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Editorial on the Research Topic

Measurable residual disease in hematologic malignancies
Measurable residual disease (MRD) has progressively taken a central role in the field of

hematological malignancies, not only as a reliable marker of quality of response to

treatment but also as a guide for the decision-making therapeutic choice. Accordingly,

MRD is increasingly incorporated in experimental trials and in daily clinical practice,

potentially representing a surrogate biomarker to accelerate drug development

and approval.

In chronic (Benintende et al.; Robak and Robak) and acute (Tettero et al.) blood

malignancies, either in the adult or in the pediatric (Lee et al.) setting, MRD can be

considered a reliable prognostic biomarker in that it can provide an estimate of clinical

response (Visentin et al.). This information may be particularly relevant in those

hematological malignancies that are inherently characterized by a high risk of

recurrence, such as acute leukemias (Chiusolo et al., Malagola et al.). In this subset,

MRD might be incorporated into clinical trials as a “therapeutic target” to reduce disease

burden before curative-intended strategies (including hematopoietic stem cells

transplantation) or to indicate treatment de-intensification to spare unnecessary

toxicities in patients with no evidence of residual disease (Tecchio et al.). A potential

consequence of this assessment is that it may eventually improve the clinical outcome and

also have a favorable impact on the financial cost of the overall treatment strategy. Indeed,

the probability of hospitalizing patients achieving MRD negativity is usually lower, just as

their inpatient stay is shorter.

Besides giving a reliable estimate of the quality of response, MRD monitoring after

treatment may also allow to significantly shorten the time to new drug approval if validated

as a surrogate endpoint for overall and disease-free survival. Based on this, the U.S Food

and Drug Administration (FDA) has recently released a guidance document for the use of

MRD in clinical trials testing new drugs for approval. According to this document, the

assumption that MRD negativity correlates with a relatively small amount of residual

cancer cells, thus representing a “biologically plausible” surrogate for a longer survival,
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should be actively pursued in clinical trials. Therefore, several trials

are now incorporating MRD as an endpoint to accelerate new drug

testing and approval, particularly in acute and chronic lymphocytic

leukemia and multiple myeloma.

From the technical standpoint, the innate heterogeneous nature

of hematological malignancies has prompted the improvement of

the sensitivity and specificity of the available techniques and also the

design of new tools to track cancer populations more efficiently than

“standard”MRDmight do. This may be particularly relevant for the

identification of cancer stem cells, which are thought to be

responsible for disease relapse in those cases of apparent MRD

negativity, or the refinement of post-transplant chimerism

assessment to identify an impending relapse. Similarly, there is

accumulating evidence on the role of next-generation sequencing

(NGS) and digital polymerase chain reaction (PCR)-based

techniques for MRD determination in addition to reverse

transcriptase quantitative PCR and multiparametric flow

cytometry (Pacelli et al.; Assanto et al.). In which type of disease

these novelties will become stand-alone techniques is not

yet known.

Irrespective of the clinical subset and of the source to be tested

for MRD (peripheral blood rather than bone marrow or other

tissues), assessing the quality of the sample is critical to ensure the

reliability of the assay. This can be particularly critical when testing

the bone marrow, since either the background noise due to normal

hematopoiesis or the poor quality of samples (e.g., hemodilution)

can significantly reduce the sensitivity and specificity of the tests

(Vigliotta et al.). However, since no consensus has been established

yet on criteria for samples’ quality acceptability, specific guidelines

to address this issue are needed in the near future.

In conclusion, thanks to the accumulating evidence from

prospective and retrospective MRD-centered trials, the “why” of

testing MRD (e.g., the development of MRD-driven strategies) is
Frontiers in Oncology 026
becoming progressively clear. Nevertheless, until harmonization–

standardization efforts are accomplished by the scientific

community, “who” (e.g., patients that may benefit from testing),

“what” (e.g., which biomarkers are suitable for MRD monitoring),

“where” (e.g., which is the optimal source for MRD monitoring),

“when” (e.g., which timepoints are crucial for clinical decision-

making), and “how” (e.g., which technique is fit for which patient)

to assess MRD will remain open questions (Figure 1).
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FIGURE 1

The 5W rules in MRD. We are progressively learning Why test to MRD, Who deserves MRD monitoring, Which population should be monitored,
Where to search for MRD, and When to assess it. This will eventually lead to defining “How” we should do it.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1057713
https://doi.org/10.3389/fonc.2023.1152467
https://doi.org/10.3389/fonc.2022.1001048
https://doi.org/10.3389/fonc.2023.1204393
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Francesco Buccisano,
University of Rome Tor Vergata, Italy

REVIEWED BY

Daniela Cilloni,
University of Turin, Italy
W Scott Goebel,
Indiana University School of Medicine,
United States

*CORRESPONDENCE

Patrizia Chiusolo
patrizia.chiusolo@unicatt.it

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Hematologic Malignancies,
a section of the journal
Frontiers in Oncology

RECEIVED 14 July 2022

ACCEPTED 12 August 2022
PUBLISHED 31 August 2022

CITATION

Chiusolo P, Metafuni E, Minnella G,
Giammarco S, Bellesi S, Rossi M,
Sorà F, Limongiello MA, Frioni F,
Piccirillo N, Bianchi M, Valentini CG,
Teofili L, Sica S and Bacigalupo A
(2022) Day +60 WT1 assessment on
CD34 selected bone marrow better
predicts relapse and mortality after
allogeneic stem cell transplantation in
acute myeloid leukemia patients.
Front. Oncol. 12:994366.
doi: 10.3389/fonc.2022.994366

COPYRIGHT

© 2022 Chiusolo, Metafuni, Minnella,
Giammarco, Bellesi, Rossi, Sorà,
Limongiello, Frioni, Piccirillo, Bianchi,
Valentini, Teofili, Sica and Bacigalupo.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author
(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 31 August 2022

DOI 10.3389/fonc.2022.994366
Day +60 WT1 assessment on
CD34 selected bone marrow
better predicts relapse and
mortality after allogeneic stem
cell transplantation in acute
myeloid leukemia patients

Patrizia Chiusolo1,2*†, Elisabetta Metafuni1†, Gessica Minnella1,
Sabrina Giammarco1, Silvia Bellesi1, Monica Rossi1,
Federica Sorà1,2, Maria Assunta Limongiello1,
Filippo Frioni2, Nicola Piccirillo1,2, Maria Bianchi1,
Caterina Giovanna Valentini1, Luciana Teofili 1,2,
Simona Sica1,2 and Andrea Bacigalupo1,2

1Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione
Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS),
Rome, Italy, 2Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche,
Università Cattolica del Sacro Cuore, Rome, Italy
The aim of this study was to evaluate the role of WT1 expression after

allogeneic stem cell transplantation (alloHSCT) in patients with acute myeloid

leukemia (AML). We studied WT1 expression in bone marrow cells from 50

patients in complete remission on day +60 after transplant. WT1 was assessed

on unfractionated bone marrow mononuclear cells (MNC) and on CD34+

selected cells (CD34+). A ROC curve analysis identified 800 WT1 copies on

CD34+ selected cells, as the best cut-off predicting relapse (AUC 0.842,

p=0.0006, 85.7% sensitivity and 81.6% specificity) and 100 copies in MNC

(AUC 0.819, p=0.007, 83.3% sensitivity and 88.2% specificity). Using the 800

WT1 copy cut off in CD34+ cells, the 2 year cumulative incidence of relapse was

12% vs 38% (p=0.005), and 2 year survival 88% vs 55% (p=0.02). Using the 100

WT1 copy cut off in unfractionated MNC, the 2 year cumulative incidence of

relapse 13% vs 44% (p=0.01) and the 2 year survival 88% vs 55% (p=0.08). In a

multivariate Cox analysis WT1 expression in CD34 cells proved to highly

predictive of relapse (p=0.004); also WT1 expression on unfractionated cells

predicted relapse (p=0.03). In conclusion, day-60 WT1 expression after

allogeneic HSCT is a significant predictor of relapse, particularly when tested

on CD34+ selected bone marrow cells.

KEYWORDS

AML, stem cell transplantation, minimal residual disease, stem cell transplant (SCT),
minimal residual disease (MRD), WT1, relapse
frontiersin.org01
7

https://www.frontiersin.org/articles/10.3389/fonc.2022.994366/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994366/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994366/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994366/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994366/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.994366/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.994366&domain=pdf&date_stamp=2022-08-31
mailto:patrizia.chiusolo@unicatt.it
https://doi.org/10.3389/fonc.2022.994366
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.994366
https://www.frontiersin.org/journals/oncology


Chiusolo et al. 10.3389/fonc.2022.994366
Introduction

Despite advances in treatment and supportive care, the

prognosis of adult acute myeloid leukaemia (AML) remains poor

with about 40% of young patients and less than 20% of elderly

patients surviving in the long term (1). Allogeneic hematopoietic

stem cells transplantation (alloHSCT) is the best post-remission

treatment for prevention of relapse due to the graft versu leukemia

effect (GVL), which is effective regardless of cytogenetic

subcategory and minimal residual disease (MRD) status (2, 3).

Patients with positive MRD are considered to be at high risk of

recurrence and should receive alloHSCT in first complete remission

(CR). AlloHSCT is not indicated in patients with a favourable risk

profile (2), whereas patients with favourable risk but persistent

MRD are eligible for transplantation (4). The results of alloHSCT

compared to autoHSCT and chemotherapy have produced

conflicting results in intermediate-risk patients, taking into

account molecular markers and MRD status as essential

parameters (5–7). In fact, one of the main goals of MRD

assessment is to identify, as early as possible the subset of patients

at risk of relapse, despite being in CR. Thismeans that these patients

can be treated with intensified chemotherapy protocols or

transplantation. Unfortunately molecular markers and a leukemia

aberrant immunophenotype (LAIP), are not always present in AML

patients, making it difficult to establish MRD.

The Wilms’ tumour gene (WT1) was originally identified as

a suppressor gene for paediatric Wilms’ kidney cancer. In

normal human bone marrow, WT1 is expressed at extremely

low levels and is confined to primitive CD34+ cells, but is

abnormally expressed in many types of haematological

malignancies, making it a molecular marker for leukaemia (8)

The main limitation that prevented the clinical application of

this marker for many years was the detection of low transcript

levels even in normal haematopoietic cells, suggesting that it could

be considered a non-specific marker overexpressed by immature

cells. With the introduction of Real Time Quantitative PCR (RQ-

PCR) into clinical practice, it became clear that WT1 expression

was not only an immaturity marker, but its overexpression was a

reliable indicator of the presence of leukemic cells. In particular,

WT1 overexpression has been reported in the majority of acute

myeloid leukaemia (AML) patients, regardless of the presence of

specific fusion transcripts (9).

Several studies have shown that persistence of an abnormal

WT1 transcript after chemotherapy, is a strong predictor of

subsequent relapse (10). Given the existence of a background

WT1 expression in normal bone marrow, qualitative RT-PCR

provided conflicting results on the clinical value of this marker

(11, 12), whereas RQ-PCR can be used to assess different levels

of WT1 transcripts in AML cells, normal hematopoietic cells and

normal bone marrow cells regenerating after chemotherapy (13,

14). Therefore, longitudinal RQ-PCR analysis of the amount of

WT1 transcript may be clinically relevant for monitoring AML.
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In a retrospective study on a cohort of patients submitted to

alloHSCT we demonstrated that WT1 expression on bone

marrow mononuclear cells (MNCs) is predictive of leukemic

relapse, and can be used to initiate immunotherapy with donor

lymphocyte infusion using as cut off < 100 WT1 copies

normalised to 104 Abelson copies (ABL) (14). We found that

patients with WT1 copies >100 had a 54% probability of relapse

whilst patients with copies <100 had a 16% probability of relapse.

In a more recent study from our group, in addition to

confirming the data, we showed that by administering

immunotherapy (IT) in two different groups defined by the

expression levels of Wt1 copies >180(WT1-180) and Wt1

copies >100(WT1-100) the cumulative incidence of recurrence

was 76% in theWT1-180 group compared to 29% in theWT1-100

group, i.e. a significant improvement in MRD positive disease free

survival of 23% compared to 74% (15). Therefore, WT1 is a

sensitive marker of leukemic relapse, and predictive therapy is

feasible by defining an expression level >100 copies as a cut off.

Several studies have confirmed that WT1 expression before and/or

after allogeneic transplantation predicts leukemia relapse (16–19).

The aim of the present study is to further increase the

predictive role of WT1 expression by evaluating selected CD34\+

cells, isolated from bone marrow on day +60 after allo-HSCT.
Methods

Study population

AML patients undergoing alloHSCT at Fondazione

Policlinico A. Gemelli IRCCS from June 2018 to July 2020

were prospectively investigated. Healthy bone marrow donors

were included as controls. The study was approved by the local

Ethic Committee (Prot.4065/21 April 28, 2021).
Patient, donor, and graft data

Patients’ variables included demographics, diagnosis and

date of diagnosis, date of transplant, disease status (complete

remission or not), disease risk index (DRI), European Leukemia

Net (ELN) risk, hematopoietic cell transplantation comorbidity

index (HCT-CI), date of acute or chronic GVHD (aGVHD and

cGVHD), date of relapse, date of death, or last follow-up. Donor

variables included HLA match, age, and gender.
Cell samples and quantitative assessment
of WT1 expression

WT1 expression was evaluated on both MNCs and CD34+

cell samples. Mononuclear cells were separated on a Ficoll-
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Hypaque (Lymphophlot; Bio-RAD Medical Diagnostics GmBH,

Dreireich, Germany) density gradient. Total RNA was extracted

using Trizol (Invitrogen, Life Technologies, CA), following the

manufacturer’s instructions. CD34+ cells were isolated from

MNCs by immunomagnetic method (Miltenyi, Biotech,

Bergish Gladbach, Germany).

All analysis were performed in triplicate. For quantitative

assessment of WT1 mRNA, a calibration curve with a plasmid

containing the WT1 target sequence was used (ProfileQuant

WT1 Kit, European Leukemia Net, Ipsogen, France). The WT1

ProfileQuant kit includes specific plasmids and primers and

probe mixes for WT1 and Abl. These components have been

validated together in the context of a collaborative study led by a

group of experts from the European LeukemiaNet consortium

(10). RQ-PCR reactions and fluorescence measurements were

made on the RotorGene3000 (Corbett Life Science, Sydney,

Australia). The WT1 mRNA levels of expression were

normalized with respect to the number of Abl transcripts and

expressed as WT1 copy numbers/104 copies of Abl.

For each patient, a bone marrow sample was collected on

day +60 after transplantation. WT1 copy number data

normalised for 104 Abl copies was obtained on selected CD34

+ cells in 45 patients and on whole bone marrow mononuclear

cells in 40 patients.

In addition, two control groups of healthy bone marrow

donors were enrolled and an aliquot of the graft was used for

WT1 determination. In one donor group of 42 subjects, WT1

was evaluated on selected CD34+ cells, while in the other group

of 18 healthy donors WT1 was determined on whole bone

marrow mononuclear cells.
Statistical analysis

The continuous numeric variable WT1 was compared

between groups using the Mann-Whitney and Kruskal-Wallis

tests. Using the Receiver Operating Characteristics (ROC) curve,

the cut-off of the continuous variable WT1 was defined in

relation to the relapse outcome, and for this cut-off the

percentage of sensitivity and specificity was reported, as well

as the area under the curve (AUC) of the ROC and its relative

95% confidence interval. The continuous variable WT1 was then

transformed into a categorical variable as a function of the cut-

off defined by the ROC curve. Categorial variables were

compared by Chi square and Fisher exact test between patients

with and without relapse. Univariate and multivariate analysis

were performed with the Cox regression model for relapse and

survival with the following variables: patients age, donor HLA

matching, intensity of the conditioning regimen (myeloablative,

reduced intensity), adverse karyotype (yes/no), adverse ELN risk

(yes/no), remission status at transplants (yes/no), stem cell

source (peripheral blood/(bone marrow), and WT1 expression

in CD34+ cells, or WT1 expression in unfractionated BM cells.
Frontiers in Oncology 03
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Cumulative relapse incidence curves were compared by

Grays test.

Kaplan Meier curves were drawn for survival and compared

with the log-rank test. The statistical analysis was carried out

with the NCSS19 software.
Results

In total 50 AML patients and 60 donors were included in the

study. Patients and transplant characteristics are shown in

Table 1. The median age was 56 years (25–69). The ELN risk

groups were as follow: favourable (n=10), intermediate (n=27),

adverse (n=13).

Seventeen patients (34%) developed aGvHD after a median

of 34 days (range 16-90). Grading was as follows: grade I in 12

patients (70.6%), grade II in 4 patients (23.5%) and grade III in 1

patient (5.9%). Chronic GvHD was diagnosed in 13 (28.3%) of

the 46 patients with a follow-up of more than 100 days. Grading

was as follows: mild in 9 patients (69.2%) and moderate in 4

patients (30.8%).

Eleven patients (22%) relapsed after a median of 120 days

after transplantation (range 73-582), while the others maintained

a complete remission at the follow-up time of July 2021. At the

same follow-up time, 40 patients (80%) were alive with a median

survival of 435 days (range 84-861), while 10 patients (20%) died

after a median time of 186 days (range 96-334). The causes of

death were as follows: transplant-related mortality in 3 patients

(6%) and disease recurrence in 7 patients (14%).
WT1 expression in patients and controls

The expression of WT1 was assessed at day + 60 in 50 AML

patients: in 40 patients both CD34+ cells and MNCs were

evaluated, while in further 10 patients, WT1 was evaluated

only in CD34+ cells (5 patients) or MNCs (5 patients).

Moreover, 42 CD34+ cell samples and 18 MNCs samples from

healthy bone marrow donors were used as controls.

We first compared WT1 expression in patients and controls.

No difference was seen between patients (49.7 copies, 95%C.I 29.6-

67.3) and controls (43.2 copies, 95%CI 17.1-59.5) looking at WT1

expression on total bone marrowMNC (p=0.2). On the contrary a

statistically significant difference was observed between the median

WT1 levels on selected bonemarrow CD34+ cells between the two

groups: 406.5 copies for patients (95%CI 342.8-634.6) and 252.3

copies in controls (95%CI 188.9-314.2) (p=0.0007).

WT1 expression on total bone marrow MNC was

significantly different in patients who remained in remission

(37.9 copies - 95%CI 25.5-60.2), as compared to patients

who relapsed (135.3 copies 95%CI 21.4-1072.8) and to controls

(43.2 copies, 95% CI 17.1-59.5) (p=0.03) (Figure 1A). In CD34 +

cells the median WT1 copy number was 389.2 copies for patients
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who remained in remission (95% CI 246.3-472.2), and 1129.1

copies for patients who relapsed (95% CI 58.8-1918.2) and 252.3

for controls (95% CI 188.9-314.2) (p=0.001) (Figure 1B).
ROC curve for WT1 with
relapse outcome

The ROC curve was then used to define a threshold of MRD

of WT1 for the relapse outcome. For WT1 level on whole bone
Frontiers in Oncology 04
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marrow MNC the AUC was 0.819 (CI 95% 0.426-0.952). The

selected cut-off was 100 copies, with a sensitivity of 83.3% and a

specificity of 88.2%. (p=0.007, Figure 2A). For the WT1 level

determined on selected bone marrow CD34+ cells, the AUC was

0.842 (95% CI 0.508-0.956). The selected WT1 cut-off was 800

copies, with a sensitivity of 85.7% and a specificity of 81.6%

(p=0.0006, Figure 2B). Using the cut-offs identified with the

ROC curve, the continuousWT1 levels variable was transformed

into a categorical variable.
Univariate analysis

Comparing patients who later relapsed, with patients in

continuous remission (Table 2), significant difference were

found in the proportion of patients with an adverse Karyotype

(p= 0.02), and in the proportion of patients with a highWT1 day

+60 expression, both on CD34+ cells as well as on

unfractionated BM cells (Table 2). The cumulative incidence

of relapse is shown in Figure 3: when using the 800 WT1 copies

cut off, on CD34+ cells, the 2 year cumulative incidence of

relapse was 12% vs 38% (p=0.005) (Figure 3A); when using

the 100 WT1 copies cut off on unfractionated BM cells, the 2

year cumulative incidence of relapse was 13% vs 44%

(p=0.01) (Figure 3B).
Cox analysis on relapse

In univariate analysis, significant predictors, were WT1

expression on CD34+ cells and unfractionated cells, as well as

an adverse karyotype and adverse ELN risk group. In

multivariate analysis WT1 expression was entered either from

CD34+ cells or from unfractionated BM cells: both were

predictive of relapse (Table 3).
WT1 expression and survival

The two year survival of patients stratified according to WT1

expression on CD34+ cells was 88% vs 59% (p=0.02)

(Figure 4A); the survival of patients stratified according to

WT1 expression on unfractionated BM cells was 82% vs 55%

(p=0.08) (Figure 4B). DFS was also predicted byWT1 expression

on CD34+ cells (79% vs 61%, p=0.03, with the 800 copy cut off),

and also on unfractionated BM cells (85% vs 56%, p=0.01, with

the 100 copy cut off).

In a Cox multivariate analysis on survival, age >60 years was

a significant predictor (p=0.03) together withWT1 copy number

over 800 for CD34+ cells (RR 18.1, p=0.05) and less so for WT1

copy number over 100 for unfractionated BM cells (RR 4.2,

p=0.09). Similarly in a Cox model for disease free survival WT1

expression on CD34+ cells was a better predictor of failure
TABLE 1 Patient’s characteristics.

Patients 50

Age, median (range) 56 ys (25-69)

Gender, F/M 24/26

ELN Risk
Favourable
Intermediate
unfavourable

10 (20%)
27 (54%)
13 (26%)

Molecular Markers
NPM
FLT3
t(8;21)
Inv(16)
c-kit

17 (34%)
14 (28%)
1 (2%)
4 (8%)
1 (2%)

Time from diagnosis to transplant, median (range) 186 days (50-935)

Disease status at transplant
1 CR
2 CR
PR
Relapsed/refractory

30 (60%)
5 (10%)
4 (8%)
11 (22%)

Donor match
Sibling
Haplo
MUD
MMUD

8 (16%)
16 (32%)
13 (26%)
13 (26%)

HCT-CI, median (range) 3 (0-6)

Conditioning regimen
MA
RIC

22 (44%)
28 (56%)

GvHD prophylaxis
CSA+MTX+ATG
CSA+Cy
CSA+MMF+Cy

7 (14%)
1 (2%)
42 (84%)

CD34+, median (range) 5.75 x106/Kg (0.1-10.8)

Stem cells source
PB
BM
CB

30 (60%)
16 (32%)
4 (8%)

Donor
Related
Unrelated

24 (48%)
26 (52%)
ELN = European Leukemia Net risk; HSCT = hematopoietic stem cell transplantation; CR
=complete remission; PR =partial remission; MA= myeloablative conditioning; RIC=
reduced intensity conditioning; MUD = matched unrelated donor; MMUD= mismatched
UD; Haplo= haploidentical donor; sibling= HLA matched sibling; ATG = antithymocyte
globulin; PB = peripheral blood; BM= bone marrow; CB= cord blood; aGvHD = acute
graft-versus-host disease; CD34+ = selected CD34+ cells on bone marrow samples;
MNC= total mononucleated cells in bone marrow.
CSA = cyclosporin; MMF= mycophenolate; CY= cyclophosphamide
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(RR 5.8, p=0.01) as compared to WT1 expression on

unfractionated BM cells (RR 7.4, p=0.04), together with age

>60 years (RR 8.4, p=0.02).
Discussion

The quantification of MRD is considered a powerful,

independent predictive factor after HSCT. Monitoring

leukemia-specific gene mutation by PCR or LAIP represents

the gold standard to stratify patients on the basis of the risk to

relapse. Unfortunately, more than 50% of AML cases lack

specific genes and 10-30% of them lack LAIP. The National

Cancer Institute’s second workshop on relapse after HSCT (20)

identified several topics for the prevention of leukemia relapse,

including “detection and preventive therapy of impending

relapse”. Three papers addressed the issue of WT1 as a marker

of MRD in AML after transplantation (21–23) and were able to

identify a predictive association betweenWT1 levels and relapse.
Frontiers in Oncology 05
11
Rossi et al. found that high WT1 levels at 1 month from the

transplant significantly impacted on DFS (.p = 0.010) and had a

higher predictive value than WT1 levels on days +90 (21).

Israyelyan et al. focused on the period after alloHSCT for

predicting relapse onset using WT1 overexpression and looked

at WT1 levels on peripheral blood cells and determined a cut-off

level that would identify patients at risk of hematological relapse

(22). Both cut-off levels of 50 and 20 reproduced high specificity

and sensitivity. The WT1/c-ABL transcript ratio of 50 or above

demonstrated 100% specificity and 75% sensitivity predicting

relapse with an observed average of 29 days, while a lower ratio

of 20 or above had lower specificity, but higher sensitivity (84.8%

and 87.5%, respectively) and identified more patients who had

an hematological relapse, at earlier times, providing an earlier

warning with actual average lead time of 49 days. Using the ratio

of 20 (HR 58.16, p<0.0001) WT1, together with high risk disease

(HR 3.27, p=0.02) and donor age above 34 years (HR 5.12,

p=0.01), are listed as predictor variables for relapse occurrence.

Among these, multivariate analysis confirmed only WT1 ratio of
A B

FIGURE 2

ROC curve for WT1 expression on CD34 selected cells (A) or unfractionated BM cells (B), and relapse.
A B

FIGURE 1

Comparison of WT1 levels on day +60 after allogeneic HSCT for patients in remission, patients relapsed and in controls.
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20 as associated with decreased time to relapse (22). Yoon et al.

(23) examined WT1 transcription levels in bone marrow MNC

one month after transplantation in patients with refractory

anemia with excess blasts demonstrating that a cut-off level of

154 copies at 1 month was predictive of leukemia relapse. In this

study, 47% of patients who exceeded this cut-off level, versus 7%

of patients who did not reach 154 copies, relapsed. Multivariate

analysis confirmed high WT1 expression (HR 9.94, p=0.002)

and poor karyotype before transplant (HR 3.52, p=0.05) as

predictive variables for subsequent relapse. A further study

showed that low WT1 levels after transplantation were

associated with higher and longer-lasting frequencies of WT1-

specific cytotoxic T cells (CTLs) in long-term survivors (24).

High WT1 levels in autologous peripheral blood apheresis were

also shown to predict relapse in AML patients (25).

Pozzi et al. also confirmed that AML patients in CR before

transplant and with a median expression of WT1 >100/104 ABL
Frontiers in Oncology 06
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after transplant had a higher relapse risk (53% vs 26%) and a

lower 5-year survival (36% vs 62%) when compared with

patients who had less than this cutoff (14). In multivariate

analysis predicting factors for relapse were: disease phase at

transplant (RR 2.3, p=0.002), pre-transplant WT1 level (RR 2.2,

p=0.01) and post-transplant WT1 level (RR 4.5, p=0.0001)

determined on bone marrow samples.

In a more recent study the same group (15) examined the

efficacy of IT (consisting of cyclosporine interruption and

infusion of donor lymphocytes) triggered at different levels of

MRD expression: patients treated at a cut-off level WT1

expression in marrow cells of 100 copies had a significantly

lower risk of progressing to hematological relapse than patients

treated at a higher cut-off level (180 copies) demonstrating that

the greater efficacy of IT in WT1-100 patients is due to the fact

that the intervention occurred with a lower disease burden. The

greater effect of IT in WT1-100 patients was also demonstrated
A B

FIGURE 3

Cumulative incidence of relapse in patients according to WT1 expression in CD34 selected cells (A) with a cut off of 800, and in unmanupulated
mononuclear cells with a cut off of 100 (B).
TABLE 2 Characteristics of patients who subsequently did or did not relapse.

RELAPSE RELAPSE P
Yes No

Recipients age 59 (42-66) 53 (49-57) 0.3

Adverse karyotype 44% 14% 0.02

Adverse ELN 44% 28% 0.2

CR at transplant 55% 73% 0.3

Myeloablative conditioning 84% 81% 0.8

HLA matched donor 11% 35% 0.08

ATG in the conditioning 11% 15% 0.8

Stem cell source PB 81% 74% 0.6

HCT-CI,median (range) 3(2-4) 3 (2-3) 0.4

Acute GvHD II-IV 18% 8% 0.3

WT1 >800 copies * 60% 20% 0.01

WT1 >100 copies ** 57% 15% 0.01
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by the higher percentage of patients achieving molecular

remission: 96% compared to 35% of WT1-180 patients (15).

The goal of our study was to evaluate a greater predictivity of

WT1 expression in CD34 + cells as compared to the expression

levels on unfractionated MNCs after alloHSCT in AML patients.

We evaluated WT1 expression levels in selected bone marrow

CD34 + cells of 50 patients at day 60 post HCST.

Using the ROC curve it was possible to define a cut off equal to

800 copies in CD34 + selected from MNC on bone marrow and a

cut off equal to 100 copies on unfractionated mononuclear cells

from bone marrow, confirming the results of Pozzi et al. (14).

In particular, in a multivariate Cox model, patients with

WT1 ≥ 800 copies on selected CD34 + bone marrow cells, had a

8.5-fold higher risk of relapse, as compared to patients withWT1

<800 copies. The predictive value of WT1 expression over 100

copies, on unfractionated bone marrow mononuclear cells, was

predictive of relapse (6.8-fold greater risk), but with less

statistical power (p=0.03 as compared to p=0.004 for CD34+

cells). WT1 expression on CD34+ cells was also predictive of

survival in a multivariate analysis (p=0.05) and disease free
Frontiers in Oncology 07
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survival (p=0.01) together with patients age > 60 years

(p=0.03). The predictive role of WT1 expression on

unfractionated BM cells was less significant for survival

(p=0.09) and disease free survival (p=0.04). So the expression

of WT1 on CD34+ cells appeared to provide a higher predictive

value in the multivariate Cox model.

In conclusion, the expression of WT1 on CD34 cells selected

on day +60 after allogeneic transplantation, is greater as

compared to WT1 expression on unfractionated bone marrow

MNC, and provides a predictive assay for leukemic recurrence

after alloSCT. We would favor CD34 selected cells to assess

MRD on day +60 after transplant, and thus predict relapse, in

particular in patients not expressing LAIP or molecular markers

suitable for MRD monitoring after transplant.
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A B

FIGURE 4

Actuarial two year survival in patients with a cut off of WT1 800 copies for CD34 selected BM cells (A), or WT1 100 copies for unfractionated BM
cells (B).
TABLE 3 Univariate and multivariate Cox analysis on relapse.

UNIVARIATE MULTIVARIATE MULTIVARIATE

Variable RR 95%CI P RR 95%CI P RR 95%CI P

WT1>800* 5.6 1.5-20 .008 8.5 1.9-37 .004

WT1 >100** 8.8 1.6-48 .01 6.8 1.1-39 .03

Adverse karyotype 7.2 2.1-23 .001 8.6 0.3-48 .1 6.4 0.1-22 .1

Adverse ELN 3.9 1.2-12 .02 1.3 0.6-29 .8 2.1 .1-18 .6

Age >60 years 1.4 0.3-5.4 .6 – – – – – –

CR at transplant 0.4 0.1-1.2 .09 0.8 0.2-3.3 .8 0.3 0.1-8 .7

HLA matched don 2.1 0.6-7 .2 – – – – – –

MA regimen 0.5 0.1-2 .5 – – – – – –

PB vs BM 1.0 0.2-4 .9 – – – – – –
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Clinical implication of minimal
residual disease assessment by
next-generation sequencing-
based immunoglobulin clonality
assay in pediatric B-acute
lymphoblastic leukemia

Jae Wook Lee1,2†, Yonggoo Kim3,4†, Ari Ahn3, Jong Mi Lee3,4,
Jae Won Yoo1,2, Seongkoo Kim1,2, Bin Cho1,2,
Nack-Gyun Chung1,2* and Myungshin Kim3,4*

1Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South
Korea, 2Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea,
Seoul, South Korea, 3Department of Laboratory Medicine, College of Medicine, The Catholic
University of Korea, Seoul, South Korea, 4Catholic Genetic Laboratory Center, Seoul St. Mary’s
Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
Measuring minimal residual disease (MRD) during treatment is valuable to

identify acute lymphoblastic leukemia (ALL) patients who require intensified

treatment to avert relapse. We performed the next-generation sequencing

(NGS)-based immunoglobulin gene (Ig) clonality assay and evaluated its

clinical implication in pediatric B-ALL patients to assess MRD. Fifty-five

patients who were diagnosed and treated with de novo (n = 44) or

relapsed/refractory B-ALL (n = 11) were enrolled. MRD assessment was

performed using the LymphoTrack® Dx IGH and IGK assay panels. The

percentage of the clonal sequences per total read count was calculated as

MRD (% of B cells). The data were normalized as the proportion of total

nucleated cells (TNC) by LymphoQuant™ Internal control or the B-cell

p ropor t ion in each samp le es t imated by flow cytomet ry or

immunohistochemistry. Clonal Ig rearrangement was identified in all

patients. The normalized MRD value was significantly lower than the

unnormalized MRD value (p < 0.001). When categorizing patients, 27 of 50

patients (54%) achieved normalized MRD <0.01%, while 6 of them did not

achieve MRD <0.01% when applying the unnormalized value. The normalized

post-induction MRD value of 0.01% proved to be a significant threshold value

for both 3-year event-free survival (100% for MRD <0.01% vs. 60.9% ± 10.2%

for MRD ≥0.01%, p = 0.007) and 3-year overall survival (100% for MRD <0.01%

vs. 78.3% ± 8.6% for MRD ≥0.01%, p = 0.011). However, unnormalized MRD

was not a significant factor for outcome in this cohort. Our study

demonstrated that MRD assessment by NGS-based Ig clonality assay could

be applied in most pediatric B-ALL patients. Normalized post-induction

MRD <0.01% was a significant prognostic indicator.
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Introduction

In pediatric acute lymphoblastic leukemia (ALL), event-free

survival (EFS) rate has improved through the accurate

identification of prognostic factors, the designation of risk

group based on these factors, and treatment of appropriate

duration and intensity according to risk group, done within

the setting of cooperative clinical trials (1). Measuring minimal

residual disease (MRD) during treatment is an additional risk

factor to identify patients who require intensified treatment to

avert relapse. Recently, it has been shown that the presence and

the degree of MRD at specific time points during therapy can be

used to guide treatment, demonstrating the clinical significance

of detecting MRD (2, 3). Methods of evaluating MRD by reverse

transcriptase qPCR (RT-qPCR), quantitative polymerase chain

reaction (qPCR), multi-parametric flow cytometry (MFC), and

next-generation sequencing (NGS)-based immunoglobulin (Ig)

clonality assay have been shown to be promising MRD

monitoring tools for B-ALL.

Specifically, NGS-based Ig clonality assay showed excellent

analytical performance with high sensitivity and applicability to

most B-cell neoplasia (4, 5). The most recent National

Comprehensive Cancer Network® recommended that a

validated MRD assessment technology should have a

sensitivity of at least 10−4 (6). In addition to the analytical

performance including sensitivity, standardization is the other

issue that should be addressed before clinical implication. MRD

value could be reported differently according to the method:

expression ratio of fusion gene per reference gene for RT-qPCR,

patient-specific clonal gene burden calculated by standard curve

for qPCR, and % of bone marrow (BM) mononuclear cells or

total nucleated cells (TNCs) for MFC. NGS-based Ig clonality

assay provides two values: % of B cell, which is calculated by

clonal Ig read count per total Ig read count, and % of TNC,

which is adjusted according to the proportion of B cells in each

sample. However, it remains unclear which value is optimal for

risk stratification in each patient and how clinical laboratories

should determine the % of TNC when undergoing MRD

assessment by NGS-based Ig clonality assay.

In this study, we performed the NGS-based Ig clonality assay

and evaluated its clinical implication in pediatric B-ALL patients

to assess MRD.We further clarified the method of normalization

to calculate the clonal burden of % of B cells into % of TNC and

elucidated the significance of both MRD values when applied to

clinical decision-making.
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Materials and methods

Patients and therapy

This study was approved by the institutional review board of

Seoul St. Mary’s Hospital, which is affiliated with The Catholic

University of Korea (IRB No: KC17TESI0187). Study

participants were patients diagnosed with de novo or relapsed/

refractory ALL at our institution from June 2016 to December

2018. Overall, 55 patients were enrolled: de novo ALL (n = 44),

BM relapse (n = 10), and refractory (n = 1) (Table 1). One

patient was considered refractory due to lack of response after 2

courses of remission induction chemotherapy. Diagnosis of ALL

was based on BM pathology, immunophenotyping, cytogenetics,

and molecular genetics, as shown in the World Health

Organization (WHO) Classification of Tumours of

Haematopoietic and Lymphoid Tissues (7). Recurrent genetic

abnormalities were diagnosed according to previously reported

methods (8). For the 44 de novo ALL patients, initial risk group

classification was done according to our institutional regimen

(9), and patients were classified as follows: low risk (n = 9, 20%),

standard risk (n = 11, 25%), high risk (n = 11, 25%), and very

high risk (n = 13, 30%). For the 10 relapsed patients, the median

time from diagnosis to relapse was 40.5 months (range: 12.1–

68.9 months).
Patient treatment and time point of
MRD monitoring

The 44 de novo ALL patients were classified and treated

according to an institutional protocol, the details of which have

been previously reported (9). Forty-two patients achieved

complete remission (CR) after remission induction

chemotherapy, while two patients achieved delayed CR after

additional chemotherapy. All except one patient were treated

with chemotherapy only, while the remaining patient received

allogeneic hematopoietic stem cell transplantation (HSCT) in

the first CR due to molecular relapse prior to the delayed

intensification phase of chemotherapy.

For the 11 relapsed/refractory patients, the reinduction

regimens were as follows: vincristine, steroid, asparaginase, and

anthracycline (daunorubicin or idarubicin) (four drug regimens,

n = 6); four drug regimens with imatinib (n = 1); vincristine, steroid,

and imatinib (n = 1); fludarabine, cytarabine, and idarubicin (n = 2);
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clofarabine, cyclophosphamide, and etoposide (n = 1). Ten patients

achieved CR with reinduction chemotherapy, and these patients

proceeded to allogeneic HSCT.

Samples were retrospectively retrieved for MRD assessment at

the time of diagnosis, after induction [4 weeks, time point 1

(TP1)], consolidation (14 weeks, TP2), and 24–25 weeks (TP3).

Patients who relapsed during follow-up were evaluated for Ig

rearrangement again. MRD assessment was done in 50, 40, and 22

patients at TP1, TP2, and TP3, respectively, depending on the

availability of samples for MRD analysis (Supplementary Table 1).
MRD monitoring using NGS

Genomic DNA (gDNA) was isolated from BM aspirates

using the QIAamp DNA minikit (Qiagen, Hilden, Germany).

Samples were quantified using Qubit dsDNA BR assay (Thermo

Fisher Scientific, Waltham, MA, USA). The LymphoTrack®

IGH FR1/2/3 and LymphoTrack® IGK assay panels

(InVivoScribe Technologies, San Diego, CA, USA) were used

for the analysis of initial samples to determine clonal

rearrangements and MRD samples to detect previously

characterized clonotypic rearrangements. For MRD testing,

low-positive controls were also included in every run.

All experiments were performed according to the

manufacturer’s guidelines, which were previously reported (10).

Briefly, amplification by PCR was performed using 240 ng of

gDNA per sample, and master mixes contain primers designed

with barcoded sequence adaptors. Next, we purified the amplicons

using an Agencourt® AMPure XP system (Beckman Coulter,

Brea, CA, USA) and quantified the amplicons with a Qubit®

dsDNAHSAssay Kits (Thermo Fisher Scientific), High Sensitivity

D1000 Reagents, and High Sensitivity D1000 ScreenTape (Agilent

Technologies, Santa Clara, CA). The libraries were sequenced on a
Frontiers in Oncology 03
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MiSeqDx instrument (Illumina, San Diego, CA, USA) using the

MiSeq Reagent Kit version 2 (500 cycles), aiming at 500,000 reads

per sample. We prepared one replicated libraries from the gDNA

sample to analyze MRD; each library had 240 ng of gDNA input.

Percentage confidence for which the searched sequence was not

detected was 97.17% at 10−4.

The FASTQ files were analyzed using the LymphoTrack

MRD software v2.0.2 (InVivoScribe Technologies) for clonality

assessment and sequence tracking. Clonal rearrangement was

determined according to the manufacturer’s guidelines. When

the total number of reads for each sample was ≥20,000 and the

top merged sequence had ≥2.5% of the total reads or when the

total number of reads for each sample was ≥10,000 but <20,000

and the top merged sequence had ≥5% of the total reads, these

results were interpreted as clonal. For MRD assessment, the

clone of exact sequence matches and similar sequences (up to

two mismatched nucleotides) were sought after chemotherapy

according to the manufacturer’s guideline. If any sequences exact

or similar to the initial clone were found, the amount of residual

Ig clone was described as the proportion per total Ig read counts

(% of B cell). All clonal rearrangements found at diagnosis in

each patient were evaluated in subsequent MRD samples.

We tried to estimate the MRD clone in each sample by

normalization using the following methods. LymphoQuant™

Internal control was added to each PCR reaction at 100 cell

equivalency when testing these follow-up samples to allow the

estimation of cell equivalents within each sample. The

proportion of the MRD clone in each sample was calculated as

% of TNC using the formulas provided by the manufacturer.

Alternatively, we estimated the CD19-positive B-cell proportion

in each sample using flow cytometry [FACSCanto II Flow

Cytometer and FACSDiva software (Becton Dickinson, San

Jose, CA, USA)] or immunohistochemical stain (IHC, mouse

monoclonal anti-human CD19 antibody; NovoCastra,

Newcastle upon Tyne, UK). The interchangeability among the

methods for normalization has been evaluated in advance. The

CD19-positive B-cell proportion analyzed by flow cytometry and

IHC showed good correlation (R2 = 0.9518, p < 0.001) and could

be used interchangeably (Supplementary Figure 1A). In

addition, we compared the MRD results that were normalized

by LymphoQuant™ Internal control with those normalized by

flow cytometry or IHC and found that they showed good

correlation (R2 = 0.8558, p < 0.001) (Supplementary Figure 1B).

