, e2 =









0
1
1
−1









, e3 =









1
1
1
0









,

and their positive multiples. In other words, the EVs are elements
of the rays r1 = {λ e1 | λ > 0}, r2 = {λ e2 | λ > 0}, and
r3 = {λ e3 | λ > 0}.

The flux cone is defined by the stoichiometric matrix and the
set of irreversible reactions. If additionally lower/upper bounds
for the fluxes through certain reactions are known, then one is
interested in the resulting flux polyhedron. In the example, we
add an upper bound for the flux through reaction 1, in particular,
we require f1 ≤ 2 and obtain the flux polyhedron

P = {f ∈ R
4 | Nf = 0, f1, f2, f3 ≥ 0, and f1 ≤ 2}.
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Its EVs are elements of the ray r2 = {λ e2 | λ > 0} (cND vectors
of the recession cone) and the vectors e1, e3, e4 (ccND vectors of
the polyhedron), where

e1 =









2
0
0
2









, e2 =









0
1
1
−1









, e3 =









2
2
2
0









, e4 =









0
0
0
0









.

Note that e3 is not a vertex of P, but a vertex of P ∩ R
4
≥, the

intersection of the polyhedron with the nonnegative orthant.
Every vector x ∈ P is a conformal sum of EVs. In particular, if
x ∈ P ∩ R

4
≥, then

x = λ1e
1 + λ3e

3 + λ4e
4,

where λ1, λ3, λ4 ≥ 0 with λ1 + λ3 + λ4 = 1. In other words, the
polyhedron P ∩ R

4
≥ is a polytope.

In applications such as computational strain design, the set of
EVs (the unique minimal set of conformal generators) is often
more useful than a minimal set of generators. In the example, the
set of EVs includes e3 which is a ccND vector, but not a vertex of
P. If we delete reaction 4 by gene knockout, the new set of EVs
consists of e3 and e4 (having zero flux through reaction 4), and
the resulting flux polyhedron is the polytope generated by e3 and
e4. Most importantly, we obtain the result without recalculating
the set of generators (after deleting reaction 4).

4. DISCUSSION

Metabolic pathway analysis aims to identify meaningful routes
in a network, in particular, to decompose fluxes into minimal
metabolic pathways. However, only a decomposition without
cancelations is biochemically meaningful, since a reversible
reaction cannot have a flux in different directions at the same
time.

In mathematical terms, one is interested in a conformal
decomposition of the flux cone and of general polyhedral cones
and polyhedra. In this work, we first study s-cones (like the
flux cone) arising from a linear subspace and nonnegativity
conditions. Then, we analyze general polyhedral cones and
polyhedra via corresponding higher-dimensional s-cones.
Without assuming previous knowledge of polyhedral geometry,
we provide an elementary proof of a conformal refinement
of Minkowski’s and Carathéodory’s theorems (Theorems 3, 8,
and 13): Every vector (of an s-cone, a general polyhedral cone,
or a polyhedron) is a conformal sum of elementary vectors
(conformally non-decomposable vectors), and there is an
upper bound on the number of elementary vectors needed in a
conformal decomposition (in terms of the dimension of the cone
or polyhedron).

As a natural next question, one may ask: what is a minimal
generating set of a polyhedral cone that allows a conformal

decomposition of every vector? Clearly, such a set must contain
all conformally non-decomposable vectors. Indeed, we show that
the elementary vectors form a unique minimal set of conformal
generators (Proposition 17). In metabolic pathway analysis,
the question is: what is a minimal generating set of the flux
cone that allows a biochemically meaningful decomposition of
every flux mode? In this case, the elementary modes form a
unique minimal set of generators without cancelations. This
property distinguishes elementary modes as a fundamental
concept in metabolic pathway analysis and may serve as a
definition.

The correspondence of general polyhedral cones and
polyhedra to higher-dimensional s-cones has also important
consequences for the computation of elementary vectors. In
particular, it allows to use efficient algorithms and software
developed for elementary modes (see e.g., Zanghellini et al., 2013
and the references therein) for computing elementary vectors of
general polyhedral cones and polyhedra.

In applications, decompositions without cancelations were
first used in the study of the conversion cone Urbanczik and
Wagner (2005), a general polyhedral cone obtained by flux cone
projection Marashi et al. (2012). The approach was extended
to polyhedra arising from the flux cone and inhomogeneous
constraints, in particular, to describe the solution set of
linear optimization problems encountered in flux balance
analysis Urbanczik (2007). In analogy to s-cones, these sets could
be called s-polyhedra. Recently, elementary vectors have been
used to describe such polyhedra in the study of growth-coupled
product synthesis Klamt and Mahadevan (2015). Interestingly,
conformal decompositions of the flux cone itself appeared
rather late. In fact, they have been used to characterize optimal
solutions of enzyme allocation problems in kinetic metabolic
networks Müller et al. (2014).

Minkowski’s and Carathéodory’s theorems (and their
conformal refinements) are fundamental results in polyhedral
geometry with important applications in metabolic pathway
analysis. In subsequent work, we plan to revisit other results from
polyhedral geometry and oriented matroids (like Farkas’ lemma)
and investigate their consequences for metabolic pathway
analysis.
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APPENDIX

We prove the main results for polyhedra, Lemma 12 and
Theorem 13.

Proof of Lemma 12. To prove the first equivalence, we note that
(

x
0
Ax

)

∈ C̃ is cND if and only if
(

x
Ax

)

∈ C′ is cND, where

C′ = {
(

x
Ax

)

∈ R
r+m | Ax ≥ 0}, and apply Lemma 7.

To prove the second equivalence, we show the two
implications separately:
(⇒)We assume that x ∈ P is ccND and first consider a conformal
sum of the form

( x
1

Ax−b

)

=

(

x1

1
Ax1−b

)

+

(

x2

0
Ax2

)

with x1 ∈ P, nonzero x2 ∈ Cr , and sign(x1), sign(x2) ≤

sign(x). Indeed, we also have x = 1
2x

1 + 1
2 (x

1 + 2x2)
with x1, x1 + 2x2 ∈ P and sign(x1), sign(x1 + 2x2) ≤

sign(x). By the assumption, x1 = x1 + 2x2, that is,
x2 = 0, and it remains to consider a conformal sum of the
form

( x
1

Ax−b

)

= λ

(

x1

1
Ax1−b

)

+ (1− λ)

(

x2

1
Ax2−b

)

(+)

with x1, x2 ∈ P, sign(x1), sign(x2) ≤ sign(x), and 0 < λ < 1.
By the assumption, x1 = x2, and the first vector in the sum is a
positive multiple of the second. That is,

λ

(

x1

1
Ax1−b

)

= µ (1− λ)

(

x2

1
Ax2−b

)

(∗)

with µ > 0. Hence,
( x

1
Ax−b

)

∈ C̃ is cND.

(⇐) We assume that
( x

1
Ax−b

)

∈ C̃ is cND and consider the

convex-conformal sum

x = λx1 + (1− λ)x2

with x1, x2 ∈ P, sign(x1), sign(x2) ≤ sign(x), and 0 < λ < 1.
Hence, we also have the conformal sum (+). By the assumption,

we have equation (∗) which implies x1 = x2. Hence, x ∈ P is
ccND.

Proof of Theorem 13. Let A ∈ R
m×r and b ∈ R

m. Define the
homogenization

Ch = {
( x

ξ

)

∈ R
r+1 | ξ ≥ 0 and Ax− ξb ≥ 0},

the subspace

S̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ span(Ch)}

and the s-cone

C̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ Ch}.

Let x ∈ P. By Theorem 3,
( x

1
Ax−b

)

∈ C̃ is a conformal sum of

EVs. That is, there exist finite sets Ẽ0, Ẽ1 ⊆ C̃ of (normalized)
EVs such that

( x
1

Ax−b

)

=
∑

( e
0
Ae

)

∈Ẽ0

( e
0
Ae

)

+
∑

( e
1

Ae−b

)

∈Ẽ1

λe

( e
1

Ae−b

)

with

sign
( e

0
Ae

)

, sign
( e

1
Ae−b

)

≤ sign
( x

1
Ax−b

)

,

λe ≥ 0, and
∑

e∈E1
λe = 1. By Lemma 12, the EVs of P are in

one-to-one correspondence with the EVs of C̃. Hence, there exist

finite sets E0 = {e |
( e

0
Ae

)

∈ Ẽ0} ⊆ Cr and E1 = {e |
( e

1
Ae−b

)

∈

Ẽ1} ⊆ P of EVs such that

x =
∑

e∈E0

e+
∑

e∈E1

λee with sign(e) ≤ sign(x).

The set Ẽ = Ẽ0 ∪ Ẽ1 (and hence E = E0 ∪ E1) can be chosen
such that |E| = |Ẽ| ≤ dim(S̃) = dim(P) + 1 and |E| = |Ẽ| ≤

| supp
( x

1
Ax−b

)

| = | supp(x)| + 1+ | supp(Ax− b)|.
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Identification of Metabolic Pathway
Systems
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The estimation of parameters in even moderately large biological systems is a

significant challenge. This challenge is greatly exacerbated if the mathematical formats

of appropriate process descriptions are unknown. To address this challenge, the method

of dynamic flux estimation (DFE) was proposed for the analysis of metabolic time series

data. Under ideal conditions, the first phase of DFE yields numerical representations of all

fluxes within a metabolic pathway system, either as values at each time point or as plots

against their substrates and modulators. However, this numerical result does not reveal

the mathematical format of each flux. Thus, the second phase of DFE selects functional

formats that are consistent with the numerical trends obtained from the first phase. While

greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway

system contains as many dependent variables as fluxes. Because most actual systems

contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary

methods have been proposed to alleviate this issue, but they are not general. Here we

propose strategies that extend DFE toward general, slightly underdetermined pathway

systems.

Keywords: dynamic flux estimation (DFE), identifiability, metabolic pathway analysis, parameter estimation,

pathway structure, underdetermined system of fluxes

INTRODUCTION AND BACKGROUND

A Google Scholar search for the keyword “parameter estimation” yields over 3 million hits, which
renders it abundantly evident that the topic is everything but trivial, especially for applications in
biology. The challenges of finding optimal parameter values for biological systems are multifold
and include mathematical, statistical, computational, and even biological aspects. Mathematical
issues include dependencies among parameter values, sloppiness, and different types of exact or
approximate compensation between errors among the equations of the system, within equations,
and even within terms of the equations. Computational challenges are driven by the sheer size of
the often high-dimensional parameter space, the need to solve systems of differential equations
thousands of times, and an error structure between model results and biological data that can be
incredibly rough and contain uncounted local minima where search algorithms can get trapped.
Biological issues include the size and complexity of a system, noisy ormissing data, ill-characterized
processes, and unrealistic parameter values. All these challenges are tightly interwoven and often
create situations where no (good) solutions are obtained, where too many possible solutions can be
identified, or where the exclusive criterion of the quality of the fit is misleading.

Partial help for overcoming some of these complications was provided by the insight that
systems of ordinary differential equations (ODEs) can be estimated in a much simplified manner, at
least to some degree. Namely, if data are available as time series measurements, and if it is possible
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to estimate the slopes of these time courses with some reliability,
then the derivatives on the left-hand sides of the ODEs can
be replaced with estimated slopes at many time points (Varah,
1982; Voit and Savageau, 1982a,b; Voit, 2000; Voit and Almeida,
2004; Chou and Voit, 2009; Jia et al., 2011). Consequently,
each ODE, evaluated at a set of time points, is replaced with a
purely algebraic system of equations, where the fluxes constitute
its unknown variables. Each of these sets can be evaluated
independently of all other sets and does no longer require
numerical integration, which can account for more than 95% of
the computational cost when parameters are directly estimated
for ODEs (Voit and Almeida, 2004). The initial estimation of
slopes from the time course data can be accomplished with a
variety of methods that range from primitive to sophisticated
(e.g., seeWhittaker, 1923; Voit and Savageau, 1982b; Eilers, 2003;
Voit and Almeida, 2004; Vilela, 2007, 2008; Dolatshahi et al., 2014
and discussions therein).

While it certainly simplifies parameter estimation, the slope
estimation and decoupling method is not without its own issues.
In particular, it may “warp” solutions in the direction of time,
so that, for instance, oscillations have a predicted frequency
that is too high or too low (see Chapter 5 of Voit, 2012).
Nonetheless, the method can serve as an effective first stab at
a complicated problem and thereby provide reasonable initial
guesses for standard estimation techniques.

A prerequisite for any parameter estimation effort is
knowledge of the mathematical formats of all involved processes,
or at least a set of reasonable assumptions regarding these
formats, because they obviously dictate the role of each
parameter. However, guidelines regarding optimal formats for
biological process descriptions are not provided by nature.
Linear functions have been very successful in engineering, but
it has become clear that they are inadequate for representing
many biological phenomena. Thus, one needs to resort to non-
linear representations, of which, of course, there are infinitely
many. One could argue that biological systems must satisfy
the laws of physics, but it is usually impossible to deconvolve
biological processes neatly into physical components that can
be represented based on physical theory (Voit et al., 2010; Voit,
2013a). To circumvent this problem, many biological systems
modelers tend to use certain default representations that have
a justification in specific, and often simplified instances but do
certainly not tell the whole truth about a biological system in vivo
or are valid in other contexts (Voit et al., 2015). Arguably the
best studied example is the Michaelis–Menten rate law, which
is approximately true in carefully crafted experiments in vitro,
but whose prerequisites are most certainly violated in actual
biological systems in situ (Savageau, 1992, 1995). Similarly, mass
action functions in biochemistry, SIR models in epidemiology,
and Lotka–Volterra models in ecology may be excellent starting
points for the design of models, but it is quite evident that they
cannot truly capture the full complexity of living systems in all its
details.

One might think that it does not matter too much if the
functional form is not perfect, as long as all data of interest are
fit with sufficient accuracy. This argument may be true if future
predictions and explanations only pertain to the data ranges used

for model parameterization. However, as soon as the model is
extrapolated into new ranges of its state variables, extrapolations
with the wrong model may lead to grossly unsatisfactory results
(Goel et al., 2008). One root cause of such extrapolation problems
is a compensation of errors, which may occur within fluxes,
among fluxes of the same equation, and among fluxes of different
equations. While such compensation can lead to acceptable
residual errors in the original data fit, extrapolations to new
conditions can become rather unreliable; for specific details see
Supplements of Goel et al. (2008).

Faced with this conundrum, the method of dynamic flux
estimation (DFE) was suggested for the analysis of metabolic
time series data (Goel et al., 2008). In principle, DFE could be
applicable to any types of ODE systems, such as gene regulatory
networks that offer similar identification challenges (Siegenthaler
and Gunawan, 2014; Ud-Dean and Gunawan, 2014), but a very
beneficial feature of metabolic systems is the conservation of
mass at each metabolite pool, which has as a consequence that
many fluxes appear in more than one equation. It will become
evident throughout this article that this fact is important for DFE.

DFE consists of two phases, the first of which is model-free
and makes very few assumptions (Figure 1). It includes data
preprocessing, time course smoothing, the estimation of slopes
of the smoothed time courses, and the solution of linear algebraic
systems. Generically, each equation of the ODE is written as

dXi

dt
= Influxi1 + Influxi2 + Influxi3 + . . .

−Effluxi1 − Effluxi2 − . . . (1)

At each time point, the left-hand side is replaced by the
appropriate slope, and the equations are simultaneously valid
for all time points. The ultimate result of this phase consists of
numerical or graphical time series profiles of all fluxes; in other
words, the analysis yields plots of the fluxes in the system against
time or against metabolites and modulators. Importantly, this
phase does not reveal functional formats (Figure 2).

The second phase of DFE is dedicated to the mathematical
characterization and parameterization of each flux profile. This
phase requires the assumption of functional formats, which
are fitted against the numerical flux representations. This step
requires parameter estimation, but it is much simpler than the
estimation of the original ODE systems, because it now targets
explicit functions of one or a few variables in isolation and
with correspondingly few parameters. For instance, the graphical
result in Figure 2A might suggest a Hill or logistic function as
a reasonable format, while appropriate formats for the trends in
Figures 2B,C are not clear. It should be noted that this estimation
of individual fluxes avoids many of the error compensation issues
mentioned before.

Once a mathematical format is chosen for a particular flux,
the data are fitted against this alleged format or against a roster
of candidate functional forms. No generic strategies exist at this
point for selecting candidates or proving their optimality, and
it might be useful to scan through a list of candidate functions;
for a similar approach in statistics, see Sorribas et al. (2000).
Within this list, one may then attempt to identify the best fitting
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FIGURE 1 | DFE is a model characterization strategy and consists of two phases (adapted from Goel et al., 2008). In the first, model-free estimation phase,

it takes time series of concentration data as input and estimates the dynamic flux profiles, which in turn are used as input to phase 2, which consists of a model-based

estimation. In this phase, functional forms and regulatory assumptions are incorporated and parameters are estimated for each flux separately.

FIGURE 2 | Example results of the first phase of DFE. The flux in panel (A) might be representable with a Hill or logistic function. The fluxes in panels (B) and (C)

are adapted from Chou and Voit (2012); their optimal mathematical formats are unknown.

format through regression diagnostics, such as the residual error
and a run test for residuals (Draper and Smith, 1981). The
special case of the power-law format simplifies this step (Savageau
and Voit, 1982), as a logarithmic transformation yields linearity
and thus permits testing of the appropriateness of a functional
form with diagnostic methods of multiple linear regression,
even though one has to consider the distortion of the error
structure due to the transformation. It is possible that several
candidate functions are equally plausible and lead to similar fits.
For instance, a Hill function and a logistic function can have
essentially indistinguishable graphs. It is also possible that no
functional formmay be capable of yielding a reasonable fit, which
may suggest the existence of missing features in the models,

such as regulatory signals that had not been taken into account
in the assumed pathway structure. Such suggestions correspond
to novel hypotheses that are testable with further experiments
and may lead to biological discoveries, as was demonstrated in
Dolatshahi et al. (2016a).

The first phase of DFE mandates that an algebraic system
of fluxes be solved at each time point (see Equation 1). This
process is straightforward if the number of independent fluxes
equals the number of dependent variables for which data exist.
However, if the stoichiometric matrix of the system is not full-
rank, which actually is the most common case, a direct inversion
is not possible, and one needs to resort to auxiliary methods
or mathematical operations that cast the problem in a simpler
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form (Jia et al., 2012; Liu and Gunawan, 2014). Unfortunately,
such methods often necessitate additional biological information
to make the stoichiometric matrix invertible (e.g., Voit, 2009;
Chou and Voit, 2012; Iwata et al., 2013). As a consequence, these
methods are seldom general and often require specific features of
the data.

As an alternative or complementation of these methods,
this article describes a generic flux identification procedure for
slightly underdetermined systems and characterizes the space
of available fluxes. The article furthermore discusses conceptual
strategies for dealing with missing data and proposes mixed
parameter estimation strategies when DFE is only partially
applicable. This section involves the second, model-based phase
of DFE.

In reality, biological data are always noisy and often
incomplete, which adds uncertainty to any estimation or
identification method. Indeed, noise, missing data, and
estimation issues lead to a complicated intermixing of errors that
are difficult to deconvolve. In order to focus exclusively on issues
directly associated with the identification of fluxes, we decided
here to use “ideal” data, which we generated with a published
model (Curien et al., 2009). Many authors have discussed means
of addressing and smoothing noisy data and dealing with less
than ideal data (e.g., Vilela, 2007; Voit, 2011; Dolatshahi et al.,
2014; and references therein), so that we will not revisit this
issue here. However, we note that methods very similar to those
presented here were recently applied to an actual, rather complex
system (Dolatshahi et al., 2016a,b).

CHARACTERIZATION OF METABOLIC
FLUXES FROM TIME SERIES DATA

If a pathway system is underdetermined, DFE cannot directly be
applied. The issue in this case is not the absence of a solution;
rather, the challenge is the existence of an entire space of feasible
solutions and the need to decide which of these solutions are
in some sense “better” than others. One could explore whether
certain normalization or regularization procedures might help,
but it appears that they do not solve the problem here, as
we simply do not know what type of flux distribution nature
considers optimal. For instance, the use of the Moore-Penrose
pseudo-inverse (Penrose, 1955; Albert, 1972) yields a solution,
but some fluxes of this solution are typically negative, which is
often biologically unrealistic. Characterizability analysis (Voit,
2013b) reveals which fluxes within an underdetermined system
can be estimated with DFE without additional information, but
does not suggest further steps toward an optimal solution. The
strategy of the following sections will be to study the entire
set of feasible solutions in a drastically reduced space, whose
dimension equals the number of the degrees of freedom within
the stoichiometric system.

Along with the exploration of the solution space, useful
strategies will be introduced to visualize feasible candidate sets.
Initially, no information about the functional forms and the
contributing metabolites and modulators of each flux is assumed
to be available. Later on, minimal generic features of metabolic

fluxes are suggested as constraints to improve the results. It is
noted, though, that, even with these constraints, the solutions
are not necessarily unique. Finally, solutions in the form of
point-wise numerically defined fluxes will be suggested that
are appropriate, if not optimal, according to certain criteria of
biological reasonableness.

The source code for the following analyses has been
deposited on github (https://github.com/sepidd/Identification-
of-Metabolic-Pathway-Systems) and is also presented in the
Supplementary Material.

Mathematical Formulation of the Problem
A metabolic pathway system as formulated in Equation (1) can
be written in general matrix and vector notation as

dX

dt
= Ẋ = Av. (2)

Here, X denotes a vector of n metabolite concentrations and
v is a vector of m fluxes, i.e., reaction rates, while A is the
stoichiometric matrix. The vectors, but not the matrix, change
with time, and the functional forms governing the fluxes are
functions of their substrates and regulators. They are in general
unknown or based on assumptions that might or might not hold
under the given experimental conditions or in vivo. Moreover,
in certain cases, regulators and cofactors are yet to be discovered
and are therefore falsely omitted. This uncertainty is the reason
to attempt minimizing assumptions while executing the task
of inferring flux profiles from metabolic time series data. At
the same time, DFE provides us in this phase with the option
of testing and challenging some of the prior assumptions and
possibly discovering missing regulatory effects (cf. Dolatshahi
et al., 2016a).

Assuming that data smoothing and slope estimation had been
conducted successfully at each time point ti, we replace the left-
hand side of Equation (2) with the vector of slopes at time
ti, which we call b(ti). Equation (2) can thus be written as a
set of algebraic equations. Specifically, suppose that b (t) =

[Ẋ1(t), . . . , Ẋn(t)]
T
is the vector of slopes of dependent variables

at time t and A is the n × m stoichiometric matrix, which is
constant throughout the time period of any given experiment.
Then we obtain directly the linear algebraic system

Av (t) = b (t) (3)

At a steady state, or when the numerical values of the derivatives
are known, Equation (3) has a solution that can be computed for
every time point by matrix inversion, if the system has full rank.
However, most metabolic systems are under-determined, so that
a unique solution does not exist.

We can thus distinguish three situations. (1) When the system
has maximal rank, the solution is obtained with the regular
inverse, so that v(ti) = A−1

b(ti) is the solution of the
system of equations. (2) When the system is over-determined
and has more equations than unknowns (m < n), the Moore-
Penrose pseudo-inverse A+of matrix A minimizes the sum of
squared errors, arg min(

∥

∥Av(ti)− b(ti)
∥

∥) = A+
b(ti). This
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solution is equivalent to the result of linear regression. Finally,
(3), the case of under-determined systems (m > n) is the
most common situation in metabolic modeling, because most
pathway systems contain more reaction steps than metabolites.
This common occurrence makes the under-determined case
particularly important for the model-free phase of DFE and
suggests that we investigate if the pseudo-inverse solution v(ti) =
A+

b(ti) constitutes a biologically feasible, or even optimal,
solution.

Pseudo-inverses have been used to solve under-determined
systems for a long time. They are characterized by the minimum
L2-normwithin a one- or higher-dimensional space of admissible
solutions, i.e., arg min(

∥

∥Av(ti)− b(ti)
∥

∥). While the best solution,
in terms of the smallest norm, is guaranteed by the pseudo-
inverse, the resulting fluxes are not necessarily positive, and
there is no guarantee that they are biologically meaningful, let
alone optimal. In fact, experience shows that minimum-norm
solutions often include negative values, which are not biologically
feasible as flux values, unless one permits flux inversion, which
is not always realistic. The issue of under-determined systems
in DFE has been known since the inception of the method,
and characterizability analysis, based on pseudo-inverses, was
introduced as an a priori, data-independent check for the
applicability of DFE given a particular pathway system (Voit,
2013b).

A Compact Representation:
Gamma-Space and Gamma-Trajectory
In order to characterize the space of admissible flux sets v (t) =

[v1 (t) , . . . , vm(t)]
T t ∈ [0,∞) in an efficient manner, a more

compact representation is desirable. For pathways with m fluxes
and n dependent variables, where m > n, let d be the number of
degrees of freedom (DOF): d ≥ m−n. Without loss of generality,
we assume that the rank of the system is n. At each time point t,
the space of solutions satisfying Equation (3) can be written as:

v (t) = A+
b (t) +

(

Im − A+A
)

w(t) = A+
b (t)

+null (A) γ (t) (4)

Here, A+ = AT(AAT)
−1

is the Moore-Penrose pseudo-inverse,
A+

b (t) is the minimum-norm flux set at time t, and Im is the
m × m identity matrix. While A+

b (t) is easily computed for
practical applications with software like MATLAB, the result
often contains one or more negative fluxes for some time points,
which is usually undesirable. However, if w(ti) is a vector of
m arbitrary, real-valued elements, then the complete solution
v (ti) = A+

b (ti) +
(

Im − A+A
)

w(ti) represents all possible
solutions and spans the null space of the stoichiometric matrix
A. In numerical evaluations, this null space is readily determined
with the null(A) command in MATLAB.

The columns of null (A) = [vec1, vec2, · · · , vecd] span
the null space of A, and γ (t) = [γ1(t), γ2(t), · · · , γd(t)]

T

is the corresponding vector of coefficients at time t. Each
feasible solution of Equation (3) at time t can thus be uniquely
represented by γ (t). This representation allows us to explore the
d-dimensional Gamma-space instead of the feasible subset of the

m-dimensional space of fluxes, whose visual representation is
much more challenging.

The representations for all time points are now collected
as follows. For each time point t, a feasible flux set v (t)
can be calculated by finding Gamma coefficients that satisfy

vnull (t) = null (A) γ (t) = [v1 (t) , . . . , vm(t)]
T − A+

b (t).
This equation can be assessed by projecting vnull (t) onto the
vectors vec1, vec2, . . . , vecd, which span the null space of A.
The coefficient vector [γ1(t), . . . , γd(t)] constitutes a point
in the d-dimensional Gamma-space, representing time point
t, and the collection of these points constitutes a trajectory,
which we call the Gamma-trajectory. Each Gamma-trajectory
uniquely represents a feasible flux set traversing all time points,
as long as this trajectory corresponds exclusively to non-negative
fluxes.

As an illustration, let us consider a simple network consisting
of two dependent variables and four fluxes (Figure 3A). Its
stoichiometric representation is

[

1 −1 0 0

0 1 −1 −1

]









v1 (t)
v2 (t)
v3 (t)
v4 (t)









=

[

b1 (t)
b2 (t)

]

(5)

Suppose that metabolite concentrations X1 (t) and X2 (t) have
been measured every 30 s between 0 and 15min. Finding the
slopes of the concentration trends directly yields b1 (t) and
b2 (t) (Figure 3B). The feasible space of solutions, in terms
of fluxes, is a two-dimensional plane within a 4-dimensional
space that is difficult to visualize directly. Figure 3C shows
some representative flux solutions. Even though these are very
different, and several of them in fact have little similarity to
the fluxes in the model used to generate the “data” (black
curves in Figure 3C), all these fluxes satisfy Equation (5)
exactly. The corresponding Gamma-trajectories are depicted in
Figure 3D. The fluxes and Gamma-trajectory with which the
concentration data were originally generated are shown in black
in Figures 3C,D.

The solutions shown in Figure 3 are among the infinitely
many admissible solutions generated by the following procedure,
which actually only yields a small subset of all possible solutions.
Starting at some initial point in the Gamma-space, a phase-
plane trajectory is computed according to a stable linear state-
space model of the form γ̇ (t) = Bγ (t). This is certainly
not the only strategy for creating flux sets, but it constitutes a
simple option that leads to continuous fluxes. A Monte-Carlo
approach is utilized, in which a 2 × 2 matrix B is randomly
generated, but where only those matrices B are retained that
have negative real eigen values and result in non-negative fluxes
for all time points. The resulting set of trajectories yields many
dynamical fluxes with quite different features. Figure 3C shows
some feasible solutions for fluxes v1 through v4 in multiple
colors as thin lines, superimposed on the flux of the actual
model, from which the concentration data were generated
(black line). These fluxes are shifted in Panel (C), so that their
initial values match, in order to facilitate easier comparisons.
Interestingly, the resulting fluxes can possess behaviors ranging
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FIGURE 3 | Illustration example used to demonstrate the core concepts of the flux characterization procedure. The pathway has a very simple structure as

depicted in Panel (A). Panel (B) shows X1 (t) and X2 (t) on the left and the slopes of X1 (t) and X2 (t) estimated from noise-free measurements on the right. Panel (C)

shows seven examples of flux sets vs. time that satisfy Equation (5) exactly; for this illustration, all start at the same point as the original flux set

(v(0) = [6.3271, 3.1588,6.5486,3.5486] corresponding to γ (0)T= [8,5]). The thicker black curves are the fluxes with which the original data were produced. The

corresponding Gamma-trajectories are depicted with the same color scheme in Panel (D). The blurry dot indicates the common start value of these trajectories while

the dotted line represents the true flux, which is known in this artificial example.

from simple shoulder curves to over- and undershoots and
different oscillatory responses. One notes that this Monte-Carlo
strategy does not address issues of noise in the data, but is simply
a means of retrieving diverse solutions that are mathematically
admissible.

Admissible Subset of Gamma-Space: The
Subspace of Non-Negative Fluxes
For biological realism, it is necessary to determine the set of γ ’s
for which the corresponding vector v(t) consists of non-negative
values for all fluxes and all time points. According to Equation
(4), the feasible space, given by v (t) = A+

b (t) + null (A) γ > 0,
is an intersection ofm half-spaces:

A+ (i, :) b (t)+γ1vec1,i+· · ·+γdvecd,i ≥ 0 i = 1, 2, · · · ,m (6)

Here, A+ (i, :) denotes the ith row of the m × n Moore-Penrose
pseudo-inverse matrix. The inequalities are linear and thus
constitute a bounded or unbounded polytope.

Formulating the Problem as an
Optimization Task
According to Equation (6), the solution set is still infinite, thus
raising the question of whether biological constraints could be
evoked to reduce the feasible space of solutions. A possibly
pertinent constraint for the selection of meaningful flux profiles
is the overall minimization of the magnitudes of positive fluxes,
which might be interpreted as a form of metabolic energy
conservation. Minimizing the sum of fluxes at steady state has
been referred to as the parsimonious enzyme effect (Lewis, 2010).
Here, the terminology is slightly different, as the minimization is
done for the sum of all fluxes over all time points. Since the non-
negativity constraints are already in place, this sum of fluxes at all
time points equals the so-called “minimum L1-” or “Manhattan-”
norm, which is defined as min

v≥0
Av=b

‖v‖1 = min
v≥0
Av=b

∑m
i= 1 |vi| =

min
v≥0
Av=b

∑m
i= 1 vi. The optimization problem leading to this result in

terms of γ is shown in Equation (7). The constraint Av = b is
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already taken into account, since the representation in Equation
(4) only allows for fluxes that satisfy this constraint. Thus, the
optimization simplifies to:

min
A+b(t)+null(A)γ (t)≥0

m
∑

i= 1

A+
b (t) + null (A) γ (t)

= min
A+b(t)+null(A)γ (t)≥0

m
∑

i= 1

null (A) γ (t) (7)

The important insight from Equation (7) is that the optimization
problem can be translated into a simpler linear program in
terms of γ (t), which can be solved using algorithms for linear
programming, such as the simplex method. In practice, testing
the corner points of the feasible polyhedron for identifying the
corner with the minimum sum is a very well-established way of
arriving at the optimal solution (Dantzig, 1984).

One should note that DFE and the choice of an objective
function for the identification of biologically reasonable flux
solutions are entirely independent, For instance, as an alternative
optimization approach to minimizing the sum of fluxes for all
time points, we could select the L2-norm of the flux vector at
each point in time. This choice emphasizes and weighs the roles
of the individual fluxes in a different manner. Minimizing the
squared sum of fluxes at steady state has been referred to as
flux optimization (Holzhütter, 2004). Again, our terminology is
slightly different because the minimization pertains to all fluxes
and all time points. This task is described in Equation (8) and
again represents in some sense the minimum-energy flux set.

min
v ≥ 0
Av = b

‖v‖2
2 (8)

The optimization problem in Equation (8) can be reformulated
as the optimization problem of minimizing the L2-norm of the
vector γ (t). Equation (9) shows this reformulation:

min
A+b(t)+null(A)γ (t)≥0

(A+
b (t) + null (A) γ (t))

T
(A+

b (t)

+null (A) γ (t)) = min
A+b(t)+null(A)γ (t)≥0

(A+
b (t))

T
A+

b (t)

+γ (t)Tnull (A)
Tnull (A) γ (t) + γ (t)Tnull (A)

TA+
b (t)

+(A+
b (t))

T
null (A) γ (t) = min

A+b(t)+null(A)γ (t)≥0
γ (t)TImγ (t)

= min
A+b(t)+null(A)γ (t)≥0

‖γ (t)‖2 (9)

Here, null (A)
Tnull (A)=Im is the identity matrix of dimension

m, because the columns of null(A) are orthonormal base
vectors of the null space. Furthermore, the pseudo-inverse
solution A+

b (t) is orthogonal to the null space, so that

null (A)
TA+

b (t) = (A+
b (t))

T
null (A) = 0. Additionally,

(A+
b (t))

T
A+

b (t) does not change with γ (t), so that its removal
from the optimization problem does not change the result. Thus,
it is of note that Equation (9) is equivalent to the quadratic
program of Equation (8).

Other optimization problems could be formulated, but the
interesting challenge is that it is not really known what
“optimality” means for the fluxes in a biological system or
organism. Optimal solutions, with respect to various criteria,
could be suggested, but whether these solutions are compatible
with additional information about the functional form or about
effectors of fluxes needs to be tested for specific problems.
A later section examines the minimum-energy solution for a
realistic biological system and indeed challenges the validity of
this particular solution to some degree. This discussion shows
that optimization, which at this stage does not assume any
functional form for the fluxes, may lead to fluxes that can are
questionable. At the same time, these optimal solutions can be
utilized as starting points for approaching solutions that appear
to be biologically meaningful.

Illustration Example: The Biosynthetic
Pathway of Aspartate-Derived Amino
Acids in the Plant Arabidopsis thaliana
After characterizing a feasible set of fluxes, optimizing the
parameters for these fluxes yields a reasonable default solution.
Nonetheless, accounting additionally for generally expected
features of fluxes can lead to more biologically relevant flux sets.
Such generic features may include knowing that a certain flux
is a function of only one variable, i.e., its substrate. Another
piece of generic information could be that, when a substrate of
a flux is zero, the flux has to equal zero as well. These types of
constraints are illustrated below with a specific example from the
literature, namely the biosynthetic pathway of aspartate-derived
amino acids in the plant Arabidopsis thaliana (Curien et al.,
2009). In reference to the lead author of a model of this system,
we will call it the “Curien” model. Since the complete model
and the fluxes are known, the pathway system constitutes a good
test case. The Gamma-trajectory for the Curien model will be
plotted, the criterion of non-negativity and its implication in
Gamma-space will be investigated and determined, and the result
of optimization will be studied and compared to the original
fluxes. Finally, auxiliary methods of flux improvement will be
suggested.

Identification of Flux Trends
The pathway of biosynthesis of aspartate-derived amino acids
is responsible for the distribution of the carbon influx into
the synthesis of threonine, lysine, methionine, and isoleucine
(Figure 4). The original kinetic model (Curien et al., 2009)
was constructed based on in vitro kinetic measurements,
assuming generalized functional forms of the fluxes in the
tradition of Michaelis and Menten. The model contains seven
dependent variables, namely, X1 = [aspartyl-phosphate], X2 =
[aspartate semialdehyde], X3 = [lysine], X4 = [homoserine], X5 =
[phosphohomoserine], X6 = [threonine], and X7 = [isoleucine].
Additionally we consider the output variable X8 = [threonyl-
tRNA].

This specific example is well-suited as an illustration of
the proposed techniques of flux identification, because it is
representative and of moderate complexity, and because its
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FIGURE 4 | Metabolic reaction network of the biosynthesis of

aspartate-derived amino acids in Arabidopsis thaliana. Asp, L-Aspartate;

AspP, L-Aspartate-4-phosphate; ASA, L-Aspartate-semialdehyde; Lys,

L-Lysine; Hser, Homoserine; PHser, O-Phospho-L-homoserine; AdoMet,

S-Adenosylmethionine, Thr, L-Threonine; Ile, L-Isoleucine; Val, L-Valine.

Lysyl-tRNA and Isoleucyl-tRNA are shown here as end products, but they are

not explicitly included in the model. Adapted from Curien et al. (2009).

details are fully known, which facilitates method development
and multiple diagnoses of problems that are likely to arise.

The equations for the model

dX1

dt
= vAK − vASADH

dX2

dt
= vASADH − vDHDPS − vHSDH

dX3

dt
= vDHDPS − v(Lys)tRNAsth

dX4

dt
= vHSDH − vHSK (10)

dX5

dt
= vHSK − vTS1

dX6

dt
= vTS1 − vTD − v(Thr)tRNAsth

dX7

dt
= vTD − v(Ile)tRNAsth

dX8

dt
= v(Thr)tRNAsth

are directly taken from the original article. The functional forms
of the fluxes are presented in Equation (11):

vAK1 = [AK1] ·
5.65− 1.6[AspP]

1+
(

[Lys]/
(

550
1+[AdoMet]/3.5

))2

vAK2 = [AK2] ·
3.15− 0.86[AspP]

1+
(

[Lys]/22
)1.1

vAKI = [AKI −HSDH I] ·
0.36− 0.15[AspP]

1+
(

[Thr]/124
)2.6

vAKII = [AKII −HSDH II] ·
1.35− 0.22[AspP]

1+
(

[Thr]/109
)2

vAK = vAK1 + vAK2 + vAKI + vAKII

vASADH = [ASADH] ·
(

0.9[AspP]− 0.23[ASA]
)

vHSDH I = [AKI −HSDH I] · 0.84 ·
(

0.14+
0.86

1+
[

Thr
]

/400

)

vHSDH II = [AKII −HSDH II] · 0.64 ·
(

0.25+
0.75

1+
[

Thr
]

/8500

)

vHSDH = vHSDH I + vHSDH II

vDHDPS1 = [DHDPS1] · [ASA] ·
1

1+
(

[Lys]/10
)2

vDHDPS2 = [DHDPS2] [ASA] ·
1

1+
(

[Lys]/33
)2

(11)

vDHDPS = vDHDPS1 + vDHDPS2

v(Lys)tRNAsth = VAaRS ·
[Lys]

25+ [Lys]

vHSK = [HSK] ·
2.8[Hser]

14+ [Hser]

vTS1 = [TS1] ·
(

0.42+3.5[AdoMet]2/73

1+[AdoMet]2/73

)

[PHser]
[

250
(

1+[AdoMet]/0.5
1+[AdoMet]/1.1

)

1+ [AdoMet]2

140

]

(

1+ [Pi]
1000

)

+ [PHser]

v(Thr)tRNAsth = VAaRS ·
[Thr]

100+ [Thr]

vTD = [TD] ·
0.0124[Thr]

1+
(

[Ile]/
(

30+ 74[Val]
610+[Val]

))3

v(Ile)tRNAsth = VAaRS ·
[Ile]

20+ [Ile]

Equation (10) can equivalently be written in vector form as
shown in Equation (7), namely as

dX

dt
= Ẋ = Av (12)

where v and A are the corresponding vector of reaction rates
(i.e., fluxes) and the stoichiometric matrix, respectively. For the
Curien model, they are shown in Equations (13) and (14):

v = [vAK , vASADH, vHSDH, vDHDPS, v(Lys)tRNAsth, vHSK , vTS1,

v(Thr)tRNAsth, vTD, v(Ile)tRNAsth]
T

= {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}
T (13)
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FIGURE 5 | Gamma-trajectory for the Curien model (Curien et al.,

2009). The spacing of arrows shows the progression of time. The steady state

is shown in red.

A =

























1 −1 0 0 0 0 0 0 0 0
0 1 −1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 −1 0
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1 0 0

























(14)

Gamma-Trajectory of the Curien Model
The fluxes and metabolite concentrations for this system are
known, which allows us to plot the “true” Gamma-trajectory in
the Gamma-space representation vs. time:

v (t) = A+
b (t) + null (A) γ (15)

Here,

null (A) = [vec1,vec2]

=

[

0.5374 0.5374 0.1162 0.4212 0.4212 0.1162 0.1162 0 0.1162 0.1162

0.0534 0.0534 0.3914 −0.3380 −0.3380 0.3914 0.3914 0 0.3914 0.3914

]T

spans the null space of A. This solution is easily found,
as null(A) is a MATLAB command that returns these two
orthonormal vectors. γ (t) = [γ1(t), γ2(t)]

T is the vector of
coefficients associated with null(A). With this information, the
two-dimensional Gamma-space can be explored instead of the
feasible subset of the 10-dimensional space of fluxes.

For each time point t, the gamma coefficients can be calculated
by projecting vnull (t) = v(t)− A+

b (t) onto the vectors vec1 and
vec2. The result is equivalent to the dot product of null(A) and
v(t), since A+

b (t) is orthogonal to the null space and the dot
product is zero.

Figure 5 shows the trajectory starting at time zero and ending
at steady state shown with a red dot.

Feasible Solutions
Similar to the introductory example, this model permits an
infinite number of solutions, which may be quite different. Some
of these feasible solutions can be generated with a Monte-Carlo
simulation by starting at some initial point in the Gamma-space
and computing a phase-plane trajectory according to the linear
state-space model of γ̇ (t) = Bγ (t), as before. The resulting
trajectories exhibit a variety of different dynamical characteristics
for the fluxes. Panels 1–9 of Figure 6 show in multiple colors
a selection of feasible solutions for fluxes v1 through v10, with
the exception of the output flow v8. Flux v8 is not shown since
it belongs to the only full rank subset of the system and is
fully determined by numerically differentiating X8. The thin lines
representing these solutions are superimposed on the actual flux
(black), which is known from the model. It is evident that some
of the inferred fluxes are similar to the actual fluxes, but that
many are not even qualitatively of the same shape. In order
to facilitate easier comparisons, the fluxes shown are shifted so
that their initial values match. Interestingly, the inferred fluxes
show different behaviors ranging from monotonic to various
oscillatory shapes. One should note that these feasible solutions
are typical examples if we assume a trajectory from a linear state-
space solution but that they by nomeans represent all the possible
trends.

An interesting observation is that one may add an equal
value to each flux in Set 1 = {v1, v2, v4, v5} and/or
Set 2 = {v1, v2, v3, v6, v7, v9, v10} without a change in
the metabolite concentration profiles. The reason is that these
shifts cancel out in the original differential equations (Equation
10) and Ẋ (t) therefore stays the same. Figure 7A demonstrates
that the shape of the Gamma-trajectory (Figure 5) can be shifted
along the red line if one adds different positive constant amounts
to Set 1 and along the cyan line if one adds different positive
constant amounts to Set 2. Of course, shifts in both directions
are admissible as well. One could also pick negative constant
values as long as the fluxes stay positive. This way, the entire
Gamma-space can be spanned. This is an equivalent, and perhaps
more comprehensible, explanation of the two degrees of freedom
for this pathway. As an alternative to constant shifts, it is even

admissible to add the same function of time to all fluxes in the
sets.

Admissible Subset of the Gamma-Space: the

Subspace of Non-Negative Fluxes
For each time point t, we determine the set of γ ’s for which
the corresponding v(t) consists entirely of non-negative fluxes.
Recalling Equation (6), the feasible space here is an intersection
of 10 half spaces characterized by the following set of inequalities:

A+ (i, :) b (t) + γ1vec1,i + γ2vec2,i ≥ 0 i = 1, 2, · · · , 10 (16)

Here, A+ (i, :) denotes the ith row of the 10 × 8 Moore-Penrose
pseudo-inverse matrix.
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FIGURE 6 | Sets of feasible solutions for each flux v1 to v7 and v9 to v10 is shown in each panel. For visualization purposes, the actual flux from the model is

shifted to have the same initial value as the simulated fluxes and is superimposed as a thick black line for comparison.

In this example, only two out of the total of 10 inequalities
happen to be active inequalities, which results in a feasible
subspace in the shape of an open triangle. One should note,
however, that b(t) changes with time, so that there is a new
open triangle for each time point. Expressed differently, the
feasible region resulting in non-negative flux sets varies with
each time point. Figure 7B exhibits the first seven of these
open triangles in different shades of red. There is one such
triangle for each time point; the triangles are not shown
for the following time points to avoid over-population of
the plot.

The corners of these open triangles are shown as black dots,
which lie on a curve. The blue curve shows the actual Gamma-
trajectory of Figure 5. One interesting observation is that, for the
initial time points, the two curves (“true” and inferred) coincide.
For later time points, the blue curves lie inside the corresponding
open triangle of non-negative solutions.

Any continuous trajectory whose points fall inside these non-
negative open triangles for all time points is a feasible flux
profile.

Minimum-Energy Flux Set
Searching the feasible solutions for the set of flux profiles
that minimize the sum of squared flux norms for all time
points results in the minimum-energy flux. This procedure is
equivalent to solving the quadratic programming of Equation
(9) and results in the same flux profile as solving the linear
programming of Equation (7). For the case of the Curien model,
both of these methods yield the same set of fluxes as the corner
solution introduced in the previous section. This solution is
also equivalent to the result of a non-negative least-squares
optimization problem performed in MATLAB.

Figure 8 shows the minimum energy flux profiles plotted
vs. time (depicted in red) together with the actual fluxes of
the Curien model (blue). The two solutions are quite different,
although they both match the metabolite data perfectly. The next
sections introduce strategies to alleviate this discrepancy. One
should note that the computed solution is actually “cheaper” than
the Curien model, as all fluxes have lower magnitudes; whether
it is “better” or “worse” than the Curien model cannot be said,
because we do not know the correct criteria.
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FIGURE 7 | (A) Adding a constant amount to the fluxes in Set 1 for all time points shifts the Gamma-trajectory along the dark red line without any change in the

concentration profiles for all metabolites. Similarly, adding a constant amount to the fluxes in Set 2 for all time points shift the Gamma-trajectory along the cyan line

without any change in the concentration profiles for all metabolites. (B) The Gamma-trajectory of the Curien model is depicted in blue color. The black arrowheads

shown halfway through the blue curve are equally spaced in time. The open red triangles show the subset of the Gamma-space where the corresponding flux set is

non-negative at each point in time. Only the first seven triangles are shown for illustration purposes. The black doted curve shows the corners of these open triangles

for different time points. We will later see that, for the Curien model example, this curve is the same as the minimum-energy curve as described before. Interestingly

the blue and black curves are overlapping in the beginning but then diverge.

Generally Expected Features Regarding Fluxes Can

Restrict the Feasible Space Further

General expectations regarding metabolic fluxes may constrain
the feasible flux profiles. To assess these expectations, it is
useful to plot the fluxes against their substrates and modulators
rather than against time, as was done before. Figure 9 shows
all actual fluxes plotted against their substrates and effectors in
blue, super-imposed on the min-energy fluxes vs. their substrates
and effectors in red. Fluxes v5, v6, v7, and v10 are known to be
functions solely of their corresponding substrates, while fluxes
v2, v3, v4, and v9 have two substrates/regulators, and v1 has three.
Closer inspection of these plots reveals that the plots of v6 vs. X4

and v7 vs. X5 show a behavior that is not consistent with a true
mathematical function, namely a folding-over (Figure 9A). For
example, if the concentration ofX4 is 1.2µM, flux v6 may take two
values, and therefore cannot be a function in the mathematical
sense. Assuming that we know that no other variables affect this
flux, this folding-over phenomenon is not acceptable.

To ameliorate this problem, one may remove or cut
the folded-over section. Specifically, for the time points
corresponding to folded-over values, we let v6 take values
according to the top branch. This is allowable, as the upper
branch is a feasible solution. Using this technique, v6(t) becomes
uniquely determined and can be considered an identified flux.
Subsequently, a new min-energy response can be computed with
exactly the same methods as before, but with only one degree of
freedom left.

Figure 10 depicts the same plots as in Figure 9 after removing
the folding-over phenomenon. Interestingly, all fluxes in Set 2 =

{v1, v2, v3, v6, v7, v9, v10}, as introduced before, are now
fixed and almost equivalent to the actual fluxes. This means
that the number of degrees of freedom has decreased to 1 after

incorporating the information that one of the fluxes is a function
of one variable only. The discrepancy between fluxes in Set 1 =

{v1, v2, v4, v5} remains unsolved, and there is no other folding-
over among the one-variable fluxes.

A caveat of the strategic step above is our assumption that
some of the fluxes only depend on their substrates. Such an
assumption is of course not always valid, but the more we learn
about metabolism the more we will be able to rely on solid
information. To validate such an assumption, one might use a
step-wise scheme of testing additional variables as modulators
(Marino and Voit, 2006). By the same token, the proposed
methods may actually point to regulatory signals that had been
unknown or overlooked (Dolatshahi et al., 2016a,b). One notes
that this issue is a challenge for any estimation or identification
strategy.

In order to recover the fluxes in Set 1, additional information
is needed. First, one could assume that all fluxes in this set are
shifted by the same value. If this value were chosen as about
0.3, one can imagine from Figure 11 that the fluxes become very
similar to the fluxes in the original model. Second, suppose it
was known that, for instance, v5 is well-modeled as a Michaelis–
Menten rate function and the corresponding kinetic parameters
KM and Vmax could be extracted from the literature. Then
one could find v1, v2, v4 by the following simple procedure:

Determine the shift function fshift(t) =
Vmax X3(t)
km+X3(t)

− v5−min(t)

and add it to the rest of fluxes in Set 1 to find the actual
fluxes; thus, vj (t) = vj−min (t) + fshift (t) , j ∈ {1, 2, 4}.
Indeed, if the Michaelis–Menten function is implemented with
Curien’s parameter values, the entire system is perfectly recouped
(result not shown). Having said that, there is no objective
argument against the fluxes in Figure 11, except possibly that v5
is essentially 0 for the first 250 time units, and then becomes
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FIGURE 8 | Fluxes v1 to v10 with the exception of v8 are plotted vs. time. Curves in red are the min-energy fluxes, while the blue curves show the actual fluxes

of the Curien model. Flux v8 is not shown because it belongs to the full-rank subset of the system and can be recovered exactly from the data.

slightly non-monotonic, which might not be realistic. At the
same time, the computed fluxes are of lower magnitude than
those in the Curien model. As a third alternative, one could
independently determine one of the fluxes in Set 1, for example
as a power-law function, as it was demonstrated elsewhere
(Iwata et al., 2013), and then compute all other fluxes of
the set.

DISCUSSION

Extension of DFE Toward Pathways with
Incomplete Information
In many practical scenarios, some of the data are missing, and/or
some of the fluxes cannot be determined fully even with the
techniques described in the previous sections. If so, the need
arises for additional strategies that make maximal use of DFE’s
capabilities and diagnostic features (Voit, 2009; Chou and Voit,
2012; Iwata et al., 2013), along with random search and global
optimization techniques.

Because data are seldom ideal, this section discusses a
rather generic, multi-step strategy that takes advantage of
the diagnostic and computational benefits that DFE offers,
and augments them with auxiliary methods and global
optimization approaches toward a full-system parameterizations
(Figure 12). These procedures were recently used for the
construction of a complex model of the highly regulated
glycolytic pathway of Lactococcus lactis from NMR data
(Dolatshahi et al., 2016a,b) where, due to missing data and
other features of the data, the estimation of parameters was not
straightforward.

The first step of this strategy consists of identifying full rank
subsets of fluxes within the system (see flux estimation module
in Figure 12), if that is possible. For instance, the Arabidopsis
example allowed us to identify Set 2 as well as the flux v8.

Suppose now that data for one or more of the variables are
missing. If so, the “missing metabolite estimation module” in
Figure 12 is used (see also Voit, 2009). The goal is to infer flux
information from near-by metabolites or at least to constrain the
parameters of this flux for the following steps of a randomized
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FIGURE 9 | Panel (A) shows one-substrate fluxes of the system plotted

against their substrate concentrations. Note that fluxes v6 and v7 exhibit

a folding-over phenomenon. Panel (B) depicts the plots of fluxes that have two

effectors (substrates or regulators) vs. each variable separately. Panel (C)

shows flux v1 vs. its participating variables. In all plots, the actual fluxes, as

known from the original model, are plotted in red, while blue shows the

min-energy fluxes.

search and global full system parameterization. This module
involves an optimization task, which ideally yields valuable
information regarding the likely profile of the missing data.
The first step in this module consists of selecting a metabolite
pool that is close to the missing data, includes a concentration
profile, and has influxes and effluxes that are at least partially
characterized. As an example, assume time series data for lysine
(X3) were missing in the Curien model. The idea is to infer the
missing data from other metabolites and/or identifiable fluxes.
For instance, information regarding lysyl-tRNA could provide
valuable hints regarding V(Lys)tRNAsth: namely, one could assume
a power-law or Michaelis–Menten function to infer X3 from the
data for the accumulation of lysyl-tRNA. In this particular case,
the computation of X3 from V(Lys)tRNAsth at different time points
would actually be quite simple, as both functional formats can be
transformed into linear equations.

If such an inference is not feasible, other biological
information is needed and must be supplied on a case-by-
case basis. For instance, biological arguments may provide
clues regarding amounts that might reasonably be added to
formerly identified flux sets. In some cases, measurements
fall below the detection limit, so that no numerical data are
available, although the biology of the system mandates that
the concentrations are not zero. The detection limit, mass
conservation, and possibly other considerations can serve as
useful constraints for the optimization algorithm. The output of
this module thus consists of substitutes for some of the missing

FIGURE 10 | This figure shows the same plots as in Figure 9 with the

difference that the plots in blue are the min-energy fluxes after fixing

the folding-over problem. Panel (A) shows the one-variable fluxes vs. their

substrates. Panel (B) depicts the plots of fluxes that have two effectors

(substrates or regulators) vs. each variable separately. Panel (C) shows flux v1
vs. its participating variables. In all plots, the actual fluxes, as known from the

original model, are plotted in red, while blue shows the min-energy fluxes after

resolving the folding-over problem.

data profiles, along with their associated parameter values. In
other parts of the workflow, these are treated like experimental
data.

