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Editorial on the Research Topic

Cross-reactive immunity and COVID-19
SARS-CoV-2 and COVID-19 impacted the world like a modern plague, stretching icy

fingers across the globe. Humanity was even more horrified upon finding that this new

plague came with variants, and surviving one version of the virus did not automatically

grant immunity to all variants. But as has happened with previous pandemics, the

deadliness and reach of COVID-19 has subsided into a slightly worrisome status quo

due to the advancements of medical science and the virus’ own evolution into less harmful

forms. The intense scrutiny that SARS-CoV-2 and COVID-19 received during the height of

their deadly assault on the world has revealed things that are now used to combat

this pandemic.

We now know that, unlike us, our immune system was not so surprised by SARS-CoV-

2 since cross-reactive immunity to SARS-CoV-2 existed prior to the COVID-19 pandemic.

Cross-reactive immunity is mediated by antibodies and memory B and T cells elicited by a

specific pathogen or antigen that can also react to other pathogens or antigens (1) Cross-

reactivity is a main feature of adaptive immunity, which is highly favored by the recognition

of small portions within protein antigens (epitopes) (2) and the poly-specificity of cognate

B and T cell receptors (3, 4). Human common cold coronaviruses (hCoVs) have received

major attention as potential sources of cross-reactive immunity to SARS-CoV-2 (5).

However, immune cross-reactivity has also been reported between SARS-CoV-2 and

unrelated viruses (6), bacteria (7), vaccines (8, 9) and even food antigens (9). Activation of

cross-reactive immunity is not always protective and can also produce immunopathology

(10). Moreover, immune cross-reactivity is a two-way road and SARS-CoV-2 infection as well

as COVID-19 vaccines can also induce cross-reactive immunity. Indeed, immune cross-

reactivity between SARS-CoV-2 and COVID-19 vaccines with human tissues has been

shown, raising the possibility that autoimmune reactivity can result from SARS-CoV-2

infection and COVID-19 vaccines (see Figure 1) (11).

Clearly, pre-existing cross-reactive immunity must have a major impact in shaping the

immune response to the virus and to COVID-19 vaccines, but to what extent and its

contribution to protection is still undetermined. Likewise, SARS-CoV-2 and COVID-

vaccines can have profound cross-reactive immunological consequences that need to be

investigated. In this Research Topic of Frontiers in Immunology about “Cross-Reactive
frontiersin.org016
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Immunity and COVID-19,” editors Aristo Vojdani, Pedro Reche,

Alberto Beretta and Ahmed Yaqinuddin have gathered an

impressive Research Topic of articles investigating sources of

immune cross-reactivity with SARS-CoV-2, contribution to

protection, COVID-19 course and its ancillary condition,

long COVID.

On the face of it, it would seem that cross-reactive immunity

would be a welcome weapon to wield against COVID-19. Pedro

Reche, one of the editors of this Research Topic, published an article

in 2020 (8) in which he concluded, “Overall, our results clearly

support that cross-reactive immunity from DTP vaccines can be

protecting children against SARS-CoV-2 and could protect the

general population.” In 2022, Fonte et al. looked at the lower

susceptibility of children to SARS-CoV-2 infection and concluded

that the lower incidence and severity of the disease in children could

be due to nonspecific resistance to SARS-CoV-2 generated by the

childhood vaccines received by the subjects (12).

The value of this general protection or immunity against SARS-

CoV-2 and its variants is echoed by Chao et al.‘s contribution to this

Research Topic. These authors report that broadly neutralizing

ability is critical for developing the next generation SARS-CoV-2

vaccine. They found that a specific homologous vaccine was

insufficient for dealing with the Omicron virus variant, which had

very different antigenic characteristics from the original. They also

found that anti-ACE2 autoantibodies were significantly increased in

all vaccinated test groups.

The Omicron variant also proved problematic for Li M. et al.‘s

study in this Research Topic. They found that vaccination

contributes significantly in limiting the spread of SARS-CoV-2.
Frontiers in Immunology 027
However, they also found that this vaccine protection is not efficient

against the Omicron variant. This was evidenced by the reduction in

the binding of SARS-CoV-2 antibody-positive human sera to

Omicron RBDs compared to its homogenous recombinant RBDs.

In their own article, Lunderberg et al. had a slightly different

suggestion for dealing with the problem of SARS-CoV-2 variants

escaping the host’s immune response. Previously, researchers have

identified IgG1 type pan-neutralizing antibodies (neutAbs) which

can effectively neutralize several human coronaviruses, including

SARS-CoV-2 and its variants, but with existing limitations and

deficiencies in their efficiency and application. Lunderberg et al.

proposed that using Reverse Technology 3.0 can help to further the

use of this innate-like defense mechanism.

We have already mentioned that the emergence of SARS-CoV-2

variants prevents acquiring general immunity to the disease.

Thompson et al. investigated the impact of cross-reactive

immunity on the emergence of these variants. They found that if

cross-reactivity immunity is complete, that the antigenically related

novel variant must be more transmissible than the previous virus in

order to invade the population. They highlighted that a fast

assessment of the level of cross-reactive immunity conferred by

related viruses against novel SAR-CoV-2 variants is essential to

assessing the risk posed by those variants.

The more we know about SARS-CoV-2 variants, then, the

better it is for understanding the virus, its diseases, and how to

deal with them. Kuthning et al. monitored SARS-CoV-2 specific

antibodies in children and adolescents to determine whether the S1-

specific antibody response can identify the infecting variant of

concern (VoC), estimate the prevalence of silent infections, and
FIGURE 1

Potential sources of present immunity shape the response to SARS-CoV-2 and the COVID-19 vaccine; the immune response to SARS-CoV-2 and
COVID vaccines can also produce cross-reactive immune responses to other factors.
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test whether vaccination or infection with SARS-CoV-2 induces

hCoV cross-reactive antibodies. They concluded that the antibody

response to the S1 domain of the SARS-CoV-2 spike protein is

highly specific, providing important information about the infecting

VoC and revealing clinically silent infections.

The source and role of SARS-CoV-2 cross-reactive antibodies

have received major attention in this Research Topic. In an article

by Peng et al., the authors show that monoclonal antibodies

constructed from COVID-19 convalescent memory B cells

exhibited potent binding activity to the S2 spike subunit from

MERS-CoV and other hCoVs. The authors did not investigate

whether the cross-reactive antibodies resulted from the activation

of pre-existing memory B cells or from the activation of naive B cells

but, regardless, their results will be useful in the diagnosis of

multiple coronaviruses. Although the S2 spike subunit SARS-

CoV-2 can be the target of neutralizing antibodies, most of them

target the receptor binding domain (RBD) in the spike S1 subunit,

which is much less conserved that the S2 subunit (13).

Consistently, Adami et al. report that anti-RBD IgG antibodies

from endemic hCoVs do not protect against the acquisition of

SARS-CoV-2 infection among exposed uninfected individuals. In

line with this result, Lin et al. reports that pre-existing humoral

immunity to hCoVs negatively impacts the protective SARS-CoV-2

antibody response (14). Additionally, in one of the articles

published in this Research Topic, Li N et al. looked at whether

pre-existing antibodies induced by low pathogenic human

coronaviruses (LPH-CoVs) in children can cross-react with

SARS-CoV-2. They found that the seroprevalence of four

analyzed LPH-CoVs reached 75.84%, and about 24.64% of the

seropositive samples had cross-reactive IgG antibodies against the

nucleocapsid S and against the receptor binding domain (RBD)

antigens of SARS-CoV-2. These data suggest that children’s pre-

existing antibodies to LPH-CoVs have limited cross-reactive

neutralizing antibodies against SARS-CoV-2.

In contrast, Cheng Y. et al. report antigenic cross-reactivity

between the SARS-CoV-2 RBD and dengue virus, which in dengue

patients can lead to anti-SARS-CoV-2 S1-RBD antibodies hindering

pathogenicity. Likewise, SARS-CoV-2 and COVID-19 vaccines may

in some occasions lead to pathological antibodies due to cross-

reactivity. This possibility is illustrated by the case report presented

by Shimizu et al., showing a new-onset dermatomyositis following

COVID-19. The diagnosis was confirmed by the detection of anti-

synthetase autoantibodies and other biochemical analyses.

However, they did not provide evidence that this development of

dermatomyositis may be due to cross-reactivity between SARS-

CoV-2 antigens and tissue antigens involved in this disease. Zhong

et al. present two case reports in which patients with bacterial

pneumonia and high elevated immunoglobins did not get infected

with SARS-CoV-2. This report provides experimental support onto

the possibility that bacteria can elicit protective cross-reactive

antibodies to SARS-CoV-2, as suggested by in silico works (15).

Unlike cross-reactive humoral immunity, which may enhance

disease severity (16), there is mounting evidence of the protective

role of SARS-CoV-2 cross-reactive T cells (17). The work by Coulon
Frontiers in Immunology 038
et al. support a protective role for alpha-hCoV-specific memory T

cells cross-reactive with SARS-CoV-2. However, hCoV cannot

account for all pre-existing SARS-CoV-2 cross-reactive T cells

(18), and it is still unproven that hCoV can prime T cells cross-

reactive with SARS-CoV-2. Interestingly, such a proof is provided

in this Research Topic for tetanus-diphtheria vaccine. Thus,

Fernandez et al. showed that antigen-inexperienced naive T cells

primed with tetanus-diphtheria vaccine recognized SARS-CoV-2-

specific CD8 T cell epitopes, as anticipated by Reche in a seminal in

silico study (8). Given that children received several immunizations

with vaccines containing tetanus-dihptheria antigens, the results by

Fernandez et al. support that tetanus-diphtheria vaccine likely had a

major contribution shaping exiting SARS-CoV-2 T cell responses.

However, pre-existing cross-reative T cells may not always be

protective. Thus, Ng’uni et al. report that pre-existing endemic

NL63-coronavirus-specific T cells are associated with impaired

SARS-CoV-2-specific T cell responses.

Continuing the thread of the protective or supportive role of T

cells against SARS-CoV-2, in their article in this Research Topic,

Ziehe et al. sought to study the human cytomegalovirus (HCMV) as

a risk factor for the development of sepsis in COVID 19 patients.

They found that although HCMV was significantly higher in

COVID-19 patients compared to controls, the cross-reactivity of

HCMV-specific CD8+ T cells with SARS-CoV-2 peptides might

actually confer some protection to HCMV-seropositive patients.

On the other hand, Leung et al. found something interesting

about B cells. We know that infection by SARS-CoV-2 can lead past

COVID-19 to long COVID. Leung et al. examined different early

immune factors in both hospitalized and non-hospitalized patients

with COVID-19, and correlated the immune factors with the

development of long COVID. They found that the predominant

early immune indicator of long COVID was double-negative B cells,

indicating a potentially important role for these cells in the

development of the disease.

In another attempt to predict the progression and severity of

COVID-19, You et al. measured serum levels of ACE2 and AXL in

patients who were categorized into non-severe and severe cases.

They compared these levels with SARS-CoV-2 IgG and IgM

antibody titers at different time points in post-COVID infections.

They found that in severe COVID-19 cases, a decrease in AXL level

with an increase in SARS-CoV-2 IgG level predicts COVID-

19 progression.

Pre-existing cross-reactive immunity have surely shaped the

responses to COVID-19 vaccines. However, some COVID-19

vaccines may activate more than other cross-reactive immunity.

This fact is exemplified in the report by Henze et al. These authors

show that adenovirus-vector-based ChAdOx1 vaccine did not

reactivate cross-reactive cellular and humoral immunity

compared to mRNA-based BNT162b2.

One of this Research Topic’s submissions had suggestions for

treatment. Saito et al. observed that a significant percentage of

SARS-CoV-2-infected individuals develop long COVID which

overlaps with myalgic encephalomyelitis/chronic fatigue

syndrome (ME/CFS). They identified alterations in metabolic
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pathways, including the elevation of plasma pro-inflammatory

cytokines with a reduction in ATP in long COVID patients.

These metabolic abnormalities not only help in better

understanding the pathophysiology of long COVID but also in

finding supplements with potential therapeutic implications which

were suggested by the researchers.

Taken all together, the 19 articles in this Research Topic

examine cross-reactive immunity concerning SARS-CoV-2 and

COVID-19. They highlight the intricate interplay between prior

immune responses and the evolving viral landscape. The

information obtained implies that response to antibodies and

immune cells are likely to be critical in both the risk of infection

and the response to vaccines. Although there are encouraging signs

that pre-existing immunity may provide a degree of protection, the

heterogeneity in responses—particularly against new variations

such as Omicron—suggests that this phenomenon is not

universally effective. As the pandemic evolved, it became evident

that understanding of mechanisms involved in cross-reactive

immunity will be essential for developing strategies to fight

against COVID-19 and its variants.
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Reduced binding activity of
vaccine serum to omicron
receptor-binding domain

Mingzhi Li1†, Shiqi Weng1†, Quansheng Wang1†, Zibing Yang1,
Xiaoling Wang1,2, Yanjun Yin3, Qiuxiang Zhou4, Lirong Zhang1,
Feifei Tao1, Yihan Li1, Mengle Jia1, Lingdi Yang1, Xiu Xin1,
Hanguang Li1, Lumei Kang5,6, Yu Wang1*, Ting Wang1*,
Sha Li1* and Lingbao Kong1*

1Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Institute of Pathogenic
Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University,
Nanchang, China, 2GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University,
Guangzhou, China, 3Department of Clinical Laboratory, Jiangxi Provincial Children’s Hospital,
Nanchang, China, 4Department of Clinical Laboratory, The Affiliated Hospital of Jiangxi Agricultural
University, Nanchang, China, 5College of Animal Science and Technology, Jiangxi Agricultural
University, Nanchang, China, 6Center for Laboratory Animal Science, Nanchang University,
Nanchang, China
Coronavirus disease 2019 (COVID-19) vaccination regimens contribute to

limiting the spread of severe acute respiratory syndrome Coronavirus-2

(SARS-CoV-2). However, the emergence and rapid transmission of the SARS-

CoV-2 variant Omicron raise a concern about the efficacy of the current

vaccination strategy. Here, we expressed monomeric and dimeric receptor-

binding domains (RBDs) of the spike protein of prototype SARS-CoV-2 and

Omicron variant in E. coli and investigated the reactivity of anti-sera from

Chinese subjects immunized with SARS-CoV-2 vaccines to these recombinant

RBDs. In 106 human blood samples collected from 91 participants from Jiangxi,

China, 26 sera were identified to be positive for SARS-CoV-2 spike protein

antibodies by lateral flow dipstick (LFD) assays, which were enriched in the ones

collected from day 7 to 1 month post-boost (87.0%) compared to those

harvested within 1 week post-boost (23.8%) (P < 0.0001). A higher positive

ratio was observed in the child group (40.8%) than adults (13.6%) (P = 0.0073).

ELISA results showed that the binding activity of anti-SARS-CoV-2 antibody-

positive sera to Omicron RBDs dropped by 1.48- to 2.07-fold compared to its
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homogeneous recombinant RBDs. Thus, our data indicate that current SARS-

CoV-2 vaccines provide restricted humoral protection against the

Omicron variant.
KEYWORDS

COVID-19, omicron, spike protein, RBD, binding activity
Introduction

COVID-19 is a worldwide pandemic caused by SARS-CoV-

2. Although multiple measures have been adopted, COVID-19 is

still rife amid the world and poses a threat to social, mental, and

economic wellbeing (1, 2). The newly evolved Omicron mutant

spread quickly within highly vaccinated populations. Viral

sequence analysis reveals that as the most heavily mutated

variant, Omicron harbors 15 mutations in its spike RBD

region. Considering that the RBD domain of the SARS-CoV-2

spike protein mediates the viral entry, thus contributing to viral

infection and transmission, a primary concern arises about the

effectiveness of the current vaccine regimen against this viral

variant (3). To this end, we expressed the RBD monomer and

dimer of Omicron spike protein and examined the cross-

reactivity of anti-sera from subjects immunized with prototype

SARS-CoV-2 vaccines (either inactivated vaccines or RBD dimer

subunit vaccines) to Omicron RBDs. Our data showed that

vaccine-immunized sera displayed reduced binding activity to

Omicron RBDs, implying the low efficacy of the prototype

SARS-CoV-2 vaccine to protect against the Omicron variant.
Methods

Materials

Ninety-three human serum samples from 78 individuals

immunized with prototype SARS-CoV-2 vaccines including

inactivated whole-virus vaccines Sinopharm BBIBP-CorV and

Sinovac CoronaVac (n = 62), Sinopharm BBIBP-CorV (n = 16),

Sinovac CoronaVac (n = 14), or RBD dimer-based subunit vaccine

Zhifei ZF2001 (n = 1) were obtained from the Affiliated Hospital of

Jiangxi Agricultural University and Jiangxi Children’s Hospital

(Supplementary Table 1). Thirteen unimmunized serum samples

from Jiangxi Children’s Hospital served as negative controls

(Supplementary Table 1). All studies involving human sera were

performed under the standard of the Jiangxi Agriculture University

Ethical Committee. SARS-CoV-2 Antibody Detection Kits (Cat:

W19501110, 2020340177, and Y5021010552A) were obtained from

Wondfo, Innovita, and Vazyme of China, respectively. Antibodies
02
11
against His-tag (RIID: AB_11,232,599), actin (RIID: AB_2,687,938),

and HRP-labeled goat anti-human (Cat: SA00001-17) were

purchased from Proteintech in USA. HEK293 cell-expressed

RBDs of prototype SARS-CoV-2 (Cat: CSB-DP7031) and

Omicron variant (Cat: 40592-V08H121) were obtained from

CUSABIO and Sino Biological in China, respectively.
Protein expression and purification

The coding sequence for spike RBD of Omicron strain

B.1.1.529 (GenBank: PRJNA784547) was used for prokaryotic

expression. The Omicron RBD dimer was synthesized in a

tandem repeat form of the RBD monomer separated by their

own flexible terminal residues (2). The corresponding sequence

of the Omicron spike RBD monomer was amplified with the

synthetic dimer sequence as the template. A similar strategy was

used to amplify the monomeric and dimeric RBDs of prototype

SARS-CoV-2 (GenBank: YP_009724390). All RBD DNA

segments were cloned into the pET-28a plasmid for expression

in E. coli. After induction at 18°C for 8 h in the presence of IPTG

(0.5 or 1 mM), cells were collected to examine the recombinant

protein expressions. All RBDs were further purified by the NI-

NTA column followed by renaturation using dialysis and then

concentration with Amicon® Ultra-15 (10 or 30K) (4, 5).
Immunoblotting

Immunoblotting was performed as described previously (6).

Briefly, after electrophoresis on an SDS-PAGE gel, separated

proteins were transferred to polyvinylidene difluoride

membranes (Millipore). The membranes were blocked with 10%

skimmed milk and then incubated with an antibody specifically

targeting His-tag at 4°. Finally, the proteins were visualized with

Clarity ECL immunoblotting substrate (Bio-Rad).
LFD and ELISA

To detect SARS-CoV-2-specific antibodies in vaccine-

immunized human sera, LFD assays were performed using

SARS-CoV-2 Antibody Detection Kits according to the
frontiersin.org
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manufacturer’s instructions. ELISA was performed as described

previously (4, 7). Briefly, plates were precoated with the

recombinant RBDs (100 ng/well) at 4° overnight in 0.05 M

carbonate-bicarbonate buffer. After blocking with 5% skim milk,

human sera were diluted and added to each well. Goat anti-

human IgG-HRP antibodies were then added. Plates were finally

developed with TMB substrate. Commercial RBDs expressed in

HEK293 cells were used to evaluate the quality of lab-made

recombinant RBDs expressed in E. coli. To exclude the

interference of His-tag reactivity, the anti-His antibody was

also used in ELISA assays (Supplementary Figure 2). Optical

density was measured at a wavelength of 450 nm using a plate

reader (Tecan, Infinite M200 Pro).
Statistical analysis

Student’s t-test and chi-square test were adopted to compare

the intergroup differences using GraphPad Prism 8.0 software.

P < 0.05 was considered statistical significance.
Results

Expression of monomeric and
dimeric RBDs

Upon IPTG induction, the RBD monomer and dimer of the

SARS-CoV-2 prototype and Omicron variant were expressed in

E. coli, all of which dominated in the cellular inclusion bodies,

accounting for 26%–55% of total protein mass (Figures 1A–D,

top). After purification with Ni-NTA columns followed by the

separation by electrophoresis on SDS-PAGE gel, intensive bands

were detected for monomer and dimer RBD proteins in a buffer

with 250 mM of imidazole. The purities of the recombinant RBD

proteins were no less than 95% (Figures 1A–D, top). To confirm

the identities of E. coli-derived recombinant proteins, we

performed immunoblotting assays with an anti-His tag

antibody. Expected bands were detected for all recombinant

proteins in IPTG-induced lysate or purified samples, but not in

un-induced ones, demonstrating the successful expression and

purification of E.coli-expressed recombinant RBD proteins

(Figures 1A–D, bottom).
Cross-reactivity of prototype SARS-CoV2
vaccine-immunized sera against
Omicron RBDs

To assess the cross-reactivity of prototype SARS-CoV2

vaccine-immunized sera against Omicron RBDs, we first

collected 106 blood samples based on availability. Among

them, 44 samples were collected from 29 adults while the
Frontiers in Immunology 03
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remains were from 62 children (Supplementary Table 1). LFD

assays were conducted to identify vaccine sera with high-titer

antibodies against prototype SARS-CoV-2 spike protein. Results

revealed that 26 samples of 93 vaccine sera contained detectable

ant ibodies spec ific to SARS-CoV-2 sp ike prote in

(Supplementary Figure 1). We next wondered the LFD-

positive ratio of these samples by vaccine, age, sex, and post-

immunization time. Therefore, a retrospective analysis was

performed (Supplementary Table 2). The LFD-positive ratio

for both BBIBP-CorV and CoronaVac immunization groups

was 11 [17.7%] of 62 (adult: 6 [14.0%]/43, children: 5 [41.6%]/

19). The LFD-positive ratio for the BBIBP-CorV immunization

group was 7 [43.8%] of 16 (children). The LFD-positive ratio for

the CoronaVac immunization group was 8 [57.1%] of 14

(children). The majority (20 [87.0%] of 23) of LFD-positive

samples were the ones collected from day 7 to 1 month post-

boost (BBIBP-CorV and CoronaVac immunization groups: (5

[83.3%] of 6); BBIBP-CorV immunization group: (7 [77.8%] of

9); CoronaVac immunization group: 8 [100%] of 8), different

from those harvested within 1 week post-boost (5 [23.8%] of 21,

BBIBP-CorV and CoronaVac immunization groups: 5 [23.8%]

of 21; BBIBP-CorV immunization group: none; CoronaVac

immunization group: none) (P < 0.0001, Figure 2A). A higher

positive ratio was observed in the child group (20 [40.8%] of 49,

BBIBP-CorV and CoronaVac immunization groups: 5 [26.3%]

of 19; BBIBP-CorV immunization group: 7 [43.8%] of 16;

CoronaVac immunization group: 8 [57.1%] of 14) than adult

(6 [13.6%] of 44, BBIBP-CorV and CoronaVac immunization

groups: 6 [13.6%] of 44; BBIBP-CorV immunization group:

none; CoronaVac immunization group: none) (P = 0.0073,

Figure 2B). The low LFD-positive ratio of vaccine sera is likely

due to the limited sensitivity of the LFD assay. To test this

possibility, we randomly chose three LFD-positive/-negative

vaccine sera and three unimmunized sera to examine the

quantities of antibodies targeting SARS-CoV-2 spike RBD.

ELISA data showed that LFD-negative vaccine sera harbored

small, but decent amounts of anti-SARS-CoV-2 spike RBD

antibodies (Figure 2C).

To evaluate the binding activity of vaccine-immunized

human sera to Omicron variants, LFD-positive sera were used.

As shown in Figures 2D–F, although the tested sera cross-

recognized Omicron spike RBDs, their reactivity magnitudes

decreased by 1.48- to 2.07-fold compared to those of SARS-CoV-

2 RBDs, which partially explained the rapid transmission of

Omicron in the vaccinated regions. With the engagement of

antibodies in human vaccine sera and RBDs as readout, general

drops were observed for the E.coli-expressed prototype RBD

monomer (1.53-fold, P < 0.0001), prototype RBD dimer (2.24-

fold, P < 0.0001), Omicron monomer (1.26-fold, P = 0.0006),

and dimer (1.62-fold, P < 0.0001) with the corresponding

commercial ones as control (Figure 2G).

Of note, all recombinant RBD proteins carried a His-tag and

recognized anti-His antibody with a reactivity corresponding to
frontiersin.org
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the quantity of its His-tag. In addition, recombinant RBD

proteins recognized vaccine sera, but not unimmunized

control sera (Supplementary Figure 2; Figures 2C–F). These

data together suggested that the difference in vaccine serum

reactivity to recombinant RBD proteins was not due to the anti-

His antibody which could exist in vaccine sera.
Discussion

Different from other SARS-CoV-2 variants, the Omicron

strain occurs in the situation in which SARS-CoV2 vaccine

immunization has been rolled out globally. Its fast spread in

fully vaccinated countries such as the USA reveals that the

existing vaccine provided limited protection. The World
Frontiers in Immunology 04
13
Health Organization (WHO) reported on February 15, 2022,

that the Omicron variant had replaced the Delta variant as the

main circulating strain worldwide. This study aimed to explore

how the Omicron variant effectively evades the immune

responses induced by heterogeneous SARS-CoV-2 vaccines.

The CoV spike RBD is an attractive vaccine target. Its dimeric

form fully exposes the dual receptor-binding motifs, thus

significantly increasing neutralizing antibody (NAb) titers as

compared to its conventional monomer (8). In this study, the

Omicron spike RBD monomer and dimer were expressed and

purified (Figure 1), serving as the antigens to evaluate the cross-

protection of host immunity induced by prototype SARS-CoV-2

vaccines in the ELISA (Figure 2).

One hundred six blood samples from adults and children

were collected and analyzed by LFD assays. The anti-SARS-
A B

DC

FIGURE 1

Expression, purification, and identification of recombinant spike RBDs. Recombinant pET-28a vectors expressing either monomeric or dimeric
spike RBDs for prototype SARS-CoV-2 (A, B) and Omicron variant (C, D) were used to express the recombinant proteins in E. coli. The expressions
and purities of RBDs were examined by SDS-PAGE (A-D, top) or immunoblotting (A–D, bottom). (A-D) Top: M: protein marker; lane 1: empty
vector; lane 2: un-induced sample; lanes 3–5: IPTG induced whole-cell lysate (lane 3); cellular supernatant (lane 4); inclusion body (lane 5); lanes
6–7 (A-D): purified monomeric (A, C) or dimeric (B, D) RBDs in eluted buffer with 250 mM imidazole. (A-D) Bottom: identification of spike RBDs by
immunoblotting with anti-His tag antibody.
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D E F G

H
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FIGURE 2

Reactivity of human sera with SARS-CoV-2 spike protein and recombinant RBDs. (A, B) Detection of anti-SARS-CoV-2 spike protein antibodies in
human sera with LFD assays. (A) Examination of the contributions of age and sample collection time point to LFD-positive rates with the chi-square test.
Children LFD-positive rate: (20 of 23, 86.9%); adult LFD-positive rate: (5 of 21, 23.8%). Child sera were collected at 7 days to 1 month after boost. Adult
vaccine sera were collected within 1 week after boost. (B) Comparison of the LFD-positive rate of vaccine sera between adults (6 of 44, 13.6%) and
children (20 of 49, 40.8%) with chi-square test. (C) Titration of SARS-CoV-2 RBD-specific antibodies in LFD-positive vaccine sera (participant IDs: 08-2,
13-2 and 19-2; LFD-P), LFD-negative vaccine sera (participant IDs: 18-2, 21-2 and 53-1; LFD-N), and unimmunized sera (participant IDs: 54-1, 60-1 and
83-1; UC-sera) by ELISA using the recombinant RBD monomer as coating proteins. The dashed line indicates the cutoff value. (D-F) Reactivity of 26
LFD-positive vaccine sera (further details in Supplemental Figure 1A and Supplemental Table 1) to commercial prototype and omicron RBD monomer
(D), E. coli-expressed prototype and omicron RBD monomer (E), and E. coli-expressed prototype and omicron RBD dimer (F). Top panels: absolute
titers; bottom panels: fold change. cpRBDm/coRBDm: commercial prototype/omicron RBD monomer; epRBDm/eoRBDm: E. coli-expressed prototype/
omicron RBD monomer; epRBDd/eoRBDd: E. coli-expressed prototype/omicron RBD dimer. (G) Fold change for comparison between commercial and
lab-made RBDs. Prototype SARS-CoV-2 RBDs (top panel) and Omicron RBDs (bottom panel). Fold change is defined as mean fold change. Each dot
represents a biological replicate, and the assays were performed three times (A, C-G). (H) Schematic diagram showing reduced binding activity of
vaccine serum to Omicron RBD.
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CoV-2 spike protein antibody in vaccine sera collected at 5–6

months after the first boost dropped to below the detectable

threshold, highlighting the necessity of the second boost

(Supplementary Figure 1). Interestingly, vaccine sera at 7 days

to 1 month after boost had a higher SARS-CoV-2 spike protein

antibody titer than those within 1 week after boost (P < 0.0001,

Figure 2A). Consistent with the finding, a recent report indicated

that RBD antibody titers reached a plateau in 2 weeks or so after

a boost, then dropped about fivefold within the following 2

weeks (9). These data suggest that boosted time affects the

antibody titer of vaccine sera. Interestingly, a higher positive

ratio was observed in the child group than in adults (P = 0.0073,

Figure 2B), which could attribute to age besides the collection

time points. Similarly, recent reports showed that immunity of

CoronaVac for children seems better than that for adults (10,

11). It should be noted that LFD exhibited low sensitivity in

detecting SARS-CoV-2 spike protein antibody of vaccine serum

than ELISA (Figure 2C). Thus, the development of a more

convenient and accurate CoV-2 antibody detection kit

is warranted.

Coronavirus spike RBD is the key domain mediating the

engagement between coronavirus and host. The majority of

antibodies targeting spike RBDs bear neutralization function

which in part determines the spread of CoV viruses. The

positive sample in LFD assays displayed decent responses to

SARS-CoV-2 and reduced binding to Omicron (Figures 2D–F),

aligning with recent reports (8). Carreno et al. found that the

eukaryotic expressed monomeric RBD of Omicron reduced

binding activity to convalescent and vaccine (mRNA-1273 and

BNT162b2) serum with a more than 1.5-fold drop (8). Cameroni

et al. demonstrated that most receptor-binding motif (RBM)-

directed monoclonal antibodies (mAbs) lost in vitro neutralizing

activity against Omicron (8). High-throughput yeast display

screening assays from Cao et al. revealed that over 85% of the

RBD-neutralizing antibodies were escaped by Omicron (8).

Neutralizing assays using authentic and pseudotype viruses

indicated that the Omicron variant showed lower neutralizing

sensitivity than other SARS-CoV-2 variants to convalescent and

vaccine (mRNA1273, BNT162b2, BBIBP-CorV, and ZF2001)

serum (8). All these data suggest that omicron can penetrate the

vaccine-induced immune barrier, which explained at least in part

the quick spread of Omicron. One thing that needs to be

emphasized is that even in the vaccinated hosts who are

negative in Omicron RBD-specific antibodies, the preexisting

SARS-CoV-2-specific memory B cells and T cells can provide

protection in the following Omicron infection, although they may

contribute less to inhibit the entry of Omicron into host cells (8).

This is possibly the reason why Omicron spreads rapidly but does

not induce more severe symptoms.

Collectively, our study demonstrates that Omicron RBD

displays a lower reactivity to prototype SARS-CoV-2 vaccine-

immunized human sera as compared to homogeneous SARS-
Frontiers in Immunology 06
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CoV-2 RBD, implying the insufficient protection of the

prototype SARS-CoV-2 vaccine against the Omicron variant

(Figure 2H). The booster of the prototype SARS-CoV-2 vaccine

enhances the level of antibodies against both the SARS-CoV-2

prototype and the Omicron variant, which can help defend

against the COVID-19 pandemic. Omicron RBD reactivity to

SARS-CoV-2 vaccine-immunized human sera requires to be

assessed on a large scale.
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SUPPLEMENTARY FIGURE 1

Examination of anti-SARS-CoV-2 spike protein antibodies in human
immunized sera using LFD assays. (A) The intensity of LFD bands in was

quantified using Image J. (B-C) Adult sera collected at month 1, 5, or 6
post the second round of vaccination were examined with SARS-CoV-2

Antibody Detection Kit from Vazyme (B) or Innovita (C). (D) Adult sera
collected at month 1 or day 5 post the third round of vaccination were

examined with SARS-CoV-2 Antibody Detection Kit from Wondfo. (E-F)
Children’s sera collected at different time points after vaccination and

unimmunized children’s sera were examined with SARS-CoV-2 Antibody

Detection Kit from Wondfo. Further details were provided in
Supplementary Table 1.
SUPPLEMENTARY FIGURE 2

Identification of pre-coated recombinant RBDs by anti-His tag antibody.

Recombinant RBDs were examined by ELISA assays with anti-His tag
antibody, vaccine serum (participant ID: 31-1), and unimmunized sera

(UC-sera, participant ID: 62-1), or PBS.
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Antibodies against the
SARS-CoV-2 S1-RBD cross-
react with dengue virus and
hinder dengue pathogenesis

Yi-Ling Cheng1†, Chiao-Hsuan Chao1†, Yen-Chung Lai1,
Kun-Han Hsieh1, Jen-Ren Wang1, Shu-Wen Wan2,
Hong-Jyun Huang2, Yung-Chun Chuang1,3,
Woei-Jer Chuang4 and Trai-Ming Yeh1*

1Department of Medical Laboratory Science and Biotechnology, College of Medicine, National
Cheng Kung University, Tainan, Taiwan, 2Department of Microbiology and Immunology, College of
Medicine, National Cheng Kung University, Tainan, Taiwan, 3Leadgene Biomedical, Inc.,
Tainan, Taiwan, 4Department of Biochemistry and Molecular Biology, College of Medicine, National
Cheng Kung University, Tainan, Taiwan
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread

globally since December 2019. Several studies reported that SARS-CoV-2

infections may produce false-positive reactions in dengue virus (DENV)

serology tests and vice versa. However, it remains unclear whether SARS-

CoV-2 and DENV cross-reactive antibodies provide cross-protection against

each disease or promote disease severity. In this study, we confirmed that

antibodies against the SARS-CoV-2 spike protein and its receptor-binding

domain (S1-RBD) were significantly increased in dengue patients compared

to normal controls. In addition, anti-S1-RBD IgG purified from S1-RBD

hyperimmune rabbit sera could cross-react with both DENV envelope

protein (E) and nonstructural protein 1 (NS1). The potential epitopes of DENV

E and NS1 recognized by these antibodies were identified by a phage-displayed

random peptide library. In addition, DENV infection and DENV NS1-induced

endothelial hyperpermeability in vitrowere inhibited in the presence of anti-S1-

RBD IgG. Passive transfer anti-S1-RBD IgG into mice also reduced prolonged

bleeding time and decreased NS1 seral level in DENV-infected mice. Lastly,

COVID-19 patients’ sera showed neutralizing ability against dengue infection in

vitro. Thus, our results suggest that the antigenic cross-reactivity between the

SARS-CoV-2 S1-RBD and DENV can induce the production of anti-SARS-CoV-

2 S1-RBD antibodies that cross-react with DENV which may hinder

dengue pathogenesis.
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Introduction
In late December 2019, a novel coronavirus designated severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread

rapidly worldwide, resulting in a global coronavirus disease 2019

(COVID-19) pandemic (1). SARS-CoV-2 is a positive-sense single-

stranded RNA enveloped virus which is composed of at least four

structural proteins: spike (S), envelope, membrane, and

nucleocapsid (2). SARS-CoV-2 binds to the cell surface receptor

angiotensin-converting enzyme 2 (ACE2) through trimeric S

glycoprotein expressed on the viral envelope (2). Each monomer

of the S protein is approximately 180 kDa and contains two

subunits, S1 and S2. The receptor-binding domain (RBD) in the

S1 subunit (S1-RBD) is an immunodominant region that is the

main target of neutralizing antibodies (3–5). Symptoms of COVID-

19 can be nonspecific, such as fever, cough, and tiredness, which

may appear 2 to 14 days after exposure. Other symptoms can

include shortness of breath or difficulty breathing, muscle aches,

sore throat, headache, chest pain, and rash. However, in some

patients, these symptoms can progress to life-threatening

respiratory insufficiency and affect multiple organs, such as the

heart, liver, and kidney (6). While the gold standard in COVID-19

diagnosis is reverse transcriptase polymerase chain reaction (RT–

PCR), it requires complex sample manipulation and expensive

machinery. To control the spread of SARS-CoV-2 and strengthen

countries’ testing capacity, antigen and antibody rapid diagnostic

kits are increasingly being used by many countries. However,

several studies have reported that SARS-CoV-2 infections may

produce false-positive antibody reactions in dengue virus (DENV)

serology tests and vice versa, leading to misdiagnosis between

COVID-19 and DENV infection based on rapid serological test

results (7–10). Potential antigenic cross-reactivity between SARS-

CoV-2 and DENV has been proposed to explain the false-positive

serological test results among COVID-19 and dengue patients (11).

DENV infection, which is transmitted by Aedes mosquitoes,

is prevalent in tropical and subtropical areas where the vector

resides. However, it has dramatically increased in incidence

within the last twenty years due to climate change and the

convenient transportation system (12). It is estimated that

greater than 2.5 billion people live in endemic areas, and the

number of individuals infected by DENV is thought to exceed 50

million globally per year. DENV infection can cause mild dengue

fever or more severe dengue hemorrhage fever (DHF) or dengue

shock syndrome (DSS). DHF is a severe febrile disease

characterized by abnormalities in homeostasis and increased

capillary leakage that can progress to blood pressure decrease

and hypovolemic shock (DSS) (13). However, most dengue

patients show only flu-like illness, which is very similar to

COVID-19. Therefore, the concurrence of SARS-CoV-2 and

DENV infections has become a serious challenge for public

health and medical management in dengue-endemic areas (14).
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DENV is a positive-stranded RNA enveloped virus (15). It is

composed of three structural proteins, namely, core protein (C),

membrane-associated protein (M) produced as a precursor protein

(prM), and envelope protein (E), and 7 nonstructural proteins

(NSs). Based on the antigenic difference of the E protein, DENV can

be divided into four different serotypes, DENV 1-4. Dengue NS1 is a

glycosylated 48-kDa protein that can be secreted as a hexamer into

the blood circulation during DENV infection. Circulating soluble

NS1 can disrupt endothelial cell integrity and increase endothelial

permeability (16–19). In addition, antibody-dependent

enhancement (ADE) has been proposed to explain why many of

the cases of DHF/DSS occur following secondary infection with a

serotype of DENV different from that causing previous infection.

Based on ADE, preexisting antibodies generated from previous

infection or vaccination do not neutralize secondary infection of

different serotypes, but enhance it, possibly by triggering Fc

receptor-mediated virus uptake. Consequently, more severe

disease may occur (20–22). ADE has been documented not only

in DENV but also other respiratory virus infections, including

SARS-CoV (20–22). Anti-SARS-CoV-2 antibodies could exacerbate

COVID-19 through ADE has been suggested as well (23).

Previously, a computational simulation study revealed that a

monoclonal antibody (mAb) against DENV E could bind to the

SARS-CoV-2 S1-RBD and potentially block human ACE2

receptor binding (24). However, it remains unclear whether

SARS-CoV-2 and DENV cross-reactive antibodies provide

cross-protection against each disease or promote ADE and

increase the risk of disease severity (14). To address this

question, we first demonstrated that antibodies that cross-

reacted with SARS-CoV-2 spike protein and the S1-RBD were

increased in dengue patients’ sera. Furthermore, we purified

anti-S1-RBD IgG from SARS-CoV-2 S1-RBD hyperimmune

rabbit (Rbt) sera and found that it could cross-react with

dengue E and NS1. In addition, anti-S1-RBD IgG could inhibit

DENV infection and block NS1-induced endothelial

hyperpermeability in vitro and prevent DENV-induced

prolonged bleeding time and decreased NS1seral level in mice.

Last, an increase in antibody binding to DENV-related antigens

was also found in some individuals after SARS-CoV-2 infection.

Furthermore, DENV infection in vitro was inhibited in the

presence of COVID-19 patients’ but not healthy controls’ sera.

Thus, our results suggest anti-SARS-CoV-2 antibodies induced

during SARS-CoV-2 infection may interfere with DENV

infection, which should be further evaluated in clinical study.
Materials and methods

Recombinant proteins and peptides

DENV serotype 2 E, prM and NS4B recombinant proteins

were expressed and purified from Escherichia coli (Leadgene
frontiersin.org
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Biomedical Inc., Tainan, Taiwan). SARS-CoV-2 trimeric spike

and nucleocapsid protein purified from HEK293 cells and

human ACE2-Fc recombinant protein purified from CHO

cells were provided by Leadgene company (Cat. No. 63233,

61633 and 63333). The synthetic peptides were customized,

purified and synthesized by Leadgene company. DENV

serotype 2 (strain Thailand/16681/84) NS1 recombinant

protein produced in mammalian HEK293 cells was purchased

from The Native Antigen Company (Oxfordshire, UK).
Human serum

Dengue patient sera were collected from National Cheng

Kung University Hospital (NCKUH) at the acute stage of the

disease during a DENV outbreak in Tainan, Taiwan, in 2015

(25). In addition, sera from 29 healthy donors were included as

negative controls. All serum collections were performed in

accordance with the relevant guidelines and regulations

approved by the institutional review board of NCKUH (IRB

#A-BR-101–140). SARS-CoV-2 antibody positive sera were

purchased from Access Biologicals (Vista, CA), and the

detailed information was shown in the supplementary table of

our previous study (26). According to the manufacturer’s

documentation, the samples were collected in the U.S. in June

2020 from 30 COVID-19 patients (19 belong to the race of

Caucasian, 10 African American, and one unknown) who were

confirmed of infection during March to April 2020. The

commercial COVID-19 patient sera were dispensed in a

Biosafety Level-2 Plus (BSL-2+) laboratory by fully trained

individuals according to the compliance policies of NCKUH.

Dispensed patient sera were inactivated at 56°C for 30 min

before being used in this study.
Cell lines

The Aedes albopictus cell line (C6/36) and baby hamster

kidney cell line (BHK-21), maintained in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal bovine

serum (FBS, HyClone, Logan, UT), were purchased from the

American Type Culture Collection (ATCC, Manassas, VA) and

Japanese Collection of Research Bioresources (Japan),

respectively. The Drosophila melanogaster cell line (S2)

purchased from ATCC was maintained in Schneider’s

Drosophila Medium (SERVA Electrophoresis GmbH,

Heidelberg, Germany) supplemented with 10% FBS. The

human microvascular endothelial cell line (HMEC-1) was

obtained from the Center for Disease Control and Prevention

(CDC, Taiwan) and was cultured in Medium 200 (Thermo

Fisher Scientific, Waltham, MA) supplemented with 10% FBS.

Human monocytic cell line (THP-1) was grown in RPMI 1640

medium with 10% FBS. Except for S2 cells and C6/36 cells,

which were cultured at 27 °C without CO2 incubation and at
Frontiers in Immunology 03
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27 ° C in a 5% CO2 atmosphere, respectively, the other cells were

cultured at 37 °C in a 5% CO2 atmosphere.
Viral stocks

The DENV serotype 2 strain 16681 or 454009A was

propagated in C6/36 cells as previously described (27). To

obtain high titers of DENV, we used a Macrosep Advance

Centrifugal Device (MW cutoff of 30 kDa; Pall Corp., Port

Washington, NY) to concentrate the DENV-containing

medium via centrifugation at 6000×g at 4°C, and the

concentrated DENV was stored below −70°C until use.
Expression and purification of SARS-
CoV-2 S1-RBD recombinant protein

For the expression and purification of SARS-CoV-2 S1-RBD

recombinant protein, SARS-CoV-2 S1-RBD from a.a. 319 to 541

(YP_009724390) was cloned into pMT/BiP/V5-His B plasmid

for the expression in S2 cells (Supplementary Figure 1). In brief,

pMT-S1-RBD, containing 2x strep and 6x histidine, was

transfected into S2 cells and induced with 500 µM CuSO4.

After four days of induction, S1-RBD protein in the

supernatant was purified by Strep-Tactin Superflow Plus

(QIAGEN GmbH, Hilden, Germany). 2.6 mg of S1-RBD

protein were purified from a 500 mL induction medium. The

purity of SARS-CoV-2 S1-RBD from S2 cell was checked using

SDS-PAGE and western blotting with anti-His antibody (Cat.

No. 10411, Leadgene Biomedical Inc.). Human ACE2 binding

ability of the purified SARS-CoV-2 S1-RBD was further

confirmed by its binding to human ACE2-Fc recombinant

protein by ELISA and colocalization with ACE2 in human

ACE2 expressing Caco-2 cells using immunofluorescence

confocal microscopy (data not shown).
Immunization and antibody purification

For the preparation of anti-S1-RBD hyperimmune sera, two

Rbt were primed and challenged on days 0, 14, and 28 with

SARS-CoV-2 S1-RBD recombinant protein (250 µg for each

Rbt) emulsified with incomplete Freund’s adjuvant (Sigma-

Aldrich, St. Louis, MO). Sera were collected 7 days after the

final immunization and stored at -20°C until use. The above

immunization procedures were performed by Leadgene

company. For the purification of Rbt IgG, the collected Rbt

sera (50 mL) were heat inactivated at 56°C for 30 min. After

fivefold dilution with PBS and filtering with a 0.45 µm syringe

filter, IgG in the Rbt immune sera was purified by Pierce Protein

G Plus Agarose (Thermo Fisher Scientific) and eluted with 0.1 M

glycine-HCl (pH 2.7) and immediately neutralized with

neutralizing buffer (1 M Tris-HCl, pH 9.0). The purified Rbt
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IgG was dialyzed against PBS at 4°C using SnakeSkin Dialysis

Tubing with a 10 kDa molecular weight (MW) cutoff (Thermo

Fisher Scientific). To obtain anti-S1-RBD IgG, S1-RBD affinity

column was prepared by conjugation SARS-CoV-2 S1-RBD

recombinant protein (5 mg) with 2 mL of NHS-activated

Sepharose beads (Cytiva, Marlborough, MA) and blocked by

ethanolamine followed the instruction provided by the

manufacture. Purified Rbt IgG was incubated with S1-RBD-

conjugated affinity column and eluted as described above to

obtain anti-S1-RBD IgG. Those did not bind to SARS-CoV-2 S1-

RBD affinity column after three rounds of incubation were also

collected as flow-through Rbt IgG. In 50 mL of S1-RBD

immunized rabbit serum, approximately 400 mg Rbt IgG

could be purified from Protein G Plus Agarose. In addition,

about 5.8 mg of anti-S1-RBD IgG, could be purified from 400 mg

of these Rbt IgG by SARS-CoV-2 S1-RBD affinity column.
Enzyme-linked immunosorbent assay

To investigate whether the antibodies could bind to the

targeted proteins, indirect ELISA was performed. Briefly, 2 µg/

mL proteins were coated onto a high-binding 96-well ELISA

plate (50 µL/well) overnight at 4°C. After blocking with 1% BSA

in PBS (200 µL/well), the samples (anti-S1-RBD IgG, anti-

DENV NS1 mAb/pAb, or patient/healthy donor anti-sera)

were serially diluted with 1% BSA and incubated in wells for

1 h at 37°C. The bound antibodies were detected with anti-Rbt/

mouse IgG-horseradish peroxidase (HRP) antibodies (1:10,000)

(Leadgene Biomedical Inc.) or anti-human IgG-HRP antibody

(1:4000) (Thermo Fisher Scientific) (50 µL/well) for 1 h at 37°C.

Wells were washed three times with PBST (PBS containing

0.01% Tween 20, 250 µL/well) between each step. For color

development, TMB (50 µL/well) was added, the plates were

incubated for 10-15 min, and the reaction was stopped by

addition of 2N H2SO4 (50 µL/well). The absorbance was read

at OD 450 nm by a VersaMax microplate reader (Molecular

Devices, Sunnyvale, CA). To investigate whether a peptide could

inhibit antibody binding to the targeted proteins, competitive

ELISA was performed. Briefly, antibodies with the indicated

concentration were preincubated with the serially diluted

peptide in PBS with 1% BSA before incubating with protein-

coated ELISA plate. The bound antibodies were detected with an

anti-Rbt or ant-mouse IgG-HRP antibody. The color

development was performed as described above.
Western blotting

Trimeric spike protein and pseudovirus or concentrated

supernatant of DENV were prepared under reducing condition

prior to loading onto 10% SDS–PAGE gels for separation. The

separated proteins were transferred onto a PVDF membrane

(Pall, Ann Arbor, MI). The membrane was blocked with 5%
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skim milk in TBST (0.05% Tween 20 in Tris-buffered saline) and

incubated with anti-S1-RBD IgG, anti-E poly IgG (Genetex), or

anti-NS1 monoclonal IgG (33D2) overnight. To detect the

bound IgG, the membrane was washed with TBST, followed

by addition of a 1:10,000 dilution of HRP-conjugated anti-Rbt or

anti-mouse immunoglobulin antibody (Leadgene). The bound

HRP-conjugated antibodies were detected using WesternBright

ECL (Advansta, San Jose, CA). The chemiluminescent signals

were detected using an Image Quant LASS 4000 (GE Healthcare,

Pittsburgh, PA).
SARS-CoV-2 pseudovirus
neutralization test

ACE2-overexpressing HEK293 cells (HEK293-ACEO/E)

provided by Leadgene company were seeded on 96-well plates

(3 × 104cells/well) 18-24 h before infection. Antibodies with the

indicated concentration were preincubated with 50 TCID50 of

SARS-CoV-2 spike-expressing pseudovirus (lenti package with a

nano luciferase reporter gene, which was kindly provided by

Prof. Jen-Ren Wang’s laboratory) (28) for 1 h and added to the

HEK293-ACEO/E seeding plate. After 18-24 h, the infection rate

was evaluated using a Nano-Glo Luciferase Assay System

(Promega, Madison, WI), and the luciferase signal was

detected by a SpectraMax iD5 (Molecular Devices).
Immunofluorescence assay

C6/36 cells or DENV (strain 454009A)-infected C6/36 cells

were seeded for 16-18 h and fixed with 4% paraformaldehyde for

15 min. Later, the cells were washed with PBS and blocked with

SuperBlock™ Blocking Buffer (Thermo Fisher Scientific) for 1 h.

Anti-S1-RBD IgG (1 µg/mL) and different anti-DENV mAbs

such as anti-E mAb (50-2), anti-prMmAb (70-21), and anti-NS1

mAb (33D2) (1 µg/mL) were diluted with PBS and incubated

with the cells overnight at 4°C. After being washed with PBS, the

cells were incubated with Alexa 488-conjugated goat anti-mouse

IgG (1:1000) and Alexa 594-conjugated goat anti-Rbt IgG

(1:1000) (Invitrogen, Carlsbad, CA) in PBS for 1 h. Finally, the

secondary antibodies were washed away, and the cells were

mounted on the slide with DAPI Fluoromount-G mounting

medium (Thermo Fisher Scientific). The prepared slides were

visualized by inverted fluorescence microscope and FV3000-

Confocal laser scanning microscope (Olympus, Japan).
Epitope mapping using a phage-display
random peptide library

To determine the epitopes recognized by anti-S1-RBD IgG,

we used a phage-display random peptide library kit (PhD 12-

mer; New England Biolabs, Ipswich, MA). Following the
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manufacturer’s suggestions, antibody (10 nM) was captured by

protein A/G magnetic beads (Dynabeads; Invitrogen) for

30 min, followed by washing with 1 mL of Tris-buffered saline

containing 0.5% Tween 20 (TBST). Phages (1 × 1011, 10 µL)

from the original library were incubated with antibody

complexes for 20 min, followed by washing 10 times with

1 mL of TBST. Negative selection with control Rbt IgG was

performed at every round of panning. Unbound phages from

negative selection were further incubated with anti-S1-RBD IgG

complexes and washed as described above. Bound phages were

eluted with glycine buffer (pH 2.2) and immediately neutralized

using 1M Tris-HCl (pH 9.0), followed by the amplification for

subsequent rounds of panning. After three rounds of panning,

the specific binding of positive single phage clones against anti-

S1-RBD IgG was confirmed by sandwich ELISA using anti-S1-

RBD IgG coated ELISA plates and an HRP-conjugated anti-M13

mouse mAb (Zymed Laboratories, South San Francisco, CA).

The DNA sequences of isolated phages were analyzed using

extracted single-stranded DNA (ssDNA) according to the

manufacturer’s instructions.

Fluorescent focus assay and focus
reduction neutralization test

To determine DENV titer, BHK (1×104/well) cells were

seeded on 96 well plate for 16-18 h. Ten-fold serial dilutions

of the virus stock or the sample containing DENV were added

and incubated for 2 h at 37 °C (100 µL/well). For the FRNT, the

antibodies (anti-S1-RBD IgG, control Rbt IgG, diluted COVID-

19 patients’ or healthy donors’ sera) were preincubated with

DENV serotype 2 strain 16681 (MOI=0.001) for 1 h before

incubation. Later, the monolayers were overlaid with DMEM

containing 2% FBS and 1% methylcellulose (100 µL/well), and

the plates were incubated at 37 °C for another 4 days. The BHK

cells were then fixed with 4% paraformaldehyde for 15 min at

room temperature (RT). Later, the cells were washed with PBS.

Virus foci were stained with an anti-NS1 antibody (mAb 33D2)

(5 µg/mL) overnight at 4°C. After being washed with PBS, the

cells were incubated with Alexa 488-conjugated goat anti-mouse

IgG (Invitrogen) (1:1000) in PBS for 1 h. Finally, the secondary

antibodies were washed away, and plaques were visualized using

a DP72 fluorescence microscope (Olympus, Tokyo, Japan). The

number of focus counted in the entire well was converted into

the virus titer or infection rate (%).

Antibody-dependent enhancement

To investigate whether anti-S1-RBD IgG could cause ADE

during DENV infection, THP-1 cells were infected with DENV

serotype 2 strain 16681 (MOI=10) with or without the indicated

antibody. After 72 h, the supernatants were collected and viral

titers were further calculated using FFA in BHK cells, as

mentioned above.
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Transwell permeability assay

HMEC-1 cells (1 × 105) were seeded on the upper chambers

of Transwell plates (0.4 µm; Corning, The Netherlands) to form

a monolayer. NS1 (2 µg/mL) was preincubated with the

indicated concentrations of different antibodies for 1 h at 37°C

before incubation with the HMEC-1 monolayer for another

24 h. To determine the permeability of the HMEC-1 monolayer,

the upper chamber was reconstituted with 300 µL of serum-free

medium, which contained 3 µL of streptavidin-HRP (R&D

Systems, Minneapolis, MN). After 15 min, 50 µL of the

medium in the lower chamber was transferred into a 96-well

plate, and 50 µL of TMB substrate (R&D Systems) was added to

the wells for color development. The reaction was stopped by

addition of 50 µL of 2N H2SO4. The absorbance at 450 nm was

measured by a VersaMax microplate reader.
Mouse model of DENV infection

The animal study was performed in compliance with the

Guide for the Care and Use of Laboratory Animals (The Chinese-

Taipei Society of Laboratory Animal Sciences, 2010) and were

approved by the Institutional Animal Care and Use Committee

(IACUC) of NCKU under the number IACUC 109309. Six- to

seven-week-old STAT1-deficient C57BL/6 (STAT1-/- B6) mice

was used to infect DENV as previously described (29). The mice

were maintained on standard laboratory food and water. To

evaluate the protective effect provided by anti-S1-RBD IgG in

vivo, STAT1-/- mice were intraperitoneally (i.p.) injected with

mAb 33D2, control Rbt IgG, anti-S1-RBD IgG (150 µg/mouse) or

PBS as a control 1 day before infection. Later, the mice were

intravenously (i.v.) injected with concentrated DENV strain 16681

(1×107 PFU/mouse) or concentrated C6/36 medium as a control.

In addition, mAb 33D2, control Rbt IgG or anti-S1-RBD IgG (150

µg/mouse) was i.p. administered 24 h after DENV inoculation.

Three days after DENV infection, the tail bleeding time was tested,

and mice were sacrificed to determine NS1 level in the blood by

quantitative NS1 ELISA.

Bleeding time

Bleeding time was measured by cutting off 3–5 mm from the

tip of the tail of the mouse. The duration of bleeding was recorded

by monitoring the blood dripping onto filter paper every 30 s until

the diameter of the blood droplet was smaller than 0.5 mm.

NS1 quantitative ELISA

To quantify the NS1 levels, an in-house NS1 sandwich

ELISA was performed. Briefly, 5 µg/mL anti-NS1 mAb 31B2

was coated onto 96-well plates at 4°C overnight. After blocking

with 1% BSA in PBS for 1 h, mouse sera (1:4 dilutions) were
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coincubated with 2.5 µg/mL biotin-conjugated anti-NS1 mAb

33D2 at 37°C for 1 h. An HRP-labeled streptavidin solution

(1:40) (R&D Systems) was added to the wells, which were

incubated at RT for 40 min. After washing the wells three

times with PBST (0.05% Tween 20 in PBS), TMB was added

to the wells for color visualization. Following the addition of stop

solution (2N H2SO4), the absorbance at 450 nm was read by a

VersaMax microplate reader.
Statistical analysis

All data were analyzed by GraphPad Prism version 5.0

(GraphPad Software Inc., CA). The in vitro and in vivo data

are expressed as the means ± standard deviations (SDs) from

three independent experiments. Student’s t test was used to

analyze the differences between two groups One-way ANOVA

with a Kruskal–Wallis comparison test was used to analyze the

differences among multiple groups. P values <0.05 were

considered statistically significant.
Results

Antibodies against the SARS-CoV-2 spike
protein in archived dengue patient sera

A Previous study revealed that the anti-DENV E mAb could

bind to the SARS-CoV-2 S1-RBD in a computational simulation

(24). Here, to investigate whether antibodies in dengue patient sera

could cross-react with SARS-CoV-2 spike proteins, SARS-CoV-2
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recombinant proteins (trimeric spike and S1-RBD) were coated on

ELISA plates and bound IgG was detected. The results showed that

dengue patient sera contain more antibodies that could cross-react

with SARS-CoV-2 proteins than healthy donor sera. Furthermore,

the binding of antibodies to SARS-CoV-2 S1-RBD was much

significant increase than to the trimeric spike protein in dengue

patients as compared with healthy donors (P=0.0005 vs.

P=0.0483) (Figure 1).
Anti-S1-RBD IgG purification
and characterization

To further understand the antigenic cross-reactivity between

the SARS-CoV-S1 RBD and DENV antigens, two Rbts were

immunized with S1-RBD recombinant protein. Anti-S1-RBD

IgG in the Rbt immune sera was purified by protein G agarose

followed by S1-RBD-conjugated sepharose beads (Figure 2A).

The binding ability of antibodies, including anti-S1-RBD IgG,

IgG of S1-RBD-immunized Rbt serum, flow-through Rbt IgG,

and normal Rbt IgG to the S1-RBD was compared using an

indirect ELISA. The results showed that at the same

concentration, the binding ability of anti-S1-RBD IgG was the

highest, followed by IgG of S1-RBD-immunized Rbt serum,

flow-through Rbt IgG, and normal rabbit IgG which showed

no binding activity to the S1-RBD at all (Figure 2B). Since flow-

through Rbt IgG was purified from the same immune Rbt sera, it

was used as a control Rbt IgG (cRbt IgG) to compare with anti-

S1-RBD IgG for later experiments. Next, to evaluate whether

anti-S1-RBD IgG could recognized the RBD in native spike

proteins, the binding ability of anti-S1-RBD IgG to the trimeric
A B

FIGURE 1

The presence of anti-SARS-CoV-2 antibodies in dengue patients’ sera. Recombinant SARS-CoV-2 proteins (A) trimeric spike and (B) S1-RBD
were coated on ELISA plates. The bound antibodies were detected using an indirect ELISA. *P < 0.05, ***P < 0.001. (n = 32 for dengue patient;
n=16 for healthy donor).
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spike protein and a SARS-CoV-2 pseudovirus was evaluated

using Western blotting analysis (Figure 2C) and indirect ELISA

(Figure 2D, E). The results showed that anti-S1-RBD IgG could

recognize both the trimeric spike proteins and the SARS-CoV-2

pseudoviruses in both denatured and native forms. In addition,

anti-S1-RBD IgG also showed neutralization activity against

SARS-CoV-2 pseudovirus infection in a dose-dependent

manner with an IC50 (the half maximal inhibitory

concentration) value of 50 µg/mL (Supplementary Figure 2).
Anti-S1-RBD IgG cross-reacts with
DENV proteins

Next, to investigate whether anti-S1-RBD IgG could cross-

react with DENV proteins, the cross-reactivity of IgG from S1-

RBD-immunized Rbt serum and anti-S1-RBD IgG to different

DENV proteins, including E, PrM, NS1, and NS4B was tested.

We found that 1 µg/mL of anti-S1-RBD IgG could cross-react

with DENV E, prM, and NS1, particularly DENV E, which had

the strongest cross-reaction compared to that of the others
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(Figure 3A). However, no cross-reactivity to DENV NS4 was

observed. Since all these recombinant proteins contained 6X

His-tag, these results ruled out that the bindings of anti-S1-RBD

IgG to DENV E, PrM, and NS1 were due to His-tag. Purified IgG

from S1-RBD-immunized Rbt sera could also bind to DENV E,

prM, and NS1, however, much higher doses were required as

compared with what we found in anti-S1-RBD IgG (25 vs. 1 µg/

mL) (Figure 3A; Supplementary Figure 3). In addition, the cross-

reactions of anti-S1-RBD IgG to native DENV proteins were also

confirmed in DENV-infected C6/36 cells. As shown in

Figure 3B, anti-S1-RBD IgG could cross-react with DENV-

infected C6/36 cells but not the C6/36 mock infection control

cells. Similar staining patterns of anti-S1-RBD IgG and anti-

DENV E was noticed. We, therefore, used immunofluorescence

confocal microscopy to further visualize the colocalization of

anti-S1-RBD IgG and DENV E as shown in Figure 3C.

Moreover, the cross-reactions of anti-S1-RBD IgG to DENV

antigens were also confirmed in the concentrated supernatant of

DENV by western blotting (Supplementary Figure 4). The

results showed that both E and NS1 proteins of DENV were

recognized by anti-S1-RBD IgG and the band of E protein

recognized by anti-S1-RBD IgG was much stronger than the
A

B

D E

C

FIGURE 2

SARS-CoV-2 S1-RBD immunization and anti-S1-RBD IgG purification. (A) The flow chart of anti-S1-RBD IgG purification from anti-S1-RBD
hyperimmune rabbit sera by protein G and RBD-conjugated affinity columns. (B) The binding ability of anti-S1-RBD IgG to the S1-RBD was
detected by an indirect ELISA using an anti-Rbt IgG-HRP antibody. (C) The binding ability of anti-S1-RBD IgG to trimeric spike protein (lane 1)
and SARS-CoV-2 pseudovirus (lane 2) was detected by Western blotting and by indirect ELISA (D, E). The experiments were repeated two or
three times with similar results, data from a single representative experiment was shown.
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band of NS1 protein. These results suggest that most of the anti-

S1-RBD IgG recognized E protein.
Identification of the sequences/epitopes
recognized by Anti-S1-RBD IgG using a
phage-displayed 12-mer random peptide
library kit

To further identify the epitopes recognized by anti-S1-RBD

IgG and investigate the antigenic similarity between the SARS-

CoV-2 S1-RBD and DENV E, a phage-displayed 12-mer library

kit was used. The detailed procedure was described in the

materials and methods, and the workflow was presented in

Supplementary Figure 5A. In brief, 1011 pfu of phages were

negatively selected by flow-through Rbt IgG, followed by positive

selection using anti-S1-RBD IgG. After three rounds of panning,

fourteen single phage colonies were selected and the binding

ability of these phages to anti-S1-RBD IgG were confirmed by a

sandwich ELISA (Supplementary Figure 5B). The DNA of the

selected phage was analyzed by Sanger sequencing and the
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nucleotide sequence encoding the displayed 12-mer peptide

was further converted into the amino acid sequence. Twelve of

fourteen (85.7%) phages showed an amino acid sequence of

TQFEKASVNTTR (phage epitope 1), and two of fourteen

(14.3%) showed an amino acid sequence of RDISIVPWNIRT

(phage epitope 2) (Supplementary Figure 5C). This result

suggested that most of the anti-S1-RBD IgG recognized the

sequence of TQFEKASVNTTR (phage epitope 1).
The peptide TQFEKASVNTTR
competitively reduces Anti-S1-RBD IgG
binding to the SARS-CoV-2 S1-RBD and
DENV E protein

Since the peptide TQFEKASVNTTR was recognized by

most of the anti-S1-RBD IgG, we further confirmed whether

the peptide TQFEKASVNTTR contributed to the cross-

reaction of anti-S1-RBD IgG to DENV E by the competitive

ELISA (Figure 4). The results showed that the binding ability of
A

B
C

FIGURE 3

Anti-S1-RBD IgG cross-reacts with DENV proteins. (A) Recombinant DENV proteins, including envelope (E), precursor membrane (prM), and
nonstructural proteins (NS1, NS4B), were coated in an ELISA plate. The cross-reactivity of anti-S1-RBD IgG to different DENV antigens was
tested by an indirect ELISA. (B) The colocalization of anti-S1-RBD IgG (detected by goat-anti-Rbt-594) and different anti-DENV mAbs (detected
by goat anti-mouse Alexa 488-conjugated antibodies) in DENV-infected C6/36 cells was determined by an immunofluorescent assay and
visualized by Flourescence microscope DP72 (Olympus, Japan). (C) The colocalization of anti-S1-RBD IgG and anti-DENV E mAb were
visualized by an FV3000-confocal laser scanning microscope (Olympus, Japan). The experiments were repeated two or three times with similar
results, data from a single representative experiment was shown.
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anti-S1-RBD IgG to the SARS-CoV-2 S1-RBD and DENV E

protein but not prM nor NS1 was significantly decreased by the

TQFEKASVNTTR peptide in a dose-dependent manner

(Figure 4A). On the other hand, the RDISIVPWNIRT

peptide showed no inhibition on the binding of anti-S1-RBD

IgG to the SARS-CoV-2 S1-RBD, DENV E, prM, or NS1

proteins. In addition, we also aligned the phage epitope

(TQFEKASVNTTR) and SARS-CoV-2 S1-RBD protein

sequence using BioEdit. The result showed that the sequence

of amino acids (a.a.) 343-347 (FNATR) in the S1-RBD protein

is similar to part of the sequence of phage epitope 1 (VNTTR)

(Figure 4B). The amino acid positions 343-347 in the S1-RBD

protein structure (PDB ID: 6M0J) was found to be located on

the surface of the S1-RBD protein structure using PyMOL

(Figure 4C). We further analyzed the epitope of DENV E

protein recognized by anti-S1-RBD IgG using PyMOL

visualization (DENV E protein structure, PDB ID: 1OAN)

and sequence alignment by BioEdit (Figure 4B). The result

suggested that anti-S1-RBD IgG might cross-react to DENV E

protein a.a. 64-69, which are also located on the E protein

surface (Figures 4B, C).
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Anti-S1-RBD IgG inhibits DENV infection
and NS1-induced endothelial
hyperpermeability without causing ADE
in vitro

To investigate whether anti-S1-RBD IgG could inhibit

DENV infection, FRNT assay was used. The results showed

that anti-S1-RBD IgG could decrease DENV infection in vitro in

a dose-dependent manner. Significant inhibition of DENV

infection was found when the concentration of anti-S1-RBD

IgG reached to 20 µg/mL, while 20 µg/mL cRbt IgG did not

(Figure 5A). In addition, since anti-S1-RBD IgG could bind to

DENV NS1 (Figure 3A), a critical viral protein which could

directly induce vascular leak (30–32), we investigated whether

anti-S1-RBD IgG could block NS1-induced hyperpermeability

in endothelial cells (HMEC-1) using Transwell assay.

Surprisingly, the endothelial hyperpermeability induced by 2

µg/mL DENV NS1 could be blocked by 10 µg/mL anti-S1-RBD

IgG, while 20 µg/mL cRbt IgG could not (Figure 5B). Anti-NS1

mAb 33D2, a homemade mAb (5 µg/mL) which can block NS1-

induced hyperpermeability as previously described (33) was
A

B

C

FIGURE 4

Epitope mapping of anti-S1-RBD IgG binding to DENV E protein. (A) Anti-S1-RBD IgG (0.125 mg/ml) was preincubated with a 2-fold dilution of
synthetic free peptide of phage epitope 1 (TQFEKASVNTTR), and the binding ability to DENV proteins was detected by a competitive ELISA.
(B) Alignment of the phage epitope 1 (TQFEKASVNTTR) with the SARS-CoV-2 S1-RBD and DENV envelope protein. *: identical,::conservative
amino acid. (C) The positions of the consensus protein sequence in the structures of SARS-CoV-2 S1-RBD or DENV envelope protein are shown
in red or green, respectively.
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used as the positive control in this experiment. On the other

hand, since ADE is a general concern in dengue infection, we

further confirmed whether anti-S1-RBD IgG might cause ADE

in DENV infection using human monocytic cell line THP-1 cells

which express Fc receptor on their surface. Anti-prM mAb

(clone 70-21) was used as a positive control for ADE (34). The

result showed that DENV (MOI=10) could infect THP-1 cells

only in the presence of anti-prM mAb (0.15-2.5 µg/mL).

Twofold serial dilutions of anti-S1-RBD IgG, control mouse

(cm) IgG, or cRbt IgG from 10 µg/mL were tested for their ability

to enhance DENV infection of THP-1 cells. However, no

enhancement of DENV infection in THP-1 cells was found in

any concentrations of these antibodies we tested (Figure 5C).
Possible epitope of DENV NS1
recognized by anti-S1-RBD IgG

Since anti-S1-RBD IgG, like anti-NS1 mAb 33D2, can block

NS1-induced endothelial hyperpermeability and the epitope

recognized by the mAb 33D2 is known (33). We compared

the sequences recognized by the mAb 33D2 and the S1-RBD and

found sequence homology between NS1 (a.a. 115-119) and the
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S1-RBD (a.a. 376-380) (Figure 6A). It was further observed that

only the mAb 33D2 but not other anti-NS1 mAb (2E8, 19-5.

DN5C6) (30) and anti-NS1 polyclonal antibodies (pAb) could

cross-react with the SARS-CoV-2 S1-RBD (Figure 6B).

Furthermore, the results from competitive ELISA showed that

mAb 33D2 binding to the SARS-CoV-2 S1-RBD was blocked in

the presence of 33D2 recognized NS1 peptide (a.a. 109-122 of

NS1, TELKYSWKTWGKAK) or RBD peptide (a.a. 367-381 of

the SARS-CoV-2 S1-RBD, VLYNSASFSTFKCYG) but not

phage epitope 1 (TQFEKASVNTTR) in a dose-dependent

manner (Figure 6C), indicating there is a potential antigenic

similarity between DENV NS1 and SARS-CoV-2 S1-RBD which

can be recognized by anti-S1-RBD IgG.
Anti-S1-RBD IgG protects mice from
DENV infection-induced prolonged
bleeding time and decreases NS1 level in
mouse sera

To evaluate the protective effect provided by anti-S1-RBD

IgG against DENV infection in vivo, we evaluated DENV

infection-induced hemorrhage in STAT1-/- mice (Figure 7A)
A B

C

FIGURE 5

Influence of anti-S1-RBD IgG on DENV infection in vitro. (A) The neutralizing ability of different concentrations of anti-S1-RBD IgG or cRbt IgG
against DENV infection was tested by a FRNT assay. (B) The permeability of HMEC-1 cells was measured by a Transwell assay. Different
concentrations of antibodies as indicated were preincubated with DENV recombinant NS1 (2 µg/mL). The anti-NS1 mAb 33D2 (5 µg/mL) was
used as a positive control. (C) ADE assay was performed in DENV infection (MOI=10) of THP-1 cells. Anti-S1-RBD IgG, an anti-prM mAb, control
mouse (cm) IgG or control rabbit (cRbt) IgG (0.15 µg/mL) were incubated with DENV before infection. The infection of the cells was observed
by immunofluorescent microscopy (left) and measured by FFA to determine viral titer (right). An anti-prM mAb (clone 70-21) was used as a
positive control. Viral titer was un-detectable (ud) in all groups except in anti-prM mAb-treated group. **P < 0.01, ***P < 0.001.
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(35). Mouse injected with the mAb 33D2, which can protect

mice from DENV infection, was used as a positive control (34).

In addition, mice injected with PBS or cRbt IgG were used as a

negative control. The results showed that injection of mice with

cRbt IgG 1 day before and 1 day after DENV infection induced

bleeding time prolong and increased NS1 level in mouse sera as

compared to those in mice injected with PBS without DENV

infection. However, injection of mice with anti-S1-RBD IgG 1

day before and 1 day after DENV infection protected mice from

DENV-induced prolonged bleeding time (Figure 7B) and

reduced NS1 level in mouse sera as good as mouse injected

with mAb 33D2 (Figure 7C). DENV titers in the sera of these

mice after 3 days of infection were also evaluated by FFA using

BHK cells; however, the DENV titers in these mice sera were too

low to be detected.
Antibodies against DENV in COVID-19
patients’ sera

Lastly, the COVID-19 patients’ sera were used to investigate

whether the cross-reaction of anti-S1-RBD IgG to DENV E

protein can hinder DENV infection in vitro. As shown in

(Figure 8A), the levels of antibodies against the SARS-CoV-2

S1-RBD recombinant protein were significantly increased in

COVID-19 patients’ sera. The levels of antibodies binding to

DENV E and the synthetic peptide of phage epitope 1 in COVID

patients’ sera were also higher than those in healthy donors’ sera,

even though, no statistical difference was found in COVID

patients as compared to that in healthy donors (Figure 8B, C).

To further investigate whether antibodies in COVID-19 patients’
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sera could interfere with DENV infection, the neutralizing ability

of sera from COVID-19 patient against DENV infection was

tested by an FRNT assay. Surprisingly, the diluted (1:80)

COVID-19 patients’ sera could significantly reduce DENV

infection with a MOI of 0.001 in the FRNT system

(Figure 8D). In fact, COVID patients’ sera with different

dilution factors, from 1:20 to 1:160, showed neutralizing ability

against dengue infection (data not shown). Furthermore, the

neutralizing ability of sera from COVID-19 patients against

DENV infection could be blocked in the presence of S1-RBD

protein, but not SARS-CoV-2 nucleocapsid protein

(Supplementary Figure 6). These results suggested that

antibodies recognized S1-RBD may involve in the inhibition of

DENV infection by COVID-19 patients’ sera.
Discussion

In this study, we found a significant increase in antibody

binding to SARS-CoV-2 trimeric spike and S1-RBD proteins

from archived dengue sera collected from the 2015 dengue

outbreak in Tainan city compared to that in healthy donor

sera. Because these sera were collected predating the COVID-19

outbreak, we concluded that DENV infection may induce the

production of SARS-CoV-2 cross-reactive antibodies and that

most of these antibodies recognized the S1-RBD of spike protein.

To further understand the antigenic cross-reactivity between the

SARS-CoV-S1 RBD and DENV antigens, SARS-CoV-2 S1-RBD

recombinant protein was used to immunize rabbits. Anti-S1-

RBD IgG was purified from SARS-CoV-2 S1-RBD

hyperimmune rabbit sera by both protein G and S1-RBD-
A

B

C

FIGURE 6

Monoclonal antibody against NS1 (33D2) cross-reacts with the SARS-CoV-2 S1-RBD. (A) Alignment between the epitope of DENV NS1
recognized by mAb 33D2 and SARS-CoV-2 S1-RBD protein sequence. *: identical;::conservative amino acid. (B) The binding of different NS1
antibodies to SARS-CoV-2 S1-RBD was measured by an indirect ELISA. (C) Competitive ELISA of mAb 33D2 binding to SARS-CoV-2 S1-RBD in
the presence of different peptides. Anti-DENV NS1 mAb 33D2 (0.625 µg/ml) was preincubated with 2-fold dilutions of synthetic peptide
(TQFEKASVNTTR), RBD peptide (VLYNSASFSTFKCYG), and 33D2-recognized NS1 peptide. The binding ability of the mAb 33D2 against the SARS-
CoV-2 S1-RBD was detected by anti-mouse IgG-HRP antibodies. The experiments were repeated two or three times with similar results, data
from a single experiment was presented.
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conjugated affinity columns. These affinity-purified anti-S1-

RBD IgG could recognize not only S1-RBD recombinant

protein but also the trimeric spike protein and SARS-CoV-2

pseudovirus by ELISA and Western blotting analysis, indicating

it could recognize S1-RBD in different native and denatured

forms. In addition, anti-S1-RBD IgG could neutralize SARS-

CoV-2 pseudovirus infection, even though the maximum

inhibition was only about 50% at concentration of 50 µg/mL.

Most importantly, these anti-S1-RBD IgG could cross-react with

DENV recombinant proteins (including E, NS1, and PrM),

concentrated dengue viral supernatant, and DENV-infected

cells using different experimental approaches (including

ELISA, western blotting, and IFA). Previously, antibodies in

COVID-19 patient sera that can cross-react with DENV E and

NS1 proteins have been reported (8, 11). In addition, possible

similarities between SARS-CoV-2 epitopes in the HR2 domain

of the S2 subunit of spike protein and the dengue E protein have

been revealed by in-silico analysis (11). However, no experiment

has been performed to prove that antigenic similarity between

SARS-CoV-2 and DENV indeed can induce antibodies cross-

react with each other. In this study, we are the first to

demonstrate that immunization with SARS-CoV-2 S1-RBD

indeed could induce DENV cross-reactive SARS-CoV-2 S1-

RBD specific antibodies.
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The results of dengue patients’ sera from this study also

confirmed previous reports that archived dengue patient sera

prior to the pandemic of 2019 SARS-CoV-2 contain antibodies

which can cross-react with SARS-CoV-2. These SARS-CoV-2

cross-reactive antibodies in dengue patients can cause false-

positive SARS-CoV-2 serology results (7, 36). Since the clinical

and laboratory features of COVID-19 and dengue can be very

similar, potential misdiagnosis between COVID-19 and dengue

may arise if only rapid serological tests are used in dengue

endemic regions (10, 37, 38). The misdiagnosis of both diseases

will have serious consequences for both patient treatment and

public health control. Therefore, in addition to antibody

detection, antigen detection and RT–PCR to detect the viral

genome should be performed to confirm the diagnosis.

Currently, the impact of antibody cross-reactivity with

SARS-CoV-2 and DENV on the severity of both diseases in

patients is still controversial. It is unclear whether antibodies

induced by the antigenic cross-reactivity between DENV and

SARS-CoV-2 can provide protective immunity overlap between

these two diseases or worsen the disease through ADE. A recent

study showed that previous SARS-CoV-2 infection may increase

the risk of severe dengue (39). However, dengue fever might

follow a less severe course, has also been found in children with

recent SARS-CoV-2 infection (40). In these children, a trend
A

B C

FIGURE 7

Anti-S1-RBD IgG protects mice from DENV infection-induced pathogenesis. (A) Anti-DENV NS1 (33D2), control Rbt IgG, and anti-S1-RBD IgG
antibodies (150 µg/mouse) were intraperitoneally (i.p.) injected into STAT1-deficient C57BL/6 (STAT1-/- B6) mice, and one day later, 1 × 107 pfu/
mouse DENV was intravenously (i.v.) injected into the mice. On day one post-infection, the mice were i.p. injected with 150 µg of antibodies.
(B) The tail bleeding time was tested on day 3 postinfection. (C) The NS1 level in the sera was determined by an NS1 quantitative ELISA [n = 3 for
medium control, control Rbt IgG, and anti-S1-RBD IgG, n = 1 for anti-DENV NS1 antibody (33D2)]. *P < 0.05; Kruskal–Wallis ANOVA.
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toward a lower incidence of acute kidney injury and fewer organ

dysfunctions has been reported. On the other hand, previous

dengue infection may also increase the risk of severe COVID-19

due to cross-reactive non-neutralizing antibodies (41). To make

the situation more complex, coinfection of SARS-CoV-2 and

DENV is a significant public health problem, especially in

dengue endemic areas. Therefore, the bidirectional impact of

protection or ADE in COVID-19 and dengue is a growing

concern (42, 43). In this study, we found that anti-S1-RBD

IgG could inhibit DENV infection in BHK cells and DENVNS1-

induced endothelial hyperpermeability in HMEC-1 cells. No

ADE of DENV infection in THP-1 cells was found. Furthermore,

these antibodies could reduce prolonged bleeding time and

decrease NS1 seral level in DENV-infected mice. Therefore,

our results suggest that SARS-CoV-2 S1-RBD-induced DENV

cross-reactive antibodies may hinder dengue pathogenesis.

Four mAbs against DENV E that can neutralize DENV

infection are predicted to bind to the S1-RBD, which is crucial

for interaction with ACE2, based on in silico simulation (24). It is
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known that antibodies bound to E domain III (EDIII) are the

most potent blockers of DENV (44). Another study also

concluded that human mAbs recognizing EDIII, the EDI/EDII

hinge, the E-dimer epitope, or a quaternary epitope involving

EDI/EDII/EDIII are more potently neutralizing than antibodies

recognizing the fusion loop (FL, 98–109 residues) of EDII (45).

In this study, we used a phage-displayed random peptide library

and identified that DENV E amino acid residues 64-69 were

probably recognized by anti-S1-RBD IgG. Since anti-S1-RBD

IgG could neutralize DENV infection only at low MOIs, residues

64-69 may represent a weak neutralizing epitope. It is known

that N-linked glycans at Asn67 of DENV E dimer can bind to the

carbohydrate recognition domain of DC-SIGN (46)., which are

crucial for DENV binding and infection of cells (47). Therefore,

we suspected that anti-S1-RBD IgG may interfere with the

interaction between DENV E dimer and DC-SIGN, leading to

the inhibition of DENV infection.

Based on the results of a competitive ELISA, the peptide

TQFEKASVNTTR could inhibit only anti-S1-RBD IgG binding

to the E protein, whereas it could not inhibit anti-S1-RBD IgG

cross-reacting with prM or NS1. It is possible that the majority of

the anti-S1-RBD IgG cross-reacted with DENV E. Therefore, the

peptide (TQFEKASVNTTR) was identified by the phage-displayed

random peptide library. Due to that, the epitope recognized by NS1

or prM cross-reactive anti-S1-RBD IgG could not be identified by

this method. Since NS1 plays important roles in dengue

pathogenesis (48, 49) and anti-S1-RBD IgG could also inhibit

NS1-induced endothelial hyperpermeability, we tested the cross-

reactivity of a few anti-NS1 mAbs with a SARS-CoV-2 S1-RBD

protein-coated ELISA. Surprisingly, we found that only mAb 33D2

but not other anti-NS1 antibodies could cross-react with the SARS-

CoV-2 S1-RBD. Since the epitope recognized by mAb 33D2 is

known, we compared the NS1 a.a. 115-119 (WKTWG) sequence

which was recognized by mAb 33D2 with SARS-CoV-2 S1-RBD

protein and found a similar sequence FKCYG, which is located at

a.a. 376-380 of SARS-CoV-2 S1-RBD. Thus, in addition to potential

antigenic similarity between SARS-CoV-2 S1-RBD and DENV E

protein, these results suggested that SARS-CoV-2 S1-RBD also

contain potential antigenic similarity to DENV NS1 protein, which

can induce antibodies that cross-react with NS1 and inhibit NS1-

induced hyperpermeability.

In this study, even though we found significant increase of

SARS-CoV-2 S1-RBD cross-reactive antibodies in the sera of

dengue patients, the increase of DENV cross-reactive antibodies

in the sera of COVID-19 patients was not significantly different

from healthy controls. It is possible that the structural

and conformational difference between SARS-CoV-2 S1-RBD

and DENV (E and NS1) as well as the genetic background and

immune status of different individuals may influence the

generation of SARS-CoV-2 and DENV cross-reactive

antibodies during DENV or SARS-CoV-2 infection.

Nonetheless, we found DENV infection in vitro was inhibited

in the presence of COVID-19 patients’ sera. This is consistent
A B
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FIGURE 8

Antibodies in COVID-19 patients’ sera cross-react with DENV E
and inhibit DENV infection in vitro. (A) Recombinant SARS-CoV-
2 S1-RBD, (B) DENV E or (C) synthetic peptide of phage epitope
1 (2 µg/mL) was coated on ELISA plates. The binding of
antibodies in COVID patient sera (1:100 diluted) to these plates
was detected by an indirect ELISA. ***P < 0.001, ns indicates no
significant difference between two groups as determined by t
test. (D) The neutralizing ability of sera from COVID-19 patient
(1:80 diluted) against DENV infection was tested by an FRNT
assay. ***P < 0.001; Kruskal–Wallis ANOVA. (n = 30 for COVID-
19 patient; n = 21 for healthy donor).
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with a recent publication (50), in which the authors

demonstrated that most of the sera of COVID-19 patients

contain antibodies cross-react with DENV, which can

neutralize dengue infection in vitro. Therefore, it is possible

that DENV E protein cross-reactive anti-SARS-CoV-2

antibodies in COVID-19 patients’ sera may play a role in the

inhibition of DENV infection. To further confirm this

possibility, we pre-incubated the sera of COVID-19 patients

with S1-RBD or nucleocapsid recombinant proteins in this

study, and found that the effect of inhibiting dengue infection

by COVID-19 patients ’ sera could be reduced after

preincubation with S1-RBD but not nucleocapsid protein.

These results supported the phenomenon we observed in the

experiments conducted with anti-S1-RBD IgG from rabbit

serum and the hypothesis we proposed: anti-S1-RBD

antibodies may inhibit dengue infection by cross-reacting with

dengue antigens. However, we could not completely rule out the

possibility of these COVID-19 patients having been infected by

dengue previously or currently. Therefore, further investigation

is needed to confirm the role of anti-S1RBD antibodies in

inhibiting dengue infection. In summary, we demonstrated in

this study that the antigenic similarity between the SARS-CoV-2

S1-RBD and DENV (E and NS1) has the potential to induce

DENV cross-reactive antibodies after SARS-CoV-2 S1-RBD

immunization or SARS-CoV-2 infection. These DENV cross-

reactive antibodies may not only cause false-positive result in

dengue serological test but also hinder dengue infection which

should be further validated in clinical study.
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Pre-existing humoral immunity
to low pathogenic human
coronaviruses exhibits
limited cross-reactive
antibodies response against
SARS-CoV-2 in children

Nina Li1,2†, XueYun Li1,2†, Jiani Wu1,2, Shengze Zhang1,2,
Lin Zhu1,2, Qiqi Chen1,2, Ying Fan1,2, Zhengyu Wu1,2,
Sidian Xie1,2, Qi Chen1,2, Ning Wang3, Nan Wu4,
Chuming Luo1,2, Yuelong Shu1,2,5,6* and Huanle Luo1,2,6*

1School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,
2School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China, 3Shenzhen Institute of
Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 4Department of Epidemiology,
Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China, 5Institute of Pathogen
Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 6Key
Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes

asymptomatic or mild symptoms, even rare hospitalization in children. A major

concern is whether the pre-existing antibodies induced by low pathogenic human

coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To

address this unresolved question, we analyzed the pre-existing spike (S)-specific

immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive

antibodies against SARS-CoV-2 in 658 serum samples collected from children

prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four

LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had

cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding

domain antigens of SARS-CoV-2. Additionally, the re-infections with different

LPH-CoVs occurred frequently in children and tended to increase the cross-

reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with

cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven

samples with a median age of 1.4 years old had detected neutralizing activity for

the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven

samples contained anti-S IgG antibodies against HCoV-OC43. Together, these

data suggest that children’s pre-existing antibodies to LPH-CoVs have limited

cross-reactive neutralizing antibodies against SRAS-CoV-2.

KEYWORDS

low pathogenic human coronaviruses, SARS-CoV-2, cross-reactive antibody, neutralizing
activity, antigen specific antibody
frontiersin.org01
33

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042406/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042406/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042406/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042406/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042406/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042406/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1042406&domain=pdf&date_stamp=2022-10-19
mailto:luohle@mail.sysu.edu.cn
mailto:shuylong@mail.sysu.edu.cn
https://doi.org/10.3389/fimmu.2022.1042406
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1042406
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2022.1042406
Introduction

Coronaviruses (CoVs) refer to a large family of viruses that

cause illnesses ranging from the common cold to more severe

diseases. There are seven identified coronaviruses causing

human infec t ions . The high ly pathogenic human

coronaviruses (HPH-CoVs) including severe acute respiratory

syndrome coronavirus (SARS-CoV), middle east respiratory

syndrome coronavirus (MERS-CoV), and SARS-CoV-2 belong

to the betacoronaviruses, while two alphacoronaviruses (HCoV-

229E, HCoV-NL63) and two betacoronaviruses (HCoV-HKU1,

HCoV-OC43) are identified as low pathogenic human

coronaviruses (LPH-CoVs). Prior to the huge morbidity and

mortality caused by HPH-CoVs, the LPH-CoVs have long been

circulating in humans and cause common cold with mild

respiratory syndromes (1–5). The serological assays by

detecting antibodies induced by LPH-CoVs are used to define

the population’s herd immunity, and ≥90% of adults have

antibody evidence against these four LPH-CoVs (6, 7). It is

believed that the primary infection of LPH-CoVs commonly

occurs in childhood, with repeated infection within 1-3 years

and a higher infection frequency in children under 5 years old

(8–11).

Though the LPH-CoVs induced antibody response is short-

lasting and has limited protection from hosts infected by the

same or different common cold coronaviruses (8), it is

hypothesized that the cross-reactive antibodies response from

prior LPH-CoVs exposure could have reduced the susceptibility

and possibility of developing severe clinical syndrome on SARS-

CoV-2 infection in children (12, 13). However, studies exploring

whether the pre-existing antibodies induced by LPH-CoVs can

cross-react with SARS-CoV-2 generate conflicting results. Some

data showed that the pre-existing antibodies response in un-

infected populations, especially in children and teenagers

exhibited specific neutralizing activity against SARS-CoV-2

(14), and high levels of pre-existing immune responses against

LPH-CoVs were associated with mitigating the disease severity

of coronavirus disease 2019 (COVID-19) (15–17) or reduced the

duration of symptom (18). Yet, other studies suggested a lack of

SARS-CoV-2 cross-neutralization activity although antigen-

specific antibodies response was detected from pre-pandemic

serum samples of SARS-CoV-2 (11, 19, 20). These conclusions

vary greatly in different cohorts which commonly include adults,

and the cross-reactive antibodies against SRAS-CoV-2 in

children with pre-existing LPH-CoVs humoral immunity need

to be elucidated.

Here, we investigated the seroprevalence of LPH-CoVs in 658

serum samples obtained from hospitalized children prior to the

SARS-CoV-2 pandemic and measured the cross-reactive

antibodies against SARS-CoV-2. We observed that 40% to 60%

of the serum samples contained spike (S)-specific immunoglobin

(Ig) G antibodies for the different LPH-CoVs. Higher levels of the
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nucleocapsid (N)-, S-, and receptor binding domain (RBD)-

specific IgG antibodies against SARS-CoV-2 were found in the

LPH-CoVs exposed group, and re-infections with different LPH-

CoVs appeared to increase the antigen-specific cross-reactive

antibodies. However, limited neutralizing activity existed even

for the samples with cross-reactive S-specific IgG antibodies

against SARS-CoV-2.
Materials methods

Samples

A total of 658 pre-COVID-19 serum samples of children

with respiratory infection symptoms (aged 0-15 years) collected

between May 27 and December 15, 2019 were obtained from

Guangzhou Women and Children’s Medical Center. 28 serum

samples from SARS-CoV-2 patients with strongly neutralization

activity against SARS-CoV-2 WT spike in micro-neutralization

assay were obtained from Shenzhen Center for Disease Control

and Prevention (21). All the experiments were performed in

compliance with and under the approval of the biomedical

research ethics committee, the public health school (Shenzhen)

of Sun Yat-Sen University (2020–034).
Plasmid and proteins

The env-deficient HIV-1 (pnl4-3.luc.R.-E-) plasmid

expressing the luciferase reporter was constructed in our

laboratory. The pcDNA3.1.SARS-CoV-2 WT spike plasmid

was kindly provided by Dr. Yaoqing Chen of Sun Yat-sen

University. cDNA of SARS-CoV-2 B.1.351(Delta) spike and

SARS-CoV-2 P.1(Gamma) spike were synthesized and cloned

into pcDNA3.1 vector. The proteins used in this study were

purchased from Sino Biological (Beijing, China).
Enzyme-linked immunosorbent assay

Antigen-specific IgG antibodies to SARS-CoV-2 N/S/RBD

and HCoV-229E S/HCoV-NL63 S/HCoV-HKU1 S/HCoV-

OC43 S were detected using a standard enzyme-linked

immunosorbent assay (ELISA) (21). The optimal coating

concentration of antigen and serum were 250 ng/well of

SARS-CoV-2 N and S, 150 ng/well of SARS-CoV-2 RBD, 50

ng/well of HCoV-OC43 S, 30 ng/well of HCoV-229E S, HCoV-

NL63 S and HCoV-HKU1 S and 1:500. A positive control

(serum sample FS B26 with strongly neutralization activity in

micro-neutralization assay is kindly provided by Guangdong

Provincial Center for Disease Control and Prevention) diluted in

ten-fold dilutions was set on every ELISA plate to normalize all
frontiersin.org
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the detected values. Besides, one serum from mice was used as a

negative control on each plate to check the consistency of

each plate.
SARS-CoV-2 pseudovirus
neutralization assay

HEK 293T cells were co-transfected with SARS-CoV-2 Spike

plasmid and HIV-1 plasmid (pnl4-3.luc.R.-E-). Cell supernatant

was collected at 48 hours post-transfection and virus titers were

determined as described in detail previously (22). Serially diluted

sera were added to a 96-well plate and incubated for 1 hour at

37°C. HEK 293T-ACE2 cells were added and plates were

incubated for 48 hours. The luciferase activity level was

assessed by Bright-Glo Luciferase Assay System (cat# E2620)

purchased from Promega (USA), and 50% inhibitory

concentration (IC50) was determined as the last serum dilution

at which the titration curve matches inhibition equal to or above

50% of the 100% assay (21).
Statistics

The finite mixture model was used to define the positive

value of antibodies against the S antigen of LPH-CoVs. The

individuals with a positive value of cross-reactive antibody

against SARS-CoV-2 were defined by an OD value greater

than the mean OD values minus two times the standard

deviation of COVID-19 patients. The student’s t test was used

to compare the differences between the two groups. A two-tailed

P value<0.05 was considered statistically significant. The

differences between male group and female group for each

LPH-CoVs were compared by the c2 test. Pearson’s correlation

was used to test the association between the S-specific antibodies

against LPH-CoVs with the cross-reactive N, S, and RBD antigen-

specific antibodies against SARS-CoV-2. Statistical analysis of the

clinical data was performed using SPSS Statistics version 25

software (IBM, Armonk, NY, USA). All the experimental data

were analyzed in GraphPad Prism software (version 8) and R

Studio software.
Results

Pre-existing antibodies response against
LPH-CoVs in the children cohort

In this retrospective study, 658 serum samples collected from

hospitalized children with a median age of 3 years (IQR 0.8-4.2)

including 402 boys and 256 girls in 2019 before the SARS-CoV-2

outbreak were enrolled. The cohort’s pathological clinical

features were summarized in Supplementary Table 1. To
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evaluate the pre-existing antibodies against LPH-CoVs in this

cohort, we analyzed IgG antibodies response against the S

antigen of HCoV-229E, HCoV-NL63, HCoV-HKU1, and

HCoV-OC43 via ELISA (Figure 1A). Besides, 28 serum

samples with neutralizing antibodies against SARS-CoV-2

from convalescent COVID-19 patients were used as an

independent group. By utilizing the finite mixture model

(Supplementary Figures 1A-D), we have observed that 40.73%,

38.30%, 39.67%, and 61.55% of the children’s serum samples

were classified as positive individuals with antibodies against the

S antigen of HCoV-229E, HCoV-NL63, HCoV-HKU1, and

HCoV-OC43 respectively, suggesting a higher prevalence of

HCoV-OC43 in hospitalized children than the other three

LPH-CoVs in our cohort (Figure 1B). Interestingly, the

COVID-19 patients boosted comparable S-specific IgG

antibodies against these four LPH-CoVs (Figure 1B). Overall,

499 samples (75.84%) from the cohort exhibited S-specific IgG

antibodies response against at least one of the four LPH-CoVs.

Importantly, re-infections with different LPH-CoVs occurred

commonly, we have found that 140/113/107 cases (21.28%,

17.17%, 16.26%) contained S-specific IgG antibodies against

two/three/four of the LPH-CoVs respectively (Figure 1C).

Among the 139 serum samples showing S-specific IgG

antibodies only to one of the four LPH-CoVs, we observed

positive rates of 8.05% for HCoV-229E (24 cases), 5.37% for

HCoV-NL63 (16 cases), 4.03% for HCoV-HKU1 (12 cases), and

29.19% for HCoV-OC43 (87 cases) (Figure 1D). Besides, we

have found a higher seroprevalence rate (20.36%) for beta LPH-

CoVs compared to alpha LPH-CoVs (7.60%) in this cohort

(Figure 1E). These results indicate that a high prevalence of

LPH-CoVs exists in the early phase of human life, however, the

pre-existing antibodies response is short-lasting to protect host

from the same or other LPH-CoVs infection.
Pre-existing antibodies response against
LPH-CoVs in different age groups of the
children cohort

We next compared the seroprevalence in different age

groups for positively classified serum samples with antibodies

against LPH-CoVs. As shown in Figure 2A, we observed that the

majority of infants less than 3 months old had S-specific IgG

antibodies against HCoV-229E (66.67%), HCoV-HKU1

(52.94%), and HCoV-OC43 (70.59%), while 23.53% of the

samples were seropositive individuals for HCoV-NL63,

indicating a maternal transient S-specific IgG antibody in

infants. Without maternal antibody, the numbers of

seropositive individuals in the age category of 3 to 9 months

old decreased sharply for all the four types of LPH-CoVs, then

started to keep a whole upward trend following the age increase

(Figure 2A; Supplementary Figures 2A-D). In the 9-15 years old

group, we have found a reduced seropositive rate for HCoV-
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NL63, HCoV-OC43 and HCoV-HKU1, but a raised trend for

HCoV-229E compared to the 6-9 years old group (Figure 2A).

As expected, we have observed that re-infections of different

coronaviruses increased with age under five years old and

became stable afterward (Figure 2B).

Next, the effect of biological sex on antibody levels of S-

specific IgG against LPH-CoVs was analyzed. Due to the number

difference of serum samples between boys and girls, we

calculated the seropositive rates for boys and girls, respectively.

