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CAR-T Cell Therapy in Hematological
Malignancies: Current Opportunities
and Challenges
Xiaomin Zhang1,2, Lingling Zhu3, Hui Zhang4, Shanshan Chen3 and Yang Xiao2,5*

1 Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,
2 Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China, 3 Cancer Center,
Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, 4 School of Medicine,
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Chimeric antigen receptor T (CAR-T) cell therapy represents a major breakthrough in
cancer treatment, and it has achieved unprecedented success in hematological
malignancies, especially in relapsed/refractory (R/R) B cell malignancies. At present,
CD19 and BCMA are the most common targets in CAR-T cell therapy, and numerous
novel therapeutic targets are being explored. However, the adverse events related to CAR-T
cell therapy might be serious or even life-threatening, such as cytokine release syndrome
(CRS), CAR-T-cell-related encephalopathy syndrome (CRES), infections, cytopenia, and
CRS-related coagulopathy. In addition, due to antigen escape, the limited CAR-T cell
persistence, and immunosuppressive tumor microenvironment, a considerable proportion
of patients relapse after CAR-T cell therapy. Thus, in this review, we focus on the progress
and challenges of CAR-T cell therapy in hematological malignancies, such as attractive
therapeutic targets, CAR-T related toxicities, and resistance to CAR-T cell therapy, and
provide some practical recommendations.

Keywords: CAR-T cell, hematological malignancies, CAR-T related toxicities, antigen escape, immunosuppressive
tumor microenvironment, combinatorial therapy
INTRODUCTION

Traditionally, the treatment of hematological malignancies mainly includes chemotherapy,
radiotherapy, and hematopoietic stem cell transplantation (HSCT). However, with advances in
tumor immunology, immune targeted therapy, such as monoclonal antibodies, bispecific
antibodies, antibody-drug conjugates, and chimeric antigen receptor T (CAR-T) cell therapy, has
opened a new avenue for the treatment of malignancies. In particular, CAR-T cell therapy
has revolutionized the treatment of hematological malignancies and achieved unprecedented
responses in recent years, especially in relapsed/refractory (R/R) B-cell acute lymphocytic
leukemia (B-ALL), non-Hodgkin lymphoma (NHL), and multiple myeloma (MM). At present,
there are six CAR-T cell products approved by the US Food and Drug Administration (FDA) for the
treatment of R/R B cell malignancies, including tisagenlecleucel (Kymriah; Novartis), axicabtagene
ciloleucel (Yescarta; Gilead), brexucabtagene autoleucel (Tecartus; Gilead), lisocabtagene
maraleucel (Breyanzi; Bristol Myers Squibb), idecabtagene vicleucel (Abecma; Bristol Myers
org June 2022 | Volume 13 | Article 927153154
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Squibb and Bluebird Bio), and ciltacabtagene autoleucel
(Carvykti; Legend and Janssen), which target the most
common target antigens CD19 and B cell maturation antigen
(BCMA) (Table 1 landmark clinical trials). In addition, there
are a considerable number of novel targets which are
being explored.

However, despite the remarkable breakthrough of
CAR-T therapy in B cell malignancies, severe toxicities
associated with CAR-T cell therapy may compromise its
efficacy and could even progress into life-threatening
conditions, such as multiple organ dysfunction, sepsis, and
disseminated intravascular coagulation (DIC). Cytokine release
syndrome (CRS) is the most common complication, which is a
systemic inflammatory response induced by the overactivation of
CAR-T cells and endogenous immune cells, such as
macrophages and dendritic cells. Its manifestations are diverse
and partially similar with infections. Moreover, severe CRS is
correlated with the increased risk of CAR-T-cell-related
encephalopathy syndrome (CRES) and coagulopathy (9). Thus,
clarifying their underlying mechanisms could facilitate
the prevention and management of these adverse events.
In addition, the resistance after CAR T-cell therapy
cannot be ignored.

Thus, this review aims to introduce the advances and
challenges in CAR-T cell therapy, such as attractive therapeutic
targets, toxicities related to CAR-T cell therapy, and resistance to
CAR-T cell therapy, and explore their underlying mechanisms
and effective treatment strategies in order to facilitate the
application and management of CAR-T cell therapy.
OVERVIEW OF CAR-T CELL THERAPY

To manufacture CAR-T cells, T cells are collected from
peripheral blood of patients or donors and then genetically
Frontiers in Immunology | www.frontiersin.org 265
engineered in vitro to express chimeric antigen receptor
(CAR). Thus, CAR-T cells recognize specific surface antigens
on tumor cells without antigen processing and presentation,
which indicates that antigen recognition by CAR-T cells is
independently of major histocompatibility complex (MHC)
restriction. After genetic modifications, they undergoextensive
expansion in vitro. Then the patients receive lymphodepleting
chemotherapy to make room for these adoptive CAR-T cells, and
subsequently these genetically engineered CAR-T cells are re-
infused into the patients. These CAR-T cells specifically
recognize target antigens and rapidly proliferate to exert anti-
tumor effects in vivo.

The CAR structure consists of an extracellular antigen-
recognition domain, a transmembrane domain, and an
intracellular signaling domain. The extracellular domain, a
single-chain variable fragment (scFv), is able to specifically
recognize tumor surface antigens. Typically, tumor antigens
are categorized into tumor-associated antigens (TAAs) and
tumor specific antigens (TSAs), and most of they are TAAs.
Once TAAs are identified by scFv, CAR-T cells are activated
and transmit activation signals to the intracellular domain. The
first-generation CAR construct contains an antigen-recognition
domain scFv and an intracellular CD3z activation domain. Due
to the absence of costimulatory signals, they exhibit the
limited proliferative capacity and anti-tumor effects. The
second-generation CAR construct adds a costimulatory
domain, such as CD28, 4-1BB, OX40, or ICOS, which enables
themselves to possess the better proliferative capacity and
release more cytokines. Currently, these commercial CAR-T
cell products both utilize the second-generation CAR construct.
The third-generation CAR construct encompasses two distinct
costimulatory molecules, such as CD28 and 4-1BB. The fourth-
generation CAR construct, also named TRUCK or armored
CAR, is additionally modified to secrete cytokines or express
suicide genes, such as IL-7, IL-12, IL-15, IL-21, and iCaspase-9
TABLE 1 | Landmark clinical trials of FDA-approved CAR-T cell products.

CAR-T
products

Target Company Year Clinical trial Indications Response Toxicities (Grade 3/4) Reference

tisagenlecleucel CD19 Novartis 2017 ELIANA R/R B-ALL ORR 81%, CR
60%

CRS (46%), CRES (13%)
cytopenia (61%)

Maude SL
et al. (1)

2018 JULIET R/R DLBCL ORR 52%, CR
40%, PR 12%

CRS (22%), CRES (12%)
cytopenia (32%)
infections (20%)

Schuster
SJ et al. (2)

2021 ELARA R/R FL ORR 86%, CR
69%

CRS (49%), CRES (37%)
infections (5%)

Fowler NH
et al. (3)

axicabtagene
ciloleucel

CD19 Gilead 2017 ZUMA-1 R/R DLBCL, transformed
FL,
PMBCL, and HGBCL

ORR 82%, CR
54%

CRS (13%), CRES (28%),
cytopenia (78%)

Locke FL
et al. (4)

brexucabtagene
autoleucel

CD19 Gilead 2020 ZUMA-2 R/R MCL ORR 85%, CR
59%,

CRS (15%),
CRES (31%), cytopenia
(94%), infections (32%)

Wang M
et al. (5)

lisocabtagene
maraleucel

CD19 Bristol Myers Squibb 2021 TRANSCEND R/R DLBCL, HGBCL,
PMBCL, and FL grade 3B