The “validation of functional form and regulation” step
assesses the appropriateness of the functional formats for the
flux representations. A first and obvious criterion is the quality
of the fit, which is necessary, although not sufficient (Voit,
2011). A second criterion is the detection or lack of “runs in
residuals” (Draper and Smith, 1981). If no appropriate format
and parameterization can be found, it is quite probable that
important components of the pathway are missing from the
model. An example is the situation where a flux decreases with
increasing, reasonable substrate concentrations. Such a trend is
counterintuitive and may suggest that a regulator is missing from
the model. If so, DFE can possibly help identify what shape
the dynamic trend of the regulator must have to remedy the
discrepancy. A scan of the dynamics of all variables in the model
may even identify candidates, although such inferences are still to
be tested experimentally. Examples of this situation are presented
elsewhere (Dolatshahi et al., 2016a,b).

Beyond the quality of fit and run test, no true validation
is possible, because the fluxes are unknown. Even so, the
“validation of functional form and regulation” step ensures
reasonableness and flags fluxes that are computed as negative,
exhibit unduly high magnitudes, or are apparently lacking
important contributing variables.
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FIGURE 11 | Fluxes v1 to v10 with the exception of v8 are plotted vs. time. The red curves are the min-energy fluxes after solving the folding-over problem,

while the blue curves show the actual fluxes. It is evident that the fluxes v3, v6, v7, v9, v10 are almost identical and overlapping and that our method has recovered

these fluxes.

Assessment of the Inferred Fluxes and
their Parameters
Once the functional forms and regulations are considered
satisfactory and the corresponding parameters are estimated,
it is necessary to test whether the estimated parameter set is
essentially unique or whether substantially different solutions
exist. This identifiability and sloppinenss step (e.g., Gutenkunst,
2007a,b; Vilela, 2009; Raue, 2013; Villaverde and Banga, 2013;
Tafintseva, 2014; Tönsing et al., 2014) is particularly pertinent
if the data are noisy or some of the data were not measured
but inferred in earlier steps. This global analysis often utilizes
Monte Carlo simulations, in which a large-scale random search
is anchored in the estimated, optimal parameter set {Pi}, which
serves as the starting point for the global optimization. The
differences in the sets of newly estimated parameter values
for each flux and each experiment are collectively used to
determine admissible ranges for the parameters of the system
and starting values for global optimization. This last estimation
step entails a combination of different optimization techniques,

which may begin with evolutionary (genetic) algorithms that
provide coarse solutions and are followed up with steepest
descent algorithms that refine these solutions. The objective
function for this purpose is the usual sum of squared errors
over all time points, metabolites, and datasets, but may also
include a penalty formetabolite concentrations that were inferred
rather than directly measured. The ideal outcome of this step is
either an essentially uniquemodel parameterization or a compact
ensemble of models with parameter values that permit some
flexibility without compromising the data fit.

CONCLUSIONS AND OUTLOOK

The goal of this article was to extend the utility of DFE to the
relatively common scenario where the algebraic system of fluxes
is underdetermined or some time series data are missing or
incomplete.

Initially, the concept of lower-dimensional representation in
the form of a so-called Gamma-space and a Gamma-trajectory
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FIGURE 12 | Step-by-step procedure for the proposed extension of dynamic flux estimation (DFE).

was introduced. This representation is especially useful when
the number of degrees of freedom is low. Reasonable biological
constraints like smoothness over time and non-negativity of
fluxes were taken into account to constrain the feasible space
even further. In particular, a minimum-energy criterion was

considered, and solutions were discarded in which fluxes were
not representable by mathematical functions, due to non-
uniqueness. The concepts were illustrated with a model of
aspartate metabolism in the plant Arabidopsis. The minimum-
energy flux set did not match the actual flux profiles for this
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pathway, even though the metabolite data were recouped with
a set of fluxes that had lower magnitudes than in the original
model. The addition of biologically reasonable constraints
reduced the discrepancies. In particular, it was known that
a certain flux, v6, is a function of only its substrate. This
knowledge helped us reshape the minimum-energy flux, with
the consequence that more than half of the resulting fluxes of
the system became identifiable and indeed matched the original
flux profile. Additional knowledge—or assumptions—about the
fluxes can potentially constrain the feasible space of solutions
further and may recover the original flux set. For example,
knowing (or assuming) that a certain flux follows a specific
functional form can potentially lead to a determination of this
flux and decrease the degrees of freedom by one (cf. Iwata et al.,
2013).

More generically, it is not always clear what optimality
criteria or constraints should be evoked to reduce the feasible
set of solutions, where all fit the concentration data exactly.
Nonetheless, the identification and characterization of feasible
flux sets may lead to a better understanding of the system and
possibly aid the design of additional experiments that could
effectively fill the gap and recover the true fluxes. Ideally, such
experiments should yield data where all (most, ormany) variables
cover as much of their relevant substrate ranges as possible.

On a complementary trajectory, incomplete or missing data
render the direct employment of DFE for the task of parameter

estimation impossible. Nonetheless, a mixed strategy of DFE
and optimization may alleviate the problem and lead at least to
subsets of identified fluxes.
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In the mathematical modeling of biochemical reactions, a convenient standard approach

is to use ordinary differential equations (ODEs) that follow the law of mass action.

However, this deterministic ansatz is based on simplifications; in particular, it neglects

noise, which is inherent to biological processes. In contrast, the stochasticity of reactions

is captured in detail by the discrete chemical master equation (CME). Therefore,

the CME is frequently applied to mesoscopic systems, where copy numbers of

involved components are small and random fluctuations are thus significant. Here,

we compare those two common modeling approaches, aiming at identifying parallels

and discrepancies between deterministic variables and possible stochastic counterparts

like the mean or modes of the state space probability distribution. To that end, a

mathematically flexible reaction scheme of autoregulatory gene expression is translated

into the corresponding ODE and CME formulations. We show that in the thermodynamic

limit, deterministic stable fixed points usually correspond well to the modes in the

stationary probability distribution. However, this connection might be disrupted in

small systems. The discrepancies are characterized and systematically traced back

to the magnitude of the stoichiometric coefficients and to the presence of nonlinear

reactions. These factors are found to synergistically promote large and highly asymmetric

fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal

systems can emerge. This clearly challenges the role of ODE modeling in the description

of cellular signaling and regulation, where some of the involved components usually

occur in low copy numbers. Nevertheless, systems whose bimodality originates from

deterministic bistability are found to sustain a more robust separation of the two states

compared to bimodal, but monostable systems. In regulatory circuits that require precise

coordination, ODE modeling is thus still expected to provide relevant indications on the

underlying dynamics.

Keywords: ordinary differential equations, chemical master equation, bistability, bimodality, gene expression,

protein bursts
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1. INTRODUCTION

In the last decades, the potential of mathematical modeling for
the analysis of biological systems has widely been recognized.
However, the reliability and explanatory power of such models
depend greatly on the chosen modeling approaches, which may
largely differ in several aspects like their level of detail or the
approximations they are based on. This fact has led to debates
not only with critics from other scientific fields, but also within
the community of systems biologists (Gunawardena, 2014).
Nowadays, modeling is still lacking any kind of gold standard,
since it is highly specific toward the underlying systems biological
problem. In fact, each and every model can only provide a
rough depiction of nature, and a major challenge consists in
applying or even developing modeling techniques which answer
the questions to be addressed as best as possible with reasonable
effort.

The host of existing modeling approaches can be grouped
according to various criteria. One important classification
distinguishes between deterministic and stochastic models.
In deterministic modeling, stochasticity within the system
is neglected. One of the most frequently used deterministic
approaches consists in ordinary differential equations (ODEs),
which are based on the phenomenological law of mass action.
They provide a dynamic and quantitative description of spatially
homogenous systems. Since ODEs are intensely used in other
scientific fields as well, numerous analysis techniques and
simulation methods have been developed thus far. In theoretical
biology, ODEs have been applied to a wide range of problems, for
example to the description of metabolism (Kremling et al., 2007),
signaling (Shinar et al., 2007) or gene regulation within cells
(Tyson andOthmer, 1978), to the investigation of systemic effects
in complex multicellular organisms (Gallenberger et al., 2012),
and to the analysis of population dynamics (Edelstein-Keshet,
1988).

However, biological systems are always subject to stochastic
effects, which occur on all levels—from molecular to
macroscopic. These can be captured by stochastic models.
Concerning biochemical networks, the chemical master equation
(CME) is very frequently applied (van Kampen, 2007, Chapter 5).
Unfortunately, its analytical solution is usually intractable,
especially if a large number of reactants is involved. The Gillespie
algorithm provides exact simulations of trajectories of the
master equation (Gillespie, 1977), but the computational cost is
high for multi-component reaction systems. Therefore, several
approximate variants of the CME as well as of the Gillespie
algorithm have been developed (Gillespie, 2001; Chatterjee et al.,
2005; Anderson, 2008).

Randomness plays a major role in signaling and regulation,
where the copy number of the involved components is small
and noise in gene expression is significant. Therefore, they
are major application fields for stochastic models in systems
biology (Tsimring, 2014). Compared to their deterministic
counterparts, stochastic models are in general more difficult
to analyze. Therefore, the need for incorporating stochasticity
should be carefully elucidated, depending on the biological
application.

In the following, we aim at comparing the explanatory power
of the very detailed discrete CMEs and the corresponding ODEs.
Starting from reviewing the analogies in their formulation in
Section 2, we will then collect the parallels and discrepancies
between the modeling results in Section 3. In this context,
common concepts like bistability and bimodality will be
contrasted. Unlike a couple of other studies on this topic, we
will also regard mesoscopic systems which are not close to the
thermodynamic limit.We will discuss these aspects in the context
of a simple gene regulatory system, using it as a platform for
identifying general factors which influence the comparability
between these kinds of deterministic and stochastic models.

2. THEORETICAL BACKGROUND

2.1. Foundations of CMEs and ODEs
In this section, we will review the formulation of CMEs andODEs
for chemical reaction systems, and highlight the connection
between deterministic reaction rates and stochastic reaction
propensities. More detailed descriptions can be found, e.g., in
Gillespie (2007) and van Kampen (2007).

2.1.1. Chemical Reactions as a Markov Process and

the Chemical Master Equation

Let us consider a system containing molecules of M different
chemical species (components) that can in total undergo R
different irreversible, elementary reactions. These reactions can
be of zeroth order (e.g., entry of molecules into an open system),
of first order (e.g., degradation of compounds or unimolecular
conversion) or of higher order (e.g., dimerization). In the latter
case, random encounters of two or more molecules are necessary
for the reaction to occur. The j-th reaction can be written as

M
∑

i= 1

βij · Xi −→

M
∑

i= 1

γij · Xi, (1)

with Xi denoting the components in the system and βij, γij ∈ N
+
0

being the stoichiometric coefficients of the educts and products.
Assuming that the system is spatially homogeneous, its state
can be characterized by the copy numbers of the components
it contains. It can therefore be formulated in terms of a vector
n(t) = (n1(t), ..., nM(t))⊤, where ni denotes the copy number of
the i-th component, and t is the time variable.

In the CME framework, the system state is modeled as
a continuous-time stochastic process, for which the Markov
property holds. This means that the probability distribution of
future system states only depends on the present state, but not
on past states (memorylessness). Here, we regard the discrete
state space defined above. Let pn(t) be the probability of being in
state n at time t and π(n,m) be the probability per infinitesimal
time unit (propensity) of a transition from m to n. The CME is
a reformulation of the Chapman-Kolmogorov equation and can
be written as:

ṗn(t) =
∑

m

(π(n,m) pm(t) − π(m,n) pn(t)), (2)
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where ṗn(t) denotes the time derivative of the probability and the
summation runs over the whole state space. The CME thus states
that the temporal evolution of pn is determined by the balance
between transitions leading to state n and transitions away from
n. Since Equation (2) applies to all states n, it defines a system of
differential equations describing the dynamics of the probability
mass function p.

Next, π(., .) needs to be defined in the context of the reaction
system (Equation 1). Within infinitesimal intervals, transitions
occur solely due to single reactions. The stoichiometric matrix
A with entries aij := γij − βij and columns aj = (a1j, ..., aMj)

⊤

captures all possible transitions between states, so that the CME
can be re-formulated as

ṗn(t) =

R
∑

j= 1

(wj(n− aj) · pn−aj (t)− wj(n) · pn(t)). (3)

Here, wj(n) is the propensity of the j-th reaction, which is the
probability per infinitesimal time unit for the j-th reaction to
occur, when the system is in state n. The propensities can more
specifically be formulated as

wj(n) = κj ·

M
∏

i= 1

(

ni

βij

)

. (4)

Here, κj denotes the stochastic reaction constant, which
is determined by physical properties of the reaction (e.g.,
activation energy, complexity) and by environmental
conditions like temperature. The latter product reflects the
combinatorial probability of random encounters of the
educts: it accounts for reactive collisions of the components,
where βij out of ni molecules of the i-th component are
involved.

2.1.2. Formulation of a System of Ordinary Differential

Equations

We consider ODEs based on the law of mass action, which
has originally been formulated by Guldberg and Waage. In
this deterministic approach, concentrations instead of molecule
numbers are usually regarded (Gillespie, 1976), and the state
space is treated as continuous (Gillespie, 1977). This is only
justified if the molecule numbers of the species and the system
size V are sufficiently large. Let ci :=

ni
V be the concentration of

the i-th reaction component. For constant V , the concentration
change of the i-th component through the reactions in Equation
(1) is given by

ċi =

R
∑

j= 1

(

(γij − βij) · kj ·

M
∏

l= 1

c
βlj

l

)

=

R
∑

j= 1

(

aij · kj ·

M
∏

l= 1

c
βlj

l

)

.

(5)

kj is the deterministic rate constant. The law of mass action thus
states that the speed of a reaction depends on this constant and on
powers of the concentrations of the educts. In case of elementary
reactions, the exponents are determined by the stoichiometry of
the reaction.

2.1.3. Relation between Stochastic and Deterministic

Reaction Constants

While the stochastic reaction constant reflects the likelihood
of a reaction to occur, the deterministic counterpart is
mostly interpreted as a kinetic term. However, the following
mathematical relation holds:

κj = kj · V ·

M
∏

i= 1

βij!

Vβij
. (6)

This equation is a generalized form of the relation derived
in Gillespie (1977). The stochastic rate constant thus depends
on the system size V , and this dependence is determined by
the stoichiometry: While zero-order reactions are more likely
to happen in large systems, the chance of molecular collisions
required for higher-order reactions is reduced when the density
of molecules decreases due to an expansion of V . Inserting the
relation into Equation (4) yields

wj(n) =
kj

V
∑M

i= 1 βij−1

M
∏

i= 1

ni!

(ni − βij)!
. (7)

For small and well-characterized chemical reaction systems,
the CME and ODE formulations are straightforward. However,
many biological reactions in cellular systems are complex and
a description in terms of elementary reactions like in Equation
(1) might thus be difficult. For example, the conversion of a
protein with the help of an enzyme is actually a multi-step
process. The description of gene expression including the actions
of the transcription and translation machinery and under the
influence of certain activators or repressors would be infeasible
at this level of detail. By exploiting time scale separation, it is a
general practice to lump several fast reactions into rate functions
kj(n), which replace the constants kj and which depend on the
current system state (pseudo-steady-state assumption). They can
for example be chosen to describe Hill-type kinetics.

2.2. The Mean of the CME and Its Relation
to the ODE System
The deterministic formulation is sometimes regarded as a
description of average values, which are assumed to represent the
system quite well when the molecule numbers of the components
and the system size are large. However, a basic calculation of
the mean of the CME shows that this analogy only holds true in
special cases (cf. for example van Kampen, 2007, Chapter 5):

Let Ni be the stochastic variable of the copy number of the i-
th component and let N = (N1, ...,NM)⊤. Let furthermore E[ . ]
denote the expected value. Then, the ODE of E[Ni] satisfies:

Ė[Ni] =
∑

n∈ZM

ni ṗn =
R
∑

j= 1

(

aij · E[wj(N)]
)

. (8)

For the sake of simplicity, we have omitted the time variable t.
The derivation can be found in the Supplementary Material 1.
Inserting the explicit formulation of the propensities (Equation
7) leads to

Ė[Ni] =
∑R

j= 1

(

aij · E

[

kj

V
∑M

l= 1
βlj−1

∏M
l= 1

Nl !
(Nl −βlj) !

])

. (9)
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If all βlj ≤ 1, or if the system is close to the thermodynamic
limit (i.e., the theoretical limit V → ∞, nl → ∞ s.t. cl is

constant), the approximation
nl!

(nl−βlj)!V
βlj

≈
n

βlj

l

V
βlj

= c
βlj

l
holds.

The expectation of the random variable Ci :=
Ni
V describing the

concentration then reads:

Ė[Ci] =
R
∑

j= 1

(

aij · E

[

kj
M
∏

l= 1

Cl
βlj

])

. (10)

In general, E[f (Y)] 6= f (E[Y]) for any nonlinear function f ,
where Y is an arbitrary random variable. A comparison between
the ODE in Equation (10) and the deterministic formulation in
Equation (5) thus shows that the deterministic variable ci is only

an exact description of E[Ci], if the term kj
∏M

l= 1 C
βlj

l
is linear.

This holds true for zero and first order reactions with constant kj,
which is quite a severe restriction in the context of biochemical
processes.

2.3. Bistability vs. Bimodality
In addition to the calculations in the preceding section, one
further, quite obvious limitation in identifying deterministic
variables with the mean of stochastic variables becomes apparent
when multimodal probability distributions are regarded. They
have more than one local maximum, each of them representing
a characteristic composition of state variables that is “favored”
by the system. Multimodality therefore reflects system state
heterogeneity. This heterogeneity might be temporal (frequent
switching of individual systems between different states) or
population-based (split of a population into subgroups with
different, but stable characteristics). If deterministic models
were a mere description of the mean, they would obscure
this multimodal structure and would therefore be rather
uninformative. Indeed, a property of ODE models exists which
describes some sort of heterogeneity: This property is called
multistability, meaning that multiple stable fixed points can
be assumed by the system. The initial condition determines
which of the states the system will finally tend to. Although the
effect of stochasticity, which might allow for random transitions
between the stable states, is neglected, multistability has long been
regarded as the deterministic equivalent of multimodality.

Recently, several theoretical as well as experimental studies
have challenged this association. Bistable systems with a
unimodal distribution have been observed as well as bimodal
systems whose deterministic description predicted monostability
(Artyomov et al., 2007; Qian et al., 2009; Bishop and Qian,
2010; Ochab-Marcinek and Tabaka, 2010; To andMaheshri, 2010;
Shu et al., 2011; McSweeney and Popovic, 2014). We can thus
conclude that deterministic variables are neither fully equivalent
to the stochastic mean nor to stochastic modes. This raises
the question under which conditions deterministic models can
provide reliable information on system dynamics and which
qualitative and quantitative conclusions can be drawn from the
results.

In Gillespie (2007, 2009), Kurtz (1972, 1980), and van
Kampen (2007), connections between deterministic and
stochastic variables have been derived which are valid in the

thermodynamic limit under certain constraints on the reaction
system. These constraints are usually fulfilled for elementary
reactions, but might be violated when multiple reactions
are lumped together. Furthermore, in gene expression and
regulation, where the molecule copy numbers of some of the
involved components are low, the thermodynamic limit is not an
appropriate approximation.

In order to characterize possible differences between ODE
and CME models in a mesoscopic regime, we regard a flexible
biochemical regulatory system that can be bimodal, depending
on the parameters. Usually, bimodality arises due to positive
feedback loops—a topological structure which can be found
in autostimulatory gene expression systems, both natural and
synthetic. They offer a fruitful platform for studying the effect
of stochasticity in a biological context: Protein production was
found to occur in bursts of random size, which enables us
to study the influence of stochasticity and stoichiometry by
varying the burst characteristics, namely the average amplitude
and frequency. Moreover, by theoretically varying the feedback
structure, the effect of nonlinear reaction rates can be studied.
Using this system, we will determine in which aspects and to
what extent the deterministic description is consistent with the
CME. More general statements will then be derived from our
observations.

3. RESULTS

3.1. Modeling of a Gene Regulatory System
with Feedback
Our basic description of gene regulation is mainly adapted
from Friedman et al. (2006) and Aquino et al. (2012).
Instead of modeling the dynamics on the promoter, mRNA,
and protein level in detail, we will use a simplification
proposed in Aquino et al. (2012), which regards only protein
formation and degradation. It is based on a time scale
separation with subsequent averaging of promoter states and
of mRNA concentrations. A discussion on the validity of this
approximation is also given in Aquino et al. (2012). We will
not put special emphasis on the accuracy of the model from
a biological point of view, but rather on the mathematical
characteristics of the model equations. We thus prefer the
reduced model due to its analytical solvability.

The reaction scheme we consider is given by:

∅

1
µ∗

f (n)

−−−−−→ µX

X
δ

−−→ ∅ (11)

Here, X denotes the protein, which is generated in a burst
with random size µ ∈ N

+. The burst size follows a geometric
distribution with mean µ∗. The rate of protein production is
given by f : R −→ R, which is a smooth monotonically
increasing function evaluated at the integer protein molecule
number n, illustrating autostimulation. It is scaled by µ∗ in order
to obtain comparable results when the parameter is modified in
our analyses (i.e., a change of the burst size is balanced by a
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reciprocal change of the burst frequency so that the mean protein
level remains constant). The protein degradation rate is linear
with parameter δ. Throughout this study, the cell volume V is
assumed to be fixed, so that dilution effects are neglected.

This scheme is suitable for studying the effect of linear
as well as of nonlinear functions f , by which different types
of autoregulation can be represented. For example, a non-
cooperative stimulatory effect of the protein on its own
expression can be described by a linearly increasing function
or by a Michaelis-Menten-type saturation function. Cooperative
feedback, where several protein molecules exert a synergistic
autoregulatory effect, can be described through a sigmoid Hill-
type function. Furthermore, by choosing large values for µ∗,
significant jumps in the protein trajectories can be generated.

3.2. Deterministic Description in Terms of
Ordinary Differential Equations
Since stochasticity is neglected in deterministic descriptions, the
number of proteins produced in each burst is assumed to be
equal to the average burst size µ∗. Let c := n

V be the protein
concentration, which is treated as a continuous variable. The
ODE is then given by:

ċ = µ∗

1
µ∗ f̃ (c)

V
− δ c =

f̃ (c)

V
− δ c, (12)

where f̃ (c) := f (c · V) ∀ c ∈ R. The steady state condition reads

f̃ (c)

δ
= c V . (13)

The number of fixed points thus depends on the structure of
f̃ (.)
δ

and can be determined graphically as shown in the top row
of Figure 1: The red line corresponds to the left hand-side of

Equation (13) and has therefore the shape of f̃ , and the identity
line marked in green depicts the right hand-side. The steady
states are located at the intersection points. Provided that the
basal rate of protein production is nonzero, systems without
feedback (panel A) or with non-cooperative positive feedback
(panel B) can only have one stable fixed point. Those two
cases are modeled by constant and by monotonically increasing,

concave f̃ , respectively. In case of cooperative feedback, which

is characterized by a sigmoid structure of f̃ , the system can be
mono- or bistable (panels C and D).

3.3. Mathematical Formulation Using the
Chemical Master Equation
The master equation of the reaction system is obtained by
inserting the rates and stoichiometry given in Equation (11) into
Equation (3). It can be written as:

ṗn =

n
∑

µ= 1

(

gµ∗ (µ)
1

µ∗
f (n− µ) pn−µ

)

−
1

µ∗
f (n) pn

+δ (n+ 1) pn+ 1 − δ n pn. (14)

gµ∗ (µ) := 1
µ∗ ·
(

1− 1
µ∗

)µ−1
,µ ∈ N

+, is the geometric probability

mass function.
According to the calculation in Aquino et al. (2012) using

Z-transform (a discrete version of the Laplace transform), the
probability mass function in steady state (ṗn = 0 ∀n) can be
formulated recursively as

pss1 =
f (0)

δ µ∗
pss0 ,

(n+ 1) pssn+ 1 =
f (n)

δ µ∗
pssn +

µ∗ − 1

µ∗
n pssn . (15)

3.4. Calculation of Central Moments and
Modes
The ODEs for the expectation and the variance σ 2 of the master
equation read:

dE[N]

dt
= E[f (N)] − δ E[N] (16)

dσ 2(N)

dt
= 2Cov(N, f (N)) − (E[f (N)] − δ E[N])

+ 2µ∗
E[f (N)] − 2 δ σ 2(N), (17)

where N is the discrete random variable of the number of
protein molecules. The detailed calculation is shown in the
Supplementary Material 2. In steady state, the central moments
are therefore given by:

E[N] =
E[f (N)]

δ
(18)

σ 2(N) = µ∗
E[N] +

1

δ
Cov(N, f (N)). (19)

Hence, the variance depends on the mean burst size µ∗. For
example, if f was constant (no feedback), σ 2(N) = µ∗

E[N]
holds.

Let us now focus on the extrema of the probability
distribution. In general, local maxima (modes) and minima obey
the following conditions:

pssn−1 ≤ pssn , pssn ≥ pssn+ 1 → maximum at n (20)

pssn−1 ≥ pssn , pssn ≤ pssn+ 1 → minimum at n, (21)

if n > 0. Furthermore, one extremumnecessarily occurs at n = 0.
Using Equation (15), one obtains the specific condition:

pssn+ 1 − pssn
≤

≥
0 ⇔

f (n)

δ

≤

≥
n+ µ∗. (22)

Thus, the extrema satisfy the condition

n =

⌈

f (n)

δ
− µ∗

⌉

, (23)

where ⌈.⌉ denotes the ceiling function.
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3.5. Comparison of the Deterministic and
Stochastic Descriptions
A comparison of the differential Equations (12) and (16) shows
that the average (scaled by the volume) deviates from the
deterministic variable if E[f (N)] 6= f (E[N]), which is usually
the case when f is nonlinear. Inserting the Taylor series of f (N)
around E[N], the ODE of the mean reads:

dE[N]

dt
= f (E[N])+

∑∞
r= 2

(

1
r! zr f

(r)(E[N])
)

− δ E[N]

(24)

with zr :=E
[

(N − E[N])r
]

denoting the r-th central moment

of N and f (r) being the r-th derivative of f . The mean of the
CME is thus well described by the deterministic variable c only
if f is almost linear or if higher central moments of N like the
variance, skewness, kurtosis, etc. are small. As alreadymentioned,
Equation (19) shows that bursting leads to a significant increase
in the variance. Taken together, nonlinearity in the reaction can
cause a deviation of c · V from E[N], which is expected to be
enhanced through bursting.

Concerning the modes, a comparison of the conditions given
in Equation (13) and in Equation (23) reveals a strong analogy
if µ∗ is small, so that stable fixed points can be associated with
the maxima in the equilibrium probability mass function, and
the unstable fixed points correspond to the minima. However,
large bursts can disrupt this connection, as will be shown in the
following section. The structure of f plays a minor role in this
context.

3.5.1. Large Protein Bursts Can Disrupt the

Connection between Bistability and Bimodality

In Figure 1, our previous calculations are visualized. Protein
time-courses have been simulated using the Gillespie algorithm.
For each plot, 5 · 104 simulations were run and the
histograms at a final time point tf were plotted. In order to
make sure that the steady state was approximately reached,
several runs with random initial molecule numbers have been
performed and compared to one another, and the simulated
means and modes have been compared to the analytical
values.

The first row of plots illustrates the analytical results,
summarizing the findings from deterministic fixed point analysis
as well as from the calculation of the stochastic extrema:
According to Equation (13), the deterministic fixed points can be

read from the intersection points of the graphs of
f (n)
δ

and n. The
approximate location of the modes is given by the intersection

of
f (n)
δ

and n + µ∗, see Equation (23). From left to right, the
structure of f was changed in order to check different feedback
mechanisms. Furthermore, themean burst size was varied in each
case: Missing bursts (µ∗

1 = 1), medium-size bursts (µ∗
2 = 6)

and large bursts (µ∗
3 = 11) were considered. The plots below

show the corresponding histograms of the simulations for the
three different burst sizes. Moreover, the empirical mean of the
distribution is highlighted.

First, let f ≡ b be constant. The simulations in panel (A)
show that an increase in µ∗ does not change the location of
the empirical mean. However, the maximum of the distribution

FIGURE 1 | Influence of bursting and of nonlinear feedback on the protein distribution. From left to right, the feedback characteristics are varied. The top row

shows the analytical results. The deterministic fixed points can be read from the value of n at the intersection of f (.)
δ
, marked in red, and the identity line in green. The

systems are monostable except for column (C), where it is bistable. The intersection points of the red line and the blue lines .+ µ* yield the locations of the extrema.

Three different values for µ* are shown: µ*1 = 1 (no burst, dark blue), µ*2 = 6 (medium-size burst, mid blue), µ*3 = 11 (strong burst, light blue). Through bursts, the

modes are shifted toward smaller numbers of protein molecules. The second row shows the histograms of the protein distribution obtained from 5 · 104 protein

time-course simulations using the Gillespie algorithm. The distribution is shown for each burst size (same color as above). The location of the extrema corresponds

well to the analytical results. The average values (dashed lines) match the deterministic steady state if f is linear, which is only the case in panel (A). In (C), large bursts

generate a unimodal distribution (marked in light blue), although the system is bistable. In (B,D), medium-size bursts lead to bimodality in spite of deterministic

monostability (mid-blue line). Parameters are given in the Supplementary Table 1.
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is biased toward smaller values, while the variance is enlarged.
These observations are in perfect agreement to our calculations:

The fixed point is located at b
δ
and matches the empirical mean

due to the linearity of f . The variance is given by σ 2(N) = µ∗ b
δ
,

it therefore depends on the burst size. The mode fulfills the

condition n =
⌈

b
δ
− µ∗

⌉

and is thus shifted to the left when µ∗

is increased.
If f is a non-cooperative saturation curve (panel B), the

deterministic steady state deviates from the empirical average
of the distribution, and the bias is enlarged under bursting
conditions, as stated before. Furthermore, the fixed point
only matches with the maximum of the histogram when
bursts are very small. Very interestingly, µ∗ can even be
large enough to generate a bimodal distribution which peaks
at n = 0 and at a positive value. If the burst size is
further increased, the distribution can eventually turn unimodal
again, the only maximum being located at zero. This is
also predicted by our analytical considerations, where the
shift of the identity line by µ∗ leads to the emergence of

another intersection point with
f (n)
δ
, corresponding to the

formation of a minimum in the distribution, and a further
shifting makes the intersection points vanish, so that the only
maximum is found at n = 0. As a consequence, bursting can
cause bimodality although the deterministic description predicts
monostability.

Panel (C) addresses sigmoid functions f , which are often
the result of protein oligomerizations leading to cooperative
behavior. First, we have chosen the parameters such that the
deterministic system is bistable. Again, an increase in µ∗ shifts
the modes to the left so that the deviation of the deterministic
steady states increases. Under large bursts, as in the non-
cooperative case, a unimodal distribution peaking at n = 0 can
be observed. This is an example for a bistable system, which is
unimodal.

By varying the parameters in the system with cooperative
feedback, the results shown in panel (D) are obtained. The system
is monostable, but it can get bimodal under bursting conditions.
In contrast to the situation shown in (B), bothmaxima are located
at positive molecule numbers.

All in all, large and rare bursts lead to an asymmetry
in the protein production and degradation events, generating
a skewed probability density with a large variance, that
cannot be approximated by a normal distribution (cf. the
association of deterministic and stochastic models via the
Langevin equation in Gillespie, 2007). This disrupts the
connection between deterministic fixed points and stochastic
modes.

3.5.2. Good Agreement between the Stochastic and

Deterministic Descriptions in the Thermodynamic

Limit

In spite of the preceding results, which reveals the possibility
of huge deviations between the outcome of deterministic and
stochastic models, the following calculation shows that in the
theoretical thermodynamic limit V → ∞, n → ∞, s.t. n

V is

constant, a strong correlation between modes and fixed points
exists.

Let us consider a system whose size is increased s-fold
compared to system (Equation 11) (i.e., its volume is given by
s · V). In order to maintain the concentrations, the rate of
translation, which is formally a zeroth-order reaction, needs to

be increased accordingly (it is thus given by s · 1
µ∗ f̃ ). In this case,

the deterministic ODE remains unchanged, since Equation (12)
is simply replaced by the identical formulation

ċ =
s f̃ (c)

s V
− δ c. (25)

The condition for the stochastic modes reads

n = c s V =

⌈

s · f̃ (c)

δ
− µ∗

⌉

(26)

⇒ c V =

⌈

s·f̃ (c)
δ

− µ∗

⌉

s

s→∞
−−−−→

f̃ (c)

δ
(27)

and thus matches the deterministic fixed point in the
thermodynamic limit. The simulations shown in Figure 2,
where protein distributions of two systems with differing
sizes are compared, confirm this result. To put it in a slightly
different way, the modes are in good agreement with the
deterministic steady states if µ∗ is small relative to the value of n
at the extremum. However, note that from merely locating the
deterministic fixed points in a bistable system, one cannot infer
the average steady-state of the system, since the probability of a
cell to be in one or the other state is unknown.

3.6. Feedback and Burst Characteristics
Influence the Precision of the Distribution
and the Robustness of Bimodality
Next, we will give a qualitative estimate on the local precision (i.e.,
the inverse of the variance) of the probability distribution at the
modes. The recursive formula (15) can be written as

pssn+ 1 − pssn =

f (n)
δ

− (n+ µ∗)

µ∗(n+ 1)
pssn . (28)

Therefore, the local change of the probability mass function
relative to its height is large if

•

∣

∣

∣

f (n)
δ

− (n+ µ∗)
∣

∣

∣
is large, while

• µ∗ is small.

Under this condition, the local distribution forms sharp peaks
around a maximum located at n. As a consequence, feedback
structures and burst characteristics have a significant impact
on the separation of the modes (without loss of generality,
we do not include the effect of the degradation rate δ into
our considerations). In the following, three scenarios will be
portrayed which illustrate this result. They are visualized in
Figure 3.
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FIGURE 2 | Influence of the system size on the correspondence

between deterministic and stochastic modeling results. Two systems

with differing sizes are compared: The volume V1 of system 1 (graphs in light

blue) is chosen 50-fold smaller than the volume V2 of system 2 (graphs in dark

blue), while the protein concentrations at the deterministic fixed points are

identical. The intersections of the blue lines and the red line in the upper plot

mark the analytical locations of the extrema in the protein probability mass

function. The extrema of the larger system nearly coincide with the

deterministic fixed points, since the expression µ*
V2

is almost negligible. The

distributions in the bottom plot (obtained using the Gillespie algorithm) confirm

these results: the larger system shows a clear bimodal distribution whose

modes match the stable deterministic fixed points, while the modes of the

small system are shifted, and the distribution is much broader. The dashed

lines show that the analytical determination of the modes fits well to the

simulations. Parameters are given in the Supplementary Table 2.

First, the burst size µ∗ is varied, while
f (n)
δ

− (n + µ∗) and
the location of the modes are kept constant. This is most easily
achieved by choosing two different burst sizes µ∗

1 and µ∗
2 with

µ∗
1 < µ∗

2 and by defining f2 := f1 + δ(µ∗
2 − µ∗

1) (i.e., the
system with the larger average burst size has an enhanced basal
protein production, while the shapes (derivatives) of f1 and f2 are

identical). Then,
f1(n)

δ
−(n+µ∗

1) =
f2(n)

δ
−(n+µ∗

2) holds true. The
simulated histogram in Figure 3A shows that the system with the
larger burst size does indeed have a broader distribution.

Next, the function f is modified while µ∗ is held fixed. In
this context, cooperative and non-cooperative regulation can be

compared (cf. Figure 3B): Let f3(n) := b3 + v3
nh

nh+K3
with h > 1

describe Hill type kinetics (sigmoid function, cooperativity) and
let f4(n) := b4+v4

n
n+K4

be aMichaelis-Menten-type function (no
cooperativity). Furthermore, to ensure comparability, let b3 = b4

(identical basal expression level), and let
f3
δ

and
f4
δ

have two
identical intersection points with the line .+µ∗. This guarantees
that the modes of the probability distributions occur at the same

protein molecule numbers. Then, it can be shown that for all n,
∣

∣

∣

f4(n)
δ

− (n+ µ∗)
∣

∣

∣
<

∣

∣

∣

f3(n)
δ

− (n+ µ∗)
∣

∣

∣
holds (the proof is given

in the Supplementary Material 3), so that the protein distribution
of the cooperative system has sharper peaks.

Finally, bothµ∗ and
f (n)
δ
−(n+µ∗) are varied. Let f5(n) := b5+

v5
n

n+K5
, f6(n) := b6 + v6

n
n+K6

, and let b5 = b6. Now, let µ
∗
5 > µ∗

6

and let
f5(n)

δ
= n + µ∗

5 and
f6(n)

δ
= n + µ∗

6 have an identical set
of solutions. We are thus looking at two non-cooperative systems
where the basal rate of protein production and the locations of the
modes coincide, while the burst sizes and the curvatures of f5 and

f6 differ. In this case,
∣

∣

∣

f5(n)
δ

− (n+ µ∗
5)
∣

∣

∣
>

∣

∣

∣

f6(n)
δ

− (n+ µ∗
6)
∣

∣

∣
(cf.

Supplementary Material 4), which counteracts the effect of the
differing burst sizes. Explicit calculations are therefore required
to determine which effect prevails. Interestingly, Figure 3C

shows that the bimodality in the protein distribution of the
system with larger bursts is even more precise.

Having addressed the probability mass function in steady
state, single protein time-courses are now regarded. In a bimodal
system, the robustness of the two stable steady states is crucial for
its functionality: The protein level might fluctuate permanently
between these states (small Mean first-passage times (MFPTs)
of transitions between the inactive and active states, cf. van
Kampen, 2007, Chapter 12), or it might tend to stay in one
of the states with rare switching events (large MFPTs). The
trajectories in Figure 3 show that a sharp bimodal distribution
qualitatively correlates well with the robustness of the states. In
Figure 3A, the fluctuations in the system with the lower burst
level are much smaller, leading to more distinct switches between
the modes. The protein level of the system with cooperative
feedback in Figure 3B has small noise and stays in the active
state, whereas the protein time-course in the non-cooperative
circuit does not exhibit a clear separation of the modes. The
time-courses in Figure 3C show that even systems with non-
cooperative regulation are able to sustain two separate states,
given that the nonlinearity of the feedback and the burst size are
not too small, which severely contradicts the results of standard
deterministic modeling.

4. DISCUSSION

In this study, we have compared an ODE model based on the
law of mass action with the corresponding CME formulation,
implicitly stating that the master equation provides the much
more realistic description of the biochemical reaction system.
All deviations of the deterministic from the stochastic model
have thus been interpreted as an indication of inadequacy of
the ODE formalism. Indeed, as Gillespie states, “the stochastic
approach is always valid whenever the deterministic approach is
valid, and is sometimes valid when the deterministic approach
is not” (Gillespie, 1976). One should still note that the CME,
too, is based on several simplifying assumptions. Among these
are the random, homogenous distribution of positions AND
velocities of reactants, which is only a valid approximation
when elastic molecular collisions predominate over reactive ones
(Nicolis et al., 1974; Gillespie, 1992). Hence, we need to point out
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FIGURE 3 | Robustness of bimodality in different regulatory systems with feedback. In each column, the robustness of the modes in two regulatory systems

with varying burst sizes and varying functions f are compared based on the protein distributions and exemplary protein time-courses. (A) Comparison of two

non-cooperative feedback regulations with differing burst sizes µ*1 < µ*2 and accordingly shifted functions f1 and f2 with identical shape. (B) Comparison of

non-cooperative and cooperative regulation with identical burst size µ*. (C) Comparison of two non-cooperative regulations with identical basal protein expression

and under differing burst sizes µ*6 < µ*5. In all cases, the system marked in dark colors (system 1, 3, and 5, respectively) exhibits a sharper distribution and a better

separation of the modes is visible in the protein time-course simulations. Further explanations are given in the main text. Parameter values are listed in the

Supplementary Table 3.

that although the CME approach often leads to experimentally
verifiable results, this cannot be taken for granted. On the other
hand, we can state that if significant mathematical deviations
of the even more simplistic ODE approach from the CME
model are observed, the deterministic description is almost surely
unrealistic. Our study has led to the conclusion that although
ODE modeling is quite a convenient and popular approach in
many application fields, the use of deterministic models should

be treated cautiously in the context of mesoscopic biochemical
reaction systems.

The connection between deterministic and stochastic
modeling has frequently been studied before. Several papers
have reported on multi-component reaction systems that
are monostable and bimodal, where bimodality is caused by
the presence of components with very slow dynamics. These
components can act as multi-level switches on fast downstream
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components (Qian et al., 2009; Ochab-Marcinek and Tabaka,
2010; Shu et al., 2011). Here, we have focused on nonlinear
one-component reaction systems. A related study was previously
conducted by Bishop and Qian (2010), where a phosphorylation-
dephosphorylation cycle has been analyzed. They have shown
that although the one-dimensional deterministic ODE model
exhibits monostability, the weak nonlinearity in the reactions has
the potential to cause stochastic bimodality, if the system size is
sufficiently small. In their case, one of the stationary modes was
invariably located at the zero state, whereas the other one was
close to the deterministic steady state.

Here, we have systematically analyzed the effects of
nonlinearity, but also of large stoichiometric coefficients in
a flexible autoregulated gene expression system. In this context,
we have proposed a graphical method which visualizes the
impact of these system properties on the location of the modes
and on their deviation from the deterministic fixed points. With
the help of the graphics, it could be shown that monostable but
bimodal systems can be constructed with both modes occurring
at positive values, but only if the feedback is cooperative. We
have seen that large stoichiometric coefficients can promote
highly asymmetric, irregular fluctuation patterns in the copy
numbers of the components. In our example, protein bursts
allow for sudden and large increases in the number of protein
molecules, whereas single degradation events reduce the number
merely by one. Such instant jumps in molecule numbers have
been explicitly excluded in the publications by Gillespie, where
deterministic and stochastic variables were found to correspond
well in sufficiently large systems (Gillespie, 2007, 2009). We
have shown that when all reactions are linear, the mean and
the deterministic variable coincide, but skewed fluctuations
through large bursts lead to a shift of the mode away from the
the mean. In the presence of nonlinear reaction propensities,
the deterministic variable usually differs from the mean, and
large bursts can even qualitatively change the modality of the
distribution. One could argue that through a more detailed
description of the bursting mechanism, large stoichiometric
coefficients can to some extent be avoided. Nevertheless, there
are components within a cell which usually occur at single-digit
amounts (e.g., genes, mRNA), so that every reaction involving
them is inevitably accompanied by a “large jump” relative to

the molecule number. As a next step, the interplay of jumps,
nonlinearities and reaction time-scales in a multi-component
reaction system needs to be evaluated. Our preliminary results
(not shown) indicate that those three factors together can further
reduce the comparability of ODE and CME models.

This provokes the question of what kind of conclusions
can still be drawn from deterministic modeling in small-scale
reaction systems. In some biological contexts, stochasticity
plays an important functional role: noise in certain signaling
and gene regulation systems can lead to random transitions
between different stable state and thus serve to create population
heterogeneity, which makes cells more robust toward fluctuating
environmental conditions. In this case, deterministic trajectories
are certainly not realistic. But often, uniform cellular behavior
can be observed. A coordinated hysteretic switch from one
state to another, for example, is only possible if the modes are

robustly separated. We have shown that although monostable
systems can be bimodal with moderate switching frequency, a
more robust bimodality is generated in a regime which is indeed
deterministically bistable. In such cases, deterministic modeling
might still provide valuable information on the dynamics of
the system. For a more reliable description of biochemical
processes in mesoscopic systems, however, we think that the use
of stochastic modeling is virtually inevitable.
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Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among

the 10 most frequent causes of death worldwide. These infections still lack effective

treatments in many developing countries and in immunocompromised populations like

infants, elderly people and transplanted patients. The interaction between bacteria and

the host is a complex system of interlinked intercellular and the intracellular processes,

enriched in regulatory structures like positive and negative feedback loops. Severe

pathological condition can emerge when the immune system of the host fails to

neutralize the infection. This failure can result in systemic spreading of pathogens

or overwhelming immune response followed by a systemic inflammatory response.

Mathematical modeling is a promising tool to dissect the complexity underlying

pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and

also at the interfaces among levels. In this article, we introduce mathematical and

computational modeling frameworks that can be used for investigating molecular and

cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss

published results on the modeling of regulatory pathways and cell populations relevant

for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity

of modeling approaches to open new avenues in the search of the molecular and cellular

mechanisms underlying bacterial infection in the lung.

Keywords: systems biology, systems medicine, lung infection, mathematical modeling, Boolean network, ODE

models, stochastic modeling, agent-based modeling

INTRODUCTION

In a time of moon shooting projects to cure cancer (Nature Editorial, 2016), the reader may wonder
why it remains interesting to deploy a “systemic approach” to deepen our understanding of bacterial
lung infections. First, even nowadays two of the 10 most frequent causes of death worldwide are
bacterial infections targeting the lungs, namely pneumonia and tuberculosis (WHO, 2017b). A few
generations ago, respiratory infections used to claim the life of a significant fraction of infants,
a problem circumvented in western countries with the emergence of antibiotics, sulfonamides
and high quality health care, but still a dramatic reality in many developing countries. Second,
elderly individuals and immunocompromised individuals face the challenge of repeated respiratory
infections (Stupka et al., 2009). A similar problem is faced by immunocompromised populations
(Conces, 1998).
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Finally, bacteria resistant to antibiotics create new risks and
motivate the struggle to create new antibiotics (Silver, 2011;
WHO, 2017a).

Bacteria and other microbes can invade the lung through
the airways. When pathogens reach the lumen of lung alveoli

FIGURE 1 | The multi-level complexity underlying the host-pathogen interaction in bacterial lung infection. Top: At the tissue level the infection involves the movement

in the tissue compartment of multiple cell types, including bacteria, epithelial cells and immune cells like macrophages and neutrophils. During their movement, these

cells interact with each other via physical contact (e.g., bacteria recognized by macrophages via TLR receptors) or through gradients of chemical signal secreted into

the extracellular medium (chemokines from immune and epithelial cells, or virulence factors from bacteria). These events happen sequentially: for example, upon

bacteria detection, epithelial cells secrete chemokines like IL-8 and CXCL5, and they guide neutrophils to the site of infection that can remove clear pathogens (see

the plot). Centre: Cell-to-cell communications rely both on physical contact and the secretion of chemokines. Chemokines trigger the activation of distinctive,

complex regulatory intracellular networks that can alter cell phenotypes or promote the secretion of more cytokines. For example, upon bacteria-mediated activation

epithelial cells can secrete MCP-1, a chemokine that attracts macrophages. In turn, activated macrophages can secrete IL-1β, which activates epithelial cells.

Bottom: At the intracellular level, the activation of epithelial or immune cells is governed by the NFκB pathway. NFκB is the key transcription factor mediating the

inflammatory response at the intracellular level and controlling the production of cytokines in cells. One of the motivations to make use of mathematical modeling in the

context of bacteria lung infection is that, both the cell-to-cell and intracellular levels contain feedback loops (see the examples). These loops are known to induce

non-linear, counterintuitive dynamics, which requires quantitative data and mathematical modeling to be analyzed.

they can replicate and attack the tissue using virulence factors,
their own chemical weaponry (Figure 1). Upon recognition of
pathogens, the immune response is initiated to clear them from
the infected sites, and this process involves the secretion of
cytokines and recruitment of immune cells.
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A balanced immune response can be achieved via interacting
immune cells that are controlled by intracellular regulatory
networks of interacting molecules, such as cytokines, receptors,
kinases, transcription factors, or non-coding RNAs. Such a
system contains regulatory motifs, especially positive and
negative feedback loops, which increase the complexity of the
response and can provoke non-linear behaviors such as bistability
and oscillation (Ref). For patients with respiratory bacterial
infections, severe pathological condition can emerge if their
immune systems fail to quickly neutralize the infection and
to avoid systemic spread of the pathogen. On the other hand,
overwhelming host immune response to the pathogens is also
dangerous and can impede the proper functioning of the lung
and other organs. So, any new treatments using the combination
of antibiotics and immunomodulatory drugs will be useful if they
can help the patients to maintain a balanced immune response
(Wentker et al., 2017), which is governed by the multi-level
biological system (Eberhardt et al., 2016).

This level of complexity is equivalent to other natural
and artificial systems, like those controlling large and modern
aircrafts. For decades researchers in physics and engineering
have been using mathematical modeling and simulations as an
irreplaceable tool when trying to understand, predict or redesign
these systems. Systems Medicine is the natural extension of this
strategy to the biomedical domain. In our context, mathematical
modeling can be used: (a) to inspect and integrate different but
complementary types of quantitative experimental and clinical
data, (b) to design experiments, (c) to elaborate, analyze and
discuss hypotheses, (d) to perform model simulation-based
predictions for the course of a disease, or (e) the feasibility of
conventional, newly developed or personalized treatments (Vera
and Wolkenhauer, 2008). For our purposes, Systems Medicine is
a methodology that employs mathematical modeling to integrate
and analyze quantitative biological data (Auffray et al., 2009;
Wolkenhauer et al., 2013; Eberhardt et al., 2016; Figure 2). In
the approach, biological knowledge is encoded intomathematical
models whose simulations are used to dissect the cellular and
molecular mechanisms behind diseases.

In a nutshell, the workflow is composed of several steps
(Figure 2). The model derivation begins by retrieval biomedical

knowledge (1), biomedical information from publications and
databases is used to identify the key compounds (cell types or
molecules) and their interactions, and translated the information
into a graphical depiction named regulatory map, mapping of

relevant processes (2). Based on the information gathered and
some heuristic rules, this map is encoded as a mathematical

model (3), which consists of equations or other mathematical
entities. In model calibration (4-5), quantitative data obtained
from experiments are used to characterize the mathematical
model. This is often done though a computational process called
“model calibration,” which assigns values to the parameters
characterizing the model equations, such as the model becomes
able to reproduce the existing quantitative data. Model
calibration can often confirm or disprove the hypothesis encoded
by the model equations. The inability of the mathematical model
to reproduce the data leads to its reformulation, and eventually
to the design of new experiments. In predictive simulations

(6), a calibrated model is used to generate new insights into
the pathophysiology of the investigated disease via computer
simulation. Finally, further validation experiments (7) are used
to confirm or discard the predictions made via model simulation.

In the same manner as one cannot elucidate all the mysteries
of modern biomedicine using a single experimental technique,
say confocal microscopy, a single class of mathematical model
among the plethora of those available in systems medicine is
not useful for every purpose. Every problem or hypothesis to
be explored requires a carefully selected and specific modeling
approach. In this paper, we discuss and illustrate the distinctive
features of different mathematical modeling frameworks with
cases studies in the context of bacterial lung infection. Further,
we compile and discuss relevant published results on the
mathematical modeling of pathways and networks modulating
the immune response, the host-pathogen interaction and the
occurrence of coinfections, all of them topics relevant for
bacterial lung infection. Finally, we discuss how to make use of
this multiplicity of modeling approaches to open new avenues
in the search of molecular and cellular insights in bacterial lung
infection. This review is intended for modelers who want to
enter the field of bacterial lung infection and need a review of
published work, but also for infectiologists and immunologists
interested on understanding how mathematical modeling can
help them designing and interpreting their quantitative data and
hypothesis. In themain text we focus on the basis of themodeling
workflow, the modeling approaches and the published results,
while further details in the methodologies discussed and the
examples proposed are provided in Supplementary Material.

MATHEMATICAL MODELING OF
BACTERIAL LUNG INFECTION

In the context of lung infection, the use of mathematical
modeling is especially suited because one is interested on
elucidating the function and regulation of cell-to-cell or
biochemical networks governing the local or systemic activation
of the epithelial and immune cells in the course of lung bacterial
infection. These networks are large and tightly interconnected;
further, they display complex patterns of temporal activation.
Moreover, one can be interested on integrating quantitative
clinical and biological data accounting for the dynamics of the
infection across different time- and spatial scales. Some events
triggering the early local lung infection happens within minutes
to hours, while the systemic phase of the immune response and
the recovery and tissue repair can last days to weeks. Something
similar happens at the spatial organization, with microscopy-
level events like the triggering intracellular networks or the
networks of interacting immune cells at the infection site, and
mesoscopic-level events accounting for the effects of infection
in the make-up and functioning of structures the lung alveoli
and the airways. This level of complexity in terms of structure
and data can be managed using different types of mathematical
modeling. In the following we discuss in detail several modeling
approaches, as well as the context during bacterial lung infection
in which they are valid.
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FIGURE 2 | The systems medicine workflow. Systems biology modeling is about encoding biological knowledge into mathematical models whose simulations are

used to dissect the molecular mechanisms behind diseases. Current biomedical knowledge is retrieved from publications and databases and used to apprehend the

critical processes in the biomedical scenario investigated (1). These processes, the cell types, molecules and interactions involved are mapped into a graphical

representation (2). Following some heuristic rules, this map is encoded as a mathematical model (3). For the characterization of the model in biological terms,

quantitative experimental data is integrated into the model equations in a process named model calibration (4–5). The model is assessed to judge its ability to precisely

reproduce the data available (6). An inadequate model leads to formulate alternative hypothesis and modify the model equations in accordance, thereby iterating the

steps 3–5. (7). An adequate model is used to make simulations with predictive power, which generate new insights into the pathophysiology of the investigated

disease once experimental validation is performed.

BOOLEAN MODELS

Main Features of Boolean Models
Biochemical systems, if treated as networks of interacting entities,

share many of the structural and regulatory features of electronic

circuits. Boolean models, conceived for designing electronic

circuits, were proposed 50 years ago as a tool to investigate
the structure and dynamics of biochemical networks (Kauffman,
1969, 1993). For biochemical systems, Boolean networks are
graphs in which nodes represent molecules and edges represent
interactions betweenmolecules. The interplay betweenmolecules
and biochemical reactions is represented using Boolean logic,
i.e., discrete models in which every node or molecule can have
only binary values: 0 or “OFF” (indicating the nonexistence or
no-activation of the considered biochemical species), and 1 or
“ON” (corresponding to its existence or activation). For example,

Figure 3B is a depiction of the activation of the IL-1β receptor
(IL-1βR) upon binding of its ligand (IL-1β). The process can
be modeled using a Boolean logic function “AND.” The table
in Figure 3C represents all the possible combinations for the
values of IL-1β and IL-1βR and their effect in the values of the
activated receptor IL-1βR∗. One can see that activation (IL-1βR∗

“1”) is only possible if IL-1βR and IL-1β are present (both with
value “1”).