Interestingly, boys had a higher positive rate compared with girls

for HCoV-229E infection. However, no obvious gender-related

pattern was found for the other three coronaviruses

(Figures 3A–D; Supplementary Table 2).
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Identification of the cross-reactive
antibodies against SARS-CoV-2 in the
children cohort

To understand the cross-reactive antibody responses against

SARS-CoV-2 induced by LPH-CoVs, we evaluated the IgG

antibodies response against the N, S, and RBD antigens of

SARS-CoV-2 in the serum samples using ELISA method. For

the classified samples with only one of the four LPH-CoVs

exposure, both HCoV-229E and HCoV-OC43 seropositive

samples stimulated significantly higher levels of IgG antibodies

response against the N, S, and RBD antigens of SARS-CoV-2

compared to the negative samples. The HCoV-NL63
B

C D E

A

FIGURE 1

Identification of the pre-existing antibodies against LPH-CoVs in children’s serum samples (A) The schematic diagram of studying pre-existing
antibodies against human coronavirus for the children cohort. (B) IgG antibodies response against the S protein of HCoV-229E, HCoV-NL63,
HCoV-HKU1, and HCoV-OC43 was analyzed in 658 serum samples from hospitalized children prior to SARS-CoV-2 outbreak. The finite mixture
model was used to define the individuals with positive values. 28 serum samples from convalescent COVID-19 patients were used as control.
Student’s t test was used to compare the differences of medium values between groups, a two-tailed P value <0.05 was considered to be
statistically significant, (****P ≤0.0001). (C-E) The percentage of individuals with exposure to different LPH-CoVs (n=658) (C, E) or only one of
the four LPH-CoVs (n=298) (D).
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seropositive samples contained elevated levels of IgG antibody

response against the S and RBD proteins of SARS-CoV-2 rather

than the N protein. Interestingly, no significant difference for the

IgG antibodies response against the N, S, and RBD proteins of

SARS-CoV-2 was found between the HCoV-HKU1 seropositive

samples and the seronegative samples (Figure 4A). However,

both alpha and beta coronaviruses seropositive samples did

show enhanced IgG antibodies response against the N, S, and

RBD proteins of SARS-CoV-2 compared with the negative

samples (Figure 4B). As expected, we have found that the

levels of IgG antibodies against the N, S, and RBD proteins of

SARS-CoV-2 tended to increase with re-infections, and patients

with all the four types of LPH-CoVs exposure had the highest

levels of cross-reactive antigen-specific IgG antibodies against

SARS-CoV-2 (Figure 4C). These results suggest that the repeated

infections with LPH-CoVs may facilitate the host generating

high levels of antigen-specific antibodies with cross-reactivity to

SARS-CoV-2. We further determined the correlation between

the S-specific IgG antibodies against LPH-CoVs and the cross-

reactive antigen-specific IgG antibodies against SARS-CoV-2.

For the serum samples with only one of the LPH-CoVs exposure,

the positive correlations were noted between the cross-reactive
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antigens-specific IgG antibodies against SARS-CoV-2 with the

S-specific IgG antibodies against each of the LPH-CoVs,

especially with HCoV-OC43. (Figures 5A–D).

Interestingly, the cross-reactive IgG antibodies against the N

and S antigens of SARS-CoV-2 peaked mostly in the individuals

with an age category of 9-12 months old, while the cross-reactive

IgG antibody against the RBD antigen of SARS-CoV-2 peaked

mostly in children of 6-9 months old (Figures 6A–C).
LPH-CoVs stimulate limited cross-
reactive neutralizing antibodies
against SARS-CoV-2

Forty-nine individuals with a positive cross-reactive S-specific

IgG antibodies response against LPH-CoVs were determined by an

OD value higher than two times the average of the COVID-19

patients. To examine whether the antibodies boosted by LPH-CoVs

in these samples have neutralizing activity for SARS-CoV-2, we

measured the neutralizing activity utilizing wild-type (WT) and two

variants of concern (VOC) including Gamma and Delta SARS-

CoV-2 S pseudotypes. As shown in Figures 7A, C, we have found
BA

FIGURE 2

Analysis of the pre-existing antibodies response against LPH-CoVs in different age groups (A) The seropositive rates of HCoV-229E, HCoV-
NL63, HCoV-HKU1, and HCoV-OC43 in different age groups. (B) The relation between age and re-infections of LPH-CoVs. The curve was fitted
by Locally Weighted Regression (B, upper figure). A two-tailed P value <0.05 was considered to be statistically significant (B, lower figure), (**P
values of ≤0.01, ****P ≤0.0001).
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that five serum samples could neutralize WT SARS-CoV-2 though

the majority of selected samples lack neutralizing activity. Out of the

five serum samples, two samples could neutralize Delta SARS-CoV-

2 and one contained the neutralizing activity against Gamma SARS-

CoV-2, indicating an immune escape of the variants. Interestingly,

only one serum sample was found having the ability of neutralizing

Delta or Gamma SARS-CoV-2 respectively, but without

neutralizing activity against WT SARS-CoV-2. Notably, all of the

serum samples with neutralizing activity against SARS-CoV-2 were

collected from individuals under 4 years old, with of median age of

median age of 1.4 years old (Figures 7B, C), indicating the

individuals with younger age may be beneficial to the cross-

reactive neutralizing activity against SARS-CoV-2.

Next, we found all of the seven serum samples with cross-

reactive neutralization activity against SARS-CoV-2 were

HCoV-OC43 seropositive (Figure 7C), suggesting the pre-

existing antibody against HCoV-OC43 may play a role in

reducing SARS-CoV-2 infection.
Discussion

The impact of pre-existing LPH-CoV-specific antibodies with

cross-reactivity against SARS-CoV-2 has been investigated since the

beginning of SARS-CoV-2 pandemic. It is critical if the antibodies

boosted by LPH-CoVs can neutralize SARS-CoV-2 due to the 90%

herd immunity of humans against LPH-CoVs (23, 24), which

usually occur repeatedly in early life. In this study, we detected a

generally moderate level of seroprevalence in 658 children under 15
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years old for the three human coronaviruses (HCoV-229E, HCoV-

NL63, HCoV-HKU1) and a high positive rate for HCoV-OC43.

Although the seroprevalence of LPH-CoVs varies greatly by reason

of different antigens used, methodologies adopted, population with

distinct ages, and other demographic characteristics (25–27), the

seroprevalence acquired from this cohort is somewhat in line with

the normal range within children (28–30). Besides, the obvious

maternal transient passive IgG antibodies response against LPH-

CoVs was observed for infants within 3-months, which is consistent

with the previous stratified studies (29, 31).

Limited studies have investigated whether biological sex affects

LPH-CoVs infection although several reports have indicated that

male COVID-19 patients appeared to be more susceptible to SARS-

CoV-2 and generated a higher level of antibodies (21, 32). In this

study, we found that HCoV-229E boosted higher S-specific IgG

antibodies in boys than girls after 3 months old while no obvious

sex-based antibody trend was observed for the other three LPH-

CoVs. A recent study has found a higher level of IgG antibody

against HCoV-229E other than the other three coronaviruses in

men compared with women in an adult cohort (older than 20 years

of age) (33). These data indicate that sex may be a factor affecting

the prevalence of HCoV-229E.

Most adults commonly contain antibodies against all the

four LPH-CoVs since re-infections occur initially in children,

causing the difficulty of evaluating the cross-reactive antibody

response to every specific coronavirus. In this study, we selected

samples which are positive with only one type of IgG antibody

against LPH-CoVs to investigate the cross-reactive antibody

response against SARS-CoV-2, HCoV-HKU1 seropositive
B

C D

A

FIGURE 3

The effect of biological sex on pre-existing antibodies against LPH-CoVs in different age groups (A-D) The seropositive rates of HCoV-229E
(A), HCoV-NL63 (B), HCoV-HKU1 (C) and HCoV-OC43 (D) in male and female individuals with different ages.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1042406
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1042406
samples appeared to have no cross-reactive antibodies against

the N, S, and RBD antigens of SARS-CoV-2. However, HCoV-

OC43 seropositive samples showed significantly higher levels of,

even comparable antigen-specific antibodies response against

SARS-CoV-2 with the COVID-19 patients. Previous studies

investigating whether the pre-existing anti-HCoV-OC43

antibodies affect SARS-CoV-2 infection yielded contradictory

results. Several investigations have indicated high levels of N-

specific antibodies against HCoV-OC43 in COVID-19 adult

patients were associated with mild disease (34, 35), indicating

a potential protective role of the pre-existing antibodies against

HCoV-OC43 for SARS-CoV-2. On the other hand, Guo et al.

have found significantly higher anti-S of HCoV-OC43 IgG
Frontiers in Immunology 07
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antibody titers in patients with severe disease than those in

mild patients, indicating the cross-reactive antibody may

enhance the severity of COVID-19 patients (36). Unluckily, we

were not able to track these patients in our cohort to assess the

susceptibility or disease severity for SARS-CoV-2 infection.

However, it is notable that all of the seven serum samples

from children ≤ 4 years old with neutralizing activity against

SARS-CoV-2 contained S-specific IgG against HCoV-OC43,

indicating there may be a role for antibodies boosted by

HCoV-OC43 in the earlier age during SARS-CoV-2 infection.

It is valuable that the serum samples of young individuals

under 1-year-old were enrolled in this study. A prior study has

reported that about 44% (21 cases in 48 samples in total) of the
B

C

A

FIGURE 4

The pre-existing antibodies against LPH-CoVs contained cross-reactive antibodies against SARS-CoV-2 (A-C) The cross-reactive IgG antibodies
against the N, S, and RBD proteins of SARS-CoV-2 in individuals with exposure to only one of the four LPH-CoVs, (n=298) (A) or re-exposed
with different LPH-CoVs (n=658) (B, C). The individuals with positive values were determined by an OD value greater than the mean OD values
of COVID-19 patients minus two times the standard deviation of COVID-19 patients. A two-tailed P value<0.05 was considered statistically
significant, (*P values of ≤ 0.05, **P values of ≤0.01, ***P values of ≤ 0.001, ****P ≤0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1042406
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1042406
individuals had detectable S-specific IgG antibodies against

SARS-CoV-2 in children ranging from 1-16 years via a flow

cytometry-based method, most of which could neutralize SARS-

CoV-2 (14). Another study has observed that 20% of SARS-

CoV-2-free individuals contained antibodies against the N, S

RBD antigens of SARS-CoV-2, but with very low or undetectable

neutralizing antibodies in a cohort ranging from 1-90 years.

Besides, they also found age did not affect the cross-reactive

antibodies (11). Consistent with this report, we have found about

24.64% of individuals with pre-existing LPH-CoVs antibodies

contained the cross-reactive antigen-specific antibodies against

SARS-CoV-2, most of which contained undetectable

neutralizing antibodies. However, all the seven samples with
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neutralizing activity against SARS-CoV-2 were collected from

children under 4 years old in our cohort. Notably, four samples

were acquired from infants born within 1 year old in a total of

eleven samples with positive S-specific antibodies against SARS-

CoV-2 in this age group, indicating the cross-reactive antibodies

against SARS-CoV-2 may be higher in the earlier life with LPH-

CoVs exposure. Consistently, several studies have reported that

the pre-existing antibodies boosted at a very early life can bind

the S protein of SARS-CoV-2, which might be an explanation for

mild or no symptoms following SARS-CoV-2 in children (14, 37,

38). Interestingly, the re-infections with age did not influence the

neutralizing activity although it appeared to increase the cross-

reactivity antigen-specific antibodies levels. Nevertheless, other
B

C

D

A

FIGURE 5

Correlations between the S-specific IgG antibodies against LPH-CoVs and the cross-reactive antigens-specific IgG antibodies against SARS-
CoV-2 for the serum samples with only one of the LPH-CoVs exposure (n=298) (A-D) The correlations between the S-specific IgG antibodies
against HCoV-229E (A), HCoV-NL63 (B), HCoV-HKU1 (C), HCoV-OC43 (D) and the cross-reactive IgG antibodies against the N, S, RBD antigens
of SARS-CoV-2 were assessed by Pearson correlation test. The r values were exhibited for the correlation. A two-tailed P value<0.05 was
considered statistically significant.
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B

C

A

FIGURE 6

The cross-reactive IgG antibodies against SARS-CoV-2 in different age groups with pre-existing antibodies against LPH-CoVs (A-C) The prevalence
(line) and OD values (dots) of cross-reactive IgG antibodies against the N (A), S (B), and RBD (C) of SARS-CoV-2 in different age groups.
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studies have found that vaccination of measles-mumps-rubella

or tetanus-diphtheria-pertussis provided a protective role

against the severe COVID-19 by activating the cross-reactive T

cell response, which is a possible explanation for children with

reduced susceptibility and severe clinical syndrome in SARS-

CoV-2 infection (39–41). Thus, the cross-reactive T cell

response should be an important point for future study since

poor cross-reactive neutralizing antibodies are stimulated by

LPH-CoVs. Due to the lack of COVID-19 children, the SARS-

CoV-2 positive samples used here as control were collected from

adult COVID-19 patients. Although comparable S-specific IgG

antibodies against all the four LPH-CoVs were boosted in SARS-

CoV-2 patients, we could not get a solid conclusion about the

memory antibodies since the baseline of antibodies against LPH-

CoVs has not been measured before they were infected with

SARS-CoV-2.
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Overall, our data demonstrate that the pre-existing antibody

response boosted by LPH-CoVs has a moderate to high

seroprevalence in children under 15 years old. However, the

majority of pre-existing antibodies lack the neutralizing activity

against SARS-CoV-2. Besides, HCoV-OC43 has a higher

prevalence and may boost the cross-reactive neutralizing antibody

in children under four years old against SARS-CoV-2, providing an

insight into immunogen design and vaccine development.
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FIGURE 7

Low or undetectable neutralizing antibodies against WT or mutant SARS-CoV-2 S pseudotypes were found in the individuals with cross-reactive
S-specific IgG antibodies against SARS-CoV-2 (A) The measurement of neutralization activity for the forty-nine serum samples with S-specific
antibodies against SARS-CoV-2 via SARS-CoV-2 S pseudotypes neutralization assay. The dashed line represents a threshold set (EC50>20). (B)
The age range for the serum samples with neutralizing antibodies against SARS-CoV-2 or variants. A two-tailed P value <0.05 was considered to
be statistically significant, (*P values of ≤ 0.05). (C) The list of serum samples with neutralizing antibodies against SARS-CoV-2 S pseudotypes.
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New-onset dermatomyositis
following COVID-19:
A case report

Hiroshi Shimizu1, Haruki Matsumoto2, Tomomi Sasajima3,
Tomohiro Suzuki1, Yoshinori Okubo1, Yuya Fujita2,
Jumpei Temmoku2, Shuhei Yoshida2, Tomoyuki Asano2,
Hiromasa Ohira4, Yutaka Ejiri 1 and Kiyoshi Migita2*

1Department of Gastroenterology, Fukushima Rosai Hospital, Iwaki, Japan, 2Department of
Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan, 3Department
of Rheumatology, Fukushima Rosai Hospital, Iwaki, Japan, 4Department of Gastroenterology,
Fukushima Medical University School of Medicine, Fukushima, Japan
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most of the infected

individuals have recovered without complications, but a few patients develop

multiple organ involvements. Previous reports suggest an association between

COVID-19 and various inflammatory myopathies, in addition to autoimmune

diseases. COVID-19 has been known to exacerbate preexisting autoimmune

diseases and trigger various autoantibodies and autoimmune disease

occurrence. Here we report a case of complicated COVID-19 with anti-

synthetase autoantibodies (ASSs) presenting with skin rash, muscle weakness,

and interstitial lung disease (ILD) and subsequently diagnosed with

dermatomyositis (DM). A 47-year-old Japanese male patient without any

previous history of illness, including autoimmune diseases, presented with a

high fever, sore throat, and cough. Oropharyngeal swab for SARS-Cov-2

polymerase chain reaction tested positive. He was isolated at home and did

not require hospitalization. However, his respiratory symptoms continued, and

he was treated with prednisolone (20 mg/day) for 14 days due to the newly

developing interstitial shadows over the lower lobes of both lungs. These

pulmonary manifestations remitted within a week. He presented with face

edema and myalgia 4 weeks later when he was off corticosteroids.

Subsequently, he presented with face erythema, V-neck skin rash, low-grade

fever, and exertional dyspnea. High-resolution computed tomography of the

chest showed ILD. Biochemical analysis revealed creatine kinase and aldolase

elevations, in addition to transaminases. Anti-aminoacyl tRNA synthetase (ARS)

was detected using an enzyme-linked immunosorbent assay (170.9 U/mL)

(MESACUP™ (Medical & Biological Laboratories, Japan), and the tRNA

component was identified as anti-PL-7 and anti-Ro-52 antibodies using an

immunoblot assay [EUROLINE Myositis Antigens Profile 3 (IgG), Euroimmun,

Lübeck,Germany]. The patient was diagnosed with DM, especially anti-

synthase antibody syndrome based on the presence of myositis-specific

antibodies, clinical features, and pathological findings. The present case

suggests that COVID-19 may have contributed to the production of anti-
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synthetase antibodies (ASAs) and the development of de novo DM. Our case

highlights the importance of the assessment of patients who present with

inflammatory myopathy post-COVID-19 and appropriate diagnostic work-up,

including ASAs, against the clinical features that mimic DM after post-

COVID-19.
KEYWORDS

anti-synthetase antibodies, anti-aminoacyl tRNA synthetase (ARS) antibodies,
autoimmune diseases, dermatomyositis, COVID-19
Introduction

Coronavirus disease 2019 (COVID-19), which is caused by

the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), is a life-threatening respiratory illness (1). COVID-19 is

a heterogeneous disease ranging from asymptomatic course to

multi-organ failure during the inflammatory processes (2). In

addition, COVID-19 shares clinical similarities with

autoimmune diseases, and some patients have been reported

to develop these autoimmune diseases (3). Moreover, clinical

similarities had been suggested between COVID-19 and anti-

melanoma differentiation-associated protein 5 (MDA5)-positive

dermatomyositis (DM) (4). Robust activations of immune

systems participate in the pathophysiological mechanisms of

both disease conditions (5). The main pathophysiological

mechanisms for severe inflammation and organ damage seen

in patients with COVID-19 are thought to be immune activation

and proinflammatory cytokine induction (6). Indeed, elevated

serum levels of proinflammatory cytokines, including

interleukin (IL)-1b, IL-16, IL-8, and IL-18, were demonstrated

in patients with COVID-19 (7). Other clinical features of

COVID-19 infection were reported as these viral infections are

postulated to induce autoimmunity (8). Various autoantibodies

have been detected in the serum of patients with COVID-19,

including anti-nuclear antibodies (ANA) and anti-phospholipid

antibodies (9). DM is an autoimmune disease in which the skin

and muscles are the targets for immune-mediated destruction

(10). This inflammatory myopathy can be complicated by

vasculopathy and interstitial lung disease (ILD) (11).

Autoantibodies, as a hallmark of autoimmune diseases, can

also be detected transiently in patients with COVID-19 (12).

Antibodies that recognize different amino tRNA synthase serve

as the serological hallmark of the anti- synthase antibody

syndrome (ASS) that consists of myositis, ILD, mechanic’s

hands and fever (13). A higher prevalence and increased

severity of ILD were found in patients with ASS than those

with DM and polymyositis (14). Here, we report a Japanese

patient who presented with DM with skin rash, proximal limb

weakness, and seropositivity of ASSs after COVID-19 infection.
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We focused on the new-onset anti- synthase antibody (ASA)-

related DM and COVID-19 with a recent literature review.
Case description

A 47-year-old Japanese male patient presented with

persistent low-grade fever, malaise, and cough after the once

disappearance of the COVID-19-related symptoms 28 days from

SARS-CoV-2 RNA detection by polymerase chain reaction. The

patient had received the second dose of mRNA-1273 SARS-

CoV-2 vaccination (Moderna), 5 months before the detection of

SARS-CoV-2 RNA without any acute side effects. He received

only symptomatic treatment, and these manifestations lasted for

10 days. Three weeks later from the SARS-CoV-2 RNA, the

erythematous skin macules appeared on the patient’s eyelid,

which became more intense and extended to the anterior chest.

He was referred to our Respiratory Medicine Department due to

the sustained respiratory sympotoms. On first visit in our

hosipital, he presented eyelid edema and skin rash on both

upper extremities, chest, and back (Figures 1A–C). Chest

computed tomography (CT) was performed since he had a

history of nontuberculous mycobacterial disease. A CT scan

revealed interstitial pneumonia (Figure 2A), and he was treated

with antimicrobial agents. Concurrently, he visited our

outpatient dermatology clinic for eyelid edema treatment and

was transiently treated with prednisolone (PSL) at 20 mg for 14

days. Respiratory symptoms and eyelid edema improved with

oral PSL administration; thereafter, PSL was discontinued.

However, he presented with more severe dyspnea, cough,

dysarthria, dysphagia, odynophagia, and severe generalized

weakness with inability to ambulate, elevated transaminases,

and relapsing interstitial pneumonia 3 weeks later. He was

started on PSL at 10 mg and admitted to the hospital for

further examinations for elevated transaminases, high

immunoglobulin (Ig)G levels, and interstitial pneumonia.

Physical examination was significant for tachycardia to 110

beats per minute and oxygen saturation of 94% on room air. On

examination, eyelid edema had resolved; however, mechanic’s
frontiersin.org
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hands, V-neck skin rash, and whiplash-like erythema on the

back were noted.

His proximal muscle power was 4/5 bilateral on the upper

and lower limbs. Laboratory data showed positive ANA

(speckled and cytoplasmic patterns at a serum dilution of

1:1280 and nucleolar pattenr at a serum dilution of 1:320 by

indirect immunofluorescence) and were associated with

significantly increased muscle enzymes [creat inine

phosphokinase of 3,380 U/L (62-287 U/L)]. He was positive

with high titers for anti-Ro/SSA Ab(>240 U/mL; normal range:

<6.7) and anti-La/SSB (>240 U/mL; normal range: <6.7);

however, negative results for the Saxon and Schirmer tests

were observed. Anti-ARS antibodies were positive with high

titers [170.9 U/mL (<24.9 U/mL)] according to the findings of an

enzyme-linked immunosorbent assay (MESACUP™ (Medical &

Biological Laboratories, Japan). We further investigated the

autoantigen of anti-ARS antibody by immunoblot assay

[EUROLINE Myositis Antigens Profile 3 (IgG), Euroimmun,

Lübeck,Germany], which thus revealed positivity (3+) for anti-

PL-7 antibody. In HLA-DRB1 gene analysis, he had DR4

(DRB1*0405)) and HLA-DR15 (DRB1*15:01). (Supplemental

Table 1). Magnetic resonance imaging (MRI) presented diffuse

edema and inflammatory changes in the bilateral thigh muscles

(Figure 2B). On pathologic examination, there was moderate size

variation of the myofibers, and CD8-positive lymphocytes

infiltration in atrophy of the myofibers, mainly at the

periphery of the fascicles (Figures 2C–E). He was diagnosed

with ASS according to criteria proposed by Lega JC, et al. (15).

Treatment was started with 60 mg of PSL and 3 mg of tacrolimus
Frontiers in Immunology 03
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per day. Fatigue, fever, and myalgia quickly improved post-

treatment, whereas serum creatine kinase (CK) levels were not

completely normalized during the PSL tapering phase; thus, a

high dose of intravenous immunoglobulin (IVIG) was added.

The patient’s muscle strength improved with muscle enzyme

level normalization after these combined treatments. Blood

analysis revealed sustaining normal levels of muscle enzymes,

and the patient remains in close medical observation at our out-

patient clinic. The clinical course is summarized in Figure 3.
Discussion

ASS is an inflammatory myopathy caused by ASAs. Its

clinical presentations are characterized by ILD, myositis,

polyarthritis, fever, and “mechanic’s hands” (16). Immuno-

genetic study of HLA-DRB1 associations performed in cohort

of Caucasian patients with ASS. In this study, HLA-DRB1*03:01

allele was identified as predisposition markers of ASS and HLA-

DRB1*07:01 had a protective effect in the susceptibility to ASS.

Our case showed both HLA-DR15 (DRB1*15:01) and DR4

(DRB1*0405), which may not affect the susceptibility for ASS

in the present case (17). COVID-19 infection may present with a

multitude of pulmonary findings, including diffuse ground-glass

opacities (18). Similarly, the pulmonary manifestations of an

ASS may present with patchy ground-glass opacities, similar to

the interstitial shadows commonly seen in COVID-19-related

pneumonia (19). The inflammatory process caused by SARS-

CoV-2 infection involves cytokine storm and macrophage
A

B

C

FIGURE 1

Skin findings on admission. Physical examination revealed skin manifestation of dermatomyositis. (A) Mechanic’s hand, (B) V-neck sign on the
chest, and (C) whiplash-like erythema on the back.
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activation (20). Therefore, COVID-19 shared clinical features

with rheumatic diseases characterized by elevated inflammatory

cytokine levels. Here, we report a patient with COVID-19 who

was later associated with DM that involves the proximal limb

muscles and typical cutaneous manifestations, including V-neck

skin ra. Our case describes a newly diagnosed anti-PL-7-positive

DM complicated by ILD with a recent COVID-19 diagnosis.

Some cases are reported to develop autoimmune diseases after

COVID-19 (21). The overall incidence of COVID-19 associated

with DM remains rare. COVID-19 had resulted in flares of

preexisting rheumatic diseases (22); however, this is unlikely

since no clinical symptoms were suggesting rheumatic

manifestation before the onset of COVID-19 in the present

case. Whether COVID-19-induced viral myositis mimics DM-

like clinical manifestations or DM itself can be argued. The time

interval between the onset of erythematous skin rash and the

COVID-19 RNA detection is 3 weeks; thus, it can be presumed
Frontiers in Immunology 04
48
to be new-onset DM and not COVID-19-related myositis. In

addition, the seroconversion of ASSs supports this idea;

however, whether autoantibody positivity is persistent or

transient should be evaluated. The newly appearing

radiographic finding of nonspecific interstitial pneumonia

(NSIP)-like bilateral ground-glass opacities also supports ASA-

positive DM-associated ILD. Proinflammatory clinical

manifestation seen as COVID-19 complications mimics the

symptoms of DM (23). However, we should discriminate

between real DM and post-viral myositis following SARS-

CoV-2 infection.

SARS-CoV-2 may cause postinfectious myositis, which may

range from direct virus-induced myositis to virus-triggered

autoimmunity-related myositis (24). Whether COVID-19

contributes to the occurrence of typical DM that carries the

myositis-specific autoantibodies remained unclear. As

postulated, autoimmune mechanisms can be developed as a
A

B

D

E

C

FIGURE 2

Clinical imagings. (A) Chest non-contrast CT findings. Chest non-contrast CT revealed bilateral ground-glass opacity. (B) MRI findings of
bilateral lower limbs. MRI shows high signals on STIR in the bilateral vastus lateralis, suggesting muscular inflammation. MRI, magnetic
resonance imaging; STIR, short T1 inversion recovery. (C-E) The slide showed (C) inflammatory cell infiltration around the myofiber bundles,
(D) perivascular inflammatory cell infiltration, and (E) CD8-positive lymphocytes infiltration in atrophy of the myofibers. CT, computed
tomography; HE, hematoxylin-eosin; MRI, magnetic resonance imagin; STIR, short T1 inversion recovery; CD, cluster of differentiation.
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consequence of the molecular autoantigen transformation or

modifications due to the influence of the SARS-CoV-2 infection

(25). However, a limited number of case reports demonstrated

the occurrence of myositis with specific autoantibodies as a

consequence of the clinical course of COVID-19 (23). Idiopathic

inflammatory myopathy is one of the potential autoimmune

diseases that could be triggered by COVID-19 (23). These

patients have both DM and COVID-19 presented with various

cutaneous manifestations, elevated CK, and partly associated

with seropositivity for myositis-specific antibodies (MSAs).

Viral infections may serve as a trigger although the

association between COVID-19 and DM development remains

unclear. A recent epidemiological survey suggests that the

increasing number of patients with autoimmune diseases

coincides with the COVID-19 pandemic (21). SARS-CoV-2

has been speculated to break the self-tolerance and trigger

autoimmune responses through inflammatory cytokine

induction (21). Dysregulation of neutrophil extracellular trap

(NET) formation has been shown to mediate disease pathology

in multiple viral infections (26), including SARS-CoV-2. Indeed,

dysregulation of NET formation has been demonstrated in

SARS-CoV-2 infection (27). Therefore, the complexity of

COVID-19 and of NET formation may relate to the

autoantibodies production through following an adaptive

immune response. The clinical features of severe COVID-19

are postulated to be similar to those of anti-MDA-5-positive DM

(28), which may suggest the immune-mediated mechanisms for

these disorders. Type 1 interferon (IFN) signature has been

implicated in the pathogenesis of autoimmune diseases,

including rheumatic diseases (29). COVID-19 pathogenesis

may include the induction of a hyper-inflammatory state with

elevated inflammatory cytokines, including type 1 IFN, which

leads to autoantibody induction (30). Another mechanism
Frontiers in Immunology 05
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includes the molecular mimicry between viral antigen and

damaged muscle antigen leading to the adaptive immune

system producing autoantibodies (31). Therefore, determining

the coexistent COVID-19 and DM with definitely diagnosed

patients with DM with myositis-specific autoantibodies and

typical histological manifestations is important to elucidate the

immunopathology for COVID-19-related DM.

Myositis-specific autoantibodies are an important clue for

DM diagnosis (32). Recent studies identified three immunogenic

linear epitopes with coronavirus 2 (SARS-CoV-2) proteins in

anti-TIF1-g DM, which suggest the possibility of overlapping

COVID-19 and DM (33). Newly diagnosed anti-MDA-5-

positive DM following the recent COVID-19 diagnosis was

reported (28). Furthermore, anti-MDA-5-Ab is frequently

detected in patients with COVID-19, and its titers correlate

with severe disease and poor COVID-19 outcomes (34).

However, the coincidence between COVID-19 and the ASS is

rarely reported. Blake T et al. reported a case of a patient with

COVID-19-like pneumonia who was positive for anti-PL-7

antibody, but without virological evidence of COVID-19 (35).

Table 1 shows cases with virologically proven COVID-19

infection complicated with dermatomyositis with MSAs

excluding Anti-MDA5-Ab, suggesting a fair prognosis for

these coexisting patients (32–36). In contrast to the other

MSAs, such as an anti-MDA5 antibody, the associations

between the other MSAs-positive DM and COVID-19 were

limited, which may indicate the necessity to further evaluate

MSAs in patients with COVID-19-related myopathy to elucidate

their true relationships.

COVID-19 is a novel pandemic that has significant concern

on the occurrence of various inflammatory disorders and

subsequent organ damage. A possible linkage was found

between COVID-19 and autoimmune diseases through the
FIGURE 3

Clinical course. AST, aspartate aminotransferase; CK, creaine kinase; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; CT, cycle
threshold; IVIG, intravenous immunoglobulin; PCR, polymerase chain reaction; PSL, prednisolone; TAC, tacrolimus.
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immune-mediated inflammatory pathways. The present case

report suggests that COVID-19 infection may trigger the SSA-

related DM. More data are needed to elucidate the relationship

between COVID-19 and the risk of the induction ofMSAs and the

occurrence of DM, and these patients possess a particular

genetic susceptibility.

In conclusion, SARS-CoV-2 can induce myopathy in certain

high risk hosts, which mimics the symptoms of DM. We reported

a case of PL-7-positive DM in a patient with COVID-19, who

responded to steroid plus immunosuppressive treatments. The

link between COVID-19 and the development of ASS-related DM

needs further investigation, and clinicians should remain vigilant

about potential muscle involvement post-COVID-19. The natural

history and prognosis or these patients compared to their de novo

DM counterparts remain unclear.
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TABLE 1 Complicated cases of COVID-19 and myositis with MSAs excluding anti-MDA5 Ab.

Authors Year Sex Age
of

onset

Antibody
of PM/
DM

ILD Symptoms of myositis Skin rash Outcomes

Zhang
et al. (36)

2020 F 58 Anti-SAE,
Ku Ab

NA Bilateral ptosis, facial weakness,
hypernasal dysarthria, and
proximal limb weakness

NA Recovered

Sacchi
et al. (37)

2020 F 77 Anti-Ku, Mi-
2 Ab

YES Aprexia NA Recovered

Borges
et al. (38)

2021 F 36 Anti-Mi-2
Ab

NA Proximal limb weakness Gottron’s papules Recovered

Okada
et al. (39)

2021 F 64 Anti-NXP2
Ab

No Neck and proximal limb
weakness

Itchy erythematous lesions on forehead, bilateral ears,
scalp, and neck, lacking typical heliotrope rash or
Gottron’s sign Periungual telangiectasias

Recovered

Faria et al.
(40)

2022 F 59 Anti-Mi-2,
SAE Ab

YES Limb weakness Heliotrope rash, Gottron’s sign with ulcerations, and
cuticular hypertrophy

Recovered
fro
COVID-19, coronavirus disease 2019; MSA, myositis specific antibodies; PM, polymyositis; DM, dermatomyositis; ILD, interstitial lung disease; F, female; Ab, antibody; NA, not applicable.
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Pan-neutralizing, germline-
encoded antibodies against
SARS-CoV-2: Addressing the
long-term problem of
escape variants

Justin Mark Lunderberg1, Sanjucta Dutta2, Ai-Ris Y. Collier3,
Jeng-Shin Lee4, Yen-Ming Hsu4, Qiao Wang5, Weina Zheng5,
Shushun Hao5, Haohai Zhang1, Lili Feng6, Simon C. Robson1,
Wenda Gao7,8*† and Stefan Riedel2*†

1Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine,
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States,
2Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston,
MA, United States, 3Center for Virology and Vaccine Research, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, United States, 4AB Biosciences, Inc., Concord,
MA, United States, 5Shijiazhuang Hipro Biotechnology Co., Ltd., Hebei, China, 6Department of
Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University,
Jinan, China, 7Antagen Diagnostics, Inc., Canton, MA, United States, 8Antagen Pharmaceuticals, Inc.,
Canton, MA, United States
Despite the initially reported high efficacy of vaccines directed against ancestral

SARS-CoV-2, repeated infections in both unvaccinated and vaccinated

populations remain a major global health challenge. Because of mutation-

mediated immune escape by variants-of-concern (VOC), approved

neutralizing antibodies (neutAbs) effective against the original strains have

been rendered non-protective. Identification and characterization of

mutation-independent pan-neutralizing antibody responses are therefore

essential for controlling the pandemic. Here, we characterize and discuss the

origins of SARS-CoV-2 neutAbs, arising from either natural infection or

following vaccination. In our study, neutAbs in COVID-19 patients were

detected using the combination of two lateral flow immunoassay (LFIA) tests,

corroborated by plaque reduction neutralization testing (PRNT). A point-of-

care neutAb LFIA, NeutraXpress™, was validated using serum samples from

historical pre-COVID-19 negative controls, patients infected with other

respiratory pathogens, and PCR-confirmed COVID-19 patients. Surprisingly,

potent neutAb activity was mainly noted in patients generating both IgM and

IgG against the Spike receptor-binding domain (RBD), in contrast to samples

possessing anti-RBD IgG alone. We propose that low-affinity, high-avidity,

germline-encoded natural IgM and subsequent generation of class-switched

IgG may have an underappreciated role in cross-protection, potentially

offsetting immune escape by SARS-CoV-2 variants. We suggest Reverse

Vaccinology 3.0 to further exploit this innate-like defense mechanism. Our
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proposition has potential implications for immunogen design, and provides

strategies to elicit pan-neutAbs from natural B1-like cells. Refinements in future

immunization protocols might further boost long-term cross-protection, even

at the mucosal level, against clinical manifestations of COVID-19.
KEYWORDS

SARS-CoV-2, neutralizing antibodies, somatic hypermutation, B cell memory,
vaccines, IgM, B-1 B cells, Reverse Vaccinology
Introduction

As of mid-2022, more than 560 million people globally have

been infected with severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), the causative agent for

coronavirus disease 2019 (COVID-19). Over 6.3 million

people have died of infection-mediated complications. The

extraordinarily rapid development of several vaccines in the

first year of field deployment has saved close to 20 million lives

that would otherwise have been lost to COVID-19 (1). However,

as waves of variants-of-concern (VOC) emerge, breakthrough

infections by the variants in fully vaccinated individuals have

become increasingly common (2–7), and may still cause

substantial morbidity and mortality. Particularly, SARS-CoV-2

Omicron strains have accumulated unprecedented numbers of

mutations in the Spike protein with ∼40 residue changes versus
10 on average in all the previous dominant variants (8, 9) that

evade neutralizing antibody (neutAb) binding. As a result,

individuals who received two doses of the BNT162b2 mRNA

vaccine have over 22-fold decreases in neutralizing activity

against the Omicron strain, when compared to the ancestral

Wuhan-Hu-1 strain (10). Efficacies of the other current vaccines

against Delta and Omicron VOCs have also declined (11).

Likewise, passive transfer of therapeutic neutralizing

monoclonal antibodies (mAb) was initially successful in

treating COVID-19 before the arrival of the variants (12), but

many neutAbs previously approved for emergency use by the

FDA do not retain efficacy against Delta and Omicron strains

(13, 14). In separate studies, the neutralizing activity of the

majority of tested SARS-CoV-2 mAbs were either abolished or

impaired against Omicron (15, 16).

Therefore, for neutAb developers, active questions are:

1) Whether it is possible to identify, characterize and isolate pan-

neutAbs against the majority of current and future SARS-CoV-2

variants and 2) if this venture is successful, whether developing

recombinant pan-neutAbs as prophylactic and therapeutic

modalities can stay ahead of evolving variants? These questions

also apply to vaccine development to stimulate durable pan-

neutralizing antibody responses.
02
53
The answer to the first question is in the affirmative. By

adopting high throughput single cell sequencing of thousands of

Spike-enriched memory B cells (MBCs) from the PBMCs of

convalescent patients (17), researchers have identified IgG1 type

pan-neutAbs, for example, DXP-604 (16) and 76E1 (18). Like

VIR-7831 (Sotrovimab), DXP-604 effectively neutralizes SARS-

CoV-2 D614G, Alpha, Beta, Gamma, Delta as well as Omicron

(16). Unlike DXP-604, 76E1 binds to a unique S2 epitope

partially buried in the pre-fusion state of the Spike trimer,

which is only exposed when the Spike protein binds to ACE2.

As a result, while all the other RBD-binding neutAbs bind to the

pre-fusion state of Spike trimer, 76E1 does not.

Nevertheless, as the S2 regions are conserved among

multiple human coronaviruses, blocking the interaction of the

highly conserved S2’ site and the fusion peptide by 76E1 can

effectively block virus-cell fusion and broadly neutralize seven

human coronaviruses, including two a-coronaviruses (HCoV-

229E and HCoV-NL63) and five b-coronaviruses (SARS-CoV-2
and all its VOCs, SARS-CoV, MERS-CoV, HCoV-OC43 and

HCoV-HKU1) (18). Thus, although very rare, pan-neutAbs with

unique mechanisms of action can be isolated with extensive

screening efforts. These studies indicate that MBCs exhibit

repertoires with various specificities to Spike glycoprotein that

are enhanced by somatic hypermutation and could avoid the

SARS-CoV-2 immune escape.

The answer to the second question is more complex. Large-

scale manufacturing, clinical trials and regulatory approval of the

recombinant neutAbs typically take a long time and are hugely

expensive. In light of certain neutAbs being “highly unlikely to be

active against the Omicron variant, which is circulating at a very

high frequency throughout the United States”, on January 24th,

2022, the FDA restricted the emergency use of Bamlanivimab and

Etesevimab (co-administered) and REGEN-COV (Casirivimab and

Imdevimab) to “patients that are likely to have been infected with or

exposed to a variant that is susceptible to these treatments”.

To avoid such restrictions in future therapeutic mAbs,

researchers need to reassess if there are fundamental

immunological elements missing in our current understanding of

such pan-neutAbs and of the durability of vaccine-induced
frontiersin.org
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protection. The following sections are devoted to such mechanistic

discussions, albeit with a focus on mRNA vaccination.
NeutAbs in natural infection
have greater breadth than
after vaccination

Using single B cell sequencing, ELISA, biolayer

interferometry and pseudovirus neutralization assays, Cho

et al. compared cloned antibodies from MBCs at 1.3 and 6.2

months after natural infection in a cohort of convalescent

patients, with similarly cloned antibodies from MBCs at 1.3

and 5 months after the 2nd dose of either Moderna (mRNA-

1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccines in

subjects having no prior history of SARS-CoV-2 infection

(19). They found that at 1.3 and 5 months after the 2nd

vaccine dose, mRNA vaccines induced 4.9- and 3.6-fold higher

plasma neutAb titers than natural infection at 1.3 and 6.2

months following infection. Between the 1st and 2nd doses,

MBCs continue to evolve antibodies with increased

neutralizing activity, yet there is no further increase in potency

or breadth thereafter. In contrast, individual MBC-derived

antibodies selected over time by natural infection have greater

potency and breadth than antibodies elicited by vaccination (19).

Here, the key element is the breadth of MBCs, which directly

determines the effectiveness of their secreted neutAbs against

rising variants (20).

Antibody-secreting plasma cells and peripheral MBCs are

independently regulated cell populations, playing different roles

in the maintenance of protective humoral immunity. The initial

burst of short-lived plasmablasts (21, 22) produces sufficient

concentrations of neutAbs in the circulation to protect an

individual at high risk of exposure to SARS-CoV-2. However,

populations of plasmablasts and circulating plasma cells contract

quickly and, as a result, the serum neutAb titers wane

significantly over a period of months following antigen

stimulation. Our own work with an LFIA test NeutraXpress™

has further confirmed this rapid waning of mRNA vaccine-

induced neutAb titers, at 3-6 months after the 2nd dose (23). The

kinetics of decreasing neutAb titers correlates with reports of

reinfection in convalescent individuals and breakthrough

infection by variants in fully vaccinated individuals (7, 24).

On the other hand, MBCs are responsible for swift recall

responses to previously experienced epitopes. The number of

quiescent MBCs is relatively stable over the first 5–6 months

after mRNA vaccination or natural infection (25); during this

period the cells undergo somatic hypermutation for increased

antibody affinity (19, 26). At the molecular level, while 19% and

21% of the cloned antibodies recovered from single MBCs of

vaccinated individuals have shown improved potency and

greater breadth, respectively, these numbers for similarly
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cloned antibodies from convalescent patients are 59% and 69%

(19). At the population level, SARS-CoV-2-naïve individuals

who received two doses of the BNT162b2 mRNA vaccine

exhibited a 13.06-fold increased risk for breakthrough

infection with the Delta variant, when compared with

previously-infected individuals who have not been vaccinated

(24). Thus, natural infection-elicited neutAbs from MBCs show

greater neutralizing potency and breadth than those induced by

vaccination over a similar period of time (19, 24).

As broad antigen recognition is crucial for potential

induction of pan-neutAbs to prevent both infection and

disease caused by VOCs, it is important to understand the

immunological processes that shape the breadth of neutAbs.
Low-affinity cross-reactive
MBCs provide rapid and potent
recall responses towards
antigenic variants

Primary germinal center (GC) responses drive the

development of two distinct but equally important B cell

populations: the high-affinity long-lived plasma cells (LLPCs)

(27, 28) generated by activation-induced cytidine deaminase

(AID)-driven somatic hypermutation and the diverse pool of

largely AID-independent rarely-mutated MBCs. LLPCs provide

protective immunity by producing high-affinity circulating

antibodies against the same re-encountered (homologous)

pathogen, whereas MBCs induce a rapid, first-line antibody

response to infections by secreting a diverse pool of cross-

reactive antibodies that can recognize classes of related

(heterologous) pathogens or recognize rapidly and

continuously mutating pathogen variants (29, 30).

For example, upon infection or immunization with one

flavivirus (West Nile virus, WNV), the low-affinity cross-reactive

MBCs generated had a very limited capacity to re-enter secondary

GCs, and were excluded from GC-somatic hypermutation.

However, these MBCs developed enhanced affinities towards a

heterologous flavivirus (Japanese Encephalitis virus, JEV) by

forming extrafollicular plasmablasts (31). Lineage tracing and

antibody cloning from single B cells also showed that a large

fraction of the GC B cells express high-affinity B cell receptors,

whereas the vast majority of simultaneously selected MBCs express

receptors with very low-affinity for the antigen (32). In B cell

receptor (BCR) transgenic mice, more MBCs were produced when

mice were challenged with lower affinity antigens (33). It was also

found that nascentMBCs require high valency interactions between

their BCR and multimerized antigen; this increases the apparent

affinity through avidity effects, resulting in a MBC population with

much lower overall affinities than the contemporaneous GC B cells

(32), the latter of which are the major source for the bone marrow

(BM)-residing LLPCs.
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Taken together, these studies address a critical question of

how MBCs respond to heterologous challenges, i.e., whether

responses are through creating fundamentally new specificities

through secondary GCs or through the selection of pre-existing

clones without further affinity maturation. Unlike antigen-

specific LLPCs derived from high-affinity naïve B cells,

precursors of MBCs encoding low-affinity antibodies with

germline sequences largely bypass secondary GCs in recall

responses (34). Similarly, recall of MBCs with germline

sequences, rather than activation of naïve, mature B cells, has

been the primary component of the response to influenza strains

exhibiting antigenic drift (35). Thus, the recall responses are

restricted by clonal selection from the panel of pre-existing MBC

specificities with limited contributions (25) from further affinity

maturation (29, 30). Therefore, such low-affinity cross-reactive

MBCs may contribute to the protection against future variants.
Early neutAbs against SARS-CoV-2
are enriched with germline
sequences, and may have an IgM+
innate-like B-1 cell origin

In a relatively short longitudinal analysis (8-69 days after

diagnosis) of SARS-CoV-2-infected subjects, Kreer and

colleagues found highly potent neutAbs developed early after

infection and exhibited limited ongoing somatic hypermutation

(36). From sorted single B cells, 31 of 79 binding and 10 of 27

neutralizing antibodies exhibited 99%–100% germline identities,

with no correlation between neutralizing activity and the level of

somatic mutation. The potential precursor sequences of the

SARS-CoV-2 binding and neutralizing antibodies were even

identified as near-germline sequences (preference for IGHV3-

30) in naïve B cell repertoires from healthy individuals, before

the COVID-19 pandemic (36). The usage of near-germline

sequences (e.g., IGHV3-53 and IGHV3-66) by SARS-CoV-2

specific antibodies in the early response has also been

confirmed by other studies (34, 37–45). Some potent

therapeutic neutAbs are found to utilize germline sequences as

well, including one which obtained emergency use authorization

(CB6/LY-CoV016) (40) and several currently under clinical

investigation (P2C-1F11/BRII-196 and BD-604/DXP-604) (46,

47). These studies suggest that neutAbs can be readily generated

from existing germline antibody sequences found in the general

population (48), a feature reminiscent of natural IgM-expressing

B-1 cells in mice.

The B cell compartment can be divided into two

developmentally and functionally distinct populations, B-1 and

B-2 B cells (49). B-1 cells are primarily derived from the fetal

liver, whereas the conventional B-2 cells originate from the BM

and can be further characterized into follicular B (FOB) and

marginal zone B (MZB) cells (50, 51). B-1 cells are found in the
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body cavities and in mucosal tissues as well, including the lamina

propria of the gut and the respiratory tract. During respiratory

infections, B-1 cells in the pleural cavity (accounting for 35% -

70% of total B cells found in this site) can produce large amounts

of IgM and IgA natural antibodies as a first-line defense against

pathogens (52). Innate natural antibodies are primarily encoded

by germline sequences with minimal N-region addition and

without somatic hypermutation; they are functionally important

for early pathogen clearance (53). Recently, an elusive human B-

1 cell population, equivalent to the well-studied mouse

counterpart, has been proposed to have the unique surface

phenotype CD20+CD27+CD43+, distinguishing it from other

B cell subsets (54, 55). While controversy on precise

phenotyping is still present, it is anticipated that, when

compared to murine B-1 cells, the human analogue will

possess a similar lineage and function.

It is important to understand the origin of neutAbs for SARS-

CoV-2. B-1 cell antibodies are selected for function (e.g., defense

against microbial pathogens in innate immunity), and B-2 cell

antibodies are selected for affinity to a pathogen (55). NeutAbs of

B-1 ontogeny may initially have lower affinity and elevated cross-

reactivity due to their origin of germline natural IgM (56).

Indeed, of the 27 early-stage SARS-CoV-2 neutAbs isolated by

Kreer et al., 4 showed low-to-moderate levels of autoreactivity

and 2 showed cross-reactivity towards heterologous envelope

proteins (Ebola glycoprotein andHIV-1 gp140) (36). This feature

may allow such B cells to be preferentially recruited to the

extrafollicular MBC compartment and subsequently evolve

their neutAbs (via class-switching and low-degree somatic

hypermutation) into antibodies with greater breadth and

affinity to rising variants. To the contrary, because of the BCR

sequence use, the malleability of neutAbs of B-2 ontogenymay be

limited and these might be funneled towards high affinity with a

LLPC host cell fate, targeting only the original strain. These

neutAbs are highly specific to the homologous immunogen and

yet are not flexible in their response and are eventually outpaced

by a rapidly-mutating pathogen.

To test this hypothesis, we proposed these studies: 1)

Whether neutAb activities can be detected in the early phase

of SARS-CoV-2 infection (<40 days post onset of symptoms);

and 2) Whether RBD-specific IgM contributes to the serum

neutralizing activity. First, we stratified PCR-confirmed COVID-

19 patients based on days following symptom onset and IgM/

IgG profiles of anti-RBD antibodies in their serum samples. For

that, we used an LFIA rapid test DISCOVID™ to detect the

presence of RBD-specific IgM and/or IgG in their preserved

serum samples. The specificity (96.6%) and sensitivity (92.7%) of

DISCOVID™ have been previously determined with historical

samples collected prior to the pandemic and in PCR-confirmed

COVID-19 patients (Supplementary Tables 1 and 2). Therefore,

patients were stratified into 4 subgroups of RBD reactivity: IgM

+IgG-, IgM+IgG+, IgM-IgG+, and IgM-IgG-. Then, we used the

second LFIA rapid test NeutraXpress™ to detect the presence of
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neutAbs in each subgroup, and to correlate with the time

following symptom onset or PCR positivity in asymptomatic

patients. The rapid test NeutraXpress™ with a double-lane

design for simultaneous side-by-side comparison of neutAb

activity in patient samples with buffer control has been

described in field testing of healthy individuals following

mRNA vaccination (23). NeutraXpress™ was also validated

with PRNT90 assay of PCR-confirmed COVID-19 samples

with a high sensitivity (88%) to detect PRNT90 ≥ 80 neutAb

activity (Supplementary Figures 1 and 2, Supplementary

Tables 3 and 4).

Intriguingly, samples in IgM-IgG+ subgroup fulfill two

requirements for neutAb generation: 1) adequate time post

symptom onset; and 2) IgG isotype RBD reactivity, indicative
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of post-GC events. However, in direct comparison to IgM

+IgG+ subgroup (66.7% samples neutAb positive), there

appears to be much lower neutralization activity in IgM-

IgG+ subgroup (30% samples positive) (P<0.05) (Figure 1).

Our observation that neutAbs maybe encoded by innate IgM

during early SARS-CoV-2 infection (detectable in patients

with symptom onset time of less than 40 days) is in line with a

previous report demonstrating that neutAbs isolated on days

8–17 and days 34–42 after COVID-19 diagnosis showed

97.2% and 97.0% VH gene germline identities, respectively

(36). Such innate IgM-expressing B cells, possibly B-1 cells

enriched at the infection site (pleural cavity), might be

preferentially engaged in the development of SARS-CoV-

2 neutAbs.
A

B

C

FIGURE 1

NeutAbs against SARS-CoV-2 detected with NeutraXpress™ in the early phase of natural infection are enriched in COVID-19 patients

possessing the IgM+ signature. (A) Illustration of NeutraXpress™ design (23). T1 is striped with recombinant His-tagged human ACE2 protein. T2
is striped with anti-human IgM + IgG Abs. The conjugate pad is impregnated with colloidal gold nanoparticles (GNP)-labeled recombinant RBD
from Spike protein of SARS-CoV-2, as well as GNP-labeled chicken IgY used as a tracer to indicate the completion of the lateral flow when it is
captured by goat anti-chicken antibody at the C line. If there is no neutAb or binding antibody in the specimen, GNP-RBD is captured by ACE2
at T1 line and the T2 line should not appear. If the specimen contains neutAbs, the interaction between GNP-RBD with ACE2 at the T1 line is
blocked and T1 disappears or shows reduced intensity, in comparison with T1 from the control well with added diluent only. The appearance of
the T2 line indicates the presence of IgM and/or IgG Abs specific for RBD, i.e., T2 shows the totality of both neutralizing and non-neutralizing
RBD-binding IgM and IgG Abs. T2 intensity correlates with higher titers for RBD-binding IgM + IgG Abs, but T2 does not provide information on

neutAbs. (B) Examples of NeutraXpress™ showing blood samples from healthy subjects at 21 days (left) and 161 days (right) after receiving the
2nd dose of mRNA vaccine. Note that the left sample wells were added with diluent only, whereas the right sample wells were added with 1
drop of whole blood. (C) PCR-confirmed COVID-19 patients were sub grouped based on their serum IgM/IgG profiles of anti-RBD reactivity,

using an LFIA rapid test DISCOVID™ and graphed according to the number of days following symptom onset or PCR positivity (in asymptomatic
patients) that the sample was taken. Each square symbol represents one patient. Each data point was further differentiated to show the

presence of neutAbs in the serum samples as determined by a second LFIA rapid test NeutraXpress™. Green coloration indicates the presence
of neutAbs and red coloration indicates the absence of neutAbs. Samples positive for SARS-CoV-2 neutAbs were concentrated in patients
having an IgM+IgG+ anti-RBD profile, compared with patients that were anti-RBD IgG+ only (*P <0.05, two-sided two proportion z test).
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Different B cell subsets are
engaged by particulate antigen vs.
soluble antigen

There are three distinct features that may precipitate the

different immunologic outcomes of natural infection and mRNA

vaccination: 1) route of antigen exposure (respiratory track vs.

intramuscular inoculation); 2) antigen dose and persistence

(weeks vs. days); and 3) antigen form [particulate intact virus

vs. cell-surface displayed Spike trimer locked in a stabilized pre-

fusion state (57)]. Notably, antigens in particulate form and

soluble form can trigger distinct immunological responses (58).

Upon injection of an mRNA vaccine, leukocytes are attracted to

the injection site and take up the vaccine formulation. The

mRNA-mediated de novo expression of the vaccine antigen is

similar to the presentation of engulfed soluble antigens by

antigen-presenting cells (APCs); following vaccination, full

length Spike protein expressed by monocytes, macrophages

and dendritic cells (DCs) stimulates conventional B-2 cells in

the axillary lymph nodes via the classical MHC class I and class

II antigen presentation pathways (57). In support of this notion,

it has been reported that soluble Spike protein can be detected in

the plasma of 96% of subjects 1-2 days following receipt of their

first mRNA vaccine (median Spike concentration of 47 pg/mL)

and in 63% of subjects 7 days post vaccination (median Spike

concentration of 1.7 pg/mL) (59). Nevertheless, when

encountering repetitive antigens on intact viruses or on

particulate virus-like particles (VLPs), antigen-specific B cells

but not DCs are the dominant APCs, and are sufficient to

stimulate T follicular helper (Tfh) cells (60). While DCs are

required to present soluble antigens for CD4+ T cell

development, DCs are dispensable but B cells are engaged for

the initial CD4+ T cell activation when particulate antigens are

presented (60). Thus, human B-1-like cells with low-affinity and

potentially cross-reactive BCR enriched in the pleural cavity and

lung mucosa are likely to be differentially activated by the high

valency Spike proteins displayed on virus particles during

natural infection. These B-1-like cells meet the requirements

for affinity restriction and have the repertoire diversity to

develop into MBCs, and are likely the endogenous resource for

pan-neutAbs against future mutated pathogen variants.
Perspective on the design of broadly
protective vaccines for COVID-19

Widespread danger from SARS-CoV-2 still lingers, due to

the evolution of new escape variants impervious to current

vaccination strategies. A broader sobering outlook includes the

estimation that 58% (218 out of 375) of infectious diseases

currently confronted by humanity worldwide may be

aggravated by the effects of climate change in the near future
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(61). There is a long and ever-growing list of desired vaccines,

and yet fewer than 30 pathogens have vaccines licensed for

human use (www.who.int/immunization/diseases/en). For

pathogens with strong immune-evasion potential, what could

be the ideal strategy to aid the development of pan-protective

vaccines against the circulating strains and emerging variants?
Reverse vaccinology 3.0

More than half of the currently licensed vaccines were

developed with the classical vaccinology tenants of three “I”s:

Isolate, Inactivate and Inject (62). In recent years, more

advanced technologies in sequencing pathogen genomes and

single B cells, aided with highly sophisticated means for protein

structural analysis, have been used in identifying vaccine

candidates by “Reverse Vaccinology”. In Reverse Vaccinology

1.0, vaccine antigens are selected in silico using the genomic

sequence information of the pathogen without the need for

growing the specific microorganism. This strategy directly led

to the successful development of the meningococcal B

vaccine (63).

In Reverse Vaccinology 2.0, neutAbs are used to identify

protective antigens/epitopes, and to derive structural

information to guide the immunogen design (64, 65). For

example, the metastability of the surface F glycoprotein of

respiratory syncytial virus (RSV) causes its pre-fusion form to

readily decay to the post-fusion form. Antibodies against the

post-fusion form bind poorly to the pre-fusion form and do not

neutralize the virus effectively. When the quaternary epitope at

the apex of F trimer was revealed to be bound by a pre-fusion

locking neutAb, disulfide linkages and cavity-filling mutations

were introduced to generate a stabilized F protein as an

immunogen, which induced excellent RSV-neutralizing titers

in animal models and showed great promise as a potential

human vaccine (66, 67). A similar strategy of studying the

structural interactions between neutAbs and immunogen for

more rational design has been adopted to derive the uncleaved

prefusion-optimized (UFO) envelope protein of HIV-1 as a

highly promising vaccine candidate for HIV (68).

Based on the aforementioned discussion and work by others

on neutAb sequence usage and B cell ontogeny, we propose that

the era of Reverse Vaccinology 3.0 is being ushered in with the

inclusion of B cell ontogeny as a major consideration (69, 70)

(Figure 2). In this strategy, rational immunogen design for broad

neutAbs relies on not only the tertiary/quaternary structural

information of the pathogen antigen that is relevant to the

induction of neutAbs, but also on the preferential usage of

germline sequences in the elicited neutAbs. To achieve the

preferential usage of germline sequences, immunogen should

be displayed in a multimeric form, such as on liposomes (76, 77),

synthetic protein nanoparticles (78–80), or VLPs (81) to trigger

the low-affinity high-avidity germline BCRs from B-1 cells. Once
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germline antibodies are activated, further immunogens modeled

on related variants and presented on multimeric nanoparticles

could then be applied in sequential or cocktail immunizations to

shepherd the antibody response towards greater breadth.
Implications for COVID-19
vaccine enhancement

Breakthrough infections are indicative of vaccine failure.

Intramuscular injections generate systemic immunity but
Frontiers in Immunology 07
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little or no mucosal immunity in the respiratory tract,

where SARS-CoV-2 enters the body. Hence, intramuscular

injections are unlikely, on their own, to completely stop viral

transmission, abolish community spread, and prevent the

emergence of new variants. Repeated boosting with the same

mRNA-based vaccines, not only isn’t the solution for this

conundrum, but also could generate more complications by

restricting the repertoire against SARS-CoV-2, particularly

when considering the natural immune repertoire of the

young. It has been demonstrated, e.g., in the HIV vaccine

field, that repeated immunization with the same immunogen
A

B

C

FIGURE 2

Workflow of Reverse Vaccinology 3.0. (A) In Reverse Vaccinology 1.0, complete genome sequences of pathogens are analyzed and genes
coding for surface exposed proteins are identified (a). Potential surface-exposed proteins are expressed (b), and used to immunize the mice (c).
Immunogens that can most efficiently elicit protective responses are screened (d), and further optimized as clinical trial leads for human
vaccines (e). This process obviates the need to directly culture the pathogen. (B) In Reverse Vaccinology 2.0, structural data are utilized to guide
immunogen design. First, MBCs or plasmablasts from PBMCs of subjects seropositive through infection are enriched and sorted (a). Then sorted
single B cells are cultured and stimulated to screen for antigen-specific B cell clones in neutralization assays and their paired VH and VL genes
are PCR amplified and sequenced (b). Recombinant neutAbs are expressed in mammalian cells, e.g., HEK293 cells or CHO cells (c), to obtain
sufficient materials for function confirmation in animal models (not shown), and for structural characterization of such neutAbs bound to their
target antigen (Ag). Co-crystallization analysis of neutAb (usually Fab) and antigen provides detailed structural information of the protective
epitope or the conformation of the antigen in general, which is different from the one in the metastable form of the antigen that often can fail
to induce neutAbs (d). Protein engineering is guided by 3D modeling to stabilize the monomer immunogen and present it in a multimeric
nanoparticle format as a potential candidate for human vaccine (e). (C) In Reverse Vaccinology 3.0, the goal is to design a germline-antibody-
binding immunogen and gradually evolve germline neutAbs into ones with sufficient breadth to neutralize the current pathogen and its future
variants. This process starts by enriching of B cells from the first-line of defense, i.e., fluids in the body cavity and mucosa [e.g., from sputum, ref
(71)], where natural antibody-secreting B-1 B cells are predominantly present (a’). Antigen-binding single B cells are functionally screened and
their Ig sequences are scrutinized with software [e.g., IgSCUEAL, ref (72)] to identify the germline sequences (b’). Next generation sequencing of
enriched B-1 B cells from a cohort of infected patients at early stages of the disease (e.g., stratified by our method in Figure 1), may help identify
convergent germline sequences induced by infection (38). Modeling with software such as Rosetta allows for the calculation of the interacting
area between the Fab of germline neutAbs and the antigen (c’). Since the native antigen usually does not bind the germline antibody sequences
(73, 74), it is necessary to generate a yeast surface displayed random mutational library of the antigen to select for variants that bind germline
neutAbs as the initial immunogen (d’). Such immunogens would be presented in multimeric form on self-assembled nanoparticles during
primary vaccination (e’), followed by sequential boosting with homologous and/or heterologous immunogens to facilitate somatic
hypermutation and nurture broad neutAbs that also protect against future variants (f). This strategy relies heavily on computational
bioinformatics, and has a species restriction on Ig repertoire, hence humanized mice with knock in human Ig locus would be the preferred
preclinical animal model (75).
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is not effective in inducing broad neutAbs (82). For a

pathogen that is prone to immune-evasion, like SARS-CoV-

2, the most effective vaccination strategies should be aimed

for breadth over depth.

As breadth is intrinsically associated with activating the

germline-bearing natural antibodies of the B-1 B cell origin,

the most relevant immunization route for COVID-19 should

be to target local B-1 cells within the pleural cavity and lung

mucosa, rather than using intramuscular inoculation that

primarily targets B-2 B cells. For this to be successful,

immunogen would need to be presented in a high valency

mult imeric form, e .g . , Spike prote in displayed on

nanoparticles, which can stimulate potent neutAbs at a

faster rate with minute doses (78). To reduce the possibility

of inducing non-protective antibodies, RBD alone or in

conjunction with the 76E1 epitope (18) can be displayed.

In addition, including certain T cell epitopes as a peptide

linker of the immunogen may also be necessary for the

development of long-term T cell immunity to COVID-19

disease (83, 84). Moreover, immunogen delivery would likely

need to be through a more physiologically relevant route, i.e.,

nasal spraying or bronchial inhalation. More than a dozen

nasal sprays or drops are actively being tested against

COVID-19 in humans, either as a primary immunization

or as a booster (85). Among them, some utilize HBV VLPs or

attenuated RSV/Adenovirus (86) to display the Spike protein

of SARS-CoV-2. Notably, an inhaled Adenoviral COVID-19

booster can effectively induce high titers of neutAbs against

Omicron BA.5, and IgA in blood (most likely in respiratory

mucosa as well) (86). Strategies which present a multimeric

immunogen to harness B-1 germline antibody sequences are

the first steps towards nurturing a broadly protective vaccine

that not only prevents severe disease, but also may block

symptomatic infection on exposure and thwart future

variants if they arise.
Conclusions

Mammalian hosts can never fully ‘‘outrun’’ pathogens,

given the pathogen’s replication speed and mutation rates.

Thus, chasing recombinant pan-neutralizing antibodies

as prophylactic and therapeutic modalities is, at most,

a temporary fix to the long-term problem of escape variants.

Strategies laid out by Reverse Vaccinology 3.0 exploit the

diversity and plasticity of the natural B cell repertoire pre-

existing within our own body, and may help the host change

the rules in the arms race between host and pathogen (30).
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Broadly neutralizing ability is critical for developing the next-generation SARS-

CoV-2 vaccine. We collected sera samples between December 2021-January

2022 from 113 Taiwan naïve participants after their second dose of

homologous vaccine (AZD1222, mRNA-1273, BNT162-b2, and MVC-

COV1901) and compared the differences in serological responses of various

SARS-CoV-2 vaccines. Compared to AZD1222, the two mRNA vaccines could

elicit a higher level of anti-S1-RBD binding antibodies with higher broadly

neutralizing ability evaluated using pseudoviruses of various SARS-CoV-2

lineages. The antigenic maps produced from the neutralization data implied

that Omicron represents very different antigenic characteristics from the

ancestral lineage. These results suggested that constantly administering the

vaccine with ancestral Wuhan spike is insufficient for the Omicron outbreak. In

addition, we found that anti-ACE2 autoantibodies were significantly increased

in all four vaccinated groups compared to the unvaccinated pre-pandemic

group, which needed to be investigated in the future.

KEYWORDS

COVID-19, vaccine, binding antibodies, neutralizing antibodies, anti-ACE2 antibodies
Introduction

COVID-19 pandemic occurred at the end of 2019 and has caused 624 million

infections and 6.5 million deaths as of 25 October 2022, according to the statistics of

World Health Organization (WHO) (1). In addition to the serious health problems, the

COVID-19 pandemic has caused a negative impact on the global economy (2). Scientists
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worldwide were dedicated to investigating the SARS-CoV-2-

related research, especially in vaccines and antiviral drug

developments to combat coronavirus. To date, there are eleven

COVID-19 vaccines based on different platforms that have been

granted emergency use listing (EUL) by the World Health

Organization (WHO) (https://covid19.trackvaccines.org/

agency/who/). The platforms of these granted vaccines include

inactivated virus (Covaxin from Bharat Biotech, Covilo from

Sinopharm (Beijing), and CoronaVac from Sinovac), non-

repl icat ing viral vector (Convidcia from CanSino,

Ad26.COV2.S from Janssen, Vaxzevria (AZD1222, ChAdOx1

nCoV-19) from Oxford/AstraZeneca, and Covishield

(Oxford/AstraZeneca formulation) from Serum Institute of

India), RNA (Spikevax (mRNA-1273) from Moderna and

Comirnaty (BNT162-b2) from Pfizer/BioNTech), and protein

subunit (Nuvaxovid (NVX-CoV2373) from Novavax and

COVOVAX (Novavax formulation) from Serum Institute of

India) (3, 4). The strategy of all these vaccine platforms except

inactivated virus vaccines is based on the SARS-CoV-2 spike

protein. Among these vaccines, Pfizer/BioNTech was the first

COVID-19 vaccine that has been approved by the U.S. Food and

Drug Administration (FDA) in 2021. Subsequently, Moderna,

Johnson & Johnson, and Novavax have also been approved by

the FDA in 2022 (5, 6).

SARS-CoV-2 spike protein is a ~180 kDa glycoprotein that

can form a trimeric structure that protrudes from the surface of

the viral particle and play a key role in host cell entry (7–9).

The total length of the SARS-CoV-2 spike protein contains

1273 amino acids (a.a) consisting of a signal peptide (a.a. 1–13

residues), S1 subunit (a.a. 14-685), and S2 subunit (a.a. 686-

1273). The S1 subunit contains a N-terminal domain (a.a. 14–

305), a receptor-binding domain (S1-RBD, a.a. 319-541), and a

receptor-binding motif (RBM, a.a. 437–508). The S2 subunit

includes the fusion peptide (a.a. 788–806), heptapeptide repeat

sequence 1 (HR1, a.a. 912–984), heptapeptide repeat sequence

2 (HR2, a.a. 1163–1213), transmembrane domain (a.a. 1213–

1237), and cytoplasm domain (a.a. 1237–1273) (10). The RBM

is a portion of the S1-RBD that makes direct contact with the

human cell surface receptor angiotensin-converting enzyme 2

(ACE2), whereas the S2 subunit mediates subsequent

membrane fusion with the host cell membrane by forming a

six-helical bundle via the two HR domain (7, 11). Within the

S1 and S2 subunits, the S1-RBD has been considered an

immunodominant region and the main target of neutralizing

antibodies (12–14).

In Taiwan, four COVID-19 vaccines have been granted

emergency use authorization (EUA) by Taiwan Food and

Drug Administration (TFDA), including AZD1222 (Vaxzevria,

Oxford/AstraZeneca), mRNA-1273 (Spikevax, Moderna),

BNT162-b2 (Comirnaty, Pfizer/BioNTech), and MVC-

COV1901 (Taiwan-based Medigen Vaccine Biologics

Corporation) at the study time. With similar strategies to

NVX-CoV2373 (Novavax), MVC-COV1901 is a protein
Frontiers in Immunology 02
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subunit vaccine adjuvanted with CpG 1018 and aluminum

hydroxide. To stabilize the prefusion form spike protein for

preserving neutralizing epitopes, a GSAS replacement at the S1/

S2 furin cleavage sites to confer protease resistance and two

proline substitutions at residues 986 and 987 (K986P, V987P) in

the sequence of the wild-type spike from the Wuhan strain were

incorporated (15). Additionally, a trimerization domain (IZN4)

is added to the C-terminus for improving the conformational

homogeneity (16). According to the statistical data from the

TFDA website (https://www.cdc.gov.tw/En/File/Get/

BlkBAw7kMxwGx–DsPEvtg), a total of 63.17 million doses

have been administered in Taiwan (mRNA-1273: 23.89 million

doses, BNT162-b2: 19.3 million doses, AZD1222: 15.3 million

doses, MVC-COV1901: 3.06 million doses) as of October

24th, 2022.

Vaccination reduces not only COVID-19 transmission, but

also severe illness and deaths from COVID-19 infection (17).

However, vaccines could not provide full protection from

COVID-19 infection, especially when SARS-CoV-2 has an

extremely high mutation rate (around 8×10−4 nucleotides/

genome annually) compared to other viruses (18, 19). Indeed,

the surveillance data showed that SARS-CoV-2 had generated a

lot of mutations since 2019 (20, 21). According to the WHO

classification, there were at least five variants of concerns

(VOCs) that caused large outbreak waves in different countries

in different periods, including B.1.1.7 (Alpha), B.1.351 (Beta),

P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). The

possible attributes of VOCs include the evidence of higher

transmissibility, increased virulence, and reduced effectiveness

of vaccines, therapeutics, or diagnostics (22, 23). Currently,

Omicron is the dominant variant circulating globally and

accounting for nearly all sequences reported to GISAID (24).

Omicron and its sublineages (BA.1, BA.2, BA.3, BA.4, BA.5, and

descendent lineages) have significantly more mutations than

previous SARS-CoV-2 variants particularly in the spike gene

(25–27). Compared to the original strain, thirty amino acid

changes (among which fifteen are in the RBD region), three

deletions, and one insertion occur in the Omicron spike protein

(27). Not only breakthrough infection, but the number of people

reinfected with the coronavirus has increased since the Omicron

variant spread globally (28–30).

As a part of the global value chain, Taiwan would surely

loosen the broad restrictions (or lockdown restrictions).

Therefore, evaluating the neutralizing activity especially

against the SARS-CoV-2 variant of concerns is very important.

Many factors affect immune responses to the SARS-CoV-2

vaccines, including age, gender, nutritional status, body mass

index, host genetic polymorphism, chronic disease, and immune

history (31, 32). More and more studies indicate that SARS-

CoV-2 infection could cause immune disturbance and trigger

autoantibodies production (33, 34). Several studies have shown

that anti-ACE2 autoantibodies increase in COVID-19 patient

serum and significantly positively correlate with disease severity
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(35, 36). However, whether COVID-19 vaccines would trigger

anti-ACE2 autoantibodies or by which vaccine platform

is unclear.

This study focused on the serological responses of various

COVID-19 vaccines used in Taiwan by analyzing the production

of anti-spike, anti-S1-RBD, and anti-ACE2 autoantibodies. In

addition, the breadth of neutralizing antibody response was

evaluated using a lentiviral pseudovirus system encoding the

spike protein of ancestral SARS-CoV-2 and other six SARS-

CoV-2 variants. Furthermore, the antigenic maps were

generated by using the neutralizing titer and were rendered

separately or combined with various vaccines.
Materials and methods

Cohort information

This study recruited Taiwanese who received two

homologous doses of a COVID vaccine. The serum samples

were collected four weeks after the second dose of vaccination.

Four different COVID-19 vaccine brands were included,

including AZD1222 (Vaxzevria, Oxford/AstraZeneca), mRNA-

1273 (Spikevax, Moderna), BNT162-b2 (Comirnaty, Pfizer/

BioNTech), and MVC-COV1901 (Taiwan-based Medigen

Vaccine Biologics Corporation). The pre-pandemic serum

samples from the healthy donors were collected before 2019

and used as the negative control sera.
Serum collection and storage

All blood samples were processed on the collection day in a

single-step standardized method. Briefly, whole blood was

collected in red-topped vacutainers, plastic vacutainers

containing clot activators but no anticoagulants (BD

Biosciences, Franklin Lakes, New Jersey). The blood was

allowed to clot by leaving it undisturbed at room temperature

for 30 minutes. Sera were collected after centrifuging whole

blood at 1500 ×g for 15 min at room temperature without brake.

The undiluted sera were transferred and stored in polypropylene

conical tubes at −80 °C for subsequent analysis. Before

conducting the micro-neutralization assay, the serum was

aliquoted and heat-inactivated at 56 °C for 30 min for

complement inactivation.
Recombinant proteins

C-terminal His-tag SARS-CoV-2 trimeric spike

(extracellular domain, ECD) recombinant protein and N-

terminal 6×His-SUMO tag SARS-CoV-2 nucleocapsid protein

expressed from HEK293 were purchased from Leadgene
Frontiers in Immunology 03
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Biomedical, Inc. Tainan, Taiwan. C-terminal 6×His and Avi-

tagged human ACE2 (ECD) protein from HEK293 were

purchased from GeneTex, Inc. Irvine, CA. C-terminal His-

tagged SARS-CoV-2 S1-RBD recombinant proteins

(YP_009724390) purified from S2 cells (37).
Indirect enzyme-linked immunosorbent
assay

An indirect ELISA was performed to quantify the levels of

anti-nucleocapsid/spike/S1-RBD binding antibodies and anti-

ACE2 autoantibodies in COVID post-vaccination sera. Briefly,

the indicated proteins (2 µg/mL) were coated onto a high-

binding 96-well ELISA plate overnight at 4°C. After blocking

with 1% BSA in PBS, diluted sera (1:100 for anti-nucleocapsid/

spike/S1-RBD binding antibodies, 1:50 for anti-ACE2

autoantibodies) were added and incubated in wells for 1 h at

37°C. The primary antibodies were allowed to bind to the anti-

human IgG-HRP detection antibody (1:4000) (Thermo Fisher

Scientific, Waltham, MA) for 1 h at 37°C. Wells were washed

three times with PBST (PBS containing 0.01% Tween 20)

be tween each s t ep . Fo r co lo r v i sua l i z a t i on , the

tetramethylbenzidine (TMB) reagent (Clinical Science

Products, Mansfield, MA) was added to the wells for 10-

15 min, and the reaction was stopped by the addition of 2N

H2SO4. The absorbance at OD 450 nm was read by a VersaMax

microplate reader (Molecular Devices, Sunnyvale, CA).
Production of SARS-CoV-2
lenti-pseudovirus

We applied the lentiviral vector system provided by the

National RNAi Core of Academia Sinica Taiwan to generate

SARS-CoV-2 pseudovirus as mentioned previously (38). The

sequences of SARS-CoV-2 full-length spike protein, including

Wuhan (YP_009724390.1), B.1.1.7 (alpha), B.1.351 (beta),

B.1.617.2 (delta), and B.1.1.529 (omicron) were optimized

synthesized and cloned into a pcDNA3.1+ vector for

expression (Leadgene, Tainan, Taiwan). The P. 1 (gamma) and

C. 37 (lambda) were purchased from Sino Biological (Beijing,

China). Several silent mutations were introduced into the full-

length DNA sequence of SARS-CoV-2 Spike (S gene) to increase

the protein expression level in mammalian cell system.

HEK293T cells were co-transfected with pCMVdeltaR8.9,

pLVX-NanoLuc-Puro (Leadgene, Tainan, Taiwan), and the

plasmids expressing S gene for different SARS-CoV-2 variants

were transfected into 293T cells using a TransIT-X2 transfection

reagent (Mirus Bio LLC, Madison, Wisconsin). After 24 h

transfection, the culture medium was displaced by FreeStyle™

293 expression medium (Thermo Fisher Scientific, Waltham,

MA) and then cultured for an additional 24 h. The lentiviral
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https://doi.org/10.3389/fimmu.2022.1023943
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chao et al. 10.3389/fimmu.2022.1023943
supernatant was further 30-fold concentrated using Lenti-X

concentrator (Takara Bio, San Jose, CA), and the infectivity of

SARS-CoV-2 lenti-pseudoviruses were determined by using the

median tissue culture infectious dose (TCID50) in a HEK293-

human ACE2 overexpression stable cell line (HEK293-ACEO/E)

(Leadgene, Tainan, Taiwan).
Commutability assessment

To convert the binding OD values and NT50 into binding

antibodies units (BAU) and international units (IU), the

COVID-19 patients standard sera calibrated by WHO

international standard (IS) sera (20/130, 20/136, and 20/268)

were kindly provided by Prof. Shin-Ru Shih (Chang Gung

University). The 50% neutralization titer (NT50) values for

standard patients sera were determined by pseudovirus micro-

neutralization assay. To confirm the test accuracy of our

pseudovirus micro-neutralization assay, another standard

serum (COV 110-09) co-calibrated by five different labs in

Taiwan, provided by Taiwan Food and Drug Administration

(TFDA), was used. Each standard serum sample was tested in

duplicate or triplicate independently.
Pseudovirus micro-neutralization assay

The neutralizing antibody titer of each vaccinee against

different SARS-CoV-2 variants of concern were tested using a

lenti-pseudovirus system. HEK293-ACEO/E cells were seeded on

96-well plates 18-24 h before infection. Complement-inactivated

sera with the indicated dilution factors were preincubated with

100 TCID50 of SARS-CoV-2 spike-expressing pseudovirus for

1 h and added to the HEK293-ACEO/E seeding plate. After 18-

24 h incubation, the infection rate of SARS-CoV-2 lenti-

pseudoviruses was evaluated using a Nano-Glo Luciferase

Assay System (Promega, Madison, WI), and the luciferase

signal was detected by a SpectraMax iD5 (Molecular Devices).

The titers were determined using curve-fitting functions

statistical packages (GraphPad Prism). The tabular

neutralization data were analyzed manually and also using

antigenic cartography.
Antigenic cartography

Antigenic cartography is a method to visualize neutralization

data by reflecting the antigenic properties of a pathogen. In an

antigenic map, the positions and distances of antigens and sera

represent their antigenic relationship. The difference between

the log2 of the maximum titer observed and the log2 of the titer

for the serum and antigen coincides with the distance between

the serum and antigen. Thus, each titer in a neutralization assay
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can be thought of as specifying a target distance for the points in

an antigenic map. In this study, the antigenic maps were

generated using a web-based tool (Acmacs Web Cherry, an

open resource available from https://acmacs-web.antigenic-

cartography.org/).
Statistical analysis

All data were analyzed by GraphPad Prism version 6.0

(GraphPad Software Inc., CA). The results were presented as

geometric mean titers (GMT) with 95% confidence interval (CI).

Student’s unpaired t-test was used to analyze the differences

between two groups. One-way ANOVA with a Kruskal–Wallis

comparison test was used to analyze the differences among

multiple groups. The correlation between the neutralizing

titers and the serological response against the proteins

(trimeric spike, S1-RBD, and human ACE2) was calculated

through Spearman’s correlation. P values <0.05 were

considered statistically significant.
Results

Participants (Cohort information)

We enrolled 113 SARS-CoV-2-naïve participants and

collected their sera samples within days 30 to 120 after the

second dose of homologous COVID vaccination (Figure S1A)

between December 2021-January 2022. To confirm the

serological activity was only triggered by the vaccination but

not by infection, the binding antibodies against SARS-CoV-2

nucleocapsid and trimeric spike proteins of all sera samples were

tested. The pre-pandemic serum samples from the healthy

donors were collected before 2019 and used as the negative

control sera. As shown in Figure S1B, the mean optical densities

(OD) of antibodies against nucleocapsid in the vaccinated sera

has no significant difference from that in the pre-pandemic sera,

suggesting all the participants had not been infected by COVID-

19 before. The anti-SARS-CoV-2 spike binding antibody in the

post-vaccination sera was significantly higher than in the pre-

pandemic sera, indicating the robust antibodies response was

triggered by the vaccination (Figure S1C).

To compare the serological response induced by different

vaccine brands, the participants were further classified into four

groups according to the received vaccine brands (including

AZD1222 (n=42), mRNA-1273 (n=19), MVC-COV1901

(n=27), and BNT162-b2 (n=25)). Median age, gender ratio,

average sample collection days after the second dose

vaccination, and the detailed age/gender distribution of the

participants in each group were shown in Table 1 and Figure

S2. The average sample collection days after the second dose

vaccination of the MVC-COV1901 group (69.46 days) was
frontiersin.org
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significantly higher than the other three groups (42.1 days in the

AZD1222 group, 46.74 days in the mRNA-1273 group, and

45.08 days in the BNT162-b2 group) (Figure S1D), while there

was no significant difference in the mean ages between each

group (Figure S1E).
The serological response triggered by
different vaccine brands

Anti-spike and anti-S1-RBD antibodies
response

The serological response triggered by different vaccine

brands was evaluated by the anti-spike and anti-S1-RBD

binding antibodies quantification using ELISA, and the

neutralizing (NT) antibody titers were determined by NT50

value in a lenti-pseudovirus neutralization assay. The binding

OD values and NT50 values were converted into binding

antibodies units (BAU) and international units (IU),

respectively, using WHO standard calibrated sera that were

kindly provided by Prof. Shin-Ru Shih (Figure S3).

The geometric mean end-point titers (GMTs) of the anti-

spike binding antibodies in the mRNA-1273 sera group were

3214 BAU/mL (95% confidence interval [CI], 1626 to 6353

BAU/mL), which were significantly higher than in AZD1222

(GMTs, 245.4 BAU/mL, 95% CI, 194.9 to 308.9 BAU/mL),

MVC-COV1901 (GMTs, 442.8 BAU/mL, 95% CI, 226.3 to

753.3 BAU/mL), and BNT162-b2 (GMTs, 944.3 BAU/mL,

95% CI, 758.6 to 1176 BAU/mL) vaccinees (Figure 1A).

Notably, we observed that mRNA-1273 recipients show a

bimodal distribution in anti-spike binding antibodies

(Figure 1A and S4A). However, there were no significant

difference in the neutralizing activity (Figure S4B). We

therefore separated the mRNA-1273 recipients into two

groups: high- and low-anti-spike antibody production groups

(Figure S4A), and further investigated the factors involved in the

bimodal distribution (Figure S4). As shown in Figure S4, age

might be responsible for the differences in anti-spike binding

antibody production, but not sample collection time (Figure

S4C, 4D, 4E, and 4F). The GMTs of the anti-S1-RBD binding

antibodies in the mRNA-1273 and BNT162-b2 vaccinees were

950 BAU/mL (95% CI, 550.8 to 1639 BAU/mL) and 441.8 BAU/

mL (95% CI, 321.2 to 607.6 BAU/mL), that were significantly
Frontiers in Immunology 05
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higher than in AZD1222 (GMTs, 145.8 BAU/mL, 95% CI, 125.4

to 169.5 BAU/mL) and MVC-COV1901 (GMTs, 188.6 BAU/

mL, 95% CI, 134 to 265.3 BAU/mL) vaccinees (Figure 1B). Since

the S1-RBD has been considered an immunodominant region

and the main target of neutralizing antibodies. We further

compared the ratios of antibodies targeting S1-RBD to total

anti-spike binding antibodies in the different vaccine sera

groups. We found no significant difference in the ratios of

anti-S1-RBD to anti-spike binding antibodies between each

vaccine sera group (Figure 1C). In the pseudovirus

neutralization test, the neutralizing activity of the AZD1222

antisera group (GMTs, 107.8 IU/mL, 95% CI, 68.52 to 169.7 IU/

mL) was significantly lower than the other three groups

(Figure 1D). There was no significant difference in the

neutralizing activity between the mRNA-1273 (GMTs, 478.3 IU/

mL, 95% CI, 255.3 to 896.1 IU/mL), BNT162-b2 (GMTs, 515.9 IU/

mL, 95% CI, 297.3 to 895.3 IU/mL) and MVC-COV1901 (GMTs,

411.4 IU/mL, 95% CI, 224.5 to 754 IU/mL) vaccinees (Figure 1D).

These results indicated that mRNA vaccines (mRNA-1273 and

BNT162-b2) could elicit a more robust serological response,

including anti-spike/S1-RBD binding and neutralizing antibodies,

than adenovirus-based vaccine (AZD1222). In addition, the S-2P

spike protein subunit vaccine, MVC-COV1901, was not inferior to

mRNA vaccines in the ability to induce neutralizing antibodies

production. ()

Anti-ACE2 antibodies triggered by
SARS-CoV-2 vaccination

To compare the levels of anti-ACE2 antibodies in the sera of

pre-pandemic and vaccinated subjects, we detected the binding

antibodies (IgG) against human ACE2 using indirect ELISA. The

mean OD of antibodies against human ACE2 in the sera of

COVID-19 vaccinees was significantly higher than that in pre-

pandemic cohorts (Figure 2A). In addition, four vaccinated

groups showed a higher anti-ACE2 antibody level when

compared with the pre-pandemic group (Figure 2B). However,

there were no significant correlations between the levels of spike/

S1-RBD binding antibodies and the levels of ACE2 antibodies in

all vaccine types (Figure S5).

Moreover, we also compared the levels of anti-ACE2

antibodies in the sera of individuals after the first dose and the

second dose of COVID-19 vaccination. As shown in Figure 2C,

D, the levels of anti-ACE2 antibodies were significantly
TABLE 1 Demographic characteristics of vaccinated individuals.

Sample group Case Number Average Age Gender Average Collection time (days)

ChAdOx1 nCoV-19 (AZD1222, AZ) 42 35.26 M: 40.5% F: 59.5% 42.1

mRNA-1273 (Moderna) 19 33.37 M: 26.4% F: 73.6% 46.74

MVC-COV1901 (Medigen) 27 31.00 M: 51.8% F: 48.2% 69.46

BNT162b2 (Pfizer- BioNTech, BNT) 25 33.71 M: 36.0% F: 64.0% 45.08
28-120 days after homologous 2nd vaccine dose.
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increased after the second dose of vaccination in the vaccinees.

Overall, these results indicated that vaccination could induce the

production of anti-ACE2 antibodies in individuals.
Factors correlated to neutralizing titers

Several studies have reported that anti-spike and anti-S1-RBD

IgG levels in human serum/plasma positively correlate with

neutralizing titer and represent the neutralization potency (39,

40). Here, we investigated the correlation between the

neutralizing titers and the serological response against trimeric

spike, S1-RBD, and ACE2 in different vaccinated groups. In the

Spearman rank-order correlation results, anti-spike binding

antibodies levels were not significantly correlated with NT titers

in AZD1222 (r= 0.181; p=0.26), mRNA-1273 (r= 0.003; p=0.9), and

MVC-COV1901 (r= 0.06; p=0.76) (Figure 3A). Moderate or weak

correlation between neutralizing titers and anti-spike binding

antibodies levels were observed in the BNT162-b2 vaccinee group

(r= 0.475; p=0.029) and in total sera of post-vaccination groups (r=
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0.307; p=0.001) (Figures 3A, S6A). On the other hand, anti-S1-RBD

binding antibodies levels and NT titers were strongly correlated in

mRNA-1273 vaccinee group (r= 0.874; p<0.0001), moderately

correlated in BNT162-b2 (r= 0.465; p<0.03) and weakly

correlated in total sera groups (r=0.373; p<0.03) (Figure 3B and

S6B). However, no significant correlation between anti-S1-RBD

binding antibodies levels and NT titers was observed in AZD1222

(r=0.221; p=0.1) and MVC-COV1901 (r=0.089; p=0.67) sera

groups (Figure 3B). Interestingly, anti-ACE2 antibodies level was

negatively correlated with the NT titers in the BNT162-b2 sera

group (r=-0.54; p=0.008), but not in the other sera group (Figure 3C

and S6C).
Cross neutralizing activity to different
SARS-CoV-2 variants

Next, we evaluated the neutralizing activity against different

SARS-CoV-2 variants of different vaccinated groups using lenti-

pseudovirus that encodes the spike protein of ancestral SARS-
B

C D

A

FIGURE 1

Compare the serological response triggered by different vaccine brands. (A) The levels of anti-spike binding antibody and (B) anti-S1-RBD
binding antibody in the sera of four vaccinee groups (AZD1222, mRNA-1273, MVC-COV1901, and BNT162-b2) were evaluated by indirect ELISA.
The mean value from the pre-pandemic serum group was determined as the cutoff value (grey). (C) The ratio of anti-S1-RBD to anti-spike
binding antibody was shown. (D) Comparison of sera’s neutralizing antibodies titers (NT50) in different COVID-19 vaccine groups. **P < 0.01,
***P < 0.001, ****P < 0.0001,.
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CoV-2 and other six SARS-CoV-2 variants (Table 2), including

B.1.1.7 (alpha), B.1.351 (beta), C.37 (lambda), P.1 (gamma),

B.1.617.2 (delta), and B.1.1.529 (omicron). According to a

previous study, the antibody neutralization level of protection

from symptomatic infection and protection from severe

infection is 20.2% and 3.0% of the mean convalescent level,

which correspond to approximately 54 IU/mL and 8.02 IU/mL,

respectively (41). We, therefore, used the 54 and 8.02 IU/mL as

the cut-off values to present the neutralizing levels. The

neutralizing antibody mean titers higher than 54 IU/mL

(blue), in the range of 8.02-54 IU/mL (orange), or lower than

8.02 IU/mL (red). In the AZD1222 sera group, the neutralizing

activity exceeded 54 IU/mL was only for the ancestral Wuhan

lineage (GMTs, 107.8 IU/mL, 95% CI, 68.52 to 169.7 IU/mL).

The GMTs of NT50 against Alpha (35.44, 95% CI, 22.84 to

754.99), Lambda (29.18, 95% CI, 15.86 to 53.68), Gamma (20.08,

95% CI, 10.45 to 38.61), and Delta (13.77, 95% CI 8.68 to 21.87)

were in the range of 8.02-54 IU/mL. The neutralizing titers

against Beta (4.15, 95% CI 2.78 to 6.19) and Omicron (3.01, 95%
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CI 2.06 to 4.39) were decreased by a factor of 25.96 and 35.79,

respectively (Figure 4A, E). In the MVC-COV1901 sera group,

the GMTs of NT50 against ancestral lineage and Alpha reached

411.4 (95% CI 224.5 to 754) and 153.4 (95% CI 88.26 to 266.7).

The GMTs of NT50 against Beta (15.94, 95% CI, 8.25 to 30.81),

Lambda (33.49, 95% CI, 21.54 to 52.06), Gamma (18.38, 95% CI,

11.71 to 28.86), Delta (31.62, 95% CI 16.89 to 59.2) and Omicron

(14.03, 95% CI 7.37 to 26.69) were in the range of 8.02-54 IU/mL

(Figure 4C). As shown in Figure 4B, D, similar cross-neutralizing

patterns with higher titers in the mRNA-1273 and BNT162-b2

vaccinee groups were observed. In detail, the GMTs of NT50

were 478.3 (95% CI 255.3 to 896.1), 171.5 (95% CI 78.18 to

376.2), 13.09 (95% CI 6.32 to 27.12), 54.25 (95% CI 30.66 to

95.99), 26.52 (95% CI 13.57 to 51.81), 68.7 (95% CI 28.95 to

163.0) and 7.09 (95% CI 3.68 to 13.69) for ancestral lineage,

Alpha, Beta, Lambda, Gamma, Delta, and Omicron, respectively,

in the mRNA-1273 vaccinee group (Figure 4B). The GMTs of

NT50 were 515.9 (95% CI 297.3 to 895.3), 332.8 (95% CI 185.2 to

598.3), 17.41 (95% CI 9.26 to 32.72), 55.23 (95% CI 29.25 to
B

C D

A

FIGURE 2

Anti-ACE2 Abs significantly increased in the COVID post-vaccination group. (A) Anti-ACE2 antibodies in the sera of pre-pandemic and
vaccinated groups were tested. (B) The vaccinated group was separated into four groups (AZD1222, mRNA-1273, MVC-COV1901, and BNT162-
b2), and the anti-ACE2 antibodies in the sera of these groups were compared with the pre-pandemic group. (C, D) Anti-ACE2 antibodies in the
vaccinated sera after the first dose (dose 1) and the second dose (dose 2) were detected by an indirect ELISA. *P < 0.05, **P < 0.01, ***P < 0.001.
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104.3), 17.38 (95% CI 9.84 to 30.71), 109.1 (95% CI 59.57 to

199.8), and 8.07 (95% CI 4.54 to 14.35) for ancestral Wuhan

lineage, Alpha, Beta, Lambda, Gamma, Delta, and Omicron,

respectively, in the BNT162-b2 vaccinee group (Figure 4D).

Notably, none of the neutralizing titers against various variants

was lower than 8.02 IU/mL in the MVC-COV1901, mRNA-

1273, and BNT162-b2 sera group (Figure 4C). In addition, our

results suggested that mRNA vaccines, including mRNA-1273

and BNT162-b2, elicit higher breadth of neutralizing antibody

titers than MVC-COV1901, followed by AZD1222. The

reduction neutralizing titers folds of each variant to the
Frontiers in Immunology 08
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ancestral Wuhan were presented in Figure 4E. Compared with

Wuhan, the reductions in neutralization against Omicron were

the greatest in each vaccine group (about 65-fold in mRNA-1273

and BNT162-b2, 35.79-fold in AZD1222 and 29.32-fold in

MVC-COV1901), followed by Beta (25.96-fold in AZD1222,

36.54-fold in mRNA-1273, 25.81-fold in MVC-COV1901 and

29.63-fold in BNT162-b2) and Gamma (5.37-fold in AZD1222,

18.04-fold in mRNA-1273, 22.38-fold in MVC-COV1901 and

29.63-fold in BNT162-b2). The reductions in neutralization

against the other variants in each vaccine group were from

1.55-fold to 13.01-fold.
B

C

A

FIGURE 3

Factors correlated with neutralizing titers in different vaccine groups. The correlation of (A) anti-spike binding antibody levels (B) anti-S1-RBD
antibody levels (C) anti-ACE2 antibody levels and neutralizing antibodies titers (NT50) of the AZD1222, mRNA-1273, MVC-COV1901, and
BNT162-b2 vaccinees’ sera were evaluated. The levels of correlation coefficients are presented with different colors and the statistical
significance in the correlations between each factor and neutralizing titers was shown. *P < 0.05, **P < 0.01, ****P < 0.0001.
TABLE 2 Spike substitutions of all VOCs relative to ancestral Wuhan lineage in this study.

Variants of
Concern

Spike mutation profile

B.1.1.7 (a) 69-70 del, 144Y del, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H

B.1.351 (b) L18F, D80A, D215G, 242-244 del, R246I, k417N, E484K, N501Y, D614G, A701V

C.37 (l) G75V, T76I, 246-252 del, D253N, L452Q, F490S, D614G, T859N

P.1 (g) L18F, T20N, P26S D138Y, R190S, K417N, E484K, N501Y, D614G, H655Y, T10271, V1176F

B.1.617.2(d) T19R, T95I, G142D, 156-157 del, R158G, L452R, T478K, D614G, P681R, D950N

B.1.1.529(o) A67V, 69-70 del, T95I, 142-144 del, Y145D, 211 del, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, 477N, T478K, E484A,
Q493R, Q496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N959K, L981F
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Antigenic cartography generated from
homologous vaccinated sera with
pseudovirus neutralizing assay

Next, we constructed two-dimensional antigenic maps using

neutralizing antibody titers from the sera of naïve vaccinees as

described previously and were presented separately or combined

with various vaccines (38, 42). Since the strategies of all four

vaccine brands are based on the ancestral spike sequence, the

sera tend to cluster around the ancestral Wuhan strain, reflecting

that homologous neutralization is dominant. As shown in

Figure 5, the maps generated from the neutralizing titers of

mRNA-1273, MVC-COV1901, BNT162-b2, and total vaccinee

groups were more similar than which generated from the

neutralizing titers of AZD1222 group (Figure 5A). In the

mRNA-1273 (Figure 5B), MVC-COV1901 (Figure 5C),

BNT162-b2 (Figure 5D), and the total vaccinee maps

(Figure 5E), the ancestral Wuhan and Alpha viruses cluster

tightly together in the center of the map within 2 antigenic unit
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(1 unit = 2-fold change in neutralization titer). However, the

distances between ancestral Wuhan and Lambda/Delta, Beta/

Gamma, or Omicron were 2.48-3.83, 4.07-4.65, or more than 5

antigenic units, respectively (Figure S7). On the other hand, the

lower neutralization titer to the ancestral Wuhan strain in AZ

vaccinated group might result in a slight difference in the

calculated distance between Wuhan to each variant. Indeed, all

the antigenic distances between Wuhan to each variant below 4

in the map generated from the AZD1222 vaccine group

(Figure S7).
Discussion

In this study, we compared the serological response of naïve

individuals with various homologous SARS-CoV-2 vaccine

platforms. Consistent with the previous studies, mRNA vaccines

(mRNA-1273 and BNT162-b2) could elicit more robust

serological responses (anti-spike and anti-S1-RBD binding
B

C D

E

A

FIGURE 4

Neutralizing Ab response against different SARS-CoV-2 VOCs of different vaccine brands. (A) AZD1222, (B) mRNA-1273, (C) MVC-COV1901, and
(D) BNT162-b2 vaccinees’ sera were tested by pseudovirus micro-neutralization assay. Each sample’s neutralizing antibodies titer (NT50) against
different SARS-CoV-2 VOCs was shown. Low neutralizing antibody response was red, medium neutralizing antibody response was orange, and
high neutralizing antibody response was blue. (E) Values of fold-reduction in the neutralization of Alpha, Beta, Lambda, Gamma, Delta, and
Omicron are presented as heat maps with colors. The statistical difference compared to the Wuhan strain was shown. *P < 0.05, **P < 0.01,
***P < 0.001.
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antibodies production and broadly neutralizing antibodies titer)

than other platforms (AZD1222 and MVC-COV1901) (43–45).

Notably, although the MVC-COV1901 vaccinee group had a

lower amount of anti-spike and anti-S1-RBD binding antibodies

than mRNA-1273 and BNT162-b2 groups, no significant

difference in neutralizing antibody titers of them was found. In

addition to vaccine platform, the strategies for SARS-CoV-2 spike

protein sequence design might affect the vaccine efficacy (4, 46).

There are several different strategies to stabilize the prefusion form

spike protein. One is adding mutations at the S1/S2 furin cleavage

sites to confer protease resistance; another is incorporating two

proline substitutions at residues 986 and 987 (K986P, V987P) in

the sequence of the wild-type spike from the Wuhan strain (47).

Moreover, MVC-COV1901 adds a trimerization domain to the C-

terminal for improving the conformational homogeneity (16).

The mRNA-1273, BNT162-b2, and MVC-COV1901 use similar

strategies to stabilize the prefusion form spike protein for

preserving neutralizing epitopes; however, AZD1222 does not.