The percentage of TNC was calculated using the following

formula: (% of B-cell) × (CD19-positive B-cell proportion in

sample)/100. For convenience, we annotated % of B cell and % of

TNC as unnormalized and normalized MRD, respectively.
Statistics and outcome measures

Event-free survival (EFS) was defined as time from diagnosis of

ALL to last follow-up in CR, or first event. Relapse, early death,
TABLE 1 Patient characteristics.

n = 55 (%)

Median age at diagnosis (range) 7.2 years (2.3–17.0)

Median initial WBC count (range) 19.70 × 109/L (1.29–207.34)

Disease status

De novo 44 (80)

Relapsed 10 (18)

Refractory 1 (2)

Genetics

High hyperdiploidy 10 (18)

ETV6-RUNX1 8 (15)

E2A-PBX1 4 (7)

BCR-ABL1 2 (4)

Normal 18 (33)

Others 13 (24)
WBC, white blood cell count.
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primary refractory disease, death in CR, and secondary malignancy

were considered events. Patients with primary refractory disease or

those who died during remission induction chemotherapy were

considered to have events at time zero. For the relapsed patients,

EFS was defined as time from relapse to last follow-up in CR, or

subsequent event. Overall survival (OS) was defined as time from

diagnosis (or relapse for the 10 relapsed patients) to last follow-up,

or death from any cause. Comparison of EFS in the de novo cohort

was done for the following variables: age (<10 years old vs. ≥10 years

old), initial white blood cell (WBC) count (<50 × 109/L

vs. ≥50 × 109/L), prephase steroid response during remission

induction chemotherapy, presence of good prognosis genetic

abnormalities (high hyperdiploidy or ETV6-RUNX1), and MRD

at TP1 (<0.01% vs. ≥0.01%). Probabilities of EFS and OS were

calculated using the Kaplan–Meier method, and comparison of

survival curves according to risk factors was done with the log-rank

test. Comparison of end of induction MRD value (negative vs.

positive with a threshold of 0.01% normalized value) according to

patient disease status (de novo vs. relapsed/refractory) was done

with chi-square test. Patient follow-up was done up till 30 June

2021. Comparison between normalized and unnormalized MRD

was performed by Wilcoxon signed-rank test, and their correlation

was done by Spearman’s rho correlation. p-value <0.05 was

considered significant.
Results

Clonal Ig rearrangement was identified in all patients. IGH

FR1 was useful in most patients (n = 49), and IGH FR2 and IGK

were useful in three patients each. Twenty-four patients had one

Ig clone and 20 patients had two. The other 11 patients showed

more than three Ig clones. IGH V3-J4 rearrangement was most

common followed by V3-J6 and V3-J5 (Supplementary

Figure 2). The mean proportion of Ig clone at diagnosis was

54.153% ± 22.859%. During MRD assessments, we derived two

MRD values: unnormalized (% of B cell) and normalized MRD

(% of TNC). These two MRD values showed good correlation

with a correlation coefficient of 0.968 (p < 0.001). The average

and standard deviation (SD) of unnormalized MRD was

10.397% ± 23.253%, 1.311% ± 3.196%, and 1.535% ± 3.557%

at TP1, TP2, and TP3, respectively. The normalized MRD value

was significantly lower than unnormalized MRD (p < 0.001).

The average and SD of normalized MRD was 2.649% ± 10.545%

at TP1, 0.059% ± 0.173% at TP2, and 0.058% ± 0.189% at TP3.

Then, we categorized patients according to the MRD value

0.01%, 0.1%, and 1%. We observed that there was a difference

between before and after normalization. At TP1, 27 of 50

patients (54%) achieved normalized MRD <0.01%, while 21

(42%) showed unnormalized MRD <0.01%. At TP2, 34 of 40

patients (85%) showed normalized MRD <0.01% while 29

(72.5%) showed unnormalized MRD <0.01%. At TP3, 16

(73%) and 15 (68%) of 22 patients showed normalized and
Frontiers in Oncology 04
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unnormalized MRD <0.01, respectively. Overall, 12 patients

were recategorized from MRD ≥0.01% to MRD <0.01% after

normalization. Considering that therapy adjustment decisions

may be made based on MRD <0.01% threshold at TP1, the

results of six patients indicated the need for more intensified

treatment due to MRD ≥0.01% prior to normalization

(Supplementary Figure 3).

Events in the de novo cohort of patients included eight

patients who relapsed at a median of 22.4 months from diagnosis

(range: 17.1–47.6 months). Two patients died of relapsed/

refractory disease. The estimated 3-year EFS and OS of the de

novo cohort was 88.6% ± 4.8% (36/44) and 95.3% ± 3.2% (42/

44), respectively. All 11 patients followed from the point of

relapsed/refractory ALL achieved subsequent CR. However, 6 of

the 11 patients experienced further events: subsequent relapse

(n = 5) and secondary malignancy (n = 1). Overall, four patients

died: three from relapsed/refractory disease and one from acute

respiratory distress syndrome in CR. The 3-year EFS and OS of

the relapsed/refractory cohort were 45.5% ± 15.0% (5/11) and

63.6% ± 14.5% (7/11), respectively. Utilizing a normalized MRD

threshold of 0.01%, 26 of 40 de novo ALL patients (65%) with

evaluable data were TP1 MRD negative, while only 1 of 10

relapsed/refractory patients (10%) were TP1 MRD negative

(Table 2, p = 0.003 when comparing the two patient groups).

In combining the de novo and relapsed/refractory ALL cohorts,

normalized TP1 MRD value of 0.01% proved to be a significant

threshold value for both 3-year EFS (100% for MRD <0.01% vs.

60.9% ± 10.2% for MRD ≥0.01%, p = 0.007) and 3-year OS (100%

for MRD <0.01% vs. 78.3 ± 8.6% for MRD ≥0.01%, p = 0.011).

However, unnormalized TP1 MRD was not a significant factor for

EFS in this cohort (3-year EFS 100% for MRD <0.01% vs. 69.0 ±

8.6% for MRD ≥0.01%, p = 0.125) (Figures 1A–D). When limiting

the analysis to the de novo ALL cohort, the initial WBC count

proved to be a significant factor for EFS: 3-year EFS of 96.7% ± 3.3%

(initial WBC count <50 × 109/L) vs. 71.4% ± 12.1% (initial WBC

count ≥50 × 109/L), p = 0.027. Patients with a normalized TP1

MRD <0.01% had superior outcome compared with those with

MRD ≥0.01%, although without statistical significance (3-year EFS

100% vs. 78.6% ± 11.0%, p = 0.229).
Discussion

The prognostic significance of MRD, measured from the BM

at specific time points after therapy, is well-established. Basically,

cellular MRD counts have general prognostic value at the cutoff

level of 0.01% MRD cells (10−4), indicating 1 in 10,000 cells in a

specimen. Because MRD values are reported in various ways

according to the assessment technology, standardization is

essential to establish the strategy for monitoring patients. In

terms of NGS-based Ig clonality assay, data normalization and

the quality control (QC) of robust amplification, library

preparation, and sequencing are technically important. Several
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procedures were established to address the normalization issue

such as a central in-tube QC spiked to each tube as library

control and calibrator and central polytartget QC (11, 12). The

LymphoQuant™ internal controls are used for in-tube QC and

are probed to be optimal for normalization, showing better

correlation with the MFC results (Supplementary Figure 4).

In this study, we could identify clonal Ig rearrangement in all

pediatric B-ALL patients by an NGS-based Ig clonality assay. A

total of 89% of cases were successfully characterized using FR1

primer sets, similar to the results of previous studies in B-cell

neoplasia (4, 5). The frequency of common V-J rearrangements

was also in line with our previous study (10). Unnormalized and

normalized MRD values showed good correlation, which was
Frontiers in Oncology 05
20
predicted because both values were calculated based on clonal Ig

read count. The values, however, differed with regard to

prognostic relevance. The most significant factor resulting in

difference was the proportion of B cells in each sample. At

diagnosis, most cells were B cells with clonal Ig rearrangement.

After treatment, normal hematopoietic components of erythroid

and granulocytic lineages were reconstructed, leading to a

relatively lower B-cell proportion. Accordingly, total Ig read

count was low in those samples even though the amount of input

DNA was sufficient, resulting in a relatively high unnormalized

MRD value. For example, we found that six TP1 MRD-negative

patients were categorized as having persistent MRD before

normalization. More importantly, unnormalized TP1 MRD
TABLE 2 Correlation between patient disease status and end of induction minimal residual disease value using a threshold value of 0.01.

End of induction normalized MRD value Total

<0.01% ≥0.01%

Disease status De novo 26 14 40

Relapsed/refractory 1 9 10

Total 27 23 50
frontier
MRD, minimal residual disease.
A B

DC

FIGURE 1

Comparison of event-free survival (EFS) and overall survival (OS) of overall patients according to normalized minimal residual disease (MRD)
values (A, B), and unnormalized MRD values (C, D) after induction, analyzed by next-generation sequencing-based immunoglobulin clonality
assay. TP1, time point 1.
sin.org
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did not predict patient outcome whereas the normalized TP1

MRD was a significant prognostic factor for both EFS and OS.

Therefore, normalization is a pivotal process for MRD

assessment to remain an efficient prognostic indicator and a

factor in therapy modification in ALL, as well as to prevent

chemotherapy intensification of limited value (13). Post-therapy

MRD should be able to indicate prognosis in de novo ALL

patients. A clear limitation of our results was that for the 44

patients with de novo ALL, patients with normalized TP1

MRD <0.01% had higher EFS than those with MRD ≥0.01%,

but without statistical significance. Initial WBC count was the

only significant factor for EFS, with the thresholdWBC count set

at 50 × 109/L as defined in the National Cancer Institute/Rome

criteria for high-risk ALL (14). At present, we are implementing

NGS-based MRD measurement in all of our ALL patients, and a

subsequent, larger-scale study may clarify the role of MRD at

TP1 using this modality in determining patient outcome.

The important prognostic role of end of induction MRD

detected in the BM has been established through both flow

cytometry and PCR detection of Ig and T-cell receptor gene

rearrangements (15, 16). NGS-based Ig clonality assay is likely

more sensitive than previous methods of MRD detection, and

may also be able to predict patients with worse outcome. One

recent study comparing NGS-based MRD assessment and flow

cytometry with a threshold of 0.01% found that NGS identified

38.7% more patients as MRD positive (17). Importantly, these

patients had significantly lower EFS than those who were MRD

negative according to NGS, indicating overall that NGS had a

lower false-negative rate than flow cytometry. Further studies are

necessary to determine the prognostic role of MRD assessment

using an NGS-based Ig assay, as well as the optimum threshold

for risk group classification.

Consequently, our study demonstrated that MRD assessment

by NGS-based Ig clonality assay could be applied in most pediatric

B-ALL patients. TP1 MRD with a threshold of 0.01% could be a

valid prognostic factor. Importantly, normalization of MRD

measurements as % of TNC using LymphoQuant internal control

or the B-cell proportion in the sample allowed for NGS-basedMRD

to become a significant prognostic indicator.
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The ALLgorithMM: How to
define the hemodilution of
bone marrow samples in
lymphoproliferative diseases

Ilaria Vigliotta1,2*, Silvia Armuzzi1,2, Martina Barone1,2,
Vincenza Solli 1,2, Ignazia Pistis1, Enrica Borsi1,2,
Barbara Taurisano1,2, Gaia Mazzocchetti 1,2, Marina Martello1,2,
Andrea Poletti 1,2, Chiara Sartor1,2, Ilaria Rizzello1,2,
Lucia Pantani1, Paola Tacchetti 1, Cristina Papayannidis1,
Katia Mancuso1,2, Serena Rocchi1,2, Elena Zamagni1,2,
Antonio Curti1,2, Mario Arpinati 1,2, Michele Cavo1,2

and Carolina Terragna1*

1IRCCS Azienda Ospedaliero-Universitaria di Bologna, Seràgnoli Institute of Hematology,
Bologna, Italy, 2Department of Experimental, Diagnostic and Specialty Medicine - University of
Bologna, Bologna, Italy
Introduction: Minimal residual disease (MRD) is commonly assessed in bone

marrow (BM) aspirate. However, sample quality can impair the MRD

measurement, leading to underestimated residual cells and to false negative

results. To define a reliable and reproducible method for the assessment of BM

hemodilution, several flow cytometry (FC) strategies for hemodilution

evaluation have been compared.

Methods: For each BM sample, cells populations with a well-known

distribution in BM and peripheral blood - e.g., mast cells (MC), immature (IG)

and mature granulocytes (N) – have been studied by FC and quantified

alongside the BM differential count.

Results: The frequencies of cells’ populations were correlated to the IG/N ratio,

highlighting a mild correlation with MCs and erythroblasts (R=0.25 and R=0.38

respectively, with p-value=0.0006 and 0.0000052), whereas no significant

correlation was found with B or T-cells. The mild correlation between IG/N,

erythroblasts and MCs supported the combined use of these parameters to

evaluate BM hemodilution, hence the optimization of the ALLgorithMM. Once

validated, the ALLgorithMM was employed to evaluate the dilution status of BM

samples in the context of MRD assessment. Overall, we found that 32% of FC

and 52% of Next Generation Sequencing (NGS) analyses were MRD negative in

samples resulted hemodiluted (HD) or at least mildly hemodiluted (mHD).

Conclusions: The high frequency of MRD-negative results in both HD and

mHD samples implies the presence of possible false negative MRD
frontiersin.org01
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measurements, impairing the correct assessment of patients’ response to

therapy and highlighs the importance to evaluate BM hemodilution.
KEYWORDS

minimal residual disease, multiple myeloma, acute lymphoblastic leukemia,
hemodilution, hemodilution/methods, flow cytometry, measurable (minimal)
residual disease
Introduction

The study of minimal residual disease (MRD) provides

critical information for the management of hematological

patients affected by lymphoproliferative diseases, representing

the best biomarker to monitor treatments’ efficacy and to define

the eradication of residual tumor cells. Moreover, MRD is

increasingly taking hold for the choice of therapy, whether for

the modulation of therapeutic intensity, for the indication of

stem cell transplantation or eventually for treatment

discontinuation (1–7). International guidelines are

recommending the use of bone marrow (BM) aspirate, with

specific sensitivity thresholds, as gold standard for MRD

measurements in most hematological malignancies, in

particular Multiple Myeloma (MM) (1, 2, 8–10) and Acute

Lymphoblastic Leukemia (ALL) (4, 11–13).

However, one of the main pitfalls of the MRD quantification is

represented by the quality of the sample itself, as the dilution of the

tumor cells with peripheral blood (PB) (defined as hemodilution)

that occurs within BM sampling can cause an underestimation of

residual disease cells, and lead to biased MRD evaluation.

Considering the growing role of MRD evaluation both for

prognosis and for treatment tailoring (14, 15), it seems more and

more necessary to investigate whether the cases of negativity would

not actually be linked to bad sampling of the BM specimen,

particularly in those settings involving T cell redirecting therapies

(e.g., engineered chimeric antigen receptor (CAR) T-cells).

To date, no consensus has been established yet, both on

criteria for samples’ quality acceptability and on the set up of

standardized protocols for hemodilution evaluation. In fact, over

time, several parameters have been investigated to define

hemodilution in different diseases by distinct groups, such as

the Holdrinet index (16), the frequencies of plasma cells and

CD34+ cells (17), the ratio between immature and mature

granulocytes (18), mast cells and hematogones presence (19)

among others.

Thus, the aim of the current study was to define a robust and

reproducible method for the assessment of BM hemodilution,

applicable to lymphoproliferative diseases, in order to ensure the

best quality of MRD measurements and interpretation.
02
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Materials and methods

Patient cohort

All patients included in the study provided written informed

consents for biological studies and have been treated following local

recommendations for clinical trials or routine clinical practice at the

Seràgnoli Institute, IRCCS Azienda Ospedaliero-Universitaria of

Bologna, Italy. An initial cohort of 78 Multiple Myeloma (MM)

and 18 Acute Lymphoblastic Leukemia (ALL) patients (104 and 34

samples, respectively) was used to set-up the experimental plan to

evaluate the cellular immunophenotype by flow cytometry (FC) of

the most representative BM cell types and to create the matrix to

compare diverse hemodilution strategies, previously described by

other groups (16–20). ALL patients are represented by Philadelphia

(Ph)-negative B-ALL or T-ALL patients, for whomminimal residual

disease (MRD) is measured molecularly by Next Generation

Sequencing (NGS). NGS was employed for MRD monitoring in

MM patients, as well. All patients and cohort characteristics are

shown in Table 1. Briefly, patients had amedian age of 46 (range 20-

77) and 61 (range 39-76) years old for ALL andMM, respectively; as

for thegender, 65%(39/60)ofALLpatients and56%(74/133)ofMM

were male. ALL patients were mostly treated with chemotherapy by

pediatric-like regimens and/or by reduced regimens in elderly

patients (10/25; 40%); 8/25 patients (32%) were relapsed/refractory

or MRD-positive under Inotuzumab ozogamicin and/or

Blinatumobab at the time of BM sampling, whereas in 6/25

patients (24%) MRD was evaluated after BM transplant. One

patient was not under treatment, when BM was collected. Most

MM patients (82/91; 90%) were transplant-eligible: in most cases

(84%)MRD samples were collected duringmaintenance, whereas in

the remaining (16%) post-induction. The majority (54%) of MM

patients were under Immunomodulatory drugs (IMiDs) regimens at

the time of BM sampling, whereas others were under treatment with

anti-CD38 (15%) or Proteasome Inhibitors (PI; 23%) in the context

of outpatient regimen and/or within clinical trials.

In the validation phase of the study, CAR-T-treated MM

patients (9/100; 9%) (i.e., anti-B-cell maturation antigen (BCMA)

CAR-T) have been added to the cohort. In these cases, since CAR-

T cells therapy, preceded by lymphodepletion chemotherapy,
frontiersin.org
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could cause a modulation of BM cell populations (19), we decided

not to perform hemodilution evaluations on BM samples taken

from patients who had undergone the CAR-T infusion within 56

days (median: 171 days; range: 56-365 days).

For each patient, at least 4 ml of BM aspirates were collected,

deriving from a single-site iliac crest sampling and samples were

preserved in EDTA tubes for subsequent analyses (e.g.

MRD evaluation).
Flow cytometry strategy

Cell distribution within BM aspirates, in terms of quantification

and characterization, was assessed FC and all analyses were

performed within 24 hours from BM sampling. Cellular

immunophenotype was analyzed via FACSCanto™ II (BD

Biosciences, San Jose, CA, USA), using a combination of antibodies

provided by BDBiosciences: CD45-V500, CD56-APC, CD16-V450,

CD10-PECy7 and APC-H7, CD19-PerCP-Cy5.5, CD81-FITC,

CD38-PECy7, CD138-PE, CD71-FITC, CD117-APC and adding

CD117-BrilliantViolet 421 (BioLegend, San Diego, CA, USA).

Briefly, 5 µl of each antibody was mixed to 100 µl of fresh BM

sample and incubated for 15minutes. The samplewas then lysed and

washed before acquisition. Amedian of 75 000 events were acquired

and no less than 5 events were used to define a cell population. We

decided to excludeCD34+cells fromour subset populations, because

of the disease’s context (lymphoproliferative diseases) and the fact

that CD34+ cells amounts are also related to patient gender and age

(17), as well as to circadian cycles (21–23). Alongside FC analyses of

cell populations, a BM differential blood count via both cytological

analysis (data not shown) and Sysmex XN-1000™ Hematology

Analyzer (Sysmex America Inc., IL, USA) (shown in Table 2)

was performed.

The antibody combinations employed to define each cell type is

described in Table 3, and the result of gating strategy is shown

in Figure 1.
IG/N ratio definition

The immature granulocytes (IG)/mature (neutrophils, N)

ratio is a mathematical relationship between IG and N aimed at
Frontiers in Oncology 03
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simplifying the hemodilution evaluation of BM samples.

Considering that Sorigue et al. and Julie Pont herself had

already studied both the correlation between Pont’s IG/N and

the formula defined by Holdrinet et al. (HI) (18, 20), defining an

R of 0.8 (p-value <0.001) in healthy individuals, we decided to

use IG/N ratio as reference for our considerations. We excluded

the possibility to employ the HI as a reference, even though it is

considered as the gold standard to assess hemodilution by most

authors, since it requires both a parallel PB sampling and a

parallel characterization and count of leukocytes and

erythrocytes. Conversely, the IG/N ratio is straightforward

and, particularly in the lymphoproliferative disease setting, is

not biased by the pathology considered and/or by MRD-positive

results. Thus, according to Pont et al. a cut-off IG/N ratio of 1.2

was employed to distinguish hemodiluted (<1.2) from non-

hemodiluted samples (≥1.2).
Minimal residual disease assessment

For all patients MRD measurement was performed by NGS

to investigate the IgH/TCR rearrangement(s). Analyses have

been conducted via LymphoTrack® Dx IgH (FR1/FR2/FR3)/

IgK/TCR assays on MiSeq™ System (Illumina Inc, San Diego,

CA, USA) on DNA extracted from BM samples. MRD

measurements have been quantified at a sensitivity of at least

10-5, using a LymphoQuant B-cell Internal Control. Data

analysis was performed by the LymphoTrack® MRD Software
TABLE 2 BM cell populations evaluation. Assessment of the presence
of bone marrow cell populations by an automated analyzer.

Type of Cells Median (range) Median Percentage (range)

WBCs1 9940 (80-68420) na*

Neutrophils na* 59.1 (23.6-89.6)

Monocytes na* 26.09 (0-79)

Lymphocytes na* 9.2 (1.8-37.6)

NRBCs2 na* 13.1 (0-44.1)

IG3 na* 15.85 (0-44.1)
1White Blood Cells (WBCs) expressed in cell/µl; 2Nucleated Red Blood Cells (NRBCs);
3Immature granulocytes (IG); *Not applicable (na)/not evaluated.
TABLE 1 Patients’ overview. Three main sub-groups of patients have been included in the study: Acute Lymphoblastic Leukemia (ALL) patients,
Multiple Myeloma (MM) patients and MM patients treated with chimeric antigen receptor (CAR)- T cells.

Patients Samples Age (range) Gender

ALL 25 69 46 (20-77) F2 35%-M 65%

MM 91 150 61 (39-76) F 44%-M 56%

CAR-T1 9 14 54 (38-64) F 36%-M 64%

Tot 125 233 54 (20-77) F 38%-M 62%
f

1CAR-T is referred only to MM patients who were sampled after at least 56 days after anti-BCMA CAR-T infusion (median: 171 days; range: 56-365 days); 2F, female and M, male.
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(In vivoscribe Inc, San Diego, CA, USA) (24). Undetectable

MRD was assessed with at least 90% of confidence.

In ALL patients, MRD was performed also by FC, in parallel

with NGS, employing FACSCanto™ II (BD Biosciences, San

Jose, CA, USA). Quality control of the instrument was daily

performed using FACSDiva™ CST IVD beads (BD Biosciences,

San Jose, CA, USA). The panel used to measure MRD comprised

CD45, CD19, CD20, CD10, CD58, CD123, CD34, CD22 for

lineage B, and CD3, CD5, CD7, CD2, CD4, CD8, CD1a and

TCRg for the T-lymphoid compartment. The FC overall

sensitivity was at 10-4, and MRD negativity was set under the

0.01%, according to standardized guidelines (25–27).
Statistical and bioinformatic analyses

All bioinformatics and biostatistics analyses were conducted

using personalized scripts and R packages. Pearson and Kruskal-

Wallis tests were employed to evaluate correlations between cell

populations included in the study, as well as parameters related

to the patient’s cohort, such as age, gender and therapy regimens

at the time of the BM aspirate sampling. Medians were used to

define cut-offs for flow cytometry analysis of cellular sub-sets.

The confidence interval considered was 95%. All results obtained

shown a p-value of at least 0.001.
Results

This was a multi-step study, initially focused on the

comprehensive comparison of various FC-based approaches to

assess BM hemodilution (according to the comparative analyses

of different cell populations previously employed by several

authors to this purpose), and then aimed at the development

of a novel, original algorithm (named ALLgorithMM) for the

hemodilution assessment in patients’ BM samples dedicated to

MRD evaluations.
Frontiers in Oncology 04
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Definition of cell types within
BM aspirates

For each BM sample, cell populations with a well-known

distribution in both PB and BM (i.e., plasma cells, mast cells,

lymphocytes, erythroblasts and granulocytes) were characterized

and quantified by FC, as described in Materials and Methods

section. As shown in Table 3 (for gating strategy refer to Figure 1),

relevant sub-sets of marrow cells were defined by a specific

immunophenotype and quantified as absolute percentage,

according to the major EuroFlow consortium operating procedures

(28). For immature granulocytes all the maturation stages are

intended, including promyelocytes,myelocytes andmetamyelocytes.

As explained in Table 2 (see Materials and Methods), BM

aspirates have been also analyzed via an automated counter to

obtain the differential blood count together with the percentage

of each cell population.
Correlation between major populations
present in BM samples

Several approaches to define hemodilution have been reported

in the literature over time, mostly based on flow cytometric analysis

and particularly in the context of acute leukemias (either ALL or

Acute Myeloid Leukemia) (16–19, 29). These studies were taken as

a starting point to define themost suitable approach to be applied to

lymphoproliferative disease during post-treatment follow-up. Using

the bioinformatic and statistical strategy described in section

Materials and Methods (paragraph 2.5), all populations present in

BM aspirates – previously employed for hemodilution assessment –

were correlated, considering as reference the immature (IG)/mature

granulocytes (neutrophils, N) ratio defined by Pont in 2018 (18), to

highlight which one best contributes to the definition of

BM hemodilution.

In the initial cohort of patients, IG/N ratio was <0.5 in 33/

138 (24%) cases, between 0.5 and 1.2 in 36/138 (26%) samples
TABLE 3 Flow cytometry definition of BM cell populations. Distribution of the main BM cell populations, according to their immunophenotype.

Type of Cells Immunophenotype1 Median (range)

Immature granulocytes SSC++/FSC++; CD45dym/+/CD16low/CD10neg 22.85% (0.4-57.2)

Mature granulocytes SSC++/FSC++; CD45dym/CD16++/CD10++ 12.6% (0.2-57.8)

IG/N ratio na2 1.26 (0.02-5.2)

Mast cells SSC++/FSC++; CD117hi/CD45dym 0.006% (0-0.11)

Plasma cells SSClow/FSC+; CD138hi 0.2% (0-3)

Hematogones SSClow; CD81hi/CD10+/CD45dym 0.9% (0-9)

B lymphocytes SSClow; CD45hi/CD19+/CD56neg 1.6% (0-10)

NK-like T cells/NK SSClow; CD45hi/CD19neg/CD56hi 0.4% (0.3-16)

Erythroblasts SSClow/FSClow; CD45neg/CD71+ 5.3% (0.4-12.4)
1According to the EuroFlow consortium; 2Not applicable (na).
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and ≥1.2 in the remaining 69/138 (50%) cases, without

distinction among the different diseases.

The amount of different cell populations (as described above

and listed in Table 3), such as B-lymphocytes precursors and

erythroblasts, was correlated to the IG/N ratio. Results are

shown in Figure 2, highlighting a mild but highly significant
Frontiers in Oncology 05
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correlation with mast cells and erythroblasts (R=0.25 and

R=0.38, p-value = 0.0006 and 0.00000526, respectively),

regardless of the hematological disease studied; on the

contrary, no correlations were found with B- nor with T-cells.

Hematogones showed a lower correlation (R=0.24), as compared

to the other cells’ population. However, due to the pathological
A

B

FIGURE 1

Gating strategy to define BM population. (A) Difference between a non-hemodiluted sample (left) and a hemodiluted sample (right), as shown by the
presence of both immature (purple) and mature granulocytes (blue): the maturation line of granulocytes (including promyelocytes, myelocytes and
metamyelocytes) is highlithed in purple and is highly present in nonHD samples (on the left), wherease it is almost absent in HD samples (on the
right). (B) Each plot is the result of the different gating strategies used to define different populations, according to FSC/SSC and the specific
markers. In details, plot 1 displays immature (SSC++/FSC++; CD45dim/+/CD16low/CD10neg) and mature granulocytes (SSC++/FSC++; CD45dim/
+/CD10+/CD16+), plot 2 shows erythroblasts (SSClow/FSClow; CD45neg/CD71+), plot 3 displays mast cells (SSC++/FSC++; CD45dim/CD117hi),
plot 4 exhibits hematogones (SSClow; CD45dim/CD10+/CD81hi), plot 5 shows B-cells (SSClow; CD45hi/CD19+/CD56neg) and T-cells (NK-like T-
cells/NK; SSClow; CD45hi/CD19neg/CD56hi), and plot 6 displays plasma cells (SSClow/FSC+; CD138hi).
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context (mainly involving the lymphoid lineage) and to the

immunomodulatory effects of therapies employed, we decided

not to take hematogones into consideration for further

development of the study.
The construction of the ALLgorithMM

The aforementioned correlations highlighted an average but

highly significant correlation between IG/N ratio, erythroblasts

and mast cells; the absolute percentages of cell populations can be

variable in BM regardless of hemodilution, and must be taken into

consideration. Thus, we integrated these three parameters to

develop a simple (one tube-based), reliable and reproducible

algorithm able to define the degree of BM hemodilution, named

ALLgorithMM. This integration was also rupported by the

categorization of the reference variables, that highlighted a

stronger correlation (R>0.44; p<9.14e10-8), and confirmed we

were able to correctly define BM samples hemodilution (Figure 3).

Starting from the IG/N ratio and factoring for the

percentages of erythroblasts and mast cells, ALLgorithMM

allows to define three types of BM samples: hemodiluted
Frontiers in Oncology 06
28
(HD), mildly hemodiluted (mHD) and non-hemodiluted

(nonHD), as highlighted in red, orange and green,

respectively, in Figure 4. The cut-offs used in the

ALLgorithMM derived from the previously described Pont IG/

N ratio, also confirmed in our dataset, whereas the cut-offs for

mast cells and erythroblasts where obtained from the median of

our collected data. Notably, a biomarker-based cut-off was

chosen, instead of and outcome-based one, since no

association with outcome could be defined due to the short

median patients’ follow-up and the lack of survival events.

As resumed in Figure 4, this algorithm sequentially evaluates the

IG/N ratio, the mast cells and the erythroblasts: the decisional

ALLgorithMM proceeds by stratifying the attained results

according to pre-defined cut-offs (i.e., 1.2 for IG/N ratio, 0.006%

for mast cells and 5% for erythroblasts/NRBCs), providing the final

definition of samples quality. To efficiently analyse the selected

parameters, we developed a 1-tube 5-colors FC panel, easily

managable and simple to analyse, including CD10-APCH7, CD16-

V450, CD45-V500, CD117-APC and CD71-FITC (antibodies

provided by BD Biosciences, San Jose, CA, USA). Notably, the use

of only 5 markers leaves room to analyse additional, pathology-

related markers, according to the need to evaluate the presence of
A B

C

FIGURE 2

Correlation analysis. (A) Correlation matrix related to all samples included in the study; the relative matrices for MM (B) and ALL patients (C).
Positive correlations are displayed in red, while negative correlations are displayed in blue. Color intensity is defined by the correlation
coefficient. Overall, the Pearson’s rho (R) for IG/N vs. mast cells and erythroblasts was ~0.3, with p<0.0006.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1001048
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Vigliotta et al. 10.3389/fonc.2022.1001048
residual cells (e.g., inMM,CD38andCD138couldbeaddedandused

to define and to verify the presence of plasma cells).

Finally, we observed that in most cases (220/233, 94.4%), the

combined employment of IG/N, mast cells and erythroblasts

allowed to confirm the data derived just from the IG/N ratio

evaluation. In the remaining cases (13/233, 5.6%), IG/N ratio did

not adequately describe BM hemodilution; in fact, in these

samples, the presence of just metamyelocytes, in absence of the

other elements of granulocyte maturation line, misled the “IG”

count, thus resulting in a wrongly defined not-hemodiluted result.

Therefore, the combination of different parameters contributed to

an improved definition of BM hemodilution, which might be

critical, particularly in mildly hemodiluted samples.
IG/N, mast cells and erythroblasts define
3 well-distributed groups

Once defined, the ALLgorithMM was prospectively validated

on samples consecutively collected from 42 MM and 27 ALL

patients (57 and 38 samples, respectively), whose MRD was

measured either by NGS or by FC, in the context of daily clinical

practice. Overall, 12/57 MM and 10/38 ALL samples resulted

HD, and 18/57 MM and 5/38 ALL were instead mHD.

A Kruskal-Wallis test was used to confirm the ability of the

ALLgorithMM to define significantly homogeneous clusters of

samples, defined as HD, as nonHD or mHD. The results shown

in Figure 5 enlighten how the three parameters included in the
Frontiers in Oncology 07
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ALLgorithMM (a - IG/N; b – erythroblasts; c- mast cells, as in the

figure) have been able to significantly stratify patients in distinct

groups (i.e., HD, mHD and nonHD) (p-value<2.4e10-9). The

other investigated cell populations did not show this behavior

(data not shown) and, therefore they were not taken into

consideration for the ALLgorithMM.

We finally investigated whether clinical variables (such as

the therapy provided at the time of BM sampling, patients’ age or

gender) might influence the hemodilution evaluation by

ALLgorithMM. As shown in Figure 6, there was no significant

correlation between hemodilution definition and the variables

aforementioned, supporting the robustness of the validated

ALLgorithMM approach.
The impact of hemodilution on
MRD measurement

To validate the ALLgorithMM, we performed in vitro serial

dilutions of BM in PB derived from two MM patients, aiming

also at measuring MRD according to the diverse hemodilution

levels. Starting from the non-hemodiluted BM sample, we

simulated 4 different scenarios: a) sample as-it-is, after BM

collection (nonHD), b) sample diluted with PB, to obtain an

MHD sample, c) sample diluted with PB to attain a fully

hemodiluted sample (HD), d) sample diluted with PB, to

obtain a nearly HD-MHD sample (MHDlow). The 4 samples

per patient were then analyzed by using the ALLgorithMM, to
FIGURE 3

Correlation analysis with categorized parameters. Positive and negative correlations are presented in red and blue, respectively. Correlation
coefficients are related to the color intensity. Once defined the cut-offs for the three parameters (IG/N, mast cells and erythroblasts (nucleated
red blood cells, NRBCs), a higher correlation was observed between these categorized variables as compared to the same continuous variables
shown in Figure 2.
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confirm the hemodilution status, as shown in Table 4, including

the relative in silico-derived measures. Briefly, the initial BM

sample was diluted with patient-derived PB to get the above-

mentioned four scenarios, still maintaining the original BM

WBC count for each sample. In silico and in vitro data were

then tested to assess the results’ linearity, obtaining a Pearson

correlation coefficient of 1 with p=4.2e−09 for IG/N ratio, a

R=0.99 with p=1.4e−06 for mast cells and R=0.99 with p=3.7e−07

for erythroblasts, as shown in Figure 7.

MRD was then analyzed by NGS in the same samples and

results are shown in Table 5: as expected, the artificial

impairment of BM aspirate quality caused an overall

underestimation of residual disease measurements. In fact, in

patient 1 (pt1), whose residual disease was measured in the order

of 10-5 cells in nonHD sample, MRD measurement was not

reliable in both MHD cases, and also underestimated in the HD

sample. On the contrary, in patient 2 (pt2) MRD was

undetectable in nonHD sample, with a confidence of 97% at

10-5: this result was progressively less confident in hemodiluted

samples, suggesting that low quality BM aspirates might impair

also the reliability of MRD-negative results.

According to theALLgorithMM, a range of hemodilution grades

could be highlighted, with high percentage of HD and/or mHD

samples (22%and 25%, respectively) among all evaluated patients, as
Frontiers in Oncology 08
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shown inTable 6, sectiona.TheseBMsampleswere alsoaddressed to

MRD measurement. MRD was assessed by FC (for ALL patients

only) and by NGS for MM and ALL Ph-negative patients, as

described in the Materials and Methods section.

In general, FC MRD measure resulted undetectable in 25/48

(52%) cases and positive in 23/48 (48%) ALL samples. Molecular

MRD measurements were negative in 26/46 (57%), positive in

13/46 (28%) cases and positive non-quantifiable (PNQ) in 7/46

(15%) ALL BM aspirate samples. In MM patients, molecular

MRD was undetectable in 38/86 (44%), PNQ in 32/86 (37%),

and positive in 16/86 (19%) cases.

Of the 26 ALL samples tested negative for molecular MRD, 6

(23%) were hemodiluted and/or mildly hemodiluted. Of the ALL

samples tested by FC, 8/25 (32%) negative and 9/23 (39%)

positive cases were either mildly or highly hemodiluted. In

MM, undetectable MRD results were reported in 27/38

hemodiluted cases (71%).

All MRD results are summarized in Table 6, section b. For

CAR-T MM patients, MRD was not provided for this study.

Overall, 52% of MRD-negative cases evaluated with NGS

were HD or mHD (17/64, 27% and 16/64, 25%, respectively),

whereas 48% were nonHD. For MM, only 29% (11/38) of BM

used to measure MRD passed the hemodilution quality control

assessment, whereas 34% (13/38) of cases were highly
FIGURE 4

The ALLgorithMM sequence. For each BM aspirate, the definition of either hemodiluted or non-hemodiluted sample is the result of at least 2 out
of 3 parameters, as analyzed by flow cytometry in the BM sample. Immature granulocytes (IG); mature granulocytes/neutrophils (N);
erythroblasts (nucleated red blood cells, NRBCs); hemodiluted (HD); mildly hemodiluted (mHD); non-hemodiluted (nonHD).
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hemodiluted and 37% (14/38) were mildly HD. ALL samples

were instead HD in the 11% of cases (3/26), mHD in 3 cases over

26 (11%) of evaluation and the majority (77%, 20/26) were

non-hemodiluted.
Discussion

Over the last years, the advancement of molecular and flow

cytometry methods to assess MRD in lymphoproliferative

disorders has led to a game-changer scenario, where it has

become fundamental to obtain well-prepared samples to

provide a comprehensive and representative snapshot of the

BM tumor landscape and distribution. Nevertheless, several

non-standardized protocols, mainly based on flow cytometry,

have been investigated to evaluate the quality of bone marrow

sampling, without anyhow leading to a well-defined and reliable
Frontiers in Oncology 09
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method, easily applicable in lymphoproliferative disease

regardless of therapy, age and/or gender of the patient.

Here, we set-up and validated a novel approach to assess BM

hemodilution in lymphoproliferative disorders, named

ALLgorithMM, based on the measurement of three parameters

(immature (IG)/mature granulocytes (neutrophils, N) ratio,

mast cells and erythroblasts amount), which can easily and

objectively stratify BM samples according to the extent

of hemodilution.

The ALLgorithMM has been validated on BM samples of

patients after therapy, excluding BM with active disease (defined

as > 5% blast cells and >5% of plasma cells for ALL and MM

samples, respectively).

The combination of the three selected parameters derived

from the observed mild, but highly significant correlation between

IG/N ratio, nucleated red blood cells and mastocytes, which

prompted the combined employment of these parameters to
A

B

C

FIGURE 5

Kruskal-Wallis distribution. Hemodiluted (HD, red), mildly hemodiluted (mHD, blue) and non-hemodiluted (non-HD, green) sample distribution
related to the IG/N ratio (A), to the erythroblasts (nucleated red blood cells, NRBCs) (B) and to the mast cells presence (C). The distribution
between groups has a p-value inferior to 2.4e10-9, indicating a statistically highly significant tendency. (***p < 0.0005 and ****p < 0.00005).
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evaluate BM hemodilution; on the contrary, neither lymphocytes

nor hematogones (both commonly employed to evaluate

hemodilution) seemed informative enough to this purpose. The

peculiar choice of these parameters to assess hemodilution was

supported by several observations. First of all , the

lymphoproliferative hematological diseases are characterized by

an alteration in the number of cells of the lymphoid lineage.

Secondly, in this clinical context, the immunomodulatory/

lymphodepletive role of treatments might cause alterations and/

or changes in the composition of the BM niche as well as of the

microenvironment. Moreover, either a decrease of B-cell
Frontiers in Oncology 10
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precursors or the expansion of B and T cells can occur after

stem cell transplant and/or CAR-T infusion (19, 30). Thirdly, the

typical absence of mast cells and of erythroblasts in PB supports

their role as references in this approach.

All the above-mentioned reasons strongly supported the

choice to focus on the integration of information deriving

from mast cells, erythroblasts and IG/N ratio, confirming the

originality and the reliability of ALLgorithMM, particularly in

the context of lymphoproliferative diseases.

In addition, by using three different parameters,

ALLgorithMM might be potentially applied also to other
FIGURE 6

Correlation matrix between ALLgorithMM-defined BM hemodiluted (HD), mildlyHD (mHD) and non-hemodiluted (nonHD) vs. age (old or young),
gender (female or male) and therapy used at the time of the sampling. Blue and red stand for negative or positive correlations, respectively.
Color intensity is proportional to the correlation coefficients. The figure shows an absence of correlation between the 3 HD groups and others
variables, confirming the robustness of the ALLgorithMM.
TABLE 4 Changes in the composition of BM cell populations in serial hemodilution experiments. Distribution of parameters used in the ALLgorithMM
to define hemodilution of BM samples, within 4 different scenarios simulated for each patient: nonHD (sample as it is), MHD (sample diluted with PB
to obtain an MHD sample), MHDlow (sample diluted with PB to obtain an MHD sample nearly HD), and HD (full hemodiluted sample). In parentheses
are represented in silico-derived values, as expected by applying serial dilutions of samples to simulate the 4 different cases.

Type of Cells 1pt1 nonHD pt1 MHD pt1 MHDlow pt1 HD pt2 nonHD pt2 MHD pt2 MHDlow pt2 HD

IG/N ratio 2.79 0.89 (0.8) 0.66 (0.6) 0.43 (0.4) 1.61 0.76 (0.8) 0.62 (0.6) 0.41 (0.4)

Mast cells 0.003% 0.001% (0.0008%) 0.001% (0.0006%) 0.001% (0.0004%) 0.039% 0.023% (0.02%) 0.02% (0.015%) 0.012% (0.01%)

Erythroblasts 9.5% 6.2% (5.72%) 4.1% (4.04%) 3.2% (3.36%) 9.2% 4.1% (4.5%) 3.8% (3.42%) 2.2% (2.28%)
1pt: patient.
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hematological disorders, without incurring in biased data,

possibly caused by the over-representation of cells’ population

directly involved in the disease. Finally, the ALLgorithMM

prevents all issues related to the intra- and inter-patient

intrinsic differences in the BM distribution of cells populations

thanks to the combined employment of three parameters, i.e.,

the IG/N ratio and two cell populations (mastocytes and

erythroblasts) percentages.

As a major added value, ALLgorithMM refines the results

obtained just by the IG/N ratio, particularly when the immature

granulocytes configuration is hard to be defined, for instance when

the granulocyte maturation and/or composition might be

compromised or when the granulopoiesis is just represented by

the presence of metamyelocytes. In the present study, the

hemodilution assessment has been re-adjusted with respect to the

evaluation performed by the IG/N ratio in 5.6% of cases (13/233),

thanks to the inclusion of both mastocytes and erythroblasts

evaluations. Of these, 5/13 (38%) were defined hemodiluted

thanks to mast cells and erythroblasts frequencies clearly under

the cut-offs defined in the ALLgorithMM (0.006% and 5%,

respectively). Similarly, the other 8/13 samples (62%) defined

non-hemodiluted just according to IG/N ratio, were re-defined
Frontiers in Oncology 11
33
mildly hemodiluted thanks to the use of mast cells and

erythroblasts; in fact, in these samples, the presence of

metamyelocytes as the only granulocytic cell lineage-representing

cells, caused and incorrect assessment of the immature granulocytes

count, thus suggesting the importance of additional parameters to

correctly define such borderline situations.

Furthermore, the in vitro simulation of BM hemodilution

scenarios, described in paragraph 3.5, allowed both to validate

the ALLgorithMM and to highlight the impact of hemodilution

on MRD assessment. In fact, the BM serial dilution with PB, by

simulating either mildly or fully hemodiluted situations, caused

an overall underestimation of residual disease measurements,

with a progressively decreased MRD values and/or NGS results’

confidence in low quality BM samples.