In Boolean Networks (BNs), the set of functions used to
represent interactions is reduced to the basic logic gates “AND-
OR-NOT” (for definition of logic gate and any bluemarked word,
see Glossary Section). However, logic gates can be combined in
multiple ways and therefore complexmulti-molecule interactions
can be represented (Shmulevich and Aitchison, 2009;Wang et al.,
2012). In line with this, the intracellular regulatory networks
underlying the activation of immune cells can be investigated
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FIGURE 3 | Boolean modeling of the NFκB pathway driving macrophage activation in bacterial lung infection. (A) Graphical depiction of the Boolean network. A full

page visualization of the network is proposed in the Supplementary Material. (B) The activation of the IL-1β receptor (IL-1βR) upon binding of its ligand (IL-1β) modeled

as an AND Boolean logic function. The table below the depiction represents all the possible combinations for the values of IL-1β and IL-1βR and their effect in the

activation of the receptor (R*). (C) State of key nodes of the TLR5 macrophage network at different time iterations after igniting the input signal (flagellin = 1). Blue

stands for nodes off (0) at the iteration considered, while orange indicates they are activated (1). These and other simulations can be visualized as animated gif files at

http://sysbiomed-erlangen.weebly.com/resources.html.

using Boolean modeling (Saez-Rodriguez et al., 2007; Kang
et al., 2011). For example, Figure 3A is the graphical depiction
of a Boolean network representing the triggering of NF-κB

signaling, the master controller of the immune response, upon
activation of Toll-like receptor 5 (TLR5). This event happens
when the bacterial flagellum “is sensed” by the macrophage
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upon the binding of the bacterial protein flagellin to TLR5 (See
Supplementary Material). The network is sequentially organized
with the receptor activation as input, the subsequent activation
of the NF-κB signaling pathway at the cell cytoplasm and the
triggering of an NF-κB transcriptional circuit in the nucleus.
In the network, nodes account for the network compounds,
primarily different biomolecules like proteins and miRNAs, but
also the cellular phenotypes triggered by the network. Further,
the network edges account for the mutual interactions between
the compounds, which are in the model represented like Boolean
logic functions.

By combining and integrating this simple logic functions
over the network in the course of a computational simulation,
one can represent the complex sequential activation of the
biochemical network modeled. A computational simulation is
the mimicking the behavior of the system in a given biological
scenario using the equivalent mathematical model: an in silico
trigger emulates the correspondent biological signal, and the state
of all elements of the model is updated at each iteration step
by considering the state they assumed at the previous step, thus
imitating the propagation of the signal throughout the network.
The simulation considers discrete time points representing the
activation state of the network, but the time between two
consecutive time points (two steps of the simulation) is always
assumed as uniform which does not necessarily reflect the
expected biological time. Simulations can be used to predict the
behavior of the system in non-tested experimental conditions.
For example the Table in Figure 3C is a representation of the state
of a few key nodes of the TLR5 macrophage network at different
iterations in a simulation that mimics the triggering of the system
after igniting the input signal (flagellin= 1). Blue stands for nodes
off (0) at the time iteration considered, while orange indicates
they are activated (1).

Examples of Boolean Models in Literature
In an interested case-study, Saez-Rodríguez et al. derived a
large-scale Boolean network to represent the activation of
T cells (Saez-Rodriguez et al., 2007; Kang et al., 2011). T
cells, which belong to the adaptive branch of the immune
response, can play a role in the long-term response to lung
infection (Chen and Kolls, 2013). The network included the
signaling pathways downstream of the T cell receptor, the
CD4/CD8 co-receptors, and the accessory signaling receptor
CD28. Altogether the network with 94 nodes and 123 interactions
includes the primary mechanism behind the activation of T
cells and depicts the complexity of biochemical pathways and
the reciprocal crosstalk. Saez-Rodriguez et al. exploited one of
the main advantages of Boolean networks in their analysis:
Boolean models have very low computational requirements
for simulation when compared with almost any other model
and therefore they scale well with network size (i.e., they can
simulate large networks). In line with this, they used their
Boolean model to simulate and predict in a systematic and
qualitative manner the effect of a large number of gene knockouts
(“in silico knockouts”). Based on the simulations, the model
predicted that antibody-mediated perturbation of CD28 and
the genetic knockout of the kinase Fyn, two of the network

compounds, may have relevant effects on the network activation,
and these effects could be validated experimentally. Using a
strategy similar to that of in silico knockouts, Boolean networks
have been used to predict the effect of drug combinatory
treatments in cancer (Layek et al., 2011). We do not see
any formal limitation impeding the use of the same strategy
to predict the effect of the combination of antibiotics and
immunomodulatory drugs in acute infections like bacterial
pneumonia.

In line with this example but in the context of lung infection,
Anderson et al. (2016) studied human dendritic cell response
against the influenza H1N1, a virus that can co-infect with several
types of bacteria to produce pneumonia (Joseph et al., 2013).
To this end, they derived a biochemical network with 13 nodes
corresponding to genes and transcription factors playing a role
in antiviral response (e.g., NF-κB, STAT1 and IRF1), and 42 edges
representing the activation of key immune pathways during the
infection. The simulations were done with an asynchronous
Boolean model. The initial states of the Boolean simulations
were based on experimentally observed expression patterns for
the genes in the network (e.g., EGF, NFAT, PDGF and IL-2 set
as active during H1N1 virus infection). The model was used to
investigate the regulation of the IL-2 pathway after exposure to
influenza virus. The model simulations suggested that NFAT can
regulate IL-2 signaling in the context of the virus infection, a
prediction that was experimentally validated. Further analysis led
to the conclusion that IRF and NK-κB signaling share regulatory
functions in H1N1, two out of the three major signaling pathways
responsible for mediating TLR-induced responses in viruses,
bacteria and other pathogens (Mogensen, 2009).

Although Boolean models are more suited for investigating
biochemical networks, they can also be used for describing
networks of interacting cell population’s exceptions (Jack et al.,
2011). For example, Thakar et al. (2007, 2009, 2012) developed
a Boolean model for the regulation of the immune system
response during the respiratory inflammation caused in mouse
by two close relatives of the Bordetellae genus: Bordetella
bronchiseptica, a bacterium causing infectious bronchitis in
animals, and the human pathogen B. pertussis. The model
contains well-established knowledge on the immune response
after independent infection with each one of the bacterium. The
nodes represent (a) immune cell types involved in inflammatory
process, including dendritic, T or B cells, (b) cytokines related
to a specific phase of the immune response or (c) antibodies.
Some edges account for the activation of the immune cells
upon stimulation, while others connect the active immune cells
to the production and secretion of cytokines and antibodies.
Thus, a Boolean network can be used to integrate cell-to-cell
and intracellular scale events. In the network, synchronous and
asynchronous simulations were performed with the Boolean
model. Further experimental data on the host- and pathogen
interaction were used to refine the logic gates describing the
behavior of the nodes. Model simulations identified three phases
in the course of the B. bronchiseptica induced inflammation,
and suggested that antigen regulatory mechanisms play a
prominent role along the whole process, conclusions that were
experimentally validated.
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In a continued work, the model was expanded by including
published experimental data on time evolution for the
concentration of IL-10 and IFNγ, information useful to
expand the network by including the differentiation of naïve
T cells. Model simulations proved to be able to make several
predictions namely: (1) the cooperativity between IL-10 and
IL-4 signaling to inhibit INFγ, which was later experimentally
validated; (2) the role of the interactions among IL-10,
INFγ, IL-12, and IL-4 signaling in deciding the naïve T cell
differentiation process into either Th1 or Th2; and (3) the
fact that Th1 cell activity must be temporally longer than
that of Th2 cells. To integrate time-series data, the authors
transformed the discrete model into a hybrid model (see final
section of this paper). Further, the group adapted the network
to investigate the co-infection of rabbits with B. bronchiseptica
and Trichostrongylus retortaeformis, a worm that usually infects
herbivores inducing a severe infection. Helminth infections
predispose mice to pneumococcal pneumonia (Apiwattanakul
et al., 2014), and some helminths can trigger pneumonia in
humans (Cheepsattayakorn and Cheepsattayakorn, 2014).
Using previously published experimental data describing
the host immune response to the single infection and for
co-infections, an asynchronous Boolean model was derived.
Boolean logic functions were derived from literature, and in
case of uncertainties, functions were adjusted by comparing
the simulation output with experimental results. The resulting
Boolean model was used to investigate the crosstalk between
regulatory pathways upon the infection with the two pathogens.
To validate the co-transfection network, the group infected
rabbits with both pathogens, and then assessed the robustness
of the model by comparing the resulting activation pattern
of the immune response network upon infection with data
obtained in rabbit model. Further, simulations representing
single knockout of selected network compounds were used
to determine central nodes of the single and co-infection
networks, with special attention to the knockout of cytokines
and immune cell populations’ nodes. For example, knockout of
nodes accounting for populations of B, dendritic or T cells led to
a longer persistence of the bacteria in all case studies. In contrast,
knockout for the IL12II or eosinophil population nodes in the
co-infection network rendered parasite population not persistent
anymore.

Critical Remarks on Boolean Models
There are some alternative modeling frameworks derived from
Boolean logic. For example Probabilistic Boolean Networks
(PBNs) use Boolean logic and Boolean values, and then
implement a set of probabilistic rules determining the state
of each node. Each rule is associated to a probability that a
specific network state can occur based on the states of its inputs,
and the probability for the transition can be assigned based on
experimental data (Shmulevich et al., 2002). This probabilistic
feature can make PBNs interesting to account for immune
cell interactions with a probabilistic compound due to the low
abundance of the cells involved at the site of interaction, but also
for intracellular interactions with molecules in low abundance
(Celli et al., 2012).

Despite the complexity of the interactions that can bemodeled
by pure or probabilistic Boolean logic, the universe of possible
values for every network node is always reduced to 0 and 1. In
multi-valued logic models each node can assume several discrete
values that refer to a specific qualitative property (for example,
“0” for no significant amount, “1” for small amount, and “2” for
large amount of receptors activated). This approach has proved
to be very valuable in some cases like transcriptional activation.
For example, one can have transcriptional targets requiring low
levels of active NF-κB, while others may require much higher
levels, and a multi-valued model may be able to account for this
distinctive activation pattern. In these models, thresholds can be
set to determine the qualitative behavior of the node (Schlatter
et al., 2009; Guebel et al., 2012).

Further, Boolean networks can be “calibrated.” This
calibration is named pruning and consist on a systematic
addition or deleting or nodes or interactions based on the use
of quantitative data. In this way, one can make use of -omics
data sets to refine the structure of the Boolean network (Terfve
et al., 2015). Boolean networks are not suited for spatial features
associated to biochemical reactions like molecular gradients.
But perhaps the main limitation of Boolean models is their
poor ability to reproduce and simulate the non-linearity arising
from the existence of regulatory loops in biochemical networks.
In consequence, they cannot provide detailed analysis of the
fine-tuned regulation of biochemical systems enriched in these
motifs. Mathematical models that can handle successfully
nonlinearity are those in ordinary differential equations, which
are discussed in the context of lung infection and inflammation
in the coming section.

MODELS IN ORDINARY DIFFERENTIAL
EQUATIONS

Main Features of ODE
Under the assumptions that the biochemical reactions happen in
discrete and homogenous intracellular regions (Rahmandad and
Sterman, 2008) and the velocities of the biochemical reactions
are determined by the concentration of the intervening species
(Gustafsson and Sternad, 2013), biochemical networks can be
modeled using kinetic models. Kinetic models are a special type
of models in ordinary differential equations (ODE), where the
equations describe the rate of change of the populations of the
biomolecules involved in the biochemical reactions. Similar types
of ODE models can be derived to account for the dynamics of
interacting cell populations.

To model a biochemical network composed by several
molecules, one has to formulate a system of coupled differential
equations, consisting on one equation per each element of the
system whose dynamics is modeled. For example, Figure 4 top
left is a simplified depiction of an ODEmodel accounting for two
branches of the inflammatory response triggered upon activation
of the IL-1β receptor by its ligand in lung epithelial cells (a
detailed scheme can be found in Supplementary Material). One
branch mediated by NF-κB promotes the secretion of several
pro-inflammatory cytokines like IL-6, while a second branch
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FIGURE 4 | ODE model accounting for the inflammatory response triggered in lung epithelial cells upon activation of the IL-1β receptor. Top left: simplified depiction

of the two branches of the inflammatory response triggered upon activation of the IL-1β receptor included in the model. Top right: model simulations accounting for

the production of IL-6 and IL-10 in response of IL-1β mediated NF-κB activation under IRAK1 (Top) and IKK (Bottom) knockout conditions. Bottom left: detailed

scheme of the accounting for the processes affecting in the model the values of inactive IKK. The arrow finishing in null symbol accounts for degradation of IKK, while

the arrow starting in a ying-ying symbol stand for synthesis. Bottom right: local sensitivities of IL-6 concentration with respect to the perturbation of the model

parameters (see Supplementary Material For further details).

mediated by MAPKs promotes the secretion of, among others,
the anti-inflammatory cytokine IL-10. The branching point is the
activation of IRAK1. The model accounts for the changes on time
of the network compounds using the mass-action formalism. For
example, the following equation represents the rate of change of
the concentration of inactive IKK (IKK, see Figure 4 bottom left):

dIKK

dt
= ksyn − kact · IKK · IRAKIp − kdeg · IKK

In the right-hand side of the equation, each term accounts
for a process affecting the concentration of IKK. The first
term represents the synthesis of IKK, here modeled like a
process at constant (mM·h−1 units), stable functioning and

represented by the parameter ksyn The second term accounts
for the phosphorylation and activation of IKK, represented by
a rate equation proportional to the quantities of inactive IKK
and phosphorylated IRAK1 (IRAK1p) and multiplied by a rate
constant (kact , mM−1 · h−1unit). The third term models the
degradation of inactive IKK, which linearly depends on its
concentration and the rate parameter kdeg (h

−1 units).
Contrary to Boolean networks, ODE models can be used to

make continuous and precise time-depending simulations. For
example, one can simulate the effect of deactivating mutations in
key genes of the NF-κB pathway in the secretion of cytokines by
lung epithelial cells. Figure 4 top right displays a set of predictive
simulations accounting for the production of IL-6 and IL-10 in
response of IL-1β mediated NF-κB activation under knockout
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conditions. The wild type condition is displayed in blue. In
addition we showed the predicted time profile for both cytokines
under deactivating mutations of IRAK1 (here represented as
IRAK1−) and IKK (IKK−). Compared to Boolean networks, the
simulations are continuous, more detailed and give quantitative
information about the duration and the intensity of the cytokine
secretion in the different conditions simulated. For example, the
model simulations indicate that the IRAK1 mutation (IRAK1−)
has a significant effect in the production of IL-10 and can lead
to a 50% decrease in its maximal concentration. Similarly, IKK
mutation (IKK−) reduces the secretion of IL-6 while not affecting
IL-10. These model predictions match published experiment
reports (Supplementary Material).

ODE modeling is a well-established methodology in
biomedicine, often included in the training offered in master
programs in computer sciences, physics, computational biology
and bioinformatics. The key feature of ODE models is the
existence of a large array of computational and theoretical
techniques of model analysis beyond simple simulations. This
includes sensitivity analysis (Savageau, 1971; Zi, 2011; Castillo-
Montiel et al., 2015), symbolic analysis (Ibargüen-Mondragón
et al., 2014), bifurcation analysis (Duan et al., 2011; Yuri, 2017),
design space analysis (Savageau, 2011) model optimization (Vera
et al., 2003; Zhang et al., 2015) and parameter estimation and
identifiability (Raue et al., 2009).

For example, in sensitivity analysis one can obtain quantitative
information on how variation in the value of given model
parameters can affect the dynamics and values of the model’s
time-dependent variables (Saltelli et al., 2000). In our example
(Figure 4), we focus on local sensitivities, which are calculated
in a narrow region of the model parameter values around the
condition of interest, though it is possible to perform sensitivity
analysis for a wider interval using global sensitivities (Mathew
et al., 2014). In our case, local sensitivity analysis allows for
detecting the model parameters affecting the most the maximal
value of IL-6 during the simulation, here used as a measure of
the production of pro-inflammatory cytokines in the course of
cell activation. We computed the local sensitivities by varying
the parameter values within a small interval around its value
(the value of the parameter set was arbitrarily defined in a way
it resulted biologically feasible and instructive for the purpose
of this review). The perturbed parameters are ordered in terms
of their effect in the maximal value of IL-6, from those whose
increase negatively affects IL-6 to those that make a positive
effect (Figure 4 bottom right). In a real case-study, the output of
this analysis could be used to select promising molecular drug
targets for new immune modulatory drugs. These drugs could
be administered in parallel to antibiotics and would modulate
the production of pro-inflammatory cytokines during the acute
phase of the inflammation. A similar approach relying on ODE
models and sensitivity analysis has been successfully utilized in
anticancer drugs therapy (Schoeberl et al., 2009), and there are no
evident limitations to make something similar in bacterial lung
infection.

ODE models can account for highly non-linear processes and
show properties, often found in biological regulatory circuits,
like bistability or oscillation (Tyson et al., 2003). In that

case, advanced model analysis tools can be used with ODE
models to dissect the non-linear dynamics of inflammatory and
infectious diseases. For example, ODEs can be combined with
bifurcation analysis. In bifurcation analysis, advanced methods
from non-linear dynamics mathematics are used to detect model
parameters associated to key interactions and processes, for
which its perturbation in given intervals generate a shift in the
equilibrium of the system. Here, we are not talking about smooth,
gradual changes like those detected by local sensitivity analysis,
but about drastic changes such as those generated by the sudden
activation of, for example, the positive feedback circuits behind
several known autocrine loops in inflammation (Coward et al.,
2002). Dunster et al. (2014) employed bifurcation analysis of
an ODE model to analyze the role of different immune cells
on the resolution of inflammation. The model accounted for
the interactions between macrophages, neutrophils and pro-
inflammatory mediators like Tα and IL-8. The model analysis
focused on finding the bistability region in the model, that
is, the set of model configurations in which the system can
switch between the two physiological states: inflammation and
resting. Based on their analysis, they concluded that key processes
accelerating the resolution of inflammation are an increase of
macrophage phagocytosis and the neutrophil apoptosis.

Moreover, these ODE model analysis methods can be
integrated in workflows to investigate complex properties of
biological systems (Nikolov et al., 2010). A very recent work
created and analyzed a mathematical model of the Streptococcus
pneumoniae lung infection (Domínguez-Hüttinger et al., 2017).
It includes the interactions between the pathogen and the host
like macrophages and neutrophils activation, bacteria clearance,
epithelial cell barrier integrity and bacteria migration through
the barrier to the vessels. In the model, the authors differentiated
between a commensal state, that does not produce a disease, and
an invasive and infective state of the bacteria. By including this
feature in the bacteria population dynamics, the model predicted
four different possible phenotypes: (i) sepsis, that is systemic
bacteria spread and inflammation, (ii) immunological scarring,
that is, cumulative, long-lasting immune response to pathogens
inducing tissue remodeling and altered immune responses to new
pathogenic challenges; (iii) sepsis + immunological scarring, or
(iv) healthy infection recovery. Further, model simulations were
used assess the required duration of antibiotic treatment to treat
each phenotype.

Sparse information taken from the literature can be used
to characterize model parameters. Based on predictive model
simulations using the data-based model, one can gain new
insights on the regulation of the network underlying, for
example, pathogen associated tissue destruction. The immune
system residing in the respiratory mucosa has to achieve a
balance between its ability to deplete pathogens and to induce
tissue damage; a failure in this tightly control mechanism can
induce chronic inflammation and tissue destruction (Lugade
et al., 2011). Lo and coworkers (Lo et al., 2013) constructed
and characterized with available data a model accounting
for the abnormal regulation of T helper 1 (Th1), T cell
helper 2 (Th2), and T regulatory cells (Treg) in chronic lung
mucosal inflammation. The model was used to simulate possible
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physiological scenarios concerning inflammation of the lung
mucosa. Based on the model simulations, the authors found
that deregulation of the interaction between these immune cells
is sufficient to explain the emergence of chronic lung mucosa
inflammation. Specifically, the model predicts that upon Treg
downregulation the Th1 and Th2 responses to cytokine can be
abnormally high. Since it is known that mucosal Th1 and Th2
cells can produce pro-inflammatory cytokines (Neurath et al.,
2002), the system displays the structure of an autocrine positive
feedback loop, which could induce under deregulation signal
amplification and chronic inflammation.

In predisposed patients, airways and lung infections caused
by both viruses and bacteria can unbalance the regulation of the
local lung immune system and contribute to asthma exacerbation
(Pelaia et al., 2006). Chernyavsky et al. (2014) derived an
ODE model on the emergence of airway smooth muscle cells
(ASMC) hyperplasia due to asthma-related inflammation, which
was characterized using published data from biopsies and
inflammatory biomarkers (Contoli et al., 2010). The authors
modeled interactions between proliferative and non-proliferative
ASMCs and their impact on the inflammatory state of the lung.
The model was utilized to simulate the development of the
asthma associated inflammation. Model simulations showed that
the speed of inflammation resolution is a leading factor in the
long-term evolution of asthma, and also that the features of
the tissue remodeling during and after the inflammation are
important to control the long-term evolution of asthma.

The parameters of ODE models can be estimated by fitting
the model simulations to dense time series of experimental data
in a process called model calibration. For example, Mochan
et al. (2014) modeled pneumococcal lung infection and used
time series data from tittered mice infection to calibrate the
model. Bacteria titration refers to the inoculation of different
initial amounts of bacteria to mice. The model included the
interplay between the bacteria, lung epithelial cells and alveolar
macrophages, the production of cytokines and chemokines and
the subsequent recruitment and activation of neutrophils and
monocytes. The model was used to simulate and quantify
the dynamics of the damage in the tissue caused by the
immune system in the early phases of infection. The model
simulation analysis pointed to the importance of the dynamics
of macrophage phagocytosis to explain the differences between
the phenotypes of resistance or sensitivity to pathogen. In a
different work, Guo et al. (2011) integrated time series data of
bacterial burden in anODEmodel to quantify the contribution of
neutrophils on the bacterial clearance during pneumonia inmice.
To this end, the authors formulated a single-equation model
accounting for the dynamics of bacterial growth when exposed
to lung neutrophils. The model not only correctly predicted
the number of neutrophils that is necessary for suppressing
A. baumannii growth by 50%, but it also proved to be able to
make predictions for the case of infection with other pathogens
like P. aeruginosa.

Examples of ODE Models in Literature
Smith et al. (2011) built a model accounting for the
role of resident alveolar macrophages, neutrophils and

monocyte-derived macrophages in early lung infection by
S. pneumoniae in mice. The model includes time-dependent
variables for the bacteria population, resting and active
macrophages, activated and non-activated epithelial cells,
cytokines, neutrophils and the debris associated to infection
and tissue damage. To assign value to the model parameters
they extracted information from literature, but also fitted their
model to time series data for different bacterial titration. The
model was used to quantify the contributions of cytotoxicity
and immune-mediated damage in pneumococcal pathogenesis.
When the authors generated two alternative versions of
the model with or without monocyte-derived macrophages
recruitment, the dynamics of bacteria growth was not affected.
Based on the previous work, Schirm and coworkers proposed a
modified mathematical model of cellular interactions in bacterial
pneumonia (Schirm et al., 2016). They considered in the model
alveolar macrophages, neutrophils and monocyte-derived
macrophages. This model was fitted with large time-series
data sets from infected mice, which includes measurements
for pneumococci, neutrophils and macrophage populations,
as well as for IL-6 and debris, here assimilated to histological
damage score measured in the lung tissue. The calibrated
model was used to simulate the evolution of the disease with
or without antibiotics treatment. To this end, the model
simulated the administration of 0.02 mg/g Ampicillin or 0.1
mg/g Moxifloxacin every 12 h, starting 24 h after infection.
The model simulations indicate that alveolar macrophages are
responsible for the quick elimination of the disease. Moreover,
the model simulations predicted that the remission of the
infection can happen with lower doses of antibiotics than those
applied in the experiment. In line with this, the authors propose
to utilize model simulations to design alternative time schedules
for the antibiotic treatment. This strategy could be relevant in the
context of bacterial infection induced sepsis. Sepsis is a common
cause of acute kidney injury and therefore a modeling-based
methodology for accurate antibiotics dosing could be relevant
for critically ill patients (Eyler et al., 2011). To this end, one
can derive a pharmaco-kinetics and pharmaco-dynamics ODE
model accounting for the toxicity and effectiveness of antibiotics,
similar to existing models accounting for efficacy vs. toxicity of
anticancer drugs (Ballesta et al., 2011).

Coinfections, the co-occurrence and potential synergy
between two infectious agents, have been also investigated with
ODEmodels. An example of modeling coinfection is the work by
Smith et al. (2013), in which coinfection of mice with influenza
virus and S. pneumoniae in the lung was investigated. The model
includes variables accounting for the dynamics of influenza
virus, S. pneumoniae, alveolar macrophages and influenza lung
epithelial target cells. The model was calibrated using time-series
data for the amount of bacteria and virus. Remarkably, the model
simulations showed the rebounding in the populations of the
bacteria and the virus. Pathogen rebounding is the proliferation
of a pathogen after an initial decrease when it co-occurs with
a second pathogen. In Smith et al (Domínguez-Hüttinger
et al., 2017), upon infection with bacteria, the virus population
rebounds due to the release of viruses that were latent in the
immune and lung cells killed by the bacteria. In parallel, the
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model predicts an increase in the bacterial load due to the
impairment of macrophage response provoked by the presence
of the viruses. The system as described displays the structure of
a positive feedback loop in which bacterial and virus infection
amplify each other.

Critical Remarks on ODE Models
ODE models can account for important spatial features like
molecular gradients only in a very limited manner. An extension
of ODE models in this regard could be partial differential
equations (PDE) models; however, the lack of appropriate
experimental data for their characterization has limited their
development in biology to a few but promising case studies
(Matzavinos et al., 2004; Murano et al., 2014). In an ideal
setup, ODE models require numerous and rich time series data
sets for model calibration, a prerequisite to obtain a trustable
model. This necessity for complex data sets is a clear limitation,
especially when trying to model large biochemical networks.
A fundamental limitation of ODE crucial for some biological
systems and transcriptional circuits is that predictions based on
ODE models may fail for systems with low copy numbers for
the molecules or the cells involved in the interactions, in which
randomness in their dynamical behavior emerges. These special
features are better represented by stochastic models, which are
discussed in the coming section.

STOCHASTIC MODELS

Main Features of Stochastic Models
At the molecular level, chemical events, including biochemical
reactions, occur randomly. Taking this strong assumption, it is
impossible to deterministically predict when the next reaction
occurs, but also each experimental repetition of a biochemical
reaction will intrinsically differ in the measured values. This
effect is actually important under low copy numbers for
the molecules intervening in the reaction, conditions under
which it is known and it has been experimentally confirmed

that accuracy collapses for deterministic models like those in
ODEs. In contrast, stochastic models can account for this
effect rather than attributing it to measurement errors, thereby
outperforming deterministic models (Gillespie, 1992; Klipp et al.,
2009; Pahle, 2009; Wilkinson, 2009; Ullah and Wolkenhauer,
2010). In stochastic models, chemical species or cell populations
are represented as discrete random variables. These variables
form the state space of the stochastic model and describe the
abundance of each species at any given time point. Chemical
reactions or cell interactions are envisioned as random processes
that change the abundance of the involved species. While
these reactions occur randomly, their probability of occurrence
depends on the current state and it changes as the system
moves from state to state. For example, in the very early phases,
both bacteria and macrophages display very low copy numbers,
sometimes with single macrophages patrolling one or more
alveolus. In these conditions, even small random fluctuations can
have a large impact on the population dynamics and therefore
a stochastic model is an option for describing their population
dynamics. Figure 5 left displays the structure for a stochastic
model, adapted from Van Furth (2012), accounting for the long
time dynamics of infection of an alveolus exposed to stochastic
bacteria colonization. In the model, the current number of
macrophages and bacteria is denoted bym and b respectively. The
interactions between macrophages and bacteria determine the
state transitions, that is, the increase or decrease of the bacteria
and macrophage populations. For example, the stochastic model
accounts for the generation of a macrophage (aM+) with the
following equation:

aM+(m, b) = cMmigrate + cMbirth
∗m+ cMresponse

∗b∗m (1)

Here, is it assumed that the generation of amacrophage can occur
in three different ways: (i) macrophagemigration into an alveolus
occurring at a constant probability rate (cMmigrate); and (iii)
recruitment of additional macrophages depending on the current
number of bacteria and macrophages (cMresponse

∗b∗m). Figure 5
right is a single long time simulation of the model. The single

FIGURE 5 | Stochastic model accounting for the dynamics of infection of an alveolus with low but prolonged exposure to bacteria. Left: sketch of the stochastic

model. M, macrophages; B, bacteria. Right: Single realization of a stochastic simulation for bacteria and macrophages populations (see Supplementary Material for

more details).
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simulation reveals large variability in the populations of bacteria
and macrophages. In particular, the macrophage population
shows large fluctuations, with values ranging from one to up to
51 macrophages in the alveolus, in conditions with very small
amount of bacteria. When one performs a large amount of
similar simulations (here 104 simulations) one can verify that
these fluctuations render the fate of the system stochastic. Thus,
in a small fraction of the simulations (0.1%) the population of
bacteria gets higher than 100. The stochastic model simulations
suggest that, under healthy conditions and for low long term lung
alveolus exposure to bacteria, most of the episodes of bacteria
colonization are quickly resolved, although there is still a small
probability of bacterial infection.

As discussed before, the core regulatory pathway controlling
the activation after bacterial lung infection of epithelial and
immune cells is the NF-κB pathway. There are two features
that make stochastic modeling suitable for investigating NF-
κB activation. Stochastic models are especially suited for
transcriptional circuits because gene expression is widely
considered to be a process dominated by randomness (Elowitz
et al., 2002; Kaern et al., 2005; Wilkinson, 2009; Bressloff, 2017).
NF-κB is a transcription factor, and under some conditions the
pathway activation may lead to a low amount of transcriptionally
active NF-κB molecules. In this case, large fluctuations may
appear in the transcription of NF-κB targets, making advisable
the use of stochastic modeling. In line with this and using a
microfluidic cell culture platform and single cells resolution, Tay
and collaborators investigated the features of NF-κB activation
for a wide range of values of concentration for TNFα, one of the
infection-associated ligands promoting NF-κB activation. Under
low TNFα concentration, they found single cell heterogeneity
and digital response of the cells. This translates into and all-or-
none activation pattern for 3–50% of the cells at concentrations
as low as 0.1–0.01 ng/ml. To elucidate the regulatory features
inducing this behavior, the authors derived a stochastic model
accounting for the NF-κB activation. Using the model, they
found that the ability of the model to reproduce the digital
response observed relied in the inclusion in the model equations
of specific features of TNFα ligand and receptor turnover.
Precisely, they found it was related to the limited TNFα amount
present in the microfluidic chambers, the TNFα degradation and
turnover and the cell-to-cell variability in the amount of TNFα
receptor available for activation. Further, to reproduce the data
the model assumed a non-linear nature to the IKK activation
profile, attributed to the fact that IKK subunits IKK-α and IKK-
β achieved full activity when phosphorylated at two different
residues (Tay et al., 2010).

In addition, stochastic models are suitable for assessing the
fine regulation of feedback loop circuits displaying oscillations or
bistability because stochastic models can assess their sensitivity
to small random perturbations (Levine et al., 2013; Dobrzyński
et al., 2014). NF-κB signaling is controlled by a combination of
intracellular negative feedback loops, which are able to induce
oscillations (Nelson et al., 2004), and autocrine positive feedback
loops with the ability to trigger bistable switches (Pękalski et al.,
2013). In both cases, stochastic modeling is the right tool for
assessing the sensitivity of NF-κB signaling to small random

perturbations induced by these regulatory loops. Ashall et al.
combined single-cell life imaging and modeling to investigate the
role of these oscillations. They could show that the expression
of a number of NF-κB transcriptional targets depends on
the frequency of the potentially pulsatile inflammatory signals
found at the site of inflammation and infection. Although
these features could be investigated by ODE modeling, the
heterogeneity of single-cell responses they found exceeded the
capabilities of these models. However, a stochastic model that
assumed delayed stochastic transcription for IκBα and stochastic
transcription of IκBα and A20 (all of them inhibitors of NF-
kB signaling embedded in negative feedback loops) proved
to be able to recapitulate the cell-to-cell heterogeneity in the
NF-κB oscillations. In line with these results, the same team
recently showed the existence of single cell NF-κB-mediated
oscillatory responses even under physiological concentrations of
TNFα, a cytokine that play a pivotal role in the pathogenesis of
pneumococcal pneumonia (Takashima et al., 1997; Ashall et al.,
2009; Turner et al., 2010).

Other immune related intracellular pathways may display the
features that make necessary the use of stochastic modeling.
For example, intra- and extra-cellular calcium signaling plays an
important role in the immune response (Vig and Kinet, 2009)
and they have been described using stochastic models (Rüdiger,
2014). Further, TRAIL-mediated apoptosis, a mechanism playing
a role in limiting the effect of alveolar macrophages on the
extension of inflammation during S. pneumoniae lung infection
(Steinwede et al., 2012), can display stochastic cell-to-cell
variability in its activation (Bertaux et al., 2014). The dynamics
of pathogenic bacteria intracellular circuits can become also
stochastic (Norman et al., 2015). In line with this, Tuchscherr
et al. (2011) showed that as part of their immune scape strategies,
Staphylococcus aureus can induce a phenotype switching. Bacteria
switching is a transient bacteria phenotypic change, governed by
intrinsic stochasticity intracellular circuits, that provides bacteria
with functional diversity and fast adaptation to environmental
changes.

Examples of Stochastic Models in
Literature
Stochastic models have been used for decades to dissect the cell
population dynamics during lung infection. Two recent papers
deal with the lung infection by Francisella tularensis (Gillard
et al., 2014; Wood et al., 2014), an infectious intracellular gram-
negative bacterium that infects primarily macrophages. When
inhaled in an aerosol, F. tularensis can proliferate in the lung
causing a type of severe pneumonia called pneumonic tularemia.
Gillard et al. (2014) derived a stochastic mathematical model
accounting for the early phases of F. tularensis pathogenesis in the
lung. The model contained three possible states for the alveolar
macrophages, coinciding with three of its most prominent
phenotypes: (1) resting macrophages, functional but with no
ability to kill bacteria; (2) suppressed macrophages, unable to
overcome cytokine production and bacteria phagocytosis; and
(3) classically activated macrophages, which play a role in
clearing the infection. Regarding the dynamics of macrophages,
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the model considers as key events in the early infection phase
the macrophage infection, its suppression and activation and
death. Concerning the bacteria dynamics, the model accounts
for bacterial proliferation, death and phagosome escape to
the cytosol. To derive the model, the authors extended the
framework of the birth-and-death processes stochastic models

by attributing to each macrophage four features (spatial location,
state of activation, number of phagosome bacteria, number
of cytosolic bacteria) and making them affect the macrophage
and bacteria populations dynamics (Levy and Green, 1968;
Tranquillo et al., 1989). The model was able to reproduce most
of the knowledge available on the early phases of the F. tularensis
infection, but the authors claimed it could further provide
insights into potential coadjutants of antibiotic therapies, aiming
at stimulating macrophage activation. Finally, since it exceeds the
scope of this review, we do not discuss here but want to mention
the use of stochastic modeling in the simulation and prediction
of epidemics spread of bacteria-associated lung infection diseases
(Grundmann and Hellriegel, 2006; D’Agata et al., 2007; Agliari
et al., 2013).

Critical Remarks on Stochastic Models
Stochastic models do not to scale well with the size of biochemical
networks due to their structural complexity and the necessity to
perform multiple realizations of the same simulation. However,
the exponential increase in the computational power will
make possible in the close future to simulate large stochastic
models even in average scientific workstations. Calibration
of stochastic models requires high sensitivity and specificity
experimental techniques capable of quantifying random effects
and fluctuations in molecule or cell abundance. For biochemical
systems, this translates into single-cell technologies like single-
cell transcriptomics, single-cell PCR, mass cytometry and
fluorescence-based technologies (Crépieux et al., 1997; Lidke
and Wilson, 2009; Spiller et al., 2010; Bakstad et al., 2012;
Bendall and Nolan, 2012; Haack et al., 2013). Although these
methods are to date technically challenging, expensive and
not available in an average cell biology lab, one can foresee
they will become standard technologies in relatively short time.
Altogether, stochastic models are currently not suitable for
systems that include many different interacting molecular or
cellular species.

AGENT BASED MODELS

Main Features of ABMs
Many if not most of the intracellular biochemical reactions
happen in complex, often highly crowded and heterogeneous
spatial compartments (Rivas et al., 2004; Minton, 2006).
Similarly, cell-to-cell interactions are affected by the features
of the tissue compartments in which they take place. Logic
networks, ODE or stochastic models have a relatively limited
ability to account for spatial features. In contrast agent-based
models (ABM) are powerful tools to simulate in a detailed
manner the spatial features of these interactions at the single
molecule or cell level. Agent-based models can be used to
simulate the dynamics of ensembles of so-called agents in two

and three dimensions predefined spaces. Agents are entities
mimicking molecules or cells, which have the ability to simulate
their movement within the modeled space compartment and
their interactions with other species, also modeled like agents.
The fate and movement of the agents depends on a set of rules,
which are based on their molecular and cellular properties and
the features of their interactions. ABMs can include a variety
of different agent populations, which could operate at different
spatial scales within the model. The environment surrounding
the agents can display multiple spatial heterogeneous features,
like spatial domains with different ability to diffuse or interact
for the agents. Finally, the rules defining the update of the
agent behavior can be the result of other models like ODEs
or Boolean networks, but also stochastic rules. Ultimately,
agent-based model simulations are intended to find collective,
emergent patterns in the behavior of the agent populations.
In the biomedical context ABMs have been primarily used to
investigate interactions between cell populations. For example, in
the early phases of infection both bacteria and macrophages are
in low numbers and the spatial aspects of macrophage motility,
sensing and recruitment, or bacteria motility and proliferation
may decide the conditions for a fast resolution or a long-
lasting extended infection. In these conditions, ABMs offer
the possibility to simulate with detail the spatial features of
the interaction between macrophages and bacteria in the lung
alveolus. Figure 6 accounts for simulations made with an ABM.
The ABM stands for the dynamics of two populations of agents
accounting for bacteria and macrophages at the very early phases
of bacterial lung infection. Thus, the infection is assumed to
take place in a single alveolus and both agents are assumed in
low numbers when the simulations are initiated. The alveolus
is modeled like a torus shaped surface of 32 × 32 pixels. The
macrophages are 2 pixels wide and bacteria are considered to
be non-dimensional dots. During the simulations, bacteria and
macrophages move in 1 pixel. In the simulations, the time is
discrete, with time iterations in the time-scale of the processes
considered. As initial conditions for the simulations, the initial
amount of bacteria and macrophages are situated in random
positions of the 2D space. The behavior of each individual agent
is governed by a set of rules describing the ability of macrophages
and bacteria to move, the bacteria proliferation, the recruitment
of monocyte-derived macrophages and the bacteria killing after
bacteria-macrophage encounter (See Supplementary Material for
more details). To make the model more accurate, we assumed
the stochasticity for the bacteria movement and proliferation, as
well as for the macrophage movement and recruitment. Thus,
the evolution and final fate of two similar simulations can differ
drastically. For example, Figure 6 top displays the time course
for bacteria and macrophage populations during two similarly
initiated simulations with 250 time units duration, which display
totally different time courses. In the top simulation, the bacteria
infection is resolved and the bacteria population gets extinct,
while the bottom simulation ended with a successful bacterial
colonization although the initial conditions were very similar.

In many ABMs like in this one, a number of the processes
models are described by stochastic rules. Thus, the simulations
become stochastic and to detect patterns of regulation ensembles
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FIGURE 6 | ABM accounting for the spatial features of bacteria and macrophage dynamics during early phases of lung alveolus infection. Top: Time course for

bacteria and macrophage populations predicted by the ABM for simulations similarly initiated but reproducing infection resolution (top) and infection establishment

(bottom). The black space represents an alveolus, white circles are macrophages and green dots are bacteria. Both populations can freely move within the alveolus.

Center: 10 similarly initiated ABM simulations are classify into those accounting for infection successfully established (left) and those representing infection resolved

(right). Red lines represent bacteria populations and yellow lines macrophage population. Bottom: ensembles of ABM simulations used to assess the relative

importance of the processes modeled in the simulation output. 104 simulations were implemented for each scenario. The solutions were divided into two groups (a)

yellow bar: solutions ending in an establishment of bacterial infection [bacteria (ti) ≥ 300): and (b) blue bar: solutions ending with depletion of the bacteria population

(bacteria (tfinal) = 0].

of ABM simulations are analyzed using statistical methods. In
our example, we performed a series of simulations and classify
them in two groups of 5 simulations (Figure 6 center): (a) those
in which at the end of the simulation the population of bacteria
is extinguished and (b) those in which the population of bacteria
reaches 300 individual in the course of the simulation, used as

indicator that the bacteria colonization has been established and
the infection has extended to surrounding alveoli. In line with
this, ensembles of predictive simulations can be used to assess the
relative importance of the processes modeled in the simulation
output. For example, we used the model to assess the effect on
the success of bacteria colonization of higher proliferation rate
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of bacteria invasion (scenario 2) and decreasing infiltration of
macrophage (scenario 3, Figure 6 bottom). Scenario 1 defines
the control situation. To make this analysis, we run 104

ABM simulations for each scenario, and counted the number
of simulations per scenario in which the bacteria population
was extinguished (blue bar) or the bacteria colonization was
successful (orange bar). The results show a certain level of
stochasticity and suggest that decreased efficiency in monocyte-
derived macrophage recruitment has more impact in fostering
bacteria colonization than increased bacterial proliferation rate.

Examples of ABMs in Literature
Chavali et al. made a detailed discussion of the use of
ABMs to investigate and characterize emergent properties of
immunological systems (Chavali et al., 2008). ABMs have been
used to model in detail the spatial features of molecular
interactions within cellular compartments, for example, the
dynamics of molecules in cell membranes (Haack et al., 2013;
Santos et al., 2016). In line with this, Rhodes et al employed agent-
based modeling to analyse the spatial features of the cytoplasmic
dynamics for the NF-κB inhibitor IκBα (Rhodes et al., 2015). It
has been found that IκBα can co-localize and get sequestered
in cytoskeleton structures like the microtubule organizing center
and the α-tubulin filaments (Crépieux et al., 1997). To model
in detail this process, Rhodes and co-workers derived a model
for the NF-κB activation via type 1 IL-1 receptor (IL-1R1).
The model considers: (1) activation of NF-κB through IL1R;
(2) activation of anti-apoptotic pathways via PI3k signaling;
and (3) cytoskeleton reorganization during the NF-κB activation
through Ras activation. Using model simulations, the authors
hypothesized that the sequestration of IκBα can be a mechanism
to modulate the intensity of the L1RI input signal coming from
L1RI when transduced inside the cell. The mobilization and/or
sequestering of signaling proteins to microtubules and other
cytoskeleton structures has been found in other key pathways for
inflammation like MAPK cascades (Hanson et al., 2007), which
indicates that the use of ABMs to dissect the fine-tuning of this
mechanism may render interesting mechanistic hypothesis.

ABMS can also be used to establish the link betweenmolecular
interactions and cell phenotypes. In line with this, Stern et al.
used an ABM to simulate the response to damaged tissue and
barrier disruption signals of individual epithelial cells embedded
in an extracellular matrix (Stern et al., 2012). In many infectious
diseases including pneumonia, the breakdown of the epithelial
barrier exposes the inner part of the organism to external
pathogens and facilitates their systemic spread and the emergence
of sepsis. In the model used, the agents account for the epithelial
cells and the rules for the effect on them of the activation of
the EGF and TGF-β receptor mediated signaling pathways. It
has been found that down-regulation of TNF-α signaling and
activation of EGFR signaling contribute to the maintenance
of epithelial barrier integrity and function in lung and other
epithelial tissues (Finigan et al., 2012; Patel et al., 2013; Uwada
et al., 2017). The model was able to simulate tissue damage
and wound recovery. Moreover, the model simulations suggested
the existence of a mechanism for the crosstalk between TGF-β
and EGFR pathways involved in the recovery after damage. The
activation of these pathways have been linked to the response

alveolar epithelial cells to some types of bacterial infection (Choi
et al., 2011; Li et al., 2015).

ABMS can also be utilized to dissect the spatial features of
cell-to-cell interactions in their natural tissue compartments. In
order to investigate T cell (TC) activation Bogle and Dunbar
built an ABM (Bogle and Dunbar, 2010). The model attempted
to investigate the spatial features of TC activation by active
dendritic cells (DCs) in the lymph node, thereby trying to
establish mechanistic links between the properties of TC and DC
motility in the lymph node and the timing and strength of the TC
response elicited. The processes included in the ABM were the
proliferation of TCs in lymph nodes, the DC driven activation of
lymphocytes, and the DC and TC trafficking through the lymph
node. The model was used to simulate the proliferation, release
and changes in the affinity profile of TCs in the lymph node.
The simulation results correlate with data accounting for the
efflux rate of activated TCs from lymph nodes. Further, model
analysis and simulation were used by the authors to point to
open questions and gaps in the current knowledge of the TC-
DC interaction in lymph nodes. For example, they hypothesized
that the deeper understanding of TC activation can benefit
from experiments elucidating the dynamics of the lymph node
vascularization, a process that seems to be modulated by the DCs
(Webster et al., 2006).

Moreover, ABMs can be used to study in detail spatial
properties of infection-related autocrine and paracrine loops. In
a work on chronic asthma, a condition we already linked to
lung infection, Pothen et al. (2015) hypothesized that in healthy
individuals antigenic stimulation drives both the onset and the
recovery after allergic inflammation. Under these conditions,
allergic inflammation can become a self-limited event. Based
on this idea, Pothen et al. used modeling to investigate under
which conditions a failure in this process can provoke the
chronic airway inflammation associated to asthma. To this end,
they derived an ABM that considers spatial features of the
interactions between pro- and anti-inflammatory cells during
tissue damage and repair in unresolved allergic inflammation.
Models simulations suggested that the ability to recover after the
allergic episode is in general terms very robust regarding most
of the pro- and anti-inflammatory cells interactions, but appears
very sensitive to increase in the recruitment and activation of
pro-inflammatory cells like neutrophils and eosinophils. The
model simulations indicated that down-modulation of pro-
inflammatory cell activation could be a therapeutic strategy
against the allergic inflammation.

ABMs can be used to mimic the effect of cell exposure
to diffused extracellular ligands, biomolecules and non-organic
particles. Brown et al. used an ABM to investigate lung
inflammation and fibrosis following particulate exposure (Brown
et al., 2011), an environmental condition that can increase the
chances and severity of lung infection (Mehta et al., 2013). The
model accounted for the interaction between lung macrophages
and fibroblasts through TNFα and TNFβ. It also considered the
tissue damage caused by TNFα and the production of collagen for
repairing the tissue. The model simulations predicted three main
states for particulate exposure associated lung inflammation:
(1) self-resolving inflammation, (2) localized tissue damage and
fibrosis and (3) elevated pro and anti-inflammatory cytokines
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and persistent damage. Model simulations showed that the
switch between the different states depends on the intensity and
duration of the exposure to the particulate damage.

Critical Remarks on ABMs
ABMs can deal with systems that are complex and heterogeneous
from a spatial perspective, but also with biological systems
involving many different interacting entities, cell and/or
molecules, and multi-levels. The essentially modular structure of
ABMs facilitates the addition of new types of agents, accounting
for new cellular or molecular players. Even simple rules defining
the interactions between the agents can generate extremely
complex spatio-temporal regulatory patterns. However, to date
these models do not scale well with respect to the number of
total interacting agents due to the large computational resources
necessary to simulate systems with large number of agents. In line
with this, a lot of work has been done in the last decade in terms
of methods for efficient and distributed ABM simulation (Aaby
et al., 2010). Further ABMs are suited for performing detailed
simulations, but very poor in terms of analytical tools. Far from
the much elaborated algorithms conceived for the calibration
of ODE and PDE models, very little has been done in terms
of the systematic integration of quantitative data into ABMs
(Bianchi et al., 2007) and computational tools specially designed
for modeling of biological systems (Kang et al., 2014; Starruß
et al., 2014). In any case, we think that ABMswill be an interesting
alternative in the coming future for modeling bacterial lung
infection.

DISCUSSION

Great Expectations for Mathematical
Modeling in Lung Infection and
Inflammation?
We have great expectations in terms of what mathematical
modeling can contribute in the coming decade to the

understanding of lung infection pathophysiology. In the last
years modeling has been used in biomedicine essentially for
integrating multiple types of experimental data, formulating
mechanistic hypotheses, or in performing simulation-based
therapy assessment. However, mathematical modeling can be
used in many other avenues that are not yet sufficiently tested
in pulmonology. Epstein (2008) suggested up to 16 motivations
other than pure prediction to use modeling and simulation in
science. In Table 1 we have selected a few of them and elaborate
how they could be implemented in the context of bacterial lung
infection.

To mention an interesting open question, some immune
cell types have a dual, often ambiguous role during infection.
For example, macrophages and neutrophils are major players
in the quick resolution of infection, but under exacerbation
they can also worsen the condition by promoting tissue
destruction or overwhelming inflammation (Nouailles
et al., 2014). This duality can be explained at least in part
by the deregulation of intra- and inter-cellular positive
feedback loops working often in an autocrine or paracrine
manner. For example, TNFα can be secreted by activated
macrophages to signal other immune cells in early lung
infection (Mukhopadhyay et al., 2006), but it can at the same
time promote activation of resident or monocyte-derived
macrophages in a amplification loop that can exacerbate local

inflammation (Gane et al., 2016). The use on mathematical
models dissecting the structure and fine regulation of these

circuits can contribute to the understanding of this aspect of
acute lung infection.

Moreover, a number of infections and inflammatory
conditions in the lung like asthma and tuberculosis persist
despite treatment and reappear in an episodic or cyclic fashion.
This suggests that autocrine and paracrine regulatory circuits,
including positive and negative feedback loops may get disrupted
and deregulated in the course of these diseases. For example,
G-protein-coupled adenosine receptors have been associated

TABLE 1 | Ten “not-yet-considered” motivations to use mathematical modeling in bacterial lung infections.

Motivation Usage in bacterial lung infection Article of example

Discover new questions Combination of model derivation, simulation and analysis used to formulate in a consistent manner a

new hypothesis on the early steps of bacteria lung infection mechanism

Gillard et al., 2014

Guide data collection Model simulations used to (a) decide the design of the which most suited experiments to test the above

hypothesis and (b) select relevant public available data

Thakar et al., 2007

Explain (very distinct from

predict)

Customized model simulations used to (a) illustrate the experimental results and (b) discuss/extrapolate

the consequences of the proved or disproved hypothesis

Smith et al., 2011

Illuminate core dynamics A model comprising the core of the network controlling inflammation used to point the key molecules

and processes controlling it

Krishna et al., 2006

Reveal the apparently simple to

be complex

The analysis of a model representing the apparently simple and small network controlling early bacterial

lung infection used to suggest the existence of non-linear behavior associated to feedback loops circuits

Nikolov et al., 2010

Reveal the apparently complex

to be simple

Model reductions techniques on a large network representing bacterial lung infection applied to detect

the few key processes and molecules controlling the process

Guo et al., 2011

Expose prevailing wisdom as

incompatible with available data

Simulations of a mathematical model encoding the current knowledge on molecular interactions

controlling initiation of inflammation employed to show inconsistencies with new data

Hoffmann et al., 2002

Bound outcomes to plausible

ranges

Comparison between model simulations and available data used to establish the interval of biologically

feasible features (parameters) for bacteria proliferation and spread in the lung alveoli

Mochan et al., 2014

Offer crisis options in near-real

time

For a patient entering the Intensive Care, personalized model simulations used to predict the course of

the host-pathogen interactions and near-real time decide on the therapeutic alternatives

Dix et al., 2016
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to protection from tissue damage in infection and sepsis
(Csóka et al., 2010). Further, adenosine has been linked to the
pathogenesis of asthma (Brown et al., 2008). This role is mediated
via a physiological negative-feedback mechanism that seems
to participate in limiting and terminating tissue-specific and
systemic inflammatory responses (Ohta and Sitkovsky, 2001).
Mechanistic mathematical modeling of this type of paracrine
feedback circuits may shed light into their role controlling
overwhelming immune response and the consequences of their
deregulation.

Modeling has been used for longtime in pharmacology
to assess the efficacy and dosage of drugs. Moreover, model
simulations in combination with computational sensitivity
analysis and model optimization have been used to detect new
potential drug targets in cancer and metabolic diseases, or to
assess the emergence of therapy resistance (Vera et al., 2007;
Schoeberl et al., 2009). This strategy can be replicated in lung
infection diseases to search for new drug targets or repurpose
existing drugs as immunomodulators during lung infection
(Wentker et al., 2017), or to optimize the current protocols
for antibiotics administration (Schirm et al., 2016). Further, in
recent times (Zhou et al., 2017) modeling has been used to assess
therapies in a personalizedmanner (Rosenberg and Restifo, 2015;
van de Sant et al., 2017), especially anticancer ones (Gupta et al.,
2016). We think there is potential for this in lung infection and

pneumonia, by integrating selected patient unique –omics and
physiological parameters into model simulations, and use them
to customize treatments.

Mathematical Modeling and Multi-Level
Dissection of Bacterial Lung Infection: The
Art of Choosing the Right Approach
There is no perfect modeling framework for investigating
bacterial (lung) infection in all possible scenarios. This is because
the optimality of a modeling strategy will depend on the aim
of investigation, the scale and structural complexity of the
system to be modeled and the quantity, quality and nature of
the experimental data available for its characterization. Table 2
extends our previously published table (Vera and Wolkenhauer,
2011) and compares the main modeling frameworks here
discussed based on a number of important features. We also
include some prototypical case studies in bacterial lung infection
in which each modeling framework could be most suited. One
can see that there is no a modeling approach clearly superior to
all the others for every feature analyzed, and therefore the choice
of the right model relies often on a tight balance between several
of these features (Table 3). Moreover, in some cases any of the
methodologies described displays the features necessary to model
the dynamics of given biological systems, and other modeling

TABLE 2 | Features of different model formalisms analyzed.

Modeling

framework

Realism Time Scalability Computational

cost

Complexity Data usage Examples

ABM Phenomenological Continuous Large High High Low Spatial simulation of cell-2-cell interaction and movement

in a lung alveolus during infection

Boolean Phenomenological Discrete Medium Low Low Medium Analysis and simulation of the large regulatory network

triggered in macrophages after bacteria detection

ODE Mechanistic Continuous Small High Medium High Analysis of fine-tuning of NFkB signaling activation in

lung epithelial cells after infection

Stochastic Mechanistic Continuous Small High High High Simulation of dynamics of few bacteria initiating infection

in a lung alveolus

Fuzzy

Logic

Phenomenological Discrete Medium Medium Low Medium Simulation of lung epithelial cell phenotypes with

uncertain uncomplete information of activators

Realism: How close from the real biological mechanism is the representation given by the model; time: Whether the model handle the time as a discrete or continuous variable; scalability:

Number of compounds the model can on average handle (small: up to 20 compounds, medium: 20–100, large 100–1,000; computational cost: Time and computational resources

demanded for model simulation and analysis; complexity of the models in terms of their structure; data usage: Whether the construction of the model requires low, medium or large

amounts of quantitative experimental data for its characterization; examples: Possible applications for each formalism in the context of bacterial lung infection.