This could be the possible reason for AZD1222 showing a lower

neutralizing activity, compared with mRNA-1273, BNT162-b2,

and MVC-COV1901 in this study.

Several limitations that should be taken into consideration in

this study include the sample collection time period, sample

sizes, and the use of a SARS-CoV-2 pseudovirus system for

determining the neutralizing antibodies titers. In this study, only

the MVC-COV1901 group had a significantly higher average

sample collection days compared to the other groups. In
Frontiers in Immunology 10
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addition, we found that there was no significant correlation

between the neutralizing antibody titers and the time of sample

collection (Figure S8). However, the influence of different sample

collection times on neutralizing titers cannot be ignored. On the

other hand, pseudoviruses can only replicate for a single round

and the conformation/distribution of the spike protein on the

pseudotyped virus may not exactly reflect the natural state of

spike proteins on real SARS-CoV-2 (48). The neutralizing

antibodies titers might be overestimated in the SARS-CoV-2

pseudovirus system. Indeed, inflating titers for the particular

SARS-CoV-2 gamma (P.1) variant was observed in other studies

using lentiviral pseudotype virus (49).

According to the statistical data from the TFDA website

(https://www.cdc.gov.tw/En/File/Get/YTqTkmtAHH7fmK

Y6JF3l_A), 93.8% of the population has received at least one

dose of a COVID-19 vaccine, 88.2% of the Taiwanese population

have received two doses of the COVID-19 vaccines, and 73.8% of

persons have received the booster dose as of October 24th,

2022. A total of 63.18 million doses have been administered in

Taiwan (mRNA-1273: 23.89 million doses, BNT162-b2: 19.3

million doses, AZD1222: 15.3 million doses, MVC-COV1901:

3.06 million doses) and 20,172 cases of vaccine adverse reactions

have been reported (AZD1222: 8,541; mRNA-1273: 5,513;

MVC-COV1901: 826; BNT162-b2: 5,731). Although the

proportion is very low, vaccine adverse reaction still causes

concern to the public. One of the known causes of adverse

vaccine reactions is autoimmune disease (50, 51). Indeed, many
B
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FIGURE 5

SARS-CoV-2 antigenic cartography generated from neutralizing antibodies response of different vaccine brands. Antigenic maps of SARS-CoV-2
VOCs were generated using neutralizing antibody titers from (A) AZD1222, (B) mRNA-1273, (C) MVC-COV1901, (D) BNT162-b2, and (E) total
vaccinees’ sera. SARS-CoV-2 VOCs are shown as colored circles and sera are indicated as hollow squares. Both the x and y-axes of the map are
antigenic distance, and each grid square (1 antigenic unit) represents a 2-fold change in neutralization titer.
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autoimmune phenomena, including vaccine-induced immune

thrombotic thrombocytopenia, immune thrombocytopenic

purpura, and rheumatoid arthritis, could be associated with

COVID-19 vaccines (52–55). Several studies have reported

that SARS-CoV-2 infection could induce the production of

autoantibodies (33, 34, 56). Previous studies have shown that

SARS-CoV-2 infection could induce the production of

antibodies against ACE2 in the serum (35, 36, 57, 58), which

might cause angiotensin II levels to increase and finally lead to a

pro-inflammatory state (59). Thus, investigating whether

COVID-19 vaccination induces the production of ACE2 auto-

antibodies is needed. In this study, we compared the levels of

ACE2 cross-reactive antibodies in the sera of individuals after

the first dose and the second dose of vaccination. We found a

significant increase in the levels of ACE2 cross-reactive

antibodies in COVID-19 vaccinees. Some subjects showed an

elevation in the levels of ACE2 cross-reactive antibodies after the

second dose of vaccination. This indicated that the SARS-CoV-2

spike antigen induces the production of antibodies that can

cross-react with ACE2.

With the increasing cases of re-infection and breakthrough,

developing the next-generation SARS-CoV-2 vaccines is

necessary. At this time, the public’s willingness to vaccinate

seasonally is a big challenge. Since the durability of responses

from different vaccine platform were comparable: the reduction

folds at 180 days from the peak seen at 14 days after the second

dose of neutralizing antibody titers were 4.5-7.1 in the mRNA

platform (60, 61), 6.2 in the MVC-COV1901 (62), and 4.5 in

AZD1222 (63). Increasing the breadth of neutralizing antibodies

and reducing the vaccine adverse reaction will be the main goals

for next-generation vaccines. In this study, we found that the

mRNA vaccine platform could trigger robust serological

response and the protein-subunit vaccine (MVC-COV1901)

was able to induce neutralizing antibodies production as well

as the mRNA vaccine. Therefore, we suggested that the design of

spike with S-2P, furin-cleavage resistant and trimerization could

be a mix strategy to the various vaccine platforms to produce the

anti-spike/S1-RBD antibodies with neutralizing ability.

Another key point for the next-generation vaccine strategies

would be to find a strain more suitable considering the new

strains and outbreaks. Consistent with the antigenic maps have

published by other groups, Omicron showed the farthest

antigenic distance to Wuhan, implying Omicron represents

very different antigenic characteristics from the ancestral

lineage (64, 65). As autoimmune disease in COVID-19 has

received attention, several studies have begun to examine

whether SARS-CoV-2 vaccination can lead to autoantibodies

production. However, the anti-ACE2 antibody was not

commonly involved in the autoantibodies testing array (66).

Here, we raised the issue that SARS-CoV-2 vaccines might

trigger the anti-ACE2 antibodies production. Therefore,

whether SARS-CoV-2 vaccines- induced ant i-ACE2
Frontiers in Immunology 11
73
autoantibody plays any biological function and the

mechanisms of how SARS-CoV-2 vaccines lead to ACE2

autoantibodies production needs further investigation.
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Monoclonal antibodies
constructed from COVID-19
convalescent memory B cells
exhibit potent binding activity to
MERS-CoV spike S2 subunit and
other human coronaviruses

Yuan Peng1,2†, Yongcheng Liu3†, Yabin Hu2†, Fangfang Chang3,
Qian Wu2,3, Jing Yang4, Jun Chen5, Shishan Teng2,
Jian Zhang2, Rongzhang He2, Youchuan Wei1,
Mihnea Bostina6, Tingrong Luo1, Wenpei Liu2, Xiaowang Qu2*

and Yi-Ping Li3,7*

1College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China,
2Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical
School, University of South China, Chenzhou, China, 3Institute of Human Virology, Department of
Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of
Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China, 4School of
Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China, 5School
of Public Health, Southern Medical University, Guangzhou, China, 6Department of Microbiology
and Immunology, University of Otago, Dunedin, New Zealand, 7Department of Infectious Diseases,
The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
Introduction: The Middle East respiratory syndrome coronavirus (MERS-CoV)

and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are

two highly contagious coronaviruses causing MERS and COVID-19,

respectively, without an effective antiviral drug and a long-lasting vaccine.

Approaches for diagnosis, therapeutics, prevention, etc., particularly for SARS-

CoV-2 that is continually spreading and evolving, are urgently needed. Our

previous study discovered that >60% of sera from convalescent COVID-19

individuals, but <8% from general population, showed binding activity against

the MERS-CoV spike protein, indicating that SARS-CoV-2 infection boosted

antibodies cross-reactive with MERS-CoV.

Methods: To generate antibodies specific to both SARS-CoV-2 and MERS-CoV,

here we screened 60 COVID-19 convalescent sera against MERS-CoV spike

extracellular domain and S1 and S2 subunits. We constructed and characterized

monoclonal antibodies (mAbs) from COVID-19 convalescent memory B cells and

examined their binding and neutralizing activities against human coronaviruses.

Results and Discussion: Of 60 convalescent serum samples, 34 showed

binding activity against MERS-CoV S2, with endpoint titers positively

correlated with the titers to SARS-CoV-2 S2. By sorting single memory B

cells from COVID-19 convalescents, we constructed 38 mAbs and found that
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11 mAbs showed binding activity with MERS-CoV S2, of which 9 mAbs showed

potent cross-reactivity with all or a proportion of spike proteins of

alphacoronaviruses (229E and NL63) and betacoronaviruses (SARS-CoV-1,

SARS-CoV-2, OC43, and HKU1). Moreover, 5 mAbs also showed weak

neutralization efficiency against MERS-CoV spike pseudovirus. Epitope

analysis revealed that 3 and 8 mAbs bound to linear and conformational

epitopes in MERS-CoV S2, respectively. In summary, we have constructed a

panel of antibodies with broad-spectrum reactivity against all seven human

coronaviruses, thus facilitating the development of diagnosis methods and

vaccine design for multiple coronaviruses.
KEYWORDS

COVID-19, convalescents, monoclonal antibody, coronavirus, middle eastern
respiratory syndrome coronavirus, spike protein
1 Introduction

Coronaviruses are enveloped, single-stranded positive-sense

RNA viruses belonging to the genus Coronavirus of the family

Coronaviridae in the order Nidovirales. Animal coronaviruses

cause respiratory, enteric, and neurological system diseases in a

wide range of wildlife and domestic animals (1, 2). Human

coronaviruses (hCoVs) mainly infect the respiratory tract

causing respiratory symptoms ranging from mild to lethal.

However, due to the changing habitat of host animals and the

high plasticity of the viral receptor, animal coronaviruses have

spread across species and caused infections in humans (3).

To date, seven coronaviruses have proven to transmit from

animals to humans, including three highly pathogenic

coronaviruses: the severe acute respiratory syndrome

coronavirus 1 (SARS-CoV-1), SARS-CoV-2, and Middle East

respiratory syndrome coronavirus (MERS-CoV), and four mild

coronaviruses: 229E and NL63 (alpha [a] coronavirus) and

OC43 and HKU1 (beta [b] coronavirus). The intermediate

hosts of MERS-CoV and SARS-CoV-2 are dromedary camels

and bats, respectively (1). Since first reported in Saudi Arabia

and Jordan in 2012, MERS cases have been reported in 27

countries with a infection fatality rate of ~35% (4). SARS-CoV-2

infection caused coronavirus disease 2019 (COVID-19), first

identified in 2019, which has spread globally, resulted in ~600

million infections and approximately 6.5 million deaths

recorded by October 2022 (5). The fatality of COVID-19

varies substantially within the range of 0.0%-1.6%, much lower

than estimations made earlier in the pandemic (6). Age, gender,

co-infection with other pathogens, initial diseases, etc. relate to

the severity of COVID-19 symptoms (7, 8). Infection of mild

hCoVs often leads to common cold symptoms, however,

individuals with severe combined immunodeficiency (SCID)

may develop serious clinical symptoms and even death (9).
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While resolving the pandemics and therapy are important,

probing and diagnosis of existing or emerging coronaviruses

with potential outbreak as well as identifying the origin and

intermediate hosts of coronaviruses could significantly prevent a

pandemic to occur or restrict the spreading. Therefore,

approaches for early diagnosis, prevention of cross

transmission, and treatment of infections by multiple

coronaviruses are urgently needed.

Coronavirus spike (S) protein extracellular domain (ECD)

ectodomain comprises two functional subunits, S1 and S2. The

S1 domain is responsible for recognition and binding to the

receptor, while S2 determines the membrane fusion for viral

entry into the cell (10). Different receptors recognize the S

protein and mediate cell entry, such as human aminopeptidase

N (APN) for HCoV-229E, angiotensin-converting enzyme 2

(ACE2) for HCoV-NL63, SARS-CoV-1, and SARS-CoV-2, and

dipeptidyl peptidase 4 (DPP4) for MERS-CoV (10–14). The

spike protein was shown to have multiple epitopes essential for

eliciting immune responses (15), thus spike is main target of

antibodies generated prophylactic and therapeutic purposes. The

S2 subunit is also a potential target for neutralizing antibodies

interfering with the rearrangement of the S protein and the

insertion of fusion peptide, and it can be a vaccine targeted to

elicit cross-immunity (16, 17). Considering that S2 is more

conserved than S1, the fusion site of S2 could be an ideal

target for epitope-focused vaccine development raising broadly

neutralizing antibodies (nAbs) against multiple coronaviruses

(10, 18).

Recently, we demonstrated that a small proportion (<8%) of

the general population elicited antibodies against MERS-CoV S

protein, while most of sera from COVID-19 convalescent

individuals (>60%) showed binding to MERS-CoV S protein,

indicating that SARS-CoV-2 infection boosted antibody

response with cross-reactivity against MERS-CoV (19). Other
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studies also showed that plasma IgG from COVID-19

convalescents reacted with MERS-CoV S protein (20), and the

mAbs targeting S2 subunit blocked MERS-CoV infection and

showed cross-reactivity with betacoronaviruses (21). A MERS-

CoV S2-targeting antibody isolated from immunized mice had

cross-reaction with S proteins of eight betacoronaviruses (22). In

addition, blood samples from Sierra Leoneans exposed to

seasonal coronavirus contained antibodies cross-reactive to

both SARS-CoV-2 and MERS-CoV (23). These observations

suggest that there is a possibility of isolating antibodies with

broad-spectrum reactivity against multiple coronaviruses from

COVID-19 convalescent individuals.

In this study, we demonstrated that the majority of serum

antibodies from 60 COVID-19 convalescents reacted with MERS-

CoV S2 subunit and neutralized MERS-CoV pseudovirus. We

constructed and identified 11 mAbs specific to MERS-CoV S2

subunit from single memory B cells from COVID-19

convalescents, of which 9 mAbs had cross-reactivity with other

seven hCoVs S proteins. This study provides a panel of antibodies

with broad-spectrum reactivity, thus facilitating the development

of accurate diagnosis for multiple coronavirus infections.
2 Materials and methods

2.1 Human subjects

The study protocol was approved by the Institutional Review

Board of Shaoyang Central Hospital, Hunan Province, China

(V.1.0, 203200301), and all subjects or their legal guardians who

participated in this study provided written informed consents.

All patients were identified as SARS-CoV-2 infected according

to the Guidelines for the Diagnosis and Treatment of COVID-19

(v.5) published by the National Health Commission of China,

combined with clinical symptoms and quantitative PCR by the

local health authorities. We collected information from 60

patients discharged from Shaoyang Central Hospital from

January 23, 2020 to March 2, 2020, and the peripheral blood

mononuclear cells (PBMCs) were drawn from the convalescents

on the 28th day after discharge (equivalent to 44-52 days after

COVID-19 symptom onset) and used for antibody construction.

PBMCs and sera were isolated with lymphocyte separation

solution and stored in liquid nitrogen and -80°C, respectively.

For serum antibody binding assays, blood from the 2nd, 5th, 8th,

and 12th months after recovery were taken.
2.2 ELISA analysis of serum antibodies
binding to MERS-CoV spike protein

To determine the binding of serum antibody to MERS-CoV S

protein, indirect ELISA was performed using spike (S) and subunits

S1 and S2 were used as coating antigens. Briefly, 96-well plates were
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coated with MERS-CoV S, S1, and S2 (200 ng/well; S ECD, 40069-

V08B; S1, 40069-V08H; S2, 40070-V08B; Sino Biological, China) in

PBS at 4°C overnight. The plates were washed five times with PBS-T

(0.05% Tween-20 in PBS) and then blocked with blocking buffer

(2% FBS and 2% BSA in PBS-T) at room temperature for 2 h. The

serum (1:1000 dilution, 100 ml/well) was added to the well and

incubated at 37°C for 1 h, followed by addition of HRP-conjugated

goat anti-human IgG (1:5000 dilution, 100 ml/well; D110150-0100,
Sangon Biotech, China) and incubation at 37°C for 1 h. After

washing five times with PBS-T, 3,3′,5,5′-tetramethylbenzidine

(TMB, 100ml/well; 34029, Thermo Fisher Scientific, USA) was

added and incubated at room temperature for 5 min. The

reaction was stopped with 2M H2SO4. The absorbance (OD450

nm) was measured using a microplate reader (Thermo Fisher

Scientific). The ratio of OD450 nm for each sample relative to the

negative control was calculated and the value of positive/negative >3

was defined as a positive reaction.

To determine the endpoint titer of the serum antibody, 96-

well plates were coated with 200 ng/well of MERS-CoV S2 at room

temperature for 2 h. After washing five times with PBS-T, the

wells were incubated with blocking buffer at 4°C overnight. A 4-

fold serial dilution of serum (starting from 1:800) was added to the

96-well plate and incubated at 37°C for 1 h. The 96-well plate was

washed five times and detected for antibody binding to MERS-

CoV S2 using a microplate reader (Thermo Fisher Scientific), as

described above. All experiments were performed using human

healthy control (HC) sera as negative controls.
2.3 Avidity assay of serum antibodies

The avidity of serum IgG antibody to MERS-CoV-2 S2 was

measured using a modified two-step method. In the first step, the

serum dilutions were optimized to obtain OD450 nm values in the

range of 0.5-1.5, which ensures a linear measurement of antibody

avidity. The second step was the ELISA procedure described

above, but with or without, as required, treating the plates with

1M sodium thiocyanate (NaSCN) for 15 min after 1 h of antibody

incubation (100 ml/well). The avidity index of the antibody was

calculated by equation of ODNaSCN 1 M/ODNaSCN 0 M × 100%.
2.4 Neutralization assay of serum
antibodies

The neutralizing activity of the serum was determined by a

reduction in luciferase expression after infection of ACE2-

expressing 293T cells (ACE2-293T), developed in our lab, by

the spike pseudovirus as described in a previous neutralization

assay with SARS-CoV-2 pseudovirus (19). MERS-CoV-2

pseudovirus was cultured at 37°C with serial dilutions of serum

samples for 1 h (dilutions, 1:30, 1:90, 1:270, 1:810, 1:2430, and

1:7290). The reaction mix was incubated with fresh ACE2-293T
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cells at 5% CO2 and 37°C for 24 h, and then the cells were lysed

using 1× luciferase cell culture lysis buffer (E1510, Promega, USA),

and luciferase activity was assessed using a Luciferase Assay

System (E1510, Promega). The control wells containing only

virus or cells were included in six replicates in parallel.

Background relative light unit (RLU) values (cells only) were

subtracted from each assay. Healthy control sera were used as

negative controls, and guinea pig serum immunized with MERS-

CoV spike protein were used as positive controls. ID50 was defined

as a serum dilution with a 50% reduction in RLU values compared

to the RLU of control solution wells (virus + cells). The cut-off

value was defined as ID50 = 40, and ID50>40 was considered a

neutralization effect. Neutralization titers were log10-transformed.
2.5 Neutralization of pseudovirus with
mAbs

The ACE2-293T cells were plated in a 96-well plate (2×104

cells/well) and cultured at 37°C with 5% CO2 for 24 h. The

antibody and pseudovirus were treated before the experiment:

mAbs were diluted with DMEM containing 50 mg/ml of

streptomycin (strepDMEM), of which 165 ml was added to a

96-well plate in triplicate. The pseudovirus was diluted to 10000

TCID50/ml, and 75 ml of virus was added to each well that

contained antibody and then cultured at 37°C for 1 h. Virus

control contained 150 ml of strepDMEM and 75 ml of

pseudovirus. Cell control contained 225 ml of strepDMEM.

After cell incubation, the supernatant was discarded, 70 ml of
virus-antibody mixture was added and incubated at 37°C for 24

h, and then replenished with 100 ml/well and incubated for 24 h.

The cell supernatant was discarded and 50 ml of cell lysate was
added into a shaking table at room temperature for 30 min, of

which 30 ml was added to an optical white bottom plate. Fifty

microliters of luciferase reagent were added to each well to

measure luciferase activity by measuring RLU. Neutralization

was calculated by an equation of [1- (average RLU of test

antibody sample - average RLU of cell control)/(average RLU

of virus control - average RLU of cell control)] × 100% (24).
2.6 Flow cytometry isolation of single
B cells

To sort out MERS-CoV S2-specific single B cell, PBMCs

stored in liquid nitrogen were thawed in a 37°C water bath and

immediately cultured in RPMI 1640 medium supplemented with

10% FBS in an incubator with 5% CO2 at 37°C. To prepare

fluorescent MERS-CoV S2 probes, the MERS-CoV S2 protein

was conjugated to fluorescein isothiocyanate (FITC) and labeled

with Alexa Fluor® 647 or Alexa Fluor® 488. For cell surface

staining, 1×106 PBMCs were first labeled using the LIVE/DEAD

Fixed Blue DEAD cell staining kit (L34962, Thermo Fisher
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Scientific) to distinguish live and dead cells. The treated

PBMCs were immunostained with antibodies that have been

diluted to the optimum concentration and incubated at 4°C for

30 min. The fluorescently labeled antibodies used were as the

followings: IgG PE (G18-145, BD Biosciences, USA), IgD PE/

Dazzle™ 594 (IA6-2, BioLegend, USA), CD19 percp 5.5 (HIB19,

BioLegend), CD27 PE-cy7 (M-T271, BioLegend), and CD3

BUV737 (SK7, BD Bioscience). Immediately after antibody

staining, samples were loaded to MoFlo XDP flow cytometer

(Beckman Coulter, USA) and single B cells (S2+AF647+ and S2

+AF488+) was sorted into each well of 96-well plates containing

7 ml lysis buffer (10% IGEPAL, 100 mM DTT, 40 U/ml RNAase)
and placed on dry ice to freeze quickly. The antibody heavy

chain and light chain mRNA were reverse transcribed and

nested PCR amplified (below). The frequency of sorted S2+ B

cells was analyzed using FlowJo, version 10.8.1.
2.7 Expression and purification of
antibodies

The VH and VL sequences of the IgG antibodies were

amplified by RT-PCR and cloned into the vector plasmids

AbVec2.0-hIgG1 (80795, Adgene, USA) for expressing the

heavy chain, MapAbVec1.1-IGKC (80796, Adgene) for

expressing the kappa light chain, and AbVec1.1-IGLC2 (99575,

Adgene) for expressing the lambda light chain. Antibody

expression plasmids (0.5 mg/ml) were co-transfected into 293F

cells (1×106 cells/ml) in SMM 293-TII expression medium

(M293TII, SinoBiological) using PEI transfection reagent

(23996-2, Polysciences, Pennsylvania, USA) and cultured for 6-7

days, and the cells and cell debris were removed by centrifugation

at 4500 ×g and filtration (0.22 mm). The supernatant containing

recombinant antibodies were purified using an ÄKTA express

FPLC device using Protein A columns, washed with 20 ml of PBS,

and eluted with glycine elution buffer (pH=2.0) into a collection

tube containing Tris HCl (pH = 8.0). The purified antibody was

dialyzed three times in PBS and stored at -40°C for later use. The

purity of the antibodies were checked by running a

polyacrylamide gel electrophoresis (PAGE) and visualized with

Coomassie staining.
2.8 Determination of antibody binding
epitopes

To distinguish whether antibodies recognize linear or

discontinuous epitopes of S protein, we adopted the method

previously described (21). Ninety-six-well plates were coated

with MERS-CoV S2 (200 ng/well) in PBS at 4°C overnight. The

plates were washed five times, and the coated-S2 was treated

with or without denaturing buffer (50 ml/well; 200 mM DTT and

4% SDS in PBS) for 1 h at 37°C. After washing five times with
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PBS-T, the plates were blocked with blocking buffer at RT for 2

h. The mAbs (1 mg/ml) were added to the plate (100 ml/well) and
incubated at 37°C for 1 h. The plates were washed five times and

then analyzed for antibody binding to MERS-CoV S2 using a

microplate reader (Thermo Fisher Scientific).
2.9 mAbs binding of synthetic MERS-CoV
S2 stem peptides

To determine the regions of MERS-CoV S2 potentially bound

by mAbs, peptides covering the S2 region were used as coating

antigen in the indirect ELISA. Briefly, peptides 15-25 amino acids

(aa) were synthesized, coated to 96-well ELISA plates (20 ng/ml,
100 ml/well), and incubated at 37°C for 2 h. The plate was then

washed three times with PBS-T and blocked with a blocking buffer

at room temperature for 3 h. The mAb (1 mg/ml) was added to the

well at 100 ml/well and incubated at 37°C for 1 h. After washing

five times, the plate was incubated with the HRP-conjugated goat

anti-human IgG at 37°C for 1 h. The OD450 nm was measured

using the microplate reader. MERS-CoV S2 (2 ng/ml) was used as

a positive control, and BSA protein was used as a negative control.
2.10 Data analysis

The data were processed and figures were plotted using

GraphPad Prism (version 8.0).
3 Results

3.1 Serum IgG antibodies from COVID-19
convalescents reacted with MERS-CoV
S2 subunit

To examine whether SARS-CoV-2 infection elicit antibodies

reactive to MERS-CoV, we assessed COVID-19 convalescent

sera (n=60, the 2nd month after discharge) using IgG-specific

ELISAs against MERS-CoV spike (S) protein extracellular

domain (ECD). Healthy donor control blood (HC, n=165)

we r e co l l e c t ed be f o r e th e COVID-19 pandemi c

(Supplementary Table S1). We found that 6.06% (10/165) of

healthy sera showed binding activity to the MERS-CoV S ECD,

while 66.67% (40/60) of COVID-19 convalescent sera had

binding activity (Figure 1A). The binding activity of HC sera

may result from previous exposures to seasonal coronavirus,

eliciting cross immunity with other coronaviruses. Following

SARS-CoV-2 infection, cross-reactive memory B cells were

activated and secreted antibodies responsive to MERS CoV S

ECD (25). Further, 20% (2/10) of the S ECD-binding healthy

sera reacted with S1 subunit, but none bound with S2

(Figure 1B). In contrast, 85% (34/40) of S ECD-binding
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convalescent sera had binding activity to S2, and only 2.5% (1/

40) had binding with S1 (Figure 1B). We also determined the

endpoint titers of 34 IgG antibodies targeting MERS-CoV S2

(median, 1:12800 dilution; [log10 = 4.11; interquartile range

[IQR], 3.81–4.71]) (Figure 1C) and found that they positively

correlated with the titers of SARS-CoV-2 S2-targeting antibodies

(r=0.4616, p=0.006) (Figure 1D). All 34 IgG antibodies had

avidity values similarly for MERS-CoV S2 (median, 64.30; IQR,

55.59-77.18) and SARS-CoV-2 S2 SARS-CoV-2 (median, 55.04;

IQR, 46.91-65.76) (Figure 1E).

To evaluate the dynamics of COVID-19 serum IgGs, we

examined the binding activity and endpoint titers of the sera

against MERS-CoV S2 at the 5th month (n=36), 8th month (n=39),

and 12th month (n=43) after discharge. The number of MERS-

CoV S2 reactive sera decreased sharply from the 2nd month to the

5th month, and only 25.64% (10/39) of sera remained reactive with

S2 at the 5th month (Figure 1F). The number of S2-binding sera

continually decreased to 13.95% (6/43) from the 5th to the 12th

month (Figure 1F). The endpoint titers of reactive sera were 4.11,

3.98, 3.70, and 4.88 for the 2nd, 5th, 8th, and 12th months,

respectively (log10 transformed; Figure 1G).

Next, we evaluated the neutralization of COVID-19

convalescent sera against MERS-CoV spike pseudovirus and

found that 21.67% (13/60) of sera neutralized MERS-CoV

pseudovirus (defined by 50% inhibitory dilution [ID50] of 1.71,

namely 1:51.26 dilution without log10 transformed; IQR, 1.69-

1.75, namely 1:48.55-1:56.71 dilution) (Figure 1H and

Supplementary Table S2), with ID50 ranging from 42 to 108

(Figure 1I). In contrast, 45% (27/60) of sera showed

neutralization with SARS-CoV-2 (Figure 1H), with ID50

ranging from 113 to 3457 (Figure 1I). Taken together, these

data suggest that a small proportion of the general population

elicited antibodies with binding activity to MERS-CoV S ECD, of

which 80% did not bind to S1 and S2 fragments; 85% of COVID-

19 convalescent serum antibodies reacted with MERS-CoV S2.

Few of COVID-19 convalescent IgG antibody could neutralize

MERS-CoV spike pseudovirus.
3.2 mAbs constructed from COVID-19
convalescent memory B cells showed
binding activity with MERS-CoV spike

The binding and neutralizing activity of COVID-19

convalescent sera with MERS-CoV urged us to construct

mAbs with dual-reactivity from the convalescent memory B

cells. We isolated PBMCs from 16 COVID-19 convalescents

using MERS-CoV S2 probes and sorted single memory B cells

(CD19+/CD3-/CD27+/IgD-/IgG+) (Figure 2A and

Supplementary Table S3). Flow cytometry analysis revealed

that 0.18% of COVID-19 PBMCs were memory B cells specific

to MERS-CoV S2, while only 0.02% was found in healthy control

PBMCs (p = 0.017) (Figure 2B and Figure S1). The variable
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FIGURE 1

A proportion of serum antibodies from COVID-19 convalescents had binding activity to MERS-CoV spike S2 subunit and neutralized spike
pseudoviruses. (A) A proportion of COVID-19 sera showed binding activity to MERS-CoV spike (S) extracellular domain (ECD). Sera from COVID-
19 convalescents (n=60) and healthy control (HC) blood donors (n=165) (both at 1:1000 dilution) were tested for binding to MERS-CoV S ECD
by ELISA. The percentage of sera binding to MERS-CoV S ECD are shown. Data are the average values from two independent experiments.
(B) The percentage of sera from COVID-19 convalescents or HC reacted with MERS-CoV S1 and/or S2. (C) Endpoint titer of serum IgGs from
COVID-19 convalescents against MERS-CoV S2. (D) Correlation coefficient of endpoint titers for antibodies reactive with MERS-CoV S2 and
SARS-CoV-2 S2. Pearson’s correlation, p<0.05 was considered statistically significant. (E) Avidity of COVID-19 convalescent serum antibody to
MERS-CoV S2 and SARS-CoV-2 S2. (F) Dynamics of COVID-19 convalescent serum antibody after discharge. Binding activity of COVID-19
serum antibody against MERS-CoV S2 subunit was examined after discharge, at the 2nd month (n=60), the 5th month (n=39), the 8th month
(n=36), and 12th month (n=43). (G) Endpoint titers of COVID-19 convalescent serum antibody for MERS-CoV S2 after discharge from hospital.
The convalescent sera were tested at the 2nd month (n=34), the 5th month (n=10), the 8th month (n=8), and 12th month (n=6). One-way ANOVA
with Tukey’s post hoc test was used. (H) The percentage of COVID-19 convalescent serum IgG antibody with neutralizing activity for MERS-CoV
and SARS-CoV-2 spike pseudoviruses. ID50>40 was considered positive for neutralization (21.67% [13/60] and 45% [27/60], respectively).
(I) Neutralization titers of 13 COVID-19 convalescent serum antibodies for MERS-CoV and SARS-CoV-2 spike pseudoviruses. ID50>40 was
considered positive for neutralization. For panels C, D, and G, endpoint titers were log10-transformed; for panels C, E, G and I, data are
median ± IQR (25–75%) and the error bars indicate median with interquartile range (IQR).
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heavy (VH) and variable light (VL) chains of antibodies were

amplified by RT-PCR, cloned, and expressed in 293F cells. A

total of 38 mAbs were purified and tested for reactivity with

MERS-CoV S2 proteins by single concentration qualitative

ELISA (Figure 2A and Figure S2). The results showed that 11

mAbs showed binding activity to MERS-CoV S2, of which 2

mAbs also bound to S1 (Figures 2C, D).

To further determine the binding efficiency, the 11 mAbs

were made into 3-fold serial dilutions and quantitatively
Frontiers in Immunology 07
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detected by a MERS-CoV S2-coated ELISA. The results

showed that 4 mAbs had potent binding activity (MSP2-34,

MSP2-36, MSP5-44, and MSP6-31; EC50, 0.003–0.014 mg/ml), 5

mAbs showed strong binding (MSP2-3, MSP4-33, MSP6-10,

MSP6-19, and MSP6-25; EC50, 0.135 - 0.516 mg/ml), and 1 mAb

had moderate binding (MSP6-40; EC50, 2.453 mg/ml), and 1

mAb showed weak binding activity (MSP5-45; EC50, 8.810 mg/
ml) to MERS-CoV S2 (Figure 2E). In addition, we also tested the

binding activity to MERS-CoV S1 and found that 2 of the 11
A

B D
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FIGURE 2

Isolation of MERS-CoV S2-specific antibodies from COVID-19 convalescent memory B cells. (A) The workflow of producing human monoclonal
antibodies (mAbs) by cloning antibody genes from memory B cells. The memory B cells were isolated from PBMCs of 16 COVID-19
convalescents, and the variable regions of the heavy and light chains of antibodies (VH, VL/VK) were amplified from single B cells by RT-PCR
and cloned into antibody expression vector plasmids. The selected VH and VL/VK clones were sequenced and co-transfected into 293F cells.
The supernatants were taken after 6-7 days of culture, and the monoclonal antibodies were purified by ÄKTA Purifier. (B) The frequency of
MERS-CoV spike S2-specific memory B cells in healthy blood donors and COVID-19 convalescents. Twelve experiments of cell screening were
performed, and one healthy sample (negative control) was included in each experiment. Unpaired t-test was used to compare the difference
between two groups, p<0.05 was considered for statistical significance (GraphPad Prism, version 8.0). (C) mAbs binding to MERS-CoV S1 and/or
S2. A total of 38 mAbs constructed in this study were tested. (D) The binding of mAbs (1 mg/ml) to MERS-CoV S1 or S2 (cyan). The OD450nm>0.3
was defined as positive. Neutralization of mAbs (50 mg/ml) against MERS-COV pseudovirus was defined as >50% infection reduction. (E, F) ELISA
curves of antibodies binding to MERS-CoV S1 and S2. An unrelated anti-HCV mAb, 2HCV5, was used as negative control (Ctrl mAb). Error bars
indicate the mean ± standard error of mean (SEM), and the data represent technical replicates of at least two independent experiments. Data
were analyzed and plotted by GraphPad Prism (version 8.0).
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mAbs were capable of binding with S1 (MSP2-3, EC50, 0.186 mg/
ml; MSP6-25, EC50, 0.788 mg/ml) (Figure 2F).

Next, we tested neutralization effect on MERS-CoV

pseudovirus and found that seven mAbs, MSP2-34, MSP4-33,

MSP6-10, MSP6-19, MSP6-25, MSP6-31 and MSP6-40 could

neutralize MERS-CoV spike pseudovirus, with infection

reduction by ~50%-77% when mAbs were used up to 50 mg/
mL (Figure 2D). Thus, 11 mAbs had weak neutralization effect

against MERS-CoV pseudovirus.

To further characterize these antibodies, we analyzed the

coding sequences of 11 mAbs using IgBLAST tool (http://www.

ncbi.nlm.nih.gov/igblast/) (Table 1). The VH sequences of mAbs

were from four gene classes, VH1, VH2, VH3, and VH4, and

most antibodies were composed of VH3 heavy chain subgroup

and kappa (k) light chains. The average length of the antibody

complementarity-determining region 3 of the heavy chain (H-

CDR3) and light chains (L-CDR3) were 15 and 10 amino acids,

respectively. The frequency of somatic mutations in VH and VL

nucleotide sequences was within the normal range, from 5% to

14% for VH and from 5% to 13% for VL, with exception of

MSP6-25 and MSP6-40, whose mutation frequency of VH and

VL was from 2% to 5% (Table 1). Collectively, we have

constructed a panel of mAbs from COVID-19 convalescent

single B cell, of which most had reactivity with MERS-CoV

S2 subunit.
3.3 Cross-reactivity of mAbs with all
seven human coronaviruses

To assess whether these mAbs react with other human

coronaviruses, we screened the binding of the 11 mAbs (1 mg/
ml) with spike trimers of six coronaviruses by ELISA. The results

showed that MSP2-3, MSP6-25, and MSP6-31 efficiently bound
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to all six spike proteins (OD450 nm >1.7), MSP2-34, MSP2-36,

and MSP5-44 bound to each of SARS-CoV-1, SARS-CoV-2,

OC43, and HKU1, while other mAbs showed weak or no

binding to these viruses (Figure 3A). Moreover, dose-

dependent ELISA revealed that MSP2-3, MSP6-25, and MSP6-

31 showed broad and potent cross-reactivity with all 6 spike

ECDs and MERS-CoV S2 (EC50, 0.003-0.540 mg/ml)

(Figures 3B–H). MSP6-10 bound potently MERS-CoV S2 and

weakly with 4 spike ECDs (EC50 >0.55 mg/ml), and had no

binding with SARS-COV-2 and NL63 (EC50>10 mg/ml)

(Figures 3B–G). MSP2-34, MSP2-36, and MSP5-44 displayed

cross-reactivity with the spike ECDs of SARS-CoV-1, SARS-

CoV-2, OC43, and HKU1 (Figures 3B–E, H). MSP4-33 and

MSP6-19 did not react with other coronaviruses but MERS-CoV

S2 (Figure 3A and 3H). MSP6-40 and MSP5-45 had weak cross-

reaction with MERS-CoV S2, SARS-CoV-1, SARS-CoV-2, and

OC43 (Figures 3A–E, H).
3.4 Binding epitope analysis of mAbs for
MERS-CoV S2

Further, we proceeded to determine the antibody binding

epitopes. We analyzed the binding activity of 11 mAbs against

heat-denatured and untreated natural MERS-CoV S2 antigens in

the presence of SDS and DTT by ELISA. The results showed that

MSP2-34, MSP6-25, and MSP6-31 had good binding to both

denatured and natural antigens, while other antibodies reacted

with the non-denatured S2 only. These results suggest that

MSP2-34, MSP6-25, and MSP6-31 recognized a continuous

linear epitope in MERS-CoV S2, while the other mAbs may

bind to conformational epitopes (Figure 4A). Since MSP6-25

showed binding to both MERS-CoV S1 and S2 (Figures 2D–F),

we analyzed the binding epitope of MSP6-25 in the S1 and found
TABLE 1 Genetic characteristics of mAbs with reactivity against MERS-COV S1 and/or S2.

mAbs

MERS-CoV,
EC50(mg/mL) Binding domain

Heavy chain Light chain

S1 S2 VH gene H-CDR3 (bp) VH identify (%) VL gene L-CDR3 (bp) VL identify (%)

MSP2-3 0.186 0.135 S1 and S2 IGHV3-74 8 89.2 IGLV2-14 10 92.9

MSP2-34 – 0.003 S2 IGHV1-46 13 91.1 IGKV1-27 11 94.1

MSP2-36 – 0.007 S2 IGHV4-59 19 86.4 IGLV2-8 10 96.9

MSP4-33 – 0.292 S2 IGHV2-5 15 90 IGKV4-1 9 86.7

MSP5-44 – 0.014 S2 IGHV3-11 20 92.5 IGKV3-11 11 90.9

MSP5-45 – 8.810 S2 IGHV3-7 16 91.6 IGKV2-30 9 95.7

MSP6-10 – 0.516 S2 IGHV3-7 16 89.2 IGKV3-20 9 89.8

MSP6-19 – 0.366 S2 IGHV3-48 12 88.2 IGLV1-44 11 92.8

MSP6-25 0.788 0.241 S1 and S2 IGHV3-11 19 97.6 IGLV2-23 13 96.2

MSP6-31 – 0.004 S2 IGHV3-30 12 94.6 IGKV1-9 9 95.1

MSP6-40 – 2.453 S2 IGHV3-7 16 95.6 IGKV2-30 9 95.3
ELISA-based half-maximal effective concentrations (EC50) and genetic characterization of mAbs. Heavy and light chain genes, % difference relative to germline sequence and CDR3 length
were analyzed using the IgBlast website (http://www.ncbi.nlm.nih.gov/igblast/).
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that MSP6-25 recognizes a linear sequence of MERS-CoV

S1 (Figure 4B).

Next, we attempted to analyze which regions of MERS-CoV

S2 were recognized by mAbs MSP2-34, MSP6-25, and MSP6-31.
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We synthesized seven peptides covering the conserved regions in

the S2 subunits of seven hCoVs (Figures 5A, B) and performed

ELISA with three mAbs (Figure 5C and Figure S3). The results

showed that only MSP2-34 had weak binding to peptide P/1229-
A

B

D E

F G

H

C

FIGURE 3

Cross-reactivity of mAbs isolated from COVID-19 convalescents with other hCoVs. (A) Cross-reactivity of mAbs with seven human
coronaviruses (hCoVs) at a concentration of 1 mg/ml. The positive control COVID-19 serum COV48 (1:1000 dilution) and unrelated anti-HCV
mAb 2HCV5 (Ctrl mAb) were used as positive and negative controls, respectively. OD450 nm >0.3 was defined as a positive reaction. (B–G) ELISA
binding curves of mAbs reactive to hCoVs S ECD (panel A). The S ECDs of SARS-CoV-1, SARS-CoV-2, HKU1, OC43, NL3, and 229E were coated
at 2 mg/ml. An unrelated anti-HCV mAb 2HCV5 (Ctrl mAb) was used as a negative control. Data represent the mean ± SEM of two replicates. (H)
The EC50 of mAbs binding to various spike ECD proteins. Data are calculated from panes (B–G). ND, no or low reaction in single dose screening
(A), thus it was not determined by dose-dependent ELISA. Data were analyzed and plotted by GraphPad Prism (version 8.0).
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1243 (OD450 = 0.61) (Figure 5C), located in the stem helix region

of MERS-CoV S2 upstream of heptapeptide repeat 2 (HR2)

region (Figure 5A). MSP6-25 and MSP6-31 had no binding to

peptides (Figure 5C).
4 Discussion

In recent years, sporadic cases ofMERS-CoVwere recorded in

theMiddle East, increasing the risk of spreading to other countries

and regions. To date, there are not any MERS-CoV vaccine or

antiviral drugs available for the prevention and treatment of

MERS (26). SARS-CoV-2 is rampant around the world, with

rapid emergence of various variants, causing tremendous losses to

global socio-economies and public health. Therefore, there is an

urgent need to develop approaches for therapy, control, and

prevention of MERS-CoV and SARS-CoV-2, as well as other

coronaviruses. In this study, we identified 11 out of 38 mAbs from

COVID-19 convalescent individuals had binding activity to

MERS-CoV S2, and 5 mAbs showed neutralizing activity for

MERS-CoV spike pseudovirus. Moreover, 9 of the 11 mAbs also

showed binding with SARS-CoV-2 spike ECD, as well as the other

three or five hCoVs. The mAbs with broad-spectrum binding

activity for CoVs contribute to the diagnosis and research for

MERS-CoV and SARS-CoV-2, as well as other coronaviruses.

Coronaviruses enter the host cells through the binding of spike

protein to cellular receptors. Therefore, targeting the spike protein

represents the main mechanism for antibody neutralization of

coronaviruses. The coronavirus S protein consist of S1 and S2

subunits; S1 subunit includes the receptor binding domain

important for receptor recognition (DPP4 in the case of MERS-

CoV, also known as CD26), while S2 subunit contains the fusion

peptide, heptad repeats (HR) 1 and 2, and a transmembrane

structural domain. These S2 domains are required for membrane
Frontiers in Immunology 10
85
fusion of the virus and host cells (27). Theoretically, antibodies

targeting the conserved epitopes of coronavirus S protein have a

high chance to exhibit broad neutralizing activity against multiple

coronaviruses, and such antibodies are attractive for treatment and

for pan-coronavirus vaccine design (28). Here, we first analyzed the

serological responses of COVID-19 convalescent individuals and

found that SARS-CoV-2 infection enhanced the cross-reactivity of

serum antibodies to MERS-CoV spike, mainly targeting S2 subunit.

This notion is supported by the positive correlation of the serum

antibody titers to MERS-CoV S2 and SARS-COV-2 S2 (Figure 1D).

However, it should be noted that such correlation may be partially

due to the similarities in structure and sequence between SARS-

CoV-2 S2 and MERS-CoV S2 that share a 45% sequence homology

in the conserved S2 region. Of serum antibodies, only 21.67% (13/

60) showed neutralization effect against MERS-CoV spike

pseudovirus, suggesting that antibodies binding to S2 may not

necessarily interfere with the binding of the DPP4 receptor

(Figure 1H). Together, these data showed that COVID-19

convalescent sera could serve as better candidates for construction

of mAbs neutralizing or binding to other coronaviruses.

We constructed 38 mAbs from memory B cells and found 11

mAbs with binding activity toMERS-CoV S2. Three of them,MSP2-

3, MSP6-25, andMSP6-31 showed broad and potent binding activity

to all other hCoVs, while MSP2-34, MSP2-36, and MSP5-44 bound

only to beta-coronaviruses (Figure 3H). In addition, 5 mAbs (MSP2-

34, MSP4-33, MSP6-19, MSP6-25, and MSP6-31) showed weak

neutralization effect to MERS-CoV pseudovirus. Given the

reactivity to multiple coronaviruses, these mAbs, singly or in

combination, could be useful in the development of diagnosis

methods distinguishing MERS-CoV and other coronaviruses.

Antibody binding epitopes could be linear and conformational,

with about 10% of antibodies recognizing linear epitopes (29).

Three mAbs recognized linear epitopes, and 8 mAbs bound to

conformational epitopes (Figure 4A). It has been reported that
A B

FIGURE 4

Analysis of binding epitopes of mAbs. (A) Binding of mAbs (1 mg/ml) to MERS-CoV S2 in non-treated nature condition and heat-denatured
condition (37°C, 1 h, in the presence of SDS and DTT, blue). An unrelated conformational anti-HCV mAb 2HCV5 was used as a control, to which
the coating antigen was HCV E2 protein. (B) Binding of antibody MSP6-25 (1 mg/ml) to MERS-CoV S1 in nature condition and in heat-denatured
condition in the presence of SDS and DTT (blue). Data were analyzed and plotted by GraphPad Prism (version 8.0).
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antibodies targeting the S2 stem region could neutralizeMERS-CoV

pseudovirus, as the antibody binding obstructed the formation of

the hexa-helix bundle of spike proteins during fusion step of virus

entry (21, 22). The other antibody 76E1 was reported to target the

conserved S2’ site of SARS-CoV-2 spike protein and inhibits S2’

cleavage, thus blocking membrane fusion and virus entry (30).

However, antibodies MSP2-34, MSP6-25, and MSP6-31, targeting

linear epitopes, bound efficiently to multiple coronaviruses

(Figures 2–4), though they had a low neutralization efficiency to

MERS-CoV spike pseudovirus (Figure 2D). Several key residues

have been reported to be involved in antibody-antigen interactions;

they are imbedded fully or partially in pre-fusion S trimers and go

through conformational changes from pre-fusion to post-fusion

states of the viral S-trimers, thus leading to epitope exposure and

binding of neutralizing antibodies (30–32). The weaker

neutralization of MSP2-34, MSP6-25, and MSP6-31 may result

from a limited epitope exposure of the S protein. However, further

analysis of these S2-specific antibodies is needed.

Although mechanism of action of non-neutralizing antibodies is

complex or unknown, nine broadly reactive antibodies constructed

here are of great value in the diagnosis and prevention of early viral

infections. Binding of antibody Fab fragments to viral antigens forms

antigen-antibody immune complexes, and the antibody Fc fragment

mediates antiviral function by binding to the Fc receptor (FcgRs) on
natural immune cells through antibody-dependent cellular

cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC),

or antibody-dependent cell phagocytosis (ADCP) (33, 34). It has been

shown that non-neutralizing antibodies that target Ebola virus and
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respiratory syncytial virus could mediate ADCC effects and lead to a

promising outcome in virus-infected mice (35, 36). In addition, non-

neutralizing antibodies binding to conserved viral epitopes could

trigger ADCC and thus result in a broad cross-protective response

(37, 38). Due to the antiviral pressure, viruses tend to evade

neutralizing antibody responses. Thus, the cross-protective immune

responses that non-neutralizing antibodies may have would be

particularly important.

In summary, we generated mAbs with specific binding activity

to all seven human coronaviruses. These antibodies will facilitate

future studies on neutralizing and binding antibodies against

multiple coronaviruses, as well as vaccine design for pan-

coronaviruses. Given broad-reactivity of these antibodies, more

mAbs from COVID-19 convalescents, epitope analysis, and

structure-guided antibody engineering will be of great interest.
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SUPPLEMENTARY FIGURE 1

Gating strategy for isolating MERS-CoV spike S2-specific memory B cells
from COVID-19 convalescents. PBMC of COVID-19 convalescents were

first stained with LIVE/DEAD and CD3/CD19 -specific antibodies to
exclude T cells and monocytes. Then, CD27/IgD/IgG antibodies were

used to select mature B cells. Two probes MRES-CoV S2-AF488 and S2-

AF647 were used to select MERS-CoV S2-specific memory B cells. Single
B cell position for S2+/AF647+ and S2+/AF488+ was sorted into 96-well

plates for construction of mAbs.

SUPPLEMENTARY FIGURE 2

The purity of mAbs by using PAGE. The mAbs constructed in this study

were purified by AKTA and PFLC approaches. The purity of mAbs was
checked by PAGE with Coomassie staining. The evelen mAbs with binding

to MERS-CoV S2 are showen.

SUPPLEMENTARY FIGURE 3

Amino acid sequence alignment of the stem region of spike proteins of
seven hCoVs. The alignment was performed using spike protein sequences:

MERS-CoV (GenBank accession number: AFS88936.1), SARS-CoV-2 (NCBI
Reference Sequence: YP_009724390.1), SARS-CoV (NCBI Reference

Sequence: NP_828851.1), OC43 (GenBank: AVR40344.1), HKU1

(UniProtKB/Swiss-Prot: Q0ZME7.1), NL63 (GenBank: APF29071.1), and
229E (GenBank: APT69883.1). Sequence alignment was performed using

CLUSTALW (Clustal Omega < Multiple Sequence Alignment < EMBL-EBI)
and visualized using ESPript 3.0 (ESPript 3.x/ENDscript 2.x).
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United Kingdom, 6Division of Natural Science, Graduate School of Science, Nagoya University,
Nagoya, Japan, 7Division of Biomedical Sciences, Warwick Medical School, University of Warwick,
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Introduction: A key feature of the COVID-19 pandemic has been the

emergence of SARS-CoV-2 variants with different transmission

characteristics. However, when a novel variant arrives in a host population, it

will not necessarily lead to many cases. Instead, it may fade out, due to

stochastic effects and the level of immunity in the population. Immunity

against novel SARS-CoV-2 variants may be influenced by prior exposures to

related viruses, such as other SARS-CoV-2 variants and seasonal coronaviruses,

and the level of cross-reactive immunity conferred by those exposures.

Methods: Here, we investigate the impact of cross-reactive immunity on the

emergence of SARS-CoV-2 variants in a simplified scenario in which a novel

SARS-CoV-2 variant is introduced after an antigenically related virus has spread

in the population. We use mathematical modelling to explore the risk that the

novel variant invades the population and causes a large number of cases, as

opposed to fading out with few cases.

Results: We find that, if cross-reactive immunity is complete (i.e. someone

infected by the previously circulating virus is not susceptible to the novel

variant), the novel variant must be more transmissible than the previous virus to

invade the population. However, in a more realistic scenario in which cross-

reactive immunity is partial, we show that it is possible for novel variants to invade,

even if they are less transmissible than previously circulating viruses. This is

because partial cross-reactive immunity effectively increases the pool of

susceptible hosts that are available to the novel variant compared to complete

cross-reactive immunity. Furthermore, if previous infection with the antigenically

related virus assists the establishment of infection with the novel variant, as has
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been proposed following some experimental studies, then even variants with very

limited transmissibility are able to invade the host population.

Discussion: Our results highlight that fast assessment of the level of cross-

reactive immunity conferred by related viruses against novel SARS-CoV-2

variants is an essential component of novel variant risk assessments.
KEYWORDS

cross-reactive immunity, mathematical modelling, infectious disease epidemiology,
SARS-CoV-2, COVID-19, variants, emergence
1 Introduction

When a new SARS-CoV-2 variant first arrives in a host

population, a key question for policy makers is whether or not it

will become widespread. For this to occur, two steps are

required: introduction and invasion. First, the variant must

arrive in the host population, either through de novo mutation

or importation from elsewhere (introduction). Second, the

variant must then spread from person to person and cause a

large number of cases, as opposed to fading out with few cases

(invasion). Following introduction, a range of factors affect the

risk that a novel variant will invade, including its inherent

transmissibility and the connectivity of the location in which it

is introduced (1, 2). An additional crucial factor in this process is

the background level of immunity to the new variant in the host

population. For example, a feature of the Omicron (B.1.1.529)

variant that allowed it to become widespread is its ability to

evade immunity from past infection or vaccination, at least

partially, meaning that the background immunity level was

low (3–5).

Mathematical modelling has often been used to explore the

impact of cross-reactive immunity between pathogen strains on

the dynamics of infectious disease outbreaks (6–11). During the

COVID-19 pandemic, models have provided real-time insights

into the risk posed by novel variants. For example, Bhatia et al.

(12) extended existing methods for estimating pathogen

transmissibility (13–15) to enable the transmissibility of novel

variants to be assessed, including estimating the infectiousness of

the Alpha (B.1.1.7), Beta (B.1.351) and Gamma (P.1) variants

relative to the wild type virus (the SARS-CoV-2 virus that first

emerged in Wuhan, China). Dyson et al. (16) analysed

epidemiological data from England, and projected the course

of the outbreak in that country if a variant emerged with

different transmission characteristics. They warned that a

variant with high transmissibility or substantial immune

escape properties had the potential to generate large numbers

of infections and hospitalisations.
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Meanwhile, experimental and statistical studies have

explored the effects of prior infections with related viruses on

infections with different SARS-CoV-2 variants. Some studies

have found previous infections with other SARS-CoV-2 variants

to have a protective effect. For example, Wratil et al. (17)

demonstrated that a combination of infection and vaccination

induced hybrid immunity is protective against SARS-CoV-2

variants including the Omicron variant. A recent analysis of

infection data from Portugal found that previous SARS-CoV-2

infections were protective against infection with the BA.5

Omicron subvariant, with the level of protection particularly

high in individuals who were previously infected by the BA.1 or

BA.2 Omicron subvariants (18). However, some studies have

indicated that prior infection with other SARS-CoV-2 variants

may instead have a detrimental effect on subsequent infections

with novel SARS-CoV-2 variants. For example, earlier infection

with the SARS-CoV-2 wild type was found to inhibit the

immune response to infections with the Omicron variant

among triple-vaccinated healthcare workers (5).

Similarly to the cross-reactive immunity conferred by other

SARS-CoV-2 variants, the impact of prior infections with

seasonal coronaviruses on subsequent infections by SARS-

CoV-2 is also unclear. Some analyses have found that previous

infections with seasonal coronaviruses are likely to be protective

against SARS-CoV-2 infection. The SARS-CoV-2 spike protein

can be divided into the S1 and S2 subunits. The S1 subunit

contains an antigenically variable receptor binding domain,

while the S2 subunit is more conserved between coronaviruses.

Kaplonek et al. (19) showed that SARS-CoV-2 S2 antibody

responses are associated with milder COVID-19 symptoms,

suggesting that previous infection with seasonal coronaviruses

may lead to COVID-19 infections being less severe.

Furthermore, strong and multispecific cross-reactive T-cell

responses induced by seasonal coronavirus infection prior to

SARS-CoV-2 infection have been associated with protection

against SARS-CoV-2 infection in seronegative healthcare

workers (5, 20).
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In contrast, there is also evidence that previous infections with

seasonal coronaviruses can have detrimental effects on

susceptibility to and outcomes of infection with SARS-CoV-2.

With respect to disease outcomes, McNaughton et al. (21) showed

that prior immunity to seasonal coronaviruses was positively

associated with fatal outcomes in individuals with severe

COVID-19. Similar results were found by Smit et al. (22) in an

independent cohort. Conflicting results to Kaplonek et al. (19)

were found by Garrido et al. (23), who found that S2 antibody

responses were associated with greater disease severity. With

respect to susceptibility, Wratil et al. (24) demonstrated that

cross-reactive immunity imparted by seasonal coronaviruses

may increase susceptibility to SARS-CoV-2. Additionally, a

modelling analysis by Pinotti et al. (25) has suggested that the

general trend of increased severity of SARS-CoV-2 infections in

older individuals may be explained by an increased chance that

older individuals have been exposed to seasonal coronaviruses.

Given this conflicting evidence in the literature, and to help

understand the possible effects of prior infections on the risk of

emergence of SARS-CoV-2 variants, in this study we develop a

mathematical model considering two viruses: a novel SARS-

CoV-2 variant and an antigenically related virus that has

previously spread in the population. We investigate the factors

affecting the risk that the novel variant invades the host

population. We assume that infection with the previously

circulating virus affects the chance of successful infection with,

and subsequent transmission of, the novel variant, considering

scenarios in which prior infection is either protective (partially

or completely) or detrimental. We show that the level of cross-

reactive immunity between novel SARS-CoV-2 variants and

antigenically related viruses is a key factor determining

whether or not a novel variant will invade the host population.

This highlights the need to conduct a rapid assessment of the

level of cross-reactive immunity between previously circulating

viruses and newly emerged SARS-CoV-2 variants whenever a

novel SARS-CoV-2 variant is introduced into a new

host population.
2 Methods

2.1 Epidemiological model

We consider the introduction of a novel variant to a

population consisting of N hosts. We assume that prior

immunity has been conferred by infections with a related virus

that has already spread within the host population. Assuming

that this previously circulating virus follows dynamics that are

characterised by the standard (deterministic) SEIR model, the

number of individuals in the population who have been

previously infected by that virus is given by the solution, Np,

to the final size equation (8),
Frontiers in Immunology 03
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Np = N − Ne
−R0pNp

N (1)

In this expression, R0p is the reproduction number of the

previously circulating virus, which we assume accounts for any

interventions that were introduced (prior to, or immediately

after, its arrival in the host population) to limit its spread. We

assume that Np individuals were previously infected by that virus

(we round Np to the nearest integer value), and the remaining

N–Np individuals in the population are immunologically naïve

(i.e. they do not carry any immunity against the novel variant).

The dependence of Np on R0p is shown in Figure S1.

We then model the emergence of the novel variant. If an

individual has previously been infected by the related virus, their

susceptibility to the novel variant is assumed to be modified by a

multiplicative factor 1–a (relative to the susceptibility of a host

who has not previously been infected by the related virus).

Consequently, if a > 0, prior infection with the related virus is

protective against infection with the novel variant. If instead

a = 0, then earlier infection with the related virus does not affect

the risk of infection with the novel variant. If a < 0, earlier

infection with the related virus promotes infection with the

novel variant. Similarly, the infectiousness of a host infected with

the novel variant who has previously been infected by the related

virus is modified by a multiplicative factor 1–ϵ (relative to the

infectiousness of a host who has not previously been infected by

the related virus). Again, positive (negative) values of ϵ reflect

scenarios in which prior infection with the related virus reduces

(increases) the infectiousness of an individual who is infected

with the novel variant.

Transmission dynamics for the novel variant are also

modelled using an SEIR model, but with two main differences

compared to the dynamics of the previously circulating virus.

First, the SEIR model for the novel variant is extended to account

for cross-reactive immunity conferred by the related virus.

Second, since we are modelling invasion, we use a stochastic

model in which, in each simulation of the model, the novel

variant may either invade the host population or fade out with

few infections. The analogous deterministic model to the

stochastic model that we consider for the novel variant is

given by:

dSn
dt

=  −bInSn − b 1 − ϵð ÞIpSn,

dEn
dt

= bInSn + b 1 − ϵð ÞIpSn − g En,

dIn
dt

=   g En − mIn,

dRn

dt
= mIn,
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1049458
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Thompson et al. 10.3389/fimmu.2022.1049458
dSp
dt

=  −b 1 − að ÞInSp − b 1 − ϵð Þ 1 − að ÞIpSp,

dEp
dt

= b(1 − a)InSp + b(1 − ϵ)(1 − a)IpSp − g Ep;

dIp
dt

= g Ep − mIp,

dRp

dt
= mIp: (2)

In these equations, the variables Sn, En, In and Rn refer to the

infection status (with the novel variant) of individuals who have

not been infected previously by the related virus, and Sp, Ep, Ip
and Rp refer to the infection status of individuals who have
Frontiers in Immunology 04
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previously been infected by the related virus. A schematic

illustrating the transitions of individuals between these states,

and the rates at which those transitions occur, is shown in

Figure 1A. The parameter b is the infection rate parameter, and

the mean latent period and infectious period are 1/g days and

1/m days, respectively. We define the reproduction number of

the novel variant to be R0n =
bN
m , reflecting the transmission

potential of the novel variant if the host population is entirely

immunologically naïve. For a full description of the stochastic

model, see Text S1.
2.2 Risk of invasion

As noted above, since we are interested in the risk of

invasion of the novel variant, we use the analogous stochastic
A

B DC

FIGURE 1

Dynamics of the novel variant invading a population in which a related virus has previously spread. (A) Schematic showing the transitions (and
their rates) in the stochastic model of novel variant invasion (the analogous stochastic model to system of equations (2)). (B) Realisations of 50
stochastic simulations of the model, for R0n = 2 and with protective cross-reactive immunity (a = ϵ = 0.5; other parameter values are as stated
in Table 1). Orange lines represent the number of individuals infected by the novel variant who were previously infected by the related virus (Ip),
and blue lines represent the number of individuals infected by the novel variant who were previously immunologically naïve (In). (C) Analogous
to panel B, but with no cross-reactive immunity (a = ϵ = 0). (D) Analogous to panel B, but with cross-reactive immunity instead promoting
infection with the novel variant (a = ϵ = -0.5). Simulations were initiated with a single infected, previously immunologically naïve individual (In =
1), with all other individuals susceptible (Sn = N-Np-1 and Sp = Np, where Np is the solution of the final size equation for the previously
circulating virus, equation (1), rounded to the nearest integer value).
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model to system of equations (2) rather than solving the

differential equations numerically. When we compute the risk

of invasion by simulation, we run model simulations using the

direct method version of the Gillespie stochastic simulation

algorithm [(26; see Text S1)] until the novel variant fades out

(i.e. En+In+Ep+Ip reaches zero). The parameter values used in

our main analyses are given in Table 1.

When the novel variant is introduced, we also approximate

the probability that it invades the population analytically. To do

this, we assume that infections occur according to a branching

process (32–35). Specifically, we denote by qij the probability

that the novel variant fails to invade the host population, starting

from i currently infected individuals who are immunologically

naïve and j currently infected individuals who were previously

infected by the related virus. In this analysis, “currently infected”

individuals refer to those who are either exposed or infectious,

since exposed and infectious individuals are each expected to

infect the same number of other hosts in future. This is because

exposed individuals are not yet infectious, and only start

generating infections when they move into the infectious states

in the model.

We then consider the probability of the novel variant failing

to invade the host population starting from a single currently

infected individual who was previously immunologically naïve,

q10. As in similar previous branching process analyses (36–39),

we consider the various possibilities for what happens next:

either that individual infects another individual who was also

previously immunologically naïve (with probability

b(N−Np)
b(N−Np)+b(1−a)Np+m

); or, that individual infects someone who

was previously infected with the related virus (with probability
b(1−a)Np

b(N−Np)+b(1−a)Np+m
); or, that individual recovers without infecting

anyone else (with probability m
b(N−Np)+b(1−a)Np+m

). Applying the
Frontiers in Immunology 05
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law of total probability therefore gives q10 =  
b(N−Np)

b(N−Np)+b(1−a)Np+m

  q20 +
b(1−a)Np

b(N−Np)+b(1−a)Np+m
q11 +

m
b(N−Np)+b(1−a)Np+ m

q00.

Instead starting from a single currently infected individual

who was previously infected by the related virus gives q01 =

b(1−e)(N−Np)
b(1−e)(N−Np)+b(1−e)(1−a)Np+m

q11 +
b(1−e)(1−a)Np

b(1−e)(N−Np)+b(1−e)(1−a)Np+m
q02 +

m
b(1−e)(N−Np)+b(1−e)(1−a)Np+m

q00:

We then assume that infections occur according to a branching

process (so that q20 = q210; as infection lineages failing to establish

starting from two currently infected hosts requires the infection

lineages from both currently infected hosts to fail independently

(36–38)). Making similar approximations throughout the

equations above, and noting that q00 = 1 (since the novel

variant will not invade if there are no currently infected

individuals) gives

q10 =  
b N−Npð Þ

b N−Npð Þ+b 1−að ÞNp+m
  q10

2

+
b 1−að ÞNp

b N−Npð Þ+b 1−að ÞNp+m
q10q01 +

m
b N−Npð Þ+b 1−að ÞNp+m

,

q01 =  
b 1−ϵð Þ N−Npð Þ

b 1−ϵð Þ N−Npð Þ+b 1−ϵð Þ 1−að ÞNp+m
  q10q01

+
b 1−ϵð Þ 1−að ÞNp

b 1−ϵð Þ N−Npð Þ+b 1−ϵð Þ 1−að ÞNp+m
q01

2 + m
b 1−ϵð Þ N−Npð Þ+b 1−ϵð Þ 1−að ÞNp+m

·

(3)

The probability of invasion starting from one currently

infected individual who was previously immunologically naïve,

p10, and the probability of invasion starting from one currently

infected individual who was previously infected by the related

virus, p01, are then given by p10 = 1−q10 and p01 = 1−q01, where

q10 and q01 are the minimal non-negative solutions of system of

equations (3) (40).
TABLE 1 Illustrative parameter values used in model simulations.

Parameter Meaning Value used

N Size of local host population 100,000

1/g Mean latent period of novel variant 5 days (27, 28)

1/m Mean infectious period of novel variant 8 days (29–31)

R0p
Reproduction number of previously circulating virus
(accounting for interventions)

1.5, so that Np = 58,281 individuals are assumed to have been infected by the previously
circulating virus (approximately 58% of the population)

R0n
Reproduction number of novel variant (accounting for
interventions)

Varies (see figures)

b Transmission rate of novel variant Set so that R0n =
bN
m

a
Reduction (positive) or increase (negative) in
susceptibility due to cross-reactive immunity

Varies (see figures)

ϵ
Reduction (positive) or increase (negative) in
infectiousness due to cross-reactive immunity

Varies (see figures)
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2.3 Special cases

In general, we solve system of equations (3) numerically.

However, an analytic solution can be obtained straightforwardly

in some special cases.

For example, in a scenario in which previous infection with

the related virus is entirely protective against infection with the

novel variant, then a = 1. In that case, since a previously infected

individual cannot be infected with the novel variant, then p01
does not apply. However, in that scenario, p10 = 1 − m

b(N−Np)

(whenever
b(N−Np)

m > 1; otherwise, the novel variant will never

invade the host population). This can be seen by substituting

a = 1 into the first equation of system of equations (3), solving

the resulting quadratic equation for q10 (taking the minimal

non-negative solution (40)), and then calculating p10 = 1 − q10.

In a scenario in which the related virus has not previously spread

in the host population, then this solution for p10 is identical to

the classic branching process estimate for the probability of a

major outbreak, p10 = 1 − 1
R0n

(33, 41, 42).

Alternatively, we can consider a scenario in which prior

infection with the related virus eliminates the infectiousness of a

host infected by the novel variant (i.e. the individual can become

infected, but the virus cannot then establish, so onwards

transmission cannot occur). In that case, ϵ = 1 and so, in a

similar fashion to above, we obtain p10 = 1 − m
b(N−Np)

(whenever

b(N−Np)
m > 1) and p01 = 0. Again, in a scenario in which a related

virus has not previously spread in the population, this is the

classic estimate for the probability of a major outbreak, p10 =

1 − 1
R0n

(33, 41, 42).

Finally, in a scenario in which previous infection by the

related virus does not affect the dynamics of the novel variant (so

that a = ϵ = 0), we expect the risk of novel variant invasion to be

independent of whether or not the initial infected individual has

previously been infected by the related virus. In other words, we

expect q10 = q01. In this case, system of equations (3) reduces to a

single quadratic equation for q10. Taking the minimal non-

negative solution of that equation (40) indicates that p10 = p01 =

1 − q10 = 1 − 1
R0n

(whenever R0n > 1; otherwise the novel variant

will never invade the host population).
3 Results

To investigate the effects of prior infection by an

antigenically related virus on the epidemiological dynamics of

a newly emerged variant, we first ran stochastic simulations of

the analogous stochastic model to system of equations (2).

Representative time series of the dynamics illustrate that, if the

novel variant successfully spreads in the host population,

outbreaks tend to have a lower peak number of infections and
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have a longer duration when cross-reactive immunity has a

protective effect (Figure 1B), compared to when prior infection

by the related virus has no effect (Figure 1C). In contrast, if prior

infection by the related virus instead promotes infection by the

novel variant, outbreaks tend to have a higher peak number of

infections and a shorter duration (Figure 1D).

However, rather than focusing on the dynamics of outbreaks

once the novel variant has invaded the host population, our

main goal was to quantify the risk of the novel variant

successfully invading in the first place (as opposed to fading

out with few cases). We therefore calculated the risk of the novel

variant invading the population, starting from the introduction

of a single case to the population (Figure 2). We not only

calculated this quantity by numerically solving system of

equations (3) (Figure 2 - red solid and dashed lines), but also

confirmed that these numerical approximations matched

estimates of the invasion probability obtained using large

numbers of simulations of the stochastic model (Figure 2 -

black dots and crosses).

We found that, when previous infection with the related virus

is completely protective against the novel variant (i.e. a = ϵ = 1),

then the reproduction number of the novel variant must be higher

than the reproduction number of the antigenically related virus in

order for the novel variant to invade. Specifically, in Figure 2A (in

which R0p = 1.5, as marked by the vertical blue dotted line), the

probability of the novel variant invading the host population is

zero unless R0n > R0p, and indeed remains zero whenever R0n is

only slightly larger than R0p. This can be explained analytically as

follows. The previously circulating virus will spread around the

population until sufficiently many individuals have been infected

that herd immunity (to the previous virus) is reached. This occurs

whenN(1 − 1
R0p

) individuals have become infected (43). However,

at this point, infections do not stop immediately: there is an

“overshoot” in infections while transmission slows and the

previously circulating virus fades out. As a result, a lower bound

on the final size of the outbreak caused by the previously

circulating virus is Np > N(1 − 1
R0p

). As noted in the Methods

(Special cases), in a scenario involving complete cross-reactive

immunity, the novel variant can only invade the population if

b(N−Np)
m > 1, or equivalently R0n >

N
N−Np

. Substituting the lower

bound for Np into this expression shows that invasion of the novel

variant requires R0n > R0p. In contrast, if cross-reactive immunity

is only partial, then the novel variant may invade for lower values

of R0n than when cross-reactive immunity is complete (Figure 2B).

This can include scenarios in which R0n < R0p (in some cases lying

between those shown in Figures 2B, C). As noted in the Methods,

when previous infection by the antigenically related virus does not

affect the epidemiological dynamics of the novel variant, then the

novel variant can only invade if R0n > 1 (Figure 2C), mirroring the

classical result for models in which cross-reactive immunity is not

accounted for (41). Finally, in scenarios in which prior infection
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1049458
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Thompson et al. 10.3389/fimmu.2022.1049458
by the related virus promotes infection with the novel variant, the

novel variant can invade even if R0n is small. This includes

scenarios in which R0n < 1 (Figure 2D).

In Figure 2, we note that the immune status of the initial

infected individual affects the risk that the novel variant will

invade the host population. In particular, when cross-reactive

immunity is protective, we found that the probability of invasion

is higher if the initially infected host had not previously been

infected by the related virus (Figure 2B). In contrast, if cross-

reactive immunity promotes infection with the novel variant,

then the probability of the novel variant invading is higher if the

initial infection arose in an individual who had previously been

infected with the related virus (Figure 2D).

We then explored how the probability of invasion of the

novel variant depends on the susceptibility- and infectiousness-

modifying effects of cross-reactive immunity individually

(Figure 3). We found that the values of a and ϵ affect the

probability of a major outbreak differently. This is because,

starting from a single infected individual, the number of

infections generated by that individual is crucial in
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determining whether or not a novel variant will invade. If the

first infected host infects multiple others, then all of those

individuals’ transmission lineages must fade out in order for

invasion to fail to occur. Hence, invasion is more likely if the first

infected individual infects many individuals. Starting from a

single infected individual who was not previously infected by the

related virus, only susceptibility-modifying immunity

(characterised by a) affects the number of infections generated

by the first infected individual. As such, the probability of

invasion in this case is more sensitive to a than to ϵ (Figure 3A).

In contrast, if the first infected individual was previously

infected by the related virus, then infectiousness-modifying

immunity (characterised by ϵ) also affects the probability of

this individual infecting any other member of the population. In

fact, ϵ then affects all potential transmissions generated by the

first infected individual, whereas a only affects potential

transmissions to part of the population (those individuals who

were previously infected by the related virus). In that scenario,

the probability of a major outbreak is therefore slightly more

sensitive to ϵ than a (Figure 3B). The different effects of
A B

DC

FIGURE 2

Probability of the novel variant invading the host population, starting from the introduction of a single infectious individual. (A) The probability of
the novel variant invading under an assumption of perfectly protective cross-reactive immunity (a = ϵ = 1). Results are shown both for analytic
approximations of the invasion probability calculated using system of equations (3) (either starting from a single infected individual who was
previously immunologically naïve (red solid) or starting from a single infected individual who was previously infected by the related virus (red
dashed)) and for the invasion probability calculated using stochastic simulations (either starting from a single infected individual who was
previously immunologically naïve (black dots) or starting from a single infected individual who was previously infected by the related virus (black
crosses)). The vertical blue dotted line represents the reproduction number of the previously circulating virus (R0p = 1.5). (B) Analogous results to
panel A, but with partial protective cross-reactive immunity (a = ϵ = 0.5). (C) Analogous results to panel A, but with no cross-reactive immunity
(a = ϵ = 0). (D) Analogous to panel A, but with cross-reactive immunity instead promoting infection with the novel variant (a = ϵ = -0.5). In the
simulations, the probability of invasion was calculated as the proportion of simulations in which the number of simultaneously infected
individuals (In+Ip) exceeded 15 at any time (analyses for different values of this threshold are shown in Figures S2, S3, with similar results). As in
Figure 1, the division of the host population between individuals who were previously immunologically naïve and those who were previously
infected by the related virus was calculated based on the final size equation for the previously circulating virus (equation (1)). Other parameter
values used are shown in Table 1.
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susceptibility-modifying and infectiousness-modifying cross-

reactive immunity therefore explain the asymmetric nature of

the contours about the diagonal ϵ = a in Figure 3.
4 Discussion

The epidemiological dynamics of the COVID-19

pandemic have been shaped by the emergence of different

SARS-CoV-2 variants. However, not all variants that have

appeared have spread widely and caused a large number of

cases. Most novel variants have faded out, with relatively few

variants being responsible for the vast majority of SARS-

CoV-2 infections.

Here, we have developed a mathematical model to

investigate the impact of cross-reactive immunity (generated

by previous infections by related viruses) on the probability that

a newly introduced variant will invade the host population. We

found that, if prior infection with a related virus has a strong

protective effect, then the novel variant must be more infectious

than the related virus to be able to invade the host population

(Figure 2A). If instead, however, the previously circulating virus

has a very weak protective effect or no protective effect on

infection with the novel variant, then the risk of invasion of

the novel variant is unaffected by the outbreak of the related

virus, and so the invasion probability matches the well-known

estimate for the “probability of a major outbreak” (Figure 2C)

(33, 41, 42). If prior infection with the related virus promotes

infection by the novel variant, as has been indicated as possible
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in some studies exploring the impact of prior infections by

SARS-CoV-2 or seasonal coronaviruses on infections with

SARS-CoV-2 variants, then even novel variants with limited

transmissibility are able to invade (Figure 2D).

We further showed that the immune status of the first

individual in the population infected by the novel variant

affects the probability that the novel variant invades (Figures 2,

3). This is in turn influenced by the pathway by which the novel

variant is introduced into the host population. If the variant is

introduced from elsewhere, for example by an incoming traveller

(1, 15), then it may be introduced by someone who was not

previously infected by the related virus. If instead it appears as a

result of mutation from a related virus within the local

population (as was likely the case for the emergence of the

Alpha variant in Kent, England (44)), then the initial infected

case would be an individual who was previously infected by the

related virus.

Previous modelling studies have explored the risk of a novel

virus invading when it is introduced to a host population,

including scenarios in which the pathogen evolves to facilitate

emergence (45–49). Of significant relevance to our study,

Hartfield and Alizon (50) applied a branching process model

to investigate the invasion probability in a scenario in which a

resident pathogen strain that confers cross-reactive immunity is

spreading in the host population, and considered Chikungunya

virus as a case study. Those authors demonstrated that the

standard estimate for the probability of a major outbreak

overestimates the invasion probability in that scenario, due to

the potential for depletion of susceptible individuals by the
A B

FIGURE 3

Probability of the novel variant invading the host population, starting from the introduction of a single infectious individual, for different levels of
cross-reactive immunity affecting susceptibility and infectiousness individually. The invasion probability is approximated analytically by solving
system of equations (3) numerically. (A) The probability of the novel variant invading, starting from a single infected individual who was
previously immunologically naïve. (B) Analogous to panel A, but starting from a single infected individual who was previously infected by the
related virus. White lines represent contours of constant probability of invasion of the novel variant. As in Figure 1, the division of the host
population between individuals who were previously immunologically naïve and those who were previously infected by the related virus was
calculated based on the final size equation for the previously circulating virus (equation (1)). In this figure, R0p = 1.5 and R0n = 2 (analyses for
other values of R0p and R0n are shown in Figure S4). Other parameter values used are shown in Table 1.
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resident strain over the timescale of invasion of the novel virus.

Echoing this result in a single strain setting, Sachak-Patwa et al.

(51) showed that simple estimates for the probability of a major

outbreak are overestimates if the pathogen enters the host

population during a vaccination campaign, again due to

depletion of susceptible individuals occurring within the

period of the pathogen either invading or fading out. Other

researchers have investigated the emergence of a novel pathogen

strain that is introduced to the population when a resident strain

is endemic (52). In contrast to previous studies, we focussed on a

scenario in which a related virus has already spread widely

around the host population and caused a completed outbreak,

rather than being resident in the host population. An additional

novel aspect of the current study is that we conducted a

thorough investigation of the effects of different levels of cross-

reactive immunity, including scenarios in which prior infection

with an antigenically related virus can promote infection with

the novel variant. Although such scenarios may seem

counterintuitive, recent evidence suggests that there is a clear

possibility that infection-promoting cross-reactivity may occur,

as described in the Introduction.

To understand general principles governing the

relationship between cross-reactive immunity and the risk of

invasion of a novel variant, we constructed the simplest

possible model in this study. Further developments could

involve inc luding addi t iona l ep idemiolog ica l and

evolutionary detail in our transmission model, particularly if

it is to be used to predict emergence of specific variants rather

than to understand general principles. For example, in the

model considered here, the infectious period of individuals

infected by the novel variant is assumed to follow an

exponential distribution. However, gamma distributions have

been found to represent observed epidemiological periods

more accurately than exponential distributions (53–55), and

gamma-distributed infectious periods can be incorporated into

calculations of invasion probabilities (56, 57). We also assumed

a fixed level of cross-reactive immunity for all individuals who

were previously infected by the related virus. In reality,

immunity is heterogeneous between previously infected

hosts, and is likely to wane over time (58, 59). The level of

cross-reactive immunity in any individual may depend on a

range of factors, including whether or not the individual is

immunocompromised or has underlying comorbidities (60),

and the characteristics of their previous infection (61). Waning

immunity has been included previously in a range of

epidemiological models (62, 63), and is a target for future

addition to the modelling framework presented here, along

with consideration of heterogeneity in immunity between

previously infected hosts. Additionally, similar investigations

to those conducted here could be undertaken for scenarios in

which multiple viruses are co-circulating (potentially allowing

for superinfection (64)). This could include analyses of

epidemiological dynamics beyond the early phase of the
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outbreak of the novel variant, after it has invaded the

host population.

A key challenge going forwards is to develop reliable

approaches for inferring the level of cross-reactive immunity

between previously circulating viruses and newly emerged

SARS-CoV-2 variants (i.e. the values of the parameters a and ϵ

in our model). Serological studies measuring correlates of immune

responses in infected patients (e.g. ELISA analyses of cross-

reactive antibody responses (21)) have the potential to

determine broadly whether previous infections might be

protective or detrimental. This may be sufficient to approximate

the risk that a new variant will invade host populations in which it

is not yet widespread (in Figure 3A, for example, if the values of a
and ϵ are both negative, then the probability of the novel variant

invading if it is introduced to new host populations is high). More

precise estimates of the level of cross-reactive immunity may

require substantial epidemiological investigations. As an example,

Altarawneh et al. (65) used data from national databases in Qatar

to estimate the effect of previous SARS-CoV-2 infection on the

risk of symptomatic reinfection by specific SARS-CoV-2 variants.

If similar analyses can be carried out in locations in which novel

variants first emerge, then estimates of the probability of those

variants invading other locations can be refined. We note,

however, that there is currently substantial uncertainty in

estimates of the level of cross-reactive immunity between

different viruses. Altarawneh et al. estimated that previous

infection with other SARS-CoV-2 variants has around 56%

effectiveness at preventing symptomatic reinfection by the

Omicron variant (65), whereas other analyses have suggested

that previous infections by other variants have only a limited

effect on reinfection rates by the Omicron variant (3). This

uncertainty needs to be resolved before the modelling approach

described here can be used to make precise quantitative

predictions rather than demonstrating qualitative principles

about the general impacts of cross-reactive immunity.

In summary, understanding the risk posed by a novel variant

requires the degree of cross-reactive immunity between

previously circulating viruses and the new variant to be

assessed. In scenarios in which previous infections by

antigenically related viruses have a limited effect, or promote

infection with the novel variant, then the risk of the variant

invading the host population is substantially higher than in

scenarios in which previous infections by related viruses are

protective. Given the impact that different variants have had on

transmission and control during the COVID-19 pandemic, fast

detection and analyses of novel variants is essential for both

national and global public health.
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Currently available COVID-19 vaccines include inactivated virus, live attenuated

virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based

vaccines. All of them contain the spike glycoprotein as the main immunogen

and result in reduced disease severity upon SARS-CoV-2 infection. While we and

others have shown that mRNA-based vaccination reactivates pre-existing, cross-

reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we

studied cellular and humoral responses in heterologous adenovirus-vector-based

ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2

(BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a

homologous BNT vaccination regimen. AZ primary vaccination did not lead to

measurable reactivation of cross-reactive cellular and humoral immunity

compared to BNT primary vaccination. Moreover, humoral immunity induced by

primary vaccination with AZ displayed differences in linear spike peptide epitope

coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination,

secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity,

comparable to homologous primary and secondary mRNA vaccination. While

induced anti-S1 IgG antibody titers were higher after heterologous vaccination,

induced CD4+ T cell responses were highest in homologous vaccinated. However,

the overall TCR repertoire breadth was comparable between heterologous AZ-

BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching

TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ

and BNT primary vaccination elicits different immune response patterns to
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essentially the same antigen, and the associated benefits and risks, need further

investigation to inform vaccine and vaccination schedule development.
KEYWORDS

SARS-CoV-2, antigen-specific T-cells, cross-reactivity, heterologous vaccination,
humoral response
Introduction

The COVID-19 pandemic caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) still challenges health care

systems and the economy globally. SARS-CoV-2 vaccines were

developed and approved at unprecedented speed. However,

contrary to initial hopes, they failed to induce sterile immunity (1,

2). These first-generation vaccines included lipid nanoparticle-

formulated, nucleoside-modified mRNA vaccines BNT162b2

(Comirnaty, BioNTech/Pfizer, in the following abbreviated as BNT)

and m-1273 (Moderna) as well as the adenovirus-vector-based

ChAdOx1 nCOV-19 vaccine (Vaxzeria, AstraZeneca, in the

following abbreviated as AZ), all encoding for the spike

glycoprotein (spike) (3, 4). The BNT vaccine was initially approved

for a 21-days interval, 2 dose regimen, whereas for the AZ vaccine,

three months between the first and the second dose were approved

(5). At first, Germany’s authorities recommended AZ only for the

younger adults (<60 years) due to lacking data on efficacy in the

elderly (6). Following reports of rare cases of vaccine-induced

immune thrombotic thrombocytopenia in young individuals in

relation to vaccination with AZ, recommendations for the younger

were changed to BNT at the end of March 2021, and resulted in a

small cohort of young, heterologous vector-mRNA-vaccinated

individuals (7–9). This cohort revealed not only good tolerance of

heterologous vaccination but also reported both higher antibody titers

and higher neutralization capacity against novel variants of concern

(VOCs) (10–13). Vaccination-induced cellular immune responses

were comparable between heterologous AZ-BNT vaccination and

homologous vector-based vaccination, and higher than following

homologous AZ-AZ vaccination (13–16). Accordingly, vector

vaccines later were recommended to be combined with mRNA also

for third and fourth doses (17, 18). Although the efficacy of mRNA-

based vaccines remained unmet, their need for deep cooling and

challenging production limits their global usage (5, 19). Additional

obstacles of both mRNA- and vector-based vaccines are the

administration by injection and especially the reduced effectiveness

of neutralizing and blocking antibodies against arising VOCs (20).

Some of these hurdles may get solved with the development of

second-generation nasal vaccines targeting mucosal immunity and

shifting the focus from RBD-specific antibodies to strengthening a

broader, pan-coronavirus immunity including optimized T cell

responses (21–24). Coronaviruses are widespread in the animal

kingdom and further spillover to humans can be expected in the

future (25). Prior to SARS-CoV-2, four other common cold

coronavirus (hCoV) strains (HKU1, OC43, NL63, 229E) circulated

with a seasonal pattern among humans. These are responsible for
02102
normal colds and, accordingly, ubiquitous cellular immunity to

endemic coronaviruses (26–28). We and others could demonstrate

that hCoV induced pre-existing pan-coronavirus-reactive immunity

provides rapidly responding CD4+ and CD8+ T cells in blood and

mucosa upon SARS-CoV-2 infection or COVID-19 vaccination (29–

34). Within spike, due to homology, cross-reactivity focuses on the S2

subunit. Here, a conserved epitope (iCope) within the fusion domain

(aa 816–830) accounts for the majority of responsive CD4+ T cells and

cross-reactive neutralizing antibodies (28, 29, 35, 36). While infection

and homologous BNT vaccination has been shown to boost this

cross-reactive immunity (29, 37), the capacity of heterologous

vaccination to engage cross-reactive pre-existing immunity is

unknown. Therefore, here we comprehensively assessed the

quantity and quality of immune responses induced in AZ-BNT

vaccination and compare it to that induced by homologous BNT

vaccination regimen.
Results

Kinetics of cellular and humoral responses
in heterologous AZ-BNT vaccination

At first, we examined cellular and humoral response kinetics of 17

donors during heterologous vaccination with a primary dose of AZ

and, three months later, a secondary dose of BNT in a 3–4-day

sampling interval for the first two weeks and thereafter weekly until

day 28 (Figure S1). We stimulated PBMCs with a S1 spike peptide

pool (S-I) covering the N-terminal amino acid residues 1–643 and a

S2 peptide pool (S-II) covering the C-terminal amino acid residues

633–1273. In line with our previous findings (29), antigen-specific

CD40L+4-1BB+ cross-reactive CD4+ T cells with high TCR avidity

characterized by downregulated CD3 cell surface expression (CD3lo)

could be observed in response to S-II but not S-I stimulation prior to

vaccination (d0) (Figures 1A, B). After the second vaccination, both

S-I- and S-II-specific CD4+ T cells displayed a secondary response

kinetics peaking already at d10 with comparable frequencies and TCR

avidity which remained stable until week 12 after the third dose of

vaccine with BNT (Figures 1A, B, D). Utilizing HLA-DR and CD38,

we also monitored the proportion of recent in vivo activation among

S-I- and S-II-specific CD4+ T cells in the periphery (Figure 1C). The

frequencies of HLA-DR+CD38+ S-I- or S-II-specific CD4+ T cells

were highest upon the first dose of vaccine and displayed lower

frequencies after the second, and particularly following the third dose

of vaccine even though the overall frequency of CD40L+4-1BB+ CD4+

T cells were comparable at each peak between S-I and S-II
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stimulations. (Figure 1D). Primary AZ vaccination induced anti-S1

IgG titers in all donors at day 17, but only 66 % (10 of 15) displayed

detectable IgA titers above threshold (Figure 1E). The second and

third vaccine dose increased IgG titers, which however decreased

significantly over the observation period of three months. IgA

responses were highly heterologous across donors and displayed

faster reduction than IgG, already within weeks after the second dose.
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Heterologous vaccination results in slower
induction of CD4+ T cell responses, but
higher IgG responses compared to
homologous vaccination

Next, we investigated quantitative and qualitative differences in the

adaptive responses upon heterologous vaccination and compared them
B

C

D

E

A

FIGURE 1

Kinetics of adaptive immune responses upon heterologous vaccination. Immune response kinetics following heterologous SARS-CoV-2 vaccination of
unexposed young healthy donors (n=17) vaccinated with AZ at d0, then BNT 85(+/-3) days after first dose and 142(+/-7) days after second dose. (A) Ex
vivo stimulation of PBMCs with S-I and S-II peptide pools. The percentage of CD40L+4-1BB+ within CD4+ T cells among stimulated PBMCs was divided
by the percentage of these cells in the unstimulated control, resulting in the stimulation index (SI). Dotted lines indicate a SI of 1.5 and 3, separating non-
responders from responders with uncertainty and definite responders. (B) Frequencies of CD3lo cells among S-I- or S-II-reactive CD40L+4-1BB+ CD4+
T cells of T cell responses with a SI ≥ 1.5. (C) Frequencies of HLA-DR+CD38+ among CD40L+4-1BB+ CD4+ T cells. (D) Direct comparison of the SI,
frequencies of CD3lo and HLA-DR+CD38+ cells of CD40L+4-1BB+ CD4+ T cells at indicated time points upon stimulation with S-I or S-II peptide
pools. (E) Serum anti-SARS-CoV-2 S1 IgA and IgG titer ratios. Only significant differences are shown with *p < 0.05, **p<0.01, ***p<0.001 (A-C, E-F:
Wilcoxon matched-pairs signed-rank test between consecutive days, D: Mann-Whitney test). SI below 1 were excluded from further analysis, as they are
below the lower limit of detection. Black line indicates the median.
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to these of 16 age- and gender-matched donors from a previously

published cohort of homologous BNT-vaccinated individuals (29).

Note, while the heterologous AZ-BNT vaccination involved a three-

month interval between first and second vaccination, the second

vaccination in the BNT-BNT cohort was administered three weeks

after the first dose. We weekly assessed the response to the first dose,

the peak of response after the second dose (d7, d14) and the long-term

response at 12 weeks after the third dose of BNT vaccine, administered to

both cohorts 6-10 months after the second dose (Figure S1). Primary

BNT vaccination resulted in a more rapid T cell response, inducing

higher frequencies of S-I- and S-II-reactive T cells early at day 7 post

primary and after secondary vaccination. This difference, however,

vanished three months after the third dose of vaccine (Figure 2A). In

contrast to BNT-vaccinated, AZ-primed individuals did not display

higher frequencies of S-II-specific than S-I-specific T cells early (d7)

after primary vaccination (Figure 2B). The population’s TCR avidity

increased faster following first BNT vaccination in both cohorts, but

remained comparable thereafter (Figures 2C, D). Upon secondary BNT

vaccination, AZ-primed individuals displayed higher IgG levels, but

lower IgA levels compared to homologous vaccinated (Figure 2E).

These differences leveled out three months after the third dose of

vaccine. Neutralization against the Alpha variant was achieved as early

as 14 days following primary vaccination with AZ or BNT and remained

comparable following secondary and tertiary vaccination with BNT
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(Figure 2F). However, neutralization of the Omicron variant was

largely absent following primary vaccination and significantly higher

following homologous BNT vaccination (Figure 2F).
Lack of evidence for reactivation of
cross-reactive CD4+ T cells after primary
AZ vaccination

To investigate the recruitment of cross-reactive T cells in the

immune response following heterologous vaccination, we

longitudinally compared the S-II-specific CD4+ T cell response from

donors with cross-reactive (SI>3 at baseline) CD4+ T cells to donors

without cross-reactive CD4+ T cells (SI<3 at baseline) (Figure 3A).

Overall, S-II-specific CD4+ T cell frequencies remained higher in the

cross-reactive cohort and more stable over time. Next, we evaluated

CD4+ T cell responses against the dominant cross-reactive epitope

(iCope) within the fusion domain of spike (aa 816–830). Primary AZ

vaccination induced a quantitatively and qualitatively weak response,

that was boosted significantly by the second dose with BNT (Figure 3B).

Compared to the homologous BNT vaccination regimen, heterologous

vaccinated individuals exhibited a lower increase of iCope-specific T

cells early in the immune response at day 7 and peaked at lower levels

following primary immunization (Figure 3C). In line, comparison of SI
frontiersin.org
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FIGURE 2

Heterologous vaccination results in slower induction of CD4+ T cell responses, but higher IgG responses compared to homologous vaccination. (A) Ex vivo
stimulation of PBMCs from donors receiving heterologous AZ-BNT and homologous BNT-BNT vaccination with S-I and S-II peptide pools at indicated time
points. SI of antigen-specific CD40L+4-1BB+ CD4+ T cells is shown. (B) Ex vivo stimulation of PBMCs from AZ or BNT primary vaccinated donors with S-I
and S-II peptide pools early and at peak of immune response. SI of antigen-specific CD40L+4-1BB+ CD4+ T cells is shown. (C) Frequencies of CD3lo cells
among S-I- or S-II-reactive CD40L+4-1BB+ CD4+ T cells of T cell responses with a SI ≥ 1.5. (D) Ex vivo stimulation of PBMCs from AZ or BNT primary
vaccinated donors with S-I and S-II peptide pools early and at peak of immune response. Frequencies of CD3lo antigen-specific CD40L+4-1BB+ CD4+ T
cells are shown. (E) Serum anti-SARS-CoV-2 S-1 IgG and IgA antibody levels (OD) were determined at indicated time points. Upper and lower levels of
detection were set at 1 and 13 (IgG)/ 10 (IgA), respectively, indicated by dotted lines. (F) Anti-SARS-CoV-2 B.1.1.7 (Alpha) and B1.1.529 (Omicron) subtype BA.5
variant spike neutralizing capacity at d14 post primary, d14 post secondary and 12 weeks post booster vaccination. Positivity thresholds: >10 ID50 for spike
neutralization. Serum ID50 values less than the lowest serum dilution tested (1:10) were assigned a value of 5 for plotting the graph and for statistical analysis.
Only significant differences are shown with *P < 0.05, **P < 0.01, ***P < 0.001, Mann-Whitney test. SI below 1 were excluded from further analysis, as they
are below the lower limit of detection. Black line indicates the median.
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changes between d0 and d7 or d14 revealed an early response of cross-

reactive clones upon priming with the BNT vaccine whereas donors

vaccinated with AZ responded rather late around d14, indicative of

recruitment and expansion of only naïve T cell clones rather than

recruitment from a pre-existing cross-reactive repertoire (Figure 3D).

Compared to primary AZ vaccination, primary BNT vaccination also

elicited T cell responses of higher TCR avidity, indicated by higher

frequencies of CD3 surface downregulation (CD3lo) in activated CD4+

T cells. Among the few detectable iCope-reactive T cells in AZ-primed

individuals, a larger proportion displayed an in vivo activation

phenotype (HLA-DR+CD38+) at d14 compared to BNT-vaccinated

donors (Figure 3C). In the homologous BNT vaccination regimen, early

responses of cross-reactive CD4+ T cell clones correlated with higher

and more robust antibody titers, as already shown in Loyal et at., 2021

(29). However, we could not identify any correlation between early S-I,

S-II or iCope responses (d4, d7) with early and late IgG and IgA titers

upon vaccination (first dose d14, second dose d0 or second dose d28) in

heterologous vaccinated donors (Figure S2A). This lack of measurable

early reactivation of cross-reactive CD4+ T cells in primary AZ
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vaccination suggests that this immunization cannot leverage pre-

existing T cells to augment the primary response, which was

facilitated by BNT primary vaccination and is associated with

advantages for both cellular (higher TCR avidity) as well as the

humoral (earlier onset) immune response (Figure S2A, (29).

However, an overall robust IgG and IgA humoral response correlates

with a general good S-I but not S-II T cell reactivity later in the

response (Figure S2B).
Heterologous AZ-BNT vaccination recruits a
distinct antibody repertoire compared to
homologous BNT-BNT vaccination

Next, we compared de novo and cross-reactive humoral immune

responses in homologous BNT-BNT versus heterologous AZ-BNT

vaccination. We screened for linear epitope hot spots of humoral

immunity within spike by utilizing a peptide microarray displaying a

scan through the spike protein with linear 15mers (overlapping by
B C
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FIGURE 3

Cross-reactive cellular responses are not effectively induced by AZ primary vaccination. (A) Ex vivo stimulation of PBMCs with S-II peptide pool. Donors
were separated into cross-reactive responders according to an SI of >3 at d0 and non-cross-reactive responders (baseline SI <3). (B) Stimulation index of
antigen specific CD40L+4-1BB+ CD4+ T cells, frequencies of CD3lo cells among iCope-reactive CD40L+4-1BB+ CD4+ T cells of T cell responses with a SI
≥ 1.5, and HLA-DR+CD38+ among iCope-reactive CD4+ T cells are shown. (C) Comparison of SI, CD3lo and HLA-DR+CD38+ between heterologous (AZ-
BNT-BNT) and homologous (BNT-BNT-BNT) vaccinated donors.(D) Foldchange of the SI of iCope-specific T cells from d0 to d7 and d0 to d14. Only
significant differences are shown with *P < 0.05, **P < 0.01, ***P < 0.001. A, C-D: Mann-Whitney test B: Wilcoxon matched-pairs signed-rank test. SI
below 1 were excluded from further analysis, as they are below the lower limit of detection. Black line indicates the median.
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11 amino acids (aa)) and calculated the responsiveness per amino

acid. In both homo- and heterologous vaccinated cohorts we observed

three dominant immunogenic regions: aa 537–609, aa 624–676, and

aa 1144–1200 (Figures 4A; S2A, B). By contrast, convalescents (CS)

only responded weakly to a region at aa 19–43 located within the

NTD and strongest to two distinct regions between aa 777–829,

containing iCope and the fusion domain.

Homologous BNT vaccination induced antibodies only towards

the segment of aa809–829, whereas heterologous vaccination resulted

in a humoral response linear epitope pattern comparable with natural

infection but lower (Figures 4A; S3A, B). Longitudinal linear peptide-

specific antibody analysis revealed poor induction of cross-reactive
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humoral immunity against the conserved regions aa 813–827 and

1145–1159 by primary AZ vaccination, however, antibodies to the

latter were induced by secondary BNT vaccination (Figures 4A, S2B).

Strikingly, AZ-primed donors predominantly reacted against linear

epitopes in the S1 part of spike that is less conserved among

coronaviruses (Figures 4A, S2A, B). We also assessed whether the

differences in linear epitope recognition was reflected in binding full

spike S1 or S2 protein subunits. S1 binding was comparable after

infection or primary vaccination with either AZ or BNT. However, S2

binding was comparable only between naturally infected and BNT-

primed individuals, while primary AZ vaccination resulted in low

levels of anti-S2 antibodies in 8 out of 16 donors (Figure 4B).
B

A

FIGURE 4

Cross-reactive humoral responses are not effectively induced by AZ primary vaccination. (A) Signal from sample incubation on peptide microarrays for
selected peptides following AZ-BNT (n=16), BNT-BNT (n=15) vaccination or infection (convalescents (CS), n=17). (B) Levels of anti-S1 or anti-S2 IgG
binding antibody intensity units in indicated cohorts. Dotted lines indicate lower cut-off at 18 for values classified as positive and upper cut-off at 172.
BL=baseline, FU=follow-up. ns=not significant, *P < 0.05, **P < 0.01, ***P < 0.001. Mann-Whitney test. Black line indicates the median.
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T cell clonotype repertoire breadth and
depth are comparable in heterologous and
homologous vaccination

To assess the capacity of de novo recruitment of naive T cells

(excluding cross-reactive clones targeting the S-II part) we compared

S-I-specific CD40L+4-1BB+ CD4+ T cells of donors undergoing

heterologous AZ-BNT-BNT with homologous BNT-BNT-BNT

vaccination and additionally to natural infection after BNT-BNT

vaccination (BNT-BNT-INF) by droplet scRNA-seq three months

post last antigen encounter. Diversity 50 (D50, i.e. the number of

dominant clones occupying 50 % of the total repertoire) and inverse
Frontiers in Immunology 07107
Simpson index (38) indicated higher TCR breadth in the heterologous

vaccinated, but diversity was overall comparable between groups

(Figures 5A, B). None of the conditions resulted in a strong

enrichment of clonotypes (Figure 5C). Despite high diversity

between samples, some overlapping TCR clones could be found

both between donors of the same group and in-between groups.