ORR 73%, CR
53%

CRS (2%), CRES (10%),
cytopenia (60%)

Abramson
JS et al. (6)

idecabtagene
vicleucel

BCMA Bristol Myers Squibb
and Bluebird Bio

2021 KarMMa R/R MM ORR 73%, CR
33%

CRS (5%), CRES (3%),
cytopenia (89%)

Berdeja JG
et al. (7)

ciltacabtagene
autoleucel

BCMA Legend and Janssen 2022 CARTITUDE-
1

R/R MM ORR97%, CR
67%

CRS (4%), CRES (9%),
cytopenia (95%)

Munshi NC
et al. (8)
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(10, 11) (Figure 1). The fourth-generation CAR-T cells may be
more effective in eliminating tumor cells by activating the
endogenous immune responses. However, the characteristics
of fourth-generation CAR-T cells are largely unknown. In
addition, the 2020 American Society of Hematology (ASH)
annual meeting announced two studies about FasT CAR-T
cells, including CD19-CD22 FasT dual-targeting CAR-T cells
(GC022F) in B-ALL patients and BCMA-CD19 FasT dual-
targeting CAR-T cells (GC012F) in R/R MM patients (12,
13). These FasT CAR-T products were manufactured in 24 to
36 hours and showed superior efficacy in preliminary studies,
indicating that they might be more suitable for rapidly
progressive B cell malignancies.

At present, all commercial CAR-T cell products are
manufactured using autologous T lymphocytes, but high
manufacturing costs, relatively longer manufacturing cycle, and
decreased number and function of lymphocytes after multiline
chemotherapies have restricted their further application.
However, it seems that universal CAR-T (UCAR-T) cells
which are derived from healthy donors are able to overcome
these limitations. The large-scale production of UCAR-T cells
makes them “off-the-shelf” products, which could reduce
manufacturing costs and increase their accessibility.
Unfortunately, these allogeneic UCAR-T cells could induce
graft versus host disease (GVHD) (14). Furthermore, the host
immune system is able to reject these donor-derived UCAR-T
cells and impairs their persistence. In addition, due to the
excellent natural killing functions of NK cells and their
abundant sources, such as NK92 cell line, cord blood,
peripheral blood, and induced pluripotent stem cells, as well as
no induction of GVHD, CAR-NK cells are currently being
explored (15).
Frontiers in Immunology | www.frontiersin.org 376
ATTRACTIVE TARGETS FOR CAR-T CELL
THERAPY IN HEMATOLOGICAL
MALIGNANCIES

Currently, CD19 and BCMA are the most common targets in
CAR-T cell therapy. Although anti-CD19 CAR-T cell therapy
and anti-BCMA CAR-T cell therapy have achieved outstanding
outcomes in B cell malignancies, relapse after CAR-T cell
therapy is frequently observed. In addition, due to the
antigenic heterogeneity of acute myeloid leukemia (AML) as
well as the lack of CD19 expression in Hodgkin lymphoma (HL)
and T cell malignancies, a number of potential targets are
currently being investigated (Figure 2).

Targets for CAR-T Cell Therapy in B Cell
Lymphoblastic Leukemia/Lymphoma
The CD19 is one of the most important target antigens in B cell
malignancies, including B-ALL and NHL. In recent years, anti-
CD19 CAR-T cell therapy has achieved rapid and durable
responses in patients with R/R B-ALL and NHL (1–6, 16), and
has dramatically altered the therapeutic landscape of B cell
malignancies. Until now, four anti-CD19 CAR-T cell products
have been approved by FDA for the treatment of R/R B-ALL and
NHL (17). Despite the outstanding clinical results of anti-CD19
CAR-T therapy, CD19 antigen loss is frequently observed (18).
Thus, the alternative targets for CAR-T cell therapy in R/R B-
ALL and NHL have been explored.

CD20 is overexpressed in over 90% of B cell lymphomas and
identified as an attractive target for CD20 positive B cell
lymphomas, and the anti-CD20 monoclonal antibody rituximab
has showed the excellent effect on NHL over the past few years. In
an early clinical trial, the overall response rate (ORR) of anti-CD20
FIGURE 1 | Four generations of CAR constructs. The first-generation of CAR consists of the antigen recognition domain scFv and an intracellular T cell activation
domain CD3z. The second-generation CAR adds a costimulatory molecule, such as CD28, 4-1BB, OX40 or ICOS, which enables the T cells to obtain a superior
proliferative capacity and secrete large amounts of cytokines. The third-generation CAR contains two distinct costimulatory domains, such as CD28 and 4-1BB. The
fourth-generation of CAR, also known as TRUCK or armored CAR, is additionally equipped with safety switches or engineered to secrete cytokines in order to
regulate the persistence or the function of CAR-T cells, such as iCaspase-9, IL-7, IL-15, IL-21.
June 2022 | Volume 13 | Article 927153
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CAR-T cell therapy in DLBCL patients was 86% (19). In
subsequent phase 1 and 2 trials, the anti-CD20 CAR-T cells
were administrated to 17 R/R NHL patients, and 54.5% of
patients achieved complete remissions (CRs) and 12 patients
remained in remission with a median follow-up of 20 months
(20). To prevent antigen escape, the combination of anti-CD19
and anti-CD20 CAR-T cells for the treatment of R/R DLBCL was
investigated, and this combinational therapy was demonstrated to
be safe and feasible (21). CD22 is highly expressed on most B cell
malignancies, including B-ALL and DLBCL (22, 23). In particular,
it is restrictively expressed on normal B cells and not expressed on
hematopoietic stem cells, so it is an ideal target for CAR-T cell
therapy in R/R B-ALL and DLBCL. In several clinical trials, the
anti-CD22 CAR-T cell therapy has shown excellent efficacy in R/R
B-ALL and R/R DLBCL patients who have failed in previous anti-
CD19 CAR-T cell therapy (24–26). In addition, the humanized
anti-CD22 CAR- T cells exhibits potent activity against leukemia
cells with low CD22 expression (27).

Targets for CAR-T Cell Therapy in T Cell
Lymphoblastic Leukemia/Lymphoma
Patients with R/R T-cell acute lymphoblastic leukemia (T-ALL)
and T cell lymphomas often have poor prognosis. Compared
with the outstanding clinical outcomes of anti-CD19 CAR-T cell
therapy in B cell malignancies, the efficacy and safety CAR-T cell
Frontiers in Immunology | www.frontiersin.org 487
therapy in T cell malignancies are largely unknown and
under investigation. CD7 is highly expressed in 95% of T-ALL
patients and represents a desirable target for the treatment of T-
ALL (28). In an open-label and single-arm clinical trial, 2 R/R T-
ALL patients were treated with allogeneic anti-CD7 CAR-T cell
therapy. One patient remained in remission for over 1 year, while
the other relapsed 48 days after CAR-T cell infusion (28). In
another phase I clinical trial, 20 R/R T-ALL patients received
donor-derived anti-CD7 CAR-T cell infusion, and 90% of
participants achieved CRs (29). In addition, a case study
reported that an 11-year-old T-ALL patient who didn’t
respond to induction failure was treated with autologous anti-
CD7 CAR-T cell therapy, and he achieved remission on day 17
and subsequently underwent HSCT (30). CD5 is expressed in
approximately 85% of T cell malignancies, such as T-cell
lymphoblastic lymphoma (T-LBL) and peripheral T-cell
lymphoma (PTCL). A recent study has demonstrated that anti-
CD5 CAR-T cells effectively eliminated malignant T cells (31). In
a phase I clinical trial, a refractory T-LBL patient with central
nervous system (CNS) infiltration received the anti-CD5 CAR-T
cell therapy and achieved CR within 4 weeks (32). Additionally,
anti-CD4 CAR-T cells showed superior activity against T cell
malignancies in preclinical studies (33). However, all three
targets CD4, CD5 and CD7 are expressed on normal T cells,
so targeting them may result in the depletion of normal T cells
FIGURE 2 | Potential therapeutic targets in hematological malignancies. A variety of attractive targets for CAR-T cell therapy in hematological malignancies, including
T and B cell leukemia/lymphoma, HL, AML, and MM.
June 2022 | Volume 13 | Article 927153

