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Editorial on the Research Topic

Perceptual organization in computer and biological vision

A principal challenge for both biological and machine vision systems is to integrate

and organize the diversity of cues received from the environment into the coherent

global representations we experience and use to make good decisions and take effective

actions. Early psychological investigations date back more than 100 years to the seminal

work of the Gestalt school (Koffka, 1935; Wertheimer, 1938). Yet in the last 50 years,

neuroscientific and computational approaches to understanding perceptual organization

have become equally important, and a full understanding requires integration of all

three approaches (Wagemans et al., 2012; Elder, 2018). Perceptual organization can be

defined as the process of establishing meaningful relational structures over raw visual

data, where the extracted relations correspond to the physical structure and semantics

of the scene. The relational structure may be simple, such as set membership for image

segmentation, or more complex, such as sequence representations of contours, hierarchical

representations of surfaces, or layered representations of scenes. These structures support

3D scene understanding, object detection, object recognition, and activity recognition,

among other tasks.

This Frontiers Research Topic brings together 13 contributions to Frontiers in

Psychology and Frontiers in Computer Science, with the aim of presenting a single,

unified collection that will encourage integration and cross-fertilization across disciplines.

Together, these contributions explore how the brain forms representations of contours,

surfaces, and objects over 3D space and time, and the degree to which representations

formed by recent deep learning models may be similar or different. Here we briefly

introduce these 13 contributions and highlight how they interrelate.

“Shape from dots: a window into abstraction processes in visual perception”: What

constraints and rules does the visual system use to organize simple visual elements into

meaningful contours? Displays of dots provide an interesting way of exploring these

grouping rules. Unlike Gabor patches (Field et al., 1993; Kovacs and Julesz, 1993, 1994)

and line elements (Pettet, 1999; Drewes et al., 2016; Elder et al., 2018; Baker et al., 2021),

dots do not provide orientation information. Nevertheless, observers group dots into

contours. Baker and Kellman explore under which geometric conditions people perceive

a spatial sequence of dots as executing a smooth vs. abrupt change in orientation. They

find that a triplet of dots forming an obtuse angle (more than 90 degrees) is perceived as a

smooth contour, whereas a triplet forming an acute angle (<90 degrees) is perceived as an

abrupt vertex. Dot displays that describe curvilinear contours as opposed to sharp-angled
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vertices allowed for clearer perception, better mental rotation, and

more accurate detection of shapes. These results may reflect the

underlying statistics of smooth contour curvatures and abrupt

orientation changes we encounter in the visual world.

“Combining contour and region for closed boundary extraction of

a shape”:Ultimately, neural mechanismsmust organize local spatial

features coded in early stages of the visual system into the coherent

object representations we perceive. The grouping cues that support

this computation include geometric regularities of the object’s

bounding contour (e.g., good continuation) as well as photometric

regularities within the object (e.g., color similarity; Elder and

Zucker, 1996, 1998). In this contribution, Hii and Pizlo propose a

foveated shortest-path model of contour grouping to explore the

potential fusion of geometric contour and color cues in recovering

complete object boundaries. Psychophysical results demonstrate

that the human visual system can synergistically combine geometric

and color grouping cues, in qualitative agreement with their

computational model.

“Specific Gestalt principles cannot explain (un)crowding”: The

contribution from Hii and Pizlo concerned how local elements

on the retina are organized into a representation of a coherent

figure or object. But perceptual organization extends beyond a

single figure to determine how we perceive collections of figures

or objects in the scene. One window into this process is provided

by the study of crowding. Crowding is the phenomenon wherein

fine spatial judgements can be made more difficult if extraneous

“distractor” elements are brought near to the stimulus being

judged. Uncrowding refers to the remarkable fact that adding

a regular pattern of multiple distractors can release this effect.

This phenomenon has generally been attributed to the perceptual

organization of these extraneous elements into a perceptual

group apart from the stimulus being judged. However, in their

psychophysical study, Choung et al. find that, while the degree of

uncrowding is strongly correlated with perceived grouping, simple

models of perceptual grouping fail to account for this relationship.

This suggests that the formation of perceptual groups may depend

upon subtle interplays and higher-level perceptual interpretations

of the visual stimulus that are not easily captured by a simple

combination of Gestalt laws.

“Good continuation in 3D: the neurogeometry of stereo vision”:

The studies discussed so far provide intriguing insight into

perceptual organization in the 2D image plane. But how does this

relate to the structure of our 3D visual world? Bolelli et al. note

that the back-projected boundaries of solid objects are generally

not planar curves (Koenderink, 1984), and their 3D structure can

be important to perceptual organization and object understanding.

Fortunately, this 3D structure can potentially be recovered via the

geometry of the binocular projection. Bolelli et al. introduce a

mathematical framework relating the projected geometry of these

3D curves to binocular neural selectivity. Based on tools from sub-

Riemannian geometry, their model makes predictions about how

interactions between neurons in early visual cortex should depend

upon the ocularity and joint position-orientation tuning of the

neurons. This model provides a framework for understanding the

stereo correspondence problem as well as torsional eye movements.

“The coherent organization of dynamic visual images”: The

challenge of perceptual organization extends not only over the

three dimensions of space but also the dimension of time. The

review article by Lappin and Bell details how the brain uses

spatiotemporal regularities in moving images to perceptually

organize the visual stream into continuous surface representations

that support the discrimination of fine spatiotemporal judgements

with hyperacuity precision.

“Visual cortical processing—From image to object

representation”: The foveated shortest-path object grouping

model of Hii and Pizlo entails an incremental construction of

progressively more global, complex, and complete representations.

While Hii and Pizlo do not suggest a specific mapping of their

model to brain regions, it is common to assume that such

computations proceed hierarchically from early to later visual

areas. However, a body of work from Zhou et al. (2000), Craft

et al. (2007), von der Heydt (2015), Williford and von der

Heydt (2016), and others, provides an alternative account. These

findings include neural sensitivity in earlier areas of visual cortex

to illusory contours and figure/ground assignment that could

only emerge from more global computations, challenging the

conventional view. In particular, the identification of border

ownership cells in cortical area V2 that respond selectively to a

contour depending upon the figure/ground sign is strong evidence

against a feedforward, hierarchical view of object perception.

What is the alternative? von der Heydt reviews computational and

neurophysiological research supporting the existence of grouping

cells (G cells) that pre-attentively link neurons in early visual

areas that are selective for contours to form representations of

global “proto-objects” via recurrent processing. von der Heydt

conjectures that these G cells might be located outside of the object

pathway in the ventral stream, since recordings in areas V1, V2,

and V4 have failed to confirm their existence.

“Backward masking implicates cortico-cortical recurrent

processes in convex figure context effects and cortico-thalamic

recurrent processes in resolving figure-ground ambiguity”: Peterson

and Campbell also present evidence against a feedforward account

of visual perception. They show that recurrent processing plays an

essential role in the perception of classic figure-ground displays that

were long taken as evidence that convexity is an important prior

in building objects in a bottom-up fashion. Previously, Peterson

and Salvagio (2008) and Goldreich and Peterson (2012) found that

convexity is a weak figural prior unless it is supplemented by a

background prior. The background prior requires homogeneous

fill-in concave regions alternating with convex regions. Peterson

and Campbell show that the convexity prior and the background

prior conflict in traditional displays where both convex and concave

regions are homogeneously colored and that recurrent processing

resolves this conflict before conscious perception. Furthermore,

they identify both cortico-cortical and cortical-thalamic recurrent

processes in the perceptual organization of the classic displays.

Their experiments show that dynamical recurrent interactions

are involved in some of the foundational experiments taken as

evidence for a feed-forward model of figure-ground perception.

“Perceptual organization and visual awareness: the case of

amodal completion”: It has long been debated whether the process

of amodal completion of partially occluded objects demands

attention and awareness or whether it can occur autonomously.

Here, Kimchi et al. report four experiments investigating this
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question, using a variant of a color-opponent flicker technique in

which a priming stimulus can be presented for a duration necessary

for perceptual completion while remaining outside perceptual

awareness. Kimchi et al. used this technique to create priming

stimuli that cued either a local, global, or ambiguous interpretation

of a subsequent target stimulus. They found that when the prime

indicated a local completion, local targets were classified faster

than global targets, suggesting that local completion can take place

without visual awareness. However, when the prime cued a global

or ambiguous interpretation, target responses were unaffected by

the prime, which they take as evidence that awareness is necessary

to resolve ambiguity and to generate a global completion.

“Visual and haptic cues in processing occlusion”: Vision is only

one of the human senses, and fusion with haptic sensing could

be particularly important to inform the perceptual organization

of partially occluded objects that are only partially visible to

the eye. Prior work has shown that partially occluded faces are

more easily recognized when the occluders are stereoscopically

rendered to appear in front, rather than behind, the faces. Here,

Takeichi et al. use virtual reality to investigate how both visual and

haptic information about the relative depth of the occluder affects

recognition of katakana characters. While the haptic cue was found

to increase the confidence of observer judgements of the relative

depth of the occluder, there was no effect on character recognition.

Also, counter to prior work with faces, character recognition was

better when the “occluder” was rendered to be behind, rather than

in front, of the character, suggesting that 3D processing may be

different for specialized 2D stimuli like textual characters than

for faces.

“The mid-level vision toolbox for computing structural properties

of real-world images”: The research reviewed above largely

follows in the tradition of Gestalt psychology in using highly

simplified stimuli to isolate specific perceptual factors and

test hypotheses. However, the maturation of computer vision

technologies provides opportunity to explore whether principles

of perceptual organization generalize to real-world scenes in all

of their complexity. Walther et al. provide a useful resource for

this endeavor with their Mid-Level Vision (MLV) Toolbox. The

toolbox offers algorithms for extracting contours from photographs

and for computing a variety of contour properties: orientations,

curvature, length, and contour junctions. Relying on the medial

axis transform as a dual representation of scene contours, the

toolbox provides code to compute measures of local parallelism,

local mirror symmetry, and contour separation. The toolbox also

contains code for visualizing these properties and for manipulating

contour drawings based on them.

“Does training with blurred images bring convolutional neural

networks closer to humans with respect to robust object recognition

and internal representations?”: The success of deep learning models

in solving computer vision problems has led to their adoption as

potential models for predicting neural and behavioral response to

visual stimuli. While these models do capture many aspects of

neural and behavioral response, there are intriguing divergences

in how networks handle out-of-distribution perturbations such as

image blur. Here, Yoshihara et al. find that training convolutional

networks with a mix of blurry and sharp images makes them more

human-like in their robustness to blur and weighting of shape vs.

texture in making classification decisions (Geirhos et al., 2018).

“Shape-selective processing in deep networks: integrating the

evidence on perceptual integration”: Training with blurred stimuli

likely knocks out fine-scale texture cues that networks tend to rely

on by default, upweighting the use of shape cues. But what is

the nature of the shape cues that these networks can use? While

humansmake profound use of configural shape information, recent

research suggests that deep networks struggle to organize these

global shape cues, relying more on local shape features (Baker

et al., 2018; Baker and Elder, 2022). In their contribution, Jarvers

and Neumann perform a new analysis of deep neural network

shape sensitivity that suggests that the addition of recurrent or

residual connections can enhance sensitivity to non-local shape,

although not to the extent seen in humans. These results suggest

future directions for neural network design that may lead to models

that are better able to capture the human ability to organize local

features into representations of global object shape.

“Self-attention in vision transformers performs perceptual

grouping, not attention”: Deep learning models have made

substantial gains in performance through mechanisms of “self-

attention” and “cross-attention” that allow for multiplicative

interactions between data inputs and are the basis for more

recent state-of-the-art transformer architectures. Here, Mehrani

and Tsotsos argue that the effect of self-attention is in fact

more appropriately described as perceptual organization based

on feature similarity. In a series of computational experiments,

they demonstrate that vision transformers learn to group stimuli

based on features such as hue, lightness, saturation, shape, size,

or orientation and suggest that this can be thought of as a form

of horizontal relaxation labeling. This novel view provides insight

into how transformer architectures may solve difficult perceptual

organization problems that challenge convolutional architectures.
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Does training with blurred images
bring convolutional neural
networks closer to humans with
respect to robust object
recognition and internal
representations?
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1Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University,

Kyoto, Japan, 2NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation,
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It has been suggested that perceiving blurry images in addition to sharp

images contributes to the development of robust human visual processing. To

computationally investigate the e�ect of exposure to blurry images, we trained

convolutional neural networks (CNNs) on ImageNet object recognition with a variety

of combinations of sharp and blurred images. In agreement with recent reports, mixed

training on blurred and sharp images (B+S training) brings CNNs closer to humans

with respect to robust object recognition against a change in image blur. B+S training

also slightly reduces the texture bias of CNNs in recognition of shape-texture cue

conflict images, but the e�ect is not strong enough to achieve human-level shape

bias. Other tests also suggest that B+S training cannot produce robust human-like

object recognition based on global configuration features. Using representational

similarity analysis and zero-shot transfer learning, we also show that B+S-Net does not

facilitate blur-robust object recognition through separate specialized sub-networks,

one network for sharp images and another for blurry images, but through a single

network analyzing image features common across sharp and blurry images. However,

blur training alone does not automatically create a mechanism like the human brain in

which sub-band information is integrated into a common representation. Our analysis

suggests that experience with blurred images may help the human brain recognize

objects in blurred images, but that alone does not lead to robust, human-like object

recognition.

KEYWORDS

convolutional neural networks, object recognition, visual development, perceptual

organization, optical blur

1. Introduction

Human visual acuity, evaluated in terms of the minimum angle of resolution or the highest

discernable spatial frequency, is affected by a variety of processes including eye optics, retinal

sensor sampling, and the subsequent neural signal processing. In daily visual experiences, visual

acuity changes depending on, for example, the degree to which the current focal length of the eye

agrees with the distance to the target object, or whether the target is sensed at the fovea, where

image sampling is dense, or at far-peripheral vision, where sparse image sampling is followed by

spatial pooling. Visual acuity also changes progressively with each stage of development. Infants

who are born with low visual acuity gradually acquire near adult-level acuity within the first few
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years of life (Dobson and Teller, 1978; Banks and Salapatek, 1981).

Considering that the loss of visual acuity can be approximated by

blurring the image by low-pass (high-cut) filtering, one can say that

most humans have a rich experience seeing blurred visual images in

addition to sharp ones.

It has been suggested that the experience of blurred visual images

might be functionally beneficial, enabling the visual system to use

global configural structures in image recognition (Grand et al., 2001;

Le Grand et al., 2004; Vogelsang et al., 2018). Several recent studies

test this hypothesis computationally by machine learning using

artificial neural networks (Vogelsang et al., 2018; Katzhendler and

Weinshall, 2019; Avberšek et al., 2021; Geirhos et al., 2021; Jang and

Tong, 2021, 2022). Vogelsang et al. (2018) trained a convolutional

network (CNN) to recognize human faces. To simulate how visual

acuity gradually improves during the initial stage of life, they changed

the training images from blurred to sharp ones during training (B2S)

and found that the network achieves robust face recognition for a

wide range of image blur, as humans do. In contrast, the network

can only recognize sharp images when trained on sharp images.

The network can only recognize blurred images when trained using

blurred images or sequentially trained on images that change from

sharp to blurred. Jang and Tong (2021) found that the effect of

B2S training is task-specific. It leads to blur-robust recognition for

face recognition as Vogelsang et al. reported, but not for object

recognition. Avberšek et al. (2021) was also unable to obtain blur-

robust object recognition by means of B2S training. However, object

recognition achieves blur robustness when blurred and sharp images

are always mixed during training (B+S).

With a similar research motivation in mind, we examined

the effects of blur training on object recognition by CNNs. We

investigated which types of blur training make the CNNs sensitive

to coarse-scale global features as well as fine-scale local features,

and bring them closer to the human object recognition system. We

evaluated the object-recognition performance of the blur-trained

CNNs not only using low-pass filtered test images, but also for

other types of images including band-pass filtered images and shape-

texture cue conflict images (Geirhos et al., 2019) to ascertain whether

blur training affects global configurational processing in general.

In agreement with previous reports (Avberšek et al., 2021; Jang

and Tong, 2021), our results show that B+S training, but not

B2S training, leads to blur-robust object recognition comparable

to human performance. However, B+S training is not sufficient

to produce robust human-like object recognition based on global

configuration features. For example, it reduces the texture bias of

CNNs for shape-texture cue conflict images, but the effect is too small

to achieve a strong shape bias comparable to that of humans.

In the latter half of this report, using correlation analyses of

internal representations and zero-shot transfer learning, we examine

how B+S training makes CNN less affected by image blur. Our

results suggest that initial low-pass filtering contributes to the

blur robustness of B+S-Net, but only partially. Representational

similarities in the intermediate layers suggest that B+S-Net

processes sharp and blurry images not through separate specialized

sub-networks, but through a common blur-robust mechanism.

Furthermore, we found that B+S training for other object labels

transfers to another label trained only with blurred or sharp

images, which suggests that B+S training lets the network learn

general blur-robust features. However, blur training alone does not

automatically create a mechanism like the human brain where sub-

band information is integrated into a common representation.

Overall, our results suggest that experience with blurred images

may help the human brain develop neural networks that recognize

the surrounding objects regardless of image blurring, but that alone

does not lead to robust, human-like object recognition.

2. Methods

We investigated the performance of several training methods

with a mixture of blurred images. In the experiments, we mainly used

16-class-ImageNet (Geirhos et al., 2018) as a dataset, and the analysis

is based on 16-class-AlexNet, with 16 final layer units. However,

we also ran some of the experiments using a 1000-class-ImageNet

and tested other network architectures to ensure the generalizability

of our results. A list of the networks compared in this study is

summarized in Table 1.We trained all the models from scratch except

for SIN-trained-Net (Geirhos et al., 2019), for which we used the pre-

trained model provided by the authors. We did not fine-tune any of

the models for the test tasks. Further, we collected human behavior

data via Amazon Mechanical Turk (AMT) to compare human

performances with those of our blur-trained models. Below, we

provide in detail information about the dataset, model architecture,

training strategies, and a human behavior study.

2.1. Dataset: 16-class-ImageNet

In order to facilitate comparison with experimental data on

humans, we used the 16-class-ImageNet dataset. This dataset was

created by Geirhos et al. (2018), who grouped 1,000 ImageNet classes

into superior classes such as “dog" and “clock" and selected the

following 16 classes from them: airplane, bear, bicycle, bird, boat,

bottle, car, cat, chair, clock, dog, elephant, keyboard, knife, oven, and

truck. There are 40,517 training images and 1,600 test images. There

was no overlap between them. The image size is 224 × 224 × 3

(height, width, color). The performance of the model trained on the

regular 1000-class-ImageNet is also investigated in a later section

(section 3.3.3).

2.2. CNN model: 16-class-AlexNet

We chose AlexNet (Krizhevsky et al., 2012) as the CNN model

for our main analysis. We used the model architecture provided

in a popular deep learning framework, Pytorch, and trained the

model from scratch. To match the number of classes in the 16-class-

ImageNet, we changed the output number in the final layer from 1000

to 16.

We chose AlexNet because of its similarity to the hierarchical

information processing of the human visual cortex. For example,

the visualization of filters in the first layer of AlexNet trained with

ImageNet shows the formation of various Gabor-like filters with

different orientations and scales (Krizhevsky et al., 2012). The Gabor

functions are known to be good approximations of the spatial

properties of V1 simple cell receptive fields (Jones and Palmer, 1987).

In section 3.3.4, we also analyze a model that explicitly incorporated
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TABLE 1 CNNmodels used in this study.

Model name Architecture Number of units
in final layer

Training dataset Pre-training Fine-tuning

16-class-AlexNet AlexNet 16 16-class-ImageNet

(Geirhos et al., 2018)

No No

1000-class-AlexNet AlexNet 1,000 ImageNet(ILSVRC2012) No No

VOneNet VOneBlock (Dapello

et al., 2020) + AlexNet

16 16-class-ImageNet

(Geirhos et al., 2018)

No No

16-class-VGG16 VGG16 (Simonyan and

Zisserman, 2015)

16 16-class-ImageNet

(Geirhos et al., 2018)

No No

16-class-ResNet50 ResNet50 (He et al.,

2016)

16 16-class-ImageNet

(Geirhos et al., 2018)

No No

SIN-trained-Net

(Geirhos et al., 2019)

AlexNet 1,000 SIN-ImageNet (Geirhos

et al., 2019)

Yes No

the Gabor filters as the initial layer of AlexNet using VOneBlock

proposed by Dapello et al. (2020). A study of the brain hierarchy

(BH) score, which takes into account the hierarchical similarity

between the deep neural network (DNN) and the brain, shows that

AlexNet has a high BH score (Nonaka et al., 2021). The information

representation in the convolutional layer of AlexNet corresponds to

the lower visual cortex of the brain, while the fully connected layer

corresponds to the higher visual cortex of the brain. In addition,

AlexNet is an easy model to interpret in that it has a small number

of layers and does not contain complex operations such as Skip

Connection.

2.3. Training with blurred images: Blur
training

In this experiment, in addition to the regular training, we trained

CNNs with blurred images using three different strategies (Figure 1).

We used Gaussian kernel convolution to blur images. The blur size

was manipulated by changing the standard deviation (σ ) of the

Gaussian kernel as shown in Figure 1A. The spatial extent of the

Gaussian kernel (k) was determined depending on σ as follows: k =

Round(8σ+1).1 When kwas an even number, one was added tomake

it an odd number.

In the following, we refer to the trained models as S-Net, B-

Net, B+S-Net, and B2S-Net, respectively, depending on which image

blurring strategy was used in training (Figure 1B). Unless otherwise

stated, the architecture of each model is 16-class-AlexNet. We trained

all the models for 60 epochs (the number of training cycles through

the full training dataset), with a batch size of 64. The optimizer

was stochastic gradient descent (SGD) with momentum = 0.9 and

weight decay = 0.0005. The initial learning rate (lr) was set to 0.01

and decreased by a factor of ten at every 20 epochs. The number of

training images was 40,517, the same for all models, and we applied

random cropping and random horizontal flipping to all training

images. The image size was 224× 224× 3 (height, width, color). We

used PyTorch (version 1.2.0) and one of two GPU machines to train

1 The equation is implemented in OpenCV’s GaussianBlur function that we

used to apply Gaussian filtering. In this function, the kernel size was adaptively

determined from the size of sigma.

each model. The GPU environments were Quadro RTX 8000 (CUDA

Version: 10.2) and GeForce RTX 2080 (CUDA Version: 10.2).

• S-Net is a model trained on sharp (original, unblurred) images.

• B-Net In the training of B-Net, all the training images were

blurred throughout the entire training period. We mainly

discuss the performance of the model trained with a fixed blur

size of σ = 4 px.

• B+S-Net In the training of B+S-Net, we blurred half of the

samples randomly picked in each batch of training images

throughout the entire training period. We mainly discuss the

performance of the model trained with a fixed blur size of σ = 4

px. The performance of B+S-Net trained with randomly varied

σ is presented in section 3.3.2.

• B2S-Net In the training of B2S-Net, the training images were

progressively made sharper from a strongly blurred to the

original, non-blurred image. Specifically, we started with a

Gaussian kernel of σ = 4 px and decreased σ by one every

ten epochs so that only sharp images without any blur were fed

into the model in the last 20 epochs. This training method is

intended to simulate human visual development and to confirm

the effectiveness of starting training with blurred images, as

claimed by Vogelsang et al. (2018).

To ensure the reproducibility of the results, we trained

each network models with eight different initial weights, and

computed the mean and the 95% confidence intervals for

each condition.

2.4. Human image classification task

We collected human data using Amazon Mechanical Turk

(AMT).We asked participants to perform an image classification task

to investigate the difference between the models trained in this study

and human image recognition capabilities.

As stimuli for the classification task, we used the same 16-

class-ImageNet test set that we used for evaluating CNN models

(1,600 images, 100 images per class). In addition to the original test

images, we tested the low-pass and band-pass versions of the 16-

class-ImageNet test images for stimuli. The low-pass images were

created by applying Gaussian kernel convolution while manipulating
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FIGURE 1

Blur training brings CNN closer to humans in recognizing low-pass filtered object images. (A) Sample blurred images. (B) Four blur training methods. (C)

Classification accuracy on low-pass filtered test images. Top-1 accuracy is the rate at which the model’s first choice matches the expected answer. Error

bars represent 95% confidence intervals estimated from the performances of eight models trained with di�erent random seeds.

FIGURE 2

Blur training does not bridge the gaps between CNN and humans in recognition of (A) band-pass filtered object images, (B) jumbled/occluded images

(Keshvari et al., 2021), and (C) shape-texture-cue-conflict images (Geirhos et al., 2019). The ordinate is the Top-1 accuracy of object classification. The

exception is (C), where shape bias is shown by bars, and classification accuracy on Stylized ImageNet (SIN) by crosses. Human accuracy for (B, C) are from

the original studies. Error bars represent 95% confidence intervals estimated from the performances of eight models trained with di�erent random seeds.

the standard deviation of the Gaussian kernel (σ ) in the same

manner as when we blurred the training images for CNN models.

The band-pass images were created by taking the difference between

two low-pass images obtained by blurring the same image with

different σ (Figure 2A). In total, there were six conditions as follows:

original image, low-pass image σ = 4 px, low-pass image σ = 8

px, low-pass image σ = 16 px, band-pass image σ1 − σ2 (i.e.,

band-pass image obtained by subtracting the lowpass image with
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σ = 2 px from that with σ = 1 px), and band-pass image

σ4− σ8.

For each task, one of the stimuli was presented and participants

chose the category of an object in the image from 16 options.

We had 170 subjects solve the tasks and obtained 6,817 pieces of

categorization data (Original image: 1,108, low-pass image σ = 4:

1,103, low-pass image σ = 8: 1,124, low-pass image σ = 16:

1,134, band-pass image σ1 − σ2: 1,188, band-pass image σ4 − σ8:

1,160). Participants could complete the task for an arbitrary number

of images. The consent form for the experiment was created using

a Google Form, and a link to it was placed on the AMT task

page. Each participant was asked to read the linked consent form

and fill in the required information to register his or her consent.

Experimental procedures were approved by the Research Ethics

Committee at Graduate School of Informatics, Kyoto University, and

were conducted in accordance with the Declaration of Helsinki.

3. Blur training: Results

We measure the model’s performance on various test images

and compare it to human performance to investigate what visual

functions are acquired via blur training. First, we examined the

classification accuracy for low spatial frequency images and analyzed

whether the models could recognize coarse-scale information.

Then, we examined whether the robustness to blurry images

acquired through blur training could generalize to other types of

robustness measured by using band-pass filtered images, images with

manipulated spatial configurations of local elements, and shape-

texture cue conflict images.

3.1. Recognition performance for low-pass
images

In this section, we compare the image recognition performance

for low spatial frequency images. Since the low-frequency

information can capture global image features to some extent,

the results of this task are expected to indicate, at least partially,

whether the model recognizes global information or not. For this

purpose, we examined the percentage of correct classifications for

each model when the test image was blurred at different intensities.

The test images are the test set of the 16-class-ImageNet containing

1,600 images. We also collected human classification task data using

the same test images. The details are described in section 2.4.

The results of the above experiments are shown in Figure 1C.

First, S-Net trained only on standard clear images shows a sharp

drop in the accuracy when the image is strongly blurred. The B-

Net’s performance is high only for the blur level used in training

(σ = 4) and blurs of similar strength. B2S-Net did not show much

improvement in blur tolerance.

On the other hand, in the low-frequency image recognition

test, B+S-Net, which was trained on both blurred and sharp images

simultaneously, was able to recognize a wide range of features

from sharp images to blurred images of various intensities (blur

robustness). The robustness of B+S-Net against blur is similar to that

indicated by human behavior data.

B2S-Net showed only a tiny improvement in terms of accuracy

over S-Net, and B+S-Net showed stronger blur robustness than

B2S-Net.

3.2. Recognition performance for other
types of image manipulations

In the previous section, we showed that the models trained on

both low-pass-filtered and sharp images acquire robustness to a broad

range of image blur strengths. To gain a more detailed insight into

what visual functions were acquired by blur training, we investigated

the behavior of blur-trained models for image manipulations that

were not used in the training procedure.

3.2.1. Recognition performance for band-pass
images

First, we used band-pass images to investigate the recognition

performance of the model in each frequency band. The band-pass

images were created by subtracting the two low-pass images of

different σ . Using these band-pass images, we were able to find out in

which frequency band blur training is influential. We also analyzed

whether there is a difference between CNNs and humans regarding

the frequency bands they can use for object recognition.

In our experiments, we performed a classification task on band-

pass images for CNNmodels and humans, respectively. In the human

experiments, we used AMT to conduct the image classification task

for band-pass images σ1−σ2 and σ4−σ8. The details are described

in section 2.4.

The results (Figure 2A) show that B+S-Net improves the accuracy

of image recognition over a broader frequency range than the other

models, and this indicates that training on blurred images is effective

in acquiring the ability to recognize a broader range of frequency

features. However, it did not show much effect on images in the

high-frequency band.

Next, we compared the accuracy of humans and CNNs. The

CNN model showed a lower recognition rate for band-pass stimuli,

especially in the high-frequency range. Blur training does not lead to

robust, human-like object recognition for bandpass images.

3.2.2. Recognition performance for global
configuration made of local patches

We further investigated whether blur training could change the

global information processing in CNN models by using the test

procedure proposed by Keshvari et al. (2021).

Keshvari et al. (2021) tested the difference in recognition

performance between humans and CNNs by manipulating local

patches. They divided the original image into several square tiles.

There were four partitioning scales: (4×4), (8×8), (16×16), (32×32).

A Jumbled image was one in which tiles were randomly replaced

horizontally, preserving local information but distorting global shape

and configural relationships. The Gray Occluder image, in which

tiles were alternately grayed out, preserved the global shape and

configural information but lost some local information. The Jumbled

with Gray Occluder image combined the operations of the Jumbled

and Gray Occluder images, and both local and global information

were destroyed.
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Keshvari et al. (2021) compared the difference in recognition

accuracy between a CNN (VGG16 pre-trained on ImageNet without

blur traning) and human observers using 640 images from eight

classes in ImageNet. They found the pretrained CNN showed a

significant decrease in accuracy for the Jumbled image, and the

larger decreases for the Gray Occluder image, and the Jumbled with

Gray Occluder image. Humans also showed a similar magnitude

of decrease in accuracy for the Jumbled image, but only a small

decrease for the Gray Occluder image. Their findings suggest that

humnans can, but the pretrained CNN cannot, make use of global

configural information preserved in the Gray Occluder image for

object recognition.

In this study, we generated the jumbled/occluded images from the

test images of the 16-class ImageNet in the same way as in Keshvari

et al. (2021) and investigated whether the recognition performance of

CNNs becomes closer to that of humans by blur training (Figure 2B).

The results showed that training on blurred images did not change

the overall trend of recognition performance on this test set. B+S-Net

and B2S-Net did not improve the accuracy for Gray Occluder images

compared to S-Net. These results suggest that the CNNmodels failed

to utilize the global configural information preserved in the Gray

Occluder image even after blur training.

3.2.3. Recognition performance for texture-shape
cue conflict images

To investigate whether the blur-trainedmodels show a preference

for shape information or texture information, we tested the shape bias

proposed by the work of Geirhos et al. (2019).

Geirhos et al. (2019) created a texture-shape cue conflict image

dataset where the texture information of one image was replaced by

that of another image in a different class by using the style transfer

technique of Gatys et al. (2016).2 The dataset consists of the same

16 classes as in the 16-class-ImageNet while each image has two

correct labels based on its match to the shape or texture class. In total,

the dataset contains 1,200 images (75 images per class). The shape

bias measures how often the model answers the shape class when it

correctly classifies a cue conflict image into either the shape or texture

class, and is calculated by the following equation:

shape bias =
correct shape decisions

correct shape decisions+ correct texture decisions.

According to the results of Geirhos et al. (2019), while humans

showed strong shape bias, CNNmodels trained on ImageNet showed

weak shape bias (in other words, they showed texture bias). When the

CNN models were trained on the Stylized-ImageNet (SIN) dataset,

in which the texture information of an image was made irrelevant

to the correct label by replacing the original texture with that of

a randomly selected painting, the shape bias of the CNN models

(SIN-trained-Net) became closer to that of humans. Moreover, we

found SIN-trained-Net has a higher recognition rate for high-pass

and band-pass images as humans do (Supplementary Figure S2B).

However, training with SIN is biologically implausible and

2 Texture-shape cue conflict image: taken from the GitHub page of Geirhos

et al. (2019): https://github.com/rgeirhos/texture-vs-shape/tree/master/

stimuli/style-transfer-preprocessed-512, reference date: 2021/07/26.

therefore not helpful in modeling the development of the human

visual system.

Here, we calculated the shape bias of the models trained in our

study using the texture-shape cue conflict image dataset provided by

the authors of Geirhos et al. (2019) to see whether the blur training

could enhance the shape bias of CNNs. Figure 2C presents the shape

bias of the four models we trained as well as those of SIN-trained-

Net and human data taken from Geirhos et al. (2019). Compared to

S-Net, shape bias was increased most for B-Net, the second for B+S-

Net, and the least for B2S-Net. However, the classification accuracy

on the SIN dataset was significantly decreased for B-Net, only slightly

for B+S-Net, and not at all for B2S-Net. Overall, among the four

models, B+S-Net shows the most human-like performance. However,

neither B-Net nor B+S-Net shows strong shape bias comparable to

those of SIN-trained-Net and humans. These results indicate that

while training with blurred images slightly increases the shape bias in

comparison with training only with sharp images, blur training alone

is insufficient to bring the bias closer to the human level.

3.3. Supplemental analyses

3.3.1. Training schedule
We used the fixed schedule of learning rates as

shown in Figure 1B. We determined the learning rate

following a reference training script in torchvision library:

https://github.com/pytorch/vision/tree/main/references/classification.

To check the generality of our findings in particular about B2S-Net,

we have additionally run a supplemental experiment to examine the

effect of the training schedule. We trained B2S models while varying

the initial learning rate and the number of epochs with discrete step

sizes of [0.05, 0.01, 0.005, 0.001] and [60, 90, 120], respectively. The

initial learning rate was reduced by a factor of 10 for every third

of the total training epochs (as in the original experiment). The

timing to decrease the sigma of the Gaussian kernel applied to the

training images was also linearly extended (decreasing the sigma by

1 every 10, 15, and 20 epochs for the 60, 90, and 120 epoch training

conditions, respectively).

As a result, we have obtained qualitatively similar amounts of

blur robustness for all tested conditions except for a model with

the initial learning rate = 0.05 and with training epochs = 120, in

which the training diverged due to too large initial learning rate. All

the models trained with learning rates 0.01 and 0.005 showed blur

robustness/accuracy equivalent to the original B2S model regardless

of the training epochs. We did not find any model that significantly

outperformed the blur robustness of the original B2S model.

3.3.2. B+S-Net with randomly varying blur strength
Considering that B2S-Net simulates human visual experiences

during development, one can also consider that B+S-Net simulates

human visual experience in everyday life where blurred images are

occasionally mixed with sharp images due to image focusing errors.

In the analysis so far, we have fixed the strength of image blur applied

to training images for B+S-Net at σ = 4. Here, we trained a 16-class

B+S-Net while randomly varying σ (0 px–4 px) to simulate our daily

visual experience more realistically, and measured its performance

on the (A)low-pass images, (B) jumbled/occluded images, and (C)

shape-texture-cue-conflict images.
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The results (Supplementary Figure S1) showed no significant

changes in the performance on any of the test sets from the original

B+S-Net. Fixing the blur strength is not the reason why blur

learning is limited in its ability to reproduce human-like global object

recognition.

3.3.3. 1000-class-AlexNet
The analysis so far has been based on the 16-class-AlexNet.

One may consider that 16 object classes are unrealistically small to

simulate human object recognition. To address this concern, we also

trained our networks with a 1000-class classification task (1000-class-

AlexNet). For comparisonwith themain results, we used the 16-class-

ImageNet to test performances,3 by mapping the output of the 1000-

class-AlexNet into 16 classes based on WordNet hierarchy (Miller,

1995) using the mapping function described in Geirhos et al. (2018).

Concerning the accuracy for blurred images

(Supplementary Figure S2A), the 1000-class-AlexNet exhibited

an overall trend similar to that of the 16-class-AlexNet. However, we

also found that the generalization effect of blur training beyond the

blur strength used in training was smaller for the 1000-class-AlexNet

than that for the 16-class-AlexNet. B-Net was firmly tuned to the blur

strength used in training (σ = 4) and was barely able to recognize

clear images. B+S-Net also showed a narrower blur tuning. B2S-Net

showed no advantage over S-Net. Concerning the performances

on the band-pass-filtered test images (Supplementary Figure S2B),

the results of the 1000-class-AlexNet showed a similar trend to

the 16-class-AlexNet. The effective bandwidth was somewhat

narrower in the 1000-class version. It should be also noted that

the 1000-class-AlexNet trained on Stylyzed-ImageNet (Geirhos

et al., 2018) showed a human-like performance for band-pass test

images. The results of the shape bias using the cue conflict images

(Supplementary Figure S2D) show that there was little effect of

blur training on shape bias when the 1000-class dataset was used.

However, it should also be noted that the accuracy of the 1000-class

models for the cue conflict images themselves was very low, meaning

that the models were barely able to classify the test images to either

the correct shape or texture label in the first place.

To conclude, we found no evidence supporting the idea

that increasing the number of training categories makes blur

training more effective in reproducing human-like robust

object recognition.

3.3.4. VOneNet (16-class)
VOneNet is a model in which the first layer of the 16-class-

AlexNet is replaced with a VOneBlock (Dapello et al., 2020). The

VOneBlock is a computational model that simulates the visual

information processing in the V1 cortex of the brain, such as

the response properties of simple cells and complex cells. It also

simulates the stochasticity in neural responses by introducing noise.

Importantly, multiscale Gabor filters tuned to low to high spatial

frequencies are hard-coded in the VOneBlock.

One possible reason for the limited effect of blur training in

reproducing human-like robust object recognition is that the training

cannot produce human-like multi-scale filters in the early processing

3 The models trained on the 1000-class dataset were directly used in the

analysis. Fine-tuning the 16-class ImageNet may yield di�erent results.

stage. If this were the case, through blur training, the model with

VOneBlock would be able to achieve stronger robustness to low-

pass and band-pass filtered images and stronger sensitivity to global

configurations.

Contrary to this expectation, the introduction of the VOneBlock

did not change the performance significantly. As shown in Figure 3,

the results for each test set showed a remarkable degree of similarity

between the models with and without VOneBlock. Thus, changing

the lower-level layer to a model closer to the visual cortex did not

affect the effects of blur training in terms of frequency and shape

recognition.

3.3.5. VGG16, ResNet50
Finally, we examine the performance of different network

architectures other than AlexNet. The networks studied here are

VGG16 (Simonyan and Zisserman, 2015) and ResNet50 (He et al.,

2016). In general, the results were similar to those obtained with

AlexNet, while the performance tended to be more tuned to trained

blur strength (Supplementary Figures S3, S4).

4. Analysis of the internal
representation of B+S Net

Thus far, we have analyzed the effect of training with blurred

images on the basis of recognition performance, and found that the

recognition performance of B+S-Net for low spatial frequency images

is similar to that of humans. We have focused on the behavioral

similarity/dissimilarity between humans and neural nets, leaving the

internal processing of the B+S Net as a black box. In this section,

we attempt to understand how B+S-Net acquires blur robustness

similar to humans by analyzing internal representation analysis. The

question is whether B+S-Net processes sharp and blurry images in a

way computationally similar to the human visual system.

In general, when a visual processing mechanism is able to

recognize both sharp and blurry images, we believe the way the image

signals are processed inside the system can be roughly categorized

into two cases.

• Case 1: Sharp and blurry images are processed by a common

general process. Representations for sharp and blurry images

are integrated into a common feature representation in the early

to middle stage of visual processing. The following information

processing is shared (Figure 4, top).

• Case 2: The sharp and blurred image features are processed

separately by stimulus-specific processes until the outputs of the

separate processes are integrated at the last stage to recognize the

object (Figure 4, bottom).

Although we know no direct empirical evidence, it is likely that

the structure of the human visual system for blurry image recognition

is closer to Case 1 than to Case 2. This is because computational

resource is more efficiently used in Case 1 than in Case 2. Considering

that the human visual system has to cope with a wide range of image

deformation other than image blur, having an efficient processing

structure with a common higher stage must be a reasonable choice.

On the other hand, CNNs with powerful learning abilities may create

a specialized sub-network, each processing blurred images and sharp
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FIGURE 3

VOneNet with blur training. (A) Low-pass filtered object image recognition. (B) band-pass filtered object image recognition, (C) jumbled/occluded image

recognition, and (D) shape-texture-cue-conflict image recognition. Although VOneNet has fixed V1-like first-stage mechanisms, the e�ects of blur

training are similar to those of AlexNet. Error bars represent 95% confidence intervals estimated from the performances of eight models trained with

di�erent random seeds.

images separately, to optimize performance. B+S-Net could be a

hybrid of B-Net and S-Net with little interactions between them.

When using CNNs as a computational tool to understand human-like

robust processing, we should check whether the processing strategy

CNNs use to achieve blur robustness is not dissimilar to that of

humans. If it were found to be dissimilar, we could learn little about

the internal processing of the human visual system from this research

strategy.

4.1. Receptive fields in the first layer

First, we visualized the receptive field of the first convolutional

layer (Supplementary Figure S5) as was done in previous studies

(Vogelsang et al., 2018; Jang and Tong, 2021). Some receptive

fields look similar to those found in the early visual cortex.

It appears that training method slightly alters the receptive

fields. B+S-Net shows a shift of the spatial frequency tuning to

the lower frequency compared to S-Net. In other words, B+S-

Net is more sensitive to low-frequency information in the first

layer.

Low-pass filtering is one way to make the internal representations

similar between sharp and blurry images. How much the change in

the spatial frequency tuning affects the representational similarity

for sharp and blurry images in the first layer will be quantitatively

evaluated in the next section.

When 1000-class-AlexNet is compared with 16-class-AlexNet,

features with higher spatial frequencies are extracted. This may be

because 1000-class-AlexNet needed to extract finer local features to

perform more fine-grained classification. This tuning difference may

explain why 1000-class-AlexNet shows weaker blur robustness than

16-class-AlexNet.
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FIGURE 4

Two hypotheses about intermediate feature representation of B+S net. Case 1 is more e�cient and presumably close to human processing.

4.2. Correlation of activity in the
intermediate layers

To analyze how the sharp and blurred image features are

processed in each layer of the CNNmodels, we computed the average

correlations of unit activities in each intermediate layer between

the sharp and blurred image inputs (S-B correlation). The more

representations and processing shared between clear and blurred

images, the higher will be the activity correlation within the layer.

Here, we calculated the S-B correlations in the following three cases:

(1) the sharp and blurry image pair is generated from the same image,

(2) different images from the same class, and (3) different images

from different classes. For each case, we computed correlations for

all possible sharp-blurry image pairs from 1,600 test images of the 16-

class ImageNet. Then, the correlations were averaged across image

pairs. The unit activities after the ReLU activation function were used

to compute the correlations. (1) is for evaluating the representational

similarity at the image level, while (2) and (3) are for evaluating

the representational similarity at the category level. By comparing

these three, we can infer both representational similarities and the

corresponding processing stages.

Figure 5 presents the S-B correlation in each layer of 16-class

S-AlexNet (left) and B+S-AlexNet (right).

In the initial layer (Conv1), while S-B correlations are close

to zero when different images of the same class (the broken

orange line) or different classes (the dotted green line) are

used, they are high when the sharp-blurry image pairs from

identical images are used (the solid blue line). When S-Net

and B+S-Net are compared, B-S correlations are slightly higher

for B+S-Net (0.84) than for S-Net (0.76). This agrees with

the change in spatial frequency characteristics of the receptive

filed we observed in the last section. If low-pass filtering in

the first layer were powerful enough to completely remove the

difference between sharp and blurry images, the correlation would

be one.

In the subsequent convolutional layers, S-B correlations remain

to be close to zero when different images of the same class or a

different class are used. In S-Net, S-B correlation for the same images

gradually drops as the layer goes. This suggests that these layers

reduce the representational similarity between sharp and blurry

images by extracting fine-scale image features only available in sharp

images. On the other hand, in B+S-Net, S-B correlation for the same

image remains high. This suggests that these layers extract robust

image features commonly available in sharp and blurry images,

supporting the idea that B+S-Net achieves blur-robust recognition

by forming a common internal processing structure consistent with

Case 1.

In the final full-connection layers, S-B correlations gradually

increase for the same image and for the same class, while increasing

and then dropping for the different class. The pattern of change

is similar for S-Net and B+S-Net, but the correlations for the

same image/class are higher for B+S-Net, in agreement with the

higher classification accuracy of B+S-Net for both sharp and blurry

images.

To see the generality of our finding, we also applied the same

analysis to 1000-class AlexNet (Supplementary Figure S6) and 16-

class VOneNet (Figure 6). In general, the patterns of B-S correlations

for both are similar to that we found for 16-class AlexNet, but

two issues are worth mentioning. First, S-B correlation in the first

convolutional layer is lower for 1000-class AlexNet than for 16-class

AlexNet (0.65 for S-Net and 0.69 for B+S-Net), in agreement with the

higher-frequency preference of the initial receptive fields for 1000-

class AlexNet (Supplementary Figure S5). Second, for VOneNet in

which the first layer is hard-coded as a Gabor filter bank, while S-

B correlation in the first convolutional layer is the same for S-Net

and B+S-Net, S-B correlation of B+S-Net elevates in the subsequent

layers. This indicates that B+S-Net forms the features common to

both sharp and blurred images from the multiband information

extracted in the first layer. The initial low-pass filtering is effective, but

not necessary for B+S-Net to achieve blur-robust object recognition.
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FIGURE 5

Representational similarity of sharp (unblurred) and blurred image inputs (S-B correlation) for S-Net (A) and B+S Net (B). Blue: Pearson correlation in unit

activity between sharp and blurred versions of the identical images. Orange: Correlation between sharp and blurred versions of di�erent images of the

same object class. Green: Correlation between sharp and blurred versions of di�erent images of di�erent object classes. The average correlation of the

units in the layer with the interquartile range (25%-75%) is shown. 16-Class AlexNet. The results are consistent with Case 1.

FIGURE 6

Representational similarity of sharp (unblurred) and blurred image inputs for S-Net (A) and B+S Net (B). VOneNet. The pattern of results is similar to

Figure 5.

4.3. Visualization of the internal
representations by t-SNE

To understand how the sharp and blurry images are represented

in the intermediate layers of the CNN models, we also attempted

to visualize them using the dimensionality reduction algorithm, t-

SNE (van der Maaten and Hinton, 2008). Specifically, we recorded

the activities of each layer obtained from sharp and blurry images

and compressed them into two dimensions for visualization. The two

input parameters of t-SNE, perplexity and iteration, were set to 30

and 1000, respectively. The results shown here are visualizations of

10 pairs of sharp and blurred images of the same image sampled for

each of the 16 classes.

The visualizations of the intermediate layer activities for the

sharp and blurred images are shown in Supplementary Figures S7,

S8. First, in early convolutional layers of S-Net, the representations

of the sharp and blurry images overlap, and those of the same

class are scattered. As the layer goes deeper, the representations

of the sharp and blurry are separated, and only sharp images of

the same class are clustered. Blurry images remain scattered and

separated from sharp images in the final output. Next, in early

convolutional layers of B+S-Net, the representations of the sharp and

blurry images overlap, and those of the same class are scattered, as

in S-Net. As the layer goes deeper, however, representations of the

sharp and blurry images do not separate, and both sharp and blurry

images of the same class are clustered. These results agree with the
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trends indicated by the representational similarity analysis in the last

section, providing further support of the idea that B+S-Net achieves

blur-robust recognition by forming a common internal processing

structure consistent with Case 1.

4.4. Generalization test using zero-shot
transfer learning

The results of the S-B correlation analysis in sections 4.2 and 4.3

suggested that the representations are shared between the sharp and

blurry versions of the same images in the intermediate layers of B+S-

Net. This suggests that the intermediate layers of B+S-Net may have

the ability to extract robust image features effective in recognizing

both sharp and blurry images. One way to test this idea is to see

whether the B+S training extends its effect beyond the image classes

used in training, since general robust features should be useful in

general.

Using zero-shot learning, we examined the generalizability of the

shared representation acquired by blur training to the unseen classes.

We trained a subset of object classes, either one or eight in 16 classes,

without using blurry images while training the remaining classes

using both blurry (σ = 4) and sharp images, and later evaluated the

classification accuracy for that subset of classes using blurry images.

Conversely, we also trained a subset of classes without using sharp

images while training the other classes using both blurry and sharp

images, and later evaluated the classification accuracy using sharp

images. Therefore, there were in total four conditions, i.e., training

without blurry or sharp images for one or eight classes (w/o 1/16B,

w/o 8/16B, w/o 1/16S, w/o 8/16S). We used the 16-class AlexNet for

this test.

The recognition accuracy for the unseen image types (either

blurry or sharp) in the four test conditions is shown in Table 2.

When either blurry or sharp images were excluded for half of the

training classes, the models were not able to recognize these classes

of images with the unseen image type. On the other hand, when

either blurry or sharp images were excluded for one training class,

the accuracy for the unseen class is about three times the chance level

( 1
16 = 0.0625). Therefore, although the effect of the generalization

of the sharp and blurry features to unseen categories was limited in

terms of the zero-shot transfer performance, some amount of transfer

was clearly observed at least when there was only one excluded class.

To further analyze the internal representations of the models

trained in the transfer experiment, we examined the S-B correlations

in the intermediate layers of each model. When either blurry or sharp

images were excluded for half of the training classes (Figures 7B,

D), the S-B correlation from identical images is significantly reduced

in the middle to high layers for the unseen category (orange line),

compared to that for the seen category (blue line). On the other

hand, when either blurry or sharp images were excluded for one

of the training classes (Figures 7A, C), the S-B correlation from

identical images for the unseen category (orange line) remains almost

as high, albeit slightly lower than that for the seen category (blue

line). Therefore, although the shared representation for the blurry

and sharp images did not seem to generalize well to the unseen

class in terms of the performance level, the similarity of the internal

representations appeared to be high between the seen and unseen

classes for the model with one excluded class. The reason for this

apparent discrepancy is presumably because the misclassification to

a class with a similar representation was induced by the imperfect

alignment of blur-sharp representations. In fact, a confusion matrix

(Supplementary Figure S9) indicates that the misclassifications in the

model with one excluded class were mostly from “No.15: truck" class

to “No:6 car" class.

Overall, the zero-shot transfer analysis suggested that the shared

representation acquired by blur training can be reused, at least

partially, to recognize an object class with an unseen image type

(either blurry or sharp) during training. This further supported the

view that common representations that are invariant to blurry and

sharp image inputs are formed in the early and middle stages of

visual processing by blur training (Case 1 in Figure 4). In a similar

way, humans might efficiently acquire blur robust representations to

general object categories just by being exposed to blurry images of a

limited number of objects.

4.5. Internal representations for high-pass
and low-pass images

We have analyzed the internal representation of B+S-Net for

sharp and blurry images, and found B+S-Net has an efficient human-

like processing mechanism at least for these images. However,

we have also shown in section 3 that B+S-Net does not behave

similarly to humans in object recognition for other modified images

including high-pass filtered images. To further evaluate B+S-Net as

a computational model of the human visual system, we analyzed its

internal representation for high-pass and low-pass (blurry) images. A

recent human fMRI study (Vaziri-Pashkam et al., 2019) suggests that

the representations for high-pass and low-pass images of the same

object category are segregated in V1, while integrated and clustered

in the higher visual areas.

To investigate how the high- and low-frequency information

is represented in S-Net and B+S-Net, we visualized the activity in

the intermediate layers for 10 pairs of high-pass (H, σ1 − σ2) and

low-pass (L, σ = 4) versions of the same image using the t-SNE

(van der Maaten and Hinton, 2008) (perplexity = 30, iteration =

1,000). The visualization results (Supplementary Figures S10, S11)

show that the representations of high-pass and low-pass images are

less segregated in B+S-Net than in S-Net. We cannot find class-based

clustering of high-pass and low-pass images in higher layers of either

S-Net or B+S-Net, in agreement with our finding in section 3 that

neither S-Net nor B+S-Net can recognize objects in high-pass images,

but in disagreement with the representation in human visual cortex

(Vaziri-Pashkam et al., 2019).

To further examine the representations for high-pass and low-

pass images, we computed the average activity correlation (H-L

correlation) of the middle layers of S-Net and B+S-Net between

the high- and low-frequency images (Figure 8). In the convolutional

layers, the H-L correlation was low even for the same image.

Slightly higher correlations for B+S-Net than for S-Net suggest that

early layers of B+S-Net have more broadband tuning. In the fully

connected layers, the H-L correlation gradually increased. Although

this is in line with class-based clustering of high-pass and low-pass

images, the increasing trend was weak, and was not enhanced by blur

training. The average same-class correlation did not exceed 0.3 for

the final output of B+S-Net. In sum, there are significant differences
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TABLE 2 The results of zero-short learning test.

Training method Unseen labels Seen labels

Training without B images for one class (w/o 1/16B) 0.19 0.78

Training without B images for half of the classes (w/o 8/16B) 0.05 0.87

Training without S images for one class (w/o 1/16S) 0.15 0.81

Training without S images for half of the classes (w/o 8/16S) 0.03 0.90

Classification accuracy for B+S-Net trained without using blurred or sharp images for specific object classes. Chance level accuracy = 0.0625(= 1
16 ).

FIGURE 7

Representational similarity analysis for zero-shot learning test when (A) one blurred-image label, (B) eight blurred-image labels, (C) one sharp-image

label, or (D) eight sharp-image labels is/are excluded from the training set. Test set was blurred images for (A, B), and sharp images for (C, D). The results

suggest the shared representation acquired by blur training can be reused, at least partially, to recognize an unseen object class.

in the internal representations for high-pass and low-pass images

between B+S-Net and the human cortex, and there is no evidence

that blur training facilitates high-level frequency integration.

To see the effect of initial layer on the representation of high-

pass and low-pass images, we also analyzed the H-L correlation of

VOneNet, which has fixed multi-scale Gabor filters in the first layer.

The H-L correlation for the same images in the convolutional layers is

low, and, again, there is no evidence of strong integration of low- and

high-frequency information in higher layers, unlike representation in

the human visual cortex (Vaziri-Pashkam et al., 2019).

5. General discussion

In this study, we investigated the effect of experiencing blurred

images on forming a robust visual system to the environment as

one of the factors for constructing an image-computable model of

the human visual system. To this end, we compared the recognition

performance of CNN models trained with a mixture of blurred

images using several different strategies (blur training). The results

show that B+S-Net trained with a mixture of sharp and blurred

images is the most tolerant of a range of blur and the most
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FIGURE 8

Representational similarity of low-pass and high-pass image inputs for S-Net (A, C) and B+S Net (B, D). 16-Class AlexNet (A, B) and VOneNet (C, D). There

is no evidence that blur training facilitates high-level frequency integration as found in human visual cortex.

human-like. In addition, training in the order from blurred to sharp

images was not very beneficial. Other evaluations of the model’s

performance with test stimuli showed that blur training did not

improve the recognition of global spatial shape information, or only

slightly. The analysis of the internal representation suggests that B+S-

Net extracts common features between sharp and blurred images.

However, it does not show integration of multi-scale (high and

low frequency) frequency information, unlike in the human visual

cortex.

In section 3, we compared the effect of training with blurred

images on the CNN models in terms of object recognition

performance. In all the CNN models we tested, the recognition

performance of low spatial frequency features was improved by blur

training. In particular, the model trained simultaneously on blurred

and sharp images (i.e., B+S-Net) showed blur robustness across a

wide range of image blur close to that of humans.

On the other hand, the blur robustness of B2S-Net was weaker

than that of B+S-Net. The models showed better performance when

trained on blurred and sharp images simultaneously, rather than on

a schedule that simulated human visual development. This result

apparently disagrees with the study of Vogelsang et al. (2018), which

showed that training in the order of low resolution to high resolution

improved blur robustness of a CNN model in face recognition. This

difference can be attributed to the difference in the task adopted in

our study and Vogelsang et al.’s (i.e., general object classification vs

face classification) (Jang and Tong, 2021). A recent study using object

recognition (Avberšek et al., 2021) reports that the effect of training

schedule is consistent with ours. The task difference may be related to

the fact that the optimal discriminative features for object recognition

are biased toward high frequencies while only low-frequency features

are sufficient for good face classification accuracy (Jang and Tong,

2021).

The failure of B2S-Net to recognize blurry images indicates that

simply simulating the development of visual acuity during training

cannot account for the blur robustness of human vision in general

object recognition. However, even after the completion of visual

development, we still experience blurred retinal images on a daily

basis due to defocus as well as motion blur, and scattering caused

by climatic conditions such as rain and fog and by the transmission

of translucent objects. In this sense, B+S Net, trained simultaneously
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with both blurry and sharp images, can be regarded as reproducing

biologically plausible situations to some extent. In addition, the

CNNs we tested do not include a mechanism that prevents the

forgetting of previously learned representations. B2S-Net may have

forgotten the processing for low-frequency components because it

was trained only on sharp images in the last 20 epochs. Therefore,

B2S-Net may be able to recognize blurred images as well as B+S-

Net by adding a mechanism that prevents the model from forgetting

the representations tuned for blurred images learned in the early

phase of training. Machine learning literature has suggested a few

methods to prevent so-called catastrophic forgetting in continual

learning (de Melo et al., 2022). One is to protect the weights relevant

to the stimuli learned in the early phases of training (Kirkpatrick

et al., 2017). This is reminiscent of the critical period of biological

neural networks, which strengthens the impact of early childhood

experiences on development of the human visual system. Another

method is to use the memory of relevant prior information to

retrain the network with new information (Aljundi et al., 2019). This

mechanism will make the effect of B2S training similar to that of

B+S training. With such an additional mechanism against forgetting,

B2S-Net may be able to show performance comparable to B+S-Net.

Our results also show that B+SNet has acquired human-level blur

robustness but has not acquired human-like global visual processing.

The performance test using band-pass filtered images showed that

all CNN models, including B+S Net, were not good at utilizing

band-limited features while humans retained good accuracy in the

mid to high-frequency range. Although the shape bias of the blur-

trained models was slightly enhanced, it was not enough to reach

the human level. The test using the images with local occlusions

revealed that all the models relied primarily on local features, did

not utilize the global configuration, and were critically vulnerable

to local occlusions. All these results are in stark contrast to human

visual processing, which is known to rely more on global configural

relationships and shape information and is less sensitive to partial

occlusions in object recognition tasks. Therefore, our results indicate

that the information processing learned in B+S-Net is still markedly

different from that of the human visual system (Geirhos et al., 2021;

Baker and Elder, 2022).

Our results reveal that what the networks cannot acquire from

blur training is human-recognizable global configuration features

present not only in sharp and blurry images but also in high-pass

images and texture-shape cue conflict images. Note that the similarity

of these classes of images is supported by a finding that the SIN-

trained Net shows good recognition for high-pass images as well.

In high-pass images, local edge features defined by high-frequency

luminance modulations produce global configurations at a scale

much larger than a fine-scale edge detector. For detection of these

global features, second-order processing such as those modeled by

an FRF (filter-rectify-filter) model for human vision [e.g., Graham

and Landy (2004)] may be necessary. It seems that object recognition

training with sharp and blurred images alone does not provide neural

networks with the ability to process second-order features.

According to the comparison of the model architectures,

there was no qualitative difference in the effect of blur training.

Importantly, we found that VOneNet, which hard-coded the

computational processes in the primary visual area (V1) in the front

end of AlexNet, did not show improvement in any of the tasks tested

in this study. This indicates the limited impact of the initial layer

on the frequency tuning at the task performance level and on the

mid to high-level information processing related to the shape bias

and the configural effect. On the other hand, we also found a few

notable differences in the frequency tuning patterns between the

architectures. For example, the loss of blur robustness observed in

B2S-Net was more prominent in 1000-class AlexNet as well as in 16-

class VGG16 and 16-class ResNet50 than in 16-class AlexNet. B+S-

Net and B-Net in these architectures were also more narrowly tuned

to the blur strength used during training. For the 1000-class AlexNet,

the reason for this may be attributed to the fact that the models

were exposed to a higher number of images (and thus went through

a higher number of weight updates) when using the 1000-class

dataset than the 16-class dataset. For the 16-class VGG16 and 16-

class ResNet50, differences in model architecture such as increased

depth, reduced kernel size, and residual connections (in the case of

ResNet) may have resulted in improved learning efficiency, thereby

making them more likely to specialize in features that are optimal

for the current blur strength. In addition, we also found that VGG16

demonstrated higher accuracy for the band-pass filtered images with

high spatial frequency than the other architectures, though we have

not yet been able to ascertain why.

In section 4, we analyzed how B+S-Net, which performed

similarly to humans in a low spatial frequency image classification

task, processed sharp and blurred images. The activity correlation

between sharp and blurred images increased in B+S-Net. The results

suggest that B+S-Net extracts more common features from sharp and

blurred images than S-Net.

The results of zero-shot transfer learning support this view.While

the generalization accuracy is not very high, the confusionmatrix and

the internal activity correlation suggest that B+S training produces

a certain degree of common representation between blur and sharp

features, which can be used even for unlearned categories.

These results suggest that B+S-Net recognizes sharp or blurred

images using common representations, rather than using separate

representations. The results also suggest that it is not only linear

low-pass filtering in the first layer, but also a series of non-linear

processing in the subsequent layers, that produces the common

representations. In this respect, we may be able to get useful

computational insights into human processing from the analysis of

B+S-Net.

Whereas we found B+S training facilitates the development

of common processing for sharp (broadband) and blurred (low-

pass) images, we found little evidence for B+S training facilitating

the development of common processing for low-pass and high-

pass images, nor integration of sub-band information. These results

suggest that the frequency processing by B+S-Net is critically

different from that by the human visual cortex. How can we

make the frequency processing more closely resemble that of

the human visual system? Several machine learning techniques

including data augmentation and contrastive learning may be used

to force the network to integrate sub-band information. Note,

however, that as a tool to understand human visual computation,

it is important that the model training is natural and plausible

for the development of the human visual system, like blur

training.

In conclusion, training with blurred images provides

performance and internal representation comparable to that of

humans in recognizing low spatial frequency images. It does narrow,
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but only slightly, the gap with the human visual system in terms

of global shape information processing and multi-scale frequency

information integration.
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Visual and haptic cues in 
processing occlusion
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Introduction: Although shape is effective in processing occlusion, ambiguities 
in segmentation can also be addressed using depth discontinuity given visually 
and haptically. This study elucidates the contribution of visual and haptic cues to 
depth discontinuity in processing occlusion.

Methods: A virtual reality experiment was conducted with 15 students as participants. 
Word stimuli were presented on a head-mounted display for recognition. The central 
part of the words was masked with a virtual ribbon placed at different depths so that 
the ribbon appeared as an occlusion. The visual depth cue was either present with 
binocular stereopsis or absent with monocular presentation. The haptic cue was either 
missing, provided consecutively, or concurrently, by actively tracing a real off-screen 
bar edge that was positionally aligned with the ribbon in the virtual space. Recognition 
performance was compared between depth cue conditions.

Results: We found that word recognition was better with the stereoscopic cue but 
not with the haptic cue, although both cues contributed to greater confidence in 
depth estimation. The performance was better when the ribbon was at the farther 
depth plane to appear as a hollow, rather than when it was at the nearer depth 
plane to cover the word.

Discussion: The results indicate that occlusion is processed in the human brain 
by visual input only despite the apparent effectiveness of haptic space perception, 
reflecting a complex set of natural constraints.

KEYWORDS

image segmentation, depth cues, visual pathways, virtual reality, haptic perception

1. Introduction

Occlusion is a typical problem in image processing that involves separating regions that 
correspond to objects that are apart in the external three-dimensional (3D) space but adjoined in the 
projected two-dimensional (2D) image because of the proximity of the lines of sight. The occlusion 
problem comprises two subproblems. First, contours in an image must be  segmented. Proper 
segmentation cannot be obtained by tracking contours in the projection because the contours that 
are separated in the 3D space may be misleadingly connected in the 2D projection. Second, the 
segmented contours must be completed to fill in the gaps such that the completed contour is a good 
estimation of the projected contour without occlusion, that is, occlusion-invariant. Occlusion remains 
a difficult problem in computer vision (Garcia-Garcia et al., 2017; Albalas et al., 2022). While the 
input to the second problem of interpolation comprises the output from the first problem of 
segmentation, the first problem recursively depends on the output from the second problem (Takeichi 
et al., 1995). For example, if a face is partly occluded and the missing parts are to be completed, one 
must first know whether there is actually a face without recognizing it. The question is how much of 
the segmentation can be addressed without committing to interpolation.
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The depth relationship appears to be an independent and effective 
cue for segmentation in general. Segmentation can be significantly 
changed by inverting the depth relationships between overlapping 
figures (Nakayama et al., 1990). However, when a stronger cue than 
the depth is available, depth may not affect the segmentation. For 
example, the effect of stereoscopic depth is reduced or lost when visual 
motion is also provided as a segmentation cue (Takeichi, 1999). The 
problem of segmentation may be solved based on the shape of the 
contour without occlusion. Completion in occlusion, which is called 
amodal completion in experimental psychology, may be  most 
parsimoniously predicted by the shape of completed figures (van Lier 
et al., 1995) in 3D (Tse, 1999, 2017; Kellman et al., 2005). Although 
dependence on 3D shape apparently supports the iterative 
computation between segmentation and interpolation, segmentation 
can still be one-shot if it considers the curvature-based geometric 
relationship between the 3D shape and its 2D projection (Richards 
et al., 1987; Elder, 2018). In fact, human perception shows sensitivity 
to curvature, which is invariant under the projection from 3D to 2D, 
in processing occlusions (Takeichi, 1995).

Simple segmentation by depth may be performed at an early 
level in visual processing before the two cortical streams, one for 
object identity and the other for spatial relationships or interactions 
(Ungerleider and Mishkin, 1982; Goodale and Milner, 1992), 
diverged as the ventral and dorsal pathways in the primate visual 
system (Bakin et  al., 2000; O'Herron and von der Heydt, 2013). 
However, completion that concords with the spatial arrangement of 
several multipart objects in naturalistic scenes (Tse, 1999, 2017; 
Kellman et al., 2005) may imply that processing occlusion requires 
a significant interaction between the two parallel visual pathways. 
The visual system may not compute the connectedness likelihood 
only through a simple measure such as simplicity (Buffart and 
Leeuwenberg, 1981), relatability (Kellman and Shipley, 1991; 
Kellman et al., 2005) or curvature (Takeichi et al., 1995) but a set of 
constraints (DiMattina et al., 2012). Tse’s (2017) demonstration of 
amodal completion of fluids or slimy objects further implies that 
complexity of the constraints may be  comparable to “naive” or 
intuitive physics, such as viscosity, cohesiveness, and specific gravity 
of fluid and gravitational force. On the one hand, it is natural because 
processing occlusion is scene analysis. The relevant constraints may 
span from optics such as the generic view principle (Freeman, 1994; 
Kitazaki and Shimojo, 1996; Albert, 2001) to laws of mechanics that 
predict probable and improbable shape, deformation and structure. 
On the other hand, it also implies that a wide variety of brain areas, 
particularly those of multisensory integration, may be involved in 
processing. Material properties that can be related to deformation 
are estimated in the ventral pathway (Goda et  al., 2014), while 
arrangements and mechanical relationships between several such 
objects must involve processing in the dorsal pathway. If the 
perceived property of fluid needs to be integrated with the perceived 
spatial layout of scattered clusters of such fluid together with the 
potential occluder to estimate connectedness likelihood in reference 
to intuitive physics, then the ventral and dorsal pathways must 
interact as such (c.f. Van Dromme et al., 2016). In addition, whereas 
it can be hardly tested empirically whether or not the visual input 
alone is enough for the development of intuitive physics in visual 
perception, it is also difficult to imagine how concepts such as weight 
and force develop in visual modality without any reference to tactile 
or haptic inputs. In fact, perceived occlusion is a purely visual 

phenomenon because occlusion is defined as interruption of the line 
of sight. However, it sounds odd if the visual system uses an internal 
model of intuitive physics to solve the problem only in the visual 
modality because the intuitive physics itself is likely to be acquired 
through interaction between visual and tactile or proprioceptive 
modalities. If processing occlusion is based on intuitive mechanics, 
then knowledge from previous haptic input, which is the basis of 
intuitive mechanics, may be used in processing occlusion.

In this study, we investigated the cues that are or are not used in 
perceptual segmentation and the completion of partially occluded 
figures. Letters were used as stimulus figures. In the experiment, word 
recognition performance was compared in the presence and absence 
of visual and haptic cues to the depth of the occluder. If information 
provided by haptic input aids in the recognition of partially occluded 
letters when solving the occlusion or segmentation problem, the 
presence of haptics may provide information regarding the 
relationship between the occluded letters and the source of the 
occlusion. Alternatively, if the effect of haptic input is limited to depth 
perception, this may imply that haptic inputs have limited roles in 
recognizing partially occluded letters. The effectiveness of the visual 
and haptic cues was also evaluated through depth judgments and 
confidence ratings of the judgments. Confidence was measured 
because it can be sensitive to potential cue effectiveness (Fairhurst 
et al., 2018).

2. Methods

A word recognition experiment was performed to examine 
perceptual completion using virtual reality (VR). Word recognition 
performance was assessed when the central part of the word stimulus 
was masked by a horizontal virtual ribbon. The virtual reality 
experiment was conducted with 15 students as participants. The 
participants had to fill in the missing central part by connecting the 
top and bottom parts that remained in the visual stimulus to recognize 
the words. The edges of the ribbon were implicit and invisible, as if the 
ribbon were camouflaged to have the same lightness, color, and texture 
as the background. Cues to the depth of the ribbon were provided 
visually through random dots scattered over the surface of the ribbon, 
haptically by active tracing of the edge of the ribbon, or both. This 
unnatural occlusion was simulated to reduce visual cues. Visual input 
is provided as a stream of two-dimensional arrays of pixels, i.e., 
images, while haptic input is provided as a time-series of points by 
scanning the target over time. Because it is difficult to control 
two-dimensional haptic exploration to give comparable inputs in both 
visual and haptic modalities, the haptic input was limited to the edges. 
The visual input was thus similarly limited to the edges with the 
obscure occluder.

2.1. Ethics statement

Data collection and processing were performed in accordance 
with the principles of the Declaration of Helsinki. The protocols of the 
human experiments in this study were approved prior to initiation by 
the institutional review board of Kochi University of Technology 
(138-C2) and Wako Third Ethical Committee of RIKEN (Wako3 
2020-27).
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2.2. Participants

A total of 15 volunteers (13 men and 2 women; 22.06 years old 
with a standard deviation of 0.92 years) participated in the experiment. 
They were students at Kochi University of Technology or their 
affiliates. All participants had normal or corrected-to-normal vision 
and normal binocular stereopsis, which was confirmed with the 
experimental setup before the experiment, and were native Japanese 
readers. Written informed consent was obtained from each participant 
before participation.

2.3. Stimulus and apparatus

A visual-haptic multimodal stimulus was presented as a type of 
mixed reality. The visual stimulus (Figure 1) comprising words for 
visual recognition and a horizontal virtual ribbon that masked the 
central part of the word was presented on a head-mounted display 
(Oculus Rift CV1). The spatial resolution of the head-mounted display 
was 1,080 by 1,200 per eye, and the diagonal field of view was 
approximately 110 degrees. The refresh rate was 90 Hz. The virtual 
ribbon simulated an occlusion when it appeared to be above and 
covering the central part of the word or a hollow when it appeared to 
be farther in depth at the central part of the word. The word stimuli 
were five-letter Japanese words written in katakana characters, which 
are alphabet-like phonograms in Japanese. The words were obtained 

from an open database for teaching Japanese as a second language 
and, therefore, were quite commonly used by native readers. A total 
of 337 five-letter words were extracted from the database, excluding 
words containing one or more small characters to indicate the 
palatalized “y” sound or double consonants in Japanese. The characters 
were displayed using public-domain font-type FAMania for the ease 
of camouflage, which mimics low-resolution (7 × 7 pixels) characters 
that were used on gaming PCs during the 1980s. The ribbon was 
positioned such that its edges naturally coincided with pixel 
boundaries, that is, between the first and the second rows and between 
the sixth and the seventh rows of the pixel matrix. If a font type with 
a higher resolution was used, placing the virtual ribbon would 
inevitably introduce conspicuous linearly aligned terminators, which 
could be a strong cue to depth discontinuity, such as abutting gratings 
that induce perception of illusory contours (Soriano et al., 1996). The 
background was gray, with scattered black random dots of 15% 
density. The random dots had a binocular disparity of 22.3 min in the 
conditions with binocular cues to depth.

2.4. Design and procedure

In each trial, a word was presented with the virtual ribbon. The 
task was to verbally report the word recognized after stimulus 
presentation. There were 12 combinations of two levels of depth, two 
types of visual cues, and three types of haptic cues. The depth of the 

FIGURE 1

Visual stimulus. The haptic stimulus (Figure 2) was a wooden board. Four horizontal square-wave bumps were created on the board by gluing square 
columns in parallel onto the surface. Multiple bumps were made to change the physical position of the edge across trials to eliminate artifactual cues 
and interferences from a nonvarying stimulation. The edges of the square columns were aligned with the edges of the virtual ribbon in the VR space. 
The participants actively traced one of the edges of one of the columns using the tip of the index finger of their right hands to receive haptic input 
(Figure 3). An Oculus Touch controller was used for positional alignment between vision and haptics. The participants held the Oculus Touch controller 
while tracing the specified edge. The position of the fingertip was visually indicated by a blue virtual ball that moved in real-time synchrony with the 
motion of Oculus Touch in the head-mounted display. The VR system was implemented using Unity 2017.4.15f1. The latency was within 25 ms after the 
movement onset and then within 5 ms on average (Warburton et al., 2022). The participant sat on a chair and was confronted with a wooden board on 
a desk 45 cm in front of them. A chinrest was used to minimize head movement.
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FIGURE 3

Experimental setup.

word was either in the background of the masking virtual ribbon that 
appeared to be an occlusion or in front of the virtual ribbon that 
appeared to be hollow. The visual cue was either present as a horizontal 
binocular disparity of the dots in the area covered by the virtual 
ribbon or absent by monocular presentation with a blank screen in the 
other eye. The haptic cue was either absent, consecutive, or concurrent. 
When the haptic cue was absent, the visual stimulus (i.e., the word and 
the virtual ribbon) was presented for 10 s, with the ribbon as an 
occlusion or a hollow, and with or without binocular disparity, 
followed by a uniform gray screen for another 10 s. The participant 
was instructed to report the recognized word verbally during the latter 

10 s. When the haptic cue was concurrent, the participants were 
additionally instructed to actively and concurrently trace one of the 
edges of the ribbon, but not the word, with the fingertip during the 
former 10 s period simultaneously with visual presentation. When the 
haptic cue was consecutive, a pair of red balls was first visually 
presented against a uniform gray background before the visual 
presentation of the word. The red balls indicate the positions of the 
ends of the edge in the VR space. The participants were instructed to 
actively trace the camouflaged edge with the fingertip for the first 5 s 
and were instructed to take the finger off the board during the 
following 10 s period for visual presentation. Thus, the edge was not 

FIGURE 2

Haptic stimulus.
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traced when the haptic cue was absent, was traced simultaneously 
with the visual presentation when the haptic cue was concurrent, and 
was traced only during the first 5 s without visual stimulus but not 
during the following 10 s with the visual stimulus when the haptic cue 
was consecutive.

Each condition was presented in a block of five trials, in which five 
different words were presented. The 12 conditions were presented in 
a set of 12 blocks in randomized order. Each participant performed 
four sets on 2 days. Therefore, there were 240 trials for each participant. 
Each condition was repeated 20 times in four sets of five blocked trials. 
The same set of words was used for all participants. Different words 
were used in different trials so that the same word was used only once 
for each participant. Different words were randomly assigned to 
various conditions across the participants. The eye stimulated for the 
monocular presentation alternated between successive blocks of the 
monocular conditions. The participants traced the upper or lower 
edge of the ribbon with the palm facing downward or upward, 
respectively, in the two halves of the blocks in the occlusion condition. 
Similarly, they traced the upper or lower edge of the ribbon with the 
palm facing upward or downward, respectively, in the two halves of 
the blocks in the hollow condition. The edge to be traced and direction 
of the palm were varied to eliminate the potential association between 
the hand shape and depth as unintended cues. The potential 
association could provide information regarding the depth 
artifactually and, therefore, could contaminate the results. The hand 
shape was specified by instructions for each block and alternated 
between successive blocks of consecutive and concurrent haptic cue 
conditions. The edge to be traced varied randomly across trials among 
the three alternatives with different heights to minimize the potential 
effect of position in the visual field or peri-personal space. The 
participants also had to report the perceived depth with confidence on 
a seven-point scale ranging from −3 to 3 at the end of each block. The 
confidence as well as the perceived depth was measured in order to 
identify the extent to which there was an effect of haptic input: 
whether the haptic input does not influence perceived depth at all or 
it does influence perceived depth but not recognition. The participants 
could take breaks at will at any block interval.

The participants’ head position was continuously monitored by a 
computer, and a trial was aborted if the computer detected a 
displacement larger than 30 mm away from the original position. The 
same condition was then conducted later in an additional trial to fill 
in the missing observation. The participants were informed of the 
constraint during the instruction. The threshold of 30 mm was 
empirically determined such that any intentional head movement was 
detected, which resulted in the participant’s voluntary immobilization 
and few aborted trials. Therefore, although there could be  some 
influence of head movement and motion parallax because the stimuli 
were not presented statically regardless of the participants’ head 
position, our method must have led to the most natural and cost-
effective suppression of potential artifacts of head motion and 
motion parallax.

2.5. Statistics

The rate of correct word recognition was calculated for each of 
the 12 conditions for each of the 15 participants across 20 
repetitions. The stimulus word was considered correctly recognized 

(score = 1/20) if the response fully matched the five-letter stimulus 
word and not (score = 0/20) otherwise. The rate of correct depth 
perception was calculated but not evaluated because it was saturated 
by the ceiling. The mean confidence rating was calculated and 
evaluated as the mean of the absolute value of the perceived depth 
on the seven-point scale for each of the 12 conditions for each of 
the 15 participants across the four repetitions. A three-way analysis 
of variance was performed with repeated measurements using 
Anova-kun 4.8.5 (Iseki, 2020) on R 4.0.2 (R Core Team, 2018) for 
each of the recognition rate and the mean depth confidence rating. 
The factors were depth, visual cues, and haptic cues: Depth was 
either letters-in-front or letters-in-background; the visual cue was 
either present through binocular stereopsis or absent through 
monocular presentation; and the haptic cue was absent, consecutive, 
or concurrent. Multiple comparisons were performed using Shaffer’s 
method for the corrected alpha of 0.05 for individual ANOVA of 
the two different indices: recognition rate and depth rating. 
Violations to sphericity were tested using Mendoza’s multisample 
sphericity test. In addition, to examine the effects of deviation from 
the normal distribution regarding the word recognition rate, a 
mixed model analysis was performed assuming a binomial in place 
of normal distribution after transformation by a logistic function.

The general linear mixed models included fixed factors of depth, 
visual cue, haptic cue and all their second- and third-order interactions 
and random factors of participant and position of the three-alternative 
traced edge. The analyses with general linear mixed models were 
performed using MATLAB R2021a or later.

2.6. Additional analyses

It is worth noting how much of the recognition performance 
measured in this task reflected the success of the amodal completion 
process. Some characters might be too hard or even impossible to 
identify due to occlusion of a critical part. In such cases, amodal 
completion would not necessarily contribute to correct answers. Thus, 
the same general linear mixed model was tested with the data after 
removing letters that were deemed too difficult to complete, as follows. 
First, the mean correct response rate was calculated for each of the 67 
characters regardless of the condition or the participant. Second, the 
characters with relatively poor correct responses, namely, <0.8, were 
identified. Finally, the scores were recalculated based only on the 
remaining “easy” characters that could be recognized in more than 
80% of the cases to be examined.

Responses with long latencies up to 10 s were allowed to 
accommodate the time that the participants needed, especially in the 
concurrent haptic cue condition, in which they performed a dual task. 
However, because responses with longer latencies are generally based 
more on cognitive processes, an analysis that is limited to data with 
shorter latencies may focus more on perceptual processes. Thus, word 
recognition was also evaluated when the data were limited to trials 
with response times shorter than the overall mean response time.

Each word was presented only once for each participant. However, 
potential differences between characters need further consideration. 
Because the order of the words was different between participants, 
different characters appeared at different positions along the 
progression of the experiment. Therefore, potential character-specific 
learning could have resulted in either a spurious bias, i.e., false 
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positives, or extraneous variability that may contribute to error 
variance, i.e., false negatives. To rule out these potential artifacts, a 
measure of character-specific learning was constructed. For each of 
the 5 characters in the word stimulus, the frequency of appearance in 
all preceding stimuli was enumerated and summed up to be  a 
“familiarity” index of the word for each trial of each participant. The 
familiarity index was added to the predictors in the analysis of the 
potential effects of perceptual learning. The last two analyses 
additionally included a random factor of interaction between position 
of the traced edge and trial number.

3. Results

Figure 4 shows the results of word recognition. The correct word-
report rate is shown for each of the 12 conditions. Recognition was 
better in the visual cue present (Vs+) condition than in the visual cue 
absent (Vs-) condition [F (1, 14) = 11.51, p < 0.01, η2 = 0.027] and in the 
letters-in-front (Fr) condition than in the letters-in-background (Bk) 
condition [F (1, 14) = 5.13, p < 0.05, η2 = 0.008]. The type of haptic cue 
(Hp+&, Hp+, and Hp−) did not have a significant effect [F(2, 
28) = 0.88, p = 0.45, η2 = 0.003]. None of the interactions were 
significant [Haptic-cue and depth: F (2, 28) = 0.18, p = 0.83, η2 = 0.003; 
Haptic-cue and Visual-cue: F (2, 28) = 0.53, p = 0.59, η2 = 0.001; 
Visual-cue and depth: F (1, 14) = 0.27, p = 0.60, η2 = 0.000; Visual-cue, 
Haptic-cue and depth: F (2, 28) = 1.12, p = 0.33, η2 = 0.003]. No 
violations to the sphericity test were found. The results were essentially 
the same when a linear mixed model was evaluated with a binomial 
distribution and the logistic link function. The effect of depth was F 
(1, 168) = 4.961, p = 0.02725, Cohen’s f 2 = 0.03018 and F (1, 168) = 4.992, 
p = 0.02679, f 2 = 0.02707 assuming a normal distribution and a 
binomial distribution, respectively. The effect of the visual cue was F 
(1,168) = 15.82, p = 0.00001033, f 2 = 0.09624 and F (1,168) = 15.94, 
p = 0.00009746, f 2 = 0.07766 assuming a normal distribution and a 
binomial distribution, respectively.

Whereas the criterion of 80% correct recognition was arbitrary, it 
separated 44 “easy” characters from 23 “difficult” characters, which 
were “クグシゼソゾタダチヅネハパビフプベペメヤユヨラ.” As 
a result of the analysis of the score that was recalculated only on the 
44 easy characters with general linear mixed models, the effects of 
depth and visual cue remained the only significant factors [F 
(1,168) = 4.785, p = 0.03009, f 2 = 0.02909; F(1,168) = 14.40, 
p = 0.0002061, f 2 = 0.08755]. The effect of the haptic cue reached closer 
to the significance level [F (2,168) = 2.065, p = 0.1301, f 2 = 0.02510]. As 
a result of the general linear mixed model that included the familiarity 
index as a fixed factor, the effect of the familiarity index of character-
specific learning was highly significant [F (1,3576) = 48.84, p < 0.00001, 
f 2 = 0.007416]. The only significant interaction with the familiarity 
index was with the visual cue [F (1,3576) = 5.015, p = 0.02519, 
f 2 = 0.001344].

There were fewer errors in depth judgments with the visual cue 
(21.11% of the trials) than in depth judgments without the visual cue 
(49.72%). The confidence in the depth rating is shown for each of the 
12 conditions in Figure 5. The rating was more confident in the visual 
cue present condition than in the visual cue absent condition [F (1, 
14) = 60.60, p < 0.001, η2 = 0.575]. There was also an effect of the type 
of haptic cue [F (2, 28) = 4.84, p < 0.05, η2 = 0.014], and confidence was 
larger in the consecutive-haptic-cue condition than in the 

haptic-cue-absent and concurrent-haptic-cue conditions after 
corrections for multiple comparisons (Shaffer method, p < 0.05). 
Furthermore, the interaction between visual and haptic cues was 
significant [F (2, 28) = 6.17, p < 0.01, η2 = 0.006]. When the visual cue 

FIGURE 4

Recognition performance for individual conditions. Vs+: visual cue 
present with binocular stereopsis. Vs−: visual cue absent with 
monocular presentation. Hp+&: haptic cue to visual presentation. 
Hp+: haptic cue subsequently to visual presentation. Hp−: no haptic 
cue. Fr: virtual ribbon in front of the word. Bk: virtual ribbon as a 
hollow the word in the background. *: difference statistically 
significant.

FIGURE 5

Confidence in depth perception for individual conditions. Vs+: visual 
cue present with binocular stereopsis. Vs−: visual cue absent with 
monocular presentation. Hp+&: haptic cue with visual presentation. 
Hp+: haptic cue subsequently to visual presentation. Hp−: no haptic 
cue. Fr: virtual ribbon in front of the word. Bk: virtual ribbon as a 
hollow in the word in the background. *: difference statistically 
significant.
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was absent, the participants had more confidence in the consecutive-
haptic-cue condition than in the haptic-cue absent condition. When 
the visual cue was present, the consecutive-haptic-cue condition was 
better than the concurrent-haptic-cue condition.

If the data were limited to the trials with response times shorter 
than the overall mean response time, which was 4.7 s, then none of the 
effects were significant, except that the effect of the haptic cue was 
close to the significance level [F (2,1438) = 2.926, p = 0.05391, 
f 2 = 0.004102]. The response time was longer in the concurrent haptic 
cue condition than in the other two haptic cue conditions, regardless 
of the depth and visual cue conditions (Figure 6, F (2,2517) = 162.8, 
p < 0.00001, f 2 = 0.1304).

4. Discussion

Word recognition was better in the presence of binocular visual 
cues to depth but showed an atypical pattern of asymmetry in terms 
of the sign of the depth relationship; recognition performance was 
better in the letter-in-front condition than in the letter-in-background 
condition. Furthermore, the performance was not better in the 
presence of haptic cues to depth, although the participants reported 
higher confidence in depth perception with the presence of haptic 
cues. One interpretation of the atypical effect of the visual cue is that 
it enhanced but did not alter the segmentation based on the shape of 
the nonoccluded parts of the word stimuli. Another interpretation is 
that the occluder was made of sparse dots; therefore, there was less 
difference between the occluding surface and camouflaging texture in 
the background. One may be tempted to argue that the absence of a 
significant interaction between visual cue (Vs+ versus Vs−) and depth 
(Fr versus Bk) suggests an effect of binocular summation but not that 
of binocular stereopsis as the source of the effect of visual cue. 
Whereas better performance with the visual cue (Vs+ > Vs−) may 
indicate the effect of binocular summation, the pattern of the results 

is also consistent with the effect of binocular stereopsis. Namely, the 
difference between the depth conditions is larger with the visual cue 
(Hp−Vs + Bk versus Hp−Vs + Fr) than without the visual cue 
(Hp−Vs−Bk versus Hp−Vs−Fr) in the absence of interference from 
the haptic cues. The letter-in-front condition led to slightly better 
performance, probably because nearer stimuli are perceptually more 
salient. The apparent interference between the visual and concurrent 
haptic cues might have stemmed from the participant’s limited 
cognitive resources, such as attention or technical imperfections in the 
alignment between the visual and haptic presentations. Overall, the 
results suggest that perceptual completion is only visually depth-based 
and that haptic cues may not enhance segmentation.

4.1. Potential effects of cognitive factors 
and perceptual learning

The results were essentially the same when the scores were 
recalculated based only on “easy” characters that could be recognized 
in more than 80% of the cases. Some of the difficult characters are 
likely to be low-frequency characters in Japanese. For example, three 
characters “パプペ” among the 23 difficult characters have small 
circles at the top right corner to indicate voiceless “p” sound that 
mostly appears in loanwords.

There were no significant effects when the valid responses were 
limited to fast responses. However, it may not necessarily indicate that 
the present results merely reflect cognitive factors. The response times 
in the concurrent haptic cue condition were longer than those in the 
other two conditions. Thus, the division of data by response time 
effectively separated the data between conditions, thereby eliminating 
the differences by available cues. The longer response times in the 
concurrent haptic cue condition may be related to parallel processing 
of doubled information in a dual task rather than more top-down 
factors, as supported by the confidence in perceived depth. The depth 
seemed perceived more confidently with one or more cues than 
without cues but not in the concurrent haptic cue condition. 
Concurrent haptic processing seems to have interfered with visual 
processing when both cues were provided.