Here, clonal overlap between BNT-BNT-BNT-vaccinated and BNT-

BNT-INF individuals was more than threefold higher than between

AZ-BNT-BNT-vaccinated and BNT-BNT-INF individuals

(Figure 5D). All donors demonstrated overlapping clones, both in

absolute and relative (normalized to the sample size) numbers

(Figures 5E, S4A). We also found no difference in the phenotypic
B C
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FIGURE 5

Three months post last antigen contact, single cell RNA sequencing of S-I-reactive CD4+ T cells reveals comparable TCR repertoire in heterologous
(AZ-BNT-BNT) vaccinated, homologous (BNT-BNT-BNT) vaccinated and homologous vaccinated and infected (BNT-BNT-INF) individuals. (A) D50 index
indicates the number of clones occupying 50 % of the repertoire. (B) Inverse Simpson Index indicates the TCRab repertoire diversity. High values
represent a more even distribution of clonotypes, whereas low values indicate enrichment of certain clonotypes. (C) Rare clonal proportion shows the
summary proportion of clonotypes with specific counts. (D) Venn diagram displaying the repertoire overlap between groups. (E) Circos plot giving the
numbers of shared clones between samples of the different cohort. (F) UMAP clustering of seven lymphocyte subsets based on marker genes and
distributions of groups across them. (A, B) Mann-Whitney test revealed no significant differences between groups (P > 0.05). Black line indicates the
median.
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distribution of S-I-specific clones across homo- and heterologous

vaccinated and vaccination-breakthrough-infection groups indicating

a comparable breadth and quality of antigen-specific CD4+ T cells in

all three groups (Figures 5F, S4B).
Discussion

Cross-reactive immunity, resulting from previous exposure to

common cold coronaviruses, has been shown to benefit early immune

responses during SARS-CoV-2 infection (29–32, 37, 39). We have also

shown that primary BNT vaccination engages these pre-existing cross-

reactive T cells within the first week following immunization resulting in

a more rapid response and higher frequencies of high-quality CD4+ T

cells compared with donors in whom such pre-existing, cross-reactive T

cells were not detectable (29, 40). However, the capacity of vector-based

AZ vaccines to elicit cross-reactive immunity was unknown. By

comprehensively characterizing a young, healthy cohort of volunteers

receiving an AZ-BNT vaccination regimen, we here found slower onset

of spike-specific CD4+ T cell responses suggesting that pre-existing cross-

reactive cellular immunity was not activated when primed with AZ.

Moreover, CD4+ T cell immunity towards the universal,

immunodominant coronavirus-specific epitope iCope (S816-830) was

only weakly induced by primary vector-based AZ vaccination compared

to primary mRNA-based BNT vaccination, and AZ induced significantly

fewer CD4+ T cells with high functional TCR avidity. However, following

a secondary BNT vaccination, iCope-responsiveness was readily

detectable in heterologous immunized individuals. Notably, humoral

immunity towards the S1 subunit was comparable between both

vaccination regimens, whereas humoral immunity towards the

conserved S2 subunit was reduced in AZ-primed individuals. This

suggests an altered B cell immune response upon priming with AZ,

which was rectified with the secondary BNT vaccination increasing anti-

S2 IgG titers to higher levels than homologous BNT-BNT vaccination.

Interestingly, spike peptide array analysis revealed distinct areas of

humoral epitope recognition, with different profiles depending on the

priming vaccine. Our findings are validated by Ng et al., who found AZ

vaccination to result in reduced B cell responses targeting distinct S2

regions of spike, especially those against iCope (S816-830) and S1145–

1159 (41). It has been shown that iCope-specific antibodies account for

20% of overall neutralization capacity in blood of convalescents,

potentially by altering the fusion peptide accessibility (41). S1144–1159

is located in the stem helix and antibodies targeting this area were

previously shown to inhibit spike-mediated membrane fusion for beta

coronaviruses (42, 43). Both epitopes are immunodominant and highly

conserved across human coronaviruses (44, 45) which suggests that the

respective areas of spike are probably indispensable for membrane fusion.

In addition, antibodies targeting the S2-located, highly conserved HR1

domain were shown to act as pan-coronavirus fusion inhibitor (46, 47).

Accordingly, antibodies directed against these regions could play a critical

role in protecting against SARS-CoV-2 and other coronavirus infections

and hence in disease control. The search for vaccination regimens that

could specifically boost these antibodies might be important for future

pandemics involving novel coronavirus VOCs.

The significantly higher antibody titers observed following

heterologous vaccination may be attributed to the three-month

time window between first and second vaccine dose (AZ-BNT),
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allowing for prolonged germinal center maturation, resulting in

high affinity maturation of previously low to non-binding

antibodies (48, 49). AZ-AZ vaccination with a three month interval

was reported to mount lower titers than observed here and BNT-BNT

vaccination with a three week interval induced comparable titers in

relation to heterologous vaccination (13, 14, 50). This suggests that

other mechanisms may be responsible for the lower titers in

homologous AZ prime-boost vaccination regimens, such as vector

immunity (48, 49). Additionally, secondary BNT-immunization

containing a slightly different spike protein variant than the AZ

vaccine exposed the B cells to new epitopes not yet covered by AZ-

induced antibodies. However, while mutations in neutralizing

epitopes comparatively affect neutralization capacity in homo- and

heterologous vaccinated donors, homologous BNT vaccination shows

higher neutralization capacity against immune escape variant

Omicron BA.5 after the third dose. This finding highlights the

importance of in-depth understanding of the underlying immune

maturation mechanisms to design long-term protective vaccines and

vaccination schedules.

The observed differences in linear spike epitope antibody coverage

between AZ and BNT vaccination may originate from structural

differences of the spike protein expressed during the distinct

vaccination regimens. Underlying mechanisms could be sequence

modifications, different processing in target cells (receptor mediated

uptake in vector vaccines, random uptake in lipid nanoparticle

encapsulated mRNA vaccines), different glycosylation patterns and

protein stability. The transmembrane protein consists of three S2

subunits with three non-covalently attached S1 subunits (51). The N-

terminal S1 subunit harbors the N-terminal domain (NTD) and

receptor binding domain (RBD) and is relevant for ACE2

recognition on the host cell. Upon binding of ACE2, proteolytic

cleavage at the S2’ site results in the dissociation of S1 and a

conformation change of S2 into post-fusion conformation which

facilitates the membrane fusion (51–54). The fusion peptide region

harboring iCope is concealed by S1 in the pre-fusion status but becomes

exposed upon S2’ cleavage and S1 dissociation until it penetrates the

host membrane in the post-fusion conformation (55). Spontaneous S1

shedding has been described to occur in non-stabilized spike, whereas

two Prolines introduced in S2 at K986P and V987P in BNT162b2 as

well as Moderna’s mRNA-1273 vaccine prevent a conformational

switch into an elongated alpha helix of the post-fusion form (56, 57).

For both mRNA vaccines, the recruitment of pre-existing, cross-

reactive immunity into the immune response was previously shown

(29, 37). Therefore, lack of stabilizing mutations in AZ might result in

an altered accessibility to the fusion-peptide-derived epitopes. Whether

and how this changed conformation then translates into an apparently

less efficient priming of cross-reactive B and T cells remains to be

elucidated. We also observed delayed induction of cellular immune

responses in AZ vaccinees relative to primary BNT vaccination. This

may be due to the fact that the lipid nanoparticle-formulated,

nucleoside-modified delivered mRNA could be rapidly available to

the immune system, whereas vector-based antigen delivery additionally

requires infection of the host cell and transcription of the adenoviral

DNA (58). At day 14, the differences became smaller.

Our findings are limited by the lack of further cohorts, particularly

a homologous AZ vaccination and a homologous BNT vaccination

group with a three-month interval as control group, as well as
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relatively small cohorts for the kinetics and the single cell RNA-

sequencing. Additionally, it would be interesting to check for

differences in the TCR repertoire following only primary

vaccination and against the whole spike protein. Finally,

comparison of other pre-fusion stabilized versus non-stabilized

vaccines would prove the concept of optimal pan-coronavirus

immunity induction by stabilized variants independently of their

mRNA versus vector basis. To address the constant challenges of

newly arising VOCs, second generation vaccines should target pan-

coronavirus immunity, focusing on conserved regions and ideally

activating mutation-resilient immunity. We here demonstrate that

the AZ vector vaccine induces robust adaptive immune responses

however does not engage cross-reactive pan-coronavirus immunity

targeting the conserved S2 subunit of spike.
Materials and methods

Study participants

This study was approved by the Institutional Review board of the

Charité (EA/152/20). Written informed consent was obtained from all

included participants and the study was conducted in agreement with the

declaration of Helsinki. All vaccinated donors were assessed for age and

gender as indicated in Supplementary Table 1. The timepoints week 18

(w18) after second and week 12 (w12) after the third dose of vaccine

spans the days 131-165 and 85-126 respectively. Previous infection was

excluded by a questionnaire asking for SARS-CoV-2 related symptoms

and nucleocapsid IgG ELISA. Detailed specifications of the convalescent

cohort including the time points of the follow-up measurements (FU)

and symptoms are given in Loyal et al., Science, 2021 (29).
Coronavirus RT-qPCR

For all visits and donors, RNA was extracted from 140 ml of wet
nasopharyngeal swabs (Copan mini UTM) using the QIAamp Viral

RNA Mini Kit and QIAcube Connect with the manual lysis protocol.

SARS-CoV-2 RNA detection was performed using a simultaneous

two duplex one-step real-time RT-PCR assay with primers and probes

(in-house protocol, primers and probes ordered at Metabion and

Thermo Fischer Scientific (MGB probe)) for SARS-CoV-2 E Gene

and SARS-CoV-2 ORF1ab according to the RKI/ZBS1 SARS-CoV-2

protocol as described before (59). Each one is duplexed with a control

that either indicates potential PCR inhibition or proves the successful

extraction of nucleic acid from the clinical specimen. As positive

controls genomic SARS-CoV-2 RNA and genomic SARS-CoV RNA

were used for the ORF1ab and the E-Gene assay, respectively,

adjusted to the Ct values 28 and 32. PCR was conducted with the

AgPath-ID™ One-Step RT-PCR Reagents kit (Applied Biosystems)

using a Bio-Rad CFX96 or Bio-Rad Opus real-time PCR cycler.
SARS-CoV-2 IgG and IgA S1 ELISA

Anti-SARS-CoV-2 IgG and IgA ELISA specific for the S subunit 1

(S1) was performed using the commercial kits (QuantiVac for IgG),
Frontiers in Immunology 09109
EUROIMMUNMedizinische Labordiagnostika AG) according to the

manufacturer’s instructions. Upper and lower cut-off were set at a

ratio of 1 and 13 for IgG, respectively, and at 1 and 10 for

IgA, respectively.
Epitope-specific antibody ELISA

400nM of biotinylated peptide S809-826 (Biotin-Ttds-

PSKPSKRSFIEDLLFNKV-OH, Ttds linker: N-(3-{2-[2-(3-Amino-

propoxy)-ethoxy]-ethoxy}-propyl)-succinamic acid, JPT Peptide

Technologies) was immobilized on a 96-well Streptavidin plate

(Steffens Biotechnische Analysen GmbH) for 1 hour at RT. After

blocking (1 hour, 30°C) serum samples were diluted 1:100 and

incubated for 1 hour at 30°C. HRP-coupled, anti-human-IgG

secondary antibody (Jackson Immunoresearch) was diluted 1:5000

(Jackson Immunoresearch) and added to the serum samples for

1 hour at 30°C, then HRP substrate was added (TMB, Kem-En-

Tec). The reaction was stopped by adding sulfuric acid and absorption

was measured at 450 nm using a FlexStation 3.
SARS-CoV-2 spike epitope-specific
peptide microarray

The peptides were synthesized using SPOT synthesis, cleaved

from the solid support and chemoselectively immobilized on

functionalized glass slides. Each peptide was deposited on the

microarray in triplicates. The peptide microarrays were incubated

with human sera (applied dilution 1:200) in a 96-well microarray

incubation chamber for one hour at 30°C, followed by incubation

with 0.1 mg/ml fluorescently labeled anti human IgG detection

antibody (Jackson Immunoresearch). Washing steps were

performed after each incubation step with 0.1 % Tween-20 in 1x

TBS. After the final incubation step the microarrays were washed and

dried. Each microarray slide was scanned using a GenePix Scanner

4300 SL50 (Molecular Devices). Signal intensities were evaluated

using GenePix Pro 7.0 analysis software (Molecular Devices). For

each peptide, the MMC2 value of the three triplicates was calculated.

The MMC2 value was equal to the mean value of all three instances on

the microarray except when the coefficient of variation (CV) –

standard-deviation divided by the mean value – was larger than 0.5.

In this case the mean of the two values closest to each other (MC2)

was assigned to MMC2. Further data analysis and generation of the

bar plots was performed using the statistical computing and graphics

software R (Version 4.1.1, (60)).
SARS-CoV-2 pseudovirus
neutralization assay

The SARS-CoV-2 pseudovirus neutralization assay was

conducted as previously described in (61). Shortly, SARS-CoV-2

pseudoviruses were generated by co-transfection of plasmids

encoding HIV Tat, HIV Gag/Pol, HIV Rev, luciferase followed by

an IRES and ZsGreen, and the alpha and omicron BA.5 SARS-CoV-2

spike protein into HEK 293T cells using FuGENE 6 Transfection
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Reagent (Promega). Virus culture supernatant was harvested at 48 h

and 72 h post transfection and stored at -80°C till use. Harvested virus

was titrated by infecting 293T expressing ACE242 and after a 48-hour

incubation at 37°C and 5 % CO2, luciferase activity was determined

after addition of luciferin/lysis buffer (10 mM MgCl2, 0.3 mM ATP,

0.5mM Coenzyme A, 17 mM IGEPAL (all Sigma-Aldrich), and 1 mM

D-Luciferin (GoldBio) in Tris-HCL) using the Tristar microplate

reader (Berthold). Neutralization assays were performed as described

before. Briefly, 3-fold serial dilutions of serum (1:10 starting dilution)

were co-incubated with pseudovirus supernatants for 1 h at 37°C,

following which 293T-ACE-2 cells were added. After 48 h at 37°C and

5% CO2, luciferase activity was determined using the luciferin/lysis

buffer. Background relative light units (RLUs) of non-infected cells

was subtracted and 50% inhibitory dilution (ID50) were calculated as

the serum dilution resulting in a 50% reduction in RLU compared to

the untreated virus control wells. ID50 values were calculated by

plotting a non-linear fit dose response curve in GraphPad Prism 7.0.
Blood and serum sampling and
PBMC isolation

Whole blood was collected in lithium heparin tubes for peripheral

blood mononuclear cells (PBMC) isolation and SST™II advance

(Vacuette®, Greiner Bio One and Vacutainer BD) tubes for serology.

SST™II advance tubes were centrifuged for 10 min at 1000 g prior to

removing serum. Serum aliquots were frozen at -20°C until further use.

PBMCs were isolated by gradient density centrifugation according to

the manufacturer’s instructions (Leucosep tubes, Greiner;

Biocoll, Bio&SELL).
Ex vivo T cell stimulation

Freshly isolated PBMC were cultivated at a concentration of

5*106 PBMC/ml in AB-medium containing RPMI 1640 medium

(Gibco) supplemented with 10 % heat inactivated AB serum (Pan

Biotech), 100 U/ml of penicillin (Biochrom), and 0.1 mg/ml of

streptomycin (Biochrom). Stimulations were conducted with

PepMix™ overlapping peptide pools (15 aa length with 11 aa overlaps,

JPT Peptide Technologies) covering the proteins of interest (all JPT

Peptide Technologies). iCope single peptide stimulation was conducted

with iCope (N ’-SFIEDLLFNKVTLAD-C’ (all JPT Peptide

Technologies)). All stimulations (peptide pools and single peptides)

were performed at final concentrations of 1 µg/ml per peptide. For

negative control the stimulation peptide solvent DMSO diluted 1:1 in

PBS was used at the same concentration as in peptide-stimulated tubes.

The CEFX Ultra SuperStim pool (1 µg/ml per peptide) (JPT Peptide

Technologies) was used as positive stimulation control. For optimized

costimulation, purified anti-CD28 (clone CD28.2, BD Biosciences) was

added to each stimulation at a final concentration of 1 µg/ml. Incubation

was performed at 37°C, 5% CO2 for 16 hours in the presence of 10 µg/ml

Brefeldin A (Sigma-Aldrich) during the last 14 hours. CD4+ T cell

activation was calculated as a stimulation index (SI). Stimulation index is

the ratio of CD40L+4-1BB+ CD4+ T cells in the stimulation to the

percentage of CD40L+4-1BB+ CD4+ T cells in the unstimulated control.

Stimulation index between 1.5 and 3 indicate a response with uncertainty,
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an index of 3 and higher a definite response. Both limits are indicated by

dotted lines in the respective figures.
Flow cytometry

Stimulations were stopped by incubation in 2mM EDTA for 5 min.

Surface staining was performed for 15 min in the presence of 1 mg/ml of

Beriglobin (CSL Behring) with the following fluorochrome-conjugated

antibodies titrated to their optimal concentrations as specified in

Supplementary Table 2: anti-CD3-FITC (Miltenyi), anti-CD4-VioGreen

(Miltenyi), anti-CD8-VioBlue (Miltenyi), anti-CD38-APC (Miltenyi), and

anti-HLA-DR-PerCpVio700 (Miltenyi). During the last 10 min of

incubation, Zombie Yellow fixable viability staining (Biolegend) was

added. Fixation and permeabilization were performed with

eBioscience™ FoxP3 fixation and PermBuffer (Invitrogen) according to

the manufacturer’s protocol. Intracellular staining was carried out for

30 min in the dark at room temperature with anti-4-1BB-PE (Miltenyi),

anti-CD40L-PEVio770 (Miltenyi) and anti-CD40L-PECy7 (Biolegend),

anti-IFN-g-A700 (Biolegend) and anti-TNF-a-BV605 (Biolegend). All

samples were measured on a MACSQuant®Analyzer 16 (Miltenyi).

Instrument performance was monitored prior to every measurement

with Rainbow Calibration Particles (BD Biosciences).
Single-cell RNA sequencing

For single-cell RNA sequencing, PBMC of three BNT-BNT-BNT-

vaccinated, three AZ-BNT-BNT vaccinated, and three BNT-BNT-

infected donors were stimulated with 1 µg/ml S-I peptide pool in the

presence of purified anti-CD28 (clone CD28.2, BD Biosciences) and anti-

CD40 (clone HB14, Miltenyi Biotec). CD4+ T cells were enriched by

MACS (Miltenyi Biotec) and CD40L+4-1BB+ CD4+ T cells FACS sorted

using an FACS Melody (BD). The cells were loaded with a maximum

concentration of 1000 cells/µl and amaximum cell number of 17.000 cells

on a Chromium Chip G (10x Genomics). Gene expression and TCR

libraries were generated according to the manufacturer’s instruction

using the Chromium Next GEM single cell 5’Library and Gel bead Kit

V1.1 and Chromium Single Cell V(D)J Enrichment Kit for human T cells

(10x Genomics). Sequencing was conducted with a NovaSeq 6000

cartridge (Illumina) with 20.000 reads per cell for GEX libraries and

5.000 reads per cell for TCR libraries.
Single-cell transcriptome analysis

Single cell RNA expression data were mapped to reference

genome GRCh38-2020-A and preprocessed using the Cell Ranger

Software v6.1.2 (10x Genomics). Quality control and analysis of data

was done in R 4.0.5 (R Core Team (2021). R: A language and

environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. URL https://www.R-project.org/) using

the “Seurat” package (62). To remove low quality cells, doublets and

empty cells thresholds were set to 840–4000 RNA features and less

than 5 % mitochondrial RNA per cell. Data were normalized by using

the LogNormalize function of the Seurat package and genes detected

in less than 0.1% of the cells were excluded. For gene expression
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analysis the TCR genes were excluded from the data set to avoid TCR

biased clustering. A heatmap with the scaled expression values of

selected genes was generated using the DoHeatmap() function of the

Seurat package. Furthermore, the expression values of these genes

were aggregated according to the experimental groups and shown in a

heatmap generated with GraphPad Prism.
Single cell TCR analysis

Single cell TCR data were preprocessed using the Cell Ranger

Software v6.1.2 (10x Genomics) and the GRCh38-2020-A reference

genome. Data was further processed in R using the “immunarch”

package (63). Only cells which passed the quality controls in the gene

expression analysis and containing exactly one TCR alpha and one TCR

beta chain were used for further analysis. D50 Index, Inverse Simpson

Diversity index and rare clonal proportions were calculated using the

corresponding functions of the immunarch package. Overlaps of

clonotypes between experimental groups were determined using the

repOverlap function and visualized as heatmap and with the vis_circos

functions of the immunarch package. Numbers for the Venn diagram

were calculated using the calculate.overlap function of the VennDiagram

package Version 1.7.3 (64).
Data analysis and statistics

Study data were collected and managed using REDCap electronic

data capture tools hosted at Charité (65, 66). Flow cytometry data

were analyzed with FlowJo 10.6 (FlowJo LLC), and statistical analysis

conducted with GraphPad Prism 9. If not stated otherwise, data are

plotted as median. N indicates the number of donors. P-values were

set as follows: *P <0.05, **P <0.01, and ***P<0.001.
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Metabolomic and immune
alterations in long COVID
patients with chronic
fatigue syndrome
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Desiree Redmond3, JanWillem Cohen Tervaert3, Liang Li2,4

and Shokrollah Elahi 1,5*

1School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada, 2The Metabolomics Innovation
Centre, University of Alberta, Edmonton, AB, Canada, 3Department of Medicine, Division of Rheumatology,
Edmonton, AB, Canada, 4Department of Chemistry, University of Alberta, Edmonton, AB, Canada, 5Li Ka Shing
Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
Introduction: A group of SARS-CoV-2 infected individuals present lingering

symptoms, defined as long COVID (LC), that may last months or years post the

onset of acute disease. A portion of LC patients have symptoms similar tomyalgic

encephalomyelitis or chronic fatigue syndrome (ME/CFS), which results in a

substantial reduction in their quality of life. A better understanding of the

pathophysiology of LC, in particular, ME/CFS is urgently needed.

Methods: We identified and studied metabolites and soluble biomarkers in

plasma from LC individuals mainly exhibiting ME/CFS compared to age-sex-

matched recovered individuals (R) without LC, acute COVID-19 patients (A), and

to SARS-CoV-2 unexposed healthy individuals (HC).

Results: Through these analyses, we identified alterations in several metabolomic

pathways in LC vs other groups. Plasma metabolomics analysis showed that LC

differed from the R and HC groups. Of note, the R group also exhibited a different

metabolomic profile than HC. Moreover, we observed a significant elevation in

the plasma pro-inflammatory biomarkers (e.g. IL-1a, IL-6, TNF-a, Flt-1, and
sCD14) but the reduction in ATP in LC patients. Our results demonstrate that

LC patients exhibit persistent metabolomic abnormalities 12 months after the

acute COVID-19 disease. Of note, such metabolomic alterations can be

observed in the R group 12 months after the acute disease. Hence, the

metabolomic recovery period for infected individuals with SARS-CoV-2 might

be long-lasting. In particular, we found a significant reduction in sarcosine and

serine concentrations in LC patients, which was inversely correlated with

depression, anxiety, and cognitive dysfunction scores.

Conclusion: Our study findings provide a comprehensive metabolomic

knowledge base and other soluble biomarkers for a better understanding of

the pathophysiology of LC and suggests sarcosine and serine supplementations

might have potential therapeutic implications in LC patients. Finally, our study

reveals that LC disproportionally affects females more than males, as evidenced

by nearly 70% of our LC patients being female.
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sarcosine, serine, soluble CD14, depression, cognitive performance
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Introduction

SARS-CoV-2 infection can result in asymptomatic or

symptomatic presentations, ranging from mild to fatal

coronavirus disease 2019 (COVID-19) (1). The coordinated

action of the innate and adaptive immune systems provides

adequate control of SARS-CoV-2 replication, resulting in the

recovery of most immunocompetent individuals.

However, a substantial number of patients recovering from

COVID-19 have reported a wide range of symptoms that last for

many months or years after the onset of acute infection (2, 3). This

syndrome is defined as post-acute COVID-19 syndrome (PACS),

long-term COVID or “long hauler” patients (2, 4, 5). Multiple

studies have evaluated LC symptoms in hospitalized patients,

inevitably including only the more severe end of the spectrum (6–

8). LC is not restricted to hospitalized patients and its estimated

incidence is reported to lie between 10% and 60%, which depends

on the definition of LC used and patient cohorts under study (9). LC

is composed of heterogeneous sequelae that often affect multiple

organ systems, with an impact on functional status and ability to

work. The most prominent reported LC manifestations include

breathlessness, headache, cough, chest pain, abdominal pain,

muscle pain, fatigue, sleep disturbance, cognitive dysfunction

(also termed “brain fog”), anxiety, and diarrhea (4, 9). Recent

studies and surveys conducted by patient groups indicate that 50

to 80% of patients continue to have bothersome symptoms three

months after the onset of COVID-19 disease even after tests no

longer detect the virus in their body (7, 10, 11). In support of these

observations, a recent study reported that 36% of COVID-19

patients experience several symptoms more than 3-6 months after

the acute phase of the disease (3). Nevertheless, around 10% of

individuals who have recovered may experience symptoms for over

a year following the initial SARS-CoV-2 infection. These symptoms

closely resemble those of myalgic encephalomyelitis or chronic

fatigue syndrome (ME/CFS) (7, 12, 13), and/or exhibit other

manifestations similar to systemic autoimmune rheumatic

diseases (SARDs).

Any acute infection that damages multiple organs (e.g. cardiac,

pulmonary, and/or renal involvement), like SARS-CoV-2, can be

associated with lingering symptoms. In some individuals with

persistent, debilitating fatigue following SRAS-CoV-2 infection,

documented damage of vital organs may be a sufficient

explanation for their fatigue. However, many cases of post-

infectious fatigue follow acute infections that did not cause

discernible organ damage or in those who had mild disease.

In people with lingering severe fatigue post-COVID-19 and

without chronic cardiac, pulmonary, or renal dysfunction one likely

explanation for the chronic fatigue is a state of chronic low-grade

neuroinflammation (14). SARS-CoV-2 may form reservoirs

resulting in viral-associated damage affecting the brain (15, 16),

intestine, and liver, which can result in ongoing damage (17). It is

known that SARS-CoV-2 enters the olfactory mucosa and can

penetrate into the brain from the cribriform plate or via vagal

pathways (18). Alternatively, the virus may also directly translocate

across the blood-brain barrier (BBB) as a result of increased
Frontiers in Immunology 02115
permeability stemming from inflammatory cytokines or

inflammatory cells (e.g. monocytes) (19). Also, SARS-CoV-2 can

reach neural tissue via circumventricular organs (CVOs) (20).

Therefore, long-term neuropsychiatric symptoms may stem from

chronic neuroinflammation and hypoxic injury (20). Indeed, recent

studies have suggested that patients with LC may suffer from

chronic hypoxic changes affecting the brain (21). Consistent with

this, a vascular inflammation associated with hypoxia-inducible

factor-1 is reported to contribute to neurological and

cardiometabolic dysfunction in LC (22).

Another possible mechanism to explain LC may be that the

initial infection triggers a broad immune response characterized by

inflammation and immune dysregulation (1, 23). Furthermore,

inflammation outside the brain can activate both immunological

and somatic signals via both humoral and retrograde neuronal

signals which largely involve the vagus nerve (24). These changes

can culminate in symptoms of fatigue through the action of various

cytokines which act on a “fatigue nucleus” or a collection of neurons

dedicated to inhibiting energy-consuming activities that promote

focusing on available energy stores for healing (25). Finally,

impaired energy production associated with oxidative stress,

glycolytic T cell metabolism, and immune alterations are

suggested to play important roles in patients with idiopathic ME/

CFS (26–29).

Given the global burden of LC and lack of understanding

regarding its immunobiology, and pathophysiology, we aimed to

systematically follow a cohort of individuals for > 12 months after

the acute SARS-CoV-2 infection. This cohort was characterized by

multiple clinical visits and laboratory analyses, and compared with a

cohort of individuals who had been infected with SARS-CoV-2 but

recovered without displaying any clinical symptoms. These

individuals were recruited to the Long-COVID clinic at the

University of Alberta hospital, with the recruitment was

facilitated through patient community groups and the Alberta

Long-COVID Facebook community. We also compared these two

groups with a cohort of healthy controls (HCs, unexposed to SARS-

CoV-2), and with patients suffering from a severe form of acute

COVID-19 (A) who were admitted to the Intensive Care Unit

(ICU). Collectively, these studies allowed us to analyze metabolomic

profiles in these cohorts.
Results

Cohort characteristics

This is a single-centered cohort and consisted of 60 PCR-

confirmed SARS-CoV-2 infected individuals (30 LC patients, 15

individuals without LC symptoms who were previously infected

with SARS-CoV-2 but recovered without any symptoms per se

(recovered group, denoted R), 15 acute hospitalized COVID-19

patients (A)) as well as 15 healthy controls (HCs) without acute

symptoms and negative SARS-CoV-2 immunoassays (Figure 1A,

Supplementary Table 1). Study participants were age -and sex-

matched (Figure 1B) and all were infected with the Wuhan strain
frontiersin.org
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and recruited at ~12 months post the onset of acute infection

(Supplementary Table 1). Considering that the majority of our LC

and R participants had a mild acute infection, confounding health

conditions were not common (Supplementary Table 1).

HCs were HIV, HCV, and HB seronegative, and mainly

recruited pre-COVID-19 pandemic.

A key strength of this study was our unique focus on LC

patients who met classification criteria for ME/CFS, which was

not rigorously performed in any previous study. Those LC patients

who did not fulfill ME/CFS criteria were excluded. Our LC patients

were evaluated based on diagnostic criteria developed by CDC and

WHO (30, 31) for ME/CFS. Moreover, we used a set of validated
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clinical questionnaires to capture the severity of symptoms for ME/

CFS. This was conducted through in-person meetings using 7

different questionnaires including 1) De Paul Symptom

Questionnaires (DSQ); 2) Functional Assessment of Chronic

Illness Therapy (FACIT) Fatigue scale questionnaire; 3) FACIT-

Dyspnea; 4) Fibromyalgia (FM) diagnostic criteria; 5) Cognitive

Failure Questionnaire (CFQ); 6) The Pittsburgh Sleep Quality Index

(PSQI): 7) The Hospital Anxiety and Depression Scale (HADS). We

evaluated each patient based on different components of each

questionnaire. For instance, the DSQ is used to assess symptoms

related to ME/CFS (32). In this survey, patients were asked to rate

54 symptoms, and based on their responses we characterized them
B

A

FIGURE 1

Demographic analysis of LC cohorts. (A) schematic of the study design. Numbers in center of diagram indicate participants in each study cohort
(HC, healthy controls with no prior-SARS-CoV-2 exposure/vaccination; A, acute SARS-CoV-2 infected and ICU-admitted; LC, Long COVID; R,
recovered). Outer ring indicates different studies/assays performed on patients/samples. (B) Demographic characteristics for each group displayed as
ring charts for sex and age.
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into 6 groups: fatigue (I), malaise (II), sleep difficulties (III), pain

(IV), cognitive/neurological manifestations (V), and other (VI)

which included autonomic, neuroendocrine, and immune

manifestations. At the same time, the frequency of symptoms was

evaluated using a 5-point Likert scale with 0: none of the time, 1: a

little of the time, 2: about half the time, 3: most of the time, and 4: all

of the time. Similarly, the severity of the symptoms was also

recorded with 0: no symptom, 1: mild, 2: moderate, 3: severe, and

4: very severe. Each patient was considered positive if scored

frequency and severity of ≥2 on at least one symptom from each

category. For neurologic/cognitive manifestations, patients were

considered positive if they scored a frequency and severity of ≥2

on at least two symptoms. For other categories (category VI),

patients were considered positive if they had a minimum of one

symptom from two of the autonomic, neuroendocrine, and immune

manifestations. The diagnosis of ME/CFS was made if the patients

met the criteria for categories I, II, III, IV, V, and VI (32–34).

A similar evaluation approach was utilized for the other

questionnaires mentioned above. Thus, based on the obtained

information from these questionnaires and clinical analyses, we

characterized our LC patients.
LC patients are presented with a distinct
metabolomic profile compared to R, HC,
and acute COVID-19 patients

A total of 2584 metabolites were detected from 75 plasma

samples including LC n=30, acute n=15, R n=15, and HC n=15.

First, we compared the whole metabolome in our four study groups.

Partial least squares-discrimination analysis (PLS-DA) and the

heatmap showed a clear classification of the metabolomes

between four groups (Figures 2A, B). The acute COVID-19 group

showed clearly a distinct metabolome profile from the other three

groups. Once the acute group was excluded from analysis, the LC

group displayed a more distinct metabolome profile compared to

the HC and R groups (Figures 2C, D).

While the LC and HC groups were separated, it appeared that

the R group was located between these two groups (Figure 2C).

Next, we characterized the difference at the single metabolite level

between groups. Volcano plots showed 478 metabolites were

significantly reduced while 294 metabolites were significantly

increased in acute (A) COVID-19 patients compared to HCs

(Figure 2E). Compared to HCs, 103 metabolites were elevated but

123 were declined in the R group (Figure 2F). Interestingly, the

number of altered metabolites were much lower between LC and

HC groups, showing 61 and 76 decreased and increased,

respectively (Figure 2G). The number of altered metabolites

between acute patients and the R group were very similar to those

of acute/HCs with 419 increased and 285 decreased metabolites

(Figure 2H). Compared to acute patients, we noted 495 metabolites

were significantly reduced but 167 metabolites were elevated in the

plasma of LC patients (Figure 2I). Finally, compared to the R group,

LC patients had 49 reduced but 111 increased metabolites

(Figure 2J). When we compared the top 100 altered metabolites

between groups, we found that acute COVID-19 patients had a
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distinct metabolomic profi le from HCs and R groups

(Supplementary Figures 1A, B, Supplementary Table 2). Even

though in general R individuals were segregated from HCs, three

R patients assimilated with HCs (Supplementary Figure 1C,

Supplementary Table 2). Next, we compared the pattern of

metabolomic profile in LC patients versus the R and HC groups.

These analyses indicated that when the top 100 altered metabolites

were compared the LC group was segregated from both the R and

HC groups (Supplementary Figures 2A, B, Supplementary Table 2).

Overall, these observations demonstrate that LC and even R

individuals present an altered metabolomic profile even ~12

months post the acute disease onset.
Differential metabolic pathways in LC
patients versus the R and HC groups

To obtain further insight into the differential metabolic

characteristics of LC from R and HCs, we performed a metabolic

pathway enrichment analysis (https://www.metaboanalyst.ca/) (35–

37). Compared to HCs, these analyses revealed that 18 pathways

were significantly altered in LC patients (Figure 3A). These

alterations in metabolic pathways, resulted in a significant decline

in the levels of aspartate, uracil, serine, sarcosine, arginine,

dehydroalanine, thymine, and porphobilinogen in LC patients

versus HCs (Figure 3B, Supplementary Figure 3A). However, the

levels of other metabolites such as 5-Aminolevulinate, cysteate,

putrescine, 4-Aminobutyraldehyde, kynurenine, serotonin, Formyl-5-

hydroxykynurenamine, 5-Hydroxykynurenine, 2-Aminomuconate,

xanthine, and 5-Aminolevulinate were significantly increased in LC

patients (Figure 3C, Supplementary Figure 3A). Given the role of

Metabolic pathway analyses between the LC and R group revealed also

the alteration of 18 pathways, however, 15 out of these 18 pathways

were similar to those observed between LC versus HCs (Figure 4A).

The three differentially altered pathways between the LC vs HCs were

glutamine, nitrogen, and butanoate mechanisms whereas cysteine and

methionine, taurine, and glutathione metabolisms were altered

between the LC and R groups (Figure 4A). Overall these alterations

in metabolism pathways resulted in a substantial reduction in the levels

of metabolites such as aspartate, asparagine, glutamine, histidine,

N-formimino-glutamate, sarcosine, and ethanolamine phosphate in

LC patients (Figure 4B, Supplementary Figure 3B). In contrast,

metabolites such as 4-Aminobutanoate, 4-aminobutyraldehyde,

3-hydroxyanthranilate and porphobilinogen were elevated in the

plasma of LC patients compared to the R group (Figure 4C,

Supplementary Figure 3B).

Finally, we conducted a metabolic enrichment pathway analysis

between the R and HCs. Although these individuals did not have

any clinical symptoms and appeared to be healthy, they exhibited

alterations in 15 metabolomics pathways compared with HCs

(Figure 5A). Interestingly, 13 of these pathways were similar to

those altered pathways between LC and HCs. Of note, the other two

altered pathways in the R group were vitamin B and glutathione

metabolisms (Figure 5A). These 15 altered metabolomics pathways

resulted in increased levels of glutamate, 4-Aminobutanoate,

carnosine, thymine, porphobilinogen, homogentisate and 4-
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Guanidinobutanoate in the R group (Figure 5B, Supplementary

Figure 4A). At the same time, compared to HCs, the levels of a wide

range of metabolites such as glutamine, asparagine, N-Formimino-

glutamate, putrescine, serotonin, kynurenine, 2-Aminomuconate,
Frontiers in Immunology 05118
Cys-Gly, 5-Aminolevulinate, and pyridoxine were reduced in the

plasma of R group (Figure 5C, Supplementary Figure 4A). Despite

the lack of clinical symptoms, the R group also exhibited a

differential metabolomics profile compared to HCs. Taken
frontiersin.or
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FIGURE 2

Altered metabolomic profile in SARS-CoV-2 infected individuals. (A) Partial least squares-discrimination analysis (PLS-DA) plot based on the
metabolites in LC (n=30), acute COVID-19 (n=15), HC (n=15) and R (n=15). (B) Heatmap based on ANOVA using the top 100 significantly altered
metabolites. The heatmap indicates the auto scaled levels of each metabolite in each sample, colored blue for decline and red for elevation as
indicated on the horizontal bar. (C) Partial least squares-discrimination analysis (PLS-DA) plot based on the metabolites in LC (n=30), HC (n=15) and
R (n=15). (D) Heatmap based on ANOVA using the 100 significantly altered metabolites. The heatmap indicates the auto scaled levels of each
metabolite in each sample, colored blue for decline and red for elevation as indicated on the horizontal bar. (E) Volcano plots of significantly
increased (red), decreased (blue) or unchanged (black) metabolites in acute A vs HCs. (F) Volcano plots of significantly increased, decreased or
unchanged metabolites in R vs HC. (G) Volcano plots of significantly increased, decreased or unchanged metabolites in LC vs HC. (H) Volcano plots
of significantly increased, decreased or unchanged metabolites in A vs R. (I) Volcano plots of significantly increased, decreased or unchanged
metabolites in A vs LC. (J) Volcano plots of significantly increased, decreased or unchanged metabolites in LC vs R.
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together, these observations imply substantial metabolic pathways

alterations in LC patients.
Differential metabolomic profile of acute
COVID-19 patients vs HCs

In agreement with previous reports (38), we observed alteration

in plasma metabolite levels of acute patients vs HCs. Pathway

analysis between acute and HCs revealed alteration in 29

pathways as indicated in Supplementary Figure 4B. These

modifications in metabolism pathways resulted in a substantial

increase in the levels of 48 metabolites such as Xanthine, ascorbate,

Cys-Gly, kynurenine, phenylalanine, 5-hydroxykynurenine, and
Frontiers in Immunology 06119
others as outlined in Supplementary Figures 5A, B. In contrast, we

found that these metabolomic alterations led to a reduction in the

plasma level of different metabolites including uridine, thymine,

carnosine, theophylline, aspartate, taurine, serine, glutamate,

tryptophan, arginine, and 53 other metabolites in the acute

patients compared to HCs (Supplementary Figures 6A, B).
Differential metabolomic profile of acute
COVID-19 patients vs R individuals

We also compared a metabolomic profile of those recovered

from COVID-19 infection with the acute stage of the disease.

Pathway analysis between acute and R indicated alteration in 36
frontiersin.o
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FIGURE 3

Altered metabolomic profile in LC vs HC. (A) Metabolic pathway enrichment analysis plot shows significantly altered pathways in LC vs HC. (B) The
heatmap shows significantly decreased metabolites in different metabolic pathways in LC vs R. (C) The heatmap shows significantly elevated
metabolites in different metabolomics pathways in LC vs R.
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pathways as indicated in Supplementary Figure 7. These

modifications in metabolism pathways resulted in a substantial

increase in the levels of 39 metabolites in acute COVID 19 patients

compared to the R group such as phenylaniline, pyrimidodiazepine,

xanthine, ascorbate, kynurenine, 5-hydroxykynurenine and others

as outlined in Supplementary Figures 8A, B. In contrast, we found

that these metabolomic alterations led to a reduction in the

plasma level of 66 different metabolites in acute patients versus

the R group (Supplementary Figures 9A-C). Finally, we compared

the metabolomic profile of LC vs acute COVID-19 patients.

These analyses revealed alteration in 30 metabolism pathways

(Supplementary Figure 10). These changes in metabolism

pathways were associated with a significant increase in 29

metabolites as shown in Supplementary Figure 11. In contrast,

we observed a significant reduction in 16 metabolites in LC

patients compared to those with acute COVID-19 disease

(Supplementary Figure 12).
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Increased levels of pro-inflammatory
cytokines and auto-antibody in LC

Considering the alteration in a variety of pathways such as

tryptophan-kynurenine and Xanthine/hypoxanthine, we quantified

the levels of inflammatory cytokines. We found a significant increase

in the plasma IL-1a, IL-6, TNF-a, IP-10, and liver-associated active

phase proteins (CRP and SAA) in LC patients versus R and HCs

(Figures 6A-F). However, the plasma IL-13 and IL-1b concentrations

remained unchanged between groups (Figures 6G, H). Although we

did not find any significant difference between soluble Flt-1, also

known as vascular endothelial growth factor receptor 1, levels in the

plasma of R and LC patients, LC group exhibits a significant plasma

elevation compared to the HC cohort (Figure 6I). We also quantified

sCD14, a nonspecific monocyte activation marker, levels in the plasma

of our study participants, which showed a significant elevation in LC

patients compared to the HC and R groups (Figure 6J). In light of
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FIGURE 4

Altered metabolomic profile in LC vs R. (A) Metabolic pathway enrichment analysis plot shows significantly altered pathways in LC vs R. (B) The
heatmap shows significantly decreased metabolites in different metabolic pathways in LC vs R. (C) The heatmap shows significantly elevated
metabolites in different metabolomics pathways in LC vs R.
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hypocalcemia in COVID-19 patients and its association with

hypoparathyroidism (39, 40), we detected significant levels of the

anti-CaSR antibody (calcium receptor) in LC cohort (Figure 6K).

This observation forced us to measure the soluble form of CaSR in

our different cohorts. Interestingly, we observed the elevation of

soluble/shed CaSR in the plasma of acute COVID-19 patients, which

was not the case in LC patients (Figure 6L). Finally, considering the

impact of COVID-19 infection on the purinergic system (41), we
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quantified the plasma levels of ATP in our different cohorts. We found

a significant reduction in the plasma ATP levels in acute COVID-19

patients compared to HCs and R groups (Figure 6M). Notably, LC

patients had a substantially reduced level of ATP in their plasmas

compared to either R and HCs (Figure 6M). Intriguingly, the R groups

exhibited a significant elevation in the plasma ATP compared to the

HC and R groups (Figure 6M). Overall, these observations imply a

dysregulated and inflammatory immune response in LC patients.
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FIGURE 5

Altered metabolomic profile in R vs HC. (A) Metabolic pathway enrichment analysis plots of significantly altered pathways in the R vs HC group.
(B) The heatmap shows significantly increased metabolites in different metabolic pathways in the R vs HC group. (C) The heatmap shows
significantly decreased metabolites in different metabolic pathways in the R vs HC group.
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The association of sarcosine and serine
with clinical manifestations in LC

In our investigations of metabolite levels associated with symptoms

commonly seen in LC patients such as cognitive function, anxiety,

chronic pain, and depression in LC patients, we conducted additional

analyses. Despite finding no association between serotonin, tryptophan,

aspartate, and kynurenine plasma levels with these symptoms,
Frontiers in Immunology
 09122
interestingly, we observed a subtle inverse correlation between

sarcosine concentrations and both cognitive failure function scores

(Figure 7A) and depression scores in LC patients (Figure 7B).

Moreover, our observations revealed a similar association between

the plasma serine levels and anxiety and depression scores in LC

patients (Figures 7C, D). These initial findings suggest a potential link

between reduced levels of sarcosine and serine metabolites and some of

the clinical symptoms seen in LC patients.
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FIGURE 6

Elevated levels of proinflammatory biomarkers in LC patients. (A) Cumulative data comparing the plasma IL-1a, (B) IL-6, (C) TNF-a, (D) IP-10,
(E) CRP, (F) SAA, (G) IL-13, and (H) IL-1b, (I) Flt-1, and (J) soluble CD14 measured by ELISA in the plasma of R, LC, and HC groups. (K) Comparing the
Anti-CaSR antibody levels in plasma samples of HC, R, and LC group. (L) Soluble CaSR levels in plasma samples of HC, R, LC and acute COVID-19
patients. (M) Cumulative data of the plasma ATP in HC, acute, R, and LC groups. Kruskal–Wallis analysis with Dunn’s multiple comparisons test. ns,
not significant. Each dot represents a study subject. * p < 0.5, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001.
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Discussion

Diverse metabolomic alterations are reported in the acute phase

of SARS-CoV-2 infection (42, 43). However, there have been

limited studies to determine whether such metabolomic signature

is transient or last for a while after the recovery from the acute

disease. To elucidate potential mechanisms, the plasma metabolome

of LC patients was investigated and compared to age-sex-matched

acutely ill COVID-19, R, and HCs. Our metabolomic analysis

revealed alterations in a variety of metabolic pathways in both LC

and R individuals even 12 months after the onset of COVID-19

disease. Although our metabolomic analyses are descriptive, they

provide insights into metabolomic changes following SARS-CoV-2

infection that lasts for months and possibly years in the absence of a

detectable virus. Our results suggest that LC has the potential to

severely impact the functionality of different organs. It is possible to

speculate that the delay in the tissue repair process following acute

COVID-19 disease and the inflammatory milieu result in

metabolomic alterations in LC. For example, we noted a

reduction in glutamine and ornithine plasma levels, which

suggests a disturbance in amino acid and nitrogen metabolism as

reported in CFS (44). This may also be consistent with impaired

mitochondrial biogenesis as described in circulating lymphocytes in

chronic inflammatory conditions (45) and in patients with

idiopathic ME/CFS (29).

Also, we detected a reduction in serine concentration, which

was inversely associated with depression and anxiety scores in LC

patients. Considering that this amino acid is essential for central
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nervous system (CNS) function and development (46), its decline

has been associated with severe neurological disorders (47, 48).

Therefore, recognition of serine deficiency in LC is highly important

because serine therapy has shown promising outcomes in

neurological conditions (49) and in reducing depression and

cognitive impairment (50).

We found a significant decline in plasma sarcosine levels in LC

patients, which is also reported in critically ill COVID-19 patients

(35). Sarcosine, a glycine transporter-I inhibitor, is reported to

reduce depression-like symptoms in animal models and human

subjects (51). Although, it is unclear whether sarcosine is the cause

or the effect, our findings support a link between the low sarcosine

levels with cognitive dysfunction and depression scores in LC

patients. In support of this concept, sarcosine supplementation

has shown promising outcomes in those with learning and memory

deficits (52), Parkinson’s disease (53), and depression (54).

Ultimately, whether sarcosine supplementation can be harnessed

to target some of the deleterious manifestations of LC through

stimulation of autophagy (55) is an intriguing potential therapy to

explore further.

Despite previous reports on the role of tryptophan/serotonin in

anxiety and depression (56), our results did not support the idea

that changes in these metabolites are associated with depression,

anxiety, and cognitive function scores in our LC patients.

The lower arginine in LC patients as reported in acute COVID-

19 (57) can be related to increased frequency of CD71+ erythroid

cells (CECs) expressing arginase-I and II (58, 59) or the pathology

associated with the effects of the virus on the endothelium (60).
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FIGURE 7

The association of sarcosine and serine with clinical symptoms in LC. (A) The correlation between serine levels with anxiety score, and (B)
depression score in LC patients. (C) The correlation between sarcosine levels with cognitive failure score, and (D) depression score in LC patients.
Each dot represents a study subject. P values and R2 were obtained by Simple linear repression analysis.
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Based on this, there is a possibility that arginine has beneficial effects

on endothelium function in LC patients.

Other metabolites such as L/D-aspartate and serine amino acids

are enriched in the brain and their reduction/dysfunction have been

associated with neurological disorders (61). Considering the ability

of D-aspartate to cross the BBB (62), D-aspartate supplementation

may have therapeutic potential in LC patients. Similarly, arginine

and aspartate intake has been associated with delayed muscle

fatigue and increased exercise tolerance (63), which could be

beneficial in LC with ME/CFS.

Notably, a lower ATP plasma level may imply the impact of LC

on the glycolytic and mitochondria pathway for cellular energy

production. Such alterations may result in dysfunction or

symptoms involving high energy-consuming organs such as the

brain, liver, heart, and skeletal muscles (64). While intermediate

metabolites associated with TCA cycle (Tricarboxylic Acid Cycle)

such as fumarate, succinate, and malate were not significantly

different between the groups, we suggest a decrease in

mitochondrial activity may result in lower ATP generation as

reported in other inflammatory conditions (65, 66). Alternatively,

the lingering low level of hypoxia (1) following the acute COVID-19

infection may also contribute to lower ATP levels. Overall, the

elevation of pro-inflammatory cytokines may result in

mitochondrial dysfunction and/or alteration in LC patients. In

line with our observations, mitochondrial dysfunction has been

reported in ME/CFS (67, 68). Although we were unable to quantify

tissue-specific ATP levels, it is likely to suggest that a lower plasma

ATP in LC may contribute to, at least in part, ME/CFS. Given the

role of ATP in tissue repair, its low level in LC patients may delay

the tissue repair process resulting in sustained inflammatory

condition. Therefore, increased ATP levels by ATP regulators

may provide a strategy for cell/tissue protection in LC as reported

in neurological condition (69).

It has been shown that tryptophan metabolism is enhanced in

COVID-19 infection, leading to a decrease in tryptophan and

increased levels of kynurenine metabolites (43), which can have

multiple deleterious effects on the musculoskeletal system (70).

Therefore, increased plasma kynurenine could be linked to LC

symptoms. Similarly, increased plasma serotonin levels may explain

the mechanism associated with diarrhea in LC patients as reported

in acute COVID-19 (71). Similarly, elevated Xanthine/

hypoxanthine in LC patients can be associated with increased

pro-inflammatory cytokine and acute phase proteins (e.g. IL-1,

TNF- a, IL-6, CRP, and SAA) as reported elsewhere (72). While we

did not specifically evaluate the M1/M2 macrophage phenotype in

our study cohorts, the observed pro-inflammatory immune profile

suggests an activation of M1-type macrophages in patients with LC.

This finding contrasts with a recent study that proposed higher M2-

type macrophage activity in LC (73). Several factors may account

for the disparities in our results. Our LC and R groups were

recruited 12 months post-acute SARS-CoV-2 infection, whereas

Kovarik et al. conducted their study at a much shorter interval (3

months) (73). Additionally, our study cohorts were vaccine-naïve,

while subjects in the other study had received 2 doses of SARS-

CoV-2 vaccines. Lastly, our cohort represents a homogeneous

subset of LC patients with ME/CFS. Other factors such as
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reduced thymine, increased Flt-1 and pro-inflammatory analytes

may favor vascular inflammation in LC (22, 74). Moreover, elevated

plasma levels of sCD14 (monocyte activation marker) support the

residual general immune activation in LC.

Although we did not find any difference in glutathione and

methionine pathways between LC and R groups, they were

significantly altered in LC vs HCs. A recent study has reported

the prevalence of the genotype CC of the methylenetetrahydrofolate

reductase (MTHFR) gene in LC patients (75). Hence, this genetic

polymorphism may explain differences in cysteine and methionine

metabolism in LC patients.

Likewise, alteration in glutathione metabolism may promote

oxidative stress and an inflammatory milieu in LC patients as

reported in acute COVID-19 disease (76).

Taken together, our results demonstrate diverse metabolomic

alterations in patients with LC syndrome. The existence of

metabolomic alterations and chronic systemic inflammation even

12 months after acute SARS-CoV-2 infection suggests a

dysregulated immune response. This has been supported by the

presence of autoantibodies (77, 78). In light of hypocalcemia in

COVID-19 patients and its association with hypoparathyroidism

(39, 40), we detected significant levels of the anti-CaSR antibody in

our LC cohort. Mechanistically, the consequences of SARS-CoV-2

infection-induced mediators (e.g. cytokines, chemokines, growth

factors, and metabolites) can have a prominent impact on

hematopoietic stem and progenitor cells (HSPCs)1. Lingering

dysregulated hematopoiesis in LC patients suggests a potentially

impaired antiviral response and/or increased innate immune

response. Subsequently, an impaired antiviral response may

increase antigen persistence and promote chronic inflammation

which contributes to metabolomic alteration. Therefore, our studies

add novel insights into a growing body of evidence implying that a

combination of virus and host factors such as residual immune

activation, hematopoietic dysregulation, and autoimmune

phenomena could contribute to LC syndrome.

While a recent study has reported alterations in the taurine

pathway in LC patients (79), our findings do not support this

concept. We did not observe any changes in taurine and

hypotaurine metabolism in LC compared to the R group.

However, a slight alteration in this metabolic pathway was noted

in LC when compared to HCs. In contrast, our results reveal a

significant reduction in sarcosine and serine concentrations in LC

patients compared to both HCs and the R group. Notably, the

inverse correlation between sarcosine/serine levels and cognitive

dysfunction/depression suggests that sarcosine/serine

supplementations might have therapeutic applications in

LC patients.

The substantial differences in our findings compared to the

recent study (79) might be related to two main factors. Firstly, our

study subjects were recruited 12 months post the onset of acute

infection, as opposed to 6 months in the recent report. It is possible

to speculate that alterations in the taurine pathway are transient and

does not persist until 12 months post the acute disease onset.

Secondly, our cohort comprised a homogenous subset of LC

patients with ME/CFS, in contrast to the heterogenous cohort in

the recent study. In summary, our study provides an insight into
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lingering immune activation and altered/impaired mitochondrial

bioenergetics in LC patients with ME/CFS. In particular, our global

metabolomic analyses revealed important therapeutic targets in LC

patients. Nevertheless, it’s important to note that further research

and clinical trials are needed to validate and establish the efficacy of

sarcosine and serine supplementations for therapeutic purposes

in LC.

We are aware of several study limitations. This is a single-

centered study, therefore, similar studies in larger cohorts of LC

patients with ME/CFS are needed. Also, we were unable to collect

blood samples on multiple occasions to determine changes in

metabolites over time. This study was done on patients infected

with the Wuhan strain of SARS-CoV-2. In lights of differential

immune response in those infected with other SARS-CoV-2 viral

variants (e.g. Delta, Omicron, etc.) (80), further comparative studies

are needed. Although sex is a crucial biological variable, the limited

representation of males with LC compared to females in our cohort

prevented us from observing any significant differences. Moreover,

we encountered difficulties in recruiting an equal number of study

subjects for each group due to participants availability. This

imbalance in group sizes has implications for the statistical power

of our study. Our metabolomic analyses did not include lipids;

therefore, the lack of data on lipid metabolism in LC prevents our

study from providing a comprehensive picture of metabolic

alterations. This limitation highlights the importance of future

studies incorporating lipid analysis in large prospective LC

cohorts. Finally, further studies in animal models of Long-

COVID may provide deeper insight into disease pathogenesis and

validation of our observations for therapeutic purposes.
Materials and methods

Study population

Sixty PCR-confirmed SARS-CoV-2 infected individuals

comprised of 30 LC patients, 15 individuals without LC

symptoms who were previously infected with SARS-CoV-2 but

recovered without any symptoms per se (recovered group, denoted

R), 15 acute hospitalized COVID-19 patients) as well as 15 healthy

controls (HCs) without acute symptoms and negative SARS-CoV-2

immunoassays (Figure 1A, Supplementary Table 1). All individuals

were infected with SARS-CoV-2 Wuhan viral strain in 2020, which

was confirmed by PCR at University of Alberta Hospital,

Edmonton. Both LC and R groups were recruited ~12 months

after the onset of SARS-CoV-2 infection (Supplementary Table 1).
Ethics statement

This study was approved by the Human Research Ethics

Board (HREB) at the University of Alberta (protocol #

Pro00099502). A written informed consent form was obtained

from all participants but a waiver of consent was obtained for

those admitted to the ICU.
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Plasma collection

Plasma samples were collected following centrifugation of fresh

blood samples and kept frozen at -80 until use.
Metabolomic profiling

Frozen plasma samples were thawed at RT, then were

centrifuged at 600 g for 5 min. The 100 ml of soluble fraction was

transferred into a new tube and mixed with 300 ml of LC-MS grade

methanol. The samples were stored at -20°C for 30 min, then were

centrifuged at 16,260 g to let precipitate proteins. The supernatants

were transferred into new tubes and dried up completely. The dried

samples were reconstituted by dissolving in 85 ml of water. The
metabolomic analysis was performed by following the Chemical

Isotope Labeling (CIL) LC-MS protocol described in our previous

report (81). Briefly, each individual sample was labeled with 12C2-

dansyl chloride. The pooled sample was generated by mixing each

of the individual samples, and labeled by 13C2-dansyl chloride. After

mixing each 12C-labeled sample with an equal volume of the 13C-

labeled pool, the 12C-/13C- mixtures were injected onto LC-MS for

analysis. The LC-MS system was Agilent 1290 LC linked to Brukler

Impact II QTOFMass spectrometer. The samples were injected into

an Agilent Eclipse Plus reversed-phase C18 column (2.1 mm × 150

mm, 1.8 mm particle size, 95 Å pore size) for separation. Solvent A

was 0.1% (v/v) formic acid in water, and solvent B was 0.1% (v/v)

formic acid in acetonitrile. The chromatographic conditions were:

t= 0 min, 25% B; t= 10 min, 99% B; t= 15 min, 99% B; t= 15.1 min,

25% B; t= 18 min, 25% B. The flow rate was 400 mL/min. All MS

spectra were obtained in the positive ion mode. The MS conditions

used for Q-TOF were as follows: nebulizer, 1.0 bar; dry temperature,

230°C; dry gas, 8 L/min; capillary voltage, 4500 V; end plate offset,

500 V; spectra rate, 1.0 Hz. The raw data were exported by Bruker

Data Analysis 4.4. as.csv files, and the.csv files were processed by

IsoMS Pro 1.2.15. The 12C/13C- peak pairs were extracted, and

missing values in the data matrix were filled. Metabolite

identification was performed by searching against libraries with

different confidence levels. Tier 1 library (DnsID library) contains

accurate mass, MS/MS, and retention time information; Tier 2

library (Linked ID library) contains accurate mass and predicted

retention time information; Tier 3 library (My Compound ID

library, www.MycompoundID.org) contains accurate mass of

predicted metabolites. IsoMS Pro was also used for performing

the univariate analysis (volcano plot) and multivariate analysis

(PCA and PLS-DA). The data file containing Tier 1 metabolites

was uploaded to Metaboanalyst 5.0 (www.metaboanalyst.ca) for

generating Heatmap. Pathway enrichment analysis was performed

by using Metaboanalyst 5.0.
Cytokine and chemokine multiplex analysis

Frozen plasma samples at -80 °CC were thawed and centrifuged

for 15 min at 1500g followed by dilution for quantifying cytokine
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and chemokine profiles, respectively. The concentration of

cytokines and chemokines was quantified using the V-PLEX from

Meso Scale Discovery (MSD). Data were acquired on the V-plex®

Sector Imager 2400 plate reader. Analyte concentrations were

extrapolated from a standard curve calculated using a four-

parameter logistic fit using MSD Workbench 3.0 software

according to reported protocols (82–84).

The plasma concentration of ATPwas quantified using the ATPlite

luminescence assay system (PerkinElmer, MA) as we have reported

elsewhere (85). The plasma was subjected to ELISA kit sCD14 (R&D,

383CD-050) (80) and Anti-CaSR (EAGLE Biosciences).
Statistical analysis

We initially determined the distribution of data using the

Wilks-Shapiro test and then based on the distribution of data the

appropriate test was used. When data were not normally distributed

the non-parametric tests such as the Mann-Whitney U-test or

Kruskal–Wallis analysis of variance were used. Depending on the

data set different post hoc tests were used. The Dunn’s multiple

comparisons as the post hoc test for the Kruskal–Wallis analysis.

The Tukey-Kramer test was used for one-way ANOVA with

multiple comparisons. For nonparametric correlational studies

tow-tailed Spearman correlation was used. P-values are shown in

the graphs and measures are expressed as mean ± SEM and P-value

< 0.05 was considered to be statistically significant. In violin plots,

the middle line represents median, the bottom line 1st quartile, and

to top line 3rd quartile. No randomization was performed and no

data points were excluded.
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SUPPLEMENTARY FIGURE 1

(A) The heatmap of the top 100 altered metabolites in acute COVID-19
patients (A) vs HC. (B) A vs R, and (C) HC vs R.

SUPPLEMENTARY FIGURE 2

(A) The heatmap of the top 100 altered metabolites in R vs LC, and (B), LC
vs HC.

SUPPLEMENTARY FIGURE 3

(A) Cumulative data showing relative concentrations of increased and

decreased metabolites in the LC vs R group. (B) Cumulative data showing
relative concentrations of increased and decreased metabolites in LC vs R.

Each dot represents a study subject. P values were calculated using one-

way ANOVA.

SUPPLEMENTARY FIGURE 4

(A) Cumulative data showing relative concentrations of increased and

decreased metabolites in R vs HC. (B) Metabolic pathway enrichment
analysis plot shows significantly altered pathways in A vs HC. Each dot

represents a study subject. Data are analyzed by one-way ANOVA.

SUPPLEMENTARY FIGURE 5

(A, B) Cumulative data showing relative concentrations of increased
metabolites in the A vs HC group. Each dot represents a study subject. P

values were calculated using one-way ANOVA.
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SUPPLEMENTARY FIGURE 6

(A, B) Cumulative data showing relative concentrations of decreased
metabolites in the A vs HC group. Each dot represents a study subject. P

values were calculated using one-way ANOVA.

SUPPLEMENTARY FIGURE 7

Metabolic pathway enrichment analysis plot shows significantly altered
pathways in A vs R.

SUPPLEMENTARY FIGURE 8

(A, B) Cumulative data showing relative concentrations of decreased

metabolites in the R vs A group. Each dot represents a study subject. P

values were calculated using one-way ANOVA.

SUPPLEMENTARY FIGURE 9

Cumulative data showing relative concentrations of elevated metabolites in

the R vs A group. Each dot represents a study subject. P values were

calculated using one-way ANOVA.

SUPPLEMENTARY FIGURE 10

Metabolic pathway enrichment analysis plot shows significantly altered

pathways in A vs LC.
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Early immune factors associated
with the development of post-
acute sequelae of SARS-CoV-2
infection in hospitalized and
non-hospitalized individuals
Jacqueline M. Leung1†, Michelle J. Wu1†, Pouya Kheradpour1†,
Chen Chen1, Katherine A. Drake1, Gary Tong1,
Vanessa K. Ridaura1, Howard C. Zisser1, William A. Conrad2,
Natalia Hudson3, Jared Allen3, Christopher Welberry3,
Celine Parsy-Kowalska3, Isabel Macdonald3, Victor F. Tapson4,
James N. Moy5, Christopher R. deFilippi6, Ivan O. Rosas7,
Mujeeb Basit8, Jerry A. Krishnan9, Sairam Parthasarathy10,
Bellur S. Prabhakar11, Mirella Salvatore12 and Charles C. Kim1*

1Verily Life Sciences, South San Francisco, CA, United States, 2Providence Little Company of Mary
Medical Center Torrance, Torrance, CA, United States, 3Oncimmune Limited, Nottingham, United
Kingdom, 4Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States,
5Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States, 6Inova
Schar Heart and Vascular, Falls Church, VA, United States, 7Department of Medicine, Baylor College of
Medicine, Houston, TX, United States, 8Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, TX, United States, 9Breathe Chicago Center, University of Illinois
Chicago, Chicago, IL, United States, 10Division of Pulmonary, Allergy, Critical Care & Sleep Medicine,
University of Arizona, Tucson, AZ, United States, 11Department of Microbiology and Immunology,
University of Illinois - College of Medicine, Chicago, IL, United States, 12Department of Medicine and
Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
Background: Infection by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) can lead to post-acute sequelae of SARS-CoV-2 (PASC) that can

persist for weeks to years following initial viral infection. Clinical manifestations of

PASC are heterogeneous and often involve multiple organs. While many

hypotheses have been made on the mechanisms of PASC and its associated

symptoms, the acute biological drivers of PASC are still unknown.

Methods: We enrolled 494 patients with COVID-19 at their initial presentation to

a hospital or clinic and followed them longitudinally to determine their

development of PASC. From 341 patients, we conducted multi-omic profiling

on peripheral blood samples collected shortly after study enrollment to

investigate early immune signatures associated with the development of PASC.

Results: During the first week of COVID-19, we observed a large number of

differences in the immune profile of individuals who were hospitalized for

COVID-19 compared to those individuals with COVID-19 who were not

hospitalized. Differences between individuals who did or did not later develop

PASC were, in comparison, more limited, but included significant differences in

autoantibodies and in epigenetic and transcriptional signatures in double-

negative 1 B cells, in particular.
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Conclusions: We found that early immune indicators of incident PASC were

nuanced, with significant molecular signals manifesting predominantly in

double-negative B cells, compared with the robust differences associated with

hospitalization during acute COVID-19. The emerging acute differences in B cell

phenotypes, especially in double-negative 1 B cells, in PASC patients highlight a

potentially important role of these cells in the development of PASC.
KEYWORDS

COVID-19, PASC, long COVID, autoantibody, double-negative B cells
Introduction

Since 2019, the Coronavirus Disease 2019 (COVID-19)

pandemic, caused by infection with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), has caused significant

morbidity and mortality around the world. Although rates of

hospitalizations and deaths from COVID-19 have declined in

recent years (1), COVID-19 remains a global public health

challenge and was ranked as the fourth leading cause of death in

the United States in 2022 (2). COVID-19 is characterized by a

spectrum of illnesses ranging from asymptomatic infection to severe

disease and mortality. While the majority of individuals recover

from COVID-19, a subset of SARS-CoV-2-infected individuals

experience persistent (or emerging) symptoms that can last for

weeks to years following initial infection (3), a condition known as

post-acute sequelae of SARS-CoV-2 infection (PASC) or long

COVID. Individuals with PASC experience a wide range of

symptoms affecting multiple organ systems, including symptoms

such as loss of taste or smell, post-exertional malaise, fatigue, brain

fog, gastrointestinal symptoms, chronic cough, and chest pain,

among others (4). The biological driver(s) of the diverse

manifestations of PASC are currently unknown (5), and it is still

unclear why some individuals develop PASC while others do not.

Emerging evidence suggests that PASC development is associated

with long lasting dysregulation of the immune response that may be

a consequence from various factors including excessive

inflammatory responses due to viral activation, viral reservoirs

persisting in infected tissues, gut dysbiosis, microvascular

dysfunction, and autoimmunity to self-antigens (6, 7).

A number of studies have evaluated the immune response

during acute COVID-19 and between individuals with and

without established PASC (8–15). However, the early immune

response during acute SARS-CoV-2 infection in individuals who

eventually do and do not develop PASC remains relatively

understudied. In this study, we collected peripheral blood samples

from COVID-19 patients during their initial presentation to an

ambulatory clinic or hospital in the early stages of the pandemic

(May 2020 to June 2021) and followed them longitudinally to

determine their development of PASC. We conducted multi-omic
02131
assays on samples collected at hospital and clinic presentation, with

the aim of uncovering early immune mechanisms that differentiated

individuals on different trajectories of PASC.
Materials and methods

Study design

The Predictors of Severe COVID-19 Outcomes (PRESCO)

study (Trial Registration Number: NCT04388813) was a multi-

center, prospective, cohort study aimed at identifying molecular and

clinical features associated with the progression to severe COVID-

19. Adults age 18 years and older with a confirmed, positive test for

SARS-CoV-2 infection (via reverse transcription-polymerase chain

reaction (RT-PCR) or antigen testing), who received care at one of

eight sites across the United States (Baylor College of Medicine,

Cedars-Sinai Medical Center, Inova Health Care Services, Rush

University Medical Center, The University of Arizona, University of

Illinois Chicago, University of Texas Southwestern Medical Center,

and Weill Cornell Medical College) between May 2020 and June

2021 were invited to participate. Individuals who were pregnant

were excluded from the study. Participants were followed for three

months after enrollment. Enrollment for the PRESCO study was

completed before the SARS-CoV-2 delta variant emerged as the

predominant variant in the United States during the summer of

2021 and before the availability of the COVID-19 treatments,

nirmatrelvir, ritonavir, and molnupiravir. The PRESCO study

included up to five study visits: (1) at enrollment during a

participants’ initial presentation to an ambulatory clinic or

hospital, and, in people who were hospitalized, (2) two days after

hospitalization, (3) the day of admission to an intensive care unit (if

this occurred), (4) the day of hospital discharge, and, for all

participants, (5) a follow-up visit three months after enrollment.

Participants were followed through visit 5 or study exit for other

reasons (e.g., death or lost to follow-up), whichever occurred first.

As the COVID-19 pandemic evolved, information on PASC

and any remaining symptoms at the 3-month follow-up visit were

collected. Participants who developed PASC (termed the “PASC”
frontiersin.org
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group) and participants who did not develop PASC (termed the

“non-PASC” group) were grouped based on the definition of PASC

from the Center for Disease Control and Prevention (16).

Specifically, during the 3-month follow-up visit, participants were

asked about the duration, in weeks, that it took for them, since their

last study visit, to return to their usual state of health. Individuals

with PASC were then defined as those individuals who did not

recover to their usual state of health for four or more weeks since

the start of COVID-19, which was determined by the earliest of

several non-self-reported dates, including enrollment in the

PRESCO study, first laboratory-confirmed positive SARS-CoV-2

test, date of hospital presentation, and hospitalization date (17).

Approval to conduct the PRESCO study was obtained by a

central Western Institutional Review Board (IRB Protocol number:

20201016) and from each of the eight sites that enrolled

participants. All participants or their legally authorized

representatives provided written informed consent before any

study-related procedures began. See the Supplementary Material

for more details.
Multi-omic analysis

All comparisons were conducted on blood samples collected at

either hospital or clinic presentation or two days after

hospitalization for hospitalized patients. Given the close

proximity in the timing of these sample collections, samples from

these two visits were analyzed together for all downstream analyses.

All comparisons were either between hospitalized and non-

hospitalized participants or PASC and non-PASC participants.

Verily’s Immune Profiler platform was used to conduct multi-

omic analyses of collected blood samples. Briefly, 25 immune cell

subsets, including a bulk peripheral blood mononuclear cell

(PBMC) sample, 5 myeloid cell subsets, 7 B cell subsets, 10 T cell

subsets, and 2 natural killer (NK) cell subsets, were isolated from

approximately 10 million cryopreserved PBMCs per participant.

The bulk PBMC subset was used for quality control measures only

and was not analyzed further in the multi-omic comparisons. Assay

for transposase-accessible chromatin using sequencing (ATAC-seq)

and RNA sequencing (RNA-seq) were performed for all of the 25

subsets, and targeted protein estimation by sequencing (TaPE-seq)

(18) was performed for the 12 immune cell subsets within the T and

NK panel (Supplementary Table 1). Flow cytometry, ATAC-seq,

RNA-seq, and TaPE-seq were performed as previously

described (19).
Quantification of plasma cytokines

From plasma samples, 47 cytokines (EGF, Eotaxin, FGF-2, Flt-3

ligand, Fractalkine, G-CSF, GM-CSF, GROa, IFNa2, IFNg, IL-1a,
IL-1b, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-
12p40, IL-12p70, IL-13, IL-15, IL-17A, IL-17E/IL-25, IL-17F, IL-18,

IL-22, IL-27, IP-10, LTA [TNFb], MCP-1, MCP-3, M-CSF, MDC,

MIG, MIP-1a, MIP-1b, PDGF-AA, PDGF-AB/BB, sCD40L, TGFa,
TNF [TNFa], and VEGF-A) were quantified using the MILLIPLEX
Frontiers in Immunology 03132
MAP Human Cytokine/Chemokine/Growth Factor Panel A on a

Luminex FLEXMAP 3D instrument, according to the

manufacturer’s instructions. For each measured cytokine,

concentration values that fell outside of the standard curve were

imputed to the nearest standard concentration. The cytokine, GM-

CSF, was excluded from further analysis because 98% of its

measurements were outside of the kit’s quantification range.

Downstream cytokine analyses thus included a total of 46

cytokines. Additionally, individual cytokine measurements that

did not have either a) bead counts ≥ 35 and technical coefficients

of variation (CV) ≤ 30%, or b) bead counts ≥ 20 and technical CV ≤

15%, were excluded from further analysis.
Quantification of autoantibodies and
antibodies against viral antigens

Multiplexed bead-based arrays were assembled with a total of

744 antigens: 441 human proteins indicated in immune responses

(and including 3 Ig controls), 114 viral proteins that included

differing recombinant versions of proteins of SARS-CoV-2 as well

as other viruses (MERS-CoV, SARS-CoV-1, SARS-CoV-2, HCoV-

HKU1, HCoV-229E, HCoV-NL63, HCoV-OC43, Influenza A, and

Influenza B), and 192 viral peptides, of which 178 originated from

SARS-CoV-2 sequences and 14 were from other viruses. A full list

of the human and viral proteins used in this study can be found in

Supplementary Table 2, Supplementary Table 3, respectively, and is

summarized in Supplementary Table 4. A full list of the viral

peptides used can be found in Supplementary Table 5 and is

summarized in Supplementary Table 6. See the Methods section

in the Supplementary Material for more details.

Assay methodology for autoantibody and viral antibody

detection has been described previously (20). Briefly, beads were

analyzed on a FLEXMAP 3D instrument for fluorescent signal

readout, as measured by median fluorescence intensity (MFI).

Measurements were excluded when there were low numbers of

bead events (< 10 beads) counted per bead region. Median inter-

and intra-plate CV were calculated by measuring three reference

samples: one COVID-19 positive, one Systemic Lupus Erythematosus

(SLE) positive, and one SLE and COVID-19 negative.

Several fixed control criteria were defined to enforce high data

quality. A data completeness threshold was set at > 98% of available

instrument data. Additionally, bead count statistics were controlled

to disallow more than 10% drop-outs. This criterion prevented the

use of MFI values for plates, samples, and antigens with insufficient

bead counts. The lower MFI range was monitored via median MFI

of BSA-coupled beads and was set to be below 500. Upper median

MFI range of the IgG-coupled beads was set to > 20,000. The

antigen panel was divided into 4 bead-based arrays for ease of

processing of up to 230 bead regions. Assays contained control

reference samples as well as sample-antigen pairs measured in

triplicate in each plate. This allowed for control of inter- and

intra-plate variance, which were both set to < 30%. Additionally,

for proteins raised in E. coli, background reactivity of sera to E. coli

proteins was monitored. See the Supplementary Material for

more details.
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Differential analysis

Linear modeling methods were used for univariate differential

analysis as previously described (19). Briefly, for these analyses,

each molecular feature was regressed on the outcome group and

appropriate clinical and technical covariates. For count-based data

such as ATAC-seq, RNA-seq, and TaPE-seq, the voom-limma

method was used (21). For non-count-based data such as cell

subset frequencies, autoantibody/antibody concentrations, and

cytokine levels, differential analysis was performed by fitting

generalized linear models (GLMs). Where appropriate, data were

transformed (e.g., log transformation) prior to fitting the GLMs.

Our models adjusted for a number of covariates, including

demographic and clinical variables and assay-specific variables. The

full model in the PASC versus non-PASC comparisons included

covariates for age, sex, race, tobacco use, WHO score, and the time

from COVID-19 start to sample collection. In comparing

hospitalized and non-hospitalized participants, WHO score was

removed as a covariate given its association with hospitalization.

Association analyses with multi-omic data also adjusted for

variables associated with sample quality, including neutrophil

frequency (as a measure of neutrophil contamination during the

isolation of PBMCs), cell viability, and the recovered subset

cell counts.

Following linear modeling, the Benjamini-Hochberg procedure

was used to correct for multiple hypothesis testing within each

molecular data type. For the multi-omic data, comparisons were

conducted per immune cell subset, and the resulting p-values across

all tests within a cell subset were corrected. Significance was

assessed at a false discovery rate (FDR) of 0.1, unless

otherwise noted.
Pathway analysis

Gene sets from the Molecular Signatures Database (MSigDB)

were used for pathway analysis through two independent methods.

First, gene set enrichment of significant differential genes were

tested using hypergeometric tests. Second, Gene Set Enrichment

Analysis (GSEA) (22) was conducted using effect estimates from the

univariate differential analysis, which enabled the identification of

gene sets where the individual genes may not be significantly

differentially expressed, but are nonetheless coordinated in their

association with hospitalization or PASC development.
Results

Overview of the PRESCO cohort and
molecular data generation

A total of 494 participants with COVID-19 were enrolled in the

PRESCO study, of which 354 participants had follow-up symptom

surveys collected approximately 3 months after the start of COVID-

19 that could inform on their development of PASC. Demographic
Frontiers in Immunology 04133
and clinical characteristics associated with PASC in this cohort were

previously described (17). Briefly, in the PRESCO cohort,

participants with PASC were significantly older in age, had

greater proportions of tobacco use and obesity, and had a greater

proportion of Non-Hispanic White people than non-PASC

participants (17). The PASC group also had more severe COVID-

19 based on their WHO score, had greater usage of dexamethasone

and remdesivir for COVID-19, had a higher proportion of

hospitalized patients, and, for those hospitalized, had a longer

dura t ion of hosp i ta l i za t ion compared to non-PASC

participants (17).

Peripheral blood from 476 PRESCO participants (381

hospitalized and 95 non-hospitalized participants), was available

from the time of initial presentation to an ambulatory clinic or

hospital for COVID-19 (Figure 1; Table 1). These samples were

used to compare immune responses in hospitalized versus non-

hospitalized COVID-19 patients. Of these, blood samples from 341

participants (132 PASC and 209 non-PASC) with information

regarding their PASC status were also analyzed, with a focus on

those that were hospitalized for COVID-19 (110 hospitalized PASC

and 151 hospitalized non-PASC participants) (Figure 1; Table 1).

Together, these PASC and non-PASC samples were used to

investigate early molecular signatures associated with the

development of PASC (Figure 1; Table 1; Supplementary Figure 1).

For all PASC and non-PASC participants, the blood samples

used for multi-omic profiling, cytokine assessment, and

autoantibody assays had a mean (standard deviation) time to

collection of 3.02 (3.73) days, 3.05 (3.96) days, and 2.58 (3.72)

days from the start of COVID-19, respectively. From the isolated

PBMCs, 24 cell subsets, which included 5 myeloid cell subsets, 7 B

cell subsets, 10 T cell subsets, and 2 NK cell subsets, were

phenotyped by flow cytometry and further profiled by ATAC-seq,

RNA-seq, and TaPE-seq (Figure 1; Supplementary Figure 2;

Supplementary Table 1). Plasma samples collected during hospital

or clinic presentation were also analyzed for concentrations of

cytokines, autoantibodies, and antibodies against SARS-CoV-2

and other common viral antigens (Figure 1).
Widespread immunological differences are
observed between hospitalized and non-
hospitalized COVID-19 participants during
acute SARS-CoV-2 infection

PASC occurs in individuals with mild to severe COVID-19, but

it is more common in patients hospitalized for more severe disease

(23, 24). We hypothesized that differences in disease severity would

be the strongest molecular signal during acute COVID-19, so we

started with a comparison of hospitalized and non-hospitalized

participants to inform our PASC comparisons. Using multi-omic

profiling and assays for cytokine, autoantibody, and viral antibody

detection, we compared molecular signatures between 381

hospitalized participants and 95 non-hospitalized participants at

their initial presentation to a hospital or ambulatory clinic for

COVID-19 (Table 1). Blood samples were collected at a similar

timeframe since the start of COVID-19 for both hospitalized and
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non-hospitalized patients (mean 2.9 (SD 2.1) days for hospitalized

patients versus mean 3.1 (SD 4.2) days for non-hospitalized

patients) (Supplementary Table 7). Demographics of hospitalized

and non-hospital ized patients were also summarized

(Supplementary Table 7). Approximately 4% of all patients had a

prior autoimmune disease before contracting COVID-19.

At an FDR of 0.05, hospitalized participants exhibited increases

in cell subset frequencies of unswitched naive B cells (BnUS) and

decreases in a number of T cell subsets, including regulatory T cells

(Treg), central and effector memory CD4+ T cells (T4cm, T4em),

and central and effector memory CD8+ T cells (T8cm, T8em), in

addition to decreased frequencies of certain myeloid cells, including

conventional dendritic cells (coDC), plasmacytoid dendritic cells

(plDC), and non-classical monocytes (MoNC) (Figure 2A).

Additionally, numerous differentially accessible regions (DARs)

and differentially expressed genes (DEGs) within innate and

adaptive immune cells were associated with hospitalization status,

highlighting diverse molecular changes early on in SARS-CoV-2

infection that can differentiate individuals on different disease
Frontiers in Immunology 05134
severity trajectories (Figure 2B). At an FDR of 0.05, 46.9% of all

DEGs had a proximally associated DAR in their respective cell

subset, and of the differentially expressed proteins (DEPs) in the T

and NK cell subsets (Figure 2B), nine of the 32 DEPs had

coordinated changes in DARs and DEGs. These DEPs, all of

which were increased in hospitalized participants, included

CD127 (gene: IL7R) in T4em, naive CD8+ T cells, and CD56hi

NK cells (NKhi), CD184 (CXCR4) in naive CD4+ T cells, CD38

(CD38) and CD366 (HAVCR2) in T8em, CD39 (ENTPD1) and

CD314 (KLRK1) in NKhi, and CD279 (PDCD1) in Treg cells.

At an FDR of 0.05, numerous cytokines and chemokines in

plasma were also upregulated in hospitalized participants, including

key inflammatory cytokines such as IP-10, IL-6, IL-8, IL-18, TNF,

and IFNa2 (Figure 2C). No significant differences in autoantibodies

or antibodies against SARS-CoV-2 or other common viral

pathogens, however, were found between hospitalized and non-

hospitalized participants during acute SARS-CoV-2 infection.

Given the large differences in immune status between hospitalized

and non-hospitalized participants and the potential for this to be a
TABLE 1 Overview of sample sizes for each cohort comparison and molecular assay.

Cohort with available
blood samples

Comparison
groups

Total
participants

Multi-
omic profiling

Cytokines
Auto-

antibodies

Hospitalized + non-hospitalized
COVID-19 patients

Hospitalized 381 205 378 128

Non-hospitalized 95 64 93 22

Hospitalized COVID-19 patients
PASC 110 72 109 54

non-PASC 151 106 149 74

Hospitalized + non-hospitalized
COVID-19 patients

PASC 132 85 131 60

non-PASC 209 147 206 90
FIGURE 1

Overview of the study design and molecular assays conducted for the PRESCO study. Participants were classified based on their development of
PASC over time, and samples collected during presentation at a hospital or ambulatory clinic were compared between individuals hospitalized and
not hospitalized for COVID-19 and between individuals who did and did not develop PASC. The molecular assays conducted on isolated PBMCs and
plasma are shown; PBMCs = peripheral blood mononuclear cells.
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source of variance for PASC, we further examined differences in

PASC and non-PASC participants within those who were

hospitalized for COVID-19.
Alterations in double-negative B cells and
interferon signaling pathways are observed
in hospitalized PASC participants at initial
hospital presentation for COVID-19

Of the hospitalized participants with molecular samples

analyzed, PASC status information was available for 261

individuals, of which 110 participants eventually developed PASC

and 151 participants did not develop PASC (Table 1).

Demographics of hospitalized PASC and non-PASC patients were

summarized (Supplementary Table 8). There were no significant

differences in cell subset frequencies or plasma cytokines between

hospitalized PASC versus hospitalized non-PASC participants

(Supplementary Figure 3; Supplementary Figure 4). However,

during acute SARS-CoV-2 infection, we observed differences in

autoantibodies and in epigenetic and transcriptional signatures in B

cells between PASC and non-PASC participants that were

hospitalized for COVID-19 (Figure 3).

We found a small number of IgG autoantibodies increased in

hospitalized PASC compared to hospitalized non-PASC

participants at the time of hospital presentation. Hospitalized

PASC participants had relative increases in three autoantibodies
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with reactivity to the complement protein, Complement C1q

Binding Protein (C1QBP), an adipokine, Dermatopontin (DPT),

and a SARS-CoV-2 entry receptor, Neuropilin-2 (NRP2)

(Figure 3A). However, no significant differences in antibodies

against SARS-CoV-2 or other common viral pathogens

were observed.

B cells are the major effector cells responsible for antibody

production and also contribute to other effector functions such as

cytokine production and immune regulation. At an FDR of 0.05, the

predominant differences between hospitalized PASC and non-

PASC participants during acute SARS-CoV-2 infection were

found in B cell subsets for both DARs and DEGs (Figure 3B).

Specifically, we found that the majority of DARs identified by

ATAC-seq were observed in double-negative (DN; CD27-IgD-) B

cells of the DN1 subset (BnCS) (Figure 3B). Double-negative B cells

lack CD27 expression, making them similar to naive B cells, but

they also lack IgD expression, suggesting that they have undergone

immunoglobulin isotype switching similar to switched memory B

cells (25, 26). Recently, subsets of DN B cells (DN1, DN2, DN3, and

DN4) have been categorized using various markers such as CD21,

CD11c, CXCR5, T-box expressed in T cells (T-bet), and Fc Receptor

Like 5 (FcRL5) (25, 26), but to date, the phenotypic markers of DN

B cells have not yet been standardized across studies. We classify

DN1 B cells by cell surface expression of CD27- CD21+ IgM- IgD-

(BnCS; Supplementary Table 1) and find this cell subset to exhibit

the most epigenetic differences between hospitalized PASC and

non-PASC participants at initial presentation to a hospital for

COVID-19.
B
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FIGURE 2

Molecular differences observed in hospitalized versus non-hospitalized participants. (A) Box plots of cell subset frequencies grouped by hospitalized
participants and non-hospitalized participants at hospital/clinic presentation. (B) Identified number of significant differentially accessible regions
(DARs) from ATAC-seq data, differentially expressed genes (DEGs) from RNA-seq data, and differentially expressed proteins (DEPs) from TaPE-seq
data between hospitalized and non-hospitalized participants by cell subset at hospital/clinic presentation. (C) Cytokines and chemokines elevated in
plasma of hospitalized versus non-hospitalized participants at a FDR of 0.05 as measured by Luminex assay. Comparative values are expressed as
log10 fold change (log10FC); Abbreviations for immune cell subsets are defined in Supplementary Table 1.
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Severe COVID-19 has been associated with both impaired and

overly robust type 1 interferon responses, which may either limit

anti-viral immunity or exacerbate hyperinflammation, respectively

(27–30), and thereby contribute to disease progression.

Dysregulation of interferon responses have been observed as far

as 8 months after initial SARS-CoV-2 infection (8) and may

therefore be associated with the development of PASC. By

conducting pathway analysis using GSEA on differentially

expressed genes, we observed an enrichment of genes involved in

interferon signaling in hospitalized PASC compared to non-PASC

participants, particularly in effector B and T cell subsets (Figure 3C).
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Hospitalized PASC participants exhibited increased expression of

numerous interferon stimulated genes (ISGs), including CMPK2,

IFI44L, USP18, IFI44, XAF1, IRF7, IFITM1, BST2, DDX58, JAK2,

STAT2, and IRF8, specifically in the DN1 B cell subset, during acute

SARS-CoV-2 infection (Figure 3D). These ISGs are involved in both

positive and negative regulation of the interferon signaling pathway.

Interferon regulatory factor (IRF)7 and IRF8, for example, bind

interferon-stimulated response elements and drive ISG expression

in response to type I interferons (31), whereas ISGs such as USP18,

IFI44, and IFI44L negatively regulate the type I interferon pathway

and can promote viral production (32–34). As WHO score was
B

C

D

E

A

FIGURE 3

Differences in autoantibodies and in B cell epigenetic and transcriptional features in hospitalized PASC versus non-PASC participants at hospital
presentation. (A) Log2 fold-change (log2FC) of plasma autoantibodies in hospitalized PASC versus non-PASC participants at hospital presentation at
FDR of 0.1. (B) Identified number of significant differentially accessible regions (DARs) from ATAC-seq data and differentially expressed genes (DEGs)
from RNA-seq data between hospitalized PASC and non-PASC participants by cell subset at hospital presentation. FDR cutoffs for each data type
were set and graphed as FDR of 0.05 (black bar) or FDR of 0.1 (gray bar). (C) Pathway analysis of differentially expressed genes (DEGs) in PASC vs
non-PASC participants that were hospitalized. Analysis was done for the Reactome pathway set (curated by the MsigDB collections) using a
hypergeometric test of all DEGs in the 24 immune subsets. Shown are the subsets with significant enrichment of genes in the interferon signaling
pathway at an FDR of 0.1. (D) Interferon stimulated genes that are differentially expressed in DN1 B cells at an FDR of 0.1 in PASC vs non-PASC
participants that were hospitalized. (E) Log2FC of DEGs between hospitalized PASC and non-PASC participants at hospital presentation at an FDR of
0.05; Abbreviations for immune cell subsets are defined in Supplementary Table 1.
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included as a covariate in our model, the increases observed in

interferon pathways and ISGs in DN1 B cells in hospitalized PASC

participants occur despite controlling for disease severity. Together,

these results suggest that in the acute phase of SARS-CoV-2

infection, the regulation of interferons and their impacts on anti-

viral immunity and inflammation may be influencing the

development of PASC.

Thirty-eight genes were also differentially expressed between

hospitalized PASC and non-PASC participants at an FDR of 0.05,

all of which were found within a B cell subset (Figure 3E). Similar to

the ATAC-seq data, most DEGs from RNA-seq were found in the

DN1 B cell subset. In particular, in the DN1 subset, we observed

increased expression of genes related to anti-viral immune

responses, including TRIM5 and DDX58. TRIM5 promotes innate

immune signaling and is a restriction factor that blocks the early

stages of retrovirus infection (35). DDX58, which encodes RIG-I, is

also an innate immune sensor that recognizes double stranded RNA

viruses and drives type I interferon signaling (36). Genes related to

B cell activation were also upregulated in the DN1 subset of

hospitalized PASC participants, including CD69, an early

lymphoid activation marker (37, 38), and FCER2, which encodes

CD23 and can indicate an activated B cell state (39). Together, the

DEGs upregulated in DN1 B cells of hospitalized PASC participants

indicate cells that have adopted an activated state and are

potentially primed for anti-viral immunity. Additionally, a

number of genes downregulated in DN1 B cells of hospitalized

PASC participants, are involved in the process of apoptosis via

various mechanisms, including RUNX3, CASP8, RASSF2, and

HIPK2 (40–43), and may relate to potential dysregulation of

apoptotic pathways in DN1 B cells of PASC participants during

acute SARS-CoV-2 infection. A smaller number of significant gene

differences were observed in IgM+ IgD- classical memory B cells,

transitional B cells, and atypical memory B cells at an FDR of

0.05 (Figure 3E).
Minor alterations in autoantibodies and B
cell epigenetic and transcriptional
signatures are observed in hospitalized and
non-hospitalized PASC participants during
acute SARS-CoV-2 infection

To understand differences between individuals with and

without PASC more broadly, we examined molecular signatures

between PASC and non-PASC in the full cohort, which included

both hospitalized and non-hospitalized participants (Figure 1;

Table 1). At the time of a participants’ initial presentation to a

hospital or ambulatory clinic for COVID-19, we detected fewer

molecular differences between PASC and non-PASC participants in

the full cohort compared to the hospitalized group only, but similar

overlapping signals between the two cohorts were observed. There

were no significant differences in immune cell subset frequencies or

plasma cytokines between PASC and non-PASC participants

during acute COVID-19. Similar to the hospitalized cohort, we

observed increased autoantibodies against the three antigens,

C1QBP, DPT, and NRP2, in PASC compared to non-PASC
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participants, and these differences were significant at an FDR of

0.05 (Figure 4A). Additional autoantibodies against immune cell

surface receptors (IL7R, CD69), SARS-CoV-2 entry receptors

(ACE2), thrombosis proteins (APOH, TFPI), and an apoptosis

factor (TNFRSF11B) were increased in PASC participants at an

FDR of 0.1, while autoantibodies against the tumor protein, p53,

was increased in non-PASC participants (Figure 4A). No differences

in antibodies against SARS-CoV-2 or other common viruses

were observed.

Additionally, epigenetic and transcriptional differences between

PASC and non-PASC participants in the full cohort were

predominantly in B cells, as was observed in the hospitalized

cohort only, with most differences occurring in the DN1 B cell

subset (Figure 4B). A similar profile in DN1 B cells was observed in

PASC participants, with DEGs related to increased activation (e.g.,

CD69 and FCER2) and anti-viral immunity (e.g., CD9 and TRIM5)

being upregulated in PASC participants. A DN1 DAR proximal to

TRIM5 was also increased, indicating increased chromatin

accessibility to this anti-viral gene in DN1 B cells of PASC

participants. A smaller number of gene differences were observed

in central and atypical memory B cells, transitional B cells, and

CD56 low NK cells (Figure 4C).
Discussion

Infection with SARS-CoV-2 can lead to post-acute sequelae that

persists for weeks, months, and even years following infection (3,

44–46). A combination of host and virus factors are thought to be

associated with the pathogenesis of PASC, including the persistence

of viral antigens, microvascular dysfunction, gut dysbiosis, chronic

inflammation, and autoreactive immune responses (6, 7). A limited

number of studies have investigated the molecular mechanisms of

PASC as it relates to the acute phase of SARS-CoV-2 infection (6,

47, 48). Using multi-omic immune profiling, we sought to

investigate early differences in immune responses to SARS-CoV-2

in individuals who eventually did and did not develop PASC.

Our study is unique in that we were able to collect blood

samples from COVID-19 patients early in the pathogenesis of

disease, with > 90% of samples collected less than a week from

the start of COVID-19. Overall, we found a small set of early

immune differences in PASC and non-PASC individuals within the

first week of COVID-19 disease, with significant molecular signals

occurring predominantly in double-negative B cells. The lack of a

more robust signal may reflect the heterogeneity in mechanisms

underlying PASC and the diverse manifestations of PASC

symptoms (49), but our findings suggest that there may be some

common immune-mediated mechanisms that begin to influence

the ultimate development of PASC even during the acute stage of

SARS-CoV-2 infection. We have not examined whether these same

signatures continue to differentiate PASC and non-PASC

individuals during recovery from acute infection and beyond, but

our results suggest that longitudinal monitoring of B cell responses

could have value in better understanding and managing PASC.

Previous studies have reported significant molecular differences

between individuals hospitalized for COVID-19 compared to those
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who were not hospitalized, with early immune mechanisms being

capable of differentiating trajectories of mild, moderate, and severe

COVID-19 (50–53). We similarly observed large differences in the

immune response between hospitalized and non-hospitalized

COVID-19 patients in their epigenetic and transcriptional

signatures, their frequency of cell subsets, and their production of

inflammatory cytokines. These findings support previous literature

and indicate that within the first week of SARS-CoV-2

pathogenesis, differences in immune responses can differentiate

SARS-CoV-2 infected individuals on different disease trajectories.

To reduce the heterogeneity observed among participants, we

thus stratified participants based on hospitalization to account for

the different follow-up strategies for more severe COVID-19 that

may influence the likelihood of developing PASC. As a majority

(77%) of our analyzed participants were hospitalized, we did not

analyze differences in PASC and non-PASC participants in non-

hospitalized patients, given the small sample size for the

comparisons in this group (N=13 PASC; N=41 non-PASC). We

observed increases in a small number of autoantibodies in

hospitalized PASC compared to hospitalized non-PASC

participants. Previous studies have found increased autoantibodies

to be associated with COVID-19 and PASC (6, 54–60), though the
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findings associating PASC and autoantibodies have been

inconsistent (61). Additionally, prior autoimmunity and antibody

cross-reactivity between tissue proteins and SARS-CoV-2 antigens

could also be contributing to the pathophysiology of COVID-19,

and hence, PASC (62, 63). We did not observe any significant

differences in antibodies against SARS-CoV-2 or other common

viral pathogens between hospitalized PASC and non-PASC

participants, indicating that hospitalized PASC participants likely

have a functional acute immune response against the SARS-CoV-2

virus, similar to that of hospitalized non-PASC participants.

Similarly, other studies did not find an association between PASC

and acute antibody titers against the spike surface protein of SARS-

CoV-2 (47, 64), though decreased total acute antibody titers against

SARS-CoV-2 were able to predict the development of PASC

symptoms (47). We did not have samples collected prior to

SARS-CoV-2 infection to assess whether the presence of prior

autoantibodies or viral antibodies in our cohort are associated

with the development of PASC, which would require

further investigation.

We additionally observed an increased interferon signature in

hospitalized PASC participants compared to hospitalized non-

PASC participants. In particular, numerous ISGs were
B
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FIGURE 4

Differences in autoantibodies and in B cell epigenetic and transcriptional features in PASC versus non-PASC participants at hospital/clinic
presentation. (A) Log2 fold-change (log2FC) of plasma autoantibodies in PASC versus non-PASC participants at hospital/clinic presentation at FDR of
0.1. (B) Identified number of significant differentially accessible regions (DARs) from ATAC-seq data and differentially expressed genes (DEGs) from
RNA-seq data between PASC and non-PASC participants by cell subset at hospital/clinic presentation. FDR cutoffs for each data type were set and
graphed as FDR of 0.05 (black bar) or FDR of 0.1 (gray bar). (C) Log2FC of DEGs between PASC and non-PASC participants at hospital/clinic
presentation at FDR of 0.1; Abbreviations for immune cell subsets are defined in Supplementary Table 1.
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upregulated in the DN1 B cell subset in PASC participants, and

interferon signaling pathways were also increased in a number of

effector B and T cell subsets. While interferon signaling plays a

critical role in the defense against SARS-CoV-2 during acute

infection (65, 66), persistent expression of interferons can lead to

inflammatory damage to organ systems and may be linked to

autoimmunity (29, 30, 54, 67), thereby contributing to the

development of PASC (8, 68). While we have only analyzed the

acute immune response to SARS-CoV-2 in PASC and non-PASC

individuals, longer term monitoring of interferon responses in

individuals with and without PASC could further elucidate

whether sustained interferon signaling and pathways may be

contributing to the development of PASC in hospitalized patients.