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. CAR-T Therapy in Hematological Malignancies
and the fratricide of CAR-T cells (34). Malignant T cells express
T cell receptor b-chain constant domains 1 (TRBC1), so anti-
TRBC1 CAR-T cells are able to selectively eliminate TRBC1
positive malignant T cells. Importantly, it could retain a majority
of normal T cells in vivo (35). CD99 is highly expressed in newly
diagnosed T-ALL patients, and it represents a novel target for T-
ALL (36). Furthermore, chemokine receptor CCR9 is expressed
in over 70% of T-ALL patients, and only on less than 5% of
normal T cells. In addition, it is correlated with multidrug
resistance and poor prognosis. Thus, it represents an ideal
target for CCR9 positive T-ALL. In preclinical studies, anti-
CCR9 CAR-T cells exhibited potent anti-leukemic activity and
were resistant to fratricide (37).

In addition, CD30 is highly expressed in anaplastic large-cell
lymphoma (ALCL) and is variably expressed in PTCL subtypes.
In particular, CD30 is restrictively expressed on normal T cells.
Thus, CD30 is an ideal target for these lymphoma subtypes, and
the anti-CD30 antibody-drug conjugate brentuximab vedotin
(BV) has shown a high response rate in newly diagnosed PTCL
patients (38, 39). Given the encouraging clinical efficacy of BV,
the anti-CD30 CAR-T cells were developed and exhibited
remarkable cytotoxicity against CD30 positive lymphomas in
preclinical studies (40, 41).

Targets for CAR-T Cell Therapy in
Hodgkin Lymphoma
Anti-CD19 CAR-T cell therapy has shown excellent results in R/
R B cell NHL. However, HL lacks the expression of CD19.
Interestingly, CD30 is universally expressed in classical HL.
Currently, several clinical trials have been carried out to
evaluate the safety and efficacy of anti-CD30 CAR-T cell
therapy in R/R HL (42–45). In a clinical trial from China, 5 of
6 HL patients achieved CRs after the infusion of the third-
generation anti-CD30 CAR-T cells, and the long-term remission
lasted over 24 months in 3 patients (45). In another phase 1/2
clinical trial, 27 patients were treated with the anti-CD30 CAR-T
cells and 67% of patients achieved CRs within 6 weeks, but 63%
of patients experienced disease progression with a median
follow-up of 9.5 months (46). In addition, the expression of
CD30 in HL was down-regulated after anti-CD30 CAR-T cell
therapy (47).

Targets for CAR-T Cell Therapy in Acute
Myeloid Leukemia
AML is the most common acute adult leukemia. Unfortunately,
due to antigenic heterogeneity, the CAR-T cell therapy in AML
has not achieved the same success as ALL. Recently, CD123,
CD33, CD38, CD70, C-type lectin-like molecule-1(CLL-1),
leukocyte immunoglobulin-like receptor-B4 (LILRB4), FMS-
like tyrosine kinase 3 (FLT3) and sialic acid-binding
immunoglobulin-like lectin 6 (Siglec-6) have been explored.
CD123 and CD33 are highly expressed on leukemic stem cells
in over 80% of AML patients, but they are expressed on
hematopoietic stem cells as well (48). Accordingly, targeting
them could increase the risk of long-termmyelosuppression (49).
To decrease hematological toxicity, a rapidly switchable universal
Frontiers in Immunology | www.frontiersin.org 598
anti-CD123 CAR-T cells were prepared (50, 51). In a small study,
3 R/R AML patients were treated with this universal anti-CD123
CAR-T cells, and all of them achieved a clinical response with the
rapid hematologic recovery after the withdrawal of switch-
mediated co-stimulation (52). In another phase 1 trial, 3 R/R
AML patients received autologous anti-CD33 CAR-T cell
infusion. Unfortunately, all of them died from disease
progression (53). CD38 is expressed on most AML blast cells,
and anti-CD38 CAR-T cell therapy was demonstrated to be
effective in relapsed AML after allogeneic HSCT (54). CLL-1,
which has been identified as an myeloid cell surface marker, is
overexpressed on leukemic stem cells (55). Importantly, it is
absent on hematopoietic stem cells. The CLL-1-targeted CAR-T
cells specifically eliminated CLL-1 positive leukemia in
preclinical studies (56, 57). CD70 is expressed on AML
blasts but not on normal myeloid cells, making it a promising
target for the treatment of AML (58, 59). Currently, the safety
and efficacy of anti-CD70 CAR-T cel l therapy are
under investigation. In addition, LILRB4 is highly expressed on
monocytic AML cells, and it is an attractive target for monocytic
AML (60). Siglec-6 is expressed in approximately 60% of AML
patients and absent on normal hematopoietic stem and
progenitor cells. In preclinical studies, Siglec-6 CAR T
cells effectively eliminated AML blasts in an AML
mouse xenotransplantation model (61). Thus, it could serve as
a well-validated target for CAR-T cell therapy in AML. In
addition, nucleophosmin 1 (NPM1) mutations have been
observed in 30%-35% of AML patients, and they are
considered to be initiating mutations in leukemic cells.
In preclinical mouse models, CAR-T cells targeting a
nucleophosmin neoepitope which is presented by HLA-A2
exhibited potent specific anti-leukemia activity (62).

FLT3 is a transmembrane tyrosine kinase expressed on
malignant blasts in approximately 30% of AML patients.
FLT3 mutations include point mutations and an internal
tandem duplication (ITD), and FLT3‐ITD is correlated
with poor prognosis. In preclinical studies, the FLT3-targeted
CAR-T cells successfully eliminated FLT3 positive AML cells
(63, 64), and the FLT3 inhibitor crenolanib promoted their
anti-tumor effects (64). Unfortunately, FLT3 is also expressed
on normal hematopoietic stem and progenitor cells, so the
FLT3-targeted CAR-T cells may affect normal hematopoiesis
(64, 65).

Targets for CAR-T Cell Therapy in
Multiple Myeloma
MM remains an incurable plasma cell malignancy. With the
application of novel agents, such as proteasome inhibitors,
immunomodulatory drugs, and anti-CD38 monoclonal antibodies,
MM patients have significantly improved survival outcomes (66).
However, almost all MMpatients inevitably relapse. BCMA is highly
selectively expressed on malignant plasma cells, so it represents one
of the most promising therapeutic targets for MM. At present, anti-
BCMA CAR-T cell therapy has been demonstrated to be effective in
R/R MM and achieved unprecedented responses (7, 8, 67–69), and
two anti-BCMA CAR-T cell products, idecabtagene vicleucel and
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ciltacabtagene autoleucel, have been approved by the FDA for the
treatment of R/R MM (7, 70). Furthermore, the anti-BCMACAR-T
cell therapy is effective in R/R MM patients with extramedullary
disease (71–73). However, some MM patients still relapse after anti-
BCMA CAR-T therapy, and BCMA expression is downregulated
under therapeutic pressure. Therefore, new target antigens are
required (74).