The result of the general linear mixed model with the familiarity 
index showed a highly significant effect of character-specific learning. 
However, the only significant interaction with the familiarity index 
was that with the visual cue, which suggested a decreasing effect of the 
visual cue as character-specific learning proceeded. It does not seem 
to have altered the potential effects of haptic cues in either way. 
Therefore, while character-specific learning took place, it does not 
seem to have altered the results.

4.2. Letter specificity

One potential reason why completion was shape-dominant rather 
than depth-dominant is that the figures to be completed were letters. 
Letters differ from other more general objects for computational and 
biological reasons. They are computationally 2D because they are not 
projections of 3D objects. Letter recognition is biologically exceptional 
in its automaticity, as demonstrated by the Stroop effect (Stroop, 1935) 
and specific and localized neural responses in several measurement 
modalities (Fujimaki et al., 1999; Cohen et al., 2000; Maurer et al., 
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FIGURE 6

Response times for individual conditions. Vs+: visual cue present 
with binocular stereopsis. Vs-: visual cue absent with monocular 
presentation. Hp+&: haptic cue with visual presentation. Hp+: haptic 
cue subsequently to visual presentation. Hp−: no haptic cue. Fr: 
virtual ribbon in front of the word. Bk: virtual ribbon as a hollow in 
the word in the background.
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2005). If this is the case, then different results could be obtained with 
various types of stimuli.

However, the absence of an effect of haptic input may still 
be  related to occlusion being an inherently visual phenomenon. 
Processing occlusion may be  only in the visual modality because 
occlusion is represented in the egocentric visual space that is explored 
with line of sight and not in the haptic space that is explored with 
points of touch. There is no occlusion in haptics because occlusion 
interrupts the line of sight, and there is no line of sight for haptics. 
Simultaneously, it has been reported that perception becomes haptic 
or tactile dominant when somatosensory input is more reliable than 
visual input (Ernst and Banks, 2002). If this is the case, haptic input 
might have some effects when the occlusion cannot be processed 
reliably by the generic view principle (Albert, 2001) because the 
vantage point is accidental and the visual input is severely limited.

4.3. Cortical site of processing occlusion

As the cortical area for perceptual completion of partially occluded 
letters is suggested by the results, area LO-1 is the best candidate for the 
neural correlate of the computation characterized through the 
experiment. Although the homology between human and nonhuman 
primate brains is not straightforward, the monkey counterpart of the 
human lateral occipital complex LOC (Grill-Spector et al., 2001) or the 
LO area in the ventral processing of object recognition is most likely the 
inferotemporal cortex, wherein the computation of occlusion-invariant 
representation is observed (Namima and Pasupathy, 2021). The lateral 
occipital area LO in the human brain can be divided into two subregions 
(Wandell et  al., 2007), and subregion LO-2 shows greater shape 
selectivity than LO-1 (Silson et  al., 2013; Vernon et  al., 2016). As 
subregion LO-1 is adjacent to the human homolog of area V4, area LO-2 
likely overlaps with area LOvt, which shows responsiveness to haptic 
input (Amedi et al., 2002; Monaco et al., 2017). Thus, the properties of 
the lower subregion LO-1 match shape processing without haptic input, 
suggesting that it is a good candidate for the area responsible for the 
perceptual completion of letters. Coactivation has also been reported 
between the LO area and the areas related to processing letters and 
words in the ventral occipitotemporal areas along the fusiform gyrus in 
the left hemisphere (Agrawal et al., 2020). LO-1 may be a good candidate 
considering the interaction between the dorsal and ventral pathways 
because LO-1 is closer to V3A/B, which belongs to the dorsal pathway, 
than LO-2. In fact, the vertical occipital fasciculus (VOF), or the fiber 
that connects the area LO and other ventral and lateral visual areas and 
the area V3A/B, has been identified in the human brain using a 
combination of fMRI, diffusion MRI and fiber tractgraphy (Takemura 
et al., 2017). Connections rather than individual areas may be more 
appropriate neural correlates of complex computations that are 
commonly found in human visual perception.

The present result may suggest unimodal three-dimensional 
representation as a precursor to multisensory three-dimensional 
representation. Constructing representation of the occluded part must 
be  distinguished from recognizing the partly occluded or partly 
missing figures or objects. Computationally, recognition can 
be  achieved without explicit representation, whereas explicit 
representation should help recognition. In other words, whereas 
explicit representation or completion is sufficient for recognition, it is 
not necessary. There must be some reason or computational benefit of 

actively constructing explicit representation or actively assuming 
presence rather than passively ignoring the absence of input from the 
invisible part. One such potential benefit is to predict the invisible part 
for future bodily interaction or tangibility. This may correspond to a 
bifurcation of the flow of information to the pathways for action and 
recognition (Goodale and Milner, 1992).

5. Conclusion

A VR experiment was conducted to investigate the effects of visual 
and haptic cues on recognizing partially occluded letters. Although 
visual cues enhanced letter recognition, enhancement was not specific 
to the sign of the depth relationships that are typical for occlusion. 
Haptic cues had no effect on recognition. The results suggest that 
LO-1 is the most likely cortical locus of the core for processing 
occlusion, although it must be examined in future studies whether the 
results are specific to letters or whether visual input dominates even 
when visual input is singular and haptic input provides comparatively 
more reliable or useful information. In either case, the present results 
illustrate how biological processing mirrors a complex set of natural 
constraints in processing occlusion.
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Understanding how deep neural networks resemble or di�er from human vision

becomes increasingly important with their widespread use in Computer Vision and

asmodels in Neuroscience. A key aspect of human vision is shape: we decompose

the visual world into distinct objects, use cues to infer their 3D geometries,

and can group several object parts into a coherent whole. Do deep networks

use the shape of objects similarly when they classify images? Research on this

question has yielded conflicting results, with some studies showing evidence for

shape selectivity in deep networks, while others demonstrated clear deficiencies.

We argue that these conflicts arise from di�erences in experimental methods:

whether studies use custom images in which only some features are available,

images in which di�erent features compete, image pairs that vary along di�erent

feature dimensions, or large sets of images to assess how representations vary

overall. Each method o�ers a di�erent, partial view of shape processing. After

comparing their advantages and pitfalls, we propose two hypotheses that can

reconcile previous results. Firstly, deep networks are sensitive to local, but not

global shape. Secondly, the higher layers of deep networks discard some of the

shape information that the lower layers are sensitive to. We test these hypotheses

by comparing network representations for natural images and silhouettes in which

local or global shape is degraded. The results support both hypotheses, but

for di�erent networks. Purely feed-forward convolutional networks are unable

to integrate shape globally. In contrast, networks with residual or recurrent

connections show a weak selectivity for global shape. This motivates further

research into recurrent architectures for perceptual integration.

KEYWORDS

convolutional networks, shape, Gestalt, recurrent connections, deep learning, perceptual

grouping

1. Introduction

The success of deep neural networks has led to a new convergence of research in

Computer Vision and Neuroscience (Kriegeskorte, 2015). Many motifs in neural network

architectures have been loosely inspired by the brain. For example, the local filters used in

convolutional neural networks resemble connections in the ventral visual stream of primate

cortex. This analogy is fruitful for both sides: on the one hand, further biological inspiration

may help improve deep networks by bringing them closer to the robustness and flexibility

of biological vision (Medathati et al., 2016). On the other hand, deep networks can serve

as models for neuroscience, allowing researchers to implement and test new hypotheses

(Kriegeskorte, 2015; Cichy and Kaiser, 2019; Richards et al., 2019). Several studies have
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used convolutional neural networks as models of the visual

system and been successful at predicting responses (Cichy et al.,

2016; Yamins and DiCarlo, 2016; Zhuang et al., 2021) and

representational geometries (Khaligh-Razavi and Kriegeskorte,

2014) in the ventral stream, culminating in efforts to find neural

network architectures that predict brain data well (Schrimpf et al.,

2020).

However, several pieces of evidence suggest that neural

networks classify images according to very different criteria

than primate vision. Small changes below the human perceptual

threshold can turn an image into an adversarial example, which

networks classify wrongly with high confidence (Szegedy et al.,

2014). More generally, deep networks are much less robust to image

corruptions than humans (Geirhos et al., 2018).

Clearly, there are some parallels between deep networks and

primate vision, but also crucial differences. The question is: what

are the similarities, precisely? And what causes the differences? The

answers to these questions are relevant for Neuroscience, since they

will circumscribe the extent to which deep networks are useful

as models of primate vision. They are also relevant to Computer

Vision, since they may help improve neural networks, for example,

by making them more robust against adversarial examples and

image distortions.

To identify similarities and differences, it is useful to start with

key properties of primate vision and test whether deep networks

share these properties. One fundamental aspect of human vision

is the perception of shape. Distinguishing different objects in our

environment, understanding where the boundaries of each object

lie, and how they are arranged in our 3D environment are some

of the main functions of primate vision. But what about deep

networks? A large body of work has been dedicated to this question

in recent years - with conflicting results. While neural networks

seem to classify images preferentially by shape in some studies

(Ritter et al., 2017; Tartaglini et al., 2022), other experiments show

that networks are biased toward texture (Baker et al., 2018; Geirhos

et al., 2019a). In some papers they can be made sensitive to shape

by changes to the training process (Geirhos et al., 2019a; Hermann

et al., 2020), whereas in others they are unable to learn about shape

(Baker and Elder, 2022). How should these conflicting findings be

interpreted?

In this paper, we review research that investigates shape

processing in deep networks trained to classify images1 and

compares it to primate vision. Our goal is to reconcile results that

appear contradictory. We argue that this is due to differences in the

experimental methods, which focus on different aspects of shape

processing. Some methods test whether networks are sensitive to

the global arrangement of object parts, others also treat local shape

1 We focus on networks trained for image classification or object

recognition, because (1) most work on shape processing in deep networks

has focused on this task and (2) object shape is an important factor in the

way humans recognize objects. However, recognizing objects is only one of

many capabilities of human vision. It is possible (and highly likely) that the

way humans perceive shape is influenced by the many other visual behaviors

they exhibit. Looking at shape processing in deep networks trained for other

tasks is an interesting direction for future research, but beyond the scope of

this paper.

cues (e.g., corners) as shape information. Some methods assess

whether networks can use shape cues, while others test whether

networks prefer shape over other features.

Taking these distinctions into account, we propose two

alternative hypotheses that explain the evidence from previous

studies: firstly, networks only use local shape cues, but are not

sensitive to global shape. Secondly, networks may process shape

in intermediate layers, but discard it in the final decision layers.

We argue that a combination of experimental approaches is

necessary to test these hypotheses and present evidence from

such an experiment, bridging previous studies. According to

the results, both hypotheses may be correct, but for different

network architectures. While purely feed-forward networks are

unable to process global shape, networks with residual or recurrent

connections show some selectivity for global shape in intermediate

layers, but discard this information at later stages in the network

hierarchy. This opens up new opportunities for research on

recurrent grouping in deep networks.

2. Do convolutional networks process
shape? Conflicting evidence

Human shape perception is a complicated process. According

to current theories in neuroscience, object features including cues

about local shape (such as corners or boundary contours) are

initially extracted in a feed-forward pass through the ventral

visual stream, establishing a base representation (Roelfsema and

Houtkamp, 2011; Elder, 2018). These cues may be sufficient to

support object recognition in simple scenarios. For example, to

recognize a cat it may be enough to see the distinctive local contours

of its ears. The ability to recognize objects quickly in such simple

circumstances has been dubbed core object recognition (Afraz et al.,

2014; but see also Bracci and Op de Beeck, 2023). However, in more

difficult viewing conditions (e.g., partial occlusion and multiple

objects), the brain has to group parts of the object together and

segment the object from the background. For this kind of robust,

flexible processing of object shape, lateral and feedback connections

are crucial (Roelfsema and Houtkamp, 2011; Elder, 2018), as they

support the grouping of object contours (Grossberg and Mingolla,

1985, 1987; Tschechne and Neumann, 2014), assignment of border

ownership (Craft et al., 2007), and segmentation of the object

from its background (Self and Roelfsema, 2014). Importantly, this

recurrent grouping is highly sensitive to the relative arrangement

of object parts, the global shape. The set of rules by which

object parts are grouped together has been studied extensively in

Gestalt psychology and its successors (Wagemans et al., 2012). The

cumulative effect of this grouping is that the object is perceived as a

unified whole, a Gestalt.

Do deep network represent shape in a similar manner? Initial

work tried to address the question directly by comparing responses

and representations between deep networks and primate vision.

Kubilius et al. (2016) tested whether human participants and deep

networks could recognize objects just by their silhouette. Since the

silhouette only contains information about object shape, this would

indicate shape processing. Indeed, both human participants and

deep networks could recognize some object classes by shape and

their performance was correlated. Deep networks performed more
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poorly on objects that were hard to classify for human participants.

In addition, Kubilius et al. (2016) tested how networks represented

images of artificial shapes. Notably, the outputs of hidden layers

weremore correlated for images of shapes that humans judged to be

similar than for shapes that were physically similar. Similarly, Kalfas

et al. (2018) used representational similarity analysis (Kriegeskorte

et al., 2008; Diedrichsen and Kriegeskorte, 2017, see also Section

2.4) to show that representations in deep networks were highly

similar to neural activity in macaque inferotemporal cortex when

viewing artificial 2D shapes and to human similarity judgements

about the same stimuli.

While these results are encouraging and support the view that

deep networks can serve as models of the ventral stream, they

do not tell us much about how deep networks process shape.

For example, the similarity between network representations and

human or primate vision may be because the networks extract

similar features as the initial feed-forward sweep through the

ventral stream. This is supported by the fact that stimuli were

presented for only 100 ms by Kubilius et al. (2016), leaving little

time for recurrent processing (Thorpe et al., 1996). However, the

human similarity judgements reported by Kalfas et al. (2018) were

based on unrestricted viewing, so here the match to deep networks

might reflect that they are sensitive to global shape.

Since we are far from understanding human vision perfectly,

direct comparisons between humans and deep networks cannot

answer these detailed questions. Instead, several studies have

designed experiments to probe the characteristics of shape

processing in deep networks directly. These experiments can be

roughly subdivided into four different categories (see Figure 1):

1. Classification of diagnostic stimuli,

2. Classification of cue conflict stimuli,

3. Triplet tests,

4. And representation analysis.

Notably, each category operationalizes the concept "shape" in

a different way and tests different aspects of shape processing.

This can cause apparent contradictions when comparing results.

However, the results within each category are relatively consistent.

To demonstrate how the apparent contradictions can be resolved,

we look at each experimental approach in turn.We summarize their

respective findings and analyze what the advantages and limitations

of each approach are.

2.1. Classification of diagnostic stimuli

One way to test how deep networks process shape is

to create custom images in which shape information is

isolated from other confounding factors, or in which shape

information is manipulated selectively (see Figure 2). If

a network is able to correctly classify images in which all

information except shape is removed (for example silhouettes),

then the network must be using features that encode shape.

Conversely, if manipulating the shape information (e.g., by

shuffling image patches) affects the network output, this

indicates that the network used this information to classify

the image.

As noted above, Kubilius et al. (2016) showed that

convolutional networks can recognize some objects by their

silhouette, which indicates that they use at least some shape

information. Baker et al. (2018) replicated this result, but also

tested a wider range of diagnostic images (as well as cue conflict

stimuli—see Section 2.2). The neural networks tested (AlexNet

and VGG-19) performed much worse on line drawings of objects,

which contain at least as much information about object shape as

silhouettes. The only difference is that in a line drawing the interior

of an object has the same color as the background, whereas the

interior of a silhouette is filled with a uniform color that is different

from the background.

In addition, Baker et al. (2018) tested what kind of shape

information the networks used to classify silhouettes: local or global

shape. Human perception of shape partially uses local shape cues,

such as orientation or curvature (Elder, 2018). For example, the

characteristic shape of cat ears may be helpful in recognizing

a silhouette image as a cat. However, the evidence from these

local shape cues is not simply accumulated. Instead, human shape

perception is strongly influenced by the global arrangement of these

local cues, for example whether the parts of an object are in the

correct positions relative to each other and whether they form a

closed contour (Wagemans et al., 2012).

In order to test whether neural networks primarily rely on

local or global shape information, Baker et al. (2018) modified

the silhouette stimuli in two ways. First, they created scrambled

silhouettes (see Figure 2E), in which the original silhouette was

cut apart and pasted back together in a different arrangement.

This largely conserved local shape cues but completely altered

the global shape. Second, they manipulated the local boundaries

of the original silhouettes by adding a saw-tooth effect (see

Figure 2F). This changed the local shape features, but left the global

arrangement intact. Human participants showed low accuracy

on the scrambled silhouettes and high accuracy on the locally

perturbed silhouettes, indicating that they primarily rely on

global shape. In contrast, deep networks performed better on the

scrambled silhouettes than on the locally perturbed silhouettes,

indicating that they relied mainly on local cues and combined

them like a bag-of-features model, in line with Brendel and Bethge

(2019).

Similarly, Baker and Elder (2022) compared the performance

of human participants and deep networks on silhouettes and tested

several manipulations that altered the global shape. In fragmented

silhouettes (see Figure 2G), the shape was cut in half and the

two halves were moved apart. In Frankenstein silhouettes (see

Figure 2H), the upper half of the silhouette was flipped horizontally

and both halves were pasted back together. Finally, Baker and Elder

(2022) also used vertically inverted versions of all these stimuli.

The performance of humans and deep networks was worse on

fragmented silhouettes, which introduced a new local shape feature

(the horizontal cut). However, humans also performed worse on

the Frankenstein stimuli, in which global shape was altered while

keeping local cues largely identical. Deep networks performed

equally well on Frankenstein stimuli as on the original silhouettes,

indicating that they did not rely on global shape. This effect
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FIGURE 1

The di�erent types of experiments used to assess shape processing in neural networks. (A) Diagnostic stimuli restrict the amount of information

available in an image. For example, silhouettes only show the shape of an object. If a network can classify such stimuli correctly, it must be able to

use the available information. (B) Cue conflict stimuli combine features of two di�erent classes, for example, the shape of a cat with the texture of a

bicycle. If the network chooses one of these two classes, this indicates that it weights the respective feature more strongly. (C) In triplet tests, an

anchor stimulus and two matches are presented to the network. The matches di�er from the anchor along two di�erent feature dimensions. By

testing which representations are more similar, one can assess which features the network uses to group stimuli. (D) Methods to analyze network

representations record the outputs of intermediate layers across many images and asses which information is present in the representations. Image

credit: Silhouette reproduced from Baker et al. (2018), Figure 18 (CC-BY 4.0 attribution license). Cue conflict image reproduced from: https://github.

com/rgeirhos/texture-vs-shape (CC-BY 4.0 attribution license). Triplet stimuli reproduced from Tartaglini et al. (2022) (CC-BY 4.0 attribution license).

FIGURE 2

Diagnostic stimuli isolate or manipulate shape information. Artificial, abstract shapes allow tight control over which shape information is present: (A)

Kalfas et al. (2018) generated shapes in four categories: regular (top left), complex (top right), simple curved (bottom left), and simple straight (bottom

right). (B) Malhotra et al. (2022a) designed artificial shapes that could be classified according to their shape or another feature (e.g., the whether a red

segment is present). Shape-only stimuli depict real-world objects but remove all information except the shape, for example, by extracting a

silhouette (C) or line drawing (D). Shape corrupted stimuli additionally manipulate the shape information, for example by scrambling (E) the

silhouette or distorting its boundary (F). Similarly to scrambling, Baker and Elder (2022) used fragmented silhouettes (G) and re-aligned the parts to

create “Frankenstein” stimuli (H). Image credits: (A) reproduced from Kalfas et al. (2018) (CC-BY 4.0), (B) reproduced from Malhotra et al. (2022a)

(CC-BY 4.0), (C–F) reproduced from Baker et al. (2018) (CC-BY 4.0), and (G, H) adapted from Baker et al. (2018) (CC-BY 4.0).
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was constant across different network architectures, including the

biologically motivated, recurrent CORnet architecture (Kubilius

et al., 2019), a ResNet model trained on stylized ImageNet to

be more sensitive to shape (Geirhos et al., 2019a), and vision

transformers, which use self-attention to potentially integrate

information globally across the image and have been argued to

resemble human vision more closely than convolutional networks

(Tuli et al., 2021).

Inverting the silhouettes horizontally reduced the performance

for humans and deep networks (Baker and Elder, 2022), but in

humans this effect was less strong for inverted Frankenstein stimuli,

indicating holistic processing. For deep networks, there was again

no difference between original and Frankenstein silhouettes.

In sum, these experiments indicate that neural networks trained

on ImageNet are not sensitive to global shape of silhouettes. But

what can we infer from this about how neural networks process

natural images? A potential problem arises due to domain shift. The

networks examined in Kubilius et al. (2016), Baker et al. (2018), and

Baker and Elder (2022) were trained on natural images, silhouettes

were not part of their training set. Deep networks typically transfer

badly to data outside of their training distribution. It is conceivable

that a network uses both global and local shape in its training

domain (natural images), but when faced with a new domain

(silhouettes) only some of the features it has learned transfer

well enough to enable classification.2 To rule out the possibility

that networks use global shape, one would need to test them on

diagnostic stimuli inside their training domain.

Experiments closer to this requirement were conducted by

Baker et al. (2020), who used transfer learning to have networks

pre-trained on ImageNet classify images of circles and squares.

They then tested the network on images of squares composed

of small half-circles and circles composed of small corner-like

wedges. While this also presents a shift away from the training

distribution, it is less drastic than the shift from natrual images to

silhouettes. Importantly, a network that is only sensitive to local

shape features might distinguish squares from circles based on

their sharp corners - and should therefore miss-classify a circle

made up of small corner-like elements. This is exactly what Baker

et al. (2020) observed with networks trained on simple circles

and squares. When they instead trained the networks on circles

and squares made up of more diverse local elements (like crosses,

tilde signs, or thicker lines), networks responded in line with the

global shape of the stimulus: circles made up of small corners were

classified as circles, squares made up of half-circles were classified

as squares. However, when the networks were tested on shapes

made up of small, randomly oriented line segments, performance

was largely random (indicating that the networks still relied on

local shape) and the networks treated fragmented squares or circles

the same as whole shapes (indicating that changes to global shape

did not matter). Baker et al. (2018) concluded that the networks

still used local cues, but at a slightly larger scale: they ignored the

2 Hosseini et al. (2018) proposed using negative images (i.e., images with

inverted intensity values) to assess shape processing. Negative images may

su�er less from domain shift than silhouettes, but have the disadvantage that

they do not eliminate texture information, so their diagnostic value is less

clear.

very small elements (corners or half-circles) and instead checked

whether the overall orientation was constant (as for squares) or

changed gradually (as for circles). They did not use global shape.

Similarly, Malhotra et al. (2020, 2022a) trained networks on

custom datasets for which the network could either learn to classify

by shape or by another feature. Malhotra et al. (2020) added noise

or a single diagnostic pixel to natural images. The statistics of the

noise (e.g., the mean) or the color of the single diagnostic pixel

indicated the image class, so the network could classify the image

either by the appearance of the depicted object, or by the noise.

The networks relied heavily on the noise or pixel features, showing

drastically reduced or random performance on clean images. Even

if the manipulations were restricted to a subset of the training

classes, so that the network had to use object appearance to classify

the remaining classes correctly, networks relied on the noise/pixel

features for as many classes as possible.

Malhotra et al. (2022a) ran similar experiments with completely

artificial stimuli and compared the behavior of human participants

and deep networks. The stimuli could be classified according

to shape or one other feature (e.g., the color of one image

patch, see Figure 2B). Participants almost always learned to classify

the objects by shape, except for one experiment where the

other feature was the color of a large part of the stimulus.

When shape was not available as a cue, participants struggled

to learn the task at all, even when they were told what the

diagnostic feature was. In contrast, neural networks systematically

preferred all other features over shape. They appeared to

learn some shape information, since their accuracy was above

chance when the other feature was removed. However, when

faced with a stimulus where shape and the other feature were

in conflict, the networks always classified according to the

other feature.

Taken together, experiments with diagnostic stimuli show that

neural networks are sensitive to some shape information and

can use it to classify silhouettes. However, they rely on local

shape cues rather than global shape and if they have the choice

between shape and another informative feature, they typically

use the other feature, such as local color, texture, or even

noise statistics.

While this evidence seems compelling, it has to be taken

with a grain of salt. Diagnostic stimuli are usually far from

the training distribution, so we cannot just assume that neural

networks behave identically on the natural images they were

trained on. In addition, these experiments rely on the classification

output of the networks.3 It is possible that networks extract

shape information in earlier layers, but largely discard it in

the final layers because other features are more predictive

(see Section 2.3). Conversely, just because networks are able

to classify some diagnostic stimuli according to local shape

cues, this does not mean that they rely on these cues when

classifying natural images. Whether they do can be tested using

cue conflict.

3 Baker et al. (2020) also examined correlations among activities in earlier

layers. However, these seemed to be dominated by input similarity and did

not reveal much about shape processing.
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2.2. Classification of cue conflict stimuli

Whereas diagnostic stimuli can be used to assess whether neural

networks are able to use shape information, cue conflict stimuli are

designed to test whether they do use this information. In order to

test whether a network classifies an image by shape or by another

feature, for example texture, one can generate an artificial image

with the shape of one class, but the texture of another. This puts

the two features or cues in conflict. By observing which class

the network predicts, one can assess which feature it relies on

more strongly.

Baker et al. (2018) filled silhouettes of one class with surface

content of another (see Figure 3A). For example, the outline of a

camel was filled with the stripes of a zebra’s fur. Deep networks

had a low accuracy on this dataset, but still identified the shape

or texture of some images correctly. Notably, if the silhouette was

from a human-made object, the networks had a higher likelihood

of identifying the class of the shape, but if the silhouette was from

an animal, the networks were more likely to identify the texture.

This may be due to the fact that many human-made artifacts have

clear edges and corners, i.e., very distinctive local shape cues, but

relatively homogeneous surfaces with less texture information.

Since Baker et al. (2018) created images by hand, they could

only test a limited range of conflict stimuli. Geirhos et al. (2019a)

used neural style transfer (Gatys et al., 2016) to create stimuli

with the shape of one class and the texture of another (see

Figure 3B). They tested human participants and convolutional

networks (AlexNet, VGG-16, GoogLeNet, and ResNet-50) on 1,280

images, each of which belonged to one of 16 classes. Shapes and

textures were counterbalanced in their frequency of presentation.

The authors defined a measure of shape-bias and texture-bias as the

fraction of images classified by shape (or texture, respectively) out

of the total number of images classified according to either shape

or texture. The measure excludes images that were not classified

correctly according to either cue. While humans exhibited a strong

shape-bias, neural network mostly classified according to texture.

This definition of shape-bias as the fraction of shape decisions

made on cue conflict stimuli derived by style transfer has been

adopted widely in the deep learning community and has been the

main target of attempts to improve the way neural networks process

shape. For example, Geirhos et al. (2019a,b) showed that training

networks on randomly stylized images, for which the style/texture

is no longer predictive of the class, can increase shape bias and that

this increased shape bias also leads to higher robustness against

image distortions such as noise. While training only on stylized

images led to reduced performance on natural images, training on

a mix of natural and stylized images led to good performance on

both, as well as increased robustness. Hermann et al. (2020) showed

that networks could be explicitly trained to use the shape or texture

cue and that changes to the training procedure—longer training

with stronger augmentations and less aggressive cropping—could

lead to higher shape bias. In contrast, changes in architecture (e.g.,

using an attention layer or the biologically inspired CORnet model)

did not have a clear effect. Other methods to improve the shape

bias include mixing in edge maps as training stimuli and to steer

the stylization of training images (Mummadi et al., 2021), applying

separate textures to the foreground object and the background

(Lee et al., 2022), penalizing reliance on texture with adversarial

learning (Nam et al., 2021), training on a mix of sharp and blurry

images (Yoshihara et al., 2021), adding a custom drop-out layer

that removes activations in homogeneous areas (Shi et al., 2020),

or adding new network branches that receive preprocessed input

like edge-maps (Mohla et al., 2022; Ye et al., 2022).

Notably, most of these adjustments have to be carefully tuned,

otherwise the networks with improved shape bias perform worse

on natural (non-stylized) images. In addition, improvements in

shape bias do not always lead to improvements in robustness

(Mummadi et al., 2021). We should therefore be cautious in

interpreting these results: a higher shape bias may not mean more

human-like understanding of shape. As a case in point, Tuli et al.

(2021) included shape bias in a larger comparison of convolutional

networks and vision transformers (ViT) to human vision. While

the ViTs had a higher shape bias, the error pattern (which classes

were mistaken for which other classes) of ResNets resembled that

of human participants more closely.

Another potential problem comes from the method to create

the cue conflict stimuli in most studies. Neural style transfer (Gatys

et al., 2016) attempts to preserve the content (i.e., the shape) of

one image while applying the texture of another by performing

gradient descent with a content loss and a style loss. The content

loss ensures that the activations of one layer in a deep network

are kept close to the activations for the content image. Typically, a

layer higher up the network hierarchy is used in order to capture

high-level semantic features. The style loss is computed across

several convolution layers to capture both high- and low-level

image features. For each layer, it penalizes the distances between the

Gram matrix of activations in that layer for the style image and the

image that the style is transferred to. This means that the stylized

image will elicit the same correlations between feature detectors

in that layer of the network as the style source image. The result

is an image in which structures of the content image will still be

recognizable to humans.

For example, if the content source shows a house, the outline

or shape of the house will be largely intact. However, the color

and surface properties will be taken from the style source. For

example, if the style source is a painting, the walls may be painted

in brush-strokes. At least, this is what the resulting image looks

like to a human observer. The key point to keep in mind for this

discussion of shape bias is that a stylized image is generated by

gradient descent with respect to activations in a neural network.

Since neural networks can be sensitive to image features that are

not perceptible to humans (Szegedy et al., 2014), this process might

introduce features that strongly bias neural network responses,

but that are not visible to a human observer. Conversely, it could

destroy shape features that networks use to classify images - thereby

causing the low shape bias.

In summary, despite these caveats, evidence from cue conflict

largely corroborates the findings from diagnostic stimuli: neural

networks do not classify images according to object shapes. Rather,

they rely on texture cues. However, this preference for texture

can be weakened by modifications to the network architecture or

training procedure.

In contrast to experiments with diagnostic stimuli, cue conflict

tests do not distinguish between local and global shape information.
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FIGURE 3

Stimuli used in cue conflict experiments. (A) Silhouettes filled with surface texture of another class. (B) Cue conflict generated using style transfer,

using an image of one class as content or shape and an image of another class as style. The left image has shape “cat” and texture “bicycle.” The right

image has shape “keyboard” and texture “elephant.” Image credit: (A) reproduced from Baker et al. (2018) (CC-BY 4.0), (B) reproduced from: https://

github.com/rgeirhos/texture-vs-shape (CC-BY 4.0).

Thus, it is not clear whether improvements in shape bias are due

to an increased reliance on local shape cues, or because networks

learn to integrate shape information globally [though the results

from Baker and Elder (2022) indicate the former, see Section 2.1].

In addition, just like experiments with diagnostic stimuli, cue

conflict tests rely on the classification output of the network. This

may skew the results. For example, it is conceivable that a network

trained on ImageNet learns to use both shape and texture to classify

natural images. When faced with a cue conflict, it has to base

its decision on one of the two features. It may prioritize texture

for various reasons, for example because the object surface takes

up a larger part of the image than the object outline such that

the texture evidence out-votes the shape evidence. To avoid this

potential confound, it is necessary to examine shape bias without

relying on the classification output alone. This can be achieved

using triplet tests.

2.3. Triplet tests

Shape bias in human participants has been extensively studied

in cognitive psychology. For example, when learning new words

children tend to group objects by shape, rather than texture or size,

exhibiting a shape bias, which increases with age (Landau et al.,

1988). In order to control for response bias, Landau et al. (1988)

adopted a forced-choice procedure: they showed participants one

object (the standard) and then had them choose among two other

objects that differed from the standard by different features. For

example, one might have a different size than the standard, but the

same shape. The other had a different shape, but the same size. The

participants had to choose the object that they thought belonged to

the same category as the standard.

Ritter et al. (2017) adopted an analogous procedure for testing

the shape bias of neural networks. They used a probe image that

showed an object, as well as color and shape matches. The color

match showed an object of the same color as the probe, but

with a different shape. The shape match showed an object with

the same shape as the probe, but a different color. The authors

computed the cosine distance between the activation of the final

layer of an Inception network (before applying the softmax) for

the probe image and the activation for each match image. If

the representation distance between probe and shape match was

smaller than between probe and color match, this was counted as

a decision for shape. Notably, for the Inception network and for

matching nets (an architecture designed for one-shot classification)

the distance between probe and shape match was lowest in most

cases: the networks were biased toward shape.

Since this approach uses triplets of images, it is referred to as

a triplet task. The term “task” is used in analogy to the forced

choice task for human participants, not to classification or other

tasks networks are trained for. The networks are not trained for

the triplet task. In this sense, the term “triplet test” may be more

appropriate.

Feinman and Lake (2018) used this approach to look at the

emergence of shape biases during training. They trained small

networks on artificial datasets of simple shapes, specifically an

MLP with a single hidden layer and a convolutional network

with two convolutional layers and one fully connected layer. The

authors observed a fast emergence of shape biases. However, since

shape was the only feature dimension that was predictive of image

classes in their datasets, it is unclear whether the same is true for

networks trained on natural images, where color and texture are

also predictive of object class.

Since the triplet test is based on similarity of activation patterns,

it is not restricted to the output layer of a network. Guest and

Love (2019) tested all layers of an Inception network with the

same triplets used by Ritter et al. (2017). They observed that lower

layers were biased toward color, whereas higher network layers

were biased toward shape. They also tested simple artificial stimuli,

for which the highest layers were biased toward shape. Notably,

the results in the lower layers varied drastically depending on

whether stimuli were presented in the same image location or not,

indicating that the distance function was dominated by low-level

pixel similarity.

These results from triplet tests seem to directly contradict

the results from diagnostic stimuli (Section 2.1) and cue conflict

(Section 2.2). However, this difference might be due to confounds.

For example, the resultsmight be specific to the image triplets tested

in Ritter et al. (2017) and Guest and Love (2019). A more direct

comparison is enabled by Tartaglini et al. (2022), who performed

triplet tests with stylized images like the ones used for cue conflict

experiments. Each probe stimulus was a cue conflict image and the

texture match was another image with the same texture style, while
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the shape match was an image with the same object but a different

texture. Interestingly, most networks exhibited a texture bias when

tested on standard cue conflict stimuli. However, this changedwhen

the background was masked out. The original shape images showed

objects on a white background, but the style transfer procedure

also added texture in this background region. Thus, the texture

arguably covered a much larger area than the shape object. When

the conflicting texture was restricted to the object by masking out

the background, all networks exhibited a shape bias. Unfortunately,

Tartaglini et al. (2022) did not report the classification-based shape

bias measure, so their results cannot be compared to Geirhos et al.

(2019a) directly. Nevertheless, their results illustrate that results

from the triplet test and cue conflict experiments are generally

compatible and that it is important to carefully consider details of

the experiment.

Two more important experimental variables that Tartaglini

et al. (2022) identified were the spatial alignment and size of the

stimulus. Shape bias was generally higher when the object was in the

same position in the probe and shape match image. This shows that

similarity in the triplet test partially just reflects similarity in pixel

space, rather than the processing of features like shape or texture.

This point was also raised by Guest and Love (2019) and requires

appropriate experimental control. Size also played a role: most

networks showed a stronger shape bias for smaller stimuli. This

might indicate that networks rely on local shape cues, as indicated

by experiments with diagnostic stimuli (Section 2.1). If a network

only extracted local shape cues with a certain receptive field size, a

smaller object would be covered by this receptive field to a larger

degree, increasing the diagnostic value of the features. However,

the size effect might also be due to an experimental confound,

e.g., because a smaller object means there will be less texturized

surface. Notably, even a ResNet with random weights showed a

strong shape bias in most experimental conditions (Tartaglini et al.,

2022), indicating that the shape bias measured in the triplet test

does not necessarily indicate a learned understanding of shape.

In addition, it is unclear whether the shape sensitivity that

neural networks show in triplet tests is due to local shape cues or

global shape processing. This would require diagnostic stimuli that

distinguish between local and global information, but diagnostic

stimuli are typically very different from the images a network was

trained on (see Section 2.1). Due to this domain shift, it becomes

even harder to control for confounds in the similarity-based triplet

measure. A step in this direction was made by Malhotra et al.

(2022b), who designed triplets of artificial shapes to test if networks

represented a relational change, i.e., a change in the relative

arrangement of object parts, differently from a coordinate change,

which did not change object part relations. Unless explicitly trained

to classify a certain type of relational change, networks did not show

selectivity for relational changes (i.e., smaller triplet distances). This

indicates a lack of global shape processing.

In summary, triplet experiments indicate that deep network

encode shape to a higher degree than cue conflict tests reveal.

This might mean that networks can use shape information

in their decision, but when they are forced to classify a

stimulus with conflicting features, they discard shape in favor

of another feature. In this view, their capacity for shape

processing would be masked by the experimental requirements in

classification tasks.

A key advantage of the triplet test is that it can also be applied

to earlier layers of the network. Thus, if certain kinds of shape

processing were restricted to earlier network layers, this could in

principle be revealed by triplet tests. However, since the test relies

on direct comparisons between image triplets, it is vulnerable to

experimental confounds, such as differences in spatial position,

size, etc. This problem can be overcome by methods that analyze

the content of representations across larger sets of images.

2.4. Analyzing representations

Two methods that have been used to analyze representations

in deep network layers are decoding and representational similarity

analysis.

Decoding tests whether a feature is represented in a network

layer by training a classifier for that feature. The better the classifier

performs, the better the featuremust be represented in that network

layer. Hermann et al. (2020) trained decoders for the texture and

shape classes of cue conflict stimuli for the final pooling layers and

fully connected layers of AlexNet and ResNet-50. They observed

that both shape and texture could be decoded with high accuracy,

indicating that both features were represented. However, while

texture was represented equally well across layers, the quality of

shape representations decreased across fully-connected layers in

AlexNet and after the global average pooling in ResNet-50.

In contrast, Islam et al. (2021) assessed the quality of shape

encoding for natural images (not cue conflict stimuli) by decoding

segmentation masks for the foreground object. They found that

shape could best be decoded from higher convolutional layers,

which also contained some information about object class (enabling

semantic instead of binary segmentation). However, the authors

also noted that the decoder often segmented the shape of an

object correctly, but assigned different semantic labels to different

object parts, indicating that the global shape of the object was not

represented. Islam et al. (2021) also quantified the dimension of

shape and texture representations in each layer, i.e., the number

of units that were selective to each feature. They assessed this by

measuring the mutual information between neuron responses for

pairs of cue conflict images that had the same shape or texture,

respectively. They noted that in most layers, more neurons were

selective for texture than for shape. The dimensionality of shape

representations was higher for higher network layers, for deeper

networks, and for networks trained on stylized images.

Representational similarity analysis (RSA) captures the overall

geometry of representations in a network layer across a range

of stimuli. It can also be applied to recordings from biological

brains, or to response patterns and even makes it possible to

compare different systems (Kriegeskorte et al., 2008; Diedrichsen

and Kriegeskorte, 2017). The geometry of representations in a layer

is first characterized by recording the distance between each pair

of stimuli in a representation dissimilarity matrix (RDM). The

geometries of two systems (or of the same system on two sets

of stimuli) can then be compared by measuring the distance or

correlation between two RDMs.

Kalfas et al. (2018) used this method to compare the

representations of artificial two-dimensional shapes (see Figure 2A)
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between convolutional networks, recordings from IT cortex of

primates, and human similarity judgements. While representations

in early networks layers mainly reflected pixel-level image

similarity, representational geometries in higher layers were similar

to primate and human data. The comparison to pixel-wise

similarity is notable, since it overcomes one of the problems of

triplet tasks, namely the difficulty of controlling the potential

confounding effect of image similarity (Section 2.3). Kalfas et al.

(2018) also showed that the similarity to human and primate data

did not hold for untrained networks.

Singer et al. (2022) compared representations of photographs,

line drawings, and sketches (strongly simplified line drawings,

see Figure 4) of the same objects across layers of convolutional

networks. Since the contours in the line drawings matched the

object edges in the photographs to a high degree, this allowed for a

dissociation of shape (which was similar between photographs and

line drawings) from surface properties (line drawings and sketches

consisted of lines on a white background). In convolutional layers,

representations of photographs and drawings were more similar to

each other than to representations of sketches. This indicates that

representations were more selective to the shape features shared

between photographs and drawings than to the surface properties

shared between drawings and sketches. In fully connected network

layers, this similarity decreased and representations of drawings

and sketches were similar instead, indicating selectivity for texture.

This decrease in photo-to-drawing similarity was less severe in

networks trained on stylized images and could be overcome by

fine-tuning to a sketch dataset.

In summary, the evidence from decoding and RSA indicates

that networks do encode shape, especially in the higher

convolutional layers. This is consistent with observations

from triplet tasks. However, in contrast to triplet tasks, which also

found high shape bias in fully connected layers, representation

similarity analysis and decoding suggest that shape information

is discarded in fully connected layers. This could explain why cue

conflict experiments consistently find a texture bias.

2.5. Integrating the evidence: the holistic
picture

At first glance, the results from different experimental

methods seem to contradict each other. For example, cue conflict

experiments show that deep networks are biased toward texture,

whereas triplet tests indicate that they are biased toward shape.

However, these apparent contradictions may be largely due to the

fact that each method measures slightly different aspects of shape

processing.When these differences are considered carefully, a more

complete picture emerges.

Triplet tests, representational similarity analysis, and decoding

show that deep networks represent object shape. This is supported

by the observation that deep networks can classify silhouettes with

some accuracy. However, results from representation similarity

analysis and decoding indicate that shape representations are

discarded in the last network layers. This is consistent with the

tendency of networks to classify cue conflict stimuli by texture,

not shape. It is unclear why this reduction in shape information

is not evident in triplet tasks, but this might depend on how exactly

experimental confounds like pixel-wise similarity are controlled

(Guest and Love, 2019; Tartaglini et al., 2022). Thus, one possible

interpretation of the data is that deep networks do process object

shape, but this information is discarded or down-weighted in the

final layers and other features determine the classification output.

While this interpretation resolves most contradictions in the

data, it leaves one crucial question open: what kind of shape

representations do the intermediate network layers represent? Are

they limited to local shape cues, or does a global integration

of shape information take place? In experiments with diagnostic

stimuli, network responses do not show selectivity for global

shape. Adjustments to the training regime may increase the shape-

bias measured in cue conflict experiments (Geirhos et al., 2019a;

Hermann et al., 2020), but they do not seem to make networks

sensitive to global shape (Baker et al., 2020; Baker and Elder, 2022).

Thus, a second possible interpretation is that networks are unable to

use global shape information. Any shape selectivity shown in triplet

tasks, RSA, and decoding is based on local shape cues.

This interpretation may also appear attractive as a source of

further analogies to neuroscience. According to current theories

of human shape perception, global shape processing relies on

recurrence and feedback (Roelfsema and Houtkamp, 2011; Elder,

2018). A lack of global shape processing in feed-forward networks

would support this theory. However, some feed-forward network

architectures may be able to emulate recurrence (Liao and Poggio,

2016) and some networks incorporate them explicitly (Kubilius

et al., 2019). Other network motifs like the global self-attention

used in vision transformers (Dosovitskiy et al., 2021) may also

enable global grouping of information. Thus, it is important to

keep in mind that different networks may process shape differently.

So far, most studies on shape processing have focused on one or

two network architectures, most commonly AlexNet, VGG, and

ResNet. While some studies have explicitly compared different

architectures and found that they processed shape similarly (Baker

and Elder, 2022), additional systematic comparisons are needed to

complete the picture.

The current evidence is insufficient to confirm or falsify either

of the interpretations we proposed. To close this gap and to narrow

down what type of shape information is represented where and

how in which deep network architectures, we think it is necessary

to combine the different experimental approaches more explicitly.

Each of them offers a unique view of shape processing. To get

the full picture, we need to put these views together. For example,

diagnostic stimuli offer precise control over the features that are

available, while cue conflict or triplet tests allow to asses which of

two stimuli a network relies on more strongly. A combined set

of stimuli that restricts some cues and puts others in conflict, can

give a more nuanced view of which cues a network really uses.

Decoding or representational similarity analysis could then be used

to track these different cues across layers. No single experiment

will characterize shape processing in deep networks and there will

not be a single yes or no answer to the question if deep networks

classify images according to shape. But by connecting the dots we

will be able to understand perceptual organization in deep networks

in more detail.
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FIGURE 4

Stimuli used in Singer et al. (2022). Line drawings closely match the photographs, such that the represented shape information is similar while the

surface properties di�er. Line drawings and sketches have similar (absent) surface properties, but show di�erent degrees of shape information. Image

credit: reproduced from Singer et al. (2022) (CC-BY 4.0).

3. Experiments—Testing for local and
global shape in intermediate
representations

We have proposed two hypotheses that can explain previous

findings on shape processing in deep networks:

Hypothesis 1: Deep networks trained to classify images are not

sensitive to the global arrangement of object parts. Any shape

selectivity they exhibit (e.g., in triplet tasks or after shape-

biased training) relies on local shape cues, e.g., characteristic

parts of the object outline.

Hypothesis 2: Deep networks are sensitive to some shape

cues. However, they rely more strongly on other features like

texture when classifying images. As these other features are

more important or easier to discover in the training set, shape

features are down-weighted in the final layers of the network.

The networks appear to discard the shape information.

To test these hypotheses, we need to assess to what

extent intermediate layers represent shape, and whether the

representations reflect local or global shape properties. Baker et al.

(2018) and Baker and Elder (2022) designed diagnostic stimuli

to dissociate local and global shape processing: silhouettes (which

contain only shape information), scrambled or "Frankenstein"

silhouettes (in which the global arrangement is disrupted) and

jagged silhouettes (in which local shape cues are disrupted). We

adopt the same approach. However, instead of manually curating

a set of silhouettes, we generate them from natural images that are

annotated with segmentation masks. This results in a larger dataset

with more variation among object classes and views. In addition,

this procedure gives us access to different images of the same object:

a natural image, a silhouette, and degraded versions thereof. Due to

this one-to-one correspondence, we can compare representations

for the different image types using representational similarity

analysis, similar to Singer et al. (2022); see also Section 2.4.

Representational similarity analysis compares the similarity

structure across items between two representations (Kriegeskorte

et al., 2008; Diedrichsen and Kriegeskorte, 2017). We use it to

compare representations of diagnostic images with representations

of the corresponding natural images in the same network layer.

A high representational similarity value (for example, between

representations of silhouettes and natural images) means that if

the network layer represents two natural images similarly, the

representations of the two corresponding silhouettes will be similar

as well. This implies that the information available in the silhouette

images (i.e., object shape) is relevant for the geometry of the

representation in that layer.

This enables us to test our two hypotheses. If hypothesis

1 is true, i.e., networks do not represent global shape, then

representations for images that only contain global shape

information (i.e., silhouettes in which local shape cues are

corrupted) should not be similar to representations of natural

images. If hypothesis 2 is true, then there should be significant

similarity between representations of shape-only images in early

network layers, but not in the final layers of the network. We

perform these tests in several networks, to see if differences in

architecture affect shape processing.

3.1. Methods

3.1.1. Stimuli
We used images from the PASCAL visual object classes

(Everingham et al., 2015). We selected images from the training

and validation sets of the 2012 VOC challenge for which detection

annotations as well as semantic segmentations were available. We

used the detection annotations to remove images with multiple

objects and images for which the single object was occluded or

truncated. This filtering procedure resulted in 685 images with

single, well-visible objects.

To ensure that each object was in the center of the image

and all objects were of similar size, we enlarged the bounding

boxes provided in the detection annotations by a factor of 1.4

and cropped the image to the resulting window. We resized each

image to a resolution of 244-by-244 pixels. Based on these cropped

images, we generated a range of diagnostic stimuli (see Figure 5).

In foreground images (“fg”), the image background was filled with

white color, such that only the object was visible. In silhouette

images (“silhouette”), all object pixels were set to black color.

To disrupt global object shape, we used a similar method to the

“Frankenstein” images in Baker and Elder (2022): we split the image

into two halves at the y-coordinate of the center of mass of the

silhouette. We flipped the lower half of the image horizontally and

re-aligned the edges of the silhouette (“frankenstein”). To disrupt

local shape features (“serrated”), we corrupted the silhouette edges,
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similar to the jagged silhouettes in Baker et al. (2018). We used a

morphological dilation to enlarge the boundary of the object to a

width of five pixels. Pixels values in this area were replaced by noise,

which we generated by sampling independent, normally distributed

values for each pixel, smoothing the result with a Gaussian filter

with standard deviation 2, and thresholding at zero.

3.1.2. Networks
We tested a range of networks with different architectural

motifs that might influence shape processing. AlexNet (Krizhevsky

et al., 2012) and VGG-19 (Simonyan and Zisserman, 2015)

are examples of standard convolutional networks, without skip

connections or parallel paths. We included GoogLeNet (Szegedy

et al., 2015), which uses parallel paths with different kernel sizes,

and ResNet-50 (He et al., 2016), which contains residual blocks with

skip connections. To test the effect of increasing “shape bias,” we

also tested a ResNet-50 architecture trained on a mixture of natural

and stylized images (Geirhos et al., 2019a). We refer to this network

as ShapeResNet. We also evaluated CORnet-S (Kubilius et al.,

2019), which has a similar architecture to residual networks but

shares weights between residual layers, such that the architecture

is equivalent to an unrolled version of a recurrent network (Liao

and Poggio, 2016). In addition, CORnet-S was designed to predict

activations in the ventral stream of the primate visual system.

This makes it an interesting candidate for testing human-like

shape perception. We also include BagNet-17 (Brendel and Bethge,

2019), which mirrors the architecture of ResNet-50 but replaces

3×3 convolution kernels in most residual blocks by 1×1 kernels,

which restricts the receptive fields of the top-most units to 17×17

pixels. Finally, we evaluate a vision transformer [ViT; Dosovitskiy

et al. (2021)], which uses multi-head self-attention between image

patches instead of convolutions. As the self-attention operates

across the whole image, it could enable the ViT to more efficiently

learn global shape properties.

All networks were implemented in PyTorch (version 1.13.0).

For AlexNet, VGG-19, GoogLeNet, ResNet-50, and ViT-B-16,

we used the implementations and pretrained weights in the

torchvision library (version 0.14.0). For BagNet-17 and CORnet-S

we used the reference implementations and pretrained weights

at: https://github.com/wielandbrendel/bag-of-local-features-

models and https://github.com/dicarlolab/CORnet, respectively.

For ShapeResNet, we used the weights provided at: https://github.

com/rgeirhos/texture-vs-shape. Pretraining for AlexNet, VGG-19,

GoogLeNet, ResNet-50, BagNet-17, and CORnet-S was performed

on ImageNet-1K with simple image augmentations (random

resize and crop, random horizontal flip, and normalization).

ShapeResNet was pretrained using the same augmentations,

but on a mixture of stylized ImageNet and ImageNet, followed

by fine-tuning to ImageNet. ViT-B-16 was also pretrained

on ImageNet-1K, but using a more elaborate augmentation

pipeline including auto-augmentation, mix-up and cut-mix

operations.

3.1.3. Classification
Since all networks we used were trained for ImageNet-1k image

classification, their outputs are 1,000-element vectors assigning a

probability to each of the 1,000 ImageNet-1k classes. We used the

WordNet hierarchy to map each of these outputs to one of the

20 PASCAL VOC classes. Specifically, we translated each PASCAL

VOC class to a WordNet synset and collected all ImageNet classes

that were descendants of this synset in the WordNet ontology.

For example, the ImageNet class "magpie" was mapped to the

PASCAL VOC class "bird." For some PASCAL VOC classes, we

used hypernyms instead of the original class label in order to

capture a wider variety of ImageNet classes (for example, "bovid"

instead of "cow"). For each image, we took the top-1 prediction

of the network and mapped it onto the respective PASCAL VOC

class. If the resulting class matched the label, this was counted as a

correct classification. If the prediction was mapped onto the wrong

PASCAL VOC class, or if the ImageNet class did not correspond

to a PASCAL VOC class (e.g., there is no PASCAL VOC equivalent

of the class "envelope"), this was counted as a misclassification. We

quantified accuracy as the fraction of correct classifications.

To test if a network was able to use the information

in a type of diagnostic image, we compared its accuracy to

random performance. Since the number of images per class

was not balanced and since some ImageNet classes (which did

not have a PASCAL VOC equivalent) were always counted as

misclassifications, chance performance depends on the frequency

with which the network predicts each class. For example, a network

that classifies every image as a random type of bird would have an

accuracy of 11.8%, since 81 of the 685 test images were labeled as

birds, but a network that classifies every image as a random type of

fish would have an accuracy of 0%, since PASCAL VOC does not

contain a fish class.

We tested if a network’s predictions were significantly more

accurate than chance by estimating a null distribution of chance

predictions, similar to Singer et al. (2022). For each element in

the null distribution, we randomly shuffled the predictions of

the network across the 685 images and computed the resulting

accuracy. We repeated this procedure 10,000 times. The resulting

distribution of accuracies describes how well the network would be

expected to perform if it responded randomly, but with the given

frequency of each class. To test significance, we computed a p-

value as the fraction of elements in the null distribution that were

larger or equal to the true (non-shuffled) accuracy of the network.

We applied the Benjamini-Hochberg procedure to control the false

discovery rate (Benjamini and Hochberg, 1995) for each network.

Since this method requires a ranking of p-values, applying it across

networks might lead to unwanted interactions (a change in p-value

for one network might affect the significance of results for the other

networks). We applied a separate FDR-correction to the results of

each network and divided the target rate by the number of networks

(0.05/8 = 0.00625), which corresponds to a Bonferroni-correction

across networks.

3.1.4. Representational similarity analysis
We compared representations of different types of diagnostic

images using representational similarity analysis (Kriegeskorte

et al., 2008; Diedrichsen and Kriegeskorte, 2017).

For each network, we chose several layers of interest. For

AlexNet and VGG-19, we looked at each convolutional layer that

was followed by max-pooling, as well as the output of the final

average pooling and of each fully connected layer. For GoogLeNet,
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FIGURE 5

Examples of diagnostic stimuli used in our experiments. Rows show di�erent stimulus types for four example images (one per column). The original

image served as a reference for comparisons. Foreground images (“fg”) masked out everything except the object of interest. This enables us to

estimate how much responses and representations are influenced by the background. In silhouettes, all object pixels were filled with black color,

leaving only shape information. Frankenstein stimuli change the global arrangement of object parts, but leave local shape features largely intact. In

serrated silhouettes, local shape cues are corrupted, but the global shape remains intact.

we used the outputs of each inception block, average pooling, and

the fully connected layer. For ResNets and related architectures,

we used the outputs of each residual block, of the average pooling,

and the fully connected layer. For ViT, we used the output of each

encoder layer, as well as the classification head.

For each layer in a given network, we generated a

representational dissimilarity matrix (RDM) for each image

type, by calculating the Euclidean distance between the outputs of

that layer for each pair of images. We then compared the RDM

for each type of diagnostic image (fg, silhouette, frankenstein, and

serrated, see Figure 5) to the RDM for the original images. As a

measure of similarity, we used Spearman’s rank correlation under

random tie-breaking (ρa).

To estimate the uncertainty of the RSA comparisons, we

performed bootstrapping. For each comparison between two

RDMs, we performed 1,000 bootstrap runs. In each run, a

random subset of RDM indices (i.e., image pairs) was selected

and the rank correlation computed over the sub-sampled RDMs.

To test whether a given similarity was above chance, we

performed a direct bootstrap test, computing the p-value as

(n>0 + 1)/N where N is the total number of bootstrap runs

and n>0 is the number of runs with similarity larger than

0. To correct for multiple comparisons, we used the same

procedure as for the classification results, controlling the false

discovery rate for each network at a level of 0.00625 (Benjamini

and Hochberg, 1995). All RDMs and comparisons between
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them were computed using the Python package rsatoolbox

(version 0.0.5).

3.2. Results

3.2.1. Classification of diagnostic images
Classification performance is shown in Figure 6.

All networks perform best on natural images and somewhat

worse on foreground images. This indicates that part of their

performance relies on features in the background. For example,

they may have learned from the dataset that airplanes are often

depicted in front of a blue background. All networks performmuch

worse on shape-only images (silhouettes, frankenstein silhouettes,

and serrated silhouettes). Generating silhouettes from masked

images removes the texture that defines the region interior of

the depicted object. The drop in performance indicates that the

networks strongly rely on such information. This is in line with

results reported previously about silhouettes and silhouette-derived

stimuli that corrupt local or global shape (Baker et al., 2018),

though better performance was reported by Baker and Elder (2022).

Performance on our stimuli may be lower because the images we

used aremore challenging since we generated them programatically

from a benchmark image set, whereas previous studies curated

stimulus sets manually. In addition, our method of computing

accuracy (using only the top-1 prediction of the network) is

relatively strict.

The networks differ with respect to their performance on the

shape-only stimuli. BagNet-17 is the only network that does not

classify silhouettes and frankenstein stimuli above chance level.

This may either mean that it suffered more strongly from domain

shift than other networks, or that it is unable to process shape. It

also performs at chance level for serrated stimuli.

AlexNet and VGG-19 perform above chance for silhouettes and

frankenstein images, but not for serrated images. This is the pattern

of performance expected for networks that use local, but not global

shape cues.

GoogLeNet, ResNet-50, Shape-ResNet, CORnet-S, and ViT

classify all image types above chance level, indicating that they are

able to use shape cues to some extent. To classify frankenstein

silhouettes, the networks have to be tolerant to disruptions in

global shape, suggesting that they rely on local shape features.

Conversely, to classify serrated silhouettes, they have to be robust

against disruptions of local shape cues, indicating that they use

shape cues at a larger scale than that of the local noise.

3.2.2. Representational similarity analysis
Figure 7 shows the similarities between representations of

original images and diagnostic stimuli for each network.

In all networks except for the vision transformer (ViT), the

representations of foreground images (“fg”) were highly correlated

with representations of the original image in all layers. This shows

that large parts of the network representations are dedicated to

processing the relevant object. Similarities for shape-only stimuli

were generally lower. In many layers, representational similarities

for diagnostic stimuli are not significantly above zero. This

may either mean that shape does not play a big role in these

representations, or that these diagnostic stimuli present too much

of a domain shift, such that the network cannot interpret them

correctly. Both interpretations are consistent with the low accuracy

of all networks on diagnostic stimuli.

In ViT, similarities for shape-only stimuli drop to zero in the

final layer (the classification head), which matches the hypothesis

that shape information is discarded in the final layers. However, the

pattern of results in intermediate layers is less clear. Similarities for

foreground images decrease throughout the initial encoder layers

and are not significantly different from zero in encoder layers

5–9. In encoder layers 5, 6, and 7, none of the similarities are

significantly above zero. Similarities for all types of stimuli grow

again in the final layers. A possible explanation is that the self-

attention mechanism was misled by the large white regions in our

images that resulted from masking out the background. Since self-

attention aggregates information globally, an image largely devoid

of structure may alter the representations in unexpected ways.

Note, however, that ViT has the highest accuracy on foreground

images out of all networks (65.1%). Thus, the lack of background

did not render it unable to make accurate classifications.

For AlexNet and VGG-19, the similarity between original

images and shape-only is chance level in most layers. Similarities

for silhouettes and frankenstein stimuli are above chance in the

final fully connected layers. This is consistent with the results from

our classification experiments and with previous studies that found

that AlexNet and VGG are not sensitive to global shape (Baker

et al., 2018, 2020; Malhotra et al., 2020; Baker and Elder, 2022).

However, in layers conv2 to conv4 of AlexNet, similarities for

serrated silhouettes are above chance level.

In GoogLeNet, similarities for shape-only stimuli were not

significantly above chance in the first two max-pooling layers,

which follow after standard convolutions. In all subsequent layers,

i.e., inception blocks, average pooling, and the fully connected layer,

all similarities were significantly above chance.

ResNet-50, Shape-ResNet, and CORnet-S showed similar

patterns of results: in all three networks, similarities for shape-

only stimuli were significantly above chance level after the third

residual/recurrent block ("layer3" in the ResNets, "V4" in CORnet-

S), which is the block with most repeated applications of the

residual/recurrent motif. Similarities for some shape-only stimuli

dropped back to chance level in the final block (“layer4"/“IT") and

the subsequent average pooling layer (original and frankenstein

silhouettes for ResNet-50, serrated silhouettes for CORnet-S, and

all three types for Shape-ResNet). However, all similarities are

significantly above chance in the final fully-connected layers.

In BagNet-17, similarities for silhouettes and frankenstein

stimuli were significant in the first and fourth residual block

and in the average pooling layer. In addition, the similarity for

frankenstein images was also significant in layer 3. However,

similarities for serrated silhouettes were only above chance in the

average pooling layer. This suggests that the residual layers in

BagNet-17 did not extract global shape information, in contrast to

the other ResNet-like architectures.

If this is true, how can the significant similarity in the average

pooling layer of BagNet-17 be explained? Average pooling discards

information about where in the image a certain feature occurred,
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FIGURE 6

Classification accuracy of each network. Bar height indicates performance on the respective dataset. The violin plot to the right of each bar shows

the corresponding null distribution. Stars indicate that accuracy is significantly higher than chance.
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FIGURE 7

Results of representational similarity analysis. Height of bars indicates average rank-correlation over bootstrap runs. Error bars indicate 95%

confidence intervals from bootstrap runs. Stars mark similarities that are significantly larger than 0.
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since it averages activations of each feature map across all image

locations. Therefore, average pooling should make a representation

less informative about global shape. At the same time, it may mask

a lack of selectivity for global shape in the RSA: if the same feature

is detected in two different locations, comparing the resulting

representations before pooling would lead to a low similarity, but

after average pooling the difference in location vanishes, increasing

the similarity. For this reason, the RSA results for average pooling

layers should be taken with a grain of salt.

In summary, our results show a difference between network

architectures. Classical convolutional networks such as AlexNet

and VGG-19 have low shape selectivity in most layers and show

a dissociation between serrated silhouettes and other shape-only

stimuli without local shape corruptions (original and frankenstein

silhouettes). In contrast, GoogLeNet and ResNet-like architectures

showed no systematic differences between the shape-only stimulus

types, with significant representational similarity for all three

types in intermediate inception/residual blocks and in the final

layers, though for the ResNet architectures there was a drop in

shape selectivity for the final residual blocks. An exception to this

pattern was BagNet-17, which had some selectivity for original and

frankenstein silhouettes, but not serrated silhouettes, in the residual

blocks, but showed no shape selectivity in the fully-connected layer.

Finally, the shape selectivity in ViT varied strongly across layers and

suddenly dropped in the classification head.

4. Discussion

We have reviewed previous research on shape representations

in deep networks and argued that apparent contradictions in their

results are largely due to differences in methods. Each method

operationalizes the concept "shape" differently and tests different

aspects of network processing. Experiments with diagnostic stimuli

can show that a network is in principle able to use a specific type

of shape cue. They allow for fine-grained control over different

types of shape cues, for example the availability of local or

global shape. However, they induce a strong domain shift, which

makes results harder to interpret, and they are limited to the

network output. Cue conflict experiments can directly compare

the influence of two different features over network outputs.

But like diagnostic stimuli, they require custom images which

leads to domain shift. In contrast, triplet tests can be done with

natural images and can also directly compare two different features.

They can also be applied to intermediate network layers, though

this requires strict experimental control of confounding variables.

Finally, representational similarity analysis and decoding offer the

most detailed view of representations in intermediate network

layers. They can be done using natural images, and typically involve

large stimulus sets, making them less vulnerable to domain shift and

confounds.

Notably, the strengths of the different approaches are

complementary. By combining them explicitly, future research

can gain a more detailed understanding of shape processing in

deep networks. Some steps in this direction have already been

made. Baker et al. (2020) used diagnostic stimuli and also reported

correlations between stimulus pairs in intermediate layers, similar

to a triplet test. Singer et al. (2022) used RSA to compare

representations for photographs, line drawings, and sketches. The

latter two stimulus types isolate shape information, similar to

diagnostic stimuli. Tartaglini et al. (2022) performed triplet tests

with cue conflict stimuli. Nevertheless, many more informative

experiments are possible in this combined experimental space.

As an example, we reported results from an experiment

that combined representational similarity analysis with diagnostic

stimuli designed to distinguish between local and global shape

processing. The goal was to test whether (1) intermediate

network layers represent global shape features and whether (2)

shape features are discarded in final network layers. Both of

these hypotheses may explain some apparent contradictions in

previous results.

Our results support both hypotheses to some degree.

Hypothesis 2 (that networks down-weight shape information

in later layers) predicts that a network should have significant

representational similarity between original images and shape-only

stimuli in intermediate layers, which drops back to chance level in

later layers. This is the case for ViT and BagNet, for both of which

similarities for shape-only stimuli are at chance in the final fully-

connected layer. The results for the ViT should be taken with a

grain of salt, however, since it classified shape-only stimuli with

above-chance accuracy and the RSA for intermediate layers did not

fit either of our hypotheses.

The results for ResNet-50, Shape-ResNet, and CORnet-S also

partially match hypothesis 2, as their third residual block showed

significant selectivity for shape, which dropped to chance for some

types of shape-only stimuli in the final residual block and the

average pooling layer. This matches observations by Hermann et al.

(2020) that shape could be decoded less accurately after the average

pooling layer of ResNet-50. On the other hand, they found the same

effect in the fully connected layers of AlexNet, which does not show

a similar effect in our RSA.

Hypothesis 1 (that networks only use local shape cues) predicts

that networks classify original and frankenstein silhouettes (in

which local shape remains intact) above chance level but should

fail for serrated silhouettes (in which local shape information

is corrupted). AlexNet and VGG-19 match this prediction, both

w.r.t. classification and representational similarity in their fully

connected layers. This is in line with several previous experiments

that used these networks and found a lack of global shape selectivity

(Baker et al., 2018, 2020; Baker and Elder, 2022; Malhotra et al.,

2022a). However, AlexNet showed above-chance representational

similarity for serrated stimuli in early layers. In the top-most

convolutional layer and the fully connected layers, this similarity

drops back to chance, which either means that AlexNet discards

this shape information (as predicted by hypothesis 2) or that other

confounding factors play a role, as we discuss below.

In contrast, GoogLeNet, ResNet-50, Shape-ResNet, and

CORnet-S classified all stimulus types above chance level and

showed significant representational similarity for all shape-only

stimuli in intermediate layers. Thus, they represent some shape

information, in line with previous results (Hermann et al., 2020;

Islam et al., 2021), but which kind of shape information they rely

on remains unclear. Since these networks are not affected by the

frankenstein manipulation, they seem to be insensitive to global
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shape. This confirms the results of Baker and Elder (2022) and

is in line with Islam et al. (2021), who observed that decoding

with a semantic segmentation objective suffered from errors where

different classes were assigned to parts of the same object. This may

reflect a lack of global shape understanding.

These four networks were also robust against distortions

of local shape cues in serrated silhouettes. Does this mean

that they perform some non-local integration of shape features?

Alternatively, they may still rely on local cues, but at a larger

spatial scale than the corruptions in the serrated images (see e.g.,

Baker et al., 2020). Since these networks are deeper than AlexNet

and VGG-19, their hierarchically organized convolutional layers

aggregate input over a larger spatial extent, such that the local

noise in the serrated images has a smaller impact. According to this

interpretation, our stimulus design would simply not distinguish

between local and global shape processing as well as intended.

However, this explanation is not entirely convincing: CORnet-S,

which exhibited the same shape selectivity as the other ResNet

architectures, is considerably less deep and its convolutions have

a smaller spatial span than those in VGG-19.

One feature that GoogLeNet and ResNet-like architectures

share is the presence of parallel paths. GoogLeNet uses inception

blocks, in which the same input is processed by convolutions

with different kernel sizes, and the result is concatenated. ResNets

and CORnet-S use residual blocks, in which the input to a set of

convolutions is added to its output via a skip-connection. As noted

by Liao and Poggio (2016), this is equivalent to a one-step temporal

unrolling of a recurrent network, in which the convolution spreads

information to neighboring locations. Both of these motifs enable

a comparison of the image content at one location with the

surrounding area. Therefore, they might implement a simple

form of lateral grouping, unrolled for a fixed number of steps.

This interpretation is supported by three observations. First, the

inception modules in GoogLeNet exhibit shape selectivity, but

the preceding convolution layers do not. Second, the layers with

the clearest selectivity for shape were layer 3 in ResNet-50 and

Shape-ResNet and V4 in CORnet-S. These are the blocks which

contain the most repetitions of the residual/recurrent motif. Third,

BagNet-17 has the same depth as ResNet-50, but replaces the 3x3

convolutions in most residual blocks by 1x1 convolutions, thus

restricting the range of lateral connectivity. In contrast to the other

ResNets, none of the residual blocks in BagNet-17 had significant

representational similarity between original images and serrated

silhouettes, suggesting that restricting lateral connectivity impacts

non-local shape processing.

If ResNets and GoogLeNet do indeed perform a rudimentary

form of lateral grouping, this would constitute another parallel to

primate vision, where recurrence is critical for global integration

of shape (Roelfsema and Houtkamp, 2011; Self and Roelfsema,

2014; Elder, 2018). The utility of recurrent connections for deep

networks has been proposed repeatedly (Kriegeskorte, 2015; Peters

and Kriegeskorte, 2021) and several recent network architectures

have incorporated it with promising results (Linsley et al., 2018,

2020; Kubilius et al., 2019). Our results suggest that this line of work

may enable networks to form more global representations of object

shape, reducing the gap between human and machine vision.

Another interesting question for future work is the role of the

training objective in shaping the shape selectivity of such networks.

Most work to date has focused on characterizing shape processing

in deep networks trained to classify images of objects. This is a

reasonable starting point, firstly because image recognition on large

datasets has been one of the main drivers in the development

of deep networks, and secondly because shape is a key factor in

how humans recognize objects. When networks learn to classify

objects according to human labels, it is tempting to assume that

they use the same criteria as humans. The evidence reviewed above

clearly shows that this is not the case for shape. Deep networks are

still far from using shape information in a human-like manner to

recognize objects. A key reason may be that human vision is not

limited to object recognition. It supports many other behaviors

like visual search, navigation, etc., many of which involve and

constrain visual representations of object shape (Ayzenberg and

Behrmann, 2022; Bracci and Op de Beeck, 2023). The task of image

classification may simply be too under-constrained, allowing deep

networks to learn shortcuts (Geirhos et al., 2020). Accordingly,

networks trained with self-supervised methods show higher shape

bias in some experiments (Hermann et al., 2020; Tartaglini et al.,

2022). Future studies examining a broader range of tasks and other

types of visual input (e.g., stereo images or video) could deepen our

understanding of the constraints that shape the processing of visual

shape in hierarchically organized deep networks.

5. Conclusion

Previous research on shape processing in deep networks has

yielded conflicting results with some studies showing evidence

for shape selectivity, while others showed clear deficiencies. After

reviewing the experimental approaches used in these studies,

we proposed two hypotheses that can reconcile these results.

Firstly, deep networks may rely on local, but not global shape

cues to classify objects. Secondly, networks may discard shape

information in their final layers and weigh other features more

strongly in their classification output, masking their shape

selectivity. We tested these hypotheses by combining two of the

previously established methods: diagnostic stimuli that restrict

the information available in an image, and representational

similarity analysis that assesses whether different stimulus sets

are represented similarly in a network layer. Our results support

both hypotheses—but for different networks. Purely feed-forward

convolutional networks like AlexNet and VGG represented local

but not global shape. In contrast, networks with inception

modules or residual blocks show some selectivity for shape

in the presence of local corruptions, which may reflect a

simple form of non-local shape processing. This highlights the

importance of exploring the effects of different architectural

motifs on shape processing. Incorporating more extensive lateral

and recurrent connectivity may enable networks to perform

iterative grouping and process shape in a more holistic, human-

like manner.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: http://host.robots.ox.ac.uk/pascal/VOC/. The code

Frontiers inComputer Science 17 frontiersin.org50

https://doi.org/10.3389/fcomp.2023.1113609
http://host.robots.ox.ac.uk/pascal/VOC/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jarvers and Neumann 10.3389/fcomp.2023.1113609

used for analysis and plotting is available on GitHub: https://github.

com/cJarvers/shapebias. The exact version of the code used, and

the result files generated, are archived at zenodo: https://doi.org/

10.5281/zenodo.7863152.

Author contributions

CJ and HN: conceptualization and writing—review and

editing. CJ: investigation, methodology, software, data analysis,

visualization, and writing—original draft. HN: supervision.

All authors contributed to the article and approved the

submitted version.

Acknowledgments

We thank the three reviewers as well as the editor for their kind

and insightful feedback. We also want to thank Daniel Schmid,

David Adrian, and Irina Jarvers for helpful discussions. The

authors acknowledge support by the state of Baden-Württemberg

through bwHPC.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Afraz, A., Yamins, D. L. K., and DiCarlo, J. J. (2014). Neural mechanisms underlying
visual object recognition. Cold Spring Harbor Symposia Quant. Biol. 79, 99–107.
doi: 10.1101/sqb.2014.79.024729

Ayzenberg, V., and Behrmann, M. (2022). Does the brain’s ventral visual pathway
compute object shape? Trends Cogn. Sci. 26, 1119–1132. doi: 10.1016/j.tics.2022.
09.019

Baker, N., and Elder, J. H. (2022). Deep learningmodels fail to capture the configural
nature of human shape perception. iScience 25, 104913. doi: 10.1016/j.isci.2022.104913

Baker, N., Lu, H., Erlikhman, G., and Kellman, P. J. (2018). Deep convolutional
networks do not classify based on global object shape. PLoS Comput. Biol. 14, e1006613.
doi: 10.1371/journal.pcbi.1006613

Baker, N., Lu, H., Erlikhman, G., and Kellman, P. J. (2020). Local features and global
shape information in object classification by deep convolutional neural networks. Vis.
Res. 172, 46–61. doi: 10.1016/j.visres.2020.04.003

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A
practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x

Bracci, S., and Op de Beeck, H. P. (2023). Understanding human object vision:
A picture is worth a thousand representations. Ann. Rev. Psychol. 74, 113–135.
doi: 10.1146/annurev-psych-032720-041031

Brendel, W., and Bethge, M. (2019). “Approximating CNNs with Bag-of-local-
Features models works surprisingly well on ImageNet,” in International Conference on
Learning Representations (New Orleans, LA).

Cichy, R. M., and Kaiser, D. (2019). Deep neural networks as scientific models.
Trends Cogn. Sci. 23, 305–317. doi: 10.1016/j.tics.2019.01.009

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., and Oliva, A. (2016).
Comparison of deep neural networks to spatio-temporal cortical dynamics of human
visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755.
doi: 10.1038/srep27755

Craft, E., Schütze, H., Niebur, E., and von der Heydt, R. (2007). A
neural model of figure–ground organization. J. Neurophysiol. 97, 4310–4326.
doi: 10.1152/jn.00203.2007

Diedrichsen, J., and Kriegeskorte, N. (2017). Representational models: A common
framework for understanding encoding, pattern-component, and representational-
similarity analysis. PLoS Comput. Biol. 13, e1005508. doi: 10.1371/journal.pcbi.10
05508

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2021). "An image is worth 16x16 words: Transformers for image recognition
at scale," in International Conference on Learning Representations (Vienna).

Elder, J. H. (2018). Shape from contour: Computation and representation.Ann. Rev.
Vis. Sci. 4, 423–450. doi: 10.1146/annurev-vision-091517-034110

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. (2015). The pascal visual object classes challenge: A retrospective. Int. J.
Comput. Vis. 111, 98–136. doi: 10.1007/s11263-014-0733-5

Feinman, R., and Lake, B. M. (2018). "Learning inductive biases with simple neural
networks," in Proceedings of the 40th Annual Meeting of the Cognitive Science Society
(London: The Cognitive Science Society),1657–1662.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using
convolutional neural networks. in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Las Vegas, NV), 2414–2423.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., et
al. (2020). Shortcut learning in deep neural networks. Nat. Machine Intell. 2, 665–673.
doi: 10.1038/s42256-020-00257-z

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel,
W. (2019a). "ImageNet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness," in International Conference on Learning
Representations, New Orleans, LA.

Geirhos, R., Rubisch, P., Rauber, J., Temme, C. R. M., Michaelis, C., Brendel, W., et
al. (2019b). Inducing a human-like shape bias leads to emergent human-level distortion
robustness in CNNs. J. Vis. 19, 209c. doi: 10.1167/19.10.209c

Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H. H., Bethge, M., andWichmann,
F. A. (2018). “Generalisation in humans and deep neural networks," in Advances
in Neural Information Processing Systems, volume 31. Dutchess County, NY: Curran
Associates, Inc.

Grossberg, S., and Mingolla, E. (1985). Neural dynamics of form perception:
Boundary completion, illusory figures, and neon color spreading. Psychol. Rev. 92,
173–211. doi: 10.1037/0033-295X.92.2.173

Grossberg, S., and Mingolla, E. (1987). Neural dynamics of surface perception:
Boundary webs, illuminants, and shape-from-shading. Comput. Vis. Graph. Image
Proces. 37, 116–165. doi: 10.1016/S0734-189X(87)80015-4

Guest, O., and Love, B. C. (2019). Levels of representation in a deep learning model
of categorization. biorxiv [Preprint]. doi: 10.1101/626374

He, K., Zhang, X., Ren, S., and Sun, J. (2016). "Deep residual learning for image
recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV), 770–778.

Hermann, K., Chen, T., and Kornblith, S. (2020). The origins and prevalence of
texture bias in convolutional neural networks. Adv. Neural Inform. Process. Syst. 33,
19000–19015. doi: 10.48550/arXiv.1911.09071

Hosseini, H., Xiao, B., Jaiswal, M., and Poovendran, R. (2018). "Assessing shape
bias property of convolutional neural networks," in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT:
IEEE, 1923–1931.

Frontiers inComputer Science 18 frontiersin.org51

https://doi.org/10.3389/fcomp.2023.1113609
https://github.com/cJarvers/shapebias
https://github.com/cJarvers/shapebias
https://doi.org/10.5281/zenodo.7863152
https://doi.org/10.5281/zenodo.7863152
https://doi.org/10.1101/sqb.2014.79.024729
https://doi.org/10.1016/j.tics.2022.09.019
https://doi.org/10.1016/j.isci.2022.104913
https://doi.org/10.1371/journal.pcbi.1006613
https://doi.org/10.1016/j.visres.2020.04.003
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1146/annurev-psych-032720-041031
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1038/srep27755
https://doi.org/10.1152/jn.00203.2007
https://doi.org/10.1371/journal.pcbi.1005508
https://doi.org/10.1146/annurev-vision-091517-034110
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1167/19.10.209c
https://doi.org/10.1037/0033-295X.92.2.173
https://doi.org/10.1016/S0734-189X(87)80015-4
https://doi.org/10.1101/626374
https://doi.org/10.48550/arXiv.1911.09071
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jarvers and Neumann 10.3389/fcomp.2023.1113609

Islam, M. A., Kowal, M., Esser, P., Jia, S., Ommer, B., Derpanis, K., et al. (2021).
Shape or texture: Understanding discriminative features in CNNs. in International
Conference on Learning Representations (Vienna).

Kalfas, I., Vinken, K., and Vogels, R. (2018). Representations of regular
and irregular shapes by deep Convolutional Neural Networks, monkey
inferotemporal neurons and human judgments. PLoS Comput. Biol. 14, e1006557.
doi: 10.1371/journal.pcbi.1006557

Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2014). Deep supervised, but not
unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10,
e1003915. doi: 10.1371/journal.pcbi.1003915

Kriegeskorte, N. (2015). Deep neural networks: A new framework for modeling
biological vision and brain information processing. Ann. Rev. Vis. Sci. 1, 417–446.
doi: 10.1146/annurev-vision-082114-035447

Kriegeskorte, N., Mur, M., and Bandettini, P. (2008). Representational similarity
analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 4.
doi: 10.3389/neuro.06.004.2008

Krizhevsky, A., Sutskever, I., andHinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, eds F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Dutchess
County, NY: Curran Associates, Inc.),1097–1105.

Kubilius, J., Bracci, S., and Beeck, H. P. O. d. (2016). Deep neural networks as a
computational model for human shape sensitivity. PLoS Comput. Biol. 12, e1004896.
doi: 10.1371/journal.pcbi.1004896

Kubilius, J., Schrimpf, M., Kar, K., Rajalingham, R., Hong, H., Majaj, N., et al.
(2019). Brain-like object recognition with high-performing shallow recurrent ANNs.
Adv. Neural Inform. Process. Syst. 32, 12805–12816. doi: 10.48550/arXiv.1909.06161

Landau, B., Smith, L. B., and Jones, S. S. (1988). The importance of shape in early
lexical learning. Cogn. Dev. 3, 299–321. doi: 10.1016/0885-2014(88)90014-7

Lee, S., Hwang, I., Kang, G.-C., and Zhang, B.-T. (2022). "Improving robustness
to texture bias via shape-focused augmentation," in 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW) (New Orleans, LA),
4322–4330.

Liao, Q., and Poggio, T. (2016). Bridging the gaps between residual
learning, recurrent neural networks and visual cortex. arXiv:1604.03640.
doi: 10.48550/arXiv.1604.03640

Linsley, D., Karkada Ashok, A., Govindarajan, L. N., Liu, R., and Serre, T. (2020).
“Stable and expressive recurrent vision models,” in Advances in Neural Information
Processing Systems, Volume 33, eds H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin (Dutchess County, NY: Curran Associates, Inc.), 10456–10467.

Linsley, D., Kim, J., Veerabadran, V., Windolf, C., and Serre, T. (2018). Learning
long-range spatial dependencies with horizontal gated recurrent units. in Advances in
Neural Information Processing Systems 31, eds S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Dutchess County, NY: Curran
Associates, Inc.,152–164.
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Malhotra, G., Dujmović, M., Hummel, J., and Bowers, J. S. (2022b). Human shape
representations are not an emergent property of learning to classify objects. bioRxiv
Preprint. doi: 10.1101/2021.12.14.472546

Malhotra, G., Evans, B. D., and Bowers, J. S. (2020). Hiding a plane with a pixel:
examining shape-bias in CNNs and the benefit of building in biological constraints.
Vis. Res. 174, 57–68. doi: 10.1016/j.visres.2020.04.013

Medathati, N. V. K., Neumann, H., Masson, G. S., and Kornprobst, P. (2016). Bio-
inspired computer vision: Towards a synergistic approach of artificial and biological
vision. Comput. Vis. Image Underst. 150, 1–30. doi: 10.1016/j.cviu.2016.04.009

Mohla, S., Nasery, A., and Banerjee, B. (2022). "Teaching CNNs to mimic human
visual cognitive process and regularise texture-shape bias," in ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(Singapore), 1805–1809.

Mummadi, C. K., Subramaniam, R., Hutmacher, R., Vitay, J., Fischer, V., and
Metzen, J. H. (2021). "Does enhanced shape bias improve neural network robustness
to common corruptions?" in International Conference on Learning Representations
(Vienna).

Nam, H., Lee, H., Park, J., Yoon, W., and Yoo, D. (2021). Reducing domain gap
by reducing style bias. in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (Virtual), 8686–8695.

Peters, B., and Kriegeskorte, N. (2021). Capturing the objects of vision with neural
networks. Nat. Hum. Behav. 5, 1127–1144. doi: 10.1038/s41562-021-01194-6

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,
A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci. 22,
1761–1770. doi: 10.1038/s41593-019-0520-2

Ritter, S., Barrett, D. G., Santoro, A., and Botvinick, M. M. (2017). "Cognitive
psychology for deep neural networks: a shape bias case study," in Proceedings of the 34th
International Conference on Machine Learning—Volume 70, ICML’17 (Sydney, NSW:
JMLR.org.), 2940–2949.

Roelfsema, P. R., and Houtkamp, R. (2011). Incremental grouping
of image elements in vision. Attent. Percept. Psychophys. 73, 2542–2572.
doi: 10.3758/s13414-011-0200-0

Schrimpf, M., Kubilius, J., Lee, M. J., Murty, N. A. R., Ajemian, R., and DiCarlo, J. J.
(2020). Integrative benchmarking to advance neurally mechanistic models of human
intelligence. Neuron 108, 413–423. doi: 10.1016/j.neuron.2020.07.040

Self, M. W., and Roelfsema, P. R. (2014). "The neural mechanisms of figure-ground
segregation," in The Oxford Handbook of Perceptual Organization, Oxford Library of
Psychology, ed J. Wagemans (Oxford: Oxford University Press),321–341.

Shi, B., Zhang, D., Dai, Q., Zhu, Z., Mu, Y., and Wang, J. (2020). "Informative
dropout for robust representation learning: A shape-bias perspective," in Proceedings
of the 37th International Conference on Machine Learning (Virtual), 8828–8839.

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional
networks for large-scale image recognition. (arXiv:1409.1556). arXiv preprint.
doi: 10.48550/arXiv.1409.1556

Singer, J. J. D., Seeliger, K., Kietzmann, T. C., andHebart, M. N. (2022). From photos
to sketches—How humans and deep neural networks process objects across different
levels of visual abstraction. J. Vis. 22, 4. doi: 10.1167/jov.22.2.4

Szegedy, C., Liu,W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). "Going
deeper with convolutions," in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Boston, MA), 1–9.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., et
al. (2014). "Intriguing properties of neural networks," in International Conference on
Learning Representations. Banff, AB.

Tartaglini, A. R., Vong, W. K., and Lake, B. (2022). A developmentally-inspired
examination of shape versus texture bias in machines. Proc. Ann. Meet. Cogn. Sci. Soc.
44, 1284–1290. doi: 10.48550/arXiv.2202.08340

Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of processing in the human visual
system. Nature 381, 520–522.

Tschechne, S., and Neumann, H. (2014). Hierarchical representation of shapes in
visual cortex—from localized features to figural shape segregation. Front. Comput.
Neurosci. 93. doi: 10.3389/fncom.2014.00093

Tuli, S., Dasgupta, I., Grant, E., and Griffiths, T. L. (2021). "Are convolutional
neural networks or transformers more like human vision?" in 43rd Annual Meeting
of the Cognitive Science Society: Comparative Cognition: Animal Minds (London: The
Cognitive Science Society), 1844–1850.

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A.,
Singh, M., et al. (2012). A century of Gestalt psychology in visual perception: I.
Perceptual grouping and figure–ground organization. Psychol. Bullet. 138, 1172–1217.
doi: 10.1037/a0029333

Yamins, D. L. K., and DiCarlo, J. J. (2016). Using goal-driven deep learning models
to understand sensory cortex. Nat. Neurosci. 19, 356–365. doi: 10.1038/nn.4244

Ye, Z., Gao, Z., Cui, X., Wang, Y., and Shan, N. (2022). DuFeNet: Improve the
accuracy and increase shape bias of neural network models. Sign. Image Video Process.
16, 1153–1160. doi: 10.1007/s11760-021-02065-3

Yoshihara, S., Fukiage, T., and Nishida, S. (2021). Towards acquisition of shape
bias: Training convolutional neural networks with blurred images. J. Vis. 21, 2275.
doi: 10.1167/jov.21.9.2275

Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M., Frank, M. C., DiCarlo, J. J., et al.
(2021). Unsupervised neural network models of the ventral visual stream. Proc. Natl.
Acad. Sci. U. S. A. 118, 2014196. doi: 10.1073/pnas.2014196118

Frontiers inComputer Science 19 frontiersin.org52

https://doi.org/10.3389/fcomp.2023.1113609
https://doi.org/10.1371/journal.pcbi.1006557
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1371/journal.pcbi.1004896
https://doi.org/10.48550/arXiv.1909.06161
https://doi.org/10.1016/0885-2014(88)90014-7
https://doi.org/10.48550/arXiv.1604.03640
https://doi.org/10.1101/2021.12.14.472546
https://doi.org/10.1016/j.visres.2020.04.013
https://doi.org/10.1016/j.cviu.2016.04.009
https://doi.org/10.1038/s41562-021-01194-6
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.3758/s13414-011-0200-0
https://doi.org/10.1016/j.neuron.2020.07.040
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1167/jov.22.2.4
https://doi.org/10.48550/arXiv.2202.08340
https://doi.org/10.3389/fncom.2014.00093
https://doi.org/10.1037/a0029333
https://doi.org/10.1038/nn.4244
https://doi.org/10.1007/s11760-021-02065-3
https://doi.org/10.1167/jov.21.9.2275
https://doi.org/10.1073/pnas.2014196118
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


TYPE Review

PUBLISHED 19 June 2023

DOI 10.3389/fcomp.2023.1124230

OPEN ACCESS

EDITED BY

Mary Peterson,

University of Arizona, United States

REVIEWED BY

Taiki Fukiage,

NTT Communication Science

Laboratories, Japan

Cathleen Moore,

The University of Iowa, United States

*CORRESPONDENCE

Joseph S. Lappin

joe.lappin@vanderbilt.edu

RECEIVED 14 December 2022

ACCEPTED 30 May 2023

PUBLISHED 19 June 2023

CITATION

Lappin JS and Bell HH (2023) The coherent

organization of dynamic visual images.