We also observed epigenetic and transcriptional differences in B

cells emerging between hospitalized PASC and non-PASC

participants early in infection, which may be linked to the

increased autoantibodies that we observed in PASC participants.

Previous studies have observed dysregulated B cells and new

autoreactivity in patients with more severe acute COVID-19 (69–

73), which could also be related to the observation that PASC is more

common in individuals who experience more severe acute COVID-

19 (23, 24). The epigenetic differences we observed in hospitalized

PASC versus non-PASC participants were predominantly found in

the DN1 subset of DN B cells. In recent years, DN B cells have been

suggested to play important roles in cancers, infections, and

autoimmune diseases (74), though their function in these contexts

remain unclear. Double-negative B cells make up approximately 5%

of PBMCs (75). They are matured, peripheral B cells that lack

expression of CD27 and IgD and are thought to be precursors of

memory B cells (25), with DN1 cells showing strong transcriptional

similarity to class-switched memory B cells (76). Severe COVID-19

has been associated with a decreased frequency of DN1 cells and

increased frequencies of DN2 and DN3 cells (70, 72, 77). These

changes, however, may be transient, as studies have found that DN2

cells disappear soon after recovery from COVID-19 (70, 78, 79).

Changes in DN B cells in the context of PASC, however, remain

relatively understudied (15), and the exact function of DN B cells

remains unclear. We observed no significant differences in DN1 cell

or B cell frequencies between hospitalized PASC and non-PASC

participants during their presentation to a hospital for COVID-19.

However, it is intriguing that most of the epigenetic and

transcriptional differences that we observe were found within DN1

B cells. Additionally, the increase in activation and anti-viral genes in

the DN1 subset of hospitalized PASC participants indicate potential

priming of this subset compared to non-PASC participants. Long

term evaluation of this subset from acute infection to recovery could

help elucidate the possible roles of DN1 B cells in the development

of PASC.

We also examined molecular differences in PASC and non-

PASC participants that were and were not hospitalized for COVID-

19 to better understand the immune signals emerging from a

broader population. We observed overlapping molecular

differences in autoantibodies and DN1 B cells as with the

hospitalized PASC and non-PASC cohort only, although a

smaller number of significant differences emerged, possibly due to

the increased heterogeneity within this group. The mechanisms of
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PASC may thereby vary according to the severity of acute SARS-

CoV-2 infection, which may need to be considered when

elucidating the role of the immune system in the development

of PASC.

In summary, our analyses provide a detailed examination of the

early immune response to COVID-19 and its ability to differentiate

individuals on different severity and PASC trajectories. While

individuals hospitalized for COVID-19 have significantly different

immune responses compared to non-hospitalized individuals early on

in SARS-CoV-2 infection, less differences are observed in individuals

who do and do not develop PASC. The emerging differences in

autoantibody responses and B cell phenotypes in PASC participants,

however, are intriguing, in addition to the interferon signatures

observed in PASC participants that were hospitalized. Future studies

elucidating the function of DN B cells are needed to better understand

the contribution and role of these cells in COVID-19, PASC, and other

diseases. Together, our data ultimately provides a framework for

guiding future research when monitoring longitudinal immune

responses in the development of PASC.
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A single-cell atlas of the peripheral immune response in patients with severe COVID-
19. Nat Med (2020) 26:1070–6. doi: 10.1038/s41591-020-0944-y

14. Brodin P. Immune determinants of COVID-19 disease presentation and
severity. Nat Med (2021) 27:28–33. doi: 10.1038/s41591-020-01202-8

15. Klein J, Wood J, Jaycox J, Dhodapkar RM, Lu P, Gehlhausen JR, et al.
Distinguishing features of Long COVID identified through immune profiling. Nature
(2023) 623:139–48. doi: 10.1038/s41586-023-06651-y

16. CDC. Long COVID or post-COVID conditions, in: Centers for Disease Control
and Prevention (2023). Available at: https://www.cdc.gov/coronavirus/2019-ncov/long-
term-effects/index.html (Accessed October 3, 2023).

17. Chen C, Parthasarathy S, Leung JM, Wu MJ, Drake KA, Ridaura VK, et al.
Distinct temporal trajectories and risk factors for Post-acute sequelae of SARS-CoV-2
infection. Front Med (2023) 10:1227883. doi: 10.3389/fmed.2023.1227883
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1348041/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1348041/full#supplementary-material
https://doi.org/10.15585/mmwr.mm7219e1
https://doi.org/10.15585/mmwr.mm7219e1
https://doi.org/10.15585/mmwr.mm7218a3
https://doi.org/10.15585/mmwr.mm7218a3
https://doi.org/10.1038/s41591-023-02521-2
https://doi.org/10.1001/jama.2023.8823
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1016/j.cell.2022.01.014
https://doi.org/10.1016/j.cell.2022.01.014
https://doi.org/10.1016/j.it.2022.02.008
https://doi.org/10.1038/s41590-021-01113-x
https://doi.org/10.1038/s41590-021-01113-x
https://doi.org/10.3389/fimmu.2021.746021
https://doi.org/10.1016/j.celrep.2021.109518
https://doi.org/10.1126/sciimmunol.abk1741
https://doi.org/10.1016/j.chom.2020.03.021
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1038/s41591-020-01202-8
https://doi.org/10.1038/s41586-023-06651-y
https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html
https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html
https://doi.org/10.3389/fmed.2023.1227883
https://doi.org/10.3389/fimmu.2024.1348041
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Leung et al. 10.3389/fimmu.2024.1348041
18. Peikon I, Tong G, Liu D, Chu C. Quantitative massively parallel proteomics
(2021). US Patent. Available at: https://patentimages.storage.googleapis.com/c5/ad/a7/
d0f4ff04f8712a/US20210132078A1.pdf (Accessed October 2, 2023).

19. Drake KA, Talantov D, Tong GJ, Lin JT, Verheijden S, Katz S, et al. Multi-omic
profiling reveals early immunological indicators for identifying COVID-19 Progressors.
Clin Immunol (2023) 256:109808. doi: 10.1016/j.clim.2023.109808

20. Liu Y, Ebinger JE, Mostafa R, Budde P, Gajewski J, Walker B, et al. Paradoxical
sex-specific patterns of autoantibody response to SARS-CoV-2 infection. J Transl Med
(2021) 19:524. doi: 10.1186/s12967-021-03184-8

21. Bursac Z, Gauss CH, Williams DK, Hosmer DW. Purposeful selection of
variables in logistic regression. Source Code Biol Med (2008) 3:17. doi: 10.1186/1751-
0473-3-17

22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A (2005) 102:15545–50. doi:
10.1073/pnas.0506580102

23. Xie Y, Bowe B, Al-Aly Z. Burdens of post-acute sequelae of COVID-19 by
severity of acute infection, demographics and health status. Nat Commun (2021)
12:6571. doi: 10.1038/s41467-021-26513-3

24. LaVergne SM, Stromberg S, Baxter BA, Webb TL, Dutt TS, Berry K, et al. A
longitudinal SARS-CoV-2 biorepository for COVID-19 survivors with and without
post-acute sequelae. BMC Infect Dis (2021) 21:677. doi: 10.1186/s12879-021-06359-2

25. Beckers L, Somers V, Fraussen J. IgDCD27 double negative (DN) B cells: Origins
and functions in health and disease. Immunol Lett (2023) 255:67–76. doi: 10.1016/
j.imlet.2023.03.003

26. Sanz I, Wei C, Jenks SA, Cashman KS, Tipton C, Woodruff MC, et al. Challenges
and opportunities for consistent classification of human B cell and plasma cell
populations. Front Immunol (2019) 10:2458. doi: 10.3389/fimmu.2019.02458

27. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired
type I interferon activity and inflammatory responses in severe COVID-19 patients.
Science (2020) 369:718–24. doi: 10.1126/science.abc6027

28. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R,
et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell
(2020) 181:1036–45.e9. doi: 10.1016/j.cell.2020.04.026

29. Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, et al. Immunophenotyping of
COVID-19 and influenza highlights the role of type I interferons in development of
severe COVID-19. Sci Immunol (2020) 5:eabd1554. doi: 10.1126/sciimmunol.abd1554

30. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al. Longitudinal
analyses reveal immunological misfiring in severe COVID-19. Nature (2020) 584:463–
9. doi: 10.1038/s41586-020-2588-y

31. Jefferies CA. Regulating IRFs in IFN driven disease. Front Immunol (2019)
10:325. doi: 10.3389/fimmu.2019.00325

32. DeDiego ML, Nogales A, Martinez-Sobrido L, Topham DJ. Interferon-induced
protein 44 interacts with cellular FK506-binding protein 5, negatively regulates host
antiviral responses, and supports virus replication. MBio (2019) 10:e01839–19.
doi: 10.1128/mBio.01839-19

33. DeDiego ML, Martinez-Sobrido L, Topham DJ. Novel functions of IFI44L as a
feedback regulator of host antiviral responses. J Virol (2019) 93:e01159–19.
doi: 10.1128/JVI.01159-19

34. Basters A, Knobeloch K-P, Fritz G. USP18 - a multifunctional component in the
interferon response. Biosci Rep (2018) 38:BSR20180250. doi: 10.1042/BSR20180250

35. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, et al. Specific
recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha
restriction factor. Proc Natl Acad Sci U S A (2006) 103:5514–9. doi: 10.1073/
pnas.0509996103

36. Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA
sensing. Nat Rev Immunol (2020) 20:537–51. doi: 10.1038/s41577-020-0288-3

37. Risso A, Smilovich D, Capra MC, Baldissarro I, Yan G, Bargellesi A, et al. CD69
in resting and activated T lymphocytes. Its association with a GTP binding protein and
biochemical requirements for its expression. J Immunol (1991) 146:4105–14. doi:
10.4049/jimmunol.146.12.4105

38. Testi R, Phillips JH, Lanier LL. T cell activation via Leu-23 (CD69). J Immunol
(1989) 143:1123–8. doi: 10.4049/jimmunol.143.4.1123

39. Pignarre A, Chatonnet F, Caron G, Haas M, Desmots F, Fest T. Plasmablasts
derive from CD23- activated B cells after the extinction of IL-4/STAT6 signaling and
IRF4 induction. Blood (2021) 137:1166–80. doi: 10.1182/blood.2020005083

40. Kim BR, Park SH, Jeong YA, Na YJ, Kim JL, Jo MJ, et al. RUNX3 enhances
TRAIL-induced apoptosis by upregulating DR5 in colorectal cancer. Oncogene (2019)
38:3903–18. doi: 10.1038/s41388-019-0693-x

41. Fritsch M, Günther SD, Schwarzer R, Albert M-C, Schorn F, Werthenbach JP,
et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis.
Nature (2019) 575:683–7. doi: 10.1038/s41586-019-1770-6

42. Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ, Clark GJ. RASSF2 is a novel K-
Ras-specific effector and potential tumor suppressor. J Biol Chem (2003) 278:28045–51.
doi: 10.1074/jbc.M300554200
Frontiers in Immunology 12141
43. D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S‘ichi, et al.
Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates
apoptosis. Nat Cell Biol (2002) 4:11–9. doi: 10.1038/ncb714

44. Peter RS, Nieters A, Kräusslich H-G, Brockmann SO, Göpel S, Kindle G, et al.
Post-acute sequelae of covid-19 six to 12 months after infection: population based
study. BMJ (2022) 379:e071050. doi: 10.1136/bmj-2022-071050

45. Groff D, Sun A, Ssentongo AE, Ba DM, Parsons N, Poudel GR, et al. Short-term
and long-term rates of postacute sequelae of SARS-CoV-2 infection: A systematic
review. JAMA Netw Open (2021) 4:e2128568. doi: 10.1001/jamanetworkopen.2021.
28568

46. Kelly JD, Curteis T, Rawal A, Murton M, Clark LJ, Jafry Z, et al. SARS-CoV-2
post-acute sequelae in previously hospitalised patients: systematic literature review and
meta-analysis. Eur Respir Rev (2023) 32:220254. doi: 10.1183/16000617.0254-2022

47. Cervia C, Zurbuchen Y, Taeschler P, Ballouz T, Menges D, Hasler S, et al.
Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome. Nat
Commun (2022) 13:446. doi: 10.1038/s41467-021-27797-1

48. Thompson RC, Simons NW, Wilkins L, Cheng E, Del Valle DM, Hoffman GE,
et al. Molecular states during acute COVID-19 reveal distinct etiologies of long-term
sequelae. Nat Med (2022) 29:236–46. doi: 10.1038/s41591-022-02107-4

49. Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19
(PASC): an overview of biological factors that may contribute to persistent symptoms.
Front Microbiol (2021) 12:698169. doi: 10.3389/fmicb.2021.698169

50. Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T, et al.
Systems biological assessment of immunity to mild versus severe COVID-19 infection
in humans. Science (2020) 369:1210–20. doi: 10.1126/science.abc6261

51. Su Y, Chen D, Yuan D, Lausted C, Choi J, Dai CL, et al. Multi-omics resolves a
sharp disease-state shift between mild and moderate COVID-19. Cell (2020) 183:1479–
95.e20. doi: 10.1016/j.cell.2020.10.037

52. Bergamaschi L, Mescia F, Turner L, Hanson AL, Kotagiri P, Dunmore BJ, et al.
Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early
immune pathology distinguish severe COVID-19 from mild disease. Immunity (2021)
54:1257–75.e8. doi: 10.1016/j.immuni.2021.05.010

53. Carsetti R, Zaffina S, Piano Mortari E, Terreri S, Corrente F, Capponi C, et al.
Different innate and adaptive immune responses to SARS-CoV-2 infection of
asymptomatic, mild, and severe cases. Front Immunol (2020) 11:610300. doi:
10.3389/fimmu.2020.610300

54. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al.
Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science
(2020) 370:eabd4585. doi: 10.1126/science.abd4585

55. Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, et al.
Autoantibodies neutralizing type I IFNs are present in 4% of uninfected individuals
over 70 years old and account for 20% of COVID-19 deaths. Sci Immunol (2021) 6:
eabl4340. doi: 10.1126/sciimmunol.abl4340

56. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional
autoantibodies in patients with COVID-19. Nature (2021) 595:283–8. doi: 10.1038/
s41586-021-03631-y

57. Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D,
et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to
clinical implication: Report of the 15th Dresden Symposium on Autoantibodies.
Autoimmun Rev (2022) 21:103012. doi: 10.1016/j.autrev.2021.103012
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Low pre-existing endemic
human coronavirus (HCoV-
NL63)-specific T cell frequencies
are associated with impaired
SARS-CoV-2-specific
T cell responses in people
living with HIV
Tiza L. Ng’uni1, Vernon Musale2,3, Thandeka Nkosi1,
Jonathan Mandolo4, Memory Mvula4, Clive Michelo2,3,
Farina Karim1, Mohomed Yunus S. Moosa5, Khadija Khan1,
Kondwani Charles Jambo4,6, Willem Hanekom1,7, Alex Sigal1,
William Kilembe2,3 and Zaza M. Ndhlovu1,5,8*

1Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, Durban, South Africa,
2Emory-University of Georgia, Center of Excellence of Influenza Research and Surveillance (CEIRS),
Lusaka, Zambia, 3Center for Family Health Research in Zambia (CFHRZ), formerly Zambia Emory HIV
Research Project (ZEHRP), Lusaka, Zambia, 4Infection and Immunity Research Group, Malawi-
Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi, 5Human
Immunodeficiency Virus (HIV) Pathogenesis Program, School of Laboratory Medicine and Medical
Sciences, University of KwaZulu Natal, Durban, South Africa, 6Department of Clinical Sciences,
Liverpool School of Tropical Medicine, Liverpool, United Kingdom, 7Division of Infection and
Immunity, University College London, London, United Kingdom, 8Ragon Institute of Massachusetts
General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University,
Cambridge, MA, United States
Background:Understanding howHIV affects SARS-CoV-2 immunity is crucial for

managing COVID-19 in sub-Saharan populations due to frequent coinfections.

Our previous research showed that unsuppressed HIV is associated with weaker

immune responses to SARS-CoV-2, but the underlying mechanisms are unclear.

We investigated how pre-existing T cell immunity against an endemic human

coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living

with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell

dysfunction influences responses to SARS-CoV-2 variants.

Methods: We used flow cytometry to measure T cell responses following PBMC

stimulation with peptide pools representing beta, delta, wild-type, and HCoV-

NL63 spike proteins. Luminex bead assay was used tomeasure circulating plasma

chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and

ACE2 Neutralization assays were used to measure humoral responses.

Results: Regardless of HIV status, we found a strong positive correlation between

responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker

CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-

uninfected individuals. PLWH also had higher proportions of functionally

exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory
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cytokines (IFNg and TNFa) and had elevated plasma IL-2 and IL-12(p70) levels

compared to HIV-uninfected individuals. HIV status didn’t significantly affect IgG

antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity.

Conclusion: Our results indicate that the decrease in SARS-CoV-2 specific T cell

responses in PLWH may be attributable to reduced frequencies of pre-existing

cross-reactive responses. However, HIV infection minimally affected the quality

and magnitude of humoral responses, and this could explain why the risk of

severe COVID-19 in PLWH is highly heterogeneous.
KEYWORDS

HIV, SARS-CoV-2, HCoV-NL63, COVID-19, T-cell response, antibody response
1 Introduction

The novel Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2), responsible for causing coronavirus disease 2019

(COVID-19), has emerged as a significant public health menace,

leading to the unprecedented loss of millions of lives globally (1).

The World Health Organization (WHO) designated it as a

pandemic on March 11th, 2020 (2). It is hypothesized that the

rapid increase in global cases primarily resulted from a lack of pre-

existing immunity to the novel SARS-CoV-2 (3). While many

countries have successfully curbed the COVID-19 pandemic

through extraordinary preventive measures, the potential for a

global resurgence still looms large, hence the need to better

understand immune responses to SARS-CoV-2, particularly in

regions with a high HIV burden like sub-Saharan Africa.

To design the next generation of COVID-19 vaccines, it is

essential to better understand both individual and population-level

immunity, encompassing both humoral and adaptive responses (3).

While the role of antibodies in clearing the virus and influencing the

severity of COVID-19 is relatively well understood, the

understanding of T cell immunity to SARS-CoV-2 has been

limited due to a lack of studies focusing on T cells (4).

Furthermore, understanding the potential susceptibility of

People Living with HIV (PLWH) to SARS-CoV-2 infection and

severe COVID-19 holds significant relevance for developing next

generation vaccines and therapies. Although it is well known that

HIV weakens the immune system, which could have a negative

impact on SARS-CoV-2 immunity, the precise immune defects

associated with reduced SARS-CoV-2 immune responses in PLWH

are still unresolved (5–7). As the COVID-19 pandemic is still

rapidly evolving, more studies are needed to understand the

interplay between HIV and SARS-CoV-2 in PLWH to inform

both clinical and public health guidelines on HIV and SARS-

CoV-2 coinfection.

It has been shown that over 90% of the human population is

seropositive for at least three of the endemic human coronaviruses
02144
(EHC), HCoV-OC43, HCoV-HKU1, HCoV-NL63 and HCoV-

229E, which widely circulate in the human population (8, 9). The

memory T cell responses to these EHCs commonly exhibit cross-

reactivity with SARS-CoV-2 (10, 11). In fact, detectable SARS-CoV-

2-specific T cells have been identified in some individuals who lack

any prior history of COVID-19 or SARS-CoV-2 exposure from an

infected person (9, 12, 13). However, the potential influence of HIV

infection on these cross-reactive immune responses remains

under explored.

In this study, we utilized cohorts comprising both HIV-infected

and HIV-uninfected participants from South Africa and Zambia

who had contracted COVID-19 to explore the mechanisms linked

to impaired SARS-CoV-2-specific T cell responses in PLWH. We

examined whether pre-existing immunity to EHCs, specifically

HCoV-NL63, influence SARS-CoV-2-specific T cell immunity

and humoral responses in PLWH. Our findings demonstrate that

HIV infection HIV exerts a more pronounced impact on T cell

responses to both HCoV-NL63 and SARS-CoV-2, but minimally

impacted humoral immunity against SARS-CoV-2.
2 Materials and methods

2.1 Ethical statement

The study was approved by the University of KwaZulu-Natal

Institutional Review Board (approval BREC/00001275/2020) and

the National Health Research Authority and University of Zambia

Biomedical Research Ethics Committee (REF. No. 1648-2021).

Adult patients (18 years and older) presenting at King Edward

VIII, Inkosi Albert Luthuli Central, Kwadabeka community

healthcare center or Clairwood Hospitals in Durban, South

Africa, and the Center for Family Health Research in Zambia,

research clinics and collaborating GRZ health facilities in Lusaka

and Ndola, between October 2020 to August 2021, diagnosed to be

SARS-CoV-2 PCR positive were eligible for the study. All
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participants enrolled into the study provided written

informed consent.
2.2 Study participants and
sample collection

A total of 68 adult participants were recruited in South Africa

and Zambia (34 from each site). We also recruited 11 healthy

controls who were HIV-uninfected and matched for sex and age to

the South African cohort (Table 1). The groups are represented as

HIV-uninfected and SARS-CoV-2-infected (HIV-/SARS-CoV-2+);

HIV-infected and SARS-CoV-2-infected (HIV+/SARS-CoV-2+);

and healthy controls (HIV-/SARS-CoV-2-). Peripheral blood

mononuclear cells (PBMCs) and plasma samples collected from

Zambia were shipped to Durban, South Africa and matched with

samples collected from South Africa. The matching criteria

included HIV status, age, sex, time point and the wave of

infection (wild-type, beta, or delta infection). PBMCs and plasma

samples used in this study were collected between 1- and 4-weeks

post-SARS-CoV2 PCR-positive diagnosis. Peripheral blood

mononuclear cells (PBMCs) from healthy donors collected for

other studies before 2018, prior to the COVID-19 pandemic, were

included as healthy controls.
2.3 Peptide pools

To detect virus-specific T-cell responses, PBMCs were

stimulated with the following peptide pools: 1) PepMix™ SARS-
Frontiers in Immunology 03145
CoV-2 (Spike B.1.351/Beta Variant): Pool of 315 peptides derived

from a peptide scan (15mers with 11 aa overlap) through the entire

Spike glycoprotein - containing mutations D0080A, D0215G,

L0242-, A0243-, L0244-, K0417N, E0484K, N0501Y, D614G and

A0701V (JPT Peptide Technologies). 2) PepMix™ SARS-CoV-2

(Spike B.1.617.2/Delta Variant): Pool of 315 peptides derived from a

peptide scan (15mers with 11 aa overlap - 4x 13mer + last peptide =

17mer) through the Spike glycoprotein - containing mutations

T0019R, G0142D, E0156-, F0157-, R0158G, L0452R, T0478K,

D0614G, P0681R and D0950N (JPT Peptide Technologies). 3)

PepMix™ HCoV-NL63 (Spike Glycoprotein): Pool of 337

peptides derived from a peptide scan (15mers with 11 aa overlap)

through the Spike glycoprotein (Swiss-Prot ID: Q6Q1S2) of Human

Coronavirus (HCoV) (JPT Peptide Technologies). 4) PepTivator

SARS-CoV-2 Prot_S Complete: Pool of peptides consisting mainly

of 15-mers overlapping by 11 amino acids residues covering the

entire protein coding sequence of the spike glycoprotein (aa 5–

1273) (Miltenyi Biotec). 5) PepTivator SARS-CoV-2 Prot_S1: Pool

of peptides covering the N-terminal S1 domain of the spike

glycoprotein (aa 1–692) (Miltenyi Biotec).
2.4 T cell phenotyping by flow cytometry

PBMCs were isolated from blood samples by density gradient

method and cryopreserved in liquid nitrogen prior to being used for

flow cytometry. Frozen PBMCs were thawed, rested, and stimulated

for 18 h at 37°C, 5% CO2 with the following peptide pools: SARS-

CoV-2 S and S1 (wild-type – WT, 2 μg/ml) (Miltenyi, Biotec), beta

and delta variants (0.5 μg/ml) (JPT Peptide Technologies), or
TABLE 1 Cohort Demographics and Clinical Characteristics.

All (N = 79) HIV-
uninfected
(n = 48)

HIV-infected (n = 20) Healthy controls
(n = 11)

Statistics

Demographics

Age years, median (IQR) 35 (27 – 44) 34.5 (28 - 43.75) 41.5 (32 - 49.75) 19.5 (18.75 – 21.50) 0.0002a

Male sex, n (%) 29 (36.71) 22 (45.83) 4 (20) 3 (27.27) nsb

Female sex, n (%) 50 (63.29) 26 (54.17) 16 (80) 8 (72.73) nsb

Days since diagnosis, median (range) 14 (1 – 28) 14 (6 – 28) 13.5 (7 – 28) – nsc

HIV-associated parameters

HIV viral load copies/mL, median (IQR) – 13,981 (352-65,386) – n/a

CD4 cells/µL median (IQR) 760.5 (580.5 - 874.3) 783 (633 -921.5) 197 (75.5 - 726) 840 (739 - 996.3) nsd

Disease severity

Asymptomatic, n (%) 11 (16.18) 10 (20.83) 1 (5) – nsb

Mild, n (%) 54 (79.4) 37 (77.1) 17 (85) – nsb

Severe/oxygen supplementation, n (%) 3 (4.41) 1 (2.08) 2 (10) – nsb
f

P values were calculated by one-way ANOVA, Fischer’s exact test, Mann-Whitney test or Kruskal-Wallis test for unpaired three groups. Convalescent HIV-infected and HIV-uninfected
individuals were infected with either the beta (second wave) or delta (third wave) variants.
aOne-way ANOVA,
bFisher’s exact probability test.
cMann-Whitney test.
dKruskal-Wallis test.
‘ns’ not significant and ‘n/a’ not applicable.
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HCoV-NL63 (0.5 μg/ml) (JPT Peptide Technologies) .

Staphylococcal enterotoxin B (SEB, 0.5 μg/ml) was used as a

positive control. Unstimulated wells were also included as

negative controls. Brefeldin A (BioLegend, CA) and CD28/CD49d

(BD Biosciences, Franklin Lakes, NJ) were added ahead of the 18 h

incubation at 5 and 1 μg, respectively. The cells were stained with an

antibody cocktail containing: Live/Dead fixable aqua dead cell stain,

anti-CD3 PE-CF594 (BD), anti-CD4 Brilliant Violet (BV) 650, anti-

CD8 BV 786 (BD), anti-CD38 Alexa Fluor (AF) 700 (BD), anti-

human leukocyte antigen (HLA) – DR Allophycocyanin (APC) Cy

7 (BD), and anti-programmed cell death protein 1 (PD) BV 421

(BD). After a 20-minute incubation at room temperature, the cells

were washed, fixed, and permeabilized using the BD Cytofix/

Cytoperm fixation permeabilization kit. Thereafter, the cells were

stained for 40 minutes at room temperature with an intracellular

antibody cocktail containing: anti-IFN-g BV 711 (BD), anti-IL-2 PE

(BD), anti-TNF-a PE-Cy 7 and anti-granzyme B PE-CF594 (BD).

Finally, the cells were washed and acquired on an LSR Fortessa and

analyzed on FlowJo v10.7.1. Differences between groups were

significant at a p< 0.05. Statistical analyses were performed using

GraphPad Prism 9.0 (GraphPad Software, Inc, San Diego, CA).
2.5 Cytokine and
chemokine measurements

The following cytokines and chemokines, IL-1b, IL-1ra, IL-2,
IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17,

basic FGF, eotaxin, granulocyte-colony stimulating factor (G-CSF),

granulocyte macrophage-colony stimulating factor (GM-CSF),

IFN-g, interferon gamma-induced protein-10 (IP-10), monocyte

chemoattractant protein-1 (MCP-1), macrophage inflammatory

protein 1 (MIP-1)a, MIP-1b, platelet-derived growth factor-

(PDGF-) BB, regulated on activation, normal T cell expressed and

secreted (RANTES), TNF-a, and vascular endothelial growth factor

(VEGF), were simultaneously assessed in plasma samples from

healthy controls and HIV-infected and HIV-uninfected COVID-

19 participants via the Bio-Plex Pro Human Cytokine 27-plex Assay

(Bio-Rad) as per manufacturer’s instructions. Briefly 50 mL of

plasma samples and various concentrations of the assay standards

were added in duplicate to a 96-well plate containing magnetic

beads. The plate was incubated for 30 minutes followed by a wash

step. The plate was subsequently coated with biotinylated detection

antibody solution and incubated for a further 30 minutes. After the

30-minute incubation, the plate was washed and streptavidin-

conjugated phycoerythrin was added to the plate and incubated

for 10 minutes. After this final incubation, the plate was washed,

and assay buffer was added to each well. Data was acquired using

the Bio-Plex Array Reader system 2200 (Bio-Rad). A standard

curve was derived using the different concentrations of the

assay standards. All plasma samples from participants were

assayed on the same plate at the same time in duplicate. Intra-

assay variability was represented as the coefficient of variation as per

manufacturer’s instructions.
Frontiers in Immunology 04146
2.6 V-PLEX COVID-19 serology assay

The MSD V-PLEX COVID-19 Serology platform was used to

quantitatively measure antibodies to SARS-CoV-2 antigens

including its variants. The kits comprise 96-well plates with

antigens precoated to individual carbon spots. Each well on the

96-well plate contains eight SARS-CoV-2-related antigens coated at

the bottom of the well. The assay was performed as previously

described (14, 15) and per manufacturer’s instructions. Briefly, to

measure antigen-specific IgG antibodies, plates were blocked with

MSD Blocker A (150 mL/well) after which reference standard,

controls and samples diluted to 1:50000 in Diluent buffer were

added. After incubation, detection antibody (MSD SULFO-TAG™

Anti-Human IgG Antibody) diluted to 2 mg/mL in Diluent 100

(MSD) was used to label bound antibodies at 50 mL/well. This was
followed by the addition of 150 mL MSD GOLD™ Read Buffer B

and plates were read using an MSD QuickPlex SQ120 instrument.

Calibration curves were used to calculate antibody concentrations

and were established by fitting the signals from the calibrators to a

4-parameter logistic (or sigmoidal dose-response) model. Best

quantification of unknown samples was achieved by generating a

calibration curve for each plate using a minimum of two replicates

at each calibrator level. Antibody unit concentrations in controls

and diluted samples were determined from their ECL signals by

backfitting to the calibration curve. Quantification was reported in

Arbitrary Units/mL (AU/mL).
2.7 V-PLEX COVID-19 ACE2
neutralization assay

The V-PLEX COVID-19 ACE2 Neutralization Kit was used to

measure antibodies that block the binding of angiotensin-

converting enzyme 2 (ACE2) to the SARS-CoV-2 Spike and RBD

antigens, including variants of the SARS-CoV-2 virus. The assay

serves as a high-throughput alternative to traditional neutralization

assays. Plates are provided with antigens on spots in the wells of a

96-well plate. Blocking antibodies in the samples bind to antigens

on the spots, and human ACE2 protein conjugated with MSD

SULFO-TAG is used for detection. The assay was performed

according to manufacturer’s instructions. Briefly, 150 μL/well of

Blocker A solution was added to the plates, sealed with an adhesive

and incubated at RT with shaking (~700 rpm) for 30 minutes. The

plates were washed three times with 150 μL/well of 1X MSD Wash

buffer. Samples were prediluted (1:10 dilution) according to the

manufacturer’s instructions. Samples and calibrators were then

added to the plate (25 μL/well), plates sealed with an adhesive

plate seal and incubated at RT with shaking (~700 rpm) for 1h.

After the incubation, 25 μL/well of 1X SULFO-TAG Human ACE2

Protein detection solution was added to the plate. The plates were

sealed with an adhesive plate seal and incubated at RT with shaking

(~700 rpm) for 1h. After the detection incubation step, the plates

were washed three times with 150 μL/well of 1X MSD Wash buffer.

MSD GOLD Read Buffer B was added (150 μL/well) and the plate
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was immediately read on the MSD instrument. Results were

reported as percent inhibition, calculated using the equation

below. Percentage inhibition was calculated relative to the assay

calibrator (maximum 100% inhibition). Highly positive samples

show high percent inhibition whereas negative or low samples show

low percent inhibition.

% Inhibition = 1� Average Sample ECL Signal
Average ECL Signal of Calibrator 8 (Diluent only)

� 100
2.8 Enzyme-linked immunosorbent assay

This in-house developed indirect qualitative ELISA was used to

measure human IgG specific for the SARS-CoV2 RBD antigen in

human plasma. To set up our in-house quantitative ELISA for

COVID-19 serology, standard techniques were applied. Briefly, 96-

well plates were coated with 100 μL/well of 1ug/mL Recombinant

RBD (diluted in 1x PBS) except for blank and the “No RBD”

negative control wells. blank and the ‘No RBD’ negative control

wells contained 100 μL 1x PBS only. Plates were covered and

incubated overnight at 4°C. The coated ELISA plates were washed

four times with Wash buffer (containing 1x PBS and 0.05% Tween-

20). The plates were then blocked with 200 μL/well of ELISA buffer

(containing 1x PBS, 1% BSA and 0.05% Tween-20), except for the

blank wells which contained 200 μL/well of Wash buffer. The plates

were covered and incubated for 2h. After incubation, 100 μL/well of

diluted samples (1:200 dilution in ELISA buffer) and positive

controls were added to appropriate wells. To the “No RBD”,

blank, and “No primary antibody” wells, 100 μL/well of 0.2 μg/

mL standard, Wash buffer and ELISA buffer were added,

respectively. The plates were covered and incubated for 90

minutes at RT. Following incubation, the plates were washed four

times with Wash buffer and 100 μL/well of peroxidase-conjugated

anti-human IgG (1:2000) was added to the wells except the blank

wells to which 100 μL/well Wash buffer was added. The plates were

then covered and incubated for 60 minutes at RT. The plates were

washed four times with Wash buffer and once with 1x PBS. The

plates were tapped to remove residual PBS and 100 μL of developing

buffer added to all wells. The plates were incubated for 5 minutes at

RT and the reaction was stopped by adding 100 μL of 1N HCl to

each well. The plates were read immediately at an optical density

(OD) of 490 using an ELISA reader. The ELISA controls and test

sample result OD values were blank corrected before interpretation.

The ELISA test was negative if the average OD value was less than

or equal to 0.7 and positive if the average OD value was greater

than 0.7.
2.9 Statistical analyses

Prism 9 (GraphPad Software) was used for statistical analysis as

follows: the two-tailed Mann–Whitney U test was used for single

comparisons of independent groups, the Wilcoxon-test paired t test

was used to compare two paired groups. For multiple groups

statistical significance was assessed using a one-way analysis of
Frontiers in Immunology 05147
variance (ANOVA) with multiple comparisons. The non-

parametric Spearman test was used for correlation analysis. The

statistical significances are indicated in the figures (*p< 0.05, **p<

0.01, ***p< 0.001, and ****p< 0.0001) and all tests were two-tailed.
3 Results

3.1 PLWH have lower frequencies of
HCoV-specific CD4+ T cells compared to
HIV-uninfected individuals

The impact of pre-existing immune responses against endemic

human coronaviruses (EHC), particularly HCoV-NL63, on SARS-

CoV-2 specific T cell responses has been a subject of interest.

Previous studies have linked existing cross-reactive memory

responses to EHC with milder COVID-19 outcomes and robust

vaccine responses, but how these responses are affected in PLWH

remains unclear (9, 10, 16). Thus, our investigation aimed to

determine if HIV infection alters the influence of pre-existing

EHC responses on SARS-CoV-2 specific T cell responses.

Initially, we assessed the frequency of T cells reactive to HCoV-

NL63 in COVID-19 convalescent individuals, with and without

HIV infection. For comparison, we included HIV-uninfected

individuals sampled before the pandemic as healthy controls. To

gauge pre-existing immune responses to the endemic human

coronavirus, we employed peptide pools encompassing the entire

Spike Glycoprotein of HCoV-NL63. This choice was informed by

HCoV-NL63 being a prominent endemic human coronavirus

circulating in the region (8). PBMCs were stimulated with HCoV-

NL63 peptide pools and responding cytokine-producing cells

enumerated as described in the methods. Our findings, illustrated

through representative flow plots (Figure 1A) and collated data

(Figure 1B), indicate that a considerable portion of the participants

exhibited visible HCoV-NL63-specific CD4+ T and CD8+ T cell

responses, as signified by the presence of IFN-g or TNF-a producing
cells. Notably, the aggregate data demonstrates that HIV-uninfected

individuals with COVID-19 displayed elevated levels of HCoV-

NL63 specific CD4+ T cells compared to PLWH and healthy

controls (Figure 1B). The stable and sustained HCoV-NL63

responses observed in HIV-uninfected individuals are likely due

to a relatively stable pool of HCoV-NL63-specific memory CD4+ T

cells. Our findings also showed significantly higher frequencies of

SARS-CoV-2-specific CD4+ and CD8+ T cells following stimulation

with SARS-CoV-2 peptide pools shown in the representative flow

plots and summary plots (Figures 1C, D). These observations

underscore the potential of SARS-CoV-2 to activate HCoV-NL63

specific CD4+ T cells and emphasize the attenuation of pre-existing

memory responses due to the presence of HIV.

Next, we measured SARS-CoV-2 specific T cell responses. We

found a correlation between HCoV-NL63 -specific and SARS-CoV-

2-specific CD4+T and CD8+ T cell responses regardless of HIV

status (Figures 1E, F). These results are consistent with a previous

report (17) that showed pre-existing cross-reactive CD4+ T cells

enhance immune responses to SARS-CoV-2 infection and

BNT162b2 vaccination (17).
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FIGURE 1

Comparison of HCoV-specific T cells in convalescent HIV-infected and HIV-uninfected individuals and healthy controls. Blood samples collected
between 1- and 28-days post infection during the second (beta) and third (delta) waves were used. Intracellular cytokine staining (ICS) was
performed to detect cytokine-producing T cells to HCoV overlapping peptide pools in HIV-uninfected (HIV-/SARS-CoV-2+, n = 47) and PLWH
(HIV+/SARS-CoV-2+, n = 20) individuals and healthy controls (HIV-/SARS-CoV-2-; HC, n = 11). (A) Representative flow cytometry plots for the
identification of antigen-specific CD4+ and CD8+ T cells based on expression IFNg and TNF-a, following 18-h stimulation with HCoV peptides
pools. (B) Summary plots showing the frequency of HCoV-specific CD4+ and CD8+ T cells (IFNg+ and TNF-a+). (C) Representative flow
cytometry plots for the identification of antigen-specific CD4+ and CD8+ T cells based on expression of IFNg and TNF-a, following 18-h
stimulation with SARS-CoV-2 peptides pools. (D) Summary plots showing the frequency of SARS-CoV-2-specific CD4+ and CD8+ T cells (IFNg+

and TNF-a+). (E) Correlation of HCoV-specific and SARS-CoV-2-specific CD4+ T cells in HIV-infected and HIV-uninfected individuals based on
expression of IFNg and TNF-a. (F) Correlation of HCoV-specific and SARS-CoV-2-specific CD8+ T cells in HIV-infected and HIV-uninfected
individuals based on expression of IFNg and TNF-a. Significance was determined by two-tailed Mann-Whitney test and the two-tailed
nonparametric Spearman test was used for correlation analysis, p< 0.05 was considered statistically significant. *p< 0.05, **p< 0.01, ***p< 0.001.
‘ns’ not significant.
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3.2 Altered phenotypic characteristics of
bulk CD4+ T cells in PLWH

To investigate the mechanisms associated with impaired T cell

response in PLWH, we first compared the activation profile of

CD4+ and CD8+ T cells between PLWH and HIV-uninfected

COVID-19 convalescent individuals as well as healthy controls.

Here, T cell activation is defined as HLA-DR+CD38+ T cells.

Representative flow plots (Figure 2A) and aggregate data

(Figure 2B) show that PLWH had greater frequencies of activated

(HLA-DR+ CD38+) CD8+ T cells (p = 0.0006) and a trend towards

more activated CD4+ T cells compared to HIV-uninfected

individuals and healthy controls (Figure 2B). Furthermore, we

show that both the CD4+ and CD8+ T cells were more activated

in the HIV-infected and HIV-uninfected COVID-19 participants

compared to the healthy control group (Figure 2B).

Our investigation of the potential impact of T cell activation on

the frequency of SARS-CoV-2 and HCoV-NL63 specific responses

unveiled a significant correlation between the T cell activation and

the frequency of SARS-CoV-2 CD4+ T cell responses, irrespective of

HIV status (PLWH: p=0.0076 and HIV-negative individuals:

p=0.0059) (Figure 2C). These findings indicate that the SARS-

CoV-2 specific CD4+ T cells represented recent activated effector

cells. Conversely, no discernible correlation was detected between

the frequency of HCoV-NL63 responses and T cell activation

(Figure 2C), which could be attributed to HCoV-NL63 responses

being quiescent long-lived memory cells. Moreover, no correlation

was observed for CD8+T cell responses (Figure 2D).

Next, we examined T cell exhaustion, which we defined by the

presence of the canonical T cell exhaustion marker PD-1 (18).

Surprisingly, the healthy controls had significantly higher PD-1

expression in CD4+ T cells compared to the HIV-infected and HIV-

uninfected groups whereas the PD-1 expression in CD8 T cells was

only significantly higher in the HIV-uninfected group (Figure 2D).

This could probably be due to other underlying conditions or

infections. However, our observations revealed that PLWH

exhibited higher frequencies of exhausted CD4+ and CD8+ T cells

(p = 0.0149 for CD4+ T cells and p = 0.0105 for CD8+ T cells,

respectively) as depicted in representative plots and aggregate data

(Figures 2E, F). These findings are line with previous reports (19–

22). However, we did not find any significant correlation between

either HCoV-NL63 or SARS-CoV-2 responses and T cell

exhaustion (Supplementary Figure 1). Taken together, these

results suggest a link between weakened SARS-CoV-2-specific

responses and heightened T-cell activation.
3.3 Elevated plasma cytokine levels persist
during recovering COVID-19 patients

Systemic inflammation has been shown to impair immune

responses to SARS-CoV-2 infection (23, 24). To investigate

whether systemic inflammation contributes to impaired T cell

function observed in PLWH, we used the Bio-Plex Pro Human

Cytokine Grp I Panel 27-Plex Assay to measure circulating

chemokines and cytokines in COVID-19 convalescent patients
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and healthy controls. This multiplex analysis allowed us to

measure 27 plasma cytokines produced in the convalescent phase

of infection. The groups were denoted as HIV-uninfected and

SARS-CoV-2-infected (HIV-/S+); HIV-infected and SARS-CoV-

2-infected (HIV+/S+); and healthy controls being HIV-uninfected

and SARS-CoV-2-uninfected (HIV-/S-). 21 participants comprising

of 8 healthy controls (HIV-/S-); 5 HIV+/S+; 8 HIV-/S+ selected

based on sample availability were used for these studies (Table 2).

The plasma cytokine concentrations from the Luminex readout

were normalized and presented as percentages, where 0% defined

the smallest mean in each data set and 100% defined the largest

mean in each data set shown as heatmap (Figure 3A). Our data

show that the convalescent phase of SARS-CoV-2 infection is

associated with persistent cytokine storm including IL-1b, IL-1ra,

IL-2, IL-4, IL-5, IL-9, IL-10, IL-12(p70), IL-13, IL17, FGF basic, G-

CSF, GM-CSF, IFN-g, MIP-1a and RANTES (Figures 3B–Q).

Among COVID-19 donors, IL-2, and IL-12(p70) were

significantly elevated in PLWH compared to HIV-uninfected

participants (Figures 3D, I). Additionally, IL-10 trended toward

higher levels in PLWH relative to HIV-uninfected individuals and

healthy controls (Figure 3H). However, we did not find significant

differences in the levels of IL-6, IL-8, Eotaxin, IP-10, MCP-1

(MCAF), PDGF-bb, MIP-1b and TNF-a in the three groups

(Supplementary Figure 2). Overall, these data show that

convalescent COVID-19 donors had elevated systemic

inflammation as widely reported in the literature (25–27).

Importantly, HIV infection was associated with significantly

elevated cytokines such as IL-2, IL-12p70, and a trend towards

more IL-10. These three cytokines have previously been associated

with severe COVID-19 disease (28, 29). Overall, the plasma

cytokine/chemokine levels in COVID-19 participants were much

higher than in healthy donors in the convalescent phase

of infection.
3.4 Anti-RBD IgG levels do not correlate
with SARS-CoV-2-specific CD4+T
cell responses

Having demonstrated the negative effects of HIV infection on T

cell immunity to EHC and SARS-CoV-2, we next investigated

whether HIV has similar deleterious effects on humoral immunity

to coronaviruses. Firstly, we used an in-house ELISA assay to

measure antibodies targeting the receptor-binding domain (RBD)

of the spike (S) protein of SARS-CoV-2 because of the potential of

these antibodies to neutralize the virus and therefore desirable to

induce by vaccination (30–32). We screened plasma samples from

10 HIV-infected and 24 HIV-uninfected subjects (PCR-confirmed

SARS-CoV-2 infection) for antibodies against the RBD antigen. A

sample was considered positive if the O.D value was greater than or

equal to 0.7 and negative if the O.D value was less than 0.7, as

previously described (33). The ELISA results are reported as optical

densities with the limit of detection set at 0.7 shown by the dotted

line on the graph (Figure 4A). Fifty four percent (13/24) of the HIV-

uninfected individuals had measurable anti-RBD IgG antibodies,

whereas 90% (9/10) of the PLWH had measurable anti-RBD
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antibodies. The aggregate data showed no significant difference in

anti-RBD antibody production based on HIV status (Figure 4B).

Virus specific CD4+ T cells responses are known to help B cell

responses, but the role of effector CD4+ T cells responses in

promoting B cell affinity maturation and antibody class switching

during SAR-CoV-2 infection remain unresolved (34). Several
Frontiers in Immunology 08150
studies have reported positive association between SAR-CoV-2

specific CD4+ T cell frequency and the levels of Spike specific

antibodies in plasma (12). Others have shown that antibodies

generated in the presence and absence of Tfh cells display similar

neutralization potency against SARS-CoV-2 (34–36). Here, we

investigated the connection between anti-RBD antibody levels
B
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FIGURE 2

Comparison of the activation and exhaustion profile of HCoV-specific CD4+ and CD8+ T cells in COVID-19 convalescent HIV-infected and HIV-
uninfected Individuals and healthy controls. Blood samples collected between 1- and 28-days post infection during the second (beta) and third
(delta) waves were used to detect activated and exhausted T cells in HIV-uninfected (HIV-, n = 46), PLWH (HIV+, n = 20) and healthy controls
(n = 11). (A) Representative flow cytometry plots for the identification of activated (HLA-DR+CD38+) CD4+ and CD8+ T cells. (B) Summary plots of
the frequency of activated CD4+ and CD8+ T cells based on the expression of HLA-DR, CD38. Correlation of T cell activation of SARS-CoV-2 and
HCoV-specific (C) CD4+ and (D) CD8+ T cells in HIV-infected and HIV-uninfected individuals. (E) Representative flow cytometry plots and
(F) summary data for the identification of exhausted (PD-1+) CD4+ and CD8+ T cells. Significance was determined by two-tailed Mann-Whitney test
and these two-tailed nonparametric Spearman test was used for correlation analysis, p< 0.05 was considered statistically significant. *p< 0.05, **p<
0.01, ***p< 0.001, ****p< 0.0001. ‘ns’ not significant.
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and SARS-CoV-2 T-cell responses in both HIV-infected and HIV-

uninfected donors. Our analysis revealed no correlation between

RBD IgG titers and SARS-CoV-2-specific IFN-g-secreting CD4+

and CD8+ T cells (Figure 4C). Similarly, TNF-a-secreting SARS-

CoV-2-specific CD4+ and CD8+ T cells showed no correlation with

RBD IgG titers (Figure 4D). The absence of correlation between

antibody responses and CD4+ T cell responses might be attributed

to our measurement of overall CD4+ T cell responses instead of

follicular helper cells (TFH), which have been linked to anti-spike

antibody responses (37, 38).
3.5 Antibody recognition of SARS-CoV-2
antigens and ACE2 binding inhibition by
healthy control and SARS-CoV-2
convalescent plasma

Next, we used the SARS-CoV-2 MSD Multi-Spot Assay System

(V-PLEX COVID-19 serology assay) to quantify binding and

neutralization activity and evaluate anti-spike antibodies in plasma.

Specifically, the V-PLEX COVID-19 serology assay allowed us to

measure IgG antibody binding activity to multiple antigens such as

RBD, nucleocapsid, wildtype, alpha, beta, gamma, delta, and omicron

using multi-spot plates (Table 3). Twelve SARS-CoV-2 convalescent

participants (6 HIV-infected and 6 HIV-uninfected) and 8 healthy

controls were used for these studies based on sample availability

(Table 2). We found that most COVID-19 convalescent participants’

IgG antibodies were able to bind all SARS-CoV-2 variants except

omicron with significantly higher levels of IgG antibodies targeting

the SARS-CoV-2 antigens compared to healthy donors

(Supplementary Figure 3). The nucleocapsid and beta antigens were

most targeted (Figure 5A). There was low-level detection of anti-

nucleocapsid antibodies in one of the healthy controls, likely

attributable to cross-reactive antibodies (Figure 5A).

Next, we examined the neutralization activity of plasma anti-

SARS-CoV-2 Spike antibodies. We used a V-PLEX COVID-19
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ACE2 neutralization assay which measures the ability of

antibodies to block the binding of ACE2 to its cognate ligands.

The V-PLEX COVID-19 ACE2 neutralization assay has been

demonstrated to highly correlate with gold standard live

microneutralization assays (14). The neutralization assay was

performed on samples that had detectable antibodies by V-PLEX

COVID-19 serology assay. Almost all COVID-19 participants

generated significant RBD-ACE2 binding inhibition of all the

variants tested and no significant difference was observed between

PLWH and HIV-uninfected participants (Figure 5B). Generally,

plasma from healthy subjects did not exhibit ACE2 binding

inhibition except 3 donors who exhibited minimal binding

activity (ACE2 binding inhibition of< 20%) against the

nucleocapsid (Figure 5B). These results indicate that HIV

infection has minimal impact on the quality and magnitude of

antibody responses against SARS-CoV-2 infection as the SARS-

CoV-2-specific antibody responses were similar between PLWH

and HIV-uninfected participants. These results are similar to other

studies that have shown that antibody responses to SARS-CoV-2

infection did not differ by HIV status (15).
4 Discussion

Enhancing our understanding of both cellular and humoral

immune responses to COVID-19 within populations at higher risk

of infection or severe illness is crucial for the development of next-

generation COVID-19 vaccines, aiming to provide superior

protection across all demographic groups. In this study, we aimed

to identify the underlying immune deficiencies contributing to

weakened immune responses against SARS-CoV-2 in PLWH. We

focus on exploring the role of pre-existing cross-reactive responses

in SARS-CoV-2 immunity, as various studies have underscored the

potential benefits of cross-reactive immunity in both SARS-CoV-2

infection and vaccination (9, 17). Furthermore, the significance of

cross-reactive immunity to various coronaviruses is noteworthy in

the creation of panCoV T cell-inducing vaccines, designed to

safeguard against multiple coronaviruses.

Our study uncovered a notable relationship between pre-existing

immunity and the development of cross-reactive responses to SARS-

CoV-2. To begin with, we noticed higher occurrences of HCoV-NL63

memory responses in individuals with COVID-19 compared to those

who were healthy. Secondly, a strong correlation emerged between

HCoV-NL63 memory responses and SARS-CoV-2 responses,

suggesting that pre-existing cross-reactive immune responses are

present in most individuals. Thirdly, we observed that people living

with HIV (PLWH) had lower frequencies of pre-existing memory T

cell responses to the endemic human coronavirus (EHC) HCoV-

NL63. Fourthly, we noted that HIV infection had a more detrimental

impact on cellular immune responses than on antibody immune

responses to both HCoV-NL63 and SARS-CoV-2 infections. Overall,

our study underscores the need to better understand of how cross-

reactive responses influence vaccine-induced immune responses.

Various studies have presented evidence of pre-existing T cells

recognizing SARS-CoV-2 in individuals across different geographic

regions (13, 39). The idea is that cross-reactive memory T cells,
TABLE 2 Description of the subset of samples used to measure cytokine
levels and antibody responses.

Healthy
controls
(n = 8)

HIV-unin-
fected
(n = 8)

HIV-
infected
(n = 6)

Age mean (range) 22.4 (18 – 33) 31.8 (20 – 40) 44.4 (25
– 65)

Male, n (%) 2 (25) 5 (62.5) 1 (20)

Female, n (%) 6 (75%) 3 (37.5) 4 (80)

Days since diagnosis,
meadian (range)

– 7 (7 – 21) 14 (7 – 22)

CD4 count,
median (range)

840 (634
– 1348)

819 (624
– 1131)

260 (133
– 566)

SARS-CoV-2-
specific responses

No Yes Yes

HCoV-specific responses Yes Yes Yes
Convalescent HIV-infected and HIV-uninfected individuals were infected with either the beta
(second wave) or delta (third wave) variants.
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stemming from previous exposure to other circulating

coronaviruses, contribute to a baseline immunity against COVID-

19 (40, 41). As such, the higher vulnerability of the elderly to severe

COVID-19 has been linked to reduced pre-existing cross-reactive

CD4+ T cell responses (17). Furthermore, a study by van Rooyen

et al. (4) highlighted significant pre-existing T-cell immunity to

SARS-CoV-2 in South African individuals who hadn’t previously

been diagnosed with COVID-19. This immunity might be

attributed to pre-existing cross-reactive immune responses to
Frontiers in Immunology 10152
other human coronaviruses or asymptomatic infections. The

study also observed that the strength of T cell responses to both

SARS-CoV-2 S-proteins and N-proteins was greater in participants

with a history of COVID-19 diagnosis, indicating a notable T cell

response post-SARS-CoV-2 infection (4).

In our previous study, we focused on comparing individuals

infected with the wildtype and beta variant, exploring cross-

protection between the first wave virus and the beta variant, and

examining the influence of HIV infection on cross-recognition. We
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FIGURE 3

Comparison of plasma cytokine and chemokine levels in cells in convalescent HIV-infected and HIV-uninfected individuals and healthy controls.
Serum samples collected between 1- and 28-days post infection were used to measure cytokine and chemokine levels by the Bio-Plex assay.
(A) Heatmap showing normalized cytokine and chemokine levels (in percentages) in convalescent HIV-infected (HIV+/S+, n = 5) and HIV-uninfected
(HIV-/S+, n = 8) individuals and healthy controls (HIV-/S-, n = 8). Summary plots of (B) IL-1b, (C) IL-1ra, (D) IL-2, (E) IL-4, (F) IL-5, (G) IL-9, (H) IL-10,
(I) IL-12(p70), (J) IL-13, (K) IL-17, (L) FGF basic, (M) G-CSF, (N) GM-CSF, (O) IFN-g, (P) MIP-1a and (Q) RANTES. Significance was determined by two-
tailed Mann-Whitney test, p< 0.05 was considered statistically significant. *p< 0.05, **p< 0.01, ***p< 0.001. ‘ns’ not significant.
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demonstrated that unsuppressed HIV is linked to weakened

immune responses and limited recognition of COVID-19

variants. However, the primary factors contributing to these

suboptimal responses were not identified. In this current study,

our focus shifted to investigating whether pre-existing immune

responses to a common cold coronavirus can cross-recognize and

cross-protect against SARS-CoV-2 infection. This current study

suggests that the inadequate cross-reactivity of pre-existing memory

responses to endemic human coronaviruses (EHCs) might

contribute to the overall decline in T cell responses to SARS-

CoV-2. It’s noteworthy that both studies share a common theme

of assessing the impact of HIV infection on the quality and

magnitude of pre-existing immunity to SARS-CoV-2 and

common cold coronaviruses. These findings are consistent with
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earlier studies that indicate HIV infection, even when managed with

effective antiretroviral therapy, is characterized by chronic immune

activation, tissue inflammation, and exhaustion (42, 43).

It has been reported that the severity of clinical disease in

COVID-19 patients is associated not only with significant changes

in the innate immune system but also with a marked alteration of

both humoral and cellular immunity, encompassing SARS-CoV-2–

specific and overall T cell function (44). Our immunological

analysis revealed that both SARS-CoV-2 and EHC responses were

more focused on the CD4 arm of the cellular immune system rather

than the CD8 arm, which is consistent with our prior study and

other reports (12, 17, 20, 45). Furthermore, HIV infection had a

more profound effect on CD4+ T cell responses compared to CD8+

T cell responses and antibody responses. It is not clear why SARS-
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FIGURE 4

Comparison of IgG concentrations in convalescent HIV-infected and HIV-uninfected individuals. Serum samples collected between 1- and 28-days
post infection were used to measure spike-specific responses by ELISA. (A) Comparison of anti-RBD IgG antibody OD values in convalescent HIV-
infected (red bars, n = 10) and HIV-uninfected (green bars, n = 24) individuals. (B) Aggregate data of anti-RBD antibodies in HIV infected and HIV-
uninfected individuals. (C) Correlation of anti-RBD antibodies and SARS-CoV-2 specific IFNg secreting CD4+ and CD8+ T cells. (D) Correlation of
anti-RBD antibodies and SARS-CoV-2 specific TNF-a secreting CD4+ and CD8+ T cells. The dotted line denotes OD values ≤ 0.7 that represent a
negative ELISA test. ELISA tests are positive if the average OD value is > 0.7. Significance was determined by two-tailed Mann-Whitney test and the
two-tailed nonparametric Spearman test was used for correlation analysis, p< 0.05 was considered statistically significant.
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CoV-2 induces stronger CD4+ T cell responses. One potential

explanation is that the most immunogenic SARS-CoV-2 antigens

are more readily recognized by CD4+ T cells than CD8+ T cells.

Nevertheless, further studies are required to comprehend

this phenomenon.

Prior research has demonstrated similar antibody titers against

S1 and N proteins of SARS-CoV-2 in individuals with mild
Frontiers in Immunology 12154
COVID-19, regardless of their HIV infection status (46). Other

studies have also indicated that there are no discernible differences

in antibody responses during the 6-month period following mild

COVID-19 based on HIV status. The magnitude, progression, and

persistence of anti-SARS-CoV-2 IgM, IgG, and IgA antibodies, as

well as neutralization strength, appear to be consistent in PLWH

who have well-managed HIV infection (15, 46, 47). In line with

these findings, this study reveals that PLWH have comparable levels

of neutralizing antibodies in the form of anti-SARS-CoV-2 IgG,

compared to individuals without HIV. Additionally, a subset of

participants, both HIV-infected and HIV-uninfected, displayed

robust neutralization abilities despite having low titers of anti-

SARS-CoV-2 binding antibodies. This might be attributed to

neutralizing antibodies targeting different viral epitopes and/or

elevated levels of non-neutralizing antibodies, or the influence of

other antibody isotypes in the neutralizing responses (46).

This study indicates that PLWH have diminished T cell

responses to both an endemic human coronavirus (EHC) and

SARS-CoV-2. This suggests a potential susceptibility to SARS-

CoV-2 infection, and it’s plausible that their responses to

infections and vaccines might be less robust. Nonetheless, it’s

important to note that the study has certain limitations, notably a

small sample size and the utilization of a cross-sectional design,

which restricts the broader generalizability of these observations. To

validate these intriguing findings, a more extensive longitudinal

analysis of specific T cells and antibodies will be necessary.

In conclusion, our study reveals that the decrease in SARS-

CoV-2 specific responses T cell in PLWH may be attributable to
TABLE 3 List of antigens and their spot assignments on the MULTI-SPOT
96-Well, 10-Spot plate (Plate 24).

Plate
description

SARS-CoV-
2 antigen

Antigen
description

Spot 1 SARS-CoV-2 Spike Wildtype

Spot 2 Spike (B.1.1.529; BA.1;
BA.1.15)

Omicron

Spot 3 SARS-CoV-2 Nucleocapsid Nucleocapsid

Spot 4 Spike (B.1.617.2; AY.4)
Alt Seq 2

Delta

Spot 5 BSA –

Spot 6 BSA –

Spot 7 Spike (P.1) Gamma

Spot 8 Spike (B.1.1.7) Alpha

Spot 9 Spike (B.1.351) Beta

Spot 10 SARS-CoV-2 S1 RBD Receptor
binding domain
B

A

FIGURE 5

Comparison of anti-SARS-CoV-2 IgG antibodies and ACE2 blocking potential in healthy controls and COVID-19 convalescent HIV-infected and HIV-
uninfected individuals. Serum samples collected between 1- and 22-days post infection were used to measure anti-SARS-CoV-2 IgG antibodies and
ACE2 blocking in HIV-infected (HIV+, n = 6), HIV-uninfected (HIV-, n = 6) and healthy controls (n = 6) by the MSD V=Plex assays. (A) Summary plots
of SARS-CoV-2-specific IgG antibody concentrations in the three groups. (B) Summary plots showing ACE2 blocking of SARS-CoV-2-specific
antigens in the three groups.
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reduced frequencies of pre-existing cross-reactive responses,

heightened T cell activation and systemic inflammation.
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High frequencies of alpha
common cold coronavirus/SARS-
CoV-2 cross-reactive functional
CD4+ and CD8+ memory T cells
are associated with protection
from symptomatic and fatal
SARS-CoV-2 infections in
unvaccinated COVID-19 patients
Pierre-Gregoire Coulon1†, Swayam Prakash1†,
Nisha R. Dhanushkodi1, Ruchi Srivastava1, Latifa Zayou1,
Delia F. Tifrea2, Robert A. Edwards2, Cesar J. Figueroa3,
Sebastian D. Schubl3, Lanny Hsieh4, Anthony B. Nesburn1,
Baruch D. Kuppermann1, Elmostafa Bahraoui5, Hawa Vahed6,
Daniel Gil6, Trevor M. Jones6, Jeffrey B. Ulmer6

and Lbachir BenMohamed1,5,6,7*

1Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of
California Irvine, School of Medicine, Irvine, CA, United States, 2Department of Pathology and
Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States,
3Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University
of California Irvine, Irvine, CA, United States, 4Department of Medicine, Division of Infectious Diseases
and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States,
5Université Paul Sabatier, Infinity, Inserm, Toulouse, France, 6Department of Vaccines and
Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States, 7Institute for
Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
Background: Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T

cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals

(UPPHIs). However, the characteristics of cross-reactive memory CD4+ and

CD8+ T cells associated with subsequent protection of asymptomatic

coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals

who never develop any COVID-19 symptoms despite being infected with

SARS-CoV-2) remains to be fully elucidated.

Methods: This study compares the antigen specificity, frequency, phenotype,

and function of cross-reactive memory CD4+ and CD8+ T cells between

common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses

against genome-wide conserved epitopes were studied early in the disease

course in a cohort of 147 unvaccinated COVID-19 patients who were divided

into six groups based on the severity of their symptoms.

Results: Compared to severely ill COVID-19 patients and patients with fatal

COVID-19 outcomes, the asymptomatic COVID-19 patients displayed
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significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (a-
CCC-229E); ( i i ) h igher frequencies of cross-react ive funct ional

CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized

conserved epitopes from a-CCCs and SARS-CoV-2 structural, non-structural, and

accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive

exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T

cells, detected both ex vivo and in vitro.

Conclusions: These findings (i) support a crucial role of functional, poly-antigenic

a-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced

following previous CCCs seasonal exposures, in protection against subsequent

severe COVID-19 disease and (ii) provide critical insights into developing broadly

protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-

Coronavirus vaccines capable of conferring cross-species protection.
KEYWORDS

SARS-CoV-2, symptomatic, asymptomatic, COVID-19, common cold coronavirus, CD4
+ T cells, CD8 + T cells, exhaustion a-CCCs/SARS-CoV-2 cross-reactive T cells in
asymptomatic COVID-19 infection
Introduction

The coronavirus disease 2019 (COVID-19) pandemic has

created one of the largest global health crises in nearly a century

(1–3). As of February 2024, the COVID-19 outbreak has affected

over 700 million people worldwide, with the number of deaths

directly related to severe symptomatic COVID-19 infections

reaching 7 million worldwide (1, 2, 4). Some unvaccinated

symptomatic COVID-19 patients produce severe symptoms that

typically begin with mild upper respiratory syndrome but may

further develop into severe respiratory distress and death,

particularly in immunocompromised individuals and those with

pre-existing co-morbidities (5–8). In contrast, other unvaccinated

individuals never develop any COVID-19 symptoms despite being

infected with SARS-CoV-2 (5, 9, 10). The underlying mechanisms

that lead to protection from symptomatic and fatal SARS-CoV-2

infection in unvaccinated COVID-19 patients remain to be

fully elucidated.

There is a growing body of evidence in support of the important

role that T-cell responses in protection against COVID-19, as

recently reviewed by Wherry and Barouch (11): (i) cross-reactive

poly-antigenic CD4+ and CD8+ T-cell responses in COVID-19

patients appear to contribute to the resolution of SARS-CoV-2

infection and reduction in severe symptoms (12–22); (ii) SARS-

CoV-2-specific CD4+ and CD8+ T-cell responses reduced viral

loads in non-human primates (23, 24); (iii) SARS-CoV-2-infected

patients with agammaglobulinemia and B-cell depletion displayed

only a small increase in COVID-19 symptoms, indicating that the

cross-reactive T cells alone may have protected from severe disease
02159
(25–30); and (iv) cancer patients with B-cell deficiencies experience

milder COVID-19 disease that correlated with strong SARS-CoV-2-

specific CD8+ T-cell responses (22). Conversely, other reports have

associated cross-reactive memory CD4+ and CD8+ T cells with poor

COVID-19 disease outcomes (16, 31–36). However, the antigen

specificity, frequency, phenotype, and function of cross-reactive

memory CD4+ and CD8+ T cells that protect against the severity of

COVID-19 in unvaccinated asymptomatic patients remain to

be determined.

Characterizing the CCCs/SARS-CoV-2 cross-reactive memory

CD4+ and CD8+ T cells in unvaccinated COVID-19 patients is a

difficult task today because over 85% of adults are currently

vaccinated (37–40). Nevertheless, a few studies from our group and

others have detected cross-reactive CD4+ and CD8+ T cells, directed

toward specific sets of conserved SARS-CoV-2 epitopes, not only

from unvaccinated COVID-19 patients but also from a significant

proportion (~50%) of unexposed pre-pandemic healthy individuals

(UPPHI) who were never exposed to SARS-CoV-2 (1, 16, 18, 20–22,

32, 33, 41–44). Moreover, pre-existing CCCs/SARS-CoV-2 cross-

reactive memory CD4+ and CD8+ T cells are also present in

unvaccinated UPPHI, suggesting clones of memory T cells induced

following previous exposures with seasonal CCCs (1, 16, 21, 31, 41,

43–50). However, it is not yet known whether these cross-reactive

memory CD4+ and CD8+ T cells (i) preferentially cross-recognize the

alpha CCCs (i.e., a-CCC-229E and a-CCC-NL63) or the beta CCCs
(i.e., b-CCC-HKU1 and b-CCC-OC43) and (ii) the antigen

specificity, frequency, phenotype, and function of the cross-reactive

memory CD4+ and CD8+ T cells associated with protection against

COVID-19 severity in unvaccinated asymptomatic patients.
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In this study, we hypothesized that different clonal repertoire of

CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells

are induced by previous exposures to seasonal alpha CCCs (i.e., a-
CCC-229E and a-CCC-NL63) and beta CCCs (i.e., b-CCC-HKU1

and b-CCC-OC43) and that certain clones of T cells are associated

with either protective or pathogenic outcomes in SARS-CoV-2

infection. We report that, compared with unvaccinated severely ill

COVID-19 patients and unvaccinated patients with fatal COVID-

19 outcomes, unvaccinated asymptomatic COVID-19 patients

displayed significantly (i) higher rate of the a-CCC species 229E

(a-CCC-229E); (ii) higher frequencies of functional memory

CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells directed

toward cross-reactive a-CCCs/SARS-CoV-2 epitopes from

structural, non-structural, and accessory proteins; and (iii) lower

frequencies of cross-reactive exhausted PD-1+TIM3+TIGIT+

CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells.

These findings (i) support the crucial role of functional, poly-

antigenic a-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and

CD8+ T cells, induced following previous exposures to a-CCC
species, in protection against subsequent severe disease caused by

SARS-CoV-2 infection and (ii) provides a strong rationale for the

development of broadly protective, T-cell-based, multi-antigen

universal pan-Coronavirus vaccines.
Frontiers in Immunology 03160
Materials and methods

Human study population cohort and
HLA genotyping

Between July 2020 to November 2022, 600 patients were

enrolled at the University of California Irvine Medical Center

with various severity of COVID-19 disease under an approved

Institutional Review Board–approved protocol (IRB No. 2020-

5779). Written informed consent was obtained from participants

before inclusion. SARS-CoV-2 positivity was defined by a positive

RT-PCR on a respiratory tract sample. None of the patients enrolled

in this study received any COVID-19 vaccine.
Patient selection based on HLA-A*02:01
and HLA-DRB1*01:01 alleles

We genotyped all the 600 patients enrolled in our study for class I

HLA-A*02:01 and class II HLA-DRB1*01:01 by PCR. Out of the 600

COVID-19 patients, 147 patients were positive for HLA-A*02:01

and/or HLA-DRB1*01:01 and were considered in this study

(Supplementary Figure 1). The 147 patients were from mixed
TABLE 1 Demographic, age, HLA-genotyping, clinical parameters, and prevalence of comorbidities in unvaccinated COVID-19 patients with various
degrees of disease severity.

Patients’
characteristics
classified by
severity of
COVID-19
(n=147)

Severity 5
(SYMP)

patients died)
(n = 26)

Severity 4
(SYMP) (ICU +

vent.)
(n = 15)

Severity 3
(SYMP)
(ICU)

(n = 21)

Severity 2 (SYMP)
(inpatients, Reg.

Adm.)
(n = 64)

Severity 1
(SYMP)
(ED)

(n = 12)

Severity
0

(ASYMP)
(n = 9)

Demographic
features

Age median 65 (39–90) 52 (33–85) 53 (26–86) 57 (23–85) 51 (27–91) 27 (19–51)

Gender (male/female) 19/7 (73%/27%) 9/6 (60%/40%) 13/8
(62%/38%)

37/27 (58%/42%) 5/7
(42%/58%)

5/4
(56%/44%)

Class I & II
HLA status

Race (% White/
non-White)

6/20 (23%/77%) 8/7 (53%/47%) 13/8
(62%/38%)

25/39 (39%/61%) 7/5
(58%/42%)

2/7
(29%/71%)

HLA-A*0201+ 13 (50%) 8 (53%) 12 (57%) 24 (38%) 7 (58%) 7 (78%)

Clinical
parameters

HLA-DRB1*01:01+ 14 (54%) 11 (73%) 12 (57%) 41 (64%) 7 (58%) 7 (78%)

Days between onset of
symptoms and blood
draw (mean)

5.9 5.7 4.6 4.5 4.1 –

Fever (>38°C) 21 (81%) 11 (73%) 10 (48%) 30 (47%) 4 (33%) 0 (0%)

Cough 23 (88%) 13 (87%) 16 (76%) 22 (34%) 4 (33%) 0 (0%)

Shortness of
breath/dyspnea

28 (100%) 15 (100%) 6 (29%) 11 (17%) 1 (8%) 0 (0%)

Fatigue/myalgia 9 (35%) 5 (33%) 6 (29%) 3 (5%) 3 (25%) 0 (0%)

Headache 5 (19%) 1 (%) 4 (19%) 12 (19%) 4 (33%) 0 (0%)

Nausea 3 (12%) 3 (20%) 3 (14%) 3 (5%) 0 (0%) 0 (0%)

Diarrhea 7 (27%) 2 (13%) 2 (10%) 8 (13%) 0 (0%) 0 (0%)

(Continued)
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ethnicities (Hispanic (28%), Hispanic Latino (22%), Asian (16%),

Caucasian (13%), mixed Afro-American and Hispanic (8%), Afro-

American (5%), mixed Afro-American and Caucasian (2%), and

Native Hawaiian and Other Pacific Islander descent (1%). Six percent

of the patients did not reveal their race/ethnicity. The detailed

demographic and clinical data for the 147 patients enrolled in this

study are shown in Table 1.
Symptomatic and asymptomatic COVID-19
patient stratification based on
disease severity

Following patient discharge, they were divided into six groups

depending on the severity of their symptoms and their intensive care

unit (ICU) and intubation (mechanical ventilation) status by medical

practitioners. The scoring criteria were as follows: severity 5, patients
Frontiers in Immunology 04161
who died from COVID-19 complications; severity 4, infected

COVID-19 patients with severe disease who were admitted to the

intensive care unit (ICU) and required ventilation support; severity 3,

infected COVID-19 patients with severe disease that required

enrollment in ICU, but without ventilation support; severity 2,

infected COVID-19 patients with moderate symptoms that

involved a regular hospital admission; severity 1, infected COVID-

19 patients with mild symptoms; and severity 0, infected individuals

with no symptoms. Among the 147 COVID-19 patients, subjects with

a severity score of 0 were defined as asymptomatic, and subjects with a

severity score of 1–5 were defined as symptomatic.
Pre-pandemic healthy controls

Subsequently, we used 15 liquid-nitrogen frozen PBMCs

samples (blood collected pre-COVID-19 in 2018) from HLA-
TABLE 1 Continued

Patients’
characteristics
classified by
severity of
COVID-19
(n=147)

Severity 5
(SYMP)

patients died)
(n = 26)

Severity 4
(SYMP) (ICU +

vent.)
(n = 15)

Severity 3
(SYMP)
(ICU)

(n = 21)

Severity 2 (SYMP)
(inpatients, Reg.

Adm.)
(n = 64)

Severity 1
(SYMP)
(ED)

(n = 12)

Severity
0

(ASYMP)
(n = 9)

Anosmia/ageusia 6 (23%) 4 (27%) 6 (29%) 17 (27%) 1 (8%) 0 (0%)

Sore throat 4 (15%) 1 (7%) 1 (5%) 3 (5%) 1 (8%) 0 (0%)

ICU admission 26 (100%) 15 (100%) 21 (100%) 0 (0%) 0 (0%) 0 (0%)

Ventilator support 26 (100%) 15 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

White blood cells
(count: 103 cells/µL of
blood) (average)

14.3 10.8 10.1 8.4 6.2 8.0

Comorbidities Lymphocytes (103 cells/
µL of blood and
%) (average)

0.7 (6%) 0.9 (10%) 1.0 (13%) 1.4 (16%) 1.6 (27%) 2.4 (29.3%)

Average number of
all comorbidities

3.5 2.9 2.8 1.9 1.6 0.7

Diabetes 14 (54%) 9 (60%) 13 (62%) 29 (45%) 4 (33%) 0 (0%)

Hypertension (HTN) 16 (62%) 6 (40%) 9 (43%) 18 (28%) 4 (33%) 1 (11%)

Cardiovascular
disease (CVD)

17 (65%) 6 (40%) 6 (29%) 13 (20%) 3 (25%) 0 (0%)

Coronary artery
disease (CAD)

12 (46%) 5 (33%) 7 (33%) 12 (19%) 2 (17%) 0 (0%)

Kidney diseases
(CKD/ESRD)

7 (27%) 4 (27%) 6 (29%) 7 (11%) 1 (8%) 0 (0%)

Asthma/COPD 9 (35%) 1 (7%) 3 (14%) 12 (19%) 0 (0%) 1 (11%)

Obesity 12 (46%) 12 (80%) 7 (33%) 29 (45%) 4 (33%) 4 (44%)

Cancer 4(15%) 0(0%) 2(10%) 6(9%) 1(8%) 0 (0%)
fr
Unvaccinated patients (n = 147) were scored on a scale of 0–5 based on the severity of COVID-19 symptoms, regular hospital admission, intensive care unit (ICU) admission and death (severity
score). Severity scores 0: asymptomatic patients who had no symptoms despite being tested positive for SARS-CoV-2 (ASYMP). Patients who were SARS-CoV-2 infected and developed
symptoms (SYMP) were divided into four categories. Severity 1: patients who were screened at the hospital for COVID-19 but did not stay for regular admission. Severity 2: patients who were
screened at the hospital for COVID-19 and went to non-ICU regular admission to treat their symptoms. Severity 3: patients who went to intensive ICU. Severity 4: patients who went to ICU with
life support (i.e., mechanical ventilation at any point during their stay). Severity 5: patients who died from direct COVID-19 complications. The parameters displayed in the table (demographic
features, HLA genotyping, clinical parameters, and prevalence of comorbidities) represent the number and percentages of patients within each disease severity. For the age parameter, median
values are shown for each disease severity along with ranges (between brackets). The time between the onset of symptoms and the blood draw is shown as day-average numbers. The total number
of comorbidities is the average of the sum of each patient’s comorbidities.
ontiersin.org

https://doi.org/10.3389/fimmu.2024.1343716
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Coulon et al. 10.3389/fimmu.2024.1343716
A*02:01+/HLA-DRB1*01:01+ unexposed pre-pandemic healthy

individuals (UPPHI, 8 men, 7 women; median age, 54 (20–76)] as

controls to measure recalled SARS-CoV-2 cross-reactive T-cell

responses. The class-II HLA status of each patient was first

screened for HLA-DRB1*01:01 by PCR (Supplementary Figure

1A) (51). For class-I HLA, the screening was first performed

(two-digit level) by HLA-A*02 flow cytometry staining (data not

shown, mAbs clone BB7.2, BioLegend, San Diego, CA). The four-

digit class-I HLA-A*02:01 subtype was subsequently screened by

PCR (Supplementary Figure 1B) on blood samples (52).
T-cell epitopes screening, selection, and
peptide synthesis

CCCs/SARS-CoV-2 cross-reactive peptide epitopes from 12

SARS-CoV-2 proteins, including 27 9-mer long CD8+ T-cell

epitopes (ORF1ab84–92, ORF1ab1675–1683, ORF1ab2210–2218,

ORF1ab2363–2371, ORF1ab3013–3021, ORF1ab3183–3191, ORF1ab3732–

3740, ORF1ab4283–4291, ORF1ab5470–5478, ORF1ab6419–6427,

ORF1ab6749–6757, S2–10, S691–699, S958–966, S976–984, S1000–1008, S1220–

1228, E20–28, E26–34, M52–60, M89–97, ORF63–11, ORF7b26–34,

ORF8a31–39, ORF8a73–81, ORF103–11, and ORF105–13) and 16 13-

mer long CD4+ T-cell epitopes (ORF1a1350–1365, ORF1a1801–1815,

ORF1ab5019–5033, ORF1ab6088–6102, ORF1ab6420–6434, S1–13, E20–34,

E26–40, M176–190, ORF612–26, ORF7a1–15, ORF7a3–17, ORF7a98–112,

ORF7b8–22, ORF8b1–15, and N388–403) that we formerly identified

were selected as we previously described (1) (Table 2 and

Supplementary Table 1). We used the Epitope Conservancy

Analysis tool to compute the degree of identity of CD8+ and

CD4+ T-cell epitopes within a given protein sequence of SARS-

CoV-2 set at 100% identity level (1) (Table 2 and Supplementary

Tables 1, 2). Peptides were synthesized (21st Century Biochemicals,

Inc., Marlborough, MA), and the purity of peptides determined by

both reversed-phase high-performance liquid chromatography and

mass spectroscopy was over 95%.
Blood differential test

Total white blood cell (WBC) count and lymphocyte count per

microliter of blood were performed by the clinicians at the

University of California Irvine Medical Center, using a

CellaVision™ DM96 automated microscope. Monolayer smears

were prepared from anticoagulated blood and stained using the

May Grunwald Giemsa (MGG) technique. Subsequently, slides

were loaded onto the DM96 magazines and scanned using a ×10

objective focused on nucleated cells to record their exact position.

Images were obtained using the ×100 oil objective and analyzed by

artificial neural network (ANN).
Peripheral blood mononuclear cells
isolation and T-cell stimulation

Peripheral blood mononuclear cells (PBMCs) from COVID-19

patients were isolated from the blood using Ficoll (GE Healthcare)
Frontiers in Immunology 05162
density gradient media and transferred into 96-well plates at a

concentration of 2.5 × 106 viable cells per ml in 200 µl (0.5 × 106

cells per well) of RPMI-1640 media (Hyclone) supplemented with

10% (v/v) FBS (HyClone), sodium pyruvate (Lonza), L-glutamine,

nonessential amino acids, and antibiotics (Corning). A fraction of

the blood was kept separated to perform HLA genotyping of the

patients and select only the HLA-A*02:01 and/or DRB1*01:01

positive individuals (Supplementary Figure 1). Fresh peripheral

blood mononuclear cells (PBMCs) were used in this study, as

they generally have higher viability and functionality compared to

frozen PBMCs. Freezing and thawing can lead to cell damage and

loss of T-cell functionality, which may affect the accuracy and

reliability of experimental results. Frozen PBMCs may exhibit

altered activation status compared to fresh cells. Cryopreservation

can induce stress responses in cells, leading to changes in their

activation state and potentially affecting immune response assays.

In the context of COVID-19 research, where precise

characterization of immune responses is crucial for understanding

disease pathogenesis, vaccine development, and treatment

strategies, using fresh PBMCs ensures the accuracy and reliability

of experimental results. A side-by-side comparison of frozen and

fresh PBMCs and pre-pandemic healthy control PBMCs yielded no

significant difference. PBMCs were stimulated with 10 µg/ml of

each one of the 43 individual CCCs/SARS-CoV-2 cross-reactive

peptide epitopes (27 CD8+ T-cell peptides and 16 CD4+ T-cell

peptides) and incubated in a humidified chamber with 5% CO2 at

37°C (Supplementary Figure 2A). Post-incubation, cells were

stained by flow cytometry analysis or transferred onto IFN-g
ELISpot plates. The same isolation protocol was followed for HD

samples obtained in 2018. Ficoll was kept frozen in liquid nitrogen

in FBS DMSO 10%; after thawing, HD PBMCs were stimulated

similarly for the IFN-g ELISpot technique.
ELISpot assay

COVID-19 patients were first screened for their HLA status

(DRB1*01:01+ positive = 92 out of 600 tested, HLA-A*02:01+

positive = 71, DRB1*01:01+ and HLA-A*02:01+ positive = 16)

(Supplementary Figure 1). The 92 DRB1*01:01 positive

individuals were then used to assess the CD4+ T-cell response

against CCCs/SARS-CoV-2 cross-reactive class-II restricted

epitopes by IFN-g ELISpot (Supplementary Figure 2). Similarly,

we assessed the CD8+ T-cell response against our CCCs/SARS-

CoV-2 cross-reactive class-I restricted epitopes in the 71 HLA-

A*02:01 positive individuals representing different disease severity

categories (Table 1).

All ELISpot reagents were filtered through a 0.22-µm filter.

Wells of 96-well Multiscreen HTS Plates (Millipore, Billerica, MA)

were pre-wet with 30% ethanol for 60 s and then coated with 100 µl

primary anti-IFN-g antibody solution (10 µg/ml of 1-D1K coating

antibody from Mabtech, Cincinnati, OH) OVN at 4°C. After

washing, the plate was blocked with 200 µl of RPMI media plus

10% (v/v) FBS for 2 h at room temperature to prevent nonspecific

binding. After 24 h, following the blockade, the peptide-stimulated

cells from the patient’s PBMCs (0.5 × 106 cells/well) were
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TABLE 2 Percentages of identity and similarity scores (Ss) between CCCs/SARS-CoV-2 cross-reactive CD4+ and CD8+ T cell epitopes.

Peptide-
epitope
name/
position

SARS-CoV-2
corresponding

protein

SARS-CoV-2
peptide-
epitope
sequence

Correlation
coefficient

(R)*

Slope
(S)*

Significance
(i.e.,

p<0.05)?
Y/N

Average IFNg-
SPOTs in HD
(measure of

observed T-cell
cross-reactive
response in

HD individuals)

CD4+
specific

SARS-CoV-2
peptides
(class-II
HLA-

DRB1*01:01
restricted
epitopes)

ORF1a1350–
1365

Non-structural
protein NSP3

KSAFYILPSIISNEK
−0.9418 −35.91

Y
52.5

ORF1a1801–
1815

Non-structural
protein NSP3

ESPFVMMSAPPAQYE
−0.9480 −28.04

Y
20.5

ORF1ab5019–
5033

RdRP
polymerase NSP12

PNMLRIMASLVLARK −0.4115 −4.24 N
7.1

ORF1ab6088–
6102

Non-structural
protein NSP14

RIKIVQMLSDTLKNL
−0.9581 −23.49

Y
10.6

ORF1ab6420–
6434

Non-structural
protein NSP14

LDAYNMMISAGFSLW
−0.8711 −18.78

Y
3.1

S1–13

Spike structural
protein

(Signal peptide)
MFVFLVLLPLVSS

−0.9262 −34.31
Y

39.1

E20–34
Envelope

structural protein
FLAFVVFLLVTLAIL

−0.8348 −18.83
Y

3.6

E26–40
Envelope

structural protein
FLLVTLAILTALRLC

−0.9172 −25.61
Y

12.6

M176–190
Membrane

structural protein
LSYYKLGASQRVAGD

−0.9421 −41.26
Y

40.7

ORF612–26
ORF6

accessory protein
AEILLIIMRTFKVSI

−0.9378 −31.67
Y

41.0

ORF7a1–15
ORF7a

accessory protein
MKIILFLALITLATC

−0.9390 −17.96
Y

5.1

ORF7a3–17
ORF7a

accessory protein
IILFLALITLATCEL

−0.8915 −17.76
Y

2.8

ORF7a98–112
ORF7a

accessory protein
SPIFLIVAAIVFITL

−0.6833 −9.343
N

1.8

ORF7b8–22
ORF7b

accessory protein
DFYLCFLAFLLFLVL

−0.8715 −21.66
Y

3.2

ORF8b1–15
ORF8

accessory protein
MKFLVFLGIITTVAA

−0.9191 −29.04
Y

32.4

N388–403
Nucleocapsid

structural protein
KQQTVTLLPAADLDDF

−0.8905 −32.13
Y

23.4

CD8+
specific

SARS-CoV-2
peptides
(class-I
HLA-
A*02:01
restricted
epitopes)

ORF1ab84–92
Non-structural
protein NSP1

VMVELVAEL
−0.8984 −20.28

Y
1.5

ORF1ab1675–
1683

Non-structural
protein NSP3

YLATALLTL
−0.9469 −38.91

Y
54.6

ORF1ab2210–
2218

Non-structural
protein NSP3

CLEASFNYL –0.7327 –9.93 N
0.7

ORF1ab2363–
2371

Non-structural
protein NSP3

WLMWLIINL
–0.8962 –14.36

Y
9.9

ORF1ab3013–
3021

Non-structural
protein NSP4

SLPGVFCGV –0.5539 –3.89 N
20.4

FLLNKEMYL –0.8314 –18.60 Y 15.5

(Continued)
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TABLE 2 Continued

Peptide-
epitope
name/
position

SARS-CoV-2
corresponding

protein

SARS-CoV-2
peptide-
epitope
sequence

Correlation
coefficient

(R)*

Slope
(S)*

Significance
(i.e.,

p<0.05)?
Y/N

Average IFNg-
SPOTs in HD
(measure of

observed T-cell
cross-reactive
response in

HD individuals)

ORF1ab3183–
3191

Non-structural
protein NSP4

ORF1ab3732–
3740

Non-structural
protein NSP6

SMWALIISV
–0.8909 –19.89

Y
41.0

ORF1ab4283–
4291

Non-structural
protein NSP10

YLASGGQPI
–0.9269 –30.27

Y
50.2

ORF1ab5470–
5478

Non-structural
protein NSP13

KLSYGIATV –0.4496 –7.852 N
55.2

ORF1ab6419–
6427

Non-structural
protein NSP14

YLDAYNMMI
–0.9026 –25.27

Y
45.7

ORF1ab6749–
6757

Non-structural
protein NSP15

LLLDDFVEI
–0.9460 –35.39

Y
55.5

S2–10

Spike structural
protein

(Signal peptide)
FVFLVLLPL

–0.9541 –32.27
Y

43.9

S691–699

Spike structural
protein (S1/
S2 cleavage)

SIIAYTMSL –0.7151 –13.90 N
17.7

S958–966

Spike structural
protein (S2: between

HR1 and HR2)
ALNTLVKQL

–0.9425 –34.44
Y

40.2

S976–984

Spike structural
protein (S2: between

HR1 and HR2)
VLNDILSRL –0.6020 –24.77 N

62.8

S1000–1008

Spike structural
protein (S2: between

HR1 and HR2)
RLQSLQTYV

–0.9408 –34.98
Y

51.0

S1220–1228

Spike structural
protein (CT:

cytoplasmic domain)
FIAGLIAIV

–0.9488 –52.81
Y

72.1

E20–28
Envelope

structural protein
FLAFVVFLL

–0.8656 –17.72
Y

21.5

E26–34
Envelope

structural protein
FLLVTLAIL

–0.9408 –31.78
Y

32.1

M52–60
Membrane

structural protein
IFLWLLWPV

–0.9083 –27.55
Y

31.1

M89–97
Membrane

structural protein
GLMWLSYFI

–0.9141 –22.70
Y

23.6

ORF63–11
ORF6

accessory protein
HLVDFQVTI

–0.8881 –18.77
Y

21.9

ORF7b26–34
ORF7b

accessory protein
IIFWFSLEL

–0.8960 –18.32
Y

11.9

ORF8a31–39
ORF8

accessory protein
YVVDDPCPI

–0.8756 –16.70
Y

18.6

ORF8a73–81
ORF8

accessory protein
YIDIGNYTV

–0.8775 –15.67
Y

17.1

ORF103–11 YINVFAFPF –0.9539 –38.33 Y 44.6

(Continued)
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transferred into the ELISpot-coated plates. PHA-stimulated or non-

stimulated cells (DMSO) were used as positive or negative controls

of T-cell activation, respectively. Upon incubation in a humidified

chamber with 5% CO2 at 37°C for an additional 48 h, cells were next

washed using PBS and PBS-Tween 0.02% solution. Next, 100 µl of

biotinylated secondary anti-IFN-g antibody (1 µg/ml, clone 7-B6-1,

Mabtech) in blocking buffer (PBS 0.5% FBS) was added to each well.

Following a 2-h incubation followed by washing, wells were

incubated with 100 µl of HRP-conjugated streptavidin (1:1,000)

for 1 h at room temperature. Lastly, wells were incubated for 15–30

min with 100 µl of TMB detection reagent at room temperature, and

spots were counted both manually and by an automated ELISpot

reader counter (ImmunoSpot Reader, Cellular Technology, Shaker

Heights, OH).
Flow cytometry analysis

Surface markers detection and flow cytometry analysis were

performed on 147 patients after 72 h of stimulation with each

CCCs/SARS-CoV-2 cross-reactive class-I or class-II restricted
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peptide; PBMCs (0.5 × 106 cells) were stained (Supplementary

Figure 2). First, the cells were stained with a live/dead fixable dye

(Zombie Red dye, 1/800 dilution—BioLegend, San Diego, CA) for

20 min at room temperature, to exclude dying/apoptotic cells.

Subsequently, cells were stained for 45 min at room temperature

with five different HLA-A*02*01 restricted tetramers and/or five

HLA-DRB1*01:01 restricted tetramers (PE labeled) specific toward

the CCCs/SARS-CoV-2 cross-reactive CD8+ T-cell epitopes

Orf1ab2210–2218, Orf1ab4283–4291, S976–984, S1220–1228, and ORF103–

11 and toward the CCCs/SARS-CoV-2 cross-reactive CD4+ T-cell

epitopes ORF1a1350–1365, S1–13, E26–40, M176–190, and ORF612–26,

respectively. Cells were alternatively stained with the EBV BMLF-

1280–288-specific tetramer for controls (53) (Supplementary Figure

3). We optimized our tetramer staining according to protocol

instructions published by Dolton et al. (54). We stained HLA-

A*02*01- HLA-DRB1*01:01-negative patients with our 10

tetramers as a negative control aiming to assess tetramers staining

specificity. Subsequently, we used anti-human antibodies for

surface-marker staining: anti-CD45 (BV785, clone HI30—

BioLegend), anti-CD3 (Alexa700, clone OKT3—BioLegend), anti-

CD4 (BUV395, clone SK3—BD), anti-CD8 (BV510, clone SK1—
TABLE 2 Continued

Peptide-
epitope
name/
position

SARS-CoV-2
corresponding

protein

SARS-CoV-2
peptide-
epitope
sequence

Correlation
coefficient

(R)*

Slope
(S)*

Significance
(i.e.,

p<0.05)?
Y/N

Average IFNg-
SPOTs in HD
(measure of

observed T-cell
cross-reactive
response in

HD individuals)

ORF10
accessory protein

ORF105–13
ORF10

accessory protein
NVFAFPFTI

–0.9477 –25.64
Y

41.5
*To assess (for each individual SARS-CoV-2 epitope) the magnitude of the correlation between the breadth of this epitope-specific T-cell response and the protection against severe COVID-19
Matching CCCs peptides were chosen after combining both MSA and ECT analysis (see Materials and methods). Each panel represents the alignment of epitopes from SARS-CoV-2 and the four
main and seasonal a and b species of common cold coronavirus (CCCs) (i.e., a-CCC-NL63, a-CCC-229E, b-CCC-HKU1, and b-CCC-OC43). The SARS-CoV-2 peptide sequence is set as 100%
identity. The amino acids color code was generated with Gecos software (https://gecos.biotite-python.org) using the following parameters: geckos –matrix BLOSUM62 –min 60 –max 75 –f. The
distance between two amino acids in the substitution matrix (BLOSUM62) corresponds to the perceptual visual differences in the color scheme. Similarity scores (SS) based on such matrix are a
good predictive measure of potential cross-reactivity (along with % of peptide identity). SS ≥ 0.80 and %id ≥ 67% are in red. Identity percentages, similarity scores, conservation, and consensus
sequences are indicated in each panel. For each SARS-CoV-2 epitope, the significance (p < 0.05) of each correlation is also indicated, along with the magnitude of the T-cell cross-reactive response
measured by IFN-g ELISpots in HD individuals.
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BioLegend), anti-TIGIT (PercP-Cy5.5, clone A15153G—

BioLegend), anti-TIM-3 (BV 711, clone F38-2E2—BioLegend),

anti-PD1 (PE-Cy7, clone EH12.1—BD), anti-CTLA-4 (APC,

clone BNI3—BioLegend), anti-CD137 (APC-Cy-7, clone 4B4-1—

BioLegend), and anti-CD134 (BV650, clone ACT35—BD). mAbs

against these various cell markers were added to the cells, either ex

vivo or in vitro, in phosphate-buffered saline (PBS) containing 1%

FBS and 0.1% sodium azide [fluorescence-activated cell sorter

(FACS) buffer] and incubated for 30 min at 4°C. Cells were then

washed twice with FACS buffer and fixed with paraformaldehyde

4% (PFA, Affymetrix, Santa Clara, CA). A total of ∼200,000
lymphocyte-gated PBMCs (140,000 alive CD45+) were acquired

by Fortessa X20 (Becton Dickinson, Mountain View, CA) and

analyzed using FlowJo software (TreeStar, Ashland, OR). The

gating strategy is detailed in Supplementary Figure 2B.
TaqMan quantitative polymerase reaction
assay for the detection of CCC species in
UPPHI and in COVID-19 patients

To detect common cold coronavirus co-infection in COVID-19

patients, Taqman PCR assays were performed on a total of 85

patients distributed into each different category of disease severity

(9 ASYMP, 6 patients of category 1, 32 patients of category 2, 9

patients of category 3, 15 patients of category 4, and 14 patients of

category 5). Nucleic acid was first extracted from each

nasopharyngeal swab sample using Purelink Viral RNA/DNA

mini kit (Thermo Fisher Scientific, Waltham, MA) according to

the manufacturer’s instructions. Subsequently, extracted RNA

samples were quantified using Qubit and BioAnalyzer. cDNA was

synthesized from 10 mL of RNA eluate using random hexamer

primers and SuperScript II Reverse Transcriptase (Applied

Biosystems, Waltham, MA). The subsequent RT-PCR screening

of the enrolled subjects for the four CCCs was performed using

specific sets of primers and probes (55).