TABLE 3 | Applicability of different model formalisms analyzed into different biological situations.

Modeling

framework

Intracellular circuits Cell–cell interactions Host-pathogen interactions Local tissue interaction Systemic infection/

inflammation

ABM

Boolean

ODE

Stochastic

Fuzzy Logic

Applicability: This table presents an illustrative guidance to select the best modeling framework to the biological scale of interest. Depending on the scale the applicability of the different

frameworks can be poor (black) possible (gray) or appropriate (white).
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FIGURE 7 | Different strategies for hybrid modeling in bacterial lung infection.

frameworks can be used (See Supplementary Material for further
discussion).

In some cases a single modeling approach is not sufficient
to deal with some structurally complex systems, and one has to
combine different model types into a “hybrid model” (Chiam
et al., 2006; Wylie et al., 2006; Wu and Voit, 2009). Agent-
basedmodels has become themost used approach in biomedicine
for multi-level and multi-scale systems (Chavali et al., 2008).
However, other hybrid modeling strategies are implemented
by combining modeling approaches with computational and
knowledge requirements of different complexities, like Boolean
and ODE model together (Figure 7). For example, one can use

the knowledge generated by simulations with a given type of
model to parameterize and characterize a second type of model.
In this “informed hybrid models” there is no formal connection
between the models, but one of them is used to design or
characterize a second one. For example, In Rex and collaborators
simulations on a large Boolean network were used to describe the
key regulatory circuits underlying the shift betweenM1 (classical,
LPS-activated, pro inflammatory) M2 (IL4/IL13 activated, anti-
inflammatory) macrophage phenotypes (Rex et al., 2016). This
information, the key molecular species and their interactions,
was used to construct a second ODE model that dissects the fine
regulation of this subnetwork.
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Another option could be to construct models in different
frameworks that are primarily independent, but cross-talk via a
few common compounds. An example of this “connected hybrid
models” could be a combination of an ODE model accounting
for a signaling circuit controlling the activation of a number of
key transcription factors after bacterial infection (e.g., NF-κB,
p38), connected to a large Boolean network accounting for the
activation of dozens to hundreds of transcriptional targets. The
connection between both types of models could be done via
interface functions accounting for the activation status of the
transcription factors (Khan et al., 2014).

Finally in the “fully embedded hybrid models” a model in
a given formalism is fully integrated in another type of model
(Chiam et al., 2006). We think this is an alternative in which
ABM could be a suitable option. For example, in multi-scale
models accounting for bacterial lung infection one could develop
an ABM in which individual bacteria, lung epithelial cells,
alveolar macrophages or neutrophils populations are modeled
like interacting agents moving within a defined space. The
activation, differentiation or apoptotic phenotypes of these agent-
cells would be determined by the simulation of embedded
Boolean or ODE models, which describe the time-dependent
activation of their core intracellular network.
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GLOSSARY

Agents: The elements in an ABM that interact in the
environment.

Bifurcation analysis: Follow the changes in the qualitative
behavior of the simulation of a kinetic model after modifying one
parameter.

Bistability: A property that kinetic models can present. It is
characterized by two stable steady solutions of the system.

Design space analysis: Identify regions defined by a couple of
parameters that show different qualitative behaviors depending
on the values of these parameters.

Digital response: Response to stimuli by activating key
molecules and phenotypes in an all-or-nothing manner.

Electronic Logic Gates: Elementary electronic block of an
ideal circuit that performs logic operations. Usually, each block is
characterized by two inputs and one output; logic operations that
are performed are: AND, OR, XOR, NAND, XNOR, and NOR.
The logic operation with one input and one output line is NOT.

Environment: The open area in which is defined an ABM.
Kinetic model:Mathematical model which consider the time

dimension in the simulations.
Mass-Action: Mathematical formalism that represents

the velocity of the processes as the product of the elements
interacting rose to integer values. These kinetic orders
correspond with the stoichiometric values of the interaction.

Model calibration: Searching for the values of the parameters
that produce a simulation from a kinetic model that reproduce
the dynamic behavior of experimental data.

Model optimization: Searching for the parameter set that best
reproduce a specific simulation of interest by a kinetic model.

Parameter identifiability: Problems of certain systems to find
a precise value for the parameters given a set of experimental data.
This problem ends with a broad uncertainty on the values of some
parameters.

Rules: The definition of the possible interaction that the
elements can have.

Sensitivity analysis: A mathematical analysis to quantify the
effect of the parameters of the model on the response of the
simulations.

Symbolic analysis: A qualitative analysis of a kinetic model
allowing to identity general patterns without giving specific
values to the parameters of the model.

Synchronous and asynchronous algorithms: These methods
refer to the update of the nodes’ states. In the first case, all
nodes are updated during each iteration step following the set of
functions defined in themodel. Asynchronous updated introduce
uncertainties typical of biology: during one iteration, only some
nodes randomly chosen are updated accordingly to the defined
set of functions.

T cells: A branch of the immune response key for the mid-
term response to infection.
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Oxygenic photosynthesis dominates global primary productivity ever since its evolution 
more than three billion years ago. While many aspects of phototrophic growth are well 
understood, it remains a considerable challenge to elucidate the manifold dependencies 
and interconnections between the diverse cellular processes that together facilitate the 
synthesis of new cells. Phototrophic growth involves the coordinated action of several 
layers of cellular functioning, ranging from the photosynthetic light reactions and the 
electron transport chain, to carbon-concentrating mechanisms and the assimilation of 
inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, 
protection against excessive light, as well as diurnal regulation by a circadian clock and 
the orchestration of gene expression and cell division. Computational modeling allows 
us to quantitatively describe these cellular functions and processes relevant for phototro-
phic growth. As yet, however, computational models are mostly confined to the inner 
workings of individual cellular processes, rather than describing the manifold interactions 
between them in the context of a living cell. Using cyanobacteria as model organisms, 
this contribution seeks to summarize existing computational models that are relevant to 
describe phototrophic growth and seeks to outline their interactions and dependencies. 
Our ultimate aim is to understand cellular functioning and growth as the outcome of a 
coordinated operation of diverse yet interconnected cellular processes.

Keywords: photosynthesis, cyanobacteria, whole-cell models, flux balance analysis (FBA), circadian clock, CO2-
concentrating mechanisms (CCMs), network reconstruction, metabolism

1. iNTRODUCTiON

Almost all life on our planet ultimately depends on harvesting the light energy provided by the sun 
and the subsequent conversion of atmospheric CO2 and other inorganic nutrients into the building 
blocks of life. As one of the key inventions in evolution, oxygenic photosynthesis has transformed life 
on Earth and dominates the Earth’s primary productivity today (Lane, 2002; Morton, 2009). Beyond 
their evolutionary and ecological importance, phototrophic organisms are an essential resource for 
humankind and provide almost all food, feed, and fiber required to sustain human life on this planet 
with more than 7 billion inhabitants. Many of our strategies to master the challenges of the 21st 
century will inevitably rely on the growth of phototrophic organisms. Making better use of the sun’s 
light energy while avoiding past mistakes of industrial agriculture related to water usage, energy 
expenditure, eutrophication, and land use are necessary steps for a sustainable future.
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Phototrophic microorganisms, in particular cyanobacteria, 
hold great promise as a renewable resource. Cyanobacteria are 
able to grow with high yield under adverse conditions and their 
cultivation does not rely on traditional farmland or fresh water. 
To make use of the biotechnological potential of cyanobacteria, 
however, requires further understanding of the organization of 
phototophic growth. While many aspects of phototrophic growth 
are well known and many details of photosynthetic functioning 
have been unraveled by decades of active research, it still remains 
a considerable challenge to understand the individual cellular 
processes in the context of a living cell.

To this end, the construction of computational models of cel-
lular processes offers the possibility to investigate the emergent 
properties that arise from interacting processes. Corresponding 
to the path of experimental research, however, to date almost all 
computational models involving cyanobacterial functioning and 
growth focus on the inner workings of individual processes, such 
as the path of electrons in photosystem II or the functioning of 
the circadian clock. But phototrophic growth is an organismic 
property. It is not so much an individual process that gives rise to 
cellular growth, rather it is the interplay of individual processes 
that bears reproduction and growth of living cells.

In this contribution, we seek to provide an overview on 
processes relevant to cyanobacterial growth and summarize the 
available computational models thereof. Our aim is not encyclo-
pedic, that is, we do not aim for a comprehensive account of all 
available models. Rather, we seek to focus on representative mod-
els that may contribute to our understanding of the functioning 
of a cell as a whole. Our focus are also not the, albeit important, 
minutiae of individual processes and models, but rather how 
they can be collated into a coherent whole. Our starting point is 
a set of existing computational descriptions of cellular processes 
and their possible interactions. Our ultimate goal is to describe 
cellular adaptation, cellular resource allocation, and phototrophic 
growth in complex environments. Or, as more eloquently put by 
Neidhardt (1999) already more than 15 years ago: “We must solve 
the cell. That is, we must do our best to design a computer-based 
model that can predict overall cell behavior for steady states of 
growth and for transitions between steady states. The model will 
at first be crude, inaccurate, and a complete failure at some tasks. 
With increasing refinement based on additional experimental 
data, the model should gradually improve. Importantly, the model 
will guide experimental inquiry by indicating areas of inadequate, 
insufficient, or incorrect information. Vitally, it is only through 
such modeling of whole-system behavior—that is, of growth—
that one will learn how near and how far our knowledge takes us 
toward understanding the living cell.”

Our premise is that sophisticated computational models are 
already available for many of the processes that underlie photo-
trophic growth. Modeling their interactions, however, is still no 
trivial task. First, most models focus on the inner workings of 
the processes they describe—and therefore often do not describe 
key variables that govern the interaction with other processes. 
Second, the various subprocesses and time scales involved in 
a computational description of phototrophic growth typically 
require the use of different mathematical and computational 
concepts, which cannot always be easily reconciled within a 

single computational description. We seek to summarize these 
different computational descriptions and aim to highlight com-
mon variables and interactions. Importantly, we do not neces-
sarily aim at a single unified model that encompassed all aspects 
of a growing cell. Rather, we argue for a modular approach—a 
growing set of models that describe aspects of cyanobacterial 
growth on different temporal and spatial scales. Depending 
on the research question, and the temporal and spatial scales 
involved in this particular research question, different descrip-
tions of cyanobacterial functioning may be chosen—and utilized 
to derive the emergent properties of cellular growth by putting 
the parts together.

2. MODeLiNG PHOTOTROPHiC GROwTH: 
AN OveRview

Cellular growth is an organismic process that arises from a coor-
dinated interplay of cellular functions. In the following, we briefly 
describe the key processes relevant to cyanobacterial functioning 
and growth in complex environments. An overview is provided 
in Figure 1.

Survival and growth of (most) cyanobacteria begins with 
the absorption of photons facilitated by large light-harvesting 
antennae, the phycobilisomes, and chlorophyll a. The energy 
harvested from sunlight drives water splitting at photosystem II 
(PSII). Electrons, derived from water, are provided to the electron 
transport chain (ETC) and molecular oxygen is released as the 
byproduct of photosynthesis.

The ETC consists of a number of large protein complexes, 
mostly located in the thylakoid membrane. Electrons are trans-
ferred along the ETC, ultimately resulting in the regeneration 
of adenosine triphosphate (ATP) and reduced nicotinamide 
adenine dinucleotide phosphate (NADPH) as energy carrier and 
reductant, respectively. The functioning of the photosystems and 
the ETC are complex biophysical processes and objects of intense 
research. The respective processes are characterized by fast time 
scales and transitions between a large number of possible states. 
While a number of detailed computational models of these 
processes are available, often with a focus on photosystem II, the 
respective models typically do not describe regeneration of ATP 
and NADPH, and hence are not straightforwardly connected to 
other cellular functions.

The ATP and NADPH regenerated by the photosynthetic light 
reactions play a crucial role for almost all other cellular processes. 
Beyond their role as energy donor and reductant, they also serve 
as important signaling compounds to convey information about 
the intracellular state. Regenerated ATP and NADPH are utilized 
to assimilate atmospheric carbon dioxide (CO2). Cyanobacteria 
possess mechanisms to concentrate inorganic carbon in the 
vicinity of the CO2-fixing enzyme, the ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RuBisCO), making use of bacterial 
microcompartments known as carboxysomes. Compared to 
the light reactions, the relevant time scales of the so-called dark 
reactions are significantly slower. Modeling of CO2-concentrating 
mechanisms (CCMs) typically involves consideration of diffusion 
and spatial structure.
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FiGURe 1 | Phototrophic growth is an emergent property that arises from interacting cellular processes. Cellular growth can be described by considering 
these processes as interacting modules. Many aspects related to cellular growth are reasonably well understood, and detailed computational models already exist. 
Nonetheless, it remains a considerable challenge to integrate these diverse models into a coherent whole. In this contribution, we seek to describe the processes 
that are relevant for cyanobacterial functioning and growth. Key aspects are the photosynthetic light reactions, providing energy and reductants for cellular 
metabolism, cellular respiration in the absence of light, CO2-concentrating mechanisms (CCMs), transcription, and global energy-induced changes in DNA topology, 
as well as the circadian clock and its integration into diverse layers of cellular regulation.
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The carbon assimilated by the enzyme RuBisCO serves as a 
substrate to synthesize new cell components, including storage 
compounds and substrates for cellular respiration. Cellular 
metabolism involves several hundreds of biochemical reactions, 
catalyzed by enzymes, as well as spontaneous interconversions, 
transport, and diffusion processes. From a computational 
perspective, a description of cellular metabolism must involve 
several spatial and temporal scales. Detailed models for the action 
of individual enzymes, such as RuBisCO, exist, based on detailed 
enzyme mechanisms and elementary reaction steps. Pathways are 
typically described by combining, often approximative, kinetics 
of the involved enzymes into larger kinetic models, described by 
ordinary differential equations (ODEs).

While current kinetic models of metabolism rarely involve 
more than a few dozen compounds, cellular metabolism is 
increasingly analyzed using large-scale metabolic reconstruc-
tions and constraint-based computational methods. Metabolic 
network reconstructions are based upon the predicted gene 
content deduced from genomic DNA and aim to provide an 
unbiased and comprehensive account of all interconversions of 
small molecules inside a single cell or a compartment. Unlike 
kinetic models, metabolic reconstructions only make use of the 
stoichiometric properties of the respective interconversions, 
and manually curated reconstructions have been reported for a 
number of cyanobacteria (Knoop et al., 2010, 2013; Montagud 

et al., 2010; Nogales et al., 2012; Saha et al., 2012; Vu et al., 2012; 
Yoshikawa et al., 2015). Highly efficient computational methods 
exist that allow for the analysis of networks that consist of several 
hundreds of biochemical reactions and other molecular intercon-
versions. These computational methods, however, are challenging 
to reconcile and integrate into more traditional enzyme kinetic 
models of metabolism.

In addition to the photosynthetic light reactions and cellular 
metabolism, cyanobacterial functioning also involves a large 
number of regulatory processes. Most prominent is the cyano-
bacterial circadian clock. Unique among all known prokaryotes, 
cyanobacteria possess a true circadian clock, a self-sustained 
oscillator that is entrained to an external zeitgeber. Since its 
discovery in the late 1980s, the cyanobacterial circadian clock 
has been an object of intense research (Pattanayak and Rust, 
2014). Early research, however, was mostly focused on the inner 
workings of the clock, the molecular details of the core clock, and 
its input pathways. Only recently, interactions between the clock 
and metabolism and the question how the clock functions within 
a broader cellular context have been addressed in more detail 
(Pattanayak and Rust, 2014; Diamond et al., 2015; Shultzaberger 
et al., 2015).

Correspondingly, a number of quantitative computational 
models exist that describe the mechanistic details of the cyano-
bacterial clock, as well as its entrainment to environmental 
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cues—but as yet only few of these models allow for a straight-
forward integration into a broader cellular context. While 
there is increasing evidence how the clock is influenced by, and 
itself influences, photosynthetic light reactions and metabo-
lism, via sensing metabolic activity (Pattanayak et  al., 2015) 
and redox state (Kim et al., 2012) and controlling transcription 
regulation, the precise evolutionary role of the clock remains 
insufficiently understood. Elucidating how the circadian clock 
interacts with other cellular processes and to integrate models 
of the cyanobacterial circadian clock into a broader cellular 
context, with the aim to understand how timing mechanisms 
affect cellular fitness, is a timely question for further compu-
tational research.

Energy metabolism and growth, like all cellular processes, are 
also dependent on the transcriptional and translational machin-
ery. The transcriptional landscape of commonly cultivated 
cyanobacteria, such as Synechocystis sp. PCC 6803, is increasingly 
known (Kopf et al., 2014) and a number of studies investigated 
transcriptional rhythms in the presence of light–dark phases 
(Lehmann et al., 2013; Beck et al., 2014). Of particular interest 
is also the role of small regulatory RNA (sRNA) to coordinate 
cellular processes. For several cyanobacterial strains, most 
notably Synechocystis sp. PCC 6803, substantial sRNA transcrip-
tion, intragenic transcripts, and antisense transcripts have been 
reported (Kopf and Hess, 2015). While generic computational 
models for various possible role of regulatory RNA exist (Legewie 
et  al., 2008), these are currently not integrated within larger 
computational efforts to understand growth properties and 
adaptation of cyanobacteria.

As a key driver of cellular functioning and growth, global gene 
expression is believed to be under direct control of the circadian 
oscillator, mediated by the topological properties of the cyano-
bacterial chromosomes. It was shown that the superhelicity of 
the DNA undergoes rhythmic changes that drive global changes 
in gene expression (Woelfle et al., 2007; Vijayan et al., 2009). It 
is further known that the rate of transcription also depends on 
the local supercoiling status of DNA. Vice versa, supercoiling 
depends on the cellular energy status, since the extent of super-
coiling achieved by the DNA gyrase is strongly dependent on ATP 
hydrolysis. For heterotrophic organisms, specifically Escherichia 
coli, these observations have led to the proposal of homeostatic 
control and a feedback loop between the intracellular ATP/ADP 
ratio, DNA supercoiling, transcription, and again changes in the 
ATP/ADP ratio (Wijker et al., 1995). Closely related ideas have 
been put forward in the context of ultradian rhythms in yeast 
where global partitioning of anabolism and catabolism might 
be mediated by ATP feedback loop on chromatin architecture 
(Amariei et  al., 2013). In the case of cyanobacteria, a global 
feedback between cellular energy state, DNA supercoiling, 
and transcription might mediate between global transcription 
rhythms, the light reactions as the source of cellular energy, 
and the circadian clock. Such global feedbacks are currently not 
explicitly considered in models of cyanobacterial growth and are 
challenging to implement because of the diverse layers of cellular 
regulation involved.

Parallel to the efforts of molecular biology to understand the 
mechanistic and biophysical basis of the processes involved in 

phototrophic growth, there is a rich history of phenomenologi-
cal phytoplanktonic growth models. Phenomenological growth 
formulations are typically employed in models of marine 
ecosystems and food webs, as well as biogeochemical models to 
understand the global response of ecosystems to environmental 
changes. Phenomenological growth models often employ 
Monod-type equations to describe uptake of a limiting nutrient. 
Following the early work of Droop (1968), also more sophis-
ticated approaches exist to describe variable internal quotas, 
see Droop (1983) for an overview. The dynamics of simple 
phytoplankton growth models are typically based on empirical 
parameter fitting, rather than an outcome of the underlying cell 
physiology, and involve strong simplifications, such as using a 
constant carbon-to-nitrogen (C:N) stoichiometry and absence 
of photoacclimation (Ayata et al., 2013). It has been pointed out 
that a major shortcoming of such models is their limited ability 
to produce true emergence in marine ecosystem models (Allen 
and Polimene, 2011). Specifically, these models do not evolve 
to new states not already incorporated in their formulation that 
makes them unsuitable to properly predict ecosystem changes 
under changing environmental conditions. As argued by Allen 
and Polimene (2011), the path forward is to place more emphasis 
on the underlying intracellular processes—resulting in physi-
ological growth formulations that allow for trade-offs between 
resource allocations of physiological activities, and hence the 
possibility to produce biogeochemical and ecological dynamics 
as emergent properties. Preliminary models, albeit still limited, 
that combine a detailed description of photosynthesis and 
phytoplankton growth are already available (Kroon and Thoms, 
2006).

In the following, we seek to discuss selected computational 
models related to cyanobacterial functioning and growth in 
more detail. Our view is that cyanobacterial physiology depends 
on interacting cellular processes that can be interpreted as func-
tional “modules”, such as the photosynthetic light reactions and 
the ETC, carbon uptake mechanisms, cellular metabolism, the 
circadian clock, as well as the transcriptional and translational 
machinery and its regulation. For many of these modules, rea-
sonable computational descriptions already exist, whereas other 
processes, for example, the coordination of cell cycle events in 
relation to metabolism (Asato, 2005, 2006), have not yet been 
subject to computational studies.

Our aim is to highlight the common variables and known 
interactions between the processes relevant to cyanobacterial 
functioning and growth. In this respect, a particular challenge 
is the wide range of computational approaches and methods 
used. Models of cellular processes may take many forms, ranging 
from spatial versus non-spatial, stochastic versus deterministic, 
population level versus single cell level, and continuous versus  
discrete descriptions. See Figure  2 for an overview. 
Notwithstanding the technical challenges, we believe that the 
integration of different aspects of cellular growth, and their 
respective computational representation, is a prerequisite toward 
understanding the living cell. We seek to understand how pho-
totrophic growth functions and how it is regulated. How does 
the coordination of physiological functions work in order to 
synthesize the right macromolecules at the right time? Which 
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FiGURe 2 | Models of cellular processes are highly diverse and may 
involve a wide range of computational concepts and methodologies. 
At the core of the modeling process is a translation of a biological processes 
into a formal (mathematical) language. Once this translation is established, 
the model can be interrogated using the tools of mathematical and 
computational analysis. The most prevalent representations of cellular 
processes described in this contribution make use of deterministic ordinary 
differential equations (ODEs) to describe the time-dependent dynamics of 
continuous intracellular concentrations, typically on the population level. In 
the following, such models are denoted as kinetic models and may either 
make use of heuristic approximate rate equations or rate equations derived 
from explicit biochemical mechanisms. Models of CCMs typically involve a 
spatial component and originate from a description based on partial 
differential equations (PDEs). Models of the light reactions frequently 
describe transitions between discrete states that occur with a certain 
state-dependent probability. Flux balance models consists of a set of linear 
relationships (linear inequality constraints) between variables and make use 
of linear programing (LP), a method to identify the optimum of a linear 
objective function. For a more detailed overview on model types, see also 
Steuer and Junker (2009).
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level of detail is required to describe cellular growth? What are 
the variables and time scales involved?

3. MODeLS OF THe PHOTOSYNTHeTiC 
LiGHT ReACTiONS

Phototrophic growth begins with the absorption of light and its 
conversion into chemical energy. Despite a number of open ques-
tions and the need for further research, many of the fundamental 
properties of oxygenic photosynthesis have been elucidated in the 
past century. Owing to the fact that cyanobacteria are the evolu-
tionary ancestors of modern-day chloroplasts, the organization of 
their photosynthetic ETC is essentially identical to that in algae 
and green plants (Vermaas, 2001).

In most cyanobacteria, light harvesting is facilitated by large 
antenna complexes, the phycobilisomes. Phycobilisomes are 
attached to the cytoplasmic surface of the thylakoid membrane 
(Mullineaux, 2014). The detailed composition of phycobili-
somes is strain specific and depends on light quality, denoted 
as complementary chromatic adaptation. The energy absorbed 

by the phycobilisomes is transferred to either photosystem II or 
photosystem I, or dissipated as heat or fluorescence. The protein 
complexes of the photosynthetic ETC are embedded within the 
thylakoid membrane. The key proteins complexes responsible for 
photosynthetic electron transport are Photosystem II (PSII), the 
Cytochrome b6f complex (Cytb6f), Photosystem I (PSI), and ATP 
synthase (ATPase). See Figure 3 for an overview.

PSII splits water and reduces the plastoquinone (PQ) pool. The 
latter mediates the transport of electrons from PSII to Cytb6f. At 
Cytb6f, electrons are transferred to a soluble electron carrier on 
the luminal side of the thylakoid membrane, either plastocyanine 
(PC) or cytochrome-c (cyt-c). At PSI, electrons are transferred 
to ferredoxin and eventually to NAPDH using light-induced 
excitation of the PSI reaction center (linear electron transport, 
LET). Alternatively, electrons from the excited PSI state can be 
transferred back to PQ and Cytb6f (cyclic electron transport, 
CET), details of CET are still under debate and insufficiently 
understood. Photosynthetic electron flow results in a protein 
gradient across the thylakoid membrane that drives regeneration 
of ATP by the ATPase.

Unique to cyanobacteria, as opposed to plants and micro-
algae, is the combination of oxygenic photosynthesis and 
respiration in the same membrane system using intersecting 
ETCs and common components (Vermaas, 2001). The respira-
tory ETC involves the succinate dehydrogenase (SDH), the 
NADPH dehydrogenase (NDH-1), and terminal oxidases. 
The PQ pool, the Cytb6f complex, and PC (or cyt-c) as soluble 
electron carrier are involved in respiratory as well as photo-
synthetic electron transport. While photosynthesis exclusively 
takes place in the thylakoid membrane, a rudimentary respira-
tory chain is also present in the plasma membrane (Schultze 
et al., 2009).

From a computational perspective, photosynthesis in cyano-
bacteria and microalgae can be described on different levels of 
complexity. Basic models are closely related to overall growth 
models in ecology—and typically to reproduce the production 
of oxygen and the photosynthesis–irradiance (PI) curve of 
cyanobacteria and microalgae. Early models were derived by 
Crill (1977), Megard et  al. (1984), Eilers and Peeters (1988), 
and Zonneveld (1998) among others. These models make use 
of a highly simplified photosynthetic factory or photosynthetic 
unit (PSU) that encompasses PSII, PSI, and the ETCs. See 
Figure  4 for an example. The resulting differential equations 
for the dependency of photosynthesis on light intensity can 
often be solved analytically, with a solution analogous to the 
Haldane equation—an enzyme kinetic equation that was derived 
for substrates with inhibitory effects at high concentrations. 
Simple three-state models are suitable to describe basic features 
of photoinhibition and the PSII repair cycle (Tyystjärvi et  al., 
1994). In later iterations, the parameters of the basic three-state 
model were augmented with a more mechanistic interpretation 
(Han, 2001, 2002), and the models were extended to describe 
the effects of intermittent light (Rubio et al., 2003). Recently, a 
basic three-state model was also applied to describe the kinetics 
of non-photochemical quenching (NPQ), induced by an orange 
cartenoid protein (OCP), in cyanobacteria (Gorbunov et  al., 
2011). To this day, simple three-state models remain relevant 
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FiGURe 3 | A generic view of the cyanobacterial electron transport chains (eTCs), species-specific differences are neglected. Cyanobacterial 
photosynthetic and respiratory ETCs share common components. The protein complexes of the photosynthetic ETC are embedded within the thylakoid membrane 
enclosing the thylakoid lumen. Key protein complexes are photosystem II (PSII), with the oxygen-evolving complex (OEC), the cytochrome b6f complex (Cytb6f), 
photosystem I (PSI), and the ATP synthase (ATPase). Cyclic electron transport involves the NDH complex and is still insufficiently understood. The Orange 
Carotenoid Protein (OCP) is a light sensor and energy quencher that interacts with the phycobilisomes to decrease energy arriving to the photosynthetic reaction 
centers (Kirilovsky and Kerfeld, 2013). The thylakoid membrane also contains respiratory components, in particular the succinate dehydrogenase (SDH), NADPH 
dehydrogenase (NDH), and a respiratory terminal oxidase (RTO). It has been suggested that ferredoxin (Fd) transfers electrons from NADPH to NDH-1 via the 
Fd-NADP+-reductase (FNR) (Ma and Ogawa, 2015). The cytoplasmic membrane contains a rudimentary respiratory electron transport chain; functional details and 
localization of putative components are largely unknown. Photosynthetic ETCs result in regeneration of ATP and NADPH for cellular synthesis and growth. A residual 
respiratory activity persists also in the presence of light. The photosynthetic and respiratory ETCs are subject to multiple alternative electron pathways (not shown) 
that act as “electron valves” to prevent overreduction of the ETC (Mullineaux, 2014).
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to describe overall photosynthetic activity, in particular in bulk 
models to assess productivity in photobioreactors and related 
industrial application (Nedbal et al., 2010; Bernard, 2011). With 
respect to understanding interactions between cellular processes, 
a drawback of highly simplified growth models is their insufficient 
representation of intracellular parameters, such as no explicit PQ 
pool, no explicit regeneration of ATP and NADPH, and lack of 
alternative electron transport.

Beyond overall bulk models of photosynthesis, there is a 
significant history of biophysical models to understand oxygen 
evolution and chlorophyll fluorescence transients, often with a 
focus on PSII, as well as to understand specific properties, such 
as energy distribution in the photosynthetic apparatus (Butler 
and Strasser, 1977; Butler, 1978) or, more recently, excitation 
transfer in the PSII membrane (Amarnath et  al., 2016). Early 
kinetic models were described by Mar and Govindjee (1972), a 
more elaborate model was put forward by Holzwarth et al. (2006) 
and later analyzed by Nedbal et  al. (2007). Further elaborate 
models of this kind were developed by Lazár (2003) and Zhu 
et al. (2005). The former was refined and extended by Jablonský 
and Lazár (2008); different approaches were later compared by 
the same authors (Lazár and Jablonský, 2009). Common to these 
models is a focus on chlorophyll fluorescence emission, and to 

a lesser extent oxygen evolution, as the main output variables. 
While relevant for biophysical research, the respective models 
cannot be straightforwardly integrated into more comprehensive 
models of phototrophic growth, due to the focus on fast time 
scales and specific output variables. We note that the interpre-
tation of results obtained from pulse-amplitude modulated 
(PAM) fluorimetry significantly differs between cyanobacteria 
and plants (Schuurmans et  al., 2015; Acuña et  al., 2016), with 
modeling approaches focusing almost exclusively on the latter.

Models that explicitly describe the photosynthetic electron 
transport chain and subsequent reactions, in addition to PSII, are 
more suitable to integrate into the context of a living cell. To this 
end, a small number of models exist (Berry and Rumberg, 2000; 
Vershubskii et al., 2014), typically based on ODEs. An elaborate 
model of this type was proposed by Laisk et al. (2006), developed 
to understand the photosynthetic process from light absorption 
to sucrose synthesis. The model neglects many of the detailed 
biophysical properties of earlier models (Zhu et al., 2005), such 
as an explicit representation of the s-states that describe the cyclic 
reactions of the oxygen-evolving complex (Kok et al., 1970). The 
model instead provides a combination of whole chain electron 
transport and carbon assimilation processes, including non-
photochemical quenching, chlorophyll fluorescence, and (albeit 

129

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


TABLe 1 | Selected models of the photosynthetic light reactions and the electron transport chain (eTC) in plants and cyanobacteria.

Han (2002) A mechanistic model of algal photoinhibition induced by photodamage to photosystem ii
A minimal three-state model describing the photosynthetic response to irradiance (PI) curve based on ordinary differential equations (ODEs). The 
model is representative of a family of similar models, including applications on non-photochemical quenching in cyanobacteria (Gorbunov et al., 2011).

Zhu et al. (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and 
electron transfer associated with Photosystem ii
A detailed model of fluorescence induction in PSII in plant leaves based on ODEs. Table 3 in Zhu et al. (2005) provides a comparison of major 
assumptions and results of current models of fluorescence induction.

Laisk et al. 
(2006)

C3 photosynthesis in silico
An integrated model of photosynthetic electron transport in C3 plants, including carbon reduction via the Calvin–Benson cycle based on ODEs. One 
of the first integrated models of the entire photosynthetic machinery.

Jablonský and 
Lazár (2008)

evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation
A detailed model of PSII to describe oxygen evolution and chlorophyll fluorescence based on ODEs.

Jablonský et al. 
(2008)

impact of dimeric organization of enzyme on its function: the case of photosynthetic water splitting
An improved model of dimeric PSII describing the role of PSII dimerization on oxygen evolution. The model is based on ODEs and is an example of a 
very large number of variables (>103) due to the combinatorial explosion of possible states and transitions between them.

Ebenhöh et al. 
(2011)

A minimal mathematical model of non-photochemical quenching of chlorophyll fluorescence
A highly simplified model to describe light harvesting and short-term adaptive quenching dynamics in the plant photosynthetic ETC based on ODEs. 
Variables are the three states of the reaction centers, the oxidized and reduced PQ pool, lumenal proton concentration, active and inactive quencher, 
as well as stromal ATP and ADP concentrations.

Zhu et al. (2013) e-Photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis
A detailed model of leaf photosynthesis from light harvesting to carbohydrate synthesis based on ODEs. The model is a synthesis of the earlier model 
of Zhu et al. (2005) and a model of the core carbon metabolism (Zhu et al., 2007).

This table and all following tables are not exhaustive but highlight selected models that are of particular relevance to describe aspects of cyanobacterial growth. Model details, such 
as the exact number of variables, are listed only if they can be unambiguously sourced from the original publication.

FiGURe 4 | The photosynthesis–irradiance (Pi) curve for a minimal 
model of photosynthesis (Han, 2002). The ETC is described by a 
photosynthetic unit (PSU) that exists in an open or reactive state. After being 
subjected to light, the PSU transits to a closed or activated state (PSU*). 
Excessive absorption results in photodamage and an inhibited state PSUd 
with rate constant kd. (A) Using simple ODEs based on mass action kinetics 
results in typical PI curves. The overall functional form is similar to the 
Haldane equation, an equation derived for enzymes whose substrates have 
an inhibitory effect at higher concentrations. (B) The reaction scheme. Similar 
models can describe non-photochemical quenching in which the damaged 
state corresponds to a quenching state (indirectly) activated by light 
(Gorbunov et al., 2011). All values are reported in arbitrary units (a.u.).  
The ODEs used to generate the figure are provided in the Appendix.
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simplified) photorespiration. Using a similar approach, Zhu et al. 
(2013) described a detailed dynamic model of leaf photosynthesis, 
based on ODEs, from light capture to carbon assimilation, and 
incorporates the previous partial model of the same authors (Zhu 
et al., 2007) augmented by additional reactions of the ETC. Both 
models focus on C3 plant metabolism, but similar approaches are 
feasible for cyanobacteria.

Importantly, both models provide a sufficient level of detail 
to interface with other cellular processes and include ATP 
regeneration and reduction of NADPH, photorespiration, alter-
native electron transport, as well as an explicit representation 
of the PQ pool and lumenal pH. Owing to the focus on plant 
C3 metabolism, neither of the models describe peculiarities of 
cyanobacteria, such as shared components between the photo-
synthetic and respiratory ETC and the resulting differences in 
regulation.

Selected models of the ETC and the photosynthetic light 
reactions are summarized in Table  1. Main challenges for the 
development of corresponding models for cyanobacteria are to 
incorporate the respiratory ETC, as well as to incorporate the 
specific alternative electron sinks of cyanobacteria. As an inter-
face to other cellular processes, discussed below, a model of the 
cyanobacterial ETC should include regulatory switches in cyano-
bacterial photosynthesis, regulation of light harvesting including 
regulation of the orange carotenoid protein, state transitions that 
control the relative energy transfer from phycobilisomes to PSII 
versus PSI, and alternative electron sinks that serve as “electron 
valves” and prevent overreduction of the ETC, among other 
features that are relevant for cyanobacterial functioning and 
growth (Mullineaux, 2014). Relevant exchange variables are ATP 
and NADPH regeneration, the state of the PQ pool, leakage of 
reactive oxygen species (ROS), and oxidation of metabolites for 
cellular respiration.
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4. KiNeTiC MODeLS OF CeLLULAR 
MeTABOLiSM

The energy harvested by the photosynthetic light reactions 
drives the assimilation of inorganic carbon and the synthesis 
of storage compounds and building blocks for cellular growth. 
Photoautotrophic metabolism involves the uptake of inorganic 
carbon facilitated by CO2-concentrating mechanisms (CCMs), 
assimilation of CO2 by RuBisCO, and the subsequent synthesis 
of cellular building blocks mediated by a network of metabolic 
reactions. Computational concepts used to describe cyanobacte-
rial metabolism have been discussed previously (Steuer et  al., 
2012), here we focus on the integration of such descriptions into 
integrative models of phototrophic growth. In particular, models 
of metabolism are highly diverse and span multiple orders of 
magnitude with respect to the time scales and number of variables 
involved. As highlighted previously (Steuer and Junker, 2009), 
no single universal computational methodology exists that is 
suitable to describe all relevant aspects of metabolic functioning. 
Rather, a hierarchy of computational approaches exists, ranging 
from detailed kinetic models of individual enzymatic reactions, 
based on ODEs, to large-scale stoichiometric reconstructions 
that are evaluated using constraint-based analysis.

The basic building blocks of metabolism are the actions of 
individual enzymes and their respective reaction mechanisms. 
Computational modeling of enzyme kinetics is well understood 
(Steuer and Junker, 2009; Sauro, 2014), even though specific 
reaction mechanisms and atom transition maps are not yet com-
prehensively available and must be confirmed on an individual 
per-reaction basis. Detailed kinetic models of key reactions have 
been proposed in the literature, most notably for RuBisCO, the 
key enzyme of the Calvin–Benson cycle (Witzel et  al., 2010). 
Following the rules for overall rate equations of enzyme kinetic 
mechanisms, multiple reaction steps can be integrated into larger 
models of cellular pathways. Corresponding detailed kinetic mod-
els of metabolic pathways exist since the late 1950s, see Steuer and 
Junker (2009) for a review, and several kinetic pathway models 
have since been proposed for phototrophic plant metabolism. Of 
particular interest is the Calvin–Benson cycle and the adjacent 
carbon metabolism. Among the first computational descrip-
tions of phototrophic C3 carbon metabolism were the models 
proposed by Milstein and Bremermann (1979) and Hahn (1984). 
The former involves 17 first-order ODEs and 22 parameters. The 
latter involves 19 state variables and describes the dynamics of 
Calvin–Benson cycle intermediates, as well as parts of sucrose and 
starch metabolism. The model was later extended to include pho-
torespiration (Hahn, 1987), and simplified representations were 
considered (Hahn, 1991). The latter analysis demonstrated that 
also smaller models are able to reproduce the observed dynamics. 
Both models, as well as the model of Laisk and Walker (1986), are 
largely based on mass action kinetics, rather than derived enzyme 
kinetic equations for kinetic mechanisms. Parallel to the devel-
opment of detailed kinetic models of core carbon metabolism, a 
number of biochemical models of photosynthetic CO2 assimila-
tion have been developed that focus on plant-specific properties, 
such as gas exchange and stomatal conductance, often also incor-
porating aspects of carbon reduction, see Farquhar et al. (1980) 

for an influential early example. Likewise, a significant number of 
models were developed to investigate the origin of photosynthetic 
oscillations (Giersch, 1986; Laisk and Walker, 1986; Laisk et al., 
1989; Rovers and Giersch, 1995), see Roussel and Igamberdiev 
(2011) for a recent review.

The prototype of most current enzyme kinetic models of the 
Calvin–Benson cycle was proposed by Pettersson and Ryde-
Pettersson (1988). The model is based on mechanistic non-linear 
enzyme kinetic rate equations, implemented as ODEs, together 
with equilibrium mass-action ratios. The model describes the 
dynamics of the Calvin-Benson cycle under conditions of light 
and CO2 saturation. The parameterization of the model involved 
approximately 50 kinetic parameters, sourced from the literature 
across several plant species. The model of Pettersson and Ryde-
Pettersson (1988), like many current and past kinetic models, is 
therefore not necessarily a model of a single plant species, but 
must be considered as a prototype model that describes several 
generic aspects of plant leaf C3 metabolism. The model was later 
adapted to investigate further aspects of metabolic regulation 
in phototrophic metabolism (Poolman et  al., 2000, 2001), and 
extended by Zhu et al. (2007) to investigate the reallocation of 
enzymes of photosynthetic carbon metabolism with respect to 
optimal nitrogen and protein investment. These models also 
served as a blueprint for the first detailed kinetic models of 
cyanobacterial core carbon metabolism. Jablonský et al. (2013) 
proposed a modified version of the model of Zhu et al. (2007), 
adapted to describe the cyanobacterium Synechococcus elongatus 
PCC 7942, to investigate the functional consequences of isoen-
zymes. The majority of parameters were retained from the origi-
nal models. The model was later refined (Jablonský et al., 2014) to 
explain the metabolic regulation of primary carbon metabolism, 
also incorporating transcriptional data as a constraint for model 
dynamics. Most recently, a kinetic model of the central carbon 
metabolism of the cyanobacterium Synechocystis sp. PCC 6803 
was developed to investigate the role of isozymes on metabolic 
network homeostasis with respect to changes in gene expression 
induced by different CO2 conditions (Jablonský et al., 2016). In 
particular, a comparison of model properties indicated that the 
higher number of isozymes present in the Synechocystis sp. PCC 
6803 genome compared to the (smaller) genome of Synechococcus 
elongatus PCC 7942 may correspond to a shift of metabolic 
regulatory strategies from transcriptional control in latter toward 
post-transcriptional control in the former (Jablonský et al., 2016).

From computational perspective, the kinetic models con-
sidered above share several features relevant to the integration 
into multiscale models of phototrophic growth. In each case, 
the dynamics of the concentrations of metabolic intermediates 
are described by ordinary differential equations (ODEs). Rate 
equations are derived from enzyme kinetic mechanisms, and 
implemented using (usually reversible) non-linear Michaelis–
Menten type functions. The rate equations consider allosteric 
regulations, as well as other post-translational mechanisms, 
as far as such interactions are known. The light reactions are 
typically highly simplified. In the model of Pettersson and Ryde-
Pettersson (1988) and its later adaptations, ATP is provided by a 
single overall reaction (an ATP synthetase) that can be modulated 
according to light intensity. The concentrations of NADP+ and 
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TABLe 2 | Selected kinetic models of the central carbon metabolism in photosynthetic organisms.

Farquhar et al. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
An influential early model to describe photosynthetic CO2 assimilation in vivo. The model describes limiting processes in the leaf and 
integrates these into overall systems behavior.

Hahn (1984) A mathematical model of leaf carbon metabolism
Among the first kinetic models of plant leaf carbon metabolism. The model is based on ODEs for 19 metabolic intermediates using mass 
action kinetics.

Hahn (1987) A mathematical model of photorespiration and photosynthesis
An extension of the earlier ODE model of Hahn (1984) that incorporates photorespiration (glycolate and glycerate pathways) and diffusion 
between atmosphere and mesophyll tissue using 31 variables.

Pettersson and Ryde-
Pettersson (1988)

A mathematical model of the Calvin photosynthesis cycle
The prototype of most current kinetic models of plant leaf metabolism. The model is based on ODEs and makes use of derived enzyme 
kinetic rate equations for 9 reactions. 11 reactions are assumed to be close to equilibrium and are represented by algebraic equations 
within the model. Parameters are sourced from the biochemical literature.

Laisk et al. (1989) A mathematical model of the carbon metabolism in photosynthesis. Difficulties in explaining oscillations by fructose 
2,6-bisphosphate regulation
The model is similar in scope to the model of Pettersson and Ryde-Pettersson (1988) and provides a detailed description of core carbon 
metabolism (the Calvin–Benson cycle, starch and sucrose synthesis) involving 20 ODEs. The light reactions are described by a single 
enzyme-catalyzed reaction, the ATP synthetase. The NADPH/NADP+ ratio is assumed to be constant.

Poolman et al. (2000) Modeling photosynthesis and its control
An adaptation of the model of Pettersson and Ryde-Pettersson (1988). The major difference is that reactions close to equilibrium are 
represented by reversible mass action kinetics rather than algebraic equations. The model was later analyzed with respect to its control 
properties and shows evidence for two steady states (Poolman et al., 2001).

Zhu et al. (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic 
rate: a numerical simulation using an evolutionary algorithm
An extended kinetic model of plant leaf metabolism based on the model of Pettersson and Ryde-Pettersson (1988) including a 
detailed representation of photorespiratory metabolism. The model was used to study the optimal partitioning of enzymes to increase 
photosynthetic rate.

Jablonský et al. (2013) Phosphoglycerate mutases function as reverse regulated isoenzymes in Synechococcus elongatus PCC 7942
A modified and corrected model for cyanobacterial central carbon metabolism, based on the models of Pettersson and Ryde-Pettersson 
(1988) and Zhu et al. (2007). The model is the first kinetic model specific for a cyanobacterium and was used to investigate the function 
of phosphoglycerate mutase isoforms in Synechococcus elongatus PCC 7942. The model was later improved and extended (Jablonský 
et al., 2014) to investigate the diverse roles of isoenzymes in the same strain.

Jablonský et al. (2016) Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control 
A model of the central carbon metabolism of Synechocystis sp. PCC 6803 based on the earlier model of Jablonský et al. (2014). The 
model describes the dynamics of 36 metabolite concentrations interconnected by 54 reactions and makes use of 182 kinetic parameters.

The models of Laisk et al. (2006) and Zhu et al. (2013) integrate the photosynthetic light reactions and the core carbon metabolism and are already listed in Table 1. Minimal models 
that investigate oscillatory mechanisms, and models that primarily focus on plant-specific properties, such as stomatal conductance, are not considered.
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NADPH are assumed to be constant. Likewise, enzyme amounts 
are represented by external parameters, the respective values 
are part of the maximal reaction velocities Vmax. Table  2 lists 
selected kinetic models of central carbon metabolism and the 
Calvin–Benson cycle. We conjecture that such models provide a 
reasonable account of metabolite dynamics on short and medium 
time scales (minutes to few hours) and to metabolic adaptations 
to brief periods of darkness. As yet, the construction of kinetic 
models to adequately represent changes in day/night metabolism 
remains a considerable challenge.

The key factors to integrate models of core carbon metabo-
lism into overall models of phototrophic growth requires 
an explicit representation of energy (ATP) and redox state 
(NADPH/NADP+) as dynamic variables that allow coupling to 
the ETC. In this respect, first steps have been made for plant 
metabolism. The models of Laisk et  al. (2006) and Zhu et  al. 
(2013) both integrate the photosynthetic light reactions with 
a detailed representation of the core C3 carbon metabolism, 
including photorespiration. Such models provide a framework 
for guiding engineering efforts and allow for a description of 

photosynthesis and carbon fixation in response to, for example, 
changes in photon flux density.

Beyond the integration of light capture and carbon metabo-
lism, significant challenges remain. Allosteric post-translation 
regulation only covers small to medium time scales. No current 
kinetic model provides a description of diurnal changes in 
metabolism and the corresponding switch from carbon assimila-
tion to the mobilization of storage compounds. In addition to 
redox regulation, such switches are likely to require the inclusion 
of additional hierarchies of cellular regulation, in particular tran-
scription and possibly regulation by the circadian clock. Switches 
in metabolic modes are of particular relevance for cyanobacterial 
metabolism and growth, as they lack the compartmentation 
of eukaryotic algae and plants. Likewise, current models focus 
on carbon metabolism and its regulation, limitation of other 
macronutrients like phosphorus or nitrogen is typically not 
considered. Nonetheless, in particular with respect to nitrogen, 
kinetic models can be expected to provide insight into the role of 
certain metabolites, such as 2-oxoglutarate (2-OG), as signaling 
compounds (Fokina et al., 2010).
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FiGURe 5 | A generic representation of cyanobacterial CO2-concentrating mechanisms (CCM), species-specific differences are neglected. Inside,  
the carboxysome bicarbonate HCO3

−( ) is rapidly converted to CO2 via the carbonic anhydrase (CA). CCMs thereby facilitate a CO2 gradient to increase the local 
concentration of CO2 in the vicinity of RuBisCO and depress photorespiration. Several uptake mechanisms for HCO3

−  exist, including ABC-type high affinity 
transporters and Na+/ HCO3

−  symporters. The activity of CCMs, including expression of several components, is modulated by environmental parameters, in 
particular CO2 availability. CO2 leaking from the carboxysomes may diffuse into the medium or is partly converted back to HCO3

−  (carbon cycling) at the thylakoid 
membrane using insufficiently understood mechanisms. CCMs utilize cellular energy and might be involved in dissipating excess light energy and play a role in the 
maintenance of internal pH. Hence, CCMs are integrally tied to cellular metabolism and growth. See Table 3 for selected computational models of CCMs.
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A major obstacle for detailed kinetic models also remains 
the scarcity of enzyme kinetic data. The construction of kinetic 
models requires detailed knowledge of enzyme kinetic param-
eters—with typically 4–5 parameters per reaction, including the 
Michaelis–Menten parameters KM for substrates and products, as 
well as thermodynamic equilibrium values Keq and the specific 
catalytic activities of enzymes. Even metabolic pathways of mod-
erate size, such as the Calvin–Benson cycle and adjacent reaction, 
typically consist of 20–30 enzymatic reactions. Therefore, the 
construction of larger kinetic models, while feasible from a com-
putational point of view, is primarily limited by data availability 
and data reliability (Srinivasan et al., 2015). To some extent, the 
scarcity of information about kinetic parameters can be allevi-
ated by explicitly accounting for uncertainty in kinetic models of 
metabolism—suitable approaches have been proposed recently 
(Wang et al., 2004; Steuer et al., 2006; Tran et al., 2008; Steuer and 
Junker, 2009; Murabito et al., 2014) but are not yet widely applied 
in models of phototrophic growth.

5. MODeLS OF CARBON-
CONCeNTRATiNG MeCHANiSMS

A characteristic feature of cyanobacterial growth is the use 
of CO2-concentrating mechanisms (CCMs) to facilitate the 
uptake and acquisition of inorganic carbon. CCMs allow 
cyanobacteria to raise the local concentration of CO2 in the 
vicinity of the carboxylating enzyme RuBisCO, and thereby 
overcome the comparatively low affinity of RuBisCO for CO2 

and depress the competitive oxygenation reaction (photorespi-
ration). Cyanobacterial CCMs typically make use of dedicated 
microcompartments, the carboxysomes, that separate the 
assimilation of CO2 by RuBisCO from the rest of the cell. The 
CCMs of cyanobacteria relies on a number of components. The 
respective mechanisms are reasonably well understood (Kaplan 
and Reinhold, 1999; Price et al., 2008; Burnap et al., 2015), see 
Figure  5 for a schematic depiction, and the requirement of a 
quantitative mathematical analysis has recently been highlighted 
(Mangan and Brenner, 2014). The efficiency of the cyanobacterial 
CCMs can be characterized by the ratio between the apparent 
whole-cell affinity for extracellular CO2 and the respective affin-
ity for CO2 of the carboxylating enzyme RuBisCO—with ratios 
up to 1,000 reported in the literature (Burnap et al., 2015). While 
many components of the CCMs are constitutively expressed, the 
expression of specific uptake systems is differentially regulated 
depending on environmental parameters, in particular light 
intensity and the availability of inorganic carbon (Ci) (Kaplan 
and Reinhold, 1999; Burnap et al., 2015).

In addition to their important function to enhance the local 
CO2 concentration and depressing photorespiration, CCMs may 
also be involved in dissipating excess light energy (Xu et al., 2008) 
and might play a role in pH homeostasis. Despite this tight integra-
tion with carbon metabolism, none of the current kinetic models 
of carbon metabolism explicitly accounts for CCMs. Nonetheless, 
a number of quantitative models of CCMs are available that can 
be readily incorporated into models of cyanobacterial growth. 
See Table 3 for selected computational models of CCMs. Early 
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models focus either on simple equations for CO2 and HCO3
−  

(bicarbonate) flux into and out of the cell (Badger et al., 1985), 
as well as on arguments based on reaction–diffusion equations 
(Reinhold et al., 1987, 1991). These models were refined further to 
include explicit representations of the carboxysomes. Specifically, 
the model of Fridlyand et al. (1996) considers the various CO2 
or HCO3

−  fluxes between medium, periplasmic space, cytoplasm 
and carboxysomes using derived values for geometric param-
eters, and permeability and diffusion coefficients. The model also 
considers the energetic consequences of scavenging CO2 that 
leaks back into the cytoplasm. Models can be adopted to specific 
cyanobacterial strains, such as the model of Hopkinson et  al. 
(2014) for Prochlorococcus spp. MED4. Two recent quantitative 
models of CCM functioning are available (Clark et  al., 2014; 
Mangan and Brenner, 2014). Both models are based on reaction–
diffusion equations that are solved for highly simplified spatial 
topologies (spherical cells), but otherwise make use of partially 
divergent assumptions. The focus of Clark et al., 2014 are inter-
species differences and a hypothetical carboxysome-free mutant 
that is of interest in industrial settings with elevated CO2 supply. 
The model assumes that the carboxysome walls are impermeable 
to CO2. The model of Mangan and Brenner (2014) assumed 
that carboxysome permeability is identical for HCO3

− and CO2 
and the model explores the range of best parameter values that 
give rise to a functional and effective CCM. While carboxysome 
permeability has not yet been measured directly, Mangan and 
Brenner (2014) concluded that optimal parameter values indeed 
exist, and transport rates and concentrations derived for these 
optimal values are in good agreement with known experimental 
data. Very recently, the model was extended to incorporate the 
effect of intracellular pH as a key physiological parameter that 
governs the composition of the Ci pool (Mangan et al., 2016). The 
“pH-aware” model highlights the utility of quantitative models to 
evaluate the energetic costs of Ci accumulation for CCMs.

While current models of the CCM do consider the optimal-
ity and functioning of CCMs under different intracellular and 
environmental conditions, they typically do not incorporate 
explicit models of cellular growth or other cellular mechanisms. 
However, the high energy demand of Ci transport, either by 
direct hydrolysis of one ATP per bicarbonate, or indirectly via 
the costs of ion transport, the costs of synthesizing carboxysome 
shell proteins, as well as the significant impact of CCMs on the 
efficiency of carbon assimilation suggest that further integration 
of models of CCMs into a broader context of cellular function-
ing is worthwhile to understand the trade-offs and interactions 
between energy investment, CCM utilization, carbon assimila-
tion, and growth.