The need to perform good-quality BM sample aspirates,

highly representative of the tumor cells distribution, both not

diluted and not contaminated by PB cells, is increasingly higher in

hematologic diseases, mainly due to the growing role gained by

MRD measurements after therapy for prognostication and for

treatment tailoring. The high frequency of MRD-negative

measurements observed in this study in both mildly and fully

hemodiluted samples indicates a possible recurrent
A
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C

FIGURE 7

Correlation between in vitro and in silico-calculated data of ALLgorithMM parameters. The Pearson’s rho (R) accompanied by the relative
p-value for (A) IG/N ratio, (B) mast cells, and (C) erythroblasts.
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underestimation of MRD measurements, which overall might

impair the correct assessment of the depth of response to

therapy and therefore possibly cause wrongly supported

prognostications and/or clinical decisions. This highlights the

importance to include a reliable evaluation of BM hemodilution

in the daily practice as an important quality control step, allowing

to point out low quality BM samples and to report them to

clinicians, to possibly plan a new BM evaluation, if needed.

In this context, the ALLgorithMM proved to be reproducible

and easily applicable to evaluate hemodilution in BM samples of

patients affected by lymphoproliferative diseases, such as ALL and

MM. The routine application of this method can support a correct

assessment ofMRD, reducing the possibility of false negative results,

providing essential samples quality information. Moreover, the

ALLgorithMM can be employed also for samples collected both at

diagnosis and at relapse (i.e., in highly infiltrated samples), to

correctly assess the disease burden at that specific time-point,

since it might be underestimated, due to bad-quality sampling.

This becomes especially relevantwhen the effective amount of

tumor burden is diriment for patients’ inclusion in protocols and/

or in clinical trials, or is crucial for clonotype assessment by NGS

and in the identification of the disease grade.
Frontiers in Oncology 12
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TABLE 5 MRD evaluation in hemodiluted BM samples. NGS-basedMRDmeasurements for twoMMpatients (pt) whose BM samples were progressively
diluted with PB, to obtain 4 different cases: nonHD, MHD, MHDlow, and HD. MRDmeasures are quantified by the LymphoTrack®MRD Software (In
vivoscribe Inc, San Diego, CA, USA). In bold: Results are an estimate of the clonal frequency of the prevalent rearrangement(s) detected at diagnosis. For each
sensitivity level indicated, the statistical confidence of the result is reported.

1pt1 nonHD pt1 MHD pt1 MHDlow pt1 HD pt2non HD pt2 MHD pt2 MHDlow pt2 HD

MRD measure 1.74x10-5 2.44x10-5 1.46x10-5 9.11x10-6 0 0 0 0

Confidence 10-3 100% 100% 100% 100% 99.99% 99.99% 99.99% 99.99%

Confidence 10-4 99.74% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 84.71%

Confidence 10-5 80.37% 10.75% 15.12% 25.86% 96.68% 77.01% 80.51% 14.51%

Confidence 10-6 0.18% 1.52% 0.06% 0.11% 12.45% 7.57% 3.71% 1.52%

Result 2POS
(80% at 10-5)

3NEG
(99% at 10-4)

NEG
(99% at 10-4)

NEG
(99% at 10-4)

NEG
(97% at 10-5)

NEG
(99% at 10-4)

NEG
(99% at 10-4)

NEG
(99% at 10-3)
fro
1pt: patient; 2POS (positive); 3NEG (negative).
TABLE 6 a) Hemodilution assessment through the ALLgorithMM. Samples are stratified into three main groups, defined as hemodiluted (HD),
mildly hemodiluted (mHD) and non-hemodiluted (nonHD) by the result of the ALLgorithMM application. b) The impact of hemodilution on MRD
evaluation. For each category, the number and the relative percentage are referred to hemodiluted or mildly hemodiluted samples, enlightening
the potential impact of hemodilution on the minimal residual disease (MRD) measurement results, as assessed by flow cytometry (FC) or by
molecular (mol, via NGS) approaches.

a) HD mHD nonHD

ALL 17/69 (25%) 8/69 (12%) 44/69 (63%)

MM 33/150 (22%) 46/150 (31%) 71/150 (47%)

CAR-T* 2/14 (14%) 4/14 (29%) 8/14 (57%)

Tot 52/233 (22%) 58/233 (25%) 123/233 (53%)

b) FC MRD neg FC MRD pos mol MRD neg mol MRD pos mol MRD pnq

ALL 25 (8; 32%) 23 (9; 39%) 26 (6; 23%) 13 (7; 54%) 7 (2; 29%)

MM na** na 38 (27; 71%) 16 (4; 25%) 32 (18; 56%)

Tot 25 (8; 32%) 23 (9; 39%) 64 (33; 52%) 29 (11; 38%) 39 (20; 51%)
*CAR-T is referred only to MM patients underwent to CAR-T therapy in general (i.e., anti-BCMA CAR-T) after at least 56 days from the infusion; **Not applicable (na), as our center does
not perform MRD evaluations by flow cytometry for MM patients.
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Concordance in measurable
residual disease result after first
and second induction cycle in
acute myeloid leukemia: An
outcome- and cost-analysis
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Costa Bachas1,2, Dimitri A. Breems3,
Catharina H. M. J. van Elssen4, Thomas Fischer5,
Bjorn T. Gjertsen6, Gwendolyn N. Y. van Gorkom4,
Patrycja Gradowska7, Marjolein J. E. Greuter8,
Laimonas Griskevicius9, Gunnar Juliusson10,
Johan Maertens11, Markus G. Manz12,13, Thomas Pabst13,14,
Jakob Passweg13,15, Kimmo Porkka16, Bob Löwenberg17,
Gert J. Ossenkoppele1,2, Jeroen J. W. M. Janssen1,2

and Jacqueline Cloos1,2

1Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit
Amsterdam, Amsterdam, Netherlands, 2Cancer Center Amsterdam, Imaging and Biomarkers,
Amsterdam, Netherlands, 3Department of Hematology, Ziekenhuis Netwerk Antwerpen, Antwerp,
Belgium, 4Department of Internal Medicine, Division of Hematology, GROW-School for Oncology
and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands,
5Department of Hematology and Oncology, Otto von Guericke University Hospital Magdeburg,
Magdeburg, Germany, 6Department of Medicine, Hematology Section, Haukeland University
Hospital, Bergen, Norway, 7The Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON)
Data Center, Department of Hematology, Erasmus Medical Center (MC) Cancer Institute,
Rotterdam, Netherlands, 8Department of Epidemiology and Data Science, Amsterdam Univerisity
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University Hospital, Basel, Switzerland, 16Department of Hematology, Helsinki University Hospital
Cancer Center, Helsinki, Finland, 17Department of Hematology, Erasmus University Medical Center
(MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
Measurable residual disease (MRD) measured using multiparameter flow-

cytometry (MFC) has proven to be an important prognostic biomarker in

acute myeloid leukemia (AML). In addition, MRD is increasingly used to guide

consolidation treatment towards a non-allogenic stem cell transplantation

treatment for MRD-negative patients in the ELN-2017 intermediate risk

group. Currently, measurement of MFC-MRD in bone marrow is used for

clinical decision making after 2 cycles of induction chemotherapy. However,

measurement after 1 cycle has also been shown to have prognostic value, so
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the optimal time point remains a question of debate. We assessed the

independent prognostic value of MRD results at either time point and

concordance between these for 273 AML patients treated within and

according to the HOVON-SAKK 92, 102, 103 and 132 trials. Cumulative

incidence of relapse, event free survival and overall survival were significantly

better for MRD-negative (<0.1%) patients compared to MRD-positive patients

after cycle 1 and cycle 2 (p ≤ 0.002, for all comparisons). A total of 196 patients

(71.8%) were MRD-negative after cycle 1, of which the vast majority remained

negative after cycle 2 (180 patients; 91.8%). In contrast, of the 77 MRD-positive

patients after cycle 1, only 41 patients (53.2%) remained positive. A cost

reduction of –€571,751 per 100 patients could be achieved by initiating the

donor search based on the MRD-result after cycle 1. This equals to a 50.7% cost

reduction compared to the current care strategy in which the donor search is

initiated for all patients. These results show that MRD after cycle 1 has

prognostic value and is highly concordant with MRD status after cycle 2.

When MRD-MFC is used to guide consolidation treatment (allo vs non-allo)

in intermediate risk patients, allogeneic donor search may be postponed or

omitted after cycle 1. Since the majority of MRD-negative patients remain

negative after cycle 2, this could safely reduce the number of allogeneic donor

searches and reduce costs.
KEYWORDS

acute myeloid leukemia, measurable residual disease (MRD), multiparameter flow
cytometry (MFC), prognostic value, earlier detection, guided therapy
Introduction

Acute myeloid leukemia (AML) is characterized by an

abnormal proliferation of myeloid progenitor cells. AML is

usually treated by two cycles of intensive induction

chemotherapy (“3+7”) , fol lowed by post-remission

consolidation therapy after achieving complete remission (CR)

(1, 2). This may either be an allogeneic stem cell transplantation

(allo-SCT), one or more cycles of conventional chemotherapy,

or an autologous stem cell transplantation (auto-SCT). Choosing

the appropriate consolidation treatment is based on estimations

of risks of treatment related mortality versus mortality due to

relapse of the disease. Commonly, a genetics-based risk

classification (mainly the ELN-2017) is used to facilitate this

assessment at the time of diagnosis (3, 4). For ELN intermediate

risk patients, measurable residual disease (MRD) during therapy

is increasingly used as an additional marker to further stratify

consolidation choices (5–7). MRD measured viamultiparameter

flow cytometry (MFC), or molecularly, by either quantitative

PCR based techniques or next generation sequencing is used to

determine leukemic burden after initial treatment (8, 9). MFC-

MRD is most frequently used as it is applicable for almost all

AML patients (>90%). In HOVON-SAKK trials, a positive MRD

result after induction chemotherapy is defined as ≥0.1% of
02
38
CD45-express ing cel l s with a leukemia associated

immunophenotype (LAIP) for MFC-MRD or, for AML with

mutated NPM1, >10−4 NPM1 copies using reverse transcriptase

polymerase chain reaction. MRD positivity is associated with a

significantly increased risk of relapse, shorter event-free survival

(EFS) and inferior overall survival (OS) (10–16). The ELN MRD

working party recommends MFC-MRD assessment after

induction, which is often after two cycles of chemotherapy,

and is closest to the consolidation time point, but there is still

debate about the optimal time point (8, 17, 18). Several

publications have shown that MRD also has prognostic value

after one cycle of chemotherapy (19–23). Having a prognostic

marker determined earlier during therapy can be helpful for

earlier consolidation therapy decisions and clarity towards the

patient. This applies in particular to patients of the intermediate

risk category, as in this category consolidation therapy is

increasingly being guided by MRD results. The earlier clarity

via a MRD result can be used to be more restrictive in

performing allogeneic donor searches and change the current

practice to only initiating a search for MRD-positive patients,

which can subsequently lead to a cost reduction. Here, we

evaluate the concordance of MRD status measured by MFC in

AML patients where MRD was assessed at both time point after

first and second cycle of induction chemotherapy. In addition,
frontiersin.org
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we calculated potential cost reductions by depending the

initiation of HLA-typing and donor search on the MRD result

after cycle 1 and comparing it to the current practice of as early

as possible after diagnosis.
Materials and methods

Patients and treatment

Patients included for analysis were treated according to the

HOVON-SAKK AML92, AML102, AML103 and AML132 trials

(6, 24–26), who achieved CR after cycle 1 and had a valid MRD

result after 1st and 2nd chemotherapy cycle. These trials consist

of newly diagnosed AML (APL excluded) patients between the

age of 18 and 65, except for the AML103 study which consisted

of patients older than 65 who were fit enough for high dose

chemotherapy. All patients younger than 65 years were given

two cycles of standard intensive “3 + 7” regimens as initial

induction therapy consisting of idarubicin for 3 days and

cytarabine for 7 days (overview per study can be found in

Supplementary Table S1). Consolidation therapy was based on

the risk classification applicable at the time. Only for ELN-2017

intermediate risk patients in the AML132 trial, this choice was

guided by the MRD result after cycle 2 (6). All studies were

reviewed and approved by the ethics committees of the

participating institutions and were conducted in accordance

with the Declaration of Helsinki. All patients provided their

written informed consent to participate in the study.
Multiparameter flow cytometry MRD
assessment

Immunophenotyping was performed in the same way across

all studies as previously described (27). Flow cytometry was

performed on a FACS CANTO (BD Biosciences, San Jose, CA,

USA) for all studies with either 6- or 8-color antibody panels,

consisting of four or five different tubes (for details see

Supplementary Table S2) (28). These panels have CD45,

CD34, CD117, CD13 and HLA-DR as backbone markers.

Leukemic population comprises of CD45 expressing cells

(WBC) in combination with a primitive marker (CD34,

CD117) and myeloid markers (CD13, CD33, or HLA-DR).

Additional markers are used to define the leukemia associated

phenotype (LAIP, e.g. CD2, CD7, CD36, CD22, CD19, CD15,

CD11b, CD14, CD56). MRD was assessed after cycle 1 and cycle

2 in patients in morphologic CR/CRi. MRD percentage was

defined as the percentage of LAIP-positive cells of the total WBC

(CD45-expressing) population. Both MRD assessment and

gating strategy were comparable for all included studies and

following a strict protocol as previously published (29, 30).
Frontiers in Oncology 03
39
Cost-effectiveness analysis

We used decision trees to evaluate the impact of initiating

the donor search based on the MRD result after cycle 1 on costs.

We defined the following strategies: 1) the current care strategy

with initiation of donor search for all patients at time of

diagnosis; and 2) the MRD-based strategy with initiation of

donor search based on MRD result after cycle 1 and no allo-SCT

for MRD-negative patients. The decision trees are depicted in

Figure 1. The probabilities of having a MRD-negative result after

cycle 1 and cycle 2, and the availability of finding an HLA-

matched donor or matched unrelated donor (MUD) were based

on results from the included patients in this pooled set of

patients and current practice (31, 32). Of the AML

intermediate risk patients, we assumed to find a HLA-sibling

match for approximately 30% of patients, MUD match for 60%

of patients and no search for 10% because they are already

deemed not fit for allo transplant. The HLA-sibling search was

performed for more patients without a match, but these were not

included in the cost analysis to keep it feasible. Furthermore, if a

patient had a MRD-positive result after cycle 1, an search is

initiated with the same ratio as the current strategy (60% MUD,

30% HLA-sib and 10% not eligible for transplant) and regardless

of the status at a later time point.

We considered all costs related to the diagnostic process to

find the right consolidation treatment, namely costs of the bone

marrow (BM) aspiration and MRD measurement, HLA-typing

and search for a suitable allo-SCT donor. An overview of the

prices used can be found in Supplementary Table S3. Costs were

based on the fixed tariffs negotiated between health insurers and

hospitals from the Dutch Health Insurance Council and are from

2022 in euros (33, 34).
Statistical analyses

Chi-square or Fisher exact test was used to assess differences

at baseline for categorical variables, and the Mann-Whitney U

test was used to analyze continuous variables. For cumulative

incidence of relapse (CIR) a competitive risk framework was

used with correction for competing risk (non-relapse mortality),

where patients alive in continuing CR were censored at the date

of last contact. EFS was defined as the time between MRD

measurement after cycle 1 and the date of hematologic relapse or

death. Overall survival was defined from the time of MRD

measurement 1 until death from any cause or last follow-up.

Survival differences were analyzed using the log-rank test and

visualized with Kaplan-Meier curves for EFS and OS. Cox

regression analysis was used to determine if MRD was

independently associated with EFS and OS, both univariate-

and multivariate. The proportional hazard assumption was

tested on the basis of Schoenfeld residuals (35). Since the data
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consists of multiple clinical studies, we evaluated the

heterogeneity between studies using the I2 statistic (36). All

tests were two-tailed at a significance level of 0.05, unadjusted for

multiplicity. Statistical analyses were performed using SPSS

software (version 28; IBM Corporation, Armonk, NY) and the

R software environment for statistical computing and graphics

(version 4.0.3, Vienna, Austria) (37).
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The expected costs of the two strategies were assessed using

the decision trees of Figure 1. First, we calculated the average

costs accumulated by a patient following a specific branch of the

decision tree. Then, for each branch the unit costs were multiplied

with the probability of a patient following a specific branch. Total

cost per strategy were calculated by summing up the total

expected costs of each branch and subsequently compared. To
A

B

C

FIGURE 1

Decision trees of the three different strategies. (A) Current care strategy for intermediate risk patients were a donor is search is initiated for
about 90% of patients of which 60% are match unrelated donors (MUD) and 30% siblings with HLA-match (HLA-sib). (B) MRD-based strategy
were MRD-negative patients do not receive an allogeneic stem cell transplantation (allo-SCT). (C) Combination of MRD-based strategy with
addition of treating physicians discretion, in which 41% of the MRD-negative patients after cycle 2 still receive an allo-SCT. This is the same allo-
SCT percentage for MRD-negative patients as in this cohort.
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evaluate the impact of parameter uncertainty on the total

expected costs, we conducted a probabilistic sensitivity analysis

(PSA). A beta distribution was fitted to the MRD outcome

parameter. For all other parameters, we assumed a 10% relative

variance. Next, using Monte Carlo simulations, 1,000 draws were

taken from these distributions. Uncertainty surrounding the

expected costs was estimated using 95% credibility intervals

(CrI) by estimating the 2.5% and 97.5% percentiles.

In addition, we conducted a threshold analysis to determine

the maximum cost of the MRD measurement at which the total

costs of the MRD-based strategy were equal to the current care

strategy. Furthermore, we conducted a sensitivity analysis to assess

if the MRD-based strategy would still be cost-efficient if physicians

would deviate from the proposed non-allo consolidation treatment

for MRD-negative patients. In this analysis, we assumed that the

initiation of donor search was based on both MRD result after

cycle 1 and treating physicians discretion. Based on the results of

our cohort, we assumed that 41% of MRD-negative patients still

received an allo-SCT despite ELN-2017 recommendation.
Results

A total of 273 patients from the AML92 (34; 12.5%),

AML102 (175; 64.1%), AML103 (12; 4.4%) and AML132 (52;
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19%) trials met all inclusion criteria. The precise number of

patients enrolled in different trials and reasons why patients were

excluded in the present analysis can be found in Supplementary

Figure S1. The analysis of heterogeneity for 5-year mortality

demonstrated that trials are homogeneous (Supplementary

Figure S2) with a percentage of heterogeneity on total

variability (I2) of 0% (p=0.80). The baseline characteristics of

the MRD-negative and MRD-positive patients after first and

second induction cycle are shown in Table 1.
MRD after cycle I

Of the 273 patients who were in CR(i) and had a valid MRD

result at both time points, 196 (72%) were MRD-negative after 1

cycle of chemotherapy and 77 (28%) patients were MRD-

positive. A total of 38/77 (49.4%) of the MRD-positive patients

relapsed at a median time of 8 months (range 2-38), compared to

62/196 (31.6%) of the MRD-negative patients with a median

time of 13 months (range 2-82) (Figure 2A; Hazard Ratio (HR),

2.11; 95% CI, 1.41-3.16; P<0.001). At 5 years, MRD-positive

patients both had a significantly worse EFS (Figure 2C; HR, 2.10;

95% CI, 1.46-3.02; P<0.001) and 5-year OS (45% for MRD-

positive and 69% for MRD-negative patients (Figure 2E; HR,

2.12; 95% CI, 1.43-3.15; P<0.001)). MRD status after cycle 1 was
TABLE 1 Characteristics of patients by MRD-status after cycle 1 and cycle 2.

MRD status after cycle 1 MRD status after cycle 2

Characteristics MRD-, N=196 MRD+, N=77 p-value MRD-, N=216 MRD+, N=57 p-value

Age in 3 categories <=45 47 (24%) 25 (32.5%) 0.108 54 (25%) 18 (31.6%) 0.558

46-60 96 (49%) 27 (35.1%) 98 (45.4%) 25 (43.9%)

>60 53 (27%) 25 (32.5%) 64 (29.6%) 14 (24.6%)

Sex M 97 (49.5%) 38 (49.4%) 0.983 110 (50.9%) 25 (43.9%) 0.343

F 99 (50.5%) 39 (50.6%) 106 (49.1%) 32 (56.1%)

WHO performance status WHO 0 101 (51.5%) 35 (45.4%) 0.066 107 (49.5%) 29 (50.9%) 0.044

WHO 1 65 (33.2%) 24 (31.2%) 71 (32.9%) 18 (31.6%)

WHO 2 3 (1.5%) 6 (7.8%) 4 (1.9%) 5 (8.8%)

WBC count at diagnosis <20 104 (66.7%) 46 (70.8%) 0.566 116 (67.8%) 34 (68%) 0.993

20-100 41 (26.3%) 13 (20%) 42 (24.6%) 12 (24%)

>100 11 (7.1%) 6 (9.2%) 13 (7.6%) 4 (8%)

ELN-2017 risk Favorable 87 (44.4%) 25 (32.5%) 0.092 92 (42.6%) 20 (35.1%) 0.165

Intermediate 60 (30.6%) 22 (28.6%) 68 (31.5%) 14 (24.6%)

Adverse 48 (24.5%) 30 (39%) 55 (25.5%) 23 (40.4%)

FLT3ITD x NPM1 Pos x pos 33 (16.8%) 7 (9.1%) 0.040 32 (14.8%) 8 (14%) 0.252

Pos x Neg 17 (8.7%) 8 (10.4%) 20 (9.3%) 5 (8.8%)

Neg x pos 50 (25.5%) 10 (13%) 53 (24.5%) 7 (12.3%)

Neg x neg 81 (41.3%) 45 (58.4%) 96 (44.4%) 30 (52.6%)

Consolidation treatment None 20 (10.2%) 6 (7.8%) 0.172 23 (10.6%) 3 (5.3%) 0.070

Cycle 3 63 (32.1%) 17 (22.1%) 65 (30.1%) 15 (26.3%)

Auto-HSCT 39 (19.9%) 14 (18.2%) 46 (21.3%) 7 (12.3%)

Allo-HSCT 74 (37.8%) 40 (51.9%) 82 (38%) 32 (56.1%)
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significantly associated with FLT3-ITD/NPM1 status at

diagnosis (Table 1). In univariate Cox regression analyses, age

above 60 years at diagnose and ELN-2017 adverse risk was also

significantly associated with worse EFS and OS (Supplementary
Frontiers in Oncology 06
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Table S4). MRD-status after cycle 1 remained a significant

prognostic factor in the multivariate model (p<0.001) along

with age above 60 years at diagnosis and ELN-2017 adverse

risk (Supplementary Table S5).
A B

D

E F

C

FIGURE 2

Cumulative incidence of relapse, event-free survival and overall survival stratified for MRD-status after cycle 1 and cycle 2. (A) CIR after cycle 1
and (B) CIR after cycle 2. (C) difference in EFS after cycle 1 and (D) after cycle 2. (E) OS difference for MRD status after cycle 1 and (F) after cycle
2. All curves were significantly different based on MRD-status (p<0.002).
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MRD after cycle II

MRD-positive status after cycle 2 was significantly associated

with the WHO performance status at diagnosis (Table 1). More

patients were MRD-negative (216/273; 79.1%) compared to the

time point after 1 cycle of chemotherapy. MRD-negative patients

after cycle 2 had a significantly lower chance of relapsing in the

first five years after therapy (Figure 2B; p<0.001) compared to

MRD-positive patients. EFS (Figure 2D; HR, 2.03; 95% CI, 1.37-

3.01; P=0.001) and OS (Figure 2F; HR, 2.02; 95% CI, 1.33-3.09;

P=0.001) were also significantly better for patients who were

MRD-negative after cycle 2. In multivariate Cox regression

analyses, MRD-status remained a prognostic factor (p<0.001)

for EFS and OS together with age above 60 years at diagnose and

ELN-2017 adverse risk (Supplementary Table S6).
Combining MRD after cycle 1 and cycle 2

By combining the results of MRD after cycle 1 and cycle 2,

we categorized the patients in four groups (Figure 3). 180

patients were MRD-negative at both time points (group I;

MRD1-MRD2-), 36 patients were MRD-positive after cycle 1

and converted to MRD-negative (group II; MRD1+MRD2-), 16

patients were MRD-negative after cycle 1 and converted to

MRD-positive after cycle 2 (group III; MRD1-MRD2+) and 41

patients were MRD-positive at both time points (group IV;

MRD1+MRD2+). No distinct differences in baseline

characteristics were found between the four groups

(Supplementary Table S7). See Figure 2 for an overview of the

fluctuations of MRD status after combining the MRD results

after cycle 1 and cycle 2. Of the 196 patients who were already

MRD-negative after cycle 1, most remained negative after cycle 2

(180; 91.8%). This concordance was not found for MRD-positive
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patients, were 41 of the 77 MRD + patients after cycle 1 (53.2%)

remained positive, whereas 36 patients converted to MRD-

negativity. A higher MRD value after cycle 1 was associated

with a higher chance of remaining MRD-positive at cycle 2,

although no value could be found above which everyone

remained MRD-positive. Of the 16 patients with an MRD

value of 1.5% or higher after cycle 1, 11 (68.8%) remained

positive after cycle 2 and this was 8/10 (80%) of the patients with

an MRD level of 2.5% and higher.

The cumulative incidence of relapse (CIR) was significantly

different between MRD-negative patients at both time points

(group I; MRD1-MRD2-) and patients who were MRD-positive

at both time points (MRD1+MRD2+; p<0.001, Figure 4A). There

was no significant difference between group I and patients who were

positive at one of the two time points (MRD1+MRD2- andMRD1-

MRD2+). For EFS, there was a difference between MRD1-MRD2-

patients and MRD1+MRD2+ patients (p<0.001), but also between

MRD1-MRD2- patients and MRD1+MRD2- (p=0.044, Figure 4B).

These differences were also seen for OS with 73.9% of MRD1-

MRD2- patients surviving five years after start of treatment

compared to 52.8% of MRD1+MRD2- patients (p=0.014), 50% of

MRD1-MRD2+ patients (not significant; p=0.100) and 43.9% of

MRD1+MRD2+ patients (p=0.001, Figure 4C).
Decision tree analysis

Of the 273 patients included, 82 were classified as ELN-2017

intermediate risk, of which 60 patients (73%) were MRD-

negative after cycle 1 and 54 (54/60; 90%) of these remained

negative after cycle 2. The decision trees of the two strategies and

the sensitivity analysis are depicted in Figure 1. Using decision

tree analyses, we calculated an expected total cost of €1,127,342

per 100 patients for the current care strategy, in which for 90% of
FIGURE 3

Fluctuations of MRD status between measurement after induction chemotherapy cycle I and the time point after chemotherapy cycle II. After one
cycle of chemotherapy, 196 patients (71.8%) became MRD-negative and 77 patients were MRD-positive. After two cycles of chemotherapy, 216
patients (79.1%) were MRD-negative of which 180 were already MRD-negative after cycle 1 and 36 converted from MRD-positive to MRD-negative.
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patients an allogeneic donor search is initiated (Figure 1A). In

the MRD-based strategy in which MRD-negative intermediate

risk patients do not receive an allo-SCT, the search is not

initiated for 65.7% of total intermediate risk patients with an

expected cost of €555,591 per 100 patients (Figure 1B). This

strategy results in a cost reduction of –€571,751 (95% CrI: –

€705,309 to –€464,698) per 100 patients, which equals to a 50.7%

reduction compared to the current care strategy. The PSA

showed that the proposed MRD strategy was consistently

cheaper compared to the current care strategy. The threshold

analysis showed that the combined cost of the BM aspiration and

MRD-measurement could increase to €7,406 (+438%), in order

for the MRD-based strategy to be equally expensive as the

current care strategy. The sensitivity analysis in which the

choice to start a donor search is based on the MRD-result

after cycle 1 and treating physicians discretion (third decision

tree), resulted in 34.2% less initiation of donor searches with in

an expected cost of €789,406 per 100 patients. This means a cost

reduction of –€337,936 (95% CrI: –€470,207 to –€222,322)

compared to the current care strategy (Figure 1C).
Discussion

MRD-negative status after both one- and two cycles of

chemotherapy was significantly associated with less chance of
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relapse, better EFS and OS (Figure 2; p ≤ 0.002, for all

comparisons). Curves on both time points had similar fits,

which suggests similar prognostic value. Comparable results

were found after grouping the patients based on the MRD

results at both time points, where patients negative at both

time points had a significantly better outcome (CIR, EFS and

OS) compared to patients positive at both time points (Figure 4).

Also evident was the difference in EFS (p=0.044) and OS

(p=0.014) between patients who achieved MRD-negativity

only after cycle 2 (MRD1+MRD2-) compared to patients who

were MRD-negative after both cycles (MRD1-MRD2-). MRD-

negative after cycle 1 and positive after cycle 2 (MRD1-MRD2+)

was the least observed, with only 5.9% of patients. Likely due to

the small sample size, this group was not significantly different

from MRD1-MRD2- despite showing similar curves when

compared to the MRD1+MRD2- subgroup. These results

underline that MRD status after 1 cycle of chemotherapy has

strong prognostic implication with failure to achieve MRD-

negativity after 1 cycle being associated with a clearly

worse outcome.

In addition, because a MRD-negative result after cycle 1 is

highly concordant with a negative MRD result after cycle 2 of

chemotherapy, it can be used to postpone the initiation of a

transplant donor search for intermediate risk patients. This

alternative strategy will result in a decrease in donor searches

of between 34.2%-65.7% for intermediate risk patients and
A B C

FIGURE 4

Cumulative incidence of relapse, event-free survival and overall survival compared for four groups based on combined MRD status of after cycle
1 and cycle 2. Four different groups were made based on the MRD status at time point after cycle 1 and cycle 2: (I) MRD negative at both time
points (MRD1-MRD2-); (II) MRD-positive after cycle 1 and MRD-negative after cycle 2 (MRD1+MRD2-); (III) MRD-negative after cycle 1 and
MRD-positive after cycle 2 (MRD1-MRD2+); and (IV) MRD-positive at both time points (MRD1+MRD2+). (A) Cumulative incidence of relapse
(CIR) between the four groups with only a significant difference between MRD1-MRD2-(I) and MRD1+MRD2+(IV) (p<0.001). (B) Event-free
survival (EFS) difference of the four groups with a significant difference between group (I) and group (IV) (p<0.001), but also between group (I)
and group (II) (p=0.044). (C) Overall survival (OS) was also significantly different both between group (I) and group (IV) (p=0.001), and between
group (I) and group (II) (p=0.014).
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average cost savings of €571,751 per 100 patients. Therefore, the

proposed alternative strategy can be considered as a valuable

alternative approach, especially for countries with more limited

budgets. However, a downside to a later search initiation is the

potential delay of an allo-SCT in the 10% of MRD-negative

patients after cycle 1 who do convert to MRD-positive after cycle

2. The sensitivity analysis showed that even with 41% of MRD-

negative patients still receiving an initial allo-SCT, our proposed

strategy would be more cost efficient. This analysis however,

does not take into account the possible allo-SCT as second

consolidation therapy needed after relapse. The decision tree

strategy considers all other vital variables in our situation, but

caution is warranted when results are being extrapolated to other

countries as they could face different conditions.

Up to now, although the prognostic value of MRD after one

cycle of chemotherapy has been demonstrated before,

information about MRD concordance between the two time

points has been sparse (19, 20, 23). One notable exception is the

UK-NCRI AML17 study, which showed corresponding results

in MRD concordance despite having slightly different inclusion

criteria (NPM1+ patients were excluded) (20). The AML17 trial

also showed a high degree of concordance between MRD-

negative results at the two time points, with 90% of the

patients achieving MRD-negativity after cycle 1 remaining

MRD-negative after cycle 2. Furthermore, this study also

showed the lack of concordance between MRD-positive results

at the two time points, with almost 50% conversion from MRD-

positive after cycle 1 to MRD-negative after cycle 2, which even

more suggests that the second cycle of chemotherapy is an

important part of the treatment sequence in these patients.

In general, MRD is not routinely measured after one cycle of

chemotherapy since centers have less experience with this time

point and it is not generally recommended by the ELN MRD

working party (17). Our study only included patients who had a

valid MRD measurement after 1 and 2 cycles of chemotherapy,

which means that all patients had to be in CR after cycle 1. As a

result, conclusions from this study cannot be translated to all

AML patients but only to patients already in CR after cycle 1.

Moreover, since MRD was not systematically collected after 1

cycle of chemotherapy, relatively many patients were not eligible

for inclusion in our study and this could potentially form a

selection bias.

Measuring MRD after one cycle of induction chemotherapy

has the benefit of giving prognostic value at an early stage of

therapy and due to the high concordance with the measurement

after cycle 2, a high degree of clarity for the recommended

consolidation therapy in the case of an intermediate risk patient.

Therefore, we would recommend to incorporate this time point

into upcoming studies. However, given the limited experience

with measuring MRD after cycle 1, we do not value this point as

a replacement for the current “gold standard” after two cycles of
Frontiers in Oncology 09
45
chemotherapy. The high degree of concordance between MRD-

negativity between the two time points signifies the question if

adverse risk patients who reach MRD-negativity after cycle 1, do

still benefit from the second induction course or whether they

should immediately proceed to transplantation if a donor is

available (38). Future (randomized) studies to address this

hypothesis are warranted. In addition, when opting for allo-

SCT, the risk for nonrelapse mortality is an important factor that

needs to be considered next to the ELN risk classification and

MRD status (39).

In conclusion, our findings highlight two facets of measuring

MFC-MRD after one cycle of chemotherapy. First, achieving

MRD-negative CR after one cycle of chemotherapy gives a

prognostic advantage in terms of EFS and OS compared to

patients who are in CR but are MRD-positive or who are

persistent MRD-positive at both time points. Secondly, there is

a high concordance between MRD-negative result after cycle 1

and cycle 2 which can be used to pre-sort intermediate risk

patient sooner to a recommended consolidation therapy. The

early time point of response data can be used to postpone or

omit the search for an allogeneic donor, which will result in a

cost-reduction and provide patients with more certainty about

the course of their further treatment.
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Hairy cell leukemia (HCL) is a rare type of chronic lymphoid leukemia

originating from a mature B lymphocyte. A diagnosis of HCL is based on

cytology, confirmed by multiparametric flow cytometry (MFC) studies using

anti-B-cell monoclonal antibodies, together with a panel of antibodies more

specific to HCL, such as CD11c, CD25, CD103 and CD123. Recently, the BRAF

V600E mutation has been described as a disease-defining genetic event.

Measurable residual disease (MRD) is defined as the lowest level of HCL cells

that can be detected accurately and reproducibly using validated methods; as

MRD negativity is associated with high rates of durable complete response, by

clearing MRD, the long-term outcome may be improved in patients with

advanced HCL. MRD is typically detected using bone marrow, and in some

cases, peripheral blood; however, in HCL, discrepancies frequently exist

between MRD results obtained from blood, bone marrow aspirate and core

biopsy. Among the methods used for MRD detection, MFC appears to be a

more sensitive technique than immunohistochemistry. Molecular tests are also

used, such as real-time quantitative PCR for unique immunoglobulin heavy

chain (IgH) gene rearrangements and PCR techniques with clone specificity for

BRAF V600E. Clone-specific PCR (spPCR) is able to detect one HCL cell in 106

normal cells, and is particularly suitable for patients found to be negative for

MRD by MFC. Recently, the Hairy Cell Leukemia Consortium created a platform

to work on a definition for MRD, and establish the optimal time point, tissue

type and method for measuring MRD. This

KEYWORDS

BRAF, cladribine, hairy cell leukemia, flow cytometry, immunohistochemistry,
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1 Introduction

Hairy cell leukemia (HCL) is a rare type of chronic lymphoid

leukemia originating from a mature B lymphocyte (1, 2). Its

incidence is 0.3 cases per 100,000 individuals, and median age at

diagnosis is 58 years. Approximately 1000 new cases of HCL are

diagnosed each year in the United States (3). HCL is four times

more common in men than women (4).

A diagnosis of classical HCL is based on morphological,

characteristics of hairy cells and immunologic phenotype in

multiparametric flow cytometry (MFC) and immunohistochemistry

(IHC) in the trephine biopsy and the presence of BRAFV600E

somatic mutation (5). Anti-B-cell monoclonal antibodies

(MoAb) such as CD19, CD20 or CD22, are used together with

antibodies more specific to HCL including CD11c, CD25, CD103

andCD123.More recently, CD200 and LAIR1were introduced as

important markers of HCL (6). Classic HCL is characterized by

mutation of the BRAF serine/threonine protein kinase (V600E)

with an incidence of nearly 100% of HCL cases at diagnosis (7, 8).

Purine nucleoside analogues (PNA), pentostatin

(deoxycoformycin, DCF) and cladribine (2-Chlorodeoxyadenosine,

2-CdA), are recommended for first-line treatment in classic HCL (9,

10). These agents induce durable and unmaintained complete

response (CR) in more than 70% of patients, and the relapse rates

are about 30% to 40% after 5 to 10 years of follow-up, with overall

survival (OS) frequently longer than 20 years (11–13). Patients may

expect a normal lifespanwhen treatedwithPNA, irrespective of their

pretreatment history (13). While 2-CdA and DCF demonstrate

similar efficacy and safety (14), 2-CdA is a more common choice

than DCF due to its shorter treatment duration (15).

Althoughmedian time to relapse following 2-CdA treatment is

16 years, disease-free survival (DFS) and relapse-free survival (RFS)

curves have not yet reached a plateau, suggesting that most patients

who live long enough will eventually relapse. A recent multicenter

analysis in Europe confirmed that 2-CdA used as frontline

treatment in HCL patients permits disease control in a significant

proportion of cases, given that more than 50% of treated patients

require no further therapy. Good quality responses may be

maintained for more than 20 years in up to 35% of patients (12).

Rituximab is an effective drug in HCL, especially when used in

combination with other agents (16, 17). When rituximab was

combined with 2-CdA in early relapsed HCL, CR was achieved

in 89-100% of patients, with a 5-year progression-free survival

(PFS) of 100% and a 3-year risk of relapse only 7% (16). Recently,

several new drugs have been introduced for the treatment of

patients with HCL (18). Among these, clinical trials have

confirmed the anti-CD22 immunotoxin moxetumomab

pasudotox (Moxe), BRAF kinase inhibitors (vemurafenib and

dabrafenib), MEK inhibitors (trametinib and cobimetinib) and

the Bruton’s kinase inhibitor ibrutinib as useful agents in the

treatment of patients refractory to PNAs (19–24).
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Measurable residual disease (MRD) is defined as the lowest

level of neoplastic cells that can be identified using validated

methods i.e. their detection below the level of conventional

cytomorphology using more sensitive methods, including IHC,

MFC, cytogenetics and molecular techniques (25–30). Several

studies have indicated that the detection of MRD after therapy

for HCL has prognostic value. In particular, clearing MRD may

improve long-term outcome in patients with advanced disease

(27). It has been shown that in patients treated with 2-CdA, the

appearance of positive MRD in bone marrow (BM) may predict

disease recurrence in most patients (25, 26). Clinical trials

exploring the potential value of MRD evaluation in HCL

patients treated with novel drugs, including monoclonal

antibodies (MaAbs), immunotoxins and BRAF inhibitors,

alone or in combination with other agents, are ongoing. This

review presents the current state of knowledge on MRD in HCL,

including methodology, clinical results and future directions.
2 Methods of MRD detection in HCL

Measurable residual disease (MRD) is becoming an

important investigative tool in the clinical management of

several hematologic malignancies, including forms of acute

leukemia, chronic myeloid leukemia, chronic lymphocytic

leukemia (CLL) and multiple myeloma. In many hematologic

neoplasms, especially CLL, MRD has been indicated as a

biomarker in clinical trials (31). In HCL, MRD is defined as

the lowest level of leukemic cells that can be identified using

validated methods (28). Currently, MRD detection in

hematological malignancies is based on sensitive methods,

such as identifying tumor-associated immunophenotypic

characteristics by MFC, or evaluating specific genetic markers

by PCR-based methods and next-generation sequencing. In

HCL, MRD is evaluated in peripheral blood (PB) and BM

aspirate or core biopsy. The presence of MRD should be

determined in the context of the sensitivity of the used

techniques and the ability of participating laboratories to

accurately and reproducibly detect it. The sensitivity of each

method is carefully specified (32). In particular, the lowest level

of detectability (LLOD) and lowest level of quantitation (LLOQ)

should be taken into account. For each illustrated analytical

approach, the ranges of attainable LLOD and LLOQ should be

carefully specified, since they vary remarkably both with

technology and with time. It is widely believed that using

0.01%/10-4 as a threshold is less relevant in most hematologic

neoplasms, and that future MRD analyses should use a lower

LOD (preferable <0.001%/10-5) (32, 33). A consensus report on

the potential application of MRD assessment in front-line and

relapse settings and recommendations on the future role of

MRD assessment in HCL has been recently developed by the
frontiersin.org
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International Group of Experts on Measurable Residual Disease

in Hairy Cell Leukemia and should be published soon.
2.1 Immunohistochemistry

Several studies have performed immunohistochemical

staining of BM core biopsy. Bengio et al. compared IHC with

MFC with for MRD detection in HCL patients after therapy with

2-CdA (29). The procedure used the CD20 monoclonal

antibodies L26 and DBA.44 to detect MRD by IHC, and

CD20, CD22, CD25, Sig, CD11c and CD103 Mo Abs by MFC.

The definition for positive MRD was 1–10% CD20/DBA44

scattered or clustered cells with tricoleukocyte morphology for

IHC, and any expression of CD11c/CD25/CD103 in the BM or

PB for FC. The MRD positivity rate for IHC was 46% compared

with 64% for MFC, suggesting that MFC is a more sensitive

technique than IHC.

A recent study by Gupta et al. evaluated the potential of two

IHC staining assays to detect HCL involvement in core biopsies

(30). Bone marrow IHC was performed using PAX5/CD103 and

PAX5/tartrate-resistant alkaline phosphatase (TRAP) dual IHC

stains. The sensitivity of the dual IHC stains was found to be

81.4%, positive predictive value was 100% and negative

predictive value 81.7%. Simultaneously-performed MFC found

the dual IHC allowed the detection of HCL cells even when the

disease burden was as low as 0.02% of all identified lymphoid

cells. In this study, some of the patients found to be positive with

dual IHC staining were also negative for morphologic evidence

of disease based on CD20 and H&E stains, suggesting that MRD

detection by dual IHC stains is more sensitive than single IHC

stains. However, one of the cases with an extremely low disease

burden was found to be negative by dual IHC staining, and

positive by MFC.
2.2 Flow cytometry

In several hematologic malignancies, the most commonly-

used procedure for detecting MRD is flow MFC. In recent years,

significant progress has been made in the methodology and

interpretation of MFC results. Flow cytometry evolved from a

basic (4-color) method to the modern MFC multidimensional

cell analysis with ≥6–8 colors (31). In MRD detection, MFC

allows the simultaneous recognition of several phenotypic

markers (usually 6–8 antigens), and the capacity to analyze

large numbers of cells in only a few minutes. The method now

offers similar sensitivity to the most sensitive molecular

techniques. In HCL, MRD detection by MFC is usually

performed by immunophenotyping based on antibodies

reacting with antigens characteristic for HCL: CD19, CD20,

CD22, CD25, CD79a, CD11c , CD103 and surface

immunoglobulin (32). The use of MFC with these markers has
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sensitivity, typically in the range of one HCL cell per 100 000

cells (1x10-5) (32). MFC is the most commonly-used method, as

it is the most practical and informative. In 2012, the EuroFlow

consortium, presented novel consensus protocols, for

standardization of MFC in the diagnosis of hematologic

diseases (34). Based on these guidelines, recently specific

procedural recommendations for sample collection. An

adequate BM or PB sample (1-2 ml) and an extensive

antibody panel with backbone and lineage markers is needed

is needed for MFC analysis of MRD. In addition, millions of

clean CD45+ cell events should be acquired to ensure adequate

LLOD and LLOQ levels (35). More recently, the International

Group of Experts on Measurable Residual Disease in Hairy Cell

Leukemia developed specific guidelines for evaluation of MRD

in HCL (manuscript submitted). These specify that high-quality

first-pull BM aspirate samples are required for MFC, as

hemodilution can prevent the correct quantification of MRD

in the BM, and to a greater degree than in other leukemias,

mainly due to the limited PB involvement by HCL cells.
2.3 Molecular methods

Originally, molecular methods based on qualitative PCR and

real-time quantitative PCR (RQ-PCR) were used for MRD

detection (28, 36–38), while some studies have used RQ-PCR

for unique immunoglobulin heavy chain (IgH) gene

rearrangements. Recently, more advanced PCR techniques have

been introduced, including droplet digital PCR and whole-

genome sequencing methods known as next generation

sequencing (NGS). Amplification using consensus V primers

(most commonly for the framework 1-3 regions of IgH, [cpPCR])

has a sensitivity ranging from 1x10 -4 to 1x 10-5 (32); however,

PCR methods with clone specificity offer greater sensitivity (1 x

10-6), and some centers use PCR for BRAF V600E mutation (29).