CCC-229E, CCC-OC43, and CCC-NL63 RT-PCR assays were

performed using the following conditions: 50°C for 15 min followed

by denaturation at 95°C for 2 min, 40 cycles of PCR performed at

95°C for 8 s, extending and collecting a fluorescence signal at 60°C

for 34 s (56). For CCC-HKU1, the amplification conditions were

48°C for 15 min, followed by 40 cycles of 94°C for 15 s and 60°C for

15 s. For each virus, when the Ct-value generated was <35, the

specimen was considered positive. When the Ct-value was relatively

high (35 ≤ Ct < 40), the specimen was retested twice and considered

positive if the Ct-value of any retest was <35 (57).
Identity and similarity analysis of CCCs/
SARS-CoV-2 cross-reactive epitopes

To assess the % identity (%id) of CCCs/SARS-CoV-2 cross-

reactive CD4+ and CD8+ T-cell peptide epitopes, we first identified

the best matching CCCs peptide across the CCCs proteomes
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(Table 2). The full CCCs proteomes sequences were obtained

from the National Center for Biotechnology Information (NCBI)

GenBank [MH940245.1 (CCC-HUK1), MN306053.1 (CCC-OC43),

KX179500.1 (CCC-NL63), and MN306046.1 (CCC-229E)]. We

processed this in the following three steps. (1) Corresponding

CCCs peptides were determined after protein sequence

alignments of all four homologous CCCs proteins plus the SARS-

CoV-2 related one using various multiple sequences alignments

(MSA) algorithms ran in JALVIEW, MEGA11, and M-coffee

software’s (i.e., ClustalO, Kalign3, and M-coffee—the latter

computing alignments by combining a collection of multiple

alignments from a library constituted with the following

algorithms: T-Coffee, PCMA, MAFFT, ClustalW, Dialigntx, POA,

MUSCLE, and Probcons). Furthermore, we confirmed our results

with global and local pairwise alignments (Needle and Water

algorithms ran in Biopython) performed to confirm the results. In

case of obtaining different results with the various algorithms, the

epitope sequence with the highest BLOSUM62-sum score

compared to the SARS-CoV-2 epitope set as reference was

selected (Table 2 and Supplementary Tables 1, 2). We calculated

the % of identity and similarity score Ss with its related SARS-CoV-

2 epitope, for each of these CCCs peptides (Supplementary Tables

1-3). The peptide similarity score Ss calculation is based on the

method reported by Sune Frankild et al. (58) and the BLOSUM62

mat r i x t o ca l cu l a t e a BLOSUM62 sum (us ing the

Bio.SubsMat.MatrixInfo package in Biopython) between a pair of

peptides (peptide “x” from SARS-CoV-2 and “y” from one CCC)

and compared their similarity. 0 ≤ Ss ≤ 1: the closest Ss is to 1, the

highest is the potential for T-cell cross-reactivity response toward

the related pair of peptides (58). We used a threshold of Ss≥0.8 to

discriminate between highly similar and non-similar peptides. (2)

Then, we examined if other parts of each of the CCCs proteome

(without restricting our search only to peptides present in CCCs

homologous proteins) could contain better matching peptides than

the CCCs peptides reported in Supplementary Tables 1-3. First, for

each one of our 16 CD4+ and 27 CD8+ SARS-CoV-2 epitopes, we

spanned the entire proteome of each CCCs using the Epitope

Conservancy Tool (ECT: http://tools.iedb.org/conservancy/—with

a conservancy threshold of 20%). All the CCCs peptides from the

top query (i.e., with the highest % of identity) were reported for

every four CCCs in Supplementary Tables 1-3. Second, among these

returned top queries (peptides with the same highest % identity), we

picked the one with the highest similarity score Ss (bolded in

Supplementary Tables 1-3—right column). (3) We compared this

peptide with the one previously found in Supplementary Table 1

based on MSA. When both methods returned the same peptide

(from the same protein), we kept it (peptides highlighted in beige in

Supplementary Tables 1-3). When both matching peptides (using

the two different methods) were found to be different, we compared

(i) %idMSA with %idECT and (ii) SsMSA with SsECT. If %idMSA ≤ %

idECT but S
s
MSA ≥ SsECT, we kept the CCCs peptide found following

the MSA method; however, if %idMSA ≤ %idECT and SsMSA < SsECT,

we then picked the CCC peptide found using the ECT instead of the

one found using MSA (peptides not highlighted in Supplementary

Tables 1-3).
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Using the %id and the calculated similarity score with the

SARS-CoV-2 epitopes, all related CCCs’ best-matching peptides

are reported in Supplementary Tables 1-3. They were then

evaluated based on their potential to induce a cross-reactive T-

cell response (Supplementary Tables 1-3): (0), CCC best matching

peptide with low to no potential to induce a cross-reactive response

toward the corresponding SARS-CoV-2 epitope and vice versa (%id

with the corresponding SARS-CoV-2 epitope < 67% and similarity

score Ss < 0.8); (0.5), CCC best matching peptide that may induce a

cross-reactive response (%id with the corresponding SARS-CoV-2

epitope ≥ 67% OR similarity score Ss ≥ 0.8); and (1), CCC best-

matching peptide is very likely to induce a cross-reactive response

(%id ≥ 67% and Ss ≥ 0.8).
Identification of potential cross-reactive
peptides in non-CCC human pathogens
and vaccines

We took advantage of the database generated by Pedro A. Reche

(59). Queries to find matching peptides with our SARS-CoV-2-

derived CD4+ and CD8+ epitopes were performed from the data

gathered; only peptides sharing a %id ≥ 67% with our

corresponding SARS-CoV-2 epitope were selected. The

corresponding similarity score Ss was calculated.
Statistical analyses

To assess the linear negative relationship between COVID-19

severity and the magnitude of each SARS-CoV-2 epitope-specific T-

cell response, correlation analysis using GraphPad Prism version 8

(La Jolla, CA) was performed to calculate Pearson correlation

coefficients (R), coefficient of determination (R2), and associated

p-value (correlation statistically significant for p ≤ 0.05). The slope

(S) of the best-fitted line (dotted line) was calculated in Prism by

linear regression analysis. The same statistical analysis was

performed to compare the cross-reactive pre-existing T-cell

response in unexposed pre-pandemic healthy individuals

(UPPHI) with the slope S (magnitude of the correlation between

this epitope-specific T-cell response in SARS-CoV-2-infected

patients and the protection against severe COVID-19). Absolute

WBCs and lymphocyte cell numbers (per µL of blood, measured

through BDT), corresponding lymphocytes percentages/ratio, flow

cytometry data measuring CD3+/CD8+/CD4+ cell percentages and

the percentages detailing the magnitude (Tetramer+ T cell %), and

the quality (% of PD1+/TIGIT+, CTLA-4+/TIM3+ or AIMs+ cells) of

the CD4+ and CD8+ SARS-CoV-2-specific T cells, were compared

across groups and categories of disease severity by one-way

ANOVA multiple tests. ELISpot SFCs data were compared by

Student’s t-tests. Data are expressed as the mean ± SD. Results

were considered statistically significant at p ≤ 0.05. To evaluate

whether the differences in frequencies of RT-PCR positivity to the

four CCCs across categories of disease severity were significant, we

used the Chi-squared test or Fisher’s exact test.
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Results

Higher magnitudes of common cold
coronavirus/SARS-CoV-2 cross-reactive
CD4+ T-cell responses detected in
unvaccinated asymptomatic COVID-
19 patients

We first compared SARS-CoV-2-specific CD4+ T-cell responses

in unvaccinated asymptomatic COVID-19 patients (those individuals

who never develop any COVID-19 symptoms despite being infected

with SARS-CoV-2) to unvaccinated symptomatic (those patients who

developed severe to fatal COVID-19 symptoms) (Figure 1). We used

16 recently identified HLA-DR-restricted CD4+ T-cell epitopes that

are highly conserved between human SARS-CoVs and CCCs (1). We

enrolled 92 unvaccinated HLA-DRB1*01:01+ COVID-19 patients,

who were genotyped using PCR (Supplementary Figure 1) and

divided into six groups, based on the level of severity of their

COVID-19 symptoms (from severity 5 to severity 0, assessed at

discharge). Clinical and demographic characteristics of this cohort of

COVID-19 patients are detailed in Table 1. Fresh PBMCs were

isolated from these COVID-19 patients, on average within 4.8 days

after reporting a first COVID-19 symptom or a first PCR-positive test

(Table 1). PBMCs were then stimulated in vitro for 72 h using each of

the 16 CD4+ T-cell peptide epitopes, as detailed in Materials and

methods and illustrated in Supplementary Figure 2. The frequency of

responding IFN-g-producing CD4+ T cells specific to individual

epitopes was quantified, in each of the six groups of COVID-19

patients, using ELISpot assay (i.e., number of IFN-g-spot forming

CD4+ T cells or “SFCs”) (Figure 1). A positive IFN-g-producing
CD4+ T-cell responses was determined as the mean SFCs > 50 per 0.5

× 106 PBMCs fixed as threshold.

Overall, the highest frequencies of CCCs/SARS-CoV-2 cross-

reactive epitope-specific IFN-g-producing CD4+ T cells were detected

in the unvaccinated COVID-19 patients with less severe disease (i.e.,

severity 0, 1, and 2, Figures 1A, B). In contrast, the lowest frequencies

of CCCs/SARS-CoV-2 cross-reactive IFN-g-producing CD4+ T cells

were detected in unvaccinated severely ill COVID-19 patients

(severity scores 3 and 4) and in unvaccinated COVID-19 patients

with fatal outcomes (severity score of 5, Figures 1A, B).

Pearson correlation analysis was performed to determine the

linear correlation between the magnitude of CD4+ T-cell responses

directed toward each of the 16 highly conserved SARS-CoV-2

epitopes and the severity of COVID-19 symptoms. A negative

correlation is usually considered strong when the coefficient R-

value is between −0.7 and −1. Except for the ORF1ab5019–5033 and

ORF7a98–112 epitopes, we found that a strong positive linear

correlation existed between the high magnitude of IFN-g-
producing CD4+ T-cell responses specific to 14 CD4+ T-cell

epitopes and the “natural protection” observed in unvaccinated

asymptomatic COVID-19 patients (Figures 1A, C). This positive

correlation existed regardless of whether CD4+ T cells cross-

recognized structural, non-structural, or accessory SARS-CoV-2

antigens. Cross-reactive IFN-g-producing CD4+ T-cell responses,

specific to M176–190, ORF1a1350–1365, S1–13, N388–403, and ORF612–26,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1343716
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Coulon et al. 10.3389/fimmu.2024.1343716
and to a slightly lesser extent to ORF8b1–15 and ORF1a1801–1815,

were associated with a low COVID-19 severity score (i.e., negatively

correlated with an R close to −1) and a very strong negative slope

(−41.26 < S < −28.04). Comparatively, the CD4+ T-cell responses

against E26–40, ORF1ab6088–6102, ORF7b8–22, E20–34, ORF1ab6420–

6434, ORF7a1–15, and ORF7a3–17 were also negatively associated with

severe disease in patients, but to a lesser degree (relatively less

negative slope: −25.61 < S < −17.76) (Figure 1A and Supplementary

Figure 4). In contrast, no significant correlation was found between

the magnitude of IFN-g-producing CD4+ T-cell responses directed
toward ORF1ab5019–5033 and ORF7a98–112 epitopes and the disease

severity (p > 0.05). For the ORF1ab5019–5033 and ORF7a98–112
epitopes, the slope was comparatively weak: only slightly negative

with S > −10 (Figure 1A and Supplementary Figure 4).

Taken together, these results (i) demonstrate an overall higher

magnitude of CCCs/SARS-CoV-2 cross-reactive CD4+ T-cell

responses present in unvaccinated asymptomatic COVID-19
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patients. In contrast, a lower magnitude of CCCs/SARS-CoV-2

cross-reactive CD4+ T-cell responses were detected in unvaccinated

severely ill COVID-19 patients and to patients with fatal COVID-19

outcomes and (ii) suggest a crucial role of CCCs/SARS-CoV-2 cross-

reactive CD4+ T cells, directed towards structural, non-structural, and

accessory protein antigens, in protection from symptomatic and fatal

Infections in unvaccinated COVID-19 patients.
Higher magnitudes of CD8+ T-cell
responses to common cold coronavirus/
SARS-CoV-2 cross-reactive epitopes
detected in unvaccinated asymptomatic
COVID-19 patients

We next compared the CCCs/SARS-CoV-2 cross-reactive CD8+

T-cell responses in unvaccinated asymptomatic individuals vs.
A B

C

FIGURE 1

IFN-g-producing CD4+ T-cell responses to CCCs/SARS-CoV-2 cross-reactive epitopes in unvaccinated COVID-19 patients with various degrees of
disease severity. PBMCs from HLA-DRB1*01:01-positive COVID-19 patients (n = 92 are HLA-DRB1*01:01-positive out of 600 tested) were isolated
and stimulated for a total of 72 h with 10 µg/ml of each of the previously identified 16 CCCs/SARS-CoV-2 cross-reactive CD4+ T cell epitope
peptides. The number of IFN-g-producing CD4+ T cells was quantified in each of the 92 patients using ELISpot assay. (A) Average/mean numbers (±
SD) of IFN-g-spot forming cells (SFCs) after CD4+ T-cell peptide-stimulation detected in each of the 92 COVID-19 patients divided into six groups
based on disease severity scored 0–5, as described in Materials and methods, and as identified by six columns on a grayscale (black columns =
severity 5, to white columns = severity 0) is shown. Dotted lines represent an arbitrary threshold set as a cutoff of the positive response. A mean SFC
between 25 and 50 SFCs corresponds to a medium/intermediate response, whereas a strong response is defined for mean SFCs > 50 per 0.5 × 106

stimulated PBMCs. (B) Correlation between the overall number of IFN-g-producing CD4+ T cells induced by each of the 16 CCCs/SARS-CoV-2
cross-reactive CD4+ T-cell epitope peptides in each of the six groups of COVID-19 patients with various disease severity. The coefficient of
determination (R2) is calculated from the Pearson correlation coefficients (R). The associated p-value and the slope (S) of the best-fitted line (dotted
line) calculated by linear regression analysis are indicated. The gray-hatched boxes in the correlation graphs extend from the 25th to 75th
percentiles (hinges of the plots) with the median represented as a horizontal line in each box and the extremity of the vertical bars showing the
minimum and maximum values. (C) Representative spots images of the IFN-g-spot forming cells (SFCs) induced by each of the 16 CCCs/SARS-CoV-
2 cross-reactive CD4+ T cell epitope peptides in three representative patients, each falling into one of three groups of disease category: the
unvaccinated asymptomatic COVID-19 patients (ASYMP, severity score 0), unvaccinated COVID-19 patients who developed mild to moderate
disease (severity scores 1 and 2) and unvaccinated severely ill COVID-19 patients and unvaccinated patients with fatal COVID-19 outcomes (severity
scores 3–5). PHA was used as a positive control of T-cell activation. Unstimulated negative control SFCs (DMSO—no peptide stimulation) were
subtracted from the SFC counts of peptides-stimulated cells. Results are representative of two independent experiments and were considered
statistically significant at p ≤ 0.05.
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unvaccinated symptomatic COVID-19 patients (Figure 2). We used

27 recently identified HLA-A*0201-restricted CD8+ T-cell epitopes

that are highly conserved between human SARS-CoVs and CCCs (1).

We enrolled 71 unvaccinated HLA-A*0201+ COVID-19 patients,

who were genotyped using PCR (Supplementary Figure 1) and

divided into six groups based on the severity of COVID-19

symptoms (i.e., severity 5 to severity 0, Table 1). Fresh PBMCs

were isolated from COVID-19 patients on an average of 4.8 days after

reporting initial COVID-19 symptoms or a first PCR-positive test (in

the case of asymptomatic). Subsequently, PBMCs were stimulated in

vitro for 72 h using each of the 27 HLA-A*0201-restricted CD8+ T-

cell peptide epitopes (Supplementary Figure 2). The frequency of

responding IFN-g-producing CD8+ T cells specific to individual

epitopes was quantified, in each of the six groups of COVID-19
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patients, using the ELISpot assay (i.e., number of IFN-g-spot forming

CD8+ T cells or “SFCs”) (Figure 2).

Overall, the highest frequencies of CCCs/SARS-CoV-2 cross-

reactive epitope-specific functional IFN-g-producing CD8+ T

cells (mean SFCs > 50 per 0.5 × 106 PBMCs) were detected in

the three groups of unvaccinated COVID-19 patients who

presented little to no severe COVID-19 symptoms (i.e., severity

0, 1, and 2, Figures 2A, B). In contrast, significantly lower

frequencies of CCCs/SARS-CoV-2 cross-reactive functional

IFN-g-producing CD8+ T cells were detected in the two groups

of unvaccinated severely ill symptomatic COVID-19 patients

(i.e., severity 3 and 4, mean SFCs < 50) and the unvaccinated

COVID-19 patients with fatal outcomes (i.e., severity 5, mean

SFCs < 25).
A B

C

FIGURE 2

IFN-g-producing CD8+ T-cell responses to CCCs/SARS-CoV-2 cross-reactive epitopes in unvaccinated COVID-19 patients with various degrees of
disease severity. PBMCs from HLA-A*02:01-positive COVID-19 patients (n = 71) were isolated and stimulated for a total of 72 h with 10 µg/ml of
each of the previously identified 27 CCCs/SARS-CoV-2 cross-reactive CD8+ T-cell epitope peptides. The number of IFN-g-producing CD8+ T cells
was quantified in each of the 71 patients using ELISpot assay. Panel (A) shows the average/mean numbers (± SD) of IFN-g-spot forming cells (SFCs)
after CD8+ T-cell peptide stimulation detected in each of the 71 COVID-19 patients divided into six groups based on disease severity scored 0–5, as
described in Materials and methods, and as identified by six columns on a grayscale (Black columns = severity 5, to white columns = severity 0).
Dotted lines represent an arbitrary threshold set as a cutoff of the positive response. A mean SFCs between 25 and 50 SFCs corresponds to a
medium/intermediate response, whereas a strong response is defined for mean SFCs > 50 per 0.5 × 106 stimulated PBMCs. (B) Correlation between
the overall number of IFN-g-producing CD8+ T cells induced by each of the 27 CCCs/SARS-CoV-2 cross-reactive CD8+ T-cell epitope peptides in
each of the six groups of COVID-19 patients with various disease severity. The coefficient of determination (R2) is calculated from the Pearson
correlation coefficients (R). The associated p-value and the slope (S) of the best-fitted line (dotted line) calculated by linear regression analysis are
indicated. The gray-hatched boxes in the correlation graphs extend from the 25th to 75th percentiles (hinges of the plots) with the median
represented as a horizontal line in each box and the extremity of the vertical bars showing the minimum and maximum values. (C) Representative
spots images of the IFN-g-spot forming cells (SFCs) induced by each of the 27 CCCs/SARS-CoV-2 cross-reactive CD8+ epitope peptides in three
representative patients, each falling into one of three groups of disease category: the unvaccinated asymptomatic COVID-19 patients (ASYMP,
severity score 0), unvaccinated COVID-19 patients who developed mild to moderate disease (severity scores 1 and 2), and unvaccinated severely ill
COVID-19 patients and unvaccinated patients with fatal COVID-19 outcomes, (severity scores 3–5). PHA was used as a positive control of T-cell
activation. Unstimulated negative control SFCs (DMSO—no peptide stimulation) were subtracted from the SFC counts of peptides-stimulated cells.
Results are representative of two independent experiments and were considered statistically significant at p ≤ 0.05.
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Out of the 27 CD8+ T-cell epitopes, there was a significant

positive linear correlation between CD8+ T-cell responses specific

to 22 epitopes and little to no severe COVID-19 disease (Figures 2A,

B). For these 22 epitopes, the Pearson correlation coefficients (R)

ranged from −0.8314 to −0.9541, and slopes (S) of the best-fitted lines

comprised between −14.36 and −52.81. For the remaining five

epitopes (ORF1ab2210–2218, ORF1ab3013–3021, ORF1ab5470–5478, S691–

699, and S976–984), no significant linear correlation was observed.

Nonetheless, among these five epitopes, the slope for ORF1ab2210–

2218, ORF1ab3013–3021, and ORF1ab5470–5478 was comparatively less

negative (S > −10) (Figures 2A, C and Supplementary Figure 5).

Additionally, although we could not establish any significant linear

correlation between S691–699 and S976–984 epitope-specific CD8
+ T-cell

responses and disease severity, more complex (non-linear)

associations might exist. For example, the magnitude of the S976–

984-specific IFN-g-producing CD8+ T-cell response followed a clear
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downside trend, as the disease severity increased in severely ill

symptomatic COVID-19 patients and patients with fatal outcomes

(i.e., severity 3–5) (Figures 2A, C and Supplementary Figure 5).

Taken together, these results demonstrate that, like SARS-CoV-2-

specific CD4+ T cells, an overall higher magnitude of CCCs/SARS-

CoV-2 cross-reactive CD8+ T-cell responses were present in

asymptomatic COVID-19 patients who never presented any

COVID-19 symptoms, despite being infected. In contrast, a lower

magnitude of CCCs/SARS-CoV-2 cross-reactive CD8+ T-cell

responses was detected in severely ill COVID-19 patients and

patients with fatal COVID-19 outcomes. These observations also

highlight the importance of rapidly mounting strong CCCs/SARS-

CoV-2 cross-reactive CD8+ T-cell responses, directed toward

structural, non-structural, and accessory protein antigens, for

protection against symptomatic and fatal Infections in unvaccinated

COVID-19 patients.
A

B

C

FIGURE 3

Frequencies of white blood cells, lymphocytes, and CD3+/CD4+/CD8+ T cells in the blood of unvaccinated COVID-19 patients with various degrees
of disease severity. (A) numbers of white blood cells (WBCs) and total lymphocytes per µl of blood (left two panels) and percentages and ratios of
total lymphocytes among WBCs (right two panels) measured ex vivo by blood differential test (BDT) in unvaccinated COVID-19 patients with various
degrees of disease severity (n = 147). (B) Averages/means of numbers and frequencies of CD3+ T cells and (C) of total CD4+, and CD8+ T cells
measured by flow cytometry from COVID-19 patients’ PBMCs with various severity scores after 72 h of stimulation with a pool of 16 CD4+ and 27
CD8+ CCCs/SARS-CoV-2 cross-reactive epitope peptides. The right panels show representative dot plots from patients with disease severity scores
from 0 to 5. Data are expressed as the mean ±SD. Results are representative of two independent experiments and were considered statistically
significant at p ≤ 0.05 (one-way ANOVA).
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A broad lymphopenia, leukocytosis, and
low frequencies of CD4+ and CD8+ T cells
specific to highly conserved CCCs/SARS-
CoV-2 cross-reactive epitopes are present
in unvaccinated severely ill symptomatic
COVID-19 patients

We next determined whether the low magnitudes of CCCs/

SARS-CoV-2 cross-reactive CD4+ and CD8+ T-cell responses

detected in unvaccinated severely ill and fatal COVID-19 patients

was a result of an overall deficit in the frequencies of total CD4+ and

CD8+ T cells. Using a blood differential test (BDT), we compared

the absolute numbers of white blood cells (WBCs) and blood-

derived lymphocytes, ex vivo, in the unvaccinated COVID-19

patients (Figure 3A).

A significant increase in the numbers of WBCs was detected in

unvaccinated COVID-19 patients with fatal outcomes, (i.e., patients

with severity 5, ∼1.5- to ∼2.6-fold) when compared with all the
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remaining five groups of unvaccinated COVID-19 patients (i.e.,

patients with severity 0, 1, 2, 3, and 4; p ≤ 0.02, Figure 3A—left

panel). However, significantly lower absolute numbers of total

lymphocytes were detected in the blood of unvaccinated COVID-

19 patients with fatal outcomes (i.e., patients with severity 5)

compared to unvaccinated COVID-19 patients with mild disease

(i.e., patients with severity 1 and 2: ∼1.9- to ∼2.3-fold decrease—p <

0.02) or to asymptomatic patients with no disease (i.e., patients with

severity 0: ∼3.3-fold decrease—p < 0.0001) (Figure 3A—second

panel from left). As a result, the more severe the disease, the lower

the percentage of blood-derived lymphocytes within WBCs

(Figure 3A—third panel from left), and the lower the ratio of

lymphocyte/WBCs (Figure 3A—fourth panel from left).

Overall, these results indicate that unvaccinated severely ill

COVID-19 patients and unvaccinated COVID-19 patients with

fatal outcomes not only had a general leukocytosis but also

lymphopenia, which developed as early as 4.8 days after reporting

their first symptoms or their first PCR-positive test.
A

B

FIGURE 4

Frequencies of CCCs/SARS-CoV-2 cross-reactive CD4+ and CD8+ T cells in unvaccinated COVID-19 patients with various degrees of disease
severity. PBMCs from HLA-DRB1*01:01-positive (n = 92) (A) or HLA-A*02:01-positive (n = 71) (B) unvaccinated COVID-19 patients with various
degrees of disease severity were isolated and stimulated for 72 h with 10 mg/ml of indicated CCCs/SARS-CoV-2 cross-reactive CD4+ and CD8+

epitope peptides. The induced CD4+ and CD8+ T cells were then stained and analyzed by flow cytometry. The indicated epitope peptides were
chosen among the CCCs/SARS-CoV-2 cross-reactive 16 CD4+ and 27 CD8+ epitope peptides based on tetramer availability. Panel (A) shows
representative dot plots (left panels) and average frequencies of CCCs/SARS-CoV-2 cross-reactive CD4+ T cells (right panel) detected in three
representatives COVID-19 patients, each falling into one of three groups of disease category: the unvaccinated asymptomatic COVID-19 patients
(ASYMP, severity score 0), unvaccinated COVID-19 patients who developed mild to moderate disease (severity scores 1 and 2), and unvaccinated
severely ill COVID-19 patients and unvaccinated patients with fatal COVID-19 outcomes (severity scores 3–5). Panel (B) shows representative dot
plots (left panels) and average frequencies of CCCs/SARS-CoV-2 cross-reactive CD8+ T cells (right panel) detected in three representatives of
COVID-19 patients and in panel (A). Data are expressed as the mean ± SD. Results are representative of two independent experiments and were
considered statistically significant at p ≤ 0.05 (one-way ANOVA).
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Furthermore, we found a significant CD3+ T-cell lymphopenia

positively associated with the onset of severe disease in

unvaccinated COVID-19 patients (Figure 3B). On average, the

two groups of unvaccinated severely ill COVID-19 patients and

unvaccinated COVID-19 patients with fatal outcomes (i.e., patients

with severity 3, 4, and 5) had a ∼1.9-fold decrease in absolute

number of CD3+ T cells compared to three groups of unvaccinated

asymptomatic COVID-19 patients with low to no severe disease

(i.e., patients with severity 0, 1, and 2, Figure 3B, p < 0.001).

Similarly, the numbers of total CD4+ and CD8+ T cells within

CD3+-gated cells were reduced early in the two groups of

unvaccinated severely ill COVID-19 patients and unvaccinated

COVID-19 patients with fatal outcomes (i.e., patients with

severity 3, 4, and 5) compared to the three groups of

unvaccinated asymptomatic COVID-19 patients with low to no

severe disease (Figure 3C—left column graph).

Finally, we determined the frequencies of SARS-CoV-2-specific

CD4+ and CD8+ T cells following a 72-h in vitro stimulation with

individual CD4+ and CD8+ T epitope peptides (as illustrated in

Supplementary Figure 2). We used tetramers specific to five highly

conserved CCCs/SARS-CoV-2 cross-reactive DRB1*01:01-

restricted CD4+ T-cell epitopes ORF1a1350–1365, S1–13, E26–40,

M176–190, and ORF612–26 (Figure 4A) and five highly conserved

CCCs/SARS-CoV-2 cross-reactive HLA-A*02:01-restricted CD8+

T-cell epitopes Orf1ab2210–2218, Orf1ab4283–4291, S976–984, S1220–1228,

and ORF103–11 (Figure 4B).

We found a significant decrease in the frequencies of CD4+ T cells

specific to all the five highly conserved CCCs/SARS-CoV-2 cross-

reactive DRB1*01:01-restricted epitopes in the three groups of

unvaccinated severely ill COVID-19 and unvaccinated COVID-19

patients with fatal outcomes (i.e., patients with severity 3, 4, and 5)

compared to the remaining three groups of unvaccinated COVID-19

patients with low to no severe disease (i.e., patients with severity 1, 2—

p ≤ 0.01) and to unvaccinated asymptomatic COVID-19 patients

(severity 0—p ≤ 0.002) (Figure 4A). Similarly, we found a significant

decrease in the frequencies of CD8+ T cells specific to three out the

five highly conserved CCCs/SARS-CoV-2 cross-reactive HLA-

A*02:01-restricted CD8+ T-cell epitopes (Orf1ab4283–4291, S1220–1228,

and ORF103–11) in the three groups of unvaccinated severely ill

COVID-19 and unvaccinated COVID-19 patients with fatal

outcomes (i.e., patients with severity 3, 4, and 5) compared to

unvaccinated COVID-19 patients with low to no severe disease (i.e.,

patients with severity 1 and 2—p ≤ 0.03) and to unvaccinated

asymptomatic COVID-19 patients (severity 0—p < 0.001)

(Figure 4B). In contrast, similar frequencies of EBV BMLF-1280–288-

specific CD8+ T cells were detected across the six groups of

unvaccinated COVID-19 patients, regardless of disease severity,

indicating that the decrease in the frequencies of T cells in severely

ill COVID-19 patients specifically affected highly conserved and

CCCs/SARS-CoV-2 cross-reactive T cells (Supplementary Figure 3A).

Taken together, our findings demonstrate that, compared to

asymptomatic COVID-19 patients who presented with little to no

disease, the severely ill patients and patients with fatal COVID-19

outcomes showed the following: (i) a broad and early lymphopenia

(and leukocytosis), (ii) a decrease of bulk CD3+ T-cell lymphocytes

number (equally affecting CD4+ and CD8+ T cells), and (iii) a
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reduction in CD4+ and CD8+ T cells specific to highly conserved

CCCs/SARS-CoV-2 cross-reactive epitopes from structural, non-

structural, and accessory protein antigens.
Unvaccinated severely ill COVID-19
patients present high frequencies of
phenotypically and functionally exhausted
CCCs/SARS-CoV-2 cross-reactive CD4+

and CD8+ T cells, detected both ex vivo
and in vitro

We next compared the phenotype and function of CD4+ and

CD8+ T cells specific to CCCs/SARS-CoV-2 cross-reactive epitopes

in unvaccinated asymptomatic COVID-19 patients, with little to no

disease, versus the unvaccinated severely ill COVID-19 patients and

the unvaccinated COVID-19 patients with fatal outcomes.

Co-expression of four main exhaustion markers (PD-1, TIM3,

TIGIT, and CTLA4) and two activation markers (AIMs) CD137 (4-

1BB) and CD134 (OX40) were compared using FACS and tetramers

specific to five highly conserved CCCs/SARS-CoV-2 cross-reactive

DRB1*01:01-restricted CD4+ T-cell epitopes, ORF1a1350–1365, S1–13,

E26–40, M176–190, and ORF612–26 both in vivo (Figure 5) and ex vitro

(Supplementary Figure 6) and five highly conserved CCCs/SARS-

CoV-2 cross-reactive HLA-A*02:01-restricted CD8+ T-cell epitopes,

Orf1ab2210–2218, Orf1ab4283–4291, S976–984, S1220–1228, and ORF103–11
both in vitro (Figure 6) and ex vivo (Supplementary Figure 6).

We detected significantly higher frequencies of phenotypically

exhausted SARS-CoV-2-specific CD4+ T cells in unvaccinated

symptomatic COVID-19 patients with high severity scores (i.e.,

patients with severity 3, 4, and 5) compared to unvaccinated

asymptomatic COVID-19 patients (i.e., patients with severity 0)

(Figure 5A—up to ∼6.9-fold increase for ORF612–26-specific PD-

1+TIGIT+CD4+ T cells and up to ∼7.8-fold increase for M176–190-

specific TIM-3+CTLA-4+CD4+ T cells). Similarly, there were

significantly higher frequencies of phenotypically exhausted CD8+

T cells in unvaccinated severely ill COVID-19 and patients with

fatal outcomes compared to unvaccinated asymptomatic COVID-

19 patients (Figure 6A—up to ∼3.6-fold increase for S1220–1228-

specific PD-1+TIGIT+CD8+ T cells and up to ∼4.6-fold increase for

S1220–1228- and ORF103-11-specific TIM-3+CTLA-4+CD8+ T cells).

Overall, except for Orf1ab2210–2218- and S976–984-specific-CD8
+ T

cells, the unvaccinated severely ill and fatal patients (i.e., patients

with severity 3, 4, and 5) had significantly higher frequencies of

exhausted CD8+ T cells co-expressing PD-1+TIGIT+ or TIM-

3+CTLA-4 compared to unvaccinated asymptomatic COVID-19

patients with little to no disease (i.e., patients with severity 0, 1, and

2). The Orf1ab2210–2218- and S976–984-specific-CD8
+ T cells did not

demonstrate any significantly higher phenotypic exhaustion in

unvaccinated severely ill COVID-19 patients. We confirmed ex

vivo that the unvaccinated severely ill and fatal patients (i.e.,

patients with severity 3, 4, and 5) had significantly higher

frequencies of exhausted CD8+ T cells co-expressing PD-

1+TIGIT+ or TIM-3+CTLA-4 compared to unvaccinated

asymptomatic COVID-19 patients with little to no disease (i.e.,

patients with severity 0, 1, and 2, p < 0.05, Supplementary Figure 6).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1343716
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Coulon et al. 10.3389/fimmu.2024.1343716
Accordingly, we also detected low frequencies of functional

CD134+CD137+CD4+ T cells (Figure 5B) and low frequencies of

functional CD134+CD137+CD8+ T cells (Figure 6B) in

unvaccinated severely ill COVID-19 patients and unvaccinated

patients with fatal COVID-19 outcomes. This applied to

CD134+CD137+CD4+ T cells specific to CCCs/SARS-CoV-2

cross-reactive epitopes from all five structural and non-structural

proteins and to CD134+CD137+CD8+ T cells specific to three out of

five CCCs/SARS-CoV-2 cross-reactive epitopes from structural and

non-structural proteins.

As expected, no differences were observed in phenotypic and

functional exhaustion of EBV BMLF-1280–288-specific CD8
+ T cells

across the six groups of COVID-19 patients with various disease

severities (Supplementary Figure 3B), suggesting that the

exhaustion of CD4+ and CD8+ T cells in severely ill COVID-19

patients and to patients with fatal COVID-19 outcomes was specific

to CCCs/SARS-CoV-2 cross-reactive epitopes.

Altogether, these results (i) indicate that phenotypic and

functional exhaustion of CD4+ and CD8+ T cells, detected both
Frontiers in Immunology 16173
ex vivo and in vitro, specific to highly conserved and CCCs/SARS-

CoV-2 cross-reactive epitopes from both structural and non-

structural antigens was associated with symptomatic and fatal

infections in unvaccinated COVID-19 patients and (ii) suggest

the importance of functional CCCs/SARS-CoV-2 cross-reactive

CD4+ and CD8+ T cells, directed toward structural, non-

structural, and accessory protein antigens, for protection against

symptomatic and fatal infections in unvaccinated COVID-

19 patients.
Higher rates of co-infection with alpha
common cold coronavirus 229E present
unvaccinated asymptomatic COVID-
19 patients

We next compared the co-infection with each of the four main

and seasonal a and b CCCs (i.e., a-CCC-NL63, a-CCC-229E, b-
A B

FIGURE 5

Co-expression of exhaustion and activation markers on CCCs/SARS-CoV-2 cross-reactive CD4+ T cells from unvaccinated COVID-19 patients with
various degrees of disease severity. PBMCs from HLA-DRB1*01:01-positive unvaccinated COVID-19 patients with various degrees of disease severity
were isolated and stimulated for 72 h with 10 mg/ml of five CCCs/SARS-CoV-2 cross-reactive CD4+ T-cell epitope peptides. The induced CD4+ T
cells were then stained and analyzed by flow cytometry for the frequency of tetramer-specific CD4+ cells co-expressing exhaustion and activation
markers. Panel (A) shows representative dot plots (upper panels) and average (lower panels) frequencies of CCCs/SARS-CoV-2 cross-reactive CD4+

T cells expressing exhaustion markers PD1/TIGIT and TIM-3/CTLA-4 detected in three representative groups of unvaccinated COVID-19 patients
with various degrees of disease severity. Panel (B) shows representative dot plots (upper panels) and average (lower panels) frequencies of CCCs/
SARS-CoV-2 cross-reactive CD4+ T cells expressing activation markers (AIMs) CD134/CD137 detected in three representative groups of
unvaccinated COVID-19 patients with various degrees of disease severity. Results are representative of two independent experiments, and data are
expressed as the mean ± SD and were considered statistically significant at p ≤ 0.05 calculated using one-way ANOVA.
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CCC-HKU1, and b-CCC-OC43) in a cohort of 85 unvaccinated

COVID-19 patients divided into six groups based on the severity of

COVID-19 symptoms, as above (i.e., patients with severity 5 to

severity 0, Figures 7A, B). Using RT-PCR performed on

nasopharyngeal swab samples, we found co-infection with the a-
CCC species to be more common with significantly higher rates in

the asymptomatic COVID-19 patients (i.e. unvaccinated naturally

protected from severe symptoms) compared to severely ill COVID-

19 patients and to unvaccinated patients with fatal outcomes (i.e.,

unvaccinated that were not naturally protected from severe

symptoms) (Figure 7A—right panel; ∼2.6-fold increase in groups

1–2–3 versus groups 4–5–6 of disease severity; p = 0.0418 calculated

with Fisher’s exact test). Co-infection with the CoV-229E a-CCC
species was more common with significantly higher rates in the

unvaccinated asymptomatic COVID-19 patients compared to

unvaccinated severely ill COVID-19 patients and unvaccinated

patients with fatal outcomes (Figure 7B, right panels: ∼4.2-fold
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increase between unvaccinated asymptomatic COVID-19 patients

and unvaccinated severely ill COVID-19 patients (i.e., patients with

severity of 4–5–6; p = 0.0223). However, there was no significant

difference in the rates of co-infection with b-CCC species (nor with

any of the four CCC species) across all six groups of COVID-19

patients with various severity symptoms (Figure 7A, central and left

panels, and Figure 7B, left two panels).

As illustrated in Figure 8, these results indicate that (i)

compared to severely ill COVID-19 patients and patients with

fatal COVID-19 outcomes, the asymptomatic COVID-19 patients

presented significantly higher rates of co-infection with the a-CCC
species, and with the 229E of a-CCCs, in particular and (ii) suggest

that co-infection with the a species of CCCs (particularly the 229E

species of a-CCCs, but not the b species) was associated with the

natural protection from symptomatic and fatal infections in

unvaccinated COVID-19 patients with yet-to-be-determined

mechanisms(s).
A B

FIGURE 6

Co-expression of exhaustion and activation markers on CCCs/SARS-CoV-2 cross-reactive CD8+ T cells from unvaccinated COVID-19 patients with
various degrees of disease severity. PBMCs from HLA-A*02:01-positive unvaccinated COVID-19 patients with various degrees of disease severity
were isolated and stimulated for 72 h with 10 mg/ml of five CCCs/SARS-CoV-2 cross-reactive CD8+ T-cell epitope peptides. The induced CD8+ T
cells were then stained and analyzed by flow cytometry for the frequency of tetramer-specific CD8+ cells co-expressing exhaustion and activation
markers. Panel (A) shows representative dot plots (upper panels) and average frequencies of CCCs/SARS-CoV-2 cross-reactive CD8+ T cells (lower
panel) expressing exhaustion markers PD1/TIGIT and TIM-3/CTLA-4 detected in three representative groups of unvaccinated COVID-19 patients
with various degrees of disease severity. Panel (B) shows representative dot plots (upper panels) and average frequencies of CCCs/SARS-CoV-2
cross-reactive CD8+ T cells (lower panel) expressing activation markers (AIMs) CD134/CD137 detected in three representative groups of
unvaccinated COVID-19 patients with various degrees of disease severity. Results are representative of two independent experiments, and data are
expressed as the mean ± SD and were considered statistically significant at p ≤ 0.05 (one-way ANOVA).
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High frequencies of a-CCCs/SARS-CoV-2
cross-reactive memory CD4+ and CD8+ T
cells are associated with natural protection
from symptomatic and fatal infections in
unvaccinated COVID-19 patients

Next, we determined whether (i) the higher rates of co-infection

with a-CCC species observed in the unvaccinated asymptomatic

COVID-19 patients were associated with high frequencies of CCCs/

SARS-CoV-2 cross-reactive CD4+ and CD8+ T cells detected in

these asymptomatic COVID-19 groups and (ii) the high frequencies

of a-CCCs/SARS-CoV-2 cross-reactive epitope-specific CD4+ and

CD8+ T cells were associated with fewer symptoms observed in

unvaccinated COVID-19 patients. To this end, we determined the

percentage of unvaccinated asymptomatic COVID-19 patients,

unvaccinated severely ill COVID-19, and unvaccinated patients

with fatal outcomes who presented significant IFN-g+CD4+ and
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IFN-g+CD8+ T-cell responses (i.e., IFN-g-ELISpot SFCs > 50)

specific to a-CCCs/SARS-CoV-2 cross-reactive epitopes.

Significantly higher percentages of unvaccinated asymptomatic

COVID-19 patients with significant IFN-g+CD4+ and IFN-g+CD8+

T-cell responses specific to a-CCCs/SARS-CoV-2 cross-reactive

epitopes were observed (p < 0.001). Similarly, the a-CCCs/SARS-
CoV-2 cross-reactive epitopes were strongly cross-recognized by

IFN-g+CD4+ T cells (SFCs>50) and CD8+ T cells from both

unexposed pre-pandemic healthy individuals (UPPHI) and

unvaccinated asymptomatic COVID-19 patients. In contrast, low

frequencies of unvaccinated severely ill COVID-19 patients and

unvaccinated patients with fatal outcomes significant IFN-g+CD4+,

and IFN-g+CD8+ T-cell responses specific to a-CCCs/SARS-CoV-2
cross-reactive epitopes (p < 0.001) (Supplementary Table 4). We

also found that unexposed pre-pandemic healthy individuals

(UPPHI) who were never exposed to SARS-CoV-2 presented a-
CCCs/SARS-CoV-2 cross-reactive IFN-g+CD4+ and IFN-g+CD8+ T
A

B

FIGURE 7

Rates (frequency) of co-infection with seasonal common cold coronavirus species a-CCC-NL63, a-CCC-229E, b-CCC HKU1, and b-CCC-OC43 in
unvaccinated COVID-19 patients with various degrees of disease severity. Four major human common cold coronaviruses species, CCC-HKU1,
CCC-OC43, CCC-229E, and CCC-NL63, were detected using RT-PCR in the nasopharyngeal swabs of COVID-19 patients (n = 85, first column)
who developed various disease severity. Panel (A) shows all four a-CCCs and b-CCCs species (left panel), b-CCC species alone (middle panel), and
a-CCC species alone (right panel), detected in unvaccinated severely ill COVID-19 patients and unvaccinated patients with fatal COVID-19
outcomes (severity scores 3–4–5) vs. unvaccinated COVID-19 patients who developed no, mild, and moderate disease (severity score 1–2–3). (B)
The rate (%) of co-infection with each one of the four major species, CCC-HKU1, CCC-OC43, CCC-229E, and CCC-NL63, detected in unvaccinated
severely ill COVID-19 patients and unvaccinated patients with fatal COVID-19 outcomes (severity scores 3–4–5), in unvaccinated COVID-19 patients
who developed mild to moderate disease (severity score 1–2), and in unvaccinated asymptomatic COVID-19 patients (severity score 0). The p-values
calculated using the Chi-squared test compare the rate (%) of co-infection with each CCC species between unvaccinated COVID-19 patients with
various degrees of disease severity. Results are representative of two independent experiments, and data are expressed as the mean ± SD and were
considered statistically significant at p ≤ 0.05 calculated using Fisher’s exact test.
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cells specific to highly conserved SARS-CoV-2 epitopes

(Supplementary Figure 7), confirming our report and others’

previous reports (1, 16, 21, 41, 43, 44).

Taken together, these results demonstrate that, compared to low

proportions of severely ill COVID-19 patients and patients with

fatal outcomes, significant proportions of both unvaccinated

asymptomatic COVID-19 patients and unexposed pre-pandemic

healthy individuals (UPPHI) presented significant a-CCCs/SARS-
CoV-2 strong cross-reactive CD4+ and CD8+ T-cell responses.

These findings suggest a crucial role of functional a-CCCs/SARS-
CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced

following previous a-CCC seasonal exposures, in protection against

subsequent severe symptomatic SARS-CoV-2 infection, as

illustrated in Figure 8.
Cross-reactive CD4+ and CD8+ T-cell
epitopes from a-CCCs and SARS-CoV-2
that present high similarity and identity are
associated with natural protection from
symptomatic and fatal infections in
unvaccinated COVID-19 patients

Using both the Multiple Sequences Alignments (MSA) and the

Epitope Conservancy Tool (ECT) algorithms and software, we

determined the identity (%id) and the similarity scores (Ss) of
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cross-reactive CD4+ and CD8+ T-cell epitopes, between the four

major CCC species (a-hCCC-NL63, a-hCCC-229E, and b-hCCC-
HKU1, b-hCCC-OC43), on the one hand, and SARS-CoV-2, on the

other hand, as described in Materials and methods (58), (Table 2

and Supplementary Tables 1-3).

Of the 16 highly conserved CD4+ T-cel l epitopes

(Supplementary Figure 8), the ORF1ab5019–5033 epitope was highly

conserved (%id ≥ 67%) and highly similar (SS ≥ 0.8) between SARS-

CoV-2 and the two b-CCC species (b-CCC-HKU1 and b-CCC-
OC43), while the ORF1ab6088–6102 epitope was highly conserved

between SARS-CoV-2 and both b-CCC-HKU1 and a-CCC-NL63
species (Table 2 and Supplementary Tables 1-3). Five out of the 27

CD8+ T-cell epitopes (ORF1ab3013–3021, ORF1ab6749–6757, S958–966,

E20–28, and M52–60) were highly conserved (% id ≥67%) and highly

similar (SS ≥ 0.8) between SARS-CoV-2 and the a-CCCs and/or b-
CCC species. Specifically, the ORF1ab3013–3021 CD8

+ T-cell epitope

was highly conserved between SARS-CoV-2 and the two b-CCC
species (b-CCC-HKU1 and b-CCC-OC43); the ORF1ab6749–6757
epitope was highly conserved between SARS-CoV-2 and all the four

CCC species; the S958–966 epitope was highly conserved between

SARS-CoV-2, the two b-CCC species, and the a-CCC-NL63

species; the E20–28 epitope was highly conserved between SARS-

CoV-2 and the b-CCC-HKU1 species; and the M52-60 epitope was

highly conserved between SARS-CoV-2, the two b-CCC species (b-
CCC-HKU1 and b-CCC-OC43) and the a-CCC-229E species

(Supplementary Figure 9, Table 2, and Supplementary Tables 1-
FIGURE 8

Illustration showing higher frequencies of common cold coronavirus/SARS-CoV-2 cross-reactive CD4+ and CD8+ T cells detected in unvaccinated
asymptomatic COVID-19 patients is associated with higher rates of co-infection with alpha common cold coronavirus strain 229E (a-CCC-229E).
The first row shows increasing copies of a-CCC-229E detected in unvaccinated asymptomatic COVID-19 patients compared to unvaccinated
symptomatic COVID-19 patients. The middle row shows increasing numbers of common cold coronavirus/SARS-CoV-2 cross-reactive CD4+ and
CD8+ memory T cells detected in unvaccinated asymptomatic COVID-19 patients compared to unvaccinated symptomatic COVID-19 patients. The
bottom row shows symptoms detected in unvaccinated COVID-19 patients with symptoms increasing from severity 0 in asymptomatic COVID-19
patients (left) to severity 5 in COVID-19 patients with fatal COVID-19 outcomes (right) as detailed in Materials and methods.”.
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3). While the E20–28 epitope was conserved (%id = 67%) between

SARS-CoV-2 and a-CCC-NL63 species, it did not present

significant similarity (Table 2 and Supplementary Tables 1-3).

Next, we determined the corresponding NL63 peptide (SS =

0.76). While the S976–984 epitope was conserved between SARS-

CoV-2 and three CCC species (%id = 67%), it did not present

significant similarity with the corresponding CCC peptides [b-
CCC-HKU1 (SS=0.78), b-CCC-OC43 (SS=0.78) and a-CCC-NL63
(SS = 0.73)]. Finally, while the S2–10 epitope was highly similar

between SARS-CoV-2 and a-CCC-NL63 (SS = 0.82), it was not

significantly identical (id% = 56%) (Table 2 and Supplementary

Tables 1-3).

Next, we determined whether the CCCs/SARS-CoV-2-cross-

reactive epitopes were cross-recognized preferentially by the CD4+

and CD8+ T cells from either unvaccinated asymptomatic COVID-

19 patients, or unvaccinated severely ill COVID-19 patients and

unvaccinated patients with fatal outcomes (Supplementary Table 4).

No significant differences were detected when the slopes S of the

SARS-CoV-2-specific CD4+ and CD8+ T-cell responses were

applied towards epitopes that have no significant identity nor

similarity to epitopes from the four CCCs. Significant differences

were detected when the slopes S of the SARS-CoV-2-specific CD4+

and CD8+ T-cell responses were applied to epitopes that have

significant identity and/or similarity to epitopes from at least one

of the four CCCs (Supplementary Table 4). In contrast, SARS-CoV-

2 CD4+ or CD8+ T cells cross-recognizing epitopes that are highly

identical and similar exclusively in b-CCC species, but not in a-
CCC species (i.e., epitopes ORF1ab5019-5033 and ORF1ab3013-3021),

presented a significantly lower slope S (p = 0.04) (Supplementary

Table 4). The ORF1ab5019–5033 and ORF1ab3013–3021 epitopes have

slopes S close to 0 among all epitopes (Supplementary Table 4).

These data indicated that (i) CCCs/SARS-CoV-2-cross-reactive

CD4+ or CD8+ T-cell epitopes that share high identity and

similarity exclusively with the a-CCC species were cross-

recognized mainly by CD4+ or CD8+ T cells from asymptomatic

COVID -19 patients; (ii) in contrast, the CCCs/SARS-CoV-2-cross-

reactive CD4+ or CD8+ T cell epitopes that share high identity and

similarity exclusively with the b-CCC species were cross-recognized

mainly by CD4+ or CD8+ T cells from severely ill symptomatic

patients; and (iii) compared to severely ill COVID-19 patients and

patients with fatal outcomes, the asymptomatic COVID-19 patients

presented significantly higher frequencies of a-CCCs/SARS-CoV-2
cross-reactive CD4+ and CD8+ T cells. The findings suggest a

crucial role of functional, poly-antigenic a-CCCs/SARS-CoV-2
cross-reactive memory CD4+ and CD8+ T cells, induced following

previous a-CCC seasonal exposures, in protection against

subsequent severe symptomatic SARS-CoV-2 infection.
Discussion

Characterizing the underlying T-cell mechanisms associated

with protection against COVID-19 severity in unvaccinated

asymptomatic patients is a challenging task today, since most

individuals have received at least one dose of COVID-19 vaccine

(39). Only 15.2% of adults in the United States are unvaccinated (37,
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38). This study is one of the few to comprehensively characterize the

cross-reactive memory CD4+ and CD8+ T cells in unvaccinated

symptomatic and asymptomatic COVID-19 patients. We compared

the antigen specificity, frequency, phenotype, and function of

CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T

cells, cross-recognizing genome-wide conserved epitopes in a

cohort of 147 unvaccinated COVID-19 patients, divided into six

groups based on the severity of their symptoms. The findings

demonstrate several relationships between antigen-specific T-cell

responses and disease outcome. Specifically, severely ill

symptomatic COVID-19 patients who required admission to

intensive care units (ICUs) and patients with fatal COVID-19

outcomes, versus unvaccinated asymptomatic COVID-19 patients,

displayed significantly (i) higher rates of co-infection with the 229E

alpha species of CCCs (a-CCC-229E); (ii) higher frequencies of a-
CCCs/SARS-CoV-2 cross-react ive functional memory

CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells, directed

toward conserved epitopes from structural, non-structural, and

accessory SARS-CoV-2 proteins; and (iii) lower frequencies of

CCCs/SARS-CoV-2 cross-react ive and exhausted PD-

1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+

CTLA4+CD8+ T cells. These observations (i) support a crucial

role for functional, poly-antigenic a-CCCs/SARS-CoV-2 cross-

reactive memory CD4+ and CD8+ T cells, induced following

previous a-CCC seasonal exposures, in protection against

subsequent severe symptomatic SARS-CoV-2 infection and (ii)

provide critical insights into developing broadly protective, multi-

antigen, CD4+ and CD8+ T-cell-based, universal pan-Coronavirus

vaccines capable of conferring cross-species protection.

The present comprehensive study of cross-reactive SARS-CoV-

2 epitope-specific CD4+ and CD8+ T cells suggests that pre-

pandemic exposure to seasonal a-CCC species, but not to b-CCC
species, may have conferred protection from symptomatic COVID-

19 infections by an as-yet-to-be-determined mechanism(s). It is

likely that pre-existing CCCs/SARS-CoV-2 cross-reactive memory

CD4+ and CD8+ T cells, induced in UPPHI by seasonal a-CCC
species, cross-recognized protective SARS-CoV-2 epitopes. These

data are consistent with previous studies showing that high levels of

CCCs immunity in convalescent patients are associated with

improved survival in COVID-19 patients (60, 61).

In the present study, we detected pre-existing CCCs/SARS-

CoV-2 cross-reactive memory CD4+ and CD8+ T cells specific to

many conserved SARS-CoV-2 epitopes in UPPHI. These results

extend previous reports on the presence of specific repertoires of

protective clones of memory CD4+ and CD8+ T cells in UPPHI

possibly primed by previous exposure to seasonal CCCs infections

and the rapid recall of a-CCCs/SARS-CoV-2 cross-reactive

memory CD4+ and CD8+ T cells (1, 21, 41, 43, 62–66). UPPHI

likely have different repertoires of protective and pathogenic

memory CD4+ and CD8+ T cells targeting cross-reactive CCCs/

SARS-CoV-2 epitopes of structural, non-structural, and accessory

protein antigens that are associated with different disease outcomes

in COVID-19 patients (13, 67–69). Indeed, we discovered that

concomitant SARS-CoV-2/b-CCCs species (i.e., b-CCCs-HKU1

and b-CCCs-OC43) co-infection correlated with a trend toward

more severe COVID-19 disease, whereas SARS-CoV-2/a-CCCs
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species (i.e., a-CCCs-NL63 and mainly a-CCCs-229E) co-infection
significantly correlated with less severe COVID-19 disease.

The positive correlation between functional a-CCCs/SARS-
CoV-2 cross-reactive memory CD4+ and CD8+ T cells and better

disease outcomes in asymptomatic COVID-19 patients supports the

importance of developing CoV vaccines that cross-recognize

functional a-CCCs/SARS-CoV-2 cross-reactive memory CD4+

and CD8+ T cells (70–72). Pre-existing T cells cross-recognizing

conserved SARS-CoV-2 epitopes that cross-react with a-CCCs, but
not b-CCCs, may be important in preventing severe COVID-19

symptoms. We are currently assessing whether candidate multi-

epitope-based vaccines expressing the epitopes associated with good

disease outcomes that cross-react with a-CCC species (in contrast

to symptomatic epitopes that cross-react with b-CCC species)

would confer cross-species protection in the HLA-A2/DR1/

hACE2 triple transgenic mice.

While many SARS-CoV-2 epitopes present high identity and

high similarity with the four a-CCCs and b-CCC species, they did

not necessarily recall the strongest SARS-CoV-2 epitope-specific

CD4+ and CD8+ T-cell responses in UPPHI. For example, the

SARS-CoV-2 epitopes ORF1a1350–1365, S1–13, M176–190, and

ORF612–26 recalled strong CD4+ T-cell responses in UPPHI but

were not identical or similar with any epitopes from the four a-
CCCs and b-CCC species. The same observation applies to the

CD8+ epitopes ORF1ab1675–1683, S1000–1008, and S1220–1228. This

suggests that the SARS-CoV-2-specific CD4+ and CD8+ T-cell

responses in UPPHI may have been induced by other non-CCC

pathogens, as has been reported by (73–76). Thus, in line with

previous reports, we found that not all SARS-CoV-2 T-cell epitopes

cross-reacted with CCC epitopes (41, 73–77). For instance, CMV T

cells cross-react with SARS-CoV-2 T cells, despite low sequence

homology between the two viruses, and this may contribute to the

pre-existing immunity against SARS-CoV-2 (74). This is in

agreement with our finding that eight of the 27 CD8+ T-cell

epitopes (ORF1ab1675–1683, ORF1ab5470–5478, ORF1ab6749–6757, S2–

10, S958–966, S1220–1228, E20–28, and E26–34) shared highly identical

sequences (%id equal to 67%–78%) with epitopes from common

human pathogens (EBV, Streptococcus pneumoniae, Bordetella

pertussis, and Corynebacterium diphtheriae) and to widely

distributed BCG and DTa/wP vaccines. Six of those also shared

high similarity scores (SS≥0.8) with epitopes from EBV, S.

pneumoniae, B. pertussis, and C. diphtheriae and widely

distributed BCG and DTa/wP vaccines. CD8+ T cells specific to

SARS-CoV-2 epitopes that share high identity and similarity with

the DTwP vaccine (but not BCG vaccine) epitopes were

significantly associated with asymptomatic COVID-19 infection.

The most functional CD8+ T cells cross-recognized SARS-CoV-2

common epitopes that are highly similar and identical to epitopes

from the DTwP vaccine. These findings are consistent with a

previous study that described a correlation between DTwP

vaccination and fewer COVID-19 deaths (59). Overall, our

findings suggest that the pre-existing SARS-CoV-2-specific CD4+

and CD8+ T-cell responses in UPPHI may be the consequence of

heterologous immunity induced by CCCs (31, 44, 75, 78–82), other

pathogens (77), and widely administered vaccines (BCG, DTwP)

(73–76).
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The present comprehensive analysis demonstrates, both in vitro

and ex vivo, that unvaccinated severely ill COVID-19 patients had

higher frequencies of phenotypically and functionally exhausted

CCCs/SARS-CoV-2 cross-reactive CD4+ and CD8+ T cells. In

contrast, higher frequencies of functional CD4+ and CD8+ T cells

specific to CCCs/SARS-CoV-2 epitopes were detected in

unvaccinated asymptomatic COVID-19 patients. Although older

COVID-19 patients tend to be more symptomatic compared to

younger COVID-19 patients, the symptomatic COVID-19 patients

tend to have less functional SARS-CoV-2-specific T cells, regardless

of age. Similar results were obtained when age-matched

symptomatic and asymptomatic COVID-19 patients were

compared, suggesting that the frequency of functional SARS-

CoV-2-specific T cells is age independent (data not shown).

Besides CD134 and CD137 functional markers, we recently

assessed the expression of additional activation and cytotoxicity

markers by CCCs/SARS-CoV-2-cross-reactive CD4+ and CD8+ T

cells from COVID-19 patients and healthy individuals (1). Higher

frequencies of CCCs/SARS-CoV-2-cross-reactive functional

memory CD8+ T cells were detected in both COVID-19 patients

and healthy individuals. However, we have observed that COVID-

19 patients and unexposed healthy individuals exhibited a different

pattern of CD8+ T-cell immunodominance. Unlike for CD8+ T

cells, higher frequencies of multifunctional CCCs/SARS-CoV-2-

cross-reactive memory CD4+ T cells, expressing CD69, CD107a/b,

and TNF-a were detected in COVID-19 patients compared to

healthy individuals (1). However, the association of T-cell

exhaustion with symptomatic and fatal COVID-19 infections in

unvaccinated patients is currently being debated (6, 83). Reports

using small cohorts of patients did not identify a link between

higher expression of exhaustion markers and impaired function of

SARS-CoV-2-specific CD4+ and CD8+ T cells in convalescent

patients (84, 85). In contrast, our study used larger cohorts of

COVID-19 patients with detailed clinical differentiation of

symptomatic and asymptomatic patients. Our data are consistent

with previous reports in which a broad T-cell exhaustion with

impaired function was found in both the peripheral compartment

(PBMCs), the lungs, and the brain of symptomatic patients (15, 86–

88) and increased levels of PD-1 in severe cases compared to those

in non-severe cases (83, 89).

Moreover, we extended those reports by characterizing the

exhausted SARS-CoV-2-specific CD4+ and CD8+ T cells co-

expressing multiple markers of exhaustion, TIM3, TIGIT, and

CTLA4, besides PD-1. There is no consensus on a specific

combination of inhibitory molecules of clusters of exhaustion

markers to conclude phenotypic and functional exhaustion of

epitope-specific CD4+ and CD8+ T cells. Overall, the major

markers (or pathways) described as associated with CD4+ and

CD8+ T-cell exhaustion include PD-1, TIGIT, CTLA-4, and TIM-

3. While various combinations of these exhaustion have been used

to demonstrate T-cell exhaustion, typically the PD-1 and TIM-3

combination is mainly used to demonstrate CD4+ and CD8+ T-cell

exhaustion and dysfunction. In this study, we have used the

combination of PD-1 and TIGIT exhaustion markers, on the one

hand, and the combination of CTLA-4 and TIM-3 exhaustion

markers, on the other hand, to demonstrate that increased
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frequencies of phenotypically exhausted SARS-CoV-2 epitope-

specific CD4+ and CD8+ T cells are associated with severe

COVID-19 disease, as previously reported in other systems (90–

97). These findings suggest impaired functionality in SARS-CoV-2-

specific CD4+ and CD8+ T cells, along with generally lower

interferon-gamma (IFN-g) and tumor necrosis factor-alpha

(TNF-a) production, is associated with symptomatic and fatal

Infections in unvaccinated COVID-19 patients. Our results also

agree with previous reports highlighting that a prior “original

antigenic sin” (OAS) potentially linked to prior exposure to

seasonal CCCs might skew CCCs/SARS-CoV-2 cross-reactive

CD4+ and CD8+ T cells toward an exhausted phenotype (98).

Because severely ill patients preferentially developed higher

frequencies of co-infection with b-CCC species and higher

frequencies of pre-existing b-CCCs/SARS-CoV-2 cross-reactive

memory CD4+ and CD8+ T cells, T-cell exhaustion may be

related to prior exposure to seasonal b-species of CCCs.
The present study has comprehensively characterized CCCs/

SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells in

blood samples from over 140 unvaccinated symptomatic and

asymptomatic COVID-19 patients. However, there remain several

gaps in our understanding. First, the study of CCCs/SARS-CoV-2

cross-reactive memory CD4+ and CD8+ T cells in unvaccinated

symptomatic and asymptomatic COVID-19 patients has not been

adjusted retrospectively to previous CCCs infections, due to the lack

of pre-COVID-19 samples. At this point, the vast majority of adults

in the United States have been infected and/or received at least one

dose of the COVID-19 vaccine (37, 38); thus, going forward,

characterizing pre-COVID-19 cross-reactive memory CD4+ and

CD8+ T cells in unvaccinated COVID 19 patients will be very

difficult (39). Second, the study did not follow up with the COVID-

19 patients at later times points after convalescence; hence, the

reported CCCs/SARS-CoV-2 cross-reactive memory CD4+ and

CD8+ T cell characteristics are reflective of their status shortly after

exposure to SARS-CoV-2 or during the symptomatic disease.

Although we assessed SARS-CoV-2-specific CD4+ and CD8+ T cell

responses at an early stage of the disease (blood sampled on average 5

days after the appearance of the first reported symptoms), the precise

timing of the patient’s first exposure to SARS-CoV-2 is not known.

Third, since the T-cell responses reported in this study were assessed

in the peripheral blood, this may not reflect tissue-resident CD4+ and

CD8+ T cells in the lungs and the brain. The reduced number of

functional CCCs/SARS-CoV-2 cross-reactive memory CD4+ and

CD8+ T cells detected in the peripheral blood of symptomatic

COVID-19 patients may be due to T-cell redistribution to other

organs, such as the lungs and the brain. The asymptomatic infections

in unvaccinated COVID-19 patients might be attributed to homing

and redistribution of high numbers of functional CCCs/SARS-CoV-2

cross-reactive CD4+ and CD8+ T cells into the lungs of unvaccinated

asymptomatic COVID-19 patients, rather than in peripheral blood.

In this context, we recently reported that high frequencies of

functional lung-resident memory CD4+ and CD8+ T cells

contributed to protection against COVID-19-like symptoms and

death caused by SARS-CoV-2 infection in a mouse model (2).

Thus, future studies should investigate tissue-resident CD4+ and
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CD8+ T cells in the lungs to determine whether their frequency

and function correlate with protection from symptomatic and fatal

infections in unvaccinated COVID-19 patients. Finally, while the

study enrolled 600 patients overall, the study compared the antigen

specificity, frequency, phenotype, and function of common cold

coronaviruses (CCCs) and SARS-CoV-2 cross-reactive memory

CD4+ and CD8+ T cells, targeting genome-wide conserved epitopes

in a cohort of 147 unvaccinated COVID-19 patients screened for two

HLA types, HLA-DRB1*01:01 and HLA-A*02:01. Thus, future

studies are being conducted to assess T cells from other HLA types.

Nevertheless, our results are consistent with the hypothesis that the

early presence of high numbers of functional a-CCCs/SARS-CoV-2
cross-reactive CD4+ and CD8+ T cells targeting multiple antigens was

associated with protection from symptomatic and fatal SARS-CoV-2

infections in unvaccinated COVID-19 patients (99).

This report also confirms previous reports that (i) early and broad

lymphopenia positively correlated with COVID-19 disease severity

and mortality (86, 100–102); (ii) broad leukocytosis combined with T

cell lymphopenia was present in severe COVID-19 patients and

extended those findings by demonstrating that the observed T-cell

lymphopenia was particularly prevalent for SARS-CoV-2-specific T

cells (86, 100); and (iii) a significant age-dependent and comorbidity-

associated susceptibility to COVID-19 disease, with patients over 60

years of age, and those with pre-existing diabetic and hypertension

comorbidities being the most susceptible to severe COVID-19 disease

(13, 20).

In conclusion, the present comprehensive analysis of specific

and cross-reactive SARS-CoV-2 epitope-specific T cells reveals clear

relationships between T-cell responses and disease outcomes in

unvaccinated COVID-19 patients. Compared to severely ill

COVID-19 patients and patients with fatal COVID-19 outcomes,

the asymptomatic COVID-19 patients presented high rates of co-

infection with the a-CCC species and more functional and less

exhausted a-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and

CD8+ T cells, targeting structural, non-structural, and accessory

proteins. The findings suggest functional, poly-antigenic a-CCCs/
SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells,

induced following CCCs repetitive exposures, are contributing

factors in reducing the severity of SARS-CoV-2 infection, as

illustrated in Figure 8. Most of the >10 billion doses of first-

generation COVID-19 vaccines are based on the Spike antigen

alone (103, 104) and function mainly by inducing neutralizing

antibodies (105). Because the Spike protein has undergone a

substantial number of mutations with each successive viral

variant, these first-generation subunit vaccines are susceptible to

immune evasion by new variants and subvariants, such as XBB.1.5,

EG.5 (Eris), and HV.1 sub-variants of Omicron (71, 72). To

overcome this critical limitation, the next generation of COVID-

19 vaccines should also target other highly conserved structural and

non-structural SARS-CoV-2 antigens capable of inducing

protection by cross-reactive CD4+ and CD8+ T cells (1, 106).

Herein, the findings of this report provide a roadmap for

developing next-generation a-CCCs/SARS-CoV-2 cross-reactive

CD4+ and CD8+ T cell-based, multi-antigen, pan-Coronavirus

vaccines capable of conferring cross-species protection.
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between HCMV serostatus and
outcomes in COVID-19 sepsis
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Katharina Rump1, Birte Dyck1, Lars Palmowski1, Britta Marko1,
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Alexander Zarbock6, Thilo von Groote6, Christian Putensen7,
Stefan Felix Ehrentraut7, Christina Weisheit7, Michael Adamzik1,
Matthias Unterberg1*‡ and Björn Koos1‡

1Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum
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University Bochum, Bochum, Germany, 4Medical Proteome Analysis, Center for Proteindiagnostics
(PRODI), Ruhr University Bochum, Bochum, Germany, 5Center for Translational Medicine, Medical
Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany,
6Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum
Münster, Münster, Germany, 7Klinik für Anästhesiologie und Operative Intensivmedizin,
Universitätsklinikum Bonn, Bonn, Germany
Background: Sepsis, a life-threatening condition caused by the dysregulated host

response to infection, is a major global health concern. Understanding the impact

of viral or bacterial pathogens in sepsis is crucial for improving patient outcomes.

This study aimed to investigate the human cytomegalovirus (HCMV) seropositivity

as a risk factor for development of sepsis in patients with COVID-19.

Methods: A multicenter observational study enrolled 95 intensive care patients

with COVID-19-induced sepsis and 80 post-surgery individuals as controls.

HCMV serostatus was determined using an ELISA test. Comprehensive clinical

data, including demographics, comorbidities, and 30-day mortality, were

collected. Statistical analyses evaluated the association between HCMV

seropositivity and COVID-19 induced sepsis.

Results: The prevalence of HCMV seropositivity did not significantly differ

between COVID-19-induced sepsis patients (78%) and controls (71%, p =

0.382) in the entire cohort. However, among patients aged ≤60 years, HCMV

seropositivity was significantly higher in COVID-19 sepsis patients compared to

controls (86% vs 61%, respectively; p = 0.030). Nevertheless, HCMV serostatus

did not affect 30-day survival.

Discussion: These findings confirm the association between HCMV seropositivity

and COVID-19 sepsis in non-geriatric patients. However, the lack of an

independent effect on 30-day survival can be explained by the cross-reactivity

of HCMV specific CD8+ T-cells towards SARS-CoV-2 peptides, which might
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confer some protection to HCMV seropositive patients. The inclusion of a post-

surgery control group strengthens the generalizability of the findings. Further

research is needed to elucidate the underlying mechanisms of this association,

explore different patient populations, and identify interventions for optimizing

patient management.

Conclusion: This study validates the association between HCMV seropositivity

and severe COVID-19-induced sepsis in non-geriatric patients, contributing to

the growing body of evidence on viral pathogens in sepsis. Although HCMV

serostatus did not independently influence 30-day survival, future investigations

should focus on unraveling the intricate interplay between HCMV, immune

responses, and COVID-19. These insights will aid in risk stratification and the

development of targeted interventions for viral sepsis.
KEYWORDS

viral sepsis, COVID-19 risk stratification, human cytomegalovirus, cross-reactive CD8+

T-cells, COVID-19 survival
Introduction

Sepsis is an acute, life-threatening syndrome with millions of

incidences each year (1). Up to 2020 the main pathogen inducing

sepsis were bacteria (2, 3). However, similarly to bacterial

pathogens, viruses are also capable of inducing critical conditions

resulting in organ dysfunction and an increased Sequential Organ

Failure Assessment (SOFA) Score (4) fulfilling the recent definition

of sepsis [Sepsis-3 (5)]. During the COVID-19 pandemic up to 80%

of sepsis cases were virally induced (6). In the post-pandemic era,

the rate of virally sepsis has decreased; however, COVID-19 sepsis

remains prevalent in ICUs worldwide, and it has guided the interest

of clinicians towards virally induced sepsis, that was most likely

underdiagnosed before (7).

In response to invasive bacterial pathogens, the human immune

reaction initially involves the activation of the innate immunity.

This consists of the complement-system as a non-cellular

component as well as macrophages and neutrophile granulocytes

and others as a cellular component, which opsonize, engulf and

destroy bacteria. This is followed by the activation of a slower but

more specific adaptive immune response. During the adaptive

immune response, B-cells start the production of highly specific

antibodies. Furthermore, T-cells that specifically target the invading

bacteria are expanded.

In contrast, viral pathogens are intracellular and can partly

evade from detection by the immune system. Thus, the immune

response to viral infections involves the production of cytokines and

specific interferons leading to
1. auto- and paracrine cellular effects, inhibiting intracellular

viral replication (8) and
02185
2. an activation of cytotoxic T-cells (CD8+) to eliminate

infected cells.
Therefore, a virus-specific cascade following an interferon-

driven network with type 1 interferon (e.g. IFN-a) leading

towards an inhibition of viral replication (9) is described. An

inhibition of IL-10 and an upregulation of IL-16 (10) is observed

but still incompletely understood and most probably not

homogenous in different viral entities. During the pre-pandemic

era, influenza was the predominant pathogen, associated to viral

sepsis (2, 3).

The virus’ ability to evade the host’s immune defense and cause

continuous inflammatory damage is accompanied by high levels of

TNF-a and IL-6 as well as reduced IFN-g expression (7). However,

different viruses will most likely show different approaches to

evading the immune defense (7).

In SARS-CoV-2-sepsis, the initially described cytokine storm

turned out to be less pronounced, with moderate levels of IL-6 (11,

12) compared to bacterial sepsis.

Furthermore, an imbalance and predominance of non-type-1

cytokines (such as IL-4, or IL-17) is capable to draw the immune

system towards an inappropriate response, leading to exhaustion of

T-cells with ineffective clearance of viral-infected cells (7).

The immune response in COVID-19 sepsis is believed to differ

significantly from bacterial immunity, characterized by a delayed

and less severe response, as indicated by IL-6 serum concentrations

(11, 12). When compared to Influenza, COVID-19-sepsis also

develops with delayed symptoms and a prolonged inflammatory

phase (12). The intricate immunological landscape involves a

nuanced interplay of cytokines and key immunomodulatory

elements, including Type 1 and Type 2 interferons, thereby

demarcating a distinct divergence between bacterial and viral
frontiersin.org
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immune responses (12). Specifically, the interferon response in

severe COVID-19 is released later and less pronounced than

in Influenza-induced sepsis, leading to longer disease duration

(12). In this multifaceted milieu, various host-related factors

exert influence on immune defenses, encompassing age, genetic

predisposition (13) and comorbidities such as pulmonary

diseases (14), cardiovascular diseases (15, 16) and obesity (17).

Notably, the identification of human cytomegalovirus (HCMV)

serostatus as an independent predictor of survival in bacterial sepsis

has added a significant layer to our understanding of sepsis risk

factors (18).

HCMV is a herpes virus that, subsequent to the primary active

infection, remains in the host’s body in a latent form detected by

seropositivity. The virus re-activates frequently during life priming

the immune system towards the anti-viral response. Reactivation of

HCMV is mainly recognized during impaired immunity like

transplant-related immunosuppression or during severe infection,

often focused on sepsis. Here, reactivation is considered as a

worsening factor regarding mortality, ICU-and hospital-duration

and other secondary complication (19–23). Clear evidence

for antiviral prophylaxis in these circumstances is still missing

(24). A potential worsening effect of HCMV-reactivation on

the clinical course of patients is also described in severe SARS-

CoV-2, but this did not impact on patient’s mortality (25)

except in the very elderly (26). As a mechanistic link between

HCMV-reactivation and a propagated SARS-CoV-2 infection,

an upregulation of the ACE2-receptor in lung epithelial cells

driven by HCMV is discussed (27). Furthermore, a study by

Choi et al. (28) describes CD8+ T-cell exhaustion following

HCMV-reactivation.

Apart from HCMV-reactivation, HCMV in a controlled stage

(latency) continuously concerns the human immunity and, in fact,

HCMV seropositive patients have been reported to frequently have

up to 20% of CD8+ T-cells specific for HCMV (29–31) a number

that only increases with age.

The narrative, however, extends further. In the context of

COVID-19, HCMV emerges as a consequential player, associated

with heightened hospitalization (32) and ICU admission,

particularly in individuals under the age of 60 (33). Despite the

relatively modest cohort size in which the association regarding

ICU-admission was observed, the findings suggest a complex

interplay between SARS-CoV-2 and HCMV.

Moreover, HCMV has the ability to disrupt the antigen

presentation process of T- and NK-cells and affect the surface

maintenance of TLR4 and TLR5 on HCMV-infected cells,

consequently altering immune system cascades (34). Therefore,

HCMV-induced impairment of the immune system may have

a significant impact on the host’s immunity during a subsequent

COVID-19 infection and contribute to the development of

secondary infections. Additionally, latent HCMV infection may

alter the host’s response to SARS-CoV-2 vaccination, as has been

observed with other viral vaccinations such as influenza (35).

In view of these intriguing observations, our study endeavors to

elucidate the impact of HCMV serostatus on 30-day survival and
Frontiers in Immunology 03186
immune response in COVID-19 sepsis, drawing parallels with the

established association between HCMV and bacterial sepsis.
Materials and methods

Patient recruitment and study design

This multicenter study was registered at the DRKS

(DRKS00026184) and approved by the local ethics board of the

Medical Faculty of Ruhr-University Bochum (Protocol No. 18-6606-

BR) and the corresponding ethics boards of each study site. As part of

the CovidDataNet.NRW project, we enrolled 95 intensive care

patients with COVID-19-induced sepsis (severe COVID-19) from

three different centers when SEPSIS-3 criteria were met. The

recruitment period was from August 1, 2021, to March 31, 2022,

and clinical data were collected in an observational approach. To be

included in this study, patients had to meet the following criteria:

evidence of infection with SARS-CoV-2 and evidence of underlying

sepsis with an increased SOFA score of at least two points.

Additionally, patients had to be aged 18 or above and provide

informed consent. Beyond that, we selected 80 patients who had

undergone abdominal surgery as a control group. Blood samples have

been collected within 36 h after sepsis diagnosis at the University

hospital Knappschaftskrankenhaus Bochum (KKB), University

hospital Münster (UKM), and University hospital Bonn (UKB).
Determination of CMV serostatus (IgG)
via ELISA

The SERION ELISA classic Cytomegalovirus IgG Kit (Institut

Virion\Serion GmbH, Würzburg, Germany) was used to determine

the IgG concentration in the patients’ blood sera. According to the

manufacturer’s instructions, 100 µL of diluted samples (1:100) and

respective controls were added to microtiter test wells and incubated

for 60 minutes at 37°C in a wet chamber. After four washing steps,

100 µL of IgG conjugate solution was added and incubated for 30

minutes at 37°C. Four more washing steps were conducted, followed

by the addition of 100 µL substrate solution. After 30minutes at 37°C,

the reactions were stopped by adding 100 µL stopping solution to

each well. The optical densities (OD) were determined using a

microplate reader (CLARIOstarPLUS, BMG LABTECH, Germany).

OD values were measured at a wavelength of 405 nm and analyzed by

CLARIOstar Data Analysis software. The values were normalized to a

standard curve, and units were calculated. Samples were classified as

CMV-IgG positive when 35 or more units were detected.
PBMC isolation

PBMCs of COVID-19 patients were isolated by subjecting the

obtained blood samples to Ficoll density gradient centrifugation

(GE Healthcare Europe, Freiburg, Germany). Subsequently, the
frontiersin.org
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phase containing the PBMCs was collected. Following erythrocyte

lysis, the collected PBMCs were stored at -196°C until use.
Immunophenotyping

Upon thawing, PBMCs were stained with 25 µl master mix,

containing the optimal concentrations of each antibody, for 10 min at

room temperature in the dark. Erythrocytes were lyzed using RBC

Lysis Buffer (BioLegend, San Diego) for 10 min at room temperature

in the dark and samples were immediately acquired on a CytoFlex

flow cytometer (Beckman Coulter, Brea). Quality control was

performed daily using the recommended CytoFlex Daily QC

Fluorospheres (Beckman Coulter, Brea). No modification to the

compensation matrix was required throughout the study.
Clinical data

Medical data, including laboratory values, vitals, demographics,

point-of-care diagnostics, and length of ICU stay, were stored in a

comprehensive database (CentraXX software, Kairos GmbH,

Bochum, Germany) and pseudonymized according to the

obligations of the Ethics Committee.
Statistics

Statistical analyses were performed using SPSS software Version

28 (IBM, Canada). Categorical variables were evaluated using Fisher’s

exact test, while continuous variables were first subjected to a

Kolmogorov-Smirnov test to assess normality. If variables were

normally distributed, they were evaluated using Student’s t-test for

independent samples. If variables were not normally distributed, they

were subjected to a Mann-Whitney U test. Kaplan-Meier curves with

subsequent log-rank tests were generated to depict 30-day survival as

a function of CMV serostatus in COVID-19 patients.
Results

Study design

We systematically assessed the impact of HCMV serostatus on

the 30-day mortality in the entire cohort of COVID-19 patients,

comparing them to pre-pandemic post-surgery individuals. An

additional focus was directed towards the non-geriatric sub-

population (patients aged 60 years or younger at study inclusion),

as illustrated in Figure 1.
HCMV serostatus is not different between
patients with severe COVID-19 and pre-
pandemic patients

95 patients suffering from severe COVID-19 with virus induced

sepsis and 80 pre-pandemic, post-surgery individuals without signs
Frontiers in Immunology 04187
of infection (controls) were included in this prospective,

observational study. 61% of the COVID-19 patients were male

and the median age was 58 years (IQR 49-74years). This was not

significantly different to the control cohort in which 38% were male

(p=0,112) and the median age was 65 (IQR: 57-76) years (p=0,076).

The median SOFA-score at study inclusion was 9 (IQR 5-12) for

the COVID-19 cohort. The 30-day mortality was 42%. Co-

morbidities were assessed when available. Comparing the

frequency of relevant co-morbidities between the COVID-19 and

post-surgical patients, we find diabetes (22% vs. 12% respectively,

p=0.023) and obesity (37% vs. 21%, p=0.001) to be more frequent in

COVID-19 patients. Malignant diseases (5% vs. 80% p=0.001),

alcohol abuse (1% vs. 11%, p=0.017) and nicotine addiction (6%

vs. 36% p=0.001) were more frequent in controls. 78% of the

COVID-19 patients were seropositive for HCMV-IgG at study

inclusion. This was not significantly different than the control

cohort (71%, p = 0.382, Figure 2A).

Additional baseline characteristics are presented in Table 1 and

immune phenotyping with regard to HCMV-serostatus is shown in

Supplementary Table 1.
In patients 60 years or younger, the
frequency of HCMV seropositivity is
significantly higher than in comparable
control patients

The non-geriatric sub-population of these cohorts (i.e. patients

under or equal 60 years of age) consisted of 51 patients with severe

COVID-19 and 23 post-surgery individuals. In this cohort, 65% of

the COVID-19 patients were male, compared to only 39% in the

control cohort (p=0.047). The median age in COVID-19 patients

and controls was almost equal (49 [IQR:45-56] vs. 50 [IQR: 35-57]

years respectively, p = 0.935). The 30-day survival in these COVID-

19 patients was 59%. The median SOFA score at study inclusion was

9 (IQR: 5.5 – 12). When comparing co-morbidities, we find

significantly more malignant diseases (5% vs. 87%, p=0.001) as

well as a higher frequency of nicotine-abuse in post-surgery patients

(10% vs. 30%, p=0.043), which aligns with the general cohort. At the
FIGURE 1

Grouping of patients with COVID-19 induced sepsis (left) and control
subjects without infection (right) according to their CMV serostatus on
day 1 and subsequently according to age (<= vs >60 years).
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time of admission, 86% of the non-geriatric COVID-19 patients

presented sero-positive for HCMV-IgG, while only 61% of the post-

surgery controls did so (p=0,030, Figure 2B).

Table 2 depicts patients characteristics of the non-

geriatric patients.
HCMV serostatus does not affect 30-
day mortality

We assessed the effect of the HCMV serostatus on 30-day

mortality in the entire cohort of patients with severe COVID-19.

We could not identify HCMV seropositivity as a prognostic factor

in this cohort. The Kaplan Meier Analysis (Figures 3A, B) shows no

significant effect (survival: 57% vs. 58% for HCMV seronegative vs.

seropositive respectively, p = 0.721, log rank test).
Discussion

In our study, we observed no significant impact of HCMV

serostatus on the 30-day mortality in COVID-19 sepsis. This

finding contrasts starkly with bacterial sepsis, where HCMV

serostatus was an independent risk factor for mortality (18). The
Frontiers in Immunology 05188
intriguing divergence prompts contemplation on the nuanced

interplay between HCMV, T-cel l dynamics , and the

heterogeneous landscape of COVID-19 sepsis.

The association of HCMV seropositivity with a specialized T-cell

pool and diminished naïve T-cell reservoirs, known as T-cell inflation

(36), has been postulated to render HCMV-seropositive patients

more susceptible to heterologous infections, as their T-cell

repertoire is significantly diminished (37). This might well be an

explanation for the effects of HCMV on bacterial sepsis patients (18).

However, why does this not translate to COVID-19 sepsis?

Interestingly, HCMV specific CD8+ T-cells have been shown to

react to SARS-CoV-2 peptides (38) just as SARS-CoV-2 T-cell

reacted to HCMV (33). This would grant HCMV seropositive

patients a certain protection from COVID-19 induced death, as

T-cell function is an important factor when it comes to SARS-CoV-

2 immunity (39).

But how does this fit to the findings of others, that have reported

that HCMV might be a risk factor for severe COVID-19 in non-

geriatric patients (34)? This is especially interesting as we find the

same effect of COVID-19 patients under the age of 60 more

frequently being HCMV seropositive than post-surgical control

patients of the same age group.

We assume, the explanation lies in the characteristic timeline of

T-cell inflation, which unfolds over a longer lifetime due to
B

A

FIGURE 2

Proportion of CMV-seropositive (red) versus -seronegative (blue) patients in the (A) total cohorts (COVID-19 versus controls) and (B) in the subgroup
of non-geriatric patients (COVID-19 versus controls).
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TABLE 1 Baseline characteristics of COVID-19 ICU patients and post-
surgery control patients.

COVID-19
induced
sepsis n=95

post-
surgery
patients;
n=80

p-
value

gender male 58 (61%) 35 (48%); 0.117

CMV-IgG positive at
day one

74 (78%) 57 (71%); 0.382

age in years median (IQR) 58 (49-74) 65 (57-76); 0.076

SOFA score at day one
median (IQR)

9 (5-12) n.a. n.a.

Median Oxygenation-Index
(paO2/FiO2) day 1 (median
± IQR)

157 (115-191)
n=49

n.a. n.a.

Mean arterial blood
pressure (MAP)
day 1 (median ± IQR)

84 (79-92)
n=53

n.a. n.a.

Number of patients
receiving adrenalin on
day 1

1 n.a. n.a.

Number of patients
receiving dobutamin on
day 1

3 n.a. n.a.

Number of patients
receiving noradrenalin on
day 1

27 n.a. n.a.

Platelet count day 1 (lowest
value, median ± IQR)

217 (130-283)
n=58

n.a. n.a.

Serum creatinin (mg/dl)
day 1 (highest value,
median ± IQR)

0,54 (0,34-0,78)
n=58

n.a. n.a.

Serum bilirubine (mg/dl)
day 1 (highest value,
median ± IQR)

0,88 (0,73-1,33)
n= 56

n.a. n.a.

Co-Morbidities

- pulmonal (non copd) 10 (11%) 11 (15%) 0.818

- copd 5 (5%) 12 (16%) 0.076

- nicotin 6 (6%) 26 (36%) 0.001

- diabetes 21 (22%) 9 (12%) 0.023

- hypertension 42 (44%) 46 (63%) 0.502

- obesity 35 (37%) 15 (21%) 0.001

- cardiovascular 16 (17%) 23 (32%) 0.195

- malignant 5 (5%) 58 (80%) 0.001

- alcohol 1 (1%) 8 (11%) 0.017

- transplantation 7 (7%) 1 (1%) 0.063

- Kidney (non rrt) 11 (12%) 4 (6%) 0.100

- renal replacement
therapy (rrt)

0 (0%) 0 (0%) n.a.

length of stay on ICU days
median (IQR)

18 (6-29,5) n.a. n.a.

(Continued)
F
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TABLE 2 Baseline characteristics of COVID-19 ICU patients and post-
surgery control patients aged 18-60years.

COVID-19
induced
sepsis
<60years;
n=51

postoperative
patients
<60years;
n=23

p-
value

gender male 33 (65%) 9 (39%) 0.047

CMV-IgG positive at
day one

44 (86%) 14 (61%) 0.030

age in years
median (IQR)

49 (45-56) 50 (35-57) 0.935

SOFA score at day one
median (IQR)

9 (5,5-12) n.a.

Co-Morbidities

- pulmonal
(non copd)

3 (7%) 3 (13%) 0.657

- copd 2 (5%) 4 (17%) 0.174

- nicotin 4 (10%) 7 (30%) 0.043

- diabetes 11 (26%) 3 (13%) 0.345

- hypertension 18 (43%) 9 (39%) 0.799

- obesity 24 (57%) 6 (26%) 0.021

- cardiovascular 4 (10%) 2 (8%) 1.000

- malignant 2 (5%) 20 (87%) 0.001

- alcohol 1 (2%) 3 (13%) 0.123

- transplantation 3 (7%) 1 (4%) 1.000

- Kidney (non rrt) 5 (12%) 1 (4%) 0.411

- renal
replacement therapy

0 (0%) 0 (0%) n.a.

length of stay on ICU
days median (IQR)

21 (6-35) n.a. n.a.

length of stay in hospital
median (IQR)

23 (10,5-42,5) 13 (6-22) 0.025

30-day survival 30 (59%) 23 (100%) 0.001
front
n.a., not applicable.
TABLE 1 Continued

COVID-19
induced
sepsis n=95

post-
surgery
patients;
n=80

p-
value

Co-Morbidities

length of stay in hospital
median (IQR)

21 (12-31,5) 11 (6-21) 0.001

30-day survival 55 (57,9%) 80 (100%) 0.001

Leukocyte count
(cells*1000/µl) median
(IQR) day 1

10,3 (7,2-13,7) 8,5 (6,3-12,5) 0.225
n.a., not applicable.
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recurrent HCMV reactivations (37). Consequently, any discernible

effects on the immune system may be more pronounced in older

patients, thereby explaining the association of HCMV with

COVID-19 sepsis in younger adults.

Crucially, our study’s design deviates from previous works, such

as Weber et al. (34), by contrasting severe COVID-19 cases with a

pre-pandemic cohort of post-surgery patients devoid of infection or

sepsis development. This approach enhances the generalizability of

our findings beyond specific COVID-19 patient subsets, thereby

augmenting the external validity of our results. This becomes

particularly crucial when considering potential interventions or

preventive measures based on our observations. What needs to be

discussed at this point, is the main and obvious condition,

distinguishing our post-surgery cohort from the COVID-19

patients under the age of 60 years: One main reason for surgery

were malignant diseases. Thus, we cannot exclude that the known

association between HCMV and malignancies (40) (41) plays
Frontiers in Immunology 07190
further role. In this light the association does not contradict our

interpretation, as we find even higher rates of HCMV-seropositivity

in the COVID-19 patients than in the post-surgery cohort.

Future investigations should delve into the intricate interactions

among HCMV, the immune system, and the pathogenesis of

COVID-19-induced sepsis, with a specific focus on delineating

the role of T-cell function and its implications for disease

outcomes. By unraveling the underlying mechanisms, exploring

associations in diverse patient populations, and scrutinizing

potential interventions, we can deepen our understanding of

HCMV’s impact on COVID-19 and potentially enhance patient

management strategies.

Nevertheless, our study harbors limitations that warrant

acknowledgment. Despite a relatively larger COVID-19 cohort

compared to previous studies, the sample size remains modest,

particularly when undertaking subgroup analyses. Thus, we

advocate for retrospective assessments of HCMV serostatus in
B

A

FIGURE 3

30-day survival (Kaplan-Meier curve) based on HCMV serostatus in (A) the overall cohort and (B) in the subgroup of non-geriatric patients.
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larger observational COVID-19 trials to validate our findings

rigorously. The prevalence of HCMV seropositivity in the non-

geriatric COVID-19 cohort introduces another constraint,

diminishing the size of the seronegative cohort. As such, caution

is warranted, and we refrain from definitively ruling out an effect of

HCMV serostatus on the 30-day mortality in the non-geriatric

cohort, given our limited statistical power.

In conclusion, our investigation unveils that HCMV

seropositivity does not exert a discernible effect on the 30-day

mortality in COVID-19 patients. However, a nuanced association

surfaces, suggesting HCMV as a potential risk factor for severe

disease, particularly in younger patients. This dichotomy

underscores the complexity of viral-bacterial interactions within

the immune landscape and underscores the need for further

extensive studies to refine our comprehension.
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Shuhang Huang3, Jinhua Chen2, Falin Chen2, Yanli Kang1,2*

and Liangyuan Chen1,2*

1Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University,
Fuzhou, Fujian, China, 2Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou,
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Background: The severity, symptoms, and outcome of COVID-19 is thought to

be closely linked to how the virus enters host cells. This process involves the key

roles of angiotensin-converting enzyme 2 (ACE2) and the Tyrosine protein kinase

receptor UFO (AXL) receptors. However, there is limited research on the

circulating levels of ACE2 and AXL and their implications in COVID-19.

Methods: A control group of 71 uninfected individuals was also included in the

study. According to the Guidance for Corona Virus Disease 2019 (10th edition), a

cohort of 358 COVID-19 patients were categorized into non-severe and severe

cases. Serum ACE2/AXL levels in COVID-19 patients were detected by enzyme-

linked immunosorbent assay (ELISA) at different time points post-COVID-19

infection, including days 0-7, 8-15, 31-179 and >180 days. Serum SARS-CoV-2

IgG/IgM antibodies in COVID-19 patients at the same intervals were assessed by

using an iFlash 3000 Chemiluminescence Immunoassay Analyzer. The receiver

operating characteristic (ROC) curves were used to assess the diagnostic value of

the biological markers, and the association between laboratory parameters and

illness progression were explored.

Results: Compared with the uninfected group, the levels of ACE2 and AXL in the

COVID-19 group were decreased, and the SARS-COV-2 IgG level was increased.

AXL (AUC = 0.774) demonstrated a stronger predictive ability for COVID-19 than

ACE2. In the first week after infection, only the level of AXL was statistically

different between severe group and non-severe group. After first week, the levels

of ACE2 and AXL were different in two groups. Moreover, in severe COVID-19

cases, the serum ACE2, AXL, and SARS-COV-2 IgM levels reached a peak during

days 8–15 before declining, whereas serum SARS-COV-2 IgG levels continued to

rise, reaching a peak at day 31-180 days before decreasing. In addition, the AXL

level continued to decrease and the SARS-COV-2 IgG level continued to

increase in the infected group after 180 days compared to the uninfected group.
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Conclusions: The levels of serum ACE2 and AXL correlate with COVID-19

severity. However, AXL can also provide early warning of clinical deterioration

in the first week after infection. AXL appears to be a superior potential molecular

marker for predicting COVID-19 progression.
KEYWORDS

AXL, ACE2, SARS-CoV-2 IgG/IgM antibodies, COVID-19, biomarker
1 Introduction

The COVID-19 pandemic, resulting from SARS-CoV-2

infection, has imposed a significant global burden since its initial

report in December 2019 (1, 2). The COVID-19 vaccination

programs have been implemented worldwide, and have effectively

prevented numerous deaths from SARS-CoV-2 infection (2).

However, the rise of persistent viral immune evasion has led to

waves of new SARS-CoV-2 variants, such as the Delta and Omicron

strains. They are more deadly or contagious, which make existing

vaccines less effective (3). The clinical spectrum of the disease

ranges from asymptomatic or mild cases to severe manifestations

like acute hepatitis or liver failure (4). A substantial portion of

individuals with COVID-19 experience severe illness and require

intensive care, particularly in the elder (5).

The severity, symptoms, and outcome of COVID-19 is thought

to be linked to virus-induced damage to cells and the ability of the

virus to evade the host immune system. It has been established that

SARS-CoV-2 gains cellular entry by binding to angiotensin-

converting enzyme 2 (ACE2) via its spike protein (6, 7). ACE2

expression is detected in various human organs, including the liver,

lung, stomach, kidney, and colon, albeit at relatively low levels,

especially in the lung (8). Despite sharing the same receptor (ACE2)

for cell entry as SARS-CoV, SARS-CoV-2 is more infectious and

transmissible. It is plausible that SARS-CoV-2 might rely on

additional receptors for effective infection. Tyrosine protein

kinase receptor UFO (AXL) functions as a receptor tyrosine

kinase transmitting signals from the extracellular matrix to the

cytoplasm (9). It has also been identified as a potential receptor for

SARS-CoV-2. It interacts directly with the N-terminal domain of

SARS-CoV-2 spike glycoprotein to facilitate infection of pulmonary

and bronchial epithelial cells (10).

The roles of ACE2 and AXL receptors are crucial in the context

of COVID-19. Both of them exist in membrane-bound form and

soluble form, and the distinct forms elicit varying impacts (11).

Metallo-endopeptidase A and Metalloproteinasesadam are

responsible for their hydrolysis, yielding soluble ACE2 and

soluble AXL. Researchers have linked elevated levels of soluble

AXL to various cancers and have identified it as a cancer biomarker

(12). Nonetheless, research on circulating levels of soluble ACE2
02194
and AXL and their implications in COVID-19 patients

remains limited.

Our study aimed to analyze the serum levels of ACE2 and AXL

in individuals during the acute phase of COVID-19, in comparison

to healthy individuals. In addition, we sought to investigate the

serum levels of ACE2 and AXL in patients at different time points

post-COVID-19 infection and determine if these levels correlate

with COVID-19 progression.
2 Methods

2.1 Study design

Between December 2022 to October 2023, a total of 358 patients

with COVID-19 were enrolled in Fujian Provincial hospitals in

Fujian Province. COVID-19 was diagnosed through a

nasopharyngeal reverse-transcription polymerase chain reaction

(RT-PCR) assay or SARS-CoV-2 antigen rapid test. All patients

were subdivided into mild or moderate or severe or critical

according to the Guidance for Corona Virus Disease 2019 (10th

edition) released by the National Health Commission of China

(https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11815/

202301/t20230107_263257.html). During the study period, effective

genomic sequences of COVID-19 cases correspond to the Omicron

variant, according to investigation and announcement of the

Chinese Center for Disease Control and Prevention (https://

www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_13141/).

In our study, patients with mild or moderate COVID-19

were categorized as the non-severe group, and patients with

severe or critical COVID-19 were categorized as the severe

group. The starting point for all analyses was the day of the

positive nucleic acid test or SARS-CoV-2 antigen rapid test (Day

0). Patients were divided into four groups according to different

time points: 0-7 days, 8-15 days, 31-179 days, and >180 days.

After the patient’s serum is collected, a detailed medical history

or telephone return visit must be conducted. If the patient gets

another COVID-19 infection, or if the PCR or antigen test taken

on the day the serum was collected is positive, the specimen will

be excluded.
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2.2 Participants

A control group of 71 uninfected individuals was also included

in the study. The median age of participants was 45 years (IQR 33-

62 years), including 28 men and 43 women. Among the 358 cases of

patients with COVID-19, 209 non-severe patients and 149 severe

patients were included in our study. Severe patients were older than

non-severe patients (75 years [IQR 68-83 years] vs. 63 years [IQR

49-75 years]). The study recorded the data for each patient,

including age, gender, and comorbidities (e.g. hypertension,

diabetes mellitus (DM), chronic cardiovascular disease, chronic

pulmonary disease, chronic kidney disease, and tumor). This data

were shown in Table 1. Informed consent was obtained from all

participants, and the experimental protocol was approved by the

Institutional Review Board of Fujian Provincial Hospital(Fuzhou,

China; No. KY2021-03-013).
2.3 Detection of serum markers

To prepare human serum, blood is drawn from participants,

and allowed to clot at room temperature for at least 30 minutes.

Then, after centrifugation (8min, 3500 rpm), the supernatant part,

the serum, was collected and stored at -80°C.

Serum ACE2/AXL levels were detected through an ELISA assay

by using the ACE2/AXL quantitative detection kit (Shanghai Nibei

Bio-pharmaceutical Technology Co., Ltd, China). Based on the

instructions provided by the kit manufacturer, the ELISA

protocol was followed. Briefly, the standards (50 µl; provided by

the kit), samples to be tested (10 µl serum samples and 40 µl sample

diluent), and blanks were added to a microplate, which precoated

with human ACE2/AXL antibody. Then it was incubated at 37°C

for 30min. After washing the plate 5 times with phosphate buffer

saline (PBS) with Tween, horseradish peroxidase was added to form
Frontiers in Immunology 03195
an immune complex. The unbound substances were washed away,

and a substrate solution containing tetramethylbenzidine and urea

hydrogen peroxide was added to the microplate. The reaction was

stopped by a sulfuric acid solution, and absorbance values were

measured by an enzyme-labeled instrument at 450 nm using an

enzyme-labelled instrument (Bio-Rad, Hercules, CA, USA). The

concentration of ACE2/AXL in serum samples was calculated using

its calibration curve. Serum IgM and IgG against SARS-CoV-2

spike 1 protein or nucleocapsid protein were detected by using

SARS-CoV-2 antibody reagent kits (YHLO Biotech Co, Ltd,

Shenzhen, China) on an iFlash 3000 Chemiluminescence

Immunoassay Analyzer (Shenzhen YHLO Biotech Co, Ltd,

Shenzhen, China, http://en.szyhlo.com). The kits have catalog

numbers C86095M and C86095G for IgM and IgG. The normal

reference values were as follows: SARS-COV-2 IgG < 10 AU/ml,

SARS-COV-2 IgM < 10 AU/ml.
2.4 Statistical analysis

Statistical analyses were performed using SPSS 25.0 software

package (SPSS Inc. Chicago, USA) and GraphPad Prism 9.0

(GraphPad Software, USA). Continuous variables were presented

as median and interquartile range (IQR). Independent continuous

variables were compared using the Mann-Whitney U test or

Kruskal-Wallis test, and paired variables with the Wilcoxon

matched-pairs signed rank tests or Friedman test. Categorical

variables are expressed as numbers and percentages [n (%)], and

are compared using contingency table analysis and c2 tests or

Fisher’s exact test. The receiver operating characteristic (ROC)

curves were used to assess the diagnostic value of the biological

markers, and the association between laboratory parameters and the

risk of developing critical disease were explored. A p-value < 0.05

was considered statistically significant.
TABLE 1 Clinical characteristics of COVID-19 patients and uninfected individuals.