Currently, several potential target antigens have been
investigated, such as CD38, CD138, CD229, SLAMF7, a
proliferation-inducing ligand (APRIL), and G protein-coupled
receptor, class C group 5 member D (GPRC5D). CD138 is highly
expressed on MM cells and promote their survival and
proliferation. In a preclinical study, anti-CD138 CAR-T cells
effectively eliminated MM cells (75). In a small clinical trial, 5
patients received anti-CD138 CAR-T cell therapy, and 4 of them
had a clinical response and remained stable for at least three
months (76). CD38 is not only highly expressed on MM cells, but
also expressed on hematopoietic cells and activated lymphocytes
cells (77). Unfortunately, although the anti-CD38 CAR-T cells
exhibited significant anti-tumor effects in mouse models, they
impaired normal hematopoietic cells and lymphocytes (78).
Clinically, CD38 is frequently combined with other targets,
such as BCMA and CD138, to produce bispecific CAR-T cells,
thereby reducing the risk of antigen escape (79, 80). CD229 is
a surface antigen highly expressed on MM cells (81). The anti-
CD229 CAR-T cells effectively eliminated MM cells in preclinical
studies (82). SLAMF7, also known as CS1, is highly expressed in
over 95% of MM patients. Similar to CD38, SLAMF7 is also
expressed on normal lymphocytes, including activated T cells,
NK cells, and B cells (83). Thus, SLAMF7 CAR-T cells could kill
normal lymphocytes and increase the risk of CAR-T cell
fratricide (84). Currently, the clinical trial of SLAMF7 CAR-T
cells is ongoing (85). APRIL is a natural ligand which could
directly bind to BCMA and transmembrane activator and CAML
interactor (TACI). Thus, APRIL-targeted CAR-T cells recognize
both BCMA and TACI expressed on MM cells, which may
decrease the risk of antigen escape (86), and preserving its
trimeric conformation could improve the anti-tumor activities
(87). In addition, TGPRC5D is expressed on more than 50% of
CD138 positive malignant plasma cells in bone marrow of MM
patients, which also represents a potential target for the
treatment of MM (88).
TOXICITIES RELATED TO CAR-T CELL
THERAPY AND THEIR UNDERLYING
MECHANISMS

Although CAR-T cell therapy has achieved great success in
hematological malignancies, the adverse events related to CAR-
T cell therapy remain to be a major challenge, such as CRS,
CRES, B cell aplasia, cytopenia, and CRS-related coagulopathy.
Without active and effective interventions, these complications
might be life-threatening. In order to effectively manage these
complications, it is important to explore their underlying
mechanisms and recognize them in early stages.
Frontiers in Immunology | www.frontiersin.org 6109
Cytokine Release Syndrome
CRS is one of the most common toxicities of CAR-T cell therapy.
The incidence of CRS depends on a variety of factors, including
disease characteristics, CAR structure, tumor burden, and CAR-
T cell doses (89). The clinical manifestations of CRS are diverse,
but they are frequently characterized by fever, fatigue,
myalgia, poor appetite, hypoxia, hypotension, and even
organ dysfunction. If left untreated, it might rapidly progress
into life-threatening conditions, such as hemodynamic instability
and multiple organ dysfunction. However, the recent study
revealed that the patients with ≥ grade 2 CRS had higher rates
of remission and longer progression-free survival (PFS)
compared with those with < grade 2 CRS, which indicates that
appropriate CRS might facilitate the efficacy of CAR-T therapy
(90). Because CRS are primarily mediated by IL-6, IL-6 receptor
antagonist tocilizumab is mainly recommended to relieve the
clinical symptoms of CRS. According to different CRS grading,
different treatment regimens are adopted. The symptomatic
treatment and the supportive treatment are indicated for grade
1 CRS. Tocilizumab and corticosteroids are recommended for
grade 3 and 4 CRS as well as grade 2 CRS accompanied by severe
symptoms. Moreover, IL-1 is another important cytokine
involved in CRS and CRES, and IL-1 receptor antagonist
anakinra has been demonstrated to ameliorate both CRS and
CRES (91–95). Furthermore, GM-CSF deficiency or inhibition
not only can alleviate CRS and CRES by inhibiting
the local infiltration of myeloid cells and T cells, but also
enhance the anti-tumor effects of CAR-T cells (96, 97).
Besides, the severity of CRS is positively associated with the
patient’s tumor burden (89). To reduce tumor burden,
traditional chemotherapy and radiotherapy could serve as the
effective bridging strategies before CAR-T cell infusion.

The detailed mechanisms of CRS remain incompletely
understood. After recognizing target antigens, CAR-T cells are
rapidly activated and secrete a large amount of granzyme,
perforin, IFN-g, and TNF-a. Perforin forms pores on tumor
cell membrane and allows granzyme B to enter tumor cells.
Granzyme B activates GSDME which is widely expressed on
CD19 positive malignant B cells, resulting in tumor cell
pyroptosis and the release of danger associated molecular
patterns (DAMPs), such as high-mobility group box 1
(HMGB1) (98–101). Then DAMPs recruit and activate
endogenous innate immune cells, such as macrophages and
dendritic cells, thereby amplifying inflammatory responses and
increasing the release of cytokines, including IL-1b and IL-6.
Currently, it has been demonstrated that macrophages and
monocytes rather than CAR-T cells are the major sources of
these cytokines and contribute to CRS (91, 92, 102, 103). In
addition, the CD40 and CD40 ligand (CD40L) interactions
between CAR-T cells and host antigen-presenting cells (APCs)
as well as tumor cells also play an important role in immune
activation and the release of cytokines (104–106). CD40 is
expressed on multiple APCs, including B cells, macrophages,
dendritic cells (DCs), and monocytes, and highly expressed in a
variety of hematological malignancies, such as NHL, AML, MM
(105–108). CD40L is highly expressed on activated T cells,
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including CAR-T cells (104, 109). The contact-dependent CD40/
CD40L interactions enhance the antigen presentation of APCs
and CD40 positive malignancies and promote their secretion of
cytokines, such as IL-1b, IL-6, and TNF-a (110, 111) (Figure 3).
In addition, because endothelial cells act as conditional innate
immune cells and express CD40, the CD40/CD40L
interactions also participate in the activation of endothelial cells.

Since lymphoma lesions are mostly localized, CRS in
lymphoma exhibits some distinct manifestations, such as local
CRS, which is characterized by local redness, swelling, and heat.
Then, CAR-T cells persistently expand and overflow into the
circulation, and experience redistribution as well as mediating
tissue damage. Finally, inflammation subsides and the impaired
tissues are gradually repaired (112). Thus, the early management
of local CRS is helpful to reduce the occurrence of subsequent
systemic CRS.

CAR-T-Cell-Related Encephalopathy
Syndrome
CRES, also known as CAR-T cell-related neurotoxicity, is another
common toxicity during CAR-T cell therapy. It usually occurs
simultaneously with CRS or later than CRS. The manifestations of
CRES include headache, dizziness, delirium, seizures and cerebral
edema. Due to the lack of suitable animal models, the underlying
pathological mechanisms of CRES are not fully understood. Severe
CRS, high tumor burden, and excessive CAR-T cell expansion
might be correlated with the increased risk of CRES. Currently,
immune-mediated endothelial activation is a well-established
Frontiers in Immunology | www.frontiersin.org 71110
mechanism involved in the occurrence of CRES (113–115).
Upon the recognition of target antigens, CAR-T cells rapidly
expand and secrete cytokines to activate endogenous immune
cells, such as macrophages, which in turn release large amounts of
cytokines and activate cerebral microvascular endothelial cells,
eventually resulting in the disruption of tight junctions and the
increased blood-brain barrier (BBB) permeability (114, 115).
Then, the high concentrations of serum cytokines enter the BBB
by passive diffusion, and the elevated levels of pro-inflammatory
cytokines in CSF seem to be associated with CRES, including IL-
1b, IL6, IL-8, IFN-g, GM-CSF, MCP-1, and granzyme B (116–
118). In addition, it has been demonstrated that T cells and
macrophages, including CAR-T cells, could infiltrate into the
CNS due to the disruption of the BBB (118–121). These
infiltrated immune cells and cytokines could induce the
activation of microglia which are brain-resident macrophages,
further amplifying local inflammatory responses and eventually
resulting in neurotoxicity (115, 119, 122–124). Thus, immune-
mediated endothelial injury is a trigger factor for CRES (113–115,
125). As tocilizumab couldn’t cross the BBB, it exhibits the
limited efficacy in the management of CRES. Given the
increased CNS penetration of corticosteroids, it is recommended
for the treatment of CRES, and it could not affect the proliferation
and the anti-tumor effects of CAR-T cells (126).