Front. Comput. Sci. 5:1124230.

doi: 10.3389/fcomp.2023.1124230

COPYRIGHT

© 2023 Lappin and Bell. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

The coherent organization of
dynamic visual images
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Consultant, Mount Dora, FL, United States

Biological vision relies on the intrinsic spatiotemporal structure of a continuously

flowing image stream. We review converging psychophysical and physiological

evidence about the structure and precision of the perceived spatiotemporal

organization of dynamic images. Visual acuity, temporal resolution, and contrast

sensitivity have been found to involve (a) motion-produced increases in

image contrast, (b) coherent phase relations among temporally varying retinal

signals, and (c) physiological preservation of spatiotemporal structure from

retina to cortex. Moreover, psychophysical theory and evidence show that the

spatiotemporal structure of dynamic retinal images carries precise information for

perceiving surfaces and motions—consistent with the corresponding di�erential

structures of spatiotemporal images and environmental surfaces.

KEYWORDS

dynamic images, coherence, perceptual organization, spatial resolution, psychophysics,

hyperacuity, contrast, relative motion

Introduction

Vision is a system for acquiring and transmitting dynamic optical information. Even

when we fixate on a stationary object, our eyes are constantly in motion. As a result, the

location of the image on our retinal photoreceptors is continually changing. Intuitively, these

constant changes might seem a threat to vision, analogous to noise. The image changes are

not independent, however, and their covariation is a basis for perceptual organization and

constitutes information about environmental surfaces, objects, and motions.

Our aim in this article is to show that spatiotemporal structure is essential to the

visual organization of retinal images. We briefly summarize psychophysical evidence about

visual sensitivity to spatiotemporal variations and describe information provided by those

variations.We also discuss mechanisms that may underly the acquisition of this information.

Image motions provide spatial information

Many traditional ideas about vision reflect film-based systems, where image motion

causes blur and reduces contrast. Light-induced changes in the photosensitive molecules

in film are mainly integrative and independent among neighboring elements. In the eye,

however, neighboring photoreceptors, bipolar cells, and ganglion cells interact with one

another (Rodieck, 1998; Strauss et al., 2022). Lateral inhibition serves to differentiate and

thereby increase local contrasts (Ratliff, 1965).

In fact, our eyes are constantly moving (Martinez-Conde et al., 2004a,b). Even while

steadily fixating an object, retinal image positions undergo small random drifts and jitter at

microscopic scales covering multiple photoreceptors, which are separated in central fovea by

about 0.5 arcmin. And the image positions are interrupted at random intervals about twice

per second by rapid micro-saccades of roughly 10 arcmin (Kowler, 2011; Rucci and Poletti,

2015; Intoy and Rucci, 2020). Importantly, small image motions improve spatial resolution

(Rucci et al., 2007; Rucci and Poletti, 2015; Intoy and Rucci, 2020).
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FIGURE 1

Schematic illustration of the dipole image contrast created by the

image motion of a central target line. Real-time shifts in spatial

position are much more visible than equivalent di�erences in

stationary positions. The thin outside lines in this illustration are

stationary reference lines.

Image motion improves spatial resolution by transforming

spatial contrasts into larger contrasts in space-time. Figure 1

illustrates how this happens. A shift in the spatial position of a given

image feature (a dark bar in Figure 1) produces a spatiotemporal

dipole defined by the difference between successive images. The

contrast of this dipole is twice that of the separate spatial images,

and it has an ordered structure that specifies its displacement in

both space and time. That spatial displacement is an intrinsic

property of the dipole that does not involve extrinsically defined

spatial positions.1

Intrinsic image structure

Visual information about spatial relations and motions is

defined relative to a reference frame. Specifying that reference

frame is fundamental for vision sciences. A common intuition is

that the initial reference frame for spatial vision is the anatomical

mosaic of retinal photoreceptors. Marr (1982), for example, states

that “. . . in the case of human vision, the initial representation

[of optical images] is in no doubt—it consists of arrays of image

intensity values as detected by the photoreceptors in the retina” (p.

31). This statement might be taken to mean that spatial positions

and relations are encoded by local signs of the photoreceptors

stimulated by any given optical image. One might wonder, how else

could it be?

Despite the intuitive necessity of this starting point for

perceptual organization, it entails two computational problems:

First, this reference frame is extrinsic to the spatial organization

of observed objects and motions in the environment. Second, it

is an implicitly static reference frame—whereas retinal positions,

spatial separations, and angular directions of retinal image features

are actually continually changed by movements of the observer’s

1 This dipole contrast change involves a spatiotemporal relation between

two images. If the position shift is defined relative to the flanking lines, then

motion of the target bar changes the relative position of the target and

flankers. Experiments have shown that such spatial relations are important

for acuities in both stationary and moving images (e.g., Legge and Campbell,

1981; Lappin and Craft, 2000). Moreover, the di�erence between the target vs

left flanker and target vs. right flanker involves a di�erence of di�erences—a

change in 2nd-order di�erential image structure. The nature and function of

such 2nd-order structure are discussed below.

eyes, head, and body relative to the observed environment.

A basic problem for a theory of vision is to understand

how information defining objects is obtained from continually

shifting images.

Representing image structure by reference to the retinal

photoreceptors is consistent with our intuitive understanding of

space and time as reference frames that are independent of their

contents. In modern physics, space and time are derived relations

among moving masses, but that abstract physical realm may seem

irrelevant to visual science. Nevertheless, spatial organization can

be structured by intrinsic spatiotemporal relations within moving

images, invariant with retinal position.

Two insights about the intrinsic image information for

perception are that (a) retinal images are images of surfaces,

and (b) the 2nd-order differential structure2 of moving images is

isomorphic with that of environmental surfaces (Koenderink and

van Doorn, 1975, 1980, 1991, 1992a,b; Koenderink, 1987, 1990).

The interdisciplinary literature on that intrinsic image information

is beyond the scope of this article, though we recently reviewed

evidence about that information (Lappin and Bell, 2021). Here, we

focus on the role of motion in perceptual organization.

If spatial positions and relations are represented relative to the

intrinsic image structure, that does not in any way indicate the

irrelevance of retinal photoreceptors and neurons. The question is

whether spatial relations are anatomically defined by the positions

of the receptors, or by spatiotemporal distributions of activity in the

receptors and neurons.

Lappin and Craft (2000) tested alternative hypotheses about

intrinsic image structure vs. extrinsic coordinates as reference

frames for the optical input to vision. A first experiment tested

the precision of visual information about intrinsic spatial positions

in images that were rapidly and randomly jittered on the display

monitor, as compared with stationary displays. The randomly

jittered images disrupted extrinsically defined spatial positions on

the monitor and the retina, but preserved intrinsic image structure

that was invariant with the random changing positions.

Images of three lines similar to those in Figure 1 were used

to evaluate visual acuities for (a) detecting motion and (b)

discriminating relative positions. Two image conditions involved

either stationary or randomly jittered images. In both conditions,

observers used one joystick to adjust the amplitude of rapid (10/s)

random displacements of the center line relative to the two flankers

so that its relative motion was undetectable; and they used a second

joystick to center the target line (1◦ in length) so as to bisect

the space between the two flankers. The correct target-flanker

separation was varied from 0.5◦ to 4◦. In the randomly jittered

images, the whole 3-line pattern was randomly repositioned 10

times per sec at equally probable positions in a rectangular area of

12 × 12 arcmin. The root-mean-square (RMS, standard deviation)

random image displacements were 5.4 arcmin both horizontally

and vertically. Figure 2 illustrates the stimulus pattern and two

2 Zero-order spatial relations are defined by absolute spatial positions;

1st-order spatial derivatives involve relations between pairs of points; and

2nd-order spatial derivatives involve relations among three points defined by

di�erences in the pair-wise distances on either side of a given point. The

2-dimensional structure of such di�erences of di�erences identify the local

shapes of smooth surfaces—as illustrated in the top panel of Figure 9.
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FIGURE 2

Spatial acuities for bisection and motion detection in stationary images (unfilled symbols) and images with randomly jittered global image positions

(filled symbols). (Upper) Schematic illustrations of the visual patterns and two adjustment tasks. (Lower) Acuities for bisection and motion detection

(standard deviations of 20 adjustments, arcsec) for three observers. Error bars are ±1 SEM; those not shown were too small to be visible (From Lappin

and Craft, 2000. Copyright © 2000 by the American Psychological Association. Reproduced and adapted with permission).

concurrent adjustment tasks, along with the adjustment acuities of

three observers.

The results in Figure 2 show that substantial global random

image jitter had very little effect on acuities for detecting motion

or bisecting spaces. Of particular interest are the “hyperacuities”3

(Westheimer, 1975, 1979) for motion detection. In stationary

images with 1◦ feature separations, for example, detection

thresholds for three observers averaged just 3.1 arcsec—about 10%

of the distance between photoreceptors in central fovea! In the

randomly jittered images, with RMS horizontal jitter of 340 arcsec,

average detection thresholds for relative motion increased—but to

only 10.1 arcsec, less than half the half the separation between foveal

3 Hyperacuity refers to spatial resolution that exceeds a limit of about

½ arcmin or 30 cycles per degree imposed by the human eye’s optical

di�raction and by separations of about ½ arcmin between cones in central

fovea.

cones! Thus, precise visual information about motion was based

on relativemotion—relative to the intrinsic image structure, robust

over substantial random variations in retinal positions.

As expected, bisection acuities were less precise than those

for motion detection, but these too were barely affected by global

random image jitter. For feature separations of 1◦ to 4◦, bisection

acuities were approximately proportional to the feature separations,

averaging just 0.78 and 0.83% of the separation between target

and flankers.

Though not immediately evident in Figure 2, thresholds for

motion detection as well as bisection increased approximately in

proportion to separations of 1◦-4◦ between the target line and

flankers (Proportions were slightly greater for the 0.5◦ separation).

For the stationary and jittered images, the motion acuities averaged

just 0.06 and 0.18% of the feature separation. The proportionality

of spatial resolution and feature separation also shows that

perceived image motion involves intrinsic image structure, not
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local retinal positions as previously suggested (McKee et al.,

1990).

Homogeneity of the visual motion
field

Image motion is probably also a basis for the perceptual

homogeneity of space over the whole visual field. As is well known,

spatial resolution of static patterns is substantially reduced in

the peripheral field. Nevertheless, despite those reduced acuities,

spatial structure and motion seem subjectively constant over the

visual field. That subjective phenomenology might seem surprising

and puzzling—given that the densities of photoreceptors, ganglion

cells, and cortical neurons all decrease rapidly with increased

eccentricity, and the receptive fields of ganglion cells and cortical

cells increase substantially (see Banks et al., 1991). Accordingly,

spatial forms must be much larger in the periphery to be as visible

as those in the fovea (Anstis, 1974). At 30 deg eccentricity, Anstis

estimated that image sizes should be about 15 times larger to be seen

as well as in the fovea.

Visual resolution for motion, however, is not reduced in the

peripheral field. Lappin et al. (2009) evaluated spatial and temporal

thresholds (which covary with motion speed) for discriminating

left/right motion directions in the fovea and at±30 deg eccentricity

(High-contrast vertical gratings (1 c/deg) moved within 3 deg

diameter envelopes at speeds ranging from 0.08 to 20 deg/s). Visual

resolution for these motion discriminations differed sharply from

that of stationary forms. For image speeds above 0.5 deg/s, spatial

(and temporal) thresholds were lower in the periphery than in the

fovea. Even at a very slow speed of 0.08 deg/s, peripheral thresholds

were just 1.1 arcmin (compared to a foveal threshold about half

that size). With increasing speeds, spatial displacement thresholds

increased (and temporal durations decreased), but both spatial

and temporal thresholds were consistently lower in the periphery.

Related results were also reported by van de Grind et al. (1983,

1992). Thus, the visual motion field is more homogeneous than the

visual field of static patterns.

Such homogeneity of the visual motion field was also

found in experiments that evaluated perceptual relationships

among multiple moving and stationary patterns—which were

simultaneously presented in the fovea and at ±30 deg eccentricity

(Lappin et al., 2004a,b). Using stimuli like those above (Lappin

et al., 2009), motion perception was evaluated by temporal

thresholds for direction discrimination; and stationary form

discriminations were evaluated by orientation thresholds for

discriminating stationary left/right tilts of the gratings. One

experiment measured thresholds for an oddball detection task

in which all three directions of motion or tilt were the same

or one was different. For moving gratings, we found that their

relative directions were easily perceived: Thresholds for the

same/different motion directions were essentially the same as

those for discriminating the direction of any single grating—

much lower than if they were visually independent. For stationary

gratings, however, the opposite result occurred: Thresholds for

same/different tilts were much higher than those at any single

location. Simultaneously perceiving stationary forms in the central

and peripheral fields involved competition for attention. But the

visual motion field was perceptually organized, coherent.

The visual nervous system preserves
order in space-time

The importance of motion for perceptual organization is also

indicated by the fidelity with which information about image

motion is preserved by neural signals. Under optimal conditions,

human observers can perceive the spatiotemporal order (direction)

of two adjacent stimuli separated in time by only 3ms (Westheimer

and McKee, 1977). To be consciously perceived and discriminated,

such differences must exist in the retina (Brindley, 1970) and

remain through transmission to the cortex.

Individual retinal ganglion cells transmit information about

the changing stimulation in their receptive fields by modulating

their spike rates. The precision and reliability of these temporally

varying signals was evaluated by Borghuis (2003) and Borghuis

et al. (2019). Spike trains carrying this temporal information are

illustrated in Figure 3, which shows spike trains recorded for a

single retinal ganglion cell of a cat in response to moving gratings

(from Borghuis et al., 2019). Dynamics of these neurons are similar

for all mammals (Borghuis, 2003; Chichilnisky and Kalmar, 2003).

Responses of these cells are not directionally selective, but they are

highly sensitive to the temporal modulations produced by motion.

Figure 3 shows the spatial organization implicit in the temporal

variations in spike rates at a given spatial position. The temporal

periodicity of spike rates in the columns for the 2.0 and 8.0Hz

drift rates illustrate how an individual ganglion cell reveals the

spatial structure of a sinusoidal luminance pattern moving through

its receptive field. This periodic structure is robust over wide

variations in contrast. Information about the direction and speed

of motion is provided by phase differences in the spike trains of

neighboring neurons. In short, temporally varying spike rates carry

spatial information about moving patterns.

The temporal resolution of spike-rate variations like those

in Figure 3 is limited by random variability. But this variability

is reduced by temporal integration. Borghuis and colleagues

(Borghuis et al., 2019) evaluated the temporal resolution of these

neural signals by determining the integration times needed to

distinguish stimulus-controlled spike rates from random sequences

of the same inter-spike intervals. Responses to optical motions

ranging from 0.5 to 16Hz at contrasts ranging from 10 to 70%

were recorded for 37 ganglion cells (33 X-type, 4 Y-type). Critical

integration times were identified by cross-correlating pairs of spike

trains for 20 repetitions of the same stimulus and then comparing

those correlations with those for randomized sequences of the

same spike trains. These cross-correlations vary as a function of

the temporal interval over which the momentary spike rates are

measured; and correlations were evaluated for integration times

ranging from 1 to 500ms. A well-defined peak in the difference

in cross-correlations for the stimulus-controlled vs. randomized

spike trains identified the optimal integration time and temporal

resolution of each cell in each stimulus condition. Results are shown

in panels A and B of Figure 4.

Data in the upper panels of Figure 4 show that that the

temporal resolution of these retinal neurons improved rapidly as
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FIGURE 3

Responses of a single retinal ganglion cell to drifting sinusoidal gratings. Each row in each section is a 1 second raster plot of responses to a grating

at the specified temporal frequency and contrast, with each stimulus repeated at least 20 times and each dot representing a single spike (from

Borghuis et al., 2019, p. 6).

the temporal frequency of the optical oscillation increased from

0.5 to 16Hz. Indeed, the decreases in optimal integration times

were almost inversely proportional to the temporal frequency of

the motion-caused oscillation. One might expect that temporal

resolution would depend on the optical contrast of the gratings, but

contrasts above 20% had almost no effect. The temporal resolution

of these retinal signals depends on motion speed rather than

contrast: Slower motions resolve more slowly.

How does the temporal resolution of retinal ganglion cells

relate to discriminations of motion direction—which depend on

phase differences among the spike rates of neighboring cells?

Borghuis et al. (2019) addressed that question by evaluating

temporal duration thresholds for human observers’ discriminations

of left/right motion directions for similar moving gratings. Stimuli

for the human observers were Gabor patches: 0.33 deg diameter

at ±2σ width of a Gaussian envelope, 3.0 c/deg spatial frequency,

with temporal frequencies from 0.5 to 32Hz and contrasts from 5

to 80%.

Results are shown in panel C of Figure 4. Remarkably, these two

aspects of information about moving visual images—one involving

single retinal cells, and the other involving large numbers of

cortical cells—were both qualitatively and quantitatively similar.

The correlation between human duration thresholds and neural

time constants was r = 0.99 for retinal X cells, and r = 0.98 for

retinal Y cells. For fast motions at 16Hz, the integration time

constants for both X and Y retinal cells were slightly lower than

the human discrimination thresholds; but for very slow motions at

0.5Hz, requiring temporal integration approaching 100ms, human

discriminations exhibited slightly better resolution than the (cat’s)

retinal cells (This advantage for the humans probably reflects their

greater spatial acuity).

Similar temporal resolution of motion by retinal neurons

and human discriminations of motion directions, involving phase

relations among multiple neurons, implies that the visual system

preserves the spatiotemporal order of moving images with very

little information loss from retina to cortex.

Coherent phase relations among
spatially separate motion signals

How does vision resolve different image motions? Image

motions are produced by the eyes and body as well as external

objects. How does vision differentiate relative motions? In fact,

vision is extraordinarily sensitive to relative motion. And the spatial

resolution of relative motion implies correlated—coherent—phase

relations among spatially separate retinal signals.4

Lappin et al. (2001) evaluated visual resolution of relative

motion by measuring observers’ abilities to detect phase differences

in sinusoidal oscillations of spatially separate image features. The

stimuli were three horizontally aligned and horizontally oscillating

Gaussian luminance blobs [The apparent diameter of the blobs

was roughly 1/2 deg (σ = 7.1 arcmin) and the peak luminance

4 “Coherence” is used here with essentially the same meaning as in optics

and lasers—based on and measured by correlated variations. In both optics

and vision, coherent phase relations resolve spatial scales much finer than

the wavelengths of uncorrelated variations.
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FIGURE 4

Optimal integration times for neural responses of retinal ganglion cells and duration thresholds for human direction discriminations. Data were

averaged for 33 retinal X cells, 4 retinal Y cells, and 4 human observers. Error bars are for SEM. These temporal integration durations decreased with

temporal frequency but were little a�ected by contrast above about 10% (adapted from Borghuis et al., 2019, p. 9).

was 78% above the background]. In one experiment with 100

arcmin center-to-center separation between blobs and 1.5Hz

sinusoidal oscillations, average threshold acuities (at d’ = 1.0) for

discriminating in-phase vs. anti-phase motions of the central blob

relative to the two flankers were lower than those for detecting rigid

motions of all three blobs−8.7 vs. 11.0 arcsec. This hyperacuity for

relative motion involved image displacements of only 0.14 and 0.18

pixels (on a monitor with 1,024 pixels horizontal resolution) and

0.14 and 0.18% of the space between blobs.

Because these perceived relative image displacements were

fractions of single pixels and fractions of separations between

foveal photoreceptors, the visual temporal variations produced by

individual pixels as well as retinal photoreceptors and neurons

must be correlated. This spatial hyperacuity derives from temporal

phase differences. Indeed, discrimination thresholds for spatial

oscillations provide an estimate of the correlation between visual

oscillations of the center and flanking features: Thresholds, at

d’ = 1.0, estimate standard deviations corresponding to visually

detected motion distances. By a geometric construction, where

the cosine of the angle between two vectors equals their product-

moment correlation, the law of cosines gives an estimate of the

correlation.5 If 11.0 arcsec is the distance of the in-phase center

and flanker motions, and if 8.7 arcsec is the anti-phase motion

distance, then r = 0.67. Coherent retinal signals are necessary for

the obtained hyperacuities.

A similar experiment evaluated acuity by varying the relative

oscillation phase of the central blob. For Gaussian blobs separated

by 320 arcmin and a 1.6 arcmin oscillation, the threshold phase

difference was <18◦. This acuity was robust over increased spatial

separations. For separations of 80, 160, and 320 arcmin, threshold

values were 0.24, 0.36, and 0.49 arcmin (0.3, 0.2, and 0.15% of the

separation). The acuities were also robust over varying temporal

frequencies—best at 3Hz and increasing from about 0.25 arcmin

to 0.5 arcmin at 9 Hz.

5 Let S represent the standard deviations corresponding to the motion

thresholds at d’ = 1.0. And let the subscripts C, F, and D designate vectors

corresponding tomotion distances of the center, flankers, and center-flanker

di�erence—where D is the di�erence vector between the ends of C and F

joined at their base. By the law of cosines, S2D = S2C + S2F – 2 SC SF (cos δ),

where δ is the angle between vectors C and F, and cos δ = r. Lappin et al.

(2001) used a more complex formulation that yielded a similar value.
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FIGURE 5

Luminance distributions for the Gaussian blobs and background in

the study of Lappin et al. (2001). (A) is a smoothed surface plot of

the luminance distribution, and (B) is a histogram showing the

luminance at each 1 arcmin2 square pixel at a cross-section through

the center of the blob. Dark areas at the bottom of this histogram

show the increased and decreased luminance produced by a

detectable leftward shift of 0.14 pixel. That displacement changed

the luminance by one gray-scale unit (8-bit resolution, ∼0.5 cd/m2)

in 20% of the 1,272 pixels in the blob (reprinted from Lappin et al.,

2001, p. 718).

The visual precision in this study is also remarkable when

evaluated by the tiny changes in luminance (8-bit grayscale

resolution) produced by small image motions. A lateral shift of 0.14

pixels produced no luminance change at either the center or outside

edges of the blob, nor indeed any luminance change in 80% of the

blob’s pixels. These detectable changes in relative image positions

involved a change of about 1% of the initial luminance of just 20%

of the 1,272 pixels in the Gaussian blob (The area of each pixel

was 1 arcmin2, stimulating several neighboring photoreceptors, and

each blob stimulated several thousand photoreceptors). Relative to

the total blob luminance, the contrast change produced by a shift

of 0.14 pixels was just 0.24%. Figure 5 illustrates the luminance

distribution and the dipole change produced by a leftward shift

of 0.14 pixels. Visual sensitivity to such tiny changes in the

spatiotemporal distribution of stimulation entails the correlated

responses of many thousands of adjacent and separated retinal

receptors and neurons.

The dipole structure of these motion-produced changes in

stimulation is important for the visual sensitivity to motion. The

visual importance of this dipole structure is shown by the results

of experiments by Lappin et al. (2002). Discriminations of relative

motion were compared with those for equivalent contrast changes

in symmetrical (not dipole) oscillations that do not alter the

blob’s spatial position. Single blobs ranging in size from σ = 3

to 60 arcmin were oscillated at 3Hz. Thresholds for detecting

the stationary symmetrical oscillations were about 3 times greater

than those for oscillating motions, although both were similar

for the smallest blobs. The detection thresholds for contrast

changes in large blobs averaged 0.09% for motion but 0.23% for

stationary oscillations.

Lappin et al. (2002) evaluated the perceptual organization

of these moving vs. stationary image changes by testing

discriminations of phase differences in oscillations of center

and flanking blobs. As expected, phase differences in motion

were visually salient and effortlessly discriminated, but phase

differences in the stationary symmetrical oscillations were difficult

to perceive even when contrast oscillations of individual blobs

were large and easily visible. Averaged across spatial separations

of 80 and 240 arcmin and oscillation frequencies of 1, 3,

and 8.5Hz, contrast thresholds for discriminating in-phase

vs. anti-phase oscillations averaged 0.21% for relative motion

and 1.38% for stationary contrast oscillations. Thus, image

motions were visually coherent, but stationary contrast oscillations

were not.

As described above (footnote 5), correlations between these

visual signals can be estimated from the oscillation detection

thresholds for the center blob by itself, the two flanking blobs alone,

and in-phase vs. anti-phase oscillations of the central and flanking

blobs. These threshold estimates were obtained for three Gaussian

blobs (σ= 10 arcmin) oscillating at 3Hz, and separated in the phase

discrimination task by 100 arcmin, and by 200 arcmin between

the two blobs in the flanker oscillation threshold task. Thresholds

for detecting oscillations of the center, flankers, and center/flanker

phase difference were, respectively, 0.33, 0.34, and 0.23 arcmin. The

estimated correlation was r= 0.76.

For the stationary (symmetrical) contrast oscillations, however,

the thresholds (in corresponding spatial values) averaged 0.50,

0.69, and 1.32 arcmin, yielding an estimated negative correlation

beyond r = −1.0 (see Lappin et al., 2002, for the computational

rationale). Without very large contrast changes, the relative

contrast oscillations of the separated image features were not

simultaneously perceived.

Statistical coherence of perceived
structure from motion

To perceive the organized structure of images, the visual system

must integrate common motion. Aspects of the process resemble

auto-correlation—a linear statistical correlation between optical

patterns at neighboring spatial and temporal locations (Reichardt,
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1961; Uttal, 1975). Auto-correlation functions are defined on the

transformations that map successive images onto one another, not

on the image coordinates per se. The general form of such functions

can be written as

A(ϕ) =

∫∫

ϕ

[

f1
(

x, y
)]

· f2
(

x, y
)

dx dy

where ϕ is a transformation that maps a 2-dimensional image

f1(x, y) at time 1 onto image f2(x, y) at time 2. Auto-

correlations are sometimes presented as functions of horizontal

and vertical translations, ϕ[f(x, y)] = f (x + 1x, y + 1y). In

that special case, the functional distinction between the (x, y)

image coordinates and the motion parameters 1x and 1y is

not obvious. In more general cases, however, moving objects and

observers often change relative viewing directions (rotating in

3D), which changes relative spaces between neighboring image

features. And autocorrelations can also be defined on such

image transformations. Psychophysical experiments have tested

applications of autocorrelation to the statistical characteristics of

both 2D and 3D structure from motion.

The statistical nature of motion integration was evident in early

studies with random-dot patterns. Direction discriminations were

found to increase with the area, number of elements, and inter-

frame correlation, and decrease at low contrast and with greater

spatial and temporal separations between images (e.g., Bell and

Lappin, 1973; Lappin and Bell, 1976; van Doorn and Koenderink,

1982a,b; Chang and Julesz, 1983; Williams and Sekuler, 1984; van

Doorn et al., 1985; van de Grind et al., 1992). To a reasonable

approximation, visual detection of the coherence of these patterns

operates as a linear system: The output signal/noise ratio (d’) of

motion discriminations increases proportionally with the input

signal/noise ratio—with the percentage of elements with the same

displacements, the square root of the number of elements, and the

square root of the number of frames (Lappin and Bell, 1976; Lappin

and Kottas, 1981).

The visual coherence of moving images is not limited to 2D

translations. Rotations in the image plane, for example, involve a

360◦ range of directions and velocities that increase from the center

of rotation. Nevertheless, discriminations of rotation direction and

statistical coherence are as accurate as those for 2D translations

(Bell and Lappin, 1979; Lappin et al., 1991).

Lappin et al. (1991) found similar visual sensitivities to

the statistical coherence of barely visible small rapid random

translations, rotations, expansions/contractions, and combinations

of those transformations. In one experiment, the image positions of

sparse dot patterns (e.g., 8 equally spaced dots on the circumference

of a 10 deg diameter circle) were randomly sampled from

normal distributions at 50Hz for 1s, and observers discriminated

between coherent images in which all dots were displaced

by the same transformation vs. those in which displacements

were independent for each dot. If observers could see any

motions at all, they could see whether they were coherent

or incoherent. And discrimination thresholds were similar for

each transformation.

A similar experiment, also with small 50Hz random

image transformations, tested perceptual interactions

between transformations. Coherence discriminations for one

transformation were evaluated alone or when added to coherent

random changes produced by another transformation. Coherence

detections of rotations and expansions were the same whether

or not one was added to the other. Violations of such linear

independence were found when rotations or expansions were

combined with random horizontal and vertical translations, but

these violations were not large. Discriminations between coherent

and incoherent rotations were 95% correct even when added to

noisy backgrounds of uncorrelated translations of each dot. Thus,

the perceptual organization of these rapid random image changes

was governed by an essentially linear visual representation of the

whole spatial pattern.

Importantly, the limiting spatial parameters for detecting these

coherent motions are defined on the image rather than the retina.

Limiting displacement distances between frames are proportional

to the size of the pattern rather than the retinal distance (Bell

and Lappin, 1973, 1979; Lappin and Bell, 1976; Chang and Julesz,

1983). This image scale-invariance is contrary to the idea that

the perception of these patterns involves a “short-range process”

limited by retinal spacing (Braddick, 1974).

Nonlinear visual coherence of
three-dimensional structure and
motion

The perceptual role of spatiotemporal structure is also clear

in experiments on the perception of 3D structure from motion

(e.g., Johansson, 1973; Braunstein, 1976; Rogers and Graham,

1979; Lappin et al., 1980; Doner et al., 1984; Todd and Norman,

1991; Perotti et al., 1998; Lappin and Craft, 2000). Analogous

to Julesz’s demonstrations of “cyclopean” perception of random-

dot stereograms (Julsez, 1971; Julesz and Tyler, 1976; Tyler

and Julesz, 1978), similar perception of surfaces moving in

depth can also be achieved with two frames of random-dot

cinematograms—where the perceived 3D organization derives

from visually coherent motion between frames but is invisible in

either frame alone.

Unlike the approximate linearity of perceived 2D image

dynamics, however, perception of 3D structure and motion

evidently involves nonlinear organization. Smooth surface

structure and coherent motion between the successive frames are

found to be important for perceiving the 3D organization.

As illustrated in Figure 6, Lappin et al. (1980) displayed two

frames of dots randomly positioned on the surface of a sphere

rotated around its central vertical axis between frames, with

each frame 200ms and no inter-frame interval. Despite each dot

shifting in a curved trajectory that varies with its spherical position

and in opposite directions on the front and back surfaces, the

smooth surface and motion are immediately obvious to most naïve

observers—if the dot positions are perfectly correlated in the two

frames of the rotated surface.

The accuracy of these perceptions was evaluated by observers’

coherence discriminations for patterns with different inter-frame

correlations. Observers were about 63% correct in discriminating

between displays with 100 vs. 94% correlated dot positions, and

more than 80% correct in discriminating 100 vs. 75% correlated
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FIGURE 6

(A) Schematic illustration of the projected image of 512 dots

randomly distributed with uniform probability density over the

surface of a transparent sphere. (B) Photographic images of two

successive frames of the sphere rotated by 5.6◦ around its vertical

axis. Each frame was displayed in the experiment for 200ms, with

no interval between frames. (C) Average accuracies of four

observers in discriminating between patterns with two di�erent

correlations in a 2-alternative forced choice task (reprinted from

Lappin et al., 1980, p. 718).

patterns. But small reductions in inter-frame correlations disrupted

the visual coherence. Accuracy declined to <60% in discriminating

patterns with 97 vs. 72% correlations. Thus, the visual coherence

was nonlinear.

This nonlinear stability was studied further by Doner et al.

(1984). Coherence discriminations improved substantially with

added frames, and also when frame durations were reduced from

about 240 to 60ms. These and other results indicate that visual

coherence of this 3D structure andmotion involves self-organizing,

globally cooperative processes. The coherent organization required

integration of signals from opposite motion directions of dots on

the transparent front and back surfaces of the sphere plus smoothly

varying displacements in images of the spherically curved surfaces.

Even though this 3D structure and motion is quite perceivable, its

structural coherence is evidently less immediate than that of 2D

image motions. Perceptual organization of some moving patterns

seems to entail nonlinear visual dynamics (see Strogatz, 2003,

2018).

Spatial forms defined by di�erential
motion

The statistical nature of visual coherence in dynamic random

dot patterns might suggest that visual organization is mainly

integrative, gaining information from common motion. Visual

integration is insufficient, however. The spatial structure of

moving optical patterns also involves differential motion, and

perceiving that structure requires spatial differentiation as well as

integration. Integration and differentiation are opposed but basic

inter-dependent aspects of visual organization.

Evidence about a basic visual mechanism for differentiating

image motion comes from discoveries by Tadin and colleagues.

Tadin et al. (2003) found converging evidence about a counter-

intuitive phenomenon: Larger moving patterns are often less visible.

Evidently, visual motion mechanisms involve spatial suppression.

Figure 7, from Tadin et al. (2003), illustrates the suppressive

effects—measured by temporal thresholds for discriminating the

directions of gratings (1 cycle/deg) drifting (2◦/s) within stationary

Gabor patches of varied size and contrast. The motion directions

of high-contrast gratings became substantially less discriminable

as size increased from 0.7◦ to 5◦; and large patches became less

discriminable as contrast increased from 2.8 to 92%. The size of the

most discriminable motions decreases as contrast increases (Tadin

and Lappin, 2005). Tadin (2015) reviews many of the findings

that clarify both neural mechanisms and visual functions of this

spatial suppression. The neural mechanism—for integrating small

patterns with low contrast and suppressing large patterns with high

contrast—involves the center-surround antagonism of receptive

fields of motion sensitive neurons in cortical area MT (Pack et al.,

2005; Tadin et al., 2011; Tadin, 2015).

Center-surround antagonism is widespread in the visual

nervous system because optical information entails spatiotemporal

variations rather than merely total energy. This neural antagonism

adds information—by segregating figure from ground.

Converging causal and correlational evidence about the role

of spatial suppression in figure/ground organization was described

recently by Tadin et al. (2019). Causal evidence was provided

by the opposite effects of luminous contrast on two aspects of

perceptual organization of moving patterns. A form discrimination

task measured duration thresholds for discriminating the shape of

an embedded form defined by opposite motion directions inside

and outside the form. A motion discrimination task measured

duration thresholds for discriminating the background motion

without an embedded form. The two tasks are illustrated in

Figures 8A, B.

Figure 8C shows that the contrast of these moving patterns

had reciprocal effects on the time durations needed for these two

discrimination tasks. Increased contrast multiplied the duration

thresholds for discriminating the background motion direction;

but the same increased contrast divided the duration thresholds

for form discrimination by an almost equal amount. Spatial

suppression was responsible for both effects. Increased contrast

suppressed the spatial integration of motion signals needed

to discriminate motion directions, but this same suppression

enhanced the spatial differentiation of motion in the form

discrimination task.
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FIGURE 7

Motion discrimination depends on interactive e�ects of size and contrast. Data points are average thresholds for five observers. (A) Duration

thresholds as a function of size for varied contrasts. (B) Duration thresholds as a function of contrast for varied sizes. (C) Log10 of threshold change as

a function of size at varied contrasts. For each observer, the threshold change was evaluated relative to the duration threshold at the smallest size

(0.7◦) at each contrast. (D) A Gabor patch 2.7◦ wide is shown relative an average macaque foveal MT receptive field. The dark dashed lines indicate

the size at which such cells often exhibit surround suppression, and the size of the surround is indicated by the full gray circle. The white dashed lines

indicate the ±3σ radius of the Gabor patch (reprinted from Tadin et al., 2003, p. 313; Figure 1).

The perceptual effects of this suppressive mechanism are also

found in its influence on the perceptual characteristics of several

different observer populations (Tadin, 2015). Older observers, for

example, are found to be better (lower duration thresholds) than

control populations in discriminating large high-contrast motions

(e.g., Betts et al., 2009). These effects have been shown to be linked

to reduced spatial suppression.

Importantly, the better perception of large high-contrast

motion patterns by older observers is accompanied by a reduced

ability to perceive spatial forms defined by differential motion.

Interactive effects of age on integrating and differentiating

moving patterns were demonstrated by Tadin et al. (2019). Form

discrimination and motion discrimination by younger and older

observers were evaluated for small patterns as well as large patterns

like those in Figures 8A, B. As found in previous studies, the

older observers had less spatial suppression and better motion

discrimination of large patterns; but the older observers also had

reduced efficiency in segregating forms defined by differential

motion. This interactive effect of age on motion discrimination

and form discrimination is correlational evidence that visual

integration and differentiation play reciprocal roles in perceiving

moving images.

Perception of surface structure from
moving images

As mentioned earlier in this article, two basic principles

of visual perception are that (a) retinal images are primarily

images of surfaces, and (b) the 2nd-order differential structure of

spatiotemporal images is isomorphic with that of environmental

surfaces. These insights are mainly from Koenderink and van

Doorn (1975, 1980, 1991, 1992a,b), Koenderink (1987, 1990).

Local surface shape is quantified by the relative values of

minimal and maximal curvature, and is specified in images by

spatial changes produced by rotation in depth or by stereoscopic

views. A substantial literature of theoretical, psychophysical, and

engineering research has validated this spatiotemporal image
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FIGURE 8

Visual segregation of an embedded form defined by di�erential motion becomes more e�ective when the background motion is visually suppressed.

(A) In the motion segregation task, observers identified the tilt of a motion-defined oval, which could be tilted either left (as shown) or right. The large

arrows that indicate motion directions and the white outline of the embedded oval are added here only for purposes of illustration. The scale bar at

bottom left is 1◦. (B) In the motion discrimination task, the background in (A) was presented without the embedded oval, and observers discriminated

up vs. down directions of motion. (C) Group data showing the opposite e�ects of stimulus contrast on motion discrimination and motion

segregation. Error bars are SEM. (D) Data for two individual observers (reprinted from Tadin et al., 2019, Figure 1, p. 3).

information about surface shape. The top panel of Figure 9

illustrates the geometrical correspondence between 2nd-order

structures of image motions and surface shapes.

Perception of this image information about surface shape was

tested by Lappin and Craft (2000). The experimental strategy was

analogous to that in Figure 2: We quantified visual acuities for the

3D position of a point on curved and planar surfaces, and tested

the invariance of that perceptual precision under perturbations of

lower-order spatial structure. Acuity for relative 3D position was

tested with image motions produced both by rotating surfaces in

depth and by stereoscopic images.

The spatial patterns were hexagonal arrays of 19 dots

orthographically projected onto either a spherical or a planar

surface, as illustrated in the lower left panel of Figure 9. The 19

dots were equally spaced on the surfaces, but their relative image

positions were changed by tilting the surfaces in depth, by 20◦

around both horizontal and vertical axes, so that the surface normal

was slightly upward to the left. The patterns were also varied

by random image rotations of 0◦ to 50◦ around the direction

of view (the lines and speckled texture in this figure are for

illustration only and were not in the 19-dot patterns seen by the

observers). The average image separation between adjacent dots

was 1◦. In the moving images, surface shapes were produced by

two-frame alternating ±3◦ rotations around the vertical axis. In

the stereoscopic images, the binocular disparity between the central

target dot and its nearest neighbors was 5.9 arcmin. The observer’s

task in both moving and stereoscopic displays of both spherical

and planar surfaces was to adjust the center dot to be equidistant

from the 6 surrounding dots. In the images of the spherical surface,

this central surface position was neither collinear with nor centered

between the surrounding dots. That position on the spherical

surface was defined by the relative curvatures in two directions. The

relative values of the minimal and maximal curvatures specify the

surface shape but not its extension in depth. Image C in the lower

left panel of Figure 9 illustrates how spherical shape is specified by

these relative image curvatures.

For the planar surface, however, that central surface position

was specified by both collinearity and bisection in any single

image of the surface. Collinearity and bisection are both 2nd-

order relations among three points in a single image direction. As

illustrated in image B in the lower left panel of Figure 9, images of

the tilted planar surface preserved both collinearity and bisection.

To isolate these (1-dimensional) 2nd-order relations on the planar

surface, 1st-order (pair-wise) information about spatial separations

was disrupted by random image expansions/contractions (±2%)

that were uncorrelated between the two stereoscopic images and
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FIGURE 9

(Top) Five qualitatively di�erent surface shapes are specified by their relative curvatures in the two orthogonal directions of minimum and maximum

curvature. These five categories of surface shape are identifiable by 2nd-order image di�erences in stereoscopic images and relative motions

produced by rotating the surface in depth. Relative values of the two principal surface curvatures are specified by such image pairs, but curvedness of

the surface in depth is ambiguous. (Lower left) A schematic illustration of the planar and spherical surfaces used to test acuities for the position of

the central target dot in 19-dot hexagonal patterns. The lines and speckled textures are added here only for purposes of illustration, and were not in

the 19-dot patterns seen by the observers. The patterns contained 19 dots equally spaced in a hexagonal array, as seen in pattern A. Pattern B is an

image of the planar surface tilted down and to the right. Pattern C is an image of the equally tilted spherical surface. Collinearities and relative spaces

between dots are changed in the image when the spherical surface is tilted in depth, but neither bisection nor collinearity is altered by tilting the

planar surface. (Lower right) The average acuities of three observers for centering surface position of the target dot (involving bisection and

collinearity) and for adjusting the depth of the target dot onto the surface. Light bars indicate spatial bisection acuities, and dark bars indicate

thresholds for binocular disparity or relative motion between the surface and target point (From Lappin and Craft, 2000. Copyright ©2000 by the

American Psychological Association. Reproduced and adapted with permission).

uncorrelated between the two successive images in the relative

motion displays.

The observers used two joysticks to adjust two aspects of the

3D spatial position of the target dot at the center of the 19-point

hexagon—to bisect the surface space between the surrounding dots,

and to position it in depth onto the surface. The latter judgments

involved minimizing relative motion or stereo disparity between

the target point and the smooth surface specified by the other

18 points. Importantly, the latter judgments involved the shape

the surface, not its curvedness or slant in depth, and not a depth

scale per se.

The average stereoscopic and relative motion acuities of

three observers for the bisection and depth positions on planar

and spherical surfaces are shown in the lower right panel of

Figure 9. The findings of principal interest are the hyperacuities

for 2nd-order image information about surface shape. The

average stereoacuities were 12.1 arcsec for the planar surface

and 15.4 arcsec for the spherical surface. The average acuities

for relative motion were 18.6 arcsec for the planar surface and

20.4 arcsec for the spherical surface. Subjectively, the perceived

surface shapes were clear and unambiguous, consistent with the

obtained hyperacuities.
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Not surprisingly, bisections of relative distances on these

surfaces were much less precise than placing the point’s depth

relative to the surface. And bisecting spaces were less precise on the

curved than on the planar surface—presumably because the depth

scale of the surfaces, rather than their shapes, is optically ambiguous

in both stereoscopic and relative motion patterns.

General principles

The psychophysical and physiological results reviewed in this

article indicate that the visual system obtains precise information

about environmental surface structure from the intrinsic

spatiotemporal structure of moving images. The eye’s remarkable

spatial acuity and contrast sensitivity derive from (a) dipole

image contrast changes produced by image motions, (b) coherent

temporal phase relations among spatially distributed neural

response patterns, and (c) preservation of this spatiotemporal

structure from retina to cortex. Spatiotemporal image structure is

preserved to a surprising extent in transmission through the visual

nervous system. In short, perceptual organization derives from the

visual coherence of moving images.
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Visual cortical processing—From
image to object representation

Rüdiger von der Heydt*

Department of Neuroscience and Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD,

United States

Image understanding is often conceived as a hierarchical processwithmany levels,

where complexity and invariance of object representation gradually increase

with level in the hierarchy. In contrast, neurophysiological studies have shown

that figure-ground organization and border ownership coding, which imply

understanding of the object structure of an image, occur at levels as low as V1

and V2 of the visual cortex. This cannot be the result of back-projections from

object recognition centers because border-ownership signals appear well-before

shape selective responses emerge in inferotemporal cortex. Ultra-fast border-

ownership signals have been found not only for simple figure displays, but also

for complex natural scenes. In this paper I review neurophysiological evidence for

the hypothesis that the brain uses dedicated grouping mechanisms early on to

link elementary features to larger entities we might call “proto-objects”, a process

that is pre-attentive and does not rely on object recognition. The proto-object

structures enable the system to individuate objects and provide permanence, to

trackmoving objects and copewith the displacements caused by eyemovements,

and to select one object out of many and scrutinize the selected object. I sketch

a novel experimental paradigm for identifying grouping circuits, describe a first

application targeting area V4, which yielded negative results, and suggest targets

for future applications of this paradigm.

KEYWORDS

visual cortex, figure ground organization, neural mechanism, object individuation, object

permanence, selective attention, spiking synchrony, computational model

Introduction

We take it for granted that we see a world full of objects. But the images taken in by

the eyes are just arrays of millions of pixels, and detecting objects from these arrays is a

formidable task. It seems that the visual brain effortlessly provides us a representation of

objects. Looking at Figure 1A, for example, we can easily answer questions like, what is the

number of objects? how many corners has the green object? what is the color of the squares?

which object is in the back? We can also compare two objects, or scrutinize a large complex

object with multiple fixations. And when the display of Figure 1A is followed by the display

of Figure 1B, we know that one object has moved from left to right. We have no doubt that

it was one of the blue squares, although it is now neither blue nor a square. Complex natural

images are certainly more difficult to process than the displays of Figure 1, but to understand

vision, it seems to me, we should first understand how the visual brain enables us to make

those assertions from such simple displays. What are the mechanisms that allow the brain

to individuate objects from the stream of pixels, and how do they preserve their identity
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FIGURE 1

Object individuation. See text for further explanation. When (A, B)

are displayed in sequence, one of the blue squares appears to move

and at the same time change shape and color.

when the objects move? How do they achieve perceptual stability

across eye movements, and how do they enable selective attention?

This paper reviews studies that tries to answer those questions.

How does the visual cortex individuate objects? Since Hubel

and Wiesel discovered the feature selectivity of simple, complex,

and hypercomplex cells, early stages of visual cortex were thought

to transform the pixel array into a representation of local image

features like lines, edges, corners etc., which would then be

assembled to larger entities that can be recognized as objects

in inferior temporal cortex. This “hierarchical” scheme was

questioned when a study showed that low-level cortical neurons

that were supposed to signal lines and edges responded also to

displays in which humans perceive illusory contours (von der

Heydt et al., 1984). Contours are more than just edges and lines,

they outline objects. At that time, illusory contours were commonly

called “cognitive contours” because they appeared to be the result of

a high-level, cognitive process, the system inferring a shape (like a

triangle). Claiming that such contours are represented in a cortical

area as low as V2 was to many a shock.

But the tide of vision sciences then had washed up the Fourier

analyzer theory and neurophysiologists looked at the visual cortex

as banks of spatial frequency filters. While this had the advantage

of the convenient formalism of linear filtering, there were other

indications (besides illusory contours) that cortical processing is

highly non-linear from the beginning. In primary visual cortex it

is not uncommon to find cells that respond to lines, but not to a

grating of lines, and cells that respond vigorously to a sinusoidal

grating of certain spatial frequency, but are totally unresponsive to

the same grating when present as the 3rd harmonic component in

a square wave grating (von der Heydt et al., 1992).

It took more than a decade until another perceptual

phenomenon was found to have a correlate in visual cortex: figure-

ground organization. Neurons in primary visual cortex respond

to a texture in a “figure” region more strongly than to the same

texture in a “ground” region (Lamme, 1995). Apparently, neurons

at this low level already “know” what in the image is a figure,

something that might be an object. But the tide of vision science

then had surfaced another theory: coherent oscillations of neural

firing were proposed to be the glue that holds the local features

together as objects. Selective attention was thought to increase

coherent oscillations which would lead to conscious perception.

And the idea of the hierarchical scheme lives on in today’s deep

convolutional neural networks.

Border ownership coding

Neurophysiology led to another surprising discovery, neural

selectivity for “border ownership” (Zhou et al., 2000). Figure 2

shows the basic finding. The responses of edge selective neurons,

including the “simple” and “complex” types of Hubel and Wiesel,

depend on how an edge is a feature of an object. The neuron

illustrated responds strongly to the upper right edge of a square,

and much less to the lower left edge. That is, the neuron responds

to the identical local pattern differently, depending on whether it

is an edge of an object to the bottom left of the receptive field, or

an edge of an object to the top right. Indeed, for any location and

orientation of receptive fields, there are two populations of neurons,

those that “prefer” the object on one side of the receptive field, and

those that prefer the object on the other side. Some respond also to

lines, but many are strictly edge selective.

Zhou et al. termed this selectivity for “border ownership”,

adopting a term from the classic study by Nakayama et al.

(1989) for the phenomenon that stereoscopic cues that change

the way a border is perceptually assigned also affect object

recognition: recognition of partly occluded objects is little impaired

if the borders between occluded and occluding regions are

stereoscopically assigned to the occluding regions (rendering them

foreground objects), but is strongly impaired if these borders are

stereoscopically assigned to the visible regions of the object.

The bottom of Figure 2A shows the time course of the

neuron’s mean firing rates. Because for each neuron with a border

ownership preference one can find another neuron with the

opposite preference, the two raster plots and the corresponding red

and blue curves can be conceived as the simultaneous responses of a

pair of neurons of opposite border ownership preferences. We also

refer to the difference between the two as the “border ownership

signal” (Figure 2B, dashed line, shading indicates SEM; from Zhang

and von der Heydt, 2010). The border ownership signal is delayed

by only about 15ms relative to the mean response (thin line). These

are responses from V2 neurons; border ownership signals of V1

have a similar time course. Note that Lamme’s figure enhancement

effect (where neurons respond to texture elements inside a figure)

emerges later, about 50ms after the response onset (Lamme, 1995).

The neuron of Figure 2 and the border ownership data to be

reviewed below were recorded in rhesus macaques, but there is

no doubt that the human visual cortex also represents contours

by pairs of neurons of opposite border ownership preferences.

A powerful paradigm for revealing selective neural coding is to

demonstrate an adaptation aftereffect, which is based on the fact

that cortical neurons exhibit short-term depression. Sure enough,

it turned out that the classic tilt aftereffect is border-ownership

selective. After adapting to a tilted edge that is owned by a figure

on one side, a negative tilt aftereffect appears when the adapted

location is tested with edges of figures on the same side, but not

when tested with figures on the other side. And by alternating

both, side-of-figure and tilt, during adaptation, one can produce

two simultaneous tilt aftereffects in opposite directions at the same
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FIGURE 2

Border ownership selectivity. (A) The edge of a square figure is presented in the receptive field (oval) of a V2 neuron with the figure located either to

the lower left or to the upper right. Note that the contrast was reversed between the two displays so as to compare locally identical stimulus

conditions. Each trial started with a uniform field, and figure color and background color were both changed symmetrically at stimulus onset. The

graphic depicts only tests with light-dark edges, but displays with reversed contrast were also tested, resulting in four basic conditions. Raster plots

show the responses of the neuron, the curves show the time course of the mean firing rates. (B) Dashed line, time course of the di�erence between

responses to preferred and non-preferred sides of figure—the “border ownership signal”—averaged across the neurons with significant e�ect of

border ownership from one animal (left ordinate). Shading indicates standard error of the mean. Thin solid line, time course of responses (mean over

the two figure locations, right ordinate).

location. Thus, there are two populations of neurons that can be

adapted separately (von der Heydt et al., 2005).

Natural scenes

Are experiments with simple geometrical figures conclusive?

The system may not need sophisticated algorithms to detect an

isolated figure as in the displays of Figure 2. Other configurations

that have been used in the early border ownership studies, like

two overlapping figures, are also relatively simple compared to the

complexity of natural scenes. Would neurons in V2 or V1 signal

border ownership in natural scenes? Jonathan Williford tested

neurons with large numbers of natural scenes (Williford and von

der Heydt, 2016a). Using images from the Berkeley Segmentation

Dataset (Martin et al., 2001) he selected many points on occluding

contours for testing neurons (examples in Figure 3A). In the

experiments, a fixation target for the monkey was embedded so that

the selected points would be centered in the receptive field of the

recorded neuron, and the image was rotated so that the contour

matched the preferred orientation of the neuron. As in the standard

border ownership test with squares, four conditions were tested:

border ownership was controlled by rotating the image 180◦, edge

contrast was controlled by inverting the colors of the image so as to

flip the colors between the regions adjacent to the contour. The data

of this study are publicly available (Williford and von der Heydt,

2016b).

The first question was, can V2 neurons consistently signal

border ownership under natural conditions? Each neuron was

tested on many scene points (43 on average). The graph in

Figure 3B shows the border ownership signals of an example

neuron that was tested on 177 scene points. In seventy-nine percent

of the cases the signals were consistent (plotted as positive in the

graph). Consistency varied between neurons (Figure 3D). Out of

65, thirteen were over 80% consistent. In light of the hierarchical

model of cortical processing, which is still widely accepted, the

finding of consistent border ownership signaling in an area as low

as V2 is highly surprising.

The cognitive hypothesis

The burning question is now, could border ownership

modulation at this low level be the result of top-down projections

from higher-level object recognition areas? Figure 4A shows a

summary of the neuronal latencies (the time from stimulus onset to

the beginning of responses) that have been reported for the various

visual areas (after Bullier et al., 2001). One can see that neurons in

object recognition areas in inferior temporal cortex (including IT,

TEx, TPO) respond relatively late. Of these, posterior IT (TPO) has

the shortest latencies. To derive a prediction I use here the paper by

Brincat and Connor (2006) who studied neuronal shape selectivity

in the awake behaving conditions similar to those of the border

ownership studies. Their study found that the response latencies

in TPO depend on the type of responses within the area, with non-

linear (shape selective) neurons having longer latencies than linear

(unselective) neurons. The mean response for the shape selective

group (green curve in their Figure 2B) reaches half-maximal

strength at 130ms. Thus, if border ownership selectivity in V2

depended on object recognition, the signal for natural scenes would
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FIGURE 3

Neurons signal border ownership consistently across natural images. (A) Examples of images tested. Red circles show points where border

ownership signals were measured (“scene points”). (B) Border ownership signals of an example V2 neuron normalized to the maximum and sorted.

The signals were consistent for 74% of the 177 scene points tested. (C) Performance of a computational model on the 2,205 scene points tested in

the neurons. The model was consistent for 69% of the points. (D) Distribution of the percentage of consistent signals of 65 V2 neurons with

significant (p < 0.01) border ownership selectivity. Each neuron was tested with between 10 and 177 scene points (mean 43).

reach half-maximal strength only at 130ms (or later, depending on

delays added by the projection down to V2). Figure 4B “Prediction”

shows how the earliest border ownership signals would then look

like for natural scenes (red line) compared to the signals for displays

of squares (dashed black line, half-max strength at 68ms according

to Zhou et al., 2000). What the experiment actually showed was

that the border ownership signals for the two kinds of displays rise

simultaneously (Figure 4B, Data) (Williford and von der Heydt,

2016a). We conclude that the cognitive explanation is untenable.

The border ownership signals are faster than shape recognition in

IT. This is the beauty of neurophysiology: it can easily rule out

alternative hypotheses that would be difficult to discriminate with

psychological or computational arguments.

What is the role of selective attention?

Attentive enhancement might be a plausible explanation for the

figure-enhancement effect. When a figure pops up, it automatically

attracts attention. But if a neuron responds more to a figure when

it pops up here than when it pops up there, that difference cannot

be the result of attention. The two displays in Figure 2 both contain

a figure, the figure in the bottom display being flipped about the

edge in the receptive field relative to the top display, and some

neurons preferred one location, while others preferred the other

location. It’s a property of the neurons. Qiu et al. (2007) showed that

border ownership and attentional modulation are separable aspects

of neuronal function, and discovered an interesting correlation.

When the display contained several separate figures, and the

monkey attended to one or another, border ownership modulation

was found whether the figure at the receptive field was attended or

ignored; there was only a slight difference in strength of modulation

(Figure 5A).

And yet, attention does modulate the responses in displays

in which objects partially occlude one another, and it interacts

with border ownership in an interesting way. Figure 5B shows

at the top the responses of an example neuron to the occluding

contour. The two border ownership configurations are represented

left and right, and side of attention in top and bottom rows. One

can see that left was the preferred side of border ownership, and

that the responses were enhanced when attention was on the left-

hand object, compared to the right-hand object, for both border

ownership conditions. Thus, attention on the neuron’s preferred

border ownership side enhanced the responses relative to attention

on the non-preferred side, irrespective of the direction occlusion.

Frontiers inComputer Science 04 frontiersin.org70

https://doi.org/10.3389/fcomp.2023.1136987
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


von der Heydt 10.3389/fcomp.2023.1136987

FIGURE 4

Selectivity of V2 neurons for border ownership in natural scenes cannot be the result of back-projections from object recognition centers in the

inferotemporal cortex (“cognitive explanation”) because it appears well-before shape selective responses emerge in inferotemporal cortex. (A)

Summary of visual latency data across brain areas in monkey. Shape selectivity occurs first in posterior temporal cortex (TPo); arrow shows time of

half-maximal strength of mean response of shape selective cells from a study in behaving monkey. (B) The border ownership signals for squares

(black dashed lines) and natural scenes (red solid lines), as predicted, and as observed.

But attention did not override the border ownership signal. The

results of Figure 5B, while showing the responses of one neuron

to the two directions of border ownership, can be interpreted as

the responses of two neurons with opposite border ownership

preferences, which shows that, whether attention is on the left-

hand object (top row) or on the right-hand object (bottom row),

responses are stronger when the left-hand object owns the border.

Like in this neuron, the rule is that attentive enhancement is on

the preferred side of border ownership, as shown by the scatter plot

at the bottom of Figure 5B. The two factors were roughly additive,

but there was a small but significant positive interaction. That is,

attention enhanced responses more on the foreground object than

on the background object.

The reader can experience the attention effect when looking at

pictures in which border ownership is ambiguous. Figure 6 shows

an artist’s depiction of Napoleon’s tomb on St. Helena. And not only

his tomb, also his ghost, standing beside the tomb. To see him,

direct your attention to the space between the trees!—The shape

pops out because, when you first look at the picture, the neurons

representing the borders between trees and sky are biased so that

those assigning ownership to the tree regions prevail (smaller

regions produce stronger border ownership signals than larger

regions; the Gestalt Law of Proximity). But when their opponent

neurons are enhanced by attention, ownership shifts to the sky

region, and you can perceive its shape: the ghost.

The grouping cell hypothesis

I do not see the practical value of having the attention

mechanism interfere with border ownership coding—besides the

ability to see ghosts—but the linkage between attention effect and

ownership preference helps in identifying the mechanism of border

ownership selectivity. This linkage was a surprise because selective

attention effects are usually phrased in terms of regions (left vs. right

hemifield, figure vs. ground region) rather than borders.

How does a neuron of V1 or V2 know that the edge stimulating

its receptive field is part of a figure? Could it be that border

ownership selective neurons in V1/V2 are just Hubel and Wiesel’s

simple and complex cells that receive an additional modulating

input from cells with large receptive fields that sense the presence

of a big shape that might be an object? And that this modulating

circuit is also used in top-down selective attention? That might

explain why the attention effect is asymmetric about the receptive

field, producing enhancement of responses when the attended

object is on the preferred side of ownership.

The receptive fields of the neurons studied were near-foveal and

typically about 0.5 deg in diameter, whereas the squares used to

demonstrate border ownership selectivity measured 4 deg on a side

or more. The neurons must be sensitive to the context far beyond

the classical receptive field. Figure 7 illustrates an experiment in

which the context influence was explored (Zhang and von der

Heydt, 2010). The little gray specks left and right of the calibration

mark show the classical receptive field of the neuron studied, and

the vertical lines through the receptive fields depict the edges of

the square stimuli, separately for the figure-left and figure-right

conditions (the plot combines the results of two experiments, one

with a 4◦ square, and one with a 7◦ square). To demonstrate

the context effect, the figures were fragmented into eight pieces

which were presented in random combinations, one combination

per trial.

The top plot corresponds to the trials in which the various

combinations of the contextual fragments were presented in

addition to the edge fragment in the receptive field (the “center

edge” for short). The bottom plot shows the trials in which the

same contextual fragments were presented without the center edge.
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FIGURE 5

The influence of attention on border ownership signaling. (A) When

objects are isolated, border ownership signals are similar whether

the object at the receptive field is attended (red line) or ignored (blue

line). (B) When objects overlap, side of attention and side of border

ownership modulate the responses. Raster plots show responses of

an example neuron. Dashed oval, receptive field. Lightening

symbols indicate side of attention. Scatter plot shows the relation

between attentional modulation and border ownership modulation

across neurons of area V2. Red dots represent neurons that were

influenced by both, attention and border ownership in form of

significant main e�ects and/or significant interaction (p < 0.01).

The effect of each context fragment is indicated by color, red

meaning enhancement of responses relative to the response to the

center edge alone, blue meaning suppression. One can see that, for

both figure sizes, the fragments to the left of the receptive field

enhanced the center edge response, while the fragments to the right

suppressed it. The bottom plot shows that the contextual fragments

alone (without the center edge) did not evoke any responses.

The results from this kind of experiment show that, while

neurons respond only to features within their small classical

receptive fields, their responses can be modulated by the image

FIGURE 6

Napoleon’s tomb. Attending to a region flips border ownership to

that region. See text.

context in a range that is much larger than the classical

receptive field.

Nan R. Zhang also explored the context influence in the case of

overlapping squares in which the border between the two squares

(which perceptually belongs to the overlaying square) was placed

in the receptive field. This situation is different in that there are

figures on either side of the receptive field and mechanisms that

simply detect the presence of a shape on one side would not work.

The results showed that in this case the presence or absence of T-

junctions, L-junctions (corners), and orthogonal edges, outside the

receptive field modulated the responses to the center edge (von der

Heydt and Zhang, 2018).

In area V4, where neurons are often selective for local contour

features, Anitha Pasupathy and coworkers discovered that neurons

that respond selectively to cusps are suppressed when the cusps are

not object features, but accidental features produced by occlusion

(Bushnell et al., 2011). Border ownership also affected the responses

of shape selective neurons in infero-temporal cortex (Baylis and

Driver, 2001).

The studies summarized so far led to the hypothesis that

border ownership selectivity involves “grouping cells” that sum

responses of feature neurons (including simple and complex

types) and, via back projection, facilitate the responses of the

same feature neurons, as sketched in Figure 8. Craft et al.

(2007) designed a computational model in which grouping cells

have fuzzy annular summation templates that are selective for

oriented feature signals of roughly co-circular configuration. The

summation of feature signals is linear, the feedback to the

feature neurons is multiplicative. For example, the blue G cell in

Figure 8 sums the responses of orientation selective neurons with

receptive fields depicted in blue, and enhances their responses
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FIGURE 7

The extent of context integration in border ownership selectivity.

This experiment probed locations where the responses of a border

ownership selective neuron to a local stimulus could be modulated

by contextual contours. First, the “classical receptive field” was

mapped with a small probe stimulus. The map (Gray specks) is

depicted twice to allow graphic representation of the two border

ownership conditions. The contours of a square figure were

fragmented into eight pieces (four edges and four corners) that

were presented in random combinations, one combination at a

time. One edge of the square was centered in the receptive field to

stimulate the neuron, the other “contextual” fragments were

presented outside the receptive field, as depicted in red and blue

(they appeared either to the left or to the right of the receptive field,

depending on the border ownership condition). The graph

combines the results of two experiments, with 4◦ and 7◦ squares,

respectively. The contextual fragments modulated the responses as

indicated by the color of the fragments, red for facilitation, blue for

suppression. One can see that, despite the tiny size of the classical

receptive field, the contextual stimuli modulated the responses

almost everywhere, those on the left producing facilitation and

those on the right producing suppression. The bottom graph shows

the result of control trials in which the edge in the receptive field

was absent: none of the contextual fragments produced a response

by itself.

by feedback (“Facilitation”). This feedback makes those neurons

border-ownership selective, as indicated by arrows on the receptive

field symbols. Grouping cells also sum signals that do not

correspond object features but indicate the layout of objects in

depth, such as stereoscopic depth and accidental features produced

by interposition, and the neurons providing these signals do

not receive modulatory feedback. For example, T-junctions, and

termination of lines at the contour, and orthogonal edges which

contribute to border ownership (von der Heydt and Zhang, 2018).

Note that each piece of contour is represented by two groups

of feature neurons for the two directions of border ownership, as

illustrated in Figure 8 by the red and blue receptive field symbols

in the center. Of the two objects depicted in black, the one to the

left will activate the blue G cell, the one to the right, the red G

cell. Selective attention, which consists in top-down activation of

G cells (yellow lightning shapes), can enhance either the feature

signals of the left-hand object (Figure 8, bottom) or those of the

right-hand object (Figure 8, top). I have previously suggested that

FIGURE 8

The grouping cell hypothesis. Schematic depiction of cortical

activation by two objects (black outlines). The object contours

stimulate receptive fields of edge selective feature neurons (ovals)

which send their signals to specific processing centers at higher

levels, and, via collaterals, also excite grouping cells G. Grouping

cells project back to the same feature neurons, facilitating their

responses. To select an object, top-down attention signals excite

the corresponding G cell (lightning symbol) thereby enhancing the

feature signals of the object for further processing. Grouping cells

are thought to sum also signals that are not evoked by object

features but by background structures cut o� by occlusion, such as

line terminations, L-junctions, and T-junctions. These inputs are not

depicted here for clarity.

activation of a G cell (bottom-up or top-down) represents a “proto-

object” (von der Heydt, 2015). This term had already been used in

psychological studies, implying a preliminary object representation

that may later be completed. The steep onset and early peak of

border ownership signals do not indicate gradual completion but

a one-shot process. But inspecting an object with multiple fixations

seems to accumulate information about the details of an object in

some central representation, which looks like gradual completion

of an object representation. So, the emerging border ownership

modulation and the enhanced feature signals might well be called a

“proto-object”.Where the completion occurs in the brain, and how,

are questions that are worthwhile investigating.

The grouping cell hypothesis proposes that G cells come with

summation templates of different sizes to accommodate the variety

of objects. There must be a gamut of template sizes, and templates

of each size must cover the visual field densely. The numbers of

G cells required might raise concerns, but that number is actually
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quite small, much smaller than the number of feature cells. This

is because G cell templates only have low spatial resolution, the

“resolution of attention” (Intriligator and Cavanagh, 2001), which

is about 20 times lower than the feature resolution of the system.

This means that, for the smallest template size, covering the visual

field densely requires 400 times fewer G cells that feature cells. And

the numbers of G cells with larger templates decreases in inverse

proportion to square of size.

Besides the size of their summation template and the preference

for co-circular signals, the hypothetical G cells are not particularly

selective. The summation templates are fuzzy. Thus, round shapes,

squares, and triangles, would all activate the G cells about as

much as the potato shapes depicted in Figure 8. G cells are not

“grandmother cells”. Detecting a grandmother requires selectivity

for conjunctions; not every person with white hair is a grandmother.

By contrast, summing of features in G cells is disjunctive. Changing

just one little T junction can flip foreground and background. In

the case of partially overlapping squares, the border ownership

signals for the occluding contour were found to grow with the

number of indicative features, but saturate early: on average, one

single feature (any T junction, L junction, or orthogonal edge)

already produced half maximal signal strength (von der Heydt

and Zhang, 2018). Selectivity was also found for border ownership

defined by stereoscopic cues (Qiu and von derHeydt, 2005), motion

parallax (von der Heydt et al., 2003), transparent overlay (Qiu and

von der Heydt, 2007), and display history (O’Herron and von der

Heydt, 2011). In the spirit of the grandmother cells terminology,

G cells might be termed “TSA cells”: “if you see something, say

something.”1

What characterizes an object are its feature signals. By targeting

one G cell, the top-down attention mechanism can simultaneously

enhance a large number of feature signals that characterize the exact

shape, color, etc. of the target object. The G cells are not in the object

processing stream, they serve only as handles to pick objects and

allow attentive selection to route feature information of individual

objects to higher processing centers, like those in inferior temporal

cortex. For example, to read out the color of one of the squares in

Figure 1, attention would boost the activity of a G cell according

to location, while activating at the same time a color processing

center downstream. From the feature neurons that are enhanced by

the G cell, which include many color-coded edge selective neurons

(Friedman et al., 2003), the color processor will compute the color

of that square. Similarly, activating other processing areas will

identify object shape and other object attributes.

As mentioned, every border between image regions activates

pairs of border ownership selective neurons with opposite

preferences. One such pair is depicted in Figure 8, the pair with

receptive fields on the border between the two objects. This is

to illustrate a specific prediction of the hypothesis, namely that

attention to one side only facilitates the neuron that prefers that

side of ownership. Thus, the grouping cell hypothesis predicts

the correlation that was experimentally observed (Figure 5B). It

predicts a hundred percent, whereas the actual correlation was

lower, which is most likely due to the presence of basic spatial

1 Slogan of the Transport Security Agency.

attention mechanisms in addition to the grouping cell mechanism.

Attention may involve the grouping cell mechanism only in

situations where simple spatial selection is not feasible, such as

situations of partial occlusion, where the occluding contour should

not be conflated with features of the background object.

Computational modeling shows the advantage of grouping cells

in selective attention (Mihalas et al., 2011). Different from spatial

attention models, the grouping cell model automatically localizes

and “zooms in” on structures likely to be objects. The top-down

attention signal only needs to enhance the G cell activity broadly in

the region to be attended, and the network will direct the activity

to potential objects in that region and focus activity on the size

of G cell templates that fit each object best. The model replicates

findings of perceptual studies showing that “objectness” guides and

captures attention.

The above models (Craft et al., 2007; Mihalas et al., 2011)

work on synthetic images of simple geometric shapes. A fully

image computable model of the grouping mechanism was created

by Hu et al. (2019a) and applied to natural images. The

model produced contours as well as border ownership. Although

it has no free parameters, Hu et al. found its performance

to be overall comparable to state-of-the-art computer vision

approaches that achieved their performance through extensive

training on thousands of labeled images, fitting large numbers of

free parameters.

The Hu et al. model has three layers of cells with retinotopic

receptive fields, Simple cells (S), Border-ownership cells (B), and

Grouping cells (G). Each S cell excites pairs of B cells for the

two possible directions of border ownership. B cells thus inherit

their receptive field selectivity from the S cells. G cells sum B cell

responses according to fuzzy annular templates selectively for “co-

circularity”. The model works in an iterative manner. A givenG cell

sums the responses of one of the two B cells from each position and

orientation, and facilitates the same B cells by modulatory feedback

(see Figure 8) and suppresses the partner B cells by inhibitory

feedback. This is motivated by neurophysiological results showing

that image fragments placed outside the classical receptive field

of a border ownership neuron can cause enhancement of the

neuron’s activity when placed on its preferred side, and suppression

if placed on its non-preferred side (see Figure 7; the suppression

is not depicted in Figure 8 for clarity). The model uses a scale

pyramid of G cell template sizes, and pools information across

different scales in a coarse-to-fine manner, with information from

coarser scales first being upsampled to the resolution of the

finer scale before being combined additively. A logistic function

enforces competition between B cells such that their total activity

was conserved.

Comparing with the neurophysiological data on the 2205 scene

points tested in Williford and von der Heydt (2016a), Hu et al.

found that their model achieved 69% consistent border ownership

assignment, which was typical for V2 neurons (Figure 3). But the

neurons varied, and many were actually more consistent. The

neuron tested with the most images was 79% consistent across

177 scene points, and some were >90% consistent. This is no

surprise because the Hu et al. model is simple. As Craft et al.

(2007) observed, having grouping cells sum co-circular edge signals

alone will not assign border ownership correctly for overlapping
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figures, which the neurons do resolve. In Craft’s model, grouping

cell summation also included T-junction signals. As we saw above,

the neurophysiology of border ownership coding suggests that

grouping cells integrate a variety of different features as figure-

ground indicators (von der Heydt and Zhang, 2018), and there

seems to be a diversity of grouping cells, each using a subset

of potential indicators. As a result, the consistency of border

ownership coding across images varies from cell to cell (Figure 3).

As Hu et al. (2019a) show, there was little similarity between two

neurons when comparing their border ownership signals on a

common set of scene points. Even highly consistent neurons are

not entirely consistent with each other.

The computation of border ownership in natural scenes might

be improved by having grouping cells include also local figure-

ground indicators, similarly as the Craft et al. model included

T-junction signals in dealing with simple geometrical figures.

Evidence for grouping cells

Do grouping cells exist? The observations of border ownership

selectivity and attentive selection could also be explained by

other hypotheses, for example, by propagating convexity signals

along contours (Zhaoping, 2005), or by feedback projections in

the cortical hierarchy from high-level areas with large receptive

fields down to low levels with small receptive fields (Jehee et al.,

2007), or simply by the magic of coherent oscillations. But there

is one specific prediction of the grouping cell hypothesis: the

top-down facilitation of feature neurons should lead to spiking

synchrony, because all feature neurons that receive input from

the same grouping cell (or cells) receive the identical spike trains.

More specifically, synchrony should occur only between border

ownership selective neurons when responding to the same object

(Bound condition, Figure 9A); and only between pairs of neurons

with “consistent” border ownership preferences (red dashed lines

in Figure 9A), but not between “inconsistent” pairs (gray dashed

lines). The hypothesis further predicts that synchrony will be found

between neurons that are widely separated in cortex, because the

grouping cells must be able to encompass the images of extended

objects represented retinotopically in visual cortex.

AnneMartin tested these predictions, which was a difficult task.

First, it required simultaneous stable recordings from two distant

neurons, both of which had to be border ownership selective.

Second, the objects had to be shaped according to the positions and

orientations of the receptive fields of the two neurons encountered

(sometimes it was impossible to construct a simple figure that

would stimulate both neurons).

The main results are shown in Figure 9B (Martin and von der

Heydt, 2015). The three different display- and attention conditions

are depicted schematically at the top. While the subject fixated

gaze on a fixation target (black dot), three figures were presented

so that the two receptive fields (red ovals) were either stimulated

by the same figure (Bound) or by different figures (Unbound).

Additionally, attention was controlled (asterisk) by having the

subject detect the moment of a subtle modification of shape that

occurred predictably in one of the figures. Below, the frequency

of spike coincidences is plotted as a function of lag time, after

correcting for random coincidences (a cross-correlation function

FIGURE 9

Spiking synchrony between border ownership selective neurons. (A)

According to the hypothesis a single grouping cell G contacts many

V1/V2 neurons via recurrent projections (dashed arrows). These

neurons receive identical spike trains when the grouping cell fires,

which should lead to spike synchronization. Because the grouping

input produces border ownership preference, the hypothesis

predicts synchrony between neurons whose border ownership

preferences point toward the activating object (consistent pairs,

indicated by red dashed lines between receptive field symbols), but

only when they respond to the same object (Bound), and not when

they respond to di�erent objects (Unbound). (B) Curves show the

covariograms between spike trains of pairs of neurons under the

experimental conditions shown schematically above: dot, fixation

point; red ovals, receptive fields; yellow asterisk, focus of attention

(ovals and asterisks were not part of the display). Consistent pairs

produced a sharp peak at zero (coincidence) when stimulated by the

same object, whether the object was attended or ignored (yellow

and black heavy lines), in contrast to stimulation with di�erent

objects which did not produce a peak (thin line). Inconsistent pairs

produced rather flat covariograms. Bar graphs show the frequency

of coincidences within 40ms for the two kinds of pairs under the

three experimental conditions. There was a significant di�erence

between Bound and Unbound for consistent pairs, and a highly

significant interaction between pair type and binding condition (This

figure shows the data from the quartile of trials with the fastest

(Continued)
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FIGURE 9 (Continued)

behavioral responses; results for all trials combined were similar

except for an additional e�ect of attention, see Martin and von der

Heydt, 2015). (C) Synchrony (frequency of 5-ms coincidences) as a

function of the distance in cortex between the neurons of each pair

(left-hand plot), and as a function of the di�erence between their

preferred orientations (right-hand plot). Dashed lines, Mean.

Neurons separated as widely as 13mm fired synchronous spikes, as

did neurons with di�erent preferred orientations, indicating that

individual grouping cells contact neurons representing distant

features and features of di�erent orientations.

called “covariogram”). There is a sharp peak at zero lag in the Bound

condition, but not theUnbound condition; and for Consistent pairs,

but not for Inconsistent pairs. The bar graphs to the right show

the frequency of coincidences within 40ms and the significance

of the differences (the results were similar for 5-ms coincidences

and the differences were also significant). This is exactly as

predicted: in neurons that receive projections from a common

grouping cell (i.e., neurons whose directions of border ownership

preference are consistent) spiking synchrony increases when that

grouping cell is activated (i.e., when both neurons are stimulated

by a common object). I think the experiment cannot distinguish

whether synchrony is due to single grouping cells or pools of such

cells, but the sharp peak at zero lag of the covariograms in Figure 9B

indicates coincidences of individual spikes.

Attention had little effect on synchrony (just as it produced little

enhancement of responses, Figure 5A).

Spiking synchrony between neurons in primary visual cortex

has generally been found to fall off rapidly with distance between

neurons, reaching zero at 4mm, which is approximately the

maximum length of horizontal fibers in V1, and to be specific

to neurons with like orientations (Smith and Kohn, 2008).

The grouping hypothesis predicts the opposite: to be flexible,

the grouping mechanisms must encompass neurons with widely

separated receptive fields and a variety of orientation preferences.

And indeed, in the above experiment, neurons separated by as

much as 13mm showed tight (5ms) synchrony, and finding

synchrony did not depend on similarity of preferred orientations

(Figure 9C).

Is grouping behaviorally relevant? The task in the experiment

of Figure 9 required detection of a small shape change produced

by counterphase movements of the edges in the two receptive

fields; the behavioral response depended on grouping these edges

to one object. Thus, the hypothesis predicts that, if the strength

of the grouping feedback fluctuates from trial to trial, stronger

synchrony should be followed by a faster behavioral response. Anne

Martin discovered that the response time correlated negatively with

synchrony in consistent pairs in the “Bound” condition, whereas

inconsistent pairs showed no such correlation. In the quartile of

trials with the strongest synchrony the mean response time was

8ms shorter than in the quartile with the weakest synchrony. Thus,

the behavioral responses were fastest when neural grouping was

strongest, as predicted.

One question we glanced over above is, how can modulatory

common input produce synchrony? Spiking synchrony is generally

observed when two neurons are activated by a common spike

train, but, according to the theory, grouping cell feedback to

feature neurons does not activate, but only modulates existing

activity (see example in Figure 7 showing that context features

alone do not activate). Nobuhiko Wagatsuma and Ernst Niebur

explored synchrony between pairs of feature neurons with a

spiking model. They modeled the afferent inputs by independent

spike trains activating AMPA receptors, and the modulatory

grouping cell input by a common spike train activating NMDA

receptors (using a standard computational model for generic

NMDA receptors). Surprisingly, this model produced synchrony,

and even the exact shape of the experimental covariograms and

the observed synchrony at millisecond precision (Wagatsuma et al.,

2016).

As we have seen, experiments and modeling confirm a critical

prediction of the grouping cell theory: that pairs of border

ownership selective cells with consistent direction preferences,

when activated by a common object, exhibit spike train synchrony

with a cross-correlation function whose shape is characteristic for

common modulatory input. Next, we will consider another critical

prediction of the theory, persistence.

Persistence

It has been argued that vision—in contrast to audition—does

not need short-term memory because the visual information is

continuously available so that attention can always pick what is

needed. But I argue that vision needs a short-term memory too.

What would be the use of grouping features to objects if that would

all be lost in a blink?

O’Herron and von der Heydt (2009) devised experiments to

test if border ownership signals persist. The idea was to present an

edge in the receptive field that is owned by a figure on one side, as

in the standard test of Figure 2, and then, keeping the edge in the

receptive field, switch to a display in which ownership of the edge

is ambiguous. This simple paradigm has produced amazing results.

Figure 10, top, shows the sequence schematically for ownership-left

(the corresponding displays for ownership-right were also tested

to measure the border ownership signal). Below, the red curve

shows the average time course of the signal. It rises steeply and

stays high during the figure phase, as in the standard test, but

in the ambiguous phase it declines only slowly. For comparison,

when the figure was flipped to the other side keeping the edge

contrast (Figure 10, 2nd row of insets from top), the signal changed

quickly to negative values (blue curve). The difference between

the time constants was 20-fold. Thus, border ownership signals

persist for a second or more. This experiment also shows that the

persistence is not due to inherent persistence of responses in the

recorded neurons, because in the “flip” condition their responses

change rapidly.

The paradigm of Figure 10 is somewhat artificial in that it does

not have a simple interpretation in terms of objects with natural

continuity. In the top display sequence, the initially presented

object disappears and a bipartite field appears, and in the sequence

below, the initial object disappears, and a different object appears

on the opposite side. To study persistence of border ownership

signals in a more natural situation, Philip O’Herron designed an

ingenious display sequence in which objects maintain continuity.
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FIGURE 10

Persistence of border ownership signals. The edge of a square was

presented in the receptive field for 0.5 s and then switched to an

ambiguous edge (in other trials, side of figure and contrast were

reversed, like in the standard test). In the other condition, the square

was flipped to the other side. Red line shows the time course of the

border ownership signal when the edge is made ambiguous: The

signal decays slowly. Blue line, time course of the signal when the

square was flipped to the other side: The signal reverses quickly.

He presented two partially overlapping figures and recorded

responses to the common border (the occluding contour) when the

occlusion cues reversed while the two figures were continuously

displayed. The result was that the initial border assignment

persisted for 2 s or more before reversing sign (O’Herron and von

der Heydt, 2011). Control conditions showed that, when the final

configuration of overlapping figures was presented without history,

the signal assumed the final value quickly; and when a single figure

was presented on one side and was then replaced by a figure on

the opposite side, as in Figure 10 Figure flip, the signal also reversed

quickly. These results are summarized schematically in Figure 11,

where pairs of adjacent frames represent two object locations, O1

and O2 denote two objects, and the red arrow indicates direction

of border ownership. Abrupt-onset and object-flip result in fast

signal changes, whereas reversal of occlusion cues in the presence

of both objects results in retarded reversal of the signal. It seems

that object continuity includes continuity of depth relations. More

generally, we hypothesize that the system represents location in

space as an object attribute which has continuity unless there is an

abrupt image event like onset or offset.

O’Herron also showed that the persistent ownership signals

“remap” across saccades, a result that will be reviewed below.

The persistence of border ownership signals is another

example of the power of neurophysiology in providing

FIGURE 11

Schematic of display sequences producing fast and slow changes of

border ownership signals. First and Second are two phases of

stimulation.Outlines represent object locations;O1 andO2, objects;

red arrow, direction of border ownership. When overlapping objects

appear suddenly, or when the object on one side disappears and

another object appears on the opposite side, the signal changes

fast. But when two objects are continuously present and ownership

of the common border is reversed, the signal follows only slowly.

clear answers to questions that are difficult to answer with

psychological methods.

How is it possible that neural signals rise fast and decay slowly?

Neurons in low-level visual areas must be able respond fast to

the afferent signals from the retina which change swiftly with new

information arriving after a fraction of a second. The memory-like

behavior shown in Figure 10 is a puzzle for neural network theory.

Traditional positive feedback models show attractor dynamics,

with transient perturbations resulting in a quasi-permanent change

of system state, whereas the responses of Figure 10 return to

the original state after a transient. This is a question of very

general interest because short-term memory underlies many kinds

of behavior. Grant Gillary discovered that short-term depression,

which is ubiquitous among cortical neurons, can create short-term

persistence in derivative feedback circuits. If short-term depression

acts differentially on positive and negative feedback projections

between two coupled neurons, they can change their time constant

dynamically, allowing for fast onset and slow decay (Gillary et al.,

2017).

The blessing and the curse of eye
movements

We see by moving our eyes. The eyes fixate, producing stable

images for a moment, and then move rapidly to fixate another

part of the scene. Each time, the images are displaced in the

eyes. Humans as well as monkeys move fixation continually

about 3–4 times per second. The reason why primates do this

is obviously to be able to scrutinize different parts of a scene

with the high-resolution center region of the retina and its

corresponding processing apparatus in the brain. The system

then synthesizes information from multiple fixations to represent
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complex objects and combines object representations to scene

representations. From the computational standpoint this seems

horribly complicated. At least I don’t know of any technical system

that would bounce a camera around four times per second. How

our brain deals with this confusing input is a puzzle. One question

is, why don’t we perceive and are not disturbed by the frequent

movements of the retinal image, but rather perceive a stable world.

But the subjective stability is a minor issue compared to the

question of how the system integrates object information across the

eye movements.

To explain cross-saccadic integration, van Holst proposed the

reafference principle (von Holst and Mittelstaedt, 1950). When

the brain creates a signal that commands the eyes to move, he

thought, it also produces an associated signal that tells the visual

system about the impending eye movement and informs it about

the direction and size of the image movement to expect. He

called the change of retinal signals caused by the eye movement

the “afference”, and the associated brain signal to the visual

system the “reafference”. To create continuity the brain would

have to correct the afference by the reafference, that is, to shift

the image representation so as to cancel the image movement

and thus achieve a stable internal representation (Figure 12A).

The problem with this theory is that a shifter circuit that could

remap the image representations would have to be huge. V1

and V2 each consist of over 100 million neurons and there

is no other structure in the visual brain that could hold so

much information.

An alternative solution would be to work with image

representations that move with every eye movement, and remap

the object structure accordingly (Figure 12B). Instead of requiring

a stabilized image representation, object-based attention would

then only need object pointers that are updated with every eye

movement. Zhu et al. (2020) conjectured that top-down attention

signals activate object pointer cells whose signals are fed via a shifter

circuit to grouping cells. This schemewould reduce the stabilization

task from remapping millions of image signals to remapping a few

object pointer signals. Assuming the system canmaintain a number

of object pointers, top-down attention could select to which object

to attend, and the remapping would preserve its identity and

enable the attention mechanism to keep focused on it, that is, keep

enhancing the feature signals of that object across eye movements,

or deliberately choose to focus on another object.

Evidence for remapping of border
ownership

The hypothesis of object pointer remapping implies that the

activation of grouping cells is being remapped to a new location

with each eye movement. When an object appears, a grouping cell

responds and will activate an object pointer. This activity persists

and, by feedback, reinforces the activity of the grouping cell. When

the eyes then make a saccade that moves the image of that object

to the receptive field of another grouping cell, the shifter circuit

will reroute the object pointer accordingly and its activity will flow

down to the new grouping cell. Thus, the grouping cell in the

new location will become active immediately. The result will be

that border ownership is remapped, that is, the feature neurons

that respond to the object in the new location will be biased

immediately, without the need for new context processing.

FIGURE 12

The problem of dealing with image displacements caused by eye movements. (A) Rea�erence principle. When the eye movement control center

sends a command to the eye muscles, it also sends a copy to the visual system indicating the impending eye movement. A shifter circuit shifts the

visual representation accordingly to compensate for the image displacement caused by the eye movement. (B) Object pointer hypothesis. The visual

system works with the moving image representation, but uses object pointers that are updated at each eye movement by a shifter circuit.
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FIGURE 13

Remapping of border ownership signals across saccades. Like in the

memory experiment of Figure 10, a figure was presented (Phase 1)

and then replaced by an ambiguous edge (Phase 2), but in this

experiment, the neuron was not stimulated because the edges were

outside its receptive field (dashed oval). Finally, a saccade was

elicited that brought the receptive field onto the ambiguous edge

(red arrow, Phase 3). Curve shows the mean border ownership signal

(47 neurons). Black arrow on time axis, movement of fixation point,

vertical dotted line with horizontal bracket, mean time of saccade

with standard deviation. The border-ownership signal is close to

zero during phases 1 and 2 because the neurons are not stimulated.

But shortly after the saccade, when the edge stimulates the

neurons, a signal emerges although border ownership is ambiguous.

The neurons signal how the edge was owned before the saccade.

O’Herron and von der Heydt (2013) tested this prediction

as illustrated in Figure 13. Recording from a feature neuron they

presented a figure so that its edges were outside the receptive field

(Phase 1) and then replaced the figure with an ambiguous edge that

coincided with one of the figure edges (Phase 2). After a while,

the fixation point was moved, inducing the monkey to make a

saccade that brought the receptive field onto the edge (Phase 3).

The prediction was that the neuron’s responses will reflect the

previous ownership despite the absence of a figure. The graph at the

FIGURE 14

Searching for grouping cells—a novel paradigm. An array of test

figures is presented, and monkey is instructed to scan the array in

search for a figure that, when fixated, leads to reward. While monkey

is scanning, opaque strips drift across the array (gray bars, depicted

transparent for illustration only). For control of attention two shapes

of figures are displayed, and a cue figure presented at the beginning

of each trial (dotted outline) tells monkey which shape to look for.

Line trace, eye movement trace of an example trial. Green circles,

position of an example receptive field for each fixation.

bottom shows the population border ownership signal. There are

no responses in Phases 1 and 2, as expected, because the receptive

fields are in a blank region. During Phase 2, the fixation point

moves (black arrow on time axis) eliciting a saccade that brings

the receptive fields onto the edge. The neurons respond, and a

border ownership signal emerges as predicted. This is about half a

second after the figure was removed; border ownership is produced

from memory.

Searching for grouping cells and
object pointers

The results described so far are all based on variants of the

border ownership paradigm and on recordings from V1, V2, and

V4, and together they constitute strong evidence for the grouping

cell theory. But the one crucial prediction of the theory, the

existence of grouping cells has not yet been confirmed. Grouping

cells might live in another brain region. In fact, finding persistence

of the border ownership signal in areas like V1 and V2, where

neuronal responses rise and fall fast, makes it seem unlikely to find

grouping cells there.