In a study of previously-treated HCL patients, Sausville et al.

found PBMFC (CD19, CD22, CD103, FMC7, CD23, CD19, CD20,

CD11c, CD25, CD45, CD4,CD8,CD3,CD5,CD7,CD2) to bemore

sensitive than clonal analysis using consensus primer PCR (cpPCR)

for the heavy chain gene (37). The results indicate that 31% of the

MFC-positive cases were found to be negative by cpPCR, and only

1%of the cpPCR-positive caseswere negative by FC. To improve the

sensitivityofdetectionofMRD,consensusprimersassaywithCD11c

sorting can be used (28). This method, called real-time quantitative

PCR, was able to detect one HCL cell in 106 normal cells.

Arons et al. compared the sensitivity of MFC and RQ-PCR

assay based on patient-specific primers and probes for the IgH

gene rearrangement, for detecting MRD (38). In this study MRD

assessed by MFC was compared with consensus primer PCR

(cpPCR) and splinkerette PCR (spPCR) after therapy with the

recombinant immunotoxin BL22 (38). The MRD positivity rates

were found to be 74% by FC, 55% by cpPCR, and 98% by spPCR.

Moreover, quantitative levels of spPCR correlated with disease
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status. These findings suggest that spPCR may be most useful

once negativity for MRD has been established by MFC. RQ-PCR

was more sensitive than MFC and the quantified relative level of

MRD correlated with disease status. This study suggests that

patient-specific RQ-PCR is a very sensitive test for MRD in

HCL patients and could be used to monitor maximal response in

patients treated with antileukemic drugs.

Digital droplet PCR (ddPCR) has recently been applied for

the detection of BRAFV600E mutation in HCL (39). This is a

molecular method that allows quantification of DNA mutations

and the detection of the B-RAF V600E mutation and MRD

status. Guerrini et al. used the ddPCR in retrospective study of

47 HCL patients including 27 with classic HCL, two with HCLv

and 18 with splenic marginal zone lymphoma (SMZL) (12, 39).

The study found the sensitivity of dd-PCR to be about half a

logarithm superior to QT-PCR (5 × 10-5 vs. 2.5 × 10-4).

Moreover, the specificity of the dd-PCR was similar to QT-

PCR in classic HCL. The authors suggest that dd-PCR can be a

useful method in the detection and monitoring of MRD in HCL

patients. At the end of the treatment, 33% of patients in CR were

found to be still MRD-positive after 12 months by dd-PCR, and

28% by QT-PCR. These findings suggest that dd-PCR may be

more sensitive than quantitative PCR and can be useful for

detecting MRD in HCL. In a similar study, Broccoli et al.

measured BRAF V600E burden by ddPCR in PB and/or BM in

35 HCL patients at diagnosis, relapse, and CR (12). In PB, the

mean fractional abundance values were 12.26% at diagnosis,

16.52% at relapse and 0.02% at CR, with the corresponding

values in BM being 23.51%, 13.96%, and 0.26%. In addition, four

of six patients evaluated at response were molecularly negative

for BRAFV600E in PB. The mean fractional abundance in PB

evaluated in 14 patients with long lasting CR was 0.05%, and 10

were BRAF V600E negative, indicating that some patients in CR

demonstrate a molecular CR. These results indicate that ddPCR

for BRAFV600E is a useful method for monitoring MRD in

classic HCL.
3 Minimal residual disease in
clinical trials

Clinical trials exploring the potential for purine analogs,

MoAbs, immunotoxins and BRAF and MEK inhibitors to

eradicate MRD have been performed in HCL patients. The

results have been published over recent decades (Tables 1, 2).
3.1 Purine nucleozide analogs

Clinical studies have evaluated MRD in patients with HCL

treated with cladribine and pentostatin, used alone or in

combination with rituximab, and the results are available.
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3.1.1 Cladribine
An early study performed by Konwalinka et al. evaluated

MRD in 11 HCL patients in CR after treatment with 2-CdA (41).

MRD was detected by IHC staining with the monoclonal

antibody (MoAb) B-ly 7 and B-Ly7 (CD103). In all patients,

MRD was found to range from 0.1 to 7.5% (median 0.65%). At a

median follow-up of 29 months (median 19.3), nine patients

remained in CR, while two relapsed 22 and 27 months from the

end of 2-CdA therapy. MFC analysis of HCL cells was also

performed in BM aspirates and PB usingMoAbs, Leu-12 (CD19)

and LeuM5 (CD11c) double-staining. In five of 10 cases, no

hairy cells could be detected in the BM aspirates. In addition, no

hairy cells were detectable in PB in six partly-different cases;

however, hairy cells were identified in BM biopsy by B-ly 7

immunostaining (ranging form 0.1 to 7.5%). In other studies on

patients treated with 2-CdA, by IHC was used to evaluate MRD

in BM biopsies with the B-lineage antibodies L26 and MB2 (26,

52). In addition, BM core biopsies from 34 patients with HCL

were studied before and three months after 2-CdA treatment,

based on L26 (CD20) and MB2, and a T-lineage antibody,

UCHL-1. Five of the 24 (21%) patients in hematologic CR

were found to demonstrate MRD. Among 19 patients

evaluated at one year, only one additional patient was found

to be positive by immunostaining alone (26). In a longer

observation, BM biopsies from 39 patients in CR after a single

course of 2-CdA were evaluated by IHC with anti-CD45RO,

anti-CD20 and DBA44 staining (25). Patients with detected

MRD had a higher probability for disease progression than

those without MRD (P=0.016) indicating that IHC evaluation

of MRD has prognostic value (40).

Mhawech-Fauceglia et al. evaluated the correlation between the

level ofMRD and clinical outcome in patients treated with 0.14mg/

kg 2-CdA in subcutaneous bolus injections for five days (42).

Conventional histologic examination and IHC were performed

on sections of BM stained with CD45, CD20, DBA.44, and CD3

MoAbs in 17 patients with amedian follow-up of 55.4months. The

patients were divided into three groups based onMRD level. Group

1 (seven patients) had MRD levels below 1%, and the patients

remained in CR throughout the follow-up. In group 2 (six patients)

MRD levels ranged from 1% to 5%; of these, three patients

remained in CR at 77.9, 63.8, and 108.0 months. Group 3 (four

patients) had MRD level above 5%; three patients in this group

relapsed at 11.3, 12.1, and 29.6months. This study further confirms

that quantitative assessment of MRD has prognostic value and can

predict dsease relapse. Ellison et al. determined MRD in HCL

patients with CR using immunohistochemical staining for L26 and

DBA.44 in BM biopsies (52). The study evaluated 154 BM biopsies

from 42 patients between three months and 25 months after

treatment with 2-CdA. Using this method, 91% of the biopsies

were found to include DBA.44-positive cells, while 48% samples

indicatedHCL cells based onmorphologic evaluation. Importantly,

similar results were obtained over the 25-month follow up. This
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TABLE 1 Clinical studies with MRD evaluation in patients with HCL treated with purine nucleoside analogs.

Study regimen Phase of
the study/
Disease
status

Number
of

patients

Response
(OR/CR)

Method of MRD
evaluation

MRD negativ-
ity

PFS References

2-CdA 0.1 mg/kg/d by
continuous i.v. for 7 days

Phase 2/15
previously
untreated

33, 31
evaluable.

100%/77% IHC with MoAb B-ly 7
in L26 and MB2, and

UCHL-1

19 from 24 in CR
(80%)

NR Tallman
et al., 1992,
Hakimian
et al., 1993
(31, 40)

2-CdA 0.07 mg/kg/d for 7
days

Retrospective/
relapsed

14 100%/78% IHC with MoAb B-ly 7 0% After median follow-up
19.3m 9 pts in CR and 2
relapsed (at 22 and 27 m)

Konwalinka
et al., 1995

(41)

2-CdA 0.14 mg/kg s.c. x 5
days

Retrospective 17 IHC with CD45, CD20,
DBA.44, and CD3

Gr 1: MRD <1% -
7 pts; Gr 2: MRD
1% to 5% - 6 pts,
Gr 3: MRD>5% - 4

pts

Gr 1- all in CR at 55.4
mfollow-up;Gr 2 – 3 pts in
CR after 77.9, 63.8, and
108.0 months;GR 3 -3pts

relapsed

Mhawech-
Fauceglia
2006 (42)

2-CdA 0.085 to 0.1 mg/kg
per day x 7 days

Retrospective/
untreated

19 with
long CR
selected
from 358

100%/100% FC for CD103, CD11c,
and CD25) on BM

aspirates in 17 or IGH-
PCR

47% Median time from 2-CdA,
16 years

Sigal et al.,
2010 (43)

2-CdA (5.6 mg/m2 for 5
days) followed by R 375
mg/m2

Phase 2/
untreated 11,
relapsed 2

13 100%/100% IGH-PCR assay and FC FC negative in 22/
28 (79%)pts and
PCR in 19/27
(70%) after R,

Median response duration
9 m (4-16 m).

Ravandi
et al., 2006

(44)

R 375 mg/m2/wk x 4 after
pretreatment with 2-CdA

Phase 2/
pretreated
with 2-CdA

8 (2 CR, 4
PR, 2 no
response)

100%%/100%% IGH-PCR 100% 1 yr after the
end of R
treatment.

NA Cervetti et al.,
2004 (45)

2-CdA (5.6 mg/m2 for 5
days) followed by R 375
mg/m2

Phase 2/
untreated

36 (5 with
HCLv)

100%/100% IGH-PCR assay and FC
in PB and BM

76% and64% Mefian not been reached
(range,1+-63+ m

Ravandi
et al., 2011

(36)

2-CdA (5.6 mg/m2 for 5
days) followed by R 375
mg/m2

Phase 2/
untreated 59,
relapsed 14,
HCLv 7

80 CR
untreated100%,
relapsed 100%

and 86%

Multiparameter FC at
the time of response

evaluation

94% 5-Year FFS: untreated
95%, relapsed 100% and

HCLv 64%,

Chihara et al.,
2016 (16)

2-CdA 0.15 mg/kg i.v./d x
days 1-5
+ R 375 mg/m2concurrent
vs delayed

Phase 2/
untreated

68 100%/100%%
vs 100%/88%

FC in PB/BM and BM
immunohistochemistry.

97 vs 24 Median ?94 vs 12 Chihara et al.,
2020 (17)

Pentostatin 4 mg/m2every
2weeks until CR

Phase 1/
relapsed

23 100%/100% FC in PB and BM
frozen sections using a
panel of antibodies,

CD11c, CD25, CD103
and HC2,

57% in BM,96% in
PB

Median 59 m Matutes et al.,
1997 (46)

Pentostatin 4 mg/m2 every
2 weeks for 5 to 25 (median
13) courses

Phase 3/
untreated

27 100% Immunohistochemistry
with CD20 and DBA.44

antbodes

7/27 (26%) 4/7 patients (57%) with
MRD after DCF relapsed
at 18, 21, 44, and 59 m
after CR ad 0/20 without

MRD

Tallman
et al., 1999

(40)

Bendamustine 70 or 90 mg/
m2 for 2 days + R 375 mg/
m2 days 1 and 15 plus for
for six cycles at 4-week
intervals.

Phase 2/
relapsed

12 100%/50% for
70 mg/m2 vs

67% for 90 mg/
m2

FC in PB/BM and BM
immunohistochemistry
with L26, MB2, and
UCHL-1 antibodies.

67% of CRs for 70
mg/m2 vs 100% of
CRs for 90 mg/m2

31 months for patients in
CR

Burotto et al.,
2013 (47)
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fr
2-CdA, 2-chlorodeoxyadenosine, cladribine; BM, bone marrow; CR, complete response; DCF, deoxycoformycin, pentostatin;FC, flow cytometry; HCL, hairy cell leukemia; HCLv, HCL
variant; IGH-PCR, immunoglobulin heavy chain gene rearrangements by consensus-primer polymerase chain reaction; ICH, immunohistochemistry; MoAb, monoclonal antibody; MRD,
minimal residual disease; NA, not available; NR, not reported; PB, peripheral blood; OR, overall response; PCR, polymerase-chain-reaction; RFS, relapse-free survival; RQ-PCR, quantitative
PCR.
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study indicated that immunomorphological analysis is a more

sensitive technique for detecting HCL cells thanmorphology alone.

A study of 358 patients at the Scripps Clinic database by Sigal

et al. identified 19 patients with residual MRD in long-lasting

continuous hematologic CR after a single 7-day course of 2-CdA

based on evaluable BM tissue specimens (43). Of this group,MRD

was evaluated by multiparameter FC analysis based on CD103,

CD11c and CD25 from the BM aspirates of 17 patients. Nine of

the 19 (47%) patients had no evidence of MRD, seven (37%) had

MRD and three (16%) had morphologic evidence of HCL.

3.1.2 Cladribine plus rituximab
Cladribine combined with rituximab is more effective than

2-CdA alone in eliminating MRD in classic HCL and HCLv (16,

17, 44). Rawandi et al. treated 13 patients (two relapsed and 11

previously untreated) with 5.6 mg/m2 2-CdA i.v. for five days,
Frontiers in Oncology 06
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followed by eight weekly doses of rituximab (375 mg/m2) (44).

All patients obtained a CR. MRD was assessed in PB and BM by

immunoglobulin heavy chain (IgH) PCR assay using

framework-1, -2, and -3 primer and FC assay with a four-

color panel of antibodies. MFC confirmed MRD in 11 patients

one month after 2-CdA therapy; however, negative MRD was

observed in 12 of 13 patients after rituximab treatment. PCR

assay confirmed MRD in five of 11 evaluable patients one month

after 2-CdA therapy, and this became negative in 11 of 12

evaluable patients after rituximab. No patients have relapsed,

with a median follow-up of 14 months (range, 6-16 months).

A subsequent study based on 31 patients with classic HCL

and five with HCL variant (HCLv) evaluated a regimen

comprising 5.6 mg/m2 2-CdA for five days, followed one

month later with 375 mg/m2 rituximab once a week for eight

weeks (36). MRD was evaluated in BM after the end of rituximab
TABLE 2 Clinical studies with MRD evaluation in patients with HCL treated with novel agents.

Study regimen Phase of
the study/
Disease
status

Number
of

patients

Response
(OR/CR)

Method of MRD
evaluation

MRD
negativity

PFS References

BL22 3 to 50 microg/Kg every other
day x 3 doses.

Phase 1/
relapsed

31 80%/60% FC and consensus primers
PCR

94% by FC
and 100% by

PCR

36 months for
patients in CR

Kreitman
et al., 2005
(48)

BL22 Phase 1 &2/
relapsed

10 60%//60% FC and patient specific
RQ-PCR

10% by RQ-
PCR

NR Arons et al.,
2006 (38)

Moxe 32 - 50-µg/kg every other day
for 3 doses in 4-week cycles

Phase 1 and
extension/
relapsed

33 88%/%64 FC in BM aspirate 33% 62.8m in MRD-
negative and 12.0 in
MRD-positive
patients

Kreitman
et al., 2012,
2018 (17, 48)

Moxe 40-µg/kg every other day for 3
doses in 4-week cycles

Phase 3/
relapsed

80 75%/41% FC in PB/BM and BM
immunohistochemistry

34% Median 71.7
months.

Kreitman
et al., 2018,
2021 (19, 49)

Vemurafenib 960 mg bid x 16 -18
weeks

Phase 2/
relapsed

54 100%/38% Immunohistochemistry 0 1-Year PFS - 73%;
median RFS 9
months

Tiacci et al.,
2015 (19)

Vemurafenib 960 mg, twice daily for
8 weeks
+ R 375 mg/m2 for 8 doses over 18
weeks

Phase 2/
relapsed

30 100%/87% Allele-specific DNA PCR
for BRAF V600E
(sensitivity, ≥0.05% mutant
copies)

65% 3-year PFS – 78%; Tiacci et al.,
2021 (50)

Vemurafenib 960 mg bid +
Obinutuzumab 1000mg IV on days 1,
8, and 15 of m 2, and day 1 of m3
and 4.

Phase 1/
untreated

9 100%/100% Digital PCR for
BRAFV600E

100% 9.7 m ongoing Park et al.,
2019 (51)

Dabrafenib 150 mg bid for 12 weeks. Phase 2/
relapsed

10 80%30% Immunohistochemistry 0 7-60.5m Tiacci
et al.2021
(19)

Dabrafenib 150 mg bid + Trametinib
2 mg/daay until unacceptable toxicity
or progression

Phase 2/
relapsed,
refractory

43 78%/49% FC in PB and BM aspirates 15% 1-Year PFS - 98% Kreitman
et al., 2018
(51)

Ibrutinib 420 mg or 840 mg/day until
unacceptable toxicity or progression

Phase 2/
relapsed

37 73%/19% FC in PB and BM aspirates
and and BM
immunohistochemistry

3 (8%) 3-Year PFS - 73% Rogers et al.,
2021 (24)
fr
2-CdA, 2-Chlorodeoxyadenosine, cladribine; BM, bone marrow; CR, complete response; DCF, deoxycoformycin, pentostatin; FC, flow cytometry; IGH-PCR, immunoglobulin heavy chain
gene rearrangements by consensus-primer polymerase chain reaction; ICH, immunohistochemistry; MoAb, monoclonal antibody; MRD, minimal residual disease; NR, not reported; PB,
peripheral blood; OR, overall response; PCR, polymerase-chain-reaction; RFS, relapse-free survival; RQ-PCR, quantitative PCR; dabrafenib (150 mg twice daily) and trametinib (2 mg once
daily) until unacceptable toxicity, disease progression, or death.
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treatment. Complete MFC and PCR. In most patients, MRD was

also assessed by consensus primer PCR. MRD evaluated by MFC

in BM was positive in 22 (85%) of 26 patients one month after

treatment with 2-CdA, and this value became negative in 22

(79%) of 28 patients following treatment with rituximab.

Consensus primer PCR testing identified positive MRD in 13

(54%) of 24 evaluable patients after treatment with 2-CdA, but

negative MRD in 19 (70%) of 27 evaluable patients after

completion of rituximab treatment. MFC evaluation failed to

detect MRD in most patients over a longer follow–up. It was

found that PB and BM demonstrated similar results for residual

HCL in 23 (82%) patients, including 10 positive and 13 negative

results. In the remaining five patients MRD was positive in the

BM and negative in PB. These results may indicate that PB is less

sensitive for MRD assessment than BM.

In a phase 2 study, Chihara et al. evaluated the efficacy of 2-

CdA followed by rituximab in 59 patients with untreated HCL,

14 with relapsed HCL and seven with HCL variant (HCLv) (16,

17). Cladribine was given at a dose of 5.6 mg/m2 daily for five

days, followed by 375 mg/m2 rituximab once weekly for eight

weeks, one month after 2-CdA administration. MRD was

evaluated by MFC at the time of response evaluation. The CR

rate was 100% in patients with untreated and relapsed HCL and

86% in those with HCLv. Failure-free survival (FFS) at five years

for each group was 95%, 100% and 64%, respectively. Negative

MRD after treatment was achieved in 94% of the patients. Only

11 (14%) previously-untreated patients demonstrated MRD-

negative disease after 2-CdA alone. However, no patients with

relapsed disease or HCLv achieved negative MRD after 2-CdA

monotherapy. Importantly, in most patients, positive MRD

during the follow up did not result in clinical relapse.

Cervetti et al. analyzed the eradication of MRD with four

cycles of rituximab in 10 HCL patients after pretreatment with 2-

CdA (45). After treatment with 2-CdA, two patients were in CR,

six in partial response (PR) and two without response. Median

time from the end of 2-CdA treatment to rituximab infusion was

5.7 months. Rituximab was given at a dose of 375 mg/m2/week

for four doses. Two months after the end of anti-CD20 therapy,

all evaluated patients were in hematological CR. PCR with two

consensus primers was used for MRD evaluation. Rituximab

increased the percentage of molecular remission to 100% one

year after the end of treatment. All patients but one showed

MRD levels lower than those found before rituximab treatment.

Recently, Chihara et al. presented the results of a long-term

randomized study evaluating the effectiveness of combined

rituximab and 2-CdA therapy in the elimination of MRD (17).

Previously untreated patients with classic HCL were randomized

to 2-CdA at a dose 0.15 mg/kg for five days, with eight

concurrent weekly doses of 375 mg/m2 rituximab from day 1

(CDAR), or delayed rituximab started at least six months after

detection of MRD. MRD was evaluated in PB or BM using FC,

and BM immunohistochemistry. Six months after treatment, CR

rates were 100% for CDAR versus 88% for 2-CdA monotherapy
Frontiers in Oncology 07
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(P =0.11). In addition, MRD negativity rates were 97% versus

24% in BM (P <.0001) and 100% versus 50% in PB (P < 0.0001).

At eight years median follow-up, undetectable MRD in CDAR

group was 94% versus 12% in the delayed rituximab arm.

However, 12 patients in the delayed rituximab arm were MRD

negative at the end of rituximab administration were restaged

between 6 and 104 (median, 78) months later. These results

confirm that combined 2-CdA and rituximab therapy

demonstrates high activity in achieving long-lasting MRD

elimination in previously-untreated HCL patients, and is more

effective than delayed rituximab use after 2-cdA monotherapy.
3.2 Deoxycoformycin

Matutes et al. investigated MRD in 23 classic HCL patients

in CR after treatment with deoxycoformycin (DCF, pentostatin)

(46). MRD was detected in PB and BM by immunophenotyping

based on a panel of four antibodies specific for HCL cells:

CD11c, CD25, CD103 and HC2. MRD was detected in 10 of

23 patients (43%) including seven in BM, one in PB and two in

both BM and PB. However, the MRD-positive and MRD-

negative patients demonstrated similar disease-free survival

(DFS) (P=0.8). Unlike some other studies, relapse could not be

predicted by MRD results; this could be due to the sensitivity of

the method used in the study.

Tallman et al. evaluated MRD in 39 HCL patients treated with

2-CdA and 27 patients treated with DCF (40). The patients treated

with 2-CdA received one course of treatment at a dose of 0.1 mg/kg/

day for seven days by continuous i.v. infusion. The patients treated

with 4 mg/m2 DCF every two weeks received from 5 to 25 (median

13) courses. All patients were in hematologic CR (Table 1). The

criteria forMRD used in this study comprised a lack of HCL cells by

routine morphology of PB and BM core sections, the presence of

CD20- or DBA.44-positive cells equal to or higher than the number

of CD45RO-positive cells, and the detection of 50% of CD20- or

DBA.44-positive cells morphologically consistent with HCL cells.

Seven of 27 patients (26%) treated with DCF demonstrated MRD

compared with five of the 39 (13%) treated with 2-CdA. Among the

patients without detected MRD, no relapses were noted in the DCF

group, and only three relapses were noted out of 34 (9%) in the 2-

CdA group. In total, six of the 12 patients (50%) with detectedMRD

and three of 54 patients (6%) without detected MRD relapsed. In

contrast to the Matutes study above (46), positive MRD was

associated with a higher risk of relapse: the estimated 4-year

relapse-free survival (RFS) was 55% for patients with MRD and

88% for patients without MRD (P= 0.0023).
3.3 Bendamustin

Bendamustine is an alkylating agent active in the treatment

of lymphoid malignancies. It is also effective for the treatment of
frontiersin.org

https://doi.org/10.3389/fonc.2022.976374
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Robak and Robak 10.3389/fonc.2022.976374
classic HCL and HCLv, when used in combination with

rituximab (BR) (47, 53). This treatment was evaluated in 12

relapsed or refractory HCL patients (Table 1) (47). The patients

received rituximab 375 mg/m2 on days 1 and 15 and

bendamustine 70 mg/m2 or 90 mg/m2 on days 1 and 2, for six

cycles every four weeks for six cycles. Overall response rate was

100% for 70 mg/m2 and 90 mg/m2 bendamustine, with three

(50%) and four (67%) CRs in the respective groups. MRD was

not detected in 67% and 100% of CRs, respectively, and all six

patients without MRD were in CR from 30 to 35 months of

observations. MRD was confirmed in BM biopsy by IHC with

L26, MB2, and UCHL-1 antibodies.
3.4 Immunotoxins

Anti-CD-22 immunotoxins, especially BL22 and

moxetumomab pasudotox (Moxe), have been extensively

investigated in relapsed/refractory HCL (48, 49, 54–57). BL22

is a recombinant immunotoxin containing a truncated form of

the bacterial toxin Pseudomonas exotoxin A (PE38) attached to

an Fv fragment of an anti-CD22 monoclonal antibody RFB4

(55). In a phase 1 study, BL22 was evaluated in 31 patients with

PNA-resistant HCL (Table 2); of these, CRs were obtained in 19

(61%) (48, 58). Of the 19 patients achieving CR with BL22, only

two were confirmed to demonstrate MRD by MFC, and none

were found positive by PCR. In a phase 2 study performed in 36

patients, the OR rate was 72% and CR rate 47% (Table 2) (48, 56,

57). Most patients achieving CR to BL22 did not indicate MRD

by either PCR or FC. MRD was then evaluated in 10 patients

from the phase 1 and phase 2 studies, taken before or after BL22

treatment using MFC and patient-specific RQ-PCR (38). RQ-

PCR was positive in all 62 (100%) MFC-positive samples from

10 patients and in 20 of 22 (91%) MFC-negative samples from

six patients. Moreover, the level of MRD quantified by RQ-PCR

correlated with disease status and response to treatment.

Subsequently, Kreitman et al. reported the discovery of the

second-generation immunotoxin Moxetumomab pasudotox (Moxe

(49, 58, 59). Moxetumomab pasudotox is a recombinant

immunotoxin that binds to CD22-expressing cells, followed by

internalization of the drug-CD22 complex (55). The drug was active

and well tolerated in phase 1 and 3 studies performed in relapsed/

refractory patients with HCL. In addition, Moxe can eliminate

MRD in a significant number of patients, translated into greater CR

duration (49, 57, 59). In the phase-1/2 study, Kreitman et al.

analyzed the significance of MRD eradication with Moxe in 33

HCL patients, including 12 from the phase 1 study and 22 from the

extension cohort, receiving 50-µg/kgMoxe every other day for three

doses in four-week cycles (Table 2) (49). MRD was detected by 8-

color multiparametric approach on a 3-laser FACSCanto II based

on cells coexpressing CD19, CD20, CD22, bright CD11c and

monoclonal light chains. Among the 33 analyzed patients, the OR

rate was 88% including 64% CR. CR duration was longer in the
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MRD-negative patients: median CRwas 13.5months in nineMRD-

positive CRs and 42.1 months in 11MRD-negative CRs (P < 0.001).

In a phase 3 trial 80 patients were treated withMoxe, given at a dose

of 40 µg/kg by intravenous (i.v.) infusion on days 1, 3, and 5 of a 28-

day cycle (20). Treatment was continued for up to six cycles, or until

CR with MRD negativity, disease progression or unacceptable

toxicity. MRD was assessed by quantitative MFC analysis of PB

or BM aspiration, and by IHC on BM biopsy. At a median follow-

up of 24.6 months, overall CR was 41%, with 36% demonstrating

durable CR with hematologic response longer than 180 days, and

33% CR longer than 360 days. Twenty-seven (82%) patients with

CR (34% of all patients) were MRD-negative. Longer median

duration of hematologic remission was noted in MRD-negative

patients than in MRD-positive patients (62.8 m vs

12.0 m, respectively).
3.5 BRAF inhibitors

The BRAF kinase inhibitors vemurafenib and dabrafenib are

effective drugs in patients with refractory and recurrent HCL, either

when used in monotherapy, or in combination with CD20

antibodies or MEK inhibitors (Table 2) (8). In a phase-2 single-

arm multicenter study performed in Italy and US, vemurafenib was

given as a single drug, 960 mg twice daily for a median of 16 - 18

weeks (21). Overall response rates were 96% (25/26) after a median

of 8 weeks in the Italian study and 100% after a median of 12 weeks

(24/24) in the US study. Complete response rates were 34.6% (9/26)

and 41.7% (10/24), respectively. However, MRD was detected in all

patients with CR at the end of treatment, evaluated by IHC.

Moreover, the median relapse-free survival (RFS) was only nine

months after treatment discontinuation. Deeper remissions were

obtained when vemurafenib was combined with rituximab (60, 61).

In a phase 2 trial performed in 30 patients with refractory or

relapsed HCL, vemurafenib was administered at a dose of 960

mg, twice daily for eight weeks, in combination with rituximab

(375 mg/m2) for eight doses in 18 weeks (60). MRD was detected

in PB and BM aspirates by means of allele-specific DNA PCR for

BRAF V600E with a sensitivity ≥0.05% mutant copies. The

primary end point was CR at the end of planned treatment,

which was achieved in 26 patients (87%). Moreover,

undetectable MRD was achieved in 17 (65%) of the 26 patients

in CR. MRD negativity correlated with longer survival

without relapse.

In another phase 2 study, vemurafenib was combined with

obinutuzumab in previously-untreated HCL patients (50).

Vemurafenib was given at a dose of 960 mg twice per day for

four months and obinutuzumab at 1000 mg.iv. on days 1, 8 and

15 of month 2, and day 1 of month 3 and 4. MRD negativity was

detected by BRAFV600E using highly-sensitive digital PCR. A

total of 11 patients have been enrolled, of whom nine have

completed treatment. Seven patients achieved MRD negative CR

and two patients PR at the end of treatment. However, both
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patients with PR at month 4 converted to MRD negative CR by

month 7 and 10. All patients remained in remission with a

median follow-up of 9.7 months.

Another BRAF inhibitor, dabrafenib, was evaluated in a pilot

phase 2 study in relapsed/refractory patients (22). Ten patients,

including two previously treated with vemurafenib, received

dabrafenib at a dose of 150 mg twice daily for eight weeks. If

no CR was obtained after eight weeks, patients received an

additional four-week course. Eight patients (80%) responded,

including three with CR (30%) and five with PR (50%).

However, all patients with CR had detectable MRD by

immunohistochemistry in the BM biopsy. The duration of

response in patients with CR was 15.5, 14 and 60.5 months.

Moreover, of the patients in PR, one in five had 42-month

survival on dabrafenib. The combination of BRAF inhibitor

dabrafenib and MEK inhibitor trametinib hence appears even

more effective than dabrafenib alone in V600E-mutated HCL

(22, 51, 62).

In a phase 2, open-label trial, 43 eligible patients with

refractory HCL received a combination of dabrafenib and

trametinib (51). Minimal residual disease status was detected

by flow cytometry in both PB and BM aspirates. At the time of

data evaluation, 35 patients (81%) remained on treatment.

Among 41 patients, 32 (78%) responded, including 20 (49%)

with CR. Six (15%) patients in CR had no detectable MRD while

14 (34%) CR were MRD positive. Twelve (29%) patients

obtained a PR. At the data cut-off; 16 (50%) responses had

lasted 18 months or longer and no patients had experienced

a relapse.
3.6 Ibrutinib

B-cell receptor (BCR) signaling is involved in HCL

pathogenesis (62). In preclinical studies, Bruton’s tyrosine

kinase (BTK) inhibitor ibrutinib inhibited survival,

proliferation and B cell receptor signaling in HCL cells (63).

Recently, ibrutinib was evaluated in a phase 2 study in 28

patients with classic HCL and nine patients with HCL-v (24).

Ibrutinib was administered at a dose of 420 mg daily in 24

patients and 840 mg daily in 13 patients, until HCL progression

or unacceptable toxicity (22). MRD was assessed in each patient

based on FC in the PB and BM. and IHC examination using

specific markers for HCL in the BM. Response was 24% at 32

weeks, and 36% at 48 weeks. The OR rate was 54% at any time

since starting ibrutinib, including seven patients with CR, 13

patients with PR and 10 patients with stable disease (SD). MRD

was not detected in three patients. The response rates were

similar in patients with classic HCL and HCL-v. The estimated

36-month progression-free survival (PFS) was 73% and the

estimated 36-month overall survival (OS) was 85%. However,

MRD was not evaluated in this study.
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4 MRD in HCL variant

In 2008, the World Health Organization (WHO)

distinguished a new variant of hairy cell leukemia (HCLv). It

was subsequently included as a provisional entity within the

spectrum of splenic B-cell lymphomas/leukemia, unclassifiable

(64). In the 5th edition of the WHO Classification of

Haematolymphoid Tumours, the new entity splenic B-cell

lymphoma/leukaemia with prominent nucleoli (SBLPN)

replaces the previous term HCL variant (65). The World

Health Organization reported 810 new cases of HCLv each

year in the United States (3).

HCL-v is characterized by leukocytosis with lymphocytosis,

cytopenias without monocytopenia, and lymphoid cells of

relatively large size with prominent nucleoli. A critical aspect of

HCL-v diagnosis is an atypical HCL immunophenotype without

CD25 expression, and lack of BRAF V600E mutation (66, 67).

Leukemic cells strongly express pan-B-cell markers, including

CD19, CD20, CD22 and FMC7. Surface immunoglobulin

expression is strong, with CD5 and CD23 usually negative. In

contrast to classic HCL, CD25 and CD123 are negative but

CD11c is always positive and CD103 is positive in 2/3 of HCL-

v cases. Moreover, in HCL-v, Annexin A1 expression is negative.

Some patients have activating mutations inMAP2K1, a gene that

encodes MEK1, a downstream component of the BRAF-MEK-

ERK signaling cascade. While there is no genetic mutation

diagnostic of HCL-v, genetic profiling efforts have identified

potential therapeutic targets, such as MAP2K1, KDM6A,

CREBBP, ARID1A, CCND3, U2AF1 and KMT2C.

PNA treatment yields unsatisfactory results for HCL-v

treatment (66, 67). However, greater effectiveness has been

reported for the combination of rituximab and 2-CdA.

Kreitman et al. treated 10 patients with 0.15 mg/kg 2-CDA on

days 1–5, with eight weekly standard doses of rituximab (68).

Nine patients (90%) achieved CR, compared with three out of 39

(8%) treated with 2-CDA alone. In eight patients, MRD

negativity was achieved. The median duration of response to

2-CDA + rituximab was longer than that seen for first-line 2-

CDA alone (72 months vs not reached, P = 0·004). Positive MRD

was noted during the follow up, but this did not result in any

clinically-relevant relapse. Visentin et al. report effective

treatment of three previously-untreated elderly patients with

combined bendamustine and rituximab (53). All patients

achieved a CR with no evidence of MRD, indicated by the

absence of leukemic cells according to post-therapy

immunohistochemical (CD20 and CD22) staging and flow-

cytometry marrow examination. All three patients were in CR

after a median follow-up of 19 months.

Another treatment regimen act ive in HCL-v is

moxetumomab pasudotox (19, 49, 59). In a phase 1 and phase 3

study including six patients withHCL-v,MRDwas independently

evaluated using immunohistochemical staining for the HCL/B
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cell antigens CD20, CD79a, Annexin A1,DBA.44, and PAX-5 and

by flow cytometric analysis of peripheral blood and/or bone

marrow aspirate, according to each site’ s procedures. Although

most of the patients responded to the treatment, no separate

details exist for the subgroup with HCL-v. Future treatment for

HCL-v may include targeted therapies such as ibrutinib,

trametinib, binimetinib and venetoclax, and potentially anti-

CD22 chimeric antigen receptor T cell therapy (CART) (69–

72). Recently ibrutinib was evaluated in 37 patients, including 28

with classic HCL and nine with HCL-v (24). TheHCL andHCL-v

patients demonstrated similar response rates and estimated 36-

month PFS andOS scores; however, the study was not designed to

evaluate difference between both diseases. Ibrutinib is currently

not approved by the FDA in HCL and HCL-V. Patients with

HCL-v do not have a BRAF mutation and cannot be treated with

BRAF inhibitors.
5 Practical considerations
and perspectives

In most studies performed in HCL, investigators were able to

predict relapse in patients with hematologic CR and a positive

MRD test. In addition, eradicating MRD leads to a better

outcome, longer PFS or OS or even recovery (17, 25).

However, some studies indicate MRD was positive in most

patients treated with 2-CdA with very long follow-up (median

16 years) (43). The practical value of MRD monitoring currently

remains unclear, as does the value of a positive test for MRD as a

predictor of clinical relapse. In some studies, patients with

positive MRD after treatment with 2-CdA can survive even

16-18 years without clinical relapse (43). In addition, some

patients treated with 2-CdA remain MRD negative for a

considerable time, and can be considered as cured. In the

future, MRD evaluation can be useful in deciding whether to

continue treatment to achieve deeper response, to prolong CR

duration or even cure. The introduction of novel drugs, such as

immunotoxins and BRAF inhibitors, or novel combination

regimens, such as immunochemotherapy, can be used to

eliminate persistent MRD in some patients and decrease the

risk of relapse (26). MRD monitoring may also be a useful

indicator of the efficacy of novel drugs, as it allows shorter

follow-up than standard criteria like PFS or CR duration, as with

CLL. Currently, MRD is easily detectable by MFC and molecular

techniques, provided the right technical methods are applied.

Moreover, in hematologic malignancies, MRD detection is

currently managed by internationally-applied external quality

assessment/proficiency testing schemes, which confirms that it

has clinical utility besides controlled trials. Recent studies with

novel drugs have demonstrated that CR can be achieved with

undetectable MRD in increase time of response. Several assays

can be used to detect MRD in HCL patients; however, while IHC

analysis of BM specimens used to be more popular, more recent
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guidelines recommend the use of MFC and PCR methods for

detecting the mutant BRAF V600E gene or consensus primers

for IGH (26, 44, 60).

Currently, MFC and allele-specific PCR analysis for mutant

BRAF are recommended for detecting MRD in HCL (73–75).

For patients treated with anti-CD20 monoclonal antibodies,

MRD should be evaluated with other antibodies, such as the

use of other B-cell marker (CD79a) or HCL-specific markers (eg,

VE1) for IHC staining (1, 44). Recently, the ISCCA protocol for

standardized prospective monitoring of patients treated with

anti-CD20 therapies has been developed (73). MFC and

quantitative or digital PCR are significantly more sensitive

than IHC, and these tests should be recommended in the

future studies and clinical practice. While MFC can achieve a

sensitivity below 1/100,000 (1x10-5), investigated cells (75),

molecular methods can achieve 10-6. MFC can be also used for

the detection of MRD in a BM aspirate or PB. However,

consensus needs to be reached regarding minimal level of

detection in MRD in HCL, i.e. from 0.1% to 0.001%. The

optimal sample type used for MRD detection is BM, however

PB is also sometimes used.

Bone marrow core biopsy offers an alternative sample but

immunohistochemical methods have limitations and are difficult

to quantify. MFC appears to be a more sensitive technique for

detecting MRD than IHC. Molecular tests, such as real-time

quantitative PCR for unique immunoglobulin heavy chain (IgH)

gene rearrangements with consensus V primers, demonstrates

sensitivity ranging from 1x10 -4 to 1x 10-5, with even greater

values being noted for PCR techniques with clone specificity for

BRAF V600E (1 x 10-6). Clone-specific PCR (spPCR) is able to

detect one HCL cell among 106 normal cells, and appears most

appropriate for use in patients negative for MRD by MFC. At

present, standardization for MRD detection is unachievable due

to lack of standards and different platforms, reagents and

processing methods.

No study has determined the optimal timing of the MRD

evaluation in HCL patients. It seems rational to assess MRD

when evaluating the response to treatment. The Consensus

guidelines recommend that after 2-CdA therapy, a BM biopsy

should be performed for four to six months after drug

administration, or later if response is delayed and continuing

improvement observed (1). In patients treated with DCF, the

BM biopsy should be performed after optimal clinical response,

including normalization of PB parameters. A similar approach

seems to be rational for novel agents, active in HCL. There is a

need to standardize MRD assessment in HCL, as has been the

case in other hematologic malignancies, including chronic

myeloid leukemia, acute lymphoblastic leukemia and chronic

lymphocytic leukemia.

An expert panel should reach a consensus regarding the

minimal level of HCL cell detection, optimal time point for MRD

measurement, optimal type of samples used for MRD detection

and detection (BM, PB) and optimal methods used for MRD
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evaluation. Currently it is not possible to standardize the

methods used in MRD detection in HCL due to lack of

standards and the wide range of platforms, reagents and

processing methods currently used in different centers.

Although harmonization is possible using different platforms,

reagents and processing methods, it is difficult in the case of rare

diseases. The Hairy Cell Leukemia Consortium is the most

suitable platform for working on a definition of MRD, and

establishing the optimal time point, tissue type and methods to

measure MRD in HCL.
6 Conclusions

Measurable residual disease is defined as the lowest level of

HCL cells that can be detected accurately and reproducibly using

validated methods. MRD negativity is associated with high rates

of durable complete response and long-term outcome may be

improved by clearing MRD in patients with advanced HCL.

However, long-term observation is needed to confirm the

clinical benefit of MRD-negative CR after front-line treatment.