B/T Cell Aplasia and Infections
CD19 and CD20 are expressed on multiple differentiated B-
lineage cells as well as malignant B cells, and represent attractive
FIGURE 3 | The mechanisms of CRS. After the recognition of target antigens, CAR T-cells rapidly proliferate and release multiple cytotoxic molecules, such as
granzyme, perforin, IFN-g, and TNF-a, and upregulate the expression of CD40L and Fas ligand (FasL), and eventually induce pyroptosis and apoptosis of tumor cells.
Besides, the CD40/CD40L interactions between tumor cells and CAR T-cells promote Fas-mediated apoptosis. Then the lysed tumor cells release large amounts of
DAMPs, such as HMGB1, which could activate innate immune cells, including macrophages and dendritic cells, further amplifying inflammatory responses. In
addition, the CD40/CD40L interactions participate in the activation of various immune cells, including T cells, B cells, macrophages, dendritic cells, and conditional
innate immune cells such as endothelial cells. The activated CAR-T cells with the increased expression of CD40L could activate macrophages and endothelial cells
and promote their production of pro-inflammatory cytokines in a CD40-dependent manner. The cytokines released from activated immune cells could bind to their
receptors on endothelial cells and then mediate endothelial dysfunction, resulting in capillary leakage and the release of procoagulant factors.
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targets for CAR-T cell therapy in B-ALL and lymphoma. BCMA,
a plasma cell-selective protein, is highly expressed onMM cells as
well as mature B cells and normal plasma cells. Thus, CD19‐
targeted, CD20‐targeted and BCMA‐targeted CAR T cells exhibit
superior anti-tumor activity in B cell malignancies (1, 3, 67, 127),
but they attack normal B cells as well, which could result
in impaired humoral immunity, such as B cell aplasia and
h ypo g ammag l o bu l i n em i a ( 1 2 8– 1 3 1 ) . Mo r e o v e r ,
lymphodepleting chemotherapy prior to CAR-T cell infusion
could also impair host immunity. Due to impaired host
immunity, these individuals are more susceptible to infections
(132). It has been demonstrated that most of infection events
occur during the first 30 days of CAR-T cell infusion, and
the bacterial infection predominates, mainly including
bloodstream infection and respiratory infection (133). In a
phase 1/2 study, 31% of the patients who received the anti-
CD19 CAR-T therapy experienced infections between day 31
and day 180 (134). Thus, the long term follow-up and the
detection of gamma globulin levels might be helpful. To
restore humoral immunity, immunoglobulin supplementation
is essential for these immune-compromised individuals. In
addition, the high-dose CAR-T cell infusion seems to be
associated with the infections after CAR-T cell infusion (134,
135). Thus, CAR-T cells can be administrated in a dose-
escalation regimen. Furthermore, CAR-T cell therapy increases
the risk of HBV reactivation in patients with resolved HBV
infections due to persistent B-cell aplasia, so antiviral
prophylaxis and regular monitoring of the virus are
recommended (128, 136, 137). Unfortunately, with the
application of CAR-T cell therapy in T cell malignancies, T cell
aplasia might be observed because a majority of target antigens
are co-expressed on normal T cells (34).

However, it is difficult to differentiate between CRS and
infections due to the similar clinical manifestations, such as
pyrexia and the elevated levels of pro-inflammatory cytokines
and C-reactive protein (CRP). Moreover, CRS is likely to occur
simultaneously with infections. In order to avoid the life-
threatening infections during CAR-T cell therapy, the
early recognition and management of infections is important.
Nevertheless, it is usually not timely to identify the infection by
blood culture (133). Thus, the detection of special biomarkers or
the establishment of a prediction model for infection is critical.
IL-6 is one of the key cytokines involved in the infection-induced
cytokine storm and CAR-T cell therapy-induced CRS. Typically,
the elevation of serum IL-6 associated with CRS occurs within 3
weeks after CAR-T cell infusion, so the “double peaks of IL-6” is
identified as one of the characteristics of life-threatening
infections. Compared with blood culture, it seems that
employing the “double peaks of IL-6” pattern to predict the
life-threatening infection is faster (135). When infection is
suspected, empiric anti-infective treatment should be initiated
immediately once blood and sputum samples are collected for
the detection of pathogenic microorganisms, especially
in neutropenic patients. In addition, Herpesvirus infections
have been occasionally observed in several clinical trials (138–
140). To prevent herpesvirus infections, it’s recommended that
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acyclovir 400 mg should be prophylactically administrated twice
daily from lymphodepletion chemotherapy to at least 6 months
post CAR-T cell infusion (141).

Cytopenia
Cytopenia is frequently observed during CAR-T cell therapy and
lasts for several days to months, including anemia,
thrombocytopenia, and leukopenia, and the incidence of
cytopenia range from 30% to 100% in clinical trials (2, 29, 72,
79, 142, 143). It has been demonstrated that cytopenia is
associated with severe CRS (144–146). Under inflammatory
conditions, CD40 is significantly up-regulated on granulocytic
progenitor/precursor cells which also express low levels
of CD40L, and the CD40/CD40L interactions between
granulocytic progenitor/precursor cells significantly promote
their own apoptosis (147). In addition, the pro-inflammatory
cytokines, such as IL-1, TNF-a, and HMGB1, could suppress
erythropoietin production (148, 149), and the activated
macrophages could destroy erythrocytes (150). The limited
hematopoietic capacity mediated by prior chemotherapy and
HSCT might be involved in cytopenia as well (151–153).
Furthermore, some target antigens are co-expressed on normal
hematopoietic stem or progenitor cells, so CAR-T cells could
directly mediate the destruction of hematopoietic cells (48, 49).
Clinically, red blood cell and platelet transfusions and
hematopoietic growth factors, such as granulocyte colony-
stimulating factor (G-CSF) and thrombopoietin (TPO), as well
as TPO receptor agonists and sirolimus, are able to ameliorate
cytopenia (154, 155).

CRS-related Coagulopathy
As a newly identified toxicity, coagulopathy is frequently
observed within 1 month after CAR-T cell infusion (156, 157).
Its severity shows a positive correlation with CRS grade as well as
the levels of IL-6 (9), so it’s also known as CRS-related
coagulopathy. The recent studies have reported that the
incidence of coagulopathy during CAR-T therapy is
approximately 50% (9, 156). There are multiple abnormal
coagulation parameters in patients with CRS-related
coagulopathy, mainly characterized by the elevated levels of D-
dimer, the increased fibrinogen degradation products, and the
decreased levels of fibrinogen as well as the prolonged
prothrombin time. The progress of CRS-related coagulopathy
can be divided into three stages, including hypercoagulable stage,
consumptive hypo-coagulable stage, and hyperfibrinolysis stage
(9). At hypercoagulable stage, the patients mainly present with
excessive micro-thrombosis, which can be treated with
anticoagulant drugs, such as low-molecular-weight heparin. At
consumptive hypo-coagulable stage, the individuals exhibit
bleeding, accompanied by the decreased fibrinogen levels
and the prolonged APTT and PT, so replacement treatment is
required. At hyperfibrinolysis stage, the fibrinogen level
is substantially decreased and the level of D-Dimer is
significantly up-regulated. Once the fibrinogen level
in plasma is lower than 1.5 g/L, the fibrinogen concentrate or
cryoprecipitate replacement should be administrated (Table 2
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toxicities related to CAR-T cell therapy) Given that cytokine
storm plays an essential role in CRS-related coagulopathy, the
early and effective management of CRS might be helpful
to reduce the incidence of coagulopathy. Without
timely and effective intervention, a part of patients with
coagulopathy may further develop disseminated intravascular
coagulation (DIC), accompanied by the poor prognosis (9,
156, 158).