6. LARGe-SCALe MODeLS OF 
CYANOBACTeRiAL MeTABOLiSM

Beyond kinetic models of central carbon metabolism, 
metabolic networks are increasingly described using large-scale 
stoichiometric reconstructions (Steuer et  al., 2012). Metabolic 
reconstructions aim to provide a comprehensive account of 
all possible interconversions of small molecules within a given 
cell or compartment, including enzymatic reactions as well as 
non- catalyzed (spontaneous) interconversions, transport reac-
tions, and diffusion. Metabolic reconstructions are derived from 
annotated genomes with subsequent steps of manual curation 
and gap filling, see Knoop et al. (2010), Steuer et al. (2012), and 
Knoop et al. (2013) for recent examples. The description typically 
involves only knowledge about the stoichiometry of interconver-
sions; knowledge about kinetic parameters (such as Michaelis–
Menten parameters) or allosteric regulation is not required.

Nonetheless, large-scale stoichiometric models of bacterial 
metabolism are highly predictive (McCloskey et al., 2013). The 
predictive power derives from the fact that the fluxes through 

TABLe 3 | Selected models of cyanobacterial CO2-concentrating mechanisms (CCMs).

Badger et al. (1985) A model for HCO3
−− accumulation and photosynthesis in the cyanobacterium Synechococcus sp: theoretical predictions and 

experimental observations
A simple early model of CCMs in cyanobacteria based on a single spherical compartment into which inorganic carbon is actively accumulated.

Fridlyand et al. (1996) Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism
Based on a series of earlier models (Reinhold et al., 1991), the model provides a quantitative account of cyanobacterial CCM with a focus on 
the implications of scavenging CO2 that leaks outwards from the carboxysome. The model is based on eight differential equations that describe 
diffusion and transport of inorganic carbon (CO2 and HCO3

− ) between the various compartments.

Hopkinson et al. 
(2014)

The minimal CO2-concentrating mechanism of Prochlorococcus spp. MeD4 is effective and efficient 
A simple model based on the model of Reinhold et al. (1987) and adapted from Prochlorococcus spp. MED4. Transfer of inorganic carbon is 
described by four differential equations.

Clark et al. (2014) insights into the industrial growth of cyanobacteria from a model of the carbon-concentrating mechanism
A kinetic model of the CCM parameterized for two cyanobacterial species and a hypothetical no-CCM mutant. The work assumes the 
carboxysome shell to be impermeable to CO2 and concludes that carboxysome geometry is unimportant and interspecies differences in CCMs 
are largely due to active HCO3

−  transporters.

Mangan and Brenner 
(2014)

Systems analysis of the CO2-concentrating mechanism in cyanobacteria
A quantitative evaluation of cyanobacterial CCMs based on a reaction–diffusion model to investigate parameter ranges that give rise to a 
functional and effective CCM.

Mangan et al. (2016) pH determines the energetic efficiency of the cyanobacterial CO2-concentrating mechanism
An update of the model of (Mangan and Brenner, 2014) that introduces intracellular pH as a key physiological parameter that determines the 
energetic costs associated with CCMs and carbon fixation.

Modeling the CCM typically involves a spatial component. Analysis of the respective partial-differential equations (PDEs) shows, however, that intracompartmental concentration 
gradients can be neglected. Models of the CCM are therefore typically based on ODEs, rather than PDEs.
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TABLe 4 | Selected large-scale metabolic reconstructions of cyanobacteria.

Shastri and Morgan (2005) Flux balance analysis of photoautotrophic metabolism
One of the first metabolic reconstruction and stoichiometric evaluations of cyanobacterial central carbon metabolism. The model is 
medium scale with a focus on central metabolism and does not include gene–reaction associations.

Knoop et al. (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth
A large-scale (but not genome-scale) reconstruction of Synechocystis sp. PCC 6803 including gene–reaction associations and 
photorespiration. The model includes the GABA shunt to close the (incomplete) TCA cycle.

Montagud et al. (2010) Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium
A reconstruction of Synechocystis sp. PCC 6803. The model also includes a putative glyoxylate shunt that subsequently could not 
be identified in vivo.

Saha et al. (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and 
Synechocystis sp. PCC 6803
A detailed reconstruction of the cyanobacterium Cyanothece sp. ATCC 51142. The model considers separate (light/dark) biomass 
equations to reflect the differences between light and dark phases.

Vu et al. (2012) Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular 
cyanobacterium Cyanothece sp. ATCC 51142
A reconstruction of Cyanothece sp. ATCC 51142 with a focus on relative fluxes through the ETC.

Nogales et al. (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis
An expanded reconstruction of Synechocystis sp. PCC 6803 including gene–reaction associations. The model does not yet 
incorporate the TCA bypass identified by Zhang and Bryant (2011).

Knoop et al. (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803
An expanded reconstruction of Synechocystis sp. PCC 6803, including the TCA bypass (Zhang and Bryant, 2011) as well as the 
original GABA shunt. The model is backed by experimental analysis to identify or disprove the existence of a functional glyoxylate 
shunt and considers diurnal changes in reaction fluxes.

Mueller et al. (2013) Rapid construction of metabolic models for a family of cyanobacteria using a multiple source annotation workflow
Genome-scale reconstructions of several Cyanothece strains that demonstrate the advantages of using a parallel workflow.

Reconstructions of algae and land plants are not considered.
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enzymatic reactions are not independent. Constraint-based 
computational methods rely on the fact that under steady-state 
conditions most intracellular metabolites do not accumulate. 
The rate of synthesis of any non-accumulating metabolite must 
therefore approximately equal the rate of consumption of this 
metabolite. Similar arguments also hold for diurnal metabolism: 
if, after a full diurnal cycle, the concentration of a given intracel-
lular metabolite is approximately equal to its initial value, then the 
total flux of synthesis reactions and the total flux of consuming 
reactions must be approximately equal. The condition of flux 
balance puts significant constraints on the feasible flux space. 
Predictions about specific flux solutions are then typically based 
on assumptions about metabolic optimality. That is, among all 
feasible flux solutions, constraint-based methods seek to identify 
a solution that maximizes a given objective function, such as the 
maximal yield of biomass for a given light input—motivated by 
the fact that a similar selection might take place during evolution. 
Predictions from large-scale stoichiometric models are therefore 
not mechanistic, that is, they are not derived from knowledge 
about biophysical or biochemical interactions. Rather, predic-
tions are derived from how metabolism ought to behave given the 
assumption that metabolic functioning fulfills certain evolution-
ary optimality principles.

Computationally, the analysis of large-scale stoichiometric 
reconstructions is based on methods of linear programing (LP) 
and is computationally feasible also for networks consisting of 
several thousands of reactions. The strength of stoichiometric 
models and constraint-based analysis are questions such as the 
following: What is the maximal growth yield for a given light or 
carbon input? Which set of enzymes is essential for the synthesis 

of certain biomass components? How many distinct biochemi-
cal paths exist for the synthesis of certain biomass components 
and how do these pathways differ with respect to cellular energy 
expenditure and cofactor utilization? Due to the specific compu-
tational methodology, however, a direct integration of large-scale 
stoichiometric models into kinetic models of metabolism remains 
challenging. Various extensions toward incorporating dynamics 
have been proposed (Mahadevan et al., 2002; Kim et al., 2008; 
Feng et al., 2012; Antoniewicz, 2013), and extensive efforts are 
undertaken to bridge the gap between kinetic and stoichiometric 
models (Steuer, 2007; Steuer and Junker, 2009; Chakrabarti et al., 
2013; Srinivasan et al., 2015).

Detailed stoichiometric reconstructions are available for sev-
eral cyanobacterial strains (Knoop et al., 2010, 2013; Montagud 
et al., 2010; Hamilton and Reed, 2012; Nogales et al., 2012; Saha 
et al., 2012; Vu et al., 2012; Mueller et al., 2013; Maarleveld et al., 
2014; Yoshikawa et  al., 2015)—typically consisting of several 
hundred enzymatic interconversions and accounting for all 
known pathways related to central metabolism and the synthesis 
of key biomass components. See Table 4 for selected examples of 
metabolic reconstructions. Such large-scale reconstructions are 
valuable tools to derive consistent equations for the (maximal) 
growth yield with respect to light input, to derive core models 
of reaction pathways, and to make predictions about maximal 
product yield in biotechnological applications (Zavřel et  al., 
2016). In particular, large-scale reconstructions also enable a 
semiautomated extraction of meaningful core models to facilitate 
the construction of smaller kinetic models (Erdrich et al., 2015). 
Analysis of the respective networks, however, is often confined to 
either a constant light environment, or to heterotrophic growth 
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on extracellular carbon sources. Only recently stoichiometric 
analysis of phototrophic metabolism explicitly described differ-
ent phases of light availability. For example, Knoop et al. (2013) 
simulated biomass synthesis fluxes over a full diurnal cycle, 
Muthuraj et  al. (2013) used dynamic FBA (dFBA) to capture 
light-dark metabolism over discretized time intervals, Knies 
et  al. (2015) considered storage metabolites that accumulate 
and are consumed over a diurnal cycle using a reconstruction 
of the unicellular alga Emiliania huxleyi, Cheung et  al. (2014) 
described a flux balance model that captures interactions between 
light and dark metabolism in C3 and CAM leaves, and Baroukh 
et al. (2014) proposed a novel dynamic modeling framework to 
describe carbon metabolism of unicellular microalgae.

Beyond conventional FBA and related constraint-based 
methods, there has been increasing interest to evaluate cellular 
metabolism in terms of a cellular “protein economy” (Molenaar 
et al., 2009) and to study trade-offs in cellular resource allocation 
(Goel et al., 2012; Müller et al., 2015)—a theme where, as noted 
by Schaechter (2015), the bacterial growth physiology of old is 
connected to the systems biology of today (Stouthamer, 1973; 
Neidhardt et al., 1990). As one of the first applications involving 
cyanobacteria, Burnap (2015) formulated a model of autotrophic 
growth in terms of allocating protein resources among core func-
tional groups, such as the ETC, light-harvesting antennae, and 
ribosomes. Along similar lines, Rügen et  al. (2015) formulated 
a self-consistent autocatalytic model of phototrophic growth. 
The model is based on the observation that the macromolecules 
that constrain cellular growth, including the components of the 
ETC, metabolic enzymes, and ribosomes, are itself products of 
metabolism. Phototrophic growth can therefore be formulated as 
a time-dependent linear optimization problem, such that optimal 
growth entails a time-dependent allocation of resources during a 
full diurnal cycle. The approach of Rügen et al. (2015), denoted as 
conditional FBA, results in dynamic time courses for all involved 
reaction fluxes, as well as changes in biomass composition over a 
diurnal cycle. Similar to conventional FBA, models of this kind 
are not based on mechanistic insight, but rather seek to evaluate 
the optimality of resource allocation during phototrophic growth. 
It is expected that methods and applications that go beyond 
conventional FBA and involve spatial and temporal metabolic 
modeling based on genome-scale reconstructions of microbial 
metabolism will play an increasingly important role (Henson, 
2015).

7. MODeLS OF THe CYANOBACTeRiAL 
CLOCK

In addition to the biochemistry of metabolism, phototrophic 
growth is highly dependent on regulatory networks to coordinate 
growth and to relay environmental information. To this end, of 
particular relevance is the cyanobacterial circadian clock—
discovered in the late 1980s and unique among prokaryotes 
(Pattanayak and Rust, 2014). The cyanobacterial clock consists 
of an interrelated network of multifunctional components 
functioning in timekeeping, input and/or output mechanisms. 
Synechococcus elongatus PCC 7942 is the cyanobacterium whose 
clock is currently best studied. The core oscillator comprises only 

three proteins: KaiA, KaiB, and KaiC (Ishiura et al., 1998). KaiC 
exhibits an intrinsic kinase, dephosphorylation, and ATPase 
activity (Nishiwaki et al., 2004; Terauchi et al., 2007; Egli et al., 
2012; Nishiwaki and Kondo, 2012). In complex with KaiA 
and KaiB, KaiC undergoes circadian Thr/Ser phosphorylation 
(Nakajima et al., 2005; Nishiwaki et al., 2007; Rust et al., 2007) 
(Figure 6). KaiA promotes and KaiB represses phosphorylation 
of KaiC (Iwasaki et  al., 2002; Kitayama et  al., 2003; Xu et  al., 
2003). The ATPase activity of KaiC is extremely weak (only 15 
ATP molecules are consumed per day) and slow, determining the 
about 24-h period of the clock (Terauchi et al., 2007; Abe et al., 
2015; Chang et al., 2015). The circadian rhythm of KaiC phos-
phorylation runs without transcription–translation and can even 
operate in a test tube (Nakajima et al., 2005; Tomita et al., 2005). 
In vivo, the KaiABC protein system works as a post-translational 
oscillator (PTO).

The KaiC phosphorylation rhythm has widely been studied 
in systems biology, and hence, a variety of mathematical models 
have been put forward. The first models were rather minimal to 
explain how sustained oscillations in phosphorylation of KaiC 
occur, including no intermediate steps of phosphorylation, 
introducing feedbacks on KaiC phosphorylation or assum-
ing hypothetical states of KaiA, KaiB, and KaiC (Emberly and 
Wingreen, 2006; Kurosawa et  al., 2006; Mehra et  al., 2006; 
Axmann et al., 2007; Mori et al., 2007). Emberly and Wingreen 
(2006) were the first who showed theoretically that monomer 
shuffling between KaiC hexamers at specific clock times could 
explain the robustness and resilience of the circadian clock—a 
hypothesis stated prior to experimental evidence. Different vari-
ations of the concept, monomer shuffling, have afterward been 
modeled by other groups (Kageyama et al., 2006; Mehra et al., 
2006; Mori et al., 2007; Yoda et al., 2007; Eguchi et al., 2008; Nagai 
et  al., 2010). Another hypothesis of how synchrony within the 
Kai oscillator could be achieved stresses KaiA sequestration into 
KaiABC complexes (Kurosawa et al., 2006; Clodong et al., 2007; 
Rust et al., 2007; van Zon et al., 2007; Brettschneider et al., 2010). 
The consensus view has emerged that both mechanisms work in 
concert (Qin et al., 2010a). See Table 5 (in vitro) and  Table 6 (in 
vivo) for selected models of the cyanobacterial circadian clock.

Recent studies have increased our understanding of how the 
core oscillator is integrated with input pathways and output 
pathways, which enable the clock to synchronize (“entrain”) to 
the 24-h period of the environment and to transmit temporal 
information to downstream processes resulting in circadian 
rhythms in cellular physiology. Clock input cues involve the cel-
lular ATP/ADP ratio, which has a direct effect on the core clock 
by modulating the KaiCs kinase activity (Rust et al., 2011). In 
particular, an increase in the ADP levels, occurring when cells 
are placed into darkness, inhibits further KaiC phosphorylation 
and thus resets the phase of oscillation to synchronize to the 
metabolic state of the cell. By simulating various ATP/ADP 
ratios that mimic different night phases, Rust et al. (2011) could 
recreate phase shifts in the core oscillator as seen in vitro and 
in  vivo. For their theoretical analysis, the authors modified a 
previous mathematical model of the circadian clock, which was 
based on the rates of phosphorylation and dephosphorylation at 
Thr432 and Ser431 (Rust et al., 2007). In the refined model, the 
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FiGURe 6 | Model of the circadian clock and putative interaction sites with other metabolic processes. The KaiC phosphorylation cycle and the KaiABC 
complex formation are dependent on ATP. Cellular metabolic signals encoded in the ATP/ADP ratio have a direct effect on the core clock by modulating the KaiC’s 
kinase activity (Rust et al., 2011; Pattanayak et al., 2015). Increasing ADP levels at night reset the phase of oscillation by inhibiting further KaiC phosphorylation. 
Oxidation and reduction of plastoquinone (PQ) are controlled by photosynthetic electron transport during the day and by electrons derived from the respiratory ETC 
in the night. At the transition from day into night, quinones become transiently oxidized capturing KaiA and CikA (Kim et al., 2012). The aggregation of KaiA stops 
KaiC phosphorylation. The core circadian clock generates rhythms in gene expression and cell division via the global transcriptional factor RpaA. During the day, the 
physical interaction of SasA with KaiC promotes phosphotransfer to RpaA so that RpaA becomes active. During the night, the physical interaction of CikA with the 
KaiBC complex inhibits phosphorylation of RpaA so that RpaA becomes inactive (Gutu and OShea, 2013). Red and blue dots are phosphates at KaiC 
phosphorylation sites Thr432 and Ser431. Red arrows represent interactions with ATP, ADP, and oxidized quinones related to metabolic processes of phototrophic 
growth. The role of other input components (e.g., LdpA) and output components (e.g., LabA, RpaB) as well as the location of the quinones in the thylakoid 
membranes are not shown. See Table 5 (in vitro) and Table 6 (in vivo) for selected models of the cyanobacterial circadian clock.
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KaiA-dependent kinase rates were now additionally modulated 
by the ratio of ATP to ATP + ADP. This model was again adapted 
to account for an additional ATPase activity experimentally 
found in the CI subunit of KaiC and required for binding of 
KaiB to Ser-phosphorylated KaiC (Phong et  al., 2013). The 
KaiBC complex formation was shown to depend on an ATPase, 
but whose activity was insensitive to changes in the cellular 
ATP/ADP ratio—in contrast to the ATPase in the CII subunit of 
KaiC (responsible for the Thr/Ser phosphorylation reactions). 
The results of the combined modeling and experimental study 
(Phong et al., 2013) suggest that these two differently sensitive 
catalytic domains are responsible for the capability of the clock 
to receive input signals while preserving circadian rhythmic-
ity. Depending on the specific question under investigation, 
both entrainment models could relatively straightforwardly be 
integrated with other modules of cyanobacterial physiology, 

with ATP as key to coupling (e.g., light reactions). Another 
model version already exists, which additionally accounts for 
the transcription and translation of clock genes as well as the 
feedback to the core oscillator but needs to be extended to 
include interactions with other cellular parameters such as the 
ATP/ADP ratio (Teng et  al., 2013). The mathematical clock 
model proposed by Brettschneider et  al. (2010) could equally 
be envisaged for the integration into larger models of photo-
trophic growth. The core oscillator is modeled by a larger set of 
ODEs (12 ODEs; for comparison, 3 ODEs in Rust et al. (2007) 
but includes hexamerization of KaiC, monomer shuffling, 
and assembly and disassembly of KaiAC, KaiBC, and KaiABC 
complexes. Here also, an extended model (15 ODEs) coupled to 
a transcription–translation circuit has been proposed (Hertel 
et al., 2013). Inhibition of KaiCs’ kinase activity by ADP can be 
incorporated into the model.
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TABLe 5 | Selected in vitro models of the cyanobacterial circadian clock.

Emberly and Wingreen (2006) Hourglass model for a protein-based circadian oscillator
An early minimal model to explain sustained oscillations in phosphorylated KaiC. The authors suggest monomer exchange between 
KaiC hexamers to contribute to the robustness of the clock, prior to experimental evidence of such mechanisms. The model 
consists of 5 variables and 8 parameters.

Mehra et al. (2006) Circadian rhythmicity by autocatalysis
An early minimal model using a two-state approximation (KaiC exists in two phosphorylation states, high and low). Oscillations 
emerge due to autocatalytic KaiA–KaiC interaction. The model consists of eight variables and 10 parameters.

Mori et al. (2007) elucidating the ticking of an in vitro circadian clockwork
The model describes explicitly the kinetics of complex formation and dissociation of KaiC hexamers with k phoshorylation sites per 
monomer. Monomer exchange in phosphorylation and dephosphorylation phase explains robust oscillations. The model uses a 
stochastic matrix model for simulation of hexamer kinetics resulting in a combinatorial number of variables (4,374 variables for k = 2 
parameters).

Yoda et al. (2007) Monomer-shuffling and allosteric transition in KaiC circadian oscillation
Similar to Mori et al. (2007) but using deterministic equations to simulate the dynamics (56 variables, 34 parameters).

van Zon et al. (2007) An allosteric model of circadian KaiC phosphorylation
The model uses 2 phosphorylation states for Kai C, KaiA exhibits different binding affinity for different phospho-forms of KaiC. The 
model emphasizes sequestration of KaiA in KaiA–KaiB–KaiC complexes. The model consists of 30 variables and 17 parameters.

Clodong et al. (2007) Functioning and robustness of a bacterial circadian clock
The minimal model was designed to examine different possible feedback mechanisms to determine what type of feedback 
generates the most robust rhythms. The ODE model consists of 14 variables and 19 parameters.

Rust et al. (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock
An early ODE model to describes the dynamics of the 4 phosphorylation states of KaiC during a circadian cycle. KaiA is 
sequestrated by serine phosphorylated KaiC using phenomenological assumptions. The model consists of 3 variables and 13 
parameters.

Axmann et al. (2007) A minimal circadian clock model
A minimal ODE clock model using a two-state approximation of KaiC. KaiA-dependent phosphorylation is highly non-linear, 
sequestration of free KaiA by phosphorylated KaiC–KaiB complex favors dephosphorylation. The model was designed to study 
robustness of oscillations with respect to concerted changes in Kai protein concentration but fails to be invariant against such 
changes (6 variables, 9 parameters).

Eguchi et al. (2008) Mechanism of robust circadian oscillation of KaiC phosphorylation in vitro
A similar model as Yoda et al. (2007) and Mori et al. (2007). Focus on monomer shuffling to synchronize oscillations. The model 
consists of 14 variables and 4 parameters.

Nagai et al. (2010) Synchronization of circadian oscillation of phosphorylation level of KaiC in vitro
Similar to Mori et al. (2007) with focus on monomer shuffling. The model incorporates collective shifts from tense to relaxed states 
(14 variables and 11 parameters).

Brettschneider et al. (2010) A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock
An ODE model to describe the dynamics of the four phosphorylation states of KaiC during a circadian cycle including complex 
formation and monomer shuffling (12 variables, 26 parameters).

Qin et al. (2010a) intermolecular associations determine the dynamics of the circadian KaiABC oscillator
An elaborate model to describe complex formation dynamics. The model consists of 56 variables and 34 parameters.

In vitro models including energy status

Rust et al. (2011) Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator
A modified version of the model of Rust et al. (2007). The model includes inhibition of kinase activity by ADP. The ATP/ADP ratio is 
an explicit parameter within the model (3 variables, 16 parameters).

Phong et al. (2013) Robust and tunable circadian rhythms from differentially sensitive catalytic domains
A modified version of the model of Rust et al. (2011) with another ATPase activity that is insensitive to changes in ATP/ADP. The 
ATP/ADP ratio is an explicit parameter within the model (6 variables, 25 parameters).

The models focus on the functioning of the post-translational oscillator (PTO). ATP, NADPH, and redox state are typically not considered as explicit variables. All models are 
implemented as ODEs, except otherwise noted.
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Sensing the decrease in the ATP/ADP ratio during night is 
assumed to allow the clock to infer the length of night (Rust et al., 
2011). In two biochemical studies, Pattanayak et al. uncovered a 
further connection between the clock and cellular metabolism: 
metabolic rhythms produced by the clock (such as rhythms in 
glycogen abundance, which go along with changing levels of 
ATP/ADP) feed back to the core oscillator. These rhythms are 
very likely the main driving force of the clock, allowing the cells 
to anticipate the onset of darkness in advance (Pattanayak et al., 

2014, 2015). In addition, the clock seems to be able to anticipate 
nightfall through the plastoquinone pool, which is part of the 
ETC. In particular, the plastoquinone pool embedded within 
the thylakoid membrane becomes transiently oxidized at the 
transition from day into night and binding of PQ to KaiA causing 
aggregation and decay that, in turn, reduces the positive effect of 
KaiA on KaiC phosphorylation (Wood et  al., 2010; Kim et  al., 
2012). Other redox-sensitive input components such as CikA 
(circadian input kinase) and LdpA (light-dependent period 
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TABLe 6 | Selected in vivo models of the cyanobacterial circadian clock.

Kurosawa et al. (2006) A model for the circadian rhythm of cyanobacteria that maintains oscillation without gene expression
The model is based on a two-state approximation and sequestration of KaiA sequestration as mean of synchronization. The model consists 
of 6 variables and 18 parameters.

Miyoshi et al. (2007) A mathematical model for the Kai protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria
The models couples the TTFL and PTO, fully phosphorylated KaiC promotes kaiBC transcription. The model consists of 13 variables and 
32 parameters and assumes hypothetical states (not seen in experiments).

Zwicker et al. (2010) Robust circadian clocks from coupled protein modification and transcription–translation cycles
A PTO and coupled TTFL–PTO model. The model consists of 30 variables and 37 parameters.

Qin et al. (2010b) Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system
An ODE model that describes complex formation dynamics. The model neglects site-dependent phosphorylation and incorporates 
negative regulation of kaiBC transcription by KaiABC and KaiBC complexes. The model consists of 57 variables and 39 parameters.

Hertel et al. (2013) Revealing a two-loop transcriptional feedback mechanism in the cyanobacterial circadian clock
An extended version of the model of Brettschneider et al. (2010). The model includes positive and negative regulation of kaiBC transcription 
by threonine and doubly phosphorylated KaiC and unphosphorylated KaiC, respectively (15 variables, 33 parameters).

Teng et al.(2013) Robust circadian oscillations in growing cyanobacteria require transcriptional feedback
An extended version of the model of Rust et al. (2007). The model incorporates negative regulation of kaiBC transcription by serine 
phosphorylated KaiC (5 variables, 18 parameters).

Later models combine the transcription–translation feedback loop (TTFL) and the core PTO oscillator. As for in vitro models, ATP, NADPH, and redox state are typically not 
considered as explicit variables. All models are implemented as ODEs, except otherwise noted.
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A) have been identified, which reset or modulate the phase of 
KaiC phosphorylation cycle [reviewed by Mackey et al. (2011)]. 
Figure  6 provides a schematic of possible sites of interactions. 
Mathematical models describing the interconnections at the 
molecular level have yet to be developed.

The cyanobacterial circadian clock results in genome-wide 
gene expression rhythms and regulates cell cycle progression 
relaying information via a two-component system that comprised 
SasA (Synechococcus adaptive sensor A) and RpaA (regulator of 
phycobilisome association A) (Liu et al., 1995; Mori et al., 1996; 
Takai et al., 2006; Dong et al., 2010). Rhythms of chromosome 
compaction and DNA topology (highly correlated with gene 
expression rhythms) do not hinge on SasA, pointing to the 
existence of other output pathways (Smith and Williams, 2006; 
Woelfle et al., 2007; Vijayan et al., 2009). In the positive transcrip-
tional pathway, SasA interacts physically with KaiC and acts as a 
kinase toward RpaA (Takai et al., 2006; Gutu and OShea, 2013). 
In the course of a circadian cycle, KaiB displaces SasA from KaiC 
and KaiA becomes sequestered, switching KaiC into autodephos-
phorylation mode (Figure 6). The negative transcriptional output 
involves LabA (low amplitude and bright), CikA, and the tran-
scriptional factor RpaB (regulator of phycobilisome associated 
B)—all three repressing the activity of RpaA (Taniguchi et  al., 
2007; Gutu and OShea, 2013; Espinosa et al., 2015). CikA, with its 
dual role in input and output pathways, plays a special role. As an 
output component, CikA competes with KaiA for binding to KaiB 
(Gutu and OShea, 2013; Chang et al., 2015). The binding of CikA 
to the KaiBC complex activates the phosphatase activity of CikA 
toward RpaA (Gutu and OShea, 2013) (Figure 6). RpaA, as both 
a circadian transcriptional activator and a repressor, drives global 
gene expression rhythms. The transcriptional output includes the 
regulation of clock genes, forming a transcription–translation 
feedback loop (TTFL) to the core oscillator (Ishiura et al., 1998). 
Since we are just beginning to understand the mechanistic details 
of the TTFL, the existing mathematical models are still highly 
simplified, using phenomenological assumptions as to how RpaA 

(Zwicker et al., 2010) or specific phospho-forms of KaiC control 
transcription of the kaiBC gene cluster (Miyoshi et al., 2007; Qin 
et al., 2010b; Hertel et al., 2013; Teng et al., 2013). These models 
reproduce the most important experimental results, although 
Miyoshi et al. (2007) assumed hypothetical states for KaiA, KaiB, 
and KaiC inconsistent with experiments. Due the relatively small 
numbers of variables and parameters, the ODE models of Teng 
et al. (2013) and Hertel et al. (2013) might be most suitable for use 
in larger models of phototrophic growth but require additional 
modifications that account for the most recent experimental 
findings.

8. ReGULATiON OF GeNe eXPReSSiON 
iN CYANOBACTeRiA

In Synechococcus elongatus PCC 7942, the KaiC phosphorylation 
cycle targets the general transcription apparatus and thereby 
regulates 30–100% of the transcriptome in circadian fashion, 
depending on the experimental setup (Liu et al., 1995; Nakahira 
et al., 2004; Ito et al., 2009; Vijayan et al., 2009; Lehmann et al., 
2013). The transcriptional output is regulated by multiple fac-
tors such as circadian changes in chromosomal compaction/
decompaction (Smith and Williams, 2006) involving oscillations 
in DNA supercoiling (Woelfle et al., 2007) as well as biochemical 
cascade pathways that converge to globally acting transcription 
factors, RpaA and RpaB and so far unknown factors (Taniguchi 
et al., 2007; Gutu and OShea, 2013; Paddock et al., 2013; Espinosa 
et al., 2015). Furthermore, it is now clear that small non-protein-
coding RNAs (<200 nucleotides) play as both positive and nega-
tive regulators crucial roles in gene expression of cyanobacteria 
(Georg and Hess, 2011). By base-pairing with the target mRNA, 
small RNA molecules interfere with the ribosome binding site or 
other sequence stretches, and consequently alter mRNA transla-
tion and stability. This mode of regulation might explain why the 
proportion of cyclic proteins in diverse cyanobacteria is rather 
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uncorrelated to that found in microarray studies (Stöckel et al., 
2011; Waldbauer et al., 2012; Guerreiro et al., 2014), because not 
only transcriptional but also post-transcriptional (small RNA-
mediated) mechanisms might be active and modulate or fine-
tune the dynamics of regulatory networks. Synechocystis sp. PCC 
6803 possesses a large number of small non-coding RNAs, and 
antisense RNAs influence at least 26% of all gene transcripts in 
this cyanobacterium. There are several hints that the non-coding 
RNAs fulfill important functions in light–dark acclimation 
(Georg et al., 2009; Mitschke et al., 2011). A specific functional 
role could be clarified for some of the antisense RNAs, e.g., IsrR 
(Dühring et al., 2006; Legewie et al., 2008), as-flv4 (Eisenhut et al., 
2012), or PsbAR2 and PsbAR3 mRNA (Sakurai et al., 2012). Yet, 
many identified RNA regulators still await elucidation of their 
functional relevance.

9. CONCLUSiON: PUTTiNG THe PARTS 
TOGeTHeR

Almost all cellular functions have evolved in the context of con-
straints and trade-offs that can only be understood if the respective 
cellular and environmental context is taken into account. To this 
end, the construction of computational models of cellular pro-
cesses not only allows us to study the inner workings of selected 
processes but also allows us to investigate the emergent properties 
that arise from interactions between these processes. The trade-
offs and interrelations within phototrophic growth are manifold: 
the energy required for cellular growth is derived from the pho-
tosynthetic light reactions, which themselves are a major source 
of reactive oxygen species (ROS) and therefore require careful 
balance between different electron transport pathways and alter-
native electron “valves”. CCMs use energy and have implications 
for the efficiency of carbon assimilation. The cellular ATP/ADP 
ratio and the oxidized PQ pool relays information to the circadian 
clock, which affects transcriptional output and hence metabolic 
activity. Metabolism itself depends on cellular energy and redox 
potential—and must be appropriately coordinated to synthesize 
the right metabolites at the right time. The availability of ribo-
somes and amino acids, which are itself products of metabolism, 
affects the rates of translation of new proteins—which must be 
coordinated to account for damage, stability, and turnover times 
of proteins. In particular, the components of PSII complexes 
themselves are dependent on environmental conditions due to 
photodamage caused by ROS (Yao et al., 2012).

Many if not most of these interactions and trade-offs are still 
insufficiently understood. An important example is the action 
and the evolutionary benefit of the circadian clock. While many if 
not most prokaryotes live in environments with periodic diurnal 
cycles of light, temperature, and humidity, only cyanobacteria 
are known to possess a bona fide circadian clock. While the 
competitive advantage of a circadian clock in a periodic environ-
ment has been demonstrated experimentally for cyanobacteria 
(Woelfle et al., 2004), the precise adaptive value and the selective 
pressure resulting the evolution of a clock remains only partially 
understood. Reasoning about the possible fitness implications of 
a circadian clock necessarily involves considering the organisms 
as a whole, as exemplified in the “escape from light” hypothesis 

that circadian rhythmicity arose from the need to protect the 
organism’s DNA from ultraviolet (UV) radiation, at the time 
unfiltered by the Earth’s early atmosphere (Hut and Beersma, 
2011; Lück and Westermark, 2016). A quantitative evaluation of 
such a hypothesis requires to contrast the energetic cost of the 
circadian clock with its benefits for survival and growth—a task 
where advanced computational models will allow for an increas-
ingly quantitative evaluation.

While, as outlined in this contribution, a large number of 
computational models related to phototrophic growth are already 
available, also many important cellular processes are still insuf-
ficiently described. An important example is the coordination 
of cellular growth in response to transient darkness, starvation, 
or stress conditions. Only recently, iconic pathways, such as 
the stringent response, have been shown to be active also in 
cyanobacteria and to mediate a coordinated transcriptional and 
translational reaction to (transient) periods of darkness (Hood 
et al., 2016). Likewise, knowledge about the molecular and physi-
ological mechanisms involved in the transition of cyanobacte-
rial cells from a resting state to an active vegetative state is still 
incomplete (Klotz et al., 2016)—albeit crucial to understand what 
mechanisms causes a cyanobacterial cell to divert resources away 
from growth and division and toward survival until environmen-
tal conditions improve. Also, only little is known concerning the 
coordination of cellular metabolism with cell cycle events (Asato, 
2005, 2006). In particular, cell size control and size homeostasis 
in bacteria is still not fully understood, with conceptual models 
dating back to the work of Donachie (1968). Recent work on E. 
coli and B. subtilis favored the “ädder” model, in which the size 
added between birth and division is constant for a given growth 
 condition—as opposed to the “sizer,” in which the cell actively 
monitors cell size, and “timer” model, in which the cell grows 
for a specific time before division (Taheri-Araghi et  al., 2015). 
Corresponding studies for cyanobacteria are not yet available. 
Recent data have indicated that there is coupling between circadian 
oscillator and the cell cycle, specifically that cell cycle progression 
in some cyanobacteria slows during specific circadian intervals 
(Dong et al., 2010; Yang et al., 2010)—posing timely questions 
for further computational research and necessitating integrative 
modules of cyanobacterial growth.

Overall, there is increasing interest in whole-cell models to 
understand cellular trade-offs and functions in the context of a 
living cells. The construction of integrative computational models 
to predict phenotype from genotype has gained momentum with 
a first whole-cell model of the life cycle of the human pathogen 
Mycoplasma genitalium—based on a subdivision of cell func-
tionality into modules (Karr et  al., 2012). A similar effort was 
already undertaken for cyanobacteria to explain fitness advantage 
conveyed by a circadian clock (Hellweger, 2010)—an approach 
that can be regarded as a prototype for the path outlined in this 
contribution.

Distinct from other approaches to whole-cell models, how-
ever, we argue that it is unlikely that a single universal model—a 
model that spans all scales from intracellular to intercellular to 
properties of ecosystems—will fulfill all requirements needed to 
describe cellular growth. Rather, we envision a modular approach. 
Depending on the research question, different temporal and 
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research question. We note that, besides the biological challenges, 
such a strategy also entails major computational challenges. As 
yet, the annotation of computational models is often poor. That 
is, the biochemical identity of model variables is not defined 
in a computer-readable format, and hence, merging of models 
typically requires extensive manual curation (Krause et al., 2010). 
While standardized exchange formats for computational models, 
such as the Systems Biology Markup Language, SBML (Hucka 
et al., 2003), are available for more than a decade, they are not 
commonly applied outside the Systems Biology community. For 
example, as yet, none of the models of the cyanobacterial circa-
dian clock are available from the BioModels database—a major 
resource for computational models of biological processes (Li 
et al., 2010). In addition, only few computational tools allow for 
the integration of different modeling concepts, such as constraint-
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Notwithstanding these challenges in computational meth-
odology, we expect a growing library of models related to 
cyanobacterial growth that can inform and guide research 
how phototrophic organisms, such as cyanobacteria, adapt to 
complex environments. These models must increasingly adhere 
to common standards and should be made available on open 
platforms, such as the BioModels database (Li et al., 2010) and 
e-cyanobacterium.org (Klement et  al., 2013). Given the recent 

advances in model development and annotation, computational 
modeling will undoubtedly play a key role in understanding 
trade-offs and adaptations in cyanobacteria. In the beginning, 
integrated models of cyanobacterial growth will be still idealistic, 
crude, and most certainly incomplete. But, again referring to 
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The differential equations that define the model shown in 
Figure 4 are d[PSU*]/dt = v1 − v2 − vd and d[PSUd]/dt = vd − vr, 
together with the conservation relationship [PSU] + [PSU*] + 
[PSUd] =  [PSUtotal]. The reactions rates describe the activation 
of the photosynthetic unit (PSU), v1 = k1⋅I⋅[PSU], the return to 
the open state, v2 = k2⋅[PSU*], the transition to a photodamaged 

state, vd  =  kd⋅I⋅[PSU*], and the recovery, vr  =  kr⋅[PSUd]. The 
rate of activation, v1, and photodamage, vd, both depend on the 
light intensity, I (with kd ≪ k1). Parameters used are k1 = 10.0, 
k2 = 10.0, kr = 1.0, [PSUtotal] = 1.0, and kd as indicated in Figure 4. 
The rate of oxygen evolution (v2) obtained from an (analytical) 
steady-state solution of the ODEs is shown. Parameters are 
arbitrary and do not reflect actual values found in cyanobacteria.

147

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


ORIGINAL RESEARCH
published: 11 May 2016

doi: 10.3389/fcell.2016.00041

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2016 | Volume 4 | Article 41

Edited by:

Julio Vera González,

University Hospital Erlangen, Germany

Reviewed by:

Irene Otero Muras,

Consejo Superior de Investigaciones

Científicas, Spain

Luis L. Fonseca,

Georgia Institute of Technology, USA

*Correspondence:

Marcus Rosenblatt

marcus.rosenblatt@fdm.uni-freiburg.de

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 04 December 2015

Accepted: 21 April 2016

Published: 11 May 2016

Citation:

Rosenblatt M, Timmer J and

Kaschek D (2016) Customized

Steady-State Constraints for

Parameter Estimation in Non-Linear

Ordinary Differential Equation Models.

Front. Cell Dev. Biol. 4:41.

doi: 10.3389/fcell.2016.00041

Customized Steady-State
Constraints for Parameter Estimation
in Non-Linear Ordinary Differential
Equation Models
Marcus Rosenblatt 1*, Jens Timmer 1, 2, 3 and Daniel Kaschek 1

1 Institute of Physics, Albert Ludwig University of Freiburg, Freiburg, Germany, 2 Freiburg Centre for Systems Biology, Albert

Ludwig University of Freiburg, Freiburg, Germany, 3 BIOSS Centre for Biological Signaling Studies, Albert Ludwig University of

Freiburg, Freiburg, Germany

Ordinary differential equation models have become a wide-spread approach to

analyze dynamical systems and understand underlying mechanisms. Model parameters

are often unknown and have to be estimated from experimental data, e.g., by

maximum-likelihood estimation. In particular, models of biological systems contain a

large number of parameters. To reduce the dimensionality of the parameter space,

steady-state information is incorporated in the parameter estimation process. For

non-linear models, analytical steady-state calculation typically leads to higher-order

polynomial equations for which no closed-form solutions can be obtained. This can

be circumvented by solving the steady-state equations for kinetic parameters, which

results in a linear equation system with comparatively simple solutions. At the same

time multiplicity of steady-state solutions is avoided, which otherwise is problematic

for optimization. When solved for kinetic parameters, however, steady-state constraints

tend to become negative for particular model specifications, thus, generating new types

of optimization problems. Here, we present an algorithm based on graph theory that

derives non-negative, analytical steady-state expressions by stepwise removal of cyclic

dependencies between dynamical variables. The algorithm avoids multiple steady-state

solutions by construction. We show that our method is applicable to most common

classes of biochemical reaction networks containing inhibition terms, mass-action and

Hill-type kinetic equations. Comparing the performance of parameter estimation for

different analytical and numerical methods of incorporating steady-state information, we

show that our approach is especially well-tailored to guarantee a high success rate of

optimization.

Keywords: non-linear ODE models, parameter estimation, biochemical reaction networks, steady-state, positive

solutions, multiplicity, multi-stability, success rate

1. INTRODUCTION

Dynamical systems are frequently modeled by systems of ordinary differential equations
(ODEs). Homogeneously distributed molecules are treated as continuous quantities
interacting with each other according to kinetic laws, e.g., mass-action or Michaelis-Menten
kinetics.
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A typical ODE system

ẋ = f (x, p, u(t)) , x(0) = x0 (1)

determines the time-evolution of an N-dimensional state vector
x(t). Here, p ∈ R

M
+ denotes the M-dimensional vector of non-

negative kinetic parameters. The vector x0 ∈ R
N
+,0, where

R+,0 = R+ ∪ {0}, gives the set of initial conditions. The kinetic
parameters and initial conditions together span the space of
model parameters θ = (p, x0). The explicit time-dependency via
u(t) corresponds to external driving forces, like drug stimuli in
biological dynamic systems.

In many fields where ODE models are used, parameter
values are not a priori known and have to be estimated from
experimental data. Commonly, this is achieved by minimizing
an objective function g(θ,D) that penalizes weighted differences
between model prediction x(t) and data D, e.g., by maximum-
likelihood estimation. For the case of non-linear ODE systems,
several local optima may exist. In order to find the global
optimum, several optimization methods, e.g., particle swarm
optimizers (Peng et al., 2010) or simulated annealing (Xiang
and Gong, 2000), include stochasticity to escape local minima.
Compared to that, deterministic algorithms may stick to local
optima during optimization. On the other hand, gradient
and Hessian information of the objective function can be
incorporated, increasing the performance of optimization by
a multiple. Combining the advantages of derivative-based
optimization and random sampling, a multi-start deterministic
optimization approach has proven to yield superior overall
performance for our problem class (Raue et al., 2013).
Throughout this work, we perform optimization by means of a
trust-region optimizer from multiple starting positions.

Specially in models of biological systems, available data is
sparse and parameters are often non-identifiable. Apart from
that, the high-dimensional parameter space hampers parameter
sampling. In order to reduce the number of parameters, the
system is assumed to initially (t = 0) be in a steady-state which is
determined by the constraint equation

f (x0, p, 0) = 0 . (2)

As a standard approach, the steady-state constraint is solved for
the initial values x0. Since Equation (2) is in general non-linear,
this may lead to higher-order polynomial equations for which
no general solution is available. Even for a rather simple case
of quadratic or cubic equations, solutions are not unique and
optimization would have to be performed for all possibilities.
Another aspect of steady-state calculation are negative solutions
for x0 and p that appear for certainmodel specifications. Negative
solutions are not only contradicting the biological setting with
positively defined concentrations and kinetic parameters but also
constitute a problem for optimization. Negative parameter values
change the sign of damping terms of the ODE’s right-hand side
whichmight lead to rapidly growing solutions and an abort of the
optimization before an optimum was reached.

In order to obtain a high convergence probability for the
optimization of randomly chosen initial parameter samples, our

aim is to derive non-negative, analytical steady-state expressions,
while multiple steady-state expressions are likewise circumvented
by a proper choice of kinetic and initial value parameters for
which Equation (2) is solved.

Over the last decades, steady-state analysis has been addressed
by many algorithms and methods. In the following, we give
an overview of existing approaches and summarize their
applicability to different types of model equations with a special
focus on parameter estimation in ODE models, see Table 1.

The earliest-proposed algorithm for deriving steady-states in
enzyme-catalyzed systems being described by simple mass-action
rules was developed by King and Altman (1956). In the original
paper, however, interactions that do not involve the enzyme
were not allowed which prohibits applicability to most of today’s
systems with proteins mediating the activation of other proteins
without being part of the reaction. After Chemical Reaction
Network Theory (CRNT) was formulated (Horn and Jackson,
1972; Feinberg, 1979), the method of King and Altman has been
improved by graph theory (Chou, 1990) and extended to special
subclasses of CRNs, e.g., layered signaling cascades (Feliu et al.,
2012) and post-translational modification networks (Feliu and
Wiuf, 2013). The same authors also published a more general
approach for CRNs in Feliu and Wiuf (2012). Here, a set of
core variables is introduced serving for a parametrization of the
steady-states whereby non-negative solutions are guaranteed due
to graph-theoretical arguments.

Another approach developed by Halasz et al. (2013),
introduces bilinearities of the system as new variables leading
to a linearized system solvable by application of Cramer’s rule.
The number of bilinearities, however, is restricted and negative
steady-state solutions are not prevented.

All mentioned approaches deal with steady-state analysis for
CRNs based on mass-action rules. However, modern modeling
approaches often make use of special reaction types such as
inhibition, Michaelis-Menten or Hill kinetics that cannot be
included into standard CRNT without changing the model
structure and introducing new dynamical variables. In the
approach of Halasz et al. (2013), inhibition and Michaelis-
Menten terms can easily be integrated by multiplying the
corresponding steady-state equation by the denominator of the
rate expression. However, since a state variable is contained in
the denominator, this can increase the number of bilinearities
significantly.

TABLE 1 | Covered reaction types and positivity for different methods of

steady-state determination.

Method CRN, Mass Inhibition, Hill Non-negative

action, Production, Michaelis- Kinetic Solutions

Degradation Menten

King-Altman Yes No No Yes

Feliu and Wiuf Yes No No Yes

Halasz et al. Yes Yes No No

Loriaux et al.
Yes Yes Yes No

(py-substitution)

Proposed Yes Yes Yes Yes
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In order to avoid problems of higher-order polynomial
equations, steady-state equations can be solved not only for initial
value- but also for kinetic parameters, which is done in the
steady-state solver py-substitution developed by Loriaux et al.
(2013). From N initial values and M kinetic parameters, a set
of N variables is chosen that have to be fixed in Equation (2).
In doing so, a lot of freedom is incorporated into the solution.
In fact, py-substitution is able to solve the very most steady-state
equation systems, since in principle N kinetic parameters could
be chosen as fixed variables directly leading to a simple linear
equation system.

Complementary to analytical approaches, steady-state
information can be incorporated into the system by numerically
computing the initial conditions during each optimization
step. Even gradient information that is necessary for efficient
optimization is available by means of the implicit function
theorem. A numerical incorporation of steady-state information
has the advantage that the complexity of the underlying
equation system is in principal not restricted. Furthermore, the
implementation remains untouched when model equations are
changed. However, convergence of the numerical steady-state
calculation is not guaranteed and issues of multiple steady-states
cannot be controlled.

In the following section, we present a method to derive non-
negative steady-state expressions for a large class of nonlinear
ODE models that are based on biochemical reactions. Our
approach picks up the idea of solving for kinetic parameters
in order to derive unique and simple steady-state expressions.
Due to the structure of the ODE system, solving for kinetic
parameters often leads to potentially negative steady-state
solutions, depending on the point of evaluation in parameter
space. By introducing appropriate parameter transformations
and exploiting the given model structure, our approach
guarantees a non-negative solution space. In the Results section,
we show how different steady-state parameterizations influence
the optimization procedure and compare our approach to the

standard approach of solving for initial value parameters as well
as to a numerical steady-state approach.

2. METHODS

2.1. Theoretical Background
Let us consider a model f as an N-dimensional ODE system ẋ =

f (x, p) with states x, parameters p and no external driving forces,
i.e., the ODE is autonomous. We write f as a matrix product

f (x, p) = S · F(x, p) , (3)

of the N × M-dimensional stoichiometry matrix S and the
M-dimensional flux vector F which depends on states and
parameters. For the entries of the flux vector, we allow rational
functions of x and p including e.g., mass-action, inhibition,
Michaelis-Menten and Hill-Type kinetics. Table 2 gives an
overview of the main reaction types covered by the presented
steady-state approach.

We assume that each single flux Fl is proportional to some flux
parameter kl and can be written as

Fl = kl · Gl(x, q) , (4)

where the function Gl only depends on the states and a set
of additional parameters q taken from the set of all model
parameters p. The union of flux parameters k and additional
model parameters q coincides with the parameter set p. Typically
all reaction types described by CRNT only need one flux
parameter and do not contribute to q, however, inhibition terms
and Michaelis-Menten kinetics contain at least one additional
parameter and Hill kinetics even two.

The signs of the entries of the stoichiometry matrix S
determine whether a flux contributes as an in- or an outflux to
the time evolution of the corresponding state. We assume that
each outflux is at least linearly dependent on the corresponding

TABLE 2 | Examples of typical reaction types of ODE models.

# Stoichiometry Reaction type Flux Contribution to dA
dt

1 ∅ −→ A Production k Positive/influx

2 A −→ ∅,B Degradation, transformation k · A Negative/outflux

3 A+ A −→ AA Dimerization k · A2 Negative/outflux

4 B −→ A Transformation k · B Positive/influx

5 B+ C −→ A Binding k · B · C Positive/influx

6 B −→ A Inhibition by C k · B · 1
q+C

Positive/influx

7 B −→ A Michaelis-Menten k · B · 1
q+B

Positive/influx

8 A+ B −→ C Binding k · A · B Negative/outflux

9 A −→ B Inhibition by C k · A · 1
q+C

Negative/outflux

10 A −→ B Michaelis-Menten k · A · 1
q+A

Negative/outflux

11 B −→ A Hill k · Bq2

q1
q2+Bq2

Positive/influx

12 ∅ −→ A Self-activation k · Aq2

q1
q2+Aq2

Positive/influx

13 B+ C −→ A Power-law k · Bq1 · Cq2 Positive/influx

All types are covered by our steady-state approach.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2016 | Volume 4 | Article 41150

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Rosenblatt et al. Steady-States for Parameter Estimation

state, as being always the case for mass-action systems. By means
of Equation (2), each initial value x0,i ≡ xi is directly related with
a steady-state equation of the form

0 =
∑

ini − xi ·
∑

outi , (5)

where ini and outi constitute functions of states and parameters.
For a majority of reaction types used in ODE models, the fluxes
ini and outi are independent of xi, compare Table 2. In these
cases, Equation (5) is linear in xi and has the solution xi =
∑

ini
∑

outi
. However, if the fluxes ini or outi still depend on xi,

e.g., reaction 12 in Table 2 for the case of self-activation or
reaction 3 with an outflux being quadratic in xi, Equation (5)
might be non-linear in xi.

In order to solve the complete set of steady-state equations,
we analyze their specific structure by means of graph theory. We
therefore rewrite Equation (5) as

xi =

∑

ini
∑

outi
(6)

and summarize appearances of states on the right-hand side
of Equation (6). Here, the set of states is defined by the set
of dynamic variables x that we want to fix by the steady-state
determination. Once a dynamic variable is fixed by a non-
negative expression or treated as a free parameter, it is removed
from the set of states.

Definition 1: A head of state xi is a state xj that appears on the
right-hand side of Equation (6). By h(xi), we refer to the set of
heads for a specific state xi. In particular, xi can itself be a part of
h(xi).

Proposition 1: If non-negative steady-state solutions for all
heads of xi are known, a non-negative steady-state solution for xi
can directly be obtained by Equation (6). This holds especially, if
the set h(xi) is empty.

Definition 2: The adjacency matrix M(f ) of an ODE model
f (x, p) with states x and parameters p is an N × N matrix with
entries

Mji =

{

1, if xj ∈ h(xi)

0, else .

Each dM-dimensional adjacency matrix M defines a directed
graph GM with nodes x1 to xdM which we call steady-state graph.
Each non-zero entry of M corresponds to a directed edge(xj, xi)
implying that xj occurs in the steady-state expression of xi, i.e.,
Equation (6). A non-zero diagonal entry Mii reflects that the
corresponding steady-state equation is non-linear in xi.

2.2. Splitting Cycles
The specific structure of the steady-state graph enables to
solve the steady-state equations step-by-step as is shown in the
following.

Definition 3: A cycle of a steady-state graph is a path through
the graph along its edges with equal starting and end point. Here,
we allow cycles of length one arising from non-zero diagonal
entries in the adjacency matrixM.

Definition 4: Graphs that do not contain cycles are called
tree-like.

Proposition 2: If a steady-state graph of an N-dimensional
model f is tree-like, non-negative steady-state solutions can be
obtained for all xi inside the graph.

Proof: For any tree-like steady-state graph, there exists at least
one root, i.e., state without head, called xr . Since h(xr) = ∅,
the corresponding steady-state expression can be obtained by
Proposition 1. In doing so, xr is removed from the steady-state
graph and a new state serves as root for which Proposition 1 again
gives the corresponding steady-state expression. By iteratively
applying Proposition 1 for each of the N nodes, the complete
steady-state solution is obtained.

Considering Proposition 2, it is clear that solving the steady-
state constraint Equation (2) for the set of initial values only
becomes intricate, if there are cycles inside the steady-state graph
such that higher-order polynomial equations arise. The idea of
our steady-state approach is to split all these cycles step-by-step
such that Proposition 2 can ultimately be applied to the remaining
graph.

The simplest way of splitting a cycle is bymeans of a conserved
quantity (CQ) of the system arising from the stoichiometry. A
general introduction can be found in Loriaux et al. (2013) or
Halasz et al. (2013). The following definition restricts to the
properties being relevant for the presented approach.

Definition 5: A conserved quantity (CQ) of the model f is
an expression of states and parameters which remains constant
during the time-evolution of f . For each CQ, the number of
independent steady-state equations is reduced by one implying
that one state or flux parameter that appears in the CQ can be
chosen freely. If all CQs can be derived from the stoichiometry
matrix, the number of CQs is given by ncq = N − RS, with the
model size N and the rank of the stoichiometry matrix RS. The
cases for which ncq > N − RS are discussed in Section 2.5.

In order to split a cycle by a CQ, one of the states, xc,
that appears both inside the cycle and in the CQ is chosen
freely. The corresponding steady-state equation is removed from
Equation (2), whereby the number of independent steady-state
equations remains constant. Since the state xc is treated as a
free variable, all edges originating from and leading to xc can be
removed from the steady-state graph and the considered cycle is
split. Note, that each CQ can only be used once.

If no states inside the cycle appear in CQs, the cycle can be
split by solving the steady-state equation of a specific cycle state
xi for a flux parameter kl. By means of Equations (3) and (4), the
steady-state expression of kl holds

kl =
−1

SilGl(x, q)

∑

j 6=l

SijkjGj(x, q) . (7)

Proposition 3: Let nkl be the number of appearances of the
flux parameter kl, see Equation (4), inside the steady-state
constraint Equation (2). Then nkl coincides with the number of
non-zero entries in the l-th column of the stoichiometry matrix S.