Methods used for MRD detection include MFC, IHC and

molecular tests. In HCL, discrepancies commonly exist

between MRD results in blood aspirate and core biopsy. Bone

marrow core biopsy offers an alternative sample, but

immunohistochemical methods have limitations and are

difficult to quantify. In addition, any MRD detection program

should incorporate quality assurance that can confirm the ability

of participating laboratories to accurately and reproducibly

detect MRD. Available data on the role of MRD in the

management of patients with HCL are not unambiguous and

at present, MRDmonitoring in HCL cannot be recommended in

clinical practice. In the coming years, MRD assessment should

be standardized asis the case in other hematologic malignancies,

including acute lymphoblastic leukemia and chronic

lymphocytic leukaemia (CLL). The Hairy Cell Leukemia

Consortium has recently created a platform to work on a

definition for MRD, and to establish the optimal time point,

tissue type and methods for measuring MRD in HCL. Their
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opinion on the value of MRD monitoring in HCL patients is

expected soon.
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One of the main issues in the treatment of patients with chronic lymphocytic

leukemia (CLL) deals with the choice between continuous or fixed-duration

therapy. Continuous ibrutinib (IB), the first-in-class BTK inhibitor, and

obinutuzumab-chlorambucil (G-CHL) are commonly used therapies for

elderly and/or comorbid patients. No head-to-head comparison has been

carried out. Within the Italian campus CLL network, we performed a

retrospective study on CLL patients without TP53 disruption treated with IB

or G-CHL as first-line therapy. Patients in the G-CHL arm had a higher CIRS
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score and the worst renal function. The overall response rates between the G-

CHL and IB arms were similar, but more complete remissions (CRs) were

achieved with G-CHL (p = 0.0029). After a median follow-up of 30 months,

the progression-free survival (PFS, p = 0.0061) and time to next treatment

(TTNT, p = 0.0043), but not overall survival (OS, p = 0.6642), were better with

IB than with G-CHL. Similar results were found after propensity score

matching and multivariate analysis. While PFS and TTNT were longer with IB

than with G-CHL in IGHV unmutated patients (p = 0.0190 and 0.0137), they

were superimposable for IGHV mutated patients (p = 0.1900 and 0.1380). In

the G-CHL arm, the depth of response (79% vs. 68% vs. 38% for CR, PR and SD/

PD; p < 0.0001) and measurable residual disease (MRD) influenced PFS (78%

vs. 53% for undetectable MRD vs. detectable MRD, p = 0.0203). Hematological

toxicities were common in the G-CHL arm, while IB was associated with

higher costs. Although continuous IB provides better disease control in CLL,

IGHV mutated patients and those achieving an undetectable MRD show a

marked clinical and economic benefit from a fixed-duration obinutuzumab-

based treatment.
KEYWORDS

obinutizumab, ibrutinib, treatment-naive, MRD, economic impact
Introduction

The treatment landscape of chronic lymphocytic leukemia

(CLL) has significantly changed in the last few years thanks to

the discovery of targeted drugs directed against pivotal kinases,

such as BTK [ibrutinib (IB), acalabrutinib, zanubrutinib, and

pirtobrutinib] or PI3K (idelalisib and duvelisib), anti-apoptotic

protein, such as BCL2 (venetoclax), and new monoclonal

antibodies targeting CD19 (tafasitamab) or CD20 (1–3).

Among the latter, obinutuzumab (G), a glycoengineered type

II humanized anti-CD20 monoclonal antibody, displays

increased direct cell death, B-cell depletion, FcgRIIIa binding,

and antibody-dependent cell-mediated cytotoxicity, and it has a

lower capacity to re-localize CD20 into lipid rafts upon binding

and to decrease complement-dependent cytotoxicity (4, 5).

The current frontline therapy of CLL patients can be either a

continuous BTK inhibitor or a fixed-duration G-based therapy

(1). Choosing between the two approaches remains a challenge,

since a continuous treatment might offer better disease control

for some aggressive subsets of patients, balanced however by an

increased rate of long-term adverse events (AEs) and costs for

the health system (6–9). On the other hand, a fixed G-based

therapy is administered for a short period, allowing the

achievement of deep remission, which is likely to be less prone

to the development of resistant clones, but requires an outpatient

clinic admission (10–12).
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There is no head-to-head comparison between IB and G-

chlorambucil (G-CHL) both in clinical trials and in real-life

studies. A cross-trial comparison between Resonate-II and

CLL11 suggests that overall IB seems to be better than G-CHL

(13) in terms of survival analysis and safety profile during the

first 6 months of treatment (grade 3 events, 50% vs. 71%).

Furthermore, there are only a few retrospective studies that

have assessed the efficacy of G-CHL and measurable residual

disease (MRD) in the real-life setting (14–18).

In this study, we performed a retrospective study within the

Italian Campus CLL network comparing the efficacy, MRD rates,

safety, and economic cost of G-CHL vs. IB in treatment-naive

CLL patients. We found that IB provides better disease control in

most cases, but those patients who were IGHV mutated (M-

IGHV) patients and who achieved an undetectable MRD

(uMRD) showed a sustained clinical and economic benefit

from a fixed-duration G-CHL-based therapy.
Methods

Study design

This is a retrospective study aimed at collecting and

analyzing data of CLL patients treated outside of clinical trials

with frontline IB or G-CHL from their reimbursement in Italy
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up to December 2021. Inclusion criteria were (i) diagnosis of

CLL and the need for treatment according to the iwCLL 2018

guidelines (19) and (ii) patients unfit for fludarabine-based

therapy (as evaluated by the treating physician). Exclusion

criteria were (i) unable to sign the informed consent, (ii)

relapsed/refractory patients, and (iii) ECOG >3.

Patients received IB 420 mg daily until progression or

unacceptable toxicity, while G was administered at 100 mg on

day 1, 900 mg on day 2, and 1,000 mg on days 8 and 15 of the

first cycle, then at 1,000 mg of day 1 of cycles 2–6. CHL was used

at the dose of 0.5 mg/kg every 2 weeks or according to

local policies.

Efficacy and survival analyses were focused in patients without

TP53 abnormalities (including FISH 17p13 deletion and/or TP53

mutation). The primary endpoint was progression-free survival

(PFS) with G-CHL vs. IB. Secondary endpoints were overall

response rate (ORR), which included complete remission (CR)

and partial remission with/without lymphocytosis (PR-L and PR),

time to next treatment (TTNT), overall survival (OS), subgroup

analyses, locally performed flow cytometry to assess measurable

residual disease (MRD), AEs, and economic impact of treatments.

In order to compare the costs of the drugs, we used the ex-

factory prices in Italy in 2021: €16.47 for CHL (os, 2 mg each pill,

25 pills in each box), €2,828.63 for G (ev, 1 bottle, 1,000 mg), and

€7,299.59 for IB (os, 140 mg each pill, 90 pills in each box). Costs

of outpatient visits (€14.50), emergency room accesses, and days

of hospitalization (€530/day) were counted based on the regional

prices of reimbursement. Costs of other concomitant therapies

were not included.
Biological markers and MRD analysis

Cytogenetics by FISH (20, 21), TP53 mutation (22), and

IGHV mutational status (23, 24) were performed in all recruited

patients in local accredited laboratories, and their protocols are

summarized in the supplementary materials. An IGHV gene

sequence homology ≥98% was considered as unmutated (U-

IGHV), as opposed to mutated (M-IGHV) (25). For MRD

assessed by flow cytometry, mononuclear cells were marked

according to the ERIC protocol (26) or its update. Briefly,

1,000,000–2,000,000 events were acquired for each sample and

analyzed by Infinicyt™. MRD was considered undetectable

when <10−4 (uMRD), as opposed to detectable MRD (dMRD)

(27). MRD was not performed in patients with progressive

disease (PD) at response assessment.
Statistical analysis

Categorical variables were compared by the Chi-square test

or the Fisher exact test, when appropriate. Continuous variables
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were compared using the Mann–Whitney test. PFS was

calculated as start time of treatment to disease relapse or death

(event) or last known follow-up (censured). TTNT was

calculated according to the start time of G-CHL or IB to the

beginning of a new line of therapy (event) or last known follow-

up (censured). OS was calculated starting from the start of CLL

treatment to death for any cause or last known follow-up.

Survival analyses were performed by the Kaplan–Meier

method, and the Log-rank test was used to compare survival

curves between groups. The prognostic impact for the outcome

variables was investigated by univariate and multiple Cox

regression analysis. In Cox models, data were expressed as

hazard ratios (HRs) and 95% confidence intervals (CIs). All

covariates as well as all variables significantly unbalanced

between the two study arms were jointly introduced into the

same multiple Cox regression model (6). A propensity score

matching analysis (1:1) with and without resampling was also

carried out with a 0.2 caliper width. A p-value < 0.05 was

considered as statistically significant. Correction for multiple

comparison was also applied when indicated.
Results

Patients

We collected data of 284 patients from 16 Italian

hematological centers within the Italian CLL campus network;

104 patients received G-CHL as frontline treatment and 180

patients were treated with IB. As shown in the consort plot, we

excluded 101 patients due to the presence TP53 abnormalities: 1

subject in the G-CHL arm, and 100 patients in the IB arm [the

latter has been previously published (28)]. For the final analysis,

we included patients without TP53 abnormalities: 103 patients

treated with G-CHL and 80 patients treated with IB (Figure 1A).

Patients’ characteristics are summarized in Table 1. Patients

belonging to the two arms were balanced (i.e., p-values > 0.05)

for age (74.7 years vs. 69.2 years), male gender (66% vs. 53%),

advanced Rai stage (59% vs. 46%), increased b2-microglobulin

levels (both 54%), and 11q22–23 deletion by FISH (11% vs.

16%). We observed that more patients treated with G-CHL were

octogenarian (20% vs. 5%, p = 0.0038), were comorbid (median

CIRS 6 vs. 4, p = 0.0009), and had an impaired kidney function

(67% vs. 48%, p = 0.0061). In addition, a higher rate of U-IGHV

patients received IB as frontline treatment compared to G-CHL

(74% vs. 55%, p = 0.0087).

Eighty-three percent of patients received all the eight

scheduled doses of G and chlorambucil; treatment was

reduced or discontinued by 35% of patients. Forty-four

percent of patients decreased the dose of IB and 79% were still

under IB treatment at the last follow-up.
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Efficacy

After 9 months of treatments (i.e., 2–3 months after the end

of the G-CHL), the overall response rate (ORR) according to

iwCLL criteria was 87% for G-CHL and 86% for IB (Figure 1B).

Despite a similar ORR, a higher rate of patients treated with G-

CHL achieved a CR (Table 1, 25% vs. 6%, p = 0.0029) according
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to the iwCLL criteria (i.e., normalized complete blood count,

negative CLL residue in the bone marrow, and lymph node size

<1.5 cm). As expected, in the IB arm, there was a higher rate of

PR/PR-L (Table 1, 62% vs. 80%). Variables associated with the

achievement of a CR were M-IGHV (p = 0.0093), creatinine

clearance (p = 0.0271), and G-CHL therapy (p = 0.006)

(Table S1).
A
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D E

C

FIGURE 1

Study design and treatment efficacy. In the upper panel (A), the consort plot of the study is shown. Among the 284 patients recruited within 16
Italian hematological centers, 101 were excluded due to the presence of TP53 abnormalities, including deletion of 17p13 (17p-) and/or TP53
mutation. In the middle panel, on the left (B), the response rates plot for G-CHL (n = 103) and IB treatments are shown, and on the right (C), the
Kaplan–Meier curve of progression-free survival of G-CHL (n = 103) vs. IB (n = 80) is displayed. In the lower panel, on the left (D), the Kaplan–
Meier curves of time to next treatment is shown, and on the right (E), that of overall survival of G-CHL (n = 103) vs. IB. (n = 80) is displayed.
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Survival analysis

After a median follow-up of 30 months, 24 patients have

relapsed in the G-CHL arm and 3 patients have relapsed in the

IB arm; 17 patients required a subsequent treatment in the G-

CHL arm (14 BTK inhibitors and 3 venetoclax ± rituximab) and

2 patients in the IB arm (both venetoclax ± rituximab); 10

patients died (4 due to sepsis, 2 due to pneumonia, 2 due to CLL,

and 2 due to cardiovascular events) in the G-CHL arm vs. 8 in

the IB arm (3 due to cardiovascular events, 1 due to RS, 1 due to

pneumonia, 1 due to sepsis, 1 due to lung cancer, and 1 due to

unknown cause). None developed a Richter syndrome

transformation with G-CHL, but 1 did in the IB arm.

Overall, IB was associated with better PFS and TTNT but not

with OS compared to G-CHL (Figures 1C–E). The 30-month

PFS was 68% and 98%, and the estimated 5-year PFS was 61%

and 82% for G-CHL and IB, respectively (p = 0.0061). Patients

who received IB as frontline therapy had a 2.5-fold lower risk of

disease progression or death than patients in the G-CHL arm

(HR 2.58, 95% CI 1.38–4.84) (Figure 1C).

The 30-month TNTT was 88% and 97%, and the estimated

5-year TTNT was 61% vs. 97% for G-CHL and IB, respectively (p

= 0.0043). IB was associated with a sixfold decrease in the need

of a second line of treatment (HR 6.07, 95% CI 2.39–

10.44) (Figure 1D).

The 30-month OS was 91% and 96% for G-CHL and IB,

respectively (p = 0.6642), without a significant difference at 5

years (88% vs. 86%) (Figure 1E).

Given that somatic hypermutation of the IGHV gene is one

of the most important prognostic and predictive markers in CLL

(24, 25, 29, 30), we assessed the impact of the IGHV mutational
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status in our patients. In U-IGHV patients, the 30-month PFS

and TTNT were 72% vs. 90% (p = 0.0199, HR 2.58, 95% CI 1.19–

5.57) and 82% vs. 96% (p = 0.0137, HR 5.38, 95% CI 1.73–11.69)

for G-CHL and IB, respectively (Figures 2A, B). The median PFS

was reached by G-CHL-treated U-IGHV patients at 37.7

months, while it was not reached by patients treated with IB.

In M-IGHV patients, the 30-month PFS and TTNT were 82% vs.

96% (p = 0.1900, HR 2.54, 95% CI 0.83–7.84) and 94% vs. 100%

(p = 0.1380, HR 3.93, 95% CI 0.93–13.64) for G-CHL and IB,

respectively (Figures 2C, D).
Impact of depth of response and MRD in
the G-CHL arm

Subsequently, we analyzed the impact of depth of clinical

response and MRD on the survival of patients in the G-CHL

arm. According to iwCLL response rates, the median PFS was

not reached for patients in PR and CR, but it was only 11.2

months for patients who did not respond to G-CHL therapy (i.e.,

classified as SD or PD) (p < 0.001). The 30-month PFS was 79%,

68%, and 38% for patients who achieved CR, PR, and SD/PD,

respectively (Figure 2E). TTNT was not impacted by the type of

response rate (Figure S1A). Conversely, patients with SD/PD

had a shorter OS (median OS, 34.1 months), while it was

superimposable for patients who achieved a CR or PR (30-

month OS, 95.7% vs. 94.9% vs. 61.5%, p < 0.0001, Figure S1B).

Eighty-seven (75%) patients of the G-CHL arm were studied

locally for MRD by flow cytometry in the peripheral blood. No

patient with PD was studied for MRD. Considering all the 103

patients treated with G-CHL at disease evaluation (i.e., month
TABLE 1 Characteristics of recruited patients.

G-CHL n = 103 IBRUTINIB n = 80 p-values

Age (median ± sd, years) 74.7 ± 6.6 69.2 ± 6.9 0.1064

≥80 years (%) 20 (20%) 4 (5%) 0.0038

Male/Female (%) 68 (66%)/35 (34%) 42 (53%)/38 (47%) 0.0935

Median CIRS (range) 6 (2-18) 4 (0-12) 0.0009

Median creatinine cl. ± sd (ml/min) 61.2 ± 17.5 66.7 ± 14.0 0.0011

Creatinine cl. < 70 ml/min (%) 69 (67%) 38 (48%) 0.0061

Rai stage III–IV (%) 62 (59%) 37 (46%) 0.0743

b2-microglobulin >3.5 mg/L (%) 53 (54%) 34 (54%) >0.9999

IGHV status U/M (%) 56 (55%)/47 (45%) 59 (74%)/21 (26%) 0.0087

FISH del11q- (%) 11 (11%) 13 (16%) 0.5417

Overall Response Rate (ORR) 90 (87%) 69 (86%)

CR 26 (25%) 5 (6%) 0.0029

PR/PR-L 64 (62%) 64 (80%)

SD/PD 13 (13%) 11 (14%)
fron
CIRS, cumulative illness rating scale; creatinine cl., creatinine clearance; IGHV status U/M, unmutated/mutated; CR, complete remission; PR, partial remission; PR-L, partial remission with
lymphocytosis; SD, stable disease; PD, progressive disease; sd, standard deviation.
Bold values means statistically significant variables.
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+8 or +9), 43% of patients were able to achieve a uMRD in the

peripheral blood, 43% had a dMRD, and 16% were not assessed

(Figure S1A). Forty-nine patients were assessed for MRD in the

bone marrow, 10% achieved uMRD, 38% had detectable MRD,

and 52% were not studied. Ten patients (20%) had uMRD both

in the peripheral blood and in the bone marrow, 8 (16%) had

uMRD in the peripheral blood but a dMRD in the bone marrow,

and 31 (63%) had a dMRD both in the peripheral blood and in
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the bone marrow. The concordance rate between peripheral

blood and bone marrow assessment was 83%. Variables

associated with uMRD in the peripheral blood were an M-

IGHV status (p = 0.0219) and creatinine clearance (p = 0.0311).

The 30-month PFS was significantly higher for patients

achieving uMRD4, which was 78% vs. 53% for uMRD patients

and dMRD patients, respectively (p = 0.0203) (Figure 2F). The

median PFS was not reached. Patients with dMRD at the end of
A B

D

E F

C

FIGURE 2

Survival analysis based on IGHV mutational status and deep of response. In the upper and middle panels, the Kaplan–Meier curves of
progression-free survival and time to next treatment of IGHV unmutated (A, B); G-CHL, n = 56; IB, n = 59) and mutated patients (C, D); G-CHL,
n = 47; IB, n = 21) are shown. In the lower panel, the Kaplan–Meier curves of progression-free survival of the G-CHL arm (n = 103) according to
the iwCLL response rate on the left (E) and MRD (measurable residual disease) response on the right (n = 87) (F) are displayed.
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the G-CHL treatment had a 2.5-fold greater risk of progression

than those with uMRD (HR 2.49, 95% CI 1.15–5.43).

TTNT was also influenced by the MRD response with an

estimated median TTNT of 43.2 months for patients with

dMRD, while it was not reached for those with uMRD (Figure

S2D). The 30-month TTNT was 96.7% vs. 74.2% for uMRD and

dMRD patients (p = 0.0211) (Figure S1G). Patients with dMRD

were at threefold greater risk of starting a new treatment than

those with uMRD (HR 3.4, 95% CI 1.19–9.92).
Adjusted and propensity score matched
analysis

An unadjusted Cox analysis performed joining all the

patients of both arms (n = 183 patients) showed that IB was

significantly more effective than G-CHL in decreasing the risk of

disease progression (HR 0.37, p = 0.0078) or next line of therapy

(HR 0.14, p = 0.0086) in treatment-naïve patients with CLL

(Table S2). To minimize the confounding effect, we adjusted the

relationship between treatment arms (IB vs. G-CHL), PFS, and

TTNT for all the variables skewed between arms (Table 1), as

well as for all variables significantly associated with PFS and

TTNT in the Cox univariate analysis (Table S2). After

introducing these covariates into a multiple Cox regression

model, the protective effect of IB vs. G-CHL in terms of risk of

disease progression (HR 0.32, 95% CI 0.13–0.81, p = 0.0163) or

next treatment (HR 0.12, 95% CI 0.03–0.61, p = 0.0102) was

confirmed independently of potential confounders (Table S3).

Given the relevant differences of comorbidities and IGHV

status between G-CHL and IB arms, we also performed a

propensity score matched analysis (1:1). New arms were

created, either with (n = 79) or without (n = 50) replacement

balancing differences among treatment groups (Tables S4, S5).

Even after this matched analysis, PFS and TTNT, but not OS,

were longer in the IB arm than in the G-CHL arm (Figures

S2A, B).
Safety and economic analysis

Overall, patients treated with G-CHL had more AEs than

those receiving IB (2.98 vs. 1.68 AE/month of treatment/person),

and less ambulatory outpatient visits (RR 0.17, 95% CI 0.15–

0.20) and hospitalizations (RR 0.42, 95% CI 0.17–1.10).

However, only the number of outpatient visits was

statistically significant.

Ninety-eight percent of patients received premedication

(paracetamol 1 g iv, anti-H1 iv, and methyl-prednisolone iv)

before G infusion. Infusion-related reactions (IRRs) were

recorded in 36.9% of patients, the majority being grade 1 or

grade 2 and only 4.9% being grade 3. Given the retrospective

nature of the study, we focus only on severe (grade ≥3) AEs. The
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most relevant G ≥ 3 AEs were neutropenia (35% vs. 9%, p <

0.0001), infections (13% vs. 16%, p = 0.3188), thrombocytopenia

(12% vs. 1%, p = 0.0004), anemia (6% vs. 0%, p = 0.0002), and

atrial fibrillation (2% vs. 9%, p = 0.0813) for G-CHL and IB,

respectively. No tumor lysis syndrome occurred.

An economic analysis was carried out on 92 patients, 69

patients from the G-CHL arm and 23 patients from the IB arm.

The characteristics of the economic cohort is reported in Table

S6. As shown in Figure S2C, IB was associated with higher

monthly costs, mainly related to the costs of the drug rather than

the management of AEs. The mean total monthly cost per

patient was €1,545 with G-CHL and €5,587 with IB, resulting

in a mean savings per month of €4,074 (95% CI 3,267–4,881).

This difference is mainly due to the savings in first-line drug cost

(€1,029 vs. €5,297) and slightly to the decrease in hospitalization

and/or outpatient visits (€95 vs. €290) (Figure S2C).
Discussion

We gathered data from 183 CLL patients without TP53

abnormalities who were treated with continuous IB or with 6

months of G-CHL therapy as first-line therapy in the real-life

setting. We found that (i) a remarkable number of patients were

able to achieve a uMRD with G-CHL, and (ii) PFS and TTNT,

but not OS, were better with IB than with G-CHL. The similar

OS is likely due to the fact that all patients received targeted

therapies with either a BTK or a BCL2 inhibitor as second-

line therapy.

Furthermore, recent studies found that a high number of

comorbidities, assessed by the CIRS score, have a detrimental

impact of target therapies’ efficacy (31–33). In our study, despite

a relevant number of comorbid patients, they showed a

remarkable outcome with G-CHL.

The IGHV mutational status is one of the most important

prognostic and predicted markers in CLL, being able to identify

patients who might benefit most from a fixed-duration therapy

(6, 10, 30, 34). When PFS and TTNT curves were stratified for

the IGHV status, we found that IB improvement was significant

only for the U-IGHV patients. Conversely, among M-IGHV

patients after a median follow-up of 30 months, the PFS and

TTNT curves of the G-CHL and IB almost overlapped, thus

suggesting that fixed-duration therapy might be a key strategy in

M-IGHV CLL patients in clinical practice.

G-CHL treatment was approved based on the results of the

CLL11 trial, where G-CHL was compared with rituximab-CHL

and CHL alone (35). The median age was 73 years (range, 39–90

years); 61% were U-IGHV, 8% harbored a del17p-, and 16%

harbored a del11q-. All patients had a CIRS score >6 and/or a

creatinine clearance <70 ml/min. G-CHL led to a better PFS,

TTNT, and OS than the other arms. A uMRD in the peripheral

blood at the end of treatment was significantly more common in

patients receiving G-CHL compared to those who received
frontiersin.org

https://doi.org/10.3389/fonc.2022.1033413
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Visentin et al. 10.3389/fonc.2022.1033413
rituximab-CHL (35.8% vs. 3.3%, p < 0.001). Patients with uMRD

had a median PFS of 56.4 months compared to 23.9 months for

patients categorized as MRD intermediate (MRD events between

10−4 and 10−2) and 13.9 months for dMRD patients (p < 0.001).

MRD response was also significantly associated with a better OS

(35). In our study data, we excluded patients with TP53

abnormalities (deletion or mutation) and fewer patients

harbored U-IGHV and/or del11q- by FISH. The presence of

fewer patients with unfavorable markers in our study might

explain the higher uMRD rate (43% vs. 35.8%) and the longer

PFS. Furthermore, G premedication significantly decreased IRR

(66% in the CLL11 trial vs. 36.9% in our study, G3 21% in the

CLL1 trial vs. 4.9% in our study).

Since CHL is a weak partner, G has been combined with

continuous IB [iLLUMINATE trial (36)], continuous

acalabrutinib [ELEVATE TN (37)], or the 12-month

venetoclax [CLL14 (10)] and compared with G-CHL. In all

these trials, the combination of G plus an oral targeted drug led

to higher uMRD rates, particularly for G-venetoclax, and

sustained longer PFS than G-CHL. Remarkably, IRRs were

lower when G was given in combination with BTK inhibitors

(36, 37).

Recently, G-CHL has been compared with the fixed-

duration oral therapy IB-venetoclax (38). The GLOW trial

included patients ≥65 years old or those with CIRS score ≥6

or creatinine clearance <70 ml/min. The uMRD rate in the bone

marrow by next-generation sequencing was significantly higher

for IB-venetoclax than for G-CHL (56% vs. 21%, p < 0.001),

which led to a significantly longer PFS. The improvement in PFS

with IB-venetoclax was consistent across patients ≥65 years and/

or with a CIRS ≥ 6.

A041202 is a phase 3 clinical trial comparing IB ± rituximab

with another chemoimmunotherapy schedule used in elderly

patients, i.e., bendamustine-rituximab (BR) (39). With a median

follow-up of 55 months, the median PFS was 44 months with BR

and was not reached in the IB arms. An economic analysis

showed that costs (associated with protocol-specified resource

use) were significantly higher for patients receiving IB ±

rituximab (mean $189,335 or $219,908; p < 0.0001) compared

to BR (mean $51,345), driven by the higher costs for IB (40).

Quality-adjusted life years were also similar between arms. In

line with our data, IB provides better disease control in patients

with del11q by FISH and U-IGHV, counteracted by a much

higher cost of the drug. IB plus rituximab was also tested against

FCR in CLL patients aged ≤70 years in the E1912 trial (41). With

a median follow-up of 5.8 years, the median PFS was superior for

IB-rituximab (p < 0.001). Notably, only in the E1912 trial did IB-

rituximab improve not only PFS compared to FCR in patients

with IGHV mutated and unmutated gene (HR 0.27, p < 0.001)

but also OS (HR 0.47, p = 0.018).
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The main limitation of our study is its retrospective structure

and the sample size. To minimize selection and attrition biases as

well as imprecise reporting of data inherent to observational

studies, we asked the treating physician to report all CLL patients

treated frontline with G-CHL. We analyzed the reported data,

excluded cases with TP53 abnormalities, and performed

computerized manual consistency checks on each case report

form. Furthermore, given the differences in the clinical

characteristics of patients (Table 1), particularly age and

comorbidities, we applied a propensity score matched analysis

with (n = 79) and without (n = 50) replacement balancing

(Tables S4, S5). The small size of the samples affects the

conclusions of the study. In addition, the median follow-up of

30 months does not allow us to reach conclusions about the OS.

The Italian CLL campus experience with G-CHL confirms the

effectiveness of this treatment, particularly for M-IGHV patients

capable of reaching a CR or a uMRD. Although MRD assessment

is still not recommended by current guidelines, an increasing

number of centers utilize this analysis (42). Continuous treatment

with IB provides longer remission in elderly CLL patients unfit for

fludarabine-based therapy (31). However, it is noteworthy that

some patients can achieve long-term disease control with a less

expensive fixed-duration obinutuzumab-based therapy, which

may represent an option for first-line treatment in countries

with economic constraints (8, 9).
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“Friends and foes” of multiple
myeloma measurable/minimal
residual disease evaluation by
next generation flow
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Siena, Italy, 2Hematology Unit, Siena University Hospital, Siena, Italy
Next Generation Flow (NGF) represents a gold standard for the evaluation of

Minimal Residual Disease (MRD) in Multiple Myeloma (MM) patients at any stage

of treatment. Although the assessment of MRD is still not universally employed

in clinical practice, numerous studies have demonstrated the strength of MRD

as a reliable predictor of long-term outcome, and its potential to supersede the

prognostic value of CR. The possibility to acquire millions of events, in

combination with the use of standard reagents and a good expertise in the

analysis of rare populations, led to high chance of success and a sensitivity of

10-6 that is superimposable to the one of Next Generation Sequencing

molecular techniques. Some minor bias, correlated to the protocols applied,

to the quality of samples and to the high heterogeneity of plasma cells

phenotype, may be overcome using standard protocols and having at

disposition personnel expertise for MRD analysis. With the use of NGF we

can today enter a new phase of the quantification of residual disease, switching

from the definition of “minimal” residual disease to “measurable” residual

disease. This review takes account of the principle “friends and foes” of

Myeloma “Measurable” Residual Disease evaluation by NGF, to give insights

into the potentiality of this technique. The optimization of the quality of BM

samples and the analytic expertise that permits to discriminate properly the rare

pathologic clones, are the keys for obtaining results with a high clinical value

that could be of great impact and relevance in the future.

KEYWORDS

multiple myeloma, minimal residual disease, next generation flow, complete
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Introduction

Multiple Myeloma (MM) is a Plasma Cells (PCs)

malignancy characterized by the uncontrolled proliferation of

pathologic PCs in the Bone Marrow (BM) (1). These cells secrete

a monoclonal nonfunctional immunoglobulin (M protein)

whose accumulation causes the typical clinical symptoms of

the disease, such as hypercalcemia, renal impairment, anemia,

and bone lesions (i.e., CRAB criteria) (2–4). MM median age at

presentation is above 70 years, and its incidence has increased in

the last 25 years, representing today 1-2% of all cancers and

about 10% of hematological diseases (5). In recent years, the

introduction of new drugs has improved Progression Free

Survival (PFS) and Overall Survival (OS) of MM patients

(from a median of 3–4 y to a median of 8–9 y) (6, 7). These

drugs comprise the immunomodulatory (IMIDs) Thalidomide,

Lenalidomide, and Pomalidomide; the Proteasome Inhibitors

(PIs) Bortezomib, Carfilzomib, Ixazomib; the Monoclonal

Antibodies (MoA) Daratumumab, Elotuzumab, Isatuximab,

Belantamab (8). They can be used alone or combined in triplet

or quadruplet, leading to exceptional responses that can reach

90% of the treated patients (9), and they are useful to treat also

aggressive conditions, such as extramedullary disease (10–12).

Moreover, strategies such as consolidation therapy and

maintenance after Autologous Stem Cell Transplantation

(ASCT) contribute to further improvement of PFS and OS

(13–15).

However, in some cases MM patients may still relapse or

develop resistance to treatment regimens, leading to the

necessity of better and higher-sensitive techniques to monitor

Minimal Residual Disease (MRD) and discriminate patients at

risk for relapsing. Indeed, the achievement of MRD negativity

has superseded the conventional Complete Response (CR) and

has been showed as a surrogate endpoint for Progression Free

Survival and Overall Survival (16). Clinicians need to deal with

MRD assessment in routine clinical practice, and its use in

taking therapeutic decisions surely represents one of the most

challenging but fascinating issues to be addressed in the next

years (17). The evident survival progress and better quality of life

of MM patients, associated with higher chances to reach and

maintain deep responses, pave the way to the hope that

Myeloma could not be anymore an “incurable disease” (18). In

this context, Next-Generation Sequencing (NGS) and Multicolor

Flow Cytometry (MFC) are currently the best techniques

available to monitor MM patients and evaluate MRD with

sensitivity up to 10-6 (19–22).
NGS vs NGF

The molecular techniques use the clonal Immunoglobulin

(Ig) gene rearrangement as target for the detection of MMMRD
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levels. The Allele-specific Oligonucleotide Polymerase Chain

Reaction (ASO-PCR) and digital PCR (dPCR) have been

widely substituted by Next Generation Sequencing (NGS),

whose high sensitivity permits to obtain optimal MRD results.

However, the feasibility of this approach is limited by high costs,

long turnaround time, and required specific expertise (23).

Multicolor Flow Cytometry (MCF), on the other hand, is

efficient in detecting and quantifying normal vs. pathologic

PCs by looking at both markers present on the surface of cells

or in the cytoplasm. PCs are characterized by the expression at

high level of two main markers, CD38 and CD138; however,

MM PCs may be recognized because they could express markers

such as CD56, CD28, CD200 and CD117, and, compared with

normal PCs, generally are CD45−low, CD19−, CD27−, and

CD81−.All together, these markers, in addition to the clonal

restriction of MM PCs to just one of two immunoglobulin light

chains, k or l, contribute to easily discriminating normal from

clonal MM PCs (24). Older conventional flow cytometric assays

are now replaced by advanced assays that permit to

simultaneously assess more than eight markers; the great step

forward has been made with the introduction of Next

Generation Flow (NGF), the high-standardized approach,

developed by Flores-Montero et al. (25) which permits, by

acquiring ≧̸107 cells, to reach a sensitivity that is indeed

superimposable to NGS, but with shorter turnaround time and

a substantial costs reduction. Although different combinations of

antibodies have been tested, using in-house cocktails, i.e., 10-

color (26, 27) or 8-color single-tube (28, 29), the protocol

developed by the EuroFlow™ Consortium, has been validated

for MRD definition in several studies (30, 31). This protocol,

based on the use of two single eight-color tubes containing the

markers for MM PCs recognition and combined with the use of

specific Standard Operating Procedures (SOPs) that could

guarantee the best results in terms of MRD evaluation, has

become the gold standard in use in the majority of laboratories.

Table 1 summarizes the characteristics of NGS vs. NGF

techniques for MM MRD measurement. The choice of NGS

and/or NGF for MMMRD evaluation nowadays just depends on

the availability of the laboratory (23, 32, 33), and a hybrid

approach, that permits to simultaneously assess MRD by

looking at both molecular and cellular characteristics of

myeloma clones, could be of great help when appliable (34, 35).
Depth and timing of MRD

The International Myeloma Working Group (IMWG)

defined response criteria in which MRD negativity cut-off was

set at 10-5 detected either by NGS or NGF. Together with the

bone marrow search for monoclonal plasma cells also whole-

body imaging such as PET-CT is important to exclude bone

focal lesions that could be a disease “reservoir” for relapse. Many
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trials are now trying to increase MRD sensitivity to 10-6 which

seems to be a better predictor of PFS (30, 36). Timing of MRD

testing is also important and should be at treatment cessation 3

months after autologous stem cell transplant and every 6 months

thereafter, at least for 2 years if negativity is achieved. This

systematic evaluation could reveal a sustained MRD negativity

status that is crucial for long term remission (37).
Advantages of using NGF

Next Generation Flow has many advantages: it is applicable to

almost 100% of MM cases, it is very fast, requiring just 2–3 h of

processing, and it does not require a diagnostic sample (25). Having

at disposition the analysis of the myeloma clone at diagnosis helps

defining a pre-treatment panel that could be used as a reference for

MRD monitoring (38), as it happens for other leukemias in the so-

called Leukemia Associated Immunophenotype (LAIP) approach

(39–41). However, it doesn’t overcome the possibility of clonal

evolution or the presence of additional subclones that could be

minimally represented or be absent at diagnosis, leading to the

necessity of considering also a Different from Normal (DfN)

approach (42–44). Moreover, in many cases the diagnostic

sample is not available for MM patients. In order to obtain the

proper Limit Of Detection (LOD), calculated as 50 clonal PCs

among 107 nucleated cells, and Limit of Quantification (LOQ),

calculated as 20 clonal PCs among 107 nucleated cells, NGF is done

by acquiring at least 10 million of events per tube (13, 14); in this

way, NGF permits to obtain a high sensitivity of 10−6 that is

comparable and superimposable to NGS assays (18). The two 8-

color pretitred tubes, containing the markers for the recognition of

plasma cells, are constructed to perform a sequential gating based

on the recognition of the backbone markers (CD45, CD19, CD38,

CD138) and the expression of the additional markers that could be

aberrantly present on MM PCs surface (CD56, B2, CD117, CD81,
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CD27, CD28). Moreover, the discrimination of pathologic PCs over

the normal counterpart is done by taking into consideration Ig light

chains restriction. Figure 1 shows an example of analysis performed

by using a BD Facs Lyric cytometer.

The flow-cytometric assays need to be performed

following the Standard Operating Procedures (SOPs), that

have been designed by EuroFlow™ to provide full technical

standardization and best results for MRD evaluation (25, 45–47);

these procedures are applied in order to harmonize reagents,

fluorochromes panels, sample processing procedure, platforms

used and data analysis (24, 48). Once acquisition of data has

been completed by cytometer, subsequent analytic steps are

nowadays performed using softwares that permits to merge

the data from different analyses and compare the expression of

all the markers tested at the different steps of treatment,

correlating results with that of MRD data contained in

databases. In particular, the Infinicyt™ software developed by

EuroFlow™ contains representative flow cytometry data sets

from normal healthy BM samples, processed in different

standardized centers. These databases are at disposition for the

analysis of Acute Leukemias, Chronic Lymphoproliferative

Disorders, Primary Immunodeficiencies and Plasma Cells

Dyscrasias, and allows for an automated analysis of the

complete BM sample, considering both normal and pathologic

populations; in this way, the software provides a photograph of

the whole immune profile, giving information that may be of

great interest and relevant for prognosis of patients and that

permit to be confident about MRD results.

MM MRD evaluation is largely performed on Bone Marrow

(BM) samples; indeed, BM aspirates are still the gold standard

pat ients ’ samples for prognost icat ion and genet ic

characterization. However, they also represent a limitation due

to the aggressiveness of the procedure, to the impossibility, with

a single BM aspirate, to reflect the complex MM heterogeneity

(15, 49), and to the risk of assessing bad quality BM samples that
TABLE 1 NGS vs. NGF characteristics for MM MRD measurement.

ADVANTAGES DISADVANTAGES COMMON FEATURES

NGF 99% Applicability
2-3 h turnaround time
Not require diagnostic sample
Intrinsic hemodilution evaluation
Gives cells characteristics
Wide Availability
High Reproducibility
Harmonization
Lower costs

Requires 2x107 cells
Requires fresh samples
Does not give molecular characteristics

Qualitative analysis
Sensitivity at 10-6

NGS Requires 2-3x106 cells
Does not require fresh samples

Lower Applicability 90%
Long turnaround time (7 days)
Requires diagnostic sample
No hemodilution evaluation
No cell characteristics
Limited Availability
High costs

Qualitative analysis
Sensitivity at 10-6
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might not be representative of the real degree of infiltration of

the disease. For this reason, recently the same MRD analysis has

been tested also on peripheral blood to look at the percentage of

Circulating Tumor Cells (CTCs) that could give an idea of

patient’s responses to therapy (50, 51). Different studies have

already demonstrated the reliability of evaluating CTCs level in

MM patients at diagnosis (52) or during different treatment

regimens. Detection and isolation of circulating tumor cells

(CTCs) is still a developing field in many cancers (53); in case

of myeloma patients, basing on the available literature, it’s a

process that requires around 3-14 mL of blood to obtain ≧̸107

cells per sample necessary to maintain NGF high sensitivity (54,

55), and offer a promising and minimally invasive alternative for

tumor assessment, genetic characterization and extramedullary

dissemination study of MM patients (56, 57). Flow-cytometry

permits to detect CTCs easily, contributing in this way to

understanding the pathogenesis of MM and to enlighten

mechanisms of this disease that could be useful to clarify how

other similar tumor develop and disseminate in the human body

(57, 58).
Bias of using NGF

Flow-cytometric analysis must be performed taking also in

account some minor bias that could, if not considered, reduce

the reliability of Multiple Myeloma MRD evaluations (24). First,

often there is a high difference in terms of bone marrow

cellularity and percentage of plasma cells observed by

cytological analysis compared to flow-cytometry methods. This

apparent inconsistency is due firstly to the fragility of plasma
Frontiers in Oncology 04
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cells themselves, with a pool of plasma cells loss during

laboratory manipulation; secondly, the lower PC count

obtained by flow-cytometry may be related to a possible

hemodilution of the BM samples, with the risk to

underestimate the percentage of pathologic PCs (59). Different

methods have been recommended to accurately evaluate the

degree of hemodilution. These methods are based on an

automated lymphocyte count, PB contamination indices that

takes account of PC percentages, CD34+ cells, and CD10+

neutrophils (60), or numbers of CD16 bright neutrophils (61).

In the case of flow cytometric analysis, NGF can also provide the

qualitative assessment of patient samples by allowing for analysis

of normal B-cell compartments and non-PC BM cells, such as

mast cells or RBCs, which can give us a quite accurate estimation

of the hemodilution of analyzed BM samples. Moreover, the

good clinical practice of sparing the first aspirated sample from

the iliac crest for flow-cytometric assays, could reduce the risk of

performing MRD evaluation from low quality samples (62, 63).

The other major pitfall in MM MRD evaluation by NGF is

correlated to the high heterogeneity of MM plasma cells

phenotype, and to the possibility of a “shift” of plasma cells

phenotype depending on the therapy that patients have been

exposed (64, 65).. It has been widely demonstrated that patients

starting treatment with immunomodulatory drugs may

experience a change on plasma cells phenotype, and the use of

drugs such as Daratumumab, that could mask the CD38

overexpressed molecule, can make even more difficult MM

clones recognition (66). This last problem has been overcome

by introducing CD38 multiepitope antibodies that permit, by

binding to sites that are different from the one occupied by the

drug, to still recognize MM PCs even during treatment with
A B D

E F G H

C

FIGURE 1

Analysis of MM MRD evaluation by NGF. A sequential gating strategy is used; first of all, PCs are gated on CD38 versus CD45 plot (A); then,
CD38+CD138+ total PCs are taken (B), and two gates are created to distinguish MM CD38+CD19- PCs from Wild Type (WT) CD38+CD19+ PCs

(C). For PCST™ tube, we look at expression of CD56 (D) and presence of restriction to just one of the two light chains for MM PCs (E)

compared to WT polyclonal PCs (F). For tube PCD™, we look also at the expression of CD117 and CD81 (G), CD28 and CD27 (H).
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Anti-CD38 monoclonal antibodies (67). Moreover, the

availability of analytic softwares like Infinicyt™ provides the

possibility to analyze automatically MRD data and compare

individual results to the set of data stored into database,

increasing the accuracy and precision of the evaluation, and

helping operators in those situations in which a manual gating

could miss minor phenotypic alterations that could be related to

resistance mechanisms or type of treatment (68). In

combination, when possible, with NGS analysis, this approach

could theoretically give the possibility to monitor adequately

100% of myeloma patients.

Finally, given the peculiarity of flow-cytometry analysis a high

personnel expertise is essential in order to obtain reliable results,

especially in demanding cases in which anti-CD38 therapy,

presence of different pathologic clones or presence of normal

PCs, together with low MRD burden, could lead to bias (69).

Reducing the subjectivity in data analysis requires the work of

experienced laboratories, that are constantly monitored and trained,

and whose results could be assessed and tested by external quality

assurance programs and interlaboratory comparisons.
Discussion and future perspectives

Since MRD detection is now strongly recommended

although not mandatory for guiding clinical treatment

decisions, the possibility to employ NGF to test the depth and

duration of response in Multiple Myeloma patients represents a

great advantage and a great promise for the management of this

disease. Additionally, NGF is an easy and low-cost technique

and therefore is widely used nowadays for the analysis of MM

MRD. The optimization of the quality of BM samples and the

analytic expertise, that permits to discriminate properly the rare

pathologic clones, are the main keys for obtaining results with a

high clinical value that could be of great use in the future. The

minor “foes” associated with the application of this technique

could be easily overcome and do not reduce the value of using

NGF for measurable residual disease of MM patients. With the

use of NGF we can today enter a new phase of the quantification

of residual disease, switching from the definition of “minimal”
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residual disease to “measurable” residual disease, and have the

chance to accurately monitor MM patients and be able to early

recognize those achieving long deep responses that may, in the

future, be considered “cured” from the disease. Finally, the

possibility to employ NGF for analysis of Circulating Tumor

Cells (CTCs) represents a promising and minimally invasive

alternative for tumor assessment and may enlighten mechanisms

of disease dissemination that could be of great interest also

applied to other cancers.
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Measurable residual disease (MRD) is defined as the presence of residual cancer

cells after treatment in patients with clinically undetectable disease, who would

otherwise be considered in complete remission. It is a highly sensitive parameter

which indicates the disease burden and predicts survival in this setting of patients.