The mechanisms of CRS-related coagulopathy remain unclear.
The activated platelets, monocytes, and endothelial cells as well as
the CD40/CD40L interact ions between them may
collectively contribute to CRS-related coagulopathy. The CD40L
expressed on activated CAR-T cells induces platelet activation in a
CD40-independent manner in blood circulation (159). The
activated platelets are prone to the form monocyte-
platelet aggregates (MPAs) and are highly express CD40L, which
could induce the expression of tissue factor (TF) in monocytes and
endothelial cells through the direct interaction with CD40 (159–
162). TF could activate the extrinsic coagulation cascade, and
monocytes are the major sources of TF. Besides the CD40/CD40L
interactions, there are also a variety of inducers could stimulate
monocytes to upregulate the expression of TF, such as C-reactive
protein (CRP), IL-1b and TNF-a (163–165). In addition, the
CD40/CD40L interactions between them promote the excessive
production of cytokines as well, such as IL-1b, TNF-a, and IL-6.
High levels of cytokines further mediate endothelial injury and
result in the release of TF, the procoagulant particles Weibel-
Palade bodies (WPBs), and von Willebrand factor (VWF) as well
as the exposure of the collagen fibers. The exposed collagen fibers
trigger intrinsic coagulation pathway. In addition, cytokines IL-6,
TNF-a, and IFN-g can directly inhibit the production and activity
of ADAMTS13, which contributes to the elevated levels VWF in
blood and promote platelet adhesion and aggregation
(166, 167). Moreover, serious liver damage induced by CAR-T
cell therapy influences the production of coagulation factors,
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and some patients with hematological malignancies had
be in a hypercoagulable state prior to CAR-T cell therapy
(168) (Figure 4).
RESISTANCE TO CAR-T CELL THERAPY
AND POTENTIAL EFFECTIVE STRATEGIES

However, with the widespread application of CAR-T cell therapy
in R/R B-cell malignancies, a considerable proportion of patients
relapse after CAR-T cell therapy. There are multiple factors
which contribute to relapse after CAR-T cell therapy, including
antigen escape, the limited CAR-T cell persistence, and
immunosuppressive tumor microenvironment. There are some
therapeutic strategies to overcoming the resistance to CAR-T cell
therapy, including the application of bispecific or armored CAR-
T cells, optimizing the CAR structure, combining CAR-T cell
therapy with other approaches, such as small‐molecule drugs,
localized radiotherapy, and oncolytic viruses.

Overcoming Antigen Escape
Although CAR-T cell therapy has made impressive achievements
in R/R B cell malignancies, a majority of patients still relapse
(143). One of the primary mechanisms of relapse after CAR-T
cell therapy is antigen loss (169, 170). The antigen mutations
under therapeutic pressure of CAR-T cell therapy are the most
common mechanisms of antigen loss, including splice variants,
lineage switching, and biallelic mutations (171–173). In addition
to antigen mutations, the lower antigen density on the surface of
induced by the endocytosis of CAR-T cells could promote tumor
immune escape as well (174). Last but not least, a study has
reported that the anti-CD19 CAR was incidentally transferred
into a leukemic B cell during CAR-T cell manufacturing and
then bound to the CD19 epitope on leukemic blasts, so “epitope-
TABLE 2 | Toxicities related to CAR-T cell therapy and effective solutions.

Toxicities Manifestations Solutions Reference

CRS grade 1 CRS: fever, fatigue, myalgia, nausea, and/or malaise supportive care (117)
grade 2 or higher CRS: fever, hypoxia, hypotension, and
organ dysfunction

tocilizumab, corticosteroids, and intensive care

CRES headache, dizziness, delirium, seizures, cerebral edema, and
coma

tocilizumab, corticosteroids, anakinra, and intensive care (93, 95,
117)

B cell aplasia hypogammaglobulinemia immunoglobulin infusion (128, 136,
137, 141)HBV reactivation antiviral prophylaxis

herpesvirus infections acyclovir
Cytopenia anemia red blood cell transfusions (154)

leukopenia granulocyte colony-stimulating factor, protective isolation
thrombocytopenia platelet transfusions, thrombopoietin, romiplostim

CRS-related
coagulopathy

hypercoagulable stage: extensive micro-thrombosis, normal/
shortened APTT and PT

anticoagulant treatment: low-molecular weight heparin (9)

consumptive hypo-coagulable stage: hemorrhage, decreased
fibrinogen levels, and prolonged APTT and PT

anticoagulant treatment combined with replacement treatment: low-
molecular weight heparin, fresh-frozen plasma, cryoprecipitate,
fibrinogen concentrate

Hyperfibrinolysis stage: hemorrhage, hypofibrinogenemia,
significantly increased levels of D-Dimer and FDP, and
prolonged APTT and PT

replacement treatment and antifibrinolytic treatment: cryoprecipitate,
fibrinogen concentrate
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masking” prevented leukemic blasts from being recognized by
anti-CD19 CAR-T cells (175).

Targeting distinct antigens is one of themost effective approaches
to overcome antigen-negative relapse. The dual-targeting CAR-T
cells which could recognize two distinct target antigens have been
demonstrated to reduce the risk of antigen-negative relapse, such as
the bispecific CAR-T cells in B cell lymphoma/leukemia and the
APRIL-based CAR-T cells targeting both BCMA and TACI in MM
(86, 176–180). The multi-targeted CAR-T cells have also been
explored. It has been demonstrated that the tri-specific CD19-
CD20-CD22-targeting CAR-T cells could rapidly eliminate B cell
lymphoma in a preclinical study (181), and BAFF ligand-based
CAR-T cells simultaneously target three receptors, including BAFF-
R, BCMA, and TACI (182). In addition to simultaneously targeting
different antigens, increasing immunogenicity of target cells might
be a feasible strategy. For example, small molecule g-
secretase inhibitors could reduce the shedding of BCMA and
promote the recognition of MM cells by CAR-T cells (183).

The gd T cells (gd T) are a small population of peripheral
blood cytotoxic T cells, which express both T cell receptors
(TCRs) and natural killer receptors (NKRs), and involved in
anti-tumor immunity. In particular, NKRs expressed on gd T
cells play a major role in tumor cell recognition in hematological
malignancies (184–186). Thus, besides antigen recognition
mediated by the scFvs, gd CAR-T cells could also recognize
antigen-negative leukemia cells via NKRs in an MHC-
independent manner (187). Moreover, gd T cells did not
induce graft-versus-host disease (GVHD) in allogeneic and
HLA-haploidentical hematopoietic stem cell transplantation,
which indicates that gd T cells don’t trigger alloreactivity (188,
Frontiers in Immunology | www.frontiersin.org 101413
189). Thus, they are more suitable for the development of
universal CAR-T cells.