Identifying grouping cells, to my knowledge, has only been

attempted in one candidate area, V4, an area where some neurons

have larger, fuzzy receptive fields and that has strong back

projections to V2 and V1. Also, V4 is connected to both, the

What and the Where pathways (Ungerleider and Mishkin, 1982;

Ungerleider et al., 2008), and the function of grouping cells is just

to pull out what is where.

Searching for grouping cells needs a different paradigm. The

distinctive feature to look for is obviously the persistence of
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responses when an activating object disappears from view, as

in O’Herron’s demonstration of persistence of border ownership

where an edge is substituted for a square. But we do not expect

grouping cells to respond to edges; rather, they should respond best

when an object is centered on their summation template.

Alex Zhang and Shude Zhu developed a new paradigm

motivated by the phenomenon that objects persist perceptually

when they are transiently occluded, a phenomenon called “object

permanence”.When an object is occluded by another object passing

in front of it and then reappears, we perceive it as the same object.

We would be surprised if it had vanished, or if there were now two

objects instead of one. The visual system holds the representations

for a certain time even when the objects are invisible.

Figure 14 illustrates the new paradigm. The stratagem was to

present an array of objects for visual search and, while the observing

subject is scanning the array, transiently occlude some of the

objects.

To control top-down attention, the objects were of two different

shapes and, before the array appeared, a cue object was displayed

(dashed outline) that specified which shape to look for. The cue

object disappeared when the array came on.

Figure 14 also shows the example of an eye movement trace of a

trial in which a trapezoidal shape was cued. The monkey made four

fixations, and four green circles indicate where the receptive field of

an example neuron would be in each case (the circles are only for

illustration, they were not part of the display). In fact, the array was

constructed for each neuron being recorded so that, when one of

the objects was fixated, another object would fall on the neuron’s

receptive field in most trials, and in other trials, a blank region. In

the example, two fixations brought objects into the receptive field,

one a trapezoid, and the other a square, while in two other fixations

the receptive field landed on a blank region.

Occlusion was added by having a series of opaque gray

strips drift across the array that occluded half of it at any time

(the strips are depicted as transparent in the Figure just for

illustration; in fact, display items that we call “occluded” were

physically absent). Surprisingly, the subjects had no difficulty

in dealing with that complication. Once they mastered the

task without occlusions, they rapidly adjusted to the occlusions

in just one session. This of course confirms the power of

perceptual permanence.

In the new paradigm neurons respond to static objects

brought into their receptive fields by eye movements, much

like in natural viewing, which is fundamentally different

from the traditional neurophysiological paradigms in which

neurons respond to objects that are being switched on and

off. A technical complication here is that “stimulus onset” is

not controlled by the experimenter, but by the subject’s eye

movements, which means that the neural responses are timed

by onset and offset of fixation. Thus, the phases of visibility

and occlusion of individual objects, which are programmed

by the experimenter, need to be related to the recorded eye

movements. But this complication is greatly outweighed

by the opportunity to study neuronal activity under quasi

natural viewing conditions which makes this an enormously

powerful paradigm.

Studying V4 neurons with this paradigm Zhu et al. (2020)

indeed found a “response” to the invisible objects in the mean

firing rate, corresponding to the predicted top-down activation of

grouping cells (their Figure 10 which shows the averaged responses

of 87 V4 neurons). But the authors rejected this result as evidence

for grouping cells in V4, suggesting an alternative explanation for

the “responses” to invisible objects, because of another result that

was not consistent with the predictions: While top-down attention

and saccade planning clearly produced response enhancement for

visible objects, they did not so for occluded objects (Figure 15).

Neurophysiology can be hard to understand if one just looks at

what the various individual neurons do; only a theory can relate

the neural signals to visual experience or the performance of a

vision algorithm. Figure 15A illustrates the prediction of the theory

when fixation is on one object (square marked by yellow asterisk)

and a saccade is planned to another object (dashed square) that is

momentarily occluded by a larger object (blue outline rectangle).

According to the theory, there are three layers of cells, the feature

cells with receptive fields in retinal space (ovals on gray bars), a

grouping cell layer G with fixed connections to the feature cells,

and a number of object pointer cells OP that are connected with

grouping cells through the shifter circuit SH.

The top panel of Figure 15A illustrates the fixation before

the saccade: top-down attention enhances the OP cell that is

momentarily connected to grouping cell G3. Grouping cell G1

(assumed to be the recorded cell) is not active because the object

in its receptive field is occluded.

When the saccade to the other object is planned, as shown

in the middle panel, top-down attention moves to the OP

cell that is momentarily connected with G1, and the OP

activity flows down to G1 (red arrow). This is the predicted

activity that will be recorded despite absence of afference from

the retina.

And when the saccade is executed, as shown in the bottom

panel, SH reroutes the connections to G3 and G5 as indicated

by yellow arrows. Thus, while the left-hand object activates other

feature cells after the saccade, it is again connected to the left-hand

OP cell.

Figure 15B shows the time course of the mean firing rates at

the end of a fixation period, that is, at the moment when the brain

initiates a new saccade. The curves represent the activity from

before the saccade until 50ms after the saccade. Because 50ms is

the latency of visual responses in V4, visual information from the

next fixation did not influence this activity.

The top three curves show the responses to visible objects, red

line for responses when the object in the receptive field was the

goal of the next saccade, and brown lines when another object was

the goal; solid lines, when the object was a target, and dashed line

when it was a distracter. These curves show that the responses were

enhanced by attention (solid brown vs. dashed brown) and further

enhanced when the attended object was the goal of the next saccade

(solid red vs. solid brown). But planning a saccade to an occluded

object did not produce the activity predicted by the red arrow in

Figure 15A (blue vs. cyan curves) and occluded targets were not

represented by enhanced activity compared to occluded distracters

(solid cyan vs. dashed cyan). This means that the recorded neurons

were activated by visual afference, but not by top-down activity

from object pointer cells.

To conclude this section, previous experiments had shown that

border ownership signals in neurons of V1/V2 persist after the
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FIGURE 15

Attending and saccading to invisible objects. (A) Theory of object pointers. Gray bars with ovals represent receptive fields of feature cells in retinal

space. G, grouping cell layer, SH shifter circuit, OP object pointer cells. Presentation of an object excites a number of feature cells and a grouping

cell, and, through SH, an object pointer cell. OP cells sustain activity once excited. Top panel. Two objects (squares) have activated two OPs before

the left-hand object was occluded by another object (blue outline). Attention on right-hand object (yellow asterisk), which is currently fixated, is

enhancing corresponding OP. Middle panel. Planning of a saccade to left-hand object re-allocates attention, enhancing left-hand OP whose activity

flows down to G1 (red arrow), and a signal is recorded (microelectrode symbol) even though the object is no longer visible. Bottom panel. The

saccade has moved the receptive fields, and SH has compensated for the movement by re-routing the connections to G3 and G5, as indicated by

yellow arrows, thus keeping left-hand OP connected to the feature cells of left-hand object. (B) The mean time course of activity recorded from 87

V4 neurons at the end of a fixation period; zero on abscissa marks time of saccade. Note that new visual input does not a�ect responses until

∼50ms, the latency of V4. Red and brown traces, responses to visible objects; blue and cyan traces, responses to occluded objects; solid lines, when

attended; dashed lines, when ignored; red and blue, when goal of next saccade. Responses were enhanced by attention (solid vs. dashed), and

further enhanced when object was goal of planned saccade (red vs. brown), but only for visible objects. Had the recordings been from a G cell,

enhancements would also be found for occluded objects.

object that produced these signals has been removed (Figure 10),

and that they even persist across a half second of display of a

blank field that completely silences the activity of these neurons

(O’Herron and von der Heydt, 2009, their Figure 7). These

findings suggests that border-ownership selective neurons must be

modulated by an external signal, by activity that we do not see

in V1/V2. And the results of the new experiment, summarized in

Figure 15B, show that this signal does not come from V4.

Plausibility of models

Since figure-ground organization was discovered by the Gestalt

psychologists it has stimulated theories about the underlying brain

activity unlike few other phenomena in perception, and the interest

in modeling it has grown since neurophysiologists discovered

neural activity related to illusory contours (von der Heydt et al.,

1984), figure ground segregation (Lamme, 1995), object-based

attention (Roelfsema et al., 1998), and border ownership (Zhou

et al., 2000).

Among the various models of perceptual organization that

have been proposed (Grossberg and Mingolla, 1985; Zhaoping,

2005; Jehee et al., 2007; Kogo et al., 2010; Jeurissen et al., 2016),

the grouping cell model discussed here is distinct in that it

makes the highly specific prediction that pairs of border-ownership

selective neurons with consistent side-of-figure preferences, when

stimulated by a common object, show spiking synchrony. And

experiments have shown exactly this. Other neural models do not

predict synchrony because the neurons representing the distributed

features of an object are not supposed to receive input from

common spike trains. Only the models by Jehee et al. (2007)

and Jeurissen et al. (2016) propose neurons with receptive fields

large enough to encompass objects. However, the coarse-to-fine

processing in their model is relayed through a cascade of neurons

down through the hierarchy of visual areas from TEO to V1, and

the relays do not preserve spike timing.

Models that rely on lateral signal propagation (Grossberg

and Mingolla, 1985; Zhaoping, 2005; Kogo et al., 2010) are

not physiologically plausible because the conduction velocity

of horizontal fibers in cortex is too slow. Based on published

conduction velocity data, Craft et al. (2007) estimated that lateral

Frontiers inComputer Science 15 frontiersin.org81

https://doi.org/10.3389/fcomp.2023.1136987
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


von der Heydt 10.3389/fcomp.2023.1136987

propagation would delay the border ownership signal for the 8 deg

square by at least 70ms relative to the edge responses, in addition

to processing delays, whereas only 30ms has been found. Sugihara

et al. (2011) calculated the latencies of border ownership signals

for two conditions in which the relevant context information

was located at different distances from the receptive field and

compared the latency difference with the difference predicted

from horizontal signal propagation. The prediction was based on

the increase in cortical distance computed from mapping of the

actual test stimuli onto the cortex and the known conduction

velocities of horizontal fibers. The actual latencies increased with

cortical distance, but much less than predicted by the horizontal

propagation hypothesis. Probability calculations showed that an

explanation of the context influence by lateral signal propagation is

highly unlikely.

In contrast, mechanisms involving back projections from other

extrastriate areas or subcortical structures (Craft et al., 2007; Jehee

et al., 2007; Jeurissen et al., 2016) are plausible because they use

white-matter fibers which are an order of magnitude faster than

horizontal fibers. Context information for the 8 deg square that

might take over 70ms if conducted through horizontal fibers in V2

would take perhaps 10ms if sent up to V4 and back.

Kogo et al. (2010), who base their model on perceptual

observations of illusory figures akin to the Kanizsa triangle, state

that “most of the many attempts to mimic the Kanizsa illusory

phenomenon in neurocomputational models have been inspired

by the borderline-completion scheme driven by the collinear

alignment of the contours of the Pac Man shapes”—which is not

true. In fact, all models since the mid 1980ies were inspired by

the discovery of illusory contour responses in the visual cortex

which included responses to stimuli that do not entail collinear

alignment. When I began recording from area V2, I was surprised

to find orientation selective neurons that responded to patterns

consisting of lines orthogonal to their preferred orientation: lines

that terminated along a virtual line through the receptive field at

the preferred orientation (von der Heydt et al., 1984). Neurons

that were sharply selective for a certain orientation responded

vigorously to stimuli that had no line or edge of that orientation at

all, and no energy for that orientation in the Fourier spectrum (von

der Heydt and Peterhans, 1989). These stimuli also produce illusory

contours in perception. A striking example of an illusory contour

that is not a collinear completion of given features is the Ehrenstein

illusion, in which a circular contour is produced by radial lines

(Kogo et al. do not mention this illusion).

Also architects of artificial neural nets that do not claim

physiological plausibility should take note that about 30% of the

orientation selective cells in monkey V2 respond to a virtual line

defined by line terminations as if it were a real line. V2 is a large

area (in humans V2 is even larger than V1). Thus, 30% means a

huge number of cells. There must be an advantage of having so

many cells capable of signaling illusory contours. These cells seem

to respond simply to the line of discontinuity, perhaps because it is

indicative of an occluding contour. Their responses grow with the

number of aligned terminations, but they do not require evidence

for border ownership—the stimulus can be symmetric about the

contour and does not need to have a closed contour or something

that suggests a figure. V2 is an early stage in the process, and those

responses appear with short latency.

Heitger et al. (1998) modeled the illusory contour neurons

by combining two inputs, one that detects edges, and a second

input that integrates termination features along the receptive field

axis. They suggested that termination features are signaled by end-

stopped cells (Heitger et al., 1992). Indeed, the neural illusory-

contour responses had opened eyes for an important role of

orthogonal features in the definition of contours. This model

reproduced all the neural illusory contour responses and also

produced the circular shapes of the Ehrenstein illusion. It achieved

all this with a semi-local image operator.

As explained above, Craft et al. (2007) showed that integrating

co-circular edge signals alone is not sufficient to reproduce the

neural border ownership signals in configurations of partially

occluding figures, and therefore included integration of T-junction

signals, and von der Heydt and Zhang (2018) explicitly showed the

influence of contextual T-junctions, L-junctions, and orthogonal

edges in modulating the neural responses. Craft et al. adopted

the two-input scheme of Heitger et al. (1992) and showed that

it explains the data on neural responses to geometrical figures

completely. I think there are good reasons to expect that an image-

computable model that combines integration of co-circular edge

signals as in Hu et al. (2019a) with integration of end-stopped

signals as in Heitger et al. would improve the consistency of border

ownership assignment, perhaps from the 69% score of Hu et al. to

over 90%, as found in some neurons.

The notion that border ownership coding appears at low levels

of the hierarchy and early in the process runs counter to current

trends in machine vision. In convolutional nets one expects such

context-sensitive coding only at higher levels, and late in the

process. In fact, Hu et al. (2019b) found that the convolutional

nets that represent figure-ground organization show it only at the

higher levels.

Outlook

As said, area V4 is but one of many candidate regions in

the search for grouping cells. In a way, the negative result in

this visual area makes sense because representing objectness may

require comprehensive action at multiple cortical levels. In fact,

border ownership modulates responses in V1, V2, and V4, and

shape selectivity of neurons in infero-temporal cortex also depends

on border ownership. And for effective object-based attention,

grouping cells should target neurons not only in V2, but at various

levels of the visual object processing pathways in parallel, including

V1, V2, V4, and IT. Indeed, recordings from different levels of

the visual pathways have shown that attentional modulation tends

to get stronger at higher levels, suggesting that the modulatory

effects accumulate from stage to stage. Thus, grouping cells might

not be found within the feature processing visual pathways,

but rather in a structure “on the side” as sketched in Figure 8

(a similar architecture was proposed by Wolfe and Horowitz,

2004 for guidance in visual search, suggesting that “the ‘guiding

representation’ . . . is not, itself, part of the pathway”). This idea

also explains the finding that border ownership signals in V4 have

similar or even shorter latencies than those of V2 (Bushnell et al.,

2011; Franken and Reynolds, 2021).
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Moreover, for dealing with objects, grouping cells should

also receive and target neurons in other modalities like touch,

proprioception, audition, taste, and smell. The model sketched in

Figure 8 could be extended across modalities. The feed forward

pathway activates grouping cells which provides handles for

selective attention: The sound of a dropping coin directs visual

attention to the site where the coin fell. Through back projections,

grouping cells facilitate feature signals for the computation of

object attributes: Say, an object has been identified visually. When

the hand grasps the object, grouping cells selectively facilitate

feature signals from skin and tendon receptors informing about

haptic qualities and hand conformation, signals from which further

processing may compute shape, weight, and other attributes of

the object.

An important function of grouping cells and object pointers

is in representing the layout of objects in a scene for reaching.

When we reach for a pawn on a chess board, the hand easily grasps

the pawn without knocking over other pieces on the board. This

cannot be based on object recognition—all pawns look the same.

Also selectively attending just to the target would not be successful.

Grouping cells indicate object locations in retinal space, and object

pointers track their locations in real space thus representing the

layout of the objects.

Considering all these aspects it becomes clear that object

representation needs a brain structure bigger than area V4. It must

be large enough to be able to coordinate spatial information coming

in through senses as diverse as vision, audition, and touch. Auditory

space sense depends on head orientation, and so does vision, with

the extra complication of eye movements, and tactile perception of

3D objects involves hand conformation. To combine these requires

massive computations in real time. And we are looking for a

structure that has connections to a range of cortical areas.

The pulvinar might be able to meet these requirements. The

pulvinar is enlarged in primates which use hands for grasping

and handling objects, compared to rats and cats which lack

hands. It synchronizes activity between interconnected cortical

areas according to attentional allocation (Saalmann et al., 2012).

In humans, damage to the pulvinar often produces neglect (Ohye,

2002; Furman, 2014) which suggests a deficiency of grouping cells

because grouping cells provide objects with “handles” for selective

attention, and without these handles the system may not be able

to disentangle objects in the visual representations even though the

feature representations are intact.

The deficits expected from a loss of grouping cells are

subtle; problems with visual attention to objects, visual

guidance of grasping movements and saccades in cluttered

scenes, e.g., situations where objects are partially occluded.

Also deficits in object permanence and in maintaining

object identity across object movements and saccades are to

be expected.

Clearly, using object permanence as the criterion in the search

for grouping cells is but one of many possible strategies. But

it seems to me that permanence is the most decisive evidence

for object-based perceptual organization. Grouping cells are a

hypothesis of modeling, and a computational model is merely an

existence proof. It shows that an algorithm exists that can perform

a given task. Whether such cells really exist we do not know,

they are imaginary. But persistence of border ownership signals

is real.

Author contributions

The author confirms being the sole contributor of this work and

has approved it for publication.

Acknowledgments

I wish to thank Ernst Niebur for complementing my

neurophysiology with computational neuroscience; Fangtu T.

Qiu for creating a powerful and versatile system for visual

stimulus generation, behavioral control, and recording; and Ofelia

Garalde who as an animal lab technician contributed a lot to

the experimental success of the 14 neurophysiological studies

reviewed here.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Baylis, G. C., and Driver, J. (2001). Shape-coding in IT cells generalizes over
contrast and mirror reversal, but not figure-ground reversal. Nat. Neurosci. 4, 937–942.
doi: 10.1038/nn0901-937

Brincat, S. L., and Connor, C. E. (2006). Dynamic shape synthesis in
posterior inferotemporal cortex. Neuron 49, 17–24. doi: 10.1016/j.neuron.2005.
11.026

Bullier, J., Hupe, J. M., James, A. C., and Girard, P. (2001). the role of feedback
connections in shaping the responses of visual cortical neurons. Prog. Brain Res. 134,
193–204. doi: 10.1016/S0079-6123(01)34014-1

Bushnell, B. N., Harding, P. J., Kosai, Y., and Pasupathy, A. (2011). Partial
occlusion modulates contour-based shape encoding in primate area V4. J. Neurosci.
31, 4012–4024. doi: 10.1523/JNEUROSCI.4766-10.2011

Frontiers inComputer Science 17 frontiersin.org83

https://doi.org/10.3389/fcomp.2023.1136987
https://doi.org/10.1038/nn0901-937
https://doi.org/10.1016/j.neuron.2005.11.026
https://doi.org/10.1016/S0079-6123(01)34014-1
https://doi.org/10.1523/JNEUROSCI.4766-10.2011
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


von der Heydt 10.3389/fcomp.2023.1136987

Craft, E., Schütze, H., Niebur, E., and von der Heydt, R. (2007). A neural model of
figure-ground organization. J. Neurophysiol. 97, 4310–4326. doi: 10.1152/jn.00203.2007

Franken, T., and Reynolds, J. (2021). Columnar processing of border ownership in
primate visual cortex. Elife 10, e72573. doi: 10.7554/eLife.72573.sa2

Friedman, H. S., Zhou, H., and von der Heydt, R. (2003). The coding
of uniform color figures in monkey visual cortex. J. Physiol. 548, 593–613.
doi: 10.1113/jphysiol.2002.033555

Furman, M. (2014). “Chapter 19 - visual network,” in Neuronal Networks in Brain
Function, CNS Disorders, and Therapeutics, eds L. Carl Faingold, and H. Blumenfeld
(San Diego, CA: Academic Press), 247–259.

Gillary, G., von der Heydt, R., and Niebur, E. (2017). Short-term depression
and transient memory in sensory cortex. J. Comput. Neurosci. 43, 273–294.
doi: 10.1007/s10827-017-0662-8

Grossberg, S., and Mingolla, E. (1985). Neural dynamics of form perception:
boundary completion, illusory figures, and neon color spreading. Psychol. Rev. 92,
173–211. doi: 10.1037/0033-295X.92.2.173

Heitger, F., Rosenthaler, L., Von Der Heydt, R., Peterhans, E., and Kübler, O. (1992).
Simulation of neural contour mechanisms: from simple to end-stopped cells. Vis. Res.
32, 963–981. doi: 10.1016/0042-6989(92)90039-L

Heitger, F., von der Heydt, R., Peterhans, E., Rosenthaler, L., and Kübler,
O. (1998). Simulation of neural contour mechanisms: representing anomalous
contours. Image Vis. Comp. Comput. Psychophys. Stud. Early Vis. 16, 407–421.
doi: 10.1016/S0262-8856(97)00083-8

Hu, B., Khan, S., Niebur, E., and Tripp, B. (2019b). “Figure-ground representation
in deep neural networks,” in 2019 53rd Annual Conference on Information Sciences and
Systems (CISS) (Baltimore, MD), 1–6. doi: 10.1109/CISS.2019.8693039

Hu, B., von der Heydt, R., and Niebur, E. (2019a). Figure-ground organization in
natural scenes: performance of a recurrent neural model compared with neurons of
area V2. ENeuro 6, ENEURO.0479-18. doi: 10.1523/ENEURO.0479-18.2019

Intriligator, J., and Cavanagh, P. (2001). The spatial resolution of visual attention.
Cognit. Psychol 43, 171–216. doi: 10.1006/cogp.2001.0755

Jehee, J. F., Lamme, V. A., and Roelfsema, P. R. (2007). Boundary
assignment in a recurrent network architecture. Vis. Res. 47, 1153–1165.
doi: 10.1016/j.visres.2006.12.018

Jeurissen, D., Self, M. W., and Roelfsema, P. R. (2016). Serial grouping
of 2D-image regions with object-based attention in humans. Elife 5, e14320.
doi: 10.7554/eLife.14320

Kogo, N., Strecha, C., Van Gool, L., and Wagemans, J. (2010). Surface construction
by a 2-D differentiation-integration process: a neurocomputational model for
perceived border ownership, depth, and lightness in Kanizsa Figures. Psychol. Rev. 117,
406–439. doi: 10.1037/a0019076

Lamme, V. A. F. (1995). The neurophysiology of figure-ground
segregation in primary visual cortex. J. Neurosci. 15, 1605–1615.
doi: 10.1523/JNEUROSCI.15-02-01605.1995

Martin, A. B., and von der Heydt, R. (2015). Spike synchrony reveals
emergence of proto-objects in visual cortex. J. Neurosci. 35, 6860–6870.
doi: 10.1523/JNEUROSCI.3590-14.2015

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). “A database of
human segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proceedings of Eighth IEEE
International Conference on Computer Vision (Vancouver, BC: IEEE), 416–423.
doi: 10.1109/ICCV.2001.937655

Mihalas, S., Dong, Y., von der Heydt, R., and Niebur, E. (2011). Mechanisms
of perceptual organization provide auto-zoom and auto-localization for attention to
objects. Proc. Nat. Acad. Sci. U. S. A. 108, 7583–7588. doi: 10.1073/pnas.1014655108

Nakayama, K., Shimojo, S., and Silverman, G. H. (1989). Stereoscopic depth: its
relation to image segmentation, grouping, and the recognition of occluded objects.
Perception 18, 55–68. doi: 10.1068/p180055

O’Herron, P., and von der Heydt, R. (2009). Short-term memory for
figure-ground organization in the visual cortex. Neuron 61, 801–809.
doi: 10.1016/j.neuron.2009.01.014

O’Herron, P., and von der Heydt, R. (2011). Representation of object continuity in
the visual cortex. J. Vis. 11, 12. doi: 10.1167/11.2.12

O’Herron, P., and von der Heydt, R. (2013). Remapping of border ownership in the
visual cortex. J. Neurosci. 33, 1964–1974. doi: 10.1523/JNEUROSCI.2797-12.2013

Ohye, C. (2002). “Thalamus and thalamic damage,” in Encyclopedia of the Human
Brain, eds V. S. Ramachandran (New York, NY: Academic Press), 575–597.

Qiu, F. T., Sugihara, T., and von der Heydt, R. (2007). Figure-ground
mechanisms provide structure for selective attention. Nat. Neurosci. 10, 1492–1499.
doi: 10.1038/nn1989

Qiu, F. T., and von der Heydt, R. (2005). Figure and ground in the visual
cortex: v2 combines stereoscopic cues with gestalt rules. Neuron 47, 155–166.
doi: 10.1016/j.neuron.2005.05.028

Qiu, F. T., and von der Heydt, R. (2007). Neural representation of transparent
overlay. Nat. Neurosci. 10, 283–284. doi: 10.1038/nn1853

Roelfsema, P. R., Lamme, V. A., and Spekreijse, H. (1998). Object-based attention
in the primary visual cortex of the macaque monkey. Nature. 395, 376–381.
doi: 10.1038/26475

Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., and Kastner, S. (2012). The pulvinar
regulates information transmission between cortical areas based on attention demands.
Science 337, 753–756. doi: 10.1126/science.1223082

Smith, M. A., and Kohn, A. (2008). Spatial and temporal scales of
neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603.
doi: 10.1523/JNEUROSCI.2929-08.2008

Sugihara, T., Qiu, F. T., and von der Heydt, R. (2011). The speed of
context integration in the visual cortex. J. Neurophysiol. 106: 374–385.
doi: 10.1152/jn.00928.2010

Ungerleider, L. G., Galkin, T. W., Desimone, R., and Gattass, R. (2008).
Cortical connections of area V4 in the Macaque. Cereb. Cortex 18, 477–499.
doi: 10.1093/cercor/bhm061

Ungerleider, L. G., and Mishkin, M. (1982). “Two cortical visual systems,” in
Analysis of Visual Behavior, eds D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield
(Cambridge: MIT Press), 549–586.

von der Heydt, R. (2015). Figure-ground organization and the emergence of
proto-objects in the visual cortex. Front. Psychol. 6, 1695. doi: 10.3389/fpsyg.2015.01695

von der Heydt, R., Macuda, T. J., and Qiu, F. T. (2005). Border-
ownership dependent tilt aftereffect. J. Opt. Soc. Am. Opt. A. 22, 2222–2229.
doi: 10.1364/JOSAA.22.002222

von der Heydt, R., and Peterhans, E. (1989). Mechanisms of contour perception
in monkey visual cortex. I. Lines of pattern discontinuity. J. Neurosci. 9, 1731–1748.
doi: 10.1523/JNEUROSCI.09-05-01731.1989

von der Heydt, R., Peterhans, E., and Baumgartner, G. (1984). Illusory contours and
cortical neuron responses. Science 224, 1260–1262. doi: 10.1126/science.6539501

von der Heydt, R., Peterhans, E., and Dürsteler, M. R. (1992). Periodic-
pattern-selective cells in monkey visual cortex. J. Neurosci. 12, 1416–1434.
doi: 10.1523/JNEUROSCI.12-04-01416.1992

von der Heydt, R., Qiu, F. T., and He, Z. J. (2003). Neural mechanisms in
border ownership assignment: motion parallax and gestalt cues. J. Vis. 3/9, 666.
doi: 10.1167/3.9.666

von der Heydt, R., and Zhang, N. R. (2018). Figure and ground: how the visual
cortex integrates local cues for global organization. J. Neurophysiol. 120, 3085–3098.
doi: 10.1152/jn.00125.2018

von Holst, E., and Mittelstaedt, H. (1950). Das Reafferenzprinzip.
Wechselwirkungen Zwischen Zentralnervensystem Und Peripherie.
Naturwissenschaften 37, 464–476. doi: 10.1007/BF00622503

Wagatsuma, N., von der Heydt, R., and Niebur, E. (2016). Spike synchrony
generated by modulatory common input through NMDA-type synapses. J.
Neurophysiol. 116, 1418–1433. doi: 10.1152/jn.01142.2015

Williford, J. R., and von der Heydt, R. (2016a). Figure-ground organization
in visual cortex for natural scenes. ENeuro 3, ENEURO.0127–0116.
doi: 10.1523/ENEURO.0127-16.2016

Williford, J. R., and von der Heydt, R. (2016b). Data Associated with Publication
‘Figure-Ground Organization in Visual Cortex for Natural Scenes,’ Version 1. Johns
Hopkins University Data Archive. doi: 10.7281/T1C8276W

Wolfe, J. M., and Horowitz, T. S. (2004). What attributes guide the deployment
of visual attention and how do they do it? Nat. Rev. Neurosci. 5, 495–501.
doi: 10.1038/nrn1411

Zhang, N. R., and von der Heydt, R. (2010). Analysis of the context
integration mechanisms underlying figure-ground organization in the
visual cortex. J. Neurosci. 30, 6482–6496. doi: 10.1523/JNEUROSCI.5168-0
;9.2010

Zhaoping, L. (2005). Border ownership from intracortical interactions
in visual area V2. Neuron 47, 147–153. doi: 10.1016/j.neuron.2005.
04.005

Zhou, H., Friedman, H. S., and von der Heydt, R. (2000). Coding of
border ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611.
doi: 10.1523/JNEUROSCI.20-17-06594.2000

Zhu, S. D., Zhang, L. A., and von der Heydt, R. (2020). Searching for object
pointers in the visual cortex. J. Neurophysiol. 123, 1979–1994. doi: 10.1152/jn.001
12.2020

Frontiers inComputer Science 18 frontiersin.org84

https://doi.org/10.3389/fcomp.2023.1136987
https://doi.org/10.1152/jn.00203.2007
https://doi.org/10.7554/eLife.72573.sa2
https://doi.org/10.1113/jphysiol.2002.033555
https://doi.org/10.1007/s10827-017-0662-8
https://doi.org/10.1037/0033-295X.92.2.173
https://doi.org/10.1016/0042-6989(92)90039-L
https://doi.org/10.1016/S0262-8856(97)00083-8
https://doi.org/10.1109/CISS.2019.8693039
https://doi.org/10.1523/ENEURO.0479-18.2019
https://doi.org/10.1006/cogp.2001.0755
https://doi.org/10.1016/j.visres.2006.12.018
https://doi.org/10.7554/eLife.14320
https://doi.org/10.1037/a0019076
https://doi.org/10.1523/JNEUROSCI.15-02-01605.1995
https://doi.org/10.1523/JNEUROSCI.3590-14.2015
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1073/pnas.1014655108
https://doi.org/10.1068/p180055
https://doi.org/10.1016/j.neuron.2009.01.014
https://doi.org/10.1167/11.2.12
https://doi.org/10.1523/JNEUROSCI.2797-12.2013
https://doi.org/10.1038/nn1989
https://doi.org/10.1016/j.neuron.2005.05.028
https://doi.org/10.1038/nn1853
https://doi.org/10.1038/26475
https://doi.org/10.1126/science.1223082
https://doi.org/10.1523/JNEUROSCI.2929-08.2008
https://doi.org/10.1152/jn.00928.2010
https://doi.org/10.1093/cercor/bhm061
https://doi.org/10.3389/fpsyg.2015.01695
https://doi.org/10.1364/JOSAA.22.002222
https://doi.org/10.1523/JNEUROSCI.09-05-01731.1989
https://doi.org/10.1126/science.6539501
https://doi.org/10.1523/JNEUROSCI.12-04-01416.1992
https://doi.org/10.1167/3.9.666
https://doi.org/10.1152/jn.00125.2018
https://doi.org/10.1007/BF00622503
https://doi.org/10.1152/jn.01142.2015
https://doi.org/10.1523/ENEURO.0127-16.2016
https://doi.org/10.7281/T1C8276W
https://doi.org/10.1038/nrn1411
https://doi.org/10.1523/JNEUROSCI.5168-09.2010
https://doi.org/10.1016/j.neuron.2005.04.005
https://doi.org/10.1523/JNEUROSCI.20-17-06594.2000
https://doi.org/10.1152/jn.00112.2020
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 29 June 2023

DOI 10.3389/fcomp.2023.1178450

OPEN ACCESS

EDITED BY

Dirk Bernhardt-Walther,

University of Toronto, Canada

REVIEWED BY

Stavros Tsogkas,

Samsung AI Center Toronto, Canada

Katherine Rebecca Storrs,

Justus Liebig University Giessen, Germany

*CORRESPONDENCE

Paria Mehrani

paria61@yorku.ca

RECEIVED 02 March 2023

ACCEPTED 12 June 2023

PUBLISHED 29 June 2023

CITATION

Mehrani P and Tsotsos JK (2023) Self-attention

in vision transformers performs perceptual

grouping, not attention.

Front. Comput. Sci. 5:1178450.

doi: 10.3389/fcomp.2023.1178450

COPYRIGHT

© 2023 Mehrani and Tsotsos. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Self-attention in vision
transformers performs perceptual
grouping, not attention

Paria Mehrani* and John K. Tsotsos

Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada

Recently, a considerable number of studies in computer vision involve deep

neural architectures called vision transformers. Visual processing in these models

incorporates computational models that are claimed to implement attention

mechanisms. Despite an increasing body of work that attempts to understand

the role of attention mechanisms in vision transformers, their e�ect is largely

unknown. Here, we asked if the attention mechanisms in vision transformers

exhibit similar e�ects as those known in human visual attention. To answer

this question, we revisited the attention formulation in these models and found

that despite the name, computationally, these models perform a special class

of relaxation labeling with similarity grouping e�ects. Additionally, whereas

modern experimental findings reveal that human visual attention involves both

feed-forward and feedback mechanisms, the purely feed-forward architecture of

vision transformers suggests that attention in these models cannot have the same

e�ects as those known in humans. To quantify these observations, we evaluated

grouping performance in a family of vision transformers. Our results suggest that

self-attention modules group figures in the stimuli based on similarity of visual

features such as color. Also, in a singleton detection experiment as an instance

of salient object detection, we studied if these models exhibit similar e�ects

as those of feed-forward visual salience mechanisms thought to be utilized in

human visual attention. We found that generally, the transformer-based attention

modules assign more salience either to distractors or the ground, the opposite

of both human and computational salience. Together, our study suggests that

the mechanisms in vision transformers perform perceptual organization based on

feature similarity and not attention.

KEYWORDS

vision transformers, attention, similarity grouping, singleton detection, odd-one-out

1. Introduction

The Gestalt principles of grouping suggest rules that explain the tendency of perceiving

a unified whole rather than a mosaic pattern of parts. Gestaltists consider organizational

preferences, or priors, such as symmetry, similarity, proximity, continuity and closure as

grouping principles that contribute to the perception of a whole. These principles which

rely on input factors and the configuration of parts can be viewed as biases that result in

the automatic emergence of figure and ground. To Gestalt psychologists, the perceptual

organization of visual input to figure and ground was an early stage of interpretation prior to

processes such as object recognition and attention. In fact, they posited that higher-level

processes operate upon the automatically emerged figure. Some proponents of emergent

intelligence go as far as to undermine the effect of attention on perceptual organization. For

example, Rubin, known for his face-vase illusion, presented a paper in 1926 titled “On the

Non-Existence of Attention" (Berlyne, 1974).
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Despite the traditional Gestalt view, modern experimental

evidence suggests that in addition to low-level factors, higher-

level contributions can affect figure-ground organization.

Specifically, experimental findings suggest that attention is

indeed real and among the higher-level factors that influence

figure-ground assignment (Qiu et al., 2007; Poort et al., 2012)

(see Peterson, 2015 for review). Considering these discoveries

and the enormous literature on attention (see Itti et al., 2005, for

example), an interesting development in recent years has been the

introduction of deep neural architectures dubbed transformers

that claim to incorporate attention mechanisms in their hierarchy

(Vaswani et al., 2017). Transformers, originally introduced in the

language domain, were “based solely on attention mechanisms,

dispensing with recurrence and convolutions entirely"

(Vaswani et al., 2017).

Following the success of transformers in the language

domain, Dosovitskiy et al. (2021) introduced the vision

transformer (ViT), a transformer model based on self-attention

mechanisms that received a sequence of image patches as input

tokens. Dosovitskiy et al. (2021) reported comparable performance

of ViT to convolutional neural networks (CNNs) in image

classification and concluded, similar to (Vaswani et al., 2017), that

convolution is not necessary for vision tasks. The reported success

of vision transformers prompted a myriad of studies (Bhojanapalli

et al., 2021; Caron et al., 2021; Dai et al., 2021; D’Ascoli et al.,

2021; Liu et al., 2021, 2022; Mahmood et al., 2021; Srinivas et al.,

2021; Touvron et al., 2021; Wu B. et al., 2021; Wu H. et al., 2021;

Xiao et al., 2021; Yang et al., 2021; Yuan et al., 2021; Zhou et al.,

2021; Bao et al., 2022; Guo et al., 2022; Han et al., 2022; Pan

et al., 2022; Park and Kim, 2022; Zhou D. et al., 2022). In most

of these studies, the superior performance of vision transformers,

their robustness (Bhojanapalli et al., 2021; Mahmood et al., 2021;

Naseer et al., 2021) and more human-like image classification

behavior compared to CNNs (Tuli et al., 2021) were attributed to

the attention mechanisms in these architectures. Several hybrid

models assigned distinct roles of feature extraction and global

context integration to convolution and attention mechanisms,

respectively, and reported improved performance over models

with only convolution or attention (Dai et al., 2021; D’Ascoli

et al., 2021; Srinivas et al., 2021; Wu B. et al., 2021; Wu H. et al.,

2021; Xiao et al., 2021; Guo et al., 2022). Hence, these studies

suggested the need for both convolution and attention in computer

vision applications.

A more recent study by Zhou Q. et al. (2022), however,

reported that hybrid convolution and attention models do not

“have an absolute advantage" compared to pure convolution

or attention-based neural networks when their performance in

explaining neural activities of the human visual cortex from two

neural datasets was studied. Similarly, Liu et al. (2022) questioned

the claims on the role of attention modules in the superiority

of vision transformers by proposing steps to “modernize” the

standard ResNet (He et al., 2016) into a new convolution-based

model called ConvNeXt. They demonstrated that ConvNeXt with

no attention mechanisms achieved competitive performance to

state-of-the-art vision transformers on a variety of vision tasks.

This controversy on the necessity of the proposed mechanisms

compared to convolution adds to the mystery of the self-attention

modules in vision transformers. Surprisingly, and to the best of our

knowledge, no previous work directly investigated whether the self-

attention modules, as claimed, implement attention mechanisms

with effects similar to those reported in humans. Instead, the

conclusions in previous studies were grounded on the performance

of vision transformers vs. CNNs on certain visual tasks. As a

result, a question remains outstanding: Have we finally attained a

deep computational vision model that explicitly integrates visual

attention into its hierarchy?

Answering this question is particularly important for advances

in both human and computer vision fields. Specifically, in human

vision sciences, the term attention has a long history (e.g., Berlyne,

1974; Tsotsos et al., 2005) and entails much confusion (e.g.,

Di Lollo, 2018; Hommel et al., 2019; Anderson, 2023). In a review of

a book on attention (Sutherland, 1998) says,“After many thousands

of experiments, we know only marginally more about attention

than about the interior of a black hole”. More recently, Anderson

(2023) calls attention a conceptually fragmented term, a term that is

assumed to have one meaning is found to have many, and suggests

aid from mathematical language for theoretical clarity. The call for

a more formal approach to vision research has appeared several

times (e.g., Zucker, 1981; Tsotsos, 2011; Anderson, 2023) but no

broadly accepted specification of attention is available. Themajority

of words in any dictionary have multiple meanings, and a particular

class of words, homonyms, are spelled and pronounced the same

yet differ in meaning which is only distinguished by the context

in which they are used. “Attention” is one such word, here we

seek to understand the scope of its use in order to provide the

correct context.

To complicate matters further, many kinds of visual attention

have been identified, the primary distinctions perhaps being that

of overt and covert attention (with and without eye movements

and viewpoint changes, respectively). Tsotsos (2011) shows over

20 kinds in his taxonomy, and other comprehensive reviews on

the topic such as Desimone and Duncan (1995), Pashler (1998),

Kastner and Ungerleider (2000), Itti et al. (2005), Styles (2006),

Knudsen (2007), Nobre et al. (2014), Moore and Zirnsak (2017),

andMartinez-Trujillo (2022) similarly covermany kinds, not all the

same. As Styles (2006) asserts, attention is not a unitary concept.

In addition, discussions of attention are always accompanied by

consideration of how attention can change focus; this dynamic

aspect does not appear in transformers at all.

The many descriptions of attention often conflate mechanism

with effect while assuming that an exposition within some

narrow domain easily generalizes to all of cognitive behavior.

One might think that as long as the discussion remains within a

particular community, all can be controlled with respect to use of

terminology. This is not the case. Machine learning approaches

have been already employed frequently in recent years in brain

research by utilizing deep neural architectures as mathematical

models of the brain (Cadieu et al., 2014; Khaligh-Razavi and

Kriegeskorte, 2014; Kubilius et al., 2016; Eickenberg et al., 2017;

Zhuang et al., 2021). Therefore, it is only a matter of time before

vision transformers with attention modules are used in human

vision studies, if not already by the time of this publication. As

a result, it is imperative to understand how attention modules

in vision transformers relate to attention mechanisms in the
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human visual system to avoid adding further confusion to attention

research in human vision sciences.

Similarly, on the computer vision side, a more engineering kind

of discipline, we need to specify the requirements of a solution

against which we test the results of any algorithm realization.

But the requirements of attention modules in vision transformers

are not specified. They are only implied, through the use of

the term ‘attention’ and can be traced back to the studies that

explicitly motivated these modules, specifically, by the effect of

attention mechanisms in the human visual system (i.e.,Vaswani

et al., 2017→ Kim et al., 2017→Xu et al., 2015).

One might argue that from an engineering point of view, there

is no need for these modules to remain faithful to their biological

counterparts, hence, there is no need for direct comparison between

the two systems. However, that train has already left the station.

Computer vision has been using the term “attention” since the

mid-1970’s, connected to both inspiration from and comparisons

to human visual attention, and continuously to this day (there are

many reviews as evidence, e.g., Tsotsos and Rothenstein, 2011; Borji

and Itti, 2012; Bylinskii et al., 2015). An expectation that a new

mechanism can affect amnesia for a whole field is unwarranted. For

example, Tan et al. (2021), Yue et al. (2021), Zhu et al. (2021), Paul

and Chen (2022), and Panaetov et al. (2023) among others, have

already mentioned effects of these modules as similar to those of

attention in the human visual system.

Regardless of whether one considers attention from a human

vision perspective or a machine vision point of view, it is

unprincipled to leave the term ill-defined. Our goal in this paper

is to contribute to an understanding of the function of the attention

modules in vision transformers by revisiting two of their aspects.

First, we hope to show that transformers formulate attention

according to similarity of representations between tokens, and that

this results in perceptual similarity grouping, not any of the many

kinds of attention in the literature. Second, because of their feed-

forward architecture, vision transformers cannot be not affected by

factors such as goals, motivations, or biases (also see Herzog and

Clarke, 2014). Such factors have played a role in attention models

in computer vision for decades. Vision Transformers fall into the

realm of the traditional Gestalt view of automatic emergence of

complex features.

In a set of experiments, we examined attention modules

in various vision transformer models. Specifically, to quantify

Gestalt-like similarity grouping, we introduced a grouping dataset

of images with multiple shapes that shared/differed in various

visual feature dimensions and measured grouping of figures

in these architectures. Our results on a family of vision

transformers indicate that the attention modules, as expected

from the formulation, group image regions based on similarity.

Our second observations indicates that if vision transformers

implement attention, it can only be in the form of bottom-

up attention mechanisms. To test this observation, we measured

the performance of vision transformers in the task of singleton

detection. Specifically, a model that implements attention is

expected to almost immediately detect the pop-out, an item in the

input that is visually distinct from the rest of the items. Our findings

suggest that vision transformers perform poorly in that regard and

even in comparison to CNN-based saliency algorithms.

To summarize, our observations and experimental results

suggest that “attention mechanisms” is a misnomer for

computations implemented in so-called self-attention modules of

vision transformers. Specifically, these modules perform similarity

grouping and not attention. In fact, the self-attention modules

implement a special class of in-layer lateral interactions that

were missing in CNNs (and perhaps this is the reason for their

generally improved performance). Lateral interactions are known

as mechanisms that counteract noise and ambiguity in the input

signal (Zucker, 1978). In light of this observation, the reported

properties of vision transformers such as smoothing of feature

maps (Park and Kim, 2022) and robustness (Mahmood et al., 2021;

Naseer et al., 2021) can be explained. These observations lead to the

conclusion that the quest for a deep computational vision model

that implements attention mechanisms has not come to an end yet.

In what follows, we will employ the terms attention

and self-attention interchangeably as our focus is limited to

vision transformers with transformer encoder blocks. Also, each

computational component in a transformer block will be referred

to as a module, for example, the attentionmodule or themulti-layer

perceptron (MLP) module. Both block and layer, then, will refer to

a transformer encoder block that consists of a number of modules.

2. Materials and methods

In this section, we first provide a brief overview of vision

transformers followed by revisiting attention formulation and the

role of architecture in visual processing in these models. Then, we

explain the details of the two experiments we performed in this

study.

2.1. Vision transformers

Figure 1 provides an overview of Vision Transformer (ViT)

and the various modules in its transformer encoder blocks. Most

vision transformer models extend and modify or simply augment

a ViT architecture into a larger system. Regardless, the overall

architecture and computations in the later variants resemble those

of ViT and each model consists of a number of stacked transformer

encoder blocks. Each block performs visual processing of its input

through self-attention, MLP and layer normalization modules.

Input to these networks includes a sequence of processed image

tokens (localized image patches) concatenated with a learnable class

token.

Vision transformer variants can be grouped into three main

categories:

1. Models that utilized stacks of transformer encoder blocks as

introduced in ViT butmodified the training regime and reported

a boost in performance, such as DeiT (Touvron et al., 2021) and

BEiT (Bao et al., 2022).

2. Models that modified ViT for better adaptation to the

visual domain. For example, Liu et al. (2021) introduced an

architecture called Swin and suggested incorporating various

scales and shifted local windows between blocks. A few other
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FIGURE 1

The ViT model architecture (Dosovitskiy et al., 2021). First, each input image is split into local patches called tokens. After linear embedding of the

tokens, a numerical position embedding is added to each token. After concatenating a learnable class embedding shown with an asterisk to the input

sequence, the combined embeddings are fed to L blocks of transformer encoders. The output of the final encoder block is fed to a classification

head in ViT. The zoomed-in diagram on the right demonstrates the various modules within a transformer encoder block. These modules consist of

norm, multi-head self-attention and MLP.

work suggested changes to the scope of attention, for example,

local vs. global (Chen et al., 2021; Yang et al., 2021).

3. Hybrid models that introduced convolution either as a

preprocessing stage (Xiao et al., 2021) or as a computational step

within transformer blocks (Wu H. et al., 2021).

The family of vision transformers that we studied in our

experiments includes ViT, DEiT, BEiT, Swin, and CvT. These

models span all three categories of vision transformers as classified

above. For each model, we studied a number of pre-trained

architectures available on HuggingFace (Wolf et al., 2020). Details

of these architectures are outlined in Table 1.

2.1.1. Attention formulation
In transformers, the attention mechanism for a query and

key-value pair is defined as:

Attention(Q,K,V) = softmax(
QKT

√

dk
)V , (1)

where Q, K, and V represent matrices of queries, keys and values

with tokens as rows of these matrices, and dk is the dimension of

individual key/query vectors. Multiplying each query token, a row

of Q, in the matrix multiplication QKT is in fact a dot-product of

each query with all keys in K. The output of this dot-product can

be interpreted as how similar the query token is to each of the key

tokens in the input; a compatibility measure. This dot product is

then scaled by
√

dk and the softmax yields the weights for value

tokens. Vaswani et al. (2017) explained the output of attention

modules as “a weighted sum of the values, where the weight

assigned to each value is computed by a compatibility function of

the query with the corresponding key”. The same formulation was

employed in ViT while the compatibility function formulation is

slightly modified in some vision transformer variants. Nonetheless,

the core of the compatibility function in all of these models is a dot-

product measuring representation similarity. Vaswani et al. (2017)

reported improved performance when instead of a single attention

function, they mapped the query, key and value tokens to h disjoint

representational learned spaces and computed attention in each

space called a head. Concatenation of the attention computed in

individual heads yields the output of the attention module that they

called Multi-Head Attention module.

In transformer encoders, the building block of vision

transformers, the query, key and value have the same source

and come from the output of the previous block. Hence, the

attention modules in these blocks are called self-attention. In this

case, the attention formulation can be explained as a process

that results in consistent token representations across all spatial

positions in the stimulus. Specifically, token representation and

attention can be described as follows: each token representation

signifies presence/absence of certain visual features, providing a

visual interpretation or label at that spatial position. The attention

mechanism incorporates the context from the input into its

process and describes the inter-token relations determined by

the compatibility function. As a result, Equation (1) shifts the

interpretation of a given token toward that of more compatible
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TABLE 1 The family of vision transformers studied in this work.

Model Architecture name # layers # params Training dataset Fine-tuned

ViT ViT-base-patch16-224 12 86 M ImageNet-21k –

DeiT

DeiT-tiny-distilled-patch16-224 12 5 M ImageNet-1k ImageNet-1k

DeiT-small-distilled-patch16-224 12 22 M ImageNet-1k ImageNet-1k

DeiT-base-distilled-patch16-224 12 86 M ImageNet-1k ImageNet-1k

BEiT

BEiT-base-patch16-224 12 86 M ImageNet-21k ImageNet-1k

BEiT-base-patch16-224-pt22k 12 86 M ImageNet-21k –

BEiT-base-patch16-224-pt22k-ft22k 12 86 M ImageNet-21k ImageNet-21k

CvT
CvT-13 13 19.98 M ImageNet-1k –

CvT-21 21 31.54 M ImageNet-1k –

Swin

Swin-tiny-patch4-window7-224 12 29 M ImageNet-1k –

Swin-small-patch4-window7-224 12 50 M ImageNet-1k –

For each model, a number of architecture variations were studied. For all models, pre-trained architectures available on HuggingFace (Wolf et al., 2020) were utilized. Input resolution to all

pre-trained models was 224 × 224. The datasets used for training and fine-tuning are specified. Whereas, DeiT and BEiT models use the same general architecture as ViT, Swin introduces

multiple scales and shifted windows to overcome the shortcomings of fixed size and position in tokens for visual tasks. The CvT architectures are hybrid models combining convolution and

self-attention mechanisms in each transformer encoder block.

tokens in the input. The final outcome of this process will be groups

of tokens with similar representations. Zucker (1978) referred to

this process as “Gestalt-like similarity grouping process”.

In Zucker (1978), the Gestalt-like similarity grouping process is

introduced as a type of relaxation labeling (RL) process. Relaxation

labeling is a computational framework for updating the possibility

of a set of labels (or interpretations) for an object based on the

current interpretations among neighboring objects. Updates in RL

are performed according to a compatibility function between labels.

In the context of vision transformers, at a given layer, each token

is an object for which a feature representation (label) is provided

from the output of the previous layer. A token representation is

then updated (the residual operation after the attention module)

according to a dot-product compatibility function defined between

representations of neighboring tokens. In ViT, the entire stimulus

forms the neighborhood for each token.

Zucker (1978) defined two types of RL processes in low-

level vision: vertical and horizontal. In horizontal processes,

the compatibility function defines interaction at a single level

of abstraction but over multiple spatial positions. In contrast,

vertical processes involve interaction in a single spatial position

but across various levels of abstraction. Although Zucker counts

both types of vertical and horizontal processes contributing to

Gestalt-like similarity grouping, self-attention formulation only fits

the definition of horizontal relaxation labeling process and thus,

implements a special class of RL. As a final note, while traditional

RL relies on several iterations to achieve consistent labeling

across all positions, horizontal processes in vision transformers

are limited to a single iteration and therefore, a single iteration of

Gestalt-like similarity grouping is performed in each transformer

encoder block.

2.1.2. Transformer encoders are feed-forward
models

Even though the formulation of self-attention in vision

transformers suggests Gestalt-like similarity grouping, this alone

does not rule out the possibility of performing attention in these

modules. We consider this possibility in this section.

It is now established that humans employ a set of mechanisms,

called visual attention, that limit visual processing to sub-regions

of the input to manage the computational intractability of the

vision problem (Tsotsos, 1990, 2017). Despite the traditional Gestalt

view, modern attention research findings suggest a set of bottom-

up and top-down mechanisms determine the target of attention.

For example, visual salience [“the distinct subjective perceptual

quality which makes some items in the world stand out from

their neighbors and immediately grab our attention” (Itti, 2007)]

is believed to be a bottom-up and stimulus-driven mechanism

employed by the visual system to select a sub-region of the

input for further complex processing. Purely feed-forward (also

called bottom-up) processes, however, were shown to be facing

an intractable problem with exponential computational complexity

(Tsotsos, 2011). Additionally, experimental evidence suggests that

visual salience (Desimone and Duncan, 1995) as well as other low-

level visual factors could be affected by feedback (also known as top-

down) and task-specific signals (Folk et al., 1992; Bacon and Egeth,

1994; Kim and Cave, 1999; Yantis and Egeth, 1999; Lamy et al.,

2003; Connor et al., 2004; Baluch and Itti, 2011; Peterson, 2015).

In other words, theoretical and experimental findings portray

an important role for top-down and guided visual processing.

Finally, Herzog and Clarke (2014) showed how a visual processing

strategy for human vision cannot be both hierarchical and strictly

feed-forward through an argument that highlights the role of visual

context. A literature going back to the 1800’s extensively documents

human attentional abilities (Itti et al., 2005; Carrasco, 2011; Nobre

et al., 2014; Tsotsos, 2022; Krauzlis et al., 2023).

Modern understanding of visual attention in humans

provides a guideline to evaluate current computational models

for visual attention. Vision transformers are among more

recent developments that are claimed to implement attention

mechanisms. However, it is evident that these models with

their purely feed-forward architectures implement bottom-up

mechanisms. Therefore, if it can be established that these models
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implement attention mechanisms, they can only capture the

bottom-up signals that contribute to visual attention and not all

aspects of visual attention known in humans. These observations

call for a careful investigation of the effect of attention on visual

processing in these models.

2.2. Experiments

In our experiments, we will consider the output of the attention

module in eachmodel block (the green rectangle in Figure 1) before

the residual connection. In both experiments, we removed the class

token from our analysis. Suppose that an attention module receives

an input of size H ×W × C, where H,W, and C represent height,

width and feature channels. Then, the output, regardless of whether

the attention module is multi-head or not, will also be of size

H×W×C. In what follows, the term attentionmap is used for each

H×W component of the attentionmodule output along each single

feature dimension c ∈ {1, 2, . . . ,C}. In other words, the values

comprising each attention map are obtained from the attention

scores (Equation 1), along a single feature dimension. Also, feature

channel and hidden channel will be employed interchangeably.

It is important to emphasize that the attention maps we

consider for our experiments and evaluations differ from those

often visualized in the vision transformer literature. Specifically,

in our evaluations, we consider what the model deems as salient,

the regions that affect further processing in later model blocks.

In contrast, what is commonly called an attention map in

previous work (Dosovitskiy et al., 2021) is computed for a token,

usually the output token in vision transformers and by recursively

backtracking the compatibility of the token with other tokens to the

input layer (Abnar and Zuidema, 2020). Therefore, a different map

can be plotted for the various class tokens in the model and these

maps are conditioned on the given token. One can interpret these

maps as regions of input that are most relevant to yielding the given

class token. Also, note that the compatibility (result of the softmax

function in Equation 1) employed for this visualization, is only part

of what (Vaswani et al., 2017) called the attention score defined

Equation 1. Maps obtained with this approach do not serve our

goal: we seek to determine regions of the input that were considered

as salient, as Xu et al. (2015) put it, and were the focus of attention

during the bottom-up flow of the signal in inference mode. These

regions with high attention scores from Equation (1) are those

that affect the visual signal through the residual connection (the +

sign after the green rectangle in Figure 1). Hence, we evaluated the

output of the attention module in both experiments.

2.2.1. Experiment 1: similarity grouping
To quantify Gestalt-like similarity grouping in vision

transformers, we created a dataset for similarity grouping with

examples shown in Figure 2 and measured similarity grouping

performance in vision transformers mentioned in Section 2.1. As

explained earlier, the attention from Equation (1) signals grouping

among tokens. Therefore, we measured similarity grouping by

recording and analyzing the output of attention modules in

these models.

2.2.1.1. Dataset

Each stimulus in the dataset consists of four rows of figures

with features that differ along a single visual feature dimension

including hue, orientation, lightness, shape, orientation and size.

Each stimulus is 224 × 224 pixels and contains two perceptual

groups of figures that alternate between the four rows. The values

of the visual feature that formed the two groups in each stimulus

were randomly picked.

In some vision transformers, such as ViT, the token size

and position are fixed from input and across the hierarchy. This

property has been considered a shortcoming in these models when

employed in visual tasks and various work attempted to address this

issue (Liu et al., 2021). Since we included vision transformers that

employ ViT as their base architecture in our study, and in order to

control for the token size and position in our analysis, we created

the dataset such that each figure in the stimulus would fit within a

single token of ViT. In this case, each figure fits a 16 × 16 pixels

square positioned within ViT tokens. To measure the effect of fixed

tokens on grouping, we created two other sets of stimuli. In the

first set, we considered the center of every other token from ViT

as a fixed position for figures and generated stimuli with figures

that would fit 32 × 32 pixels squares. In this case, each figure will

be relatively centered at a ViT token, but will span more than a

single token. In the second set, we generated stimuli with figures

that were token-agnostic. We designed these stimuli such that the

set of figures was positioned at the center of the image instead of

matching token positions, with each figure size fitting a 37 × 37

pixels square.

Each version of our grouping dataset consists of 600 images

with 100 stimuli per visual feature dimension, summing to a total

of 1,800 stimuli for all three versions.

2.2.1.2. Evaluation and metrics

For a self-attention module that yields aH×W×Cmap, where

H and W represent height and width and C the number of feature

channels, we first normalized the attention maps across individual

feature channels so that attention scores are in the [0, 1] range.

Then, we measured grouping along each feature channel based on

two metrics:

• Grouping index: Suppose Ag1 and Ag2 represent the average

attention score of pixels belonging to figures in group 1 and

group 2, respectively. We defined the grouping index as:

GI =
‖Ag1 − Ag2‖

Ag1 + Ag2
. (2)

The grouping index GI varies in [0, 1], with larger values

indicating better grouping of one group of figures in the

stimulus along the feature channel.

• Figure-background ratio: The overall performance of vision

transformers will be impacted if background tokens are

grouped with figure tokens (mixing of figure and ground).

Therefore, we measured the figure-background attention

ratio as:

AR = max(
Ag1

Abkg
,
Ag2

Abkg
), (3)
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FIGURE 2

Similarity grouping stimuli examples. The stimuli in this dataset consists of two groups defined according to di�erence in one of hue, saturation,

lightness, shape, orientation, size features. Each stimuli has four rows with alternating figures from the two groups. The values for the visual features

that define the groups are chosen randomly. The shape set in this dataset consists of rectangle, triangle, ellipse, star, rhombus, right triangles,

trapezoid, hexagon and square. Examples in this figure were picked from the version in which each figure fits within a 37× 37 square.

where Ag1,Ag2 represent the average attention for group

1 and group 2 figures, respectively, and Abkg is the average

score of background. The attention ratio AR is positive and

values larger than 1 indicate the attention score of at least

one group of figures is larger than that of the background

(the larger the ratio, the less the mixing of figure and

ground). Note that the attention ratio AR signifies the relative

attention score assigned to figure and ground. Therefore,

values close to 1 suggest similar attention scores assigned to

figure and ground, quite contrary to the expected effect from

attention mechanisms.

For each stimulus, we excluded all feature dimensions along

which both Ag1 = 0 and Ag2 = 0 from our analysis. This happens

when, for example, the feature channels represent green hues, and

the figures in the stimulus are figures of red and blue. Moreover,

when analyzing AR, we excluded all channels with Abkg = 0 as our

goal was to investigate grouping of figure and ground when some

attention was assigned to the background.

2.2.2. Experiment 2: singleton detection
Evidence for similarity grouping does not disprove

implementation of attention in vision transformers. Since

these models are feed-forward architectures, investigating the

effect of attention modules in their visual processing must be

restricted to bottom-up mechanisms of attention. Therefore,

we limited our study to evaluating the performance of these

models in the task of singleton detection as an instance of saliency

detection (see Bruce et al., 2015; Kotseruba et al., 2019 for a

summary of saliency research). Specifically, strong performance on

saliency detection would suggest that these models implement the

bottom-up mechanisms deployed in visual attention.

In this experiment, we recorded the attention map of all blocks

in vision transformers mentioned in Section 2.1. Following Zhang

and Sclaroff (2013), we computed an average attention map for

each transformer block by averaging over all the attention channels

and considered the resulting map as a saliency map. Then, we

tested if the saliency map highlights the visually salient singleton.

Additionally, we combined the feature maps obtained after the

residual operation of attention modules and evaluated saliency

detection performance for the average feature map. It is worth

noting that self-attention modules, and not the features maps, are

expected to highlight salient regions as the next targets for further

visual processing. Nonetheless, for a better understanding of the

various representations andmechanisms in vision transformers, we

included feature-based saliency maps in our study.

2.2.2.1. Dataset

For the singleton detection experiment, we utilized the

psychophysical patterns (P3) and odd-one-out (O3) dataset

introduced by Kotseruba et al. (2019). Examples of each set are

shown in Figure 3. The P3 dataset consists of 2,514 images of size

1,024×1,024. Each image consists of figures on a regular 7× 7 grid

with one item as the target that is visually different in one of color,

orientation or size from other items in the stimulus. The location of

the target is chosen randomly. TheO3 dataset includes 2,001 images

with the largest dimension set to 1,024. In contrast to the grouping

and P3 datasets whose stimuli were synthetic images, the O3 dataset

consists of natural images. Each image captures a group of objects

that belong to the same category with one that stands out (target)

from the rest (distractors) in one or more visual feature dimensions

(color, texture, shape, size, orientation, focus and location). The

O3 with natural images provides the opportunity to investigate the

performance of the vision transformer models in this study on the

same type of stimuli those were trained. Both P3 andO3 datasets are

publicly available and further details of both datasets can be found

in Kotseruba et al. (2019).

2.2.2.2. Metrics

We followed Kotseruba et al. (2019) to measure singleton

detection performance in vision transformers. We employed their

publicly available code for the computation of metrics they used

to study traditional and deep saliency models. The number of

fixation and saliency ratio were measured for P3 and O3 images,

respectively, as explained below.

• Number of fixations: Kotseruba et al. (2019) used the number

of fixations required to detect pop-out as a proxy for salience.

Specifically, they iterated through the maxima of the saliency

map until the target was detected or a maximum number

of iterations was reached. At each iteration that resembles

a fixation of the visual model on a region of input, they

suppressed the fixated region with a circular mask before

moving the fixation to the next maxima. Lower number of
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FIGURE 3

Samples of stimuli from P3 and O3 datasets introduced by Kotseruba et al. (2019) are illustrated. These datasets consist of stimuli with singletons in

various feature dimensions. (A) Examples from the psychophysical patterns (P3) dataset. The singletons in this dataset are defined according to color,

orientation and size. (B) Examples from the odd-one-out (O3) dataset with singletons in color, size, texture, shape and orientation feature dimensions.

fixations indicates higher relative salience of the target to that

of distractors.

• Saliency ratio: Kotseruba et al. (2019) employed the ratio

of the maximum saliency of the target vs. the maximum

saliency of the distractors. They also measured the ratio of

the maximum saliency of the background to the maximum

saliency of the target. These two ratios that are referred to

as MSRtarg and MSRbg determine if the target is more salient

than the distractors or the background, respectively. Ideally,

MSRtarg is >1 andMSRbg is <1.

3. Results

3.1. Experiment 1: similarity grouping

Each vision transformer in our study consists of a stack of

transformer encoder blocks. In this experiment, our goal was to

investigate similarity grouping in attention modules in transformer

encoder blocks. We were also interested in changes in similarity

grouping over the hierarchy of transformer encoders. Therefore,

for each vision transformer, we took the following steps: We

first isolated transformer encoders in the model and computed

the grouping index (GI) and attention ratio (AR) per channel as

explained in Section 2.2.1.2. Then, we considered the mean GI and

AR per block as the representative index and ratio of the layer.

Figure 4A shows the mean GI for the architecture called “ViT-

base-patch16-224” in Table 1 over all layers of the hierarchy. The

GI is plotted separately according to the visual feature that differed

between the groups of figures. This plot demonstrates that GI for

all blocks of this model across all tested feature dimensions is

distinctly larger than 0, suggesting similarity grouping of figures

in all attention modules of this architecture. Interestingly, despite

some variations in the first block, all layers have relatively similar

GI. Moreover, the grouping indices for all feature dimensions are

close, except for hue with GI larger than 0.6 in the first block,

indicating stronger grouping among tokens based on this visual

feature.

Figure 4B depicts the mean AR for the same architecture, ViT-

base-patch16-224, for all the encoder blocks. Note that all curves in

this plot are above the AR = 1 line denoted as a dashed gray line,

indicating that all attention modules assign larger attention scores

to at least one group of figures in the input vs. the background

tokens. However, notable is the steep decline in the mean AR across

the hierarchy. This observation confirms the previous reports of

smoother attention maps in higher stages of the hierarchy (Park

and Kim, 2022) with similar attention assigned to figure and

background tokens.

Figure 5 shows the mean GI for all the architectures from

Table 1 separately based on the visual feature that defined the

groups in the input. All models, across all their layers, with some

exceptions, demonstrate mean GI that are distinctly larger than

0. The exceptions include the first layer of all BEiT architectures

and Swin-small-patch4-window7-224, and the last block of CvT-

13 and CvT-21. Interestingly, BEiT and Swin architectures jump

in their mean GI in their second block. Even though DeiT and

BEiT architectures utilized the same architecture as ViT but trained

the model with more modern training regimes, both models

demonstrate modest improvement over ViT-base-patch16-224.

Plots in Figure 6 depict the mean AR over all the

architectures. Interestingly, ViT-base-patch16-224 is the only

architecture whose mean AR for the first block is the largest

in its hierarchy and unanimously for all visual features.

Among the three DeiT architectures (tiny, small, and base),

DeiT-tiny-distilled-patch16-224, demonstrates larger mean AR
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FIGURE 4

Mean grouping index and attention ratio for the ViT-base-patch16-224 architecture over all stimuli but separated according to the visual features

that defined the groups of figures in the input. (A) The mean grouping index is larger than 0.2 for all layers of the model across all visual features,

suggesting perceptual grouping based on similarity in this architecture. (B) The attention ratio of larger than 1 for all transformer encoder blocks of

ViT-base-patch16-224 indicates larger scores are assigned to figure tokens. However, the steep decline in the AR ratio in the hierarchy demonstrates

mixing of figure and background tokens due to similar attention scores. (A) Mean grouping index (GI). (B) Mean attention ratio (AR).

ratios. Comp ared to ViT, DeiT-tiny-distilled-patch16-224 has

far fewer parameters and the comparable mean AR for this

architecture with Vit confirms the suggestion of Touvron et al.

(2021) that an efficient training regime in a smaller model

could result in performance gain against a larger model. Results

from Figure 6 are also interesting in that all of Swin and CvT

architectures that are claimed to adapt transformer models to the

vision domain, have relatively small mean AR over their hierarchy.

These results show that these models mix figure and background

tokens in their attention score assignments, an observation that

deserves further investigation in a future work.

Finally, Figure 7 summarizes the mean grouping index GI

for the DeiT-base-distilled-patch16-224 architecture over the three

versions of the grouping dataset as explained in Section 2.2.1.1.

These results demonstrate similar grouping index over all three

versions, suggesting little impact of token position and size relative

to figures in the input.

3.2. Experiment 2: singleton detection

Generally, in saliency experiments, the output of the model

is considered for performance evaluation. In this study, however,

not only we were interested in the overall performance of vision

transformers (the output of the last block), but also in the

transformation of the saliency signal in the hierarchy of these

models. Examining the saliency signal over the hierarchy of

transformer blocks would provide valuable insights into the role of

attention modules in saliency detection. Therefore, we measured

saliency detection in all transformer blocks.

3.2.1. The P3 dataset results
Following Kotseruba et al. (2019), to evaluate the performance

of vision transformer models on the P3 dataset, we measured the

target detection rate at 15, 25, 50, and 100 fixations. Chance level

performance for ViT-base-patch16-224, as an example, would be

6, 10, 20, and 40% for 15, 25, 50, and 100 fixations, respectively

(masking after each fixation explained in Section 2.2.2 masks an

entire token). Although these levels for the various models would

differ due to differences in token sizes and incorporating multiple

scales, these chance level performances fromViT-base-patch16-224

give a baseline for comparison.

Figure 8 demonstrates the performance of saliency maps

obtained from attention and feature maps of all ViT-base-patch16-

224 blocks. These plots clearly demonstrate that the feature-

based saliency maps in each block outperform those computed

from the attention maps. This is somewhat surprising since

as explained in Section 2.2.2, if vision transformers implement

attention mechanisms, attention modules in these models are

expected to highlight salient regions in the input for further visual

processing. Nonetheless, plots in Figure 8 tell a different story,

namely that feature maps are preferred options for applications

that require singleton detection. Comparing target detection rates

across color, orientation and size for both attention and feature

maps demonstrate higher rates in detecting color targets compared

to size and orientation. For all three of color, orientation and size,

the target detection rates peak at earlier blocks for attention-based

saliency maps and decline in later blocks, with lower than chance

performance for most blocks. This pattern is somewhat repeated in

feature-based saliency maps with more flat curves in the hierarchy,

especially for a larger number of fixations.

Similar detection rate patterns were observed in other vision

transformer models. However, due to limited space, we refrain

from reporting the same plots as in Figure 8 for all the vision

transformer models that we studied. These plots can be found in

the Supplementary material. Here, for each model, we report the

mean target detection rate over all blocks and the detection rate

for the last block of each model for both attention and feature-

based saliency maps. These results are summarized in Figures 9,

10 for the last and mean layer target detection rates, respectively.

Consistent with the observations from ViT-base-patch16-224 in
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FIGURE 5

Mean grouping index for all the architectures from Table 1 plotted separately for each visual feature that defined the perceptual grouping of figures in

the input. For comparison purposes, we plotted the grouping index of all models within the same range on the x-axis. Accordingly, we labeled the

first and last block on the horizontal axis. These plots demonstrate that all models perform similarity grouping of figures based on low-level visual

features such as hue and orientation. Except for the final block of CvT models, all layers of all architectures have mean GI higher than 0. The legend at

the top applies to all plots.

Figure 8, the feature-based saliency maps outperform attention-

based ones in Figure 9 and in general have higher detection rates

than the chance levels stated earlier. The attention-based saliency

maps, across most of the models, fail to perform better than

chance. Generally, all models have higher detection rates for color

targets, repeating similar results reported by Kotseruba et al. (2019).

Interestingly, Swin architectures that incorporate multiple token

scales, perform poorly in detecting size targets with both feature

and attention-based saliency maps.

Results for mean target detection rates over all blocks in

Figure 10 are comparable to those of last layer detection rates,

except for a shift to higher rates. Specifically, all models are

more competent at detecting color targets and that the feature-

based saliency maps look more appropriate for singleton detection.

In Swin architectures, the mean detection rate of feature-based

saliency maps are relatively higher for size targets than that of other

models. This observation, together with the last layer detection

rate of Swin models for size targets suggest that incorporating

multiple scales in vision transformers improves representing figures

of various sizes but the effect fades higher in the hierarchy.

In summary, the attention maps in vision transformers were

expected to reveal high salience for the target vs. distractors.

Nonetheless, comparing the detection rate of attention-based

saliency maps in vision transformers at 100 fixations with those

of traditional and deep saliency models reported by Kotseruba

et al. (2019) suggest that not only do the attention modules in

vision transformers fail to highlight the target, but also come

short of convolution-based deep saliency models with no attention

modules. Although the feature-based saliency maps in vision

transformers showed promising results in target detection rates
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FIGURE 6

Mean attention ratio for all the architectures from Table 1 plotted separately for each visual feature that defined the perceptual grouping of figures in

the input. Similar to Figure 5, and for ease of comparison, we plotted the AR for all models within the same range on the x-axis. Interestingly, Swin

and CvT, two models that adapted ViT to the visual domain, have relatively smaller attention ratios compared to the rest of the architectures,

suggesting that incorporating scale and shifting the token position in Swin and convolution in CvT architectures results in mixing of figure and

background representations and consequently attention scores. Among the other architectures that use ViT as the underlying model, the attention

ratio plots are somewhat similar to those of Figure 4B, that is, larger attention ratios in earlier blocks with a decline in the hierarchy.

relative to attention-based maps, in comparison with convolutional

saliency models (see Kotseruba et al., 2019, their Figure 3),

those performed relatively similar to convolution-based models.

Together, these results suggest that contrary to the expectation,

the proposed attention mechanisms in vision transformers are

not advantageous vs. convolutional computations in representing

visual salience.

3.2.2. The O3 dataset results
Wemeasured the maximum saliency ratiosMSRtarg andMSRbg

for feature and attention-based saliency maps of all blocks of

vision transformers in Table 1. These ratios are plotted in Figure 11,

demonstrating poor performance of all models in detecting the

target in natural images of the O3 dataset. We acknowledge that

we expected improved performance of vision transformers on

the O3 dataset with natural images compared to the results on

synthetic stimuli of the P3 dataset. However, whereas MSRtarg
ratios larger than 1 are expected (higher salience of target vs.

distractors), in both feature and attention-based saliency maps, the

ratios were distinctly below 1 across all blocks of all models, with

the exception of later blocks of two BEiT architectures. Notable

are the feature-based ratios of ViT-base-patch16-224 with peaks in

earlier blocks and a steep decrease in higher layers. In contrast, all

three BEiT architectures show the opposite behavior and perform

poorly in earlier blocks but correct the ratio in mid-higher stages

of processing.

TheMSRbg ratios illustrated in Figure 11 follow a similar theme

as MSRtarg ratios. Even though MSRbg ratios <1 suggest that the

target is deemed more salient than the background, most of these
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FIGURE 7

Each token in ViT-based architectures has a fixed position and size across the hierarchy of transformer encoders. This property is noted as a

shortcoming of some vision transformers. To control for position and size of tokens in these models, we designed our grouping dataset according to

the ViT model tokens such that each figure in the stimulus would fit within and positioned inside the model 16× 16 tokens. To test for the e�ect of

figure size, we introduced a version of grouping dataset with figures centered at every other ViT token but larger in size such that each figure would

fit a 32× 32 square. We also introduced a third version where figures in the stimuli were token-agnostic. In the third version, the set of figures occupy

the center of image and each figure fits within a 37× 37 square. We tested the grouping performance of the DeiT-base-distilled-patch16-224

architecture over all three versions of the dataset. Note that DeiT-base-distilled-patch16-224 utilizes an identical architecture as

ViT-base-patch16-224 with a di�erent training regime. Our results over the various visual features in the dataset demonstrate comparable results

over the three versions of the dataset, suggesting no significant e�ect of token position or size in grouping in vision transformers.

models have MSRbg ratios larger than 1 in their hierarchy. Among

all models, feature-based saliency of BEiT and Swin architectures

have the best overall performance.

For a few randomly selected images from the O3 dataset,

Figures 12–14 demonstrate the attention-based saliency map of the

block with bestMSRtarg ratio for each model. Each saliency map in

these figures is scaled to the original image size for demonstration

purposes. Interestingly, saliency maps in Figure 13 show how the

same BEiT model with varying training result in vastly different

attention-based maps.

To summarize, for a bottom-up architecture that is claimed to

implement attention mechanisms, we expected a boost in saliency

detection compared to convolution-based models with no explicit

attention modules. Our results on the O3 dataset, however, point

to the contrary, specifically in comparison with the best ratios

reported in Kotseruba et al. (2019) for MSRtarg and MSRbg at 1.4

and 1.52, respectively. These results, together with the proposal

of Liu et al. (2022) for a modernized convolution-based model with

comparable performance to vision transformers, overshadow the

claim of attention mechanisms in these models.
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FIGURE 8

Target detection rate of the ViT-base-patch16-224 model for 15, 25, 50, and 100 fixations on images of the P3 dataset. Legend on top applies to all

plots. For this model with 16× 16 pixels tokens, each masking after a fixation masks almost an entire token. Therefore, chance performance will be at

6, 10, 20, and 40% for 15, 25, 50, and 100 fixations. Comparing the plots of the left column for attention-based saliency maps vs. those on the right

obtained from feature-based saliency maps indicates superior performance of feature-based maps for salient target detection. This is interesting in

that modules claimed to implement attention mechanisms are expected to succeed in detecting visually salient figures in the input. Overall, for both

attention and feature-based maps, color targets have higher detection rates vs. orientation and size, the conditions in which performance is mainly at

chance level for all fixation thresholds and across all blocks in the ViT hierarchy. Additionally, in both attention and feature-based maps, performance

peaks in earlier blocks and declines in later layers, suggesting multiple transformer encoder blocks mix representations across spatial locations such

that the model cannot detect the visually salient target almost immediately or even by chance.
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FIGURE 9

Target detection rate of the last block of vision transformers investigated in this work for 15, 25, 50, and 100 fixations on stimuli from the P3 dataset.

The chance level performance of the ViT model is plotted as dashed lines with matching colors for each fixation threshold. Similar to the observation

of ViT, feature-based maps outperform attention-based maps and generally at rates higher than chance. Color targets are easier to detect for both

map types. Interestingly, both Swin architectures struggle to detect size targets in both attention and feature-based maps, despite incorporating

multiple scales in their model.

4. Discussion

Our goal in this work was to investigate if the self-attention

modules in vision transformers have similar effects to human

attentive visual processing. Vision transformers have attracted

much interest in the past few years partly due to out-performing

CNNs in various visual tasks, and in part due to incorporating

modules that were claimed to implement attention mechanisms.

Specifically, the origins of attention mechanisms in transformers

could be traced back to the work by Xu et al. (2015), where they
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FIGURE 10

Average target detection rate over all blocks of vision transformers for 15, 25, 50, and 100 fixations on stimuli from the P3 dataset. Compared to

detection rates in Figure 9, mean detection rates are higher for all models in all conditions (color, size, and orientation), indicating superior

performance of earlier transformer blocks compare to the final block in these models. In line with results in Figures 8, 9, color targets are easier to

detect and that generally, feature-based maps outperform attention-based maps in salient target detection.

introduced an attention-based model for image captioning. Xu

et al. (2015) motivated modeling attention in their network

by reference to attention in the human visual system and its

effect that “allows for salient features to dynamically come to

the forefront as needed”, especially in the presence of clutter in

the input. In light of these observations, a curious question to

ask is if these computational attention mechanisms have similar

effects as their source of inspiration. Despite some previous

attempts (Naseer et al., 2021; Tuli et al., 2021; Park and Kim,

2022), the role and effect of the attention modules in vision

Frontiers inComputer Science 15 frontiersin.org99

https://doi.org/10.3389/fcomp.2023.1178450
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Mehrani and Tsotsos 10.3389/fcomp.2023.1178450

FIGURE 11

Target and background saliency ratios (MSRtarg and MSRbg) for all vision transformer architectures on natural images of the O3 dataset. Even though

these models were trained on natural images, they fail in assigning higher saliency to the target object vs. the distractors or background (smaller than

1 MSRtarg and larger than 1 MSRbg ratios) in both feature and attention-based maps. For easier comparison, we also plotted MSRtarg and MSRbg for

the top-3 best performing deep saliency models from Kotseruba et al. (2019). These results compared to the reported ratios in Kotseruba et al. (2019)

for traditional and deep convolution-based saliency models suggest that the proposed attention mechanisms do not enhance the performance of

vision transformers when the goal is to detect the visually salient object in the stimulus.

transformers have been largely unknown. To give a few examples,

in a recent work, Li et al. (2023) studied the interactions of the

attention heads and the learned representations in multi-head

attention modules and reported segregation of representations

across heads. (Abnar and Zuidema, 2020) investigated the effect

of various approaches for visualizing attention map as an

interpretability step and with their attention rollout approach

often employed for this purpose. Ghiasi et al. (2022) visualized

the learned representations in vision transformers and found

similarity to those of CNNs. In contrast, Caron et al. (2021)

and Raghu et al. (2021) reported dissimilarities in learned

representations across the hierarchy of vision transformers and

CNNs. Cordonnier et al. (2020) as well as some others (D’Ascoli

et al., 2021) suggested attention mechanisms as a generalized form

of convolution. The quest to understand the role and effect of

attention modules in transformers is still ongoing as these models

are relatively new and the notable variations in findings (for

example, dis/similarity to CNNs) adds to its importance. Yet, and

to the best of our knowledge, none of these studies investigated

if the computations in self-attention modules would have similar

effects on visual processing as those discovered with visual attention

in humans.
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FIGURE 12

The attention-based saliency map of the block with the best MSRtarg ratio for ViT and DeiT models on a select few images from the O3 dataset. In

each map, saliency varies from blue (least salient) to yellow (most salient). Each saliency map in these figures is scaled to the original image size for

demonstration purposes.

In this work, we studied two aspects of processing in

vision transformers: the formulation of attention in self-attention

modules, and the overall bottom-up architecture of these deep

neural architectures. Our investigation of attention formulation

in vision transformers suggested that these modules perform

Gestalt-like similarity grouping in the form of horizontal relaxation

labeling whereby interactions from multiple spatial positions

determine the update in the representation of a token. Additionally,
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FIGURE 13

The attention-based saliency map of the block with the best MSRtarg ratio for BEiT models on a select few images from the O3 dataset. In each map,

saliency varies from blue (least salient) to yellow (most salient). Each saliency map in these figures is scaled to the original image size for

demonstration purposes. An interesting observation is how the variants of the same model with di�ering training regimes result in vastly di�erent

attention-based saliency maps.

given previous evidence on the role of feedback in human visual

attention (Folk et al., 1992; Bacon and Egeth, 1994; Desimone and

Duncan, 1995; Kim and Cave, 1999; Yantis and Egeth, 1999; Lamy

et al., 2003; Connor et al., 2004; Baluch and Itti, 2011; Peterson,

2015), we argued that if vision transformers implement attention

mechanisms, those can only be in the form of bottom-up and

stimulus-driven visual salience signals.

Testing a family of vision transformers on a similarity

grouping dataset suggested that the attention modules in these

architectures perform similarity grouping and that the effect

decays as hierarchical level increases in the hierarchy especially

because more non-figure tokens are grouped with figures in

the stimulus over multiple transformer encoder blocks. Most

surprising, however, were our findings in the task of singleton

detection as a canonical example of saliency detection. With both

synthetic and natural stimuli, vision transformers demonstrated

sub-optimal performance in comparison with traditional and deep

convolution-based saliency models.

The P3O3 dataset was designed according to psychological

and neuroscience findings on human visual attention.
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FIGURE 14

The attention-based saliency map of the block with the best MSRtarg ratio for CvT and Swin models on a select few images from the O3 dataset. In

each map, saliency varies from blue (least salient) to yellow (most salient). Each saliency map in these figures is scaled to the original image size for

demonstration purposes.

Kotseruba et al. (2019) demonstrated a gap between human

performance and traditional/CNN-based saliency models in

singleton detection tasks. The fact that Kotseruba et al. (2019)

reported that training CNN-based saliency models on these

stimuli did not improve their performance, hints on a more

fundamental difference between the two systems. Several other
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works have provided evidence on the lack of human equivalence

in deep neural networks (Ghodrati et al., 2014; Dodge and

Karam, 2017; Kim et al., 2018; Geirhos et al., 2019; Horikawa

et al., 2019; Hu et al., 2019; RichardWebster et al., 2019; Wloka

and Tsotsos, 2019; Baker et al., 2020; Lonnqvist et al., 2021;

Ricci et al., 2021; Xu and Vaziri-Pashkam, 2021a,b, 2022;

Ayzenberg and Lourenco, 2022; Feather et al., 2022; Fel et al.,

2022; Vaishnav et al., 2022; Zerroug et al., 2022; Zhou Q. et al.,

2022) on various aspects of visual processing. The claim of

implementing attention mechanisms in vision transformers offered

the possibility that these models might be more human-like.

This impression was confirmed in the work of Tuli et al. (2021)

who reported that vision transformers are more human-like

than CNNs based on performance on the Stylized ImageNet

dataset (Geirhos et al., 2019). Our work, however, adds to the

former collection of studies and reveals a gap between human

visual attention and the mechanisms implemented in vision

transformers.

This work can be further extended in several directions. For

example, even though Kotseruba et al. (2019) found training CNN-

based saliency models on the O3 dataset did not improve their

saliency detection performance, an interesting experiment is to

fine-tune vision transformers on the O3 dataset and evaluate the

change or lack of change in their saliency detection performance.

Additionally, incorporating vertical visual processes into the

formulation in Equation (1) is another avenue to explore in

the future.

To conclude, not only does our deliberate study of attention

formulation and the underlying architecture of vision transformers

suggest that these models perform perceptual grouping and do

not implement attention mechanisms, but also our experimental

evidence, especially from the P3O3 datasets confirms those

observations. The mechanisms implemented in self-attention

modules of vision transformers can be interpreted as lateral

interactions within a single layer. In some architectures, such as

ViT, the entire input defines the neighborhood for these lateral

interactions, in some others (Yang et al., 2021) this neighborhood

is limited to local regions of input. Although Liu et al. (2022)

found similar performance in a modernized CNNs, the ubiquity

of lateral interactions in the human and non-human primate

visual cortex (Stettler et al., 2002; Shushruth et al., 2013) suggest

the importance of these mechanisms in visual processing. Our

observation calls for future studies to investigate whether vision

transformers show the effects that are commonly attributed

to lateral interactions in the visual cortex such as crowding,

tilt illusion, perceptual filling-in, etc. (Lin et al., 2022). Self-

attention in vision transformers performs perceptual organization

using feature similarity grouping, not attention. Additionally,

considering Gestalt principles of grouping, vision transformers

implement a narrow aspect of perceptual grouping, namely

similarity, and other aspects such as symmetry and proximity

seem problematic for these models. The term attention has a

long history going back to the 1800’s and earlier (see Berlyne,

1974) and in computer vision to 1970’s (for examples, see Hanson

and Riseman, 1978). With decades of research on biological

and computational aspects of attention, the confusion caused by

inappropriate use of terminology and technical term conflation

has already been problematic. Therefore, we remain with the

suggestion that even though vision transformers do not perform

attention as claimed, they incorporate visual mechanisms in deep

architectures that were previously absent in CNNs and provide

new opportunities for further improvement of our computational

vision models.
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Perceptual organization and visual 
awareness: the case of amodal 
completion
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We investigated the involvement of visual awareness in amodal completion, 
and specifically, whether visual awareness plays a differential role in local versus 
global completion, using a primed shape discrimination paradigm and the color-
opponent flicker technique to render the prime invisible. In four experiments, 
participants discriminated the shape of a target preceded by a partly occluded 
or a neutral prime. All primes were divergent occlusion patterns in which the 
local completion is based on good continuation of the contours at the point 
of occlusion and the global completion is based on maximum symmetry. The 
target corresponded to the shape that could arise as a result of local or global 
completion of the occluded prime. For each experiment with an invisible prime 
we  conducted a version with a visible prime. Our results suggest that local 
completion, but not global completion, of a partly occluded shape can take 
place in the absence of visual awareness, but apparently only when the visible 
occluded shape generates a single, local completion. No completion, either local 
or global, appears to take place in the absence of visual awareness when the 
visible occluded shape generates multiple completions. The implications of these 
results to the differential role of visual awareness in local and global completions 
and to the relationship between multiple completions and unconscious amodal 
completions are discussed.

KEYWORDS

amodal completion, visual awareness, perceptual organization, global completion, local 
completion, symmetry, good continuation, color-opponent flicker (COF)

1. Introduction

Objects in our environment are often partly occluded by other objects or by themselves. 
Consequently, the input to our visual system is fragmented, yet we perceive our environment as 
a coherent scene with complete and whole objects. The visual system apparently fills in the 
incomplete parts of occluded objects, and does it rapidly and effortlessly. This filling in of 
contours and surfaces behind occluders has been referred to as amodal completion (Michotte 
et al., 1964,1991; see van Lier and Gerbino, 2015, for a review).