In recent years, MRD has gained a role in many hematological malignancies as a

surrogate endpoint for clinical trials: undetectable MRD has been correlated to

longer progression free survival (PFS) and overall survival (OS). New drugs and

combinations have been developed with the aim to achieve MRD negativity, which

would indicate favorable prognosis. Different methods to measure MRD have also

been devised, which include flow cytometry, polymerase chain reaction (PCR) and

next generation sequencing (NGS), with different sensitivity and accuracy in

evaluating deep remission after treatment. In this review, we will analyze the

current recommendations for the detection of MRD, with particular focus on its

role in Chronic Lymphocytic Leukemia (CLL), as well as the different detection

methods. Moreover, we will discuss the results of clinical trials and the role of MRD

in new therapeutic schemes with inhibitors andmonoclonal antibodies. MRD is not

currently used in the clinical practice to evaluate response to treatment, due to

technical and economical limitations, but it’s gaining more and more interest in

trials settings, especially since the introduction of venetoclax. The use of MRD in

trials will likely be followed by a broader practical application in the future. The aim

of this work is to provide a reader-friendly summary of the state of art in the field, as

MRD will soon become an accessible tool to evaluate our patients, predict their

survival and guide physician’s therapeutic choices and preferences.

KEYWORDS

measurable residual disease, chronic lymphocytic leukemia, flow cytometry, ASO-PCR,
next generation sequencing, surrogate endpoint
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1 Introduction

The use of Measurable Residual Disease (MRD) is extensive in

acute myeloid diseases and other conditions where therapy has a

curative objective. Oppositely, it has a controversial role in Chronic

Lymphocytic Leukemia (CLL), which has changed over the years.

Recently, MRD in CLL has raised interest again, thanks to the advent

of target therapies which induce deep molecular response, such as the

BCL-2 inhibitor venetoclax.

Undetectable MRD has been defined by the international

workshop on CLL (iwCLL) and ERIC as the presence of <1 CLL

cell per 10.000 leukocytes (1, 2). Standard staging methods with

cytology can detect the presence of one CLL cell in up to a maximum

of 100 leukocytes (3), therefore they are much less accurate thanMRD

in defining the burden of disease at the end of a treatment. According

to the iwCLL criteria, we can consider a patient in complete remission

(CR) when he/she presents with (i) less than 4x109 lymphocytes/liter,

more than 1.5x109 neutrophils/liter, more than 100x109 platelets/liter

and more than 11.0 grams/deciliter hemoglobin level in peripheral

blood; (ii) absence of lymphadenopathy >1.5 cm and splenomegaly or

hepatomegaly at physical examination; (iii) absence of constitutional

symptoms (1). Nevertheless, the clinical assessment alone is not

considered accurate enough in the era of molecular biology and

personalized therapy: thus, the need for a deeper definition of CR is

emerging in clinical trials and will likely guide treatment choices in

the clinical practice in the next future (4). Starting from the awareness

that disease relapse comes from the expansion of any residual clone

after therapy, we can easily get to the conclusion that the larger is the

number of persistent clones, the earlier will relapse occur. As a matter

of fact, even the smallest amount of residual leukemic cells can lead to

relapse over time, when allowed to expand in the treatment free

interval, if only looking at the clinical outcome of the

previous treatment.

Given that clinical parameters correlate and can predict the PFS of

those patients, a more powerful tool to predict such outcome is the

highly sensitive detection of MRD, which is able to recognize very

small amounts of residual clones in both peripheral blood (PB) and

bone marrow (BM) (5). Nevertheless, determining MRD is more

costly and technically difficult than clinical assessment, which

explains why it is not yet recommended by the current guidelines

and not routinely used in the clinical practice.

In the era of targeted therapies, monoclonal antibodies and

combinations of such, the deepening of the response to treatment

measured by MRD is considered an endpoint to establish the

superiority of a therapeutic approach over another (6). To note,

different treatment platforms obtain different MRD levels. The old

chemo-immunotherapy regimen with Fludarabine-Cyclophosphamide-

Rituximab (FCR) induces a long-lasting CR, at times accompanied by
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MRD negativity, which of course represents the most important

predictor of survival (4). On the other hand, new targeted therapies

obtain a heterogeneous variety of responses. Bruton tyrosine kinase

receptor (BTK) inhibitors, including ibrutinib and acalabrutinib, obtain

a rapid nodal reduction and increase of the hemoglobin and platelets

levels, but are not able to reach MRD at any time, rather they induce

partial remission (PR) which needs continuative administration of

therapy, until relapse or toxicity, to maintain such response (4).

Contrarily, the BCL2 inhibitor venetoclax, in combination with anti-

CD20 antibody, has shown durable MRD negativity and a promising

long-lasting progression-free survival in relapsed and refractory patients

(7). Furthermore, the combination of BTK and BCL2 inhibitors

(ibrutinib and venetoclax) achieves even deeper MRD negativity, and it

has a favorable prognostic profile in terms of PFS, but it is now available

only in few clinical trials (8).

In this review, we will go through all the laboratory methods that

allow the definition of MRD with different rates of sensitivity as well as

different costs and technical requirements. We will try to summarize

the state of art in the detection of MRD on PB rather than on BM. We

will also focus on the impact of MRD on both traditional and emerging

therapeutic approaches, and its relevance to tailor the treatment based

on patients’ age, clinical status, and future perspectives.

We strongly believe that MRD has a crucial impact on the

definition of personalized therapeutic strategies, as new clinical

trials involve the detection of MRD to delineate next steps of

patients’ management. Therefore, it is important for any clinician

to have a clear idea of the meaning of MRD detection from a technical

point of view, but more relevantly, as a tool that will possibly be

introduced in real life to guide and refine treatment choices.
2 MRD detection methods

Thanks to the technical advances of the last years, different

methods to determine the burden of residual disease in CLL

patients after treatment are available. At the same time, the lack of

standardized guidelines makes the comparison between different

clinical trials hard, due to the heterogenicity of techniques used and

their sensitivity in detecting persistent clones (2). We will try to

display the currently available options according to updated

recommendations. Table 1 summarizes the difference between the

three methods in terms of sensitivity, target, and standardization.
2.1 Flow cytometry

Multiparametric flow cytometry allows automated phenotyping

of cells with fluorescently labelled antibodies (9). Panels of antibodies
TABLE 1 Summary table comparing the sensitivity of the three laboratory methods (flow-cytometry, PCR and NGS) in terms of sensitivity, target,
and standardization.

Flow cytometry ASO-PCR NGS

Sensitivity MRD5 MRD6 MRD5

Target CD19, CD20, CD5, CD43, CD79b and CD81 Ig hypervariable region CDR3 sequence of the Ig

Standardization ERIC 2016 none none
frontiersin.org

https://doi.org/10.3389/fonc.2023.1112616
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Benintende et al. 10.3389/fonc.2023.1112616
linked to different fluorochromes can identify a specific CLL

phenotype, characterized by expression of certain surface antigens.

The first attempts to measure minimal disease evaluated the

clonality by immunoglobulin light chain (k or l) restriction on a

CD19/CD5 co-expressing population (10). This approach, virtually

applicable to all CLL cases, later demonstrated a low sensitivity and

was deemed unsuitable for predicting response status according to

later iwCLL/NCI criteria or identifying cases with no detectable

MRD (11).

The standardized cytofluorimetric approach for the detection of

MRD dates to 2007, but it still gives valuable information to assess the

presence of residual cells on PB (2). Cell preparation was performed

by a whole-blood lysis method with or without fixatives such as

ammonium chloride or FACSLyse, to allow quantitative enumeration

of CLL cells. The antibodies used to detect MRD were against CD19,

CD5, CD20, CD38, CD22, CD81, CD43, CD79b, combined in four

different four-color tubes: one clonality tube (CD19, CD5, surface

light chains k or l), one limit of detection tube (CD19, CD3, CD45,

CD14) and three tubes dedicated to MRD enumeration

(2) (Figure 1A).

This first protocol was suitable for the detection of 1 cell in 10.000

lymphocytes in PB within an adequate sample of 1 to 2 million cells,

thus a sensitivity of 0.01%/10-4, also termed MRD4 according to

Wierda et al (6). Even though this four-colors set of antibodies

showed good performance and multiple standardization measures

were adopted (2), there was a significant inter-laboratory variability

and the MRD determination was still highly operator-dependent.

Moreover, this approach needed four/five tubes, which further

increased the risk of procedural errors.

With the evolution of flow cytometry instruments, more

parameters became readily available and the MRD panel was

improved to two 6-color tubes (CD19/CD5/CD20/CD3/CD38/

CD79b and CD19/CD5/CD20/CD81/CD22/CD43; Figure 1B) (11).

This approach reduced the amount of time and sample required for
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MRD enumeration and reached the ability to quantitatively detect

residual disease in the 0.001–0.01% (MRD4-MRD5) range.

In 2016, the European Research Initiative on CLL (ERIC) further

validated a standardized flow cytometry approach to reliably detect

CLL clones up to the level of 0.001% (MRD5) on a single tube: this

assay includes a core panel of six markers, namely CD19, CD20, CD5,

CD43, CD79b and CD81, as summarized in Figure 1C. Although the

initial panel was designed with 8 colors, including CD22 and CD3,

these markers were ultimately considered not essential, and the latter

was deemed informative only if a very high accuracy (<10-5) was

necessary (Figure 1C, arrows). This system was designed to work

independently from reagents and laboratory equipment (e.g., by

processing the ratio of median fluorescence intensity of the positive

signal over a negative signal, rather than raw fluorescence intensities),

and could be validated locally, in different laboratories, using normal

PB. To confirm the reliability of this 6-color, 1-tube method, a parallel

analysis of high-throughput sequencing with ClonoSEQ assay was

performed and showed good concordance with flow cytometry results

at the MRD4 level, which represents the MRD threshold defined by

the iwCLL guidelines in 2008 (12). Nevertheless, this method

demonstrated to provide good qualitative results up to a detection

limit of 1 in a million (10-6) (13). The only significant drawback of this

setup is that can be insensitive in presence of atypical phenotypes,

therefore the knowledge of the pre-treatment phenotype is advisable

(11). An example of a flow cytometry panel for MRD detection can be

visualized in Figure 2.

Flow cytometry has the advantage to be a rapid method which

works for most of typical CLL cases with very good sensitivity.

Moreover, these instruments are widespread in most diagnostic

laboratories, and they are operator friendly and easy to run, making

this technique the preferred choice of most clinical investigators. On

the other hand, the disadvantage is that samples must be processed

within 48h and in any case not later than 72h, so fresh blood

preparations are needed, and no cell storage can be performed (2, 14).
A B C

FIGURE 1

Evolution and requirements for flow cytometry panels for MRD testing in CLL in 2007 (A), 2013 (B) and 2016 (C).
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Over time, several integrations and extensions have been

proposed, to increase the sensitivity and limit of detection of the

ERIC 6-color panel, also incorporating novel markers such as ROR1,

CD200, CD160 (15–17) [also reviewed in D’Arena et al. (18)].

Innovative next-generation flow cytometry methods, capable of

recording tens of millions of events and coupled with advanced

analysis software, may potentially allow the reach of MRD6 in the

next future (19). However, these systems will likely require significant

hardware and software capabilities, initially limiting the application of

these innovative technologies to few specialized laboratories.
2.2 Polymerase chain reaction-based
methods: Allele-specific and digital PCR

Given that CLL is caused by aberrant proliferation of a specific B-

cell population, each B-cell clone can be identified on a genetic level

based on its uniquely rearranged immunoglobulin (Ig) genes within

hypervariable regions. These regions are a unique characteristic of the

leukemic cell; therefore, allele specific oligonucleotide (ASO) PCR

takes advantage of the patient-specific Ig gene rearrangement to

identify CLL clones and detect MRD. In this method, ASO primers

matching the hypervariable region of each leukemic cell are used with

reverse consensus JH germline primers and a fluorescent hydrolysis

probe annealing to a downstream family specific JH region on a real-

time thermal cycler. A graphical representation of the procedure can

be visualized in Figure 3A, while the output of this procedure is shown

in Figure 3B. Calculation of the MRD level is based on comparative

analysis between follow-up samples and standard cells in ASO from

polyclonal DNA, normalized to albumin PCRs as internal control

(20). Guidelines for the interpretation of ASO-PCR results are

available and attempt to standardize the results across different

laboratories. Application of such guidelines and strict quality

control assure the comparability of results obtained from different

clinical trials (21).
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The sensitivity of this method has been attested between 10-4 and

10-5. Moreover, this method can be applied to frozen samples, which

can be stored for a long time, and does not require processing of fresh

samples (20). On the other hand, this method is intrinsically

dependent on the amount of amplified DNA: in this regard, reliable

clonotype identification requires that at least 3-5 copies of target DNA

should be present within the sample; an adequate amplification would

therefore need at least 100 nanograms of DNA for MRD4, 1

microgram for MRD5, 10 micrograms for MRD6. Furthermore,

since ASO-PCR is tailored to be patient-specific, a representative

pathological sample is required to set-up of the method, for positive

controls in subsequent testing, as well as for the standard dilution

curve for determining limit of detection and quantitative range in

each experimental session; running out of such material would impair

the quantitative power of ASO-PCR, which could be used only for

qualitative assessment of MRD. Overall, this method can be very

powerful but requires an expertise which is not available in any

laboratory, thus rendering its use more difficult in the routine

clinical practice.

An improvement of PCR-based detection is digital PCR [see also

Dogliotti et al (22)], in which single DNA molecules are encapsulated

in a confined space and amplified in presence of a fluorescent reporter

(intercalating dye or hydrolysis probe); the resulting amplification

will theoretically be either positive, if target DNA is present, or

negative, hence the term “digital”. The main advantage is that this

is a quantitative technique, as it does not require a standard curve

(hence does not possess a quantitative range) and is independent of

reaction efficiency. A sensitivity up to MRD5, and possibly MRD6, is

reached when the amplification is selective for known specific

alterations, as BCL2-IgH translocation in Follicular Lymphoma, or

MYD88 L265P Waldenström Macroglobulinema (23, 24). This is not

however the case of CLL, where a single lesion, acting as a tracker, is

not present; in this case, patient-specific lesions may be exploited to

monitor the disease’s trajectory, but the emergence of novel clones

without the monitored mutations must be taken into consideration.
A

B

FIGURE 2

Example of the gating strategy employed for MRD detection in the flow cytometry panel. The green dots represent normal B cells, while the violet dots
represent CLL cells. The gates are set up hierarchically. (A) Singlets are selected on FSC-H/FSC-A; the same population is refined on SSC-H/SSC-A;
leukocytes are selected through the CD45 staining on CD45/SSC; mononuclear cells are selected on FSC/SSC (P1) and B cells are selected on CD19/
CD20 (P2). (B) CLL cells are further characterized according to CD5/CD79b (P3), CD81/CD20 (P4), CD5/CD20 (P5), CD43/CD81 (P6) and CD5/CD200
(P7) expression. Courtesy of Prof. Giovanni D´Arena and Dr. Antonella Aiello.
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2.3 Next generation sequencing

Ultra-deep next-generation sequencing (NGS) has emerged in

recent years as an important diagnostic tool for the quantification of

tumor burden, since many patients with undetectable MRD at flow

cytometry and/or ASO-PCR, which both have a 10-4 sensitivity, as

recommended by the iwCLL guidelines, relapse after few years,

especially if their disease is characterized by high-risk molecular

features such as unmutated IGHV. NGS can identify residual cells

by amplification of all VDJ sequences from a single DNA sample (25,

26); the method requires previous knowledge of the specific CDR3

sequence of the immunoglobulin expressed by the pathological clone,

which the investigator can later search for in MRD samples.

Compared to ASO-PCR, NGS has the advantage that the

amplification does not require patient-specific primers but is only

dependent on the amount of loaded DNA, for which the MRD5 target

(1 microgram of input DNA) is generally achievable (27). Therefore,

undetectable MRD by NGS represents nowadays the most reliable

predictor of survival in CLL patients. The main drawback is that NGS

is not widely available, and economically viable only for centers facing

significant volumes of testing; on the other hand, these centers would

be equipped with adequate instrumentation and automate most of the

analyses, significantly reducing the raw costs of a single test and the

handling time and building up the necessary expertise to analyze NGS

data efficiently. Therefore, at present, one of the optimal contexts for

NGS in MRD evaluation resides within clinical trials, which are likely

to centralize the most expensive analyses, thus also guaranteeing some

degree of standardization. The absence of highly standardized

commercial methods limits the applicability of NGS in the routine

clinical practice and this is probably why, for now, it is not mentioned

by the iwCLL recommendations (1).

The current landscape of technologies for MRD detection is

quickly approaching a steady MRD5 detection limit, and the final

choice of method is ultimately dependent on each laboratory’s set up.

Flow cytometry may be most suited for laboratories with an

established cytometry facility, standardized instruments and trained

personnel; however, it has a short “vein-to-brain” turnaround time,
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and the result can be produced within a few hours. Oppositely, ASO-

PCR is a method that can be implemented in most molecular

laboratories as it does not rely on a particularly advanced

equipment if applied through real-time PCR, whereas digital PCR is

more limited to specialized centers; NGS is equally, if not more,

elective to specialized facilities, however it has the significant

advantage that the investigator can search for the CDR3 sequence

of the pathological clone directly within the sequencing output,

providing higher sensitivity and specificity (28). Overall, these

techniques may represent different but complementary tools for a

comprehensive MRD detection, providing molecular detection where

the cell phenotype may vary (for example CD20 expression after

therapy with rituximab) or, vice versa, rely on a stable phenotypic

marker in presence of ongoing somatic hypermutation and intra-

clonal diversification of IGHV genes which may hamper patient

specific CDR3 recognition.
3 MRD detection in peripheral blood vs
bone marrow

CLL is characterized by the accumulation of leukemic cells in PB,

BM and lymphoid tissues as spleen, liver, and lymph nodes (29).

Therefore, the presence of leukemic cells in different tissues claims for

clarification of the best candidate samples to determine MRD. MRD

status is strongly prognostic for PFS and OS both in PB and BM of

CLL patients after treatment (30). Nevertheless, the multi-

compartment nature of CLL suggests the possibility of discordant

MRD results on different tissues; thus, the sampling site may affect the

prognostic ability of this parameter, and the choice depends on many

factors such as timing of the sampling and treatment status. In

general, it has been demonstrated that concordance between PB

and BM MRD status is ~85% at the 10-4 threshold (6). For the

anti-CD20 monoclonal antibody Rituximab, the concordance lowers

to 79%: the sensitivity of MRD detection in BM is higher than that of

PB, with added value for predicting prognosis or treatment effects

(31). Nevertheless, the collection of BM samples is invasive and
A

B

FIGURE 3

Graphical representation of ASO-PCR procedure (A) and output (B).
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painful for patients, so it cannot be used in routine follow up;

therefore, samples from PB are commonly used instead.
4 Clinical significance of MRD in the
era of targeted therapies

Some history of CLL treatment may be helpful to understand the

role of MRD in the current and future clinical practice. Before 1990,

any CLL treatment aimed at palliation: they included alkylating

agents as chlorambucil or purine analogues as fludarabine in

monotherapy. The advent of combination treatments including

both fludarabine and cyclophosphamide improved the survival

outcomes and response rates, even if the real revolution happened

in 2010 with the introduction of the anti-CD20 monoclonal antibody

rituximab, which combined to fludarabine and cyclophosphamide

(FCR) gained great results in terms of survival (32). Around 2014, the

combination of obinutuzumab and chlorambucil was devised for

elderly and frail patients (33). In the same year, the anti-BTK

inhibitor ibrutinib (34) opened the era to targeted therapies,

followed later by the anti-BCL2 inhibitor venetoclax (35). The

advances of CLL treatment led to improvement of the long-term

outcomes in terms of survival and depth of response, which is why

nowadays MRD became a valuable instrument in the post-treatment

evaluation of patients (36). MRD can have a role as surrogate primary

endpoint in clinical trials, since it is an accurate indicator of treatment

efficacy which predicts PFS (36). On the other hand, it can be used as a

determinant of future treatment choices since patients who do not

achieve MRD-negativity after treatment can benefit from further

treatment or new molecules to achieve a deeper remission and

prolong PFS (5, 37). The timing of MRD assessment can vary

depending on the duration of the treatment and on the use of

continuous or fixed time regiments, for which MRD is usually

measured at the end of the treatment. Figure 4 summarizes the role

of MRD in the clinical practice.
4.1 MRD assessment after
chemo-immunotherapy

The evaluation of MRD with the recommended sensitivity of 10-4

can predict survival of naïve patients undergoing first line treatment

with chemo-immunotherapy. Several studies investigated the results

in term of MRD negativity after different combination therapies, all

proving that MRD is an independent predictor of survival (30).

Lamanna et al. investigated the prevalence of MRD negativity in

patients treated with sequential fludarabine, high dose

cyclophosphamide and rituximab as first line, and found 56%

prevalence of MRD negativity by flow cytometry and 33% by PCR

in PB (38).

The German group established the addition of rituximab to

fludarabine and cyclophosphamide in 2010, through the CLL8 trial

which achieved great results compared to the past (32). Subsequently,

Boettcher et al. analyzed the clinical significance of flow cytometric

MRD between the arms of the CLL8 trial, quantifying MRD in both

PB and BM and categorizing patients into low/undetectable (<10-4),
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intermediate (10-4-10-2) and high (>10-2) level of MRD detected on

PB. PFS was 68.7% for the low MRD group and 40.5% for the

intermediate and high MRD groups. The results of this analysis

showed that the level of MRD after FCR is predictive of both OS

and PFS, which validates the use of MRD as a marker to assess the

efficacy of such treatment (39).

The German group also investigated the prevalence of MRD-

negativity in previously untreated patients undergoing treatment with

bendamustine and rituximab (BR): 57.8% of them obtained MRD

negativity below 10-4 in PB, which was associated to longer event-free

survival compared to patients who did not achieve such deep

remissions (40).

The CLL11 trial by Goede et al. investigated the prevalence of

MRD negativity evaluated by PCR on PB, which was 37.7%, and BM,

which was 19.5%. Also, in this case, MRD negativity was predictive of

improved event-free survival (33).
4.2 MRD assessment after BTK inhibitors

The long-lasting experience with chemo-immunotherapy led to

the awareness of the importance of MRD in CLL as predictor of

treatment outcome and survival. The introduction of ibrutinib has

opened the way to target therapies, initially as second line in relapsing

CLL (34) and then as first line in previously untreated CLL patients

(41). Its biological mechanism of action involves binding of the

ibrutinib molecule to the ATP active site of the BTK which blocks

the constitutionally activated BCR signaling involved in cells survival

and expansion (42). Despite the encouraging results in terms of

survival, ibrutinib is characterized by the maintenance of MRD

positivity on the long term, thus requiring continuous therapy until

either progression of the disease or toxicity of the drug. After its

introduction, given the excellent clinical response but poor result in

terms of MRD negativity, the role of MRD as predictor of survival was

questioned (36). According to Ahn et al., MRD negativity was

achieved only by 10.2% of both treatment naïve and relapsed/

refractory patients after 5 years of continuous ibrutinib

administration, but this result was surprisingly correlated to great

outcomes in terms of PFS (74.4% of patients) and OS (85.3% of

patients). The CR rate was 37.5% in the low MRD group and 21.3% in

the high MRD group, but PFS was not statistically different between

the 2 groups. Therefore, when it came to treatment with ibrutinib,

MRD was not predictive of poor event-free survival in patients treated

with monotherapy (43).

The combination of ibrutinib and rituximab did not obtain better

results compared to monotherapy in terms of MRD negativity tested

in PB at 12 months (8.3% vs 59.2% in patients treated with FCR):

nevertheless, PFS was 65% and OS was 83%, lower with ibrutinib and

rituximab than with chemo-immunotherapy, so again MRD was not

predictive of lower event-free survival (44).

The ILLUMINATE trial investigated the efficacy of the

combination of ibrutinib and obinutuzumab compared to

chlorambucil and obinutuzumab. This study obtained the best

result in terms of MRD negativity for ibrutinib, which was 30% in

PB (vs 20% in the Chl-Obinu group) and 20% in BM (vs 17% in the

Chl-Obinu group).
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Finally, the HELIOS trial investigated the combination of

ibrutinib with BR compared to BR alone. The rate of MRD

negativity given by the combination of ibrutinib and BR was 26.3%

(45), so also in this case it was significantly higher than for ibrutinib

monotherapy and combination of ibrutinib and rituximab.

Figure 5 summarizes the rate of MRD negativity obtained by

ibrutinib monotherapy (43), ibrutinib combined with anti CD20

monoclonal antibodies (44, 46) or with BR (45).
4.3 MRD assessment after BCL2 inhibitors

The anti-BCL2 inhibitor venetoclax, on the other hand, is

characterized by higher rates of MRD negativity, also in this case

defined as less than 10-4, in CLL. A pooled analysis of patients

enrolled in different clinical trials, which we will report below,

showed an overall 42% of confirmed undetectable MRD in either

PB, BM or both. The median time to obtain MRD negativity was 18

months and 90% of patients obtained MRD negativity within 24
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months, while no patient obtained MRD negativity after 24 months

without dose escalation. Deletion of chromosome 17p correlated, as

expected, to a lower probability to obtain MRD negativity and

consequently to a higher rate of relapse. Of those who did not

obtain MRD negativity, 78% patients developed progressive disease

at a median time of 19 months, confirming that, also upon treatment

with venetoclax, MRD is a strong predictor of event-free survival (47).

The efficacy of venetoclax monotherapy has been investigated in

studies which included patients with heterogeneous chromosome 17p

deletion and TP53 status as well as previous exposure to BTK

inhibitors (48). The M13-982 study investigated CLL patients with

relapsed/refractory (R/R) disease and with 17p deletion, a small

number of whom had previously received BTK inhibitors: 20% of

the enrolled patients obtained MRD negativity in PB (35). The M14-

032 study included CLL patients who previously failed treatment with

BTK inhibitors, regardless of their mutation status: 42% of the

enrolled patients obtained MRD negativity in PB. Moreover, 71% of

patients who progressed after treatment with BTK inhibitors

responded to venetoclax (49).
FIGURE 4

Role of MRD in the clinical practice and potential use in routine management of CLL patients.
FIGURE 5

Rate of MRD negativity obtained by ibrutinib monotherapy, ibrutinib combined with anti CD20 monoclonal antibodies or with BR.
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The combination of venetoclax and rituximab as fixed therapy for

24 months in relapsed/refractory CLL has been investigated by the

MURANO trial, which compared it to the traditional chemo-

immunotherapy with bendamustine and rituximab. This study

showed an encouraging high rate of MRD negativity in PB at 9

months for the venetoclax and rituximab group (62.4%) compared to

the BR counterpart (13.3%), which strictly correlated with a longer

event-free survival (84.9% vs 34.8% at 2 years). Within the

venetoclax-rituximab arm, patients with undetectable MRD

achieved 85% PFS, while those with detectable MRD 65% (50).

The CLL14 trial investigated the efficacy of venetoclax and

obinutzumab, as fixed therapy for 12 months, against chlorambucil

and obinutuzumab in first line. This study reported a 76% of MRD

negativity at end of treatment in the group who received venetoclax

and obinutuzumab, which correlated to a longer PFS compared to the

Chl-Obi group, with a 0.31 hazard ratio (CI 0.22-0.44) (51).

The CLL13 trial investigated the outcome of four different

therapeutic schemes: CIT with FCR or BR, venetoclax plus

rituximab, venetoclax plus obinutuzumab and venetoclax plus

obinutuzumab and ibrutinib in first line for fit patients. This study

reported 52%MRD negativity for FCR or BR, 57% for venetoclax plus

rituximab, 86.5% for venetoclax plus obinutuzumab and 92.2% for

venetoclax plus obinutuzumab and ibrutinib (52).

Figure 6 summarizes the best rates of MRD negativity obtained by

venetoclax monotherapy (35, 49), venetoclax combined with anti

CD20 monoclonal antibodies (50, 51) and with ibrutinib (52) in

different clinical trials.
4.4 New combinations and
future perspectives

The development of target therapies for CLL and the spread of

rapidly available MRD detection methods opened the way to a wider

MRD use in clinical practice. New trials aim at more and more

personalized therapies, where the treatment strategies can be designed

based on patients’ epidemiological characteristics, molecular biology
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of the disease and MRD detection at end of treatment. The

CAPTIVATE trial moves in this direction: it is a multicenter

randomized phase II trial which studies the combination of

ibrutinib and venetoclax in two cohorts, the MRD-guided and the

fixed-duration cohort. For the sake of our topic, we will describe the

study design for the MRD guided cohort: during the pre-

randomization phase, patients received ibrutinib monotherapy for

three cycles followed by ibrutinib and venetoclax for 12 cycles. At the

end of the 12 cycles, MRD was tested, and patients were divided into

MRD negative cohort, which was randomized to ibrutinib

continuation or placebo, and MRD positive cohort, which was

randomized to ibrutinib monotherapy or continuation of ibrutinib

and venetoclax. At the end of the pre-randomization phase, 75% of

patients obtained MRD negativity in PB and 68% in BM. After the

randomized phase, in the MRD negative cohort, undetectable MRD

in PB went from 100% to 84% for patients who received placebo and

from 100% to 77% for patients who received ibrutinib. In the MRD

positive cohort, undetectable MRD remained 45% for patients who

received ibrutinib monotherapy while it went from 50% to 69% for

those who received the combination of ibrutinib and venetoclax (53).

Such encouraging results support the preclinical evidence of a

synergistic effect of ibrutinib and venetoclax, which target the BTK

and Bcl2 receptors at the same time resulting in higher cytotoxicity,

and consequently deeper molecular response, compared to the two

drugs alone (54). Comparable results in terms of MRD were also

confirmed in the cohort treated with the fixed duration regimen, with

achievement of deep molecular response which correlated to a

favorable PFS (55). Figure 7 summarizes the study design and

results in terms of MRD negativity.

The importance of this trial is to open the way to a more and more

tailored approach which address patient’s needs depending on the

depth of remission they obtain, beyond the clinical characteristics.

Other than the effectiveness of the two drugs and their combination, it

is important to consider how this trial emphasizes the role of MRD in

guiding physician’s choices on treatment management, which may

reflect an upcoming practical application of MRD in the

clinical practice.
FIGURE 6

Rate of MRD negativity obtained by venetoclax monotherapy and venetoclax combined with anti CD20 monoclonal antibodies.
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5 Conclusion

Measurable residual disease has always gained interest in the field

of hematology, but its importance is increasing steadily thanks to the

advances in the treatment of CLL. Nevertheless, MRD does not

currently have a defined role in the clinical practice. The three

main laboratory methods used to detect MRD include flow

cytometry (2), ASO-PCR (20) and NGS (26), and they all have a

role in clinical trials- The cytometric method standardized by the

ERIC guidelines (2, 11) appears to be the most accessible, in terms of

feasibility and costs, in the clinical practice.

The development of chemo-immunotherapy combination

platforms (FCR, BR, Chl-Obinu) back in the days, shed light on the

possibility to deepen the molecular response of CLL and obtain a

long-lasting event free survival (39). Surprisingly, the advent of

ibrutinib discouraged the use of MRD as a surrogate endpoint for

PFS, as long-lasting partial responses were obtained with continuative

ibrutinib treatment regardless of persistent MRD negativity (36).

Venetoclax monotherapy or in combination with anti-CD20

monoclonal antibodies restored the key role of MRD in clinical

trials and validated its correlation to event free survival in patients

treated with the BCL2 inhibitor (35, 47–51). Furthermore, the newest

combination of ibrutinib and venetoclax, which already showed a

synergistic effect in pre-clinical models, obtained even deeper

molecular response, and explored the use of MRD itself to

determine further steps of patients’ management (53–55).

In conclusion, MRD has a valuable role in defining remission at a

more profound level compared to clinical assessment alone, and it can

help guiding treatment choices to obtain a more durable event free

survival, which is a turning point for such a chronic and incurable

condition. For this reason, even if at present MRD is not part of
Frontiers in Oncology 0986
routine evaluation of patients at the end of treatment in the clinical

setting, it may gain a role in the next years and it may even be

included in new guidelines, as part of the recommended steps to

establish patients’ response and prognosis.
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FIGURE 7

CAPTIVATE study design and results in terms of MRD negativity.
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Immunophenotypic measurable
residual disease monitoring in
adult acute lymphoblastic
leukemia patients undergoing
allogeneic hematopoietic stem
cell transplantation

Cristina Tecchio*, Anna Russignan and Mauro Krampera

Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of
Verona, Verona, Italy
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) offers a survival

benefit to adult patients affected by acute lymphoblastic leukemia (ALL). However,

to avoid an overt disease relapse, patients with pre or post transplant persistence or

occurrence of measurable residual disease (MRD) may require cellular or

pharmacological interventions with eventual side effects. While the significance

of multiparametric flow cytometry (MFC) in the guidance of ALL treatment in both

adult and pediatric patients is undebated, fewer data are available regarding the

impact of MRD monitoring, as assessed by MFC analysis, in the allo-HSCT settings.

Aim of this article is to summarize and discuss currently available information on

the role of MFC detection of MRD in adult ALL patients undergoing allo-HSCT. The

significance of MFC-based MRD according to sensitivity level, timing, and in

relation to molecular techniques of MRD and chimerism assessment will be

also discussed.

KEYWORDS

measurable residual disease, multiparameter flow cytometry, acute lymphoblastic
leukemia, allogeneic hematopoietic stem cell transplantation, adult patients
Introduction

In acute leukemia of either lymphoid or myeloid lineage, measurable residual disease (MRD)

is defined as the presence of residual malignant cells in bone marrow (BM) or peripheral blood

(PB) of patients who achieved morphologic complete remission (CR) after treatment

interventions (1). The methods currently available for MRD detection are multiparameter

flow cytometry (MFC), and/or molecular biology techniques including real-time quantitative

polymerase chain reaction (RQ-PCR), digital droplet PCR, and next-generation sequencing

(NGS) (2). Importantly, the different sensitivity limits of these techniques, ranging from 1x10-4

(MFC) to 1x10-6 (NGS), and the occurrence of disease relapse in otherwise MRD negative
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patients, have recently prompted the replacement of the adjective

“minimal” with that of “measurable” in reference to residual disease

(3). For an in-depth review of molecular techniques of MRD analysis the

reader is referred to recent reviews (2, 4).

In acute lymphoblastic leukemia (ALL), the most used techniques

for MRD monitoring are MFC, which relies on the identification of

aberrantly expressed antigens by leukemic cells, and RQ-PCR analysis,

which detects rearranged immunoglobulin (Ig)/T-cell receptor (TCR)

genes, or recurrent gene fusions such as BCR-ABL1 in chromosome

Philadelphia (Ph) positive patients (1–3). Although both MFC and

RQ-PCR are applicable to most ALL cases (i.e., 90% and 90-95%,

respectively) the two techniques differ in terms of sensitivity, with RQ-

PCR being generally more sensitive than MFC (i.e., 1x10-4 to 1x10-5 vs

1x10-4) (4, 5). Nonetheless, MFC is widely used in many countries,

including United States (6) where the consensus fromNorth American

experts recommends using RQ-PCR over MFC for Ph-positive ALL

patients only (7). On the contrary, European countries use more

frequently standardized RQ-PCR for MRD testing (5). Accordingly, a

recent survey on 95 European Society for Bone Marrow

Transplantation (EBMT)-affiliated centers has reported that in

Europe ALL MRD monitoring is mainly performed by RQ-PCR,

either alone or in conjunction with MFC (8).

Over the years MRD monitoring has been introduced in clinical

trials and disease-specific guidelines as measure of treatment efficacy

and predictor of relapse, thus informing response-adapted therapies

in pediatric (9) and adult ALL patients (10, 11). Although there is no

consensus on which sensitivity threshold should be reached to define

MRD positivity, it is now generally accepted to use methods detecting

at least 1 leukemic cell out of 10,000 nucleated cells (≥1x10-4) (7).

Despite rigorous indications regarding MRD monitoring (by either

MFC or RQ-PCR) throughout induction and consolidation therapies

(10, 11), limited information is available about MRD assessment in

adult ALL patients undergoing allogeneic hematopoietic stem cell

transplantation (allo-HSCT), which in turn is a potentially life-saving

treatment for selected patients with high-risk features or MRD

positivity following induction and consolidation (11, 12).

Based on these premises, aim of this review is to explore the role

of MFC MRD monitoring in adult ALL patients undergoing allo-

HSCT, highlighting both advantages and pitfalls of the MFC

technique even in relation to RQ-PCR. Eventual correlations with

analysis aimed at evaluating patient chimerism status throughout

immune reconstitution will be also discussed.
MFC MRD monitoring in ALL patients:
Technical issues

MFC rapidly analyzes single cells or particles as they flow past

single or multiple lasers while suspended in a buffered salt-based

solution. Each particle or cell is analyzed for visible light scatter and

one or multiple fluorescence parameters detected as a result of

emission by fluorochrome-conjugated specific monoclonal

antibodies against surface, cytoplasm or nuclear antigens that are

differently expressed by leukemic vs normal cells (13, 14). A key

feature of MFC, which remains an indispensable tool for the

immunophenotypic characterization of leukemic cells at diagnosis,

is the capability to distinguish cellular subpopulation via
Frontiers in Oncology 0290
multiparametric assessment of quantitative differences in antigen

expression on single cells, and to enumerate the relative size of the

resulting subpopulation (14). Importantly, the possibility to

discriminate and enumerate different subpopulations within

complex mixtures of cells such as BM, PB, or cerebral fluid has

made MFC a highly suitable technique for MRD detection and

quantification (14). ALL is a heterogeneous malignancy that

originates from B- and T-lineage lymphoid precursors and is driven

by a spectrum of genetic aberrations including mutations,

chromosome translocations and aneuploidy in genes involved in

the development of lymphoid cells and regulation of cell cycle

progression (15). The most common markers used to identify

leukemic B cells and to differentiate them from normal progenitor

B cells (hematogones) are CD10, CD19, CD34, CD38, and CD45. In

B-ALL, CD10 and CD45 usually show abnormally low levels,

although, in some cases, CD10 expression is higher, which helps in

the distinction from hematogones, or absent (16). Further markers

include CD58, that is usually overexpressed in ALL cases (17), and

antigens associated with genetic lesions such as CD123

(hyperdiploidy), CD66c (hyperdiploidy and BCR/ABL), NG2

(MLL-rearrangements), CRLF2 (CRLF2-rearrangements), and lack

of CD44 positivity (TEL/AML1 and B-ALL with MYC-translocation)

(18). Worthy of note, MRD analysis in B-ALL patients treated with

CD19-targeted therapies may require an alternative gating strategy

without the use of CD19 as B-cell-specific marker (19). As for T-ALL

the most common markers used to identify leukemic blasts include

the down-modulation of surface CD3 expression and the cytoplasmic

CD3 positivity, with the expression of terminal deoxynucleotidyl

transferase (TdT) and CD34 suggesting an immature T-lymphoid

process (16). The positive expression or variations in intensity of

CD2, CD4, CD5, CD7, and CD8 levels are frequently used as a gating

strategy for MRD (16). CD1a can show a positive or negative

expression and may be a useful target for MRD evaluation (16).

MFC MRD can be tracked by two methods of analysis: i) through

the identification of the immunophenotypic pattern of leukemic cells

at the diagnosis (i.e., leukemia-associated immunophenotype/LAIP)

that can be followed over time; ii) by discriminating the differences

between the immunophenotype of leukemia cells in the MRD sample

compared to normal B-lymphoid progenitors (i.e., hematogones) or

normal T-lymphoid progenitors (i.e., thymocytes), through a

“different from normal” (DFN) approach (20, 21). As both LAIP-

and DFN-methods present potential pittfalls due respectively to

immunophenotypic shifts of leukemic blasts and post-

chemotherapy changes of hematopoiesis, it is generally suggested to

maximize the accuracy of MRD analysis through a comprehensive

integrated LAIP-based DFN approach (21–23). The latter define a set

of aberrancies including (a) the abnormal expression of antigens not

typically expressed by the particular cell type, (b) the over/under-

expression of normally expressed antigens, and/or (c) the

asynchronous expression of normally expressed antigens (21).

As previously stated, MFC has generally a lower sensitivity than

molecular biology techniques, however the use of standardized

protocols allows to reach a similar sensitivity to RQ-PCR provided

the acquisition of an adequate number of cells (preferably more of 4 x

106) from a first-aspirate, fresh, viable sample (24). MFC MRD

monitoring has some advantages over other methods. These include

the rapidity of execution, the relatively low cost, the ability to quantify
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antigens for targeting agents, and the possibility to analyze samples

without knowing the immunophenotypic characteristics of leukemic

cells at diagnosis, which is an added value for referral transplant

centers (7, 20). Disadvantages include the risk of false negative results

due to immunophenotypic shifts throughout treatment, the difficulty

to discriminate leukemic B cells from hematogones in a regenerating/

reconstituting BM, the large dependence of the analysis on the

operator skill, and lack of standardization (7, 20). With the latter

regard, protocols aimed at standardizing MFC analysis among

laboratories in terms of harmonization and alignment of the

technical aspects are currently ongoing (24, 25).
MFC MRD monitoring in adult
ALL treatment

MFC MRD monitoring has been demonstrated as a valuable tool

for assessment of response to treatment and prognostic evaluation not

only in pediatric (26, 27) but even in adult ALL patients after

induction and consolidation. For instance, in a retrospective study

analyzing 323 adult patients affected by B-ALL and monitored by

MFC (4-6 color panel, sensitivity 10-4), Ravandi and colleagues found

that a negative post induction MRD status was associated with a

significantly higher disease-free survival (DFS) according to

multivariable analysis (28). In a prospective multicenter trial

monitoring 179 adolescent and adult high-risk Ph-negative ALL

patients by MFC MRD (4 color panel, sensitivity 5 x 10-4),

undetectable levels of early post consolidation MRD were associated

to a quite favorable prognosis even in the absence of allo-HSCT (29).

In a multicenter series of 1487 pediatric and adult patients affected by

B-cell precursor (BCP) ALL, positive MFC MRD (6 color panel,

sensitivity 10-4) on days 15, 29 and 79 was significantly associated

with hazard of relapse in multivariable analysis (30). Finally,

according to a very recent report on 134 Ph negative pediatric and

adult B-ALL patients, integrated dynamic MFC MRD assessed on

days 14, 25 and 45 (8 color panel, sensitivity 10-4) was an independent

factor for overall survival (OS) at multivariate analysis, also defining

risk-classification criteria leading to effective allo-HSCT in high-risk,

but not in low and intermediate risk patients (31). Concerning T-

ALL, a multicenter study regarding 274 pediatric and adult patients

showed that a negative MFC MRD assessment (6 color panel,

sensitivity 6 x 10-5), on day 15 might be useful for an early and

accurate identification of patients with a very low risk of relapse (32).

Similarly, a retrospective study on 94 adult patients affected by T-ALL

showed that MFC MRD (6-8 color, sensitivity 10-4) positivity at the

end of induction was an independent prognostic factor for cumulative

incidence risk, relapse-free survival, and OS (33).
MFC MRD monitoring in adult ALL
patients undergoing allo-HSCT:
MRD matters

Adult ALL remains an aggressive disease. In fact, despite dose-

intensification strategies leading to high response rate to induction
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chemotherapy, and the availability of highly active targeted

immunotherapies for resistant or relapsed disease (34), only 30-40%

of adult ALL patients will achieve long-term remission (35). In this

scenario allo-HSCT still represents an effective therapeutic treatment

and is currently part of adult ALL standard clinical care (36, 37).