Unless kl does not appear in other steady-state equations, i.e.,
nkl = 1, the considered cycle is removed from the steady-state
graph without affecting other parts of the graph. However, if
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nkl > 1, all further appearances have to be substituted by
Equation (7) which creates new edges inside the steady-state
graph and possibly even new cycles. In order to keep the structure
as simple as possible, flux parameters with nkl = 1 play a special
role.

2.3. Enforcing Positivity
Although solving for flux parameters implies linear equations
and therefore structurally simple steady-state expressions, the
solutions are often negative for certain model specifications.
Here, we show how positivity of the expressions can be
guaranteed by appropriate transformations.

The steady-state expression, Equation (7), of the flux
parameter kl was derived by means of the steady-state equation
of xi. The expression contains minus signs if and only if at least
one of the stoichiometry entries Si,j 6=l has the same sign as Sil, In
this case, at least one further flux contributes to xi with the same
sign as Fl = klGl, namely as an in- or outflux.

Definition 6: For the steady-state equation of xi, Equation (5),
we define µi and νi as the number of in- and outfluxes,
respectively. Furthermore, we define the dimension of the state
xi as the minimum dim(xi) = min (µi, νi).

If dim(xi) = 1, a non-negative steady-state expression is
obtained by solving for the particular flux parameter being the
only in- or outflux, compare first examples in Table 3.

If dim(xi) > 1, positivity can be enforced by performing
an appropriate parameter transformation. In order to do so, we
divide the fluxes contributing to xi into influxes Fin,1 . . . Fin,µi

and outfluxes Fout,1 . . . Fout,νi . Then, Equation (5) reads

0 =

µi
∑

j= 1

Fin,j −

νi
∑

l= 1

Fout,l . (8)

Let us assume that we want to solve Equation (8) for the influx

parameter kin,1 =
Fin,1

Gin,1
. We perform a variable transformation

by defining the ratio between the remaining influxes and Fin,1 as

rz =
Fin,z

Fin,1

= kin,z ·
Gin,z

kin,1Gin,1

for z = 2, . . . , µi , (9)

TABLE 3 | Examples of solving steady-state equations for flux parameters.

Steady-state

equation

Solve

for

Type Solution

0 = k1A
2 − k2X k1 1 k1 =

k2X

A2

0 = k1A
2 − k2X k2 1 k2 =

k1A
2

X

0 = k1A
2 − k2X −

k3XB−
k4X
q1+C

k1 1 k1 = X

A2

(

k2 + k3B+
k4

q1+C

)

0 = k1A
2 + k5B − k2X

− k3XB−
k4X
q1+C

k1, k5 2
k1 = 1

A2
X

(

k2 + k3B+
k4

q1+C

)

· 1
1+r

k5 = 1
B
X

(

k2 + k3B+
k4

q1+C

)

· r
1+r

where the rz replace the kinetic parameters k2 to kµi . By means of
Equations (8) and (9), we obtain

∑

l

Fout,l = Fin,1 ·



1+

µi
∑

j= 2

rin,j





and therefore

kin,1 =
1

Gin,1

∑

l

Fout,l ·
1

1+
∑µi

j= 2 rj
. (10)

Since Gin,1 and Fout,l are positive and Equation (10) is a sum
of positive contributions, a non-negative steady-state expression
for kin,1 is guaranteed. By means of Equation (9), the remaining
flux parameters have to be substituted by the non-negative
expressions

kin,z =
1

Gin,z

∑

l

Fout,l ·
rz

1+
∑µi

j= 2 rj
for z = 2, . . . , µi .

(11)

For an outflux parameter, we analogously obtain

kout,1 =
1

Gout,1

∑

j

Fin,j ·
1

1+
∑νi

l= 1
rl

and (12)

kout,z =
1

Gout,z

∑

j

Fin,j ·
rz

1+
∑νi

l= 1
rl

for z = 2, . . . , νi .

(13)

2.4. Algorithm for Steady-State
Determination
In the previous sections, we showed how simple steady-state
expressions can be obtained (Section 2.2), while positivity is
likewise guaranteed (Section 2.3). In order to split one cycle of the
steady-state graph and solve for a flux parameter, a pair (xi, kj) of
state and flux parameter has to be chosen, which is not unique. In
the following, we suggest an algorithm based on a classification
of such pairs.

According to Definitions 5, 6 and Proposition 3, we associate
each pair with one of four different types:

(xi, kj) ≡



















Type 0, if xi appears in a CQ

Type 1, nkj = 1 and dim(xi) = 1

Type 2, nkj = 1 and dim(xi) > 1

Type 3, else .

Figure 1 shows a flowchart of the algorithm. At first, the set of
CQs is computed for the ODE system serving as an input for
the algorithm. If the graph is tree-like, the remaining equations
are obtained according to Proposition 2 and the complete set of
steady-state equations is returned.

In the case of a pair of Type 0, the cycle can simply be removed
by interpreting the corresponding state as a free variable. The CQ
that is thereby used is removed from the set of CQs and cannot
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FIGURE 1 | Flowchart of Steady-State Determination: After identification of all CQs of the system, the algorithm performs a loop where in each pass

one cycle of the steady-state graph is removed. Since for each cycle the nodes are analyzed with regard to the number of in- and outflux rates, the graph

structure as well as the structure of the steady-state equations is kept as simple as possible. Once the steady-state graph is tree-like, the remaining equations are

solved and equations are returned.

further contribute to the steady-state determination. Here, the
flux parameters remain unaffected.

Unless the cycle cannot be directly split by means of a CQ, the
corresponding steady-state equation, Equation (5), is solved for
one of the µi + νi flux parameters by use of a pair of Type 1,2 or
3. In order to keep the steady-state solution as simple as possible,
pairs of Type 1 are preferred, since this enables to split the cycle
both without substituting the flux parameter by its steady-state
expression, Equation (7), and without introducing flux ratios as
new parameters, Equation (9).

If no pairs of Type 1 are available, the algorithm scans the
steady-state graph for pairs of Type 2. In this case a parameter
transformation is necessary in order to guarantee positivity of the
solution. However, the flux parameter does not appear any more
in the system and therefore has not to be substituted. In all three
cases, Type 0, 1, or 2, the number of cycles of the steady-state
graph is reduced.

If pairs of Type 2 are also not available, all pairs are of Type
3. In this case, it is not a priori clear which pair is the best
choice. As a simply revisable choice, the algorithm then solves
the steady-state equation of the state with minimal dimension.
Subsequently, all further appearances of flux parameters have to
be replaced by their particular transformation, Equations (11)
or (13).

2.5. Calculating the Conserved Quantities
and Simplifying the Stoichiometry Matrix
In order to find CQs of the ODE system, linear combinations of
rows of the stoichiometry matrix S can be analyzed. According to
Equation (3), the N-dimensional ODE system can be written as

ẋ = S · F(x, p) . (14)

Multiplication of Equation (14) by an N × N-matrixM yields

M · ẋ = S̃ · F(x, p) , (15)

where the matrix S̃ = M · S defines linear combinations of
rows of S. For each row S̃i that is equal to zero, the quantity
Mi · x =

∑

jMijxj is conserved.

In fact, each set of linearly dependent rows of S implies a CQ.
For someODE systems, however, not all CQs can be derived from
S without accounting for the flux vector F. Equation (14) can be
written

ẋ = C(p, x) · x . (16)

where C(p, x) is an N × N-matrix dependent on the parameters
and states. Analyzing linear dependencies of C, all CQs of the
form

∑

j

aj(x, p) · xj = const. (17)

can be found, where the coefficients aj might depend on states
and parameters.

In order to determine symbolic expressions for the aj, we
transpose the matrix C and numerically search for linearly
dependent columns. All parameters and states appearing in CT

are replaced by random values to obtain a numeric matrix CT
ran

for which a QR-decomposition is performed. The matrix R
constitutes an upper triangular matrix, where the number of non-
empty rows corresponds to the rank of Cran. The first column
Rℓ with Rℓℓ = 0 is a linear combination of the columns Rj<ℓ.
Therefore, also the column Cℓ is a linear combination of the
columns Cj<ℓ implying that the equation system

∑

j ajCj = 0
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has a solution for the aj with aj>ℓ = 0 which can be calculated

symbolically. Thus, the quantity aT · x is conserved. Once a CQ
has been found, one of the corresponding linearly dependent
rows of the stoichiometry matrix is removed and the procedure
is repeated. In most ODE systems, all CQs of the system can
be obtained in that way. For all other cases, our Python code
provides a possibility to manually specify CQs.

The idea of taking linear combinations of the stoichiometry
matrix S, see Equations (14) and (15), can be augmented to
simplify S for the calculation of steady-state expressions. For
each matrix M, the original steady-state constraint, S · F = 0,
is replaced by a new set of steady-state equations, S̃ · F = 0.
With a clever choice ofM, these new steady-state equationsmight
be structurally simpler than the original ones. With respect to
our proposed algorithm, the matrix M should (1) minimize the
overall number of entries in the new stoichiometry matrix S̃ and
(2) prevent the creation of new cycles. In practice, the idea of
linearly combining rows of the stoichiometry matrix can lead
to structurally simpler steady-state expressions as we show by
means of a small example in the Supplementary Material.

2.6. Numerically Computed Steady-States
Besides calculating steady-states analytically, roots of the steady-
state constraint, Equation (2), can be computed numerically
during each step of the optimization. Here, we perform Newton’s
method which is fast compared to the time of the ODE
integration. The gradient information that is necessary within
our deterministic optimization scheme is determined by the
implicit function theorem, i.e., given the steady-state constraint

f (x0(p), p) = 0 ,

we derive the equation with respect to p and obtain

0 =
∂f

∂x0
·
∂x0

∂p
+

∂f

∂p
H⇒

∂x0

∂p
= −

(

∂f

∂x0

)−1
∂f

∂p
.

2.7. Technical Remarks
The steady-state algorithm was implemented in Python by use
of the libraries numpy and sympy. It can either be downloaded
from the author’s homepage as a Python code or can be
used from within the R-packages dMod/cOde available from
https://github.com/dkaschek/. Simulation of data and parameter
estimation with analytical and numerical steady-states were
performed in dmod.

3. RESULTS

When calculating steady-state expressions for parameter
estimation of ODE systems, several aspects have to be considered
simultaneously. Most importantly, the parameter space is to be
reduced as far as possible. Therefore, all available steady-state
constraints should be taken into account. Since solving for
state variables often leads to higher-order equations for which
solutions are difficult to obtain, one has at least partially to solve
for kinetic parameters. In doing so, the steady-state expressions

often lead to negative parameter values for certain model
specifications.

Due to mass balance, outfluxes contribute with a minus sign
to the time derivative of the corresponding state. Provided that
outflux rates are proportional to positive powers of their states,
they contribute damping terms to the time-evolution of the state.
However, if for a certain model specification the corresponding
flux parameter is negative, the sign of the outflux term becomes
positive which leads to an exploding model trajectory for the
state.

In Section 3.1, we show how our steady-state approach
determines simple steady-state equations for systems that lead
to higher-order equations when solved for the state variables. In
Section 3.2, we show how steady-state expressions with negative
realizations lead to optimization problems and a significantly
lower success rate, i.e., the probability to converge to a local or
the global optimum. Non-linear ODE systems often have several
steady-state solutions, when the steady-state equations are solved
for the state variables. For parameter estimation, multiple steady-
states constitute a problem, since all possible realizations have in
principle to be followed up. By solving for kinetic parameters,
our steady-state approach likewise avoids multiple solutions and
improves the optimization as we show in Section 3.3.

3.1. Determination of Non-Negative
Steady-State Expressions
To show the applicability of the presented steady-state approach,
we investigate a toy model with six state variables and nine
reactions of the form

∅
k0
−→ A A

k1
−→ B B

k2
−→ A

A+ A
k3
−→ C C

k4
−→ ∅ B+ C

k5
−→ D

D+ G
k6
−→ F B

k7·F
−−→ ∅ F

k8
−→ G .

All reactions satisfy the law of mass action, the degradation of B is
mediated by F.With these assumptions, one obtains the following
ODE system

Ȧ = k0 + k2B− k1A− k3A
2

Ḃ = k1A− k2B− k5BC − k7BF

Ċ = k3A
2 − k5BC − k4C

Ḋ = k5BC − k6DG

Ḟ = k6DG− k8F

Ġ = k8F − k6DG .

The system contains one conserved quantity F + G = const,
reflecting that the steady-state equations of F and G are not
independent from each other. Therefore, the number of variables
that have to be fixed by the steady-state is five. In order to obtain
the corresponding steady-state equations, all time-derivatives of
the states are set to zero. Although the single equations of this
system are of degree two or lower, solving for the states leads to
a sixth order polynomial equation, see Supplementary Material,
for which no closed-form solution is available.
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TABLE 4 | Steps of steady-state determination for a model with six states and eight reactions.

Loop Steady-state graph Steady-state equations Simplification

1 A: 0 = k0 + k2B− k1A− k3A
2 Cycle: [A, A]

B: 0 = k1A− k2B− k5BC− k7BF Type 3

C: 0 = k3A
2 − k5BC− k4C

k0 =
A2k3+Ak1

r1+1D: 0 = k5BC− k6DG

F: 0 = k6DG− k8F
k2 = r1

k0
B

= r1
A2k3+Ak1
B(r1+1)G: 0 = k8F − k6DG

2 B: 0 = k1A
1

r1+1 − k3A
2 r1
r1+1 Cycle: [B, B]

−k5BC− k7BF
Type 1

C: 0 = k3A
2 − k5BC− k4C

D: 0 = k5BC− k6DG
k1 =

r1+1
A

[k3A
2 r1
r1+1

F: 0 = k6DG− k8F

G: 0 = k8F − k6DG +k5BC+ k7BF]

3 C: 0 = k3A
2 − k5BC− k4C Cycle: [D, G, D]

D: 0 = k5BC− k6DG Type 0

F: 0 = k6DG− k8F
G is part of CQ

G: 0 = k8F − k6DG

4 C: 0 = k3A
2 − k5BC− k4C

Tree-like
D: 0 = k5BC− k6DG

F: 0 = k6DG− k8F Solve for C, D and F

Table 4 summarizes how our steady-state solver determines
a non-negative steady-state solution by partially solving for flux
parameters. During the first loop, the cycle [A,A] of state A to
itself is split. The pairs of A and its contributing flux parameters
are all of Type 3, since there are two influx- and two outflux
parameters of which at least one is appearing in the other steady-
state equations, e.g., in the equation of B. The equation of A is
solved for the influx parameter k0, whereby k2 is transformed and
replaced by the new free parameter r1 = k2B/k0, see first loop in
Table 4. The appearance of k2 in the equation of B is substituted,
whereas k0 has no further appearances.

Whereas the state A is removed from the steady-state graph,
the state B has become a new head of itself in consequence of the
substitution. In the second loop, this new cycle [B,B] is split by
solving the equation of B for the flux parameter k1. Here, the pair
(B, k1) is of Type 1, since k1 is the only influx parameter and not
appearing in the remaining equations.

In the next loop, the algorithm splits the cycle [D,G,D] by
taking G as a free parameter, since it is part of the conserved
quantity F + G. The remaining steady-state graph in the last
loop is tree-like and therefore the steady-state equations can be
derived according to Proposition 2 starting with C which in this
case serves as the root of the graph.

For simplification of writing, our steady-state solver outputs
the equations in a specific order where fixed states or parameters
may still appear in the equations below. In order to obtain a
complete independent set of equations, one has to replace step
by step. For the presented example, the ultimately obtained
expressions are

F = A2 k3

k8

Bk5

Bk5 + k4

D = A2 k3

Gk6

Bk5

Bk5 + k4

C = A2 k3

Bk5 + k4

k1 = Ak3r1 +
r1 + 1

A

(

BCk5 + BFk7
)

k2 = r1
k3A

2 + k1A

B(r1 + 1)

k0 =
k3A

2 + k1A

r1 + 1
,

where six parameters are fixed, while one additional parameter r1
can be chosen freely.

3.2. Minus Signs Imply a Low Convergence
Rate
For a given data set and a given ODE model, each parameter
set determines the time-evolution of the states and its likelihood
L can be computed based on the data. Here, parameter
values are estimated by minimizing the negative log-likelihood
function− log L. For the case of non-linear ODE models, several
local optima may exist. In order to find the global optimum, we
perform multi-start optimization in combination with a trust-
region optimizer. A powerful optimization approach should have
a high probability to find a local or the global optimum.
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Let us consider an ODE system with four state variables and
six reactions of the form

∅
k0
−→ A A

k7
−→ ∅ A+ B

k2
−→ C

∅
k1
−→ B C

k3
−→ D D

k4
−→ ∅ .

The corresponding ODE system is given by

Ȧ = k0 − k7A− k2AB

Ḃ = k1 − k2AB

Ċ = k2AB− k3C

Ḋ = k3C − k4D .

In order to test if negative steady-state expressions lead
to optimization problems, we implemented four different
steady-state parameterizations, see Table 5, and compared the
success rate of parameter optimization. For each approach, six
parameters are optimized as shown in Table 5. Besides the
standard approach, i.e., exclusively solving for initial values, two
other parameterizations were derived by solving the equation
of state B for two different kinetic parameters, namely k7 and
k0. The latter guarantees a non-negative steady-state solution.
Apart from that, a fourth parameterization was constructed by
adding the equation k0 = k1 + 1k0 to the standard steady-
state formulation. In doing so, k0 is transformed such that
k0 > k1, with the new free parameter 1k0 describing the
difference between k0 and k1. This approach likewise implies
positivity.

TABLE 5 | Several steady-state representations for a model with four

states and six flux parameters.

Steady-state method Steady-state equations Parameters to

be estimated

Solved for initial values
A = k0/(k2B+ k7 )

k1, k2, k3, k4
B = k1k7/(k2 (k0 − k1 ))

(Standard)
C = k1/k3

k0, k7
D = k1/k4

Equation of B solved for k7

A = k0/(k2B+ k7 )
k1, k2, k3, k4

k7 = Bk2 (k0 − k1 )/k1

C = k1/k3
k0, B

D = k1/k4

Equation of B solved for k0

A = k0/(k2B+ k7 )
k1, k2, k3, k4

k0 = k1k7/(Bk2 )+ k1

C = k1/k3
B, k7

D = k1/k4

Standard
k0 = k1 + 1k0

k1, k2, k3, k4A = k0/(k2B+ k7 )

with additional B = k1k7/(k2 (k0 − k1 ))

parameter transformation
C = k1/k3

1k0
, k7

D = k1/k4

For simulation of data, we chose a set of kinetic parameters
for ODE integration, initialized the system with its steady-state
and excited it by displacement of A at time point t = 30.
Data points were generated for 16 different time points by
adding normally distributed noise to the model trajectories. In
order to study a scenario with different experimental conditions,
i.e., different stimulations, simulation was done for three different
displacement values, compare cond1, cond2, and cond3 in
Figure 2A.

Figure 2A shows data points and trajectories of a model
fit that reached the global optimum. For each steady-state
parameterization, we optimized 200 different parameter samples
and counted how often several optima were reached. In
Figure 2B, all converged fits are shown in order of the objective
value, in our case the negative log-likelihood value. Several
steps corresponding to local optima appear for all steady-state
parameterizations, the deepest step corresponds to the global
optimum. It can be concluded that the two parameterizations
without minus signs, i.e., Solving for k0 and Standard with Trafo,
show a significantly better convergence than the other two.
For example, in the parameterization with transformation, the
global optimum was twice as often reached than in the standard
approach.

In order to explain the convergence behavior of the different
steady-state implementations, we analyzed the correlation
between initial parameter guess and the success of optimization.
The steady-state of the presented model is negative, if and
only if k0 < k1. Figure 2C shows the starting samples along
the parameter axes of k0 and k1 for all four steady-state
parameterizations, colors indicate whether a sample did not
converge (black) or did converge to a local (blue) or the global
optimum (yellow). For comparison, Figure 2D shows starting
samples along axes of parameters that do not affect the sign of the
steady-state, namely k2 and k4. The sample distribution shows
that samples with k0 > k1 have a high probability to converge,
while samples with k0 < k1 tend to abort. On the other hand,
the relation of k2 and k4 does not have a significant impact on
the convergence probability. Furthermore, Figure 2C shows that
the reparameterized steady-states prohibit sampling in the region
with k0 < k1.

In addition to the starting samples, we analyzed the parameter
paths during the optimization. Figures 2E,F show the paths for
the first 50 starting samples with respect to the above used
parameter axes. Parameter samples with k0 < k1 usually abort
without any considerable steps in parameter space even though
several samples cross the border k0 = k1 and proceed. In the
opposite direction, some samples reach the border when started
in the area with k0 > k1 and abort exactly at the border.
The very most samples drawn with k0 > k1 converged to
a local or the global optimum G. Again, Figure 2F underlines
that the convergence behavior is unaffected by the relation of
k2 and k4.

We conclude that steady-state parameterizations that lead to
negative parameter values for certain model specifications
constitute a severe issue for optimization. Due to the
formulation of our steady-state algorithm, negative solutions are
automatically avoided in the obtained steady-state expressions.
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FIGURE 2 | Optimization results for different steady-state parameterizations. Data was simulated for three different displacements of A at t = 30 (A).

Convergent fits for all four steady-state implementations were sorted by increasing objective value (B). Steps correspond to local minima. Positive steady-state

parameterizations show a considerably better convergence behavior. Starting samples are shown in different colors in (C,D), indicating whether the corresponding

optimization converged. Parameter paths starting with k0 < k1 did mostly not converge as opposed to samples with k0 > k1 which mostly converged to a local or the

global optimum G (E,F).
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3.3. Dealing with Multiplicity of
Steady-States
Let us consider a system with three state variables and seven
reactions of the form

∅
k0
−→ A A

k1
−→ ∅ ∅

k2·A
−−→ B ∅

k3·C
−−→ A

B
k4
−→ ∅ ∅

k5·A·B
−−−→ C C

k6
−→ ∅ .

The production of B is mediated by A, production of A is
mediated by C and production of C is mediated by both A and
B. The corresponding ODE system is given by

Ȧ = k0 + k3C − k1A

Ḃ = k2A− k4B (18)

Ċ = k5AB− k6C .

For this system, the steady-state can still be analytically solved for
the states A, B and C. The solution reads

C1/2 =
1

2k2k
2
3k5

(

1

k21k4k6
1 + 2k0k2k3k5 ±

√
1

)

B1/2 =
1

2k1k3k4k5

(

k21k4k6 ±
√

1

)

(19)

A1/2 =
1

2k1k2k3k5

(

k21k4k6 ±
√

1

)

,

with the discriminant 1 = k21k4k6 ·
(

k21k4k6 − 4k0k2k3k5
)

. For
1 > 0, two positive steady-state solutions S1 = (A1,B1,C1)
and S2 = (A2,B2,C2) are obtained, while the system has no real
steady-state for 1 < 0.

Linear stability analysis reveals that solution S1 is unstable
and solution S2 is stable, see Supplementary Material. If several
steady-state solutions exist, only one of them can be chosen
for an optimization run at a time. Here, the stable solution
was chosen.

For this system, the issue of multiplicity can easily be solved,
however, for more complicated systems several stable solutions
might exist. Stable solutions might even switch to unstable
solutions along the optimization path, e.g., in case of a Hopf
bifurcation. For higher-order equations, analytical solutions
become unfeasible and numerical steady-state computation
comes into play. However, since the numerical root finding
is performed by means of Newton’s method, the result
depends on initial guesses for A, B and C. Consequently, it
is not clear which of the solutions is obtained and stability
of the retrieved steady-state is not guaranteed. As we will
show, coexistence of stable and unstable steady-state solutions
leads to a reduced convergence probability in the numerical
approach.

Unlike solving the steady-state equations for A, B and C, the
steady-state expressions obtained by our proposed approach are

C = A2 k2k5

k4k6
B = A

k2

k4
k1 = A

k2k3k5

k4k6
+

k0

A
, (20)

where the kinetic parameter k1 is fixed, while the initial value of
A is taken as a free parameter. The obtained solution is unique,
since the steady-state equations are linear in the parameters B, C
and k1.

In general, our approach avoids multiple-steady-states by
choosing a combination of parameters for which the steady-state
equations are linear. In doing so, no solution is neglected as long
as all steady-state equations are fulfilled. As an analogon, let us
consider a single algebraic equation of the form ab3 + cb2 + db+
f = 0, with the five parameters a, b, c, d and f . On the one
hand this equation can be solved for bwherebymultiple solutions
are obtained. On the other hand it can be solved for one of the
parameters a, c, d or f for which the equation is linear leading to
a unique solution.

In the following, we compare the convergence behavior of
three different steady-state implementations, namely Standard,
i.e., analytically solved for the states, Numeric, i.e., numerically
solved for the states, and Proposed, i.e., our steady-state approach
with positive solutions. For the former two implementations, the
seven kinetic parameters k0 to k6 are estimated, whereas for the
proposed approach, the initial value of A in estimated instead of
k1, compare Equation (20).

Since natural systems are always subject to external noise,
unstable steady-states are never realized by the system. Therefore,
data was simulated by means of the stable steady-state solution.
Analogously to Section 3.2, three different displacements of the
state A were triggered at time point t = 30 to excite the
system. Here, data points were generated for eight different
time points.

In order to test the convergence behavior, we started 200
fits from randomly chosen parameter samples. Figure 3A shows
an example fit that converged to the global optimum. The
optimization result of the three steady-state approaches is
compared in Figure 3B. Steps correspond to local optima.
In our approach, nearly half of the samples converged to
the global optimum, whereas only about 10% of the fits
converged in the standard approach and even less in the numeric
approach.

Similar to Section 3.2, we analyzed the correlation between
initial parameter guess and success in optimization. Figure 3D
shows the distribution of starting samples with respect to the
sign of the discriminant 1. For 1 < 0 the discriminant of
the standard steady-state expression, Equation (19), becomes
negative, and all starting samples drawn from this region
did not converge. In addition, Figure 3E shows that the
optimization of these samples directly aborted, since the
path did not take any or at most a very small step in
parameter space.

Furthermore, we analyzed the correlation between the
coexistence of stable and unstable steady-state solutions and the
success of the numerical approach. During each optimization
step, the root of the ODE’s right-hand side is computed for
the current parameter values. Depending on the initial guess,
either the stable or the unstable solution is obtained. In order
to see, if the unstable solution causes optimization aborts, we
chose state A as a representative and compared numerically
and analytically calculated values at the end of the optimization
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FIGURE 3 | Optimization in the context of multiple steady-states. Data was simulated for three different displacements of A at t = 30 (A). Convergent fits from

200 starting samples for three different steady-state implementations were sorted by their final objective value (B). Fits that did not converge are not shown. In about

10% of the fits, the Standard and the Numeric approach converged, in the Proposed approach nearly 50% did. For each end point of the 200 numerical

optimizations, the ratio Anum/A2 between the numerical solution Anum and the stable, analytical steady-state solution A2 was computed (C). For Anum/A2 > 0, the

numerical root calculation converged to the unstable steady-state which effects the abort of the optimization. Starting samples are shown in different colors, indicating

whether the corresponding optimization converged. Many parameter samples starting with discriminant 1 < 0 did not converge, while most of the samples with

1 > 0 converged to the global optimum G, (D,E).
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path. The numerically calculated value Anum was taken from
the root calculation by Newton’s method and the value A2 of
the stable steady-state was calculated by means of Equation (19)
with the corresponding parameter values. Figure 3C shows
ratios Anum/A2 for all fits. If Anum/A2 = 0, the stable
steady-state was obtained, while Anum/A2 > 0 implies that
the unstable solution was obtained. Since nearly all fits that
reached the unstable solution did not converge, we conclude
that the coexistence of a second unstable steady-state causes
optimization aborts in the numerical approach of steady-state
determination.

Both problems arising from the existence of multiple steady-
states, i.e., negative discriminants and stable vs. unstable
steady-states, are automatically circumvented by our steady-
state algorithm resulting in a superior convergence rate during
parameter estimation.

4. DISCUSSION AND CONCLUSION

Parameter estimation in non-linear ODE models of biological
systems has to deal with several local optima and a high-
dimensional parameter space. In order to reduce the number
of parameters, steady-state constraints are taken into account.
Deterministic algorithms search for the global optimum
by performing the optimization with multiple starting
samples. The way of implementing steady-states, i.e., the exact
parameterization, has an impact on the convergence probability
of a randomly chosen starting sample. If optimizations tend
to abort before reaching an optimum, many starting samples
are necessary to find the best possible fit. Since incorporation
of steady-state information shifts parameter distributions and
contributes to gradient information, the exact steady-state
parametrization plays a crucial role in optimization.

For many systems, steady-state equations lead to higher-order
polynomial equations when being solved for the state variables.
To exploit the full steady-state information, equations can be
partially solved for kinetic parameters. If the obtained steady-
state expressions yield negative values for certain parameter
specifications, those might lead to rapidly growing solutions for
the ODE system. We showed that negative parameter values
have a considerable, negative impact on the success of the
optimization.

In many applications, multiplicity and multi-stability of the
steady-state constitutes the relevant question. In the case of
parameter estimation, however, multiple steady-states complicate
the estimation process. For the standard approach of solving
steady-state equations for the state variables, all solutions
principally have to be considered and optimization has to be
performed for all possibilities. For the numerical implementation
of steady-states also unstable steady-state solutions constitute
a problem, since the numerical root finding method might
converge to the unstable solution. In our case, the convergence
probability dropped by 80%.

In this work, we presented an algorithm that derives
steady-state expressions and circumvents negative and multiple
solutions by construction. The approach covers the most
common classes of ODE models consisting of e.g., mass-action
kinetics, inhibition terms, Michaelis-Menten or Hill-type
equations. By means of graph theory, cyclic dependencies
between dynamical variables, e.g., positive or negative feedbacks
inside a signaling cascade that lead to polynomial equations
of order two or higher are removed by solving for kinetic
parameters for which the equations are linear. In order to
guarantee positivity of all solutions, the algorithm performs
appropriate parameter transformations replacing kinetic
parameters by ratios of participating fluxes. Our approach
experiences a major limitation if simultaneously, the size of
the ODE model becomes large and combinations of several
in- and outflux parameters contribute to multiple states. Then,
the algorithm is not able to find a strictly positive solution for
the system. Furthermore, since the algorithm solves for rate
parameters, it might not be applicable if solving for parameters
is not allowed due to other reasons, e.g., if rate parameters must
take certain fixed values.

In summary, our approach enables steady-state calculation
for models with many cyclic dependencies that lead to higher-
order polynomial equations when solved for state variables.
Multiplicity and multi-stability are avoided and positivity of the
solution is guaranteed. The parameter space is reduced by the
number of independent steady-state equations while the nice
convergence behavior is preserved.
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The time-scale hierarchies of a very general class of models in differential equations

is analyzed. Classical methods for model reduction and time-scale analysis have been

adapted to this formalism and a complementarymethod is proposed. A unified theoretical

treatment shows how the structure of the system can be much better understood by

inspection of two sets of singular values: one related to the stoichiometric structure

of the system and another to its kinetics. The methods are exemplified first through a

toy model, then a large synthetic network and finally with numeric simulations of three

classical benchmark models of real biological systems.

Keywords: mathematical modeling, biochemical systems theory, quasi-polynomial systems, time-scales, model

reduction, systems biology

1. INTRODUCTION

Biochemical systems are amenable to be modeled using differential equations but, due to the great
diversity of mechanisms involved, the resulting models lack a defined structure. There is seldom a
common set of properties that might simplify their analysis or enable the development of general
tools. Models with a well defined structure enable a great level of abstraction and generality. Control
engineering using linear systems is a case in point, where chemical plants, steam engines, and
electric systems can all be treated within the same framework. In opposition to that, the analysis
of ad-hoc biological models is often restricted to the numerical integration of a few scenarios.

The difficulties to analyze biological systems start with identification of which components
to include in—or exclude from—the model, since the cellular milieu contains many, highly
interconnected components. In addition to that, the intervening processes often progress at
different time-scales, the resulting models tend to be stiff and difficult to analyze. But multiple time-
scales also offers an opportunity for a deeper analysis (Hek, 2010). Many properties of biochemical
systems are tied to the time hierarchy of the system. For instance, a regulatory mechanism must
be as fast or faster that the process it is supposed to stabilize while some types of oscillations come
from the interaction between a fast and a slow subsystem. An analysis of the first case need only take
into account the subsystem that corresponds to the right time-scale, while the second case would
better be analyzed by focusing on interactions between a fast and a slow subsystem. Furthermore,
separating time scales reduces the stiffness of the system, and the computing power needed for
numerical integration of the models.

A wide variety of time scale separation methods is available (Gerdtzen et al., 2004;
Jamshidi and Palsson, 2008) but no single all-round solution has been found due to
the difficulties associated to the diversity of biological models and their non-linearity.
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Many model reduction methods are based in rewriting the
model—e.g., through non-dimensionalization—in a form in
which the different time-scales are shown explicitly

ẋ = ε f (x, y, t), x(0) = x0

ẏ = g(x, y, t), y(0) = y0 (1)

since the derivative of x is multiplied by the small perturbation
parameter ǫ , it will have slower dynamics than y. This is a regular
perturbation problem for which an approximate solution can be
obtained by writing the equations when ǫ → 0. The solution of:

ẋ = 0, x(0) = x0

ẏ = g(x, y, t), y(0) = y0 (2)

describes the fast dynamics of the system for intervals of time
small enough that the change in x is negligible. The solution to
this simplified problem is called inner solution and it is generally
valid for the thin time slice t = O(ε). In order to obtain the
slow dynamics, a reparametrization τ = ε t can be performed
to obtain:

dx

dτ
= f (x, y, τ ), x(0) = x0

ε
dy

dτ
= g(x, y, τ ), y(0) = y0 (3)

Which is a singular perturbation problem, since the order of the
equations changes when ǫ → 0, yielding.

dx

dτ
= f (x, y, τ ), x(0) = x0

0 = g(x, y, τ ) (4)

Since the original differential equation for y becomes an algebraic
equation, its initial condition y(0) = y0 can no longer be
satisfied. However, provided that the eliminated equation for ẏ
had a hyperbolic solution (one lacking a central manifold), this
approximation will be valid for t ≫ ε and it is also known as the
outer solution.

These kinds of problem fall within the category known as
boundary layer problems, alluding to the transition between
the inner and the outer solution. Obtaining a uniformly valid
solution for all times, requires the matching of the inner and
outer solution, however, when one is interested in the behavior of
the system well within the area of validity of each solution, as is
the case in biology, the inner and outer solutions are informative
enough.

The appearance of algebraic equations introduces difficulties
of its own. When the solution of Equation (2) can be written
explicitly, y = φ(x, t), then algebraic constants can be eliminated
by back-substitution in the o.d.e.s:

ẋ = f (x, φ(x, t), t), x(0) = x0 (5)

Finding this solution and substituting it as well as the non-
dimensionalization step itself are no easily accomplished for big
non-linear systems. The wide variety of possible structures for the
equations is a challenge for any attempt to do this systematically.

2. MATERIALS AND METHODS

2.1. Modal Analysis
The advantage of dealing with a system that has a regular,
convenient structure is made evident by analyzing time scales in
the linear case. It has been shown (Palsson et al., 1987; Jamshidi
and Palsson, 2008) that linearizing around a certain steady state
and decomposing the Jacobian matrix of the system, allows to
define aggregate variables or modes:

J = M−1
3M (6)

where 3 is a diagonal matrix with the eigenvalues of J. Some
eigenvalues/eigenvectors may be imaginary conjugates, in that
case, a similar decomposition may be used where 3 will be a
Jordan canonical form. In any case, new variables can be defined:

m = Mx (7)

and the linearized differential equation would be:

ṁ = 3m (8)

Since 3 is diagonal, each modemi will vary independently of the
rest in the linearized system, except for modes corresponding to
conjugate pairs of eigenvalues, which will remain bound together.
Modes enable to find combinations of variables with different
timescales even for cases when the time scales of all the variables
are similar. Modes work ideally with linear systems since the
modes themselves are linear combinations of the variables. Back-
substituting linear expressions in a linear system does not alter
its structure, because of the telescopic property. For a non-linear
system, however, the Jacobian matrix changes in every point so
the modes will only be uncoupled at the point where the system
is linearized. furthermore, non-linear systems do not normally
comply with the above mentioned telescopic property, which
results in differential-algebraic systems.

In subsequent sections we will apply these and similar
concepts to a very general class systems that, in spite of being
non-linear, have a regular structure and some extremely useful
properties.

2.2. Canonical Non-linear Forms
The theoretical results of this work arise from the properties
of the power-law and quasi-polynomial formalisms. These two
formalisms have been shown to be mathematically equivalent.
Whether a model is simpler in one mechanism or another
depends on the particular processes involved. In general, power-
law models are preferred to describe processes that depend on
absolute fluxes (e.g., chemical networks) and quasi-polynomial
models are used for modeling processes based on per capita
rates, like logistic equations or classical predator-prey models.
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In any case, any system of differential equations that fulfills
one of the formalisms can be rewritten to the other without
any loss of information. Furthermore, virtually any non-linear
system of differential equations can be rewritten as one of the
above mentioned systems through approximation (Savageau,
1969a), detailed mechanistic representation (Savageau, 1998),
exact recasting (Savageau and Voit, 1987), or partitioning of its
parameter space (Savageau et al., 2009; Lomnitz and Savageau,
2015).

2.2.1. Power-Law
The most general expression for these models is as linear
combinations of rates or fluxes:

ẋ = Nv(x) (9)

where each term vi = γi
∏

j x
fi,j
j are the power-laws the

formalism takes the name from. The rate constants, γi are
positive real numbers and the kinetic orders, fi,j, are real numbers
normally between −2 and 2. It is also common to include
“inputs” to the system as the so called independent variables, that
reflect the environment in which the system operates and remain
constant during a simulation or experiment. These variables can
be included as part of γ without loss of generality. This kind
of model is called Generalized Mass Action (GMA). All the
formalisms discussed here can be expressed in a very convenient
form adopting a direct notation proposed by Lewis Voit (1991)
and that is slowly being adopted for theoretical analyses involving
power-laws (Marin-Sanguino et al., 2010; Müller et al., 2016). So
GMA equations becomes:

ẋ = N diag(γ ) xF (10)

where the notation diag (·) will be used to represent a diagonal
matrix containing vector (·) as its main diagonal. All the
information on the system is summarized in two matrices and
a vector: N of size n × m reflects the stoichiometry of the
system—mass conversion/conservation—F has size m × n and
contains the kinetic information. The m × 1 sized vector, γ ,
serves as a reference connecting rates and metabolites—e.g.,
when the system variables are normalized by their value at a
certain equilibrium point, zi = xi/|x|0, then the vector of
rate constants becomes the vector of steady state fluxes of the
system. Under such conditions, the partition of information
becomes clear between a stoichiometric/static-flux information
N diag(γ ) and kinetics F a particular type of gma models, the
s-systems, have received an exceptional deal of attention due to
their remarkable properties. An s-system has a single positive and
a single negative term:

ẋ = diag(α) xG − diag(β) xH (11)

where α and β are rate constants and G and H are kinetic order
matrices. these systems have analytic solutions for their steady
states (Savageau, 1969b).

The variables in a s-system can be normalized using their
steady state values (Savageau, 1974). Defining new variables zi =
xi

|xi|0
where the zero subindex indicates the numerical value of the

variable in the steady state, and rearranging terms, results in the
system:

ż = diag(f )
(

zG − zH
)

(12)

Due to this normalization, the new variables will reach the steady
state at zi = 1∀i. The factors fi, are the turnovers of their
respective variables at the steady-state (Savageau, 1974),

fi =

∣

∣

∣

∣

∣

V+
i

xi

∣

∣

∣

∣

∣

0

=

∣

∣

∣

∣

∣

V−
i

xi

∣

∣

∣

∣

∣

0

(13)

and considered to contain information relative to the time
scale of the corresponding variable. Actually F-values are the
reciprocals of transition times as defined by Easterby (1981).

2.2.2. Quasi-Polynomial
In their more general form, quasi-polynomial systems can be
written as Generalized Lotka–Volterra (GLV)

ẋ = diag(x)
(

λ + AxB
)

(14)

with A, B, and λ of size n × m, m × n, and n × 1. Just like
before, the stoichiometric information is contained in one matrix
and the kinetics in another.There is also a famous particular case
of this kind of system, for B = I, Equation (14) becomes the
Lotka–Volterra model for n species.

An important property of GLV systems is their invariance
when subject to quasimonomial transformations x = yC,
where C is a square non-singular matrix. The result of this
transformation is a GLV system itself:

ẏ = diag(y)
(

λ̂ + Â yB̂
)

(15)

where

Â = C−1 A

λ̂ =C−1
λ̂

B̂ = BC (16)

All the systems that can be converted into one another through
a quasimonomial transformation form a class of equivalence,
sharing a great deal of important properties such as number of
steady states and their stability (Hernández-Bermejo and Fairén,
1995).

A very complete account of the properties of this formalism
can be found in Hernández-Bermejo et al. (1998), but we will
describe two applications of the quasimonomial transformation,
that are specially relevant in this context.

When matrix B does not have full rank r < n, a
transformation matrix can be chosen

C =

(

Ir×r

0n−r×r
φ1 . . . φk

)

(17)
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where φi i = 1 . . . k are basis vectors for the kernel of B. The
transformed exponents will in this case be B̂ = [Bm×r|0m×k].
From the structure of Equation (14), it follows that a number
of variables in the transformed system equal to the dimension of
ker(B) have no influence on any equation other than their own.
These variables result in quadratures and can therefore be taken
out of the system.

Any GLV can be converted to a Lotka–Volterra as a special
case of quasi-monomial transformation q = xB, that results in
the Lotka–Volterra model where the variables are replaced by the
quasi-monomial terms:

q̇ = diag(q)
(

Bλ + BAq
)

(18)

Since the number of quasi-monomial is often greater than that
of variables, matrix B is seldom square and BA will often be
singular. From Equation (16) follows that any two systems from
a class of equivalence will result in the same Lotka–Volterra
representation, which can be taken to be a canonical form
for the whole class. In the Lotka–Volterra systems, all non-
linearities of the system are reduced to quadratic terms and any
interaction term between two variables has the form c qi qj where
the constant c is the (i,j)-th entry of BA.

2.2.3. Relation between the Formalisms
Any system written as a power-law can be translated to a quasi-
polynomial system and vice versa. This is trivial for small systems
and can be done applying a formula to the matrices of arbitrarily
large and complex systems (Marin-Sanguino et al., 2010). This
similarity leads to many common properties that have been
found using completely different methods in both formalisms.
For instance, the symmetry matrix of an autonomous GMA
or s-system (Voit, 1992) is the B matrix of the corresponding
GLV. The rank deficiency in such matrix, implies existence of
parameter transformation groups that can decouple a power-law
system the same way transformation (Equation 17) does with
a GLV. From now on, we will consider both formalisms to be
equivalent (Voit and Savageau, 1986), so we can talk, for instance,
about the Bmatrix of a GMA or the class of equivalence to which
an s-system belongs.

2.3. Numerical Simulations
To verify the theoretical considerations, we simulated different
non-linear models in s-system representation that were taken
from the literature (Voit, 2000).

2.3.1. Integration of the Differential Equations with

Perturbed Initial Values
Differential equations were numerically integrated with Matlab’s
ode15s solver. Integration time was estimated from the the
biggest real eigenvalue of the Jacobian of the linearized, full
system at its steady state:

tend = −
(

max
(

Re(λ)
))−1

· 5

The resulting trajectories of the slow variables—those not in
quasi-steady-state (qss)—of the original system were compared

to the trajectories of the reduced system, in which the fast
variables are assumed to be in qss. The robustness of the
approximation was tested by performing simulations of the full
system in which the qss variables had random initial values
distant to qss by a factor of 10.

The value for the absolute perturbation of the fast variables is
defined as the Euclidean norm of the natural logarithm of the
quotients of the initial values of the fast variables xf ,0 and the
corresponding quasi-steady state values at time 0, xf ,qss:

δy =
∥

∥

∥

(

ln
(

xf1,0

xf1,qss

)

ln
(

xf2,0

xf2,qss

)

· · · ln
(

xfn,0

xfn,qss

))∥

∥

∥

with n fast variables xfi .

2.3.2. Effect of the Perturbation of Fast Variables on

the Slow Trajectories
In a next step, the effect of this perturbation was tested. The data
of the slow trajectories was sampled at defined times for the full
and the reduced system and the mean and standard deviation at
these points in time were calculated for 1000 simulations with
randomized initial values.

Additionally the trajectory of the slow variables in the original,
full system was also interpolated and sampled at the same points
in time. To get an objective measure of the relative error between
reduced and full system, first the relative error of the trajectories
in the reduced system x(t)si,qssa compared to the full system x(t)si
was calculated for each of the slow variables by:

Ei =

∫ tend
0 |x(t)si,qssa − x(t)si |dt

∫ tend
0 |x(t)si |dt

with xsi,ss being the steady-state-values that serve as a baseline for
the comparison. The integral was numerically computed with the
trapezoidal method, given the data from the trajectories. To get a
number for the system considering all variables, the Euclidean
norm of all these errors |E| was plotted against δy. Each of the
points represents one of the 1000 simulations.

2.4. Random Network Generation
In order to benchmark the methods for large systems, synthetic
genetic networks were generated. When modeled as s-systems,
this networks consists of a matrix of kinetic orders and a
vector of turnover numbers as indicated below in the results
section. The models were generated in python using the
standard libraries scipy and numpy. The turnover numbers were
generated at random in three groups to ensure the existence of
three different time-scales. Each group was generated following
a normal distribution with different means and standard
deviations calculated from the distances between the means
to guarantee the existence of three distinct. The number of
variables in each group (time-scale) was also predetermined.
The kinetic order matrices were generated as sparse matrices
of density 0.05. Each network was tested to ensure stability
and that all the components were connected (using the library
Network X).
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3. RESULTS

3.1. Log-Modes
The Jacobian of a system under a a particular set of
transformations (like the quasimonomial transformation) will
always have the same eigenvalues as those of the original system.
In the case of s-systems under the logarithmic transformation,
the Jacobians are identical. S-systems can be explicitly rewritten
after undergoing the transformation y = log(x), the transformed
equations take the form (Savageau, 1976),

ẏ = diag (α) exp
(

(G− I)y
)

− diag (β) exp
(

(H − I)y
)

The Jacobian matrix of the system defined in terms of y at a
steady state is identical to the Jacobian of the original system, so
the coefficients defined in Equation (6) can be used to define a
new set of modes that we will call log-modes (ℓ).

log(ℓ) = My

which will actually be a monomial transformation:

ℓ = xM

So any fast or slow manifolds identified from the log modes will
take the form of a power-law and can be back-substituted into any
of the formalisms here discussed without generating algebraic
constraints.

3.2. Identifying Time-Scales for the
Variables through the S-System
Representation
The existence of analytic steady-state solutions in s-systems
makes it possible to apply the quasi-steady-state hypothesis to
obtain the behavior of the slow part of multi-level systems
(Savageau, 1976; Savageau and Sorribas, 1989), a very similar
procedure has been used in the context of sensitivity analysis
(Delgado and Liao, 1995). In this section we will generalize the
procedure to split a dynamic system into its time scales, obtaining
equations for the all of them without generating algebraic
constraints. We will start using the s-system representation and
will then move on to more general considerations.

Without loss of generality, the variables in Equation (12) can
be arranged according to their f -factor in decreasing order, the
variables can be classified as slow or fast by finding a variable xk
such that ‖fk+1 − fk‖ is maximal. Now a non-dimensionalization
for time can be applied τ = fk t

dzi

dτ
=

fi

fk





∏

j

z
gij
j −

∏

j

z
hij
j





defining ε =
fk+1

fk
, themultiplier for the first k equations becomes:

f1
fk

>
f2
fk

> · · · > 1 and the rest ε > ε
fk+2

fk+1
> · · · > ε

fn
fk+1

.

dzi

dτ
= f̂i





∏

j

z
gij
j −

∏

j

z
hij
j



 i = 1, . . . , k

dzi

dτ
= ε f̂i





∏

j

z
gij
j −

∏

j

z
hij
j



 i = k+ 1, . . . , n (19)

if fk >> fi ⇒ dzi
dt̂

= ǫ
(

zG − zH
)

. which enables to get a

quasi-steady-state (qss) solution for the fast variable. s-systems
share the telescopic property discussed above for linear systems
so the algebraic constraints generated by the qss assumption can
be back-substituted in the system as shown in the Appendix
(Supplementary Material). As a result, the system can be divided
in two, a fast system:

dzi

dτ
= α̂i

k
∏

j= 1

z
gij
j − β̂i

k
∏

j= 1

z
hij
j i = 1, . . . , k (20)

where the slow variables are taken as constants and grouped into
α̂i and β̂i. The normalized steady state is no longer at one, since
it depends on the values assigned to the slow variables.

A time rescaling T = ε τ provides the complementary time
scale. The slow system that depends exclusively on the slow
variables:

dzi

dT
= f̂i





n
∏

j= k

z
ĝij
j −

n
∏

j= k

z
ĥij
j



 i = k + 1, . . . , n (21)

See Supplementary Information for a detailed calculation.
This procedure can only be applied to an s-system but it

provides information of use for the more general cases. GLV
systems with a single equilibrium point can be exactly rewritten
as s-systems (Hernández-Bermejo and Fairén, 1995), s-systems
can also dominate the dynamics of arbitrary non-linear systems
in a well defined region of their parameter space (Savageau
et al., 2009) or arise as good approximations through a Taylor
series (Savageau, 1969a). The validity of the turnover numbers as
indicators for timescales is in fact so robust, that the inverse of
the turnover, the transition time, was defined as a reference in the
model free setting of biochemical enzyme assays (Easterby, 1981).
Turnover numbers are only a valid approach for well behaved
systems in which they dominate over the rest of the equations,
the next section will deal with not so well behaved systems.

3.3. Collinearity among the Quasinomials
In order to assess whether a system is “well behaved” in the
sense mentioned above, a closer examination of B is in order.
Sensitivity to parameter combinations can be assessed through
the spectrum of the corresponding matrix (Hearne, 1985).
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Since the matrices involved are not usually square, the SVD
decomposition of the matrix, B = UB 6B V

T
B, will be of great use.

It has been seen that a rank deficiency in B allows to decouple
some of the variables of the system. This results in an invariant
manifold spanned by the corresponding vectors of VB which
can consist of infinite equilibrium points or preclude any sort of
equilibrium (Voit, 1991).When the matrix is not singular but it is
ill conditioned, a similar phenomenon happens. This can be seen
by applying a quasimonomial transformation:

x = yVB (22)

where each of the new variables yi is associated to a singular
vector. The exact dynamics of all these new variables will have
GLV form as shown in Equation (16). From inspection of the
resulting system

ẏ = diag(y)
(

λ̂ + Â yUB 6B

)

(23)

it is straightforward to see that the exponents of yi in all
monomial terms are multiplied by σi, as the later tends to zero,
the variable will lose influence on the all the other variables,
reducing the real dimension of the system.

3.4. The Stoichiometric and Kinetic
Components of the Invariant Matrix
Analyzing the log-modes of a non-linear system at a certain
equilibrium point has the risk of not being representative,
since its Jacobian may change dramatically when it moves
away from the linear region. As has been seen above, the
turnovers of the variables and the singular vectors of B provide
two complementary methods. The interplay between these
three alternative representations can be seen in the LV of the
corresponding equivalence class. The constant matrix BA does
not result from a linearization, it defines all interactions between
variables the whole phase space. Although there is no closed form
for the singular/eigen-values of a matrix product, a great deal can
be learned by calculating the SVD of both A and B:

BA = UB 6BW6A VT
A (24)

where W = VT
B UA. The three matrices UB, W, and UA are

unitary and will not amplify or dampen any perturbation to
the variables. Any change in the norm of the perturbation will
come from the two diagonal matrices of singular values, one
coming from the stoichiometric component of the system, 6A,
and one from the kinetic 6B. When only one of these matrices
has extreme values it will dominate the response of the system
and one of the two methods mentioned above will be accurate.
No sudden changes of the jacobian are to be expected, since the
Jacobian of an normalized LV system is precisely (Equation 24),
see Dıaz-Sierra et al. (1999). When both sets of singular values
are in the same range, the system will not be decomposable
by time hierarchies. Extreme cases, where both sets of singular
values have big differences, will result in systems where the time
hierarchies shift along the orbits of the system. In such cases,

FIGURE 1 | A simple biochemical network. Full arrowhead indicates

activation and reverse arrowhead indicates inhibition.

Equation (24) would be a good starting point to identify regions
of interest in the parameter and in the phase space.

3.5. A Simple Example
Lets start with a model of a small regulatory network of three
genes that affect one another’s induction as depicted in Figure 1.
Obtaining the GMAmodel is straightforward:

ẋ1 = α1 x
g1,1
1 x

−g1,3
2 − β1 x1

ẋ2 = α2 x
g2,1
1 − β2 x2

ẋ3 = α3 x
g3,2
2 − β3 x3 (25)

which can be rewritten as a GLV by just factoring the variables
out:

ẋ1 = x1

(

α1 x
g1,1−1
1 x

−g1,3
2 − β1

)

ẋ2 = x2
(

α2 x
g2,1
1 x−1

2 − β2

)

ẋ3 = x3
(

α3 x
g3,2
2 x−1

3 − β3

)

(26)

So

B =





g11 − 1 0 −g13
g21 −1 0
0 g32 −1



 (27)

Computing the turnovers of the variables in Equation (25) is
straightforward:

fi = βi ∀i

normalizing:

ż1 = β1 (z
g1,1
1 z

−g1,3
2 − z1)

ż2 = β2 (z
g2,1
1 − z2)

ż3 = β3 (z
g3,2
2 − z3) (28)

The Jacobian matrix is:

J = diag(β)B
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FIGURE 2 | Orbits of a simple genetic network for different initial conditions (red dots) projected onto the x1 − x2 plane. Orbits clearly evolve toward a one

dimensional manifold (dotted line) that follows to the singular vector v3 corresponding to the smallest singular value. The equilibrium point x = 1 is marked as a black

dot. Red dots mark starting points of different orbits and the black dot is the equilibrium point they all tend to.

for the particular case βi = 1 ∀β all the turnover numbers
are also 1 and all variables are expected to operate in the
same time scale. However, as can be seen in Figure 2, where a
special case is simulated—g11 = 1.1, g13 = 0.48, g21 = 0.3,
g32 = 0.7—the system approaches a slow manifold defined
by the singular vector with the smallest singular value of B:
v = (0.939, 0.281, 0.197). So the system has a slow manifold.
Transformation using Equation (22), an alternative formulation
is obtained with variables (y1, y2, y3) and matrices:

λ =





−0.050
0.99
−1.4



 (29)

A =





−0.10 0.78 −0.62
0.33 −0.57 −0.76
0.94 0.28 0.20



 (30)

B =





0.29 0.40 −0.00056
−0.81 0.66 0.00019
1.2 0.36 0.00027



 (31)

and as can be seen by the small exponents of y3, this variable
has negligible influence on the dynamics of the other two,
Figures 3, 4.