Characteristics Uninfected(n=71) Non-severe(n=209) Severe(n=149) p-value

Age, y, median(IQR) 45(33~62) 63.00 (49.00~75.00) 75.50(68.00~83.00) <0.001

Gender, n(%) <0.001

Male 28(39.4) 118(56.5) 103(69.1)

Female 43(60.6) 91(43.5) 46(30.9)

Comorbidities, n(%)

Hypertension – 78 (37.3) 102 (68.5) <0.001

Diabetes – 40 (19. 1) 56 (37.6) <0.001

Cancer – 39 (18.7) 34 (22.8) 0.336

Nephropathy – 10 (4.8) 17 (11.4) 0.019

Autoimmune disease – 36 (17.2) 10 (6.7) 0.003
fro
The data conforming to non normal distribution are described as medians and 25th–75th percentile quartile intervals (IQRs) and are compared using the Mann-Whitney U or Kruskal Wallis test.
Categorical variables are expressed as numbers and percentages [n (%)], and are compared using contingency table analysis and c2 tests or Fisher's exact test.
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3 Results

3.1 Expression of ACE2, AXL and SARS-
COV-2 IgG/IgM and their diagnostic value
for COVID-19

The serum ACE2, AXL, and SARS-COV-2 IgG/IgM were

compared between a cohort of 71 uninfected individuals and

148 COVID-19 patients with positive nucleic acid in 0-7days.

As shown in the Figures 1A, B, the levels of ACE2 and AXL in the
Frontiers in Immunology 04196
COVID-19 group were significantly lower than in the non-

infected group, while SARS-COV-2 IgG was significantly higher

in the COVID-19 group (Figure 1C). There was no significant

difference in the SARS-COV-2 IgM between the two groups

(Figure 1D). The ROC curve analysis show that the area under

the curve (AUC) of serum ACE2, AXL, and SARS-COV-2 IgG

were 0.714, 0.752, and 0.631, respectively (Figure 1E). However,

the AUC of a combination of ACE2 + AXL (0.741) was not higher

than AXL alone, suggesting that AXL had a better ability to predict

the risk of COVID-19 (Figure 1F).
B

C D

E F

A

FIGURE 1

Expression of ACE2, AXL and SARS-COV-2 IgG/IgM and their diagnostic value for COVID-19. The differential expression of serum ACE2, AXL,
andSARS-COV-2 IgG/IgM between 71 uninfected individuals and 148 COVID-19 patients with positive nucleic acid in 0-7days were compared
withMann Whitney test (A–D). The diagnostic value of ACE2, AXL, minus SARS-COV-2 IgG (E) and a combination of ACE2 + AXL (F) for COVID-19
wereperformed by ROC curve ( **P <0.01; ***P <0.001; ns, not statistically significant).
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3.2 Expression of serum ACE2, AXL and
SARS-COV-2 IgG/IgM in severe and non-
severe patients

3.2.1 Days 0-7 after laboratory-confirmed
COVID-19

The levels of ACE2, AXL, SARS-COV-2 IgG/IgM were analyzed

in patients with early COVID-19 (first week after laboratory-

confirmed COVID-19), including 84 cases of non-severe and 64

cases of severe. The results showed that AXL in the severe group was

significantly lower than in the non-severe group, while there were
Frontiers in Immunology 05197
no significant differences in the levels of ACE2, SARS-COV-2 IgG/

IgM between the two groups (Figures 2A-D).

3.2.2 Days 8-15 after laboratory-confirmed
COVID-19

In the second week after laboratory-confirmed COVID-19, the

levels of serum ACE2 and AXL in the severe group (n=93) were

significantly higher than that in the non-severe group (n=67), while

SARS-COV-2 IgG was significantly lower (Figures 2E-G). No

significant differences were observed in the levels of serum SARS-

COV-2 IgM between the two groups (Figure 2H).
B

C

D

E

F

G

H

A

FIGURE 2

Expression of serum ACE2, AXL and SARS-COV-2 IgG/IgM in severe and non-severe groups at intervals of 0-7 days and 8-15 days were compared
with Mann Whitney test (A-H) (*P <0.05; **P <0.01; ***P <0.001; ns, not statistically significant).
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3.2.3 Days 31-179 and more than 180 days after
laboratory-confirmed COVID-19

The change in these indicators were concerned within a half

year and more than 180 days after laboratory-confirmed COVID-

19. The levels of serum ACE2 and SARS-COV-2 IgG in the severe

group were significantly lower than those in the non-severe group

(Days 31-179) (Figures 3A, C). After 6 months, SARS-COV-2 IgG

was still higher in the non-severe group than in the severe group

(Figure 3G), and there were no significant differences in the other
Frontiers in Immunology 06198
three indicators between the two groups(>180 days) (Figures 3E-

F, H).
3.3 Evolution of serum ACE2, AXL and
SARS-COV-2 IgG/IgM levels over time

The study illustrated the overall profile of serum ACE2,

AXL, SARS-COV-2 IgG/IgM at different time points after
B

C
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E

F
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FIGURE 3

Expression of serum ACE2, AXL and SARS-COV-2 IgG/IgM in severe and non-severe groups at intervals of 31-179 days and >180 days were
compared with Mann Whitney test (A-H) (*P <0.05; **P <0.01; ***P <0.001; ns, not statistically significant).
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infection. In the non-severe group, the level of ACE2 increased

over time (Figure 4A). While the levels of SARS-COV-2 IgG

and IgM were on the rise in the 0–179 days interval but

declined after 180 days (Figures 4C, D). No statistically

significant increase in the level of serum AXL was observed
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(Figure 4B). In the severe group, the serum levels of ACE2,

AXL, and SARS-COV-2 IgM all reached a peak during 8–15

days, but subsequently decreased (Figures 4A, B, D). Moreover,

the serum level of SARS-COV-2 IgG rapidly increased after

infection but declined after 180 days (Figure 4C).
B

C

D

A

FIGURE 4

Change of serum ACE2, AXL and SARS-COV-2 IgG/IgM levels over time (0-7 days, 8-15 days, 31-179 days and >180 days) in severe and non-
severegroups, respectively (A–D). Data were presented as violin plots (median, quartiles and all points). The data do not follow normal distribution,
statisticalsignificance of the difference was evaluated by Kruskal-Wallis test (***P <0.001; ns, not statistically significant).
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3.4 Changes of serum ACE2, AXL and
SARS-COV-2 IgG/IgM by using paired Data

The paired data from severe patients with COVID-19 were

conducted to investigate the change pattern of serum antibodies
Frontiers in Immunology 08200
more precisely. The results showed that the levels of serum ACE2,

AXL, SARS-COV-2 IgG and IgM all had a significant rise during 8-

14 days (Figures 5A-D). In addition, the levels of ACE2, AXL, and

SARS-COV-2 IgM were significantly decreased after 30 days, while

SARS-COV-2 IgG was not obviously altered (Figures 5E-H).
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FIGURE 5

Serum ACE2, AXL and SARS-COV-2 IgG/IgM levels in severe group were compared among different temporal periods by using paired data. Wilcoxon
matched-pairs signed rank tests were used to compare the changes of ACE2, AXL and SARS-COV-2 IgG, SARS-COV-2 IgM levels from 0-7 days and
8-15 days (A-D). Friedman test were used to compare the changes of ACE2, AXL and SARS-COV-2 IgG, SARS-COV-2 IgM levels among 0-7 days, 8-
15 days and 31-180 days (E-H) (*P <0.05; **P <0.01; ***P <0.001).
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3.5 Do the levels of ACE2, AXL and SARS-
COV-2 IgG/IgM in COVID-19 patients
return to an uninfected state after
180 days?

To answer this question, the levels of serum ACE2, AXL, SARS-

COV-2 IgG/IgM between 45 patients (>180 days) and 71 uninfected

individuals were analyzed. The results showed that there were no

significant differences in ACE2 and SARS-COV-2 IgM between the

two groups (Figures 6A, D), indicating that the serum levels of

ACE2 and SARS-COV-2 IgM returned to an uninfected stage.

However, AXL was sustained at a lower level, and SARS-COV-2

IgG was still at a higher level in the infected group after 180 days

compared with the uninfected group (Figures 6B, C).
4 Discussion

Based on the experience gained during the COVID-19

pandemic, new indicators need to be developed at an early stage

to predict the emergence and severity of new pathogens, especially

those associated with severe cases. Many studies have demonstrated

that serum ACE2 activity correlated with COVID-19 severity and

predicted mortality (13–15). In our study, not only ACE2, but also

serum AXL, derived from another receptor of COVID-19, also seem

to be a potential molecular marker for predicting COVID-

19 progression.

Compared with the non-infected group, the initial cohort of

COVID-19 patients showed with higher levels of SARS-COV-2

IgG/IgM. However, ACE2 in the COVID-19 group were
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significantly lower than those in the non-infected group, which is

consistent with the result reported by Marıá del (16). The level of

AXL also decreased in the initial cohort of COVID-19 patients,

which was first noted in our research. A previous comprehensive

study on SARS-CoV had established that the binding of the S

glycoprotein to ACE2 receptor down-regulated ACE2 expression

(17). The SARS-COV-2 enters the cytoplasm through ACE2 and

AXL-mediated endocytosis, which may cause the decrease in serum

ACE2 and AXL levels in the initial cohort of COVID-19 patients.

Surprisingly, the ROC curve analysis showed that the combined

AUC of ACE2 and AXL did not exceed the AUC of AXL alone.

Therefore, serum AXL seems to be a better predictor for

COVID-19.

During the first week after infection with COVID-19, there is no

obvious difference in symptoms and the levels of SARS-COV-2 IgG/

IgM between non-severe and severe patients. However, better

management can be achieved to prevent deaths by capturing early

warning signs and timely intervention in critically ill patients.

Fortunately, our results show that AXL, but not ACE2, can

provide early warning of clinical deterioration. Then the changes

of serum ACE2, AXL and SARS-COV-2 IgG/IgM between the non-

severe and severe groups over time were observed. Serum ACE2 and

AXL levels peaked at 8-15 days in the severe group compared to the

non-severe group. Although the serum SARS-COV-2 IgG level in

the severe group was always lower than in the non-severe group, it

reached a significant peak at 31-179 days in both groups.

The main manifestations of SARS-CoV-2 infection were

respiratory symptoms, but single-cell sequencing data showed

that ACE2 expression was low in human tissues (18, 19). AXL is

widely expressed in almost all human organs. In particular, in
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FIGURE 6

The Levels of ACE2, AXL and SARS-COV-2 IgG/IgM of COVID-19 patients (>180 days) were compared with those of uninfected individuals by using
Mann Whitney test (A–D) (*P <0.05; **P <0.01; ***P <0.001; ns, not statistically significant).
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human pulmonary and bronchial epithelial tissue and cells, AXL

expression is much higher than ACE2 expression (20). AXL is

known to regulate various intracellular signaling pathways,

including Ras/ERK, PI3K, and p38 (21, 22). SARS-CoV-2

activated the PI3K/Akt/mTOR signaling during the initial phases

of infection (23, 24), which supported the theory of AXL as an early

warning indicator for clinical deterioration. Another study found

that the p38/MAPK signaling was promoted by SARS-CoV-2

infection leading to the overproduction of inflammatory cytokines

(25). As is well known, SARS-CoV-2 triggers a strong immune

response that can cause cytokine storm syndrome in severe

COVID-19 patients (26). Hypoxia inducible factor-1 (HIF-1)

binds to the AXL promoter, and then promotes SARS-CoV-2

infection and exacerbates inflammatory responses to COVID-19

(27, 28). Moreover, serum AXL has been reported to interact with

two vitamin K-dependent protein ligands, growth arrest-specific

factor 6 (GAS6) and protein S, forming a complex. Elevated levels of

AXL complex have been detected in a variety of pathologies

including specific inflammatory conditions and various tumors

(29–33). Numerous studies have reported that plasma Gas6 levels

are directly related to the severity and outcome of COVID-19 (34–

36), and the Gas6/AXL axis is involved in regulating inflammation

and fibrosis in COVID-19 patients (37). In our results, a significant

change in serum AXL levels were found in the severe group but not

in the non-severe group. Considering serum AXL plays a major role

in regulating inflammation, AXL may play an important role in the

severe progression of COVID-19.

After half a year, the serum levels of ACE2 and SARS-CoV-2

IgM returned to levels seen in uninfected individuals. Interestingly,

AXL sustained lower levels, and SARS-CoV-2 IgG remained at

higher levels in the infected group after 180 days. Some patients

recovering from COVID-19 may develop a group of new onset or

aggravated sequelae known as long COVID (38). The prevalence of

long COVID is still uncertain, but evidence is emerging that it is

relatively common (39, 40). There was a study indicated that ACE2

activity is substantially attenuated at 8 months post-infection and

has not been associated with long COVID symptoms (41). Long

COVID-19 can occur as part of the process of COVID-19. The

major contributory mechanistic factor is the persistent cytokine

storm that may last longer in long COVID patients than in others,

probably triggered by aggregates of SARS-Co-2 discovered recently

in the adrenal cortex, kidney and brain (42). AXL, playing an

important role in regulating inflammation, which may correlated

with the long COVID symptoms. However, further exploration and

additional experimental validation are needed.

It should be pointed out that there were some shortcomings of

this study. Firstly, we didn’t record the patient’s symptoms in detail

in the telephone follow-up, so we can’t confirm whether the patients

have post COVID-19 condition. Secondly, according to

investigation and announcement of the Chinese Center for

Disease Control and Prevention, the analysis of the novel

coronavirus genome of COVID-19 cases in China showed that all
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were Omicron from 2022.9 to 2023.11, so all findings above apply

only to Omicron infection.

Nevertheless, a study indicated that AXL could independently

mediate the omicron infection (43). In our study, the level of serum

AXL not only is correlated with the development of COVID-19, but

also can provide early warning of clinical deterioration in the first

week after infection, suggesting that it is a superior biomarker for

COVID-19. Our results offer a new perspective for early

management of COVID-19.
5 Conclusions

Previous study demonstrated serum ACE2 can be used as a

protective biomarker for rapid test screening and even as one of the

treatment strategies. In our study, AXL and ACE2 were compared

in patient serum for the first time. Firstly, serum AXL appears to be

a better predictor for COVID-19, with the highest AUC. Secondly,

only AXL can provide early warning of clinical deterioration in the

first week after infection with COVID-19. Thirdly, AXL and ACE2

play important roles in the severe progression of COVID-19. Lastly,

AXL may be related to the development of long COVID symptoms.

In summary, serum AXL seems to be a superior biomarker for

COVID-19. However, further studies are needed to understand the

immune mechanism involved.
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Anti-RBD IgG antibodies from
endemic coronaviruses do not
protect against the acquisition of
SARS-CoV-2 infection among
exposed uninfected individuals
Flávia Lopes Adami1, Mateus Vidigal de Castro2,3,
Bianca da Silva Almeida1, Isabela Pazotti Daher1,4,
Márcio Massao Yamamoto1, Keity Souza Santos4,5,6,
Mayana Zatz2,3, Michel Satya Naslavsky2,3,
Daniela Santoro Rosa6,7, Edecio Cunha-Neto4,5,6,
Vivian Leite de Oliveira4†, Jorge Kalil4,5,6 and
Silvia Beatriz Boscardin1,6*†

1Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São
Paulo, Brazil, 2Centro de Estudos do Genoma Humano e Células Tronco, Universidade de São Paulo,
São Paulo, Brazil, 3Departamento de Genética e Biologia Evolutiva, Instituto de Biociências,
Universidade de São Paulo, São Paulo, Brazil, 4Laboratório de Imunologia, LIM19, Instituto do Coração
(InCor), Hospital das Clı́nicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP),
São Paulo, Brazil, 5Departamento de Clı́nica Médica, Disciplina de Alergia e Imunologia Clı́nica,
Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil, 6Instituto de
Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil,
7Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Imunologia, Universidade
Federal de São Paulo (UNIFESP), São Paulo, Brazil
Background: The Coronaviridae family comprises seven viruses known to infect

humans, classified into alphacoronaviruses (HCoV-229E and HCoV-NL63) and

betacoronaviruses (HCoV-OC43 and HCoV-HKU1), which are considered

endemic. Additionally, it includes SARS-CoV (severe acute respiratory syndrome),

MERS-CoV (Middle East respiratory syndrome), and the novel coronavirus SARS-

CoV-2, responsible for COVID-19. SARS-CoV-2 induces severe respiratory

complications, particularly in the elderly, immunocompromised individuals and

those with underlying diseases. An essential question since the onset of the

COVID-19 pandemic has been to determine whether prior exposure to seasonal

coronaviruses influences immunity or protection against SARS-CoV-2.

Methods: In this study, we investigated a cohort of 47 couples (N=94), where one

partner tested positive for SARS-CoV-2 infection via real-time PCR while the

other remained negative. Plasma samples, collected at least 30 days post-PCR

reaction, were assessed using indirect ELISA and competition assays to measure

specific antibodies against the receptor-binding domain (RBD) portion of the

Spike (S) protein from SARS-CoV-2, HCoV-229E, HCoV-NL63, HCoV-OC43, and

HCoV-HKU1.
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Results: IgG antibody levels against the four endemic coronavirus RBD proteins

were similar between the PCR-positive and PCR-negative individuals, suggesting

that IgG against endemic coronavirus RBD regions was not associated with

protection from infection. Moreover, we found no significant IgG antibody cross-

reactivity between endemic coronaviruses and SARS-CoV-2 RBDs.

Conclusions: Taken together, results suggest that anti-RBD antibodies induced

by a previous infection with endemic HCoVs do not protect against acquisition of

COVID-19 among exposed uninfected individuals.
KEYWORDS

seasonal coronavirus, COVID-19, humoral immunity, cross-reactivity, RBD protein
1 Introduction

Human coronaviruses (HCoVs) are zoonotic viruses of the

Coronaviridae family that can cause severe respiratory infections

(1)and rank as the second cause of the common cold after

rhinoviruses (2). There are currently seven known human-infecting

coronaviruses: seasonal alphacoronaviruses HCoV-229E and HCoV-

NL63, betacoronaviruses HCoV-OC43 and HCoV-HKU1, and the

emergent severe acute respiratory syndrome coronavirus (SARS-

CoV), Middle East respiratory syndrome coronavirus (MERS-

CoV), and the novel severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) (3). Typically, seasonal or common coronaviruses

cause mild upper-respiratory tract infections in immunocompetent

individuals, although severe lower-respiratory tract disease can affect

children, the elderly, and immunocompromised individuals (4).

HCoV-229E (5) and HCoV-OC43 (6) were isolated over 50 years

ago, while HCoV-NL63 (7) and HCoV-HKU1 (8) were identified

after the 2002 SARS-CoV outbreak in China. These viruses are

endemic, contributing to an estimated 15–30% of respiratory tract

infections each year (4). However, the real clinical importance of

these viruses remains undefined due to conflicting data in the

literature and the lack of studies specially designed to directly

address their infection prevalence.

HCoV-229E was the first coronavirus to be discovered in 1966

(5), belongs to the Duvinacovirus subgenus, and causes common

colds in healthy individuals and susceptible populations like

children and the elderly. Despite its association to common colds,

HCoV-229E has been detected in severe infections of the lower-

respiratory tract among healthy adults with no comorbidities,

leading to cases of pneumonia or bronchiolitis. The precise

reasons behind the varying clinical manifestations observed in

different patient groups remain unclear (9, 10). HCoV-OC43,

discovered in 1967 (6), is the most prevalent coronavirus related

to infections and was the second coronavirus identified. Named

with the prefix ‘OC’ from organ culture, it belongs to the

Embecovirus subgenus and can infect both humans and cattle

(11). Discovered in the Netherlands in 2004 (7), HCoV-NL63 is
02206
directly associated with common cold manifestations but can also

lead to more serious infections of the lower-respiratory tract.

Similar to the virus causing COVID-19 (SARS-CoV-2), HCoV-

NL63 is the only seasonal coronavirus known to use the human

angiotensin-converting enzyme 2 (ACE2) as cell penetration

receptor, although studies suggest that the Spike (S) protein from

HCoV-NL63 has a weaker interaction with human ACE2 than

SARS-CoV-2 (12, 13). HCoV-HKU1 was the last seasonal

coronavirus to be discovered in Hong Kong in 2005 (8), and it

seems to have originated from infected mice. Among all seasonal

coronaviruses, HCoV-HKU1 infection is associated with more

severe symptoms such as chills, tonsillar hypertrophy and febrile

seizures. Infections with this virus are usually self-limiting, with

only two reported pneumonia-related deaths in patients with

serious underlying conditions like cancer (8, 14).

SARS-CoV-2 was identified in Wuhan, Hubei province, China,

in individuals exposed at a seafood market that also commercialized

live animals, suggesting zoonotic transmission. However, until now,

it is not known how the virus spilled over from its original host to

the market and, consequently, to people. SARS-CoV-2 infection

causes COVID-19, declared a global public health emergency,

displaying symptoms ranging from mild colds (80% of

symptomatic cases) to more severe manifestations (5–10% of

cases) such as pneumonia, respiratory failure, heart failure, sepsis

and multi-organ failure, as well as, asymptomatic cases (15).

The main protein of coronaviruses, Spike (S), is a glycoprotein

of approximately 180 kilodaltons (kDa), located on the viral surface.

Its sequence encodes a signal peptide at the N-terminus and the S1

and S2 subunits, responsible for receptor binding and membrane

fusion, respectively (16). Mutations in the gene encoding Spike

enable its adaptation to new tissues and hosts (17–19). Given its role

in virus entry into host cells, the S protein is the primary target for

neutralizing antibodies and a focus for therapeutic and vaccine

strategies. Potent neutralizing antibodies usually target the

receptor-binding domain (RBD) located in the S1 subunit,

blocking viral entry by preventing the interaction of the S1

subunit with the ACE2 receptor (20, 21).
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Cross-immunity occurs when an immune response triggered by

one pathogen confers partial or complete protection against a

related pathogen, relying on common antigens shared by both

pathogens. Cross-reactivity to seasonal coronaviruses may be

significant for COVID-19, as studies indicate the presence of

SARS-CoV-2 specific CD4+ T cells in individuals not previously

exposed. Thus, cross-reactivity in T cell recognition is plausible,

since there are homologous sequences among the different types of

human-infecting coronaviruses (22).

However, while extensive exploration has been conducted on the

degree of antibody cross-reactivity between endemic HCoVs and

SARS-CoV-2, findings remain controversial. A study reported 2.3%

seropositivity (53 out of 1938 samples) in immunoassays against

nucleoprotein (NP) and RBD protein in individuals likely unexposed

to the virus, suggesting potential cross-reactivity against SARS-CoV-2

(23). Other studies revealed pre-existing antibodies against SARS-CoV-

2 in unexposed individuals directed specifically to the S2 subunit of the

Spike protein, but not the S1 subunit which includes the RBD (24),

lacking neutralizing or protective activity against SARS-CoV-2

infection (24–26). In addition, cross-reactive antibodies potentially

induced by previous endemic HCoV infections were also detected

against ORF1 and, to a lesser extent, Spike and NP (27).

Evidence also suggests that an immune response against

seasonal coronaviruses might correlate to a better prognosis in

COVID-19 progression (28). Moreover, previous responses to

endemic HCoVs might influence the functionality of the anti-

SARS-CoV-2 antibody repertoire responses (29, 30).

In order to evaluate the endemic HCoVs’ anti-RBD IgG response

profile, its association with COVID-19 acquisition, and the cross-

reactivity of endemic HCoV RBD with SARS-CoV-2 RBD, we tested

plasma samples from couples living together, where one individual

acquired COVID-19, while the other remained uninfected despite

exposure in the same household. Our results showed that anti-RBD

IgG responses to endemic HCoVs did not predict protection against

infection, discarding the potential cross-reactive effect from previous

endemic coronavirus exposure on the antibody repertoire against

SARS-CoV-2 infections.
2 Materials and methods

2.1 Volunteers’ recruitment, blood
collection, and sample processing

For this study, we selected a cohort of 47 Brazilian couples who

showed discordant results in real-time PCR tests for SARS-CoV-2

detection, during the first wave of COVID-19 in Brazil in 2020, as

detailed in Supplementary Table 1. In each selected couple, one

partner tested positive for COVID-19 via PCR, while the other

tested negative. The infected partner exhibited symptoms of

COVID-19, while the other partner remained uninfected (as

confirmed by a negative PCR result), despite sharing the same

living space and sleeping arrangements throughout the period of

infection. The couples did not maintain social distance during the

course of the illness, did not wear masks and did not take any

protective measures at home. The members of each couple were of
Frontiers in Immunology 03207
similar age (between 24 and 79 years, with an average age of 44.4

years) and had access to the same health insurance plan. Also,

individuals with pre-existing diseases and/or comorbidities that

could influence the course of the disease were not included in

this cohort.

Members infected within the cohort were classified into

subgroups according to their COVID-19 clinical conditions, based

on the severity scales proposed by the World Health Organization

(WHO-2019-nCoV-clinical-2020.5) and elaborated upon by Gandhi

et al. (31). The classifications are as follows:Mild illness: characterized

by the presence of common symptoms such as fever, cough, and

changes in smell (anosmia) and taste (dysgeusia), but not shortness of

breath (dyspnea). No hospitalization is required; Moderate illness:

defined by the presence of common symptoms, including dyspnea,

and either clinical or radiographic evidence of lower respiratory tract

disease, but without hypoxemia (blood oxygen saturation of 94% or

higher). Hospitalization may be warranted. In this study, none of the

participants were hospitalized, and all infected participants recovered

without any complications or sequelae.

Blood samples were collected in vacutainer tubes containing

EDTA (BD Biosciences) from both partners at least one month after

the initial illness (to detect SARS-CoV-2 antibodies) prior to the

availability of COVID-19 vaccines in Brazil, and before the

appearance of new SARS-CoV-2 variants (between June and

October 2020). To ensure that the partners who tested negative

had not contracted the virus asymptomatically, we conducted

serological tests to confirm their seronegative status. Plasma was

separated by centrifuging the samples at 2000 x g for 10 minutes at

room temperature, performed within 30 minutes of venipuncture.

Subsequently, the supernatant was aliquoted into 1.5 mL cryovials

(Corning®, USA). These samples were then stored at -80°C until

further analysis.

Each couple had their sample for real-time PCR testing

collected on the same day the partner was confirmed positive,

and his/her plasma sample was collected on the same day as the

positive partner was collected.
2.2 Production of the RBD from HCoVs
and SARS-CoV-2

Plasmids containing nucleic acid sequences encoding the RBD

protein sequences of four seasonal human coronaviruses (HCoV-

OC43, HCoV-NL63, HCoV-229E, and HCoV-HKU1) were kindly

provided by Dr. Aravinda M. de Silva (University of North Carolina

School of Medicine, Chapel Hill, USA) and are described in (32).

Additionally, the RBD protein sequence from SARS-CoV-2 Wuhan

Hu-1 strain was kindly provided by Dr. Florian Krammer (Icahn

School of Medicine at Mount Sinai, New York, USA) and is

described in (33).

The plasmids were transformed by heat shock into TOP10

competent Escherichia coli bacteria (ThermoFisher Scientific). A

single colony was cultured for 16–18 hours in 200 mL of LB

medium (Merck) supplemented with 100 mg/mL of ampicillin.

Plasmid DNA extraction was performed using the PureLink™

HiPure Plasmid MaxiPrep kit (ThermoFisher Scientific) exactly as
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advised by the manufacturer. The concentrations of the purified

plasmids were determined by spectrophotometry (NanoDrop 2000,

ThermoFisher Scientific), and their integrity was analyzed using

0.8% agarose gels.

Expi293F™ cells (ThermoFisher Scientific) were grown at a

concentration of 1–3x106 cells/mL. The cells were thawed in a water

bath and then fed into a flask containing 30 mL of pre-warmed

Expi293™ expression medium (ThermoFisher Scientific). The cells

were diluted every 2–3 days, depending on the density found, and at

least 3 passages were made with the addition of a new medium,

before transfection. Transfections were performed exactly as

described in (34).
2.3 Purification of RBD Proteins by
affinity chromatography

On day 5, transfected cell cultures were harvested after the

addition of 100 mM of phenylmethylsulfonyl fluoride (PMSF,

ThermoFisher Scientific). After centrifugation at 3.000 xg for

20 min, the supernatants were collected and an equivalent volume

of cold 1x PBS (Phosphate Buffered Saline) was added. Five mL

plastic columns were set up with 1 mL of HisPur™ Ni-NTA resin

(ThermoFisher Scientific) for each 100 mL of culture supernatant.

After two washes with 5 mL of cold 1x PBS, each column was

adapted to a peristaltic pump (Mini-Peristaltic Pump II, Harvard

Apparatus), and the cold supernatant was passed slowly twice.

Subsequently, the columns were washed with 100 mL of cold 1x PBS

containing 5mM imidazole (Merck). Elution was carried out

initially with 50 mL of cold 1x PBS containing 25 mM imidazole

followed by 10 mL of cold PBS 1x containing 250 mM of imidazole,

collected in 1 mL-fractions. Protein presence in each fraction was

evaluated using Bradford reagent (ThermoFisher Scientific).

Protein-containing tubes were pooled together and dialyzed

against cold 1x PBS to remove imidazole. Protein concentration

was quantified by spectrophotometry (NanoDrop 2000,

ThermoFisher Scientific), and protein integrity was confirmed via

12% polyacrylamide gel electrophoresis and Coomassie blue

staining (BioRad) (Supplementary Figure 1).
2.4 Indirect ELISA

To assess plasma reactivity against RBD proteins from seasonal

HCoVs and SARS-CoV-2, and against the nucleoprotein (NP,

kindly provided by Dr. Ricardo T. Gazzinelli, Federal University

of Minas Gerais, Brazil (35)), an Enzyme Linked Immunosorbent

Assay (ELISA) was performed. High binding 96-well ELISA plates

(Costar) were incubated with 100 ng/well of each RBD or NP

protein diluted in 1x PBS at room temperature (RT) for 18 hours.

The plates were then washed 3x with 1x PBS+0.02% Tween (Synth,

PBS-T). Blocking was performed for 1 hour at RT with 150 mL/well
of PBS-T containing 1% bovine serum albumin (BSA, Merck) and

5% powdered skim milk (Nestle). After 3 more washes with PBS-T,

plasma samples were diluted 1:100, in duplicates, in 100 mL/well of
PBS-T containing 0.25% BSA and 5% powdered skim milk, and
Frontiers in Immunology 04208
incubated at 37 °C for 2 hours. Following three additional washes

with PBS-T, plates were incubated with 50 µL/well of a secondary

anti-human IgG-HRP antibody (1:15,000, KPL) for 1-hour

incubation at RT. After three washes with PBS-T, plates were

developed using a solution containing 1mg/mL ortho-

phenylenediamine dihydrochloride (OPD, Amresco), 0.2 M

sodium phosphate and 0.1 M citric acid (pH 4.7) plus 30% H2O2.

The reaction was stopped with 50 µL of 4N H2SO4 (Merck) solution

after 15 minutes, and plates were read at a wavelength of 492 nm

using the BioTek ELx800 reader (Biotek).
2.5 Competition ELISA

To examine the cross-reactivity of antibodies present in the plasma

of each patient, competition ELISA assays were conducted. Plasma

from each patient was adsorbed or not with 20 µg/mL of each

recombinant RBD for 2 hours at 37°C. Then, the plasmas were

diluted 1:100, in duplicates, in 100 mL/well of PBS-T containing

0.25% BSA and 5% powdered skim milk, and transferred to high

binding 96-well ELISA plates (Costar) containing 100 ng/well of each

RBD (previously diluted in 1x PBS at RT for 18 hours, and washed 3x

with 1x PBS-T). Diluted plasmas were then incubated at 37 °C for 2

hours. Following three additional washes with PBS-T, plates were

incubated with 50 µL/well of a secondary anti-human IgG-HRP

antibody (1:15,000, KPL) for 1-hour incubation at RT. After three

washes with PBS-T, plates were developed using a solution containing

1mg/mL ortho-phenylenediamine dihydrochloride (OPD, Amresco),

0.2M sodium phosphate and 0.1M citric acid (pH 4.7) plus 30%H2O2.

The reaction was stopped with 50 µL of 4N H2SO4 (Merck) solution

after 15 minutes, and plates were read at a wavelength of 492 nm using

the BioTek ELx800 reader (Biotek). The O.D. readings obtained for

each duplicate without or with RBD adsorption were recorded. The

ratio was obtained by dividing the mean values of the O.D. readings

obtained without and with RBD adsorption.
2.6 Statistical data analysis

Normality testing was performed using the D’Agostino &

Pearson test. For data not passing normality test, non-parametric

Kruskal-Wallis test followed by Dunn’s multiple comparisons test

were utilized. Non-parametric Mann-Whitney test was used when

two groups were compared. One-way ANOVA for repetitive

measures was used for data passing the normality test. The

GraphPad Prism 9 software was used for data analysis and

significance was set at P < 0.05.
3 Results

3.1 Plasma reactivity to SARS-CoV-2 RBD
and nucleocapsid protein

Initially, we tested plasma reactivity against SARS-CoV-2 Wild-

type (Wuhan-Hu-1) strain by ELISA (Figure 1). All PCR-negative
frontiersin.org
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(PCR-) individuals presented reactivities below the set cut-off

(calculated using 8 pre-pandemic plasma samples plus 3 standard

deviations, cutoff= 0.576). Notably, 17 out of 47 PCR-positive

(PCR+) individuals failed to seroconvert IgG antibodies against
Frontiers in Immunology 05209
SARS-CoV-2 RBD 30 days after infection, despite the confirmation

of infection by real-time PCR. The detailed data are presented in

Supplementary Table 1. Although 30 days is generally sufficient for

most individuals to develop detectable IgG antibodies, there are

significant individual variations in the immune response. These

individuals may have generated antibodies against distinct

components of the virus, besides the RBD. To test if this was the

case, we conducted serological testing for the nucleocapsid protein

(NP). Among the 17 individuals without antibodies against SARS-

CoV-2 RBD, 9 of them exhibited antibodies to SARS-CoV-2 NP

(Supplementary Table 1). Notably, all seven volunteers diagnosed

with moderate COVID-19 exhibited detectable levels of SARS-

CoV-2 antibodies, targeting the receptor binding domain (RBD)

or the nucleocapsid protein (NP).
3.2 Plasma reactivity to HCoV RBDs

We further investigated plasma reactivity against a panel of HCoV

RBDs produced in eukaryotic cells (Supplementary Figure 1). Figure 2

shows the reactivity of PCR-positive and negative individuals’ plasmas

against a panel of recombinant HCoV RBD proteins (HCoV-229E,

HCoV-NL63, HCoV-OC43 and HCoV-HKU1). The analysis revealed

robust IgG-specific antibody responses to HCoVs among most

individuals in the cohort, irrespective of COVID-19 status, displaying

relatively high O.D. values (Figures 2B-D), except for HCoV-229E
A B

DC

FIGURE 2

Anti-RBD IgG serology profile of HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV HKU1. IgG response profile of PCR+ or PCR- individuals for
SARS-CoV-2 against RBD proteins derived from alphacoronaviruses HCoV-229E (A) and HCoV-NL63 (B), and betacoronaviruses HCoV-OC43
(C) and HCoV-HKU1 (D). For this assay, the subjects’ plasma was used at a concentration of 1:100, and the recombinant RBD in 2 µg/ml (100 ng/
well). The test was read in the wavelength of 492 nm and each graph shows the O.D. obtained for the PCR+ (red) or PCR- (blue) individuals for
SARS-CoV-2. The horizontal black lines represent the medians ± interquartile intervals. Mann-Whitney test. ns, not significant.
FIGURE 1

SARS-CoV-2 anti-RBD IgG serology profile. Indirect ELISA
performed in order to identify the IgG response profile of PCR+ or
PCR- individuals against the RBD portion of SARS-CoV-2 Spike
protein. Plasma samples were used at a concentration of 1:100 and
recombinant RBD at 2 µg/ml (100 ng/well). The test was read at a
wavelength of 492 nm. The horizontal black lines represent the
medians ± interquartile intervals. Cutoff = Average O.D. of known
negative individuals (pre-pandemic samples) + 3 standard deviations.
Mann-Whitney test, ****p<0.0001.
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which showed lower reactivity compared to the other HCoVs

(Figure 2A). However, more importantly, no statistically significant

differences were detected when comparing anti-RBD responses

between SARS-CoV-2 PCR-positive and negative individuals

(p=0.1054 for HCoV-229E, p=0.1022 for HCoV-NL63, p=0.3347 for

HCoV-OC43 and p=0.1113 for HCoV-HKU1). Additionally, when

dividing the individuals into groups based on their PCR results and

gender, no statistical differences were observed (Supplementary

Figures 2A-D). Regarding the reactivity to SARS-CoV-2, both PCR-

positive males and females exhibited statistically significant differences

in comparison to PCR-negative subjects, but not between PCR-positive

or PCR-negative individuals (Supplementary Figure 2E).
3.3 Competition ELISAs to detect anti-
HCoV RBD-specific antibodies

The lack of negative controls, i.e. plasma samples that were

known to be negative for each HCoV, did not allow us to calculate a

cut-off for each HCoV RBD protein, as we did for SARS-CoV-2 in

Figure 1. To overcome this limitation and indeed check if we could

detect anti-HCoV RBD specific antibodies, plasma samples were

pre-incubated with each HCoV RBD, followed by testing on ELISA

plates containing the same HCoV RBD. A reduction in response to

each HCoV RBD was observed upon previous incubation with the

respective HCoV RBD (Figure 3). However, no differences were

detected between SARS-CoV-2 PCR-positive and negative

individuals regarding plasma reactivity to HCoV-229E

(Figure 3A), HCoV-NL63 (Figure 3B), HCoV-OC43 (Figure 3C)

or HCoV-HKU1 (Figure 3D), in both non-adsorbed or previously

adsorbed samples. As expected, significant differences were detected

when comparing PCR-positive and negative plasma samples tested

against SARS-CoV-2 RBD (Figure 3E), in line with the clinical and

molecular diagnostics.
3.4 Adsorption of plasma samples and
evaluation of cross reactivity against each
previously tested RBD

We proceeded to adsorb or not the plasma samples from PCR-

positive and negative individuals to each HCoVs or SARS-CoV-2

RBD protein and tested them against each HCoV RBD in

competition ELISA assays (Figure 4). The normalization of the

data involved calculating a ratio of O.D. values obtained without

adsorption to those obtained after adsorption. Notably, no

statistical differences were found when we compared the ratios of

PCR-positive and negative samples for HCoV-229E or the other

HCoVs (Figures 4A-D), except a small difference observed for PCR-

positive and negative individuals adsorbed against HCoV-OC43

and tested to itself (Figure 4C). It is important to mention that when

the samples were adsorbed to a specific protein and subsequently

tested with the same protein, we expected an increase in the ratios.

As previously observed in Figure 3, adsorption resulted in the

removal of the anti-RBD specific antibodies, leading to lower

O.D. values when compared to non-adsorbed samples. This is
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precisely what we observed when the plasma samples from PCR-

positive and negative individuals were adsorbed and tested against

the same protein.
4 Discussion

In this study, we conducted a comparative analysis of antibody

responses to the RBD from the four endemic coronaviruses -

HCoV-OC43, HCoV-NL63, HCoV-229E and HCoV-HKU1 – as

well as the SARS-CoV-2 RBD. The focus was on individuals in

intimate relationships, specifically couples (n=47), who either had

symptomatic COVID-19 (SARS-CoV-2 PCR positive) or had not

(SARS-CoV-2 PCR negative spouses). Among the infected

participants, the majority exhibited mild symptoms (n=40) and

were predominantly male, supporting other studies that suggested

men were more prone to symptomatic presentations of COVID-19

than females during the first outbreak (2020) of the disease (36, 37).

Here, our results indicate that both SARS-CoV-2 infected and

uninfected individuals exhibit similar levels of IgG antibodies

against the RBD portion of endemic coronaviruses. Furthermore,

IgG antibodies against the RBD of different endemic coronaviruses

did not show cross-reactivity with the SARS-CoV-2 RBD or with

each other.

Our initial results revealed that not every individual who tested

positive for SARS-CoV2 infection via PCR (17 out of 47) underwent

RBD seroconversion within 30 days following the PCR positive test.

In some cases, seroconversion may occur later than expected.

Alternatively, these individuals might have developed antibodies

targeting different viral components, such as the nucleocapsid

protein (NP), a highly immunogenic protein also used in the

serological diagnosis of SARS-CoV-2 infection (35, 38). Among

those 17 individuals showing reactivity to SARS-CoV-2 below the

threshold, 9 had developed antibodies to the SARS-CoV-2 NP. The

remaining 8 PCR+ participants who did not show seroconversion

for either SARS-CoV-2 RBD or NP might require additional time

post-infection to produce anti-RBD/NP antibodies or might be

relying on different immune responses that do not involve antibody

production. Instead, these mechanisms could include the activation

of T cells (39). It is important to mention that further monitoring of

seroconversion in these participants was not possible at subsequent

time points, as all volunteers received vaccinations shortly after the

initial blood sample collection.

Regarding IgG antibody responsiveness to endemic coronavirus

RBDs, most individuals, regardless of SARS-CoV-2 PCR status,

displayed relatively high O.D. values against RBDs of different

HCoVs. This was corroborated by the results of IgG homologous

competition ELISAs, indicating that the majority of individuals in

the PCR+ and PCR- groups showed similar ratios prior exposure to

all HCoVs. However, results on homologous adsorption with

HCoV-OC43 RBD did reveal a difference between ratios of non-

adsorbed/adsorbed plasmas observed in PCR+ and PCR- subjects.

This was unexpected since it was not apparent when comparing

O.D. values of HCoV-OC43 RBD between the PCR+ and PCR-

groups. Currently, we do not have a clear explanation for this

difference. This may suggest that patients with COVID-19 could
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have increased antibody levels against HCoV-OC43 RBD and

therefore could have been more exposed, or more recently

exposed to it. A previous report using samples from the United

States noticed an increase in reactivity against S protein of HCoV-

HKU1 among individuals who developed COVID-19 disease as

compared to COVID-19 negative subjects (40). At any event, our

interpretation is that anti-RBD antibodies acquired in a previous

infection with endemic coronaviruses play no role in the non-

acquisition of SARS-CoV-2 infection of the PCR negative partner,

thus having no protective effect. This conclusion is supported by

previous data, where no significant differences were observed in the
Frontiers in Immunology 07211
reactivity of sera from COVID-19 patients compared to individuals

from the pre-pandemic period for the S proteins of HCoV-229E,

HCoV-OC43 and HCoV-NL63 (40). Taken together, these findings

suggest that SARS-CoV-2 infection might not induce the expansion

of B cell clones with RBD-specific memory exhibiting cross-

reactivity to any of the HCoVs, possibly due to the limited amino

acid similarity (19 to 21%) between the RBDs of HCoVs and SARS-

CoV-2 (32).

In terms of cross-reactivity between endemic coronavirus RBDs

and SARS-CoV-2 RBD, as measured by the heterologous

competition RBD ELISA assays, no cross-reactivity was observed
A B

D

E

C

FIGURE 3

Cross-reactivity testing using SARS-CoV-2 PCR-positive (PCR+) and negative (PCR-) samples adsorbed or not against each RBD protein. Graphs
show ELISA assays with samples of SARS-CoV-2 PCR+ or PCR- individuals against RBD proteins from HCoV-229E (A), HCoV-NL63 (B), HCoV-OC43
(C), HCoV-HKU1 (D) and SARS-CoV-2 (E) adsorbed (open circles) or not (filled circles) to their respective proteins. Plasma from the subjects was
used at a concentration of 1:500 and the recombinant RBD for coating diluted to 2 µg/mL (100 ng/well) and for adsorption at 20 µg/mL. The assay
read-out was performed at a wavelength of 492 nm. The graphs show O.D. values for SARS-CoV-2 PCR+ (red) or PCR- (blue) individuals, with and
without adsorption with the respective RBD protein. The horizontal black lines represent the medians ± interquartile intervals. Kruskal-Wallis
followed by the Dunn’s test. ***p<0.001 and ****p<0.0001; ns, not significant.
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between endemic coronaviruses and SARS-CoV-2 RBDs, as well as

no cross-reactivity among different endemic coronaviruses

themselves, while homologous competition ELISAs showed the

expected reduction of reactivity after absorption. It is worth

noting that, as a control, we included the SARS-CoV-2 RBD, for

which the homologous competition ELISA was validated.

These findings suggest that SARS-CoV-2 infection may not

induce the expansion of memory B cell clones previously activated

with endemic coronavirus RBDs, possibly due to limited amino acid

homology between the RBDs of SARS-CoV-2 and those of HCoVs

(32). However, it is critical to clarify that our findings do not suggest

a complete absence of cross-reactivity between HCoVs and SARS-

CoV-2. Indeed, several studies analyzing pre-pandemic serum or

plasma samples have identified a significant fraction showing

reactivity with the S protein of SARS-CoV-2 (24, 40–42). Notably,

Majdoubi et al. showed that over 90% of non-infected adults

exhibited antibody reactivity against the S protein, its RBD, its N-

terminal domain (NTD), or the NP of SARS-CoV-2 (41).

Conversely, others have shown that the cross-reactive antibody

responses against the S protein were predominantly targeted to the

S2 fragment, a region of the S protein that is significantly more

conserved (24, 42). Moreover, Song et al. provided limited evidence

for the existence of pre-pandemic cross-reactive serum antibodies

against SARS-CoV-2. However, they detected pre-existing cross-

reactive memory B cells that underwent further expansion upon

SARS-CoV-2 infection (40). A cross-reactive peptide within the S2

fragment of the S protein was subsequently identified (43).

Following SARS-CoV-2 infection and vaccination, a 2- to 4-fold
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increase in antibodies that bind to seasonal HCoVs was observed in

sera, compared to those from pre-pandemic healthy donors, with

the S2 fragment being the main target of cross-reactivity (44). More

recently, broadly neutralizing monoclonal antibodies targeting not

the RBD but the S2 fragment were also developed (45, 46). Thus, the

absence of cross-reactivity between the RBDs of various endemic

HCoVs and SARS-CoV-2 observed in our study is consistent with

these previous findings.

It should also be noted that the major limitation of our study

was that we used ELISA readings as the only read-out for our

experiments. Nonetheless, competition assays and the absence of

statistical differences in antibody responses between PCR-positive

and negative individuals suggest that pre-existing antibodies against

HCoV RBDs may not confer protection against SARS-CoV-

2 infection.
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Health Regulatory Agency (ANVISA) resolution number 466 from

2012 that regulates research with humans. Participants were
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in this study also had access to demographic and clinical data of the

participants, which was necessary to integrate these findings with

the serological results. However, the data remained anonymized

and confidential to anyone unauthorized outside of this study. All

participants were >18 years old and provided written informed

consent prior to participation.
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Tetanus-diphtheria vaccine
can prime SARS-CoV-2
cross-reactive T cells
Sara Alonso Fernandez1†, Hector F. Pelaez-Prestel1†,
Tara Fiyouzi1†, Marta Gomez-Perosanz1, Jesús Reiné2,3

and Pedro A. Reche1*

1Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad
Universitaria, Madrid, Spain, 2Clinical Sciences, Liverpool School of Tropical Medicine,
Liverpool, United Kingdom, 3Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
Vaccines containing tetanus-diphtheria antigens have been postulated to induce

cross-reactive immunity to severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), which could protect against coronavirus disease (COVID-19). In

this work, we investigated the capacity of Tetanus-diphtheria (Td) vaccine to

prime existing T cell immunity to SARS-CoV-2. To that end, we first collected

known SARS-CoV-2 specific CD8+ T cell epitopes targeted during the course of

SARS-CoV-2 infection in humans and identified as potentially cross-reactive with

Td vaccine those sharing similarity with tetanus-diphtheria vaccine antigens, as

judged by Levenshtein edit distances (≤ 20% edits per epitope sequence). As a

result, we selected 25 potentially cross-reactive SARS-CoV-2 specific CD8+ T

cell epitopes with high population coverage that were assembled into a synthetic

peptide pool (TDX pool). Using peripheral blood mononuclear cells, we first

determined by intracellular IFNg staining assays existing CD8+ T cell recall

responses to the TDX pool and to other peptide pools, including overlapping

peptide pools covering SARS-CoV-2 Spike protein and Nucleocapsid

phosphoprotein (NP). In the studied subjects, CD8+ T cell recall responses to

Spike and TDX peptide pools were dominant and comparable, while recall

responses to NP peptide pool were less frequent and weaker. Subsequently,

we studied responses to the same peptides using antigen-inexperienced naive T

cells primed/stimulated in vitro with Td vaccine. Priming stimulations were

carried out by co-culturing naive T cells with autologous irradiated peripheral

mononuclear cells in the presence of Td vaccine, IL-2, IL-7 and IL-15.

Interestingly, naive CD8+ T cells stimulated/primed with Td vaccine responded

strongly and specifically to the TDX pool, not to other SARS-CoV-2 peptide

pools. Finally, we show that Td-immunization of C57BL/6J mice elicited T cells

cross-reactive with the TDX pool. Collectively, our findings support that tetanus-

diphtheria vaccines can prime SARS-CoV-2 cross-reactive T cells and likely

contribute to shape the T cell responses to the virus.
KEYWORDS

COVID-19, SARS-CoV-2, epitope, T cell cross-reactivity, tetanus-diphtheria
toxoid vaccines
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

is an emergent b-coronavirus identified in late 2019, causing

pneumonia as well as a wide array of ailments and symptoms

under the umbrella of coronavirus disease 2019 (COVID-19) (1).

The rapid spread and pathogenesis of SARS-CoV-2 resulted in a

global pandemic and health crisis that urged the mass deployment of

novel COVID-19 vaccines (2). However, SARS-CoV-2 remains a

public health concern since COVID-19 vaccines do not provide

sterile immunity (3) and new SARS-CoV-2 variants have emerged

(4). Hence, effective and universal measures against COVID-19 are

still in demand. Fortunately, we now knowmuch about SARS-CoV-2

infection and immune responses, which should help in this endeavor.

It is now clear that exposure to SARS-CoV-2 does not

always result in infection, nor does infection follow the same

course in everyone (5). Several factors have been identified to

increase the severity of COVID-19, most notably old age, but also

obesity, male gender and the presence of conditions like diabetes

and vascular diseases (6). The immune response to SARS-CoV-2

plays itself a major role in the course of infection. The most

severe cases of COVID-19 are characterized by significant

immunopathology, resulting from a disproportionate anti-viral

innate immune response, concomitant with a poor adaptive

immune response (7, 8). In contrast, COVID-19 severity and

duration are reduced in individuals developing a coordinated

adaptive immune response, involving SARS-CoV-2-specific CD4+

and CD8+ T cells and neutralizing antibodies (9). However, anti-

SARS-CoV-2 neutralizing antibodies are short-lived (10) and long-

term immunity to SARS-CoV-2 appears to be mediated by memory

T cells (11–13). Moreover, there is evidence indicating that T cell

immunity alone, in the absence of neutralizing antibodies, may

protect from SARS-CoV-2 (14). SARS-CoV-2-specific T cell

immunity is characterized by CD4+ T cells with a typical T cell

helper type 1 (Th1) phenotype (11, 13) but displaying a lower IFNg/
TNFa ratio than influenza-specific Th1 responses (15). Th1 cells

promote the activation and differentiation of SARS-CoV-2 specific

cytotoxic CD8+ T cells, which are crucial for resolving the infection

by killing infected cells (16, 17). In fact, delayed CD8+ T cell

responses have been linked to severe COVID-19, since viral

replication in the lungs is not controlled sufficiently fast (18).

Adaptive immune responses to SARS-CoV-2 induced by both

infection and vaccines are surely influenced by pre-existing cross-

reactive immunity (19–22). Cross-reactive immunity occurs when

memory T and B cells elicited by a primary encounter with

pathogens/antigens recognize and respond to different pathogens/

antigens (23, 24). The first evidence of pre-existing cross-reactive

immunity to SARS-CoV-2 came from the extensive T cell and

antibody responses to the virus detected in unexposed individuals

prior to or early in the outbreak (25–28). T cells are by nature more

cross-reactive than B cells (29) and about 20–85% of unexposed

individuals have been shown to present T cell reactivity to SARS-

CoV-2 (25, 30). Interestingly, while pre-existing B-cell cross-

reactivity can enhance SARS-CoV-2 pathogenesis (31, 32), cross-

reactive memory T cells contribute to host protection (33).
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Immune cross-reactivity is more likely to occur, and easy to

detect, between related pathogens/antigens. SARS-CoV-2 shares

sequence and structure similarity with common cold human

coronavirus (ccHCoVs), comprising two a-coronaviruses (299E

and NL63) and two b-coronaviruses (HKU1, OC43) (34), which

cause seasonal and prevalent infections in humans (35, 36).

Therefore, immune cross-reactivity between SARS-CoV-2 and

ccHCoVs has received major attention and is widely documented

(37, 38). It has been reported that up to 50% of T cell clones

generated from unexposed subjects against SARS-CoV-2 peptides

can cross-react with ccHCoVs peptides (39). However, other studies

point out that the cross-reactive T cell epitope repertoire between

SARS-CoV-2 and ccHCoVs is much smaller (40, 41). Moreover,

T cell cross-reactivity has also been identified between SARS-CoV-2

and unrelated pathogens/antigens, including bacteria (42) and

common viruses like human cytomegalovirus (43, 44) and

influenza virus (44). Therefore, the priming sources of cross-

reactive T cells to SARS-CoV-2 and contribution to protection

are still unclear.

Adaptive immunity develops early during childhood from

exposure to environmental antigenic challenges (e.g. microbes

and vaccines) (45), and so does cross-reactive immunity to SARS-

CoV-2. Interestingly, small children, who are generally vulnerable

to new pathogens, are particularly resilient to SARS-CoV-2

infection (46). Since children receive multiple vaccinations from

infancy to puberty, we investigated in a seminal in silico work

common vaccines as potential sources of cross-reactive immunity to

SARS-CoV-2 (47, 48). We concluded that vaccines containing

tetanus-diphtheria antigens could induce cross-reactive protective

immunity to SARS-CoV-2 (47, 48). Evidence of such protection was

confirmed latter (49) and it has been shown that T cells expanded

with SARS-CoV-2 antigens and Tdap vaccine, which includes

tetanus-diphtheria antigens and acellular Bordetella pertussis

antigens, exhibit overlapping T cell receptor (TCR) repertoires

(50). It is worth noting that vaccines containing tetanus-

diphtheria toxoids include far more proteins than the inactivated

toxins. As revealed by proteomics analysis, diphtheria and tetanus

toxoids only account for ~50–70% of the total protein content in

these vaccines, being accompanied by hundreds of additional

proteins from the relevant bacteria (51–53). All these tetanus-

diphtheria antigens can be immunogenic and were taken into

consideration in our former in silico analysis. Given the relevance

of CD8+ T cells in clearing viral infections, in this work, we

experimentally studied SARS-CoV-2 CD8+ T cell cross-reactivity

from tetanus-diphtheria Td vaccines. We report that stimulation of

naive T cells with autologous irradiated peripheral mononuclear

cells pulsed with a tetanus-diphtheria Td vaccine renders them

cross-reactive with a peptide pool consisting of 25 known SARS-

CoV-2-specific CD8+ T cell epitopes related by similarity with

antigens in Td vaccines (TDX pool). In contrast, these same T

cells seldom responded to control peptides, including other SARS-

CoV-2 peptide pools from Spike protein and Nucleocapsid

phosphoprotein (NP). In addition, we also found that Td

immunization of C57BL/6J mice induced T cell responses to the

TDX pool. These results support that tetanus-diphtheria vaccines
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can prime SARS-CoV-2 cross-reactive T cells and likely contribute

to shape the T cell responses to the virus.
2 Methods

2.1 Selection of cross-reactive SARS-CoV-
2-specific CD8+ T cell epitopes, prediction
of binding to MHC I molecules and
computation of population coverage

SARS-CoV-2-specific CD8+ T cell epitopes potentially cross-

reactive with tetanus-diphtheria antigens were selected upon

experimentally verified SARS-CoV-2-specific CD8+ T cell

epitopes targeted by humans infected with SARS-CoV-2. Such

SARS-CoV-2-specific CD8+ T cell epitopes were obtained from

the Immune Epitope Database (IEDB)[ (54) after the following

search criteria: 1) Peptide, linear; 2) Host, human; 3) Source, SARS-

CoV-2; 4) T cell assay, positive results only; 5) Restriction, Class I

and 6) Disease, infection. T cell epitope assays were downloaded

and processed, and a dataset consisting of the amino acid sequences

of 1153 distinct SARS-CoV-2-specific CD8+ T cell epitopes with

their reported restriction elements was assembled (Supplementary

Dataset 1). Subsequently, a PERL script for fuzzy matching based on

Levenshtein edit distances (String: Approx perl extension) was used

to select CD8+ T cell epitopes whose sequences matched those of

antigens identified in tetanus-diphtheria vaccines. Approximate

matches of up to 20% edits per epitope sequence (insertions,

deletions or substitutions) were allowed. A 20% Levenshtein

distance for a peptide of 10 residues means that two editions are

required to produce a match, while a peptide matching exactly has 0

Levenshtein distance. The Levenshtein distance between sequences

is related to their similarity but it does not align with a fixed

percentage of similarity. Protein antigens in diphtheria and tetanus

toxoid vaccines were those identified through proteomics studies

and available in proteome datasets PXD012806 (51), PXD013804

(52) and PXD009289 (53) at the Proteomics Identification Database

(PRIDE). Protein sequences were retrieved from UniProt and

assembled into a single file in FASTA format including 210

antigens from Corynebacterium diphtheriae (diphtheria) and 548

from Clostridium tetani (tetanus). Antigen sequences and PERL

script for fuzzy matching can be obtained from the corresponding

author upon written request.

Binding of CD8+ T cell peptide epitopes to human and mouse

major histocompatibility complex class I (MHC I) molecules was

predicted using standalone versions of RANKPEP (55, 56) and

NetMHCpan (57, 58). The targeted MHC I molecules included 22

human leukocyte antigens class I (HLA I) molecules (HLA-A*01:01,

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*03:01, HLA-

A*11:01, HLA-A*23:01, HLA-A*24:02. HLA-A*26:01, HLA-A*30:01,

HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-A*33:01, HLA-

A*68:01, HLA-A*68:02, HLA-B*07:02, HLA-B*08:01, HLA-B*15:01,

HLA-B*35:01, HLA-B*40:01 and HLA-B*44:02) and 9 mouse class I

H2 alloantigens (H2-Db, H2-Dd, H2-Dq, H2-Kb, H2-Kd, H2-Kk,

H2-Kq, H-2-Ld and H-2-Lq). RANKPEP and NetMHCpan

prediction models were selected to match the size of the peptides
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that had 8 or 9 residues. For longer peptides, the % rank of all nested

9mer peptides was analyzed and the best rank assigned to the peptide.

Peptides were considered to bind to any given MHC I molecule if

they were reported to have a % rank ≤ 2 by either RANKPEP or

NetMHCpan. Human population coverage of CD8+ T cell epitopes

was computed after HLA I binding profiles using a standalone

version of EPISOPT (59).
2.2 Synthetic peptides and peptide pools

Synthetic peptides corresponding to SARS-CoV-2-specific

CD8+ T cell epitopes cross-reactive with tetanus-diphtheria

antigens were obtained from ProteoGenix at 2 mg scale and ≥

90% purity. Peptides were dissolved in 80% dimethyl sulfoxide

(DMSO), diluted to a final stock concentration of 5 mM (40%

DMSO) and stored at -80°C. A custom peptide pool (TDX pool)

was prepared by combining an equal volume of all these peptides

(final concentration 200 µM). Commercial SARS-CoV-2 peptide

pools consisting of overlapping peptides spanning the entire SARS-

CoV-2 nucleocapsid phosphoprotein (NP pool) and S1

immunogenic region of Spike protein (Spike pool) were

purchased from Miltenyi: PepTivator® SARS-CoV-2 Prot_N and

PepTivator® SARS-CoV-2 Prot_S, respectively (reference Wuhan

strain). CEF peptide pool consisting of immunodominant CD8+ T

cell peptide epitopes from Human Cytomegalovirus, Epstein-Barr

and Influenza A viruses was purchased from Mabtech.

PepTivators® pools were reconstituted in sterile H2O (30 µM

final concentration) and CEF pool in DMSO plus phosphate-

buffered saline (PBS) buffer (200 µg/ml final concentration),

following the manufacturer’s instructions.
2.3 Culture media and reagents

Human cells were cultured in RPMI complete medium

consisting of RPMI 1640 medium (Gibco) supplemented with

10% of heat-inactivated human serum (Gibco), 2 mM L-

glutamine (Lonza), and 100 U/ml penicillin (Lonza) and 100 mg/
ml streptomycin (Lonza). Splenocytes from mice were also

incubated in RPMI complete medium, but including 10% of heat

inactivated fetal bovine serum (FBS)(Gibco), instead of human

serum. Cytokines for cell cultures were obtained from

Immunotools GmbH. DIFTAVAX® Tetanus-diphtheria (Td)

toxoids vaccine (Sanofi-Pasteur) was used for in vitro stimulations

and in vivo immunizations. DIFTAVAX® (Td) contains no less

than 2.5 Lf (2 IU) of purified diphtheria toxoid and 5 Lf (20 IU) of

purified tetanus toxoid per dose (0.5 ml).
2.4 Isolation of peripheral blood
mononuclear cells and naive T cells

Peripheral blood mononuclear cells (PBMCs) were isolated

from buffy coats by a density gradient on Ficoll-Paque™ PLUS

(Fisher Scientific). PBMCs in the interface layer were collected,
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washed twice with cold PBS, resuspended in complete RPMI

medium and counted. Buffy coats were provided by the regional

blood transfusion center (Centro de Transfusión de la Comunidad

de Madrid, Spain), and were obtained from healthy donors after

written informed consent. Naive T cells were isolated from PBMCs

by negative selection using a magnetic separation kit (EasySepTM

Human Naive Pan T Cell Isolation, StemcellTM Technologies).

Briefly, freshly isolated PBMCs (~5x107 cells) were incubated in

PBS containing 2% of heat-inactivated human serum and 1 mM

EDTA (1ml) with T cell isolation and TCR Gamma/Delta depletion

antibody cocktails (50 µl each) for 5 minutes, and then with

magnetic beads (60 µl) capturing antibody-labeled cells for 3

minutes. Magnetic-labeled cells were then pulled out with the

help of a magnet, leaving untouched isolated naive T cells in the

media. All isolation steps were performed at room temperature. To

control the purification, freshly isolated naive T cells (~105 cells)

were stained with anti-human CD3-APC (UCHT1, BD

Biosciences), anti-human CD45RA-PE (HI100, BD Biosciences)

and anti-human CD45RO-FITC (UCHL1, Miltenyi Biotec)

antibodies, and analyzed by flow cytometry. On average, 5x106

cells were isolated from 5x107 PBMCs.
2.5 T cell proliferation assay

Proliferation of T cells was determined by Carboxyfluorescein

Diacetate Succinimidyl Ester (CFSE)(Biolegend) dilution assay,

which was used as a criterium to select an optimal working

concentration of Td vaccine. About 107 PBMCs were incubated

with CSFE (0.5 µM final concentration) for 20 min in PBS at 37°C.

Cells were washed twice using complete RPMI and plated on 96-

well cell-culture plates (105 cells/well) with IL-2 (20 ng/ml) and

varying concentrations of Td vaccine as determined by the content

of diphtheria toxoid (0.0012, 0.004 and 0.04 Lf/ml of diphtheria

toxoid). Plates were incubated at 37°C and 5% CO2 for 5 days. As

controls, PBMCs were incubated with 25 ng/ml phorbol 12-

myristate 13-acetate (PMA)(Merck) or media alone. CFSE-labeled

cells were then stained with anti-human CD3-APC antibody

(UCHT-1, BD Biosciences) and analyzed by flow cytometry.
2.6 Stimulation of naive T cells with
Td vaccine

Naive T cells were primed with diphtheria-tetanus antigens using

irradiated PBMCs pulsed with Td vaccine. About 107 PBMCs at a

density of 5x106 cells/ml were incubated with Td vaccine (0.0012 Lf/ml)

for 30 min in a sterile 15 ml tube with 2 ml of complete RMPI media.

PBMCs were then homogenously irradiated with 30 Gy (Gammacell

1000 irradiator, Nordion). Td-pulsed irradiated PBMCs were disposed

in p24 plates (4x105 cells/well) along with 4x105 of autologous naive T

cells per well in complete RPMI (800 ml) supplemented with Td vaccine

(0.0012 lf/ml) plus IL-2 (20 ng/ml), IL-7 (25 ng/ml) and IL-15 (25 ng/

ml) (cytokines from ImmunoTools) and were incubated for 13 days at

37°C and 5% CO2. Td vaccine and cytokines were renewed every 2 days

and 200 µl of growth medium replenished.
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2.7 Mice immunizations and preparation
of splenocytes

All mice procedures included in this study were reviewed and

approved by the Ethics Board Committee at the Universidad

Complutense de Madrid and by the Division of Animal

Protection of the Comunidad de Madrid. C57BL/6J mice (male, 6

weeks old, Charles River) received 3 intramuscular (IM)

immunizations at 3-week intervals with 1/25 dose of Td vaccine

diluted in 100 ml of PBS (Td vaccinated group, n = 5) or with PBS

alone (control group, n = 5). Seven days after the last immunization,

mice were sacrificed by cervical dislocation, under general

anesthesia with 1–2% isoflurane/O2. At termination, blood was

obtained from mice via cardiac puncture, collecting 0.2 ml in 1.5 ml

microcentrifuge tubes (Eppendorf). The samples were then

centrifuged at 10,000 rpm for 10 minutes at room temperature.

Afterward, serum was carefully collected and stored at -80°C for

subsequent analysis. To examine mice immunization with Td

vaccine, the concentration of specific tetanus toxoid (TT) IgG was

quantified by an indirect ELISA assay using Tetanus Toxoid Coated

Plates (Biomat). The plates were incubated with serum samples

(1:400) for 1 hour at room temperature, and after 3 washes with PBS

containing Tween 20 (Sigma-Aldrich), incubated with HRP-

conjugated IgG1 secondary anti-mouse antibody (PA1–74421,

Invitrogen) (1:4000) followed by the addition of TMB substrate.

The reaction was stopped with 1 M HCl stop solution and optical

density (OD) was measured at 492 nm using a BioTek plate reader

(Agilent). The average blank corrected value was calculated for each

sample, and the data was analyzed using BioTek Gen5 software

(Agilent). Spleens were also collected and processed as follows.

Spleens were minced and filtered through 70 µm nylon cell strainers

(Corning) to obtain a single-cell suspension. Cells were washed with

cold PBS containing 2% FBS and red blood cells lysed in

ammonium-chloride-potassium (ACK) lysis buffer (Gibco). The

remaining splenocytes were washed 2 times with cold PBS

containing 2% FBS, counted and resuspended in complete RPMI

at a density of 2x106 cells/ml.
2.8 Detection of peptide-specific CD8+

T cell responses

CD8+ T cell responses to peptides pools (SARS-CoV-2 TDX,

NP and Spike pools, and control CEF pool) were determined by

intracellular IFNg staining using human PBMCs (recall response),

Naive T cells stimulated with Td vaccine and splenocytes from

mice (Td immunized and controls). Human cells (PBMCs and T

cells) in complete fresh RPMI were plated in 24-well plates (1x106

cells/well), rested for 30 minutes and then cultured at 37°C and 5%

CO2 for 16 hours with the relevant peptide pools and a Golgi

inhibitor (Brefeldin A) at 2.5 mg/mL (Thermo Fisher Scientific). A

negative control condition consisting of media alone with DMSO

(0.3%) was also included. Mouse splenocytes in complete RPMI

(2x106 cells/well) were cultured in 24-well plates with the relevant

peptides or media with DMSO (0.3%) for 36 hours at 37°C and 5%

CO2. Brefeldin A (2.5 mg/ml) was added the last 16 hours of
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1425374
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fernandez et al. 10.3389/fimmu.2024.1425374
culture. SARS-CoV-2 TDX pool in cell cultures was at 2.0 µM

(each peptide) and SARS-CoV-2 NP and Spike pools were at 0.6

µM (each peptide, as recommended by the manufacturer). CEF

pool was used at a final concentration of 2 µg/ml, following the

manufacturer’s recommendations. After peptide stimulations,

cells were stained with anti-human CD3-PE (UCHT1,

Biolegend) or anti-mouse CD3-PE (17A2, Biolegend) and anti-

human CD8-FITC (SK1, Biolegend) or anti-mouse CD8-FITC

(Ssa1, ImmunoTools). Subsequently, cells were permeabilized and

stained intracellularly with anti-human IFNg-APC (B27,

Biolegend) or anti-mouse IFNg-APC (XMG1.2, BD Biosciences).

Finally, cells were acquired and analyzed by flow cytometry, and

CD3+CD8+IFNg+ cells quantified. In these intracellular IFNg
staining assays, the positive IFNg+ gate was set utilizing

Fluorescence Minus One (FMO) controls. These controls and

the delimitation of the gate were obtained after stimulating human

PBMCs and mouse splenocytes with Phytohemagglutinin-L as a

positive control (PHA-L, Sigma)(Supplementary Figure S1).
2.9 Flow cytometry general procedures

Cells were washed twice with PBS prior to any staining and

with ZombieAqua for live/dead cell discrimination (Biolegend).

For surface staining, Fc receptors were first blocked with 200 µg/

ml of human IgG from human serum (Merck). Next, cells were

stained with the relevant antibodies diluted 1:25 in PBS

supplemented with 0.5% of FBS and 1 mM EDTA (50 mL of

final volume/sample), incubating for 30 minutes at room

temperature. Finally, cells were fixed with BD CytofixTM (BD

Biosciences), containing 4.2% formaldehyde, unless intracellular

staining for IFNg detection was performed (described earlier).

After staining, cell samples were washed twice in PBS and

resuspended in PBS with 1 mM EDTA (200 ml of final volume/

sample). Cells were acquired on BD FACSCelesta and

FACSCalibur flow cytometers (BD Biosciences) (human samples

and mouse samples, respectively), and analyzed using FlowJo

software (version 10, Treestar). Compensation matrices were set

using compensation beads (BD Biosciences) and ArC™ Amine

Reactive Compensation beads (Thermofisher). For data analysis,

we performed live/dead cell discrimination on single cells, and

subsequently gated on the relevant staining.
2.10 Statistical analyses

Kruskal-Wallis tests were used for comparing T cell responses

to different peptide pools and media in human and mice samples.

Wilcoxon signed-rank tests were applied to compare recall and Td-

primed T cell responses to the same peptide pools in the same

subjects. Mann-Whitney U tests were used to compare T cell

responses to the same peptides between groups of immunized

and control mice. p < 0.05 was considered significant. Statistic

calculations were performed on GraphPad Prism 8.
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3 Results

3.1 SARS-CoV-2-specific CD8+ T cell
epitopes with similarity to tetanus-
diphtheria vaccine antigens

We identified CD8+ T cells epitopes potentially cross-reactive

with tetanus-diphtheria vaccine antigens within a set of

known SARS-CoV-2-specific CD8+ T cell epitopes (Supplementary

Dataset 1). This set consisted of 1153 experimentally verified CD8+ T

cell epitopes, recognized by humans infected with SARS-CoV-2

(details in Methods). To identify potentially cross-reactive CD8+ T

cell epitopes, we relied on Levenshtein edit distances to detect

sequence similarity to tetanus-diphtheria vaccine antigens.

In particular, SARS-CoV-2-specific CD8+ T cell epitopes matching

tetanus-diphtheria vaccine antigens with ≤ 20% edit distances

were considered as potentially cross-reactive. We found that 66

SARS-CoV-2-specific CD8+ T cell epitopes met this criterion

(Supplementary Dataset 2) and selected 25 for experimental

analyses (Table 1). The selection of CD8+ T cell epitopes was made

to cover the maximum number of SARS-CoV-2 antigens and HLA I

molecules. The selected CD8+ T cell epitopes span over 10 distinct

SARS-CoV-2 mature antigens with the majority lying on the Spike (8

epitopes) and Polymerase (POL)(5 epitopes) proteins. These epitopes

are collectively noted to be restricted by 13 distinct HLA I molecules.

Judging by the phenotypic frequency of these HLA I molecules, over

85% of the population, regardless of ethnicity, could respond to any

of these CD8+ T cell epitopes (See Methods). This population

coverage is likely to be much greater and to reach the entire

population because many more HLA I molecules are predicted to

present these CD8+ T cell epitopes (Table 1). We also predicted that

some of these CD8+ T cell epitopes could be presented bymouse class

I H2 alloantigens (Table 1). To experimentally address cross-

reactivity, the selected SARS-CoV-2-specific T cell epitopes were

synthesized and combined in a peptide pool (TDX pool).
3.2 Detection of existing T cell responses
to SARS-CoV-2 TDX pool

Given the dimensions of COVID-19 pandemics and

vaccination programs, SARS-CoV-2 specific memory T cells are

now present in most individuals. Therefore, we first determined

existing T cell recall responses to the TDX pool using PBMCs from

10 subjects (healthy blood donors) and compared them with those

to SARS-CoV-2 peptide pools from spike (Spike pool) and

nucleocapsid phosphoprotein (NP pool). To that end, we

stimulated PBMCs with the noted peptide pools for 16 hours and

subsequently analyzed intracellular IFNg expression in CD8+ T cells

by flow cytometry. As controls, we stimulated PBMCs with CEF

pool and media alone (0.3% DMSO). In these experiments, we

surely detect responses by memory CD8+ T cells although effector T

cells could also respond in the case of recent vaccination or

infection. We found dominant and statistically significant

memory CD8+ T cells recall responses to TDX and Spike pools
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TABLE 1 Potentially cross-reactive SARS-CoV-2-specific CD8+ T cell epitopes with tetanus-diphtheria vaccine antigens.

ide1
Td antigen2

ACC|[T/D]

Td peptide HLA I
presentation3

(Predicted)

Q897I8|T NN

Q895W2|T
HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*30:01

Q894X4|T
HLA-A*02:01, HLA A*02:03, HLA-A*02:06,
HLA-B*08:01, HLA-B*15:01, HLA-B*44:03

QV Q6NJ45|D
HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*68:02

Q6NF63|D
HLA-A*03:01, HLA-A*11:01, HLA-A*30:01,
HLA-A*68:01

QG Q6NG46|D HLA-A*03:01, HLA-A*11:01, HLA-B*51:01

Q891Q6|T
HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*26:01, HLA-A*32:01, HLA-A*68:02,
HLA-B*07:02, HLA-B*15:01, HLA-B*35:01

Q891E4|T HLA-A*30:02

Q895E4|T HLA-A*31:01, HLA-A*33:01

Q6NH14|D HLA-A*02:03, HLA-A*30:01

Q899H3|T
HLA-A*03:01, HLA-A*11:01, HLA-A*30:01,
HLA-A*68:01, HLA-B*51:01

Q893Q3|T

HLA-A*01:01, HLA-A*26:01, HLA-A*30:02,
HLA-A*32:01, HLA-A*33:01, HLA-A*68:01,
HLA-A*68:02, HLA-B*15:01, HLA-B*35:01,
HLA-B*44:02, HLA-B*44:03, HLA-B*53:01

Q895R4|T HLA-A*23:01, HLA-A*24:02, HLA-B*51:01

Q6NG84|D
HLA-A*03:01, HLA-A*11:01, HLA-A*31:01,
HLA-A*33:01, HLA-A*68:01

(Continued)

Fe
rn
an

d
e
z
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
4
.14

2
5
3
74

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg
Epitope
Sequence

Antigen
[NCBI

Accession]

HLA I
Presentation
(experimental)

HLA I
presentation
(Predicted)

H2 I
presentation
(Predicted)

Td Pept

IIWVATEGA
NP

[YP_009724397]
HLA-A*02:01 NN NN IIKVATEDG

QLNRALTGI
SPIKE

[YP_009724390]
HLA-A*02:03 HLA-A*02:01, HLA-A*02:03 NN QLREALTGI

FERDISTEI
SPIKE

[YP_009724390]
HLA-B*40:01

HLA-B*40:01, HLA-B*44:02, HLA-B*44:03,
HLA-B*51:01

H-2-Kk, H-2-Kq, H-
2-Lq

FMRDIDAEI

SFELLHAPATV
SPIKE

[YP_009724390]
HLA-A*02:01

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*68:02, HLA-B*40:01

H-2-Kd, H-2-Kk AFELLHACP

ATVVIGTSK
POL

[YP_009725307]
HLA-A*11:01

HLA-A*03:01, HLA-A*11:01, HLA-A*30:01,
HLA-A*31:01, HLA-A*68:01

NN ATVAEGTK

AQALNTLVKQL
SPIKE

[YP_009724390]
HLA class I

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*03:01, HLA-A*11:01, HLA-A*30:01,
HLA-A*32:01, HLA-B*08:01

H-2-Db, H-2-Kd VAALNGLV

IVAGGIVAI
NSP4

[YP_00972530]
HLA-A*02:01

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*26:01, HLA-A*32:01, HLA-A*68:02,
HLA-B*51:01

NN IVAGGGVA

FVFKNIDGY
SPIKE

[YP_009724390]
HLA-A*29:02,
HLA-A*26:01

HLA-A*01:01, HLA-A*26:01, HLA-A*30:02,
HLA-A*32:01, HLA-A*68:01, HLA-B*15:01,
HLA-B*35:01, HLA-B*53:01

NN QKFVNIDGY

IMASLVLAR
POL

[YP_009725307]
HLA-A*33:01

HLA-A*03:01, HLA-A*11:01, HLA-A*31:01,
HLA-A*33:01, HLA-A*68:01

NN IFASLYLAR

ILRGHLRIA
MP

[YP_009724393]
HLA-A*02:03 HLA-A*02:03, HLA-A*30:01 NN KLALHLRIA

MASLVLARK
POL

[YP_009725307]
HLA-A*68:01

HLA-A*03:01, HLA-A*11:01, HLA-A*30:01,
HLA-A*33:01, HLA-A*68:01

NN VASLVSALK

LVKPSFYVY
ENV

[YP_00972439]
HLA-C*07:02

HLA-A*01:01, HLA-A*03:01, HLA-A*11:01,
HLA-A*26:01, HLA-A*30:01, HLA-A*30:02,
HLA-A*32:01, HLA-B*15:01, HLA-B*35:01,
HLA-B*53:01, HLA-B*57:01, HLA-B*58:01

NN EVKPSSYVY

FVAAIFYLI
NSP4

[YP_00972530]
HLA-A*02:01

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*68:02, HLA-B*51:01

H-2-Db, H-2-Dd, H-
2-Kb

IFAAIMYLI

TLADAGFIK
SPIKE

[YP_009724390]
HLA-A*03:01 HLA-A*03:01, HLA-A*11:01, HLA-A*68:01 NN TLDAGFIPR
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TABLE 1 Continued

H2 I
presentation
(Predicted)

Td Peptide1
Td antigen2

ACC|[T/D]

Td peptide HLA I
presentation3

(Predicted)

NN NLDKLNQL Q897F3|T HLA-B*08:01

H-2-Db, H-2-Kd AYSHYSIAI Q6NJH2|D HLA-A*23:01, HLA-A*24:02, HLA-B*51:01

H-2-Dq, H-2-Ld, H-
2-Lq

IPTIFQDNL Q6NFM0|D
HLA-B*07:02, HLA-B*35:01, HLA-B*51:01,
HLA-B*53:01

NN LDDEGNFY Q893J1|T HLA-A*01:01

H-2-Db, H-2-Dd, H-
2-Kb

DATNTFTLK Q6NF84|D
HLA-A*03:01, HLA-A*11:01, HLA-A*33:01,
HLA-A*68:01, HLA-B*51:01

H-2-Dd, H-2-Dq, H-
2-Kd, H-2-Ld H-
2-Lq

TNVHAQEKNFN Q899V7|T HLA-A*26:01

H-2-Kq TINYITEY Q898F9|T
HLA-A*01:01, HLA-A*26:01, HLA-A*30:02,
HLA-B*15:01, HLA-B*35:01

NN KRVDWDIEY Q899B2|T HLA-A*01:01, HLA-A*30:02

NN TLIIDATCV Q890S3|T HLA-A*02:01, HLA-A*02:03, HLA-A*02:06

H-2-Kb VLAALGAAA Q6NFZ1|T HLA-A*02:03

NN LRAMASEVL P62411|D NA

oV-2 CD8+ T cell epitope. 2UniProt accession number (ACC) of Td peptide protein source followed by T or D, indicating a Tetanus or
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Epitope
Sequence

Antigen
[NCBI

Accession]

HLA I
Presentation
(experimental)

HLA I
presentation
(Predicted)

LLDRLNQL
NP

[YP_009724397]
HLA class I HLA-A*02:01, HLA-A*02:03, HLA-B*08:01

AYSNNSIAI
SPIKE

[YP_009724390]
HLA-A*24:02 HLA-A*23:01, HLA-A*24:02

IPTITQMNL
POL

[YP_009725307]
HLA-B*07:02

HLA-B*07:02, HLA-B*08:01, HLA-B*35:01,
HLA-B*51:01, HLA-B*53:01

TDLEGNFY
3CPR

[YP_009725301]
HLA-A*01:01 HLA-A*01:01, HLA-A*26:01, HLA-A*30:02

VTNNTFTLK
NSP2

[YP_009725298]
HLA-A*03:01,
HLA-A*11:01

HLA-A*03:01, HLA-A*11:01, HLA-A*30:01,
HLA-A*31:01, HLA-A*68:01

TYVPAQEKNFT
SPIKE

[YP_009724390]
HLA-A*24:02

HLA-A*23:01, HLA-A*24:02, HLA-A*26:01,
HLA-B*35:01, HLA-B*53:01

TDNYITTY
NSP3

[YP_009725299]
HLA-A*01:01 HLA-A*01:01, HLA-B*44:02

KRVDWTIEY
35EXON

[YP_009725309]
HLA-B*07:02

HLA-A*01:01, HLA-A*26:01, HLA-A*30:02,
HLA-A*32:01, HLA-B*44:03

TLIGDCATV
2ORMT

[YP_009725311]
HLA class I

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-A*68:02

VLAWLYAAV
3CPR

[YP_009725301]
HLA class I

HLA-A*02:01, HLA-A*02:03, HLA-A*02:06,
HLA-B*51:01

LRIMASLVL
POL

[YP_009725307]
HLA-C*07:02 NN

NN, None predicted. Underlined epitopes lie within antigen regions covered by the Spike peptide pool. 1Td peptide equivalent to SARS-C
Diphtheria antigen,respectively. 3Predicted HLA I presentation profile of Td peptide.
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compared to CEF and NP pool (Figure 1). Moreover, all 10 subjects

have detectable responses to the TDX pool, confirming the high

population coverage of the CD8+ T cell epitopes included in the

pool, outnumbering those responding to other peptide pools,

including the Spike peptide pool. However, overall there was no

statistical difference between the detected T cell recall responses to

TDX and Spike pools. The detection of dominant and prevalent

memory/effector responses to SARS-CoV-2 spike protein in the

studied subjects is likely the result of COVID-19 vaccination.

COVID-19 vaccines rely on inducing immunity to SARS-CoV-2

Spike protein (4) and over 85% of people in Spain aged 12 and

above are fully vaccinated against COVID-19 (60). The TDX pool

does also include 8 CD8+ T cell epitopes from SARS-CoV-2 spike

protein but only 4 of them lie within the regions covered by the

Spike peptide pool (underlined in Table 1). Therefore, it is unlikely

that these epitopes can fully account for the comparable memory/

effector T cell responses to TDX pool and Spike pool. Hence, the

strong memory/effector T cell responses to TDX pool detected in

most subjects are likely the result of SARS-CoV-2 infections and

may also be impacted by pre-existing cross-reactive memory T cells

elicited by vaccines with tetanus-diphtheria antigens. However, T

cells are cross-reactive by nature and T cell immunity dynamic,

which makes challenging to identify the source of pre-existing
Frontiers in Immunology 08222
SARS-CoV-2 cross-reactive memory T cells. Therefore, in this

work, we resorted to non-antigen experienced naive T cells, and

examined whether Td-stimulations could activate them to respond

to the SARS-CoV-2 TDX pool.
3.3 Td-stimulated responses of naive
T cells to SARS-CoV-2 TDX pool

Tetanus-diphtheria vaccines must be capable of priming T cells

cross-reactive with SARS-CoV-2 to have had an impact in the

existing T cell immunity to the virus. To verify this point, we

resorted to in vitro immunizations in which we stimulated antigen-

inexperienced naive T cells from 7 subjects (healthy blood donors)

with autologous irradiated PBMCs pulsed with Td vaccine, and then

analyzed responses to SARS-CoV-2 peptide pools (Figure 2A).

We found that Td vaccine can be toxic to cells and so we first

worked out a dose of Td vaccine that was not toxic and foster

proliferation of T cells in PBMCs (See Methods for details). As a

result, we selected a dose of Td vaccine containing 0.0012 Lf/ml of

diphtheria toxoid (Supplementary Figure S2) to pulse irradiated

PBMCs. To enable priming conditions, autologous naive T cells

were co-cultured with irradiated Td-pulsed PBMCs for 13 days in the
B C

A

FIGURE 1

Existing T cell responses to SARS-CoV-2 peptide pools. PBMCs from 10 healthy subjects were stimulated with SARS-CoV-2 peptide pools (Spike, NP
and TDX), CEF pool or media (complete RPMI with 0.3% DMSO) during 16 hours and CD8+ T cell responses detected by intracellular IFNg staining
assays (A) Gating strategy for the detection of intracellular IFNg expression within the CD8+ T cell population by flow cytometry using a
representative PBMC sample stimulated with the TDX peptide pool. IFNg+CD3+CD8+ cells were identified after the following steps: a) Adequate
adjustment of the gate of the lymphocytes using the light scatter parameters (FSC and SSC-A), b) Exclusion of doublets with the identification of
singlets improving the accuracy of the analysis, c) Selection of the viable lymphocytes, d) Identification of the CD3+CD8+ cell subset and e) IFNg+

cells within the CD3+CD8+ cells. IFNg+ gate was set after FMO stainings with PHA-L stimulation (see Supplementary Figure S1). (B) Representative
dot plot showing IFNg+ cells on CD3+CD8+ gated cells in response to the different stimuli (Media, CEF, Spike, NP and TDX). Percentage of IFNg+ cells
are indicated (C) Graph depicting the percentage of CD8+ T cells expressing IFNg (y-axis) in response to peptide pools (x-axis) after subtracting
response to media (n = 10). Individual values are plotted. Statistically significant differences were obtained by applying Kruskal-Wallis tests. Significant
differences are indicated and p-values shown.
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presence of Td-vaccine, IL-2, IL-7 and IL-15 (details in Methods).

Naive T cells used in these experiments were purified from PBMCs

and had a purity of over 91% (Supplementary Figure S3).

Subsequently, we investigated the responses of Td-stimulated T

cells to SARS-CoV-2 peptide pools (Spike, NP and TDX), as

previously described by intracellular IFNg staining assays (details in
Methods). As controls, the responses of Td-stimulated T cells to

media and CEF pool was also determined. As shown in Figures 2B, C,

Td-primed T cells from all subjects responded strongly to TDX pool

(n = 7), while responses to Spike pool, CEF pool and NP pool were

seldom detected (Figure 2C). It is worth noting that naive T cells

stimulated with irradiated PBMCs in the absence of Td vaccine did

not respond to TDX (see Supplementary Figure S4).

The fact that Td-stimulated naive T cells responded only to

SARS-CoV-2 CD8+ T cell epitopes that were anticipated as cross-

reactive (TDX pool) with comparable strength than existing

memory/effector T cells is truly outstanding. One could wonder if

Td-stimulated T cell responses are due to contaminating TDX-

specific memory/effector T cells or differentiated effector T cells

(CD45RA+ TEMRA cells). However, this scenario is very unlikely.

On the one hand, naive T cells used in the experiments were highly

enriched (see Supplementary Figure S3) and did not respond to the

TDX pool prior to Td stimulation (Supplementary Figure S4). On

the other hand, if such contamination had occurred, Td-stimulated

naive T cells should have also responded to the Spike pool but they

did not. Further support of Td-priming of T cells cross-reactive
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with SARS-CoV-2 TDX pool is very noticeable in those individuals

in which T cell responses were measured using PBMCs and Td-

stimulated naive T cells (Figure 3). Statistical differences in matched

responses to the different peptide pools mirrored those described

previously, but were fewer given the smaller sample size (n = 5). Td-

stimulated naive T cells only responded to the TDX pool. Moreover,

it is worth noting that naive T cells from individuals with weak

memory/effector T cell recall responses to the TDX pool responded

strongly to this peptide pool after Td-stimulation. At the same time,

Td-stimulated naive T cells from individuals with strong memory/

effector T cell responses to the Spike pool did not respond to the

Spike pool, only to the TDX pool. Overall, these results strongly

support that Td vaccine can prime T cells to precisely recognize

SARS-CoV-2-specific CD8+ T cell epitopes that were anticipated as

cross-reactive with tetanus-diphtheria vaccines.
3.4 Immunization of mice with Td vaccine
induces SARS-CoV-2 cross-reactive T cells

We also analyzed CD8+ T cell cross-reactivity to SARS-CoV-2

peptide pools in C57BL/6J mice immunized with Td vaccine. C57BL/6J

mice express two H2 class I alloantigens, H2-Kb and H2-Db, that are

predicted to present 5 of the cross-reactive CD8+ T cell epitopes

(Table 1). We immunized mice with 3 IM injections of Td vaccine

(0.01 Lfu of diphtheria toxoid)(n = 5) or PBS (control group, n = 5)
B C

A

FIGURE 2

Cross-reactive responses of naive T cells stimulated with Td vaccine to SARS-CoV-2 peptide pools. (A) Experimental design to stimulate/prime
T cells against Td vaccine. PBMCs were pulsed with Td vaccine (0.0012 Lf/ml of diphtheria toxoid) and homogenously irradiated at 30 Gy. Td-pulsed
irradiated PBMCs were co-cultured with autologous naive T cells (ratio 1:1) for 13 days in the presence of IL-2, IL-7, IL-15 and Td vaccine (details in
Methods). Subsequently, T cell responses to peptide pools (TDX pool, Spike pool, NP pool and CEF pool) and media (0.3% DMSO) were determined
by intracellular IFNg staining assays. IFNg positive gate was set after FMO staining with PHA stimulation. (B) Representative dot plot showing the
IFNg+CD8+ T cells after stimulation with the relevant peptide pools (C) Percentage of CD8+ T cells expressing IFNg after subtracting value from
control media. Individual values were plotted (n = 7, except for NP with n = 5). Statistically significant differences were obtained by applying
Kruskal-Wallis tests. Significant differences are indicated and p-values shown.
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at3-week intervals, and sacrificed them one week after the

last immunization to isolate splenocytes (Figure 4A). Appropriated

immunization of mice with Td vaccine was confirmed by the detection

of high levels of tetanus toxoid–specific IgG in blood serum

(Supplementary Figure S5). Subsequently, we incubated splenocytes

from Td-vaccinated and control mice for 36 hours with SARS-CoV-2

TDX, Spike and NP peptide pools. As controls, splenocytes were

incubated with CEF pool and media (RMPI with 0.3% DMSO).

Subsequently, we analyzed IFNg production in CD8+ T cells by flow

cytometry (Figures 4B, C). We observed that Td-vaccinated mice

responded strongly to the TDX pool, with up to 8-fold increase in

IFNg-producing CD8+ T cells compared to non-vaccinated mice.

Moreover, the response to the TDX pool in Td-vaccinated mice was

significantly larger than that to CEF and Spike peptide pools, which

were negligible. It is worth noting that Td-vaccinated mice

also exhibited significant responses to the NP pool (Figure 4C).

Overall, these results clearly show that Td-vaccination of mice

induces SARS-CoV-2 specific CD8+ T cells recognizing the selected

epitopes with similarity with tetanus-diphtheria vaccine antigens.
4 Discussion

There is increasing evidence that pre-existing cross-reactive T

cell immunity contributes to protect against SARS-CoV-2 infection
Frontiers in Immunology 10224
(33). Given the structural similarity between SARS-CoV-2 and

ccHCoVs, it has become widely accepted that ccHCoVs are the

sources of pre-existing cross-reactive immunity to SARS-CoV-2

(22). That ccHCoVs cause seasonal infections in humans with

higher incidence in children (35) supports this view. However,

evidence of exposure to ccHCoVs is seen in 95% of adults (35) and

why cross-reactive immunity from ccHCoVs could be more

protective in children than in young adults is open to speculation.

On the other hand, it has also been reported that prior infection by

seasonal ccHCoVs does not prevent SARS‐CoV-2 infection in

children (61). Moreover, it has been noted that pre-existing

SARS-CoV-2 cross-reactive T immunity cannot be solely

explained by ccHCoVs infections (62). Hence, there must be

additional sources of T cell cross-reactivity to SARS-CoV-2.

T cell cross-reactivity is actually quite common. During

maturation in the thymus, individual T cells are required to

recognize numerous peptides presented by the same MHC

molecules, which render them cross-reactive by nature (29). In

fact, it has been reported that a single T cell receptor can recognize

about a million different peptides (63). Therefore, it is not

surprising that T cell cross-reactivity to SARS-CoV-2 had been

found beyond ccHCoVs, reaching to unrelated viruses (43, 44),

vaccines such as MMR and Tdap (50), and bacteria (42). However,

until now and to our knowledge none of these candidates have been

shown to prime antigen-inexperienced naive T cells cross-reacting

with SARS-CoV-2. Such priming ought to be necessary to regard a

candidate as responsible of pre-existing cross-reactive T cell

immunity. Following the tracks of an early study proposing

tetanus-diphtheria vaccine antigens as sources of protective cross-

reactive immunity to SARS-CoV-2 (47, 48), in this exploratory

work we show proof that Td vaccine can prime T cells cross-

reacting with known SARS-CoV-2-specific CD8+ T cell epitopes.

Vaccines with tetanus-diphtheria toxoids include hundreds of

additional antigens (51–53) and are widely used. During infancy

children receive three immunizations with DTP vaccine (diphtheria

and tetanus toxoids combined with antigens from Bordetella

persussis), alone or combined with other vaccines like Polio

vaccine, hepatitis B vaccine and conjugated Haemophilus

influenzae type B vaccine (Hib vaccine) (64). Children receive one

additional DTP vaccination at 4–6 years of age and a boost in

puberty with versions containing a lower dose of diphtheria

antigens (d), with or without a low dose of antigens from

acellular B. pertussis (ap): Tdap or Td vaccine, respectively (64).

Td vaccines are also given in the case of severe or unclean wounds

(64) and immunization with Tdap vaccine is recommended for

pregnant women (65). Moreover, conjugated pneumococcal

vaccines and Hib vaccines also use diphtheria or tetanus toxoids

for conjugation (66, 67). In sum, T cell immunity and memory to

tetanus-diphtheria vaccine antigens develop early during childhood

through repeated vaccinations and can be present in adults (64, 68).

Memory T cells elicited by tetanus-diphtheria antigens ought to

imprint existing T cell responses to SARS-CoV-2, provided that

cross-recognition occurs. Therefore, we sought for evidence of

cross-reactivity from tetanus-diphtheria vaccine antigens in

experimentally verified SARS-CoV-2 CD8+ T cell epitopes,

recognized by humans during the course of infection. We
FIGURE 3

Responses to SARS-CoV-2 peptide pools from matched PBMCs and
Td-stimulated native T cells. T cell responses to SARS-CoV-2
peptide pools (NP, Spike and TDX) and CEF pool determined using
PBMCs (pink) and Td-stimulated naive T cells (blue) from the same
five subjects. PBMCs and Td-stimulated naive T cells were incubated
with peptide pools or media for 16 hours and responses were
detected by intracellular IFNg staining assays. All responses (value
from media control subtracted) are plotted and bars represent
median values. Statistically significant differences between
conditions are indicated and p-values shown. Kruskal-Wallis tests
were used for comparing responses to peptide pools from PBMC
recall and Td-stimulated naive T cells. Wilcoxon signed-rank tests
were carried out to compare T cell responses between PBMCs and
Td-stimulated naive T cells in the same individuals to the same
peptide pools.
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identified 66 SARS-CoV-2-specific CD8+ T cell epitopes sharing

sequence similarity (≤ 20% Levenshtein distance edits) with

tetanus-diphtheria vaccine antigens, suggesting cross-reactivity.

Subsequently, we investigated T cell responses to 25 of these

potentially cross-reactive SARS-CoV-2 CD8+ T cell epitopes

(TDX pool) that were selected for covering most of SARS-CoV-2

antigens and for their presentation by 13 distinct HLA I molecules

(Table 1). In the studied subjects (healthy blood donors), we

observed dominant memory/effector T cell responses to the

selected, potentially cross-reactive, SARS-CoV-2 CD8+ T cell

epitopes (TDX pool) that were comparable to those against a

peptide pool covering the Spike protein (Figures 1, 3). We had no

information on COVID-19 vaccination status of participants or if

they have been infected by SARS-CoV-2 but presumably all

participants had been vaccinated for COVID-19 and passed the

infection. In this context, strong and prevalent memory T cell recall

responses to SARS-CoV-2 spike peptides are likely due to T cell

immunity elicited by both, COVID-19 vaccinations and infection.

On the other hand, the comparable memory/effector T cell
Frontiers in Immunology 11225
responses to the TDX pool can be attributed to SARS-CoV-2

infections and may also be compatible with pre-existing T cell

immunity elicited by tetanus-diphtheria vaccine antigens. This

latter possibility is supported by the fact that stimulating naive T

cells with autologous irradiated PBMCs pulsed with Td vaccine

resulted in T cells that responded strongly to TDX pool but not to

control peptides, including other SARS-CoV-2 peptide pools

(Figures 2, 3). We are aware that we worked with a very small

donor sample size, which could limit the generalizability of our

findings. However, our results are not only statistically significant,

but also quite compelling. Td-primed T cells from every single

donor responded to TDX pool using Td-stimulated naive T cells,

while the same cells did not respond to other peptide pools. It has

been reported that immunogenic CD8+ T cell epitopes are

characterized by the presence of short motifs that are highly

represented in the human proteome (69). Interestingly, the 25

SARS-CoV-2 CD8+ T cell epitopes included in the TDX pool

displayed an average identity to human proteins of 66.1 ± 5.9,

which may indicate the presence of such motifs. None of the
B

C D

A

FIGURE 4

Cross-reactive T cell responses to SARS-CoV-2 peptide pools in Td-vaccinated mice. (A) Immunization schedule. Mice were immunized
intramuscularly (IM) at 3-week intervals with Td vaccine (0.1 Lf diphtheria toxoid)(Td-vaccine group, n = 5) or PBS (PBS control group, n=5). Mice
were sacrificed seven days after the last immunization, spleens were collected and splenocytes prepared and responses to SARS-CoV-2 peptide
pools (NP, Spike and TDX), CEF pool and media (complete RPMI with 0.3% DMSO) after 36-hour stimulations determined by intracellular IFNg
staining assays (B) Gating strategy for intracellular IFNg detection within the CD8+ T cell population by flow cytometry using mouse splenocytes
stimulated with the TDX peptide pool. IFNg+CD3+CD8+ cells were identified after the following steps: a) Adequate selection of cells using the light
scatter parameters (FSC, SSC), b) Selection of CD3+CD8+ cells, c) Selection of IFNg+ cells within the CD3+CD8+ cells. IFNg+ gate set after FMO
stainings with PHA-L stimulation (see Supplementary Figure S1) (C) Representative dot plot showing IFNg+CD8+ T cells responding to SARS-CoV-2
peptide pools (TDX, Spike and NP), CEF pool or media in both, PBS and Td-vaccine groups. (D) Percentage of CD8+ T cells producing IFNg (value
from control media subtracted) in both, PBS control group (pink) and Td-vaccine group (blue). All values are plotted and bars represent median
values. Statistically significant differences between responses are shown with p-values. Kruskal-Wallis tests were used for comparing T cell responses
to peptide pools in Td-vaccinated and control mice. Mann-Whitney U tests were carried out to compare T cell responses to the same peptides (CEF,
NP, Spike and TDX pools) between Td-vaccinated mice and control mice.
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selected epitopes were however identical to human proteins (see

Supplementary Dataset 2).