Two types of completions have been identified, local, and global. Local completion is based 
on local contour properties, mainly in line with the Gestalt principle of good continuation 
(Wertheimer, 1938) – a smooth connection between the visible contours of the occluded object 
(e.g., Kellman and Shipley, 1991; Wouterlood and Boselie, 1992; Fantoni and Gerbino, 2003). 
Global completion is based on global shape properties like symmetry and regularity (e. g., 
Buffart et al., 1981; Sekuler et al., 1994; van Lier et al., 1994, 1995b), fitting with the Gestalt Law 
of Prägnanz (Koffka, 1935).
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In some occlusion patterns, referred to as convergent occlusion 
patterns, the local and global completions converge toward the same 
shape, whereas in the divergent occlusion patterns local and global 
completions yield different shapes (e.g., van Lier et al., 1995b; de Wit 
et al., 2006; Hazenberg et al., 2014). Research using various paradigms 
has demonstrated that indeed both local and global completions can 
be generated and the two completions can be competitive or one can 
prevail (Sekuler et al., 1994; van Lier et al., 1995a,b; van Lier and 
Wagemans, 1999; Plomp and van Leeuwen, 2006; Hazenberg 
et al., 2014).

Under certain conditions amodal completion appears to 
be cognitively impenetrable, as in the famous Kanizsa’s “horse illusion” 
(Kanizsa, 1979), in which partly occluded horses tend to be interpreted 
as a single elongated horse even though it conflicts with our 
knowledge. Recent studies, however, demonstrated that amodal 
completion can be  influenced by familiarity and knowledge 
(Hazenberg et  al., 2014; Hazenberg and van Lier, 2016; Yun 
et al., 2018).

Here we aim to examine whether amodal completion can take 
place in the absence of visual awareness, and specifically, whether 
visual awareness plays a differential role in  local versus 
global completion.

Research has recently addressed the question whether visual 
awareness of the stimulus is needed for it to be perceptually organized 
(e.g., Schwarzkopf and Rees, 2011; Montoro et al., 2014; Kimchi et al., 
2018; Sabary et al., 2020). The results suggest that it depends on the 
perceptual organization processes under study, which is perhaps not 
surprising in light of the evidence that perceptual organization is a 
multiplicity of processes that vary in time course, developmental 
trajectory and attentional demands (e.g., Kimchi, 1998, 2000, 2009; 
Behrmann and Kimchi, 2003; Kimchi et al., 2005), and on the methods 
used to suppress the stimulus from awareness as they differ in the level 
at which the suppression takes place (e.g., Breitmeyer, 2015; Moors 
et al., 2016; Kimchi et al., 2018). Of particular relevance to the present 
article, grouping based on mirror symmetry was found to require 
visual awareness (Devyatko and Kimchi, 2020). Using a priming 
paradigm and a sandwich masking as an invisibility-inducing method, 
Devyatko and Kimchi presented participants with masked prime and 
a clearly visible target, which could be congruent or incongruent with 
the prime in symmetry. On each trial, the participants performed a 
two-alternative discrimination task on the target, and then rated the 
visibility of the prime on a subjective visibility four-point scale. 
Subjectively invisible primes failed to produce response priming, 
suggesting that symmetry detection may depend on visual awareness. 
This finding may suggest that global completion, to the extent that it 
is based on global symmetry, cannot take place in the absence of visual 
awareness. We  note, however, that the stimuli in Devyatko and 
Kimchi’s study were quite minimal – composed of just two vertical 
symmetric or asymmetric lines, thus having just one axis of symmetry 
when symmetrical. It is possible that in the presence of multiple axes 
of symmetry unconscious global completion can occur.

Also relevant to the present article are the findings from studies 
examining the relationship between visual awareness and another type 
of perceptual completion – modal completion. In modal completion 
the completed object has sensory qualities, as, for example, the 
Kanizsa’s illusory triangle (Kanizsa, 1979), in which the observer 
perceives illusory contours and a bright surface in areas of the stimulus 
where there is no actual luminance discontinuity. There is little 

evidence that illusory contours can be formed in the absence of visual 
awareness. No perception of illusory contours was found when 
Kanizsa-type inducers were suppressed from awareness by binocular 
rivalry (Sobel and Blake, 2003), continuous flash suppression (CFS) 
(Harris et al., 2011), sandwich masking and counter-phase flickering 
(Banica and Schwarzkopf, 2016). In contrast, Wang et al. (2012), using 
breaking continuous flash suppression (b-CFS), found that a Kanizsa 
triangle emerged from suppression significantly faster than a control 
stimulus, presumably suggesting formation of illusory contours 
without awareness (but see Moors et al., 2016), and Jimenez et al. 
(2017) found priming by illusory figure masked by sandwich masking 
when the prime-mask SOA was 53 ms, but not when it was 23 ms. 
Thus, the results provide somewhat inconsistent evidence. 
Furthermore, the question whether amodal and modal completions 
share the same underlying mechanisms, as suggested by the “identity 
hypothesis” (Kellman and Shipley, 1991; Shipley and Kellman, 1992), 
or they have different mechanisms (Anderson et al., 2002; Singh, 2004; 
Anderson, 2007a), has been a matter of a furious debate (e.g., Kellman 
et al., 2007; Anderson, 2007b), and the controversy continues (see van 
Lier and Gerbino, 2015, for a discussion). Therefore we cannot draw 
clear predictions from the findings concerning the relationship 
between modal completion and visual awareness to the one between 
amodal completion and visual awareness.

To the best of our knowledge, Emmanouil and Ro’s (2014) study 
is the only one to date that attempted to examine whether amodal 
completion can take place in the absence of visual awareness. 
Emmanouil and Ro examined the effect of invisible shape primes (a 
circle in Experiment 1 and a square in Experiment 2) on discrimination 
of a visible target. Invisibility was induced by metacontrast 
(Experiment 1) and backward masking (Experiment 2). They found 
that occluded and unoccluded primes produced a similar pattern of 
priming, suggesting that the invisible occluded primes were amodally 
completed. Note that the occluded patterns used by Emmanouil and 
Ro were highly familiar, convergent occlusion patterns, making it 
difficult to generalize their results to less familiar and to divergent 
occlusion patterns. More importantly, there are some concerns 
associated with Emmanouil and Ro’s study, mainly regarding their 
prime identification task used for testing the visibility of the primes. 
The prime identification task in Experiments 1 and 2 included a target 
and the participants were instructed to ignore it. Not only could the 
to-be-ignored target bias perception of the prime, but identification of 
the prime could be  susceptible to memory. Furthermore, in 
Experiment 1, a complete circle was considered as a “correct” response 
in the occluded and control prime conditions, thus actually testing 
whether the supposedly invisible prime was completed, rather than 
testing the visibility of the prime per se. In Experiment 2, the 
invisibility of the prime was questionable because prime identification 
was significantly above chance. Thus, the absence of a clear evidence 
for the invisibility of the prime in both experiments casts doubt on the 
interpretation of the observed results as indicating amodal completion 
without awareness.

In the present study, we  used a priming paradigm in which 
participants discriminated the shape of a target preceded by a partly 
occluded or a neutral prime. The partly occluded primes were 
divergent occlusion patterns adapted from Sekuler et al. (1994) and 
Plomp and van Leeuwen (2006). The target corresponded to the shape 
that could arise as a result of a local or a global completion of the 
partly occluded prime. The prime was suppressed from awareness by 
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a modification of the color-opponent flicker (COF) method developed 
by Hoshiyama et al. (2006a,b). This method allows to present the 
prime for as long as required, and the luminance and contrast of the 
visual stimulus remain constant during the presentation period. This 
is important because amodal completion takes between 75 to 250 ms 
to complete, depending on the amount of occlusion and on the 
experimental task (Sekuler and Palmer, 1992; Murray et al., 2001; 
Guttman et al., 2003), so that backward masking commonly used to 
study unconscious processing, in which the prime is briefly presented 
(~40 ms), cannot be used. Thus, we presented the prime for 300 ms 
and ensured the invisibility of the prime during the presentation time.

Awareness of the prime was assessed by an objective visibility test, 
using a prime visibility task. Unconscious completion of the prime was 
measured as the difference between response to the target after the 
occluded prime and the neutral prime (priming effect). We reasoned 
that if the occluded prime is completed such that it is the same as the 
target, then performance after the occluded prime is expected to 
be better than after the neutral prime.

2. General methods

Each experiment included two parts. In the first part, participants 
performed the priming task; in the second part, following the 
completion of the first part, the participants performed the 
visibility task.

For each experiment with invisible prime we conducted a version 
with a visible prime to ensure that the primes and procedure that 
we used allow for amodal completion when the primes are visible.

2.1. Participants

Participants in all the experiments were students at the University of 
Haifa and were paid or granted a course credit for participation. All 
participants provided informed consent to a protocol approved by the 
Ethics Committee of the University of Haifa. All participants had normal 
vision and normal color vision and none, except for three, participated 
in more than one experiment. The sample size for the invisible 
experiments was calculated on the basis of an a priori power analysis 
(G*Power 3.1; Faul et  al., 2007) to detect priming effects, given a 
moderate effect size (0.50), α = 0.05 and 80% power. The sample size for 
the visible experiments was based on previously reported sample sizes in 
studies investigating amodal completion with priming paradigms 
(Sekuler et al., 1994; van Lier et al., 1995b; Hazenberg et al., 2014).

2.2. Apparatus

The experiments took place in a dimly lit room. All stimuli were 
generated using Matlab R2014a and Psychophysics Toolbox1 and were 
presented on a 20″ sgi color monitor (C22BW711,1024 × 768 
resolution, 100 Hz refresh rate) attached to a Mac Pro Late 2013 (3.7 
GHz Quad-Core Intel Xeon ES). Responses were collected via Apple 

1 http://psychtoolbox.org

keyboard A1243emc 2,171. Participants viewed the stimuli at a 
distance of 57 cm with their head supported by a chin rest.

2.3. Stimuli

The prime stimuli were partly occluded shapes (occluded primes), 
and neutral primes comprised of two small squares (side: 0.25°) 
randomly placed within the area occupied by the partly occluded 
prime stimulus. The prime stimuli were drawn in red (R,G,B: 255,0,0; 
13.8 cd/m2; x, y: 0.620, 0.348) and in green (R,G,B: 0,165,0; 13.8 cd/
m2; x, y: 0.290, 0.594). When the color of the occluded shape was red, 
the color of the occluder was green, and when the color of the 
occluded shape was green the color of the occluder was red. Hereafter, 
the color of the occluded shape is used for referring to the color of the 
prime stimulus. The prime stimuli were drawn on a red-and-green 
checkerboard background (9° X 9°) and covered with a black mesh 
(Figure 1; see, Hoshiyama et al., 2006a,b). The average amount of 
contour and surface area occlusion was 20 to 25%.

All primes were divergent occlusion patterns; their local 
completion is always based on good continuation of the contours at 
the point of occlusion, and the global completion is based on 
maximum symmetry.

There were two types of targets corresponding to the two different 
shapes that could arise as a result of global and local completions of 
the occluded prime. The targets were presented on a grey (R,G,B: 
170,170,170) background.

The stimuli for the visibility task corresponded to the global and 
local completions of the occluded primes with the occluder placed 
behind the figure.

The primes and targets in the priming task and the primes in the 
visibility task for Experiments 1–4 are presented in Figures 1A–D, 
respectively.

2.4. Procedure and design

2.4.1. Invisible prime experiments (Experiments 
1a–4a)

These experiments were designed to examine whether amodal 
completion can take place in the absence of visual awareness. The 
prime was rendered invisible by means of a modification of the Color-
Opponent Flicker (COF) method developed by Hoshiyama et  al. 
(2006a,b). When two isoluminant opponent colors, for example, red 
and green, alternate at frequencies above the flicker fusion threshold 
(∼30 Hz), the two colors fuse such that one uniformly yellow color is 
perceived (e.g., Schiller and Logothetis, 1990). In the conventional 
COF method, the red and green colors must be  isoluminant. 
Hoshiyama et al.’s (2006a,b) modification of covering the figures with 
a black mesh prevents one color from being directly adjacent to 
another color such that no edges, caused by the difference in 
luminosity between two colors during COF, are produced, and 
consequently there is no need to strictly control the two colors 
for isoluminosity.

In each experiment, participants first undertook the masked 
priming task and following its completion they performed the 
visibility task.
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2.4.1.1. Priming task
The sequence of events in a trial in the priming task is shown in 

Figure 2A (left panel). Each trial started with the presentation of a 
fixation mark (0.5° × 0.5° blue cross, R,G,B, 0,0,255) at the center of 
the screen for 1,000 ms. Then a pair of primes was presented 
alternately (e.g., red-green-red green…) at 100 Hz (10 ms presentation 
of each image) for 300 ms. Previous research have suggested that given 
the amount of occlusion that we used, presentation time of 300 ms is 
clearly sufficient for perceptual completion to take place (Murray 
et al., 2001; Guttman et al., 2003). The red and green primes fused and 
a uniform dark yellowish color was perceived. In half of the trials the 
alternated primes started with the red prime and in the other half with 
the green prime. Following the prime, a visible target (local or global) 
appeared and remained on the screen until the participant responded 
or 2,000 ms had elapsed. The color of the target shape was opposite to 
the color of the last prime during the COF sequence. Participants had 
to indicate the shape of the target by pressing one of two keys (“local 

shape” key or “global shape” key) with their dominant hand as fast as 
possible while avoiding making mistakes (Participants were told that 
the color of the shapes was irrelevant.)

All the combinations of prime type (occluded, neutral), first prime 
color in the alternated sequence (red, green) and target (global, local) 
were presented with equal frequency in a random order. Each 
participant completed 240 trials with five self-administrated breaks, 
preceded by 16 practice trials. During the practice, an auditory tone 
provided immediate feedback after an incorrect response or when 
2,000 ms had elapsed with no response.

2.4.1.2. Visibility task
After completing the masked priming task participants 

performed the visibility task. The sequence of events in a trial, 
presented in Figure  2A (right panel), was similar to that of the 
priming task except that no target was presented after the presentation 
of the masked prime; instead of the target a question mark appeared 

FIGURE 1

The primes and targets in the priming task, and the primes in the visibility task, used in (A) Experiment 1, (B) Experiment 2, (C) Experiment 3 and 
(D) Experiment 4. The primes were drawn in red or green on a red-and-green checkerboard background and covered with black mesh (see text for 
details).
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and stayed on the screen till response. The prime stimuli were a pair 
of red and green global primes or a pair of red and green local primes 
(see Figure 1). Participant had to indicate the shape of the prime by 
pressing one of two keys (“global shape” key or “local shape” key), and 
were instructed to guess the prime shape if the prime was invisible. 
All the combinations of the two prime types (global, local) and the 
first prime color (red, green) were presented with equal frequency in 
a random order. There were 40 trials preceded with 4 practice trials. 
No feedback was provided in the practice trials.

After completing the whole experiment, the participants were 
tested with two cards (# 70 and # 74) from Ishihara’s Test for Color 
Deficiency in order to make sure they had normal color vision.

2.4.2. Visible prime experiments (Experiments 
1b–4b)

For each of the invisible prime experiment we  conducted a 
version in which the prime was visible. The visible prime experiment 
was similar to the corresponding invisible prime experiment, except 
that the colors of the primes did not alternate during a trial; either a 
red prime or a green prime was presented at 100 Hz (10 ms 
presentation of each image) for 300 ms, resulting in a visible prime. 
The sequence of events in a trial in the priming task and in the 
visibility task is presented in Figure 2B.

Apparatus, procedure and design were the same for 
all experiments.

FIGURE 2

The sequence of events in a trial in the priming task (left panel) and in the visibility task (right panel) in (A) the invisible prime experiments and (B) the 
visible prime experiments. The figure depicts the prime and the global target of Experiment 1 (see text for details).
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TABLE 1 Mean RTs (ms) and mean AC (%) for global and local target as a function of prime condition (neutral and occluded) for each experiment.

Global target Local target

Neutral prime Occluded prime Neutral prime Occluded prime

RT AC RT AC RT AC RT AC

Experiment 1a 540.89 97.46 539.18 97.59 555.88 94.75 553.41 96.17

Experiment 1b 581.82 97.96 561.67 96.94 584.18 97.15 567.17 97.31

Experiment 2a 536.62 95.61 548.49 97.03 550.26 95.92 542.28 96.54

Experiment 2b 545.63 96.85 546.54 95.37 542.75 96.48 521.46 95.83

Experiment 3a 471.56 97.71 472.26 97.28 466.74 97.59 472.09 97.35

Experiment 3b 492.15 96.57 483.71 96.94 489.76 96.85 472.49 97.50

Experiment 4a 471.27 98.02 474.39 98.63 468.91 97.84 469.29 97.22

Experiment 4b 504.96 97.68 492.64 98.24 498.63 97.02 502.37 96.66

2.5. Data analysis

All reaction time (RT) summaries and analyses are based on 
participants’ mean RTs for correct responses. Trials with RTs shorter than 
200 ms or longer than 1,600 ms were excluded from the analyses (less 
than 1% in all experiments). Because instructions to the participants 
emphasized both speed and accuracy, and to simplify presentation and 
analyses, we used an inverse efficiency (IE) score (mean correct RT 
divided by proportion of correct responses) as the dependent measure 
(Townsend and Ashby, 1978, 1983). Using IE in the present data analyses 
was appropriate given the high accuracy rate, which exceeded 94% in all 
our experiments, and the similar pattern of results for RT and accuracy 
measures (Bruyer and Brysbaert, 2011; Vandierendonck, 2017, 2018). 
Repeated measures ANOVAs were used to analyze the IE data. All 
ANOVAs were calculated using SAS (version 9.4). See the 
Supplementary materials for analyses of accuracy and RT separately.

When null effects were theoretically important, i.e., inferring that 
awareness may be necessary for amodal completion to occur, we also 
evaluated evidence in favor of the null hypothesis by computing the 
Bayes factor (BF10) in a Bayesian paired t-test, using JASP statistical 
software (www.jasp-stats.org) and a Cauchy prior centered on zero 
(scale = 0.707).

3. Experiment 1

3.1. Participants

Twenty-seven individuals (24 females and 3 males, 4 left-handed, 
age ranged 18–29, M = 23.2) participated in Experiment 1a (Invisible-
prime experiment), and 18 individuals (13 females and 5 males, 3 
left-handed, age ranged 19–31, M = 23.1) participated in Experiment 
1b (Visible-prime experiment).

3.2. Stimuli

The basic shape was a symmetrical shape consisting of a large circle 
(3.95° in diameter) and four elliptical protrusions and containing two 
axes of symmetry. The overall size of the shape was 4.8° X 4.2°. The 
symmetrical shape was partly occluded by a 2.7° × 2.7° square, 

constituting the occluded prime (Figure 1A). The global completion of 
the occluded shape resulted in the symmetrical shape, whereas the 
local completion by good continuation of the visible contours of the 
occluded shape resulted in a different shape with three elliptical 
protrusions and one axis of symmetry. The two targets corresponded 
to the two shapes that resulted from global and local completions, 
respectively (Figure 1A). The centers of both targets were moved 0.53° 
below and to the right from the center of the occluded prime in order 
to avoid full overlapping of prime’s and targets’ contours. Two primes 
were used in the visibility task, designated as global and local, which 
were produced by placing the occluding square behind the shapes 
generated by the global and local completions (Figure 1A).

3.3. Results and discussion

3.3.1. Experiment 1a: invisible prime
Trials in which RT was longer than 1,600 ms or shorter than 200 

ms were excluded from the analyses (0.34%). Mean RTs and mean 
accuracy (AC) for global and local targets in the neutral and occluded 
prime conditions are presented in Table  1. Mean IE scores are 
presented in Figure 3A.

Performance in the visibility task did not differ significantly from 
chance, mean accuracy = 51.85%, t(26) = 1.43, p = 0.1665, indicating 
that COF rendered the prime invisible.

The repeated measures ANOVA with prime (neutral and 
occluded) and target (global and local) as within-subject factors, 
conducted on the IE scores, revealed a main effect of target, F(1,26) = 
10.11, p = 0.0038, ηp

2 = 0.28. As can be seen in Figure 3A, performance 
for the global target was better than performance for the local target, 
both in the neutral prime condition, t(26) = 2.972, p = 0.003, Cohen’s 
d = 0.572, and in the occluded prime condition, t(26) = 2.421, p = 
0.011, Cohen’s d = 0.455.

The main effect of prime, F(1,26) = 1.78, p = 0.1941, and the 
interaction between target and prime conditions, F < 1, were not 
significant, showing no indication of priming effects. Bayesian paired 
t-tests showed that the evidence provides substantial support for the 
null hypothesis for global priming, BF10 = 0.275, and is inconclusive 
for local priming, BF10 = 0.742.

These results are seen to suggest that no completion, either local 
or global, took place when the occluded prime was invisible.
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3.3.2. Experiment 1b: visible prime
Trials in which RT was shorter than 200 ms or longer than 1,600 

ms were excluded from the analyses (0.65%). Mean RTs and mean AC 
for global and local targets in the neutral and occluded prime 
conditions are presented in Table 1. Mean IE scores are presented in 
Figure 3B.

Performance in the visibility task was significantly above chance, 
mean accuracy = 96.94%, t(26) = 71.49, p < 0.0001, confirming that 
the prime was visible.

The repeated measures ANOVA conducted on the IE data showed 
no main effect of target, F < 1. The effect of prime was significant, 
F(1,17) = 4.84, p = 0.0419, ηp

2 = 0.22, indicating that performance was 
better when the targets appeared after the occluded prime than after 
the neutral prime. As can be seen in Figure 3B, this facilitation effect 
did not interact with target, F < 1, suggesting global and local priming 
effects, which did not differ significantly in magnitude.

These results suggest that when the partly occluded prime was 
visible, both global and local completions were generated and no 
completion was significantly preferred over the other. Multiple 
completion were previously observed with different stimuli (van Lier 
et al., 1995a,b), and van Lier et al. suggested that the preference for a 
global or a local completion is the consequence of a competition 
between interpretations.

Interestingly, Sekuler et al. (1994) used a stimulus similar to ours 
and a primed matching paradigm, and found a clear global completion. 
What may account for the discrepancy in the results? First, the stimuli 
used by Sekuler and colleagues were “square like,” having 4 axes of 
symmetry, whereas the stimuli we used were elongated and had only 2 
axes of symmetry. Second, although the stimuli were very similar, they 
could differ in the amount of occlusion. In the absence of specific 
details we can just eyeball and it seems that the amount of contour 
occlusion in Sekuler et  al. was somewhat larger, such that the 
connection between the visible contours of the occluded object was 
smoother in our stimulus, increasing the likelihood of local completion; 
thus a local completion was generated and competed with the global 
completion. Third, the presentation of the prime was different, and so 
was the task (target shape discrimination vs. same-different judgments). 
These differences could in principle affect the pattern of results, but 
further research is required in order to understand how.

In contrast to the multiple completions observed for the visible 
prime, the results for the invisible prime (Experiment 1a) showed no 

completion, either local or global, suggesting that amodal completion 
cannot take place in the absence of visual awareness.

4. Experiment 2

4.1. Participants

Twenty-seven individuals (17 females and 10 males, 3 left-handed, 
age ranged 18–34, M = 24.1) participated in Experiment 2a, and 18 
individuals (11 females and 7 males, 3 left-handed, age ranged 19–30, 
M = 22.9) participated in Experiment 2b.

4.2. Stimuli

The basic shape was a symmetrical shape generated by a large 
circle (4.5° in diameter) with a circular cut-off in the upper left side 
and in the upper right side (2.25° in diameter each), the center of 
which located at the large circle circumference. The shape contained 
two axes of symmetry. The symmetrical shape was partly occluded 
by a 3.75° × 3.75° square, constituting the occluded prime 
(Figure 1B). The global completion of the occluded shape resulted 
in the symmetrical shape. The local completion by good 
continuation of the visible contours of the occluded shape resulted 
in a different shape of a circle with a single cut-off in the upper left 
side, and contained one axis of symmetry. The two targets 
corresponded to the two shapes that resulted from global and local 
completions (Figure 1B). The centers of the large circles in both 
targets were 0.8° below the center of the prime’s large circle in order 
to avoid full overlapping of prime’s and targets’ contours. Two 
primes were used in the visibility task, global and local, which were 
produced by placing the occluding square behind the global and 
local completed shapes (Figure 1B).

4.3. Results and discussion

4.3.1. Experiment 2a: invisible prime
Trials with RTs shorter than 200 ms or longer than 1,600 ms were 

excluded from the analysis (0.45%). Mean RTs and mean accuracy for 

FIGURE 3

Inverse Efficiency (IE) scores for global and local targets in the neutral and occluded prime conditions in (A) Experiment 1a – Invisible prime, and 
(B) Experiment 1b – Visible prime. Error bars represent within subjects ± SEM.
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global and local targets in the neutral and occluded prime conditions 
are presented in Table 1. Mean IE scores are presented in Figure 4A.

Performance in the visibility task was at chance, mean accuracy = 
51.76%, t = 0.90, p = 0.3777, confirming that the prime was invisible.

The repeated measures ANOVA conducted on the IE data showed 
no main effects of target, F < 1, and prime, F < 1. The interaction between 
target and prime, however, was significant, F(1,26) = 5.15, p = 0.0318, ηp

2 
= 0.17. As can be seen in Figure 4A, performance for the local target was 
better following the occluded prime than the neutral prime, t(26) = 
1.949, p = 0.031, Cohen’s d = 0.375, indicating local priming. No such 
effect whatsoever was observed for the global target, t(26) = −0.889, p = 
0.809; a Bayesian paired t-test showed that the evidence provides 
substantial support for the null hypothesis, BF10 = 0.117.

To rule out the possibility that the observed local priming was due 
to the performance of participants for whom the prime was visible, 
we calculated, for each participant, the local priming score and the 
visibility score (i.e., accuracy in the visibility task) and examined 
whether there is a positive correlation between these two scores. The 
analysis yielded no significant correlation, r = −0.284, p = 0.924; 
Bayesian correlation showed that the evidence provided substantial 
support for the null hypothesis, BF10 = 0.106.

These results suggest that local completion of a partly occluded 
object can take place in the absence of visual awareness.

4.3.2. Experiment 2b: visible prime
Trials with RTs shorter than 200 ms or longer than 1,600 ms were 

excluded from the analysis (0.83%). Mean RTs and mean accuracy for 
global and local targets in the neutral and occluded prime conditions 
are presented in Table 1. Mean IE scores are presented in Figure 4B.

Performance in the visibility task was significantly above chance, 
mean accuracy = 94.03%, t(17) = 30.76, p < 0.0001, confirming that 
the prime was visible.

The repeated measures ANOVA conducted on the IE data showed 
no significant main effects of prime, F < 1, nor of target, F(1,17) = 1.57, 
p = 0.2274. The interaction between target and prime, however, was 
significant, F(1,17) = 7.78, p = 0.0127, ηp

2 = 0.31. As can be seen in 
Figures 4B, a priming effect for the local target was observed, t(17) = 
3.028, p = 0.004, Cohen’s d = 0.717, suggesting local completion. No 
priming effect was observed for the global target, t(17) = −0.715, p = 

0.758; Bayesian paired t-test showed that the evidence provides 
substantial support for the null hypothesis, BF10 = 0.155.

In contrast to our results, Plomp and van Leeuwen (2006) found 
some preference for global completion for a similar stimulus. 
However, the procedures of their study and the current study are quite 
different, making the comparison between the two studies difficult.

Inspection of our Figure 4 shows that the pattern of results with 
the invisible prime (Experiment 2a) was similar to the one with the 
visible prime (Experiment 2b): a facilitation for the response to the 
local target following occluded prime, and no such facilitation 
whatsoever for the response to the global target. These results suggest 
that local completion was taking place both in the presence and in the 
absence of visual awareness.

Comparing the results of Experiments 1 and 2 reveals an 
interesting pattern. In Experiment 1, no completion was observed for 
the invisible prime (Experiment 1a), which, when visible, generated 
multiple completions (Experiment 1b). In Experiment 2, local 
completion was observed for the invisible prime (Experiment 2a), 
which, when visible generated a single local completion (Experiment 
2b). Presumably, the potential generation of multiple completions 
versus a single completion may influence whether or not unconscious 
completion occurs. We return to this issue later.

5. Experiment 3

Previous research showed, as noted earlier, that familiarity and 
knowledge can have an effect on amodal completion (Hazenberg et al., 
2014; Hazenberg and van Lier, 2016; Yun et al., 2018). Experiment 3 
was designed to examine whether familiarity can influence amodal 
completion in the absence of awareness. To this end, the prime 
we  used was a partially occluded five-point star (Figure  1C). 
Familiarity in this case favors the global completion.

5.1. Participants

Twenty-seven individuals (18 females and 9 males, 1 left-handed, 
age ranged 19–34, M = 25.85) participated in Experiment 3a, and 18 

FIGURE 4

Inverse Efficiency scores for global and local targets as a function of prime condition (occluded and neutral) in (A) Experiment 2a – Invisible prime, and 
(B) Experiment 2b – Visible prime. Error bars represent within subjects ± SEM.
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individuals (13 females and 5 males, 2 left-handed, age ranged 19–35, 
M = 23.89) participated in Experiment 3b.

5.2. Stimuli

The basic shape was a five-point star (6.2° by 6.2° in height and 
width), containing five axes of symmetry. The star was partly occluded 
by a circle (3.5° in diameter), constituting the occluded prime 
(Figure 1C). The global completion of the occluded shape resulted in 
the star. The local completion by good continuation of the collinear 
visible contours of the occluded star resulted in a different shape, and 
contained one axis of symmetry. The two targets corresponded to the 
two shapes that resulted from the global and local completions 
(Figure 1C). The centers of both targets were moved 0.5° below and to 
the right from the center of the occluded prime in order to avoid full 
overlapping of prime’s and targets’ contours. Two primes were used in 
the visibility task, global and local, which were produced by placing 
the occluding circle behind the global and local completed shapes 
(Figure 1C).

5.3. Results and discussion

5.3.1. Experiment 3a: invisible prime
Trials with RTs shorter than 200 ms or longer than 1,600 ms 

were excluded from the analysis (0.22%). Mean RT and mean 
accuracy for global and local targets in the neutral and occluded 
prime conditions are presented in Table  1. Mean IE scores are 
presented in Figure 5A.

Performance in the visibility task did not differ from chance, mean 
accuracy = 50.37%, t(26) = 0.34, p = 0.7343, confirming that the prime 
was invisible.

None of the effects tested by the repeated measures ANOVA, 
conducted on the IE scores, reached statistical significance: F < 1, F(1,26) 
= 3.53, p = 0.0714, and F < 1, for the effects of target, prime and prime X 
target interaction, respectively. These results show no indication of global 
or local priming; Bayesian paired t-tests showed that the evidence 
provides substantial support for the null hypothesis for the former, BF10 
= 0.133, and strong support for the latter, BF10 = 0.080.

These findings indicate that neither local nor global completion 
took place when the occluded prime was invisible, and suggest that 
familiarity had no influence on amodal completion in the absence of 
visual awareness.

5.3.2. Experiment 3b: visible prime
Trials with RTs shorter than 200 ms or longer than 1,600 ms were 

excluded from the analysis (0.53%). Mean RTs and mean accuracy for 
global and local targets in the neutral and occluded prime conditions 
are presented in Table 1. Mean IE scores are presented in Figure 5B.

Performance in the visibility task was significantly above chance, 
mean accuracy = 96.53%, t(17) = 50.07, p < 0.0001, confirming that 
the prime was visible.

The repeated measures ANOVA showed no significant effect of 
target, F < 1. The effect of prime was significant, F(1,17) = 11.58, p = 
0.0034, ηp

2 = 0.41, indicating better performance for the targets 
following an occluded prime than the neutral prime. As can be seen 
in Figure 5B, this facilitation effect did not interact with target, F < 1, 
suggesting both global and local priming effects, which did not differ 
significantly in magnitude.

Interestingly, although both familiarity and maximum 
symmetry favor global completion of the partly occluded star, no 
preference for global completion was observed in our experiment. 
The local completion constituted a competing alternative, 
presumably due to the collinearity of the lines at the point of 
occlusion. We note that Plomp and van Leeuwen (2006) found some 
preference for global completion for the star stimulus. However, as 
noted earlier, the procedures of their study and the current study 
are quite different, making the comparison between the two 
studies difficult.

The results of Experiment 3 are similar to the ones of 
Experiment 1, indicating no completion, either local or global, in 
the absence of visual awareness for an occluded shape, which when 
visible generated multiple completions. On the other hand, local 
completion in the absence of visual awareness was observed for an 
occluded shape that when visible generated a single local completion 
(Experiment 2).

No indication of unconscious global completion was found. 
However, the results of Experiment 2 suggest that in order to reach 
a clear conclusion regarding the necessity of visual awareness for 

FIGURE 5

Inverse Efficiency scores for global and local targets as a function of prime condition (occluded and neutral) in (A) Experiment 3a – Invisible prime, and 
(B) Experiment 3b – Visible prime. Error bars represent within subjects ± SEM.
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global completion to occur, unconscious global completion has to 
be examined with an occluded shape that generates a single global 
completion when visible. The next experiment was designed 
to do so.

6. Experiment 4

This experiment was designed to examine whether global 
completion can take place in the absence of visual awareness. To this 
end we used an octagon partly occluded by a circle. We suspected that 
the occluded octagon could be a good candidate for generating a 
single global completion because the amount of symmetry axes – eight 
axes in the octagon versus only one in the locally completed shape – 
strengthen the tendency for global completion, whereas the relatively 
weak connection between the lines at the point of occlusion (the lines 
meet at 90° angle) weakens the tendency for local completion. We ran 
first the visible prime version of this experiment, the results of which 
confirmed our supposition, and then we ran the invisible version. To 
be  consistent with all other experiments reported in this article, 
we keep the same order, reporting first the invisible prime experiment 
and then the visible prime one.

6.1. Participants

Twenty-seven individuals (19 females and 8 males, 3 left-handed, 
age ranged 19–36, M = 25.67) participated in Experiment 4a, and 18 
individuals (15 females and 3 males, 1 left-handed, age ranged 18–41, 
M = 24.72) participated in Experiment 4b.

6.2. Stimuli

The basic shape was an octagon (4.7° × 4.7° in height and width), 
containing eight axes of symmetry. The octagon was partly occluded by 
a circle (3.5° in diameter), constituting the occluded prime (Figure 1D). 
The global completion of the occluded shape resulted in the octagon. The 
local completion by continuation of the visible contours of the occluded 
octagon resulted in a different shape, and contained one axis of 
symmetry. The two targets corresponded to the two shapes that resulted 
from the global and local completions (Figure 1D). The centers of both 
targets were moved 0.5° above and to the left from the center of the 
occluded prime in order to avoid full overlapping of prime’s and targets’ 
contours. Two primes were used in the visibility task, global and local, 
which were produced by placing the occluding circle behind the global 
and local completed shapes (Figure 1D).

6.3. Results and discussion

6.3.1. Experiment 4a: invisible prime
Trials with RTs shorter than 200 ms or longer than 1,600 ms 

were excluded from the analysis (0.15%). Mean RT and mean 
accuracy for global and local targets in the neutral and occluded 
prime conditions are presented in Table  1. Mean IE scores are 
presented in Figure 6A.

Performance in the visibility task did not differ from chance, mean 
accuracy = 49.72%, t(26) = −0.21, p = 0.832, confirming that the 
prime was invisible.

The repeated measures ANOVA showed no significant effect of 
target, prime, and prime X target interaction, Fs < 1, indicating no 
local or global priming. Bayesian paired t-tests showed that the 
evidence provides substantial support for the null hypothesis, BF10 = 
0.116, BF10 = 0.207, for local and global priming, respectively. These 
findings suggest that neither local nor global completion took place 
when the occluded prime was invisible.

6.3.2. Experiment 4b: visible prime
Trials with RTs shorter than 200 ms or longer than 1,600 ms were 

excluded from the analysis (0.39%). Mean RTs and mean accuracy for 
global and local targets in the neutral and occluded prime conditions 
are presented in Table 1. Mean IE scores are presented in Figure 6B.

Performance in the visibility task was significantly above chance, 
mean accuracy = 97.36%, t(17) = 61.6, p < 0.0001, confirming that the 
prime was visible.

The repeated measures ANOVA showed no significant effect of 
target, F < 1, nor of prime, F < 1. The interaction between target and 
prime, however, was significant, F(1,17) = 5.04, p = 0.0383, ηp

2 = 0.23. 
As can be seen in Figures 6B, a priming effect for the global target was 
observed, t(17) = 2.099, p = 0.026, Cohen’s d = 0.495, suggesting 
global completion. No priming effect was observed for the local 
target, t(17) = −0.594, p = 0.720; Bayesian paired t-test showed that 
the evidence provides substantial support for the null hypothesis, 
BF10 = 0.165.

These results indicate that when the partly occluded octagon was 
visible, a single global completion was generated. In contrast, no 
perceptual completion was observed when the partly occluded 
octagon was invisible.

Thus, the results of Experiment 4 suggest that no global 
completion can take place in the absence of visual awareness. 
Assuming that the global completion is based on the overall symmetry 
of the occluded shape, this finding is in agreement with the finding 
reported by Devyatko and Kimchi’s (2020) that symmetry-based 
grouping requires visual awareness, although the stimuli in their study 
had one vertical axes of symmetry whereas the present octagon had 
eight axes of symmetry.

In addition, the results of Experiment 4 suggest that generating a 
single completion is not sufficient for unconscious completion 
to occur.

7. General discussion

In this study we investigated whether amodal completion can take 
place in the absence of visual awareness, and specifically, whether visual 
awareness plays a differential role in local versus global completion. To 
this end we used a primed shape discrimination paradigm in which the 
prime was rendered invisible by color-opponent flicker (COF; 
Hoshiyama et al., 2006a,b). All primes were divergent occlusion patterns 
in which the local completion is always based on good continuation of 
the contours at the point of occlusion, and the global completion is 
based on maximum symmetry. The targets corresponded to the two 
different shapes that could arise as a result of global and local 
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completions of the occluded prime. For each of the invisible prime 
experiment we conducted a version in which the prime was visible.

The results provide a somewhat complicated picture. No significant 
local or global priming was observed for invisible occluded primes that 
generated multiple completions when visible (Experiments 1 and 3), 
suggesting that no completion, either global or local, can take place in 
the absence of visual awareness for occluded shapes that, when visible, 
generate both local and global completions. A significant local priming 
for an invisible occluded prime was found, suggesting that local 
completion can occur in the absence of visual awareness, but only for 
an occluded prime that when visible generates a single local completion 
(Experiment 2). In contrast, the results showed no global priming for 
an invisible occluded prime, suggesting that no global completion can 
take place in the absence of visual awareness, even when the occluded 
prime generates a single global completion when visible (Experiment 
4). In addition, familiarity did not have an effect on unconscious 
amodal completion (Experiment 3). We note however, that in our 
study familiarity favored global completion. It would be interesting to 
examine the influence of familiarity when it favors local completion.

Taken together, the results of Experiments 1–4 are seen to have 
two important implications. One concerns the role of visual awareness 
in local versus global completion. The other concerns the relationship 
between potential multiple completions and unconscious amodal 
completion. The two are not completely unrelated.

The present results demonstrate that visual awareness plays a 
differential role in local versus global completion: local completion can 
take place in the absence of visual awareness, whereas visual awareness 
is required for global completion to occur. This is perhaps not 
surprising. Local completion is based mainly on the basic grouping 
principle of good continuation (Wertheimer, 1938), which plays an 
important role in contour integration (e.g., Field et al., 1993; Kimchi, 
2000; Geisler et al., 2001), processed in the early brain regions V1 and 
V2 (e.g., Roelfsema, 2006), and appears to operate in the absence of 
visual awareness (Breitmeyer et al., 2005; Devyatko et al., 2019). Global 
completion, is based on maximum symmetry. In contrast to good 
continuation, symmetry produces strong responses only in higher-
order regions, especially V4 and LOC (e.g., Sasaki et  al., 2005), 
symmetry-based grouping was found to require visual awareness 
(Devyatko and Kimchi, 2020; but see, Makin et al., 2023), and the role 
of symmetry in perceptual organization is not entirely clear because of 

its interaction with other grouping factors (van der Helm, 2015). For 
example, a number of researchers argue that grouping by other factors 
precedes and facilitates grouping by symmetry (see for discussion 
Machilsen et  al., 2009). Also, it was found that organization by 
collinearity alone suffices for automatic capture of attention by a 
perceptual object, whereas organization by symmetry alone does not, 
suggesting that symmetry may play a weaker role than collinearity in 
the formation of objecthood (Kimchi et  al., 2016). Furthermore, 
according to the Gestaltists, symmetry (like closure) is not a grouping 
factor per se, but rather it plays a critical role in how the perceptual 
system arrives at a stable, organized structure, with symmetry being 
particularly crucial in determining figural goodness (Koffka, 1935; 
Wertheimer, 1938; Palmer, 1991). It is possible that this can be achieved 
only when the stimulus is consciously perceived.

One may argue that the differential role of visual awareness 
in local versus global completion supports the view that local and 
global completions are qualitatively different processes (e. g., Kellman 
et al., 2005). This view suggests that local completion is a bottom-up 
process based on stimulus structure whereas global completion is a 
top-down process, referred to by Carrigan et al. (2016) and Kellman 
et al. (2005) as “recognition from partial information” (but see Peta 
et al., 2019 for a critical discussion).

In our opinion, however, the present results do not necessarily 
suggest that there is a qualitative difference between the processes 
involved in  local and global completions, as both processes can 
be  based on stimulus properties, which can be  simple local 
properties or more complex global properties. This of course does 
not rule out the possibility of top-down influences such as 
familiarity and knowledge on amodal completion (e.g., Hazenberg 
et al., 2014; Yun et al., 2018). But familiarity and knowledge are not 
to be confused with symmetry and regularity, because the formers 
depend on the perceiver’s past experience whereas the latter on 
stimulus structure (see also Peta et al., 2019). Our results are seen 
to suggest that completion based on simple, local properties can 
take place in the absence of visual awareness, at least under certain 
conditions, but completion based on more complex global 
properties such as symmetry cannot.

The second implication of the present results concerns the 
relationship between potential multiple completions and unconscious 
amodal completion. It appears that when there is an unresolved 

FIGURE 6

Inverse Efficiency scores for global and local targets as a function of prime condition (occluded and neutral) in (A) Experiment 4a – Invisible prime, and 
(B) Experiment 4b – Visible prime. Error bars represent within subjects ± SEM.
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competition between local and global completions, no completion can 
take place in the absence of visual awareness. Our results also show 
that a single completion is not sufficient for unconscious completion 
to occur. Obviously, further research is required in order to get a 
clearer picture of this relationship. The results of our visible prime 
experiments show, on the one hand, either a local or a global 
completion (Experiments 2 and 4), and on the other hand, two 
competing completions without a local or a global preference 
(Experiments 1 and 3). It would be  interesting to find out what 
happens in the absence of visual awareness when there is competition 
between the two completions, but the competition is resolved and one 
completion prevails. Namely, the question is whether it is the mere 
presence of a competition or the presence of unresolved competition 
that requires visual awareness for amodal completion to take place.

Before concluding, we note that unconscious global and local 
completions need to be explored with different suppression methods, 
because previous research showed that the extent of information 
processing without consciousness is also dependent on the invisibility-
inducing method – i.e., on the level at which the suppression induced 
by the method takes place (e.g., Breitmeyer, 2015; Moors et al., 2016; 
Kimchi et al., 2018).

To summarize, our results suggest that local completion, but not 
global completion, of a partly occluded shape can take place in the 
absence of visual awareness, but apparently only when the visible 
occluded shape generates a single, local completion. No completion 
appears to take place in the absence of visual awareness when the 
visible occluded shape generates multiple completions. Further 
research is required to clarify the relationship between multiple 
completions and unconscious amodal completion, as well as the effect 
of familiarity on unconscious completion.
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The mid-level vision toolbox for 
computing structural properties of 
real-world images
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Mid-level vision is the intermediate visual processing stage for generating 
representations of shapes and partial geometries of objects. Our mechanistic 
understanding of these operations is limited, in part, by a lack of computational 
tools for analyzing image properties at these levels of representation. 
We introduce the Mid-Level Vision (MLV) Toolbox, an open-source software that 
automatically processes low- and mid-level contour features and perceptual 
grouping cues from real-world images. The MLV toolbox takes vectorized line 
drawings of scenes as input and extracts structural contour properties. We also 
include tools for contour detection and tracing for the automatic generation 
of vectorized line drawings from photographs. Various statistical properties of 
the contours are computed: the distributions of orientations, contour curvature, 
and contour lengths, as well as counts and types of contour junctions. The 
toolbox includes an efficient algorithm for computing the medial axis transform 
of contour drawings and photographs. Based on the medial axis transform, 
we compute several scores for local mirror symmetry, local parallelism, and local 
contour separation. All properties are summarized in histograms that can serve 
as input into statistical models to relate image properties to human behavioral 
measures, such as esthetic pleasure, memorability, affective processing, and 
scene categorization. In addition to measuring contour properties, we  include 
functions for manipulating drawings by separating contours according to their 
statistical properties, randomly shifting contours, or rotating drawings behind 
a circular aperture. Finally, the MLV Toolbox offers visualization functions for 
contour orientations, lengths, curvature, junctions, and medial axis properties 
on computer-generated and artist-generated line drawings. We  include artist-
generated vectorized drawings of the Toronto Scenes image set, the International 
Affective Picture System, and the Snodgrass and Vanderwart object images, as 
well as automatically traced vectorized drawings of set architectural scenes and 
the Open Affective Standardized Image Set (OASIS).

KEYWORDS

mid-level vision, perceptual grouping, gestalt grouping rules, contour drawings, medial 
axis transform, symmetry, contour tracing

Introduction

Visual processing relies on different transformations of a visual representation derived from 
the pattern of light on the retina. In the early stages of visual processing, primary visual cortex 
(V1) encodes a representation of natural scene statistics based on contrast, orientation, and 
spatial frequencies (Hubel and Wiesel, 1962; Olshausen and Field, 1996; Vinje and Gallant, 
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2000). In later stages of visual processing, the semantic content of a 
visual scene is encoded in scene-selective regions based on category 
information (Epstein and Kanwisher, 1998; Epstein et al., 2001). Yet, 
despite a mechanistic understanding of these representations, 
we know less about the intervening stages of visual processing.

Mid-level vision is the intermediate visual processing stage for 
combining elementary features into conjunctive feature sets 
representing shapes and partial geometries of objects and scenes 
(Peirce, 2015; Malcolm et al., 2016). Along the ventral visual pathway, 
anatomical regions V2, V3, and V4 are the likely biological substrate 
supporting these operations, whose contributions to visual processing 
are far less understood (Peirce, 2015). Some evidence suggests that V2 
is sensitive to border ownership, and V4 encodes curvature and 
symmetry information (Peterhans and von der Heydt, 1989; Gallant 
et al., 1996; Pasupathy and Connor, 2002; Wilder et al., 2022). Drawing 
from physiologically plausible representations of mid-level visual 
processing, we offer a set of computational tools for image processing 
to help fill this gap in our understanding of visual perception and help 
uncover intermediate stages of visual processing. Understanding 
mid-level vision allows us to investigate how discrete percepts are 
constructed and used to facilitate goal-driven behaviors.

Much of mid-level vision operations are qualitatively explained by 
Gestalt psychology (Koffka, 1935). Gestalt grouping cues are principles 
of perceptual organization that explain how basic visual elements are 
organized into meaningful whole percepts – these principles are 
proximity, similarity, continuity, closure, and figure/ground 
(Wertheimer, 1922). Empirical studies of Gestalt grouping cues 
frequently use stylized lab stimuli, such as clouds of dots (e.g., Kubovy, 
1994; Wagemans, 1997; Norcia et al., 2002; Sasaki, 2007; Bona et al., 
2014, 2015), Gabor patches (e.g., Field et al., 1993; Machilsen et al., 
2009), or simple shapes (e.g., Elder and Zucker, 1993; Wagemans, 
1993; De Winter and Wagemans, 2006). Typically, these stimuli are 
constructed to contain a specific amount of symmetry, contour 
integration, parallelism, closure, etc. By comparison, little empirical 
work has been done on testing Gestalt grouping principles for 
perceiving complex, real-world scenes (but see Geisler et al., 2001; 
Elder and Goldberg, 2002). More recent research in human and 
computer vision has extended the work of Wertheimer to 
physiologically plausible representations of shapes using the medial 
axis transform (Blum, 1967; Ayzenberg and Lourenco, 2019; 
Rezanejad et al., 2019, 2023; Ayzenberg et al., 2022).

Underlying medial axis-based representations of shape is an 
understanding of vision in terms of contours and shapes. Contours 
and shapes form the basis of early theories of vision, such as Marr’s 2 
½ D sketch (Marr and Nishihara, 1978; Marr, 1982), or the 
recognition- by-components model (Biederman, 1987), as well as 
practical applications to the recognition of three-dimensional objects 
(Lowe, 1987). Perceptual organization is recognized to play an 
important role in these systems (Feldman and Singh, 2005; Lowe, 
2012; Pizlo et al., 2014) as well as in computer vision more generally 
(Desolneux et al., 2004, 2007; Michaelsen and Meidow, 2019).

We here provide a software toolbox1 for the study of mid-level 
vision using naturalistic images. This toolbox opens an avenue for 
testing mid-level features’ role in visual perception by measuring 

1 http://mlvtoolbox.org

low- and mid-level image properties from contour drawings and real-
world photographs. Our measurement techniques are rooted in 
biologically inspired computations for detecting geometric 
relationships between contours. Working on contour geometry has the 
clear advantage of resulting in tractable, mechanistic algorithms for 
understanding mid-level vision. However, it has the disadvantage of 
not being computable directly from image pixels. We overcome this 
difficulty by offering algorithms that detect contours in color 
photographs and trace the contours to arrive at 
vectorized representations.

Contour extraction

Most functions in the MLV Toolbox rely on vectorized contour 
drawings. These drawings can be generated by humans tracing the 
important contours in photographs, or by importing existing vector 
graphics from an SVG file with importSVG, or by automatically 
detecting edges from the photographs and tracing the contours in the 
extracted edge maps.

Edge detection is performed using a structured forest method 
known as the Dollár edge detector (Dollár and Zitnick, 2013, 2014). 
We here use the publicly available Structured Edge Detection Toolbox 
V3.0.2 This computationally efficient edge detector achieves excellent 
accuracy by predicting local edge masks in a structured learning 
framework applied to random decision forests. As the code for this 
toolbox was written in Matlab, this software became a natural choice 
as the edge detector for our toolbox. Using image-specific adaptive 
thresholding, we generate a binarized version from the edge map and 
its corresponding edge strength. The binarized edge map is then 
morphologically thinned to create one-pixel-wide contour segments.

Our method for tracing contours is adapted from the Edge 
Linking and Line Segment Fitting code sections from Peter Kovesi’s 
Matlab and Octave Functions for Computer Vision and Image 
Processing.3 These are edge-linking functions that enable the system 
to take a binary edge image and create lists of connected edge points. 
Additional helper functions fill in small gaps in a given binary edge 
map image (edgelink) and form straight line segments to sets of line 
segments that are shorter than a given tolerance value (lineseg).

Functions: traceLineDrawingFromRGB, traceLinedrawing 
FromEdgeMap

The definition of the beginning and end of contours depends on 
the method of generation. We provide two data sets, for which the 
contours were drawn by trained artists using a graphics tablet. For 
these data sets, the beginning of a contour is defined as the artist 
putting the pen on the graphics tablet and the end by them lifting the 
pen up. For automatically traced contours, the beginning and end are 
defined by the beginning and end of lists of connected edge points.

Both methods result in vectorized line drawings that are 
represented as a set of contours (Figure 1). Each contour consists of a 
list of successive, connected straight line segments. The information 
is contained in a vecLD struct with the following fields:

2 https://github.com/pdollar/edges

3 https://www.peterkovesi.com/matlabfns/#edgelink
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originalImage: the file name of the original photograph.

imsize: [width, height].

lineMethod: a descriptive string indicating how the line 

drawing was generated, e.g., ‘artist’, 

‘importSVG’, ‘traceLineDrawingFromRGB’.

numContours: the number of contours.

contours: cell array of size (1, numContours) containing 

the individual contour information. Each cell 

is an N x 4 array. Each row of the array 

represents one contour line segment. The 

columns are the start and end coordinates of 

the line segments in the order: X1, Y1, X2, Y2. 

Note that the end point of one segment is the 

start point of the next segment. This way of 

storing the coordinates is somewhat 

redundant, but it allows for greater efficiency 

for plotting, processing, and splitting contours.

More fields are added to the struct as image properties are 
computed. Vectorized line drawings can be  plotted into a figure 
window using the drawLinedrawing function. They can be rendered 
into a binary image using the renderLinedrawing function.

Measuring contour properties

Analysis of properties of individual contours and contour 
segments follows the intuitive definitions outlined below.

Orientation of individual contours is computed as:

 
ori Y Y

X X
�

�
�

�
�
�

�
�
�arctan

2 1

2 1

where orientations are measured in degrees in the 
counterclockwise direction, starting from 0° at horizontal all the 
way to 360° back at horizontal. Orientations are stored in a 
direction-specific way so that 180° is not considered the same as 0°. 
This coding is important for computing curvature and junction 
angles correctly.

When computing histograms of orientation, however, orientation 
angles are computed modulo 180 degrees. Orientation histograms are 
weighted by the number of pixels (length) of a particular line segment. 

By default, eight histograms are computed with bin centers at 0, 22.5, 
45, 67.5, 90, 112.5, 135, and 157.5 degrees.

Functions: computeOrientation, getOrientationStats
The length of contour segments is computed as the Euclidean 

distance between the start and end points:

 length X X Y Y� �� � � �� �2 1 2 1
2 2

The length of an entire contour is the sum of the lengths of the 
individual contour segments. Contour histograms are computed with 
bins equally spaced on a logarithmic scale within the bounds of 2 
pixels and (width + height). For instance, an eight-bin histogram (the 
default) for images of size 800 × 600 pixels has bin centers located at 
3.4, 8.5, 19.5, 43.2, 94.2, 204.2, 441.5, and 953.1 pixels.

Functions: computeLength, getLengthStats
Mathematically, curvature is defined as the change in angle per 

unit length. In calculus, the change of angle is given by the second 
derivative. For the piecewise straight line segments in our 
implementation, we compute the curvature for each line segment as 
the amount of change in orientation from this to the next line segment, 
divided by the length of the segment:

 
curvature

ori ori
lengthi
i i

i
�

�� ��mod 1 180,

For the last segment of a contour, we use the angle difference with 
the previous instead of the next segment. Histograms of contour 
curvature are computed with bins equally spaced on a logarithmic 
scale between 0 degrees / pixel (straight line; no curvature) and 90 
degrees / pixel (a minimal line of 2 pixels length making a 
sharp 180-degree turn). For a default eight-bin histogram, bins are 
centered at 0.33, 1.33, 3.09, 6.20, 11.65, 21.23, 38.06, and 67.64 degrees 
per pixel.

Functions: computeCurvature, getCurvatureStats
Contour junctions are detected at the intersections between 

contours. The intersections are computed algebraically from the 
coordinates of all contour segments. Intersections of contour segments 
within a contour are not considered. Junctions are still detected when 
contours do not meet exactly. This function is controlled by two 
parameters, a relative epsilon (RE) and an absolute epsilon (AE). The 
relative epsilon controls the allowable gap between the end point of a 
contour segment and the hypothetical junction location as the fraction 

FIGURE 1

Color photograph of a forest (left), extracted contours (middle), contours superimposed on the original image (right).
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of the length of the contour segment. The absolute epsilon determines 
the maximum allowable gap in pixels. The minimum between the two 
gap measures is used as a threshold value for detecting junctions. 
Hand tuning of the parameters resulted in values of AE = 1 pixel and 
RE = 0.3. These two parameters can be set as optional arguments of the 
detectJunctions function.

Contour segments participating in junctions are algorithmically 
severed into two new segments at the junction locations whenever 
junctions are detected far enough away from the end points. The angles 
between all segments participating in a junction are measured as the 
difference in (directed) orientation angle between adjacent segments. 
Inspired by previous literature on contour junctions (Biederman, 1987), 
junction types are classified according to how many contour segments 
participate in the junction and according to their angles as follows:

3 segments: determine the maximum angle ± 

between any two segments.

Y junctions: � � �160 .

T junctions: 160 200� � � �� , i.e., 

� � � � �180 20 .

Arrow junctions:� � �200 .

4 segments: X junctions

>4 segments: Star junctions

Junctions between two contour segments are sometimes described 
as L junctions. Here, we do not consider L junctions as they would 
occur at every location where one contour segment ends and the next 
begins, making them too numerous to be useful.

Integer counts of the number of junctions of each count are 
collected in junction histograms, which can optionally be normalized 
by the total number of pixels in a vectorized line drawing. The 
minimum angles between any of the contour segments, which are 
bounded between 0 and 120 degrees, are also counted as “Junction 
Angles” in a histogram with bin centers at 7.5, 22.5, 37.5, 52.5, 67.5, 
82.5, 97.5, and 112.5 degrees.

Functions: computeJunctions, getJunctionStats, 
detectJunctions

For each contour property, the following fields are added to the 
vecLD struct:

property: (1, numContours) cell array; each cell 

contains a vector of properties for the 

corresponding contour segments

propertyHistograms: (numContours, numBins) array with the 

property histograms for the individual contours

normPropertyHistograms: the same but normalized by the total number 

of contour pixels

sumPropertyHistogram: (1,numBins) array: the property histogram 

for the entire image – the sum of 

propertyHistograms

normSumPropertyHistogram: the same but normalized by the total number 

of contour pixels

propertyBins: (1,numBins) array: the centers of the 

histogram bins

To visualize the contour properties, use the 
drawLinedrawingProperty function (Figure 2). The first argument to 
the function is a vecLD struct, the second a string denoting the 
contour property. The function draws the color drawing into the 
current figure window. Use drawAllProperties to visualize all contour 
properties for a given vecLD struct, either using subplots or in separate 
figure windows. The renderLinedrawingProperty function draws the 
contour properties into an image instead of a figure.

We have used these contour properties previously to explain 
behavior (Walther and Shen, 2014; Wilder et al., 2018) and neural 
mechanisms of scene categorization (Choo and Walther, 2016). 
We have also related statistics of these properties to the emotional 
content of scenes and generated artificial images with specific property 
combinations to elicit emotional responses (Damiano et al., 2021a), as 
well as to esthetic pleasure (Farzanfar and Walther, 2023).

Medial axis-based properties

Blum (1967) was probably the first to introduce medial axis-based 
representations and the method for producing them using a grassfire 
analogy. Imagine a shape cut out of a piece of paper set on fire around 
its border, where the fire front moves toward the center of the shape 
at a constant pace. Skeletal points are formed at the locations where 
the fire fronts collide. In other words, we can look at the Medial Axis 
Transform (MAT) as a method for applying the grassfire process to 
disclose its quench sites and associated radius values (Feldman and 
Singh, 2006). The MAT provides a complete visual representation of 
shapes, as it is applicable to all bounded shapes as well as the areas 
outside of closed shapes. Humans have been shown to rely on the 
shape skeleton defined by the MAT when they attend to objects 
(Firestone and Scholl, 2014), represent shapes in memory (Ayzenberg 
and Lourenco, 2019), or judge the esthetic appeal of shapes (Sun and 
Firestone, 2022).

In this toolbox, we  compute measures of the relationships 
between contours using the medial axis transform. Visually, the 
medial axis transform is made up of a number of branches that 
come together at branch points to create a shape skeleton. A group 
of contiguous regular points from the skeleton that are located 
between two junction points, two end points, or an end point and 
a junction point are known as skeletal branches. The behavior of the 
average outward flux (AOF) of the gradient of the Euclidean 
distance function to the boundary of a 2D object through a 
shrinking disk can be used to identify skeletal points that lie on 
skeletal branches and identify the types of those three classes of 
points, as demonstrated by Rezanejad (2020). We  go over this 
calculation in the following.

Imagine that the distance transform DΩ  of a shape Ω is a signed 
distance function that indicates the closest distance of a given point p 
to the shape’s boundary �� (Figure 3A). Formally, we can imagine a 
positive sign for the distance value when p is inside the shape Ω and 
a negative sign when p is outside of the shape Ω. We can then define 
the distance function gradient vector for point p as q p� � �  as the unit 
vector that connects point p to its closest boundary point. One of the 
ways to identify skeletal points is to investigate the distance function 
gradient vector which is multivalued at the skeletal points. To do this 
investigation, we use a measure called AOF (Average Outward Flux). 
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To compute AOF, we compute the outward flux of q through shrinking 
circular neighborhoods all over the image:

 

AOF
N S

S
R

R

�
�

�
�

�

�
�
q,

where ∂R is the boundary of the shrinking circular neighborhood 
and N  is the normal to the boundary (Figure 3B). By analyzing the 

behavior of AOF, we can classify each point into a medial axis or 
non-medial axis point. In particular, any points that are not on the 
skeleton have a limiting AOF value of zero, so the medial axis is the 
set of points where their AOF values are non-zero (Figure 3C). The 
AOF value has a sinusoidal relationship with the object angle (the 
mid-angle between spoke vectors that connect a skeletal point to the 
closest boundary points). In the discrete space, we threshold the 
AOF based on a particular value, which means that we keep skeletal 
points that have object angles above a certain degree. The object 

FIGURE 2

Visualization of contour properties Orientation (A), Contour Length (B), Curvature (C), and Contour Junctions (D) for the example images as well as 
four simple test shapes.

FIGURE 3

Medial axis properties. (A) Distance function from the contours (white); (B) Average outward flux (blue) from the contours (black); (C) Medial axes (red) 
between the contours; (D) Parallelism scores mapped onto the contours; (E) Separation scores; (F) Mirror symmetry scores.
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angle can be provided as an optional parameter for the computeMAT 
function, with a default value of 28 degrees (Rezanejad, 2020). 
We compute three local relational properties based on the medial 
axis transform.

Parallelism is computed as the local ribbon symmetry by 
computing the first derivative of the radial distance function along the 
medial axis. A small first derivative (small change) indicates that the 
contours on either side of the medial axis are locally parallel to the 
medial axis and, thereby, to each other (Figure 3D).

Separation is computed as the absolute value of the radial distance 
function. Separation is related to the Gestalt grouping rule of 
proximity (Figure 3E).

Mirror symmetry is generally understood to be the symmetry 
generated by reflection over a straight axis. Reflections over bent axes 
are not perceived as mirror symmetric. We therefore compute the 
curvature of the medial axis as a measure of local mirror symmetry. 
The straighter the medial axis is, the stronger is local mirror symmetry 
(Figure 3F).

These properties are initially computed on the medial axis and 
then projected back onto the contours of the line drawing and 
normalized to [0,1]. Note that not all contour pixels may receive a 
valid MAT property, since the projection from the medial axis back 
to the contour pixels is not a surjective function. As mentioned 
above, we apply a small threshold on the AOF values in discrete pixel 
space to compute a medial axis that is thin, smooth and does not 
cover the entire area of the interior shape. While the analytical 
formulation of the medial axis is a one-to-many mapping from 
skeletal points to the boundary that ensures that all the boundary 
points are reconstructable in the discrete space, we may lose a small 
portion of the boundary points that will not be associated with the 
skeletal points.

Functions: computeMAT, computeMATproperty, 
mapMATtoContour, computeAllMATproperties

To compute statistics over the MAT properties along the 
contours, the contours are mapped to the vectorized line drawing. 
Histograms with equally spaced bins (default: 8 bins) to cover the 
interval [0,1] are computed over all contour pixels with valid 
MAT properties.

Functions: MATpropertiesToContours, getMATpropertyStats, 
computeAllMATfromVecLD

Similar to the contour properties, the following fields are added to 
the vecLD struct for each MAT property:

property: (1, numContours) cell array; each 

cell contains a vector of 

properties for the corresponding 

contour segments

propertyMeans: (1, numContours) array with the 

means of property over each 

contour

property_allX: x coordinates of all contour pixels 

with a property score

property_allY: y coordinates of all contour pixels 

with a property score

property_allScores: The property scores for all 

contour pixels

propertyHistograms: (numContours, numBins) array 

with the property histograms for 

the individual contours

propertyNormHistograms: the same but normalized by the 

total number of contour pixels

propertySumHistogram: (1, numBins) array: the property 

histogram for the entire image 

– the sum of propertyHistograms

propertyNormSumHistogram: the same but normalized by the 

total number of contour pixels

propertyBins: (1, numBins) array: the centers of 

the histogram bins

MAT properties are easily visualized in a figure using 
drawMATproperty or drawn into an image using renderMATproperty.

The histograms for all image properties can be written into a table 
for a set of images for further statistical analysis. The function 
allLDHistogramsToTable generates such a table, which can then 
be used with Matlab’s statistical functions or be written to a CSV file 
for further processing in R or other analysis software.

We have used these functions to investigate the role of MAT-based 
features for computer vision (Rezanejad et  al., 2019, 2023), eye 
movements (Damiano et al., 2019), neural representations of symmetry 
(Wilder et al., 2022), to investigate esthetic appeal (Damiano et al., 2021b; 
Farzanfar and Walther, 2023) and image memorability (Han et al., 2023).

Splitting functions

Splitting the contours in a line drawing into two halves based on 
some statistical property allows for the empirical testing of the causal 
involvement of that property in some perceptual or cognitive function. 
We provide functions for separating contours into two drawings by 
different criteria:

splitLDbyProperties: allows for the splitting according to one 
image property or a combination of image properties. The function 
also contains an option to generate a random split of the contours. 
We have used this function to split images by their MAT properties 
for behavioral and fMRI experiments as well as for computer 
vision analyses (Rezanejad et al., 2019, 2023; Wilder et al., 2022).

splitLDbyHistogramWeights: allows for splitting the contours 
according to more fine-grained weights for the individual 
feature histograms.

splitLDbyStatsModel: splits the contours by the output of a 
statistical model, trained with the contour and MAT properties as its 
features. This function has been used to split contours according to 
predicted esthetic appeal (Farzanfar and Walther, 2023) or according 
to predicted memorability (Han et al., 2023).

splitLDmiddleSegmentsVsJunctions: Splits the contours into 
pieces near the contour junctions and middle segments. This method 
was used to investigate the role junctions for scene categorization 
(Wilder et al., 2018).

For an input vecLD struct, these functions generate two new, 
disjoint vecLD structs, each with approximately half of the pixels 
(Figure 4). Contours that cannot be uniquely assigned to one or the 
other drawing are omitted from both.
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Other image transformations

We include some other specific manipulations of the line drawing 
images that have proven useful in manipulating images (Figure 5). The 
function rotateLinedrawing rotates the coordinates of all contours in 
the input vecLD structure by a given angle, and applyCircularAperture 
clips the contours to a circular aperture. In combination, these 
functions can be used to generate randomly rotated line drawings 
(Choo and Walther, 2016).

Randomly shifting individual contours within the image 
bounding box destroys the distribution of contour junctions while 
keeping the statistics of orientation, length, and curvature constant 
(Walther and Shen, 2014; Choo and Walther, 2016). This functionality 
is provided by randomlyShiftContours.

Datasets

We provide five data sets already processed as vecLD structs:

 • A set of 475 images of six scene categories (beaches, cities, forests, 
highways, mountains, and offices). The line drawings were 
created by trained artists at the Lotus Hill Institute in Fudan, 
People’s Republic of China.

 • Line drawings of the 1,182 images in the International Affective 
Picture System (IAPS) (Lang et al., 2008), also created at the 
Lotus Hill Institute.

 • Hand-traced drawings of 260 objects from (Snodgrass and 
Vanderwart, 1980).

 • A set of 200 architectural scenes published in (Vartanian et al., 
2013), traced automatically using traceLineDrawingFromRGB.

 • Line drawings of the 900 images in the Open Affective 
Standardized Image Set (OASIS) (Kurdi et al., 2017).

We plan to add more datasets in the near future.

Conclusion

A major obstacle for research on the role of mid-level visual 
features in the perception of complex, real-world scenes has been the 
capability to measure and selectively manipulate these features in 
scenes. We  offer the Mid-level Vision Toolbox to the research 
community as way to overcome this obstacle and enable future 
research on this topic. We include functionality for assessing a variety 
of low- and mid-level features based on the geometry of contours, as 
well as functions for generating contour line drawings from RGB 
images and functions for manipulating such drawings.

The easily accessible data structures and function interfaces of MLV 
Toolbox allow for future expansions of its functionality. For instance, 
symmetry relationships, limited to the nearest contours in the current 
implementation, could be expanded to include symmetries across larger 
scales. Another expansion could be the detection of another important 
grouping cue, closure of contours. Figure-ground segmentation cues, 
such as border ownership could be included in the future as well. Our 
group will continue to work on expanding the functionality of the 
toolbox, and we also invite contributions from other researchers.

Computational models of visual perception in humans and 
non-human primates have progressed rapidly in recent years, thanks 
to the advent of convolutional neural networks (Krizhevsky et al., 
2012). Convolutional Neural Networks have been shown to correlate 
well with biological vision systems (e.g., Cadieu et  al., 2014; 

FIGURE 4

Splitting functions. Left column: Line drawings split into top (red) and bottom (blue) halves according to Orientation (“top”  =  horizontal, 
“bottom”  =  vertical) and Curvature (“top”  =  angular, “bottom”  =  straight). Middle column: drawings with only the top halves. Right column: drawings with 
only the bottom halves.
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Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and 
van Gerven, 2015), and they are getting closer to replicating the 
functionality of biological systems all the time (Schrimpf et al., 2020). 
Why, then, should we care about hand-coded algorithms for detecting 
mid-level features as in the MLV Toolbox? Despite these models’ 
increasing ability to match biological vision, the mechanisms 
underlying their impressive performance are barely any clearer than 
those underlying biological vision. We  need to probe these deep 
neural networks empirically to better understand the mechanisms 
underlying the function (Bowers et al., 2022).

A century of empirical research as well as existing practice in 
design and architecture have unequivocally demonstrated the 
importance of Gestalt grouping rules for human perception (Wagemans 
et al., 2012) as well as esthetic appreciation (Arnheim, 1965; Leder 
et al., 2004; Chatterjee, 2022). To what extent convolutional neural 
networks learn to represent these grouping rules is an open question. 
We know from work with random dot patterns that the human brain 
represents symmetry relationships in fairly high-level areas, such as the 
object-sensitive lateral occipital complex (Bona et  al., 2014, 2015). 
We are only starting to learn how the brain represents Gestalt grouping 
rules for perceiving complex scenes (Wilder et al., 2022).

We here provide a set of computational tools that will enable 
studies of the mid-level representations that arise in both biological 
and artificial vision systems. Although the specific computations used 
here to measure mid-level visual properties are unlikely to be  an 
accurate reflection of the neural mechanisms in the human visual 
system, we  nevertheless believe that measuring and manipulating 
mid-level visual cues in complex scenes will be  instrumental in 
furthering our understanding of visual perception.
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The standard physiological model has serious problems accounting for many

aspects of vision, particularly when stimulus configurations become slightly more

complex than the ones classically used, e.g., configurations of Gabors rather than

only one or a few Gabors. For example, as shown in many publications, crowding

cannot be explained with most models crafted in the spirit of the physiological

approach. In crowding, a target is neighbored by flanking elements, which impair

target discrimination. However, when more flankers are added, performance

can improve for certain flanker configurations (uncrowding), which cannot be

explained by classic models. As was shown, aspects of perceptual organization

play a crucial role in uncrowding. For this reason, we tested here whether known

principles of perceptual organization can explain crowding and uncrowding. The

answer is negative. As shownwith subjective tests, whereas grouping is indeed key

in uncrowding, the four Gestalt principles examined here did not provide a clear

explanation to this e�ect, as variability in performance was found between and

within categories of configurations. We discuss the philosophical foundations of

both the physiological and the classic Gestalt approaches and sketch a way to a

happy marriage between the two.

KEYWORDS

visual perception, perceptual organization, Gestalt principle, crowding, grouping, vision

model, recurrent processing

Introduction

Vision has been a mystery since ancient times. Intuitively, perception seems to give us

ground truth about the outer world and its objects. Based on this intuition, direct realism

proposes a one-to-onemapping (bijection) between the objects of the external world and our

mental representations. When there is an apple in the external world, we perceive an apple,

and when we perceive an apple, there is an apple in front of our eyes (leaving dreams and

mental imagery aside). However, perception can hardly be direct. For example, according to

the laws of optics, objects are projected upside-down (and left-right inverted) on the retinal

image, but we perceive them upright, so there must be a second transformation undoing the

laws of optics, for example, when we want to grasp these objects. Philosophically speaking,

perception is not direct but indirect. Still, perception may give us ground truth about the

external world, at least approximately. However, the situation is worse. We see many illusory

things that are not out there. For example, we see blue spiral lines in the Munker-White

illusion, which are simply not there (see Figure 2 of Herzog, 2022). In this case, a simple

re-transformation cannot help.

For similar reasons, philosophers such as Berkeley, Kant, and Fichte, have abandoned

reasoning about the external world. Ground truth is found in these approaches in the
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percepts and thoughts themselves. If I have the experience of

an apple, there might be no corresponding apple out there, but

my percept is undeniably true. Thus, focusing on the laws of

perception and cognition is a first step toward a philosophy free

of ontological commitments about an external world to which we

have no direct access. The Gestaltists have largely subscribed to this

continental approach of epistemology, with introspection being

both the conceptual and methodological starting point. For many

Gestaltists, there is more in the mind than in the world. There is

information that goes “beyond the information given” (Kanizsa,

1979). For example, we clearly perceive a cross in Figure 1 (upper

panel) even though there are only squares and disks.

Gestalt theory disappeared as quickly as it arose and was

replaced by the physiological approach subscribing (implicitly)

to indirect realism. This approach has dominated vision science

for almost a century, aiming for a causal theory of perception.

Physiology systematically studies how the presentation of an object

affects neural responses, starting with phototransduction at the

retina and continuing up the hierarchy of brain processing. One

crucial aspect is that perception is genuinely ill-posed. The light

that arrives at the retina (luminance) is always the product of

the light shining on an object (illuminance) and the material

properties of that object (reflectance). Hence, there are infinitely

many possibilities for how a given luminance may have occurred

(e.g., white light on a red tomato leads to the same luminance as

red light shining on a white tomato). To perceive the true object

properties, one needs to reconstruct the object. Because solving

the ill-posed problems is mathematically not fully possible, this

reconstruction may fail. Illusions and alike are rather evidences for

the physiological approach than challenges.

Whereas the physiological approach has made great progress

in explaining the first steps of vision (retina, LGN, V1), the

processing of subsequent stages has turned out to be less

straightforward. One reason may simply be that perception

is not as one-to-one as assumed, i.e., perception is not

only indirect, but percepts do not systematically match the

objects of the external world, as in the case of the cross of

Figure 1.

Predictions of the standard physiological model of perception

fail, also in many classic psychophysical paradigms. Crowding

is one example. In crowding, perception of a target strongly

deteriorates when presented within clutter (Figure 1, lower panel,

a). Crowding is the usual situation in daily life since elements are

rarely presented alone (Weymouth, 1958; Bouma and Andriessen,

1968; Bouma, 1970, 1973; Strasburger et al., 1991; Levi, 2008).

Crowding is traditionally explained by feature pooling or averaging

(e.g., Parkes et al., 2001; Solomon et al., 2004; Pelli, 2008;

Greenwood et al., 2009, 2017; Dakin et al., 2010; Rosenholtz

et al., 2012). Whereas, pooling can well explain results with simple

stimuli, it fails as soon as stimulus configurations become slightly

more complex (Figure 1, lower panel).

For example, vernier offset discrimination drops drastically

when the vernier is presented within a square well in line with

pooling and other low-level physiological explanations. However,

adding more squares improves performance almost to the level of

the no crowding condition (Figure 1, lower panel; Manassi et al.,

2012, 2013, 2015, 2016; Herzog and Manassi, 2015; Herzog et al.,

2015, 2016; Choung et al., 2021). We argued that the Vernier

information is recovered because the target and the squares are in

different perceptual groups (Figure 1, lower panel, b and d), which

is not the case when only one square is presented (Figure 1, lower

panel, a). We call this release from crowding “uncrowding,” even

when performance in the uncrowding condition does not reach the

performance level in the no crowding, baseline condition. These

results are not restricted to crowding and vernier stimuli but occur

all over the place in vision as well as in audition and haptics (e.g.,

peripheral vision: Bouma and Andriessen, 1968; Toet and Levi,

1992; Chung et al., 2001; foveal vision: Flom et al., 1963; Danilova

and Bondarko, 2007; Lev et al., 2014; Coates et al., 2018; verniers:

Malania et al., 2007; Saarela and Herzog, 2008, 2009; Sayim et al.,

2008, 2010, 2011, 2014; Saarela et al., 2009, 2010; Gabors: Chicherov

et al., 2014; Chicherov and Herzog, 2015; Jastrzȩbowska et al., 2021;

audition: Oberfeld and Stahn, 2012; touch: Overvliet and Sayim,

2016). Thus, we are back to square one, i.e., the Gestalt times.

Here, we asked whether Gestalt principles can do better than

explanations from the physiological approach. Gestalt principles

have been studied over centuries and are considered fundamental

of perceptual organization (von Ehrenfels, 1890; Wertheimer,

1912, 1922, 1923; Köhler, 1920; Koffka, 1935; Metzger, 1936;

Metzger et al., 2006; reviews: Todorović, 2007; Wagemans

et al., 2012a,b). Gestalt principles include symmetry, proximity,

similarity, common fate, good continuation, closure, parallelism,

synchrony, common region, element, and uniform connectedness.

In this study, we applied four such principles that pertain to the

structure of the configuration (rather than the isolated principle),

namely, symmetry, good continuation, closure, and repetition.

Note that while the classic displays used by the earlier Gestaltists

depicted specific instances of these principles, modern studies

have offered more examples that are easier to apply in complex

configurations such as the ones employed in our study (symmetry:

Sasaki et al., 2005; good continuation: e.g., Lezama et al., 2016;

closure: e.g., Han et al., 1999; repetition: Treder and van der

Helm, 2007; van der Helm, 2014). Specifically, our displays depicted

configurations of stars and squares, assuming grouping by shape

similarity occurs in all of them. Our grouping manipulation, then,

concerned other principles that were imposed on the similarity

grouping (see Figure 1). The rationale of the following experiments

is that uncrowding should occur when the central square is

grouped with other squares. Consequently, we hypothesized that

Gestalt principles could explain (un)crowding, as crowding would

affect performance in a similar manner in configurations that

employed the same Gestalt principle. Moreover, we tried to further

categorize our configurations as more nuanced instances (e.g.,

symmetry with 1 or 2 axes), to potentially uncover more subtle

effects of these principles on (un)crowding. However, this was

not what we found. Our results only showed symmetry to have a

minor advantage in our study, with no other systematic difference

in performance.

Materials and methods

Participants

Thirty-one participants took part in the experiments. Eleven

out of the 31 participants were excluded after a calibration session
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FIGURE 1

(Upper panel) We see a cross even though there are only squares and disks. (Lower panel) Classic models of vision fail to explain crowding in

complex configurations. The x-axis shows di�erent configurations. The y-axis shows the corresponding vernier threshold. A high value represents

poor performance, a lower value represents good performance. The dashed line shows the performance of the vernier alone condition. When one

square (a) is presented surrounding the vernier, performance deteriorates, i.e., crowding. When presenting 7 squares (b), performance improves

drastically, i.e., uncrowding. When presenting squares and stars with di�erent configurations (c–e), performances di�er depending on the

configuration. Note that the local configuration of all the conditions (a–e) is identical, i.e., a square surrounding a vernier. With permission, figure

modified from Manassi et al. (2016).

because they did not show strong crowding in the basic one-square

condition, which is a prerequisite for a release of crowding (see

Calibration session). Hence, we retained the data of 20 participants

(mean age: 21.6 ± 1.6, 10 females, all right-handed, 7 with left eye

dominance). All participants had normal or corrected to normal

visual acuity in the Freiburg Visual Acuity Test, as indicated by

a binocular score greater than 1.0 (Bach, 1996). Observers gave

written consent before the experiments. All experiments were

conducted in accordance with the Declaration of Helsinki (World

Medical Association, 2013), except for preregistration, and were

approved by the local ethics committee (Beritashvili Centre of

Experimental Biomedicine, Georgia).

Apparatus

Stimuli were displayed on a gamma-calibrated 24-inch ASUS

VG248QE LCD monitor (1,920 x 1,080 px, 120Hz). The room was

dimly illuminated (∼0.5 lux). The viewing distance was 75 cm, and

the participant’s chin and forehead were positioned on a chin rest.

Responses were collected using wireless hand-held push buttons. In

the Vernier discrimination task, when no response was registered

within 3 s, the trial was repeated randomly within the same block. A

feedback tone was given for incorrect responses (high tone, 600Hz)

and omissions (low tone, 300 Hz).

General procedures

Three tasks (Figure 2) were carried out with 40 flanker

configurations (Figure 3). The three tasks were a vernier

discrimination task (VCrowd), a vernier standout ranking

task (VRank), and a rating task (Rate). The VRank and the Rate

tasks were tested twice. The experiment was conducted on 5

days within 2 weeks (day 1–3: calibration and VCrowd, day 4:

VRank twice and Rate, day 5: Rate). Before the first experimental
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FIGURE 2

(A) VCrowd task: The task was to discriminate whether the lower Vernier bar is o�set to the left or right compared to the upper bar. (B) VRank task:

Vernier standout ranking task. Two stimuli were presented side-by-side with the same size. The task was to choose in which flanker configuration the

Vernier target stands out more strongly. All possible pairwise comparisons, i.e., 40 x 39/2 pairs of configurations, were tested. (C) Rating task:

Participants were asked to rate how much the vernier stands out (i) from the other elements, (ii) how much the center group stands out from the

other elements, and (iii) how strongly the elements of the center group are grouped with each other.

FIGURE 3

Flanker configurations. Red lines indicate the tested Gestalt principle; these lines are for illustration purposes only and were not presented during the

experiment; Symmetry- a1-b6 [a1-a6- symmetry with 2 axis (Symm2); b1-b6 – symmetry with 1 axis (Symm1)]; good continuation- c1-d4 [c1-c4 –

stretched (contStret); d1-d4-curled (ContCurl)]; Closure- e1-f5 [e1-e3-closure only (Close); f1-f5-closure with symmetry (CloseSymm)]; repetition-

g1-h4 [g1-g4- repetition on cardinal axes (Repeat); h1-h4-repetition diagonal (RepeatDia)]; random- i1-i4 [i1andi2-random spaced (RandSpace) and

random condense (i3&i4: RandCond) group]. Note that the RandCond configurations could also be considered as grouping by proximity, which is

another grouping principle. Most of the configurations were composed of 9 squares and 26 stars (* indicates three configurations, which had 10

squares and 25 stars, b6, d3, and h2). Therefore, low-level features, such as pixel values, were roughly the same across configurations.

session, all participants went through a calibration session to adjust

flanker-target distance individually.

Stimuli

Stimuli were white (100 cd/m2), presented on a black

background with a luminance below 0.3 cd/m2. Participants were

asked to fixate on a red fixation dot (diameter = 8 arcmin, 20

cd/m2). Each stimulus was composed of a Vernier target, flanking

squares and stars. The Vernier target was composed of two 40

arcmin long, 1.8 arcmin wide vertical bars. The gap between the

two bars was 4 arcmin. Left/right offsets were balanced within a

block. The Vernier target was surrounded by 35 flanker elements,

which were mostly composed of 9 squares and 26 stars, except

for 3 configurations which contained 10 squares and 25 stars.

Squares and stars were positioned in 5 rows and 7 columns, as in

Figure 3, and there were 40 different configurations. Each flanker

configuration followed one of four Gestalt principles; symmetry

(in 1 or 2 axes), good continuation (stretched or curled), closure

(only or with symmetry), repetition (on cardinal axis or on diagonal

axis), or were chosen to not include any obvious grouping principle.

The central flanker was always a square, and the Vernier target was

always located within this square. Except for the VCrowd task, each

square was composed of four 120 arcmin long lines, and each star

was composed of seven 48 arcmin long lines. The center-to-center
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FIGURE 4

Performance for each configuration. Each color represents a di�erent Gestalt principle. Configurations are presented in the same order as in

Figure 3. The y-axis shows threshold elevation compared to the vernier only condition. Mean ± SEM. The hatched line shows performance in the

one-square reference condition.

distance between flankers was 150 arcmin. For the VCrowd task, the

square and star sizes and the gap between flankers were individually

adjusted in a calibration session (details in Calibration session). The

side length of the squares was 84–114 arcmin, and the gap between

squares was 21–28.5 arcmin depending on observers.

Each configuration was presented at the center of the screen,

and the fixation dot was presented at an eccentricity of 9 degrees

to the left. Hence, stimuli were presented at 9 degrees in the visual

periphery. The chin-rest was placed 75 cm from the fixation dot.

Psychophysics Toolbox was used to present the stimuli (Brainard,

1997; Pelli and Vision, 1997; Kleiner et al., 2007). To avoid visual

aftereffects, a small spatial jitter was applied to the entire stimulus

within a 3 pixels range from trial to trial.

Procedures

Calibration session
To avoid floor and ceiling effects, each participant went through

a calibration session before the main experiment. The calibration

session was composed of two conditions. First, 1 or 2 blocks with

the Vernier alone condition (160 trial per block) were tested to

familiarize observers with the Vernier task (only participants with

thresholds larger than 200 arcsec were tested in the 2nd block).

Second, up to 7 blocks with a vernier surrounded by one square (80

trial/block) were tested to find the spatial parameters that produce

strong crowding and, thus, allow for a release from crowding,

i.e., uncrowding. We reduced the flanker size and the flanker-to-

flanker distance gradually, until the threshold of the one-square

condition reached at least 6 times the threshold of the Vernier

alone condition. We excluded participants whose thresholds were

still below this criterion even after reducing the square size to 70%.

In total, 11 of 31 participants were excluded. For the remaining 20

participants, the mean threshold for the vernier alone condition

was 142.30 ± 45.48 and 935.84 ± 188.53 for the one square

condition. Note that crowding effects existed in the 11 excluded

participants as well, but not to the extent we requested, which is

at least 6 times the threshold in the one-square condition. We had

this high threshold to make sure that a missing release of crowding

is a clear indication of a null result.

VCrowd task
The vernier discrimination task (Figure 2A), the stimulus

(Vernier + flankers) was presented for 150ms in the center of

the screen, and participants were asked to discriminate whether

the lower bar was offset either to the left or right compared to

the upper bar, by pressing the left or right button, respectively.

Each configuration was tested in a block of 100 trials. The vernier

target without flankers was presented in the first trial of each

block to reduce target-location uncertainty. We used the PEST

(Parameter Estimation by Sequential Testing) stair-case procedure

(Taylor and Creelman, 1967) to determine testing levels (offsets).

The PEST procedure changes the test levels depending on the recent

history step-wise. Test levels are only changed when the hit rate

is above or below the threshold criterion of 75%. The procedure

ended after 100 trials, and a threshold (Thresh) was derived from

post-hoc fitting of a psychometric function to the data (details in

Data analysis).

VRank task
The Vernier standout ranking task (Figure 2B), two flanker

configurations were presented simultaneously side-by-side, and

participants were asked to choose fromwhich flanker configuration

the Vernier target stands out more strongly, i.e., a “win”

(Figure 2B). The stimulus was presented with unlimited time.

Overall, 718 (20∗39) pairs of configurations were tested twice. The

responses from the two identical comparisons were averaged. We

ranked the order of the configurations from 1 to 40, by counting

the number of “wins” in each pair of comparisons. When two or

more configurations had the same number of “wins,” the winner is

the winner in the direct comparison between the configurations. In

addition to the individual Rank order per participant, a global rank
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(GlobRank) was obtained by using a similar process, by pooling the

number of “wins” from the 20 participants’ responses.

Rate task
The rating tasks (Figure 2C). As in the VCrowd task, the

stimulus was presented for 150ms. Four questions were asked.

First, participants rated how much the vernier target stands

out from the rest of the configuration on a scale from 1 to 5

(VStandRate). Second, the stimulus was presented with unlimited

time, and the participants were asked to assign each flanker element

to different sub-groups. Then, the observers were asked to rate on

a scale from 1 to 5, first, how much each sub-group stands out

from the other groups (GStandRate), and second, how strongly the

elements in each group grouped together (GGroupRate)?

Hence, we determined five measures: crowding threshold

(Thresh; from the VCrowd task), global vernier standout

ranking (GlobRank; from the VRank task), vernier standout

rating (VStandRate; from the Rate task), group standout rating

(GStandRate; from the Rate task), and grouping strength

(GGroupRate from Rate task).

Data analysis

We fitted a cumulative Gaussian function to the data and

determined the vernier offset threshold (Thresh), for which 75% of

correct responses were reached. High thresholds indicate inferior

performance, and low thresholds indicate good performance.

The Psignifit 2.5 toolbox (Fründ et al., 2011) was used for

psychometric function fitting.We computed threshold elevation for

each condition and each observer, i.e., we divided the threshold in

each condition by the threshold in the Vernier alone condition.

Data were log-transformed to bring the data closer to normality.

No obvious violation was detected by visual inspection.

Using R (R Core Team, 2019) and lme4 package (Bates et al.,

2015), we computed linear mixed-effects models (LMM) to account

for random variations due to individual differences. The fixed

and random effects are specified for each experiment. The model

significance (p-value) was obtained through likelihood ratio tests

(χ2) by comparing nested models. For each fitted model, using

MuMIn package (Barton, 2020), we computed the effect size

(r2), i.e. the explained variance, when including (conditional r2c )

and excluding (marginal r2m) the random effects (Nakagawa and

Schielzeth, 2013; Johnson, 2014; Nakagawa et al., 2017). Posthoc

multiple comparisons of means were computed with multcomp

package (Hothorn et al., 2008).