However, a significant percentage (~40%) of patients will relapse after

allo-HSCT, while other (15 to 26%) will die due to non-relapse

mortality (NRM) (37–39) despite recent advances in transplant

management (38, 39). In keeping with these premises, in young

adult and adult patients allo-HSCT is currently part of post-

consolidative therapy in case of high-risk features such as Ph-

positivity, Ph-like disease, and persistent MRD as assessed by either

MFC or RQ-PCR (11, 12). In MRD regard, prospective and

retrospective multicenter studies have demonstrated that allo-HSCT

improves the outcome of adult ALL patients who are MRD positive

after induction (33, 40) or consolidation therapy (41, 42).

Although less explored, MRD testing has been shown to have a

prognostic significance even with respect to allo-HSCT outcome. For

instance, a retrospective EBMT registry study on 2780 adult ALL

patients undergoing myeloablative allo-HSCT in first complete

remission (CR) and evaluated by MFC and/or RQ-PCR techniques

(threshold >10-4) demonstrated by multivariate analysis that MRD

positivity at transplant was a significant independent factor for lower

OS, leukemia free survival (LFS), and for higher relapse incidence (RI)

(43). Similar data have emerged from a recent meta-analysis on 21

published reports according with a positive MFC or RQ-PCRMRD at

allo-HSCT is associated with lower OS, event free survival (EFS) and

relapse-free survival (RFS) (44). Overall, this evidence underlines the

leading role played by MRD regarding the best timing of allo-HSCT,

mostly in light of the availability of new drugs such as inotuzumab

ozogamicin and blinatumumab, potentially able to obtain pre-

transplant MRD clearance with mechanisms of action different

from chemotherapy (45). Interestingly, a deep MRD negativity may

also question the advisability of allo-HSCT. In fact, a recent trial

assessing MRDwith a high sensitivity (limit of detection 0.2x10-6) and

standardized technology (2 tube 8 color MFC panels for BCP-ALL

and T-ALL, respectively) (24) has shown that adults with high-risk

features, Ph− ALL, and deep MRD clearance after induction and early

consolidation have favorable outcomes without allo-HSCT (46).

A few studies have specifically analyzed the role of MFC MRD

monitoring in ALL prior to and following allo-HSCT. As shown in

Table 1 (33, 47–55), data related to adult patients mostly derive from

retrospective and heterogeneous series, sometimes including children,

and using different sensitivity levels [10-3 to 10-5].
Pre allo-HSCT MFC MRD

Eight (89%) out of 9 studies including a total of 1180 patients

showed a predictive role of positive pre allo-HSCT MRD towards

DFS/LFS (33, 47–51, 54, 55), cumulative incidence of relapse (CIR) or

risk (33, 48, 50, 55), and OS (33, 49, 50, 54, 55), while only 1 study did

not find any impact on transplant outcome (53) (Table 1). Similar

data were observed in the pediatric setting. In fact, according to a

retrospective study on 64 children with ALL, low (10-4 to <10-3) and

high (≥10-3) pre allo-HSCT MFC MRD levels were predictive of a
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proportionally increasing 5-year CIR (56). Similarly, in a retrospective

study on 36 children, MFC MRD levels ≥ 10-4 were associated to a

higher CIR (57). According to a prospective study on 105 children,

patients with MFC MRD ≥ 10-3 had a higher CIR than subjects with

MRD < 10-3 or negative (58). Finally, in a retrospective study on 69

children evaluated by either MFC or RQ-PCR, a positive pre

transplant MRD was associated to a higher CIR (59).
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Post allo-HSCT MFC MRD

As reported in Table 1, post allo-HSCT MFC MRD was evaluated

only in 6 series including adults, and accounting approximatively for 355

ALL patients. According to all studies a positive MRDwas associated to a

reduced DFS/RFS (33, 52, 53), OS (33, 50, 52), time to relapse (47, 49),

and to a higher CIR or risk (33, 50, 52, 53). Few data on post allo-HSCT
TABLE 1 Impact of pre and/or post allo-HSCT MFC MRD according to ALL series published in the last 20 years and including adult patients.

Ref.
Study
type
(years)

Pts n ALL
type

Age
(range)

Condition
donor

Colors
source

cells/tube

Sensitivity Pre allo-
HSCT status

MRD+ pts
outcome°

Post allo-
HSCT status

MRD+ pts
outcome°

CR MRD+ CR MRD+

(47)
Retrospective
1999-2001

40
B Ph- 23
B Ph+ 7
T 10

18
(3-49)

MAC
100%
MD
77.5%

4
MC
5x105

3x10-4 to
1x10-3

24*
100%

6/24
25%

↓ 2-yr DFS 40/40
100%

11/40
27.5%

Increasing
MRD levels
anticipated
relapse

(48)
Retrospective
2004-2010

86
B Ph- 49
B Ph+ 27
T 10

20.5
(1-63)

MAC
79%
MD
NA

4-8
WB
1x105

1x10-4 to
1x10-3

86
100%

10/86
11.6%

↑ 2-yr RI
↓ 3-yr DFS

NA NA NA

(49)
Retrospective
1999-2010

102
B Ph- 55
B Ph+ 23
T 24

NA
<14, 46%

MAC
100%
MD
38.2%

4
MC

2-5x105

1x10-5 102
100%

30/102
29.4%

↓ OS
↓ LFS
↓ EFS

NA NA ↑ TTR in
MRD+ pts
(MRD level
dependent)

(50)
Retrospective
2006-2011

160
B 134
T 24
Biph 2

24.6
(0.6-
61.8)

MAC
100%
MD
32%

7
WB
NA

1x10-4 153
95,6%

59/153
38.6%

↑ 3-yr CIR
↓ 3-yr OS
↓ 3-yr RFS

144/153
94%

NA ↑ CIR
↓ OS

(51)
Retrospective
2000-2015

102
T 102

31
(2-72)

MAC
77%
MD
42%

NA
BM
2x105

1x10-3 84
100%

18/84
21.4%

↓ PFS NA NA NA

(52)
Retrospective
2011-2016

155
B Ph+ 155

31
(4-63)

MAC
100%
MD
31%

8
WB
NA

1x10-5 155
100%

33/155
21.3%

NA 155/155
100%

NA Day 30 ↑RI
Day 60 ↑RI,
↓DFS, ↓OS
Day 90 ↑RI,
↓DFS

(53)
Retrospective
2009-2016

133
T 133

22
(1-74)

NA 7-8
WB
2x106

1x10-4 to
1x10-3

74§

NA
NA NS NA 22 ↑ 4-yr CIR

↓ RFS

(54)
Retrospective
2010-2016

139
B Ph+ 54
B Ph- 85

30
(14-76)

MAC
NA
MD
42.7%

8
BM
NA

1x10-4 74
NA

46/74
62%

↓ OS
↓DFS

NA NA NA

(55)
Retrospective
2011-2016

543
B Ph- 284
B Ph+130
T 129

24
(2-59)

MAC
100%
Haplo
100%

8
WB

7.5x105

3x10-4 to
1x10-3

543
100%

119/543
21.9%

↑ 6-mo RI
↓ 6-mo LFS
↓ 6-mo OS

NA NA NA

(33)
Retrospective
2014-2019

115
T 115

27.5
(16-73)

MAC
NA

6-8
BM
NA

1x10-4 99/115
86.1 %

94/115
96.9%

↑ 2-yr CIR
↓ 2-yr RFS
↓ OS

NA NA ↑ 2-yr CIR
↓ 2-yr RFS
↓ OS
Pts, Patients; n, Number; Condition, Conditioning Regimen; MRD, Measurable Residual Disease; CR, Morphological Complete Remission; MAC, Myeloablative Conditioning; MD, Matched Related
Donor; MC, Mononuclear Cells; DFS, Disease Free Survival; NA, Not Available; WB, Whole Blood; RI, Relapse Incidence; Biph, Biphenotypic Acute Leukemia; CIR, Cumulative Incidence of Relapse;
OS, Overall Survival; EFS, Event Free Survival; RFS, Relapse Free Survival; LFS, Leukemia Free Survival; EFS, Event Free Survival; TTR, Time to Relapse; HAPLO, Haploidentical Donor; mo, Months.
NS, Not Significant.
° Post allo-HSCT outcome.
* Patients with pre allo-HSCT MRD assessment.
§ Patients undergoing allo-HSCT.
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MFC MRD monitoring are available in the pediatric setting. A

multinational study on 616 pediatric and young adult ALL patients

evaluating pre and post allo-HSCT MRD levels by either MFC or RQ-

PCR, showed by univariate analysis that low (<10-4) to very high (≥10-3)

post-transplant MRD levels were associated to a progressively higher

relapse hazard (60). Moreover, patients undergoing allo-HSCT with

detectable MRD and showing high or very high post transplant MRD

had increasingly higher chances of relapse according to Cox regression

model (60).
Dynamic peri-transplant MFC MRD

Interestingly, recent evidences support the usefulness of dynamic

peri-transplant (i.e., serial pre and post allo-HSCT) MFC MRD

monitoring. For instance, a retrospective study on 271 T-ALL adult

and pediatric patients has recently shown that dynamic peri-

transplant MFC MRD monitoring could be better in discriminating

the risk of relapse than single time point pre or post allo-HSCT

assessments (61). Similarly, in a pediatric series of 166 ALL patients

undergoing haploidentical unmanipulated transplant and dynamic

peri-transplant MFC MRD assessments, increasing MRD levels were

associated to lower LFS and OS, and higher CIR (62).

Overall, regardless technical differences and the relatively low

series number, the studies summarized in Table 1 indicate that in

adult ALL patients undergoing allo-HSCT MFC can be a reliable

MRD assessment technique. Moreover, studies in adult and pediatric

patients indicate that MFC may have an increasing predictivity

depending on MRD positivity levels (47, 49, 60) and/or peri-

transplant trend (61, 62). Unfortunately, no data are available

regarding the predictive impact of post over pre allo-HSCT MFC

MRD monitoring. However, in a large multicenter study including

616 children, post transplant MRD (evaluated by either MFC or RQ-

PCR) resulted more predictive than pre transplant MRD with respect

to allo-HSCT outcome (60).

The paucity of studies on MFC MRD monitoring in adult (and

even pediatric) ALL patients prior to and after allo-HSCT is somehow

surprising considering the wide use of MFC MRD assessment of the

same patients while undergoing induction and consolidation therapies

(10, 11, 63). Worthy of note, several authors have recently shown the

feasibility and predictive significance of MFC MRD positivity prior

and/or following allo-HSCT even in adult AML patients (64–66). For

instance, in a series of 279 patients receiving myeloablative

conditioning in first or second CR, a positive MFC (10 color panel,

sensitivity ≤10-3) MRD prior to allo-HSCT was associated with inferior

OS and higher risk of relapse in a multivariable analysis (65).

Furthermore, in a study on 810 adult AML patients who underwent

MFCMRDmonitoring before and 20 to 40 days after allografting, peri-

allo-HSCT MRD dynamics improved accuracy of risk over pre- and

post-allo-HSCT assessment across conditioning intensities (66).
MFC versus RQ-PCR MRD monitoring
in allo-HSCT

Previous data from ALL studies have shown that MFC and RQ-

PCR amplification of antigen-receptor genes yield remarkably similar
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measurements if MRD is present at a ≥ 10-4 level (67). Although most

information on RQ-PCRMRDmonitoring in adult allo-HSCT setting

derives from a limited number of studies, often focused on Ph positive

patients (Table 2), based on our literature revision the prognostic

significance of MFC and RQ-PCR towards allo-HSCT outcome seems

quite comparable. Accordingly, 5 (71.4%) out of 7 studies including

2267 patients evidenced a predictive role of detectable RQ-PCR MRD

levels towards DFS/RFS (70, 72), CIR (68, 73), and OS (68, 70, 72, 73)

(Table 2). The significance of post allo-HSCT RQ-PCR MRD was

evaluated by 4 studies on more than 612 patients, all evidencing the

impact of RQ-PCR MRD monitoring towards DFS/RFS (52, 70, 71),

CIR (52, 68, 71) and OS (52, 70, 71) (Table 2). Of note, similar data

were observed in the pediatric setting (74–76).
MRD and chimerism monitoring after
allo-HSCT

Chimerism analysis, the investigation of the genotype origin of

post-allografting hematopoiesis, has been historically considered a

well-established method for monitoring the outcome of allo-HSCT in

terms of engraftment and eventual risk of relapse (77). About

chimerism the term “complete donor chimerism” refers to a

hematopoiesis that is fully genetically derived from donor, whereas

the term “mixed chimerism” refers to a hematopoiesis with genetic

origins from both donor and patient (78). Over the years, several

methods for chimerism analysis have been progressively introduced

in clinics, including assessing short tandem repeats (STR), fluorescent

PCR, RQ-PCR of single nucleotide polimorphism, and fluorescence in

situ hybridization in gender-mismatched allo-HSCT (77). Chimerism

can be defined on several levels, but PB and BM are the most

frequently used sources. Notably, the degree of chimerism can be

analyzed in these tissues without any further manipulation (i.e.,

overall chimerism) or within certain cellular fractions, such as T

cells, B cells, CD34+ or myeloid cells (i.e., subset chimerism) (78).

Currently, there is no general agreement on the preferred source/

subpopulation of assessment (79, 80), which in turn is dependent on

the technique used.

The American Society for Transplantation and Cellular Therapy

recommends chimerism evaluations at specific time points during the

first year post allo-HSCT (e.g., days +30, +90, +180, and +365) and

whenever required according to disease characteristics (81), while the

EMBT generally suggests serial and quantitative analysis of chimerism

given the short time interval between mixed chimerism detection and

relapse (82). Chimerism is in fact a dynamic process, and patients with

increasing levels of recipient chimerism have been traditionally retained

at risk of relapse and therefore treated with preemptive immune

therapy (i.e., immunosuppressive drug tapering, DLI) (79, 83).

Little data are available on the clinical impact of chimerism with

respect to MRD monitoring as determined by MFC and/or molecular

biology techniques (83, 84). A retrospective study analyzing 101 adult

allo-HSCT ALL patients undergoing chimerism monitoring by

multiplex STR assay (sensitivity 10-2), showed that an increasing

mixed chimerism in CD34+ BM cells was an independent negative

prognostic factor for OS and relapse in multivariable analysis (84).

However, in a subgroup of 22 patients undergoing RQ-PCR MRD

monitoring, MRD assessment was much more sensitive (86%) and
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specific (95%) than chimerism (84). In a retrospective study regarding

a small series of adult patients affected by AML and ALL, MFC (6

color panel) and RQ-PCR (WT-1) showed a moderate concordance

with chimerism analysis (assessed by STR-PCR), suggesting the

usefulness of MRD monitoring over chimerism in stratifying

patients with respect to relapse risk (85). Recently, Pincez and

colleagues have demonstrated in a pediatric series of 72 patients,

mostly affected by AML and ALL, that an increasing mixed

chimerism (assessed by STR-PCR) was never the first evidence of

relapsing leukemia, that in turn was detected by more sensitive

techniques of MRD analysis (i.e., RQ-PCR and only partially MFC

with a sensitivity ranging from 2 to 10 x 10-4) (86). Interestingly,

Semchenkova and colleagues have recently demonstrated that in

doubtful MRD positive cases, RQ-PCR chimerism testing in

questionable MRD+ sorted cells can be useful for approval or

disapproval of MRD presence (87).

In the absence of large studies, clear indications about assessment

schedules, and due to the lack of reference methods among the

increasing number of different strategies of chimerism analysis, it is

difficult to establish the role of MRD and hence, MFC MRD
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monitoring, with respect to chimerism. Therefore, any comparison

between chimerism and post allo-HSCT MRD monitoring should

consider the sensitivities and specificities of the techniques available

in each center. As shown in Table 3, most of the techniques currently

used for MRD evaluation (88–98) including MFC (88–90) display a

higher sensitivity than the majority of chimerism detection methods.
Concluding remarks

Allo-HSCT is a complex therapeutic procedure whose outcome

depends on several patient-, disease- and transplant-related cofactors.

Although the prognostic role of pre-transplant MRD (as assessed by

either MFC or RQ-PCR) is generally accepted (44, 99), few data are

available on the post-transplant setting, which is characterized by a

delicate balance between the graft-versus-leukemia effects, that in turn

depend on graft-versus-host disease (GVHD) prophylaxis, occurrence

and treatment, and the eventual residual disease. Moreover, no definite

guidelines regarding MRD time-point assessments or levels for

preemptive interventions are currently available.
TABLE 2 Impact of pre and/or post allo-HSCT RQ-PCR MRD according to ALL series published in the last 20 years and including adult patients.

Ref.
Study
type
(years)

Pts n
ALL
type

Age
(range)

Condition
donor

Transcript Sensitivity Pre allo-
HSCT
status

MRD+

patient
outcome°

Post allo-
HSCT
status

MRD+

patient
outcome°

CR MRD+ CR MRD+

(68)
Retrospective
1996-2006

43
B 37
T 6

30
(18-36)

MAC
95.3%
MD
55.8%

BCR/ABL
MLL/AF4
IgH/TCR

NA 43
100%

31/43
72.1%

↓ 3-yr OS
↑ 3-yr CIR

36/36
100%

16/36
44.4%

↑ 3-yr CIR

(69)
Prospective
1999-2010

65
B Ph+ 65

43.2
(18-62)

MAC
83.1%
MD
47.7%

BCR/ABL NA 65
100%

41/65
63.1%

NS 5-yr OS
NS 5-yr DFS
↑ 5-yr CIR

NA NA MRD+ pts
underwent
TKI ± DLI

(52)
Retrospective
2011-2016

155
B Ph+ 155

31
(4-63)

MAC
100%
MD
31.6%

BCR/ABL NA 155
100%

91/155
58.7%

NS 155/155
100%

NA Day 30 ↑RI,
↓DFS
Day 60 NS
Day 90 ↑RI,
↓DFS, ↓OS

(70)
Retrospective
2005-2016

441
B Ph+ 441

44
(18-70)

MAC
82%
MD
36%

BCR/ABL 1x10-4 404
92%

257/404
64%

↓ 5-yr OS
↓ 5-yr DFS

421 119/421
28%

↓ OS
↓ DFS

(71)
Retrospective
2004-2018

94
B Ph- 39
B Ph+ 37

T 18

43.4
(20-68)

MAC
53.3%
MD
30.9%

IgH/TCR
BCR/ABL
IZKF1 del
other

≥1x10-4 68
72.3%

28/68
41.2%

NS NA 23/NA ↑3-yr CIR
↓3-yr RFS
↓3-yr OS

(72)
Retrospective
2002-2017

1625
B

Ph+.1625

48
(16-71)

MAC
~70%
MD
NA

BCR/ABL ≥1x10-5 1523*
93.7%
102**
6.3%

412/1523
27%

41/102
40%

↓4-yr OS
↓4-yr DFS
↓4-yr OS
↓4-yr DFS

NA NA NA

(73)
Prospective
1999-2013

542
B Ph- 316
T 204

Other 16

32
(15-55)

MAC
˜80%
MD
32%

IgH/TCR 1x10-4 130
NA

47/130
30%

16/130
10%

↑ RI
↓ 5-yr OS

NA NA NA
Pts, Patients; n, Number; Condition, Conditioning Regimen; MRD, Measurable Residual Disease; CR, Morphological Complete Remission; MAC, Myeloablative Conditioning; MD, Matched Related
Donor; OS, Overall Survival; CIR, Cumulative Incidence of Relapse; RI, Relapse Incidence; DFS, Disease Free Survival; NA, Not Available; NS, Not Significant, RFS, Relapse Free Survival; mo, Months.
° Post allo-HSCT outcome.
* CR1, ** CR2.
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In agreement with previous literature analysis (44, 99), 89% of the

studies here retrieved reported a negative impact of pre allo-HSCT

MFC MRD on the post-transplant outcome of adult ALL patients

(Table 1). Although the extent to which the intensity of conditioning

may affect MRD clearance remains debated (1), patients from most of

these series underwent myeloablative regimens that resulted

ineffective. Importantly, newly available drugs such inotuzumab

ozogamicin and blinatumumab are currently used to obtain pre-

transplant MRD clearance (45).

The role of MRD monitoring after allo-HSCT has been traditionally

poorly explored. In addition to the previous lack of effective relapse-

preventing interventions outside immunosuppressive drug tapering and

donor lymphocyte infusion (DLI), or tyrosine kinase inhibitors in Ph

positive ALL patients (100, 101), this was mainly due to the use of

chimerism analysis as MRD surrogate. Nowdays, the availability of

potential premptive and therapeutic post allo-HSCT interventions in

either pediatric or adult ALL patients (102–107) highlights the need of

highly specific and sensitive measures of MRD. However, post-transplant

MRDmonitoring may be troublesome for referral centers, mostly due to

a difficult access to diagnostic samples, whose availability is critical in case

of LAIP-basedMFC and RQ-PCR Ig/TCR gene techniques (6). MFC can

be a valuable tool for post allo-HSCT MRD monitoring as it is fast,

applicable to most ALL cases, and somehow independent from

diagnostic samples when a DFN approach is used (20, 21). According

to our literature revision, all studies specifically addressing the role of

post-transplant MFCMRDmonitoring reported an adverse outcome for

MRD positive patients (Table 1). Yet, transplant clinicians should be

aware that the sensitivity and reliability of MFC MRD monitoring is

dependent on sample type (BM) and quality (adequate cell number and

vitality), provided rigorous technical assumptions (at least 6-8 color

panel, acquisition of at least 4x106 cells), standardization, and operator
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expertise (24, 25). As BM samples from patients with concurrent GVHD

or herpetic infections can be inadequate forMFC assessment due to a low

cellularity, some transplant centers evaluate MRD by both MFC and

molecular methods, though with economic burden (8). In fact, in case of

inadequate BM samples, MFC MRD should be interpreted with caution

and integrated, if possible, with data obtained by RQ-PCR. Whatever the

technique used, an additional issue for transplant physician is the need to

combine MRD and chimerism data, as they may give contrasting results

based on different sample sources and method sensitivities. Moreover,

standards for measurement intervals for MRD and chimerism and

definitions of thresholds for initiating therapy are still missing (84).

Overall, many questions remain to be addressed regarding MFC

MRD monitoring in adult ALL patients undergoing allo-HSCT,

mostly in the post-transplant setting. Although MFC can be a

reliable tool for MRD assessment, potentially reaching RQ-PCR

sensitivity levels, a close interaction between transplant clinicians

and reference laboratory is recommended in order to select the

optimal method for MRD evaluation in each patient and to obtain

clinically useful data.
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TABLE 3 MRD and chimerism assessment techniques according to sensitivity and preferable source of analysis.

Technique Sensitivity Source

MRD 10-1 10-2 10-3 10-4 10-5 10-6

MFC (4 colors)88,89,90 x x BM, PB

MFC (6-8 colors)88,89,90 x BM, PB

MFC (≥ 8 colors)88,89 x x BM, PB

RQ-PCR88,89,90,91,92,93 x x PB, BM

ddPCR88,92 x x PB, BM

NGS88,92 x x PB, BM

CHIMERISM VNTR95,97 x PB, BM, PB sorted lymphoid and myeloid cells 94,95,98

RFLP96 x PB, BM, PB sorted lymphoid and myeloid cells 94,95,98

X/Y FISH97 x x PB, BM, PB sorted lymphoid and myeloid cells 94,95,98

STR-PCR94,95,96,97 x PB, BM, PB sorted lymphoid and myeloid cells 94,95,98

RQ-PCR94,95,96,97 x x PB, BM, PB sorted lymphoid and myeloid cells 94,95,98

ddPCR94,96 x x PB, BM, PB sorted lymphoid and myeloid cells 94,95,98

NGS96,97 x x PB, BM, PB sorted lymphoid and myeloid cells 94,95,98
MFC, multiparameter flow cytometry; BM, bone marrow; PB, peripheral blood; RQ-PCR, real-time quantitative PCR; ddPCR, digital droplet PCR; NGS, next generation sequencing; VNTR, variable
number of tandem repeats; RFLP, restriction fragment length polymorphism; FISH, fluorescent in situ hybridization; STR-PCR, short tandem repeats-PCR. X values indicate the sensitivity of each
technique according to the reference column.
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Bone marrow CD34+ molecular
chimerism as an early predictor
of relapse after allogeneic stem
cell transplantation in patients
with acute myeloid leukemia

Michele Malagola1*†, Nicola Polverelli 1†, Alessandra Beghin2,
Federica Bolda2, Marta Comini2, Mirko Farina1, Enrico Morello1,
Vera Radici1, Eugenia Accorsi Buttini1, Simona Bernardi1,3,
Federica Re1,3, Alessandro Leoni1,3, Davide Bonometti4,
Duilio Brugnoni5, Arnalda Lanfranchi2‡ and Domenico Russo1‡

1Blood Diseases and Cell Therapies unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital
of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
2Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory,
Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy, 3Centro di Ricerca Emato-
oncologico AIL (CREA) , “ASST-Spedali Civili” Hospital of Brescia, Brescia, Italy, 4Department of
Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan,
Milan, Italy, 5Department of Laboratory Diagnostics, ASST Spedali Civili, Brescia, Italy
Background: Minimal residual disease (MRD) monitoring is an important tool

to optimally address post-transplant management of acute myeloid leukemia

(AML) patients.

Methods: We retrospectively analyzed the impact of bone marrow CD34+

molecular chimerism and WT1 on the outcome of a consecutive series of 168

AML patients submitted to allogeneic stem cell transplantation.

Results: The cumulative incidence of relapse (CIR) was significantly lower in patients

with donor chimerism on CD34+ cells ≥ 97.5% and WT1 < 213 copies/ABL x 10^4

both at 1st month (p=0.008 and p<0.001) and at 3rd month (p<0.001 for both). By

combining chimerism andWT1 at 3rd month, 13 patients with chimerism < 97.5% or

WT1 > 213 showed intermediate prognosis. 12 of these patients fell in this category

because of molecular chimerism < 97.5% at a time-point in which WT1 was < 213.

Conclusions:Our results confirm that lineage-specific molecular chimerism and

WT1 after allo-SCT (1st and 3rd month) are useful MRDmarkers. When considered

together at 3rd month, CD34+ molecular chimerism could represent an earlier

predictor of relapse compared to WT1. Further studies are necessary to confirm

this preliminary observation.

KEYWORDS

WT1, allogeneic stem cell transplantation, minimal residual disease (MRD), lineage
specific molecular chimerism, pre-emptive therapy
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Introduction

Minimal residual disease (MRD) monitoring is crucial for the

management of patients with acute myeloid leukemia (AML) (1–3).

Two assays are currently available: multiparametric flow cytometry

(MFC) on the leukemia associated immunophenotype (LAIP) and

quantitative RT-qPCR on genes known to be mutated or over-

expressed in a subgroup of AML (e.g. FlLT3-ITD, NPM1 mutation,

CBF-fusion transcripts,WT1 gene,…) (4, 5). Each of these two assays is

associated with different specificity, sensitivity and accuracy, and, with

the exception of RT-qPCR on NPM1 mutation, no conclusive data are

available on the superiority of one test over the other (4, 6).

Nevertheless, several studies confirmed the role of MRD monitoring

after induction/consolidation, irrespective of the methods used and the

threshold adopted, in order tomeasure the depth of response during the

whole treatment program (3, 4). In particular, it has been suggested that

MRD monitoring should be considered as a dynamic event, suggesting

that AML risk may be refined during the treatment program (3, 4).

Focusing on this issue, we reported how bone marrow (BM) LAIP

<0.2% and BM-WT1 < 121 copies/ABLx10^4 after first consolidation

were associated with improved outcome; moreover, after 1st

intensification cycle, peripheral blood (PB) WT1 < 16 copies/

ABLx10^4 was significantly correlated with a better prognosis (3).

The issue of MRD monitoring is a crucial step in the path to cure of

AML patients, especially in low-intermediate ELN risk categories, for

which firstline allogeneic stem cell transplantation (Allo-SCT) in case of

MRD persistence is a mainstay of good clinical practice (1–4).

Moreover, MRD detection before allo-SCT is very important to

guide the intensity of transplant conditioning regimen (7–10).

Then, the issue of MRD detection and monitoring after allo-SCT

is particularly relevant, since early detection of residual disease may

allow a pre-emptive treatment approach, including not only the

early immunosuppression withdrawal and donor lymphocytes

infusions (DLI), but also the introduction of new drugs such as

hypomethylating agents (HMA), venetoclax, and tyrosine-kinase

inhibitors (11–13). Although several studies have explored this

topic, the methods and timepoints for the detection of patients at

high risk of relapse are still a matter of debate (1–4). In particular,

besides their limitations in terms of sensitivity and specificity, and

the lack of prospective, controlled data, both MFC and RT-qPCR on

selected gene targets are applicable in no more than 30-40% of the

patients after allo-SCT (4). As a consequence, WT1 has been

suggested as a universal marker of MRD monitoring after allo-

SCT, as its expression, although with low specificity, is increased in

more than 80% of AML at diagnosis (5, 10, 13).

In this scenario, considering that AML arises from the

hematopoietic stem cell, and that more than 90% of AML blasts

express CD34 antigen, an option to monitor if allo-SCT has been

able to cancel autologous hemopoiesis is the assessment of

molecular chimerism on CD34+ cells (14–17). Both short tandem

repeat analysis and single nucleotide polymorphism analysis by RT-

qPCR have been suggested to be potentially useful tools to measure

the degree of donor hematopoiesis. Thus, it may be considered as a

surrogate marker of MRD, which can be associated with a high

probability of disease recurrence (14–17). Several studies have
Frontiers in Oncology 02100
confirmed that lineage-specific molecular chimerism is a reliable

marker of MRD and relapse risk (14–17), but the interplay between

CD34+ chimerism and other markers of MRD (e.g., leukemic blasts

detection with MFC or WT1) possibly associated with MRD

persistence is poorly understood and under-studied (18, 19).

With this background, we analyzed a cohort of 168 AML

patients consecutively allotransplanted in our Institution between

December 2015 and January 2022, for whom at least one between

BM-CD34+ chimerism or BM-WT1 level was available at 1 and 3

months after allo-SCT. The primary endpoint of this retrospective

analysis on these two tests was to describe their accuracy in

measuring the risk of relapse and their interplay in the definition

of patients’ prognosis.
Patients and methods

FromDecember 2015 to January 2022, a total of 191 AML patients

were consecutively submitted to allo-SCT in our Institution. 168 out of

these transplants (88%) are included in the present analysis, as they

represent a consecutive series for which data on lineage specific

molecular chimerism (CD34+) and/or molecular monitoring of WT1

gene are available at 1st and/or 3rd month after transplant. All patients

included in this analysis provided informed consent for data

registration in the PROMISE database, in which clinical and

biological data are collected. Additional data were extracted from the

revision of the clinical charts of each patient, including both the

transplant phase and the subsequent follow up. The study was

conducted in compliance with current national and European

legislation on clinical trials, in accordance with the Declaration of

Helsinki and the principles of good clinical practice.
Lineage-specific chimerism and
WT1 monitoring

According to our guidelines, molecular chimerism assessment

on BM-CD34+ cells was planned at months 3, 6, 9, 12, 18, and 24

after allo-SCT. From 2020 we implemented another timepoint of

assessment at day +30 after allo-SCT.

CD34+ cells were isolated from bone marrow using CD34

MicroBeads human (Miltenyi Biotec, Bergisch Gladbach,

Germany) following manufacturer protocol. Briefly, cells were

incubated with 100 µL of CD34 MicroBeads and 100 µL of FcR

Blocking Reagent for 30 minutes at 4°C, washed, resuspended in

500 µL buffer and applied onto one-step, semiautomated MACS

device, AutoMACS (Miltenyi Biotec, Bergisch Gladbach, Germany).

The purity of cellular subsets post-separation was determined by

FACS analysis (BD FACSCanto™ II) and BD FACSDiva software

(BD Biosciences, San Jose, CA). Genomic DNA obtained after

CD34+ selection from BM samples was extracted using mini

blood kit (QIAGEN, Valencia, CA), following the manufacturer

instructions. Validation of the CD34-enrichment was performed

comparing the chimerism percentage of CD34+ and chimerism

percentage of MNC between groups by 2-sided Student t test
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(continuous variables with normal distribution). P<.05 was

considered significant. Calculations were conducted in Prism 5

(GraphPad, La Jolla, CA). Comparative statistical analysis showed

significant difference (P= .0008) and validation of the method. The

AmpFLSTR® Identifiler® Plus PCR Amplification Kit (Life

Technologies Inc., Foster City, CA) containing 15 polymorphic

STR (short tandem repeat) loci and the amelogenin marker was

used to evaluate chimerism status in patients post transplant (20).

Genomic DNA obtained after CD34+ selection (Automacs System

-Miltenyi) from bone marrow samples was extracted using mini

blood kit (QIAGEN, Valencia, CA), following the manufacturer

instructions. Serial dilutions were created by mixing DNA samples

with standardized mixed chimeric samples, in a range between 0%

and 100%. The level of sensitivity of this test was 2.5%. The data

were analyzed by GeneMapper®ID v3.2 software calculating the

amount of donor’s DNA.

All the patients with AML were evaluated for WT1 expression

level at diagnosis. Focusing on this series, the time-points of WT1

evaluation on BM were the same as for chimerism and its

assessment was performed by Q-PCR (protocol: Ipsogen WT1

ProfileQuant) according to the ELN method as previously

published (21). The cut-off for positive samples, according to the

sensitivity of our platform and available literature, was ≥ 213 WT1

copies/ABL1x10^4 on BM (21).
Statistical analysis

Descriptive statistics was employed for summarizing patients

characteristics. Categorical variables were presented as numbers

and percentages, continuous variables as median and range,

respectively. Chi-Squared or Fisher’s Exact test and the Wilcoxon

Rank-sum or Kruskal-Wallis tests were used to test differences

among subgroups, as appropriate. Median survival with 95%

confidence interval (95%CI) was calculated according to reverse

Kaplan-Meier method. Overall survival (OS) was measured from

the time of transplant to the date of last follow-up or death,

cumulative incidence of relapse (CIR), considering non-relapse

mortality (NRM) as a competitive event, was carried out

according to the Fine-Gray model. Log-rank and Gray tests were

employed to verify differences among the different groups. One-

month and 3-month landmark analyses were conducted in order to

evaluate association between WT1 (cut-off 213 copies/ABL1x10^4)

and donor chimerism (cut-off 97.5%) on subsequent CIR.

Sensitivity, specificity and diagnostic accuracy of post-transplant

chimerism and WT1 values in predicting relapse occurrence were

also measured. Statistical analysis was performed with EZR (version

1.61), as previously described (22).
Results

Table 1 reports the most important clinical and transplant

characteristics of these patients. The median age at transplant was
Frontiers in Oncology 03101
TABLE 1 Clinical and transplant characteristics of 168 AML patients
included in this analysis.

N (%)

Age, yr, median (range) 56.5 (23.8 – 74.1)

Sex

Male 91 (54.2)

Female 77 (45.8)

Disease status at SCT

First CR 83 (49.4)

Other disease status 85 (50.6)

Disease Risk Index

High - Very 66 (39.3)

Low - Intermediate 102 (60.7)

Follow-up, yr, median (range) 1.5 (0.05 – 14.5)

SC source

PBSC 128 (76.2)

BM 35 (20.8)

UCB 5 (3.0)

Conditioning intensity

MAC 93 (55.4)

RIC 75 (44.6)

Donor

Related 55 (32.7)

MUD 77 (45.8)

Haplo 31 (18.5)

UCB 5 (3.0)

CD34+ donor chimerism (1st month) Available on 36 pts

< 97,5% donor 10 (27.8%)

≥ 97,5% donor 26 (72.2%)

BM WT1 (1st month) Available on 45 pts

< 213 copies/ABLx10^4 11 (24.4%)

≥ 213 copies/ABLx10^4 34 (75.6%)

CD34+ donor chimerism (3rd month) Available on 91 pts

< 97,5% donor 29 (32%)

≥ 97,5% donor 62 (68%)

BM WT1 (3rd month) Available on 120 pts

< 213 copies/ABLx10^4 99 (82.5%)

≥ 213 copies/ABLx10^4 21 (17.5%)

CD34+ donor chimerism/WT1 (3rd month) Available on 75 pts

≥ 97,5% donor/< 213 copies/ABLx10^4 53 (71%)

(Continued)
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56.5 years (23.8-74.1), and patients were equally distributed

between sexes. The disease risk index (DRI) was intermediate/

high in two thirds of the cases, and 49.4% of the patients received

the transplant in first complete remission (CR) following a

myeloablative conditioning in 55.4% of the cases. Peripheral

blood stem cells (PBSC) were used in the 76.2% of the cases, and

donor was other than a sibling in more than 50% of the transplants

(matched unrelated donor in 45.8% and haploidentical in 18.5% of

the cases). No significant differences were detected comparing the

same characteristics, dividing patients according to the percentage

of donor chimerism on CD34+ cells (above or below 97.5%) and

WT1 levels (above or below 213 copies/ABL1x10^4) both at 1st and

3rd month (data not shown).

Overall, the total number of patients for whom WT1 could be

considered for MRD monitoring (at diagnosis > 213) was 125/168

(74%). Molecular chimerism on CD34+ cells andWT1 at 1st month

was available on 36 (21%) and 45 patients (27%), respectively. In

72.2% of the cases (26/36) the percentage of donor CD34+ cells was

above 97.5%. Focusing on WT1, its level was < 213 copies/

ABL1x10^4 in 24.4% of the cases.

Moving to the 3rd month, molecular chimerism on CD34+ cells

and WT1 were available on 99 (53%) and 125 patients (67%),

respectively. Donor chimerism ≥ 97.5% was detected in 63 patients

(65.6%) and WT1 levels < 213 copies/ABL1x10^4 in 103

cases (82.4%).

Additional molecular markers of disease persistence during

follow up were FLT3-ITD (2 cases at 1st month and 4 cases at 3rd
Frontiers in Oncology 04102
month) and NPM1A (2 cases at 1st month and 2 cases at 3rd month).

All the patients with positive FlLT3-ITD MRD had mixed

chimerism on CD34+ and WT1 level above 213 copies/

ABL1x10^4, experienced hematological relapse and did not

survive. The 2 patients with NPM1A positive residual disease

showed complete donor chimerism and WT1 level < 213 copies/

ABL1x10^4 and are alive in continuous complete remission at last

follow up.
Cumulative incidence of relapse and
overall survival

After a median follow up of 4.5 years (range 3,5-5,0), the 1, 3,

and 5 years cumulative incidence of relapse (CIR) was 26.9% (95%

CI 20.3-34.0), 46.8% (95% CI 38.6-54.4) and 50.8% (95% CI 42.2-

58.9), respectively (Figure 1A). This translated into an overall

survival (OS) at 1,3 and 5 years of 67.3% (95% CI 59.4-74), 50.9%

(95% CI 42.6-58.6) , and 43 .2% (95% CI 34 .8-51.3) ,

respectively (Figure 1B).

At 1st month, both donor chimerism on CD34+ cells ≥ 97.5%

and WT1 levels below 213 copies/ABL1x10^4 significantly

correlated with CIR (chimerism: 13% vs 70% at 1 year; p=0.008 –

Figure 2A; WT1: 31.8% vs 81.8%; p=0.03 – Figure 2B) and OS

(chimerism: 81.8% vs 9.5% at 1 year; p<0.001 – Figure 2C; WT1:

54.3% vs 18.2%; p<0.05 – Figure 2D).

As reported in Figures 3A, D, the results at 3rd month confirmed

the predictive value of the two markers on CIR and OS. In

particular, the 1 and 2 years CIR for patients with donor

chimerism on CD34+ cells ≥ 97.5% vs those with donor

chimerism < 97.5% was 5.3% and 26% vs 61% and 74%,

respectively (Figure 3A; p<0.001). This translated into a 1 and 2

years OS of 93% and 72.4% vs 44.2 and 25.4%, respectively

(Figure 3B; p<0.001). Moving to WT1 at 3rd month and

comparing patients with a level below or above 213 copies/

ABL1x10^4, we observed that the CIR at 1 and 2 years was 12.6%
A B

FIGURE 1

Cumulative Incidence of Relapse (CIR) and Overall Survival (OS) of the 168 AML patients included in this analysis. [CIR at 1, 3 and 5 years; 26.9% (95%
CI 20.3-34.0), 46.8% (95% CI 38.6-54.4) and 50.8% (95% CI 42.2-58.9) (A); OS at 1, 3 and 5 years: 67.3% (95% CI 59.4-74), 50.9% (95% CI 42.6-58.6)
and 43.2% (95% CI 34.8-51.3) (B)].
TABLE 1 Continued

N (%)

< 97,5% donor or ≥ 213 copies/ABLx10^4 13 (17%)

< 97,5% donor and ≥ 213 copies/ABLx10^4 9 (12%)
M, male; F, female; CR, complete remission; DRI, Disease Risk Index; PBSC, peripheral Blood
Stem Cells; BM, Bone Marrow; UCB, Umbilical Cord Blood; MAC, Myeloablative
Conditioning; RIC, Reduced-Intensity Conditioning; MUD, Matched Unrelated Donor;
Haplo, Haploidentical Donor; WT1, Wilm’s Tumor gene.
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and 28.6% vs 80.9% and 97.3%, respectively (Figure 3C; p<0.001).

As expected, 1 and 2 years OS was 83.3% and 65.8% vs 20.3% and

6.7% (Figure 3D; p<0.001).

The sensitivity, specificity, and accuracy of molecular

chimerism on CD34+ cells at 3rd month was 53.3% (95% CI 34.3-

71.7), 83.7% (95% CI 70.3-92.7), and 72.2% (85% CI 60.9-81.7). For

WT1 at 3rd month we observed a sensitivity of 33.3% (95% CI 17.3-

52.8), a specificity of 98% (95% CI 89.1-99.9) and an accuracy of

73.4% (95% CI 62.3-82.7). We then looked at the sensitivity,

specificity and accuracy of the combination of donor chimerism

and WT1 levels at 3rd month and we found that they were 53.3%

(95% CI 34.3-71.7), 81.6% (95% CI 68.0-91.2) and 70.9% (95% CI

59.6-80.6).