Similar results were reproduced in vivo using C57BL/6J mice

immunized with Td vaccine. Td-vaccination elicited in mice

induced SARS-CoV-2 cross-reactive CD8+ T cells responding

strongly to TDX pool (Figure 4). However, unlike Td-primed

T cells from humans, Td-vaccinated mice also responded to

SARS-CoV-2 NP pool. All together these results show that

i) vaccines with tetanus-diphtheria toxoids can be a priming

source of cross-reactive T cell immunity to SARS-CoV-2 and ii)

SARS-CoV-2-specific CD8+ T cell epitopes in TDX pool are indeed

cross-reactive with tetanus-diphtheria antigens, as predicted by

Levenshtein edit distances. We should point that not necessarily

all SARS-CoV-2-specific CD8+ T cell epitopes in TDX pool are

cross-reactive with tetanus-diphtheria antigens. Conversely, there

might be may other SARS-CoV-2 T cell epitopes cross-reactive with

tetanus-diphtheria vaccine antigens. Indeed, the TDX pool only

included 25 of the 66 SARS-CoV-2 CD8+ T epitopes that were

predicted to be cross-reactive with tetanus-diphtheria antigens

(Supplementary Dataset 2). Moreover, T cell cross-reactivity is

not always predictable and epitopes without or very little

sequence similarity can be cross-reactive (70). Therefore, further

work is required to confirm individually SARS-CoV-2 cross-

reactive T cell epitopes, as well as their counterparts in Td

vaccines. Selecting SARS-CoV-2 CD8+ T cell epitopes related by

similarity with tetanus-diphtheria vaccine antigens is not an

unbiased method to detect cross-reactivity, but it provides an

objective and reproducible manner to detect cross-reactive

epitopes. Therefore, we believe that this same approach could be

applied to investigate cross-reactivity between other vaccines and

pathogens, saving much time and resources. Moreover, our

approach to detect cross-reactive epitopes could be enhanced by

taking in consideration if amino acid edits occur in anchor or

exposed amino acid positions. However, it is worth noting that

cross-reactivity may involve changes in both, anchor or non-anchor

positions (71). Taking in consideration HLA binding profiles of

epitopes and matching peptides could also serve to improve the

selection of potentially cross-reactive T cell epitopes.

Through a completely different approach, Mysore et al. (50)

identified T cell cross-reactivity between SARS-CoV-2 and Tdap

vaccine, which contains tetanus and diphtheria antigens. In their

study, Mysore et al. stimulated total human T cells with MMR or

Tdap vaccines on the one hand and on the other with SARS-CoV-2

antigens, and subsequently carried out single cell RNA sequencing

and TCR clonotyping. The authors found that T cells stimulated

with these vaccines and SARS-CoV-2 antigens displayed

overlapping TCRs (CD3 regions), which is sign of cross-reactivity.

In addition, these authors found that COVID-19 disease severity

was reduced in Tdap-vaccinated individuals by 20%–23%.

However, Mysore et al. did not show that Tdap vaccine can

prime/stimulate naive T cells nor investigated the responses of

Tdap activated T cells to SARS-CoV-2 epitopes. Although we

determined SARS-CoV-2 T cell epitopes that are cross-reactive

with Td vaccines, we did not explore if these particular epitopes

mediate protective immunity. Moreover, we did not characterize
Frontiers in Immunology 12226
cross-reactive T cells but our results will facilitate the design of

tetramers to label antigen-specific CD8+ T cells and show the

presence of cross-reactive T cells.
5 Conclusions

Naive T cell cells stimulated in vitro with Td vaccine are cross-

reactive with known SARS-CoV-2 CD8+ T cell epitopes sharing

similarity to tetanus-diphtheria vaccine antigens. Similarly, C57BL/6J

mice immunized with Td vaccine respond to SARS-CoV-2-specific

CD8+ T cell epitopes. Therefore, we conclude that tetanus-diphtheria

vaccines can prime SARS-CoV-2 cross-reactive T cells, likely shaping

existing T cell responses to the virus. Whether the selected SARS-CoV-

2 CD8+ T cell epitopes that are cross-reactive tetanus-diphtheria

mediate protective immunity remains to be determined. We only

studied immune responses in a controlled environment and the

clinical relevance of these findings needs further investigation.

Nonetheless, pre-existing SARS-CoV-2 cross-reactive memory T cells

have been shown to be protective (33) and there is already mounting

evidence indicating that vaccines with tetanus-diphtheria antigens can

make a contribution: 1) as shown here, naive T cells stimulated with

tetanus-diphtheria vaccine respond strongly to SARS-CoV-2 epitopes;

2) tetanus-diphtheria vaccinations are associated with lower chances of

developing severe COVID-19, even in the elderly (49); and 3) T cell

immunity to tetanus-diphtheria antigens wanes with age (72),

correlating inversely with the incidence of SARS-CoV-2 infections

(46). Currently, immunizations with Td vaccine are recommended for

adults every 10 years and, although we cannot correlate the data

presented here with real clinical implications, our results strongly

support staying up to date with Td boosters.
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Evaluación de Investigación y Docencia del Centro de Transfusión

de Madrid. The human samples used in this study were acquired from

Buffy coats from healthy blood donors. Written informed consent for

participation was not required from the participants or the participants’

legal guardians/next of kin in accordance with the national legislation

and institutional requirements. The studies were conducted in

accordance with the local legislation and institutional requirements.

The participants provided their written informed consent to participate

in this study. The animal study was approved by Ethics Board

Committee at the Universidad Complutense de Madrid. The study

was conducted in accordance with the local legislation and

institutional requirements.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1425374
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fernandez et al. 10.3389/fimmu.2024.1425374
Author contributions

SAF: Formal analysis, Methodology, Validation, Visualization,

Writing – review & editing. HFP-P: Formal analysis, Methodology,

Validation, Visualization, Writing – original draft. TF: Formal

analysis, Methodology, Validation, Visualization, Writing –

review & editing. MG-P: Methodology, Writing – review &

editing. JR: Formal analysis, Methodology, Writing – review &

editing. PAR: Conceptualization, Funding acquisition, Investigation,

Methodology, Software, Supervision, Writing – original draft,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was funded by a REACT-EU grant from the Comunidad de Madrid

to the ANTICIPA project of Complutense University of Madrid

(UCM) and by a Spanish MCI research grant (PID2022-136662OB-

I00) to PAR. The funders had no role in study design, data collection

and analysis, preparation of the manuscript or decision to publish.
Acknowledgments

We wish to thank Dr. Ellis L. Reinherz and Dr. Esther M. Lafuente

for comments and revisions, Dr. Edgar Fernandez-Malave for

providing anti-mouse CD3-PE antibody and Alvaro Ras-Carmona

for computing assistance. We thank CAM for support provided

through REACT-EU grant to UCM ANTICIPA project. PAR also

thanks CAM for keeping Madrid operative in difficult times.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Immunology 13227
The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1425374/

full#supplementary-material

SUPPLEMENTARY DATA SHEET 1

Excel file including 1153 experimentally verified SARS-CoV-2-specific CD8+ T

cell epitopes reported to be targeted in humans infected by the virus.

SUPPLEMENTARY DATA SHEET 2

Excel file including 66 experimentally verified SARS-CoV-2-specific CD8+ T

cell epitopes related by similarity with tetanus-diphtheria vaccine antigens, as

judged by Levenshtein edit distances.

SUPPLEMENTARY FIGURE S1

Fluorescence minus one (FMO) controls for intracellular cytokine

staining assays.

SUPPLEMENTARY FIGURE S2

T cell proliferation upon Td vaccine stimulation.

SUPPLEMENTARY FIGURE S3

Quality control of isolated naive T cells.

SUPPLEMENTARY FIGURE S4

Control T cell responses.

SUPPLEMENTARY FIGURE S5

Tetanus Toxoid (TT)– specific IgG.
References
1. Viruses, CSGotICoTo. The species Severe acute respiratory syndrome-related
coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. (2020)
5:536–44. doi: 10.1038/s41564-020-0695-z

2. Barbour V. COVID-19: no longer a global health emergency, now a long term
challenge. Med J Aust. (2023) 218:437. doi: 10.5694/mja5692.51976

3. Yewdell JW. Individuals cannot rely on COVID-19 herd immunity: Durable
immunity to viral disease is limited to viruses with obligate viremic spread. PloS Pathog.
(2021) 17:e1009509. doi: 10.1001371/journal.ppat.1009509

4. Ballesteros-Sanabria L, Pelaez-Prestel HF, Ras-Carmona A, Reche PA.
Resilience of spike-specific immunity induced by COVID-19 vaccines against
SARS-coV-2 var i an t s . Biomed i c in e s . ( 2022) 10 :996 . do i : 10 . 3390/
biomedicines10050996

5. Li R, Tian J, Yang F, Lv L, Yu J, Sun G, et al. Clinical characteristics of 225 patients
with COVID-19 in a tertiary Hospital near Wuhan, China. J Clin Virol. (2020)
127:104363. doi: 10.1016/j.jcv.2020.104363
6. Solimando AG, Bittrich M, Shahini E, Albanese F, Fritz G, Krebs M. Determinants
of COVID-19 disease severity-lessons from primary and secondary immune disorders
including cancer. Int J Mol Sci. (2023) 24:8746. doi: 10.3390/ijms24108746

7. Yongzhi X. COVID-19-associated cytokine storm syndrome and diagnostic
principles: an old and new Issue. Emerg Microbes Infect. (2021) 10:266–76.
doi: 10.1080/22221751.22222021.21884503

8. Lowery SA, Sariol A, Perlman S. Innate immune and inflammatory responses to
SARS-CoV-2: Implications for COVID-19. Cell Host Microbe. (2021) 29:1052–62.
doi: 10.1016/j.chom.2021.1005.1004

9. Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, et al. Single-cell
multi-omics reveals dyssynchrony of the innate and adaptive immune system in
progressive COVID-19. Nat Commun. (2022) 13:440. doi: 10.1038/s41467–41021-
27716–41464

10. Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al. Persistence
and decay of human antibody responses to the receptor binding domain of SARS-CoV-
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1425374/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1425374/full#supplementary-material
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.5694/mja5692.51976
https://doi.org/10.1001371/journal.ppat.1009509
https://doi.org/10.3390/biomedicines10050996
https://doi.org/10.3390/biomedicines10050996
https://doi.org/10.1016/j.jcv.2020.104363
https://doi.org/10.3390/ijms24108746
https://doi.org/10.1080/22221751.22222021.21884503
https://doi.org/10.1016/j.chom.2021.1005.1004
https://doi.org/10.1038/s41467&ndash;41021-27716&ndash;41464
https://doi.org/10.1038/s41467&ndash;41021-27716&ndash;41464
https://doi.org/10.3389/fimmu.2024.1425374
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fernandez et al. 10.3389/fimmu.2024.1425374
2 spike protein in COVID-19 patients. Sci Immunol. (2020) 5:1–12. doi: 10.1126/
sciimmunol.abe0367

11. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. (2022)
23:186–93. doi: 10.1038/s41590–41021-01122-w

12. Aleksova M, Todorova Y, Emilova R, Baymakova M, Yancheva N, Andonova R,
et al. Virus-specific stem cell memory CD8+ T cells may indicate a long-term
protection against evolving SARS-coV-2. Diagn (Basel). (2023) 13:1280. doi: 10.3390/
diagnostics13071280

13. Sette A, Sidney J. and crotty, S. T cell responses to SARS-coV-2. Annu Rev
Immunol. (2023) 41:343–73. doi: 10.1146/annurev-immunol-101721-061120

14. Kingstad-Bakke B, Lee W, Chandrasekar SS, Gasper DJ, Salas-Quinchucua C,
Cleven T, et al. Vaccine-induced systemic and mucosal T cell immunity to SARS-CoV-
2 viral variants. Proc Natl Acad Sci U.S.A. (2022) 119:e2118312119. doi: 10.1073/
pnas.2118312119

15. Law JC, Koh WH, Budylowski P, Lin J, Yue F, Abe KT, et al. Systematic
examination of antigen-specific recall T cell responses to SARS-coV-2 versus influenza
virus reveals a distinct inflammatory profile. J Immunol. (2021) 206:37–50.
doi: 10.4049/jimmunol.2001067

16. van den Dijssel J, Hagen RR, de Jongh R, Steenhuis M, Rispens T, Geerdes DM,
et al. Parallel detection of SARS-CoV-2 epitopes reveals dynamic immunodominance
profiles of CD8(+) T memory cells in convalescent COVID-19 donors. Clin Transl
Immunol. (2022) 11:e1423. doi: 10.1002/cti1422.1423

17. Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H,
et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients
with acute respiratory distress syndrome. Sci Immunol. (2020) 5:eabd2071.
doi: 10.1126/sciimmunol.abd2071

18. Sette A, Crotty S. Adaptive immunity to SARS-coV-2 and COVID-19. Cell.
(2021) 184:861–80. doi: 10.1016/j.cell.2021.1001.1007

19. Casado JL, Vizcarra P, Martin-Hondarza A, Blasco M, Grandal-Platero M,
Haemmerle J, et al. Impact of Previous Common Human Coronavirus Exposure on
SARS-CoV-2-Specific T-Cell and Memory B-Cell Response after mRNA-Based
Vaccination. Viruses. (2023) 15:627. doi: 10.3390/v15030627

20. Dan J, da Silva Antunes R, Grifoni A, Weiskopf D, Crotty S, Sette A.
Observations and perspectives on adaptive immunity to severe acute respiratory
syndrome coronavirus 2 (SARS-coV-2). Clin Infect Dis. (2022) 75:S24–9.
doi: 10.1093/cid/ciac1310

21. Jia L, Weng S, Wu J, Tian X, Zhang Y, Wang X, et al. Preexisting antibodies
targeting SARS-CoV-2 S2 cross-react with commensal gut bacteria and impact
COVID-19 vaccine induced immunity. Gut Microbes. (2022) 14:2117503.
doi: 10.2111080/19490976.19492022.12117503

22. Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, et al. The
impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine
responses. Nat Rev Immunol. (2023) 23:304–16. doi: 10.1038/s41577–41022-00809-x

23. Agrawal B. Heterologous immunity: role in natural and vaccine-induced
resistance to infections. Front Immunol . (2019) 10:2631. doi: 10.3389/
fimmu.2019.02631

24. Welsh RM, Selin LK. No one is naive: the significance of heterologous T-cell
immunity. Nat Rev Immunol. (2002) 2:417–26. doi: 10.1038/nri820

25. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al.
Targets of T cell responses to SARS-coV-2 coronavirus in humans with COVID-19
disease and unexposed individuals. Cell. (2020) 20:30610–3. doi: 10.31016/
j.cell.32020.30605.30015

26. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. SARS-
CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected
controls. Nature. (2020) 584:457–62. doi: 10.1038/s41586–41020-42550-z

27. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting
and de novo humoral immunity to SARS-CoV-2 in humans. Science. (2020) 370:1339–
43. doi: 10.1126/science.abe1107

28. Woldemeskel BA, Kwaa AK, Garliss CC, Laeyendecker O, Ray SC, Blankson JN.
Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. J Clin
Invest. (2020) 130:6631–8. doi: 10.1172/JCI143120

29. Sewell AK. Why must T cells be cross-reactive? Nat Rev Immunol. (2012)
12:669–77. doi: 10.1038/nri3279

30. Namuniina A, Muyanja ES, Biribawa VM, Okech BA, Ssemaganda A, Price MA,
et al. High proportion of Ugandans with pre-pandemic SARS-CoV-2 cross-reactive CD4+
and CD8+ T-cell responses. PLOS Glob Public Health. (2023) 3:e0001566:1-11.
doi: 10.1371/journal.pgph.0001566

31. Wratil PR, Schmacke NA, Karakoc B, Dulovic A, Junker D, Becker M, et al.
Evidence for increased SARS-CoV-2 susceptibility and COVID-19 severity related to
pre-existing immunity to seasonal coronaviruses. Cell Rep. (2021) 37:110169.
doi: 10.111016/j.celrep.112021.110169

32. Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, et al. Pre-existing humoral
immunity to human common cold coronaviruses negatively impacts the protective
SARS-CoV-2 antibody response. Cell Host Microbe. (2022) 30:83–96.e84. doi: 10.1016/
j.chom.2021.1012.1005

33. Kundu R, Narean JS, Wang L, Fenn J, Pillay T, Fernandez ND, et al. Cross-
reactive memory T cells associate with protection against SARS-CoV-2 infection in
COVID-19 contacts. Nat Commun. (2022) 13:80. doi: 10.1038/s41467–41021-27674-x
Frontiers in Immunology 14228
34. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The
spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage
site absent in CoV of the same clade. Antiviral Res. (2020) 176:104742. doi: 10.1016/
j.antiviral.2020.104742

35. Nickbakhsh S, Ho A, Marques DFP, McMenamin J, Gunson RN, Murcia PR.
Epidemiology of seasonal coronaviruses: establishing the context for the emergence of
coronavirus disease 2019. J Infect Dis. (2020) 222:17–25. doi: 10.1093/infdis/jiaa1185

36. Gorse GJ, Patel GB, Vitale JN, O'Connor TZ. Prevalence of antibodies to four
human coronaviruses is lower in nasal secretions than in serum. Clin Vaccine Immunol.
(2010) 17:1875–80. doi: 10.1128/CVI.00278–00210

37. Sealy RE, Hurwitz JL. Cross-reactive immune responses toward the common
cold human coronaviruses and severe acute respiratory syndrome coronavirus 2
(SARS-coV-2): mini-review and a murine study. Microorganisms. (2021) 9:1643.
doi: 10.3390/microorganisms9081643

38. Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, et al. SARS-CoV-2
human T¬†cell epitopes: Adaptive immune response against COVID-19. Cell Host
Microbe. (2021) 29:1076–92. doi: 10.1016/j.chom.2021.1005.1010

39. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, et al. Selective and
cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. (2020)
370:89–94. doi: 10.1126/science.abd3871

40. Ferretti AP, Kula T, Wang Y, Nguyen DMV, Weinheimer A, Dunlap GS, et al.
Unbiased screens show CD8(+) T cells of COVID-19 patients recognize shared
epitopes in SARS-coV-2 that largely reside outside the spike protein. Immunity.
(2020) 53:1095–1107 e1093. doi: 10.1016/j.immuni.2020.10.006

41. Rha MS, Jeong HW, Ko JH, Choi SJ, Seo IH, Lee JS, et al. PD-1-expressing SARS-
coV-2-specific CD8(+) T cells are not exhausted, but functional in patients with
COVID-19. Immunity. (2021) 54:44–52.e43. doi: 10.1016/j.immuni.2020.1012.1002

42. Eggenhuizen PJ, Ng BH, Chang J, Cheong RMY, Yellapragada A, Wong WY,
et al. Heterologous immunity between SARS-coV-2 and pathogenic bacteria. Front
Immunol. (2022) 13:821595. doi: 10.3389/fimmu.2022.821595

43. Pothast CR, Dijkland RC, Thaler M, Hagedoorn RS, Kester MGD, Wouters AK,
et al. SARS-CoV-2-specific CD4(+) and CD8(+) T cell responses can originate from
cross-reactive CMV-specific T cells. Elife. (2022) 11:e82050. doi: 10.7554/eLife.82050

44. Mahajan S, Kode V, Bhojak K, Karunakaran C, Lee K, Manoharan M, et al.
Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust
pre-existing T-cell immunity in unexposed individuals. Sci Rep. (2021) 11:13164.
doi: 10.11038/s41598–13021-92521–13164

45. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in
humans from infancy to old age. Proc Biol Sci. (2015) 282:20143085. doi: 10.20141098/
rspb.20142014.20143085

46. Bhopal SS, Bagaria J, Olabi B, Bhopal R. Children and young people remain at
low risk of COVID-19 mortality. Lancet Child Adolesc Health. (2021) 5:e12–3.
doi: 10.1016/S2352–4642(1021)00066–00063

47. Reche PA. Potential cross-reactive immunity to SARS-coV-2 from common
human pathogens and vaccines. Front Immunol. (2020) 11:586984. doi: 10.3389/
fimmu.2020.586984

48. Reche P. Cross-reactive immunity from combination DTP vaccines could
protect against COVID-19. Osf Preprints. (2020). doi: 10.31219/osf.io/sbgy3

49. Monereo-Sanchez J, Luykx JJ, Pinzon-Espinosa J, Richard G, Motazedi E,
Westlye LT, et al. Diphtheria and tetanus vaccination history is associated with
lower odds of COVID-19 hospitalization. Front Immunol. (2021) 12:749264.
doi: 10.3389/fimmu.2021.749264

50. Mysore V, Cullere X, Settles ML, Ji X, Kattan MW, Desjardins M, et al. Protective
heterologous T¬†cell immunity in COVID-19 induced by the trivalent MMR and Tdap
vaccine antigens. Med. (2021) 2:1050–1071.e1057. doi: 10.1016/j.medj.2021.1008.1004

51. Moller J, Kraner M, Sonnewald U, Sangal V, Tittlbach H, Winkler J, et al.
Proteomics of diphtheria toxoid vaccines reveals multiple proteins that are
immunogenic and may contribute to protection of humans against Corynebacterium
diphtheriae. Vaccine. (2019) 37:3061–70. doi: 10.1016/j.vaccine.2019.3004.3059

52. Moller J, Kraner ME, Burkovski A. Proteomics of Bordetella pertussis whole-cell
and acellular vaccines. BMC Res Notes. (2019) 12:329. doi: 10.1186/s13104–13019-
14373–13102

53. Moller J, Kraner ME, Burkovski A. More than a Toxin: Protein Inventory of
Clostridium tetani Toxoid Vaccines. Proteomes. (2019) 7:15. doi: 10.3390/
proteomes7020015

54. Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, et al.
Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. (2008) 36:
W513–518. doi: 10.1093/nar/gkn1254

55. Reche PA, Glutting JP, Reinherz EL. Prediction ofMHC class I binding peptides using
profile motifs. Hum Immunol. (2002) 63:701–9. doi: 10.1016/S0198-8859(02)00432-9

56. Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP
resource for the prediction of peptide binding to MHC molecules using profiles.
Immunogenetics. (2004) 56:405–19. doi: 10.1007/s00251-004-0709-7

57. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a
method for MHC class I binding prediction beyond humans. Immunogenetics. (2009)
61:1–13. doi: 10.1007/s00251-008-0341-z

58. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and
NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent
frontiersin.org

https://doi.org/10.1126/sciimmunol.abe0367
https://doi.org/10.1126/sciimmunol.abe0367
https://doi.org/10.1038/s41590&ndash;41021-01122-w
https://doi.org/10.3390/diagnostics13071280
https://doi.org/10.3390/diagnostics13071280
https://doi.org/10.1146/annurev-immunol-101721-061120
https://doi.org/10.1073/pnas.2118312119
https://doi.org/10.1073/pnas.2118312119
https://doi.org/10.4049/jimmunol.2001067
https://doi.org/10.1002/cti1422.1423
https://doi.org/10.1126/sciimmunol.abd2071
https://doi.org/10.1016/j.cell.2021.1001.1007
https://doi.org/10.3390/v15030627
https://doi.org/10.1093/cid/ciac1310
https://doi.org/10.2111080/19490976.19492022.12117503
https://doi.org/10.1038/s41577&ndash;41022-00809-x
https://doi.org/10.3389/fimmu.2019.02631
https://doi.org/10.3389/fimmu.2019.02631
https://doi.org/10.1038/nri820
https://doi.org/10.31016/j.cell.32020.30605.30015
https://doi.org/10.31016/j.cell.32020.30605.30015
https://doi.org/10.1038/s41586&ndash;41020-42550-z
https://doi.org/10.1126/science.abe1107
https://doi.org/10.1172/JCI143120
https://doi.org/10.1038/nri3279
https://doi.org/10.1371/journal.pgph.0001566
https://doi.org/10.111016/j.celrep.112021.110169
https://doi.org/10.1016/j.chom.2021.1012.1005
https://doi.org/10.1016/j.chom.2021.1012.1005
https://doi.org/10.1038/s41467&ndash;41021-27674-x
https://doi.org/10.1016/j.antiviral.2020.104742
https://doi.org/10.1016/j.antiviral.2020.104742
https://doi.org/10.1093/infdis/jiaa1185
https://doi.org/10.1128/CVI.00278&ndash;00210
https://doi.org/10.3390/microorganisms9081643
https://doi.org/10.1016/j.chom.2021.1005.1010
https://doi.org/10.1126/science.abd3871
https://doi.org/10.1016/j.immuni.2020.10.006
https://doi.org/10.1016/j.immuni.2020.1012.1002
https://doi.org/10.3389/fimmu.2022.821595
https://doi.org/10.7554/eLife.82050
https://doi.org/10.11038/s41598&ndash;13021-92521&ndash;13164
https://doi.org/10.20141098/rspb.20142014.20143085
https://doi.org/10.20141098/rspb.20142014.20143085
https://doi.org/10.1016/S2352&ndash;4642(1021)00066&ndash;00063
https://doi.org/10.3389/fimmu.2020.586984
https://doi.org/10.3389/fimmu.2020.586984
https://doi.org/10.31219/osf.io/sbgy3
https://doi.org/10.3389/fimmu.2021.749264
https://doi.org/10.1016/j.medj.2021.1008.1004
https://doi.org/10.1016/j.vaccine.2019.3004.3059
https://doi.org/10.1186/s13104&ndash;13019-14373&ndash;13102
https://doi.org/10.1186/s13104&ndash;13019-14373&ndash;13102
https://doi.org/10.3390/proteomes7020015
https://doi.org/10.3390/proteomes7020015
https://doi.org/10.1093/nar/gkn1254
https://doi.org/10.1016/S0198-8859(02)00432-9
https://doi.org/10.1007/s00251-004-0709-7
https://doi.org/10.1007/s00251-008-0341-z
https://doi.org/10.3389/fimmu.2024.1425374
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fernandez et al. 10.3389/fimmu.2024.1425374
motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res.
(2020) 48:W449–54. doi: 10.1093/nar/gkaa379

59. Molero-AbrahamM, Lafuente EM, Flower DR, Reche PA. Selection of conserved
epitopes from hepatitis C virus for pan-populational stimulation of T-cell responses.
Clin Dev Immunol. (2013) 2013:601943. doi: 10.1155/2013/601943

60. Fontan-Vela M, Gullon P, Bilal U, Franco M. Social and ideological
determinants of COVID-19 vaccination status in Spain. Public Health. (2023)
219:139–45. doi: 10.1016/j.puhe.2023.1004.1007

61. Sermet-Gaudelus I, Temmam S, Huon C, Behillil S, Gajdos V, Bigot T, et al.
Prior infection by seasonal coronaviruses, as assessed by serology, does not
prevent SARS-CoV-2 infection and disease in children, France, April to June
2020. Euro Surveill. (2021) 26:2001782. doi: 10.2002807/2001560–2007917.ES.
2002021.2001726.2001713.2001782

62. Tan CCS, Owen CJ, Tham CYL, Bertoletti A, van Dorp L, Balloux F. Pre-existing
T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely be explained by prior
exposure to endemic human coronaviruses. Infect Genet Evol. (2021) 95:105075.
doi: 10.1016/j.meegid.2021.105075

63. Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ, Tan
MP, et al. A single autoimmune T cell receptor recognizes more than a million different
peptides. J Biol Chem. (2012) 287:1168–77. doi: 10.1074/jbc.M1111.289488

64. Prygiel M, Mosiej E, Gorska P, Zasada AA. Diphtheria-tetanus-pertussis
vaccine: past, current & future. Future Microbiol. (2022) 17:185–97. doi: 10.2217/fmb-
2021-0167
Frontiers in Immunology 15229
65. Lu PJ, O'Halloran A, Ding H, Liang JL, Williams WW. National and state-
specific td and tdap vaccination of adult populations. Am J Prev Med. (2016) 50:616–26.
doi: 10.1016/j.amepre.2015.1009.1033

66. Daniels CC, Rogers PD, Shelton CM. A review of pneumococcal vaccines:
current polysaccharide vaccine recommendations and future protein antigens. J Pediatr
Pharmacol Ther. (2016) 21:27–35. doi: 10.5863/1551–6776-5821.5861.5827

67. Goldblatt D. Conjugate vaccines. Clin Exp Immunol. (2000) 119:1–3.
doi: 10.1046/j.1365-2249.2000.01109.x

68. Okhrimenko A, Grun JR,Westendorf K, Fang Z, Reinke S, von Roth P, et al. Human
memory T cells from the bone marrow are resting and maintain long-lasting systemic
memory. Proc Natl Acad Sci U S A. (2014) 111:9229–34. doi: 10.1073/pnas.1318731111

69. Koncz B, Balogh GM, Papp BT, Asztalos L, Kemeny L, Manczinger M. Self-
mediated positive selection of T cells sets an obstacle to the recognition of nonself. Proc
Natl Acad Sci U S A. (2021) 118:e2100542118. doi: 10.1073/pnas.2100542118

70. Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, et al. T cell
receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat Chem
Biol. (2018) 14:934–42. doi: 10.1038/s41589–41018-40130–41584

71. Petrova GV, Naumov YN, Naumova EN, Gorski J. Role of cross-reactivity in
cellular immune targeting of influenza A M1(58–66) variant peptide epitopes. Front
Immunol. (2022) 13:956103. doi: 10.3389/fimmu.2022.956103

72. Hammarlund E, Thomas A, Poore EA, Amanna IJ, Rynko AE, Mori M, et al.
Durability of vaccine-induced immunity against tetanus and diphtheria toxins: A cross-
sectional analysis. Clin Infect Dis. (2016) 62:1111–8. doi: 10.1093/cid/ciw1066
frontiersin.org

https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1155/2013/601943
https://doi.org/10.1016/j.puhe.2023.1004.1007
https://doi.org/10.2002807/2001560&ndash;2007917.ES.2002021.2001726.2001713.2001782
https://doi.org/10.2002807/2001560&ndash;2007917.ES.2002021.2001726.2001713.2001782
https://doi.org/10.1016/j.meegid.2021.105075
https://doi.org/10.1074/jbc.M1111.289488
https://doi.org/10.2217/fmb-2021-0167
https://doi.org/10.2217/fmb-2021-0167
https://doi.org/10.1016/j.amepre.2015.1009.1033
https://doi.org/10.5863/1551&ndash;6776-5821.5861.5827
https://doi.org/10.1046/j.1365-2249.2000.01109.x
https://doi.org/10.1073/pnas.1318731111
https://doi.org/10.1073/pnas.2100542118
https://doi.org/10.1038/s41589&ndash;41018-40130&ndash;41584
https://doi.org/10.3389/fimmu.2022.956103
https://doi.org/10.1093/cid/ciw1066
https://doi.org/10.3389/fimmu.2024.1425374
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Guido Ferrari,
Duke University, United States

REVIEWED BY

Yaping Sun,
Yale University, United States
Ashley Nelson,
NewYork-Presbyterian, United States

*CORRESPONDENCE

Almut Meyer-Bahlburg

almut.meyer-bahlburg@med.uni-

greifswald.de
Dina Raafat

dina.raafat@med.uni-greifswald.de

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 17 May 2024
ACCEPTED 05 August 2024

PUBLISHED 27 August 2024

CITATION

Kuthning D, Raafat D, Holtfreter S,
Gramenz J, Wittmann N, Bröker BM and
Meyer-Bahlburg A (2024) Variant-specific
antibody profiling for tracking SARS-CoV-2
variant infections in children and adolescents.
Front. Immunol. 15:1434291.
doi: 10.3389/fimmu.2024.1434291

COPYRIGHT

© 2024 Kuthning, Raafat, Holtfreter, Gramenz,
Wittmann, Bröker and Meyer-Bahlburg. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 27 August 2024

DOI 10.3389/fimmu.2024.1434291
Variant-specific antibody
profiling for tracking
SARS-CoV-2 variant infections in
children and adolescents
Daniela Kuthning1†, Dina Raafat2,3*†, Silva Holtfreter2,
Jana Gramenz1, Nico Wittmann1, Barbara M. Bröker2

and Almut Meyer-Bahlburg1*

1Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine
Greifswald, Greifswald, Germany, 2Institute of Immunology, University Medicine Greifswald,
Greifswald, Germany, 3Department of Microbiology and Immunology, Faculty of Pharmacy,
Alexandria University, Alexandria, Egypt
Monitoring the seroprevalence of SARS-CoV-2 in children and adolescents can

provide valuable information for effective SARS-CoV-2 surveillance, and thus

guide vaccination strategies. In this study, we quantified antibodies against the

spike S1 domains of several SARS-CoV-2 variants (wild-type, Alpha, Delta, and

Omicron variants) as well as endemic human coronaviruses (HCoVs) in 1,309

children and adolescents screened between December 2020 and March 2023.

Their antibody binding profiles were compared with those of 22 pre-pandemic

samples from children and adolescents using an in-house Luminex®-based

Corona Array (CA). The primary objectives of this study were to (i) monitor

SARS-CoV-2-specific antibodies in children and adolescents, (ii) evaluate

whether the S1-specific antibody response can identify the infecting variant of

concern (VoC), (iii) estimate the prevalence of silent infections, and (iv) test

whether vaccination or infection with SARS-CoV-2 induce HCoV cross-reactive

antibodies. Both SARS-CoV-2 infection and vaccination induced a robust

antibody response against the S1 domain of WT and VoCs in children and

adolescents. Antibodies specific for the S1 domain were able to distinguish

between SARS-CoV-2 VoCs in infected children. The serologically identified

VoCwas typically the predominant VoC at the time of infection. Furthermore, our

highly sensitive CA identified more silent SARS-CoV-2 infections than a

commercial ELISA (12.1% vs. 6.3%, respectively), and provided insights into the

infecting VoC. Seroconversion to endemic HCoVs occurred in early childhood,

and vaccination or infection with SARS-CoV-2 did not induce HCoV S1 cross-

reactive antibodies. In conclusion, the antibody response to the S1 domain of the

spike protein of SARS-CoV-2 is highly specific, providing information about the

infecting VoC and revealing clinically silent infections.
KEYWORDS

SARS-CoV-2, children, adolescents, variants of concern, silent infections, antibody,
spike S1
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1 Introduction

The global spread of the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) and the continuous emergence of new

variants of concern (VoCs) have resulted in over 676 million infections

and a death toll of approximately 6.9 million (as of 10/03/23) due to the

associated coronavirus disease 2019 (COVID-19) (1). In Northern

Germany, there have been four epidemic waves of COVID-19, caused

respectively by the original SARS-CoV-2 strain Wu01 (March –

December 2020), the Alpha variant (December 2020 – June 2021),

the Delta variant (June 2021 – January 2022), and theOmicron variants

BA.1, BA.2, BA.4 and BA.5 (from January 2022) (2).

Epidemiological data indicate that children are less prone to

develop COVID-19 upon exposure to SARS-CoV-2 and, when

infected, the symptoms are less severe than those in adults (3, 4).

These milder disease courses are attributed to several factors,

including earlier and more rapid type 1 interferon responses,

increased cytokine production and differences in immune cell

numbers (5, 6).

Asymptomatic, i.e. silent infections (SI) represent a significant

potential driver of SARS-CoV-2 epidemics, as they can facilitate

uncontrollable transmission. The role of asymptomatic children in

viral transmission was a highly debated topic at the beginning of the

pandemic. Recent studies, however, indicate that children are less

frequently identified as index cases than adults in household and

school settings (3), and that asymptomatic SARS-CoV-2-infected

children are less likely to transmit the virus to other household

members than symptomatic individuals (7). Knowledge of SI

prevalence is essential for more accurately estimating transmission

dynamics, improving epidemiological modelling, and guiding

effective public health measures (8, 9).

Monitoring SI relies on the detection of viral RNA (PCR) or

proteins (lateral flow tests) in swab samples, or on serological assays

(e.g. ELISA). In the early stages of the pandemic, PCR testing was

primarily focused on symptomatic cases and their direct contacts

(10). Subsequently, the advent of lateral flow tests for public use in

March 2021 facilitated mass testing, particularly in educational

institutions such as schools and kindergartens (11). Serological

assays are frequently employed in surveillance studies to ascertain

the prevalence of SI (12, 13). Seroconversion to spike S1 protein is

more common than to nucleocapsid (NC) protein (14), and serves

as a marker for previous infection in unvaccinated cohorts.

The infection with the SARS-CoV-2 virus results in the

formation of antibodies against a number of antigens, including

the Spike (S) protein and NC. The Spike protein is composed of two

domains, S1 and S2, which are responsible for mediating receptor

binding and virus-host membrane fusion, respectively (15). The S2

domain is highly conserved amongst SARS-CoV-2 and closely

related coronaviruses, and shares numerous antibody epitopes.

Neutralizing antibodies primarily target the more variable S1

domain. The human immune response against SARS-CoV-2

drives viral evolution, leading to the emergence and global spread

of VoCs with Spike variants that are less well recognized by vaccine-

induced antibodies (16–18). The majority of amino acid exchanges

are located in the spike S1 domain (18). Consequently, vaccine-
Frontiers in Immunology 02231
induced antibodies and also therapeutic neutralizing antibodies are

largely ineffective against the Omicron variant.

In addition to SARS-CoV-2, children frequently contract the

closely related common cold human coronaviruses (HCoVs),

including the alphacoronaviruses 229E and NL63 and the

betacoronaviruses HKU1 and OC43. The vast majority of children

experience their first HCoV infection at an early age and are

subsequently re-exposed throughout their lives (19–21). Due to

conserved epitopes, pre-existing antibodies from prior infections with

HCoVs can cross-react with SARS-CoV-2 S and NC proteins (20, 22,

23). Nevertheless, it seems that seasonal HCoV infection does not

confer cross-protection against SARS-CoV-2 infection (20, 22, 23).

Here, a total of 1,309 children aged six months to 17 years were

sampled in North-Eastern Germany between December 2020 and

March 2023. SARS-CoV-2 antibody profiling was performed using

both commercial ELISA-based assays and an in-house Luminex®-

based approach. The Luminex®-based Corona Array (CA)

demonstrated greater sensitivity, resulting in an under-ascertainment

rate of 12.1% among children and adolescents. Moreover, antibody

profiles against the spike S1 domain from wild-type (WT) and VoCs

were highly discriminatory and reflected the kinetics of VoC waves in

Northern Germany. This approach enabled us to attribute the

identified SI to the infecting variant with the highest probability.

Finally, seroconversion to endemic HCoVs occurred at an early age.

With regard to the variable S1 domain, COVID-19 vaccination or

SARS-CoV-2 infection did not induce HCoV-cross-reactive antibodies.
2 Methods

2.1 Patient recruitment

Serum or plasma samples were collected from 22 pre-pandemic

children and adolescents (aged 4-17 years) as well as from 1,309

children and adolescents (aged six months to 17 years; COVIDKID

cohort) attending medical care in one of six participating hospitals

and two private pediatric practices in North-Eastern Germany

between December 2020 and March 2023. Repeated participation

was permitted after a minimum interval of two months.

Additionally, the families of the participants were requested to

complete a questionnaire concerning the children’s SARS-CoV-2-

vaccination status, previous SARS-CoV-2 infections, demographic

data and socioeconomic background.

The study was approved by the Ethics Committee of the University

Medicine Greifswald (BB188/20, and its amendment BB188/20a; BB

014/18) and entered in the German Clinical Trial Register on 09/03/

2021 (Trial ID: DRKS00024635; https://drks.de/search/de/trial/

DRKS00024635). All research was conducted in accordance with

the tenets of the Declaration of Helsinki. All requirements of data

protection and confidentiality were fully respected.

The study period was divided into distinct SARS-CoV-2 waves

based on publicly available data from CoMV-Gen (24). Turning

points of a new dominant VoC were interpolated from weekly

proportions of challenging variants (interpolated proportion >50%

for respective VoC). This resulted in the delineation of the following
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pandemic waves: I) Alpha wave (10/12/2020 – 19/06/2021), II)

Delta wave (20/06/2021 – 05/01/2022), BA.1 wave (06/01/2022 –

16/02/2022), BA.2 wave (17/02/2022 – 07/06/2022) and BA.5 wave

(08/06/2022 – 13/03/2023).
2.2 ELISA for the detection of
SARS-CoV-2-specific IgG antibodies

The presence of SARS-CoV-2-specific IgG antibodies against

the spike S1 domain and the nucleocapsid protein (Anti-SARS-

CoV-2-ELISA (IgG) using the Spike S1 protein from the wild type

strain and Anti-SARS-CoV-2-NCP-ELISA, respectively) was

determined using commercially available kits (EI 2606-9601 G, EI

2606-9601-2 G; EUROIMMUN, Lübeck, Germany) according to

the manufacturer’s instructions. Antibodies were detected semi-

quantitatively and the results were interpreted as recommended by

the manufacturer: positive at a ratio ≥1.1; negative at a ratio < 0.8;

borderline at a ratio between 0.8 and 1.1. In brief, serum or plasma

samples were diluted 1:101, and the levels of IgG antibodies against

S1 or NC were analyzed using an Immunomat (Virion/Serion,

Würzburg, Germany) or Tecan infinite M200 Pro microplate reader

(Tecan Group Ltd., Männedorf, Switzerland), respectively.
2.3 12-plex Corona Array for the detection
of SARS-CoV-2 and HCoV-specific
IgG antibodies

The Corona Array (CA) is an in-house bead-based 12-plex

suspension array based on the xMAP® technology (Luminex®,
Frontiers in Immunology 03232
Austin, USA) (25). The CA was designed for the simultaneous

analysis of antibodies against different recombinant coronavirus

antigens. Twelve recombinant proteins were procured from Sino

Biological Europe GmbH (Eschborn, Germany), comprising seven

recombinant His-tagged proteins/protein subunits of SARS-CoV-2;

four recombinant spike S1 proteins of the endemic HCoVs, and the

recall antigen tetanus toxoid (Table 1). The proteins were covalently

coupled to MagPlex® magnetic microspheres at a concentration of

100 µg per 1.25 × 107 beads. The coupling efficiency (coupling

factor) was determined via the His-tag as previously described in

detail (26).

The CA was performed with serum or plasma samples as

previously described (26, 27). The plasma dilution was optimized

based on 7-point dilution series (1:20 to 1:312,500) of 19

representative plasma samples of various anti-S1_WT IgG levels

as determined by a commercial S1 IgG ELISA, in order to be able to

detect both low and high antibody levels in a single measurement

(Supplementary Figure 1). Based on this pretest, we selected a

sample dilution of 1:10,000 to ensure a reliable detection of both

high and low antibody levels. Plasma samples with a raw median

fluorescence intensity (MFI) > 15.000 (n=46) were once more

analyzed using 7-dilution series, to avoid saturation effects, and a

single dilution within the linear range was selected for the analysis.

A plasma pool (prepared from plasma samples of 13 donors with

previous SARS-CoV-2 infection (COV+) and/or COVID-19

vaccination (VAC+)) was included on each plate for data

normalization. The antibody binding was determined using the

BioPlex 200 system (Bio-Rad Laboratories GmbH, Feldkirchen,

Germany) with bead buffer serving as the blank. The following

instrument settings were used: bead type: MagPlex beads, beads: 100

beads per region, sample timeout: 60 sec, sample volume: 80 mL,
TABLE 1 Recombinant proteins used in this study for the construction of the CA.

Recombinant protein/protein domain* Abbreviation Company Catalog Number

SARS-CoV-2 (2019-nCoV)

1 SARS-CoV-2 (2019-nCoV) Spike S1 S1_WT Sino Biological 40591-V08H

2 SARS-CoV-2 (2019-nCoV) Nucleocapsid NC_WT Sino Biological 40588-V08B

3 SARS-CoV-2 (2019-nCoV) Spike S1 (Alpha variant) S1_Alpha Sino Biological 40591-V08H12

4 S1 Delta (B.1.617.2) S1_Delta Sino Biological 40591-V08H23

5 S1 Omicron (B.1.1.529) S1_ BA.1 Sino Biological 40591-V08H41

6 S1 Omicron (BA.2) S1_ BA.2 Sino Biological 40591-V08H43

7 S1 Omicron (BA.4/BA.5) S1BA.4/5 Sino Biological 40591-V08H46

Human coronaviruses

8 Human coronavirus (HCoV-229E) Spike/S1 Protein S1_229E Sino Biological 40601-V08H

9 Human coronavirus (HCoV-HKU1) Spike/S1 Protein S1_HKU1 Sino Biological 40021-V08H

10 Human coronavirus (HCoV-NL63) Spike/S1 Protein S1_NL63 Sino Biological 40600-V08H

11 Human coronavirus (HCoV-OC43) Spike/S1 Protein S1_OC43 Sino Biological 40607-V08H1

Recall antigen

12 Tetanus Toxoid TT Sigma Aldrich 582231
*all recombinant proteins/protein domains, except for the tetanus toxoid, were His-tagged.
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gate settings: 7,500–15,000 (BioPlex Manager 5.0 software; Bio-Rad

Laboratories GmbH, Feldkirchen, Germany).

The relative IgG concentrations measured in the plasma pool

were employed to normalize inter-plate variations. The coupling

factor was utilized for correction between antigens. Serum samples

were considered seropositive for SARS-CoV-2 when antibody

binding to at least one S1 variant (WT or VoCs) was above the

cut-off value of the respective antigen. Serum samples with only

anti-NC antibodies above the cut-off value were not considered

seropositive for SARS-CoV-2, as cross-reactivity to other

coronaviruses can result in increased NC antibody levels.
2.4 Statistics

Statistical testing and data visualization were conducted using

GraphPad Prism (v9) and R (v4.2.0; https://www.R-project.org/) in

combination with the tidyverse package (v2.0.0) (28) and the

patchwork package (v1.1.2; https://CRAN.R-project.org/

package=patchwork). Cutoff values for the CA were defined based

on MFI values of 22 pre-pandemic samples from children and

calculated as mean + 5× standard deviation (SD).

The significance of differences between groups was tested by

one-way analysis of variance (ANOVA; Kruskall-Wallis test) with

post-hoc Dunn’s multiple-comparison test. Statistical significance

was defined as a p-value <0.05. The correlation between the ELISA

and CA was calculated using Spearman’s correlation coefficient.
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3 Results

The dynamics of the antibody response to several SARS-CoV-2

variants were traced in 1,309 serum/plasma samples obtained from

children and adolescents in North-Eastern Germany between

December 2020 and March 2023 (median age: 10 years, range:

0.5-17 years). Serum samples from a pre-pandemic cohort of 22

individuals (pre-COVID; median age: 12 years; range 4-17 years)

served as controls and for the calculation of the cut-off values

(WT_S1: 50.4; WT_NC: 545.65; Alpha_S1: 74.58; Delta_S1: 63.46;

BA.1_S1: 64.1; BA.2_S1: 60.3; BA.4/5_S1: 51.2). Questionnaires

were employed to ascertain previous SARS-CoV-2 infections

(COV+ or COV-) and/or COVID-19 vaccinations (VAC+ or

VAC-). Among the 1,309 study subjects, 271 reported infection

with SARS-CoV-2 (COV+) and 177 reported vaccination (VAC+)

(Table 2). Serum/plasma samples were assigned to five distinct

SARS-CoV-2 waves (Alpha, Delta, BA.1, BA.2, BA.5), based on the

time point of study inclusion. A SARS-CoV-2 wave was defined as

the period in which the respective VoC was responsible for more

than 50% of the reported cases (Table 2).
3.1 SARS-CoV-2 infection and vaccination
induce high levels of S1-specific antibodies

The presence of SARS-CoV-2-specific serum antibodies

(seroconversion) against NC and the S1 subunits of SARS-CoV-2
TABLE 2 Patient characteristics of the COVIDKID cohort.

Total
(n=1,309)

Unvaccinated, VAC-

(n=1,107)
Vaccinated, VAC+

(n=177)
Unknown
(n=25)

Female, no. (%) 668 (51.0) 549 (49.6) 104 (58.8) 15 (60.0)

Age [years]
median (range)

10 (0.5 - 17) 9 (0.5 – 17) 15 (2 – 17) 13 (1 – 17)

Study inclusion during1

Alpha wave
(10/12/2020 – 19/06/2021)

496 481 4 11

Delta wave
(20/06/2021 – 05/01/2022)

343 303 34 6

BA.1 wave
(06/01/2022 – 16/02/2022)

99 62 37 –

BA.2 wave
(17/02/2022 – 07/06/2022)

188 138 47 3

BA.5 wave
(08/06/2022 – 13/03/2023)

183 123 55 5

SARS-CoV-2 infection status (COV)2

Undiagnosed (COV-) 1009 876 120 13

At least one diagnosis (COV+) 271 2103 55 6

Unknown 29 21 2 6
1SARS-CoV-2 waves were defined as the period in which the respective VoC was responsible for more than 50% of the reported cases.
2Information about SARS-CoV-2 exposure at the time of study inclusion were evaluated from a questionnaire.
3including n=190 of COV+/VAC- with a single diagnosis, of which n=143 with known date of diagnosis and analyzed for SARS-CoV-2 IgG profiles in Figure 3.
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WT and VoCs was quantified using a bead-based in-house CA. The

levels of anti-NC antibodies (NC_WT; Figure 1; panel 1) were

found to be highest in children and adolescents who reported a

previous COVID-19 infection (COV+; median log(MFI) 2.60). In

contrast, the majority of vaccinated individuals without prior

infection (COV-/VAC+; median log(MFI) 1.55), participants with

neither infection nor vaccination (COV-/VAC-; median log(MFI)

1.28) and pre-COVID samples (median log(MFI) 1.44) lacked anti-

NC antibodies. This is not unexpected, given that all SARS-CoV-2

vaccines approved for children and adolescents in Germany during

the study period contained mRNA or DNA encoding the SARS-

CoV-2 WT spike protein.

Vaccinated children and adolescents with (COV+/VAC+) or

without infection (COV-/VAC+) mounted a robust serum IgG

response against the S1 subunit of the SARS-CoV-2 spike protein.

Their antibodies bound to the S1-domains of the SARS-CoV-2

strain Wu01 (wild-type, WT) and the five VoCs that circulated in

the study region (Figure 1). The highest antibody levels were

observed in children and adolescents who had experienced both

infection and vaccination (COV+/VAC+), while infection alone

induced significantly lower amounts of anti-S1 IgG serum

antibodies (median log(MFI) 1.3- to 1.6-times lower in COV+/

VAC- than in COV+/VAC+ individuals; p < 0.001 in Kruskall-

Wallis test for all S1 antigens; not shown). As anticipated, pre-

COVID- and most COV-/VAC- samples lacked anti-S1 antibodies.

However, some COV-/VAC- subjects exhibited high anti-S1 IgG

levels, suggesting the possibility of silent SARS-CoV-2 infections.
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Furthermore, the antibody binding patterns to the S1 from WT

and circulating VoCs (Alpha, Delta, Omicron BA.1, BA.2, and

BA.4/5) differed between vaccinated and infected subjects. In the

vaccinated group (COV-/VAC+), antibody binding to the closely-

related S1_WT and S1_Alpha (median log(MFI) 4.01 and 4.24,

respectively) exhibited a tendency to be stronger than to S1 of the

other VoCs (median log(MFI) 3.59 to 3.91). In the COV+/VAC-

group, the anti-S1 antibody binding patterns exhibited considerable

inter-individual variability (median log(MFI) 2.7 to 3.3).

In conclusion, our CA data demonstrate that both vaccination

and infection elicit robust anti-S1 antibody responses.
3.2 The Corona Array is more sensitive
than a commercially available ELISA

To assess the performance of our in-house CA, we compared its

results (antibody binding to NC_WT, S1_WT, S1 of five circulating

VoCs) with the data obtained with commercial ELISAs (anti-

nucleocapsid (NCP) IgG and anti-S1 IgG). Both methods yielded

concordant results, as evidenced by Spearman’s correlation

coefficients between 0.69 and 0.71 for the individual S1 antigens

(Figure 2). However, regarding the S1_WT antigen, the CA

exhibited greater sensitivity than the commercial ELISA (lower

right quadrant, with samples positive in CA but negative in ELISA

assay), and its dynamic range was considerably larger, spanning 5-6

logs as compared to two logs for the ELISA (upper right quadrant).
FIGURE 1

SARS-CoV-2-exposed children and adolescents exhibit a robust antibody response against SARS-CoV-2 antigens from wild-type SARS-CoV-2 and
its VoCs. SARS-CoV-2-specific antibodies were quantified with the CA in 1261 pediatric samples with known SARS-CoV-2 vaccination and infection
status as well as 22 pre-COVID samples, against nucleocapsid protein from SARS-CoV-2 wild-type (NC_WT), spike S1 domain from WT (S1_WT) and
circulating VoCs (S1_Alpha, S1_Delta, S1_BA.1, S1_BA.2 and S1_BA.4/5). Data are displayed as log-transformed MFI values. Samples were categorized
based on sampling time point (pre-COVID+/pre-COVID-), anamnestic SARS-CoV-2 infection (COV+/COV-) and COVID-19 vaccination status (VAC+/
VAC-). Horizontal dotted lines represent the cut-off values for each of the tested antigens (mean (MFI) +5×SD). The dotted lines within the violin
plots depict the median and the quartiles. Sub-cohorts: pre-COVID, n=22; COV-/VAC-, n=876; COV+/VAC-, n=210; COV-/VAC+, n= 120; COV+/
VAC+, n=55.
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3.3 Anti-NC antibodies alone are not a
reliable indicator of SARS-CoV-2 infections

As both COVID-19 vaccination and SARS-CoV-2 infection

induce anti-S1 antibody responses, we investigated whether

seroconversion to NC could serve as a reliable marker for previous

COVID-19 infection(s). Consequently, the CA (NC_WT) or ELISA

(NCP) were used to determine the prevalence of anti-NC antibodies

among unvaccinated children and adolescents (n=1,086), of whom

n=210 had reported a SARS-CoV-2 infection (COV+/VAC-).

Less than 50% of individuals with anamnestic COVID-19

infections were seropositive for NC, regardless of the applied

method (sensitivities of 0.44 and 0.49, for CA and ELISA

respectively) (Table 3). This remained consistent throughout the

pandemic waves, with the exception of the BA.5 wave, where only

29.9% of infected individuals showed a positive NC result with

either method (data not shown). The specificity of both the CA and

ELISA assays was 0.96. Consequently, a negative NC test does not

rule out a SARS-CoV-2 infection, while a positive NC test reliably

indicates a (silent) infection.
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In contrast, a positive CA result for at least one S1 antigen (WT or

VoCs) identified a previous SARS-CoV-2 infection in unvaccinated

children with a superior sensitivity of 0.93, compared to a sensitivity

of 0.61 for the ELISA. Therefore, we used the CA-based detection of

antibodies against at least one S1 of eitherWT or VoC as a marker for

(silent) SARS-CoV-2 infection in the subsequent analyses.
3.4 The S1-specific antibody response
discriminates between SARS-CoV-2 VoCs

We hypothesized that the immune system is capable of

discriminating between the S1 allelic variants of the circulating

VoCs, with the strongest antibody response directed against S1 of

the infecting VoC. To test this hypothesis, we analyzed the antibody

profiles in children and adolescents with a single SARS-CoV-2

infection with known date of diagnosis (COV+/VAC-; n=143)

(Table 2). We then calculated the MFI ratio of antibody binding

to each S1_VoC to that to S1_WT, which we subsequently refer to

as the VoC-to-WT ratio.
FIGURE 2

The Corona Array (CA) is more sensitive and covers a broader range than commercially available ELISAs. Serum IgG against nucleocapsid protein
(NC) as well as S1 from SARS-CoV-2 WT and circulating VoCs (Alpha, Delta, BA.1, BA.2 and BA.4/5) were quantified in 1331 pediatric samples using
the CA and are plotted on the x-axis. Pre-COVID samples (n=22; green dots) were also used for calculation of cut-off values for the CA (mean (MFI)
+5×SD; indicated by vertical dotted lines). Serum IgG against nucleocapsid protein (NCP) and S1_WT were determined by commercial ELISA. Results
are indicated as ratio of ODsample/ODcalibrator, and are plotted on the y-axis. The cut-off values recommended by the manufacturer are indicated by
horizontal dotted lines. Spearman´s correlation coefficient r is depicted. NC/NCP, nucleocapsid protein; MFI, median fluorescence intensity; S1,
Spike S1 domain.
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Samples were assigned to five distinct SARS-CoV-2 waves

(Alpha, Delta, BA.1, BA.2 and BA.4/5) based on the time of

diagnosis. In Figure 3A, the VoC with the highest ratio is

highlighted as a colored dot for each individual, hinting towards

the most probable infecting variant.
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In subjects diagnosed with COVID-19 during the Alpha, Delta,

BA.2 and BA.4/5 waves, the highest VoC-to-WT ratio was found to

correspond closely with the dominant variant (Figures 3B, C, E, F). For

example, during the Alpha wave, 24/30 study participants exhibited the

strongest antibody binding to the S1 of the Alpha variant (Figure 3B,

highlighted in gold), while three exhibited the strongest antibody

binding to the Delta variant (pink dots). This does not contradict

our assumption, as during each wave, there were also infections with

non-dominant VoCs. Unexpectedly, three COV+ children who

reported a SARS-CoV-2 infection during the Alpha wave exhibited

the strongest binding ratios for Omicron variants BA.2 or BA.4/5,

which were not yet present during the Alpha wave. These samples were

obtained at a late stage of the pandemic, which might reflect additional

Omicron infections that went undiagnosed (Figure 3B).

Of the 35 subjects diagnosed during the Delta wave, 27 (75%)

exhibited the highest VoC-to-WT ratio for the Delta variant, while

the remaining 8 samples demonstrated a strong reaction with the

Alpha variant (Figure 3C). In individuals diagnosed during the

BA.1 wave (n=13, Figure 3D), the results were inconclusive. The

majority of samples diagnosed during the BA.2 and BA.5 waves

presented with a BA.2- or BA.4/5-specific serological signature,

respectively (Figures 3E, F).

In conclusion, antibody profiles against the VoC-S1 domains

were highly discriminatory and reflected the kinetics of the VoC

waves in Northern Germany.
FIGURE 3

S1 variant-specific serological signatures can be used to identify the most probable infecting VoC. For 143 COV+/VAC- SARS-CoV-2 CA_S1+ children
and adolescents with a single SARS-CoV-2 diagnosis, antibody levels against S1 are depicted as ratios of MFIVoC to MFIWT (VoC-to-WT ratio) (A).
Subsequently, samples were assigned to the SARS-CoV-2 Alpha (B), Delta (C), BA.1 (D), BA.2 (E) or BA.4/5 (F) waves based on the time of diagnosis.
VoCs-to-WT ratios for each study subject are connected by a grey line. The VoC with the highest ratio is highlighted as a colored dot, likely
reflecting the infecting VoC. Samples where all VoC-to-WT ratios were below 1 were assigned to the WT.
TABLE 3 SARS-CoV-2-specific anti-S1 and anti-nucleocapsid IgG-
antibodies in a cohort of VAC- children and adolescents (n=1,086).

n

CA1 ELISA2

S1 NC_WT S1 NCP

+ – + – + – + –

COV+3 210 195 15 92 118 129 81 103 107

COV-3 876 106 770 36 840 49 827 36 840

PPV 0.65 0.72 0.72 0.74

NPV 0.98 0.88 0.91 0.89

Sensitivity 0.93 0.44 0.61 0.49

Specificity 0.88 0.96 0.94 0.96
1cut-off values for CA were defined as mean (MFI) +5×SD from 22 pre-COVID samples.
2cut-off values for commercial anti-S1 and -NCP ELISAs were defined as ratio
(ODsample/ODcalibrator) ≥1.1, as per manufacturer´s instructions.
3self-reported SARS-CoV-2 infection status.
CA, Corona Array; NC/NCP, nucleocapsid protein; S1, Spike S1 domain; PPV, positive
predictive value; NPV, negative predictive value; +, positive test result; -, negative test result.
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3.5 Detection of silent
SARS-CoV-2 infections

Seroconversion to S1 is a commonly used marker for previous

SARS-CoV-2 infections in unvaccinated individuals. However, the

sensitivity of this approach depends on the method of detection.

Figure 4 depicts the antibody binding to S1_WT. While the

commercial ELISA detected known SARS-CoV-2 infections in

136/210 unvaccinated children and adolescents (COV+/VAC-),

CA was positive for at least one S1 allele in 195 of the 210 COV+/

VAC- participants (Figure 4, left panel). This results in 64.8% and

92.9% seropositivity for the ELISA and CA, respectively. The anti-

S1_WT antibody levels in CA-positive (CA+) samples that were

ELISA-negative (ELISA-) were found to be lower than in samples

that were positive with both methods.

Using the same methods to identify unnoticed (silent)

infections (SI), the commercial ELISA revealed anti-S1 antibodies

in 6.3% (55 of 876 samples) of COV-/VAC- children and

adolescents. In contrast, the CA identified twice as many SI (106

of 876 samples; 12.1%). The positive samples that were missed by

the ELISA (6.3%) exhibited lower S1-specific antibody levels against

all tested S1 antigens than ELISA+ samples (Figure 4, right panel).

Looking at the whole COVIDKID cohort, a total of 301 of the

1,086 unvaccinated children had been exposed to SARS-CoV-2
Frontiers in Immunology 08237
based on the CA-S1 results. Of these, only 210 cases were diagnosed

(COV+/VAC-). This results in a 1.43-fold higher SARS-CoV-2

exposure rate than reported.
3.6 Antibody signatures specific to the S1-
variant provide insights into the contact
variant in children with silent infections

We next calculated the VoC-to-WT ratio to determine the most

probable infecting VoC in children and adolescents with SI

(Figure 5), as the immune system of COV+ patients was able to

discriminate between the S1 allelic variants of the circulating VoCs

(Figure 3). Since the time of infection was unknown in this cohort,

probands were assigned to the VoC waves based on the date

of recruitment.

Out of 106 SI identified using the CA (Figure 4, right panel), 47

(44.3%) exhibited the highest VoC-to-WT ratio for the Alpha

variant, indicating an infection with this variant (Figure 5A). For

WT, Delta and Omicron variants BA.1, BA.2 and BA.4/5, these

proportions were lower (n=5 (4.7%), n=10 (9.4%), n=15 (14.2%),

n=18 (17.0%), and n=11 (10.4%), respectively).

During the Alpha wave, 16 of 26 CA+ subjects exhibited the

highest VoC-to-WT antibody ratio for S1_Alpha (Figure 5B),

suggesting that they were indeed in contact with the Alpha

variant of SARS-CoV-2. It was unexpected to observe the highest

VoC-to-WT antibody ratio for the BA.1 or BA.4/5 S1 domains in

eight children recruited during the Alpha wave, despite the fact that

these VoCs were not circulating at that time. The majority of these

samples, however, had S1_BA.4/5 antibody levels just above the cut-

off and displayed no reactivity to the other tested SARS-CoV-2 S1

antigens (data not shown). This may have caused a distortion of the

VoC-to-WT ratios.

The majority of subjects recruited during the Delta wave (n=26)

were most likely exposed to the Alpha variant (n=18), followed by

the Delta variant (n=4), the WT strain (n=3), and the BA.1 variant

(n=1) (Figure 5C). For subjects recruited during the Omicron

waves, S1 antibody signatures pointed to infecting variants that

again matched the currently or previously prevailing variants

(Figures 5D–F).

The VoC-specific antibody profiling of children with SI often

indicated the prevailing SARS-CoV-2 variants as the likely cause of

infection. However, as expected, the correlation between antibody

binding and recruitment into the study (COV-) was less stringent

than that between antibody binding and known time point of

infection (COV+).
3.7 Seroconversion to endemic HCoVs
occurs in early childhood and was not
affected by the SARS-CoV-2 pandemic

One of the objectives of this study was to assess whether the

SARS-CoV-2 pandemic altered the seroconversion rate to endemic

HCoVs in children and adolescents. To this end, antibodies against

the S1 domains of the four endemic HCoVs, namely 229E, HKU1,
FIGURE 4

Corona Array (CA) detects SARS-CoV-2 infections with high
sensitivity and unveils silent infections in 12.1% of anamnestically
SARS-CoV2-naïve children and adolescents. Seroconversion to
Spike S1 was determined by commercial ELISA and CA in pediatric
COV+/VAC- samples (red, left panel) and COV-/VAC- samples (black,
right panel). Samples were stratified by being positive in ELISA
(S1_WT) and/or CA (S1 from WT or VoCs). ELISA- but CA_S1+

samples from both groups show significantly lower levels of
antibodies against S1_WT. The median is shown in red. The dashed
line indicates the cut-off value for S1_WT. Significance between
groups was tested by Kruskall-Wallis test and post-hoc Dunn´s
correction. *, p<0.05; **, p < 0.01; ***, p<0.001.
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NL63 and OC43, were measured in 1,309 children and adolescents.

As a positive control, antibodies against the recall antigen tetanus

toxoid were also measured (Figure 6). For all four HCoVs,

seroconversion occurred during early childhood. Antibody levels

increased sharply in the first years of life and plateaued at

approximately eight years for 229E, four years for HCoV-HKU1

and NL63, and five years for OC43 (Figures 6A, C, E, G, respectively).

The kinetics of anti-TT antibodies reflected the German vaccination

recommendations, which include a baseline vaccination at two

months of age and booster vaccinations at an age of 5 – 6 years

(29). This resulted in a first antibody peak at 1 year of age and another

steep increase around the age of six years (Figure 6I).

To ascertain the impact of the hygiene measures implemented

during the SARS-CoV-2 pandemic on antibody titers to HCoVs in

our cohort, we compared anti-HCoV-S1 antibody levels during a

pre-pandemic period with an age-adjusted subsample of the

COVIDKID cohort. Our findings revealed no significant

differences throughout the pandemic waves in comparison to pre-

pandemic levels (Figures 6B, D, F, H).

Finally, to investigate whether vaccination or infection with

SARS-CoV-2 induces or enhances HCoV-cross-reactive antibodies,

we also compared HCoV-S1-specific antibody levels in naive vs.

SARS-CoV-2-exposed (VAC+ and/or COV+) children and

adolescents, matched by age and time of study inclusion (median

age 10 and 12 years, respectively). Neither VAC+ nor COV+

children exhibited higher HCoV-S1-specific antibody levels
Frontiers in Immunology 09238
compared to the naïve children (COV-/VAC-; seronegative for

SARS-CoV-2 S1) (Figure 7), suggesting that the SARS-CoV-2

serostatus had no influence on HCoV-S1-specific antibody titers

in this age stratum.

In conclusion, seroconversion to endemic HCoVs occurs in

early childhood and, in terms of S1-specific antibodies, was not

affected by the SARS-CoV-2 pandemic.
4 Discussion

Seroconversion to circulating SARS-CoV-2 variants can provide

valuable information for SARS-CoV-2 surveillance. In this study,

we performed extensive anti-SARS-CoV-2 antibody profiling in

more than 1,300 children and adolescents screened between

December 2020 and March 2023, covering several SARS-CoV-2

waves. Both SARS-CoV-2 infection and vaccination induced high

levels of specific antibodies against the S1 domains from SARS-

CoV-2 WT and VoCs. The antibody profiles against the spike S1

domain from WT and VoCs were highly discriminatory and

reflected the kinetics of VoC waves in the study region.

Furthermore, our highly sensitive Luminex®-based approach

discovered more SI than a conventional ELISA and, additionally,

provided hints at the infecting VoC. Finally, vaccination or

infection with SARS-CoV-2 did not induce HCoV S1-cross-

reactive antibodies in children and adolescents.
FIGURE 5

Children and adolescents silently infected with SARS-CoV-2 can be allocated to the most probable infecting variant using the Corona Array (CA). For
106 COV-/VAC- children and adolescents with SI (CA+, (A) recruited during (B) Alpha, (C) Delta, (D) BA.1, (E) BA.2 or (F) BA.4/5 waves, ratios of
MFIVoC to MFIWT (VoC-to-WT ratio) were calculated as a surrogate marker for the detection of the most probable infecting VoC. Samples with
highest antibody levels against S1_WT and therefore with VoC-to-WT ratios below 1 were classified as infected with the WT virus. Samples were
assumed to be infected with a variant when the VoC-to-WT ratio was highest.
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Our in-house, Luminex®-based CA exhibited a higher

sensitivity and a broader detection range than commercial ELISA

kits. The assay sensitivity for anti-S1 antibodies increased from 61%

(ELISA) to 93% (CA), resulting in a reduction in false-negative

cases of SARS-CoV-2 infections and, conversely, a 1.43-fold
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increase in correctly identified COV+ cases. Similarly, other

research groups have reported a sensitivity of 98% for a

Luminex®-based SARS-CoV-2 6-plex for an adult cohort (30).

Moreover, the CA was more suitable for detecting SI in COV-

children and adolescents, with detection rates of 12.1% for CA as
FIGURE 6

HCoV-specific antibody levels are age-dependent and are not affected by the SARS-CoV-2 pandemic. Age-dependent serum IgG levels were
determined against the S1 domain of the four endemic HCoVs 229E (A), HKU1 (C), NL63 (E) and OC43 (G), as well as tetanus toxoid (TT) as positive
control (I) among 1,309 children and adolescents recruited during the SARS-CoV-2 pandemic. HCoV-specific antibody levels from pre-COVID
(n=22; green) children and adolescents (median age 12 years) were compared to age-matched samples from three SARS-CoV-2 waves (B, D, F, H).
Matching was conducted regarding age and study site (all samples were from the University Medicine Greifswald, Germany): for each pre-COVID
control five samples from one of three defined time frames (Alpha, Delta or Omicron) were matched (1:5 ratio). Significance between pre-COVID
and Alpha, Delta or Omicron waves was tested with Kruskall-Wallis test with post-hoc Dunn´s correction. Median values are shown in red.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1434291
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kuthning et al. 10.3389/fimmu.2024.1434291
compared to 6.3% using the commercial ELISA. Two other studies

conducted in Germany during the initial SARS-CoV-2 waves (2020 –

2021) reported lower rates of seroconversion. Specifically, 0.87% of the

total cohort for the year 2020 (13) and 4.4% of children without SARS-

CoV-2 infections in 2020 – 2021 were seropositive (12). As our study

recruited subjects up until March 2023, it is reasonable to anticipate a

higher seroprevalence. The ratio of seropositive cases (CA-based) to

diagnosed and recalled infections was 1.43 (301 CA-positive cases/210

COV+/VAC-) in our study. The proportion of silent infection was

considerably higher in earlier studies, with rates of 3.9 (12) and 6 (13),

respectively. This highlights the significant advancement in the clinical

diagnosis of COVID-19 during the pandemic.

Luminex®-based seroprevalence studies can serve as an

invaluable component of SARS-CoV-2 surveillance. Despite the

fact that SARS-CoV-2 has now entered the endemic phase (31),

monitoring the humoral immunity to SARS-CoV-2 remains vital not

only to gain insights into the impact of circulating VoCs, but also to

monitor waning immunity, identify immune escape variants and

inform vaccination programs. Given that vaccination against

COVID-19 is no longer recommended for healthy children in

Germany (32), it is likely that primary SARS-CoV-2 infections will

occur at an early age. In this endemic scenario, monitoring the S1

seroprevalence will be the most informative marker for SARS-CoV-2

exposure in infants and children. The Luminex®-based approach can

be utilized tomonitor the kinetics of SARS-CoV-2 infection in infants

and children, with the objective of determining whether they will

converge with those of endemic HCoVs, which plateau at

approximately five to six years of age (as discussed below). In

addition to its implications for the current pandemic, our

Luminex®-based approach offers an efficient and easily expandable

tool for the surveillance of future outbreaks with other pathogens.

As both COVID-19 vaccination and SARS-CoV-2 infection induce

S1-specific antibodies, we investigated whether seroconversion to NC
Frontiers in Immunology 11240
could serve as a reliable marker for previous COVID-19 infection(s).

However, anti-NC antibodies alone were not sufficient to reliably detect

(silent) SARS-CoV-2 infections in children and adolescents. In contrast

to the S1 antigen, the CA did not improve the sensitivity for the

detection of anti-NC antibodies (ELISA: 49%; CA: 44%). Conversely,

the assay specificity for both the CA and ELISA was 96%.

Consequently, a positive NC test result can be taken as an indication

of an (unnoticed) infection.

The low assay sensitivity can be attributed to the presence of

low-level, cross-reactive anti-NC antibodies in children and

adolescents who had not been exposed to SARS-CoV-2,

exemplified by our pre-pandemic cohort (22, 23, 27, 33). This

basal antibody binding required a much higher cut-off value (NC:

545.7; S1_WT: 50.4), which reduced sensitivity. Nevertheless,

higher sensitivities might be achieved with different detection

systems, such as the double-antigen sandwich assay format

utilized in Elecsys® anti-SARS-CoV-2 immunoassays (sensitivity:

97.8%; specificity: 98.5%) (34). Another reason for the lower

sensitivity of NC versus S1 antibody detection systems could be

the relatively swift decay of NC- versus S-specific antibody levels

(35). Moreover, the immune response of children to SARS-CoV-2

infection is predominantly directed towards the S protein, rather

than the NC (14). Consequently, the absence of anti-NC antibodies

is not suitable to exclude previous SARS-CoV-2 infection in

children and adolescents.

The results of this study clearly demonstrated that the S1-

specific antibody response can discriminate between different

SARS-CoV-2 VoCs. To enhance the CA’s discriminatory power,

the analysis was focused on the more variable S1 domain, rather

than using the full-length S protein. Indeed, several studies have

demonstrated that the more conserved S2 domain contains

numerous cross-reactive epitopes, not only with other SARS-

CoV-2 VoCs, but also with the closely related HCoVs (23, 27, 36,
FIGURE 7

Neither SARS-CoV-2-infection nor vaccination elicits higher titers for HCoV-S1 domains in children and adolescents. Anti-HCoV-S1 antibody levels
were compared in naïve (COV-/VAC-), COV+ and/or VAC+ children and adolescents (n=40 per group, matched by age and time of study inclusion in
a 1:1 ratio). Antibodies against tetanus toxoid (TT) were included as control. The median is shown in red. Significance between all four groups was
tested by Kruskall-Wallis test with post-hoc Dunn´s correction.
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37). The presence of cross-reactive antibodies directed at the S2

domain would have blurred our results. In contrast, antibodies

cross-reacting to the RBD/S1 domain have only rarely been

reported (23, 33, 36, 37).

Our multiplex approach demonstrated that antibody binding

patterns for the S1 domains of SARS-CoV-2WT and VoCs are highly

individual and allele-specific. In most cases, the strongest antibody

response was detected against the most likely infecting VoC, e.g. the

prevailing VoC at the time of diagnosis. This demonstrates that in

terms of the spike S1/RBD domain, the antibody response is highly

VoC-specific, as previously reported (16, 27, 33, 38, 39). However, in

each SARS-CoV-2 wave we also observed subjects that showed a

specific antibody response to other VoCs. This is not unexpected and

actually reflects the pandemic situation in Northern Germany with

several variants circulating in parallel (3; personal communication

Meyer-Bahlburg). Consequently, the S1-specific antibody profiling

can provide insights into the causative VoC.

To the best of our knowledge, allele-specific antibody profiles

have not been investigated on a large scale until now. Some studies

have conducted RBD-specific antibody profiling and performed

correlation analyses for comparing antibody binding to WT versus

Alpha, Beta and Delta variants. These studies demonstrated

comparable IgG binding to RBD from both WT and Alpha

variant, but reduced binding to RBD from the Beta variant in

children and/or adults recruited in the first wave of the pandemic

(16, 38). The Omicron variant exhibits an even more pronounced

immune escape, as evidenced by the markedly reduced antibody

binding to the Omicron Spike protein in vaccinated individuals (17,

18). Our study is distinctive in two ways: Firstly, the study spanned

a considerable period of time (December 2020 – March 2023),

allowing the subjects to be allocated to six distinct SARS-CoV-2

waves (WT, Alpha, Delta, and Omicron BA.1, BA.2 and BA.4/5).

Secondly, the conversion of S1 domain-specific antibody responses

into VoC-to-WT ratios enabled a comparison of antibody profiles

against all VoCs on an individual level. This approach proved to be

a robust tool for estimating exposure to SARS-CoV-2 on a variant-

specific level.

Furthermore, S1 variant-specific serological signatures can also

provide insights into the infecting VoC in silent SARS-CoV-2

infections. In our study cohort, 12.1% of children and adolescents

experienced SI, as determined by an antibody response against the

S1 domain from the WT virus or VoCs. We again employed the S1

variant-specific antibody signatures to determine the most likely

infecting VoC in these children. Since the time of infection is

unknown in this cohort, probands were assigned to the VoC waves

based on the date of recruitment. Consequently, they might have

been infected with the prevailing VoC or previously circulating

variants, which is clearly reflected in our data. For instance, children

and adolescents recruited during the Delta wave showed the highest

antibody binding for S1 from the Alpha or Delta VoCs, but not

from BA.2 and BA.4/5. The majority of detected SI presented with

an antibody signature for the Alpha variant, which dominated in

North-Eastern Germany between December 2020 and June 2021.

Overall, S1-variant specific antibody signatures can provide

valuable insights into the contact variant in children with SI.

However, it should be noted that the reliability of our analysis is
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contingent upon the absence of a prior SARS-CoV-2 vaccination or

infection, as both of these conditions induce high titers of SARS-

CoV-2 S1-specific antibodies.

Endemic HCoVs are a common cause of acute respiratory

infections, leading to a wide range of disease severity, especially

during the winter months. A meta-analysis attributed 5.9% (range:

0.9 – 18.4%) of respiratory infections in children to HCoVs on a

global scale (19). In order to gain further insight into the

epidemiology of these viruses, we profiled the antibody binding to

the S1 domain of endemic HCoVs. Our findings confirmed that

seroconversion occurs in early childhood. The antibody levels

against HCoV-S1 domains exhibited a marked increase with age,

reaching a plateau at approximately four to eight years of age. This

pattern aligns with the findings of other seroprevalence studies in

Germany and France, which reported that many infants

experienced HCoV infections in their first two years of life (16, 20).

Remarkably, seroconversion to endemic HCoVs was not

affected by the SARS-CoV-2 pandemic, despite reduced contact

rates and implemented hygiene measures. However, our pandemic

and pre-pandemic cohorts consisted primarily of older participants

(median age of 12 and 10 years, respectively). This limits the

sensitivity for the discovery of changes caused by the pandemic,

as anti-HCoV antibody levels had already plateaued at 4-8 years of

age. Indeed, Sikkema et al. observed a reduction in S1

seroprevalence during the SARS-CoV-2 pandemic only in very

young Dutch children (aged <1 year, for all four HCoVs), and

only for NL63 also in older age groups (up to 18 years) (40).

Finally, we investigated whether vaccination or infection with

SARS-CoV-2 induces HCoV-cross-reactive antibodies, focusing our

analysis on the highly variable spike S1 domain. Our data

demonstrated that there was no increase in antibodies specific to

the S1 domain of HCoVs following SARS-CoV-2 infection or

vaccination. Other research groups employed the full-length spike

protein or the S2 domain, and reported elevated HCoV antibodies

(particularly against OC43 and HKU1) post-infection and

-vaccination (36, 41, 42). Consequently, infection and vaccination

elicit cross-reactive antibodies, although these antibodies

predominantly recognize epitopes on the more conserved S2 domain.

A limitation of our study is the use of a single dilution for plasma

samples for the CA. Indeed, serum/plasma titrations are in general a

more accurate approach to obtain quantitative information on

antibody reactivity (27, 43). For incorporation into the clinical

routine, however, diagnostic tests should ideally provide

information from a single serum/plasma dilution, thus enabling

sufficient throughput. This is the reason why a significant number

of published studies using Luminex-based assays employ a single

dilution, ranging from 1:100 to 1:2000 (44–47). In our study, a

1:10,000 plasma dilution was identified as the optimal dilution for our

semi-quantitative readout, enabling accurate detection by avoiding

saturation effects at high antibody levels, while ensuring the proper

detection of low antibody levels in the majority of cases. Given the

relatively large sample size of 1,309 subjects in this study, this

approach enabled the conservation of reagents and time, while

maintaining data quality. The larger dynamic range of the CA

compared to the ELISA approach proved advantageous in

this context.
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In conclusion, our highly sensitive Luminex®-based Corona

Array represents a valuable tool for monitoring the S1-specific

antibody response against SARS-CoV-2 WT and VoCs as well as

HCoVs in children and adolescents, and has the potential to serve as

a surveillance tool. By focusing on the variable S1 domain, we were

able to identify the most likely SARS-CoV-2 contact variant in

children with diagnosed and silent infections. This has opened up

new possibilities for addressing underreporting during pandemics.
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Bacterial pneumonia patients
with elevated globulin levels
did not get infected with
SARS-CoV-2: two case reports
Qi Zhong1†, Qiu-mei Lin1†, Hong-bin Long1†, Cai-xia Liao1,
Xiao-xiao Sun1, Miao-du Yang1, Zhi-hao Zhang1, Yi-hua Huang1,
Shi-min Wang2 and Zhao-shou Yang1*

1The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical
University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China, 2Zhongshan
School of Medicine, Sun Yat-Sen University, Guangzhou, China
Background: COVID-19 began in December 2019, rapidly spreading worldwide.

China implemented a dynamic zero-COVID strategy and strict control measures

after the outbreak. However, Guangzhou city ended closed-off management by

the end of November 2022, leading to exposure to SARS-CoV-2. Despite most

hospitalized patients being infected or co-infected with SARS-CoV-2, some

remained uninfected. We report two cases of bacterial pneumonia with

elevated globulin levels not infected with SARS-CoV-2, aiming to identify

protection factors of SARS-CoV-2 infection and provide a scientific basis for

SARS-CoV-2 prevention.

Case presentation: Case 1, a 92-year-old male, admitted on October 21, 2022,

developed worsening cough and sputum after aspiration, diagnosed with

bacterial pneumonia with Pseudomonas aeruginosa, Escherichia coli (CRE) and

carbapenem-resistant Acinetobacter baumannii (CRAB) infections. He was

treated with imipenem anti-infective therapy and mechanical ventilation, then

switched to a combination of meropenem, voriconazole and amikacin anti-

infective therapy due to recurrent infections and septic shock, and died of sepsis

on 8 January 2023. Case 2 is an 82-year-old male admitted on 30 September

2022, with recurrent cough, sputum, and shortness of breath, diagnosed with

bacterial pneumonia with carbapenem-resistant Klebsiella pneumoniae (CRKP)

and Mycobacterium pneumoniae infections. He was treated with ventilator-
Abbreviations: ALB, Albumin; ALT, Alanine aminotransferase; APTT, Activated Partial Thromboplastin

Time; AST, Aspartate aminotransferase; BCG: Bacillus Calmette-Guerin; BUN, Blood Urea Nitrogen;

COVID-19, Coronavirus Disease 2019; CRAB, Carbapenem-Resistant Acinetobacter Baumannii; CRE,

Carbapenem-Resistant Enterobacteriaceae; CREA, Creatinine; CRKP, Carbapenem-Resistant Klebsiella

Pneumoniae; CRP, C-reactive Protein; CRRT, Continuous Renal Replacement Therapy; CXR, Chest X-

Ray; EGG, Electroencephalogram; ELISA, Enzyme Linked Immunosorbent Assay; FIB, Fibronectin; GLB,

Globulin; Hb, Hemoglobin; ICU, Intensive Care Unit; IL-6, Interleukin 6; IVIG, Intravenous

Immunoglobulin; PCR, Polymerase Chain Reaction; PCT, Procalcitonin; PT/INR, Prothrombin Time/

International Normalized Ratio; PT, Prothrombin Time; PT-A, Prothrombin Activity; RBC, Red Blood

Cell; RBD, Receptor-Binding Domain; RT-qPCR, Quantitative Reverse Transcription PCR; SAA, Serum

Amyloid A; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; TP, Total Protein; TT,

Thrombin Time; WBC, White Blood Cell.
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assisted ventilation, meropenem, amikacin, tigecycline and mucomycin

nebulization and discharged with improvement on 26 October. He was

readmitted on 21 November 2022 and diagnosed with bacterial pneumonia.

He was treated with cefoperazone sulbactam, amikacin, meropenem and

fluconazole and discharged on 31 December. Neither patient was infected with

SARS-CoV-2 during hospitalization. Notably, their globulin levels were elevated

before SARS-CoV-2 exposure, gradually decreasing afterward.

Conclusions: Patients with bacterial pneumonia with high globulin levels likely

have large amounts of immunoglobulin, and that immunoglobulin cross-

reactivity causes this protein to be involved in clearing SARS-CoV-2 and

preventing infection. Therefore, bacterial pneumonia patients with high

globulin levels included in this study were not infected with SARS-CoV-2. After

exposure to SARS-CoV-2, the amount of globulin in the patient’s body was

reduced because it was used to clear SARS-CoV-2. The results of this study are

expected to provide a theoretical basis for the study of the mechanism of

prevention and treatment of SARS-CoV-2 infection.
KEYWORDS

bacterial pneumonia, globulin protein, SARS-CoV-2, cross-reactivity, case reports
1 Introduction

COVID-19, caused by SARS-CoV-2, first emerged in Wuhan,

China, in late 2019 and then rapidly spread worldwide to become a

pandemic (1, 2). China adopted a dynamic zero-COVID strategy to

prevent and control the outbreak by the end of November 2022 (3).

Subsequently, China optimized its control measures, including

implementing ‘20 measures ’ (4) and lifting closed-off

management measures (5). Guangzhou ended closed-off

management on 30 November 2022 (6). This led to hospitalized

patients beginning to be exposed to an environment filled with

SARS-CoV-2, ultimately leading to an outbreak of SARS-CoV-2

infections in December 2022 in Guangzhou (7, 8). However, the

results of our previous study found that some of the patients with

bacterial pneumonia in December 2022 were not infected with

SARS-CoV-2 during their hospitalization (7).

Bacterial pneumonia is a lung disease caused by bacterial

infection, and common pathogens include Streptococcus

pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa,

Klebsiella pneumoniae, and Haemophilus influenzae (9, 10).

Typical clinical symptoms include fever, chills, cough (may cough

up purulent sputum), chest pain, and shortness of breath and

dyspnoea. Diagnosis can be made by physical examination,

medical history, chest X-ray (CXR) and laboratory tests (sputum

culture and blood tests). Treatment is initially based on empirical

antibiotics, with subsequent adjustments to the regimen based on

sputum culture and drug susceptibility testing, supplemented by

supportive therapy such as adequate hydration, oxygenation, and

physical expectoration. While the prognosis for most patients is
02245
good, if the prognosis is poor, sepsis and infectious shock may

develop. Currently, though many studies focused on co-infection

with bacteria in patients with COVID-19 (11, 12), there are

relatively few studies and reports on the susceptibility of patients

with bacterial pneumonia to SARS-CoV-2.

This study describes two hospitalized patients with bacterial

pneumonia who were not infected with SARS-CoV-2. Their

globulin levels were above the upper limit of the reference value,

but gradually decreased and remained above the lower limit of the

reference value after lifting closed-off management. This study is

expected to identify protection factors of SARS-CoV-2 infection

and provide a scientific basis for its prevention and treatment.
2 Case presentation

2.1 Case 1 presentation

On 21 October 2022, a 92-year-old male was admitted to our

Rehabilitation Unit with progressive memory loss, diagnosed with

Alzheimer’s disease and treated with olanzapine, electroencephalogram

(EGG) biofeedback, and cognitive training. He was transferred to ICU

on 17 November 2022, with worsening cough and sputum and

shortness of breath due to aspiration of bloody fluid from the nasal

passage. He had a history of left-sided nosebleed, malignant melanoma

with multiple metastases in the left nasal cavity for over 2 years,

hypertension, diabetes mellitus, and history of transfusion of AB Rh+

red blood cell suspension without transfusion reaction. He denied

history of infectious diseases such as hepatitis and tuberculosis, drug
frontiersin.org
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and food allergies. He denied any close contact with history of SARS-

CoV-2 infection.

He was diagnosed with bacterial pneumonia with the presence

of Pseudomonas aeruginosa, Escherichia coli (CRE), and

carbapenem-resistant Acinetobacter baumannii (CRAB)

infections. His physical examination revealed coarse breath

sounds in both lungs, accompanied by a significant amount of

dry and moist rales. Some of the clinical laboratory findings are

shown in Figure 1. The examination results suggested leukocytosis,

neutrophilia, elevated infection markers, sputum smear suggestive

of gram-negative bacilli, and sputum culture suggestive of

Pseudomonas aeruginosa, Escherichia coli (CRE), and CRAB. The

patient’s CXR showed thickening and blurring of the texture of both

lungs, and scattered few patches of patchy, reticulated, or flocculent

slightly dense blurred shadows were seen in both lungs. Sputum

smear and CXR supported the diagnosis of pneumonia. The

ORF1ab Gene and N Gene assays for the 2019-nCoV-RNA were

performed using RT-qPCR, and he was tested negative for the

SARS-CoV-2 during hospitalization.

He was treated with piperacillin sodium sulbactam sodium for

anti-infection, ambroxol for sputum, and intensive bedside

suctioning. Later, considering the recurrent infection, he was

switched to imipenem anti-infective treatment, mechanical

ventilation, and continuous renal replacement therapy (CRRT) if

necessary. On 19 December, due to the patient’s recurrent infection

and septic shock, the anti-infective treatment regimen was adjusted,

and he was given a combination of meropenem, voriconazole, and

amikacin for anti-infective treatment. Unfortunately, the patient

died of sepsis on 8 January 2023.

It is worth noting that the patient was not infected with SARS-

CoV-2 during hospitalization. When he was admitted to the

hospital, his peripheral blood globulin level was significantly

elevated, exceeding the upper limit of the reference range. During

hospitalization, although his globulin levels occasionally fell below

the upper limit, they remained high. On November 30, 2022, the

day of the lifting of closed-off management, his peripheral blood

globulin level was still above the upper limit of the reference range.

Following that, the level gradually decreased but remained above

the lower limit of the reference range.
2.2 Case 2 presentation

On 30 September 2022, an 82-year-old male was admitted to

our respiratory department with recurrent cough, sputum, and

shortness of breath. Over a year ago, he coughed up sputum for

no apparent cause and was diagnosed with a lung infection, which

was ultimately diagnosed as severe pneumonia and treated at

several hospitals. He had a history of cerebral infarction for more

than 6 years, with inability to cough up sputum autonomously;

history of various chronic diseases and hypertension. He denied the

history of tuberculosis, surgery, trauma, blood transfusion, and

allergy. He denied any close contact with history of SARS-CoV-2

infection. His personal and family history, medication history and

social history were normal.
Frontiers in Immunology 03246
He was diagnosed with bacterial pneumonia with carbapenem-

resistant Klebsiella pneumoniae (CRKP) and Mycobacterium

pneumoniae infections. His physical examination showed

hyperresonance on percussion in bilateral lungs, increased breath

sounds, audible moist rales, and no dry rales. Some of the clinical

laboratory findings are shown in Figure 2. The examination results

suggested leukocytosis, neutrophilia and elevated infection markers,

and sputum culture and alveolar lavage fluid genetic testing showed

CRKP (sensitive to ceftazidime avibactam, mediated to colistin),

Mycobacterium tuberculosis complex group 747 sequences, and

Mycobacterium abscessus 1035 sequences. He was treated with

ventilator-assisted ventilation, sputum reduction, bronchoscopic

aspiration and was also given meropenem, amikacin, tigecycline

and mucomycin nebulization to fight infection. During treatment,

there was impairment of liver function, which might be a side effect

of tigecycline drug therapy. He was discharged on 26 October 2022.

He was readmitted to the hospital on 21 November 2022, due to

cough, sputum, and decreased blood oxygen saturation. His

diagnosis was bacterial pneumonia with CRKP, CRAB and

Mycobacterium tuberculosis infection. Some of laboratory

findings are also shown in the Figure 2. Sputum culture and

genetic testing of alveolar lavage showed CRKP, CRAB (mediated

to colistin), and Mycobacterium pneumoniae. CXR showed

thickened, increased, and blurred texture in both lungs, localized

grid-like changes, with multiple scattered speckled and flocculent

slightly hyperdense blurred shadows in bilateral lungs,

predominantly in the left lung. The ORF1ab Gene and N Gene

assays for the 2019-nCoV-RNA were performed using RT-qPCR,

and he was tested negative for the SARS-CoV-2 during

hospitalization. He was treated with cefoperazone sulbactam,

amikacin, meropenem and fluconazole and was discharged on 31

December 2022.

During hospitalization, the patient was also not infected with

SARS-CoV-2. Interestingly, during hospitalization, the patient’s

globulin level was above the upper reference limit before 30

November 2022, and then the globulin level gradually decreased

but was still above the lower limit of the reference value. A follow-

up phone call after discharge from the hospital revealed that he

remained uninfected with SARS-CoV-2.
3 Discussion

We report two hospitalized cases of bacterial pneumonia with

high globulin levels who were not infected with SARS-CoV-2 in

Guangzhou, China. At the end of the closed-off management in

Guangzhou city on November 30, 2022, their globulin levels were

above the upper limit of the reference value. After ending of closed-

off management, i.e., exposure to SARS-CoV-2, their globulin levels

all gradually decreased but remained above the lower

reference limit.

When the lungs are invaded by bacteria causing pneumonia, the

body’s immune response, particularly the mucosal immune

response, is triggered to fight off the infection (13, 14). The innate

immune response acts as the initial defense, without requiring prior
frontiersin.org
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recognition of specific pathogens, while the mucosal barrier

prevents pathogen entry. In response to invasion, the immune

system triggers inflammation, releasing cytokines and chemokines

to recruit other immune cells. Macrophages, neutrophils, and other
Frontiers in Immunology 04247
cells are mobilized to engulf and destroy bacteria through

phagocytosis, aided by enzyme release and reactive oxygen

species. The adaptive immune system, involving T cells and B

cells, also contributes. T cells help regulate the immune response
FIGURE 1

Clinical test results of case 1 from October 21, 2022, to January 9, 2023. The patient’s IL-6 and PCT were measured with a Roche cobas e 601. CRP,
SAA, TP, Alb, Glob, AST and ALT were measured with a BECKMAN COULTER AU5800. The patient’s Routine blood tests were measured with a
Mindray BC-6900 instrument. (A-W) Test results of patient’s blood specimens. The horizontal axis represents the dates, and the solid blue dots
indicate the test results at the corresponding time points. The red vertical line in the figure corresponds to November 30, 2022, when the city of
Guangzhou ended closed-off management. (A-D) Infection-related test results: CRP, IL-6, PCT and SAA. (E-I) Routine blood test results: RBC, Hb,
WBC, monocyte count, lymphocyte count. (J-P) Coagulation-related test results: APTT, PT, PT-A, PT/INR, TT, FIB and D-Dimer. (Q, R) Liver
function-related test results: ALT and AST. (S-U) Serum protein-related test results: TP, ALB and GLB. (V, W) Renal function-related test results: BUN
and CREA. (X1-8) CXR test results.
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and activate immune cells, while B cells produce antibodies that

bind to bacteria, marking them for destruction through opsonized

phagocytosis or complement-mediated lysis, thus limiting

pathogen spread.

The body’s immune system mounts a complex and fine-tuned

response to the infection of SARS-CoV-2 (15–17). Upon infection

with SARS-CoV-2 via the respiratory tract, the body initiates a local

immune response. Immune cells such as macrophages and

monocytes are recruited to respond to the infection by releasing

cytokines and generating an adaptive T-cell and B-cell immune

response. CD8+ T-cells are able to directly attack and kill virus-

infected cells, whereas CD4+ T-cells are essential for turning on the
Frontiers in Immunology 05248
function of CD8+ T-cells and B-cells. In addition, CD4+ T-cells are

responsible for the production of cytokines that drive the

recruitment of immune cells. Activated B-cells produce specific

antibodies to neutralize SARS-CoV-2.

Antibodies against other viruses , such as human

immunodeficiency virus (HIV), middle east respiratory syndrome

coronavirus (MERS-CoV), and dengue virus, can also neutralize

SARS-CoV-2 due to cross-reactivity (18–21). Interestingly, BCG

vaccination (attenuated strain of tubercle bacillus Mycobacterium)

improves the patient’s immunity against SARS-CoV-2 infection and

improves prognosis (22). Several peptides of BCG proteins are highly

homologous to that of the SARS-CoV-2 spike protein (22). BCG
FIGURE 2

Clinical test results of case 2 from September 30, 2022, to December 31, 2022. (A-W) Test results of patient’s blood specimens. The horizontal axis
represents the dates, and the solid orange dots indicate the test results at the corresponding time points. The red vertical line in the figure
corresponds to November 30, 2022, when the city of Guangzhou ended closed-off management. (A-D) Infection-related test results: CRP, IL-6,
PCT and SAA. (E-I) Routine blood test results: RBC, Hb, WBC, monocyte count, lymphocyte count. (J-P) Coagulation-related test results: APTT, PT,
PT-A, PT/INR, TT, FIB and D-Dimer. (Q, R) Liver function-related test results: ALT and AST. (S-U) Serum protein-related test results: TP, ALB and GLB.
(V, W) Renal function-related test results: BUN and CREA. (X) CXR test result.
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vaccination increases IgG antibodies in mice, which could neutralize

the SARS-CoV-2 leading to the blocking of the SARS-CoV-2

infection (22). In this study, we also predicted antigenic epitopes in

the RBD region of the SARS-CoV-2 spike protein, which is closely

associated with viral invasion (22), using online software, and

compared the predicted antigenic epitopes (“NGVGYQ” and

“KIADYNYKLP”) (Supplementary Figures 1, 2) with the protein

sequences of Escherichia coli and Klebsiella pneumoniae. Many

peptides of protein sequences of Escherichia coli and Klebsiella

pneumoniae were found to be highly homologous to the predicted

antigenic epitopes of the RBD region of the SARS-CoV-2 spike

protein (Supplementary Tables 1-3). Further ELISA results showed

that the monoclonal antibody against SARS-CoV-2 could bind the

antigens of Escherichia coli and Klebsiella pneumoniae

(Supplementary Figure 3). Therefore, the above reports and results

suggest that antibodies produced by the body induced by bacterial

infections or bacterial antigens, may neutralize SARS-CoV-2 viruses

and hence blocks its invasion.

Elevated levels of Infection-associated tests include SAA, PCT,

CRP, and IL-6 indicate the presence of infection (23). Two patients

we studied had consistently high levels of infection-related tests,

suggesting the presence of a persistent infection. Persistent

existence of microorganisms on mucosal surfaces can lead to

robust adaptive immunity including producing antibodies (24,

25). Hence, we hypothesized that the high globulin levels in the

patients by the end of November 2022 were due to the body’s

production of immunoglobulins induced by the persistent presence

of infection in the body. And after exposure to SARS-CoV-2,

the induced immunoglobulins, i.e. antibodies, cross-reacted with

SARS-CoV-2, blocking the invasion and infection of SARS-CoV-2.

A large amount of immunoglobulins in the body of patients are

consumed to neutralize SARS-CoV-2, leading to a decrease in

immunoglobulins and ultimately a corresponding decrease in the

patient’s globulins.

This study also has limitations. With only two cases reported,

the sample size is too small to draw conclusions that are generally

applicable, and therefore not representative of the entire population

of patients with bacterial pneumonia. Subsequent analyses are

warranted to involve a larger number of cases, which will be

retrospectively analyzed in collaboration with several healthcare

centers to investigate the relationship between bacterial pneumonia,

globulin levels, and SARS-CoV-2 infection, considering various

factors such as age, gender, and others.
4 Conclusion

Bacterial pneumonia patients with high globulin levels were less

susceptible to SARS-CoV-2. The immunoglobulins induced by

bacterial infection could neutralize SARS-CoV-2 blocking the

virus’s invasion and preventing infection. The results of the study

are expected to provide new ideas for the prevention and treatment

of SARS-CoV-2 infection. For example, when IVIG therapy is given
Frontiers in Immunology 06249
to COVID-19 patients (26), the effect of using immunoglobulin

extracted from patients with bacterial pneumonia may be more

effective in treating SARS-CoV-2 infection compared to

immunoglobulin sourced from healthy individuals.
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