Intra-rater reliability for the Rate task was carried out by using

ordinal alpha (Zumbo et al., 2007) to account for ordinality of the

measures (VStandRate, GStandRate, and GGroupRate). The psych

package was used (Revelle, 2021).

Correlations between the measures were computed using

Spearman rank correlation (Spearman, 1904), as four measures

among five were in ordinal scale. Moreover, to account for the

individual variances and potential violation of normality of the

data, the significance of the correlations was obtained through

randomization tests (details in Supplementary Method Section;

Mohr and Marcon, 2005; Bakdash and Marusich, 2017).

Results

Intra-rater reliability

We computed ordinal alpha (Zumbo et al., 2007; Gadermann

et al., 2012) to test intra-rater reliability for the three measures

(VStandRate, GStandRate, GGroupRate) of the Rate Task and

found good reliability for most configurations having alphas

larger than 0.7 (Cohen, 1988; McHugh, 2012): VStandRate: α ∈

[0.730, 0.992]; GStandRate: α ∈ [0.708, 1]; GGroupRate: α ∈

[0.595, 1], except for two configurations for the GGroupRate.

For this reason, we used the averaged rating values in the

subsequent analyses.

Gestalt principles cannot explain
(un)crowding

Here, we tested to what extent perceptual grouping can

be explained by the Gestalt principles used here, and whether

certain principles contribute more strongly than others. For

example, flanker configurations with 2 symmetry axes should

lead to good performance, i.e., less crowding, whereas we

expected poor performance, i.e., strong crowding, for irregular

configurations. We tested 40 configurations, which followed five

different Gestalt principles.

Performance was hardly explained by Gestalt principles.

Figure 4 shows the crowding strength (Thresh) for each

configuration. Importantly, crowding levels related to the

same Gestalt principle were not consistent. For example, four

configurations with two symmetry axes showed uncrowding (red

bars’ values smaller than that of the gray dotted line; Figure 4 a1,

a2, a4, and a5), whereas the other two showed strong crowding

(red bars’ values larger than that of the gray dotted line; Figure 4

a3 and a6). We used a linear mixed effect model (LMM) with

the fixed effect of Gestalt principles and random intercepts of

configurations and participants. The fixed effect was significant

(likelihood ratio test between models including and excluding

the fixed effect: χ
2(4) = 14.352, p < 0.01). However, post-hoc

Tukey’s HSD comparison showed that no Gestalt principle

explains the data better than other ones in general, except that

configurations with symmetry had better performance than that

with closure (details in Supplementary Table 2). In addition, we

wondered whether the performances between the configurations

sharing the same Gestalt principle correlate with each other.

As shown in Supplementary Figure 3, performances within

the same Gestalt principles (Supplementary Figure 3, inside

red dotted lines) did not have higher correlations than those

from different principles (Supplementary Figure 3, outside red

dotted lines).

Subjective grouping and segmentation
measures are correlated with crowding
level but not with a specific principle

Thus, why do Gestalt principles not explain the performance in

the VCrowd task? Two options come tomind: (1) Gestalt principles
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TABLE 1 Absolute values of correlation coe�cients, significance, and 95% confidence interval (CI).

Comparisons Coe�. rmean Significance (pBonf ) 95% CI

Thresh-GlobRank rmean = 0.44 p < 0.001 95% CI = [0.38, 0.49]

Thresh-VStandRate rmean = 0.17 p < 0.01 95% CI = [0.10, 0.23]

Thresh-GStandRate rmean = 0.18 p < 0.01 95% CI = [0.11, 0.24]

Thresh-GGroupRate rmean = 0.14 p < 0.01 95% CI = [0.07, 0.21]

GlobRank-VStandRate rmean = 0.33 p < 0.001 95% CI = [0.35, 0.38]

GlobRank-GStandRate rmean = 0.3 p < 0.001 95% CI = [0.23, 0.36]

GlobRank-GGroupRate rmean = 0.33 p < 0.001 95% CI = [0.26, 0.39]

VStandRate-GStandRate rmean = 0.24 p < 0.001 95% CI = [0.17, 0.30]

VStandRate-GGroupRate rmean = 0.19 p < 0.001 95% CI = [0.13, 0.25]

GStandRate-GGroupRate rmean = 0.5 p < 0.001 95% CI = [0.44, 0.55]

are not the major driver of grouping or (2) (un)crowding is not

mediated by grouping.

First, we used LMMs to test if the Gestalt principles

are a predictor for the grouping and segmentation measures

(Rank, VStandRate, GStandRate, GGroupRate). An LMM with

a fixed effect of Gestalt principles and random intercepts of

configurations and participants was computed for each measure.

Most of the models showed a significant fixed effect, except

for VStandRate (GlobRank: χ
2(4) = 19.969, pBonf < 0.01;

VStandRate: χ
2(4) = 7.406, pBonf = 0.464; GStandRate: χ

2(4)

= 18.662, pBonf < 0.001; GGroupRate: χ
2(4) = 14.632, pBonf

< 0.05; detailed estimates in Supplementary Table 4). However,

similar to the previous experiment, no single Gestalt principle

had high rates or low rates in general, except the symmetry

configurations showed better ratings than other principles (post-

hoc Tukey’s HSD test; GlobRank: symmetry vs. closure p

< 0.001; symmetry vs. contiunous p < 0.05; symmetry v.s.

repetition p < 0.05; GStandRate: symmetry vs. closure p <

0.01, symmetry vs. random p < 0.001; GGropRate: symmetry

vs. closure p < 0.05, symmetry v.s. random p < 0.01; details in

Supplementary Table 5).

Next, we tested correlations between the performance

measure (Thresh) and the grouping and segmentation

measures. As expected, all the measures had significant

correlations, even after Bonferroni correction (details in

Table 1). We computed Spearman’s Rank correlation to

account for the ordinal scales; significance was obtained

by randomization tests (details in Supplementary material).

Figure 5 shows the average of absolute Spearman r

coefficients. The full results for each configuration and

the distributions of the randomization test are presented in

Supplementary Figure 1. The correlation between (un)crowding

(Thresh) and Vernier standout (GlobRank) measures

was high; two Vernier standout measures had a strong

correlation (GlobRank-VStandRate).

Altogether, these results indicate that subjective

ratings of grouping and segmentation are indeed highly

correlated with the (un)crowding performance. However,

grouping processes could not be explained by classic

Gestalt principles.

FIGURE 5

Correlations among measures. The color code represents the mean

Spearman’s absolute rank coe�cient |r|. All correlations were

significant after Bonferroni correction.

Low-level factors

The correlation between the subjective ratings and the offset

discrimination task suggests that higher-level grouping is crucial.

To further support this claim, we show the number of squares

neighboring the central square, a high-level feature, shows higher

correlations with performance than the number of white pixels, a

corresponding low-level feature.

Figure 6 shows the correlations between the mean

performances across participants and model predictions.

Correlations between threshold elevations and the number

of connected squares, discounted by distance, show a strong

correlation (rsquare (38) = −0.60, CI95% = [−0.75, −0.33],

p < 0.001). However, flanker pixel values, regardless of the local

crowding window restriction, show poor correlation (rpixel (38) =

−0.03, CI95% = [−0.35, 0.29], p= 0.87).
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We analyzed the predictability of the two models using two

methods. First, we used LMMs, which had each of the model

estimates as the fixed effects. We found that the number of

connected squares has a significant effect on thresholds, unlike

the number of pixels. For each LMM, the fixed effect was

model estimates for each configuration, and each participant was

considered a random intercept. There were significant fixed effects

for the number of directly connected squares based models, but not

for the pixel value based models (details in Supplementary Table 1).

Although the effects could only explain 6.0 % of the variances (r2m,

square model; for the other models, see Supplementary Table 1), it

was still better than the pixel estimators (0.0%, pixel model). Note

that explained variances, including the random intercept across all

the models, were comparable, 40%−45% (r2c ).

Next, we tested predictability with the leave-one-out cross-

validation (LOOCV) method. Here, we validated the explained

variance of each participant’s performance from other participants’

performances. We fitted the model estimates of threshold elevation

of 19 participants. We obtained an r2-value (explained variance) by

using data that was not included in model estimation. We repeated

the computation 20 times (for each participant), then we averaged

the r-squared values from 20 iterations to get the final explained

variance of each model. As a result, similar to LMMs’ estimates, the

number of directed squares discounted by their distances predicted

the crowding level partially (r2LOOCV−square = 0.164), whereas pixel

values did not (r2
LOOCV−pixel

= 0.015).

These results indicate that none of the models can truly

explain crowding and uncrowding. There were large performance

variances across participants and across configurations. However,

the number of directly connected squares and the remaining

flankers’ distances partly captured uncrowding. For full analyses of

variations of these two models, see Supplementary Models Section.

Discussion

(Un)crowding is ubiquitous. Still, there is no consensus about

the underlying mechanisms. Classic explanations, such as pooling,

fail to explain (un)crowding. As shown here and previously,

the stimulus configuration across more or less the entire visual

field matters. For example, the number of squares and stars is

identical in almost all configurations in the experiments above,

but performance varies strongly even though all configurations

contain the central square. In addition, the size of all configurations

is 17.5 deg in the horizontal and 12.5 deg arcmin in the

vertical direction, spanning a large part of the visual field.

Thus, the specific configuration across a large part of the visual

field matters.

We proposed that the stimulus configuration is parsed into

different groups and crowding occurs, if at all, only within a

group (Herzog et al., 2016). Hence, grouping is key in crowding.

Here, we asked whether specific Gestalt principles, aimed to

explain grouping, can explain crowding and uncrowding (in this

respect, crowding could have been an objective test for Gestalt

processing replacing the subjective reports usually used in the

field). However, we found no evidence that the examined Gestalt

principles can explain (un)crowding. Our results showed some

advantages for symmetry, but this result should be interpreted with

caution, especially considering that configurations that combined

symmetry with another principle did not necessarily show such an

advantage, as we discuss below. The rationale of our experiments

is that when the central square is part of a group according

to Gestalt principles, it should ungroup from the vernier and,

hence, performance should be good. However, for each category

of configurations, we found that some configurations showed

better performance compared to the one-central-square condition,

indicating uncrowding, while other conditions showed clear

crowding, often even stronger than in the one-square condition.

Performances within one category correlated as strongly as across

categories (Figure 4 and Supplementary Figure 3). Performance

for configurations with more than two Gestalt principles was,

overall, not better than for those with one principle (e.g.,

configurations with CloseSymm mostly lead to strong crowding,

see Figures 3, 4, CloseSymm). Often, the combination of principles

(e.g., Figure 4, ContStret and CloseSymm) rather led to an

increase in crowding than a release, contrary to the spirit of

previous findings that showed better grouping when two principles

are combined (Hochberg and Hardy, 1960; Ben-Av and Sagi,

1995; Kubovy and Wagemans, 1995; Quinlan and Wilton, 1998;

Claessens and Wagemans, 2005, 2008; Kubovy and van den

Berg, 2008; Oyama and Miyano, 2008; Luna and Montoro, 2011;

Luna et al., 2016; Rashal et al., 2017a,b; Rashal and Kimchi,

2022). Still, crowding level (Thresh) and subjective grouping

ratings (GlobRank, VStandRate, GStandRate, and GGroupRate)

correlated significantly (Figure 5). Correlations were highest with

the Vernier standout (VStand) ratings, which supports our claim

that uncrowding happens when the vernier stands out from

the flankers.

Finally, model simulations showed that grouping among

high-level features had a stronger correlation with crowding level

(Thresh) than low-level features (Figure 6). We did not simulate

the physiological approaches’ model performances as exploring

physiological models was out of the scope of the current work.

Additionally, numerous publications have attempted to explain

(un)crowding performance under physiological frameworks

(Manassi et al., 2016; Doerig et al., 2020a,b; Bornet et al., 2021a,b;

Choung et al., 2021). For instance, Manassi et al. (2016), using

the Fourier model, evaluated similar flanker configurations that

consist of squares and stars and failed to explain (un)crowding.

However, we admit that our configurations might have affected

physiological-based models, such as in Waugh et al. (1993)

and Mussap and Levi (1997), which used Fourier analysis and

showed that Vernier acuity changes depending on the orientations

of masks.

What are the implications of our results? There are several

aspects. First, the physiological approach may not be tenable in

its current form but is correct in principle. Maybe we need to

give up the feedforward aspects and allow recurrent, complex

interactions. For example, Doerig et al. (2019) have shown that one-

stage, feedforward models cannot explain uncrowding since target

information is irretrievably lost during feedforward processing.

This holds true for local pooling models (e.g., Parkes et al., 2001;

Solomon et al., 2004; Pelli, 2008; Greenwood et al., 2009, 2017;

Dakin et al., 2010; Rosenholtz et al., 2012), and models that

can account for global configurations, such as a Fourier model

(Waugh et al., 1993; Mussap and Levi, 1997; Manassi et al., 2016),
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FIGURE 6

Correlations between model estimates and mean crowding level of each configuration for (A) the square model (higher-level feature) and (B) the

pixel model (lower-level feature). The y-axis shows the mean threshold elevation, and the x-axis is the model estimates for each model. Dots

represent configurations, the colors indicate Gestalt principles, corresponding to Figure 4.

epitomes model (for details see Jojic et al., 2003; Doerig et al.,

2019), high dimensional feature pooling model (HD pooling;

Rosenholtz et al., 2019; Bornet et al., 2021a; Choung et al.,

2021), and deep networks (DNN; Doerig et al., 2020a). However,

more complex models, employing recurrent processing, such as

Capsule networks and the Laminart model, do not kill vernier-

related information during feedforward and, therefore, can explain

uncrowding results (Francis et al., 2017; Doerig et al., 2019, 2020b).

In this models, indirect realism becomes even more indirect,

including time-consuming, potentially idiosyncratic processing

and the question arises whether these models adhere to spirit of the

classic models.

Similar things can be said about the Gestalt approach. Indeed,

the current Gestalt principles may be oversimplified. They work

well for simple stimuli. However, future Gestalt cues may change

the game (see for example, Todorović, 2011). For example, Gestalt

principles may consider statistical principles, such as summary and

ensemble statistics (Tiurina et al., 2022). In addition, it seems that

our results do not argue against the Gestaltist’s main credo: there is

more in the mind than in the stimulus, and the whole is different

from its parts. Perception is not one-to-one.

Maybe, these arguments are true. However, we think that the

failures of both approaches show that there are deeper issues,

related to the philosophical foundations of perception. As said, the

Gestalt approach is rather silent about the external world because its

main source of scientific reasoning comes from introspection, from

how stimulus configurations look to us, and not from speculations

about an external world, which is a latent variable because realism

is indirect and, hence, we have no perceptual ground truth about it

(Figure 1, upper panel). For this reason, Gestalt theory says very

little about the world. Gestalt theory focuses on perception as a

truly subjective science. However, detaching perception from an

objective, mind-independent world opens up the possibilty that the

Gestalt rules may be totally idiosyncratic. Hence, Gestalt theory

loses its relationship to ground truth. This comes with quite some

problems, in particular for an objective science of perception. From

an evolutionary point of view, we may ask: why should there be

more in the mind than what is in the world? Why should different

people follow identical Gestalt principles if no constraints make

some of the principles better than others?

Whereas the Gestalt approach is rather vague about its

ontological commitments, the physiological approach clearly

subscribes to indirect realism, includingthe ontological

commitment to ordinary objects and a one-to-one mapping

between the objects and their corresponding representations. As

mentioned, mismatches are just unavoidable errors in the process

because of the ill-posed problems of vision. However, the strong

ontological commitment to the existence of everyday objects is

not easily tenable. of course, one problem is that we can never

verify this assumption since perception is indirect, i.e., we have no

direct access to the world. However, we propose there is another

main problem, namely, that the external world is much richer, i.e.,

there are much more fundamental entities (the physical particles),

than mental representations. One can mathematically show that,

in this situation, mind-independent ordinary objects cannot occur

(Herzog and Doerig, 2021; Herzog, 2022). Apples are not the

starting point of perception, they are the outcomes of perception.

Perception is a mapping from fundamental physics directly to

perception without an intermediate ontology of apples and alike.

Hence, there is ground truth, as in the physiological approach,

but the truth comes from physics (i.e., particles) as our primary

source of knowledge, not by sensory or perceptual evidence of

ordinary objects and a like. There is no accurate reconstruction

of ordinary objects because there are no ordinary objects. In our

view, the squares and disks are as mind-dependent as the cross in

Figure 1.

In summary, as in the physiological approach, we propose

that there is a mind-independent world of particles. Perception

is a mapping from these particles into the world of mental

representations, which are truly subjective in the spirit of the

Gestaltists. For this reason, introspection is the tool of choice

since there is no objectivity on the ordinary object level. Gestalt

perception is realized by the neural wiring of each observer and

hence may be fully idiosyncratic, i.e., different people do not
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employ Gestalt principles in an identical manner. This is evident

by manifest differences, as in the case of the #theDress. These

differences are not unavoidable errors of a reconstruction process

of ordinary objects but the unavoidable consequence of the truly

subjective nature of vision, i.e., Gestalt vision. We are now ready

for a happy marriage of both perspectives on perception.
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figure-ground ambiguity

Mary A. Peterson1,2* and Elizabeth Salvagio Campbell1,2,3
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Introduction:Previous experiments purportedly showed that image-based factors

like convexity were su�cient for figure assignment. Recently, however, we found

that the probability of perceiving a figure on the convex side of a central border

was only slightly higher than chance for two-region displays and increased with

the number of display regions; this increase was observed only when the concave

regions were homogeneously colored. These convex figure context e�ects (CEs)

revealed that figure assignment in these classic displays entails more than a

response to local convexity. A Bayesian observer replicated the convex figure CEs

using both a convexity object prior and a new, homogeneous background prior

and made the novel prediction that the classic displays in which both the convex

and concave regions were homogeneous were ambiguous during perceptual

organization.

Methods: Here, we report three experiments investigating the proposed ambiguity

and examining how the convex figure CEs unfold over time with an emphasis

on whether they entail recurrent processing. Displays were shown for 100 ms

followed by pattern masks after ISIs of 0, 50, or 100 ms. The masking conditions

were designed to add noise to recurrent processing and therefore to delay the

outcome of processes in which they play a role. In Exp. 1, participants viewed

two- and eight-region displays with homogeneous convex regions (homo-

convex displays; the putatively ambiguous displays). In Exp. 2, participants viewed

putatively unambiguous hetero-convex displays. In Exp. 3, displays and masks

were presented to di�erent eyes, thereby delaying mask interference in the

thalamus for up to 100 ms.

Results and discussion: The results of Exps. 1 and 2 are consistent with the

interpretation that recurrent processing is involved in generating the convex

figure CEs and resolving the ambiguity of homo-convex displays. The results of

Exp. 3 suggested that corticofugal recurrent processing is involved in resolving

the ambiguity of homo-convex displays and that cortico-cortical recurrent

processes play a role in generating convex figure CEs and these two types of

recurrent processes operate in parallel. Our results add to evidence that perceptual

organization evolves dynamically and reveal that stimuli that seem unambiguous

can be ambiguous during perceptual organization.

KEYWORDS

recurrent processing, figure-ground perception, context e�ects, ambiguity, thalamus,

corticothalamic, cortico-cortical
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Introduction

A central function of perception is segregating the visual

field into foreground objects and their local backgrounds, yet the

underlying mechanisms are not fully understood. Foreground-

background perception (i.e., figure-ground perception) was long

thought to result from low-level processes in a feedforward

perceptual system. Evidence for this view was provided by

demonstrations that figure assignment was determined by image-

based cues such as convexity. For example, for stimuli like the

one on the right in Figure 1A, a large majority of perceivers

reported that the convex regions were the figures (e.g., Rubin,

1958; Hochberg, 1971; Pomerantz and Kubovy, 1986). Indeed,

convexity was considered the principal figural prior (or “cue,”

Kanizsa and Gerbino, 1976). However, using displays exposed for

100ms, Peterson and Salvagio (2008) found that the probability

of perceiving convex regions as figures was only slightly above

chance for two-region displays (like Figure 1A, left) and increased

systematically with region number to 85–90% for eight-region

displays like Figure 1A, right (see Figure 1E). These results

indicated that the probability of perceiving convex regions as

figures was boosted by global context, a factor that was not

previously thought to have an influence. These global context

effects (CEs) were observed only when the concave regions were

homogeneous (as in Figures 1A, B), but not when they were

heterogeneous (as in Figures 1C, D; see Figure 1E).

What processes produce these global CEs? The lack of convex

figure CEs for Figures 1C, D ruled out grouping and probability

summation, respectively (Peterson and Salvagio, 2008). Goldreich

and Peterson (2012) replicated the global convex figure CEs with

a Bayesian observer that incorporated a new background prior in

addition to the convexity prior. They noted that backgrounds tend

(more than figures) to be homogeneously colored. Consistent with

this background prior, laboratory research shows that disconnected

regions are more likely to be perceived as portions of a single

surface when they are homogeneously rather than heterogeneously

colored (Yin et al., 1997, 2000). The Bayesian observer also made

the novel prediction that the classic eight-region displays like

the one on the right in Figure 1A, in which both the convex

and concave regions are homogeneously colored, are ambiguous

during perceptual organization; ambiguity arises because the

background prior of homogeneous color and the object prior of

convexity oppose each other for convex regions. This prediction

was surprising because the displays do not seem to be ambiguous:

a large majority of observers report perceiving convex regions

as figure (e.g., Kanizsa and Gerbino, 1976). If this prediction

is confirmed, however, that will provide evidence that complex

perceptual organization processes take place outside of awareness,

even when a single prior was previously considered sufficient.

Here, we report three experiments using backward pattern masks

to examine the development of convex figure CEs for putatively

ambiguous and unambiguous displays like those in Figures 1A, B,

respectively, in order to better understand the dynamics of figure-

ground segregation.

We are particularly interested in whether feedback from higher

to lower levels in the visual hierarchy (i.e., recurrent processes)

plays a role in convex figure CEs and in resolving ambiguity

during perceptual organization. It is reasonable to assume that

the homogeneous background prior entails perceptual completion,

which seems to require feedback (Wyatte et al., 2012, 2014; Tang

et al., 2014, 2018; for review see Thielen et al., 2019; Kreiman

and Serre, 2020). It is known that contextual influences on neural

responses are mediated by recurrent processing (e.g., Lamme, 1995;

Zipser et al., 1996; Gilbert and Li, 2013). Recurrent processes within

the primate cortex modulate the responses of V1 neurons to figures

defined by contrasting features inside and outside their receptive

fields (e.g., Lamme and Roelfsema, 2000; Lamme et al., 2002; Craft

et al., 2007; see Kelly and Grossberg, 2000; Jehee et al., 2007

for models implementing recurrent processes in figure-ground

perception). Recently, Self et al. (2019) showed that recurrent

input to V1 from a higher cortical level plays a role in resolving

a local ambiguity in figure-ground organization. Going beyond

cortico-cortical recurrent processing, Sillito and Jones (2002), Jones

et al. (2015), and Poltoratski et al. (2019) found that cortico-

fugal feedback modulates the neural representation of figures in

the primate thalamus. Indeed, cortico-thalamic feedback seems to

be automatic; Jones et al. (2015) hypothesized that it iteratively

refines local thalamic responses to be consistent with global

responses in higher-level cortical areas. Based on this previous

research regarding context effects in figure-ground perception, we

investigated whether recurrent processing plays a role in convex

figure CEs.

We began by investigating the development of convex figure

CEs obtained with the classic displays like those in Figure 1A;

see also Figures 2A–C. Convex figure CEs are characterized by

substantially higher convex figure reports for eight-region than

two-region displays. In the eight-region displays used in all

experiments in this article, the concave regions were homogeneous,

an essential ingredient for convex figure CEs. In the classic displays

used in Exp. 1, the convex regions were also homogeneous. In the

displays tested In Exp. 2, the convex regions were heterogeneous.

Henceforth, these two types of displays will be labeled homo-

convex and hetero-convex displays, respectively. Test displays

were exposed for 100ms (the duration used by Peterson and

Salvagio, 2008) and were followed by a 200-ms pattern mask after

interstimulus intervals (ISIs) of 0, 50, or 100ms. The 100-ms

duration during which the test displays were shown is sufficient for

feedforward activation through the visual hierarchy (e.g., Lamme

and Roelfsema, 2000; Bullier, 2001). Hence, activation from the

mask is unlikely to interfere with feedforward activation from the

display (e.g., Lamme et al., 2002; Breitmeyer and Ogmen, 2006;

Roelfsema, 2006; Di Lollo, 2007; Fahrenfort et al., 2007; Wyatte

et al., 2012, 2014; but see Breitmeyer and Ogmen, 2022). However,

feedforward activation from a subsequently presented patternmask

can add noise to the substrate for recurrent processing initiated

by a preceding stimulus. Perceptual organization that depends on

recurrent processes would emerge more slowly as a consequence.

Therefore, if recurrent processing is involved in convex figure CEs,

the probability of observing CEs should increase with display-

to-mask ISI. Moreover, if, as hypothesized, homo-convex displays

are ambiguous and ambiguity resolution also requires recurrent

processes, convex figure CEs may emerge in a longer ISI condition

for homo- than hetero-convex displays. This is because it takes time

to resolve ambiguity (Peterson and Lampignano, 2003; Peterson

and Enns, 2005; Brooks and Palmer, 2011). The outcome of

these experiments will yield insights into the complex interactive
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FIGURE 1

(A) Two- (left) and eight-region (right) displays with homogeneous (homo) convex and homo-concave regions. (B–D) Four- (left) and eight-region

(right) displays comprising (B) heterogeneous (hetero) convex and homo-concave regions; (C) homo-convex and hetero-concave regions; (D)

hetero-convex and hetero- concave regions. (E) Proportion of convex figure reports as a function of region number for unmasked 100-ms

exposures of displays (A–D). P(convex = figure) reports increased with region number only when concave regions were homogeneous (these figures

are adapted from Figures 2–5 in Peterson and Salvagio, 2008). Participants’ task was to report whether the red probe appeared “on” or “o� “the

region they perceived as the figure at the nearest border. The dashed red line indicates chance performance (50% convex figure reports). Error bars

represent standard error of the mean.

FIGURE 2

(A, B) Sample two- and eight-region homo-convex displays used in Exp. 1A. Convex region(s) are black in (A) and white in (B); located to the left of

the central border in (A) and to the right of the central border in (B). The red probe is on the convex region in (A) and o� the convex region in (B). (C)

A sample eight-region display used in Exp. 1B with black convex regions. The red probe is on the convex region to the left of the central border. (D,

E) Sample eight-region hetero-convex displays used in Exp. 2. Convex regions are HL in (D) and LL in (E).

processes that lead to the determination of where convex objects lie

with respect to borders in scenes.

Experiment 1

In Exp. 1A, participants viewed two- or eight-region homo-

convex displays like those in Figures 1A, 2A, B for 100ms; for each

display they reported whether they perceived the convex region

as a figure. Displays were followed by a pattern mask at one of

three ISIs (0, 50, or 100ms). Convex figure CEs are defined by

significantly higher convex figure reports for eight-region than two-

region displays. We found that convex CEs increased in magnitude

as the display-to-mask ISI increased from 0 to 100ms, consistent

with predictions if recurrent processing is involved in generating

convex figure CEs. In Exp. 1B, we presented narrower eight-region
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displays (see Figure 2C) in the same display-to-mask ISI conditions

used in Exp 1A to investigate whether the recurrent processes

implicated in convex figure CEs operate between levels of the visual

hierarchy (vertically) or within a level (i.e., horizontally). In both

cases, backward pattern masks could add noise to the substrate for

recurrent processes. However, within-level recurrent processes take

more time as the distance they must travel increases whereas those

between levels are substantially less affected by distance (Girard

et al., 2001). Therefore, horizontal within-level recurrent processes

would be implicated if convex figure CEs emerge at a shorter ISI for

narrow displays than for wider displays, whereas vertical between-

level recurrent processes would be implicated if convex figure CEs

develop along the same time course for narrow and wide displays.

Participants

Participants in Exp. 1 and all experiments reported in this

article were undergraduate students at the University of Arizona

who took part to partially fulfill the requirements of an introductory

Psychology class. They signed a consent form approved by the

University of Arizona IRB before participating. All participants

reported normal or corrected-to-normal vision. The data from

participants who failed to respond within 3,000ms on at least 85%

of the trials were removed. This standard criterion was applied to all

conditions in all experiments. These aspects of the experiments held

true for all participants in all experiments reported in this article.

A total of 200 students took part in Exp. 1A; 104 students

participated in the follow-up experiment; and 104 students (59 F;

37M) participated in Exp. 1B. The number of participants whose

data were removed because they did notmeet the standard criterion

was eight for Exp. 1A, four for the follow-up experiments to Exp.

1A, and eight for Exp. 1B.

Stimuli

The stimuli used in Exp. 1A were 112 two- and eight-

region homo-convex displays (56 per region number condition)

comprising alternating low luminance (LL; RGB = 0,0,0) and high

luminance (HL; RGB = 255,255,255) convex and concave regions

(see Figures 1A, 2A–C). In Exp. 1A, the stimuli were all equal

in height (5.65◦H) and varied in width (W): Two-region displays

were on average 2.92◦W (range: 2.45–3.28◦; see Figure 2A); eight-

region displays were 13.87◦W (range: 12.17–15.87◦; see Figure 2B).

In Exp. 1B, the stimuli were 96 eight-region homo-convex displays

that were 5.53◦H x 8.53◦W (see Figure 2C). Regions were deemed

convex if their parts, delimited by successive minima of curvature,

had positive curvature (cf., Peterson and Salvagio, 2008). Convex

regions were LL and concave regions wereHL in half of the displays,

with achromatic colors reversed in the remaining half. In half the

displays, the region to the right of the central border was convex;

in the other half, the region to the right of the central border was

concave (see Peterson and Salvagio, 2008 for complete stimulus

construction details). An invisible rectangular frame around the

displays cut the leftmost and rightmost regions of the displays in

half, giving the impression that they continued behind the frame.

Burrola and Peterson (2014) andMojica and Peterson (2014) found

that without a frame that allows perceptual completion, CEs are

not observed.

A red probe was centered vertically on the region to the right

or left of the central border. The red probe was a square in Exp.

1A and a narrow bar in Ex. 1B because the individual regions of

the narrow displays were necessarily narrower (see Figure 2C). In

previous experiments, responses to square and bar probes did not

differ (Peterson and Salvagio, 2008).

Displays were centered on a medium gray backdrop (RGB =

182, 182, 182; luminance= 11.95 ft-L) that filled the screen (17.7◦H

x 22.8◦W) of a 21-in Sony CRT monitor. The HL and LL regions

were equal luminance steps below and above the backdrop; hence,

contrast with the backdrop did not serve as a depth cue (see O’Shea

et al., 1994). The masks used in Exp. 1 comprised a geometric

pattern with white, black, and medium gray regions. In Exp. 1A,

the masks were 5.83◦H and were 2.98◦W for two-region displays

and 16.15◦W for eight-region displays. In Exp. 1B, the masks were

5.53◦H x 9.69◦W. A sample mask for homo-convex displays is

shown in Figure 3.

Design and procedure

In all experiments in this article, conditions were tested

between-subjects to avoid contamination of one condition by

another. Participants were assigned via a Latin square to a

single region number and ISI condition when they arrived

at the laboratory. After signing the consent form, participants

were instructed on the nature of figure-ground perception and

their task using instructions displayed on the computer; an

experimenter read these instructions aloud while they were

displayed and stayed in the room during practice trials to answer

any questions.

Each trial began with a fixation cross, centered where the

central edge of the upcoming test display would be located.

Participants were instructed to fixate their eyes on this cross

and to press the foot pedal when they were ready to begin

each trial. Upon pressing the foot pedal, a single display

was presented for 100ms. The pattern mask (200ms) was

presented 0, 50, or 100ms after the experimental display.

Figure 3 illustrates the trial sequence. The presentation software

automatically advanced to the next trial when participants

responded or after 3,000ms had elapsed (a time-out was recorded

if participants did not respond within the 3,000-ms window).

Viewing distance was constrained by a chinrest mounted 96 cm

from the monitor.

On each trial in Exp. 1, a homo-convex test display appeared

for 100ms. Participants’ task was to report whether the red probe

on the display was located “on” or “off” the region they perceived

as the figure shaped by the nearest border. This probe on/off task

provides a valid and reliable index of figure assignment near a

border (e.g., Hoffman and Singh, 1997; Peterson and Salvagio, 2008;

Mojica and Peterson, 2014; Peterson et al., 2017). The instructions

stated that there were no correct answers in the experiment,

that different people see the displays differently, and that the

experimenters were interested in participants’ first impression of
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FIGURE 3

(Left) The trial sequence with a sample mask for homo-convex displays. (Right) Sample stimulus and mask for hetero-convex displays. A blank gray

screen was shown for a variable interstimulus interval (ISI) between the test display and the mask.

the display. Participants were told that a random pattern would

appear after the test display disappeared (this was the mask)

and that they only had to look at it this pattern, not respond

to it.

On experimental trials in Exp. 1A, each participant viewed

56 randomly presented trial unique homo-convex displays in

one region number (two- or eight-region) and display-to-

mask ISI condition. Participants in Exp. 1B viewed 96 trial-

unique homo-convex displays. Participants made their on/off

judgment regarding the red probe by pressing the top or bottom

button on a custom button box. Assignment of buttons to

“on”/“off” responses was balanced across subjects. Before the

experimental trials, participants completed eight practice trials;

none of the displays used in the practice trials appeared in the

experimental trials. Participants were left alone to complete the

experimental trials.

Data analysis

The proportion of trials on which the convex region closest

to fixation was perceived as the figure/object was calculated for

each participant by summing the number of trials on which

they reported “on” when the probe appeared on the convex

region, and “off” when the probe appeared on the concave region

and dividing this sum by the total number of trials on which

they responded (i.e., excluding timeouts and responses faster

than 200 ms).

Results

Experiment 1A
As can be seen in the black and white bars in Figure 4, convex

figure reports increased with region number, F(1, 186) = 19.39, p <

0.001, η2 = 0.094 and with display-to-mask ISI, F(2, 186) = 4.98, p

< 0.009; η
2
= 0.051. Importantly, an interaction between region

number and ISI, F(2, 186) = 3.06, p < 0.05; η2 = 0.032, showed that

convex figure reports increased with ISI for eight-region displays,

F(2, 93) = 4.894, p =0.01, η
2
= 0.095, but not for two-region

displays, F < 1. To represent the magnitude of the convex figure

CEs, the difference between convex figure reports for eight- vs.

two-region displays was calculated for each ISI condition. This

CE index was not statistically different from zero in the 0-ms ISI

condition [0.033, F(1, 62) = 1.629, p> 0.20]; it just reached statistical

significance in the 50-ms ISI condition [0.086, F(1, 62) = 4.12, p <

0.05] and was robust in the 100-ms ISI condition [0.16, F(1, 62) =

16.43, p < 0.001]. The CE index was statistically higher in the 100-

ms than the 50-ms display-to-mask ISI condition, p < 0.002 (see

Table 1).

Follow-up experiment
To investigate whether convex figure CEs continue to develop

longer than 100-ms after the offset of the test stimulus, we presented

different groups of participants two- and eight-region displays in

200-ms and 300-ms display-to-mask ISI conditions. We compared

convex figure responses in these new conditions to those reported

in the 100-ms ISI condition of Exp. 1A in a 2 (region number) X
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FIGURE 4

Results of Exps. 1A, 1B, and 2. Black and white: The proportion of convex figure reports for two-region (white) and eight-region (black)

homo-convex displays in Exp. 1A. Gray: The proportion of convex figure reports for narrower eight-region homo-convex displays in Exp. 1B. Red:

The proportion of convex figure reports for eight-region hetero-convex displays in Exp. 2. Black horizontal lines indicate di�erences between results

for two- and eight-region displays in Exp. 1A. Gray horizontal lines indicate ns di�erences between results for eight region displays in Exps. 1A and

1B. Red horizontal lines indicate di�erences between results for two- and eight-region displays in Exp. 2. **p < 0.05; ***p < 0.001; ns, no significant

di�erence. Error bars represent standard errors.

TABLE 1 The proportion of convex figure reports and CE indices as a

function of region number and display-to-mask ISI in Exp. 1A and the

follow-up Experiment.

Display-to-mask ISI (ms)

0 50 100 200 300

Proportion convex figures

8-region 0.57 0.60 0.71 0.64 0.71

2-region 0.53 0.52 0.55 0.49 0.53

CE index

0.03 0.09∗ 0.16∗∗∗ 0.15∗∗∗ 0.18∗∗∗

The CE Index is the difference between convex figure reports for eight- and two-

region displays.

CE, Context Effect.
∗p < 0.05; ∗∗∗p < 0.01.

3 (ISI) ANOVA. A significant main effect of region number was

observed, F(1, 159) = 33.219, p < 0.001, η2 = 0.0174, but there was

no effect of ISI, F(2, 159) = 2.002, p > 0.13 (see Table 1).

Together with the follow-up experiments, the results of Exp 1

show that convex figure CEs reached asymptote for 100-ms displays

in the 100-ms display-to-mask ISI condition−200ms after stimulus

onset. It is plausible that pattern masks shown 0 and 50ms after

the offset of a 100-ms stimulus (and maybe longer up to 100ms)

interfere with recurrent processing following the initial analysis of

the test display, thereby preventing the emergence of convex figure

CEs. We continue to investigate the feasibility of this interpretation

in subsequent experiments reported in this article. At this point,

an explanation holding that the test display-off signal is critical for

convex figure CEs and that masks interfere with that signal in the

0-ms display-to-mask ISI condition remains possible (Macknik and

Martinez-Conde, 2007); it is shown to be infeasible by the results of

Exp. 2.

Experiment 1B
To better characterize recurrent processes implicated by the

results of Exp. 1A, we compared convex figure reports obtained

for narrow eight-region displays in the three display-to-mask ISI

conditions to those obtained for the wider eight-region displays in

Exp. 1A. The gray bars in Figure 4 show the results. A 2(display

width) X 3(ISI) ANOVA showed a main effect of ISI: Convex

figure reports increased as display-to-mask ISI increased, F(2, 186)
= 13.354, p < 0.001, η2 = 0.125. Neither a main effect of display

width, F(1, 186) = 2.197, p = 0.140, η
2
= 0.01, nor an interaction

between display width and display-to-mask ISI was observed, F

< 1.0. The finding that convex figure CEs for narrow and wide

displays showed the same developmental trajectory over variations

in display-to-mask ISI characterizes the recurrent processes as

operating between levels of the visual hierarchy rather than within

a level (i.e., vertically rather than horizontally).

Experiment 2

In Exp. 1, we found statistically significant convex figure

CEs for homo-convex displays in the 50-ms display-to-mask ISI

condition and larger convex figure CEs in the 100-ms ISI condition.

That masks shown up to 100ms after stimulus offset interfered

with the generation of convex figure CEs is consistent with the

hypothesis that recurrent processes play a role. Recall, however,

that it has been proposed that homo-convex displays are ambiguous

because when convex regions are homogeneous the convexity

object prior and the homogeneous background prior oppose each

other. If this proposal is correct, Exp. 1 may have assessed the

need for recurrent processing in ambiguity resolution as well as in

convex figure CEs.

In Exp. 2, we used the same procedure with hetero-

convex displays. Hetero-convex displays are unambiguous because
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disconnected heterogeneous convex regions are unlikely to be

completed into a single surface (especially given that they change

color only when out of sight in hetero-convex displays; Yin

et al., 1997, 2000; Goldreich and Peterson, 2012). Only the

homogeneous concave regions of hetero-convex displays would

support perceptual completion into a background. The colored

interior and the borders of heterogeneously colored convex regions

are likely to be combined when convex figures are perceived (cf.,

Grossberg and Mingolla, 1985; Kellman and Shipley, 1991; Zhou

et al., 2000) but this combination is insufficient for convex figure

CEs; homogeneously colored concave regions are necessary (see

Figure 1). Exp. 2 will provide evidence regarding whether convex

figure CEs per se grow with display-to-mask ISI. In addition, a

finding that convex figure CEs emerge and reach asymptote in a

shorter display-to-mask ISI condition in Exp. 2 for hetero- than

homo-convex displays in Exp. 1 will support the hypothesis that

homo-convex displays are ambiguous. If that result is obtained,

the difference between the ISIs in which equivalent convex figure

reports are obtained in the two conditions may estimate how much

time is required to resolve the ambiguity of homo-convex displays.

Participants

A total of 67 participants (52F; 15M) were tested in Exp. 2.

When they entered the laboratory, they were assigned via an ABBA

order to one of two display-to-mask ISI conditions: 0 or 50ms. The

data from two participants were excluded from the analysis because

they did not meet our response rate criterion. The data from

one additional participant were excluded because they pressed the

response button immediately after pressing the foot pedal. A total of

42 participants (28 F) took part in a follow-up experiment in which

displays were exposed for 80ms and were followed immediately by

a 200-ms mask. They were assigned via an ABBA procedure to view

either the same eight-region displays viewed by participants in Exp.

2 or 56 two-region displays used in Experiment 1A.

Stimuli

The stimuli used in Exp. 2 were 64 eight-region displays from

Peterson and Salvagio (2008, Exp. 3): in half the displays hetero-

convex regions alternated with homo-concave regions; these were

the experimental stimuli. In the other half, hetero-convex regions

alternated with hetero-concave regions; these were filler stimuli

included to reduce tendencies to form a strategy of always reporting

either the homo or the hetero regions as figures (cf. Peterson and

Salvagio, 2008). The choice of which 32 of the 64 displays served as

filler stimuli was balanced across participants. As per Peterson and

Salvagio, responses to the filler stimuli were not analyzed.

The displays were all equal in height (5.65◦) and varied in width,

subtending a mean visual angle of 13.59◦ (range: 11.54–15.65◦).

The convex regions differed in color. The convex region sharing the

central border with the concave region was always gray. The other

convex regions were filled with one of four colors: yellow, magenta,

cyan, or orange. These colors appeared once per display, and across

displays appeared on each of the remaining three convex regions

equally often. The concave regions were filled with either HL or LL

gray. The convex and concave regions differed in contrast polarity:

when the concave regions were HL, the convex regions were LL

and vice versa. Samples are shown in Figures 2D, E (as in the other

experiments, stimuli were shown on a medium gray backdrop).

In the filler displays, the alternating regions were HL or LL and

colored gray, yellow, magenta, or cyan. The two central regions

were always filled with HL and LL gray; hence, the central regions

in the two types of displays were equated. The remaining colors

were used to fill the other regions. The same color was never used

to fill two consecutive regions; nor was it used in multiple convex

(or concave) regions in a single display. Convex regions were HL

in half the displays and LL in the rest. The convex and concave

regions differed in contrast polarity: when the luminance of the

concave regions was high, that of convex regions was low and vice

versa. Michelson contrast at the central border = 0.72. Michelson

contrasts at the other borders ranged from 0.62 to 0.78.

The mask that followed the figure-ground display consisted

of a geometric pattern that measured 6.0◦ H x 17.7◦ W (samples

are shown in Figures 2, 3). A mask composed of LL gray and

HL colored regions followed displays where the concave regions

were LL-gray and the convex regions were HL colors and a mask

composed of HL gray and LL colored regions followed displays

where the concave regions were HL-gray and the convex regions

were LL colors. HL and LL masks followed the filler displays

equally often.

Procedure

In Exp. 2, the trial structure was the same as in Experiment 1

(see Figure 3). Test displays were exposed for 100ms and followed

by a 200-ms mask after an ISI of 0 or 50ms. The filler displays

were randomly intermixed with the hetero-convex displays. In other

respects, the apparatus and procedure of Exp. 2 were the same as

that of Exp. 1. In the follow-up experiment, two- and eight-region

displays were exposed for 80ms and followed immediately by a

200-ms mask.

Results and discussion

The results obtained with eight-region hetero-convex displays

in Exp. 2 are shown in red in Figure 4. To assess how convex figure

CEs for hetero-convex displays were affected by display-to-mask

ISI, convex figure reports obtained for eight-region hetero-convex

displays in Exp. 2 were first compared to those obtained with two-

region displays in Exp. 1 (with only one convex region, two-region

displays cannot be classified as either homo- or hetero-convex). The

ANOVA showed a main effect of region number, F(1, 124) = 45.838,

P < 0.001, η2 = 0.270 and an interaction between region number

and ISI, F(1,124) = 5.077, p = 0.026, η
2
= 0.039. Convex figures

reports for eight-region displays increased with display-to-mask ISI

(as in Exp. 1), whereas convex figure reports for two-region displays

did not. The results of Exp. 2 are consistent with the interpretation

that convex figure CEs entail recurrent processes.
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Unlike Exp. 1, in Exp. 2, convex figures were perceived

significantly more often in eight-region than two-region displays in

the 0-ms ISI condition, F(1, 62) = 10.738, p= 0.002, η2 = 0.148 (the

CE index of 0.13 was significantly >0, p < 0.001). This finding is

inconsistent with a claim that the absence of convex figure CEs for

homo-convex displays in the 0-ms display-to-mask ISI condition

of Exp. 1 can be explained by mask-induced interference with a

display offset signal as per Macknik and Martinez-Conde (2007).

It also suggests that the processes generating convex figure CEs

for hetero-convex displays are underway while the test displays are

exposed. Replicating Exp. 1, the difference between convex figure

reports for eight- and two-region displays was larger in the 50-ms

display-to-mask ISI condition (CE index of 0.25), indicating that

convex figure CEs for hetero-convex displays continue to develop

after display offset. Because masks shown 50ms after a 100-ms

display are highly unlikely to interfere with feedforward processing,

these results are consistent with the hypothesis that recurrent

processes play a role in generating convex figure CEs.

Follow-up to Exp. 2
The finding that convex figure CEs were evident in the 0-ms

display to-mask ISI condition raised the question of when CEs fist

emerge for hetero-convex displays. To address this question, we

showed 80-ms two-region displays and eight-region hetero-convex

displays to different groups of participants in a 0-ms display-to-

mask ISI condition. No convex figure CEs were observed: convex

figures were perceived on statistically equivalent proportions of

trials for two- and eight-region displays: 0.56 and 0.60 [F(1, 36) <

1; the CE index was 0.04]. Together, the results of Exp. 2 and this

follow-up experiment suggest that, when object and background

priors are not in opposition for convex regions, the processes

that produce convex figure CEs in eight-region displays take more

than 80ms after display onset and continue for up to 150ms

(i.e., 50ms after the offset of the 100-ms display). These findings

accord with previous estimates of how long perceptual completion

takes although our displays are different from those examined

by previous authors (e.g., Sekuler and Palmer, 1992; Ringach and

Shapley, 1996; Guttman et al., 2003).

Why do convex figure CEs emerge earlier in time for hetero-

convex displays (Exp. 2) than for homo-convex displays (Exp.

1)? We have attributed this temporal difference to processes

that resolve the ambiguity of homo-convex displays. This raises

the question of whether ambiguity resolution occurs in parallel

with the generation of alternative interpretations for homo-convex

displays or whether it occurs in a later decision process. It

is reasonable to assume that perceptual completion processes

generating background interpretations for homogeneous regions

are underway while homo-convex displays are exposed as well as

while hetero-convex displays are exposed, yet convex figure CEs

are evident in convex-figure responses 50ms later for homo- than

for hetero-convex displays. We found that the cost of ambiguity

resolution is approximately constant with increases in the ISI

between eight-region displays and the subsequent backward masks:

AN ANOVA comparing convex figure reports for eight region

displays in the 0- and 50-ms ISI conditions common to both Exps.

1A and 2 showed a main effect of display type, F(1, 124) = 15.681,

p < 0.001, η
2
= 0.112 (higher convex figure reports for hetero-

than homo-convex displays); and a main effect of ISI, F(1, 124) =

5.11, P = 0.026, η
2
= 0.04 (higher convex figure reports in the

50-ms ISI condition than the 0-ms ISI condition). No interaction

between display type and ISI was observed, F(1, 124) = 1.273. This

analysis reveals that the disadvantage for convex figure reports in

eight-region homo- vs. hetero-convex displays is present in the 0-

ms condition and remains stable as convex figure CEs develop. This

result is consistent with the interpretation that ambiguity resolution

processes operate in parallel with the processes generating convex

figure CEs. Indeed, evidence for convex figure CEs in homo-

convex displays lagged behind evidence for convex figure CEs in

hetero-convex displays by ∼50 ms: Convex figure reports for eight-

region homo-convex displays in the 50-ms ISI condition where

convex figure CEs first emerged in Exp. 2 (mean: 0.60; se: 0.04)

were statistically equivalent to convex figure reports for eight-

region hetero-convex displays in the 0-ms ISI condition where

convex figure CEs first emerged in response in Exp. 2 (mean:

0.66; se: 0.04), p > 0.29. Similarly, convex figure reports for eight-

region homo-convex displays in the 100-ms ISI condition of Exp.

1A (mean: 0.71; se: 0.04) were statistically indistinguishable from

convex figure reports for eight region hetero-convex displays in the

50-ms ISI condition in Exp. 2 (mean: 0.78; se: 0.04), p > 0.29.

These results suggest that resolving the ambiguity of homo-convex

displays adds ∼50ms to the time at which CEs are evident in

convex figure reports.

Experiment 3

We have interpreted the evidence presented so far as consistent

with the proposal that convex figure CEs entail recurrent processes.

In Exp. 3, we used dichoptic presentations to investigate whether

the relevant recurrent processes extend to the thalamus or whether

they operate solely within the cortex. In dichoptic presentations,

test displays and masks are presented to different eyes, as illustrated

in Figure 5A. Thalamic units are monocular. The first units that

respond to combined input from both eyes are in cortical area V1.

Therefore, with dichoptic presentations, mask-induced activation

is absent from the thalamus at least until feedback from area

V1 and higher affects thalamic responses. We estimate that time

minimally as the time required for area V1 to respond to a stimulus-

−40–60ms after mask onset (Lamme et al., 2002; Tapia and Beck,

2014). Hence, with dichoptic presentations of the display and

mask, cortico-thalamic recurrent processing would be free of mask-

induced noise until minimally 40–60ms after mask onset (and

perhaps longer if feedback originates in higher-levels than V1).

Therefore, if cortico-thalamic recurrent processing plays a role in

either or both convex figure CEs and ambiguity resolution, the

time course of the convex figure CEs should be shifted 40–60ms

earlier than observed in Exps. 1 and 2 where the test display

and the mask that followed it were presented simultaneously to

both eyes (as illustrated in Figure 5B). In contrast, if only cortico-

cortical recurrent processing is involved, the time course of convex

figure CEs and ambiguity resolution should be the same with

dichoptic presentations as with the presentation conditions used

in Exps. 1 and 2 (the presentation conditions used in Exps.

1 and 2 are referred to as “monoptic presentation” conditions
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FIGURE 5

Illustration of the images in the left and right eyes as a function of time with (A) dichoptic presentations used in Exp. 3 and (B) monoptic

presentations used in Exps. 1-2. ISI, interstimulus interval; SOA, stimulus onset asynchrony. Hetero-convex displays and masks are illustrated;

homo-convex displays and masks like the ones in Figure 3 were also used.

because monocular as well as binocular brain regions respond

to the stimuli. With monoptic presentation conditions, mask-

induced activation is present as soon as activation begins in

the thalamus).

We presented eight-region homo- and hetero-convex displays

and masks to different groups of observers under dichoptic

presentation conditions and compared the results to the results

obtained for eight-region displays in Exps. 1 and 2, respectively.

Only eight-region displays were used because, in previous

experiments, convex figure CEs were evident in increased convex

figure reports with increases in display-to-mask ISI for eight-

region displays but not for two-region displays (see Figure 4 and

Table 1). Moreover, the differences between hetero- and homo-

convex displays were evident in convex figure reports for eight-

region displays.

Participants

A total of 215 undergraduate students (147 F; 68M) from the

University of Arizona participated in Exp. 3. Of these subjects,

113 (79 F; 34M) viewed eight-region homo-convex displays and

their masks under dichoptic presentation conditions and 102 (68 F;

34M) participants viewed eight-region hetero-convex displays

intermixed with filler displays and their masks under dichoptic

masking conditions. Data from 23 participants did not meet our

response rate criterion; eliminating their data from the analysis left

32 participants in each of the 0, 50, and 100-ms display-to-mask

ISI conditions for each display type. Assignment to ISI condition

was random.

Stimuli and apparatus

A haploscope was used with a head and chin rest to present the

stimuli dichoptically. In the haploscope, a pair of mirrors reflected

to the left and right eyes images that were reflected to them by a

second set of mirrors aimed at locations on the left and right sides

of a monitor, such that each of these monitor locations were visible

to one eye only (see http://www.psy.vanderbilt.edu/faculty/blake/

Stereoscope/stereoscope.html). Experimental displays and masks

were shown on the left and right monitor locations equally often

and, hence, were presented to the left and right eyes equally often.

New sets of eight-region homo- and hetero-convex displays and

filler displays were created in a size visible in the haploscopemirrors

(6.45◦H X 10.06◦W). For each set, masks were created by cropping

the masks used in Experiments 1 and 2. The masks measured

7.11◦H X 12.42◦W.

Procedure

Participants were seated 51.3 cm from the monitor, with

distance controlled by a chinrest. Before the experimental trials,

the mirrors of the haploscope were adjusted for each participant

individually until the left and right-eye images of a nonius fixation

cross were aligned. This procedure assured that images presented

on the left and right side of the screen were aligned and centered on

the fixation cross.

In each trial the test display and the mask were presented to

different eyes. In half of the trials the display was presented to the

left eye and the mask to the right eye; in the other half of the trials
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(randomly intermixed), the display was presented to the right eye

and the mask to the left eye. Participants were unaware that the

images were presented to different eyes.

Participants who viewed homo-convex eight-region displays

made their figure reports by pressing one of two vertically aligned

buttons on each trial to indicate whether they perceived the

black or white regions as figures. For the hetero-convex displays

participants reported whether an elongated rectangular probe

(1.45◦H x 0.11◦W; RGB = 255, 0, 0; luminance = 4.88 ft-L)

centered vertically in either a convex or concave region to the left or

right of the central edge appeared to be “on” or “off” the figure (as

in Exps. 1 and 2). Peterson and Salvagio (2008) showed that these

two types of response produce equivalent results. In other respects,

the procedure was the same as in Exps. 1 and 2.

Data analysis

For hetero-convex displays, the data obtained in Exp. 3 were

compared to the Exp. 2 data. For homo-convex displays, the data

obtained in Exp. 3 were compared to the Exp. 1B data because the

display widths were similar (the same results were obtained when

the Exp. 3 data were compared to the Exp. 1A data).

Results and discussion

Hetero-convex displays
As can be seen in Figure 6A, convex figures were perceived

in hetero-convex displays equally often in Exps. 2 (monoptic

presentations) and 3 (dichoptic presentations) in the 0-ms and 50-

ms ISI conditions. A between-experiment ANOVA showed that,

for hetero-convex displays, convex figure reports increased as ISI

increased from 0 to 50ms, F(1, 124) = 10.506, p < 0.002, η
2
=

0.078, replicating Exp. 2 (the 100-ms display-to-mask ISI condition

is not included in this ANOVA because it was tested for hetero-

convex displays only in Exp. 3; it is discussed below). Neither amain

effect of presentation type nor an interaction between presentation

type and ISI was observed for hetero-convex displays, Fs < 1. The

absence of an effect of presentation type is consistent with the

interpretation that cortico-cortical recurrent processes are involved

in generating the convex figure reports in eight-region hetero-

convex displays. This interpretation is not surprising inasmuch as

evidence suggests that convexity is represented in cortical area V4

(Pasupathy and Connor, 1999) and that perceptual completion, a

plausible mechanism linking disconnected homogeneous concave

regions into a single surface, is represented in the cortex (Kourtzi

and Kanwisher, 2001; Rauschenberger et al., 2006; Tang et al., 2014,

2018; Thielen et al., 2019).

Homo-convex displays
As can be seen in Figure 6B, convex figure reports for homo-

convex displays were higher in Exp. 3 (dichoptic presentations)

than in Exp. 1B (monoptic presentations) in the 0- and 50-

ms display-to-mask ISI conditions, but not in the 100-ms ISI

condition where previous experiments indicated convex figure CEs

for masked homo-convex displays had reached asymptote. This

pattern was shown to be statistically significant by main effects of

presentation type (Exp) and ISI, F(1, 124) = 39.86, p < 0.001, η2 =

0.24 and F(1, 124) = 12.23, p < 0.002, η
2
= 0.09, respectively. An

interaction between presentation type and ISI was also observed,

F(1, 124) = 4.37, p < 0.04, η
2
= 0.034: Convex figure reports

for homo-convex displays were statistically higher with dichoptic

presentations than with monoptic presentations in both the 0-

ms and 50-ms ISI conditions (ps < 0.008) but not the 100-ms

ISI condition, p > 0.06, where previous evidence suggested that

convex figure CEs for 100-ms displays reached asymptote. This

finding suggests that cortico-thalamic feedback occurring up to

50ms after stimulus offset plays a role in resolving the ambiguity

of homo-convex displays. When interference from the mask in

subcortical areas was removed for a period of time by presenting

the mask to a different eye than the experimental display in Exp.

3, ambiguity resolution proceeded without interference and convex

CEs reached asymptote in the 50-ms ISI condition, 50ms earlier

than when monoptic presentations of the display and mask were

used in Exp. 1.

We next compared convex figure reports for homo- and hetero-

convex displays obtained with dichoptic presentation conditions

in Exp. 3 and found that they were equivalent (see Figure 6C).

A 2 X 3 ANOVA with the factors of Display Type (homo-

vs. hetero-convex) and ISI (0, 50, and 100ms) revealed a main

effect of ISI, F(2, 186) = 10.03, p < 0.001, η
2
= 0.097 but not

a main effect of Display Type, F(1, 186) = 0.497, p = 0.482,

nor an interaction between Display Type and ISI, F(2, 186) =

0.434, p = 0.648. The finding that with dichoptic presentations

the convex figure CEs emerge and reach asymptote for homo-

and hetero-convex displays in the same display-to-mask ISI

conditions suggests that cortical-thalamic recurrent processes

involved in ambiguity resolution occur in parallel with cortico-

cortical recurrent processes producing convex figure CEs. If

ambiguity resolution occurred later, convex figure reports would

reach asymptote in a longer ISI condition for homo- than hetero-

convex displays even under dichoptic presentation conditions.

Discussion

In Exp. 3 when the test display and backward mask were

presented to different eyes, thereby eliminatingmask-induced noise

in thalamic areas for some time, convex figure CEs emerged

at the same display-to-mask ISI for homo- and hetero-convex

displays. This finding contrasts with what was found withmonoptic

presentations of the experimental display and its mask (i.e., in

Exps. 1 and 2), where convex figure CEs emerged later in time

for homo-convex than for hetero-convex displays. We attributed the

additional time to ambiguity resolution, suggested by Goldreich

and Peterson’s (2012) Bayesian observer (cf. Lass et al., 2017 for

evidence consistent with this claim from tests of older participants).

The results of Exp. 3 imply that ambiguity resolution involves

a cortico-thalamic circuit. Moreover, our results suggest that,

although feedback to the thalamus may occur even when displays

are unambiguous (as in Jones et al., 2015; Poltoratski et al., 2019), it

plays an essential role when ambiguity resolution is required.

Further research is necessary to determine how the ambiguity

of homo-convex displays is resolved. One possibility is that feedback

from the cortex enhances local convexity responses in the thalamus,
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FIGURE 6

(A, B) The proportion of convex figure responses as a function of display-to-mask ISI in monoptic and dichoptic presentation conditions (solid and

stiped bars, respectively) for (A) hetero-convex displays and (B) homo-convex displays. (C) The proportion of convex figure responses with dichoptic

presentation conditions for homo- and hetero-convex displays (blue and red, respectively). Error bars represent standard errors.

thereby iteratively facilitating their transmission to higher cortical

levels (cf., Jones et al., 2015; Poltoratski et al., 2019). Another

possibility is that enhanced local convexity responses could bias

lower-level border ownership cells (Von der Heydt, 2015) toward

the convex side. Note that bias toward convexity is insufficient

for convex figure CEs, however, homogeneous concave regions

are necessary and evidence for convex figures increases with the

number of alternating convex and homogenous concave regions

(see Figure 1E). Hence, eight-region homo-convex displays are

globally ambiguous; this ambiguity is most likely represented

in regions of the cortex with receptive fields large enough

to encompass eight-region displays (10–14◦ in the experiments

presented here). Thus, it is likely that high levels of the visual

hierarchy are engaged in the iterative cortico-thalamic activity

that plays a role in resolving the ambiguity of homo-convex

displays. Indeed, Sillito and Jones (2002) proposed that corticofugal

feedback optimizes the thalamic contribution to global integration

and segmentation.

Another possibility is that iterative cortico-thalamic activity

interacts with cortical mechanisms involved in inhibitory

competition between the two possible interpretations of homo-

convex displays. Lass et al. (2017) found that older participants

showed reduced or no convex figure CEs for homo-convex

displays whereas they showed intact convex figure CEs for

hetero-convex displays. They attributed their results to impaired

suppressive mechanisms involved in inhibitory competition in

older participants (cf., Betts et al., 2005, 2009; Anderson et al.,

2016). There is some evidence that cortico-thalamic recurrent

processing may be slower in older individuals (Walsh, 1976;

Kline and Birren, 2007). Given that possibility, aging effects may

instead or in addition reveal deficits in iterative cortico-thalamic

processing. Using dichoptic presentations with older individuals

could be informative in this regard.

Evidence indicates that the pulvinar of the thalamus is involved

in attentional selection that requires distractor filtering (e.g., Snow

et al., 2009; Strumpf et al., 2013). Like distractor filtering, ambiguity

resolution entails a form of selection. Selecting one interpretation

of an ambiguous stimulus may occur via fine-tuning cortical

responses for that interpretation in one or many levels of the visual

hierarchy. Ketteler et al. (2014) made a similar proposal regarding

the role of cortico-thalamic recurrent processing in resolving

linguistic ambiguity (cf., Mestres-Missé et al., 2017). More research

is needed to determine the nature of the mechanisms initiated

by cortico-thalamic feedback. Visualizing thalamic responses with

high resolution fMRI is one avenue we hope to pursue in this

regard. Examining perceptual organization in individuals with

thalamic lesions is another.

Ambiguity resolution during perceptual
organization can yield a non-reversible
percept

There is no indication that homo-convex displays are reversible

once the conflict between the object prior and the background

prior for convex regions has been resolved and the best fitting

interpretation has been found. Ample previous research has shown
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that, given enough time without mask interference, convex figures

are perceived by the vast majority of participants who view homo-

convex displays (e.g., Koffka, 1935; Rubin, 1958; Kanizsa and

Gerbino, 1976; Peterson et al., 1998; Bertamini and Lawson, 2008;

Peterson and Salvagio, 2008; Barense et al., 2012; Bertamini and

Wagemans, 2013; Spanò et al., 2016). Nevertheless, as suggested

by our evidence, multiple interpretations are generated during

perceptual organization and the best-fitting interpretation is

perceived. This is exactly what is expected in a Bayesian brain

– the generation of multiple interpretations for perceptual input

before the best interpretation is perceived. Our results show that,

for homo-convex displays, the processes involved in assigning figure

and ground are more dynamic than assumed in traditional theories.

Symmetric figure CEs have also been reported (Mojica and

Peterson, 2014). Like convexity, symmetry is an object prior,

although since it requires a comparison of the two sides of a region

it is necessarily more global than convexity. It also may be a weaker

object prior than convexity (Kanizsa and Gerbino, 1976; Pomerantz

and Kubovy, 1986; but see Mojica and Peterson, 2014). It would

be interesting to examine the time course of symmetric figure CEs

to investigate how symmetry interacts with the background prior

and how conflict between the two priors is resolved in homo-

symmetric displays.

Alternative interpretations

Can the results of our experiments be due to the disruption of

feedforward activity in high levels of the visual hierarchy rather

than to the disruption of recurrent processes? We consider that

unlikely for the following reasons: First, the earlier emergence of

convex figure CEs for hetero- than homo-convex displays cannot

be explained by earlier high-level processing of the former than

the latter. The hetero-convex displays are lower in contrast that

the homo-convex displays. Feedforward spikes from low contrast

images are delayed relative to those from higher contrast images

(VanRullen and Thorpe, 2001, 2002; Wyatte et al., 2012, 2014).

Therefore, based on estimates of the time for feedforward spikes

to reach the cortex alone, one would expect CEs to emerge earlier

in time for homo-convex displays than for hetero-convex displays.

This is the opposite of what we found. Second, that convex figure

CEs were no longer delayed for homo- relative to hetero-convex

displays with dichoptic presentations implicates the thalamus

in resolving the ambiguity of homo-convex displays (although

the alternative interpretations may be generated in high levels,

ambiguity resolution seems to require thalamic involvement).

Third, as mentioned previously, differential difficulty of figure-

ground decisions made in high levels cannot account for the

differences between hetero- and homo-convex displays observed in

Exps. 1 and 2 because those differences are not evident in Exp. 3.

Can factors other than conflict resolution account for the

differences we observed between homo- and hetero-convex displays?

The convex and concave regions in the former displays differ in

luminance only, whereas those in the latter displays differ in both

color and luminance. There is some evidence that stimuli defined

by luminance differences only are processed differently from those

defined by both luminance and color differences. For instance,

Rivest and Cavanagh (1996) showed that borders are localized

better in 2-D space when signaled by two attributes rather than

one. But the conflict in our displays doesn’t entail differential

localization of borders in 2-D space; it involves determining

whether the borders are contours of convex or concave objects.

Moreover, the finding that the CEs evolve at the same time for

homo- and hetero-convex displays with dichoptic presentations

indicates that contour localization differences cannot account for

the differences observed with monoptic presentations.

Since all conditions were manipulated between subjects rather

than within subjects, might the differences between conditions be

attributed to group differences rather than to the manipulated

variables? Between-subjects designs were used to eliminate the

influence of one condition on another. The difference between two-

region and eight-region displays is critical for the CEs. Convex

regions are perceived as figures much more often in eight-region

than in two-region displays. We were concerned that experience

with eight-region displays would contaminate convex figure reports

for two-region displays, thereby reducing the difference between

those two conditions. Each subject responded to many trial-unique

displays within the condition in which they were tested to allow a

reliable estimate of behavior in that condition. We do not believe

that group differences rather than condition effects account for our

results because they are replicated by different groups in different

experiments (e.g., Exps. 1A and 1B; Exp. 2 monoptic results were

replicated in Exp. 3 dichoptic results; and Exp. 3 hetero- and

homo-convex results are not different).

It would be interesting to use a within-subjects design to test

the questions addressed here and to include more fine-grained

manipulation of ISI. It would be difficult, although not impossible,

to present trial-unique displays in a within-subjects experiment, so

the conditions would necessarily be somewhat different. Although

we did not report the results in the body of the paper, we did

test intermediate ISIs of 25 and 75ms for homo-convex displays

with dichoptic presentation conditions and found the results fell

between the results obtained for the adjacent ISI conditions.

Conclusion

The three experiments presented here are consistent with

the interpretation that recurrent cortico-thalamic processes are

involved in resolving the ambiguity of eight-region homo-convex

displays and suggest that cortico-cortical recurrent processes play a

role in generating convex figure CEs.
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Combining contour and region
for closed boundary extraction of
a shape

Doreen Hii* and Zygmunt Pizlo

Visual Perception Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine,

CA, United States

This study explored human ability to extract closed boundary of a target shape

in the presence of noise using spatially global operations. Specifically, we

investigated the contributions of contour-based processing using line edges and

region-based processing using color, as well as their interaction. Performance

of the subjects was reliable when the fixation was inside the shape, and it

was much less reliable when the fixation was outside. With fixation inside

the shape, performance was higher when both contour and color information

were present compared to when only one of them was present. We propose

a biologically-inspired model to emulate human boundary extraction. The

model solves the shortest (least-cost) path in the log-polar representation, a

representation which is a good approximation to the mapping from the retina

to the visual cortex. Boundary extraction was framed as a global optimization

problem with the costs of connections calculated using four features: distance

of interpolation, turning angle, color similarity and color contrast. This model was

tested on some of the conditions that were used in the psychophysical experiment

and its performance was similar to the performance of subjects.

KEYWORDS

boundary extraction, contour, color, log-polar representation, Dijkstra algorithm

1 Introduction

Boundary extraction involves identifying and connecting a set of visual elements such

as line edges to form the boundary of an object. Boundary extraction is one of the first, if

not the very first operations that the human visual system performs. Given the vast amount

of information present in any visual scene, the computations performed by the human

visual system must be robust. Specifically, the visual systemmust be able to ignore irrelevant

information and it should be insensitive to errors which could occur during edge detection.

Top row in Figure 1 illustrates how our stimuli looked. The egg-like shape in the left panel is

easier to see than the one in the right panel. This is because the orientations of the edges

defining the boundary of the shape were perfect in the left panel while the orientations

were randomly perturbed in the right panel. When orientations of edges form a smooth

contour, local interpolation could extract the target boundary (Bottom left of Figure 1). Local

interpolation would fail when jitter level is high (Figure 1 Bottom right), highlighting the

need for global operations in extracting the boundary. This study investigated human global

operations in boundary extraction with a focus on the integration of contour and region

information.
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FIGURE 1

Top row: Examples of stimuli used in our experiment. Contrast was reversed in the actual experiment. Top left: Orientation jitter of the edges in the

boundary of the shape is zero. Top right: The orientation jitter is 20◦. Bottom row: Outputs of a local interpolation algorithm that connected

neighboring edges when turning angle was ≤40◦. Bottom left: This local interpolation was able to extract the boundary of the target egg. Bottom

right: Local interpolation failed to extract the boundary of the egg, demonstrating the need for global operations in extracting the boundaries in our

experiments.

In general, the human visual system may use two types

of information to accomplish boundary extraction: contour

information such as that encoded in edges and region information

such as that encoded in color (Grossberg and Mingolla, 1985).

Since humans are able to extract boundaries in isochromatic

and isoluminant stimuli, the visual system can use either type

of information to independently arrive at a boundary solution.

Nonetheless, since both contour and color are available in most

cases of everyday life, they are jointly encoded in all areas

of the lower (V1-V4) and higher regions (lateral and ventral

occipitotemporal) of the ventral visual stream (Taylor and Xu,

2022).

Perceptually, when both contour and color are available, the

effect of contours seems to dominate over that of color. The

McCullough Effect is such an example where the afterimage after

viewing two regions with different line orientations and colors

depends on the orientation of the lines (Tyler and Solomon,

2019). Further evidence was provided by Vergeer et al. (2015)

who demonstrated malleable color percept: different placements

of edges created different color percepts, and color inside

the shape boundary was always consistent. In fact, previous

research has suggested that shape from contour is the fastest cue

available to the visual system (Elder, 2018) and is the necessary

prerequisite before color-based processing (Moutoussis, 2015).

While contour information may adequately suggest a boundary

in many cases, color may improve performance when edges are

noisy. Hansen and Gegenfurtner (2009) have shown that the two

pieces of information are not redundant copies of each other.

For example, color is less sensitive to changes in shading or

lighting. Therefore, changes in color better indicate a change

in material which could in turn suggest the presence a new

object (Moutoussis, 2015). Moreover, Taylor and Xu (2023) have

found that the cortical areas in the ventral visual pathway could

increase the relative coding strength for color depending on the

type of stimuli being presented (simple orientation or complex

tessellation patterns).

In this study, we (1) performed psychophysical experiments

investigating the integration of contour and color using conditions

where spatially global operations are required, as well as (2)

developed a computational model to emulate human performance.

Results from our psychophysical experiments showed that while

contour and color information could be utilized in isolation,

performance was highest and most robust when they worked

in conjunction. Moreover, our results also suggested that

contour and color could be integrated only with foveal viewing.

With peripheral viewing, performance dropped from ceiling

to chance when the orientation jitter increased from 0◦ to

20◦. The failure of boundary discrimination with peripheral

viewing could not be explained by a decrease in visual

resolution.

Following the study by Kwon et al. (2016), our model uses

the log-polar representation of the retinal image. It is known that

a log-polar map is a good approximation of the transformation

from the retinal image to the early visual areas in the cortex

(starting with V1), the first areas responsible for extraction

of contours and boundaries (Schwartz, 1977). The log-polar

transformation preserves spatially local relations, which means

that local neighborhoods in the retinal image are mapped into

local neighborhoods in the visual cortex. It follows that there

may only be small differences in how computational models

work when using the retinal versus the log-polar representation.

However, spatially global computations may look very different

in the retinal (Cartesian) coordinate system versus in the cortical

(log-polar) coordinate system because the log-polar mapping
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distorts spatially global relations1. Not only so, we believe that

the concept of log-polar is tightly related to other known visual

architectures such as the multiresolution / multiscale pyramid

(Rosenfeld and Thurston, 1971; Tanimoto and Pavlidis, 1975).2

In the present study we emphasized spatially global computations

that result in a closed boundary of a 2D region on the retina.

We further argue that the log-polar representation is essential

in guaranteeing a closed boundary solution when spatially local

computations are insufficient (such as that in Figure 1 right

column).

We substantially elaborated the previous model proposed by

Kwon et al. (2016). Similar to Kwon et al. (2016), the current

study focused on the conditions which are perceptually difficult,

namely when orientation jitter was added to remove local contour

cues. Therefore, the target shape in our stimuli would be difficult

or even impossible to detect for a computational model that

uses only local operations (see Figure 1). Additionally, we showed

that subjects’ performance improved when color information

was made available. Thus, two requirements were placed on

the computational model: (1) the model must perform global

operations to be able to accurately produce a closed boundary,

and (2) the model must be able to combine both contour and

color information. Our proposed model guarantees closure and

implements five other Gestalt principles including proximity, good

continuation, convexity, color similarity and dissimilarity. This

model was tested on some of the conditions on which the subjects

were tested, and its performance was similar to the performance

of the subjects. We additionally tested the model on a small set of

real images and demonstrated promising results. We want to point

out that the current model is not intended as the complete theory.

Instead, it is the first attempt in capturing the role of contour

closure, proximity, good continuation, convexity, color similarity

and dissimilarity in the log-polar representation.

2 Psychophysical experiment

We extended the experiments reported in Kwon et al. (2016)

where the authors measured the role of contour in boundary

extraction using black-and-white line drawings. We first replicated

their main result, and then performed a 2 × 2 factorial experiment

involving two levels of orientation jitter applied to edges and two

levels of background colors. We expected that the addition of

color information would improve the performance of boundary

extraction.

1 For example, consider a circle with its center coinciding with the center

of the retina. Inscribe a square into the circle. The perimeter of the circle

is longer than that of the inscribed square in the Cartesian coordinates

representing the retina. This relationship is flipped in the log-polar space. The

circle maps into a straight line, while the square maps into a four-cornered

curve (see Figure 13 in Kwon et al., 2016). It follows that the straight line

representing the circle is shorter than the curve representing the square.

2 Multiresolution pyramid adjusts the resolution of operations according to

the scale of the object on the retinal image The log-polar architecture is scale

invariant such that retinal shapes that di�er in sizes are processed by the same

number of neurons. Thus, the problem of adjusting scale and resolution of

processing is solved naturally by a log-polar transformation.

We followed the procedure described in Experiment 3 of Kwon

et al. (2016) to test boundary extraction using the fragmented

boundary of an egg-like shape embedded in noise edges. The

subject’s task was to indicate if the pointy side of the egg was

oriented to the left or to the right. This task required extraction of

the entire boundary of the shape.

2.1 Methods

2.1.1 Stimuli
The stimulus consisted of boundary edges belonging to a target

shape embedded in noise. In the current experiment, a stimulus

canvas of size of [1,920 × 1,080 pixels] was used. To fill the

canvas with noise edges, the canvas was divided into [48 × 27]

square grids, each with size [40 × 40 pixels]. A noise edge with

random orientation was added to each grid, with the center of

the edge coinciding with the center of the grid. The edge was

allowed to occupy the central 60% of its grid to prevent coincidental

connections of neighboring edges.

The target shape was an egg created by distorting an ellipse

(Kozma-Wiebe et al., 2006), using the following formula:

x2

52
×

1

1± kx
+

y2

42
= 1

where k is the distortion coefficient such that a larger k produces an

egg with a more obvious pointy side and makes the discrimination

task easier. For three of our four subjects (S1-S3), we used k =

0.04, which was the same value used in the previous study (Kwon

et al., 2016). Subject S4 was tested with k = 0.08. The rectangle

circumscribed on the egg was 450 × 360 pixels. The horizontal

radius (225 pixels) corresponded to a visual angle of 6.66◦ when

viewed from a distance of 60cm. The continuous, smooth egg

boundary was fragmented into straight line segments of similar

lengths as the noise edges. Every other egg boundary edge was

erased, to produce a support ratio of 0.5. The center of the egg was

shifted away from the fixation cross in a random direction, with the

maximum shift being 50% of the minor radius of the egg.

Then, orientation noise was added to the edges belonging to

the egg boundary. Two levels of orientation jitter were used: 20◦

and 180◦. We followed the convention in Kwon et al. (2016),

where an average orientation jitter of 20◦ referred to random

rotation of a boundary edge sampled from either [-25◦, -15◦] or

[+15◦, +25◦]. Orientation jitter of 20◦ was chosen because contour

smoothness was reported by Kwon et al. (2016) to be ineffective

for local interpolation. Therefore, the experiment with this level of

jitter would likely measure spatially global operations applied to

the entire closed contour at once. Sensitivity to jitter was directly

tested in our control experiment (Section 4.3.1). Moreover, local

interpolation based on smoothness failed to extract boundary for

jitter level of 20◦ (Figure 1 bottom right). The jitter 180◦ condition

changed the orientation of the edge by an angle between -180◦ and

+180◦. This implied that the orientation of the contour fragments

of the egg conveyed no information about the boundary of the egg.

Once the egg edges were prepared, they were added to the canvas.

Noise edges were removed if necessary to prevent overlapping of

edges.

Frontiers in Psychology 03 frontiersin.org160

https://doi.org/10.3389/fpsyg.2023.1198691
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hii and Pizlo 10.3389/fpsyg.2023.1198691

FIGURE 2

Left: Custom colormap of 20 colors used in this experiment. Right: An example of a Worley color pattern created by coloring eight Voronoi partitions.

FIGURE 3

Examples of the stimuli. The left column shows examples with jitter 20◦ and the right column shows jitter 180◦. The first row shows the conditions

with no color, the second and third rows show examples with Worley color pattern added to all edges inside the egg (including the boundary edges).

In the second row, edges outside the egg are white (white-background) whereas they have random color (random-background) in the third row.

At this point, the stimulus canvas consisted of grid-like noise

edges and fragmented egg edges. All edges had thickness of one

pixel. To better conceal the egg, positional jitter was added to noise

edges by moving their centers by a random amount in the range

[-10, +10] pixels and in a random direction, with the constraint

that no edges overlapped. The resulting stimulus consisted of white

edges on a black background. Examples of this stimulus are shown

in Figure 3, first row.

2.1.1.1 Adding colors to edges

The edges inside the egg (including boundary edges) were

colored as follows. In each trial, a new, randomly generated

Worley noise pattern was used. Worley noise is a popular texture

generation method to simulate real world patterns (Worley, 1996).

In this study, we generated Worley color pattern by performing

Voronoi partition using a set of five to nine seed points randomly

positioned on the canvas. Each Voronoi partition was given a

different color to generate a Worley color pattern. To make

sure that the color regions were clearly visible against a black

background and against the white noise edges, we constructed a

custom colormap of 20 colors after restricting the categorical colors

from Colorcet to only those with brightness values within the range

of 40–60 (out of 100) (Bednar et al., 2020). The colors used in our

experiments are shown in Figure 2, along with an example of the
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Worley color pattern. Based on the position of the egg, noise edges

inside the egg boundary (including the edges of the boundary) took

on the colors as defined by the Worley color pattern. The number

of color regions varied depending on the sizes of the Voronoi

partitions.

We used two color conditions in the background. In one

condition, all noise edges in the background were uniformly white

(white-background), and in the other condition, each noise edge

in the background was assigned a random color from the custom

color map (random-background). Examples from both conditions

are shown in the second and third rows of Figure 3 respectively.We

expected the white-background condition (second row) to be easier

than the random-background condition (third row). Note that our

stimuli with color looked like watercolor illusions, namely illusory

colors spread in between the blank space of edges and filled in the

region (Pinna et al., 2001).

We randomized all parameters irrelevant to the manipulated

variables. So for each trial, orientation and position jitter of noise

edges were sampled randomly; the fragmentation of the egg had

a random starting point; each edge belonging to the egg boundary

had a random orientation jitter added; a new position for egg center

was selected; a new Voronoi partition was generated; random color

was sampled to fill each partition when creating a Worley pattern;

and if applicable, the colors for noise edges outside the egg were

sampled randomly from the colormap.

2.1.2 Experimental conditions
Example stimulus illustrating each of the six experimental

conditions is presented in Figure 3. To improve visibility of these

examples, edges are drawn with thicker lines and with a lower

density of edges relative to the size of the stimulus. So, these

images are not copies of our stimuli. Nevertheless, they illustrate

the conditions well. The actual stimuli used in the experiment are

publicly available. In Figure 3, we show right-pointing eggs in the

first and third rows and left-pointing eggs in the second row.

2.1.3 Subjects
Four subjects were tested: Subject S1, who received an extensive

practice before data collection; Subject S2; and two naive subjects,

Subjects S3 and S4. In the main experiment, three subjects were

tested with distortion coefficient k = 0.04 and Subject S4 was tested

with a larger distortion (distortion coefficient, k = 0.08) to make

sure that performance in most conditions was well above chance.

All subjects had normal or corrected to normal vision.

2.1.4 Procedure
Signal detection experiment was used. Each session consisted

of two hundred left-pointing eggs and two hundred right-pointing

eggs presented in random order. Each session began with 40

warm-up trials before the 400 experimental trials. The experiments

were performed in a well-lit room. Subjects viewed the stimuli

with both eyes from a distance of 60cm using a chin-forehead

rest. The monitor had a 60Hz refresh rate, and the measured

chromaticity coordinates of the RGB primary colors and luminance

values for the white point are summarized in Table 1. A trial

TABLE 1 Chromaticity coordinates of the RGB and luminance values of

the monitor.

x y Y(cd/m2)

R 0.64 0.35 59.7

G 0.32 0.60 231

B 0.14 0.06 21.9

W 0.312 0.344 314

began by displaying the fixation cross at the center of the monitor.

Subjects pressed a key to advance when they were ready. A blank

screen was shown for 100ms followed by the stimulus that was

shown for 100ms. After that, the blank screen was shown until

the subject responded by pressing “Q” if the egg pointed to the

left or “P” if it pointed to the right. A beep was sounded after an

incorrect response. This sequence was repeated until all 400 trials

were completed. Subjects were given as much time as needed to

familiarize with the task. Subjects completed one practice session

before the actual data collection.

Subjects were first tested with jitter 20◦ and no-color condition

(Figure 3 top left) to allow for an estimate of their distortion

coefficient, k. Subjects S1 and S2 were also tested with the jitter

180◦ and no-color (Figure 3 top right) to verify that performance

in this condition was at chance. The other two subjects (S3 and S4)

were not tested in the jitter 180◦ and no-color condition. After that,

each subject completed the four main experimental conditions in

random order.

2.2 Results

Figure 4 shows the results from individual subjects. Subjects’

performance was evaluated using the discriminability measure d′ of

signal detection. To estimate d′ for a two-alternative-forced-choice

(2AFC) task, one of the two stimuli (say, egg pointing to the left)

can be assigned as “noise” and the other as “signal plus noise”. This

way, hit and false alarm rates can be computed and used to estimate

d′ by subtracting the Z-score of false alarms from the Z-score of

hits. A higher d′ represents better performance and a d′ of zero

indicates chance performance. Reliability of d′ for each subject was

estimated using the standard error of d′ as described by Macmillan

and Creelman (2004) (p. 325).

When no color was used, performance of the subjects was

reliable with jitter 20◦. Specifically, all four subjects achieved d′

between 0.5 and 1.5 in this condition. In contrast, jitter 180◦ led

to chance performance. This was expected, so only two subjects (S1

and S2) were tested in jitter 180◦ and no-color condition.

Next, we will describe the four conditions in which the color of

edges inside the egg was different from the color of edges outside

the egg. For jitter 20◦, performance was equally good when the

background edges were white and when the background edges

had random color. At the same time, performance in these two

conditions was clearly better than performance in the no-color

condition. In three of the four subjects, this improvement was by

a factor of 2 or more. A different pattern of results was observed
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FIGURE 4

Results for each individual subject. Error bars indicate SE. Subjects S1–S3 performed the experiment with distortion of k = 0.04. Subject S4 was tested

with k = 0.08.

FIGURE 5

Performance with larger shape distortion (k = 0.08). Performance improved, but the pattern of results is the same as with k = 0.04.
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FIGURE 6

Examples of stimuli with jitter 0◦ for peripheral viewing. The three color conditions are shown in separate columns: no-color condition where all

edges were white, white-background condition where Worley color pattern was added inside the egg (including boundary edges), and

random-background condition where Worley color pattern was added inside the egg and edges in the background had random color.

for jitter 180◦. Unlike the chance performance where no color

was used, adding color led to performance that was above chance,

especially when background was uniformly white. For background

with random color, performance was lower by a factor of two on

average compared to the condition where background color was

white.

2.3 Discussion

We replicated the results of Kwon et al. (2016) using the jitter

20◦ and no-color condition by showing that subjects could reliably

perform boundary extraction even with this level of jitter. Jitter

180◦ and no-color produced chance performance, as expected.

This indicated the effectiveness of the noise edges in concealing

the egg, so that no confounding cue was available for subjects

to complete boundary extraction. Since no color was present in

this pair of conditions, we expected performance to rely solely

on contour-based processing. While contour-based processing

tolerated an orientation jitter of 20◦, completely randomizing

orientations in the jitter 180◦ condition made contour integration

ineffective. Thus, boundary extraction could not occur. When

color information was made available, color-based processing

was recruited to improve performance. Since contour-based

processing was already recruited in the jitter 20◦ conditions, adding

color reflected the joint operation of contour- and color-based

processing. In the jitter 180◦ conditions, color was the only cue that

could lead to contour extraction.

In general, adding color improved performance. However,

there was a difference in the magnitude of improvement depending

on both the degree of orientation jitter and the background

color. Random color in the background was found to modulate

performance only when color-based processing operated in

isolation (jitter 180◦). When both contour- and color-processing

operated in conjunction (jitter 20◦), performance was equally good

in the white-background and the random-background conditions.

So, an interaction effect was found: the type of background (white

versus random color) had a strong effect for jitter 180◦, but not for

jitter 20◦.

There were individual differences in the way subjects utilized

the contour smoothness and color cues. Specifically, Subject S2

relied more on color cue so that his performance with only

color-based processing (jitter 180◦ with both white- and random-

backgrounds) was higher than when contour-based processing

operated in isolation (jitter 20◦ and no-color condition). In

contrast, Subject S1 relied more on contour smoothness cue so

that her performance was higher when contour-based processing

operated in isolation than when color-based processing operated in

isolation. Subjects S3 and S4 fell between the two extremes: color

cue alone led to higher performance than contour alone, only with

white background.

Nonetheless, when jitter was 20◦, all subjects were able to

combine the contour and color information to produce similar level

of performance. Individual differences were the smallest when both

contour and color information were made available.

3 Control experiments

3.1 E�ect of distortion

Two subjects, S1 and S2, who performed the experiment using

distortion k = 0.04 repeated the experiment with k = 0.08. Subject

S2 was not tested in jitter 180◦ no-color condition. The results are

shown in Figure 5. Increasing egg distortion made the task easier

roughly by a factor of two, but the pattern of results is the same as

with k = 0.04.

The consistent pattern of results for the two distortion

coefficients indicated that the same underlying contour integration

mechanism was at play for both distortion levels. Therefore,

increasing distortion only improves shape discriminability, making

the interpretation of the boundaries easier without altering the

processing involved in boundary extraction.

3.2 Fixation outside the egg

It was shown that the human visual system could perform

local processing based on smooth contours (Field et al., 1993) or

color similarity (Kovács, 1996). To determine the role of local

versus global processing, we performed a control experiment where

fixation was placed outside of the egg. Peripheral viewing precludes

the extraction of closed contours using a log-polar representation

because the problem can no longer be translated into a shortest

path global optimization problem (see Section 4Model). Therefore,
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FIGURE 7

Results from peripheral viewing.

we expected local processing to be a critical mechanism during

peripheral viewing.

3.2.1 Methods
The same stimulus generation procedure was adopted with

the exception that now the center of the egg was randomly

placed outside a circle covering the central 50% of the stimulus

canvas. This way the fixation was always outside the egg boundary.

All six experimental conditions were tested. In addition, three

experimental sessions with perfectly smooth contour (jitter 0◦)

were added. Figure 6 illustrates different egg positions using a target

egg with jitter 0◦. Subject S1 was tested in this experiment.

3.2.2 Results and discussion
Subject S1 was unable to see the egg in two of the conditions

with jitter 20◦ and jitter 180◦ that had no color. Thus, no data was

actually collected for these conditions. Results from the remaining

seven conditions are shown in Figure 7.