Regulating the Persistence of CAR-T Cells
The short-term persistence of CAR-T cells limits their anti-
tumor efficacy and may result in antigen-positive relapse. There
are multiple strategies to improve the persistence of CAR-T cells,
such as optimizing CAR-T cell construct, utilizing memory T
cells, and rationally designing the ratio of CD4 to CD8 CAR-T
cells (190). To date, CD28 and 4-1BB are the most common co-
stimulatory molecules in CAR-T cell products. However, it has
been demonstrated that 4-1BB co-stimulation could ameliorate
CAR-T cell exhaustion compared with CD28 co-stimulation
(191, 192). Remarkably, combining CD28 and 4-1BB
could simultaneously augment the anti-tumor effects and
increase the persistence of CAR-T cells (193–196). In
addition, the CAR-T cell structure can be optimized by the
fully humanized CARs. The humanized CAR-T cells could avoid
the rejection by the host immune system, and they were still
effective in R/R patients who have failed in prior murine CAR-T
cell therapy (68, 197). CD4+ T cells exhibit developmental
plasticity and can directly kill tumor cells (198), but they
eliminate tumor cells at the slower rate and release the lower
levels of Granzyme B than CD8+ T cells. Thus, CD4+ CAR-T
cells exhibit a superior persistence (199–202), and the ratio of
CD4/CD8 CAR-T cells may influence the therapeutic efficacy.
Currently, CD4/CD8 CAR-T cells at a 1:1 ratio have been
demonstrated to exert excellent anti-tumor effects (200).

CAR-T cells have been considered as “living drugs”, but they
lack the precise regulation. Given that the excessive expansion of
FIGURE 4 | The mechanisms of CRS-related coagulopathy. The CD40/CD40L interactions also play an essential role in CRS-related coagulopathy. The activated
CAR-T cells with high CD40L expression mediate platelet activation in a CD40-independent manner. Then the activated platelets express high levels of CD40L. It
could stimulate endothelial cell activation, and induce the expression of TF in monocytes and endothelial cells through direct interaction with CD40. Then TF triggers
the extrinsic coagulation cascade. In addition, the CD40/CD40L interactions stimulate the excessive release of cytokines, such as IL-1b, TNF-a, and IL-6. High levels
of cytokines further mediate endothelial injury and promote the release of TF and Weibel-Palade bodies (WPBs). The WPBs contains von Willebrand factor (VWF)
which plays an essential role in platelet adhesion and aggregation. Due to endothelial injury, collagen fibers are exposed and activate intrinsic coagulation pathway.
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CAR-T cells could lead to the life-threatening CRS, so
it is necessary to regulate the expansion and persistence of CAR-
T cells to mitigate unexpected or severe toxicities through
the addition of the safety switches. The well-known
inducible caspase 9 (iCasp9) suicide gene and the small molecule
control systems have been explored (203, 204). In small molecule
control systems, the FDA-approved small molecule drugs act as
the key switches to specifically regulate antigen recognition or
deplete CAR-T cells, such as lenalidomide, methotrexate,
alemtuzumab, rituximab, and cetuximab (31, 63, 205–208),
as well as orthogonal IL-2 (205, 206). The above-
mentioned monoclonal antibodies mediate the depletion of CAR-
T cells through antibody-dependent cell-mediated cytotoxicity
(ADCC) or complement-dependent cytotoxicity (CDC) (63, 209).
Nevertheless, the depletion of CAR-T cells is slow in this strategy,
which may be not suitable for patients with severe toxicities.

Improving Anti-Tumor Efficacy of CAR-T
Cell Therapy Through Combinatorial
Strategies
The low activity of CAR-T cells could also limit the efficacy of
CAR-T cell therapy. Multiple immune-stimulatory molecules,
including certain cytokines or co-stimulatory molecules, have
been demonstrated to play an important role in regulating the
development and function of T cells, such as IL-7, IL-12, IL-15, IL-
18, IL-21, and CD40L (109, 210–214). They could promote the
robust expansion of the CAR-T cells and increase memory-
phenotype CAR-T cells as well as improving their persistence
(215–218). In addition to adding these exogenous cytokines, the
genetic modifications to constitutively express these immune-
stimulatory molecules or their receptors could also improve the
function of CAR-T cells (10, 213, 219, 220). These fourth-
generation CAR-T cells have showed the improved anti-tumor
activities by stimulating the activation of themselves or endogenous
immune cells in a autocrine or paracrine manner (11, 220–222).

To improve the efficacy of CAR-T cell therapy, combining
CAR-T cell therapy with small‐molecule drugs appears to be
promising and may produce synergistic effects. The selective
inhibitors of nuclear export selinexor, lenalidomide and
carfilzomib have been approved for the treatment of MM (223,
224). Intriguingly, combining them with CAR-T cells also
achieved encouraging outcomes, with the improved cytotoxic
activity and cytokine production of CAR-T cells (225, 226). In
particular, the recent clinical studies showed that the R/R MM
patients resistant to anti-BCMA CAR-T cell therapy could also
benefit from selinexor-based regimens and carfilzomib-based
regimens (227, 228), and a study reported that anti-BCMA
CAR-T cell therapy combined with lenalidomide was effective in
the R/R MM patients who had previously relapsed after anti-
BCMA CAR-T cell therapy (229). Ibrutinib, a well-known
Bruton’s tyrosine kinase inhibitor, has been approved for the
treatment of CLL and MCL. Importantly, Ibrutinib not only
improved CAR T cell-anti-tumor efficacy in both preclinical and
clinical studies, but also reduced the risk of severe CRS (230–233).
In addition, it has been demonstrated that demethylating agents
azacitidine and decitabine could enhance cytotoxic effect of CAR-
Frontiers in Immunology | www.frontiersin.org 111514
T cells as well (234–236). Besides, CAR-T cell therapy in
combination with inhibitors of antiapoptotic proteins could
overcome the resistance induced by antiapoptotic proteins (237).
However, CAR-T cell therapy combined with small‐molecule
drugs is still in its infancy, and numerous combinational
strategies are being explored.

Additionally, the localized radiotherapy could serve as a well-
tolerated and effective bridging strategy between the leukapheresis
and CAR-T cell infusion for lymphoma or MM patients with bulky
disease (238–240). On the one hand, this combinational therapy
could prevent disease progression and reduce tumor burden; On
the other hand, it may sensitize the CAR-T cells through the
abscopal effect, which may be associated with the upregulation of
intratumoral chemokines and cytokines, the release of neo-
antigens, and the activation of endogenous immune cells (241–
245). Nonetheless, the optimal irradiation dose and fractionation
remain to be identified.

Overcoming Immunosuppressive
Microenvironment
While directly targeting tumor cells is important, it is also critical
to overcome the immunosuppressive tumor microenvironment.
Although tumor microenvironment is believed to play a relatively
minor role in drug resistance in hematological malignancies, MM,
leukemia, and lymphoma microenvironment also contains
tumor supportive components, such as stromal cells, myeloid-
derived suppressor cells, regulatory T-cells, tumor-associated
macrophages, and tumor-associated neutrophils (246–250),
which interact closely with malignant cells and promote their
survival as well as immune escape (250–253). In addition, these
immunosuppressive components impair the cytotoxic effects of
CAR-T cells and result in CAR-T cell exhaustion (248, 249).
Therefore, it is also necessary to overcome the immunosuppressive
microenvironment in hematological malignancies. In addition
to armored CAR-T cells, CAR-T cell therapy in combination
with checkpoint blockades or oncolytic viruses also appears to be
an appealing strategy.

