Stroke is the leading cause of severe disability in adults resulting in mobility, balance, and coordination deficits. Robotic exoskeletons (REs) for stroke rehabilitation can provide the user with consistent, high dose repetition of movement, as well as balance and stability. The goal of this intervention study is to evaluate the ability of a RE to provide high dose gait therapy and the resulting effect on functional recovery for individuals with acute stroke. The investigation included a total of 44 participants. Twenty-two participants received RE gait training during inpatient rehabilitation (RE+SOC Group), and a matched sample of 22 individuals admitted to the same inpatient rehabilitation facility-receiving conventional standard of care treatment (SOC group). The effect of RE training was quantified using total distance walked during inpatient rehabilitation and functional independence measure (FIM). The total distance walked during inpatient rehabilitation showed a significant difference between the SOC and RE+SOC groups. RE+SOC walked twice the distance as SOC during the same duration (time spent in inpatient rehabilitation) of training. In addition, the average change in motor FIM showed a significant difference between the SOC and RE+SOC groups, where the average difference in motor FIM was higher in RE+SOC compared to the SOC group. The results suggest that RE provided increased dosing of gait training without increasing the duration of training during acute stroke rehabilitation. The RE+SOC group increased their motor FIM score (change from admission to discharge) compared to SOC group, both groups were matched for admission motor FIM scores suggesting that increased dosing may have improved motor function.
Introduction: Gait exercise assist robot (GEAR), a gait rehabilitation robot developed for poststroke gait disorder, has been shown to improve walking speed and to improve the poststroke gait pattern. However, the persistence of its beneficial effect has not been clarified. In this matched case–control study, we assessed the durability of the effectiveness of GEAR training in patients with subacute stroke on the basis of clinical evaluation and three-dimensional (3D) gait analysis.
Methods: Gait data of 10 patients who underwent GEAR intervention program and 10 patients matched for age, height, sex, affected side, type of stroke, and initial gait ability who underwent conventional therapy were extracted from database. The outcome measures were walk score of Functional Independence Measure (FIM-walk), Stroke Impairment Assessment Set total lower limb motor function score (SIAS-L/E), and 3D gait analysis data (spatiotemporal factors and abnormal gait patter indices) at three time points: baseline, at the end of intervention, and within 1 week before discharge.
Results: In the GEAR group, the FIM-walk score, SIAS-L/E score, cadence, and single stance time of paretic side at discharge were significantly higher than those at post-training (p < 0.05), whereas the stance time and double support time of the unaffected side, knee extensor thrust, insufficient knee flexion, and external rotated hip of the affected side were significantly lower (p < 005). However, no significant differences in these respects were observed in the control group between the corresponding evaluation time points.
Conclusion: The results indicated significant improvement in the GEAR group after the training period, with respect to both clinical parameters and the gait pattern indices. This improvement was not evident in the control group after the training period. The results possibly support the effectiveness of GEAR training in conferring persistently efficient gait patterns in patients with poststroke gait disorder. Further studies should investigate the long-term effects of GEAR training in a larger sample.