For jitter 20◦, d′ was 0.53 and 0.33 for white-background

and random-background conditions respectively. Recall that this

subject produced, in the corresponding conditions, d′ values of 2.00

and 2.06 when tested with foveal viewing (fixating inside the egg).

For jitter 180◦, d′ was 0.45 and 0.35 for the two color conditions

respectively, compared with the d′ values of 1.12 and 0.61 with

foveal viewing. When tested without orientation jitter (jitter 0◦),

Subject S1 produced d′ values of 2.54, 2.20 and 2.44 for the no-

color, white-background and random-background conditions. For

comparison, performance was perfect (proportion correct 100%)

when jitter 0◦ was used with foveal viewing.

A decrease in discrimination of checkerboard patterns during

peripheral viewing was documented in Schlingensiepen et al.

(1986). These authors measured a drop in d′ by a factor of two

when fixation was outside the stimuli compared to free viewing

of the stimuli. In our experiment, fixating outside of the target

shape dramatically changed the subject’s performance. When tested

with jitter 20◦ and no-color condition, moving the stimulus to the

periphery made the stimulus invisible. Adding color helped, only

to a small extent. Reliable performance was observed only when

smooth contour with jitter 0◦ was used. We will suggest later in

this paper that this change is related to unavailability of the global

shortest path optimization when log-polar representation is used.

We want to point out that the fact that the egg was invisible in

peripheral viewing when there was no color for both jitter 20◦ and

180◦ cannot simply be explained by poor visual resolution because

the same target shape was clearly visible with jitter 0◦.

On top of a decrease in performance, the general pattern of

results was different from that with foveal viewing. Specifically,

with peripheral viewing, we did not observe an interaction effect

between jitter level and the type of background color. These

results suggest that the subject had to rely on a completely

different mechanismwhen the fixation was outside the target shape.

Specifically, local cues such as smooth contour in the jitter 0◦

condition had to be used to perform the task. With jitter 20◦ and

greater, local processing based on smoothness is no longer effective.

Interestingly, once boundary was smooth, adding color did not

improve performance.

We conclude that local processing using contour information

could occur in periphery only when sufficiently smooth contours

were present. Robustness to orientation jitter could be achieved

only when fixation was inside the boundary. Similarly, integration

between contour- and color-based processing seemed to occur only

when fixation was inside the boundary.

4 Model

4.1 Model architecture

We extended the biologically-inspired model introduced by

Kwon et al. (2016) to include color processing. Similar to the model

described by Kwon et al. (2016), our model uses the log-polar

representation of the image and solves the least-cost path problem

by applying Dijkstra algorithm. The log-polar representation is

a good approximation to the retinotopic mapping in the early

visual areas of the cortex (Schwartz, 1977). By adopting log-polar

representation, the computationally hard problem of extracting a

closed boundary is transformed into an easier problem of finding

the shortest path. Figure 8 provides a graphical summary of the

model implementation. Operations that are different compared to

the previous model are labeled with asterisks. We describe the

individual steps in the following subsections.

4.1.1 Log-polar
The log-polar representation is a good approximation of

the mapping from the retina to the visual cortex (Schwartz,

1977). This is because the linear density of ganglion cells in

retina is non-uniform, with hyperbolic decrease (approximately
1
r ) as eccentricity, r, increases. Therefore, right at the first

step of visual processing is a space-variant sampling of the

visual input. This nonuniform sampling is subsequently

mapped onto uniformly distributed visual cortical neurons,

resulting in an over-representation at the fovea and under-

representation at the periphery (cortical magnification). Based
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FIGURE 8

Graphical summary of the model. Operations that were modified in this study compared to the previous study by Kwon et al. (2016) are indicated by

asterisks. Edges belonging to the egg boundary are highlighted in red. Given an image, the model receives as input a set of edges and the color values

associated with each edge. Then, the model fixates at the center of the stimulus canvas and selects an orientation as its reference angle (0 rad.) to

define the log-polar coordinate space. A graph is constructed where a node represents the log-polar coordinates of the two endpoints of an edge

along with their associated colors on both sides. Nodes are connected to all other nodes in its neighborhood. Global optimization is then performed

using Dijkstra shortest path algorithm to connect the representation of the initial node at reference angle (0 rad.) to its representation at 2π rad. The

output in Cartesian representation in the form of a closed boundary is obtained by mapping the shortest path solution from log-polar into Cartesian

representation. A decision module interprets the boundary output to provide a response if the pointy side of the egg is to the left or to the right.

on measurements of cortical magnification factors in macaques,

Schwartz (1977) demonstrated that the log-polar transformation

closely approximates this mapping from the retina to the visual

cortex.

The log-polar transformation begins with specifying a polar

coordinate system on the image. Instead of using Cartesian

coordinates (x, y), we use polar coordinates: radius r and angle θ .

The origin of the r dimension represents the center of the retina,

which is a projection of the point in the visual field where the eye

fixates.

The log-polar coordinate system is defined by taking the

logarithm of the r dimension. Two requirements must be met

for the mapping from Cartesian to log-polar to be the proper

transformation as defined in complex analysis: the base of the

logarithm must be e (i.e., natural logarithm), and the angle θ

must be expressed in radians (not degrees). This way, the log-

polar mapping is a conformal mapping, preserving local angles. It

is precisely this mapping that has been shown to approximate the

mapping from the retina to the primary visual cortex. The best way

to avoid confusion is to apply a complex-logarithmic function to

the complex variable (z = x+iy) representing an image point (x, y).

Any complex number, z, may be expressed in polar form, by using

Euler formula: z = x + iy = r(cos θ + i sin θ) = reiθ . Taking the

complex-logarithm of the complex number z, using a logarithm to

the base of e results in loge(z) = loge(r) + iθ . We would like to

point out that software packages or libraries often have a function

for log-polar transformation, but this function is not necessarily

a conformal mapping, namely the logarithm is not natural and/or

angle is not expressed in radians.

4.1.1.1 Cartesian to log-polar transformation

The input stimulus with size [1920 × 1080 pixels] was

transformed into a log-polar image with size [1,920× 1,920 pixels].

The model took as input a set of Cartesian coordinates defining

the edges detected in the image. In this paper, we used synthetic

images described in Section 2.1.1. As a result, our model did not

have to perform edge detection because the edges already existed.

The model took as input an [N × 4] matrix where N is the number

of edges in the stimulus, and each edge was defined by its two

endpoints in the Cartesian coordinates, (x1, y1, x2, y2).

We then transformed the Cartesian coordinates into log-polar

coordinates. We defined r = 0 to be the fixation cross, which was

placed at the center of the stimulus image. The origin for the polar

angle was selected using the same strategy as in the previous study

(Kwon et al., 2016). Specifically, θ = 0 was set at the midpoint of

a randomly selected starting edge belonging to the boundary of the

target egg. This edge was used as the start/end point for computing

the shortest path. Kwon et al. (2016) showed that if a starting point

was not provided, the model could try a number of starting points

and compute the shortest path for all these points. The shortest
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path from all these paths almost always corresponded to the correct

boundary (see their Model LI-SP-EST).

4.1.2 Global optimization
With the new representation in the log-polar space, the original

task of boundary extraction was framed as finding the shortest path

connecting the representation of the starting edge at 0 rad. back

to its representation at 2π rad. Dijkstra shortest path algorithm

was used to perform global optimization. Below, we describe the

three main components in setting up a graph for optimization:

defining the nodes in the graph, establishing connections between

nodes, and assigning the costs of travel from one node to another.

Connection between nodes is more commonly termed as an “edge"

in the context of graph theory. To avoid conflict in terminology, we

use the term “edge" when discussing a detected edge in the image;

we use the term “connection" to mean the edge from one node to

another in a graph.

4.1.2.1 Defining a node in the graph

We defined a node in the graph using three sets of

values: an ordered set of endpoints of an edge in the log-

polar coordinates [(r1, θ1), (r2, θ2)], and two sets of color values

associated with the region to the left and to the right of the edge,

RGB (Left), RGB (Right).

To encode contour-related information in the graph, the

position and orientation of a detected edge was included in

the definition of a node as an ordered set of endpoints

in the log-polar coordinates [(r1, θ1), (r2, θ2)]. Since there are

two possible directions of travel between two endpoints, each

log-polar edge was represented twice in the graph: once for

the forward direction, [(r1, θ1), (r2, θ2)], and the other for the

reversed direction, [(r2, θ2), (r1, θ1)]. A similar implementation

where an edge was represented twice in order to explicitly

express direction was described by Williams and Thornber

(1999).

Next, we describe our approach to introduce color-related

information in the graph. In particular, we would like to encode

color in a way that would preserve the contour-color relationship

(Rentzeperis et al., 2014). As an illustration of the contour-color

relationship, imagine a white circle placed on a black background.

The closed boundary of the circle separates the stimulus canvas

into two regions, foreground and background. The region with

white color coincides with the area enclosed by the boundary.

Therefore, color information does not contradict the contour-

defined boundary. In order to distinguish foreground color from

background color while respecting contour edges, we propose the

notion of directionality, being inspired by Stahl and Wang (2007).

Imagine walking on the boundary of a circle clockwise. The white

color belonging to the interior region of the circle is always to the

right at the walker local frame. Considering the direction of travel

allows the two pieces of information from contour and color to be

tracked simultaneously: for contour, the orientation of an edge is

the unsigned direction; for color, color similarity in the foreground

versus background can be tracked by comparing the colors on

both sides of an interpolating edge. In Figure 9, the shaded regions

indicate the regions to the left of edges according to their respective

directions of travel.

For each edge, color was sampled from a Moore neighborhood

of range three (7× 7 grids) in the Cartesian representation (Moore,

1964). Colors to the left and right of the edge were averaged

separately to obtain two sets of RGB values.

4.1.2.2 Defining connections in the graph

We restricted the connectivity in the graph, so that a node

in the graph can reach only the set of nodes located within its

neighborhood. We defined a neighborhood as a square window of

240× 240 pixels in the log-polar representation. Therefore, instead

of constructing a complete graph with connections for every pair

of nodes, only nodes that were sufficiently close to each other were

connected. Our pilot tests showed that the quality of solutions was

not affected, but computation time was greatly improved.

4.1.2.3 Cost of interpolation

To calculate the cost of interpolation (the cost of a connection

in the graph) from Node A to Node B, we used the following

features: (1) distance, (2) turning angle, (3) color similarity, and

(4) color contrast. The value of each feature was multiplied by

its weight. We describe the algorithmic computation for each

feature, as well as their relationships to the computational level

representation of Gestalt principles (Marr, 2010).

Let us begin with contour information encoded in the edges:

distance and turning angle. The visual system is more likely

to choose a particular interpolation if the distance (length of

the interpolation) is short, commonly referred to as the Gestalt

principle of proximity (Wertheimer, 1923). We computed the

distance as the Euclidean distance from the second endpoint of

the first node to the first endpoint of the second node. Since

distance is computed after the log-polar transformation, scaling

a shape has no effect on the distance metric. This behavior is

desirable since proximity principle has been shown to be robust to

transformations of scaling (Kubovy et al., 1998). We squared the

interpolated distance in the cost function to progressively penalize

long interpolations. This produced good results, but the actual

shape of this function (polynomial vs. exponential) should be tested

in the future.

Turning angle was used in the cost of interpolation because

smaller changes in orientation are more likely to be interpolated

(Wertheimer, 1923; Elder, 2018). Turning angle was defined as

ψ = |ψ1| + |ψ2|, where ψ1 is the angle formed by the

first endpoint of Node A, second endpoint of Node A, and

first endpoint of Node B; and ψ2 is the angle formed by the

second endpoint of Node A, first endpoint of Node B, and

second endpoint of Node B. The angles ψ1,ψ2 are also labeled in

Figure 9. Minimizing turning angle minimizes abrupt changes in

the direction of travel, and thus encodes the Gestalt principle of

good continuation.

As a natural consequence of minimizing the

turning angle in the log-polar space, Gestalt principle

of convexity is encoded implicitly without including

additional parameter in the cost function. An easy

way to see this is to realize that a circle around the

fixation point maps into a straight line in the log-polar

representation.

Next, we discuss features related to color-based processing:

color similarity and color contrast. Edges are more likely to be

connected when they share the same colors on the left side and/or
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FIGURE 9

There are four possible permutations representing the interpolation between two edges in the image. Solid line denotes a node in a graph with the

direction of travel indicated by the arrow. Dashed lines denote the interpolations. The two angles of interpolation, ψ1 and ψ2 are marked. Turning

angle is the sum of the absolute values of these angles.

FIGURE 10

Model performance as a function of increasing turning angle coe�cient. Model performance improved initially as turning angle coe�cient

increased. Further increase of turning angle coe�cient degraded performance. Horizontal dotted line and dash-dot line indicate performance of an

average subject for distortion k = 0.04 and k = 0.08 respectively. Turning angle coe�cient of 0.4 and 1.2 produced performance closest to that of an

average subject, and thus was chosen for subsequent simulations for conditions with color.

on the right side of the interpolated curve, also described as the

Gestalt principle of similarity (Kovács, 1996). The difference in

colors between the left side of Node A and left side of Node B were

computed as follows:1 Color(Left) = |RGB(Left)A − RGB(Left)B|,

and similarly for the right sides of both nodes 1 Color(Right) =

|RGB(Right)A−RGB(Right)B|. The two differences were combined

using a minimum operation, Color similarity = min(1 Color(Left),

1 Color(Right)). As a result, a pair of edges is considered to share

similar color as long as they share similar colors on at least one side.

Finally, edges that carry higher color contrasts between the

left and right side are more likely to indicate the presence

of a boundary. High contrast relates to the pop-out effect or

the Gestalt principle of dissimilarity (Pinna et al., 2022). We

compared the colors on both sides of an individual node and

computed the color contrast = |RGB(Left)A − RGB(Right)A|.

We used the negative of color contrast for global minimization.

Note that the notion of directionality was not encoded in the

computation of color contrast, since the two nodes representing

the same edge in both directions have the same value for color

contrast.

The total cost for every connection in the graph was calculated

by summing the cost across the four features, with weights defined

by coefficients. The cost function with their normalizing constants

was as follow:

a1(D
2
/1920)+ a2(TA/2π)+ a3(CS/255)+ a4(1− CC/255)

where a1, a2, a3, a4 are the coefficients of the individual features;

D, TA, CS and CC represent the cost of distance, turning

angle, color similarity, and color contrast respectively. Since

changing the coefficients alters the model behavior, we identify

a model by specifying its coefficients. For example, a model

ignoring color information would set the coefficients for color

similarity and color contrast to zero. For the ease of reporting,

we label the model in terms of their coefficients using the

following convention [distance, turning angle, color similarity,

color contrast]. If the model assigned a coefficient of 1 to

both distance and turning angle, it would be labeled as

[1,1,0,0].

Note that the magnitudes of the four features in the cost

function were very different because of the units used (distance was

measured in pixels, angle in radians, and color using 256 digital

units). As a result, the values of these features were rescaled by

their respective constants to be in comparable ranges. This means

that the values of coefficients should not be interpreted literally:

Frontiers in Psychology 11 frontiersin.org168

https://doi.org/10.3389/fpsyg.2023.1198691
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hii and Pizlo 10.3389/fpsyg.2023.1198691

FIGURE 11

The model parameter space by performing grid search on stimuli with jitter 20◦. Model performance was evaluated using d′. Results are color coded

with red indicating high performance, grey indicating intermediate performance, and blue indicating low performance. Top: Grid search results for

distortion k = 0.04. Bottom: Grid search results for distortion k = 0.08.

e.g. a coefficient value of one for distance and a coefficient value

of ten for color similarity does not mean that color similarity is ten

times more important than proximity. It is, however, possible to

make relative comparisons of the components of the cost function

across different conditions: an increase in coefficient for color

similarity from a value of two to a value of four (assuming that other

coefficients stayed the same) meant that color similarity was twice

as important in the second condition than the first.
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FIGURE 12

Schematic illustration comparing color similarity and color contrast at di�erent regions of a stimulus. Left: White background condition. Right:

Random background condition. Details described in text.

FIGURE 13

Comparison of the model and subject performance for jitter 20◦. Model was able to match performance of an average subject except in one

condition with higher distortion k = 0.08 and white background. Refer to text for discussion on the interpretation and a plausible model which could

perform better for this condition.

4.1.3 Producing closed contour as model output
After setting up the graph by defining the nodes, connections,

and costs, we applied Dijkstra shortest path algorithm. The

algorithm solved a global optimization to produce a least-cost

path from a starting node to itself. After the shortest path was

transformed into edges in the Cartesian representation, pairs of

edges were interpolated using straight line segments to produce

a closed boundary. The literature provides more sophisticated

interpolation methods that could be used in our model (Sharon

et al., 2000; Kimia et al., 2003; Stahl and Wang, 2007; Kalar et al.,

2010; Ben-Yosef and Ben-Shahar, 2011; Singh, 2015).

The model guarantees closure because the two endpoints of

the least-cost path in log-polar translate to the same point in

Cartesian space. Therefore, the boundary extraction solution from

the model aligns with the Gestalt principle of closure, such that

closed contours are perceptually preferred over open ones (Kovacs

and Julesz, 1993).

In summary, by representing the problem in log-polar space

and performing global optimization using the proposed cost

function, a total of six Gestalt principles were operationalized. They

are proximity, good continuation, convexity, color similarity, color

dissimilairty, and closure.

4.1.4 Decision module
To produce a response to the 2AFC question, we adopted the

same decision criterion used by Kwon et al. (2016). Specifically,

the model took the horizontal range of the detected boundary and

computed the midpoint. The extracted boundary was divided into

two areas by drawing a vertical line. The area of the left half was

compared to the area of right half. The pointy side of the egg was

the side with a smaller area.

4.2 Selecting the parameters of the model

The behavior of the model is determined by four parameters,

namely the set of coefficients weighing the four features in the
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cost function (distance, turning angle, color similarity and color

contrast). To examine the effect of each model parameter, we

created a separate set of 100 egg stimuli and performed grid search

on the experimental conditions. Model performance was estimated

using d′. Since the main goal of the current study was to explore the

integration of contour and region (color), our simulations focused

on the conditions with jitter 20◦. As explained in Section 2.1.1, jitter

180◦ completely removed contour information by randomizing the

orientations of the edges belonging to the egg boundary. It follows

that the subjects had to rely exclusively on the color information.

We will analyze this condition in the future.

We first established a baseline for the model performance on

the no-color condition using contour-related features (distance and

turning angle).We did this for both distortion coefficients: k = 0.04

and k = 0.08.

Interpolation distance is the dominant feature in the model.

The previous version of the log-polar model reported in Kwon et al.

(2016) used only the interpolation distance combined with a linear

interpolation front-end. Their linear interpolation formed longer

contours by connecting approximately collinear edges within a

small neighborhood before finding the least-cost path. In the

current model, turning angle replaced the linear interpolation.

Figure 10 shows the effect of the turning angle coefficient relative to

the distance coefficient for two distortions of the egg shape. In this

graph we varied the turning angle coefficient from zero to four with

a step size of 0.4. Distance coefficient was set to one. Filled triangles

represent distortion k = 0.04 while open squares represent k =

0.08. The same model produced similar performance for both

distortion coefficients of the egg. In general, manipulating turning

angle coefficient produced a systematic change in performance.

The maximum d′ was produced at turning angle coefficient of

about two. Performance degraded for larger values of the turning

angle coefficient. This was related to the model making long

interpolations in the log-polar map, producing circular-like parts

that did not approximate the egg shape well.

The turning angle coefficients which best captured performance

of an average subject was 0.4 for the smaller egg distortion

k = 0.04, and 1.2 for k = 0.08. We therefore fix

the turning angle coefficients at the respective values in the

subsequent tests which included color. Note that in the main

experiment with k = 0.04, the three subjects produced d′

varying between 0.5 to 1.5. The best performance was produced

by S1 who received substantially more practice with these

stimuli.

Using the turning angle coefficient identified for each egg

distortion (0.4 and 1.2 for distortion k = 0.04 and k =

0.08 respectively), we performed grid search on color similarity

and color contrast coefficients for both white- and random-

background conditions (the distance coefficient was set to 1 for

all simulations). This grid search was informed by a pilot study

exploring a wider range of coefficients. The results for distortion

k = 0.04 and distortion k = 0.08 are summarized in Figure 11.

Manipulating color-related coefficients resulted in a gradual change

in performance, indicating that the model is stable. For both color

conditions, the model was able to combine at least one color feature

with contour information to arrive at a higher performance than

in the no-color condition. Model performance in the no-color

condition is represented by the grid cell where both color similarity

and color contrast coefficients are set to zero (bottom left corner of

each grid).

We will describe the role of color-related coefficients for each

color condition separately. For the white-background condition,

the model performed well by using positive coefficients for color

contrast while ignoring color similarity: increasing color similarity

coefficient degraded performance. Since the stimuli consisted of a

Worley-colored egg embedded in white background, information

about the target shape can be captured well by the color contrast

between the inside and outside of the egg (region S1 in Figure 12).

Although color contrast could also be high at region S2, the

Gestalt principles of convexity and good continuation will bias the

solution towards the egg boundary. Increasing the color similarity

coefficient (i.e., penalizing color dissimilarity on each side of the

contour) also increases the preference to produce a contour passing

through the uniformly white noise edges in the background (region

S3 in Figure 12). It is important to point out that our white-

background condition is computationally simple (see Figure 12,

second row), because the model could remove (filter out) all white

edges and would be able to extract the shape boundary nearly

perfectly with performance close to perfect (the actual performance

will not be perfect because the edges of the egg boundary had 20◦

random orientation jitter). We verified this directly, but the grid

search was done without removing white edges in the background.

For the random-background condition, the model can produce

high performance for a range of color coefficients. Specifically,

increasing color similarity coefficient or increasing color contrast

coefficient could both improve performance (Figure 11). This

is illustrated by region S4 in Figure 12 where there is color

contrast across the boundary and color similarity for the region

inside the egg. However, our exploration showed that color-

related parameters are limited in their utility. For example, both

color similarity and color contrast parameters could bias the

solution towards the polygonal shapes inside the egg with Worley

color pattern (region S5 in Figure 12) because the polygonal

boundaries have high color similarity on both sides and high

color contrast across. This could lead to errors in contour

integration. Further research is needed to investigate the role of

color-related processing in boundary extraction, especially when

color introduces geometrical patterns conflicting with the target

boundary (e.g., in the case of camouflage).

The results from the parameter space explorations (Figure 11)

suggest that the model was able to integrate color with contour

features to arrive at a higher performance when compared to

contour alone. This improvement was higher with the more

difficult case where egg distortion k = 0.04. The model coefficients

that led to good performance in the grid search were tested in the

next section, using the same stimuli which subjects were tested on.

4.3 Comparing the model to
psychophysical results

Based on the results presented in Figure 11, we applied the

model to the images that were shown to subjects for the conditions

with jitter 20◦ with both distortion k = 0.04 and 0.08. Because the

grid search based on 100 images showed that high performance was
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FIGURE 14

Control experiment investigating the e�ect of jitter on performance

of model and subject. Performance decreased from close to perfect

(1.0) to chance (0.5) for both model and subject. Standard error for

each bar was no greater than 0.025.

achieved with several sets of the coefficients, we applied these sets

of coefficients to the 400 images from psychophysical experiment.

Differences in model performance across these sets of coefficients

were small.

In Figure 13, we report the performance for the model

coefficients which produced the highest performance in the grid

search. The model was successful in matching human performance

for five of the six conditions. For distortion k = 0.08 white-

background condition, subjects performed close to perfect while

the model did not. It is possible that the uniform white background

noise edges allowed for simple filtering operations to remove the

background before extracting contour. We tested the possibility

of such pre-processing by applying the model after all white

background edges were removed. Using coefficients [1,1.2,0,0], the

model produced d′ = 3.56, which is almost identical to the average

performance of the two subjects who were tested in the control

experiment. Future studies can test the hypothesis that the visual

system applies a filtering front-end.

To summarize, our results showed that the log-polar based

model was successful in integrating contour and color in the test

with the egg-like stimuli. The model’s performance was not very

different from the subjects’. We want to point out that the task

was computationally difficult for several reasons: (i) the contour

of the egg was fragmented to have a support ratio of 0.5; (ii) the

density of the background edges was the same as the density of the

edges representing the egg; (iii) the edges representing the contour

had random jitter which essentially excluded spatially local growth

of the contour based on smoothness; (iv) global optimization was

necessary while at the same time avoiding combinatorial explosion

related to examining all subsets of edges in the image; (v) the

contour had to be closed. Therefore, it is probably not surprising

that themodel’s performance did not exceed that of the best subject.

We are confident that our model captured something important

about the visual mechanisms of contour integration. However,

several components of the model could be further developed and

produce even better fit to the subjects’ results. To further examine

the correlation between the model and the subject, we performed

an additional control experiment manipulating jitter level (Section

4.3.1).

4.3.1 Control experiment: e�ect of jitter
In this control experiment, jitter level was manipulated from

0◦ to 40◦ with a step size of 5◦. It was natural to expect that

increasing jitter (producing non-smooth contours) will lower the

performance of subjects. A model which explains how the visual

system works would also be affected by jitter level, with a similar

degree of quantitative effect.

The stimuli for the control experiment were generated using the

procedure for distortion k = 0.04, No-Color condition described

in Section 2.1.1. All target edges in a particular jitter level had a

random change in orientation in the range [-jitter - 5◦, -jitter +

5◦] or [+jitter - 5◦, +jitter + 5◦] except for jitter level 0◦, where

no random jitter was added to the target edges. Subject S1 ran

additional eight sessions excluding jitter 20◦, which was performed

as part of the main experiment (Section 2.2). The model with

coefficients 1 for distance and 0.8 for turning angle was chosen

because the model produced similar performance (d′) as subject

S1 based on the simulation in Figure 10. The model was tested on

all nine conditions and a comparison between model and subject

performance is shown in Figure 14.

Performance of both the model and S1 decreased with

increasing jitter level. Pearson correlation coefficient between

the model and S1’s proportion correct was high: R = 0.96 (p-

value<1E-4). Figure 14 shows overall proportion correct instead

of d′ because d′ approached infinity when S1’s performance was

close to perfect (either because there was no miss or false alarm) for

the first three jitter levels below 15◦3. This high performance could

partially be attributed to the role of local interpolation in boundary

extraction. The current model relies exclusively on spatially global

optimization. Therefore, adding local interpolation as the front-end

would likely produce close to perfect model performance for small

jitter levels (see Figure 1). A drop in S1’s performance was observed

with jitter 15◦ and above, suggesting that local operations failed

with high jitter levels. This result validated the choice of 20◦ jitter

to investigate the role of global processing.

5 Conclusion

Given a 2D retinal or camera image, determining which

contour and region belong to a single object is the first step

to recognizing the object and reconstructing its 3D shape. Our

psychophysical experiments eliminated local contour cues by

introducing orientation jitter to explore the interaction between

edge-based and color-based processing in the context of global

processing. We showed that each of these two types of processing

could operate in isolation: edge-based processing could reliably

extract boundaries when contours were relatively smooth; and

color-based processing could reliably extract boundaries when

3 Nevertheless, d′ follows a similar pattern: higher jitter leads to

systematically lower d′.
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FIGURE 15

Model performance tested using real images of furniture. The fixation point and starting edge were marked. Left: shows the cases where the model

produced a di�erent output when color information was used. Right: illustrates the stability of model such that adding color produced minimal

di�erences when the no-color model could produce reasonable outputs.

color in the foreground was different than the color in the

background. When both contour and color cues were present,

subjects were able to integrate the two pieces of information to

produce the highest performance. We established these results

under viewing conditions where the subject fixated inside the

boundary of the object. Moving the fixation outside the boundary

substantially impaired subject’s performance, but this impairment

cannot be explained by a lower visual resolution in the periphery.

The design of our experimental stimuli may be extended in future

studies. One may manipulate (i) the target 2D shape, (ii) support

ratio of the fragmented contour, (iii) the degree of similarity

between color inside and outside of the 2D shape, and (iv) the

texture pattern for the target shape and the background. These

characteristics represent conventional features that have been used

to study figure-ground organization.

We proposed a biologically-inspired boundary extraction

model combining contour-based processing with color-based

processing. The model was tested on the conditions with 20◦

jitter and its performance was similar to that of the subjects.

The main characteristic of the model is the use of the log-

polar representation which is known to be a good approximation

of the retinotopic mapping in the primary visual areas of the

brain. By performing shortest path optimization in the log-

polar representation, the model performed global optimization

to produce a boundary solution which is guaranteed to close.

The model integrated two contour-related features (distance of

interpolation and turning angle) and two color-related features

(color similarity and color contrast) in its cost function. More

specifically, the interaction between contour and color was

modeled using the concept of boundary directionality, where

the model encoded color as guided by contour-based cues. The

model produced reliable results comparable to that of subjects

with the two difficult conditions of no color and random

background when jitter was 20◦. We hope that these results will

stimulate further explorations of competing boundary extraction

models.

In order to reveal the relationship between contour and color,

our present study used synthetic images to increase the difficulty

of the task so that subjects would not perform at ceiling. Using

synthetic stimuli also allowed us to manipulate contour and color

cues independently to control the difficulty across conditions. Since

the model could replicate human contour-color interaction using

these difficult synthetic stimuli, one could expect that the model

should be able to extract boundaries using real world images, which

typically are easy for human observers. Without any additional

tuning of the model parameters, two versions of the model (no-

color and color) were applied to real images of furniture from

the Pix3D dataset (Sun et al., 2018). Specifically, we used the
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coefficients from the jitter 20◦ random-background condition,

which better resembled the amount of noise in real images. Two

sets of coefficients were tried: [1,0.4,0,0.8] from distortion k = 0.04

and [1,1.2,4,0] from distortion k = 0.08. Both sets of coefficients

produced similar outputs. Given an input image, an additional pre-

processing stage of edge detection was applied (Lee et al., 2014). The

no-color model received only the detected edges as input; whereas

the color model received additional color information associated to

the left and right regions of each edge. Fixation point was placed

inside the shape, and a random edge belonging to the target shape

was given as the initial edge. Figure 15 shows examples of themodel

output tested on five different categories of furniture: table, bed,

sofa, desk, and bookcase. The preliminary results suggest that the

model could be applied to a wide variety of real images. Future

studies could test the model generalizability by using real images

from different domains.

Another topic for future research is to integrate saliency

maps with the model. Because the model used the log-polar

representation, there is a requirement for the fixation point to

be placed inside the boundary of the target object. Previous

literature has suggested that humans use sophisticated attention

mechanisms to guide fixation, Schütz et al. (2011), one example

being the salience network for bottom-up processing. This

network integrates different features such as orientation, color,

or motion to create a saliency map which highlights the regions

in the image that are most relevant for fixation (for a review,

see Uddin, 2016).

Finally, the boundary extraction model could be used as a

front-end model for higher order visual processing such as 3-

dimensional (3D) object reconstruction. We already showed that

if the symmetry correspondence problem is solved, 3D shape

recovery can be accomplished (Pizlo et al., 2014). However, solving

3D symmetry correspondence for several objects in a 2D camera

image is computationally challenging, if possible at all. Restricting

the symmetry correspondence analysis to one object at a time will

be likely to produce acceptable solutions.
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Classical good continuation for image curves is based on 2D position and

orientation. It is supported by the columnar organization of cortex, by

psychophysical experiments, and by rich models of (di�erential) geometry. Here,

we extend good continuation to stereo by introducing a neurogeometric model

to abstract cortical organization. Our model clarifies which aspects of the

projected scene geometry are relevant to neural connections. The model utilizes

parameterizations that integrate spatial and orientation disparities, and provides

insight into the psychophysics of stereo by yielding a well-defined 3D association

field. In sum, the model illustrates how good continuation in the (3D) world

generalizes good continuation in the (2D) plane.

KEYWORDS

stereo vision, sub-Riemannian geometry, 3D space of position-orientation, 3D association

field, neurogeometry

1 Introduction

Binocular vision is the ability of the visual system to provide information about the

three-dimensional environment starting from two-dimensional retinal images. Disparities

are among the main cues for depth perception and stereo vision but, in order to extract

them, the brain needs to determine which features coming from the right eye correspond to

those from the left eye, and which do not. This generates a coupling problem, which is usually

referred to as the stereo correspondence problem. Viewed in the large, stereo correspondence

must be consistent with stereo perception more generally, and knowing the relevant features

is key for both issues. In this paper we develop an approach to stereo based on the functional

organization of the visual cortex, and we identify the geometric features extracted by the

binocular cells. This model will be able to extend the notion of good continuation for planar

curves to that for 3D spatial curves. A simple example demonstrates their application in

computing stereo correspondence.

Good continuation in the plane (retinotopic coordinates) is one of the foundational

principles of Gestalt perceptual organization. It enjoys an extensive history (Wagemans

et al., 2012). It is supported by psychophysical investigations (e.g., Field et al., 1993;

Geisler et al., 2001; Elder and Goldberg, 2002; Hess et al., 2003; Lawlor and Zucker,

2013), which reveal connections to contour statistics; it is supported by physiology

(orientation selectivity), which reveals the role for long-range horizontal connections

(Bosking et al., 1997); and it is supported by computational modeling (Ben-Shahar

and Zucker, 2004; Sarti et al., 2007), which reveals a key role for geometry. The

notion of orientation underlies all three of these aspects: neurons in visual cortex are

selective for orientations, pairs of dots in grouping experiments indicate an orientation,

and edge elements in natural images are oriented and related to image statistics.

Orientation in space involves two angles, which we shall exploit. Nevertheless, good
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continuation in depth is much less well-developed than good

continuation in the plane, despite having comparable historical

origins. (Koffka, 1963, p. 161-162):

...a perspective drawing, even when viewed monocularly,

does not give the same vivid impression of depth as the

same drawing if viewed through a stereoscope with binocular

parallax... for in the stereoscope the tri-dimensional force of

the parallax co-operates with the other tri-dimensional forces

of organization; instead of conflict between forces, stereoscopic

vision introduces mutual reinforcement.

Our specific goal in this paper is to develop a neurogeometrical

model of stereo vision, based on the functionality of binocular cells.

The main application will be a good continuation model in three

dimensions that is analogous to the models of contour organization

in two dimensions. We will develop ad hoc mathematical

instruments, supported by a number of neural and psychophysical

investigations (Malach et al., 1993; Uttal, 2013; Deas and Wilcox,

2014, 2015; Khuu et al., 2016; Scholl et al., 2022).

Although only one dimension higher than contours in the

plane, contours extending in depth raise subtle new issues; this

is why a geometric model can be instructive. First among the

issues is the choice of coordinates which, of course, requires a

mathematical framework for specifying them. In the plane, position

and orientation are natural; smoothness is captured by curvature or

the relationship between nearby orientations along a contour. For

stereo, there is monocular structure in the left eye and in the right.

Spatial disparity is a standard variable relating them, and it is well-

known that primate visual systems represent this variable directly

(Poggio, 1995). Spatial disparity is clearly a potential coordinate.

However, other physiological aspects are less clear. The columnar

architecture so powerful for contour organization in the plane is

not only monocular: the presence of columns for spatial disparity

of binocular cells has been experimentally described in V2 (Ts’o

et al., 2009). However, orientation disparity does not seem to be

coded in the cortex (see next section). Nevertheless, orientation-

selective cells provide the input for stereo so, at a minimum, both

position disparity and orientation – one orientation for the right

eye and (possibly) another for the left – should be involved.While it

is traditional to assume only “like” orientations are matched (Hubel

and Wiesel, 1962; Nelson et al., 1977; Marr and Poggio, 1979;

Bridge and Cumming, 2001; Chang et al., 2020), our sensitivity to

orientation disparity questions this, making orientation disparity

another putative variable. We shall show that orientations do play a

deep role in stereo, but that it is not necessarily efficient to represent

them as a disparity. Furthermore, there is a debate in stereo

psychophysics about orientation: since its physiological realization

could be confounded with disparity gradients (Mitchison and

McKee, 1990; Cagenello and Rogers, 1993), orientation may be

redundant. This is not the case, since it is the orientation of

the “gradient” that matters. Thus we provide a representation

of the geometry of spatial disparity and orientation in support

of using good continuation in a manner that both incorporates

the biological “givens” and provides a rigorous foundation for

the correspondence problem. As has been the case with curve

organization, we further believe that our modeling will illuminate

the underlying functional architecture for stereo.

Hubel and Wiesel reported disparity-tuned neurons in early,

classic work (Hubel and Wiesel, 1970). They observed that single

units could be driven from both eyes and that it was possible to plot

separate receptive fields (RF) for each eye. We emphasize that these

monocular receptive fields are tuned to orientation (Cumming and

DeAngelis, 2001; Parker et al., 2016), and a review of neural models

can be found in Read (2015).

The classical model for expressing the left/right-eye receptive

field combination is the binocular energy model (BEM), first

introduced in Anzai et al. (1999b). It encodes disparities through

the receptive profiles of simple cells, raising the possibility of both

position and phase disparities (Jaeger and Ranu, 2015). However,

Read and Cumming (2007), building upon (Anzai et al., 1999a),

showed that phase disparity neurons tend to be strongly activated

by false correspondence pairs. Other approaches are based on the

statistics of natural images (Burge and Geisler, 2014; Jaini and

Burge, 2017; Burge, 2020) utilized in an optimal fashion; these

lead to more refined receptive field models. Nevertheless, the

orientation differences between the two eyes (Nelson et al., 1977),

or orientation disparity, should not be neglected. Although there

were attempts to incorporate it (Bridge et al., 2001) in energy

models, they are limited. The geometrical model we will present

incorporates orientation differences directly.

Many other mathematical models for stereo vision based on

neural models have been developed. Some claim (e.g., Marr and

Poggio, 1979) that orientations should match between the two eyes,

although small differences are allowed. This, of course, assumes the

structure is frontal-parallel. Subsequently, Jones and Malik (1991)

used a set of linear filters tuned to different orientations (and

scales) but their algorithm was not built on a neurophysiological

basis. Alibhai and Zucker (2000), Li and Zucker (2003), and Zucker

(2014) built a more biologically-inspired model that addressed the

connections between neurons. Their differential-geometry model

employed position, orientations and curvatures in 2D retinal

planes, modeling binocular neurons with orientations given by

tangent vectors of Frenet geometry. Our results here are related,

although the geometry is deeper (We develop this below.). A more

recent work, based on differential and Riemannian geometry, is

developed in Neilson et al. (2018). Before specifying these results,

however, we introduce the specific type of geometry that we shall

be using. It follows directly from the columnar organization often

seen in predators and primates.

1.1 Columnar architectures and
sub-Riemannian geometry

We propose a sub-Riemannian model for the cortical-inspired

geometry underlying stereo vision based on the encoding of

positional disparities and orientation differences in the information

coming from the two eyes. We build on neuromathematical

models, starting from the work of Koenderink and van Doorn

(1987) and Hoffman (1989), with particular emphasis on the

neurogeometry of monocular simple cells (Petitot and Tondut,

1999; Citti and Sarti, 2006; Sarti et al., 2007; Petitot, 2008;

Sanguinetti et al., 2010; Sarti and Citti, 2015; Baspinar et al., 2020).
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To motivate our mathematical approach, it is instructive to

build on an abstraction of visual cortex. We start with monocular

information, segregated into ocular dominance bands (LeVay et al.,

1975) in layer 4; these neurons have processes that extend into the

superficial layers.We cartoon this in Figure 1, which shows an array

of orientation hypercolumns arranged over retinotopic position.

It is colored by dominant eye inputs; the binocularly-driven cells

tend to be closer to the ocular dominance boundaries, while

the monocular cells are toward the centers. A zoom emphasizes

the orientation distribution along a few of the columns near

each position; horizontal connections (not shown) effect the

interactions between these units. This raises the basic question

in this paper: what is the nature of the interaction among groups

of cells representing different orientations at nearby positions and

innervated by inputs from the left and right eyes? The physiology

suggests (Figure 1C) the answer lies in the interactions among both

monocular and binocular cells; our model specifies this interaction,

starting from the monocular ones and building analogously into a

columnar organization.

1.2 Informal setup and overview

Since much of the paper is technical, we here specify,

informally, the main ingredients of the model and the results. We

first list several of the key points, then illustrate them directly.

• Stereo geometry enjoys a mathematical structure that is a

formal extension of plane curve geometry. In the plane, points

belonging to a curve are described by an orientation at a

position, and these are naturally represented as elements

(orientation, position) of columns. In our model, these

become abstract fibers. The collection of fibers across position

is a fiber bundle. Elements of the (monocular) fiber can be

thought of as neurons.

• Our geometrical model is based on tangents and curvatures.

Tangents naturally relate to orientation selectivity, and are

commonly identified with “edge” elements in the world.

We shall occasionally invoke this relationship, for intuition

and convenience, but some caution is required. While edge

elements comprising, e.g., a smooth bounding contour are

tangents, the converse is not necessarily true (e.g., elongated

attached highlights or hair textures). Instead, our model

should be viewed as specifying the constraints relevant to

understanding neural circuitry; see Section 1.3.

• To elaborate the previous point: the tangents in our model

need not be edges in the world; they are neural responses. The

constraints in our model can be used to determine whether

these responses should be considered as “edges.” This is why

the model is built from the geometry of idealized space curves:

to support such inferences.

• For stereo, we shall need fibers that are a “product” of the

left and right-eye monocular columns. This is the reason

why we choose position, positional disparity and orientations

from the left and right eyes respectively, as the natural

variables that describe the stereo fiber over each position.

We stress that these fibers are not necessarily explicit in the

cortical architecture.

• Curvature provides a kind of “glue” to enable transitions

from points on fibers to nearby points on nearby fibers.

These transitions specify “integral curves” through the stereo

fiber bundle.

• The integral curve viewpoint provides a direction of

information flow (information diffuses through the bundle)

thereby suggesting underlying circuits.

• The integral curves formalize association field models. Their

parameters describe the spray of curves that is well in

accordance with 3D curves as studied in psychophysical

experiments in Hess and Field (1995), Hess et al. (1997), and

Khuu et al. (2016).

• Our formal theory addresses several conjectures in the

literature. The first is the identity hypothesis (Kellman et al.,

2005a,b) and the organization of units for curve interpolation

(cf. Anderson et al., 2002); we show how tangents are natural

“units” and how they can be organized. The second concerns

the nature of the organization (Li and Zucker, 2006), where

we resolve a conjecture regarding the interpolating object (see

Proposition 3.2 below).

• Our formal theory provides a new framework for specifying

the correspondence problem, by illustrating how good

continuation in the 3-D world generalizes good continuation

in the 2-D plane. This is the point where consistent binocular-

binocular interactions are most important.

• Our formal theory has direct implications for understanding

torsional eye movements. It suggests, in particular, that

the rotational component is not simply a consequence

of development, but that it helps to undo inappropriate

orientation disparity changes induced by eye movements. This

role for Listing’s Law will be treated in a companion paper

(in preparation); see also the excellent paper (Schreiber et al.,

2008).

We now illustrate these ideas (Figure 2). Consider a three-

dimensional stimulus as a space curve γ :R −→ R
3, with a

unit-length tangent at the point of fixation. Since the tangent

is the derivative of a curve, the binocular cells naturally encode

the unitary tangent direction γ̇ to the spatial 3D stimulus γ .

This space tangent projects to a tangent orientation in the left

eye1, and perhaps the same or a different orientation in the

right eye. A nearby space tangent projects to another pair of

monocular tangents, illustrated as activity in neighboring columns.

Note how connections between the binocular neurons support

consistency along the space curve. It is this consistency relationship

that we capture with our model of the stereo association

field.

Since space curves live in 3D, two angles are required to

specify its space tangent at a point. In other words, monocular

tangent angles span a circle in the plane; space tangent angles

span a 2-sphere in 3D. In terms of the projections into the left-

eye and the right-eye, the space tangent can be described by the

1 We are here being loose with language. By a tangent orientation in the

left eye, we mean the orientation of a left-eye innervated column in V1.
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FIGURE 1

Cartoon of visual cortex, V1, superficial layers. (A) Macroscopic organization: A number of (abstracted) orientation hypercolumns, colored by left-eye

(green)/right-eye (purple) dominant inputs. The color grading emphasizes that at the center of the ocular dominance bands the cells are strongly

monocular, while at the boundaries they become binocularly-driven. (B) A zoom in to a few orientation columns showing left and right monocular

cells at the border of ocular dominance bands. Cells in these nearby columns will provide the anatomical substrate for our model. (C) More recent

work shows that both monocular and binocular inputs matter to these cells (redrawn from Scholl et al., 2022, using data from ferret). This more

advanced wiring suggests the connection structures in our model.

FIGURE 2

(A) Stereo projection of the highlighted tangent vector to the stimulus γ ∈ R
3 in the left-eye innervated and right-eye innervated monocular

orientation columns (Each short line denotes a neuron by its orientation preference.). Joint activity across the eyes, which denotes the space

tangent, is illustrated by the binocular neuron (circle). Note the two similar but distinct monocular orientations. Connections from the actively

stimulated monocular neurons to the binocular neuron are shown as dashed lines. (B) Stereo projection of a consecutive pair of tangents to the

stimulus γ ∈ R
3 in the left and right retinal columns. Each space tangent projects to a di�erent pair of monocular columns because of the spatial

disparity. Consistency in the responses of these four columns corresponds to consistency between the space tangents attached to nearby positions

along γ . This consistency is realized through the binocular neural connection (solid line).
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FIGURE 3

(A) The full geometry of stereo. Note how the stereo correspondence problem allows to establish the relationship between the 3D tangent point

(P, θ ,φ) and the projections pL and pR, the disparity and the orientations θL and θR. (B) Main result of the paper. The three-dimensional space curve γ

is enveloped by the 3D association field centered at a point. Formally, this association field is a fan of integral curves in the sub-Riemmanian

geometry computed entirely within the columnar architecture (It is specifically described by Equation (36) with varying c1 and c2 in R, but that will

take some work to develop.).

parameters n = (θ ,ϕ) of S2 (Figure 3A). Thus, we can suitably

describe the space of stereo cells – the full set of space tangents

at any position in the 3D world – as the manifold of positions

and orientations R3
⋊ S

2. Moving from one position in space to

another, and changing the tangent orientation to the one at the

new position, amounts to what is called a group action on the

appropriate manifold.We informally introduce these notions in the

next subsection; a more extensive introduction to these ideas is in

Appendix A (Supplementary material).

1.2.1 Sub-Riemannian geometry
We live in a 3D world in which distances are familiar; that

is, a space of points with a Euclidean distance function defined

between any pair of them. Apart from practical considerations we

canmove in any direction we would like. Cars, however, have much

more restricted movement capabilities. They can move forward or

backward, but not sideways. To move in a different direction, cars

must turn their wheels. Here is the basic analogy: in cortical space

information can move to a new retinotopic position in a tangent
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direction, or it can move up or down a column (orientation fiber)

to change direction.Moving in this fashion, from an orientation at a

position to another orientation at a nearby position, is clearly more

limited than arbitrary movements in Euclidean space. Euclidean

geometry, as above, is an example of a Riemannian geometry;

the limitations involved in moving through a cortical columnar

space specify a sub-Riemannian geometry (Citti and Sarti, 2014;

Citti et al., 2015; Sarti et al., 2019). Just as cars can move along

roads that are mostly smooth, excitatory neurons mainly connect

to similarly “like” (in orientation) excitatory neurons. This chain of

neurons indicates a path through sub-Riemannian space (Agrachev

et al., 2019); the fan of such paths is the cortical connectivity

which can be considered the neural correlate of association

fields. Again, for more information please consult Appendix A

(Supplementary material).

Moving now out to the world, we must be able to move

between all points. Repeating the abovemetaphormore technically,

we equip R
3
⋊ S

2 with a group action of the three-dimensional

Euclidean group of rigid motions SE(3). Notice, importantly, that

this group is now acting on the product space of positions and

orientations. A bit more is required, though, since the geometry of

stereo vision is not solved only with these punctual and directional

arguments. As we showed in Figure 2 there is the need to take into

account the relationships between nearby tangents; in geometric

language this involves a suitable type of connections. It is therefore

natural to look at integral curves of the sub-Riemannian structure,

which encode in their coefficients the fundamental concept of 3D

curvature and torsion. An example of this is shown in Figure 3B.

Notice how the 3D association field envelopes a space curve, in

the same way that a 2D association field envelopes a planar curve.

This figure illustrates, in a basic way, the fundamental result in

this paper.

1.3 On the neuro-geometric approach

There are many different ways to approach mathematical

modeling in vision. One could, for example, ask what is the best an

ideal observer could do for the stereo problem working directly on

image data (Burge and Geisler, 2014; Burge, 2020). This requires

specifying the task, e.g., disparity at a point; a database of images

on which the estimation is to be carried out; and a specification

of the output. The approach is fundamentally statistical, and has

been successful at predicting discrimination thresholds and optimal

receptive field designs for patches of natural images. We seek to

go the next step – to specify the relationship between receptive

fields; i.e., between neurons. Note that the complexity multiplies

enormously. At the behavioral level this raises the question of

grouping, or determining the combinations of disparities, or Gabor

patch samples, that belong together. The complexity arises because

this must be evaluated over all possible arrangements of patches,

be they along curves, or surfaces, or combinations thereof. In

effect, the output specification is pushed toward co-occurrence

phenomena, and these toward neural connections.

Our working hypothesis is that there is a deep functional

relationship between structure in the brain and structure in the

world, and that geometry is the right language with which to

capture this relationship, especially as regards connectivity between

neurons and their functionality. The neuro-geometric approach is

precisely this; an attempt to capture how the structure of cortical

connectivity (and other functional properties) are reflected in the

phenomena of visual perception.

At first blush this might seem completely unrelated to the

statistics of natural images, and how these could be informative

of neural connections, but we believe that there is a fundamental

relationship. Consider, to start, the distribution of oriented edge

elements in a small patch. Pairwise edge statistics are well-studied

(August and Zucker, 2000; Geisler et al., 2001; Elder and Goldberg,

2002; Sanguinetti et al., 2010), and indicate how orientation

changes are distributed over (spatially) nearby edge elements. Co-

linear and co-circular patterns emerge from these studies, as well

as in third-order statistics of edges (Lawlor and Zucker, 2013).

Interestingly, in Singh and Fulvio (2007) and Geisler and Perry

(2009) deviation from co-circular behavior emerges.2 In particular,

Geisler and Perry (2009) proposes a parabolic model to explain

these statistical evidences, that is consistent with previous results

if we consider a composition of the joint action of cocircularity

and parallelism cues (as found to factor for example in Elder

and Goldberg, 2002). To elaborate, it begins by following either

a co-circular or linear term, followed by the composition with

another circular or linear term. The outcome of this process is

described as a spline-like behavior that can approximate a parabola.

In Sanguinetti et al. (2010), it has been shown that the histogram

of the co-occurrence of edges in a natural image provides the

same probability kernel we could find with geometric analysis

instruments. As a result, statistical measurements are integrated

into the geometric approach.

The geometric analysis that we shall use is continuous

mathematics, and is essentially differential (Tu, 2011). This has

important implications. First, the relationships that matter are

those over small neighborhoods, not over “long” distances. Thus

at a point there is an orientation (tangent) and a curvature. These

barely change as one moves a tiny distance from the point. Thus we

are not considering (in this paper) what happens behind (relatively)

large occluders, when longer distances devoid of intermediate

structure separate structure (Singh and Fulvio, 2005; Fulvio et al.,

2008). Such problems are important but are outside the scope of

this paper. Second, because the mathematics is continuous, we shall

not consider sampling issues (Warren et al., 2002). To the extent

that it matters, we shall assume discrete entities are sufficiently

densely distributed that they function as if they were continuous

(Zucker and Davis, 1988). In this sense our analysis is restricted to

early vision. It does not necessarily account for the full range of

cognitive tasks, which may well invoke higher-order computations

over longer distances and even richer abstractions.

It has been observed that edge statistics for curves in the world

depart from co-circularity. To quote (Geisler and Perry, 2009):

“Except for a direction of zero, where the orientation difference

is consistent with a collinear relationship, the highest-likelihood

orientation differences are less than those predicted by a co-circular

2 Of course we need to take into account the di�culty of measurements

of coupled position-orientation variables for small di�erence of angle and

position. This is due to the well-known intrinsic uncertainty of measurement

in the non-commutative group of position and orientation (Barbieri et al.,

2012).
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relationship.”We believe this has to do with the notion of curvature

used: whether it is purely local, or an estimate over distance. In

summary of the geometric approach, we explain this as follows. Our

constraints can be used in two rather different ways. First, from a

computational perspective, one can “integrate” the local constraints

into more global objects. This is the approach used in the example

section of this paper, and could give rise to an “average” curvature

over some distance. The second approach is more distributed, and

may be closer to a neurobiological implementation (Ben-Shahar

and Zucker, 2004). In this second approach (not developed in

this paper, but see Li and Zucker (2006) and Figure 6), the local

computations overlap to enforce consistency (The scale of such

computations would be a small factor larger than that indicated

in Figure 2B). This scale corresponds to the extent of biological

“long range horizontal connections” but is smaller than many

of the occluders used in psychophysical experiments. In other

words, to emphasize this distinction, in the former case the use of

integral curves may be closer to the parabolic relations observed

in scene statistics (Geisler and Perry, 2009).3 Our use of the term

“co-circularity” is in the latter sense.

1.4 Overview of paper

The paper is organized as follows: in Section 2, we describe

the geometrical and neuro-mathematical background underlying

the problem of stereo vision. In particular, we review the standard

stereo triangulation technique to relate the coordinate system

of one retina with the other, and put them together in order

to reconstruct the three-dimensional space. Then, we briefly

review the classical neurogeometry of monocular simple cells

selective for orientation and the underlying connections. The

generalization of approximate co-circularity for stereo is also

introduced. In Section 3, starting from binocular receptive profiles,

we introduce the neuro-mathematical model for binocular cells.

First we present the cortical fiber bundle of binocular cells. It

follows the differential interpretation of the binocular profiles in

terms of the neurogeometry of the simple cells, and we show how

this is well in accordance with the results of the stereo triangulation.

Then, we give a mathematical definition of the manifold R
3
⋊ S

2

with the sub-Riemannian structure. Finally, we study the integral

curves and the suitable change of variables that allow us to switch

our analysis from cortical to external space. In Section 4 we proceed

to the validation of our geometry with respect to psychophysical

experiments. We combine information about the psychophysics of

3D perception and formal conjectures; it is here that we formulate

a 3D association field analogous to the 2D association field. At

the end, we show an example of a representation of a stimulus

(from image planes to the full 3D and orientation geometry) and

how our integral curves properly connect corresponding points.

This illustrates the use of our model as a basis for solving the

correspondence problem.4

3 The crucial point is that the curves demonstrate locally quadratic (not

linear) behavior.

4 Portions of this material were presented at Bolelli et al. (2023a).

FIGURE 4

Reconstruction of the 3D space point Q through points QL the

retinal plane RL and QR in RR.

2 Stereo vision and
neuro-mathematical background

2.1 Stereo geometry

In this subsection, we briefly recall the geometrical

configuration underlying 3D vision, to define the variables

that we use in the rest of the paper, mainly referring to (Faugeras,

1993, Ch. 6). For a complete historical background see Howard

(2012); Howard and Rogers (1995).

2.1.1 Stereo variables
We consider the global reference system (O, i, j, k) in R

3,

with O = (0, 0, 0), and coordinates (r1, r2, r3). We introduce the

optical centers CL = (−c, 0, 0) and CR = (c, 0, 0), with c real

positive element, and we define two reference systems: (CL, iL, jL),

(CR, iR, jR), the reference systems of the retinal planes RL and RR

with coordinates respectively (xL, y), (xR, y). In the global system

we suppose the retinal planes to be parallel and to have equation

r3 = f , with f denoting the focal length. This geometrical set-up is

shown in Figure 4.

Remark 2.1. If we know the coordinate of a point Q = (r1, r2, r3)
T

in R
3, then it is easy to project it in the two planes via

perspective projection, having c the coordinate of the optical

centers and f focal length. This computation defines two projective

maps 5L and 5R, respectively, for the left and right retinal

Frontiers inComputer Science 07 frontiersin.org182

https://doi.org/10.3389/fcomp.2023.1142621
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bolelli et al. 10.3389/fcomp.2023.1142621

planes:

5L :R
3

−→R
2

5R : R
3
−→ R

2







r1
r2
r3






7→

(

f (r1+c)
r3
fr2
r3

)

,







r1
r2
r3






7→

(

f (r1−c)
r3
fr2
r3

)

.

(1)

Proof. A point on the left retinal plane of local coordinates (xL, y)
T

has global coordinates QL = (−c + xL, y, f )
T , and it corresponds

to a point Q = (r1, r2, r3)
T in the Euclidean R

3 such that CL,

QL and Q are aligned. This means that the vectors QL − CL =

(xL, y, f )
T and Q − CL = (r1 + c, r2, r3)

T are parallel, obtaining

the following relationships:

xL = f
r1 + c

r3
, y = f

r2

r3
. (2)

Analogously, considering QR and CR, we get:

xR = f
r1 − c

r3
, y = f

r2

r3
. (3)

In a standard way, the horizontal disparity is defined as the

differences between retinal coordinates

d : =
xL − xR

2
, (4)

up to a scalar factor. Moreover, it is also possible to define the

coordinate x as the average of the two retinal coordinates x : =
xL+xR

2 , leading to the following change of variables:















x =
fr1
r3

y =
fr2
r3

d =
fc
r3

←→















r1 =
xc
d

r2 =
yc
d

r3 =
fc
d

, (5)

where the set of coordinates (x, y, d) is known as cyclopean

coordinates (Julesz, 1971).

2.1.2 Tangent estimation
Corresponding points in the retinal planes allow to project

back into R
3. An analogous reasoning can be done for the tangent

structure: if we have tangent vectors of corresponding curves in the

retinal planes, it is possible to project back and recover an estimate

of the 3D tangent vector. Let us recall here this result; a detailed

explanation can be found in Faugeras (1993).

Remark 2.2. Let γL and γR be corresponding left and right retinal

curves; i.e., perspective projections of a curve γ ∈ R
3 through

optical centers CL and CR with focal length f . Knowing the left and

right retinal tangent structures, it is possible to recover the direction

of the tangent vector γ̇ .

Proof. Starting from a curve γ ∈ R
3, we project it in the two

retinal planes obtaining γL = 5L(γ ) and γR = 5R(γ ) from

Equation (1). The retinal tangent vectors are obtained through

the Jacobian matrix5 of the left and right retinal projections

γ̇L,R(t) = (J5L,R )γ (t)γ̇ (t):

γ̇R(t) =





f (γ3γ̇1+(c−γ1)γ̇3)

γ3(t)2

f (γ3γ̇2−γ2γ̇3)

γ
2
3



 , γ̇L(t) =





f (γ3γ̇1−(c+γ1)γ̇3)

γ3(t)2

f (γ3γ̇2−γ2γ̇3)

γ
2
3



 . (6)

Extending the tangent vectors and the points into R
3, we get t̃L =

(γ̇L1, γ̇L2, 0)
T , and m̃L = (γL1 − c, γL2, f )

T , and UtL = (PL)
−1m̃L ×

(P−1L )t̃L, with the projection matrix PL =







1 0 −c/f

0 1 0

0 0 1






. The same

reasoning holds for the right structure, with projectionmatrix PR =






1 0 c/f

0 1 0

0 0 1






.

Then UtR × UtL is a vector parallel to the tangent vector γ̇ :

UtR × UtL =













f 42c(γ̇2γ3 − γ̇3γ2)

γ
4
3

︸ ︷︷ ︸

λ(t)

γ̇1,

f 42c(γ̇2γ3−γ̇3γ2)

γ
4
3

γ̇2,
f 42c(γ̇2γ3−γ̇3γ2)

γ
4
3

γ̇3













T

= λ(t)
(

γ̇1(t), γ̇2(t), γ̇3(t)
)T

= λ(t)γ̇ (t).

(7)

Although this section has been based on the geometry of

space curves and their projections, we observe that related

geometric approaches have been developed for planar patches and

surfaces; see, e.g., Li and Zucker, 2008; Oluk et al., 2022 and

references therein.

2.2 Elements of neurogeometry

We now provide background on the geometric modeling of

the monocular system, and good continuation in the plane. Our

goal is to illustrate the role of sub-Riemannian geometry in the

monocular system, which will serve as the basis for generalization

to the stereo system.

2.2.1 Classical neurogeometry of simple cells
We model the activation map of a cortical neuron’s receptive

field (RF) by its receptive profile (RP) ϕ. A classical example is

the receptive profiles of simple cells in V1, centered at position

5 The Jacobian matrix (J5)p evaluated at point p represents how to project

displacement vectors (in the sense of derivatives or velocities or directions).

In details, if γ̇ (t) is the displacement vector in R
3, then the matrix product

(J5)γ (t)γ̇ (t) is another displacement vector, but in R
2. In other words, the

Jacobianmatrix is the di�erential of5 at every point where5 is di�erentiable;

common notation includes J5 or D5.
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(x, y) and orientation θ , modeled (e.g., in Daugman, 1985; Jones

and Palmer, 1987; Barbieri et al., 2014b) as a bank of Gabor filters

ϕ{x,y,θ}. RPs are mathematical models of receptive fields; they are

operators which act on a visual stimulus.

Formally, it is possible to abstract the primary visual cortex as

R
2
× S

1, or position-orientation space, thereby naturally encoding

the Hubel/Wiesel hypercolumnar structure (Hubel and Wiesel,

1962). An example of this structure is displayed in Figure 5D from

Ben-Shahar and Zucker (2004).

Following the model of Citti and Sarti (2006), the set of simple

cells’ RPs can be obtained via translations along a vector (x, y)T and

rotation around angle θ from a unique “mother” profile ϕ0(ξ , η):

ϕ0(ξ , η) = exp

(

2π iξ

λ

)

exp

(

−
ξ
2
+ η

2

2σ 2

)

, (8)

This RP is a Gabor function with even real part and odd imaginary

part (Figure 7A). Translations and rotations can be expressed as:

T(x,y,θ)(ξ , η) =

(

cos θ − sin θ

sin θ cos θ

)(

ξ

η

)

+

(

x

y

)

, (9)

where T(x,y,θ) denotes the action of the group of rotations and

translations SE(2) on R
2. This group operation associates to every

point (ξ , η) a new point (x̃, ỹ), according to the law (x̃, ỹ) =

T(x,y,θ)(ξ , η). Hence, a general RP can be expressed as

ϕ(x,y,θ)(ξ , η) = ϕ0(T
−1
(x,y,θ)

(ξ , η)), (10)

and this represents the action of the group SE(2) on the set of

receptive profiles.

The retinal plane R is identified with the R
2 plane, whose

coordinates are (x, y). When a visual stimulus I :R −→ R
+ of

intensity I(x, y) activates the retinal layer, the neurons centered

at every point (x, y) produce an output O(x, y, θ), modeled as the

integral of the signal I with the set of Gabor filters:

O(x, y, θ) =

∫

R

ϕ{x,y,θ}(ξ , η)I(ξ , η)dξdη, (11)

where the function I represents the retinal image.

For (x, y) fixed, we will denote θ̄ the point of maximal response:

max
θ

|O(x, y, θ)| = |O(x, y, θ̄)|. (12)

We will then say that the point (x, y) is lifted to the point

(x, y, θ̄). This is extremely important conceptually to understand

our geometry: it illustrates how an image point, evaluated against

a simple cell RP, is lifted to a “cortical” point by introducing the

orientation explicitly. If all the points of the image are lifted in the

same way, the level lines of the 2D image I are lifted to new curves

in the 3D cortical space (x, y, θ̄).

We shall now recall a model of the long range connectivity

which allows propagation of the visual signal from one cell in a

column to another cell in a nearby column. This is formalized as

a set of directions for moving in the cortical space (x, y, θ̄), in the

sense of vector fields. This is important because it will be necessary

to move within this space, across both positions and orientations.

To begin, in the right hand side of the Equation (11) the integral

of the signal with the real and imaginary part of the Gabor filter

is expressed. The two families of cells have different shapes, hence

they detect (or play a role in detecting) different features. Since the

odd-symmetry cells suggest boundary detection, we concentrate

on them, but this is a mathematical simplification. The output of

a simple cell can then be locally approximated as O(x, y, θ) =

−X3,p(Iσ )(x, y), where p = (x, y, θ) ∈ SE(2), Iσ is a smoothed

version of I, obtained by convolving it with a Gaussian kernel, and

X3,p = − sin θ∂x + cos θ∂y, (13)

is the directional derivative in the direction EX3,p =

(− sin θ , cos θ , 0)T . From now on, we will denote (by a slight

abuse of notation) ω
⋆
: = EX3,p to remind the reader familiar with

the language of 1-forms the correspondence of these quantities,

and the relation with the Hodge star operator.6

Now, think of vector fields as defining a coordinate system at

each point in cortical space. Then, in addition to above, the vector

fields orthogonal to X3,p are:

X1,p = cos θ∂x + sin θ∂y, X2,p = ∂θ (14)

and they define a 2-dimensional admissible tangent bundle7 toR2
×

S
1. One can define a scalar product on this space by imposing the

orthonormality of X1,p and X2,p: this determines a sub-Riemannian

structure on R
2
× S

1.

The visual signal propagates, in an anisotropic way, along

cortical connectivity and connects more strongly cells with

comparable orientations. This propagation has been expressed

by the geometry just developed and 2-dimensional contour

integration. This is the neural explanation of the Gestalt law of

good continuation (Koffka, 1963; Kohler, 1967). It can be directly

expressed as co-circularity in the plane (Parent and Zucker, 1989),

to describe the consistency and the compatibility of neighboring

oriented points, in accordance with specific values of curvature.

An example of these compatibilities can be found in Figure 5A.

It is complemented by psychophysical experiments, e.g., Uttal,

1983; Smits and Vos, 1987; Ivry et al., 1989. In particular, Field

et al. (1993) describe the association rules for 2-dimensional

contour integration, introducing the concept of association fields. A

representation of these connections can be found in Figures 5B, C.

Note that this is equivalent to the union (over curvature) in Parent

and Zucker (1989). Neurophysiological studies (Blasdel, 1992;

Malach et al., 1993; Bosking et al., 1997; Schmidt et al., 1997; Hess

et al., 2014) suggest that the cortical correlate of the association field

is the long-range horizontal connectivity among cells of similar (but

not necessarily identical) orientation preference.

Based on these findings, Citti and Sarti (2006) modeled cortical

propagation as propagation along integral curves of the vector fields

X1 and X2, namely curves γ :[0,T] ⊂ R −→ R
2
× S

1 described by

the following differential equation:

γ̇ (t) = EX1,γ (t) + kEX2,γ (t), t ∈ [0,T], (15)

6 The purpose of introducing this notation is also tomotivate an implication

of the mathematical model in Citti and Sarti (2006); see Appendix B.2.1

(Supplementary material) for explanation.

7 as defined in Appendix A3 (Supplementary material).
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FIGURE 5

(A) Examples of the compatibilities around the central point of the image, derived from planar co-circularity. Brightness encodes compatibility values.

Figure adapted from Ben-Shahar and Zucker (2004). (B) Starting from the central initial oriented point, the solid line indicates a configuration

between the patches where the association exists while the dashed line indicates a configuration where it does not. Figure adapted from Field et al.

(1993). (C) Association field of Field, Hayes, and Hess. Figure adapted from Field et al. (1993). (D) Orientation columns of cells in (x, y, θ ) coordinates.

Long-range horizontal connections between cells relate an orientation signal at position (x, y, θ ) to another orientation at (x′, y′, θ ′). Figure adapted

from Ben-Shahar and Zucker (2004). (E) Horizontal integral curves in R
2
× S

1 generated by the sub-Riemannian model (Citti and Sarti, 2006). (F)

Projection of the fan of the integral curves in the (x, y) plane. Figure adapted from Citti and Sarti (2006).

obtained by varying the parameter k ∈ R. (k acts analogously

as curvature.) An example of these curves is in Figure 5E. Their

2D projection is a close approximation of the association fields

(Figure 5F).

A related model has been proposed by Duits et al. (2013). They

study the geodesics of the sub-Riemannian structure to take into

account all appropriate end-conditions of association fields.

2.2.2 Generalizing co-circularity for stereo
The concept of co-circularity in R

2 has been developed by

observing that a bidimensional curve γ can be locally approximated

at 0 via the osculating circle.8 Alibhai and Zucker (2000), Li and

8 Locally, a curve can be approximated by its osculating circle and, at

a slightly larger scale, by the integral (parabolic) curve through the first

two Taylor terms. The first approximation is co-circularity; the second is a

parabolic curve. The second is an accurate model over large distances; see

discussion in Section 1.3. However, since in this paper we are working over

small distances and with cortical sampling (Figure 2), there is essentially no

di�erence between them; see Figure 22.4 in Zucker (2006) and Sanguinetti

et al. (2010) for a direct comparison.

Zucker (2003), and Li and Zucker (2006) generalize this concept

with the Frenet differential geometry of a three dimensional curve.

While in the two-dimensional case the approximation of the

curve using the Frenet 2D basis causes the curvature to appear

in the coefficient of the Taylor series development (1st order),

in the three-dimensional case the coefficients involve both the

curvature and torsion. So, in Alibhai and Zucker (2000) the authors

propose heuristically to generalize the osculating circle for space

curves with an osculating helix, with a preference for r3-helices to

improve stability in terms of camera calibration. In this way the

orientation disparity is encoded in the behavior of the helix in the

3D space: there is no difference in orientation in the retinal planes

if the helix is confined to be in the fronto-parallel plane (the helix

becomes a circle); otherwise moving along the 3D curves the retinal

projections have different orientations.

In Li and Zucker (2003, 2006) they observe that, by introducing

the curvature variable as a feature in the two monocular structures,

and assuming correspondence, it is possible to reconstruct the 3D

Frenet geometry of the curve, starting from the two-dimensional

Frenet geometry, up to the torsion parameter. In particular,

they prove:

Proposition 2.1. Given two perspective views of a 3D space curve

with full calibration, the normal N and curvature k at a curve
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FIGURE 6

(A) Geometrical setup of Proposition 2.1. The spiral curve 3D projects in the left and right retinal planes together with the Frenet structure. (B) Stereo

correspondence between pairs of (left-right) pairs of tangents. Both figures are taken from Li and Zucker (2006).

space point are uniquely determined from the positions, tangents,

and curvatures of its projections in two images. Thus the Frenet

frame {T,N,B} and curvature k at the space point can be

uniquely determined.

Hence, using the knowledge of the Frenet basis together with

the fundamental addition of the curvature variable, Zucker et al.

applied the concept of transport. This allowed moving the 3D

Frenet frame in a consistent way with the corresponding 2D Frenet

structures of the left and right retinal planes, to establish stereo

correspondence between pairs of (left and right) pairs of tangents

(see Figure 6B).

Remark 2.3. The model that we propose in this paper is related

to, but differs from, what has just been stated. In particular, to

remain directly compatible with the previous neuro-geometric

model, we will work only with the monocular variables of position

and orientation. Rather than using curvature directly, we shall

assume that these variables are encoded within the connections;

mathematically they appear as parameters. A theoretical result of

our model is that the heuristic assumption regarding the r3-helix

can now be established rigorously.

Let us also mention the paper (Abbasi-Sureshjani et al., 2017),

where the curvature was considered as independent variable and

helices have been obtained in the 2D space.

3 The neuromathematical model for
stereo vision

Here, we do not want to directly impose a co-circularity

property: our scope is to model the behavior of binocular cells, and

deduce properties of propagation, which will ultimately induce a

geometry of 3D good continuation laws.

3.1 Binocular profiles

Binocular neurons receive inputs from both the left and right

eyes. To facilitate calculations, we assume these inputs are first

combined in simple cells in the primary visual cortex, a widely

studied approach (Anzai et al., 1999b; Cumming and DeAngelis,

2001; Menz and Freeman, 2004; Kato et al., 2016). It provides a

first approximation in which binocular RPs are described as the

product of monocular RPs; see Figure 7. This model is clearly an

oversimplification, in several senses. First, it leaves out the more

refined receptive fields discussed in Section 1.3. Second, it leaves

out the role for complex cells (Sasaki et al., 2010). Third, it leaves

out different ways to get the position and orientation information,

such as eye fixations (Intoy et al., 2021). And fourth, it avoids the

delicate question of whether the max operation over a column

(Equation 12) truly captures a tangent element. Nevertheless,

since our focus is geometric, it does capture all of the necessary

ingredients and simplifies computations.

This binocular model allows us to define disparity and

frontoparallel coordinates as

{

d = xL−xR
2

x = xR+xL
2 ,

(16)

perfectly in accordance with the introduction of cyclopean

coordinates in (4). In this way (x, y, d) correspond to the neural

correlate of (r1, r2, r3), via the change of variables (5).

3.2 The cortical fiber bundle of binocular
cells

The hypercolumnar structure of monocular simple cells

(orientation selective) has been described as a jet fiber bundle in

the works of Petitot and Tondut (1999), among many others. We

concentrate on the fiber bundle R
2
× S

1, with fiber S1; see, e.g.,

Ben-Shahar and Zucker, 2004 among many others.
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FIGURE 7

(A) Even (top) and odd (bottom) part of Gabor function: the surface of the two-dimensional filters, their common bi-dimensional representation and

a mono-dimensional section. (B) Comparisons between binocular interaction RPs and the product of left and right eye RPs, where left and right RPs

are shown in image (A). Binocular interaction RPs (Raw data) of a cell is shown on the top row. Contour plots for the product of left and right eye RPs

(L × R) are shown in the bottom row along with 1-dimensional profiles of the left (L) and right (R) eye RPs. Figure adapted from Anzai et al. (1999b).

In our setting, the binocular structure is based on monocular

ones; recall the example illustrations from the Introduction. In

particular, for each cell on the left eye there is an entire fiber of

cells on the right, and vice versa, for each cell on the right there

is an entire fiber of cells on the left. This implies that the binocular

space is equipped with a symmetry that involves the left and right

structures, allowing us to use the cyclopean coordinates (x, y, d)

defined in (16).

Hence, we define the cyclopean retina R, identified with R
2,

endowed with coordinates (x, y). The structure of the fiber is F =

R × S
1
× S

1, with coordinates (d, θL, θR) ∈ F . The total space is

defined in a trivial way, E = R× F = R
2
× R× S

1
× S

1, and the

projection π : E −→ R is the trivial projection π(x, y, d, θL, θR) =

(x, y). The preimage of the projection E(x,y) : = π
−1({(x, y)}), for

every (x, y) ∈ R, is isomorphic to the fiber F , and the local

trivialization property is naturally satisfied.

A schematic representation can be found in Figure 8. The base

has been depicted as 1-dimensional, considering the restrictionR|x

of the cyclopean retina R on the coordinate x. The left image

displays only the disparity component of the fiber F , encoding the

relationships between left and right retinal coordinates. The right

image shows the presence of the left and right monodimensional

orientational fibers.

3.3 Binocular energy model

To simplify calculations, as stated in the Introduction, we

follow the classical binocular energy model (Anzai et al., 1999b)

for binocular RPs. The basic idea is a binocular neuron receives

input from each eye; if the sum OL + OR of the inputs from the

left and right eye is positive, the firing rate of the binocular neuron

is proportional to the square of the sum, and it vanishes, if the sum

of the inputs is negative:

OB = (Pos(OL + OR))
2, (17)

with Pos(x) = max{x, 0}, OB the binocular output.

IfOL+OR > 0, then the output of the binocular simple cell can

be explicitly written asOB = O2
L+O

2
R+2OLOR. The first two terms

represent responses due to monocular stimulation while the third

term 2OLOR can be interpreted as the binocular interaction term.

The activity of a cell is then measured from the output and will

be strongest at points that have a higher probability of matching

each other. The maximum value over d of this quantity is the

extracted disparity.

It is worth noting that neurophysiological computations of

binocular profiles displayed in Figure 7B assume the mono-

dimensionality of the monocular receptive profile, ignoring

information about orientation of monocular simple cells. However,

this information will be needed to encode different types of

orientation disparity.

Remark 3.1 (Orientation matters). In 2001, the authors of Bridge

et al. (2001) conducted investigations on the response of binocular

neurons to orientation disparity, by extending the energy model of

Anzai, Ohzawa, and Freeman to incorporate binocular differences

in receptive-field orientation.More recently, the difference between
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FIGURE 8

Left: schematic representation of the fiber bundle in two dimension, with relationships between left and right retinal coordinates. Right:

representation of the selection of a whole fiber of left and right simple cells, for every x and for every d.

orientations in the receptive fields of the eyes has been confirmed

(Sasaki et al., 2010).

The binocular energy model is a type of minimal model. It

serves as a starting point, allowing the combination of monocular

inputs. But is not sufficient to solve the stereo-matching problem.

Remark 3.2 (Connections). It is argued in Samonds et al. (2013)

and Parker et al. (2016) that, in addition to the neural mechanisms

that couple characteristics (such as signals, stimuli, or particular

features) relating the left and right monocular structures, there

must be a system of connections between binocular cells, which

characterizes the processing mechanism of stereo vision; see also

Samonds et al. (2013) in particular.

3.4 Di�erential interpretation of binocular
RPs

It is possible to write the interaction term OLOR coming from

(17), in terms of the left and right receptive profiles:

OLOR =

∫

ϕθL ,xL ,y(x̃L, ỹL)IL(x̃L, ỹL)dx̃LdỹL
∫

ϕθR ,xR ,y(x̃R, ỹR)IR(x̃R, ỹR)dx̃RdỹR

=

∫ ∫

ϕθL ,xL ,y(x̃L, ỹL)ϕθR ,xR ,y(x̃R, ỹR)IL(x̃L, ỹL)

IR(x̃R, ỹR)dx̃RdỹRdx̃LdỹL.

(18)

If we fix (x̃R, ỹR, x̃L, ỹL), we derive the expression of the binocular

profiles ϕL,R = ϕθR ,xR ,yϕθL ,xL ,y as the product of monocular left and

right profiles. This is in accordance with the measured profiles of

Figure 7B).

Proposition 3.1. The binocular interaction term can be associated

with the cross product of the left and right directions defined

through (13), namely ω
⋆

L and ω
⋆

R of monocular simple cells:

OLOR = ω
⋆

L × ω
⋆

R. (19)

Proof. The idea is that the binocular output is the combined

result of the left and right actions of monocular cells, thus

identifying a direction in the space of cyclopean coordinates. The

detailed proof of this proposition can be found in Appendix B

(Supplementary material).

To better understand the geometrical idea behind Proposition

3.1, we recall that the retinal coordinates can be expressed in terms

of cyclopean coordinates (4) as xR = x − d and xL = x + d, and so

we can write ω
⋆

L and ω
⋆

R in the 3D space of coordinates (x, y, d) as:

ω
⋆

R =(− sin θR, cos θR, sin θR)
T

ω
⋆

L =(− sin θL, cos θL,− sin θL)
T .

(20)

We define ωbin : = ω
⋆

L × ω
⋆

R as the natural direction characterizing

the binocular structure:

ωbin =







sin(θR + θL)

2 sin θR sin θL

sin(θR − θL)






. (21)

Remark 3.3. The vector ωbin of Equation (21) can be interpreted

as the intersection of the orthogonal spaces defined with respect to

ω
⋆

R and ω
⋆

L when expressed in cyclopean coordinates (x, y, d). More

precisely, if

(ω⋆

L)
⊥
= span

















cos θL
sin θL

0






,







−1

0

1

















,

(ω⋆

R)
⊥
= span

















cos θR
sin θR

0






,







1

0

1

















(22)

then

ωbin = (ω⋆

L)
⊥
∩ (ω⋆

R)
⊥. (23)

The result of the intersection of these monocular structures

identifies a direction, as shown in Figure 9A.
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We earlier showed that the result of the action of a monocular

odd simple cell is to select directions for the propagation of

information. We now combine these, for the two eyes, to show that

in the three-dimensional case the binocular neural mechanisms

also lead to a direction. We will see in the next sections that this

direction is the direction of the tangent vector to the 3D stimulus,

provided points are corresponding.

3.5 Compatibility with stereo geometry

We consider the direction characterizing the binocular

structure ωbin defined in (21) and we show that it can be associated

with the 3D tangent vector to the 3D curve. The idea is that this

tangent vector is orthogonal both to ω
⋆

R and to ω
⋆

L, and therefore it

has the direction of the vector product ω⋆

L × ω
⋆

R.

Precisely, we consider the normalized tangent vector tL and tR
on retinal planes

tR = (cos θR, sin θR)
T tL = (cos θL, sin θL)

T , (24)

to the points (xR, y) and (xL, y) respectively. Taking into account

that f is the focal coordinate of the retinal planes in R
3, then

we associate to these points the correspondents in R
3, namely

m̃L = (xL − c, y, f )T , m̃R = (xR + c, y, f )T . Applying Equation

(7), it is possible to derive the tangent vector of the three

dimensional contour:

UtL = P−1L m̃L × P−1L t̃L =







xL
yL
f






×







cos θL
sin θL

0







=







−f sin θL

f cos θL
xL sin θL − yL cos θL






,

UtR = P−1R m̃R × P−1R t̃R =







xR
yR
f






×







cos θR
sin θR

0







=







−f sin θR

f cos θR
xR sin θR − yR cos θR






,

(25)

and the tangent direction is recovered by

UtL × UtR =

f







xL+xR
2 sin(θR − θL)−

xR−xL
2 sin(θL + θR)

y sin(θR − θL)− (xR − xL)(cos(θR − θL)− cos(θL + θR))

f sin(θR − θL)







(26)

If we define

ω̃
⋆

L : =
d

fc
UtL , ω̃

⋆

R : =
d

fc
UtR (27)

and the corresponding 2 form ωR3 : = ω̃
⋆

L × ω̃
⋆

R, using the change

of variables (16) we observe that:

ω̃
⋆

L = ω
⋆

L, ω̃
⋆

R = ω
⋆

R, ωR3 = ωbin, (28)

up to a scalar factor. See Appendix C (Supplementary material) for

explicit computation.

In this way, the disparity binocular cells couple in a natural

way positions, identified with points in R
3, and orientations in

S
2, identified with three-dimensional unitary tangent vectors. As

already observed in Remark 3.2, the geometry of the stereo vision is

not solved only with these punctual and directional arguments, but

there is the need to take into accounts suitable type of connections.

In Alibhai and Zucker (2000); Li and Zucker (2003, 2006), Zucker

et al. proposed a model that considered the curvature of monocular

structures as an additional variable. Instead, we propose to consider

simple monocular cells selective for orientation, and to insert the

notion of curvature directly into the definition of connection.

It is therefore natural to introduce the perceptual space via the

manifold R
3
⋊ S

2, in line with the theoretical toolbox proposed

in Miolane and Pennec (2016) to generalize 2D neurogeometry to

3D images, and adapt this framework to our problem, looking for

appropriate curves.

3.6 A perceptual model in the space of 3D
position-orientation

We now derive the objects in Figure 3A. We have clarified (end

of Section 3.5) that binocular cells are parameterized by points in

R
3, and orientations in S

2. An element ξ of the space R3
⋊ S

2 it

is defined by a point p = (p1, p2, p3) in R
3 and an unitary vector

n ∈ S
2. Since the topological dimension of this geometric object is

2, we introduce the classical spherical coordinates (θ ,ϕ) such that

n = (n1, n2, n3) ∈ S
2 can be parameterized as:

n1 = cos θ sinϕ

n2 = sin θ sinϕ

n3 = cosϕ

(29)

with θ ∈ [0, 2π] and ϕ ∈ (0,π). The ambiguity that arises using

local coordinate chart is overcome by the introduction of a second

chart, covering the singular points.

Translations and rotations are expressed using the group law of

the three-dimensional special Euclidean group SE(3), defining the

group action

σ :R
3
⋊ S

2
×SE(3) −→ R

3
⋊ S

2 s.t. σ ((p, n), (q,R)) = (Rp+q,Rn),

(30)

with (p, n) ∈ R
3
⋊ S

2, (q,R) ∈ SE(3), namely R ∈ SO(3)

tridimensional rotation, and q ∈ R
3.

3.6.1 Stereo sub-Riemannian geometry
The emergence of a privileged direction in R

3 (associated with

the tangent vector to the stimulus) is the reason why we endow

R
3
⋊ S

2 with a sub-Riemannian structure that favors the direction

in 3D identified by ωbin.

Formally, we consider admissible movements in R
3
⋊ S

2

described by vector fields:
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FIGURE 9

(A) Direction detected by ωbin through the intersection of left and right planes generated by (ω⋆

R
)⊥ and (ω⋆

L
)⊥. Red vector corresponds to the associated

2-form ωbin. (B) Three dimensional reconstruction of the space from retinal planes. The 1- forms ω
⋆

L
and ω

⋆

R
are identified with the normal to the

curves γL and γR. Their three dimensional counterpart ω̃
⋆

L
and ω̃

⋆

R
identify the tangent vector to the curve γ :R→ R

3 by the cross product ω̃
⋆

L
× ω̃

⋆

R
.

YR3 ,ξ = sinϕ cos θ∂1 + sinϕ sin θ∂2 + cosϕ∂3

Yθ ,ξ = −
1

sinϕ

∂θ

Yϕ,ξ = ∂ϕ

(31)

with ξ ∈ R
3
⋊ S

2 for ϕ 6= 0,ϕ 6= π . The admissible tangent space9

at a point ξ

Aξ
: = span{YR3 ,ξ ,Yθ ,ξ ,Yϕ,ξ } (32)

encodes the coupling between position and orientations, as

remarked by Duits and Franken (2011). In particular, the vector

field YR3 identifies the privileged direction in R
3, while Yθ and Yϕ

allow changing this direction, involving just orientation variables

of S
2. The vector fields {YR3 ,Yθ ,Yϕ} and their commutators

generate the tangent space of R
3
⋊ S

2 in a point, allowing to

connect every point of the manifold using privileged directions

(Hörmander condition). Furthermore, it is possible to define a

sub-Riemannian structure by choosing a scalar product on the

admissible tangent bundle A: the simplest choice is to declare

the vector fields {YR3 ,Yθ ,Yϕ} orthonormal, considering on S
2

the distance inherited from the immersion in R
3 with the

Euclidean metric.

3.6.2 Change of variables
We have already expressed the change of variable in the

variables (x, y, d) to (r1, r2, r3) in Equation (5). However, the cortical

coordinates also contain the angular variables θR and θL which

involve the introduction of the spherical coordinates θ ,ϕ.

9 see Appendix A (Supplementary material) for the definition of admissible

tangent space.

To identify a change of variable among these variables, we first

introduce the function

(r1, r2, r3, θ ,ϕ)
F
−→ (x, y, d, θL, θR) :

F : R
3
⋊ S

2
−→ R

3
⋊ S

2















r1
r2
r3
θ

ϕ















7→

















fr1
r3
fr2
r3
cf
r3

tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c+r1) cosϕ

)

tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c−r1) cosϕ

















, (33)

where the retinal right angle θR = tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c+r1) cosϕ

)

and the retinal left angle θL = tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c−r1) cosϕ

) are

obtained considering Equation (6).

Analogously, it is possible to define the change of variable

(x, y, d, θL, θR)
G
−→ (r1, r2, r3, θ ,ϕ):

G : R
3
⋊ S

2
−→ R

3
⋊ S

2















x

y

d

θR

θL















7→

















cx
d
cy
d
cf
d

tan−1( 2 sin θR sin θL
sin(θR+θL)

)

tan−1(

√
sin2(θR+θL)+4 sin2 θR sin2 θL

sin(θR−θL)
)

















,

(34)

where the angles θ = tan−1( 2 sin θR sin θL
sin(θR+θL)

) and ϕ =

tan−1(

√
sin2(θR+θL)+4 sin2 θR sin2 θL

sin(θR−θL)
) are obtained considering

that tan θ =
(EY

R3 )2

(EY
R3 )1

and tanϕ =

√

(EY
R3 )

2
1+(
EY
R3 )

2
2

(EY
R3 )3

.
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3.6.3 Integral curves
The connectivity of the space is described by admissible curves

of the vector fields spanningA. In particular, a curve Ŵ :[0,T] −→

R
3
⋊ S

2 is said to be admissible10 if:

Ŵ̇(t) ∈ A
Ŵ(t),↔ Ŵ̇(t) = a(t)EYR3 ,Ŵ(t) + b(t)EY

θ ,Ŵ(t) + c(t)EY
ϕ,Ŵ(t),

(35)

where a, b, c are sufficiently smooth function on [0,T]. We will

consider a particular case of these admissible curves, namely

constant coefficient integral curves with a(t) = 1, since the vector

field YR3 represents the tangent direction of the 3D stimulus (and

so it never vanishes):

Ŵ̇(t) = EYR3 ,Ŵ(t) + c1 EYθ ,Ŵ(t) + c2 EYϕ,Ŵ(t), (36)

with c1 and c2 varying in R.

These curves can be thought of in terms of trajectories in R
3

describing a movement in the EYR3 direction, which can eventually

change according to EYθ and EYϕ . An example of the fan of integral

curves was shown in the Introduction in Figure 3B.

It is worth noting that in the case described by coefficients c1
and c2 equal to zero, the 3D trajectories would be straight lines in

R
3; by varying the coefficients c1 and c2 in R, we allow the integral

curves to follow curved trajectories, twisting and bending in all

space directions.