Interestingly, by combining CD34+ donor chimerism </≥

97.5% and WT1 </≥ 213 copies/ABL1x10^4, three categories

could be identified with significantly different prognosis both on

CIR (p<0.001; Figure 3A) and on OS (p<0.001; Figure 3B): (i) donor

chimerism ≥ 97.5% and WT1 < 213 (53 patients) [CIR at 1 year

4.1% (95% CI 0.8-12.4) and OS at 1 year 94.2% (95% CI 83.0-98.1)];

(ii) donor chimerism < 97.5 or WT1 ≥ 213 (13 patients) [CIR at 1

year 30.7% (95% CI 9.5-55.4) and OS at 1 year 76.9% (95% CI 44.2-
Frontiers in Oncology 05103
91.9)]; (iii) donor chimerism < 97.5% and WT1 ≥ 213 (9 patients)

[CIR at 1 year 100% (95% CI NA) and OS at 1 year 0% (95% CI

NA)]. Moreover, 12/13 patients included in the “intermediate”

group (donor chimerism < 97.5% or WT1 ≥ 213) fell in this

category because of donor chimerism < 97.5% and only 1 patient

because of WT1 ≥ 213 copies/ABL1x10^4.
Pre-emptive treatment following the
detection of CD34+ donor chimerism <
97.5% and/or WT1 ≥ 200 copies/
ABL1x10^4

Overall, 43 and 66 patients had at least one detection of donor

CD34+ chimerism < 97.5% and/or WT1 levels ≥ 213 copies/

ABL1x10^4 at 1st and/or 3rd month. Whenever clinically possible

(no graft versus host disease and no active infections) these patients

were managed with early tapering of immunosuppression. If clinical

and hematological conditions were permissive, additional pre-

emptive therapy was administered (11 patients). Results in the

different subgroups are reported in Supplementary Table 1.
A B C D

FIGURE 2

Cumulative Incidence of Relapse (CIR) and Overall Survival (OS) according to molecular chimerism on CD34+ cells and WT1 levels at 1st month. (A) CIR
at 1 year CD34+≥97.5% vs <97.5% donor: 13% (95% CI 3.3-29.7) vs 70% (95% CI 32.9.89.2). (B) OS at 1 year CD34+≥97.5% vs <97.5% donor: 81.8% (95%
CI 58.5-92.8) vs 9.5% (95% CI 5-35.8). (C) CIR at 1 year WT1 < 213 copies/ABL1×10^4≥213 copies/ABL1×10^4: 31.8% (95%CI 16.7-48.2) vs 81.8% (95%CI
44.7-95.1). (D) OS at 1 year WT1 < 213 copies/ABL1×10^4≥213 copies/ABL1×10^4: 54.3% (95%CI 35.3-69.9) vs 18.2% (95%CI 2.8-44.2).
A B C D

FIGURE 3

Cumulative Incidence of Relapse (CIR) and Overall Survival (OS) according to molecular chimerism on CD34+ cells and WT1 levels at 3rd month. (A) CIR
at 1 year CD34+≥97.5% vs <97.5% donor: 5.3% (95% CI 1.4-13.4) vs 61% (95% CI 40.3-76.4). (B) OS at 1 year CD34+≥97.5% vs <97.5% donor: 93.1% (95%
CI 82.6-97.3) vs 44.2% (95% CI 25-61.9). (C) CIR at 1 year WT1 < 213 copies/ABL1×10^4≥213 copies/ABL1×10^4: 12.6% (95%CI 6.9-20.2) vs 80.9% (95%
CI 56.9-92-4). (D) OS at 1 year WT1 < 213 copies/ABL1×10^4≥213 copies/ABL1×10^4: 83.3% (95%CI 74.2-89.4) vs 20.1% (95%CI 6.2-39.5).
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Discussion

Minimal Residual Disease (MRD) monitoring is crucial in the

management of AML patients, and is a dynamic process during all

the treatment plan, including the post-transplant phase (1–17,

23, 24).

Our study clearly shows that both lineage-specific molecular

chimerism and WT1 levels are useful markers for MRD detection

and monitoring after allo-SCT in AML, either alone or in

combination. At 1st month after allo-SCT, lineage-specific

molecular chimerism (Figure 2A; p=0.008) and WT1 levels

(Figure 2C; p<0.001) were significantly correlated with the CIR.

This was also confirmed at 3rd month (Figure 3A; p<0.001 and

Figure 3B; p<0.001). Interestingly, by combining molecular

chimerism and WT1 at 3rd month, we identified three categories

of patients with different prognosis: (i) donor chimerism ≥ 97.5%

andWT1 < 213 (53 patients); (ii) donor chimerism < 97.5 orWT1 ≥

213 (13 patients); (iii) donor chimerism < 97.5% andWT1 ≥ 213 (9

patients). The lowest CIR and the longest OS were observed in

patients with donor CD34+ ≥ 97.5% and WT1 < 213 copies/

ABL1x10^4 (Figure 4A; p<0.001 and Figure 4B; p< 0.001). This

strongly reinforces the significance of these two tests for MRD

monitoring after allo-SCT. Notably, focusing on the intermediate

category (donor CD34+ chimerism < 97.5% or WT1 ≥ 213 copies/

ABL1x10^4), we observed that nearly all of these patients (12/13)

were included in this group because of mixed donor chimerism, at a

timepoint in which WT1 levels were still within the normal range.

This suggests that molecular chimerism may detect persistence of

MRD earlier than WT1. In other words, once WT1 gets positive,

disease relapse is highly likely to occur in a very short time-frame.

Even if numbers are small to be conclusive, we think that these

results reinforces the usefulness of both methods for MRD

monitoring after allo-SCT and suggests that lineage-specific

molecular chimerism may an earlier predictor of relapse than

WT1. On the other hands, a recently published paper (18)
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suggests that day +100 MRD positivity is a stronger predictor of

relapse after allo-SCT compared to mixed chimerism. Notably, the

series published by Klyuchinov and Colleagues includes

intermediate-risk AML only, and MRD monitoring was

performed with MFC and RT-qPCR on NPM1A, of which at least

NPM1A is extremely disease-specific as a marker of MRD. These

two aspects may be responsible for the different results.

We then looked at the use of pre-emptive therapy guided by one

or both of the MRDmarkers (chimerism and/orWT1). Pre-emptive

treatment was administered in a minority of patients (n=11). As a

consequence results are anecdotal and no conclusions can be drawn.

Interestingly, the higher response rate (in terms of conversion to full

donor chimerism or increase in the percentage of donor CD34+

cells) was observed in patients with mixed chimerism at 3rd months

(n=29). In this group, 7 patients (24%) received a pre-emptive

approach with either HMA alone or in combination with

venetoclax/DLI or DLI alone, 4/7 (57%) patients achieved a

response and at the last follow up 9/29 (31%) patients were alive.

The relatively small number of patients included in our analysis

may hamper drawing final conclusions. Nevertheless, our study

confirms the prognostic value of lineage-specific chimerism at very

early timepoints (1st and 3rd month) and suggests that patients at

high risk of relapse may show mixed chimerism before positivity of

WT1 as a marker of MRD. The aim of this study was not to compare

lineage-specific molecular chimerism and WT1, but our results

indirectly suggest that chimerism on CD34+ cells could be an earlier

predictor of relapse. The small number of cases with available data

at day +30 depends on the fact that early assessment of chimerism

and MRD monitoring were implemented only from 2020 in our

Institution and suggests caution both in results interpretation and

conclusion drawing.

Overall, our data are in line with other published papers,

highlighting the role of both lineage specific molecular chimerism

and WT1 as markers of MRD after allo-SCT (14–19, 24–28). The

issue of the superiority of molecular chimerism on CD34+ cells over
A B

FIGURE 4

Cumulative Incidence of Relapse (CIR) and Overall Survival (OS) according to combination of molecular chimerism on CD34+ cells and WT1 levels at
3rd month. (A) CIR at 1 year CD34+≥97.5% and WT1 < 213 copies/ABL1×10^4 vs CD34+ <97.5% WT1 ≥ 213 copies/ABL1×10^4 vs CD34+ <97.5% or
WT1 ≥ 213 copies/ABL1×10^4: 4.1% (95% CI 0.8-12.4) vs 30.7% (95% CI 9.5-55.4) vs 100% (95% CI NA). (B) OS at 1 year CD34+≥97.5% and WT1 < 213
copies/ABL1×10^4 vs CD34+ <97.5% or WT1 ≥ 213 copies/ABL1×10^4 vs CD34+ <97.5% and WT1 ≥ 213 copies/ABL1×10^4: 94.2% (95% CI 83.0-
98.1) vs 76.9% (95% CI 44.91.9)] vs 0% (95% CI NA).
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other methods for leukemia relapse prediction is still unsolved.

Some data suggest that WT1 could be more sensitive than lineage

specific molecular chimerism (29) or that the two methods are

concordant (30), also when analyzed in specific cellular sub-types,

such as CD3 negative mononuclear cells (31). On the other hand, in

the study by Rossi and Colleagues a higher concordance between

positive results from MFC and WT1 was detected among patients

with mixed rather than complete chimerism (32). Several issues are

still open, such as the role of the source used for the detection of

both chimerism and MRD. If it is true that PB may be used for

MRD monitoring in AML and has some advantages over bone

marrow (13), there are no conclusive data regarding this issue when

we consider lineage-specific molecular chimerism and different

sources are used in the published papers, according to each

Center’s guideline (15, 26–32). Interestingly, as suggested by

Gambacorta and Colleagues, PB may allow a tighter follow up of

the patients and may allow higher specificity in case of positive

samples. The Authors give an intriguing explanation for this,

speculating that BM detects a significant “background noise”

possibly related to the aspiration of host stromal cells (15).

Moreover, new technologies such as digital PCR (dPCR) or next

generation sequencing (NGS) may be a useful tool to increase both

the specificity and sensitivity of lineage-specific molecular

chimerism. Further prospective studies are thus warranted in

order to clarify if lineage-specific molecular chimerism is superior

to WT1 to identify imminent relapse, which time-points are more

reliable for an optimal prediction of disease recurrence, if PB should

be preferred to BM and if new technologies may increase the power

of molecular chimerism for relapse prevention.
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Minimal/measurable residual disease (MRD) monitoring is progressively changing

the management of hematologic malignancies. The possibility of detecting the

persistence/reappearance of disease in patients in apparent clinical remission

offers a refined risk stratification and a treatment decision making tool. Several

molecular techniques are employed to monitor MRD, from conventional real-

time quantitative polymerase chain reaction (RQ-PCR) to next generation

sequencing and digital droplet PCR (ddPCR), in different tissues or

compartments through the detection of fusion genes, immunoglobulin and T-

cell receptor gene rearrangements or disease-specific mutations. RQ-PCR is still

the gold standard for MRD analysis despite some limitations. ddPCR, considered

the third-generation PCR, yields a direct, absolute, and accurate detection and

quantification of low-abundance nucleic acids. In the setting of MRDmonitoring

it carries the major advantage of not requiring a reference standard curve built

with the diagnostic sample dilution and of allowing to reduce the number of

samples below the quantitative range. At present, the broad use of ddPCR to

monitor MRD in the clinical practice is limited by the lack of international

guidelines. Its application within clinical trials is nonetheless progressively

growing both in acute lymphoblastic leukemia as well as in chronic

lymphocytic leukemia and non-Hodgkin lymphomas. The aim of this review is

to summarize the accumulating data on the use of ddPCR for MRDmonitoring in

chronic lymphoid malignancies and to highlight how this new technique is likely

to enter into the clinical practice.

KEYWORDS

digital droplet PCR, measurable residual disease (MRD), non-Hodgkin lymphoma,
chronic lymphocytic leukemia, hairy cell leukaemia (HCL)
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1 Introduction

Monitoring of measurable/minimal residual disease (MRD) is

progressively impacting on the management and outcome of

different hematologic malignancies, since it can predict patients’

outcome, redefine prognostic risk stratification and response to

treatment and in acute leukemias and chronic myeloid leukemia also

guide treatment decisions (1–5). Several molecular techniques are

employed to monitor MRD, from conventional real-time quantitative

polymerase chain reaction (RQ-PCR) (6–9) to next-generation

sequencing (NGS) (10–13) and digital droplet PCR (ddPCR) (14–

17), through the detection of fusion genes, immunoglobulin (IGH) or

T-cell receptor (TCR) gene rearrangements, or disease-specific

mutations. They are applied to different tissues or compartments, i.e.

bone marrow (BM) and peripheral blood (PB) - for both genomic

DNA from circulating neoplastic cells or circulating cell-free DNA

(cfDNA) from plasma (18, 19).

RQ-PCR still represents the gold standard for MRD.

International guidelines for analysis and reporting have been

established by the EuroMRD Consortium (8). Despite the high

sensitivity of RQ-PCR, a non-negligible fraction of samples with

low-level positivity within the 1 x 10-4 to 1 x 10-5 range (i.e. 1 tumor

cell within 10.000-100.000 normal cells) cannot be precisely

quantified according to the EuroMRD guidelines (20). The reason

could reside in the lack of reproducibility of the samples at these

levels. However, in most cases it is difficult to distinguish the PCR

amplification signal of very few residual leukemic cells from the

non-specific signal (20). Moreover, MRD quantification by RQ-

PCR is based on a standard curve built on the dilution of the

diagnostic sample within a pool of healthy donors’ DNA.

NGS, widely employed to detect disease-specific mutations with

high sensitivity (<1%) when compared to Sanger sequencing (10-

20%), can also be employed for target screening and MRD

monitoring. It shows the remarkable advantage of a wide

applicability (≥95% of cases) and of providing additional

information on the whole clonal composition and/or clonal

evolution of each neoplasm. The EuroMRD Consortium has

recently established the indications to apply NGS for target

screening (10–13). However, since NGS sensitivity for MRD

detection increases with the increase of DNA input, the issue of

the balance between costs and feasibility is still a matter of debate.

ddPCR, considered the third-generation PCR, yields a direct,

absolute, and accurate detection and quantification of low-

abundance nucleic acids, with documented advantages in the

context of MRD quantification (see below). ddPCR is actively

investigated in the context of the EuroMRD group. At present,

standard operating procedures have been published as a guide for

digital analysis in lymphoid malignancies (21).

NGS and ddPCR could also be applied in combination: NGS

can be optimized to detect the target sequence of IGH

rearrangements, which can be employed to design patient-specific

probes to be monitored by ddPCR, which allows to reduce costs,

time and efforts compared to NGS monitoring.

At present, the use of ddPCR and NGS to monitor MRD in the

clinical practice is limited by the lack of international guidelines.
Frontiers in Oncology 02108
Nevertheless, their application within clinical trials is progressively

growing in lymphoid malignancies, such as Philadelphia-positive

and -negative acute lymphoblastic leukemia (ALL), chronic

lymphocytic leukemia (CLL) and non-Hodgkin lymphomas

(NHL) (1–4, 15–17, 20, 22).

The aim of this review is to summarize the accumulating data

on the use of ddPCR for MRD monitoring in chronic lymphoid

malignancies and to highlight how this new technique can enter

into the clinical practice.
2 Technical principles of ddPCR

The ddPCR system is based on the generation of droplets

through a water-oil emulsion of the sample. This partitioning

process allows to obtain multiple PCR sub-reactions, in which

each generated droplet contains single, few or no target sequences

(23, 24). PCR partitions are read and counted as negative or positive

by thresholding based on their fluorescence amplitude. Based on

Poisson’ statistics, the number of positive and negative partitions is

used to calculate the concentration of the target sequence, which

can be a known mutation or a “patient-tailored” sequence (25, 26).

High precision and sensitivity (down to a level of detection of

0.001%) are given by compartmentalization that renders PCR less

sensitive to reaction inhibitors, and reduces any template

competition, allowing the detection of rare target sequences in a

wild-type background (26–29). Assays are evaluated on the basis of

specific parameters: Limit of Blank, which is the highest amplitude

in which a blank sample stands when it is not containing any target

sequence; Limit of Detection, the lowest amplitude at which target

amplification can be distinguished from the blank; Limit of

Quantification, the lowest concentration at which a target

sequence can be quantified (25, 29). However, ddPCR still

requires a marker-specific tuning of PCR reactions, i.e. annealing

temperature, primer/probes concentration and, for results analysis,

a manual positioning of a threshold cycle. In addition, at variance

from NGS, ddPCR has technica l l imi ta t ions in the

multiplex approach.

In the MRD setting, while RQ-PCR quantification is relative to a

standard curve built on the dilution of the diagnostic sample in a

pool of DNA from healthy donors, ddPCR MRD evaluation is an

absolute quantification that makes unnecessary the standardized

dilution curve at each time point of disease monitoring.

Adaptability, reproducibility and ease of use are distinctive

features of this method, that has spread in the general practice.
3 ddPCR in chronic lymphoid
malignancies

With the advent of chemo-immunotherapy and, more recently,

with the introduction of new targeted agents in various

combinations, the prognosis of CLL and NHLs has considerably

changed over the years. Complete responses are increasing in rate

and long-lasting over time. However, a consistent proportion of
frontiersin.org
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patients experiences a relapse after achieving a complete remission.

Thus, MRD analysis has acquired relevance in the effort of

predicting patients’ outcome, stratifying more accurately patients

into risk categories, redefining the clinical response to treatment,

and possibly optimizing treatment strategies also in chronic

lymphoid malignancies (2–4, 16).

During the last few years, ddPCR has been investigated for the

monitoring BCL2::IGH rearrangement in follicular lymphoma (FL),

BCL1::IGH in mantle cell lymphoma (MCL), MYD88 mutations in

Waldenstrom macroglobulinemia (WM) and IGH rearrangements

in chronic lymphocytic leukemia (CLL), proving a promising tool to

further refine MRD monitoring (Table 1).
3.1 Follicular lymphoma

The genetic hallmark of FL is the BCL2::IGH rearrangement,

which is a result of the t (14, 18) (q32;q21) translocation which

enhances anti-apoptotic activity posing the BCL2 gene under the

transcriptional control of the heavy chain gene enhancer. The

rearrangement can occur in the major breakpoint region (MBR)

or, rarely, in the minor cluster region (mcr) (30, 31). It is detectable

at diagnosis by conventional PCR in 50-60% of cases with advanced

FL both by qualitative and quantitative approach (31–35). This low

sensitivity can be explained by the employment of large internal

primers which target both chromosomes 14 and 18 in the

qualitative reaction and the proximity of breakpoints site to target

sequences for RQ-PCR (31). In localized FL, the BCL2::IGH

rearrangement is found in a lower proportion of cases, especially

when staged by PET/CT in comparison with historical series (36).

MRD in FL is of great potential value given the heterogeneous

clinical behavior of the disease. Large clinical trials in the last years

have tried to validate MRD assessment in FL through BCL2::IGH

monitoring (32–35). MRD negativity is predictive of a better

progression-free survival (PFS) in all clinical trials conducted in

the past two decades, even in relapsed patients, and possibly of a

longer survival in studies with a prolonged follow-up (4).

Nonetheless, MRD monitoring is to date not included in the

recommended guidelines for FL management (37).

The introduction of chemo-immunotherapy with anti-CD20

monoclonal antibodies has allowed an increase in the rates of MRD

negativity at the end of induction (EOI) up to 70-80% (rituximab-

based) and 90% (obinutuzumab-based), respectively (4). Anti-

CD20 maintenance holds and increases the rates of MRD

negativity. Recently, the assessment of MRD at earlier time points

with respect to EOI has been tested for the first time in the Gallium

trial and has proven informative (38, 39).

MRD analysis is also a sensitive tool to refine clinical response

assessment in FL. The combination of molecular and metabolic-

defined response is a promising and valuable tool to be further

explored, as well as the possibility of a MRD-driven modulation of

the post-induction therapy in FL (35).

Given this landscape, it is clear which clinical benefit could

come from optimizing the use of ddPCR in FL to maximize the

sensitivity of BCL2/IGH detection. The droplets are analyzed on

the basis of FAM fluorescence BCL2/JH-linked and corrected by the
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unspecific background fluorescence. BCL2::IGH can be detected

down to 1 × 10−4 BCL2/JH-positive cell line (limit of detection).

Drandi et al. (28) compared RQ-PCR to ddPCR in 30 patients

with FL, 18 with multiple myeloma (MM) and 21 with MCL. A

highly significant level of concordance was observed between qPCR

and ddPCR (r = 0.94, P <0.0001; 95% CI, 0.94–0.97), with 189 of

222 samples (85.1%) fully concordant. In the MRD quantification of

26 samples resulting positive not-quantifiable (PNQ) by RQ-PCR,

27% resulted quantifiable and 23% negative when assessed by

ddPCR. This experience showed how ddPCR can be a valid

option for MRD detection.

Cavalli et al. (27) tested a cohort of 67 patients affected by early-

stage FL both in the PB and BM at diagnosis and after radio-

immunotherapy. Among 138 samples, the concordance between

RQ-PCR and ddPCR was 81.9%, which raised to 97.5% for the

subset with quantifiable disease (40/138) (21). Moreover, at baseline

ddPCR identified a MBR marker in 8 of 18 (44%) samples that by

qualitative nested PCR resulted as MBR−/mcr−. A molecular tumor

burden at diagnosis ≥1 x 10−5 significantly predicted PFS only when

quantified by ddPCR but not by RQ-PCR (36). Again, a higher

sensitivity of ddPCR was shown in RQ-PCR PNQ samples (27).

Della Starza et al. (40), through a collaborative effort of four

laboratories belonging to the Fondazione Italiana Linfomi (FIL)

MRD Network for FL and MCL MRD assessment, demonstrated

that there is a proportion of “borderline” samples (31/187, 17%),

those resulting alternatively positive and negative by RQ-PCR/

qual i ta t ive PCR, that chal lenge the inter- laboratory

reproducibility. There was no inter-laboratory discordance when

“borderline” samples were tested by ddPCR analysis.

In another experience by Delfau-Larue et al. (41) quantification

of circulating BCL2/IGH+ cells and cfDNA was retrospectively

performed by ddPCR in 133 FL patients. PB was tested for BCL2::

IGH rearrangement and the ANKRD30B gene was used as the

reference gene to quantify the cell-free circulating equivalent

genome using the PrimePCR ddPCR copy number assay. A

significant correlation was found between the total metabolic

tumor volume (TMTV) and both circulating tumor cells (CTCs)

(P <0.0001) and cfDNA (P <.0001). With a median follow-up of 48-

month, the 4-year PFS was lower in patients with TMTV >510 cm3

(P = 0.0004), CTCs >0.0018 PB cells (P = 0.03), or cfDNA >2550

equivalent-genome/mL (P = 0.04). Total cfDNA levels and TMTV

were independent predictors of outcome. In this experience, ddPCR

proved to be promising in the evaluation of multiple compartments

in FL, including cfDNA (41).

For the first time in the context of a clinical trial, MRD analysis

was assessed by ddPCR in the Relevance protocol (42). At the EOI,

98% and 78% of patients achieved a complete molecular response in

the PB and BM, respectively. A complete molecular response was

reached more frequently with the rituximab + lenalidomide

combination (90%) than with rituximab-chemo (77%) (p = 0.022)

(42) (Table 1).

Mutations other than BCL2::IGH are gaining interest for their

prognostic relevance in FL, such as the gain-of-function mutations

of the EZH2 gene. Alcaide et al. (43) optimized a multiplex ddPCR

for the detection of 4 EZH2 Y641 and STAT6 mutations. This assay

accurately determined whether the samples harbored either an
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TABLE 1 Experiences reporting on ddPCR and MRD in lymphoproliferative disorders.

Studies comparing ddPCR to RQ-PCR

Study Disease N° of
patients
(samples)

Rationale Tissue
Timing

Marker Concordance
with RQ-PCR

Major Advantages of
ddPCR

Drandi
et al.28

FL+MM
+MCL

30+18+21
(222)

Comparison between RQ-PCR
and ddPCR

BM
at
diagnosis
and
MRD

BCL2::IGH
IGH

85% 7 of 26 PNQ samples (26.9%; five
MM, one MCL, and one FL) by
RQ-PCR were quantified by
ddPCR; 6/26 (23.1%) were negative
by ddPCR

Cavalli
et al.27

Early stage
FL

67
(138)

Comparison between RQ-PCR
and ddPCR

PB+BM
at
diagnosis
and
MRD

BCL2::IGH 81.9% 8/18 (44.4%) negative at diagnosis
were MBR+ by ddPCR
Tumor burden at diagnosis
correlates with PFS only when
quantified by ddPCR

Drandi
et al.29

MCL 166 (416) Comparison between RQ-PCR
and ddPCR

PB+BM
at MRD

BCL1::IGH
IGH

ICC=0.79, 95% CI:
0.75-0.83

Among 240 PNQ samples at qPCR,
39% were positive by ddPCR, 49%
negative and only 12% remained
positive below quantifiable ddPCR
limits

Drandi
et al.46

WM 148
(291)

Reliability of ddPCR to detect
MYD88L265P

PB+BM
ctDNA
at
diagnosis

MYD88L265P / 122 of 128 (95.3%) BM and 47/66
(71.2%) baseline PB samples scored
positive for MYD88L265P.
High concordance between ctDNA
and BM levels

Della
Starza
et al.75

ALL, CLL,
MCL, FL

216 (620) Comparison between RQ-PCR
and ddPCR

PB+BM
at
diagnosis
and
MRD

IGH
TCR

BCL2::IGH

76.4% Significant reduction of PNQ
samples, from 18% to 11%
Significant increase of quantifiable
MRD, from 29% to 38.4%

Guerrini
et al.81

HCL, SMZL 47 (141) Comparison between RQ-PCR
and ddPCR

BM+PB
at
diagnosis
and
MRD

BRAF
V600E

/ Sensitivity of ddPCR is about half a
logarithm superior to RQ-PCR
Superiority in the identification of
MRD+ after treatment

Clinical trials employing ddPCR for MRD monitoring

Study Disease N° of
patients

Therapy Tissue
Timing

Marker+ at
diagnosis

MRD- at EOI Clinical impact

Delfau-
Larue
et al.42

Untreated
advanced FL

440 Phase 3 Relevance trial.
Rituximab plus lenalidomide
(R2) vs R-CHOP, both arms
were followed by rituximab
maintenance

PB+/-BM
at
diagnosis
and
MRD

222/440
(50.45%)
BCL2::IGH

+

MRD- at EOI
(week 24): PB 98%
and BM 78%
R2 arm: MRD- 90%
(105/117)
R-CHOP arm:
MRD- 77% (70/90)

3-Year PFS: 84% for MRD- vs 55%
for MRD+
3-Year PFS: 85% for BM MRD- vs
54% for BM MRD+
MRD+ at EOI: HR 3.3 (1.2-9.2,
p=.02) for R-CHOP arm HR 2 (0.6-
6.8; p=.27) for R2 arm

Pulsoni
et al.36

Untreated
localized FL
Stage I
(78%)- Stage
II (22%)

67 IFRT (24-30Gy) + 4 weeks of
Rituximab in MRD+

PB+ BM
at
diagnosis
and
MRD

72% BCL2::
IGH+

MRD- after RT:50%
MRD- after R:84%
In MRD+ post
IFRT: superior PFS
in patients treated
with R vs untreated
with R

84-m PFS: 75% for BCL2/IGH- vs
59% for BCL2/IGH+ by RQ-PCR at
baseline (p=.26)
84-m PFS: 90.9% in 11 pts with
MRD <10-5 vs 38% in 19 pts with
MRD=10

-5 by ddPCR at baseline
(p=.015)
F
rontiers in O
ncology
 04110
It includes studies comparing ddPCR to RQ-PCR for MRD monitoring or clinical trials with ddPCR-based MRD. ddPCR, digital droplet polymerase chain reaction; RQ-PCR, real quantitative
polymerase chain reaction; ALL, acute lymphoblastic leukemia; FL, follicular lymphoma; HCL, hairy cell leukemia; MCL, mantle cell lymphoma; MM, multiple myeloma; SMZL, splenic marginal
zone lymphoma; WM, Waldenstrom macroglobulinemia; BM, bone marrow; PB, peripheral blood; ctDNA, circulating tumor DNA; PNQ, positive not-quantifiable; MRD, minimal residual
disease; IFRT, involved field radiotherapy; ICC, intraclass correlation; EOI, end of induction; PFS, progression-free survival.
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EZH2 or a STAT6 mutation (or both) or whether samples were

lacking mutations at both hotspots (43). In a small report, the EZH2

mutant clone was also detectable in liquid biopsies (44).

These experiences open the way to larger studies to better define

the prognostic role of these mutations in FL and if they are suitable

markers for MRD.

3.1.1 Other indolent lymphomas
InWM,MYD88L265P is a diagnostic and predictive biomarker of

response to ibrutinib (45). Beside allele-specific RQ-PCR, ddPCR

has recently proven to be a suitable and sensitive tool for

MYD88L265P screening and MRD monitoring (46). Both unsorted

BM and PB samples can be reliably tested, as well as circulating

tumor DNA (ctDNA), which represents an attractive and less

invasive alternative to BM for MYD88L265P detection (46).

MYD88L265P detection in the cerebrospinal fluid (CSF) by

ddPCR is also useful to diagnose the Bing-Neel syndrome (47).

Promising results have been preliminarily shown in splenic

marginal zone lymphoma (MZL), where MRD has been assessed in

the BM and PB by ddPCR employing IGH allele-specific

oligonucleotide (ASO) primers in the phase II BRISMA/IELSG36

trial (48).
3.2 Mantle cell lymphoma

MCL is characterized in most cases by a specific t (11, 14)(q13;q32)

translocation. It can be detected by FISH in around 70% of MCL at

diagnosis and corresponds to the BCL1::IGH rearrangement, with

BCL1 proliferating activity enhanced by the heavy chain regulatory

gene. The most frequent breakpoint is the major translocation cluster

(MTC) (31, 49, 50). IGH rearrangements are detected by PCR in 80–

85% ofMCL cases. In at least 10% of cases the detection failure is linked

to purely nodal forms without circulating neoplastic cells; BCL1::IGH

rearrangements are detected by PCR in 30%–40% of such cases,

resulting in a proportion of double negative cases ranging from 5 to

10% (51, 52).

The gold standard approach for MRDmonitoring relies on BCL1::

IGH and IGH rearrangements monitored by RQ-PCR, capable of

detecting up to 1 clonal cell among 100,000 analyzed (1 × 10−5) (52–

56). Several large studies sustain the predictive role of MRD in MCL

(52–56). Among the most recent, the FIL MCL0208 trial compared

maintenance with lenalidomide vs. observation after an intensive

chemo-immunotherapeutic regimen and autologous stem cell

transplant (ASCT) in 300 young MCL patients (54). A molecular

marker (BCL1::JH and/or IGH rearrangements) was found in 83% of

patients, and a MRD negativity was achieved in 78% of patients after

high-dose chemotherapy and in 79% after ASCT (54). A time-varying

kinetic model, combining the MRD status at two or more consecutive

time points (post-ASCT, months +6, +12) was conceived. The

combination of the MRD status with the MIPI (Mantle Cell

Lymphoma International Prognostic) index proved to be an

informative tool in predicting relapse and determining time-to-

progression (TTP) (54).
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The Nordic Lymphoma Group assessed MRD in 183 MCL

patients who underwent an ASCT by performing PCR for BCL1::JH

and IGH rearrangements. Shorter progression-free survival (PFS)

and overall survival (OS) were demonstrated for patients who were

MRD-positive pre- or after-ASCT: median PFS 20 months in the

MRD-positive group vs. 142 months for the MRD-negative

patients. OS was 75% at 10 years with a median not reached in

the MRD-negative group compared to 35 months in the MRD-

positive group (55). This association was even stronger in patients

who achieved a complete response (CR) (56).

Also in this setting, the pitfalls of RQ-PCR, especially the

contamination risk, the presence of disease levels below the

quantitative range and the requirement of a standard curve offer

the possibility to improve MRD monitoring by the employment of

ddPCR (29, 54).

Drandi et al. (29) compared ddPCR with RQ-PCR in MCL

evaluated by both molecular markers. Overall, from a total of 166

patients from four prospective MCL clinical trials, 416 MRD

samples were tested by ddPCR, with an over-representation

(61%) of below the quantitative range cases by RQ-PCR. ddPCR

and RQ-PCR gave comparable results in MRD samples with at least

a 0.01% positivity. Amongst 240 samples below the quantitative

range with duplicate or triplicate analysis, 39% were positive by

ddPCR, 49% negative and only 12% remained positive below

quantifiable ddPCR limits. In another experience from the same

group, patient-specific IGH rearrangements were amplified and

directly sequenced from diagnostic DNA determining specific ASO

primers tested both in RQ-PCR and ddPCR. Sixty-seven MCL

samples (18 BM and 4 PB diagnostic, and 45 follow-up samples)

were tested (28). Only 11.9% were discordant between the two

methods, 1 major qualitative discordance and 7 minor qualitative

discordances (28).

Della Starza et al. (57) reported alternative targets, such as

immunog lobu l in kappa-de l e t ing-e l ement ( IGK-Kde)

rearrangements, as suitable for MRD detection in MCL patients

by RQ-PCR and ddPCR. IGK-Kde rearrangements were found in

76% (28/37) of cases, representing the sole molecular marker in 73%

(8/11) of BCL1::IGH double negative cases. MRD RQ-PCR

monitoring was possible in 57% (16/28) of cases, showing a 100%

concordance with the conventional targets. Also in this setting,

ddPCR showed a good concordance with RQ-PCR (19/24; 79%)

and it might help to identify false positive/negative results in

samples with low level of residual disease (57).
3.3 Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma (DLBCL) includes a variety of

biologic subtypes and variants. The distinction of the cell of origin,

i.e. activated B-cell like (ABC) and germinal center B-like (GCB)

DLBCLs, is based on the gene expression profile evaluated using the

nanostring technology (58). More recently, mutation-based cluster

classifications have been provided by the genomic profiling

evaluated by NGS (59, 60).
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At variance from FL or MCL, circulating cells in DLBCL are

rarely detectable, thus many researchers started to use the plasma as

a source of tumor DNA, either by extracting cfDNA or the

circulating exosomes (61–64). Liquid biopsy of DLBCL at

diagnosis and the identification of lymphoma-associated

mutations has opened the way to MRD monitoring also in this

disease (61, 64). In addition, testing IGH and IGK clonality on

biopsy samples has shown that up to 83% of DLBCL carry an

immunoglobulin molecular marker, which can be monitored on

ctDNA by NGS and is associated with prognosis and prediction of

relapse (62), also in new therapeutic contexts such as chimeric

antigen receptor T (CAR-T) cell therapy (65). In this setting, a NGS

based approach could overcome some limitations represented by

unproductive IGH rearrangements, the variable and generally low

amount of cfDNA extracted from plasma and a relapse with a

different clone from the baseline one (19, 62).

So far, the application of ddPCR to DLBCLmonitoring has been

limited to given conditions. One is the monitoring of specific

compartments such as the central nervous system (CNS) through

analysis of the CSF (66–68). Bobillo et al. (67) characterized tumor

tissue mutations by whole exome sequencing in 19 patients with

DLBCL (6 restricted CNS lymphomas, 1 systemic and CNS

lymphoma, 12 systemic lymphomas). Then, they tested plasma

and CSF with a target specific ddPCR designed for each mutation.

ctDNA was detectable at diagnosis in the CSF of all patients with

primary CNS lymphoma (PCNSL), but not in patients with

systemic lymphoma without CNS involvement. At variance,

plasma ctDNA was detected in only 2/6 patients with restricted

CNS lymphoma with lower variant allele frequencies than CSF

ctDNA. CSF ctDNA resulted more sensitive than flow cytometry in

documenting residual CNS disease and in 2 cases ctDNA was

detected in the CSF months before the full-blown relapse (67).

Also in the experience of Ferreri et al. (68), CSF proved to be a

promising compartment to screen and monitor PCNSL in 36 patients

at diagnosis and 27 at relapse. A MYD88 mutation was detectable in

72% of CSF samples by PCR and IL10messenger RNA in 88% of newly

diagnosed PCNSL, never in controls, showing an 82% biopsies-CSF

concordance. The high detection rates ofMYD88mutations in the CSF

in PCNSL both at initial diagnosis and at relapse could be further

improved by using ddPCR, thus becoming a potential useful tool in

patients with lesions unsuitable for biopsy (68).

Another specific condition is the monitoring of expansion and

persistence of CAR-T cells in DLBCL patients after infusion. Cheng

et al. (69) demonstrated a consistent concordance between flow-

cytometry and ddPCR in monitoring anti-CD19 CAR-T cells both in

vitro and in vivo. Similar findings were reported by Monfrini et al. (70)

who tested 42 patients (33 DLBCL, 8 primary mediastinal B-cell

lymphomas and 1 MCL) treated with commercial anti-CD19 CAR-T

cells. A unique ddPCR primer-probe assay was developed to quantify

CAR vectors on genomic DNA. CAR-T cells were significantly higher

in patients obtaining a CR at 10 days (mean 146 vs 18 CAR+ cells/µl, p

<0.05) with major magnitude of expansion at 30 days (mean area

under the curve (AUC) 0-30) = 1431.2 vs 584.3; p <0.05). These data

were independent from the product employed. ddPCR showed a

significant correlation with flow cytometry (r=0.95, p <0.0001 by

Pearson correlation) with the advantage of detecting residual CAR-T
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cells in samples with limited cellularity and/or cryopreserved (bag-

leftovers, cryopreserved BM, biopsies, cfDNA) (70). Different assays

have been developed for commercial CAR-T cell monitoring. Badbaran

et al. (71) designed a single CAR primer/probe combination by

sequencing the CAR construct from the lentiviral tisa-cel and axi-cel

vectors and designed primers and Black hole quencher (BHQ) probes

complementary to the sequences achieving excellent specificity with a

detection limit sensitivity of one single CAR copy, corresponding to a

sensitivity of approximately 1 in 5000 cells (0.02%) for 100 ng genomic

DNA (71).
3.4 Chronic lymphocytic leukemia

Among indolent B-cell malignancies, CLL is the most frequent.

The therapeutic landscape of this disease has markedly changed by

the availability of targeted drug combinations and the increasing

rate of deep CR. MRD monitoring in this context is acquiring

progressively increasing importance (2, 72, 73). Standard MRD

assessment is based on flow cytometry and on RQ-PCR with IGH

ASO primers (73). NGS has also been recently employed as a

promising tool that can produce reliable and accurate results in this

scenario (74). Data on ddPCR MRD monitoring in CLL are scanty.

Our group has conducted a comparative study of ddPCR and RQ-

PCR in more than 600 baseline and MRD samples from different

lymphoid malignancies, including 128 CLL samples (Figure 1) . In

all disease entities investigated, a high correlation of the methods

was found (76.5%) with most discordances recorded in samples

with low RQ-PCRMRD levels, in which ddPCR was able to identify

a quantifiable disease more reliably than RQ-PCR (75). In this

experience, the advantage of this technique in diminishing the

number of PNQ patients was evident (75).

Some experiences have been reported on the monitoring of

mutations by ddPCR in CLL. Frazzi et al. (76) tested TP53 exons 5-

6-7 by ddPCR in 47 patients both for mutation and copy number

variation. The AUCs for the assays were between 0.91 and 0.98,

indicating very high sensitivities and specificities for the deletion

assessment with this technique. Concordance between FISH and

ddPCR was high for both non-deleted and deleted patients (93.1%

and 90.0% respectively). A multiplex approach has been suggested

by this experience (76).

Minervini et al. (77) validated a ddPCR based assay for c.7541-

7542delCT NOTCH1 mutation. A NOTCH1 mutation was

detected in a proportion of CLL cases (53.4%) higher than

expected. In follow-up samples, ddPCR showed a statistically

significant reduction of the NOTCH1 mutated allelic burden

when measured after treatment (median fractional abundance

(FA) 11.67% vs 0.09%, respectively, p = 0.01) (77). Hoofd et al.

(78) validated a highly sensitive and quantitative ddPCR assay for

the NOTCH1 delCT mutation (c.7541_7542delCT). The mutation

was detected at allele frequencies as low as 0.024% in 166 CLL tested

samples; 25% of unselected cases and 55% of trisomy 12 cases were

positive. Association of NOTCH1 delCT and trisomy of

chromosome 12 was associated to shorter overall survival (78).

In another experience from our group, mutations and deletions of

BIRC3 were tested by ddPCR in a cohort of 134 CLL with del(11q).
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BIRC3 deletion was identified in 105/134 11q- patients (78%) and

mutations occurred in 10/134 cases (7.5%), all BIRC3 deleted, resulting

in a biallelic disruption of the gene associated with a poor prognosis.

BIRC3 deletions were identified when carried by 10% of cells (79).
3.5 Other chronic lymphoproliferative
disorders of B or T-cell lineage

In hairy cell leukemia (HCL), a ddPCR approach has been tested

for the molecular detection and monitoring of BRAFV600Emutation

(80–82). ddPCR was retrospectively compared to RQ-PCR in 47

patients (29 HCL and 18 splenic MZL) for the detection of

BRAFV600E. The sensitivity of ddPCR was about half a logarithm

superior to that of RQ-PCR (5 × 10-5 vs. 2.5 × 10-4), with comparable

specificity (81). In terms of MRDmonitoring, at the end of treatment,

among patients in CR, 33% were still MRD-positive by ddPCR versus

28% by RQ-PCR. In another experience, the BRAFV600E mutational

burden has been tested in 35 HCL patients on PB and BM at

diagnosis, at the time of response assessment and at relapse (82).

Mean values were 12.2%, 0.02% and 16.5% respectively for PB and

23.5%, 0.26% and 13.9% for BM. In 4 out of 6 patients evaluated at

response BRAFV600E was negative in the PB, whilst among patients

with long-lasting CR after one course of cladribine the mean

BRAFV600E was 0.05% in 4 cases and negative in 10. These

preliminary results suggest that ddPCR may allow to assess the

active tumor burden in HCL at different stages of the disease, to

refine the response assessment and possibly to identify patients

“cured” of their disease.

Limited experience is available regarding the employment of

ddPCR in chronic T-cell lymphoproliferative disorders. Tanzima

Nuhat et al. (83) reported a good performance of ddPCR in the

screening of G17V RHOA mutations in a cohort of 67 patients with

peripheral T-cell lymphomas (PTCL), 40 angioimmunoblastic and 27
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PTCL-not otherwise specified (NOS), with diagnostic purposes. The

ddPCR was compared to NGS: G17V RHOAmutation was detected in

27 of 67 (40.3%) patients by NGS and in 31 of 67 (46.3%) by ddPCR

(83). Additionally, variant allele frequencies were highly concordant

between the methods (P <.001) (83). Thus, for point mutation

detection, ddPCR has a higher sensitivity that NGS, but its targeted

nature has to be taken into account, since the whole spectrum of

mutations can be missed. In the setting of anaplastic large cell

lymphoma, ddPCR seems to be feasible for disease detection and

MRD monitoring through ALK fusion transcripts (84, 85).
4 Conclusions

Based on the growing body of evidence, ddPCR may be

considered as an alternative tool for molecular MRD assessment

in lymphoid malignancies. Over the past 5 years, many groups have

tested ddPCR for MRD evaluation and several technical advantages

have been reported. The main clinical advantage provided by

ddPCR is the absolute quantification of the disease, avoiding the

need of the diagnostic sample dilution to build the reference

standard curve, and the decrease in the number of PNQ samples,

that represent a primary unmet need in the clinical practice where

treatment decisions are based on MRD monitoring.

Although no guidelines for ddPCR MRD analysis and

interpretation have so far been defined, a major standardization

effort is underway within ESLHO (European Scientific Foundation

for Laboratory Hemato Oncology) through the EuroMRD

Consortium (www.euromrd.org) for its future application.

The value of ddPCR for MRD analysis needs to be conclusively

documented in the context of prospective clinical trials. This will

allow to define whether it could contribute to a further

improvement of patients’ management and outcome in different

hematological malignancies.
FIGURE 1

MRD comparison between ddPCR and RQ-PCR. At our Center, we evaluated 216 patients (113 ALL, 47 CLL, 48 FL, 8 MCL) at diagnosis and during
the post-treatment follow-up, reaching a total number of 620 evaluations performed by both RQ-PCR and ddPCR, and distributed as follows: 326
ALL, 128 CLL, 142 FL, 24 MCL. The figure shows the overall concordance of the two methods and differences in defining a sample as Quantifiable
(Q), Negative (NEG) or Positive Not-Quantifiable (PNQ) for MRD.
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