The same procedure can be done applying the decomposition
shown in Equation (3.1) to obtain the equations for the log
modes. In this case, the results are very similar to those already
shown, since the Jacobian matrix of the system J = B. Even
though the similarity decomposition that defined the log-modes
is not equal to svd decomposition, the coefficients of the slowest
log-mode of the system are within 0.5% of those of v3. Additional

simulations show that special cases with well conditioned B led
to similar time-scales using turnover numbers and log-modes,
for cases with similar turnovers, the log-modes are similar to the
slow manifolds predicted by B, as can be expected from Equation
(24)—data not shown.

3.6. A Large Network
The toy model shown above is useful to understand the theory
behind the methods, but in order to test the performance of
the method on large scale models, randomly generated genetic
networks were used. Genetic networks can be modeled using s-

systems of the form ẋi = αi
∏

j x
gi,j
j −βi xi, where the interactions

between genes are concentrated in the kinetic orders of the
positive term. The turnover can be factored out :

ẋi = Fi





∏

j

x
gi,j
j − xi



 (32)

The details of how the networks were generated are shown in
the methods section, and the results were satisfactory in all cases.
Here we will show the analysis of a representative network with
75 variables divided in three time scales with turnover numbers
of 1, 100, and 104. The number of variables in each group
(time-scale) was 10, 25, and 40 respectively. The network is
defined by 356 parameters: 281 non-zero kinetic orders and 75
turnover numbers. The parameters values of the s-system model
are provided as supplementary data.

The existence of three time scales opens several possibilities.
If the model is to be partitioned in two, the variables
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FIGURE 3 | Projection of the orbits of a the transformed system onto the y1 − y3 plane for different initial conditions. In the new coordinate system

x = yV , each axis correspond to a singular value, so the manifold shown in the previous figure, is now parallel to the y3 axis (dotted line). Red dots mark starting

points of different orbits and the black dot is the equilibrium point they all tend to.

FIGURE 4 | Projection of the orbits of a the transformed system onto the y1 − y2 for different initial conditions. In this projection, the manifold appears as a

point aligned with the equilibrium point. Changing the values of y3 within an order of magnitude resulted in no appreciable change in this projection, since the third

variable is de facto uncoupled. Red dots mark starting points of different orbits and the black dot is the equilibrium point they all tend to.

in the middle range can be assigned to the fast or slow
subsystem. Moreover, successive separation can lead to three
different submodels, one per time scale. Each approach will

generate systems with different accuracy and degree of stiffness,
so the optimal decision will depend on the goal of the
analysis.
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FIGURE 5 | Dynamics of x1-x10 in the reduced system for the large genetic network model after removing variables x11 to x75. Red shaded areas show

the deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are shown.

See text for details.

FIGURE 6 | Dynamics of the worst performing variables in the reduced system for the large genetic network model after removing variables x36 to

x75. Red shaded areas show the deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations

above and below are shown. See text for details.

Figures 5, 6 show the errors in the dynamics of 100 different
simulations of the two possible slow systems. In the first case,
a system with only ten variables is obtained, in the second, the
final number of slow variables is thirty five. Figure 7 shows the
accumulated error. As can be seen, the smallest model has amuch
higher error but still agrees qualitatively with the dynamics of the
full system. The bigger model, has an extremely small error but
it still contains variables operating in two different time scales.
This increases the computational cost of integration as shown
in Table 1. The bigger model provides high accuracy with a
substantial improvement in computational cost and a significant

reduction in complexity and the number of variables. Since most
biological measurements are subjected to high levels of noise, the
smallest and much simpler model system will often be adequate
as well.

Finally, the network can be split into three different
submodels able to reproduce the slow, middle and fast
dynamics respectively. Figure 8 shows how the reduction
processes affects the connectivity of the network. Submodels
of the fast dynamics, reduce the degree of connectivity,
since many connections between fast variables happen
through slow variables that are frozen in the fast time scales.
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FIGURE 7 | Accumulated error for perturbations of different sizes in the genetic network model. The left pane shows the error for the fully reduced model

consisting only the slow variables x1 to x10. The right pane shows the model with the slow and middle scale variables, x1 to x35.

TABLE 1 | Comparison of simulation times between original and reduced

models of the large randomized networks.

Genetic network

Time QSS

Full 1109± 400 none

Slow 3.6± 0.2 x11 to x75

Slow/Middle 193± 6 x36 to x75

Submodels of slower timescales, experience the opposite
effect, since the variables that are eliminated through the
quasi-steady-state assumption become links between slow
variables.

3.7. Examples from Real Models
In order to test the applicability to real cases, three classical
s-system models from the literature (Voit, 2000) were taken
as examples for benchmarking: A very simplified model for
the anaerobic fermentation of Saccharomyces cerevisiae with 5
variables, a model for the purin metabolism in man consisting
of 16 variables and one for the tricarboxylic acid cycle in
Dictyostelium discoideum constituted by 13 variables. These
three models have been also used for benchmarking an
alternative method of model reduction, which will enable further
comparisons.

All three models had well conditioned B matrices, so
timescales were assigned to each variable according to their
turnover number.

3.7.1. Yeast
Eliminating the two fastest metabolites of this model of yeast
glycolysis results in a robust reduced system that still can
reproduce the slow dynamics with great accuracy (well within
experimental error), as can be seen in Figures 9, 10. Even a
perturbation δy of 3 still results in less than 14% error E.

3.7.2. TCA Cycle
The system is also reduced to less than two thirds of its size
and results in good quantitative agreement with the full system.
Figure 11 shows how some variables reproduce the dynamic
perfectly while x6 and x8 go through a short adaptation phase
where their dynamics are not as robust as the rest. Accumulated
error is shown in Figure 12.

3.7.3. Purine Metabolism
In this example, a more conservative approach is shown, where
eliminating only a small set of the total number of variables shows
a great quantitative agreement between the full and the reduced
systems. Figure 13 shows the only variable where an appreciable
difference between the systems can be found. Accumulated error
shown in Figure 14.

3.7.4. Performance
Two further metrics will be considered to evaluate the
performance of the method: the reduction in simulation times
due to the model reduction and the amount of variables
eliminated in comparison to the alternative method (Liu
et al., 2013) similar method. There is, to our knowledge
only one method that has exploited the regular structure of
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FIGURE 8 | Graphs depicting the different models as directed graphs. Activating interactions are shown in blue, inhibitory interactions in red.

canonical models to produce a a model reduction algorithm
(Liu et al., 2013). The alternative method does not provide a
separation into submodels, it concerns itself exclusively with
the elimination of variables using multicriteria optimization
based on reactive weight, sensitivity, and flux analyses. Based
on such optimization, the model is reformulated to eliminate
one or more variables. For the sake of comparison, the
methods presented in this study were used to obtain reduced
models with total accumulated errors that were comparable
to those of the previously mentioned approach, the number
of variables that each method was able to remove is then
compared.

Table 2 shows that model reduction always resulted in a
significant improvement on the simulation times. Moreover, the
number of reduced variables is always higher than or equal to the
much more complex (and computationally demanding) existing
method.

4. DISCUSSION

One of the bottlenecks for modeling biological systems is the
need to find values for a great amount of parameters that cannot
be measured directly. That, and the impossibility to predict how a
change in the value of such parameters will change the dynamics
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FIGURE 9 | Dynamics of the reduced system for the yeast model after removing fast variables x1 and x4. Red shaded areas show the deviation of repeated

simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are shown. See text for details.

FIGURE 10 | Accumulated error for perturbations of different sizes in the reduced Yeast model. Each point represents one simulation where the fast

variables were perturbed by |dy| and the overall error E was calculated.

TABLE 2 | Comparison of simulation times between original and reduced

models of the Yeast, TCA and purine models.

Simulation time Eliminated variables

Full

model

Reduced

model

This

study

Liu et al., 2013

Yeast 31.5± 1.0 11.3± 0.6 x1, x2, x4, x5 No reduction

TCA 71.1± 7.4 50.9± 8.2 x1, x2, x4, x10, x12 x7

Purines 492.1± 46.6 260.8± 45.7 x3, x8, x13 x6, x14, x16

of the system, limit the reliability of numerical simulations. It is
therefore imperative to find reliable tools for the global analysis
and model reduction for non-linear systems.

Canonical, non-linear systems are flexible enough to
reproduce any kind of non-linear behavior and, at the same time,
all the information defining a particular model is encoded in
two matrices and a vector. Methods like recasting (Savageau and
Voit, 1987; Hernández-Bermejo et al., 1998) enable to rewrite
virtually any non-linear system in one of the canonical forms
treated here. Moreover, Design Space Analysis (Savageau et al.,
2009) enables to decompose the parameter space of any system
into qualitatively similar regions, each described by an s-system.

These formalisms offer the exciting possibility of converting
very abstract problems into simple linear algebra operations.
Converting topologically equivalent systems into one another
is done with three simple matrix products and identifying a
slow manifold can be done by Singular Value Decomposition.
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FIGURE 11 | Dynamics of the reduced system for the TCA cycle model after removing fast variables x1,x2,x4,x10, and x12. Red shaded areas show the

deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are shown. See

text for details.

FIGURE 12 | Accumulated error for perturbations of different sizes in the reduced TCA model. Each point represents one simulation where the fast variables

were perturbed by |dy| and the overall error E was calculated.

Moreover, any model in one of these formalisms can be exactly
converted into a set of Lotka–Volterra equations. In the Lotka–
Volterra representation, a single constant matrix determines
the interactions between variables for the whole phase space,
as opposed to a linearization, where the constant matrix is
merely a local representation in the vicinity of an equilibrium.
Decomposing this matrix into its kinetic and stoichiometric
parts, provides a great deal of insight into the structure of the

system through the examination of the two corresponding sets
of singular values. These results obtained with simple linear
algebra, are as good as those that can be obtained using much
more complicated approaches (Liu et al., 2013) as well as more
general. The significance of this can best be appreciated in light
of an example attributed to professor Grötschel (Holdren et al.,
2010), a certain linear programming problem that would take
82 years to be solved by a computer in 1988 would be solved
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FIGURE 13 | Dynamics of x16 in the reduced system for the Purines metabolism model after removing fast variables x3,x8, and x13. Red shaded areas

show the deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are

shown. See text for details.

FIGURE 14 | Accumulated error for perturbations of different sizes in the reduced Purines metabolism model. Each point represents one simulation where

the fast variables were perturbed by |dy| and the overall error E was calculated.
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in roughly a minute by a modern computer 15 years later.
Of this improvement by a factor of 43 million, 1000 could be
attributed to hardware improvements and the remaining 43,000
to improvements in numerical algorithms, mostly numerical
linear algebra.
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Motivation: Arabidopsis thaliana is a well-established model system for the analysis of

the basic physiological and metabolic pathways of plants. Nevertheless, the system is

not yet fully understood, although many mechanisms are described, and information for

many processes exists. However, the combination and interpretation of the large amount

of biological data remain a big challenge, not only because data sets for metabolic

paths are still incomplete. Moreover, they are often inconsistent, because they are

coming from different experiments of various scales, regarding, for example, accuracy

and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for

pathways and the dynamics of the metabolism, even if the biological data are incomplete.

To develop reliable mathematical models they have to be proven for consistency.

This is still a challenging task because many verification techniques fail already for

middle-sized models. Consequently, new methods, like decomposition methods or

reduction approaches, are developed to circumvent this problem.

Methods: We present a new semi-quantitative mathematical model of the metabolism

of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction

system in a mathematically unique manner. To verify the model for correctness and

consistency we applied concepts of network decomposition and network reduction such

as transition invariants, common transition pairs, and invariant transition pairs.

Results: We formulated the core metabolism of Arabidopsis thaliana based on

recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid

cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By

applying network decomposition and reduction techniques at steady-state conditions,

we suggest a straightforward mathematical modeling process. We demonstrate

that potential steady-state pathways exist, which provide the fixed carbon to

nearly all parts of the network, especially to the citric acid cycle. There is a
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close cooperation of important metabolic pathways, e.g., the de novo synthesis of

uridine-5-monophosphate, the γ -aminobutyric acid shunt, and the urea cycle. The

presented approach extends the established methods for a feasible interpretation of

biological network models, in particular of large and complex models.

Keywords: systems biology, Petri net, Arabidopsis thaliana metabolism, model verification, network reduction,

transition invariant, common transition pairs, invariant transition pairs

1. INTRODUCTION

Arabidopsis thaliana (A. thaliana) is a popular model organism
in plant biology (Van Norman and Benfey, 2009). A. thalianawas
the first plant with sequenced genome (Arabidopsis-Genome-
Initiative, 2000), and a large mutant collection (Sessions et al.,
2002; Alonso et al., 2003) provides the optimal base for genetic
and physiological analysis of this model system. It further
is characterized by a short generation time, small plant size,
diploid genetics, and a large number of offspring, which is of
high advantage for breeding for research (Meinke et al., 1998;
Koornneef and Meinke, 2010 and references therein). Most
of the current information on plant metabolism is based on
this model system (Lunn, 2007). Beside the academic interest
in understanding the metabolism of plants, there is a broad
interest to improve nutritional quality of crops and agricultural
productivity to generate phytopharmaceutical substances and
to increase the production of nutraceutical biomolecules and
pharmaceutical proteins of commercial interest (Hur et al.,
2013). The development of network models based on these
investigations (Dersch and Beckers, 2016) represents a useful
approach for the analysis and simulation of the metabolism.
Nowadays, the Path2Models database contains 125 models for
A. thaliana (Büchel et al., 2013). To develop a mathematical
model, the single reactions are typically extracted from databases
such as AraCyc (Mueller et al., 2003; Zhang et al., 2005), and/or
KEGG (Kanehisa et al., 2008).

Various models of the metabolism of A. thaliana exist. Several
approaches concern gene regulatory networks (Lucas and Brady,
2013). For example, a method based on Bayesian networks was
formulated to investigate root cell differentiation (Bruex et al.,
2012), and a network, focusing on stress response in leaves,
was developed (Hickman et al., 2013). The power of these
networks has been documented, for example, by identification
of new factors involved. Using a recently developed statistical
linear regression technique, novel genes were detected which are
involved in the mucilage biosynthesis (Vasilevski et al., 2012).

In this paper, we focus on recent research results of metabolic
modeling approaches of A. thaliana. The first steady-state
Metabolic Flux Analysis (MFA) maps for A. thaliana were
introduced in 2008 (Williams et al., 2008), using a heterotrophic
cell suspension grown under two different oxygen concentrations
as experimental data source. The results suggest a possible
alteration of metabolite abundance without changes in the
balance between respiratory and biosynthetic flux or a major
rearrangement of the network. Based on this study, further
investigations have been followed, in particular on the flux in
the pentose phosphate pathway (Masakapalli et al., 2010). Three

new models were derived, which differ in the compartmental
organization of the pentose phosphate pathway. The measured
data fit to each of the three models in an acceptable manner,
which necessitate further investigations in addition to the
MFA. This underlines the problems of metabolic flux analysis
(Masakapalli et al., 2010). Several genome-scale flux models have
been developed for A. thaliana, for example, by Poolman et al.
(2009), de Oliveira Dal’Molin et al. (2010), Radrich et al. (2010),
and Mintz-Oron et al. (2012).

The Poolman model is based on the AraCyc database (Mueller
et al., 2003) and was automatically extracted. It consists of 1,253
metabolites and 1,406 reactions, involving the production of
biomass components, such as nucleotides, amino acids, lipid,
starch, and cellulose in the proportion experimentally observed
in a heterotrophic suspension culture. After the removal of
reactions that are not necessary to maintain a steady state, 855
reactions remain. Additionally, the authors provide a steady-state
model of 232 reactions that exhibit only nonzero flux values.

Similarly, de Oliveira Dal’Molin et al. (2010) automatically
extract a core reaction system called AraGEM from the KEGG
database to generate a model. The model is compartmentalized
into cytosol, mitochondrion, plastid, perixome, and vacuole.
Additional information is manually integrated from databases,
such as AraPerox (Reumann et al., 2004) and SUBA (Arabidopsis
Subcellular Database, Heazlewood et al., 2007). The model
contains 1,567 reactions and 1,748 metabolites. A two-
dimensional annotation provides links from the reactions
to the genes. The authors modify 36 reactions by manual
curation to give a consistent stoichiometry. To achieve a desired
functionality, they introduce 148 biomass drains and inter-
organelle transporters.

The Radrich model represents a high-quality core consensus
model obtained by a systematic comparison of compounds and
reactions between the databases KEGG and AraCyc. Various
levels of consensus lead to three submodels of different quality,
the core model of 753 reactions and 914 metabolites with highest
reliability, the intermediate model of 1,388 reactions and 1,248
metabolites, and the complete model of 2,315 reactions and
2,328 metabolites. The core model is the intersection between the
two databases, containing every metabolite and reaction, which
is present in both databases. In the intermediate model, every
reaction is present, for which either all educts or all products
are part of the core model. The complete model is the union of
both databases. The Mintz-Oron model was semi-automatically
derived from KEGG and AraCyc, including compartmental
information from the Arabidopsis Subcellular Database, SUBA
(Heazlewood et al., 2007), and tissue-specific localization data
from the literature. It consists of 1,363 reactions and 1,078
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metabolites. The authors predicted a total of 942 out of 1,363
inspected reactions to take place in every tissue. These reactions
include reactions of the primary metabolite pathways, such as
the glycolysis, the pentose phosphate pathway, and the fatty acid,
nucleotide, and amino acid metabolism. The model is validated
by comparison of experimental data with predicted flux values.
All presented models use the databases AraCyc and/or KEGG as
starting points for automatic network generation.

We chose Petri nets (PNs) as mathematical formalism for
network construction, analysis, and simulation. PNs are mainly
applied in computer science, for example, to model distributed
systems. Many sound, rigorous analysis and simulation methods
of PNs have been evolved over decades for various applications
(Billington and Reisig, 1996). Some of these concepts and
algorithms have been successfully applied to biochemical
systems, including metabolic networks (Koch et al., 2005), signal
transduction networks (Sackmann et al., 2006), gene regulatory
networks (Matsuno et al., 2000), protein complex assembly
(Bortfeldt et al., 2011), and combinations of them (Grunwald
et al., 2008; Koch et al., 2011).

To motivate the work, we aimed to develop a consistent
metabolic model that reflects the steady-state condition and
the basic dynamic behavior. Thus, the model becomes suitable
for rigorous mathematical analyses and can serve as basis for
quantitative analyses. Our work was motivated by a hand-
built PN model for the metabolism of barley Hordeum vulgare,
integrating biochemical, physiological, proteomic, and genomic
data derived from the literature and databases (Grafahrend-
Belau et al., 2009). We followed the paper’s strategy and built
a model for A. thaliana by successively adding metabolites and
reactions from the literature (Nöthen, 2009). We systematically
expanded the PN to develop a new model based on the current
experimental knowledge on the metabolism of A. thaliana and to
investigate the structural and dynamic properties of the model.
To check a metabolic model for consistency and correctness, we
considered special network properties (Heiner and Koch, 2004).
For biochemical systems, a correct biological interpretation of
submodules at steady state was mainly applied. The computation
of such submodules was based on minimal semi-positive
transition invariants (TIs), also known as elementary modes
(Schuster and Hilgetag, 1994). For the definition, see Section
2.1. Minimal semi-positive integer solutions were of interest
(Schrijver, 1998; Koch and Ackermann, 2013) leading to a
complexity that does not allow the computation of all solutions,
even if the the power of supercomputers is used. Today, several
alternative methods for the exploration of the inherent flux states
of large systems exist (Koch and Ackermann, 2013).

The paper is organized as follows. In the Section 2, we
introduce Petri nets and describe the network verification and the
network reduction techniques we used, including the common
transition pairs and invariant transition pairs. In Section 3, we
give the complete PN and the reduced PN model of the central
metabolism in A. thaliana. We explain an example for a network
reduction and for a TI, and discuss the Maximal Common
Transition sets, covering the analyses of functional modules.
The supplementary file Table 1.pdf contains the metabolites,
the reactions, and the output reactions, including the literature

references. The supplementary file Table 2.pdf contains the
tables, indicating each reduction step. The supplementary file
Supplementary Material Data Sheet 1 includes all Petri net
models.

2. MATERIALS AND METHODS

In the following, we briefly describe the methods for network
reduction and network decomposition given in the Petri net
formalism.

2.1. Petri Nets
Petri nets (PNs) are based on a concept of communication
of automation originally introduced by Carl Adam Petri
(Petri, 1962) in his dissertation in 1962 for mathematical
modeling of causal systems with concurrent processes. PN
provide a flexible, well-defined, mathematical formalism for
various modeling types, ranging from qualitative to quantitative
modeling. Here, we introduce the basic definitions and notations
that are necessary to understand the paper. For a more detailed
introduction, see Murata (1989), Baumgarten (1996), and Koch
et al. (2011).

The first biological application of PNs was published in 1993
by Reddy et al. (1993). PNs has been used to model various
biochemical systems, such as metabolic networks (Koch et al.,
2005), signal transduction networks (Sackmann et al., 2006),
gene regulatory networks (Matsuno et al., 2000), protein complex
assembly (Bortfeldt et al., 2011), and combinations of them
(Grunwald et al., 2008). The PN formalism has been also used for
stochastic modeling, applying the Gillespie’s algorithm (Gillespie,
1977), and for kinetic modeling, applying mass action kinetics
and/or Michaelis-Menten kinetics. For a review, see Koch et al.
(2011).

Petri nets are directed, bipartite, labeled graphs. They consist
of two disjunctive sets of vertices, P and T, respectively. The
elements in P are the places graphically represented as circles,
and the elements in T are the transitions graphically represented
as rectangles. Places stand for the passive system’s elements,
for example, chemical compounds, metabolites, proteins, and
protein complexes. Instances of them are represented by tokens,
which define discrete entities. Since the movement of tokens
realizes the dynamics of a PN, we introduce the concept of
tokens in Section 2.1.1. Transitions are the active system’s
elements, for example, chemical reactions, degradation processes,
and complex assembly processes. Places and transitions are
connected by directed, labeled edges. Edges between vertices of
the same type are not allowed. Usually, the edges are labeled or
weighted, respectively, by integer numbers. In the following, we
call a directed, bipartite graph net or net graph, see Definition
2.1. To define a Petri net, we extend that definition, compare
Definition 2.2.

Definition 2.1. Net or net graph.

A net or net graph is a triple N = (P,T, F) with
P ∩ T = ∅ and
F ⊆ (P × T) ∪ (T × P)).
We call the elements of P and T places and transitions,
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respectively. They are the vertices or nodes of the net. We call
the elements of the flow relation, F, edges or arcs.

Regarding a net vertex, we define two sets of neighbor vertices,
the set of all pre-vertices •x := {y | (y, x) ∈ F} and the set of
all post-vertices x• := {y | (x, y) ∈ F}. Accordingly, we write
for a set of pre-places, •t, for a set of post-places, t•, for a set of
pre-transitions, •p, and for a set of post-transitions, p•.

We call edges that are going in two opposite directions
as read arcs or test arcs. Using read arcs, we can model, for
example, catalytic reactions, where the catalyst is necessary to
activate the transition (reaction), but will not be consumed,
when the transition takes place. A PN without read arcs is a
pure PN.

Definition 2.2. Petri net. A Petri net or Place/Transition net or
P/T net is a six-tuple Y = (P,T, F,K,W,M0), if

• (P,T, F) is a net,
• K : P → N ∪ {∞} (capacities of the places, possibly infinite),
• W : F → N (edge weights or label of the edges), and
• M0 : P → N0 (initial marking) with ∀p ∈ P :M0(p) ≤ K(p).

2.1.1. The Dynamics of P/T Nets
The dynamics of a net is performed by movable objects called
tokens which are located on the places and will be removed
according to the firing rule. If N is a P/T net, a mapping of the
M : P → N0 with ∀p ∈ P : M(p) ≤ K(p) is called a marking
of N. We graphically represent the number of tokens of a place,
M(p), under a marking, M, by M(p) dots (tokens) on the place,
p. We write the capacities 6= ∞ and edge weights 6= 1 at the
places and edges, respectively. The token distribution over all
places define a certain state of the net. M(N) is the set of all
markings of N. In the following, let M be a fixed marking of
N. The number of the tokens can be restricted by the capacity
of the place. In most biological applications, the capacity is set
to infinite. Additionally, we introduce logical vertices to get an
improved layout. A logical vertex has copies of the same name in
the graphical representation of the model. Using logical vertices,
we can draw PNs in a clearly-arranged way. For example, in
metabolic networks, ATP participates in many reactions. This
leads to many crossing edges if we model only one place for ATP.
To avoid these crossing edges, we copy the place for ATP and
mark it as logic place.

In this paper, we consider the classical Place/Transition PN
(P/T net). The firing rules do not include time relations. A
transition fires, or for biochemical networks, a reaction takes
place, if the transition is activated or has concession, i.e., if the
pre-places carry at least as many tokens as indicated by the
weights of the corresponding edges and if the capacity of the
post-places is large enough as indicated by he corresponding
edge weights. At the moment of firing, the tokens of the pre-
places will be consumed, and the tokens on the post-places will
be produced, both according to the corresponding edge weights.
A new system’s state is achieved. The numbers of tokens and
the edge weights implement quantitative properties although the
system is still discrete. If always at least one transition of the
PN is activated, the PN contains no deadlock and is called to be
deadlock-free.

Definition 2.3. Activated transition. A transition, t ∈ T, is

activated or has concession underM, written asM
t
→, if

• ∀p ∈ •t :M(p) ≥ W(p, t),
• ∀p ∈ t• :M(p) ≤ K(p)−W(t, p).

We say that t fires from M to M′ and write M
t
→

M′, if t is activated under M, and M′ arises from M by
removal of tokens from the pre-places and production of
tokens on the post-places according to the corresponding
edge weights:

M′(p) =























M(p)−W(p, t), if p ∈ •t \ t•,

M(p)+W(t, p), if p ∈ t• \ •t,

M(p)−W(p, t)+W(t, p), if p ∈ t• ∩ •t,

M(p) otherwise.

(1)

Transitions without pre-places are always activated. We call
them input transitions. Accordingly, we call transitions without
post-places output transitions. Input and output transitions
were used to model the interface to the system’s environment.
Figure 1 illustrates an example of a pure PN and its firing
behavior.

2.1.2. Linear Invariants
Using linear invariants, we can define specific dynamic properties
of the network. These properties are valid in every system state.
They can be used for model verification, but also for model
decomposition and network reduction. For PNs, we define the
place invariants (PI) for the passive part and the transition
invariants (TI) for the active part. The definitions of both
invariant types are based on the incidence matrix, we also know
as stoichiometry matrix for metabolic networks. This m × n
matrix, C, form places and n transitions indicates for each place,
pi ∈ P, the change in the number of tokens, △m, when a
transition, tj ∈ T, fires.

Definition 2.4. Incidence matrix. Let N be a P/T net.
The corresponding incidence matrix C is defined by:
∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n

Ci,j =



















W(tj, pi), if (tj, pi) ∈ F \ F−1,

−W(pi, tj), if (pi, tj) ∈ F \ F−1,

W(tj, pi), if (tj, pi) ∈ F ∩ F−1,

0 otherwise.

(2)

Note that for a PN without read arcs, we can remove \F−1 and
the third condition. Contrary, for all cases, the third case, Ci,j =

W(tj, pi), if (tj, pi) ∈ F, would be sufficient, if we consider W as
complete mapping to (P × T) ∪ (T × P) and set the weights of
non-existing edges to 0.

We developed the software toolMonaLisa especially designed
for PN applications to biological systems (Einloft et al., 2013).
Additionally to an intuitive editor, the tool provides many useful
analysis functions based on PNs as well as on graph theory. It
allows for classical discrete modeling as well as for stochastic
modeling (Balazki et al., 2015).
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Definition 2.5. Place invariant (PI). Let N be a P/T net and C
the corresponding incidence matrix. A place invariant of N is an
m-tuple x ∈ Z

m with CTx = 0.

Definition 2.6. Transition invariant (TI). Let N be a P/T net
and C the corresponding incidence matrix. A transition invariant
of N is an n-tuple y ∈ Z

n with Cy = 0.

We are interested in the minimal, semi-positive, integer
solutions; integer, because we are working at discrete level, semi-
positive because there is no interpretation of negative solutions,
and minimal because such equation systems can have an infinite
number of solutions. In the following, we consider minimal,
semi-positive, integer PIs and TIs, writing shortly PIs and TIs,
respectively. For discussion of the computational problem, see
Schrijver (1998) and Koch and Ackermann (2013).

The support of a vector, x, is represented by the non-zero
entries of the vector written as supp (x). An invariant x is called
minimal, if its support does not contain the support of any other
invariant z, i.e.,

6 ∃ invariant z : supp (z) ⊂ supp (x), (3)

and the greatest common divisor of all non-zero entries of x is
one. Whereas PIs reflect a token or substance conservation, the
TIs describe basic functional modules of the system’s dynamics
at steady state (Lautenbach, 1973; Schuster and Hilgetag, 1994;
Schuster et al., 2002). These functional modules have to be
checked for their biological correctness. The firing of the
transitions of a TI in the given frequency reproduces the initial
state. Thus, a TI is also called a Parikh vector. If every place or
every transition, respectively, is member of at least one PI or
TI, respectively, the PN is covered by PIs (CPI) or covered by
TIs (CTI), respectively. The CTI property indicates the network’s
completeness or consistency. A transition which is not member
of at least one TI does not contribute to the systems behavior.
Thus, it could be removedwithout influencing the overall systems
behavior. A TI or PI, respectively, defines a connected subnet,
consisting of its support, the support’s pre- and post-places or
pre- and post-transitions, respectively, and all edges in between.

TIs can be classified according to the type of the participating
transitions. The classes of TIs are motivated by the involved input
and output transitions. We consider the following types of TIs:

• trivial: a reversible reaction, which is split into a forward and a
backward transition.

• INOUT: contains at least one input transition and one output
transition.

• IN: contains an input transition, but no output transition.
• OUT: contains an output transition, but no input transition.
• CYC: contains neither an input nor an output transitions

forming a cycle in the model.

The explanations for some of the different types of invariants are
intuitive. In a metabolic PN, containing reversible reactions, it is
not possible to avoid trivial TIs. TIs of the type INOUT represent
pathways through the network, a succession of consecutive
biochemical reactions, transforming given educts (metabolites
produced by input transitions) to the corresponding products

FIGURE 1 | A Petri net and its firing possibilities. (A) The PN consists of two

places and three transitions. Place p2 is pre-place of t2, and p1 is post-place

of t2. t1 and t2 are pre-transitions of p1, and t3 is post-transition of p1.

Transition t1 is an input transition, meaning that it has no pre-places and is,

thus, always activated. Transition t3 is an output transition, meaning that it has

no post-places. In the first step, only transition t1 is activated. Transition t2
would need two tokens on place p2 to become activated, and t3 would need

one token to get concession. The capacities of all places are infinite. (B) The

new state defined by the token distribution after firing of t1. Place p1 gets

three tokens and p2 two tokens. Additionally to t1, t2 and t3 are activated ,

because their pre-conditions defined by the edge weights are fulfilled, and the

post-condition is valid too. (C) The new state after firing of t2. For the

reachability analysis, also the case of firing t3 first, will be considered. In the

simulation, one of the activated transitions is randomly chosen to fire next.

Now, t1 and t3 are activated. (D) The new state after firing of t3. One token

was removed from the PN, because t3 has no post-place.

(metabolites consumed by output transitions). TIs of the types
IN or OUT contain only input or output transitions, respectively.
These TIs emerge from internal production or consumption,
respectively, of secondary metabolites. TIs of type CYC contain
neither input nor output transitions at all. Their firings form
cycles in the PN.

Figure 2 gives the incidence matrix and the equation systems
for PI and TI computation of the PN example of Figure 1.

2.1.3. Maximal Common Transition Sets (MCT-Sets)
To support the biological interpretation of TIs, we group the
transitions into Maximal Common Transition sets (MCT-sets,
MCTS) by their occurrence in the minimal TIs: ∀i, j ∈ {1, . . . ,m}

the transitions, ti and tj, are grouped into the same MCT-set, if
and only if they participate in exactly the same minimal TIs, i.e.,
all TIs x hold:

χ{0}(xi) = χ{0}(xj), (4)

whereas χ{0} denotes the characteristic function, binary
indicating whether an argument is equal to zero. This grouping
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FIGURE 2 | The definitions of invariants of the PN in Figure 1A. (A) The PN in

Figure 1A. (B) The incidence matrix, C, of the PN. The matrix indicates how

many tokens are removed from or consumed on the places when a transition

fires. For example, if t1 fires, three tokens will be produces on p1 and two

tokens on p2. (C) The equation system to compute the place invariants. (D)

The equation system to compute the transition invariants. The PN has no

place invariants, but is covered by transition invariants. It has one TI

= {t1, t2, 4 t3}, meaning that t1 and t2 have to fire each once and t3 four

times, before the original state will be reached again.

leads to maximal sets of transitions, whereat each set of
transitions ϑ holds:

∀x ∈ X : ϑ ⊆ supp(x) ∨̇ ϑ ∩ supp(x) = ∅, (5)

whereas X denotes the set of all minimal TIs, x.
This grouping represents an equivalence relation in T, the set

of transitions, which leads to a partition of T. The equivalence
classes ϑ correspond to the MCT-sets. MCT-sets define also
subnets as TIs, but they have not to be connected. The subnets
defined by MCT-sets are disjunctive. They represent a further
decomposition method of large biochemical networks into
rather small subnets at steady state, which often correspond to
functional units. Each of the MCT-sets may represent a building
block with a special biological meaning.

2.2. Network Verification
Network verification is a crucial part in the process of model
construction. For biological PNs, beside structural and behavioral
properties such as the connectivity (Heiner and Koch, 2004;
Koch et al., 2011), another important property is the biological
interpretability of the TIs (Heiner and Koch, 2004; Koch et al.,
2005; Grunwald et al., 2008) and the MCT-sets (Sackmann et al.,
2006; Grafahrend-Belau et al., 2008).

The CTI property results from the TIs. This property can be
seen as one indicator for the consistency and completeness of a
network. It is of particular importance that a biological network
is CTI, because this property ensures that each reaction may
contribute to the basic system behavior (Koch and Heiner, 2008)
while the steady state of the system is preserved.

We assume that metabolic networks reach a steady state. This
steady-state assumption is reflected in the computation of the
TIs. A TI represents a set of reactions whose enzymes ensure the
steady-state condition. Only one missing reaction would lead to
a disturbance of the steady state of the system. Moreover, each
TI should represent a functional module in the overall network
dynamics. The verification or interpretation for a biological
meaning of each functional module, i.e., of each TI, represents a
method to verify large networks with regard to their correctness.
In this context, the computability of all TIs is a big problem, for
even middle-sized networks, i.e., consisting of some hundreds
of vertices and thousands of edges (Ackermann and Koch,
2011). To handle this problem, we applied network reduction
techniques.

2.2.1. Network Reduction
Network reduction methods should reduce the complexity of
the system, conserving main properties and the main behavior
of the network. Reduction techniques are essential for network
verification and analysis of big, complex systems. In computer
science, the question for the correctness of algorithms, their
running times, and other theoretical aspects of the reduction
process are of great interest (Arnborg et al., 1993). Reduction
has been employed in the analysis of complex networks in
the Petri net community during the last decades. Various
methods for the structural reduction of series of transitions and
places have been developed (Lee-kwang et al., 1987). In this
reduction process, surrounding vertices were summarized under
conservation of special PN properties. Other techniques rely on
the sharing properties of two or more vertices. Parallel transitions
or places are connected to the same sets of pre-places and
post-places or pre-transitions and post-transitions, respectively.
Then, these parallel structures can be merged (Murata, 1989).
Other methods try to integrate deadlock-avoiding policies, for
example, in flexible manufacturing systems (Uzam, 2004). Beside
these structural reduction methods, there exist also dynamical
techniques for PNs (Berthelot, 1987).

In systems biology, reduction techniques are used at the
topological level as well as at steady-state level. All these
techniques help to verify and analyze biochemical networks.
Investigations on metabolic networks (Reddy et al., 1993)
apply reduction techniques of parallel structures. One approach
establishes a matrix-based method to study the hierarchical
organization of metabolic networks (Ravasz et al., 2002). To
reduce the size of the matrix, non-branching pathways in the
metabolic network of Escherichia coli are replaced by single
reactions, resulting in a decrease of complexity.

Here, we used topological reduction techniques as
well as steady-state reduction techniques. We considered
topological reduction techniques that preserve the CTI-property
(Ackermann et al., 2012). To reduce chains of transitions, we
defined Common Transition Pairs (CTPs) as two transitions, ti
and tj, connected by a place called a connecting place, pc, see
Figure 3. We deleted the transition tj as well as the connecting
place, pc. The transition, ti, absorbed the properties of the deleted
transition, tj, i.e., all its pre-places, •ti, and post-places, ti•, as
well as the corresponding connecting edges.
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FIGURE 3 | A CTP (A) and its reduced form (B). (A) A common transition pair, CTP, (ti , tj ). The connecting place pc has one pre-transition ti and one post-transition

tj . (B) The net after a CTP reduction. The transition tj as well as the connecting place pc were deleted. The transition ti absorbed the properties of the deleted

transition tj , i.e., its pre-places, •ti , and post-places, ti•, as well as the corresponding edges.

To reduce reversible reactions, we defined Invariant
Transition Pairs (ITPs) as two transitions, ti and tj, representing
the forward and backward reaction, respectively, of a reversible
reaction and connecting two places, pi and pj, see Figures 4, 5
for an example. We deleted the ITP (ti, tj), as well as the place pj.
The place pi absorbed the properties of the deleted place pj, i.e.,
all its pre-transitions, •pi, and post-transitions, pj•, as well as the
corresponding connecting edges and the markings.

To indicate a reduction, we changed in each reduction the
names of the reactions and the metabolites. If two reactions were
merged in a CTP reduction, we provided a new name for the
merged transition, e.g., “ctp(ti+ tj)”. If we identified, for example,
the two reactions E151 and E152 connected by metabolite 87 as a
potentially reducible CTP, we connected all edges from reaction
E152 to reaction E151, removed metabolite 87 and reaction E152,
and renamed reaction E151 to ctp(E151+ E152).

If the reduction was based on an ITP, we renamed the merged
metabolites. According to the CTP reduction, we connected
the names of the two metabolites in the same way preceeded
by an ITP. If we reduce, for example, the reactions E24_f
and E24_b, which connect the metabolites 76 and 50, by an
ITP reduction, we would connect all edges from metabolite
50 to metabolite 76, remove the reactions E24_f and E24_b
and the metabolite 50, and rename metabolite 76 to itp(76 +

50).
Additionally, we reduced parallel reactions, i.e., if two

transitions had the same input place and the same output
place, and the same weights on the corresponding edges, we
combined both transitions into one without changing the net
behavior (Murata, 1989). We adopted this rule for the analysis
of biochemical networks (Reddy et al., 1993). We used this
technique to further reduce the complexity of the model by
reducing parallel pairs of transitions, but we applied it to those
with only one pre-place and one post-place and edges of weight
1. The reduction procedure was recursive. It was possible that,
e.g., the place itp(76 + 50) could be identified as an ITP with
another place in the next step. Each step of the reduction could
be followed by the nomenclature and produced a timescale of

reductions, compare with the Tables 1–9 in the supplementary
file Table 2.pdf.

A place or transition that had no connections left was removed
from the model. It was possible to remove the just reduced CTP,
i.e., the transition ti ∈ T, if the transition pair, (ti, tj], was
additionally a reversible reaction for all other places connected
to it. When this situation appeared, each ingoing edge for each
connected place would cancel an outgoing edge of the same place,
and, therefore, cancel all edges from and to ti ∈ T. After an ITP
reduction, it was possible that another ITP was removed, if it
connects the same pi and pj. For every other potential ITP, the
reduction of the first ITP resulted into two transitions connected
to the reduced place pi ∈ P with an ingoing and outgoing edge.
We then removed these transitions, because they were no longer
connected to the model.

3. RESULTS AND DISCUSSION

3.1. The Petri Net Model
We developed the PN model based on the literature, i.e., each
reaction (transition) is experimentally proven. The complete PN
model consists of 134 metabolites and 243 reactions, which are
connected via 572 edges. Figure 6 on the top gives a schematic
illustration of the model. The metabolites within the PN were
numbered. Their names are listed in the Supplementary file
Table 1.pdf. The reactions, including the literature references, are
compiled in the Tables 2–13 in the Supplementary file Table 1.pdf.
The interface to the environment was modeled by 29 reactions
indicated by an IN or OUT in the prefix of their names. The
input reactions create the substrates glycine (metabolite = place
18), D-fructose (place 63), D-galactose (place 73), coenzyme A
(CoA, place 93), acetyl-CoA (place 92), ammonia (place 29),
or citrulline (place 94). In turn, the output reactions create 22
metabolites (see Table 14 in the Supplementary file Table 1.pdf).
18 output transitions were connected to sink metabolites.

Four metabolites were connected to both, an input and output
transition, forming external metabolites (CoA, ammonia, acetyl-
CoA, and citrulline). The biosynthesis of CoA was not modeled,
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FIGURE 4 | An ITP (A) and its reduced form (B). (A) An invariant transition pair, ITP (ti , tj ). Both transitions have exactly one pre-place and one post-place. The

post-place of transition ti is the pre-place of transition tj and vice versa. (B) Net reduction of an ITP. The ITP ti , tj as well as the place pj were deleted. The remaining

place pi absorbed the properties of the deleted place pj , i.e., its pre-transitions, •pi and •pj , and post-transitions,pi• and pj•, as well as the corresponding edges and

markings.

FIGURE 5 | An example for an ITP (A) and its reduced form (B). (A) An

example of a small network that is CTI and contains an ITP (ti , tj ). (B) The

reduced network of (A). Place p12 absorbed the edges of places p1 and p2 of

the original net. The transitions t2 and t3 were neglected. The weight of edge

t1,p12 was the sum of the weights of the edges t1,p1 and t1,p2 of the

unreduced net in (A). The reduced net has the two TIs, (t1 + 2t4) and

(t1 + 2t5). Extensions of these invariants gave the TIs,(t1 + t3 + 2t4) and

(t1 + t2 + 2t5) of the original net. The TI, (t1 + t4 + t5), is not minimal for the

reduced net and will not be generated.

and thus, the precursor of CoA, pantothenate (Raman and
Rathinasabapathi, 2004), is not present in the PN. Similarly,
acetyl-CoA is a product of the β-oxidation of fatty acids in A.
thaliana (Fulda et al., 2002) which is not part of the model as well.
Nitrate and a ammonia were taken up by roots and transported to
photosynthetic tissues (Chalot et al., 2006). In leaves, ammonium
is the primary nitrogen source for glutamine synthesis in
the cytosol or chloroplasts, while nitrogen is either stored in
vacuoles or converted to ammonium for further processing. For
intracellular transport of ammonium between mitochondria and
chloroplasts, a so-called ornithine-citrulline shuttle is proposed
(Linka and Weber, 2005), which is also discussed to represent an
efficient transport system for carbon dioxide from mitochondria
to chloroplasts in form of citrulline. We modeled the external
setting of citrulline to dissolve an occurring deadlock, consisting
of the metabolites 94 (citrulline), 27 (L-arginino-succinate), 28
(arginine), and 1 (ornithine). Considering the four metabolites

that serve as input and output, the PN consumed 3 input
metabolites to produce 18 output metabolites.

For this complete PN, we were not able to compute the TIs.
To verify the PN we first manually divided the complete PN
into four smaller subnetworks of known biological meaning,
for which we could separately compute the TIs. We chose four
subnets of biological relevance according to the literature: (1) the
sucrose (Figure 6, blue), (2) the citrate (red), (3) the shikimate
(yellow), and (4) the UTP subnet (green). The names of the
subnets represent the key metabolites of each subnet. The sucrose
subnet was supplied with D-fructose and D-galactose as input
from the environment, while the other five input metabolites
were fed into the citrate subnet. In turn, nine metabolites
were exported from the sucrose subnet, five from the citrate
subnet, five from the shikimate subnet, and three from the UTP
subnet.

3.1.1. The Sucrose Subnet
The sucrose subnet consists of 44 metabolites and 103
reactions (Figure 7). The subnet contains seven additional
input reactions and 22 additional output reactions to generate
a sufficient outlet of products. The metabolites involved in
these reactions link the sucrose network with the other parts
of the PN. 18 output transitions were connected to sink
metabolites.

The sucrose subnet consists of four pathways, the Calvin
cycle (Figure 7, blue), the sugar metabolism (red), the
glycolysis (yellow), and the starch metabolism (green).
The Calvin cycle is central for carbon fixation in plants,
while the sugar metabolism accomplishes the synthesis and
degradation of sucrose (metabolite 66) and UDP-glucose
(metabolite 82). The glycolysis (yellow, orange) appeared
to be disconnected in the layout, but the reactions of the
glycolysis were combined via the logical place 44 (β-D-
fructose 6-phosphate). However, only a part of the glycolysis
pathway belongs to the sucrose network—the reaction cascade
from D-glucose (metabolite 51) to glycerate 3-phosphate
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FIGURE 6 | Schemas of the original and reduced PN model adapted from Nöthen (2014). It is a coarse-grained representation of the metabolism of A. thaliana. The

original model (on the top) consists of 134 metabolites and 242 reactions connected via 569 edges and the reduced model (on the bottom) of 60 metabolites, 131

reactions, and 329 edges. The models were manually subdivided into four subnets, the sucrose, the UTP, the citrate, and the shikimate net. The subnets are

highlighted in the same color and name.
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FIGURE 7 | The PN model of the sucrose subnet adapted from Nöthen (2014). It covers the Calvin cycle (blue), part of the glycolysis (yellow), the sugar metabolism

(green box), and the starch synthesis and degradation (red circle).

(metabolite 40). In turn, the other part of the glycolysis
pathway is integrated in the citrate subnet. Thus, a transfer
metabolite was required for the complementation of this
cycle.

3.1.2. The Starch Metabolism
The metabolism became obvious by inspecting the synthesis and
degradation of starch in detail based on Figure 7 (red). The
priming, chain-addition polymerization, polymer degradation,
irreversible poly-condensation, and granule formation of starch
are complex enzymatic processes. The mechanisms underlying
these processes are not yet fully understood for A. thaliana
(Szydlowski et al., 2009). While constructing the PN (Figure 8),
we did not account for the diverse structures of starch
macromolecules and for the chain length distribution. Thus,

we lumped the diversity of starch macromolecules to a
single unique metabolite named starch (metabolite 59). This
simplification was supported by a biologically intuitive view of
the coarse-grained structure of the net. We adopted previously
presented suggestions (Kossmann and Lloyd, 2000; Guy et al.,
2008; Fettke et al., 2009) to model the starch metabolism as
a pure, deadlock-free PN. To indicate deviations of reactions
from the activity of single enzymes we replaced the prefix E (for
enzyme) by R (for reaction) in the names of such reactions. More
precisely, in Figure 9, two molecules of ADP-glucose (metabolite
58) form one molecule of starch (metabolite 59) via amylose
(metabolite 86) and amylopectin (metabolite 81) (Kossmann and
Lloyd, 2000). The breakdown of one unit of starch produces two
units of α-D-glucose (metabolite 57) or, alternatively, via maltose
(metabolite 61) only one unit of α-D-glucose and one unit of
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FIGURE 8 | The PN model of the starch subnet adapted from Nöthen (2014). It covers the starch synthesis and degradation.

heteroglycan (metabolite 89) (Fettke et al., 2009). Heteroglycan
is freely convertible to α-D-glucose 1-phosphate (metabolite 50).
Also α-D-glucose can be converted via α-D-glucose 6-phosphate
(metabolite 56) to α-D-glucose 1-phosphate (metabolite 50).
α-D-glucose 1-phosphate is represented by a logical place (gray-
filled circle). Thus, the metabolite α-D-glucose 1-phosphate can
be produced and consumed by several reactions also outside
the sucrose subnet. The reaction, E46, transforms α-D-glucose
1-phosphate to ADP-glucose, which can be consumed for further
production of starch.

Due to the polymer character of the starch molecule,
it was difficult to model its synthesis and degradation in
detail. There is literature (Kossmann and Lloyd, 2000; Lu
and Sharkey, 2006; Guy et al., 2008; Reiter, 2008; Fettke
et al., 2009) available that describes the reaction cascade of
the starch metabolism without special focus on the polymeric
structure of starch. We put special effort into the curation
of the thermodynamic feasibility of the starch pathway by
an adaption of the stoichiometric parameters in the cascade
in such a way that no substance was created or consumed
(comparable to the procedure in Poolman et al., 2009). This
thermodynamic feasibility was supported by the two cyclic TIs,

one for each degradation pathway, which together covered the
starch metabolism.

3.1.3. The Citrate Subnet
The citrate subnet consists of 43 metabolites and 79 reactions
(Figure 10). The subnet contains two additional input and five
additional output reactions that connect the citrate network with
the other parts of the PN.

This subnet specifies the biosynthesis of glutamate (metabolite
2) and glutamine (metabolite 33) (blue), the citric acid cycle
(red), and the glyoxylate cycle (green), part of the biosynthesis
of uridine 5′-phosphate (violet), and completes the pathway
of glycolysis (yellow). Glutamine and glutamate play a central
role in the transfer of ammonia (metabolite 29). The citric acid
cycle is part of the energy metabolism in aerobic species. The
glyoxylate cycle (glyoxylate: metabolite 13) plays a major role
in the anabolic synthesis of carbohydrates. The reactions of
glycolysis complement the part of the cycle integrated in the
sucrose subnet by converting glycerate 3-phosphate (metabolite
40) to pyruvate (metabolite 20) (yellow). The biosynthesis of
uridine 5′-phosphate (uridine mono phosphate, UMP) is only
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FIGURE 9 | The simplified PN model of the initiation, synthesis, and

degradation of starch adapted from Nöthen (2014). The PN is not pure,

because the place Starch is a pre-place as well a post-place of the transition

Starch synthesis. The starch initiation (dashed lines) was required to avoid a

deadlock. In the presence of glucose, the metabolite starch is able to

auto-catalyze the production of more starch until no starch is present in the

system, e.g., all starch has been degraded. Without the starch initiation, the

production of starch would be blocked, producing a deadlock.

partially present in this subnet and was completed in the UTP
subnet (purple).

3.1.4. The Shikimate Subnet
The shikimate pathway (Figure 11) consists of 39 metabolites
and 46 reactions. It indicates the synthesis of shikimate
(metabolite 102: red) as precursor for the synthesis of
aromatic amino acids, e.g., phenylalanine (metabolite 109:
green) (Herrmann and Weaver, 1999). In turn, shikimate and
phenylalanine are precursors for phenylpropanoids (blue) which,
in turn, are precursors for the lignin (metabolites 30a and 30b)
synthesis. The synthesis of lignin is e.g., explicitly included as
a part of the biomass function in a genome scale flux balance
model of maize (Zea mays) (Saha et al., 2011). We divide lignin
into two compounds, 30a and 30b, representing guaiacyl lignin
and syringyl lignin, respectively. Guaiacyl lignin is believed to
be synthesized from coniferyl alcohol (metabolite 19) while
syringyl lignin is produced from sinapyl alcohol (metabolite 48)
(Humphreys and Chapple, 2002).

3.1.5. The UTP Subnet
The UTP subnet is depicted in (Figure 12, red). It consists of
25 metabolites and 29 reactions. The connection with the other
parts of the PN was achieved by three additional output reactions
(Table 14 in the Supplementary file Table 1.pdf).

The subnet contains the completion of biosynthesis of
UMP (Figure 12, red) that is initiated within the citrate
subnet by consuming N-carbamoyl-L-phosphate (metabolite
117) to produce UMP (metabolite 80). The second major
part of this subnet describes the interconversion of the
pyrimidine ribonucleotides, i.e., the connection between UMP,
UDP, and UTP and between CMP, CDP, and CTP, and the
synthesis of CTP from UTP and the degradation of CMP to
UMP (green).

3.2. The Reduced Petri Net Model
3.2.1. Removal of Metabolites
To limit the network complexity as far as possible, all small
metabolites like water and carbon dioxide, catalytic substances
like ions, and cofactors like NAD/NADH and the energy-
providing compounds like ATP were omitted from the model.
Hereby, the model was reduced by 19 metabolites and 274
edges. Studies have proven that hubs are less conserved than
compounds which connect different modules (Guimera and
Amaral, 2005), suggesting that a model without cofactors and
small metabolites is more suitable than a model which lacks
essential connections between the different biological modules.
A complexity reduction by removing such smaller metabolites
was preferred to a restriction of the overall network size. Several
of the small metabolites, namely CoA and UDP, remained in
the network due to suggestions of our coworkers (Schleiff, 2010,
personal communication). To prove that the reduced network
was still a real-world network, we compared the distributions of
vertex degrees of the reduced network with that of the network
based on the AraCyc database. After excluding all metabolites
with a vertex degree greater than 74, we could show that the
distribution of vertex degrees of the AraCyc network was very
similar to the one of the PN model. This indicated that the
reduced PN model was also a real-world model.

We applied ITPs (Invariant Transition Pairs) and CTPs
(Common Transition Pairs) using an extended version of a
previously published algorithm (Ackermann et al., 2012; Nöthen,
2014). We searched first for CTPs and then for ITPs in a
parallel running implementation. If any of these structures were
encountered, the net was reduced and followed by a search for a
CTP. We considered the following cases: (1) there are CTPs that
as well form ITPs. This is the case, if a place is connected to the
rest of the network only via an ITP-forming transition pair. Then,
the algorithm reduces the ITP first. (2) A special case of an ITP is
given, if a certain metabolite is connected to an input and output
transition. The PN model contains several external metabolites
which fulfill these special ITP rules.

86 CTPs, 62 ITPs, and 2 parallel reduction steps were
performed. All steps were listed in the supplementary file
Table 2.pdf in the Tables 1–9. The number of metabolites was
reduced from 134 to 60, the number of reactions from 243 to 131,
and the number of edges from 572 to 329.