Formally, the amount of “twisting and bending” in space is

measured by introducing the notions of curvature and torsion.

We then investigate how these measurements are encoded in the

parameters of the family of integral curves, and what constraints

have to be imposed to obtain different typologies of curves.

Remark 3.4. The 3D projection of the integral

curves (36) will be denoted γ and satisfy γ̇ (t) =

(cos θ(t) sinϕ(t), sin θ(t) sinϕ(t), cosϕ(t))T . Classical instruments

of differential geometry let us compute the curvature and the

torsion of the curve γ (t):

k =

√

(ϕ̇)2 + sin2 θ(θ̇)2,

τ =
1

k2
(− cosϕ sin2 ϕ(θ̇)3 − sinϕϕ̇θ̈ + θ̇(−2 cosϕ(ϕ̇)2 + sinϕϕ̈)).

(37)

Using the explicit expression of the vector fields Yθ and Yϕ in

Equation (36), we get

θ̇ = −
c1

sinϕ

, ϕ̇ = c2, (38)

from which it follows that:

k =

√

c21 + c22

τ =c1 cotanϕ.
(39)

Proposition 3.2. By varying the parameters c1 and c2 in (39) where

we explicitly find solutions of (36), we have:

1. If ϕ =
π

2 then k =
√

c21, τ = 0, and so the family of curves

(36) are circles of radius 1/c21 on the fronto-parallel plane

r3 = cost.

10 sometimes the term horizontal is preferred.

2. If ϕ = ϕ0, with ϕ0 6= π/2, then k =
√

c21 and τ = c1 cotanϕ0,

and so the family of curves (36) are r3-helices.

3. If θ = θ0 then k =
√

c22, τ = 0, and so the family of curves

(36) are circles of radius 1/c22 in the osculating planes.

Proof. The computation follows immediately from the

computed curvature and torsion of (39) and classical results

of differential geometry.

Remark 3.5. If we know the value of the curvature k, and we have

one free parameter, c2, in the definition of the integral curves (36),

then we are in the setting of Proposition 2.1. In fact, the coefficient

c1 is obtained by imposing c1 = ±
√

k2 − c22, and in particular the

component that remains to be determined is the torsion.

Examples of particular cases of the integral curves (36)

according to Proposition 3.2 and Remark 3.5 are visualized in

Figure 10.

4 Comparison with experimental data

Our sub-Riemannian model enjoys some consistency with the

biological and psychophysical literature. We here describe some

initial connections.

4.1 Biological connections

The foundation for building our sub-Riemannian model of

stereo was a model of curve continuation, motivated by the

orientation columns at each position. The connections between

cells in nearby columns were, in turn, a geometric model

of long-range horizontal connections in visual cortex (Bosking

et al., 1997). In the Introduction we cartooned aspects of the

cortical architecture that support binocular processing. Although

the inputs are organized into ocular dominance bands, there

is no direct evidence for “stereo columns” in V1 analogous to

the monocular orientation columns. But such columns are not

strictly necessary for our model. Rather, what is central is how

information propagates. We showed in Figure 1C that there is

evidence of long-range connections between binocular cells, and

our model informs, abstractly, what information could propagate

along these connections. Although less extensive than in the

monocular case, some measurements are beginning to emerge that

are informative.

The Grinwald group first established the presence of long-range

connections between binocular cells (Malach et al., 1993) (see also

Figure 11A), using biocytin. This is a molecule that is taken up

by neurons, propagates directly along neuronal processes and is

deposited at excitatory synapses. These results were refined, more

recently, by the Fitzpatrick group (Scholl et al., 2022), using in vivo

calcium imaging. As shown in Figure 1C the authors demonstrated

both the monocular and the binocular inputs for stereo, and (not

shown) the dependence on orientations.

More precisely, Malach et al. (1993) showed selective anisotripic

connectivity among binocular regions: the biocytin tracer does

not spread uniformly, but rather is highly directional with
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FIGURE 10

Examples of integral curves obtained varying parameters c1 and c2. (A) Arc of circles for ϕ = π/2. (B) r3-helices for ϕ = π/3. (C) Family of curves with

constant curvature k and varying torsion parameter.

FIGURE 11

(A) A biocytin injection superimposed on a map of ocular dominance columns, image result from the work in Malach et al. (1993). Binocular zones

are in the middle of monocular zones (coded in black and white). Starting from the injection site (yellow circle in the center of a binocular zone) the

patches’ propagation (red corresponds to dense while green to sparsely labeled) tends to avoid highly monocular sites, bypassing the centers of

ocular dominance columns, and are located in binocular zones. (B) 3D interpretation of the physiological image (A).

distance from the injection point. (This was the case with

monocular biocytin injections as well.) Putting this together

with Scholl et al. (2022), we interpret the anisotropy as being

related to (binocular) orientation (Scholl et al., 2022), which

is what the integral curves of our vector fields suggest. Our

3D association fields are strongly directional, and information

propagates preferentially in the direction of (the starting point

of) the curve. An example can be seen in Figure 11B, where

the fan of integral curves (36) is represented, superimposed with

colored patches, following the experiment proposed in Malach

et al. (1993). We look forward to more detailed experiments along

these lines.

4.2 Psychophysics and association fields

In this section, we show that the connections described by

the integral curves in our model can be related to the geometric

relationships from psychophysical experiments on perceptual

organization of oriented elements in R
3; in other words, that

our connections serve as a generalization of the concept of an

association field in 3D.

4.2.1 Toward a notion of association field for
3D contours

The perception of continuity between two elements of position-

orientation in R
3 has been studied experimentally. To start,

Kellman, Garrigan, and Shipley (Kellman et al., 2005a,b) introduce

3D relatability, as a way to extend to 3D the experiments of Field,

Hayes and Hess (Field et al., 1993) in 2D.

Particularly, in a system of 3D Cartesian coordinates, it

is possible to introduce oriented edges E at the application

point (r1, r2, r3)
T and with an orientation identified with the

angles θ and ϕ. This orientation can be read, in our case,

through the direction expressed by (cos θ sinϕ, sin θ sinϕ, cosϕ)T .

For an initial edge E0, with application point on the origin

of the coordinate system (0, 0, 0)T and orientation lying on

the r1-axis, described by θ = 0,ϕ = π/2, the range of

possible orientations (θ ,ϕ)11 for 3D-relatable edges with E0 is

given by:

11 The angle ϕ here has been modified to be compatible with our set of

coordinates. The relationship between the angle ϕ̃ in works (Kellman et al.,

2005a,b) can be expressed as : ϕ̃ = acos(sinϕ)+ π .
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tan−1
(

r2

r1

)

≤ θ ≤
π

2
and

π

2
≤

3π

2
− ϕ ≤ tan−1

(

r3

r1

)

.

(40)

The bound on these equations identified with the quantity π

2

incorporates the 90 degree constraint in three dimensions, while

the bounds defined by the inverse of the tangent express the

absolute orientation difference between the reference edge E0 and

an edge positioned at the arbitrary oriented point E(r1 ,r2 ,r3) so that

its linear extension intersects E0; see Kellman et al. (2005a,b) for

further details.

Numerical simulations allow us to visually represent an

example of the 3D positions and orientations that meet the 3D

relatability criteria. Starting from an initial edge E0 with endpoints

in (p01, p02, p03)
T and orientation on the e1- axis, we represent for

an arbitrary point (p1, p2, p3)
T the limit of the relatable orientation

(θ ,ϕ). Results are shown in Figure 12A.

Remark 4.1. By projecting on the retinal planes of the 3D fan of

relatable points, it is possible to notice that these projections are in

accordance with the notion of 3D compatibility field in Alibhai and

Zucker (2000) (see Figures 12B, C).

Psychophysical studies, see Hess and Field (1995); Hess

et al. (1997); Deas and Wilcox (2015), have investigated the

properties of the curves that are suitable for connecting these

relatable points. These curves are well-described as smooth and

monotonic. In particular, using non-oriented contour elements for

contours, Hess et al. (1997) indicate that contour elements can

be effectively grouped based primarily on the good continuation

of contour elements in depth. This statement is confirmed

by the more recent work of Deas and Wilcox (2015) who,

in addition, observe that detection of contours defined by

regular depth continuity is faster than detection of discontinuous

contours. All these results support the existence of depth grouping

operations, arguing for the extension of Gestalt principles of

continuity and smoothness in three dimensional space. Finally,

on the relationship of the three-dimensional curves to 2-

dimensional association fields, see Kellman et al. (2005b); Khuu

et al. (2016). These authors have assumed that the strength

of the relatable edges in the co-planar planes of E0 must

meet the relations of the bi-dimensional association fields of

Field et al. (1993).

4.2.2 Compatibility with the
sub-Riemannian model

To model the associations underlying the 3D perceptual

organization discussed in the previous paragraph, we consider

again the constant coefficient family of integral curves studied

in (36):

Ŵ̇(t) = EYR3 ,Ŵ(t) + c1 EYθ ,Ŵ(t) + c2 EYϕ,Ŵ(t), with c1, c2 ∈ R. (41)

Importantly, these curves locally connect the association fan

generated by the geometry of 3D relatability. In particular,

Figure 13B shows the family of the horizontal curves connecting the

initial point E0 with 3D relatable edges (Figure 13A). These curves

are computed using Matlab solver function ode45.

In analogy with the experiment of Field, Hayes, and Hess in

Field et al. (1993), we choose to represent non-relatable edges to

the left of the starting point E0, while on the right are 3D relatable

edges. So, filled lines of the integral curves indicate the correlation

between the central horizontal element E0 and the ones on its right,

while dotted lines connect the starting point E0 with elements not

correlated with it, as represented on the left part of the image.

Restricting the curves on the neighborhood of co-planar planes

with an arbitrary edge E, we have different cases. First, on the r1-r2
plane (fronto-parallel) and the r1-r3 plane we have arcs of circle, as

proved with Proposition 3.2. Furthermore, for an arbitrary plane in

R
3 containing an edge E, we observe that the curves generating with

fixed angle ϕ are helices, and locally they satisfy the bidimensional

constraint in the plane. Examples can be found in Figures 13C–

E. In particular, the curves displayed in Figures 13C, D are well in

accordance with the curves of the Citti-Sarti model, depicted in

Figure 5.

One final connection with the psychophysical literature

concerns how depth discrimination thresholds increase

exponentially with distance (Burge, 2020 and references therein).

This is related to how the fan of integral curves “spreads out” with

distance (Figures 11, 12), which is also exponential. These notions

are developed more fully in Bolelli et al. (2023a).

4.3 Integration of contours and stereo
correspondence problem

Although the goal of this paper is not to solve the stereo

correspondence problem, we can show how our geometry is helpful

in understanding how to match left and right points and features.

These ideas are developed more fully in Bolelli (2023).

Inspired by Hess and Field (1995), we consider a path stimulus

γ interpreted as a contour, embedded in a background of randomly

oriented elements: left and right retinal visual stimuli are depicted

in Figure 14A. We perform an initial, simplified lift of the retinal

images to a set � ⊂ R
3
⋊ S

2. This set contains all the possible

corresponding points, obtained by coupling left and right points

which share the same y retinal coordinate, see Figure 14B. The set

� contains false matches, namely points that do not belong to the

original stimulus. It is the task of correspondence to eliminate these

false matches.

We compute for every lifted point the binocular output OB of

Equation (17). This output can be seen as a probability measure

that gives information on the correspondence of the pair of left

and right points. We then simply evaluate which are the points

with the highest probability of being in correspondence, applying

a process of suppression of the non-maximal pairs over the fiber

of disparity. In this way, noise points are removed (Figure 14C).

We now directly exploit the Gestalt rule of good continuation

by filtering out any couple of elements with high curvature. This

qualitative rule could be quantitatively modeled by considering the

statistics of distribution of curvature and torsion in natural 3D

images (Geisler and Perry, 2009). The remaining noise elements are

orthogonal to the directions of the elements of the curve that we
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FIGURE 12

(A) Example of the fan of the 3D relatable edges with initial point E0. (B) Example of 3D association field in the two left and right retinal planes,

generated with the geometry of 3D relatability. (C) Example of 3D compatibility field of Alibhai and Zucker (2000).

FIGURE 13

(A) 3D relatable edges displayed on the right of the initial edge E0. Unrelatable 3D edges displayed on the left. (B) Horizontal integral curves with filled

lines connect 3D relatable edges with initial point E0. Horizontal integral curves with dotted lines do not connect 3D unrelatable edges. (C)

Restriction of the fan of the integral curves on the e1-e2 plane. (D) Restriction of the fan of the integral curves on the e1-e3 plane. (E) Restriction of

the fan at ϕ = ϕ0. These curves (black lines) are not planar curves but helices. However, their projection (white lines) on the coplanar plane with initial

edge satisfies the bidimensional constraints.

would like to reconstruct. Calculating numerically the coefficients

c1 and c2 of integral curves (36) that connect all the remaining pairs

of points, we can obtain for every pair the value of curvature and

torsion using (39).

Figures 14E, F show matrices M representing the values of

curvature or torsion for every pair of points ξi, ξj in the element

Mij. In particular, we observe that random points are characterized

by very high curvature and deviating torsion. So, by discarding
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FIGURE 14

(A) Left and right retinal images of the set �. Black points are the projection of the point of the curve γ , while gray points are background random

noise. (B) Lifting of the two left and right retinal images of image (A) in the space of position and orientation R
3
× S

2. (C) Selection of lifted points

according to the binocular output. (D) Points of the stimulus γ connected by integral curves (36). (E, F) Matrices M which element Mij represents the

value of curvature/ torsion for every couple of points ξi, ξj. The first eight points correspond to points of the curve γ while the others are random

noise. (E) Curvature matrix. (F) Torsion matrix.

these high values, we select only the three-dimensional points of

the curve γ , which are well-connected by the integral curves, as

shown in Figure 14D. This is in accordance with the idea developed

in Alibhai and Zucker (2000); Li and Zucker (2003, 2006), where

curvature and torsion provide constraints for reconstruction in 3D.

In this artificial example we assumed that local edge elements

have already been detected. Our goal was simply proof-of-concept.

To apply this approach to realistic images, of course, stages of edge

detection would have to be adopted, for which there is a huge

literature well outside the scope of our theoretical study.

5 Summary and conclusions

Understanding good continuation in depth, like good

continuation for planar contours, can benefit from basic

physiological constraints; from psychophysical performance

measures, and from mathematical modeling. In particular, good

continuation in the plane is supported by orientation selectivity

and cortical architecture (orientation columns), by association field

grouping performance, and by geometric modeling. We showed

that the same should be true for good continuation in depth.

However, while the psychophysical data may be comparable, the

physiological data are weaker and the geometry of continuation is

not as well-understood. In this paper, we introduced the neuro-

geometry of stereo vision to fill this gap. It is strongly motivated by

an analogical extension to 3D of 2D geometry, while respecting the

psychophysics. In the end, it allowed us to be precise about the type

of geometry that is relevant for understanding stereo abstractly,

and concretely was highly informative toward the physiology.

Although a “stereo columnar architecture” is not obvious from the

anatomy, it is well-formed computationally.
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Technically, we proposed a sub-Riemannian model on the

space of position and orientation R
3
⋊ S

2 for the description

of the perceptual space of the neural cells involved. This

geometrical structure favors the tangent direction of a 3D

curve stimulus. The integral curves of the sub-Riemannian

structure encode the notions of curvature and torsion

within their coefficients, and are introduced to describe the

connections between elements. This model can be seen as an

extension in the three-dimensional scene of the 2-dimensional

association field. In particular, the integral curves of the sub-

Riemannian structure of the 3D space of position-orientation

are exactly those that locally correspond to psychophysical

association fields.

Although the goal of this paper is not to solve the stereo

correspondence problem, we have seen how the geometry we

propose is a good starting point to understand how to match left

and right points and features. We used binocular receptive fields

to prioritize orientation preferences and orientation differences

under the assumption that neuronal circuitry has developed to

facilitate the interpolation of contours in 3D space. On the other

side, the neurogeometrical method has been coupled with a

probabilistic methods for example in Sanguinetti et al. (2010) and

Sarti and Citti (2015). Here, the authors studied an analogous

problem for generation of perceptual units in monocular vision:

they introduced stochastic differential equations, analogous to

the integral curves of vector fields, and used its probability

density as a kernel able to generate monocular perceptual units.

In Montobbio et al. (2019), the probability kernel is built in a

direction starting from the receptive fields. A future development

of the model will consist in adapting the technique of Sarti

and Citti (2015) to find the probability of the co-occurrence

between two elements, and individuate percepts in 3D space.

Individuation of percepts through harmonic analysis on the

sub-Riemannian structure has been proposed in the past, both

for 2D spatial stimuli (Sarti and Citti, 2015) and in 2D +

time spatio-temporal stimuli (Barbieri et al., 2014a). It would

be interesting to develop a similar analysis and extend it to

stereo vision.
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Shape from dots: a window into 
abstraction processes in visual 
perception
Nicholas Baker 1* and Philip J. Kellman 2

1 Department of Psychology, Loyola University Chicago, Chicago, IL, United States, 2 Department of 
Psychology, University of California, Los Angeles, Los Angeles, CA, United States

Introduction: A remarkable phenomenon in perception is that the visual 
system spontaneously organizes sets of discrete elements into abstract shape 
representations. We studied perceptual performance with dot displays to discover 
what spatial relationships support shape perception.

Methods: In Experiment 1, we tested conditions that lead dot arrays to be perceived 
as smooth contours vs. having vertices. We found that the perception of a smooth 
contour vs. a vertex was influenced by spatial relations between dots beyond the 
three points that define the angle of the point in question. However, there appeared 
to be a hard boundary around 90° such that any angle 90° or less was perceived as 
a vertex regardless of the spatial relations of ancillary dots. We hypothesized that 
dot arrays whose triplets were perceived as smooth curves would be more readily 
perceived as a unitary object because they can be encoded more economically. In 
Experiment 2, we generated dot arrays with and without such “vertex triplets” and 
compared participants’ phenomenological reports of a unified shape with smooth 
curves vs. shapes with angular corners. Observers gave higher shape ratings for dot 
arrays from curvilinear shapes. In Experiment 3, we tested shape encoding using a 
mental rotation task. Participants judged whether two dot arrays were the same or 
different at five angular differences. Subjects responded reliably faster for displays 
without vertex triplets, suggesting economical encoding of smooth displays. 
We followed this up in Experiment 4 using a visual search task. Shapes with and 
without vertex triplets were embedded in arrays with 25 distractor dots. Participants 
were asked to detect which display in a 2IFC paradigm contained a shape against a 
distractor with random dots. Performance was better when the dots were sampled 
from a smooth shape than when they were sampled from a shape with vertex triplets.

Results and discussion: These results suggest that the visual system processes 
dot arrangements as coherent shapes automatically using precise smoothness 
constraints. This ability may be  a consequence of processes that extract 
curvature in defining object shape and is consistent with recent theory and 
evidence suggesting that 2D contour representations are composed of constant 
curvature primitives.

KEYWORDS

perceptual organization, shape, Gestalt, contour perception, abstraction, curvature, 
visual perception

Introduction

Among the most useful functions of the visual system is the perception and representation 
of shape. A striking and revealing example is the spontaneous perception of a unified shape 
from disconnected dot elements. Consider, for example, the array of dots presented in 
Figure 1A. Although the dots are disconnected and the shape unfamiliar, a well-defined, 
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coherent shape is spontaneously perceived. Organization into a 
configural whole does not depend on similarity in the elements’ size, 
color, or element shapes, as shown in Figures 1B–D. Unlike displays 
used in research on path integration (e.g., Field et  al., 1993; c.f., 
Kellman and Fuchser, 2023), the dot elements have no explicit 
orientation. The visual system could, in principle, interpolate any 
number of possible contours between dots in this array (c.f., 
Kanizsa, 1979).

A familiar example of observers spontaneously perceiving shape 
from separated points in space is the perception of constellations in 
the night sky (Metzger, 2009). These organizations turn out to 
be  surprisingly consistent across cultures (Kemp et  al., 2022), 
suggesting that the extraction of shapes from stars depends on basic 
processes of human perception (Kelly et al., 2024). There also seems 
to be a high degree of consistency in the shapes observers extract from 
disconnected dots sampled from novel contours.

Although these observations are commonplace, they are 
remarkable manifestations of processes of abstraction in visual 
perception. Baker and Kellman (2018) found that brief exposures of 
dot arrays to human observers produced perceptual representations 
that readily supported matching of shape across transformations of 
position, scale, and orientation. They also found that, even when 
tasked exclusively with trying to detect changes in the positions of 
dots, observers had no ability to distinguish changes in dot positions 
(across two exposures) when dots were moved along a never-shown 
virtual contour from which the first array of dots was sampled (see 
Figure 2). These findings provided evidence that perception of these 
displays produced abstract shape representations, not tied to the 
particular stimulus elements presented. Such representations are 
extracted from relations of stimulus elements, but those specific 
elements are only transiently encoded. Metzger (2009) likewise 
observed that viewers exposed to a pattern of dots will often substitute 
the shape defined by the dots in visual memory, and these observations 
are consistent with many other demonstrations about perception of 
shape by Gestalt psychologists (see Koffka, 1935 for a review).

Shape perception from dots comprises an especially valuable 
example of the abstract, relational character of visual perception 
(Baker and Kellman, 2018; c.f., Kellman and Massey, 2013). Because 
the notion of abstraction has been used in diverse ways in cognition 
and perception (e.g., Barsalou, 2003), it is reasonable to ask what 
we mean in describing a perceptual representation as abstract or a 
perceptual process as performing abstraction. Baker et  al. (2021) 
suggested that three criteria characterize abstraction in perceptual 
encoding. Perceptual representations are abstract when they are: (1) 
relational, such that the relevant information encoded, as in the case 

of shape, is defined over, but not by, constituent elements; (2) 
economical, in that they involve summary descriptions from which 
much information relating to specific stimulus elements has been 
discarded; and (3) additive, in that abstract perceptual representations 
may add information that was not strictly in the stimulus information 
given. Perception of shape from dots exhibits all of these properties. 
From the relations of dots, a shape representation is obtained that 
transfers across changes in elements, scale, orientation, etc.; the 
stimulus elements themselves are not durably encoded, and in fact, 
many different sets of elements may give rise to the same abstract 
representation; and the shape representation itself has continuity of 
contour and a unity that is not given in the stimulus. Recognizing that 
abstraction—as indicated by these properties—is pervasive in 
perception may be valuable in clarifying a number of issues in both 
classical views of perception and recent proposals (e.g., Barsalou, 
1999) about the relation between perception and cognition (Kellman 
and Massey, 2013).

Arguably, perceiving shape from contours that are not made from 
dots, i.e., that are continuous in the projection to the eyes, also involves 
all of these same characteristics. If an early level of cortical processing 
encodes the input into activations of cortical units having orientation 
sensitivity in local receptive fields, we encounter the same issues of 
how numerous local activations become organized into tokens of 
continuous contours and well-defined shape. When the stimulus itself 
has continuity, it may be  harder to realize that an abstract 
re-description of the input occurs in those cases as well. Shape from 
dots provides a unique window into these processes, both intuitively 
and experimentally, as it is easier to point to aspects of perceptual 
representations that do not exist in the stimulus.

As remarkable as it is that the visual system encodes shape 
representations from unconnected dots, not all dot arrays give rise 
to a shape percept. Why do some spatial relations among dots result 
in a configural whol while others do not? Experiments testing dot 
perception with a highly constrained number of dots have found 
that certain relations between dots result in emergent features, 
relations among groups of dots that are more salient than the sum 
of the dot’s individual properties. Pomerantz and Portillo (2011) 
studied how different spatial relations among two to four dots 
influence the perception of emergent features in a dot array. They 
found that observers are highly sensitive to orientation and 
proximity relations between pairs of dots (see also Hawkins et al., 
2016). These relations were shown to influence performance in an 
odd-one-out task even as differences between the target and 
distractor approached the minimum threshold for detection (Costa 
and Wagemans, 2021). Higher-order relations among dots resulted 

FIGURE 1

Different dot displays giving rise to the same perceived shape. Perceivers organize the elements in each of the four displays into a similar unified shape 
representation despite variations in element size, color, and shape. (A) A shape defined by uniform elements. (B) The same shape defined by elements 
with nonuniform size. (C) The same shape defined by elements with nonuniform color. (D) The same shape defined by elements with nonuniform 
shape.
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in emergent features less consistently. Dots that are collinear tended 
to be perceived configurally, but other relations of three dots, such 
as symmetry, resulted in an emergent feature only for 
certain displays.

These results provide important insight into how even the simplest 
displays are perceived configurally, but they cannot fully explain how 
shape emerges from arrays of dots. As Pomerantz and Portillo (2011) 
point out, the systematic tracking of emergent features becomes 
difficult or impossible as the number of elements in a display increases. 
Studies on the percept of shape from randomly placed dots have found 
that certain configurations are much more frequently perceived to 
have a unitary shape description than others, depending on proximity 
and good continuation between the dot elements (van den Berg, 
2006). Considerable research has been done on how the visual system 
organizes an array of dots into multiple distinct shapes, or into a single 
shape among random dot distractors. Proximity appears to play a 
major role in these computations (Van Oeffelen and Vos, 1983; 
Kubovy and Wagemans, 1995; Papari and Petkov, 2005), although 
similarity (Zucker et  al., 1983) and good continuation are also 
important cues (Smits et al., 1985; Lezama et al., 2016).

Notions of proximity and similarity are perhaps intuitive with 
respect to dot configurations, but good continuation requires some 
elaboration. Good continuation in Gestalt psychology has always been 
somewhat vague: Wertheimer (1923) said that “one knows” what it is, 
and Kanizsa said that it resists simple definition (Kanizsa, 1979). 
Other work has provided more rigorous, but highly varied, definitions 
of good continuation.

A common view is that good continuation depends on the 
degree to which dots are collinear with each other (Smits et al., 
1985; Wouterlood and Boselie, 1992; van den Berg, 2006), which 
has been shown to aid contour detection using simple segments 
(Uttal, 1973; Prinzmetal and Banks, 1977). Another definition that 
has been proposed quantifies good continuation by measuring the 
degree of symmetry between the middle and first dot and the 
middle and third dot in a triplet. Sequences of dots with more 

symmetrical triplets are considered less accidental and are therefore 
more likely to be organized together (Lezama et al., 2016). Still 
another view is that the visual system evaluates good continuation 
in quartets. According such theories, the goodness of dots’ 
continuation is quantified by the degree to which the turn angle 
between consecutive dots in a quartet remains constant (Feldman, 
1997; Kelly et al., 2024). This definition is similar to one proposed 
by Pizlo et al. (1997) which theorizes that a dot sequence has good 
continuation if it is smooth, which they define as consisting of 
successive pairs of dots whose orientations are similar to each other. 
For example, a four-dot sequence, ABCD, is considered smooth if 
the difference in orientation between AB and BC is small and the 
difference in orientation between BC and CD is small.

A theme shared among many of these theories is that good 
continuation is primarily a summation of many local computations 
(Feldman, 1997; Pizlo et al., 1997; Lezama et al., 2016; Kelly et al., 
2024). This is consistent with path integration work done using 
oriented Gabors (Field et al., 1993; Hess and Field, 1999). However, 
others have argued that good continuation is a more global 
consideration and is strengthened by monotonicity and curvature 
regularity along the extent of the dot sequence (Smits and Vos, 1986; 
Yuen et al., 1990; van den Berg, 2006).

Our goal is not to test these competing formulations of good 
continuation but to better specify how the manipulation of spatial 
relations between dots influences. Understanding this could provide 
crucial insight into how the visual system forms abstract shape 
representations. This effort is specifically relevant to understanding 
how contours are formed. Dot arrays, with no continuous contour 
physically given, may provide unique insight into underlying visual 
processes in shape representation (Baker and Kellman, 2018).

One way the visual system could form a contour representation 
from unconnected dots is by interpolating straight edges between 
adjacent boundary points (e.g., O'Callaghan, 1974). Under this view, 
dot displays with longer sequences of collinear dots would be simplest 
because a new line segment would be  required for any change in 

FIGURE 2

(A) Trial from Baker and Kellman (2018) in which dots were shifted along a shape’s virtual contour. (B) Sensitivity to dot position change. The observer’s 
task was to indicate whether any dots moved between the first and second exposures. When dot positions changed, they could either preserve or 
disrupt the virtual shape. For 30  ms exposures, there was no sensitivity to dot position changes, indicating that observers did not reliably encode 
specific dot positions, and, as earlier experiments indicated, 30  ms exposures are too short to allow formation of abstract shape representations. At 
150  ms, when dots were shifted along the virtual contour, participants showed no sensitivity to the change; however, dot position changes that 
disrupted the virtual shape were more detectable, presumably due to their effect on the overall shape representation extracted.
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orientation between sequential dot pairs. It would also be consistent, 
within a certain size range, with modest activation of large, 
orientation-sensitive units in visual cortex by pairs or sets of dots. The 
straight line interpolation process is computationally simple and 
would effectively minimize the total length of the contour connecting 
the dots.

On the other hand, we have the phenomenological experience of 
perceiving smooth curves in displays like the dots in Figure  1. 
Moreover, connecting straight edges at each point would result in a 
very jagged percept of the dot array, albeit one that is invariant to rigid 
2D transformations. Under this view, any dot between two other dots, 
A and B, would either need to be collinear with A and B or would 
be perceived as a corner in the contour representation of the display. 
Attneave (1954), in classic work, proposed that corners are the 
positions on the contour with the greatest informational content and 
are consequently more salient in our perception (Troncoso et al., 2005; 
De Winter and Wagemans, 2008). Previously, we shifted all dots in an 
array along a virtual contour, which would result in a contour 
representation with a completely different set of corners if observers 
were indeed encoding the shape with straight line interpolation. Given 
the perceptual importance of corners, such a change should be easily 
detected, but we found that humans had no sensitivity at all to the 
positional shift. This suggests that the visual system does not form 
shape representations of dot arrays by simply interpolating straight 
lines between adjacent points. Curved edges may instead 
be  interpolated across spans of dots such that shifts to any other 
position on the interpolated curve are largely undetectable.

There is other empirical evidence that the visual system does not 
always represent dots as corners in a contour. Koffka (1931) placed 
points along a circle to estimate the number of dots at which the 
virtual contour was perceived as smooth. He  estimated that this 
transition occurred at around eight evenly spaced dots (which 
produces inclusive angles of 135° for each dot triplet). Bouma (1976) 
gave a more conservative estimate that 10 dots were needed for the 
virtual contour to be perceived as smooth. Smits and Vos (1987) used 
more systematic tests to estimate this transition point and found that 
when the inclusive angle between triplets of dots was sufficiently large 
(greater than about 140°), the dots were perceived as curvilinear 
(Figure 3A). In a later study, van Assen and Vos (1999) developed a 
more objective measure of perceived curvilinearity by measuring 
participants’ bias to say whether a target dot was below or above a 
virtual contour defined by four other dots. They found that when the 
inclusive angle between the central dots was 135° to 150°, participants’ 
bias was consistent with perceiving a curved contour. Feldman (1996) 
systematically varied the inclusive angle for three dot displays and 
found that the 50% threshold for curvilinear responses vs. angular 
responses was at around 120°. He found that when a fourth dot was 
added to the configuration to create two similar angles from dot 
triplets, the threshold went down (Feldman, 1997; Figure 3B).

If forming a shape representation by encoding each dot position 
as a corner is both parsimonious and computationally simple, why 
would the visual system ever extract contour representations with 
smooth curves from dot arrays? One possibility is that the visual 
system is sensitive to curvature-specific contour segments and can 
encode curvilinear contours from a dot array as easily as straight lines 
(Smits and Vos, 1986; Yuen et al., 1990). Past research on connected 
contours has shown that perceptual tasks requiring a shape 
representation are accomplished better and more quickly with 

smooth contours than with angular contours (Bertamini et al., 2019). 
Other work has shown that visual system has special facility for 
encoding contours of constant curvature (Baker et  al., 2021). A 
perceptual corner has a first-order (tangent) discontinuity at its 
vertex, meaning there will always be a segment boundary at that 
point. On the other hand, if the contour is perceptually smooth at 
that point, the entire segment could be  represented as a single 
curvature segment. As a consequence, representing dot patterns’ 
shape with curvilinear segments may be computationally simpler 
because the shape description consists of fewer parts. Moreover, the 
presence of a corner or first-order discontinuity, in this case an 
L-junction, not only forms a boundary within a single contour or 
object representation, but under some circumstances in visual 
perception plays a key role in determining that intersecting contours 
belong to different objects (Clowes, 1971; Shipley and Kellman, 1990; 
Heitger et al., 1998; Kalar et al., 2010).

These considerations suggest that the abstract shape representation 
that is ultimately encoded by an array of dots might be stored more 
efficiently as a set of relatively few curved segments than a larger set 
of straight segments. If this is the case, we expected that it would 
be easier to encode arrangements of dots that appear to have few or 
no sharp corners as a shape than arrangements of dots with many 
perceived corners. A different framing of the question is that both 
smooth contours and first-order contour discontinuities exist in the 
world and are important to encode. Discrete dots provide sparse 
information about what structure might best represent their relations. 
Under what conditions does the visual system encode smooth 
continuation through an element vs. representing that element as a 
contour junction?

We studied information that might be used by the visual system 
to represent smooth curves vs. corners and tested its effects on shape 
encoding, using both subjective and objective measures. In 
Experiment 1, we experimentally estimated the angle at which dots in 
an array are perceived to be on corners vs. smooth curves in a virtual 
contour, both in conditions with only three points and in conditions 
where other configural aspects of the display facilitate or inhibit the 
perception of a corner. In Experiment 2, we used these estimates to 
create larger dot arrays and asked participants to judge how much 

FIGURE 3

(A) Dot triplets used by Smits and Vos (1987). (B) Comparison of a dot 
triplet and quadruplet from Feldman (1997). Feldman found that the 
addition of a fourth dot with similar turn angle increased the 
probability of a curvilinear response. Reprinted with permission from 
Perception and Vision Research, respectively.
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each dot array looked like a coherent shape. In Experiment 3, 
we showed pairs of dot arrays sampled from smooth or corner shapes 
at different orientations and measured the time it took for participants 
to judge whether the shape formed by the dots was the same or 
different. In Experiment 4, we hid dot arrays sampled from both kinds 
of shapes among randomly placed distractor dots and measured 
participants’ ability to detect the shape in both conditions.

Experiment 1

The general goals of our study were to understand the conditions 
under which arrangements of dots are perceived as smooth curves vs. 
corners and to test the consequences of curve vs. corner encoding on 
shape perception and representation. As a starting point, we  first 
needed to determine the angles at which a dot is perceived to be on a 
corner (i.e., a first order discontinuity) vs. when the dot is perceived 
to be on a smoothly changing edge (i.e., a differentiable point on the 
contour). Previous work suggests that the threshold between corners 
and smooth edges is between 120° and 150° (Koffka, 1931; Bouma, 
1976; Smits and Vos, 1987; Van Assen and Vos, 1999).

In Experiment 1, we sought to replicate these findings. Because 
the displays we intended to use in subsequent experiments involved 
many more dots than the three that define a single vertex, we also 
wished to test whether the perception of curves vs. corners depended 
only on the local geometry among dot triplets or if dots more remote 
from the potential vertex also influenced perception of corners.

Methods

Participants
Thirty (23 female, seven male, Mage = 20.5) participants from the 

University of California, Los Angeles participated in this study for 
course credit. All participants had normal or corrected-to-
normal vision.

Display and apparatus
Subjects were seated 70 cm from a 20-inch View Sonic Graphic 

Series G225f monitor. The monitor was set to a resolution of 1024 × 
768 pixels with a refresh rate of 100 hz. Except when noted otherwise, 
all aspects of the displays and apparatus in subsequent experiments 
were the same as in Experiment 1.

Stimuli
We had three stimulus categories: convex, concave-convex-

concave, and convex-convex-convex, referring to the direction of 
curvature of the second dot in a sequence of triplets. Convex vs. 
concave was defined by reference to the upward direction of visual 
field, so that dot triplets were considered convex if their central dot 
was above its flankers and concave if it was below its flankers. The 
“convex” condition had the simplest displays, with a central dot 
flanked by two lower dots on either side. (This base of three dots was 
always convex upward.) The distance between the central dot and its 
two flankers was kept constant, but the position of the flankers could 
change to manipulate the angle defined by the dot triplet with the 
central dot as a vertex. These angles were not predetermined but 
increased or decreased depending on participants’ responses.

In the “concave-convex-concave” condition, the central triplet was 
flanked by one additional dot on each side. The contour defined by the 
central dot and its two flankers on each side bent upward such that the 
central dot appeared to be the joining point between two concave 
edges (see Figure 4 for examples). The two concave edges could rotate 
around the central dot to increase or decrease the angle between the 
central dot and its two closest flankers. The convex-convex-convex 
condition was like the concave-convex-concave condition except that 
the contour defined by the central dot and its two flankers on either 
side appeared to be bending downward so that the two edges meeting 
at the join point were both convex (as viewed from above). This 
created an array of dots where the direction of curvature (as defined 
by the turning angle between dot) for the central point matched the 
direction of curvature for the two points on either side of it. The 
opposite was true for the concave-convex-concave condition, where 
the direction of curvature alternated twice. For both five-dot 
conditions, the arms on either side of the central dot were symmetrical 
and the angle centered on the second and fourth dot (from left to 
right—see Figure 4) was fixed at 135°. In the first presentation of the 
stimulus in any of these conditions, the angle between the central dot 
(the red dot in Figure 4) and the dots directly to its left and right was 
90° (Figure  4, botttom). Subsequent angles were determined by 
participants’ responses.

Dots were evenly spaced 1.8° of visual angle apart from each 
other. Each dot in the arrangement subtended 7.2 arcmin and the 
maximum total height or width of a dot arrangement was 9.6° of 
visual angle. Dots were rendered black (luma = 0) of the on a gray 
background (luma = 100).

Design
The experiment consisted of three conditions corresponding to 

the three stimulus categories (convex, concave-convex-concave, and 
convex-convex-convex). Trials were interleaved among the three 
conditions, with the aim of determining the threshold for seeing a 
corner in each. We used interleaved staircase procedures to determine 
participants’ 50% probability of responding “corner” for each of the 
three conditions, manipulating the angle between the central dot and 
its two flankers. Participants completed at least 24 trials per condition. 
If their responses converged to a 50% threshold after 24 trials, they 
ceased to see trials for that condition. If their responses had not 
converged, they continued seeing trials until we found at least three 
crossover points (Leek, 2001).

Procedure
In each trial, participants were shown a fixation cross followed 

by a single arrangement of dots in the center of their screen. The dot 
arrangement could be from any of the three stimulus categories. 
Participants were instructed that they would be shown a group of 
dots on the screen in each trial, with a central dot and 1 or 2 dots 
on either side of it. Participants’ instructions were to look at the 
display and imagine that the dots are connected in some way. They 
were then told that “Your task is to decide whether the middle dot 
appears to be a corner or not.” They were told to respond “curve” if 
the middle dot appeared to be  on a smooth, curved edge, and 
“corner” if it appeared to be a pointy feature. Based on pilot work, 
we found that the correct task could be communicated effectively 
through this combination of instructing subjects to imagine that the 
dots are connected in some way and also stressing that they should 
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indicate how the middle dot appeared. Together, these instructions 
overcame confusion that some participants had in pilot work about 
instructions to respond based on a perceived virtual contour. 
Participants were told that there was no expectation that half the 
trials should be smooth and half should be corners. If they saw the 
middle dot as the vertex of a corner in all trials, they should say so, 
and likewise if they saw the middle dot as lying on a smooth curve 
in all trials.

We used an adaptive staircase procedure, starting with a central 
angle of 90° for each of the three conditions. After participants 
responded, we adjusted the angle between the central dot and its 
flankers based on their response. For the first eight trials in each 
stimulus category, we  adjusted the angle by a larger amount, 
increasing the angle between the three central dots by 11° if 
participants reported seeing a corner or decreasing it by 11° if 
participants reported seeing a smooth curve. In the next eight trials 
for each stimulus category, the angle increased or decreased by 4.5° 
depending on participants’ responses. After participants had 
completed 16 trials in a condition, the angle increased or decreased 
by 1.2° based on participants’ responses for all remaining trials. This 
approach was used to adjust quickly early to get near to participants’ 
50% threshold, and then to make smaller changes to get a more 
precise estimation of participants’ true threshold. Staircases for each 
of the three conditions were interleaved to minimize any carryover 
effects that might occur from sequences of trials with changing 
angles in a single condition.

A condition ended when participants switched from reporting a 
curved percept to reporting a corner percept (or vice versa) three 
times or when they had completed 24 trials of the condition, 
whichever came later.

Dependent measures and data analysis
We measured the threshold at which participants reported seeing 

a corner vs. a smooth curve equally often in each of the three 
conditions. Our expectation was that the threshold for the convex 

condition (consisting of only three dots) would be between 135° and 
150°, consistent with previous findings (Koffka, 1931; Bouma, 1976; 
Smits and Vos, 1987; Van Assen and Vos, 1999). We predicted that if 
dots beyond the central three dots influence the perception of a corner 
vs. a smooth curve, then the concave-convex-concave condition 
would have a larger threshold than the convex condition because 
participants would be more likely to perceive a first order discontinuity 
at the middle point. By the same token, we predicted that the convex-
convex-convex condition would have a lower angular threshold 
because the series of vertices would be consistent with a monotonically 
curved contour.

Results

The results of Experiment 1 are shown in Figure 5. A one way 
repeated measures ANOVA confirmed a significant main effect for dot 
arrangement condition, F(2,58) = 32.99, p < 0.001, η2

partial = 0.53. The 
50% threshold for three points (the convex condition) closely matches 
earlier findings. In our experiment, participants’ mean threshold was 
140°, consistent with the 120° to 150° range reported in previous 
studies. The concave-convex-concave condition, which 
we hypothesized would induce more corner percepts, had a mean 
threshold of 148°. This threshold was not significantly different from 
the threshold estimated in the convex condition, t(29) = 0.93, p = 0.36, 
Cohen’s D = 0.17. The convex-convex-convex condition, which 
we hypothesized would induce fewer corner percepts, had a mean 
threshold of 82°. This difference did significantly differ from both the 
convex condition, t(29) = 6.18, p < 0.001, Cohen’s D = 1.13 and the 
concave-convex-concave condition, t(29) = 7.54, p < 0.001 Cohen’s 
D = 1.38.

Analysis of the skew and kurtosis of our data suggested that they 
were not normally distributed, so we applied the Box-Cox transformation 
(Box and Cox, 1964) and reanalyzed these effects. Analyses of the 
transformed data found the same general effects as were observed in the 

FIGURE 4

Sample displays from Experiment 1. Left: Convex condition. Middle: Concave-Convex-Concave condition. Right: Convex-Convex-Convex condition. 
The values of θ shown in the bottom left of each display correspond to the angle between the central dot and its nearest flanker on either side. The 
central dot is highlighted in red only for presentation purposes: it was black in the displays shown to be participants.
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untransformed data. A repeated measures ANOVA confirmed significant 
differences among the three conditions, F(2,58) = 39.35, p < 0.001, 
η2

partial = 0.58 and significant differences were found between the convex 
and convex-convex-convex conditions [t(29) = 7.18, p < 0.001, Cohens’ 
D = 1.31] but not between the convex and concave-convex-concave 
conditions [t(29) = 1.29, p = 0.21, Cohen’s D = 0.24].

Discussion

The first aim of Experiment 1 was to understand the geometric 
conditions under which a dot in a sequence of dots would 
be perceived as a corner. Our data suggest that the threshold for equal 
probability of perceiving a dot as a corner vs. lying on a smooth 
contour is around 140°, with angles smaller than that increasingly 
tending to be seen as corners. The second aim of Experiment 1 was 
to understand whether the perception of corners vs. smooth curves 
was a local computation only (i.e., it depended only on the angle 
between a central dot and the dots on either side of it in a triplet) or 
if dots outside of the triplet also played a role. Given that the displays 
we planned to use in subsequent experiments would include arrays 
of 25 dots, it was important to know whether the corner percept was 
a purely local computation among the dots defining the angle or if 
other dots could shift viewers’ judgments by changing the way the dot 
array was perceived.

We found no statistically reliable difference in participants’ 
thresholds for concave-convex-concave displays that were designed to 
facilitate the perception of a corner. In these displays, there are at least 
two ways that participants could interpolate virtual contours between 

the five presented dots. The first way involves two curvature segments 
that join at the central dot in the display (Figure  6A). This 
representation of the virtual contour will almost always result in a 
perceived corner because the tangent of the contour where the first 
curvature segment ends is very different from the tangent of the 
contour where the second curvature segment begins, resulting in a 
first-order discontinuity. The second way a contour could 
be interpolated is by organizing the central three dots into a curvature 
segment and the two flanking dots on either side into other segments 
(Figure 6B). This representation predicts no difference in threshold 
between the concave-convex-concave condition and the convex 
condition (Figure 6C) because the same three dots are encoded as 
their own chunk. Our results suggest either that participants favored 
the second organization of dots to the first, grouping the central three 
dots as one unit and the flanking pairs of dots as separate units or that 
the perception of a corner depends only on the angle between the 
vertex and the dot on either side of it.

One reason that the second grouping is preferred could have to do 
with symmetry. The central three dots in the display were always 
symmetrical over a vertical axis, while the first three and last three 
dots were symmetrical over diagonal lines in some displays (see 
Figure 4, bottom middle). Previous research has found that symmetry 
is much more likely to be an emergent feature when elements are 
symmetrical about a cardinal axis than when they are symmetrical 
about a noncardinal axis (Pomerantz and Portillo, 2011), which may 
have result in better grouping of the central three dots with each other.

By contrast, the convex-convex-convex arrangement of dots did 
have a significant influence on observers’ tendency to perceive a 
corner. Observers were significantly more likely to see the central dot 

FIGURE 5

Experiment 1 results. The box shows the interquartile range of thresholds for individual participants. The red line shows the sample median for the 50% 
threshold—the median angle at which participants were as likely to report perceiving the central dot to be on a corner as to report perceiving it on a 
smooth curve. The “whiskers” extend to the most extreme datapoint within 1.5 times the length of the interquartile range from the top or bottom edge 
of the box (covering 99.3% of the data if they are normally distributed; McGill et al., 1978; Krzywinski and Altman, 2014). Outliers are data points beyond 
the whisker and are plotted as red +‘s.
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as placed on a smooth curve when additional dots were added that 
were consistent with a virtual contour with constant curvature 
polarity. This suggests that there is an asymmetry in the way that 
additional dots influence our perception of corners. While adding dots 
to strengthen the percept of a smooth, monotonic curve does weaken 
the perception of corners, the opposite approach of placing dots so 
that the contour cannot be monotonic does not appear to have a 
strengthening effect on the perception of corners.

Gestalt cues shown to produce emergent features like proximity 
are unlikely to explain differences in the perception of corners in the 
convex-convex-convex vs. concave-convex-concave conditions. Both 
displays had identically spaced adjacent dots, but the first and fifth 
dots in the convex-convex-convex condition were closer to each other 
than in the concave-convex-concave condition. This difference in 
proximity may have resulted in a greater overall percept of configural 
structure in the convex-convex-convex condition, but it is unlikely to 
have influenced the perception of curvature at the central point. In 
fact, dots whose extreme points were moved closer together by 
reducing the angle at the central point were perceived as curvilinear 
less often than dots whose extreme point remained more distant.

The Gestalt cue likely to be playing the greatest role in observers’ 
perception of a corner vs. a smooth edge is good continuation. As 
previously discussed, however, there are many different definitions of 
good continuation in the perception literature, and those that are 
readily applicable to dots make different predictions about how the 
five-element dot arrays should be  perceived. The data from the 
convex-convex-convex condition suggest that the perception of good 
continuation is not solely determined by the local spatial relations in 
a sequence of dot triplets (e.g., Lezama et al., 2016), but depends on 
larger clusters of local dot relations (Feldman, 1997; Kelly et al., 2024), 
or on the global monotonicity of the dot sequence (Smits and Vos, 
1986; Yuen et al., 1990).

Experiment 2

In Experiment 1, we studied the tendency of a series of dots to 
be represented as a connected contour and estimated the threshold, in 
terms of angular relations, at which a dot in the series is perceived to 
contain a first order discontinuity. What do these data reflect about 
perception and representation of contours from sets of separated dots? 
Experiments 2, 3, and 4 investigated the perceptual reality and impact 
of perception of seeing a vertex or smooth continuation in sequences 

of dots. In Experiment 2 we used the thresholds estimated in 
Experiment 1 to measure the strength of a shape percept in three 
different kinds of dot displays. We created arrays of dots by sampling 
from (a) novel shapes with smooth curves; (b) novel shapes with sharp 
corners, and (c) random dot arrangements. We then asked subjects to 
rate the degree to which the dots appeared to form a coherent shape. 
Our prediction was that dots sampled from smooth contours would 
be  judged more shape-like than dots sampled from shapes with 
corners, which would in turn be judged more shape-like than random 
dot arrangements.

Methods

Participants
Twenty-five undergraduates (3 male, 22 female, Mage = 20.6) from 

the University of California, Los Angeles participated in the study for 
course credit. All participants had normal or corrected-to-
normal vision.

Stimuli
Experiment 2 included three different kinds of dot arrays: Smooth, 

Corner, and Random. “Smooth” dot arrays were created by placing 
nine control points at evenly spaced angular positions around a circle 
and then moving each control point toward or away from the circle’s 
center by a random distance, then fitting cubic splines through the 
nine control points in polar space (see Figure 7A). The control points’ 
signed displacements were sampled from a normal distribution 
centered at 0% with a standard deviation of 18%. The mean absolute 
distance of the control points’ displacement was 14.34% (SD = 11%). 
We made use of our findings from Experiment 1 to create shapes that 
we expected to generally be perceived as Smooth or Corner shapes. In 
Experiment 1, we found that when the angle between dots exceeded 
140°, the point tended be  perceived as smooth, regardless of the 
spatial relations between dots beyond the triplet determining the 
angle. In the range between 82° and 140°, the point could be made to 
appear smoother by adding additional dot triplets whose turn angle 
had the same polarity as the point in question. The displays used in 
Experiment 2 were significantly more complex than those used to 
estimate these thresholds in Experiment 1. They consisted of many 
more dots and were not symmetrical on either side of any possible 
vertex. Still, we expected that displays with dot triplets whose angle 
mostly exceeded 140° would generally be perceived as smooth and 

FIGURE 6

Two ways of interpolating contours between dots in the concave condition. (A) Two curved segments join at the middle (left). (B) Three segments join 
at the second and fourth dot (middle). (C) A curved interpolation between the three central points in (A,B) (right). The physical contours chosen to 
represent the interpolation between dots are chosen arbitrarily in this figure. The edge perceived between dots may be neither a straight edge nor a 
constant curvature segment. We used these forms of interpolating lines only to help visualize possible organizational structures of the display.
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displays that included dots triplets whose angle was less than 90° 
would generally be perceived as angular.

We did not directly manipulate the angle between dots in the 
Smooth condition, but the cubic spline fitting shape generation 
algorithm produced shapes that were always differentiable at all 
positions. With nine control points and the possible distances they 
could be displaced, the angles among dots sampled at these positions 
tended to be obtuse with an angle that exceeded 140° (Mangle = 154°, 
SD = 16°). The average minimum angle in Smooth displays was 123° 
(SD = 13°).

From each smooth shape generated as described above, we then 
sampled 25 points along the contour to get the dot array. The points 
were sampled nonuniformly by taking 25 evenly sampled points and 
moving them in a random direction along the contour. Though not 
directly relevant to this experiment, we included jittering along the 
contour to prevent participants from using local spatial relationships 
between a small set of dots rather than the overall shape of a dot array 
in subsequent experiments using objective performance methods (see 
Experiment 3 for more explanation). The amount of jitter was 
randomly sampled from the normal distribution. Dots were shifted 
along the shape’s virtual contour by a random signed distance from a 
normal distribution, with a mean distance of zero and a standard 
deviation equal to 4% of the contour’s total length. We constrained the 
display to enforce a minimum distance of 7.2 arcmin between any two 
points to prevent them from overlapping or appearing to touch each 
other (Figures 7C,D).

“Corner” dot array stimuli were created by generating a smooth 
dot array, reducing the angle between some of the dots, fitting straight 
lines between the set of dots, and then resampling from the straight 
line contour. To distinguish two closely related concepts here, we 
refer to a generating figure that consists of all straight line connections 

between dots as a “cornered figure,” and we refer to the resultant 
derived dot stimuli as “corner stimuli” used in the “Corner condition”. 
We began with a dot array generated by evenly sampling 25 dots from 
the same kind of shape from which the Smooth dots were sampled. 
We then altered between 8 and 13 dot triplets in the display 
(determined for each display by randomly sampling from a uniform 
distribution of integer values). For a given dot triplet, ABC, 
we imposed a corner percept by interpolating a line between points 
A and C, then moving point B perpendicularly away from the 
interpolated line while simultaneously moving A and C along the line 
until the vertex at B was between 78° and 90°. This range was chosen 
so that the Corner shapes would be reliably perceived to have first-
order discontinuities based on our Experiment 1 findings while also 
including some natural variability in the angle between dot triplets. 
Because the angle reduction process resulted in shapes with much 
less regular spacing than in the Smooth condition, we interpolated 
straight lines between the 25 repositioned points to get a new shape 
contour with corners (Figure 7B). From each such shape, we used the 
same nonuniform sampling procedure as for smooth dot displays to 
sample 25 new dots and generate a dot figure (Figure  7D). The 
resulting dot display had between one and two dot triplets whose 
angle was less than 90° and several more whose angle was between 
90° and 100°.

“Random” dot array stimuli also began with the smooth dot array. 
Rather than moving dots to reduce the angle between them, dots were 
moved in random directions. Each of the 25 points was moved a 
distance equal to the total length of the contour divided by 25 in a 
random direction, with the constraint that dots could not be closer 
together than 7.2 arcmin (Figure 7E). We used this method instead of 
truly random placement to prevent subjects from judging shape based 
on whether there was an open center within the dot array, a feature 

FIGURE 7

Shape stimuli used in Experiment 2. (A) A Smooth shape contour. (B) A Corner shape contour. (C) Dots sampled from the Smooth shape. (D) Dots 
sampled from the Corner shape. (E) Random dot arrays.
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that was naturally present in both the “Smooth” and “Corner” displays. 
The method we used to generate “Random” dot arrays matched the 
open center of the other two conditions without appearing to define 
a shape.

Dot arrays for each of the three conditions were matched in size, 
subtending on average 12.0° of visual field along the longer of their 
horizontal and vertical dimension, and at most 20.7° of visual field.

Design
Experiment 2 had three conditions, with 70 trials in each. In the 

Smooth condition, we showed dot arrays from smooth shapes. In the 
Corner condition, we showed dot arrays from shapes with corners. In 
the Random condition, we showed random dot arrays. Trials with all 
three conditions were randomly interleaved.

Procedure
On each trial, participants were shown one of the three stimulus 

types and asked to evaluate the degree to which the dot array seemed 
to form a shape. The dot array remained on the screen until a response 
was given. Participants were instructed to rate the display on a 6-point 
scale, ranging from “The dots look totally random” to “The dots look 
totally like a shape.” Integer responses between 1 and 3 reflect that the 
dots looked more random than like a shape to viewers, either slightly 
so (3), moderately so (2) or strongly so (1). Integer responses between 
4 and 6 reflect that the dots appeared more like a shape than a random 
set of dots and followed the same progression. We  instructed 
participants to use all 6 response options to reflect qualitative 
differences in the degree to which different dot arrays appeared to 
be  shapes. Before beginning the main experiment, participants 
completed five practice trials to familiarize themselves with the 
response buttons and to view all three stimulus types before giving 
recorded shape judgments.

Results

Figure 8 shows the primary results of this experiment. Figure 8A 
shows the mean subjective rating for each of the three stimulus types. 
There is a clear ordering in which dots sampled from Smooth contours 

were perceived as most shape-like, followed by dots sampled from 
cornered contours, followed by randomly sampled dots. This pattern 
was shown by every participant who completed the experiment. A 
one-way ANOVA confirmed a significant difference between the 
groups, F(2,48) = 681.86, p < 0.001, η2

partial = 0.97 and Bonferroni-
corrected paired sample t-tests confirmed that dots sampled from 
smooth contours were rated more shape-like than dots sampled from 
cornered contours, t(24) = 14.93, p < 0.001, Cohen’s d = 2.89 and that 
dots sampled from cornered contours were rated more shape-like than 
randomly sampled dots, t(24) = 20.64, Cohen’s d = 4.13 p < 0.001.

We also analyzed the average number of trials in which 
subjects perceived a shape at all. For this measure, we included 
any display that received a subjective rating greater than 3. The 
results are shown in Figure 8B. Paired samples t-tests confirmed 
that subjects’ perceived significantly more of the dots sampled 
from smooth contours as a shape than they did dots sampled 
from cornered contours, t(24) = 6.04, p < 0.001, Cohen’s d = 1.21 
and that dots sampled from cornered contours were perceived as 
shapes significantly more often than randomly sampled dots, 
t(24) = 13.81, p < 0.001, Cohen’s d = 2.76.

Discussion

Experiment 2 furnished evidence that dots sampled from smooth 
contours are more phenomenologically shape-like than dots sampled 
from contours with sharp corners. Every participant gave higher shape 
ratings for the smooth contour condition and reported perceiving 
more of the smooth contours as shapes than the cornered contours. 
Participants never saw the underlying contour from which the dot 
arrays were sampled. Geometrically, all the dots sampled from shapes 
with corners could be  represented with curvilinear contours, but 
participants made qualitatively different responses for Corner 
dot arrays.

One reason that participants may have given lower shape ratings 
for the Corner stimuli is that they were interpolating a curvilinear 
contour through the dots in the Corner displays, but the process was 
more difficult for dot arrays with sharper angles. Though the data 
cannot rule out this possibility, we consider it unlikely because the 

FIGURE 8

Experiment 2 results. (A) Participants rating of shape for each of the three conditions. (B) The percentage of ratings that were more shape-like (i.e., 
rating  >  3) for each condition.
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results of Experiment 1 suggest that we perceive corners at certain 
points in the Corner displays. Our phenomenological experience of 
Corner displays like the one in Figure 7D also suggest that the array 
is perceived with corners.

A more likely possibility is that Corner displays were harder 
to encode as shapes than Smooth displays because there was more 
variety in the presented angles. Corner displays were likely 
perceived as having a mix of smooth curves and corners, whereas 
the Smooth displays were likely only perceived with smooth 
curves. As a result, there would be greater perceived homogeneity 
among dot triplets in the Smooth displays than in the corner 
displays. The irregularity between smoothly bending and/or 
straight edges and edges that abruptly change direction could 
make it more difficult to resolve Corner displays into shapes.

Experiment 1 tested in simple dot arrays the relations that lead to 
perception of corners. Experiment 2 used the results of Experiment 1 
and showed that in more complex arrays, the quantitative estimate of 
what angular relation produces corner perception in simple arrays also 
predicts perception of smooth shapes in more complex ones. Both of 
these experiments, however, used only subjective measures of 
smoothness or perception of a shape. Subjective methods have a useful 
role in perception research. It is important to know what subjects 
believe they are seeing, and subjective reports shed light on this 
phenomenological question. Such reports may also, however, 
be  affected by biases or demand characteristics. If the results of 
Experiments 1 and 2 reflect perception and representation of smooth 
virtual contours and corners under various conditions, it should 
be possible to find some objective performance task in which these 
percepts or representations obtained from perception make 
participants better or worse in a situation where there is an objectively 
correct answer (c.f., Kellman et al., 2005). We assessed differences in 
the degree to which dots sampled from smooth and cornered contours 
were perceived as shapes using objective measures in Experiments 
3 and 4.

Experiment 3

One of the key functions that encoding an abstract shape 
representation serves is allowing comparison of shapes across different 
orientations (Baker and Kellman, 2018). In Experiment 3, 
we compared subjects’ ability to encode a shape representation for 
dots sampled from smooth and cornered contours by testing them on 
a shape matching mental rotation task. Inspired by Shepard and 
Metzler (1971), we simultaneously presented two differently oriented 
dot arrays and asked subjects to judge whether they defined the same 
shape. We expected that if dots sampled from smooth contours are 
more naturally perceived as shapes, subjects should have an advantage 
in the mental rotation task on trials where the shape is perceived 
as smooth.

Methods

Participants
Participants included 25 undergraduates (4 male, 21 female, 

Mage = 19.8) from the University of California, Los Angeles who 
enrolled in the study for course credit. All participants had normal or 
corrected-to-normal vision.

Stimuli
Smooth and Corner dot arrays were generated as in Experiment 

2. In Experiment 3, each array was a member of a pair with either 
the same shape or a different shape. When the shape was the same, 
we used the same virtual contour, but sampled a different set of dots 
so that local spatial relations between dots could not be used as a 
cue. When the shapes were different, we  generated the second 
member of the pair by moving one of the control points for the 
original shape a random distance between 1.93° and 4.11° of visual 
angle toward or away from the center of the shape. We  then 
randomly selected an adjacent control point to the one we  just 
moved and moved it toward or away from the center such that the 
total contour length for the new shape was the same as the total 
contour length for the original shape (see Figure 9 for an example 
pair). For Corner shapes, we then applied the same set of changes 
described in Experiment 2 to the new shape. Dot arrays also differed 
in orientation. In each trial, the second dot array could be rotated 
0°, 45°, 90°, 135°, or 180° relative to the first.

Design
The experiment consisted of 200 trials, half of which showed 

shape pairs sampled from smooth virtual contours, and half of which 
showed shape pairs sampled from cornered contours. For each of 
these two conditions, there were 20 trials at each of the five magnitudes 
of rotation, 10 of which included the same shape, and 10 of which 
included different shapes.

Procedure
On each trial, two arrays of dots were shown on the screen 

simultaneously, one centered in the left half of the monitor screen, and 
one centered in the right half. Subjects were instructed to look at both 
dot arrays and determine whether the shape defined by each array of 
dots was the same or different, irrespective of a difference in 
orientation and the local positions of dots. The two dot arrays 
remained on the screen until subjects responded. Participants were 
told that response time was being measured, but that they should 
emphasize responding correctly over responding quickly. Before 
beginning the main experiment, subjects completed 12 practice trials 
to familiarize themselves with the task. Performance in the practice 
trials was not analyzed. A sample trial for each condition is shown in 
Figure 10.

Results

Following Shepard and Metzler (1971), we analyzed the reaction 
time only for trials in which the two shapes were the same and subjects 
responded correctly. Mean response times for each magnitude of 
rotation are shown in Figure 11A. A 2 (dot array type) × 5 (magnitude 
of rotation) repeated measures ANOVA confirmed a significant main 
effect for the type of shape from which the dots were sampled, 
F(1,25) = 5.33, p = 0.03, η2

partial = 0.18 and a significant main effect for 
magnitude of rotation, F(4,100) = 4.51, p = 0.002, η2

partial = 0.15. A linear 
regression test found a significant overall effect of magnitude of 
rotation on reaction time, F(1,25) = 14.59, p < 0.001, η2

partial = 0.37. The 
slope was numerically greater for response time as a function of 
magnitude of rotation for cornered stimuli (RT = 154 * 
Degrotated + 2056 msec) than for smooth stimuli (RT = 38 * 
Degrotated + 1,262 msec), although the interaction between condition 
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and magnitude of rotation was not significant, F(4,100) = 0.98, p = 0.42, 
η2

partial = 0.04.
Superiority in performance for dots sampled from smooth 

contours was also reflected in sensitivity measures, calculated as 
the proportion of trials in which participants correctly reported 
that the shape had changed (“hits”) vs. the proportion of trials in 
which participants incorrectly reported that the shape had 
changed (“false alarms”; Figure 11B). In trials with no misses or 
no false alarms, we used the correction recommended by Wickens 
(2001) of adding half an observation of a miss or false alarm when 
none was present. A 2 (dot array type) × 5 (magnitude of rotation) 
repeated measures ANOVA confirmed that sensitivity was 
significantly higher in displays in which the dots were sampled 
from smooth contours than displays with dots sampled from 
contours with sharp corners F(1,24) = 29.36, p < 0.001, 
η2

partial = 0.55. The effect of magnitude of rotation on sensitivity 

was also significant, F(4,96) = 4.90, p = 0.001, η2
partial = 0.17, as was 

the interaction between dot array type and angle, F(4,96) = 4.51, 
p = 0.002, η2

partial = 0.16.
We also compared participants’ bias to report a shape change in 

each of the 10 conditions. We computed bias as λcenter, or the distance 
between the criterion and the midpoint between the signal and noise 
distribution. Values of λcenter less than 0 indicate a bias to respond “yes” 
to a shape change and values of λcenter greater than 0 indicate a bias to 
respond “no.” The estimates of bias for each condition are plotted in 
Figure 11C. A repeated measures ANOVA on the estimates of bias 
found a significant main effect for dot array type on participants’ bias, 
F(1,24) = 19.36, p < 0.001, η2

partial = 0.45. Participants were more biased 
to report a shape change in the smooth condition and more biased to 
report no shape change in the corner condition. There was also a 
significant main effect for magnitude of rotation on participants’ bias 
[F(4,96) = 5.89, p  < 0.001, η2

partial  = 0.20]. There was no significant 

FIGURE 9

Pairs of smooth and angular shapes used in Experiment 3. (A) A pair of different shapes from the “Smooth” condition. (B) A pair of different shapes from 
the “Corner” condition.

FIGURE 10

Sample trials from Experiment 3. (A) “Smooth” trials with the same shape. (B) “Smooth” trials with different shape. (C) “Corner” contours with the same 
shape. (D) “Corner” contours with different shape with different shape. All shapes are rotated 135°.
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interaction between dot array type and magnitude of rotation on 
observer bias, F(4,96) = 2.23, p = 0.07, η2

partial = 0.09.

Discussion

Experiment 2 found that participants rated dots sampled from 
contours with cornered contours as less shape-like than dots sampled 
from smooth curves. In Experiment 3, we  tested whether these 
subjective differences would be reflected in an objective measure of 
perceptual performance. Because they were rotated and had positions 
along the contour resampled, the target pairs of dot arrays we showed 
in Experiment 3 differed from each other both in absolute orientation 
and in terms of the specific positions of the elements with respect to 
each other. Accurate responding for the task therefore required 
forming a representation of a shape’s contour from the set of dots that 
was object-centric and invariant to orientation changes (Baker and 
Kellman, 2018). Differences in response time and/or sensitivity for the 
two kinds of dot arrays therefore presumably correspond to the ease 
with which participants encoded the array as a shape.

We found that dots sampled from shapes with smooth contours 
could be compared across orientation changes more quickly than dots 
sampled from shapes with perceived corners, which suggests that 
these dot arrays are more easily encoded and perceived as orientation-
invariant shapes than arrays sampled from shapes with corners. 
Participants were less accurate when mentally rotating dots sampled 
from smooth contours than dots sampled from cornered contours. 
Lower response times therefore cannot be  explained by a speed-
accuracy tradeoff.

One puzzling aspect of our data is that we found only a small 
effect of magnitude of orientation difference for the two shapes in each 
display on response time for either trial type. Slopes in both conditions 
were flat and explained a smaller proportion of the variance than the 
Smooth vs. Corner manipulation. The work of Shepard and Metzler 
(1971), after which we modeled our experiment, showed a strong 
linear relationship between response time and magnitude of rotation 
for shapes rotated in the picture plane. Response time has also been 
shown to vary with degree of change from a canonical orientation in 
naming tasks for familiar objects (Jolicoeur, 1985). One possibility for 
why angular difference had such a small effect in our study is that 

FIGURE 11

Response time, sensitivity, and bias for “Smooth” and “Corner” trials in the mental rotation task of Experiment 3. (A) Response time on correct trials as a 
function of orientation difference between the two displays. (B) Sensitivity to shape change. Hits were defined as correct detection of a shape change 
and false alarms were defined as reports of a shape change when none occurred. (C) Response bias in all conditions. λcenter reflects the distance 
between the criterion and the midpoint between the signal and noise distributions. Negative values indicate bias to say there was a shape change. 
Positive values indicate a bias to say there was not a shape change.
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subjects responded after a somewhat fixed period of time, even if more 
or less time was needed to make an accurate decision. This could 
explain why we  see a reduction in sensitivity as a function of 
magnitude of rotation in the sharp corner condition even though 
response time does not increase. Importantly, though, even if subjects 
are using a more fixed period of time, this amount of time is different 
for the smooth and corner conditions. Participants consistently 
required more time to decide if dot displays sampled from shapes with 
sharp corners were the same or different, even if response times did 
not increase monotonically with orientation differences in 
either condition.

Another intriguing possibility is that dot configurations represent 
a special class of stimuli whose time for recognition does not scale 
with magnitude of rotation. Past work on mental rotation has shown 
that certain kinds of stimuli with salient landmark features have much 
flatter recognition slopes than stimuli without salient landmarks 
(Hochberg and Gellman, 1977). Flat slopes have also been found for 
familiar objects when participants were informed ahead of time what 
object they would be shown (Cooper and Shepard, 1973). Why mental 
rotation of dot patterns would have flat slopes is mysterious in view of 
these findings, as they are neither familiar nor do they have salient 
local features. In fact, any salient local feature obtained from a local 
group of dots in one of the arrays would not be present in the other 
matching array, since dot positions along the contour are 
independently sampled in matched pairs. One possibility is that the 
simplicity of dot arrays gives rise to flat mental rotation slopes. 
According to Hochberg and Gellman (1977), mental rotation of 
shapes will scale with angular distance if representations must be built 
up from successive glances. Possibly, the relatively few bits of 
information in an array of 25 dots can be extracted with only one 
glance. This is partially supported by previous findings that the spatial 
positions of an array of 25 dots are registered within the first 30 ms of 
exposure (Baker and Kellman, 2018).

Experiment 4

As we have discussed, the visual system has a remarkable capacity 
to form contour representations from unconnected dots. In 
Experiment 4, we  further tested these capabilities by showing dot 
displays embedded among a field of random noise dots. The 
experimental paradigm was similar to one devised by Uttal (1973) for 
dots along a curved or straight line segment. Uttal found that for these 
simple segments, participants had significantly more trouble detecting 
the target when it deviated more from a straight line, but there seemed 
to be  little difference for angular vs. curvilinear deviations. In the 
present study, we tested participants’ ability to detect whole forms 
defined by dots.

To do this, we used a two-interval forced choice (2IFC) paradigm 
in which one stimulus contained a shape embedded in noise and the 
other stimulus contained noise alone. Participants’ task was to choose 
the interval that contained a coherent shape. In order to group 
together and detect the shape of a set of dots in noise, subjects would 
have to first use some spatial relationships between the dots in the 
array to identify which dots belonged to a shape outline and which 
were random. Typically, important cues such as proximity could 
be potentially misleading for this kind of display. Manipulating the 
kind of shape contour that the target dots were sampled from, 

we tested participants’ ability to decide which of the two intervals 
contained a shape and which consisted only of noise dots. 
We predicted that unlike simple segments, dot arrays sampled from 
whole shapes with smooth contours would be more easily detected 
than dots sampled from whole shapes with sharp corners.

Methods

Participants
Twenty-six undergraduates (6 male, 20 female, Mage = 21.6) from 

the University of California, Los Angeles participated in this study for 
course credit. All participants had normal or corrected-to-normal 
vision. One subject’s data was excluded prior to analyzing his results 
because he did not appear to understand the instructions by the time 
he had finished the practice portion of the experiment.

Stimuli
Dot arrays from smooth and cornered shape contours were 

generated as in Experiment 1. In Experiment 4, however, the dots 
sampled from contours were hidden among 25 distractor dots. 
Distractor dots were created by uniformly sampling from the 
rectangular area that contained the target dots. Each trial also included 
a dot display with no shape. Rather than placing all 50 dots in the 
other display completely randomly, we created random displays of 25 
dots as in Experiment 1, with the only difference being that we moved 
each dot twice the average distance between dots. This was to create 
displays with no shape that still had some emptiness in the middle of 
the array to prevent participants from using that as a low-level cue. 
We then added 25 dots by uniformly sampling from the encompassing 
rectangle as in the target displays. Figure 12 shows a target display 
with dots from a smooth contour, a target display with dots from a 
corner contour, and a non-target display.

Design
The experiment had two conditions, a Smooth condition, in 

which the target dots were sampled from a smooth contour, and a 
Corner condition, in which the target dots were sampled from a 
corner contour. For both conditions, the target display was shown first 
in half of the trials second in the other half. There were 120 total trials 
for each condition. Participants completed 12 practice trials before 
beginning the main experiment.

Procedure
We used a 2IFC task in which one display consisted of dots 

sampled from a smooth or cornered contour among noise dots and 
the other display consisted only of noise dots. Before beginning the 
experiment, subjects were told they would be  looking for shapes 
hidden in dots. We showed participants 20 (10 Smooth, 10 Corner) 
examples of the kind of targets they would be asked to detect in the 
main experiment. The example targets were shown without distractors.

In each trial, we first presented a fixation cross at the center of the 
screen for 600 ms, then showed the first of the two dot displays for 
800 ms. The dot display was then masked by a pattern of black and 
white dots for 500 ms, after which the second dot display was shown, 
also for 800 ms. This display was masked for 500 ms, and then subjects 
were asked to report whether a shape was hidden in the first or second 
of the two dot displays. Subjects were not cued to look for any specific 
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shape in the displays and were told to pick whichever one they thought 
had dot arrangements that contained any shape. During practice, 
subjects were given feedback telling them if they were correct or 
incorrect and showing the hidden shape highlighted in white dots. No 
feedback was given during the main experiment. A sample trial from 
the Smooth and Corner condition are shown in Figure 13.

Results

The primary results for Experiment 4 are shown in Figure 14. 
Performance was significantly better than chance both when the dots 
were sampled from a smooth contour [t(24) 17.59, p < 0.001] and 
when they were sampled from an cornered contour [t(24) = 15.69, 
p < 0.001]. Participants were significantly better at detecting the target 
shape when the dots were sampled from a smooth contour than when 
they were sampled from a corner contour [t(24) = 10.3, p < 0.001, 
Cohen’s d = 2.05].

Discussion

The results of Experiment 4 show that dot displays embedded in 
noise were more detectable as shapes when they had been sampled 
form smooth contours than from cornered ones. In turn, these 
designations (“smooth” vs. “cornered”) were derived from perceptual 
responses in Experiment 1 (and in prior work by other investigators) 
to simple dot arrays, consisting of as few as three elements. The 
superior detection of shapes in noise for the Smooth condition here 
indicates that these more elementary responses to local dot 

configurations influence perceptual performance in an objective 
performance task, and they provide evidence that smooth shapes are 
more readily encoded from sampled dots. What is required to extract 
a shape in this task? Surely, relations among elements are crucial, but 
the task is made more challenging by the fact that the dot elements 
comprising a shape were physically identical to the distractor dots. The 
local spatial relationships between small groups of target dots are also 
not different from relationships between groups of distractor dots or 
groups that are a mix of targets and distractors. We might compare 
shape or contour detection to the path detection task developed by 
Field et al. (1993), which is similar in concept. A crucial difference, 
however, is that in conventional path detection, individual oriented 
elements are used, either Gabor patches (Field et al., 1993) or line 
segments (Pettet, 1999; Baker et  al., 2021). In these cases, local 
orientation relationships described as contour relatability (Kellman 
and Shipley, 1991) or an association field (Field et al., 1993) are the 
primary drivers of path detection. Local orientation relationships 
between the dots determine whether the path is detected depending 
on the relatability of the local elements. The perceptual salience of 
paths likely depends on a contour-linking process that produces an 
intermediate representation in the process of contour interpolation 
(Kellman et al., 2016; Kellman and Fuchser, 2023).

The situation is different in our Experiment 4. Individual circular 
dots have no orientation from which relatability can be  defined. 
Unlike the targets used by Uttal (1973), the local spatial relationships 
between target dots are not consistent. Neither the spacing nor the 
turning angle is the same between nearby dot triplets in our displays. 
Detection of the target in our task must depend on more global 
relations among dots. The visual system might be considering multiple 
possible dot organizations and determining whether they configure 

FIGURE 12

Target and distractor displays for Experiment 3. The leftmost column shows a smooth target without (top) and with (bottom) distractor dots added. The 
middle column shows a cornered target without (top) and with (bottom) distractor dots added. The rightmost column shows a non-target display. In 
each trial, one of the two kinds of target display (with distractor dots) and the distractor display were presented in a randomized order.
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into a global shape. Or, somewhat more local relations among small 
sets of dots may allow discovery of an extended virtual contour that is 
perceivable as smooth all along its extent.

Participants’ good performance for target dots sampled from both 
smooth and corner contours suggests that the visual system has a quite 
robust capability to detect a variety of shapes from distractors. 
However, there is also a clear performance advantage for detection of 
shapes with smooth contours over detection of cornered shapes. If 
detection of perceptually smooth sequences of dots underlies shape 
detection, dots sampled from smooth shapes exhibit this property 
along their entire contour, whereas sets of dots perceived as cornered 
may interrupt perceptual continuity. We develop this idea more fully 
in the General discussion below.

The perceptual continuity for dots sampled from smooth shapes 
may also lead to simpler representations than sets of dots sampled 

from shapes with sharp corners. If first-order discontinuities serve to 
mark separate parts, or simply indicate important features to 
be  represented, cornered shapes may have more complex 
representations than smooth ones. Detection of potential connected 
shapes may be facilitated more by perceptually smooth relations 
among dots than dot sequences that are more representationally 
complex in terms of containing corners connecting shorter smooth 
segments. A similar effect and explanation have been given for search 
for constant curvature vs. non-constant curvature targets formed by 
oriented elements (Baker et al., 2021).

General discussion

Perception of contours and shapes from arrangements of 
separated dots or other tokens is commonplace yet remarkable. Our 
overall goal in this research was to understand how spatial relations 
among dots create perceived contours and shapes, and to connect this 
understanding to general processes of shape perception and 
representation. Perception of shape from dots offers a special window 
into abstract shape representations in general. Because no continuous 
contour is physically present in a display consisting of separated dots, 
evidence from perceptual tasks that implicates connection, continuity, 
smoothness, or shape in perceptual representations reveals 
contributions of processes not directly attributable to the 
physical stimulus.

In the experiments reported here, we first tested perception of 
smooth connections vs. corners in small arrays of dots—triplets, or 
triplets with two additional flanking dots. The results of Experiment 
1 indicated that for triplets alone and those with flanking dots that 
created concave arms, angles relating the triplet dots below 150°–160° 
more often produced “corner” responses, and “smooth” responses 

FIGURE 13

Sample trials from Experiment 4. The target shape is sampled from a smooth contour and is shown first (left). The target shape is sampled from an 
cornered contour and is shown second (right).
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Accuracy for detection of shapes in the Smooth and Corner 
conditions in Experiment 4.
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were very rare for angles less than 100°. With flanking dots that 
continued the convexity of a triplet, smoothness responses were 
preserved through a greater angular range, with parity between 
“smooth” and “corner” responses occurring at about 78°.

Based on these findings of smoothness vs. corner perception 
determined with small arrays and local angular relations, we tested in 
further experiments the impact of local relations that were smooth 
(with triplet angles averaging 154°) vs. cornered (78°–90°) in more 
complex arrays. In Experiment 2 we  compared participants’ 
perception of 25-dot arrays sampled from angular contours with dot 
arrays sampled from smooth contours. Participants’ subjective ratings 
revealed that dots sampled from smooth shapes were more often and 
more strongly perceived as coherent shapes than dots sampled from 
angular shapes. In Experiment 3, we used an objective performance 
paradigm to assess the effects of local dot relations in processing 
forms; participants judged as same or different two dot arrays that 
differed in orientation. We hypothesized that this task would be done, 
as in classic experiments, by participants mentally rotating one an 
array to match the orientation of the other, with the expectation that 
comparison of two dot arrays in this manner would be easier for dot 
arrangements that were more easily encoded as shapes. We found that 
participants judged that two dot arrays were the same more quickly 
and more accurately when they were sampled from smooth contours. 
In Experiment 4, we embedded a target arrangement of dots defining 
a virtual contour among an equal number of distractor dots. We found 
that subjects were more able to detect smooth virtual contours than 
angular virtual contours, likely because the shape representation the 
dots give rise to is simpler and therefore easier to search (see Baker 
et al., 2021 for a similar paradigm).

The results of both Experiments 3 and 4 extend previous 
research into the perception of dot arrays with a very small number 
of dots (Pomerantz and Portillo, 2011; Hawkins et al., 2016; Costa 
and Wagemans, 2021). In those experiments, the configural 
superiority effect (CSE) paradigm was used to show that an 
odd-one-out task could be facilitated by the addition of identical 
elements provided those elements resulted in different emergent 
features like orientation or proximity in the target display than the 
distractors. Though the stimuli we used consisted of many more 
elements than the CSE displays, curvilinear displays were perceived 
as more configural than displays that contained perceived corners. 
Experiments 3 and 4 also introduce two additional experimental 
paradigms, mental rotation and object detection, that can be used 
as objective indices of the strength of configural structure of dot 
arrays. The CSE task works extremely well for arrays with a small 
number of elements to test the effect of local relations between dots. 
The rotation and detection tasks we used would not work for such 
sparse displays but showed robust effects for differences in the 
perception of shape defined by a larger set of elements.

Other research into the organization of dot elements based on 
Gestalt cues may also explain the perceptual advantage for dot 
arrays perceived to be curvilinear. For example, notions of similarity 
might explain why smooth displays, whose vertices were uniformly 
perceived as curved are more easily perceived as shapes than corner 
displays, whose vertices would be inhomogeneous, consisting of 
both perceived curves and perceived corners. Note, however, that 
these descriptions of inhomogeneity, while related to certain 
stimulus properties, refer most directly to outcomes of perception 
(i.e., properties in perceptual representations). The dots in and of 

themselves are neither corners nor smooth curves. Certain theories 
of good continuation also predict that smoothness among adjacent 
pairs or triplets of dots in a sequence facilitates contour perception. 
According to these theories (e.g., Feldman, 1997; Pizlo et al., 1997; 
Lezama et al., 2016; Kelly et al., 2024), continuation would be better 
in displays with fewer extreme deviations from smooth continuation 
that comes with the addition of perceived corners, which could 
result in arrays that are more easily resolved into shapes. Definitions 
of good continuation that explicitly favor collinearity of dots (e.g., 
Uttal, 1973; van den Berg, 2006) would make the opposite 
prediction that continuation would be better in corner displays, 
which have more collinear dots.

Greater facility in encoding shapes with fewer corners and more 
curvilinear segments would also not be predicted by many other theories 
of shape and object perception. Much work in middle and high-level 
vision emphasizes the importance of junctions and non-accidental 
properties. Geons in Biederman’s (1987) work depend crucially on 
corners and junctions, for example. Under such a theory, we would 
expect the visual system to be particularly suited to the detection of 
corners. Indeed, neurophysiological work points to the importance of 
corners in early visual areas (Heitger et al., 1998) and angular cusps in 
V4 (Pasupathy and Connor, 2001). Information theoretical work on 
contour complexity also predicts that objects with straight edges will 
be perceptually simpler (Attneave, 1954; Norman et al., 2001; Feldman 
and Singh, 2005). Structural information theory makes the same 
prediction, positing straight line connections between dots are more 
economical than curvilinear arcs because arcs are a continuation of both 
length and angle, thus requiring two bits of information for every one bit 
of information required for straight line connections (Smits and Vos, 
1987, personal communication with Leeuwenberg).

Why, then, are shapes with smooth contours easier to encode than 
shapes with sharp corners? As Bertamini et al. (2019) point out, there are 
several reasons to expect angular contours would be  more easily 
processed. Angular contours are comparatively simple to compute, 
requiring only linear interpolation between salient key points of high 
curvature (Bertamini et  al., 2013). There may also be  evolutionary 
advantages to registering the shapes of angular contours quickly to assess 
danger (Bar and Neta, 2006). On the other hand, the evolutionary 
environment in which our visual system evolved likely had many fewer 
straight edges and sharp angles than the one in which we currently live. 
Even today, research on scene statistics has found that many of the 
contours people process in their daily lives are made up of smooth curves 
(Chow et al., 2002). An analysis of scene statistics can only take us so far, 
however. The visual system may have evolved to process smooth 
contours because there were more objects made from smooth contours 
in our visual environment, but we must still determine what specific 
visual mechanisms confer this advantage in perceptual processing.

One possibility is that the primitives from which the visual system 
builds abstract shape representations more easily describe a shape 
with smooth contours. Elsewhere, we have hypothesized that shape 
representations are built up from relatively few smoothly joined 
segments of constant curvature (Garrigan and Kellman, 2011; Kellman 
et al., 2013; Baker et al., 2021; Baker and Kellman, 2021). Under this 
theory, corners (first-order or tangent discontinuities) have two 
important consequences. One is that the presence of a corner would 
always require spans on either side to be  two segment primitives, 
whereas smoothly changing curvature could be captured by a single 
segment, provided that the variation in curvature was sufficiently 
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small. The other consequence is that corners need to be separately 
encoded in such a representation and may be taken as part boundaries 
at a certain basic level of representation.

Even when part of a smooth contour requires multiple constant 
curvature primitives, the smoothly joined segments tend to 
be perceived as belonging to a single part if they are smooth and 
monotonic. For example, consider Figures 15A,B. Both displays are 
made up of two different curvature segments, but the fragment made 
from two smoothly joined curves looks like a single token, while the 
fragment made from two straight segments does not.

This observation is closely related to analyses by Wertheimer 
(1923) in his classic work “Laws of Organization in Perceptual Forms,” 
and it underlies his description of what has come to be called “good 
continuation.” He  showed contour displays similar to the ones in 
Figure 15D and asked observers to divide them into two parts, finding 
that they almost always organized the two smoothly joined curvature 
pieces together, separating this connected segment from the straight 
segment. In terms of derivatives, we may consider any continuous 
(unbroken) contour to have zero order continuity. Wertheimer’s 
examples show that, despite zero-order continuity, a 1st-order or 
tangent discontinuity (undefined first derivative) produces some 
degree of perceptual segmentation. Figure 15E shows another of his 
examples; here, we can consider 4 segments, A, B, C, and D, and the 
perceptual impression is that A and C are a unified segment, as are B 
and D, but observers do not naturally partition such a display into BC 
and AD, or AB and CD. Although Wertheimer did not invoke 
presence or absence of discontinuities in the first derivative as the 
relevant information, he  gave a number of examples (in his 
Figures 1–19), all of which indicate that a contour junction (tangent 
discontinuity) breaks contiguous line drawings into discernible parts, 
whereas the smooth continuation (absence of a tangent discontinuity) 
produces perception of a single contour or contour segment. It is 

interesting that despite offering two formal names for this principle 
(the “Factor of Direction” and the “Factor of Good Curve”), it is a 
phrase he used in passing—“good continuation” that has stuck as the 
name of this principle.

Figures 15A,C also illustrate that higher-order discontinuities, such 
as the 2nd-order discontinuity where two curves different smoothly 
join (matched slope at the join point), do not produce obvious 
perceptual segmentation. Evidence from visual search in noise shows 
that search for a contour segment with a 0-order or first-order 
discontinuity from other segments is easy, but a segment having 0-order 
and first-order continuity, but a second-order discontinuity, is effortful, 
slow, and error-prone (Kellman et al., 2003). If shapes made up of sharp 
corners are perceived to have significantly more parts than shapes made 
up of smoothly connected contours, it follows that they will be more 
representationally complex and therefore more difficult to encode.

Consistent with the above reasons that sharp corners may 
impose an additional encoding burden is that corners are important 
features for other perceptual processing goals, such as identifying 
points at which one object might be occluding another (Ratoosh, 
1949; Dinnerstein and Wertheimer, 1957; Shipley and Kellman, 1990; 
Kellman and Shipley, 1991; Rubin, 2001). Also, as we mentioned 
earlier, corners are important in theories of object representation and 
recognition (e.g., Biederman, 1987). Although some of these 
accounts suggest that encoding of corners might be beneficial for 
comparing objects, it may increase the complexity relative to 
smooth objects.

Conclusion

The results from these experiments suggest that the visual system 
perceives shapes from arrays of dots more easily when the perceived 

FIGURE 15

Contours made up of more than one curvature segment. (A) A contour made up of two smoothly joined constant curvature segments. (B) A contour 
made up of two straight segments joined at a vertex. (C) A contour made up of two smoothly joined constant curvature segments and one straight 
segment joined at a vertex. Individual parts are marked by letters A, B, or C. (D,E) Displays show examples redrawn from Wertheimer (1923), 
corresponding to his Figures 8 and 11, respectively. (F) Illustration of the role of perceived corners in dot displays in determining segmentation. 
Redrawn from Wertheimer (1923), Figure 3.
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contour between the points is smooth rather than angular. Although 
consistent with previous literature concerning good continuation 
between dots, these findings refute other formulations of good 
continuation that explicitly favor linear continuations. They also point 
to a more general phenomenon in shape perception that extraction of 
curvature is a fundamental process in the formation of an abstract 
shape representation and allows for efficient encoding of contours 
with changing orientation. Virtual contours that can be described by 
a relatively constrained set of curvature primitives appear to give rise 
to shapes more often, more quickly, and more precisely than virtual 
contours that are perceived and represented as segments connected 
by corners.
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