Figure 6 depicts in a schematic way the original PN
model (on the top) and the model after reduction (on the
bottom). We exemplarily demonstrated the interpretation of the
results of the reduction procedure, choosing a place following
from a series of ITP reductions. The place represented a
conglomeration of substances involved in the Calvin cycle,
the glycolysis, and the citric acid cycle. It combined the
compounds succinate (metabolite 4), fumarate (metabolite 6),
malate (metabolite 8), oxalacetate(metabolite 12), pyruvate
(metabolite 20), phosphoenolpyruvate (metabolite 34), glycerate
2-phosphate (metabolite 39), glycerate 3-phosphate (metabolite
40), glycerate 1,3-bisphosphate (metabolite 41), glyceraldehyde
3-phosphate (metabolite 42), and dihydroxyacetone phosphate
(metabolite 68) into the same place. These reduction steps
additionally removed the transitions E13,E14,E15,E90, and E91,
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FIGURE 10 | The PN model of the citrate subnet adapted from Nöthen (2014). It covers the citric acid cycle (red), the glyoxylate cycle (green), part of the biosynthesis

of uridine 5′-phosphate (purple box), the biosynthesis of glutamate and glutamine (blue box), and part of the glycolysis (yellow).

while the transitions E11 and E14 remained in the reduced PN.
The first four metabolites were part of the citric acid cycle.
Out of the remaining seven metabolites which were part of
the glycolysis, there were five, namely glycerate 2-phosphate
(metabolite 39), glycerate 3-phosphate (metabolite 40), glycerate
1,3-bisphosphate (metabolite 41), glyceraldehyde 3-phosphate
(metabolite 42), and dihydroxyacetone phosphate (metabolite
68), which were also part of the Calvin cycle.

In plastids of A. thaliana, the glycolysis and the Calvin cycle
shared several enzymes (Peltier et al., 2006): phosphogylcerate
kinase (transition E90, reversible), glyceraldehyde 3-
phosphatedehydrogenase (transition E91, reversible),
triosephosphate isomerase (transition E13, reversible),
seduheptulosebisphosphate aldolase (transitions E11 and
E14, both reversible), and fructose bisphosphatase (transition
E15, reversible by transition E16). The sharing of these reactions
suggested that the participating compounds were shared as
well. In this case, the shared metabolites would be: glycerate
3-phosphate (metabolite 40), glycerate 1,3-bisphosphate
(metabolite 41), glyceraldehyde 3-phosphate (metabolite 42),

D-fructose 1,6-bisphosphate (metabolite 43), D-fructose 6-
phosphate (metabolite 44), and dihydroxyacetone phosphate
(metabolite 68) besides D-fructose 1,6-bisphosphate (metabolite
43) and D-fructose 6-phosphate (metabolite 44). The absence
of D-fructose 1,6-bisphosphate (metabolite 43) and D-fructose
6-phosphate (metabolite 44) in the reduced place was caused
by restrictions in the reduction process. A merging of places
by an ITP reduction was only allowed if all involved edges
had a weight of 1. This was not the case for the reactions
connecting metabolite 43 with 42 and 68 (transition E14).
The merging of parts of the citric acid cycle, namely succinate
(metabolite 4), fumarate (metabolite 6), malate (metabolite 8),
and oxalacetate (metabolite 12), was inspired by the reversible
reactions between the compounds, which was the main idea
behind an ITP reduction. The combination of this part of the
citric acid cycle and the last steps of the glycolysis, producing
phosphoenolpyruvate and pyruvate, was induced by the synthesis
pathway of oxalacetate from phosphoenolpyruvate (Dey and
Harborne, 1997). Considering these biological aspects, the
reduction process made sense.
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FIGURE 11 | The PN model of the shikimate subnet adapted from Nöthen (2014). It covers the shikimate pathway (red), the biosynthesis of phenylalanine (green), and

of phenylpropanoid (blue).

Additionally, parallel structures of connections between two
metabolites were merged as described in other PN analyses
(Murata, 1989; Reddy et al., 1993). After 86 CTP and 62 ITP
reduction steps, the resulting reduced network consists of 60
metabolites (45% of originally 134), 131 reactions (54% of
originally 243), and 329 edges (58% of originally 572).

3.3. Transition Invariant Analysis
The problem of enumerating all minimal TIs can not be solved
in polynomial time. The overall complexity of this task is still not
clear, and the decision problem, whether two transitions occur in
the same TI, is NP-complete (Acuña et al., 2010).

The complete model was too complex for the computation
of all the TIs. Several weeks of computation time on an AMD
OpteronTM 2.2 GHz with 32 GB RAM did not lead to any
result. Therefore, we decomposed the PN into four biologically
motivated subnetworks, which form two modules, the sucrose
module, combining the sucrose and theUTP subnetwork, and the
citrate module, combining the citrate and the shikimate subnet.
Additionally, we reduced the complete network, preserving
the CTI property. We computed the complete set of TIs
for the two modules and for the reduced network. All these
networks were covered by TIs. Table 1 compiles the number

of TIs for the two modules, the reduced network, and for all
TI types.

The explanations for some of the different types of
invariants were intuitive. In a metabolic PN, which usually
contains reversible reactions, it was not possible to avoid
trivial TIs. The condition of minimality ensures that no
other invariant contains both of the transitions of the
reversible reaction. TIs mainly represent pathways through
the network, a succession of consecutive biochemical reactions,
transforming given educts (metabolites produced by input
transitions) to the corresponding products (metabolites
consumed by output transitions). All TIs, containing OUT
only, which exist in the sucrose module, could be explained
easily.

We could show that a mapping of reduced invariants to
invariants of the unreduced net will be possible.

The PN model did not include secondary metabolites,
such that carbon dioxide was not modeled. In the Calvin
cycle (Bassham et al., 1954; Calvin, 1956), carbon dioxide is
bound to ribulose-1,5-biphosphate by ribulose-1,5-biphosphate
carboxylase oxygenase (Parry et al., 2003; Raines, 2003; Roy and
Andrews, 2004). This process produces two trioses from one
pentose, thereby raising the number of carbons in the system.
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FIGURE 12 | The PN model of the UTP subnet adapted from Nöthen (2014). It covers part of the synthesis of uridine 5′-phosphate, UMP, (red), and the

interconversion of the pyrimidine ribonucleotides. The interconversion are the reversible transformation of UMPP, UDP, and UTP and CMP, CDP, and CTP into each

other. Additionally, it contains the CTP synthesis CTP from UTP and degradation of CMP to UMP.

Due to deleted carbon dioxide, we modeled the Calvin cycle
without an explicit input transition for carbon dioxide. All
OUT TIs contained one of the two transitions modeled rubisco
(E129_1 and E129_2) and thereby an implicit IN TI of carbon
dioxide. This implicit modeling reduced all OUT TIs to INOUT
pathways. Transition E129_1modeled the carboxylation reaction
(Calvin cycle) of rubisco, and transition E129_2 the oxygenation
reaction (photorespiration) (Eckardt, 2005). All other modules
did not possess OUT TIs. The OUT TIs of the reduced model
were comparable to those of the sucrose subnet.

3.3.1. An Example for a Cyclic Transition Invariant
All cyclic TIs were as well artifacts, resulting from missing
metabolites and cofactors. Figure 13 illustrates an example of
a cyclic TI. The modeled starch metabolism requires ATP
and α-D-glucose 1-phosphate (metabolite 50) to form ADP-
Glucose (metabolite 58) and pyrophosphate by transition E46
(Kossmann and Lloyd, 2000; Streb and Zeeman, 2012). ATP and
pyrophosphate were not modeled, otherwise this reaction would
had required ATP and produced pyrophosphate. This led to two
options, (1) ATP and pyrophosphate were directly provided and
removed, and (2) ATP and pyrophosphate were produced and
consumed throughout the network. Both cases resulted directly

TABLE 1 | The numbers of places, transitions, and TIs in the modules and in the

reduced network.

PN size Sucrose module Citrate module Reduced PN

Places 69 72 60

Transitions 132 125 131

TI type

All 4,602 3,214 27,646

Trivial 31 25 22

IN + OUT 4,473 3,140 26,095

IN 18 41 1,298

OUT 63 0 132

Cyclic 17 8 99

All networks were CTI. We grouped the TIs according to the type of interface to

the environment. INOUT TIs contained input and output transitions, IN TIs only input

transitions, and OUT TIs only output transitions. Cyclic TIs contained neither IN nor OUT

TIs. Trivial invariants were reversible reactions which were split into a forward and a

backward transition.

or indirectly in the involvement of input and output transitions
leading to an INOUT TI.

IN TIs were as well caused by substances, which were not
modeled. In the sucrose subnet, all IN TIs were artifacts of
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FIGURE 13 | Example of a cyclic TI that describes part of the starch synthesis and degradation. The cycle evolves out of a silent input transition. The underlying

reaction of transition E46 produces ADP-glucose and pyrophosphate from ATP and α-D-glucose 1-phosphate (Streb and Zeeman, 2012).

the modeling of the pentose phosphate pathway. Transition E4
produces a carbon dioxide (Kruger and von Schaewen, 2003) in
the pentose phosphate pathway from metabolite 53 (6-phospho
gluconate). As carbon dioxide was not modeled, this had the
function of a hidden export. This behavior corresponded to the
OUT TIs, which were artifacts of the missing modeling of carbon
dioxide as well.

3.3.2. Exemplary Inspection of a Single Transition

Invariant
Here, we want to illustrate an exemplary inspection of a
single TI of the reduced model, consisting of twelve reactions.
As the reduction process merges reactions, the number of
traversed reactions in the original PN could be higher.
Table 2 illustrated the considered exemplary TI and listed the
syntheses of substrates a reaction was involved in. Several
biological pathways could be combined to form a single TI
(Koch et al., 2005). The considered TI produced UTP for
the synthesis of RNA from D-fructose (metabolite 63) and
ammonia (metabolite 29). To biologically verify this pathway
combination, we had to demonstrate that each part of the
TI could be biologically explained. The product of the TI
was two UTPs, which was removed from the network by the
transition OUT_129_rna. The used compounds for this product
were three D-fructoses provided by IN_63 and four ammonia
provided by IN_29. In plants, one UMP was synthesized from
four different compounds: one bicarbonate, one glutamine,

TABLE 2 | Exemplary TI in the reduced model.

Reaction and its firing

frequency

Involved in the synthesis of

2*E2_f L-aspartate

E14_f L-aspartate

3*IN_63 L-aspartate, 2*5-phosphoribosyl 1-pyrophosphate

3*E12 L-aspartate, 2*5-phosphoribosyl 1-pyrophosphate

2*ctp(E5+ E4) 5-phosphoribosyl 1-pyrophosphate

2*E127 5-phosphoribosyl 1-pyrophosphate

4*IN_29 2* glutamate, 2* glutamine

2*E106_f Glutamate

2*E109 Glutamine

2*E38 Uridine 5–phosphate (UMP)

2*ctp(ctp(E42+ E43)+ Uridine 5–phosphate (UMP)

ctp(E44+ ctp(E61_119+

E61_80)))

2*OUT_129_rna RNA

Each reaction was listed, including the number of its occurrences in the TI. Additional

information was given about the syntheses the reaction was involved in, either the

synthesis of one of the substrates L-aspartate, 5-phosphoribosyl 1-pyrophosphate,

glutamine, and UMP, or the final synthesis of RNA. If different subpathways were assigned

to the same reaction, the respective multiplicity was mentioned (see IN63 and E12).

one 5-phosphoribosyl 1-pyrophosphate, and one L-aspartate
(Zrenner et al., 2006). UTP was then synthesized from UMP
by adding phosphor groups. The metabolite bicarbonate was
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FIGURE 14 | Overview of an examplary TI (pink) of the reduced PN that expresses a combination of parts of the nitrogen economy, the oxalacetate synthesis, the

synthesis of 5-phosphoribosyl 1-pyrophosphate, and the synthesis of pyrimidines.

not modeled in the PN. It was demonstrated in the following
that each of the three remaining modeled compounds was
synthesized and used in a biologically explainable way. Two
L-aspartate were synthesized by firing of transition E2_f
(aspartate aminotransferase) two times. The substrates of this
reaction were oxalacetate and glutamate and the products
L-aspartate and α-ketoglutarate (Wilkie and Warren, 1998;
Graindorge et al., 2010). In the reduction process, several
pathways, leading to oxalacetate, were affected, resulting in a
merged metabolite, which represents various compounds. The
affected pathways were the glycerate 3-phosphate synthesis, the
oxalacetate synthesis, and the glycolysis.

5-phosphoribosyl 1-pyrophosphate can be synthesized
from D-fructose, via D-fructose 6-phosphate and D-ribose
5-phosphate (Dey and Harborne, 1997; Buchanan et al.,
2000; Berg et al., 2002; Zrenner et al., 2006). This pathway
structure was represented in the TI by the reactions
E12 (fructokinase, synthesis of D-fructose 6-phosphate),
ctp(E5+E4) (6-phosphogluconolactonase and phosphogluconate

dehydrogenase, synthesis of D-ribose 5-phosphate), and E127
(5-phosphoribosyl 1-pyrophosphatesynthase, synthesis of 5-
phosphoribosyl 1-pyrophosphate). Please note that a number
of reactions in the overall synthesis of 5-phosphoribosyl
1-pyrophosphate was affected by the reduction process, and
the precursor of transition E127 combined several compounds.
The remaining reactions, E106_f and E109, were required
to regenerate two glutamate and two glutamine, thereby
using four ammonia. Glutamine is an important part of the
nitrogen metabolism of conifers (Cánovas et al., 2007), and α-
ketoglutarate is a known nitrogen transporter in plants (Temple
et al., 1998). As glutamate is convertible in both, glutamine
and α-ketoglutarate (Aubert et al., 2001; Forde and Lea, 2007),
it seems to share these nitrogen-transportation duties. In the
TI, the regeneration of glutamate and glutamine, respectively,
from α-ketoglutarate and glutamate and in the process,
consuming ammonia, resembled this biological interpretation,
see Figures 14, 15. These findings proved this TI to be a
combination of parts of the nitrogen economy, the oxalacetate
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FIGURE 15 | The top right part of an examplary TI (pink) of the reduced PN, see Figure 14.

synthesis, the synthesis of 5-phosphoribosyl 1-pyrophosphate,
and the synthesis of pyrimidines. Altogether, these were the
important steps to synthesize UTP (Zrenner et al., 2006). Each
part of the inspected TI could be biologically interpreted, which
proved the possibility of the network to model these syntheses in
a steady-state sustaining manner.

3.4. MCT-Sets
MCT-sets represent the smallest biologically meaningful entities
in which a network can be decomposed (Sackmann et al., 2006).
We give several examples of MCT-sets of the reduced PN model
and their biological counterparts. This additionally provides a
possibility of comparison between the biologically motivated
subnets and the reduced network.

3.4.1. MCTS 1 and the Sucrose Module
This MCTS consists of the transitions Import117fromB/fromCit,
E43,E44,E61_119, and E61_80. All these transitions formed the
reaction chain that leads to uridine 5′-phosphate (Zrenner et al.,
2006). The import transition added carbamoyl aspartate to the
modules, which was produced by transition E42 in the citrate
module. De novo synthesis of uridine 5′-phosphate is highly
energy consuming and in some tissues partly replaced by the
recycling of already built compounds. Nevertheless, de novo
synthesis of UMP is still needed to replenish the nucleotide
stock (Moffatt and Ashihara, 2002). In the reduced network,

this complete synthesis pathway was merged into one transition,
called ctp(ctp(E42+ E43)+ ctp(E44+ ctp(E61_119+ E61_80))).
In the recursive reduction process, all of the reactions, forming
the de novo synthesis of uridine 5–phosphate, fulfilled the
conditions necessary for a CTP reduction. As transition E42
was part of the citrate module it could not be part of this
MCTS. Nevertheless, the possible CTP reduction of the complete
reaction chain, including E42, suggested a strong connection
between the reactions of the uridine 5′ phosphate de novo
synthesis and could indicate an MCTS in the PN, covering all of
them.

3.4.2. MCTS 2 and the Citrate Module
MCTS 2 consists of the transitions E103,E104_f ,E105, and
E113_f . This configuration occurred in the citrate module of
the biologically driven decomposition as well as in the reduced
network. Compared to the decompositions and the original
network, the connections of the transitions have changed during
the reduction process. In the subnets, the transitions form the
reactions:

• E103 : 79
E103
−→ 4

• E104_f : 3+ 20
E104_f
−→ 21+ 79

• E105 : 2
E105
−→ 3

• E113_f : 9+ 21
E113_f
−→ 20+ 2

Frontiers in Genetics | www.frontiersin.org June 2017 | Volume 8 | Article 85194

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Koch et al. Arabidopsis Petri Net Model

with 2 = glutamate, 3 = γ -aminobutyric acid (GABA),
4 = succinate, 9 = α-ketoglutarate, 20 = pyruvate, 21 =

phosphoenolpyruvate, and 79 = succinate semialdehyde. In the
reduced network, the metabolites 4 and 20 were combined by
an ITP reduction, forming a new place. The connections of this
new place were the combined connections of the merged original
places, i.e., the new place connected to E103 (as metabolite 4),
E104_f (as metabolite 20), and E113_f (as metabolite 20) and led
to the reduced reaction system

• E103 : 79
E103
−→ X

• E104_f : 3+ X
E104_f
−→ 21+ 79

• E105 : 2
E105
−→ 3

• E113_f : 9+ 21E113_f
E113_f
−→ X + 2

with 2 = glutamate, 3 = γ -aminobutyric acid (GABA), 9 =

α-ketoglutarate, 21 = phosphoenolpyruvate, 79 = succinate
semialdehyde, and X = the merged place (4 + 20). While
the pathways for these transitions mentioned in the AraCyc
database are glutamate degradation (E10,E104_f , and E105), and
alanine degradation (E113f ), other literature declare them as the
GABA shunt (Bouché and Fromm, 2004). Finding an MCTS of
these reactions strongly suggested a close interaction between
them, indicating a possible network behavior consistent with the
literature, because GABA is sufficient as sole nitrogen source for
effective growth of A. thaliana (Breitkreuz et al., 1999), and the
GABA shunt seems to play an important role in the reaction to
oxidative stress (Bouché et al., 2003; Bouché and Fromm, 2004).

3.4.3. MCTS 3 and the Citrate Module
This MCTS constitutes of the transitions
E40,E133_f ,E134,E135, and E136 in the citrate module.
The transitions E40,E133_f ,E134, and E135 formed the urea
cycle (Tischner et al., 2007), and transition E136 modeled
the degradation of urea (metabolite 25, Sirko and Brodzik,
2000). This MCTS is a collection of transitions forming
and degrading urea. In the reduced network, two CTP
reductions took place in this cycle. Initially, E135 and E40
were condensed to ctp(E135 + E40), which was further flattened
to ctp(ctp(E135 + E40) + E136) by the inclusion of E136.
Together with E134 and E133_f , this new reduced transition
formed an MCTS in the reduced network. Urea is an important
nitrogen source for plants (Polacco and Holland, 1993) and
mainly believed to be predominantly synthesized by the urea
cycle (Reinbothe and Mothes, 1962). This MCTS suggested the
importance of the urea metabolism in the PN model of the core
metabolism of A. thaliana.

4. CONCLUSION

In this paper, we presented a new semi-quantitative Petri
net model of the metabolism of A. thaliana based on recent
literature. Similar to a network of barley (Grafahrend-Belau
et al., 2009), the model was manually developed and curated. To
ensure the model’s consistency, we used PN-based reduction and
biologically motivated as well as graph-based decomposition and
analysis techniques.

The final size of the complete PN model was 134 metabolites,
243 reactions, and 572 edges. The complexity of this model did
not allow to compute all its transition invariants, which form
the base for further analysis. To get a manageable set of TIs,
we followed two strategies. First, we divided the model into
four biology-driven subnetworks, the sucrose, the citrate, the
UTP, and the shikimate subnetwork, and defined two modules,
each consisting of two subnetworks. The sucrose module covers
the sucrose and the UTP subnetwork, while the citrate module
compiles the citrate and the shikimate subnetwork. The second
strategy followed a graph-theoretic reduction of the model,
applying common transition pairs and invariant transition pairs.
Through the reduction, the network size decreased by ∼50%.
For all three subnetworks, we computed the TIs, easily showing
that the subnetworks were CTI. To handle the amount of 27,646
TIs for the reduced model, we classified the TIs into trivial,
INOUT, IN, OUT, and cyclic TIs. Because we could not discuss
all the 27,646 TIs, we considered exemplarily one cyclic TI that
describes a part of the starch synthesis and degradation and one
TI that expresses a combination of parts of the nitrogen economy,
the oxalacetate synthesis, the synthesis of 5-phosphoribosyl
1-pyrophosphate, and the synthesis of pyrimidines.

We demonstrated that the carbon fixation phase and the
regeneration phase of the Calvin cycle strongly depends on
each other. Additionally, potential steady-state pathways exist,
which provided the fixed carbon to nearly all parts of the
network, especially to the citric acid cycle. Moreover, the analysis
showed a close cooperation of important metabolic pathways,
e.g., the de novo synthesis of uridine-5–monophosphate, the
γ -aminobutyric acid shunt, and the urea cycle.

The presented model provides a solid basis for further
refinement, for example, by concentrations, gene expression data,
and kinetic data for a quantitative analysis.
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Many methods for inferring genetic networks have been proposed, but the regulations

they infer often include false-positives. Several researchers have attempted to reduce

these erroneous regulations by proposing the use of a priori knowledge about the

properties of genetic networks such as their sparseness, scale-free structure, and so

on. This study focuses on another piece of a priori knowledge, namely, that biochemical

networks exhibit hierarchical structures. Based on this idea, we propose an inference

approach that uses the hierarchical structure in a target genetic network. To obtain

a reasonable hierarchical structure, the first step of the proposed approach is to infer

multiple genetic networks from the observed gene expression data. We take this step

using an existing method that combines a genetic network inference method with a

bootstrap method. The next step is to extract a hierarchical structure from the inferred

networks that is consistent with most of the networks. Third, we use the hierarchical

structure obtained to assign confidence values to all candidate regulations. Numerical

experiments are also performed to demonstrate the effectiveness of using the hierarchical

structure in the genetic network inference. The improvement accomplished by the use

of the hierarchical structure is small. However, the hierarchical structure could be used

to improve the performances of many existing inference methods.

Keywords: genetic network, hierarchical random graph, hierarchical structure, bootstrap method, simulated

annealing

1. INTRODUCTION

A genetic network is a functioning circuit in living cells at the gene level. From one viewpoint, a
genetic network can be seen as an abstract mapping of an actual biochemical network consisting of
genes, proteins, metabolites, and so on. The analysis of genetic networks is conceived as one of the
promising ways to understand biological systems. The mathematical modeling of genetic networks
has therefore become an important theme in systems biology.

Many studies have sought to develop computational methods for inferring genetic networks
from observed gene expression patterns (Larrañaga et al., 2006; Chou and Voit, 2009; Hecker
et al., 2009). Often, however, these methods infer false-positive regulations along with true-positive
regulations. These erroneous regulations must be decreased if we are to successfully analyze the
inferred genetic networks. One possible approach to remove these erroneous regulations from the
inferred genetic networks is to use a priori knowledge about the networks. Several researchers have
introduced a priori knowledge about the properties of genetic networks, such as their sparseness,
scale-free structure, and so on, into methods for inferring genetic networks (see, e.g., Kikuchi et al.,
2003; Daisuke and Horton, 2006).
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This study focuses on another type of a priori knowledge,
namely, that biochemical networks exhibit hierarchical structures
(Clauset et al., 2008). The hierarchical structure in a network
is a property having vertices that cluster together in groups,
which then join to form groups of groups, and so forth, from
the lowest levels of organization up to the level of the entire
network. If we know the hierarchical structure in the target
genetic network, we can improve a genetic network inferred by an
inference method. That is, we can conclude that the regulations
inferred by the method are unreasonable if they are inconsistent
with the hierarchical structure. The hierarchical structure in a
given network can be detected using a method based on the
hierarchical random graph model (Clauset et al., 2008). While
this detectionmethod assumes that the erroneous regulations in a
given network are infrequent, erroneous regulations actually tend
to be abundant in a network inferred by a method for inferring
genetic networks. Even if we simply used Clauset’s method for the
analysis of a genetic network, a reasonable hierarchical structure
would be difficult to obtain.

In order to detect a hierarchical structure correctly, this
study first infers multiple genetic networks from the observed
gene expression data using a genetic network inference method
in combination with a bootstrap method (Efron, 1979). We
then extract a hierarchical structure from the inferred genetic
networks that is consistent with most of the networks. As
some erroneous regulations seem to be rarely inferred by the
bootstrap method, we speculated that the proposed approach
could reduce the effect of these erroneous regulations on the
hierarchical structure detection. In this study, we extract a
hierarchical structure from multiple genetic networks using
the detection method proposed by Clauset et al. (2008) with
modifications and then use the hierarchical structure obtained
to assess the confidence values of the regulations. Through
numerical experiments, we then demonstrate the effectiveness
of the use of the hierarchical structure in the genetic network
inference.

2. DETECTING HIERARCHICAL
STRUCTURES

2.1. Hierarchical Random Graph Model
Clauset et al. (2008) have proposed a method for detecting a
hierarchical structure in a given network. Their method describes
the given network as an undirected graph where the vertices
and edges represent genes and interactions between them,
respectively, in the genetic network inference. Note therefore
that, while the method for inferring genetic networks generally
treats a genetic network as a directed graph, the method for
detecting hierarchical structures must treat it as an undirected
graph.

The method proposed by Clauset et al. (2008) uses a
hierarchical random graph model H(D, θ) to represent a
hierarchical structure of a network consisting ofN vertices, where
D is a rooted binary tree having N leaf nodes and N − 1 internal
nodes, and θ = (θ1, θ2, · · · , θN−1) (see Figure 1). Each of the N
leaf nodes of D corresponds to each of the vertices of the given

network. The N − 1 internal nodes, which we represent here as
D1,D2, · · · ,DN−1, indicate the hierarchical relationship among
the vertices of the given network. Note that each pair of vertices in
the given network has a unique internal node in D as their lowest
common ancestor. The internal node Di has a parameter θi. The
parameter θi represents the probability that the given network has
an edge between vertices whereDi is the lowest common ancestor
inD. When the vertices u and v have the internal nodeDi as their
lowest common ancestor, therefore, it means that the network has
an edge between these vertices with the probability θi. The model
H(D, θ) has an ability to capture the hierarchical structure of the
given network. On the other hand, H(D, θ) is also conceived as
a generative model that allows us to generate artificial networks
with a specified hierarchical structure.

The method proposed by Clauset et al. (2008) tries to find D
and θ of H(D, θ), a model that serves well in representing the
hierarchical structure of the given single network. The method
proposed in this study, on the other hand, searches for them using
multiple genetic networks inferred by the bootstrap approach.

2.2. Problem Definition
The method proposed by Clauset et al. (2008) uses the maximum
likelihood estimation for the hierarchical structure detection.
Similarly, the method we propose here uses the maximum
likelihood estimation to extract a hierarchical structure from the
given networks. Here, therefore, we obtain the rooted binary
tree D and the parameter vector θ by maximizing a probability
that the given networks are generated from the model H(D, θ).
The detection of the hierarchical structure in this study is thus
defined as a maximization problem of the log-likelihood function
(Kimura and Okada-Hatakeyama, 2015)

log L(D, θ) =

Ng
∑

j=1

N−1
∑

i=1

[

E
j
i log θi + (LiRi − E

j
i) log(1− θi)

]

, (1)

where Ng is the number of the given networks, N is the number

of vertices contained in each network, and E
j
i is the number of

edges in the j-th network between vertices havingDi as the lowest
common ancestor in D. Li and Ri are the number of leaf nodes of
the left and right subtrees, respectively, rooted at Di.

From the optimality conditions on the maximization problem

of the function (Equation 1), i.e.,
∂ log L

∂θi
= 0, (i = 1, 2, · · · ,N −

1), we obtain

θi =

∑Ng

j=1 E
j
i

NgLiRi
, (i = 1, 2, · · · ,N − 1) (2)

The equations above indicate that the appropriate values for the
parameters θi’s are easily obtained for a given binary tree D. Our
method thus extracts the hierarchical structure only by searching
for the optimal D, as described below.

2.3. Optimization Algorithm
The method proposed by Clauset et al. (2008) extracts a
hierarchical structure from only a single network. The given data
are insufficient, so many hierarchical random graph models seem
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FIGURE 1 | (A) A network and (B) the corresponding hierarchical random graph model.

to match the given network well. Their method thus generates
multiple models using a Markov chain Monte Carlo method
(Chib and Greenberg, 1995), and then averages them to obtain
the hierarchical structure.

In our study, the use of multiple networks to detect the
hierarchical structure allows us to search for a single optimum
model using a simulated annealing (Kirkpatrick et al., 1983).
Our method thus optimizes the objective function (Equation 1)
according to the following procedure.

[Algorithm for maximizing the function (Equation 1)]

1. Randomly generate a rooted binary tree, BestTree, with N
leaf nodes, where N is the number of vertices contained
in each of the given networks. Note that each leaf node of
the tree corresponds to each vertex of the given networks.
Compute the objective value of BestTree using the function
(Equation 1). To compute this value for the function
(Equation 1), we must first give the parameters θi along
with a binary tree D. As mentioned in the section Problem
Definition, however, this study directly computes the values
for θi according to the Equation (2). Set T to Tstart .

2. Copy BestTree to CurrentTree.
3. Set Counter to 0.
4. Copy CurrentTree to TestTree.
5. Select an internal node of TestTree randomly. Then, modify

the structure of TestTree by applying ‘Exchange’ or ‘Rotate’
randomly to the selected node. “Exchange” and “Rotate” are
operators that alter the structure of the subtree rooted at the
selected node, as shown in Figure 2. After the modification,
compute the objective value of TestTree.

6. If the objective value of TestTree is better than that of
BestTree, copy TestTree to BestTree.

7. Copy TestTree to CurrentTree with a probability

min

{

1, exp

(

−
Objc − Objt

T

)}

,

where Objc and Objt are the objective values of CurrentTree
and TestTree, respectively.

8. Counter← Counter + 1.
9. Return to the step 4 if Counter < Nmax.
10. T ← γT.
11. Return to the step 2 if T > Tend. Otherwise, output BestTree

and stop.

Tstart , Tend, Nmax, and γ in the algorithm above are constant
parameters. For this study, we set their values to 1000, 0.1, 1000N,
and 0.99, respectively.

3. ASSIGNMENT OF CONFIDENCE VALUES
TO REGULATIONS

As mentioned previously, this study first infers Ng genetic
networks from the observed time-series of the gene expression
levels. Any inference method capable of producing multiple
genetic networks will serve this purpose. Here, however, we
decided to use a method proposed by Kimura et al. (2010) for
the generation of multiple genetic networks within a relatively
short computation time by combining the LPM-based inference
method (Kimura et al., 2009a) with the bootstrap method. We
refer to this inference method as the BS-LPM inference method.

While the BS-LPM inference method distinguishes the
regulation of the n-th gene from the m-th gene and vice versa,
the method for detecting hierarchical structures described in
the section Detecting Hierarchical Structures makes no such
distinction. Here, therefore, we take the following step to
transform the inferred genetic networks to the networks for
our method for detecting the hierarchical structure: when the
j-th genetic network inferred by the BS-LPM inference method
contains the regulation of the n-th gene from the m-th gene, the
regulation of the m-th gene from the n-th gene, or both, we add
an edge between the n-th and m-th vertices to the j-th network
for our detection method. The BS-LPM inference method is
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FIGURE 2 | The (A) “Exchange” and (B) “Rotate” operators applied to the internal node Ds. Squares represent internal nodes, and triangles represent leaf

nodes and/or subtrees.

also capable of inferring an auto-regulation/auto-degradation,
i.e., a regulation of a gene by itself. Here, however, we have to
remove auto-regulations/auto-degradations from the networks,
as our detection method cannot cope with them. Inferred
networks usually contain auto-regulations/auto-degradations,
because inference methods often infer the degradation of
transcripts of a gene as a regulation of the gene by itself. We
would not always need to search for regulations that usually exist.
As such, the inference of auto-regulations/auto-degradations is
not always essential for the inference of actual genetic networks.
In order to detect a hierarchical structure in our target network,
we next apply our detection method to the networks transformed
above.

The confidence values of regulations can be evaluated solely
based on the probabilities that the genetic networks inferred
by the BS-LPM inference method contain the regulations.
The hierarchical random graph model H(D, θ) in our method
provides the probabilities that the target network has interactions
between genes, which enable us to assign the confidence values to
regulations on that basis, as well. We therefore try to improve
the confidence values of regulations in this study by combining
the probabilities evaluated by the BS-LPM inference method with
those evaluated by H(D, θ). This study simply computes the
combined confidence value of the regulation of the n-th gene
from them-th gene, pn,m, by

pn,m = ηpBn,m + (1− η)pHn,m, (3)

where η (0 ≤ η ≤ 1) is a constant parameter, and pBn,m and pHn,m
are the probabilities assigned to the regulation of the n-th gene
from the m-th gene evaluated by the BS-LPM inference method
and H(D, θ), respectively. Note here that H(D, θ) disregards the

directions of regulations. While the values for pBn,m and pBm,n

are basically different from each other, therefore, pHn,m and pHm,n

always have the same value.
Note that the hierarchical random graph model H(D, θ) is

extracted from the networks inferred by the BS-LPM inference
method. Therefore, we should not depend too much on the
results obtained fromH(D, θ). In this study, thus, we mainly uses
the extracted hierarchical structure to rank the regulations that
are assigned the same probability value by the BS-LPM inference
method. For this purpose, this study sets the parameter η to
1− 1

Ng
.

4. NUMERICAL EXPERIMENTS

4.1. Analysis of DREAM3 Networks
From here, we will describe a series of experiments performed
with five artificial genetic networks to check whether or not the
use of the hierarchical structure is efficient for the inference of
genetic networks.

4.1.1. Experimental Setup

As target networks, we used a series of S-system models
(Voit, 2000) consisting of 100 genes (N = 100), with
topologies identical to those of the five networks provided
by the DREAM3 in silico network challenges, i.e., Ecoli1,
Ecoli2, Yeast1, Yeast2, and Yeast3 (http://dreamchallenges.org/)
(Figure 3). The DREAM3 networks have often been used to
check the performance of genetic network inference methods
(see e.g., Lim et al., 2013). The design of these networks is
based on actual biochemical networks and therefore reflects
the actual topological properties. Note here that our method
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FIGURE 3 | The network structures of (A) Ecoli1, (B) Ecoli2, (C) Yeast1, (D) Yeast2, and (E) Yeast3.

for detecting hierarchical structures only uses the topological
properties of genetic networks inferred by a genetic network
inference method. Although the target networks are artificial,
the experiments we describe here could confirm the effectiveness
of the use of the hierarchical structure for the genetic network
inference. DREAM3, on the other hand, describes these networks
using a model different from the S-system model (Prill et al.,
2010). While the model used in DREAM3 considers the
effect of the intrinsic noise, the S-system model disregards

it. The BS-LPM inference method used in this study also
disregards the intrinsic noise, so we used the S-system model
to describe the target networks. Note that the purpose of the
experiments here was not to assess the performance of the
inference method but to check the effectiveness of the use of
the hierarchical structure for the genetic network inference.
We could therefore demonstrate the effectiveness of the use
of the hierarchical structure even when using the S-system
model.
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The S-system model is a set of differential equations of the
form

dXn

dt
= αn

N
∏

m=1

X
gn,m
m − βn

N
∏

m=1

X
hn,m
m (n = 1, 2, · · · ,N), (4)

where Xn is the n-th state variable, N is the number of
components in the network, and αn (> 0), βn (> 0), gn,m, and
hn,m are model parameters. In the genetic network inference, Xn

is the expression level of the n-th gene and N is the number of
genes contained in the target network. As the parameters gn,m’s
and hn,m’s determine the topology of the network, we constructed
the target networks by changing their values. In instances where
the original DREAM3 network has the regulation of the n-th
gene from the m-th gene, we chose a value for gn,m randomly
from [−1,−0.5] ∪ [0.5, 1]. Otherwise, gn,m was set to 0.0. The
parameter hn,n was set to 1.0 in order to simulate the auto-
degradation, and the other hn,m’s (n 6= m) were set to 0.0. The
parameters αn and βn were all set to 1.0. We determined to
use this parameter setting based on the reference (Kimura et al.,
2009a). The numbers of regulations contained in Ecoli1, Ecoli2,
Yeast1, Yeast2, and Yeast3, excluding auto-degradations, were
125, 119, 166, 389, and 551, respectively. As the inference ability
of the proposed approach might depend on the values for the
model parameters, we changed the random parameter values in
every trial. Ten trials were performed on each of the five target
networks.

As the observed gene expression patterns, 100 sets of time-
series data, each covering 100 genes, were computed from the
differential Equations (4) on each of the target models. The sets
began from randomly generated initial values in [0.0, 2.0], and
11 observations with 0.4 time intervals between two adjacent
observations were assigned to each gene in each set. In a
practical application, these sets would be obtained by actual
biological experiments under different experimental conditions.
The measurement noise was simulated by adding 10% Gaussian
noise to the computed time-series data. By applying the BS-LPM
inference method (Kimura et al., 2010) to the generated gene
expression data, we inferred 100 networks (Ng = 100). We
used the recommended values for the parameters of the BS-LPM
inference method, namely, σ = 0.15, C1 =

200

N
√
K
, C2 = 0.4C1,

and δ = 0.05, where N is the number of genes contained in
the target network and K is the number of measurements. Thus,
N = 100 and K = 100× 11 = 1100 in these experiments.

In order to obtain a hierarchical random graph model
H(D, θ), we then applied the hierarchical structure detection
method described in the section Detecting Hierarchical
Structures to the Ng generated genetic networks. We then used
the hierarchical random graph model obtained to compute the
confidence values of the regulations, as described in the section
Assignment of Confidence Values to Regulations. The constant
parameter for computing the confidence values, η, was set to
1 − 1

Ng
= 0.99. As mentioned previously, we mainly uses the

extracted hierarchical structure to rank the regulations that are
assigned the same confidence value by the BS-LPM inference

method. This study therefore did not depend too much on the
hierarchical structure H(D, θ).

4.1.2. Results

As described previously, the proposed approach and the BS-
LPM inference method were both capable of assigning the
confidence values to all of the candidate regulations. In this study,
we checked the performance of these methods by constructing
a network of regulations whose confidence values exceeded a
threshold and then comparing it with the target network. We
checked the performance using the recall and the precision. The
recall and the precision are defined as

recall =
TP

TP + FN
, precision =

TP

TP + FP
,

where TP, FP, and FN are the numbers of true-positive,
false-positive, and false-negative regulations, respectively. Note
that we transformed the genetic networks inferred by the BS-
LPM inference method into undirected graphs for detecting
their hierarchical structure. When evaluating the performance,
however, we distinguished the regulation of the n-th gene from
the m-th gene and vice versa, i.e., we treated the networks
as directed graphs. We also disregarded auto-regulations/auto-
degradations in the evaluation.

Figure 4 shows samples of the recall-precision curves
obtained by the proposed approach and by the BS-LPM inference
method by changing the threshold for the confidence value. We
previously described how closely our method depends on the BS-
LPM inference method. As the figure shows, the performance
of our approach was therefore similar to that of the BS-LPM
inference method. Meanwhile, the figure also shows that the
use of the hierarchical structure improved the precision of our
approach. This higher precision is a preferable feature, since
biologists must experimentally validate the inferred regulations
in actual applications. The BS-LPM inference method required
about 4.12 h on a personal computer (Core i5-4670) to obtain
Ng (= 100) genetic networks from the given gene expression
patterns. The hierarchical structure detection method described
in the section Detecting Hierarchical Structures required about
2.91 h on the same computer to extract a hierarchical structure
from the generated genetic networks.

We quantified the performance of the proposed approach and
the BS-LPM inference method in this study using the area under
the recall-precision curve (AURPC). Table 1 lists the averaged
AURPCs of the two methods on the problems of Ecoli1, Ecoli2,
Yeast1, Yeast2, and Yeast3. Our approach outperformed the BS-
LPM inference method on most of the 5 × 10 = 50 trials with
respect to the AURPC, but its performance was still inferior in
seven of the trials. The inferior performance in those seven failed
trials was presumably due to a failure of our approach to detect
the hierarchical structures in the target networks. Four of the
failed trials were performed on the Ecoli2 problem and the other
three were performed on Yeast1, Yeast2, and Yeast3. As shown
in Figure 3B, a number of genes in Ecoli2 are regulated by only
single genes. Our approach failed to adequately analyze networks
with this property, as some regulations erroneously inferred by
the BS-LPM inference method easily caused the formation of
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FIGURE 4 | Samples of the recall-precision curves of the proposed approach and the BS-LPM inference method on the problems of (A) Ecoli1, (B)

Ecoli2, (C) Yeast1, (D) Yeast2, and (E) Yeast3. Solid and dotted lines represent the performance of the proposed approach and the BS-LPM inference method,

respectively.

erroneous gene clusters. Ecoli2 would model a network in which
some transcriptional factors regulate most of the other genes.
Note here that genes regulated by the same transcriptional factor
often show expression patterns similar to each other. Inference

methods generally perform poorly in discriminating genes of this
type. One solution for this problem is to use some clustering
technique to identify genes with similar expression patterns,
group them together, and then infer the regulations between the
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TABLE 1 | The performance of the proposed approach and the BS-LPM inference method evaluated with respect to the area under the recall-precision

curve (AURPC).

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD

Proposed approach 0.9042± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

BS-LPM inference method 0.8792± 0.0528 0.9154± 0.0207 0.6880± 0.0491 0.4151± 0.0207 0.3504± 0.0368

AVG and STD represent the averaged value of the AURPCs and its standard deviation, respectively.

TABLE 2 | The AURPCs of the proposed approach with different values for the parameter η.

Parameter Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

η AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD

1.000 0.8792± 0.0528 0.9154± 0.0207 0.6880± 0.0491 0.4151± 0.0207 0.3504± 0.0368

0.999 0.9043± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

0.995 0.9043± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

0.990 0.9042± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

0.950 0.8969± 0.0415 0.9159± 0.0272 0.6962± 0.0486 0.4269± 0.0249 0.3487± 0.0390

0.900 0.8898± 0.0430 0.9110± 0.0259 0.6832± 0.0459 0.4180± 0.0243 0.3412± 0.0390

Note that the proposed approach with η = 1.000 is equivalent to the BS-LPM inference method and the parameter η = 1− 1
Ng
= 0.990 is our recommended setting.

clusters (see e.g., Kimura et al., 2005). There would thus be no
need, in practical application, to detect hierarchical structures in
networks with topological properties similar to Ecoli2.

As described in the section Assignment of Confidence Values
to Regulations, this study uses the parameter η to combine the
results from the BS-LPM inference method and those from the
hierarchical random graph model. Therefore, we then checked
the effect of the parameter η on the performance of the proposed
approach. Table 2 shows the AURPCs of our approach with
different values for η. The experimental results indicate that,
although the use of the hierarchical structure has an ability to
improve the confidence values of regulations, we should not rely
too much on it.

The performance of the proposed approach might depend on
the number of the networks inferred by the BS-LPM inference
method, Ng . Therefore, we also checked our setting of the

parameter η, i.e., η = 1 − 1
Ng

, on the experiments with different

numbers of Ng . Figure 5 shows the AURPCs of the proposed
approach with Ng = 20, 50, 100, and 200 on the problems of
Yeast1. The figure indicates the reasonableness of our parameter
setting.

As mentioned previously, our approach improves the
confidence values of regulations by combining the probabilities
evaluated by the BS-LPM inference method with those evaluated
by the hierarchical random graph model. Note that this study
obtains the hierarchical random graph model using the genetic
networks inferred by the BS-LPM inference method. Therefore,
the reasonableness of the extracted hierarchical structure
depends on the accuracy of the inferred genetic networks.
We investigated how the accuracy of the inferred genetic
networks affected the performance of the proposed approach
by performing experimental runs with variable amounts of
time-series data applied to the problems of Yeast1. Figure 6 plots

the averaged AURPC against the amount of time-series data.
The plot shows that the use of the hierarchical structure has no
negative effect on the inference ability, on average, even when the
inferred networks are inaccurate.

4.2. Analysis of an Actual Network
We next applied the proposed approach to an experiment using
actual data.

4.2.1. Experimental Setup

This experiment analyzed an ErbB-receptor-mediated regulatory
network of transcription factors in normal human epidermal
keratinocytes. The network consisted of 29 components, i.e.,
three receptors (EGFR, ErbB2, and ErbB3), seven signal
transducer proteins (ERK, PI3K, AKT, STAT3, PLCg, PKCd, and
c-SRC), the phosphorylated forms of the three receptors and the
seven signal transducer proteins, and seven transcription factors
(c-FOS, FRA1, FRA2, JUNB, c-JUN, JUND, and c-MYC). Time-
series data consisting of 14 measurements of the 29 components
were measured by Saeki et al. (2012). Lacking sufficient data,
we inferred the target network using the following a priori
knowledge: (i) none of the receptors or signaling proteins are
affected by other receptors or signaling proteins; (ii) none of
the transcription factors are affected by receptors, signaling
proteins, or phosphorylated forms of receptors; (iii) none
of the phosphorylated receptors or phosphorylated signaling
proteins are affected by other receptors, signaling proteins,
or transcription factors; (iv) every component of this system
regulates itself; (v) every protein regulates its own phosphorylated
form. We employed this knowledge according to the biological
knowledge that phosphorylated forms of signaling proteins
and receptors can form cascades to transduce extracellular
signals to transcription factors (Alberts et al., 2008). Based
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FIGURE 5 | The averaged AURPCs of the proposed approach (solid line) and the BS-LPM inference method (dotted line) plotted against the number of

the inferred networks, Ng.

FIGURE 6 | The averaged AURPCs of the proposed approach (solid line) and the BS-LPM inference method (dotted line) in the experiments where

different numbers of time-series sets were given.

on the knowledge (i), for example, we prohibited inferring
the regulation of EGFR from ErbB2. We used the technique
proposed by Kimura et al. (2009b) in order to introduce
the knowledge described above into the inference method. By

introducing this a priori knowledge, we reduced the degree-
of-freedom of the network model. The other experimental
conditions were the same as those in the section Analysis of
Dream3 Networks.
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4.2.2. Results

The network of the regulations with confidence values exceeding
0.25 is shown in Figure 8A. The network obtained contained 135
regulations, but 17 were regulations of the proteins from their
phosphorylated forms or vice versa, which probably made them
trivial. We still lack a detailed understanding of the regulatory
network used for this study, which consisted of proteins and
their phosphorylated forms. We therefore compared the inferred
network with a protein network consisting of the proteins
alone (Figure 7). We obtained this protein network from the
STRING database (http://string-db.org/) (Szklarczyk et al., 2015).
The comparison results indicate that 77 of the 135 inferred
regulations were reasonable, since the interactions between the
corresponding proteins have been reportedly confirmed.

The proposed approach extracted a hierarchical structure of
the target network from the networks inferred by the BS-LPM
inference method. The extracted hierarchical structure is shown
in Figure 8B. As the figure indicates, the network contained three
clusters, i.e., clusters 1, 2, and 3. Clusters 1 and 2 contained the
transcription factors, the downstream components of the target
pathway. Cluster 3 mainly contained the upstream components.
The phosphorylated ERK and the phosphorylated STAT3’s,
none of which belonged to any cluster, were intermediate
components thought to regulate the transcription factors (Saeki
et al., 2012). Although imperfect, the hierarchical structure

obtained seemed to reflect the actual structure of the target
pathway. We thus think that the hierarchical random graph
model obtained can be used to assess the reliability of the
inferred network and/or to understand the structure of the target
network.

As mentioned before, our approach is highly dependent
on the BS-LPM inference method. The inferred network
was therefore almost the same as that obtained only from
the BS-LPM inference method. Our approach improves the
confidence values of the regulations using the hierarchical
random graph model obtained. We know, for example, that
the phosphorylated ERK and phosphorylated STAT3 regulate
each other (Gao and Horvath, 2008). In this experiment,
these regulations were inferred by both the proposed approach
and the BS-LPM inference method. The BS-LPM inference
method assigned a confidence value of 0.29 to the regulation
of the phosphorylated STAT3 by the phosphorylated ERK,
and assigned the same value to four other regulations.
Our approach, on the other hand, assigned a confidence
value of 0.2922 to the regulation of the phosphorylated
STAT3 by the phosphorylated ERK, a value superior the
confidence values assigned to the same four other regulations.
This feature of our approach could be useful for reducing
the efforts of biologists to experimentally validate inferred
regulations.

FIGURE 7 | The protein network obtained from the STRING database. Edges represent protein-protein interactions that have been reportedly confirmed by

biochemical experiments.
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FIGURE 8 | (A) The network of regulations with confidence values exceeding 0.25. Bold, solid, and dotted lines represent regulations with confidence values

exceeding 0.75, 0.5, and 0.25, respectively. (B) The hierarchical structure extracted from the inferred networks.

5. CONCLUSION

In this paper, we have proposed an approach for inferring a
more reasonable genetic network by utilizing the hierarchical
structures in genetic networks. The first step of this new approach
is to infer multiple genetic networks from the given gene
expression data. In this study, we took this step using the BS-LPM

inference method (Kimura et al., 2010). The next steps in our
approach are to extract the hierarchical structure in the target
network from the genetic networks generated in the first step,
and then to use the extracted hierarchical structure to compute
the confidence values of the regulations. Our experimental results
showed that the use of the hierarchical structure improves the
confidence values of the regulations. As mentioned in the section
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Assignment of Confidence Values to Regulations, however, this
study used the obtained hierarchical structure to rank the
regulations that are assigned the same probability by the BS-LPM
inference method. When there are no regulations that have the
same bootstrap probability, therefore, the use of the hierarchical
structure does not work. In our future work, thus, we must
improve this drawback.

The approach proposed in this study consists of a BS-
LPM inference method and a method for detecting hierarchical
structures. The BS-LPM inference method is a combination of
the LPM-based inference method (Kimura et al., 2009a) and
the bootstrap method. We have the freedom, however, to use
any inference method in place of the LPM-based inference
method. Meanwhile, several investigators have proposed other
inferencemethods that are capable of assigning confidence values
to regulations without the use of the bootstrap method (see e.g.,
Huynh-Thu et al., 2010). The use of the hierarchical structure
may also be effective in improving the performance of these
methods.

Several inference methods that utilize a priori knowledge
about the properties of genetic networks have been already
proposed (see e.g., Kikuchi et al., 2003; Daisuke and Horton,

2006). These methods use the a priori knowledge during the
genetic network inference. We could say, on the other hand,
that the proposed approach uses the a priori knowledge after
inferring genetic networks. Our experimental results proved
that, even after the genetic network inference, the use of the a
priori knowledge has an ability to improve the confidence values
of regulations. Thus, although the improvement done by the
proposed approach was very small, our framework might enable
us to use other types of a priori knowledge that are currently
difficult to utilize.
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Python is an excellent language for scientists and can be used at many levels: Simple scripts for
quick and dirty calculations, big programs implementing complex data models, taking advantage
of its powerful libraries for number crunching or simply as “glue” to bind together more specialized
modules written in C or Fortran. Such a versatility may be an obstacle to find an entry point for the
newcomer. Stevens and Boucher (2015) take computational Biology in the widest sense of the term
to write an extensive introduction to Python and provide an overview of its main scientific libraries.

The reader will find a gentle but terse introduction covering the basics in seventy pages before
moving on to practical topics like reading relevant file formats (FASTA, pdb, . . . ) From that point
on, programming concepts like data models or object orientation are introduced through practical
examples. The rest of the book is composed by an assortment of chapters that cover a wide diversity
of topics and can be read independently or used as a reference. Some of these chapters are focused
on specific biological topics such as macromolecular structures, sequence alignments, array data
and high-throughput sequencing. The relevant libraries are introduced along one or more of these
chapters to get the user up to speed. Other chapters are centered on a technique or discipline such as
image processing, machine learning, probability or statistics. In all cases, a brief introduction on the
topic is followed by a series of examples on how to get started. The selection of topics offers a good
compromise, presenting the general principles as well as useful recipes without overwhelming the
reader with excessive detail. Getting the reader up to speed in a very short time seems to be the key
premise. Finally, advanced topics like parallelization and interfacing with C will point the reader
to the next level. The book also provides a good overview of the main libraries with immediate
applications to biology, although some readers may miss a chapter on pandas.

This book is a good choice for researchers who want to migrate to Python or Ph.D. students
about to get started a computational biology or bioinformatics project. Biologists without
programming experience may prefer to start with a more gentle and maybe shorter introduction,
but those with previous experience with software packages like MATLAB or R will also find this
book to be a fast lane to Python. Clear explanations of the biological background will also make
this book accessible to scientists intending to move into biology from other disciplines.
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Fifteen years ago a student could go through the whole curriculum in any of the life sciences
without ever switching a computer on but, as bioinformatics and systems biology gained weight in
the field, biologists became first users and then developers of increasingly sophisticated computer
programs. Even for professionals far away from these disciplines, it is nowadays unthinkable to
plan an experiment without first checking some databases, designing some primers or analyzing
a sequence. These changes have created a need to include basic courses in the biology curriculum
where students with little or no inclination toward computer science have to learn the ropes of
programming. The main challenge when teaching such a course is to find a good balance between
presenting examples that are complex enough to motivate the students and simple enough to be
accessible for them. This book is precisely a guide for such an introductory course. Using python as
a first programming language and assuming no previous knowledge, the authors follow a practical
approach to teach the basic programming skills.

The book is structured in four parts, preceded by a twenty pages tutorial on the basics of python.
The examples in each of the first three parts revolve around a unifying biological theme, which
turns each of them into a simple yet interesting project. Abstract computational concepts like
recursion or memoization are introduced as they are needed to solve diverse problems. At the end
of each part, a problem is formulated to solve a real case study using the material covered so far.
Abundant examples, additional explanations on these problems and source code with the solutions
are available through he companion website. The first part starts with simple tasks like computing
GC content of a DNA sequence or converting DNA to its corresponding mRNA. Through these
simple examples, the usage of different data types is introduced as well as the basics of flow control
and functions. The rest of the first part is dedicated to the consolidate knowledge on these basic
concepts understanding the general organization of a program. These concepts are then used to find
ORFs in a genome and sequences that are associated with pathogenicity in Salmonella. The second
part covers sequence alignments, building up toward finding homology between genes and then
chromosomes. It is all exemplified by comparing X chromosome in humans and Z chromosome
in chicken. The third part covers phylogenetic trees and ends with mitocondrial DNA comparison
between humans and neanderthals. finally, a more heterogeneous part closes the book presenting
three different examples that depart from the rest: RNA folding, finding gene regulation networks
and genetic algorithms.
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The text is extremely well written, with clear explanations
and interesting examples. The pace is slow but entertaining,
ensuring that the student can keep up with the step by step
explanations while sitting in front of the computer and trying
things right away. No previous knowledge is assumed, and the
most basic programming concepts are explained from scratch,
stopping to indicate possible pitfalls and preparing the reader
for potential difficulties. There are many introductory texts to
Python, including some aimed to biologists. What makes this
book different is that it does not focus on teaching a particular
programming language or some useful algorithms. The authors
present biological problems and keep the attention focused on
them. Python is just taken as a vehicle to introduce very abstract
concepts by example. This makes the book valuable as a guide
for an undergraduate course. Even if the students never use
python after the course is over, they will have acquired the basic
programming skills they may need. I haven’t found a book that
follows this approach so successfully since “Beginning Perl for
Bioinformatics” by James Tisdall, 15 years ago.
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