The PD-1/PD-L1 pathway plays a major role in T cell
exhaustion and represents a major mechanism of tumor
immune escape. Thus, blockage of PD-1/PD-L1 interaction
could promote the immune system to fight against cancer cells,
and PD-1 blockade has achieved tremendous success in diverse
tumor types in recent years, especially in lymphoma (254, 255).
PD-1 blockade is usually administrated in combination with
conventional chemotherapy or other immunotherapies.
Currently, multiple studies have explored the combination
therapy with CAR-T cells and PD-1 blockade (Table 3
combinatorial strategies with CAR-T cell therapy). In a clinical
trial enrolled 11 NHL patients, 45.5% of patients achieved CRs
after this combinatorial therapy, and the toxicities were well-
tolerable (256, 257). The mechanisms may be mainly
attributed to the decreased CAR-T cell exhaustion (258–260).
In addition, the CAR-T cells which could secrete the PD-1
blocking scFv have been developed. The preclinical study
demonstrated that the efficacy of such CAR-T cells was equally
effective or superior to the combinational therapy of CAR-T cells
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and PD-1 inhibitor (261). TIM-3 is another inhibitory immune
checkpoint, and the combination of TIM-3 blockade with CAR-
T cells exerts synergistic anti-tumor activity as well (262).

The combination of CAR-T cell therapy and oncolytic viruses
is an innovative strategy to overcome immunosuppressive
microenvironment. The virus-infected tumor cells which carry
pathogen-associated molecular patterns (PAMPs) could recruit
host immune cells and thereby promote the recognition of TAAs
by the host immune system and the oncolytic viruses also can be
genetically modified with immune-stimulatory molecules to
enhance the anti-tumor activity of CAR-T cells (263, 264).
Besides, oncolytic viruses directly lyse tumor cells and result in
the release of TAAs and damage-associated molecular patterns
(DAMPs), which could increase tumor immunogenicity and
activate APCs through pattern recognition receptors (PRRs),
eventually activating tumor-specific T cells (265–267).

In addition, the armored CAR-T cells which express the
immune-regulatory molecules, such as IL-15, IL-18, CD40L as
well as TGF-b dominant-negative receptor II, are able to
remodel the tumor microenvironment (211, 219, 220, 268).
Oncometabolites in the tumor microenvironment could inhibit
the metabolism and function of CAR-T cells, so suppressing the
accumulation oncometabolites is a potential therapeutic option.
Kynurenine (Kyn) is an oncometabolite which exists in various
hematopoietic malignancies, such as lymphoma and leukemia,
and the enzyme kynurenine catalyzes the degradation of Kyn.
Thus, the anti-CD19 CAR-T cells were genetically modified with
the enzyme kynurenine gene, and they exhibited the improved anti-
tumor activity against Nalm6-GL cells in the immunosuppressive
tumor microenvironment with high Kyn (269). Interestingly, some
target antigens are co-expressed on immunosuppressive cells in
tumor microenvironment, so targeting these antigens can
simultaneously eliminate malignant cells and immunosuppressive
cells. For example, anti-CD123 CAR-T cells target both malignant
cells and TAMs in HL (270).
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CONCLUSIONS

There are many challenges and opportunities presented
by CAR-T cell therapy. With the identification of novel
therapeutic targets and the optimization of CAR constructs,
CAR-T cell therapy will have broader clinical applications,
beyond hematological malignancies. However, with the rapid
commercial ization of CAR-T cell therapy, it poses
a significant challenge for the management of CAR-T cell
therapy, such as the toxicities associated with CAR-T therapy
and relapse after CAR T-cell therapy. Therefore, exploring their
underlying mechanisms and overcoming these limitations will
help R/R patients gain more benefits from this promising.
Currently, multiple combinatorial approaches with CAR-T cell
therapy are being explored and seem to be promising
immunotherapy. In addition, UCAR-T cells and CAR-NK cells
also show great potential in cancer treatment due to their low
manufacturing costs and off-the-shelf availability.
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Amir Baghbanzadeh1, Afshin Derakhshani3,4,
Antoine Dufour4,5, Nazanin Rostami Khosroshahi2,
Souzan Najafi1, Oronzo Brunetti6, Nicola Silvestris7*†

and Behzad Baradaran1,8*†
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Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada, 4McCaig Insitute,
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Oncology Unit, Department of Human Pathology “G. Barresi” University of Messina, Messina, Italy,
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As a disease with the highest disease-associated burden worldwide, cancer has

been the main subject of a considerable proportion of medical research in

recent years, intending to find more effective therapeutic approaches with

fewer side effects. Combining conventional methods with newer biologically

based treatments such as immunotherapy can be a promising approach to

treating different tumors. The concept of “cancer immunoediting” that occurs

in the field of the tumor microenvironment (TME) is the aspect of cancer

therapy that has not been at the center of attention. One group of the role

players of the so-called immunoediting process are the immune checkpoint

molecules that exert either co-stimulatory or co-inhibitory effects in the anti-

tumor immunity of the host. It involves alterations in a wide variety of

immunologic pathways. Recent studies have proven that conventional

cancer therapies, such as chemotherapy, radiotherapy, or a combination of

them, i.e., chemoradiotherapy, alter the “immune compartment” of the TME.

The mentioned changes encompass a wide range of variations, including the

changes in the density and immunologic type of the tumor-infiltrating

lymphocytes (TILs) and the alterations in the expression patterns of the

different immune checkpoints. These rearrangements can have either anti-

tumor immunity empowering or immune attenuating sequels. Thus,

recognizing the consequences of various chemo(radio)therapeutic regimens

in the TME seems to be of great significance in the evolution of therapeutic

approaches. Therefore, the present review intends to summarize how chemo

(radio)therapy affects the TME and specifically some of the most important,
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well-known immune checkpoints’ expressions according to the recent studies

in this field.
KEYWORDS

cancer therapy, tumor microenvironment, chemo(radio)therapy, immune
checkpoints, combination therapy
Introduction

Cancer is the second-most common etiology of death

worldwide after cardiac disease (1). Cancers cause the most

disease-associated burden among different diseases all around

the world, which is about 244.6 million Disability-Adjusted Life

Years (DALYs), even more than ischemic heart disease (IHD)

(2). Despite significant improvements in cancer therapy, it is still

one of the leading health issues. So the explorations to find

different solutions for this problem are ongoing. Our immune

system combats cancer through various mechanisms involving

different types of immune cells and molecules, such as cytokines

and immune checkpoints. Malignant tumor cells use a wide

variety of mechanisms to avoid and attenuate the immune

system, which leads to uncontrolled proliferation of the cells,

invasion and metastasis of the tumor, and at last, morbidity and

mortality of cancer (3). The field of this battle between the host’s

immune system and the tumor is known as the tumor

microenvironment (TME), which is composed of different

compartments such as the tumor and immune parts (4, 5).

The tumor cells form and modulate the TME and dominate

other components such as infiltrated immune cells and

molecules (6). Immunotherapy is a relatively novel method of

cancer therapy compared to conventional therapies such as

chemo(radio)therapy. It acts by blocking the function of

inhibitory immune checkpoints present on the various types of

malignant and immune cells in the TME (7). Several studies have

proven the efficacy of immunotherapy in treating different

cancers. We can point to studies on various types of

malignancies, including melanoma (8), non-small cell lung

carcinoma (NSCLC) (9), head and neck malignancies (10),

urinary tract cancers (11), colorectal carcinoma (CRC) (12),

hepatocellular carcinoma (HCC) (13), Merkel cell carcinoma

(14), and Hodgkin lymphoma (15). However, significant

responses to immunotherapy are currently just seen in a

limited number of cancers and patients. It indicates a need for

searching for and designing more novel therapeutic strategies

(16). One of these recently described novel approaches is the

concept of “combination therapy.”

In this approach, we benefit from two or more mechanistically

different methods such as immunotherapy and chemo(radio)
02
2625
therapy or surgery to induce synergistic, additive, and more

robust attacks combating cancer (17–20). Combining

conventional chemo(radio)therapeutic methods with

immunotherapy seems to be one of the promising approaches.

The TME characteristics differ widely across different types of

cancers. Several studies have shown that various chemo(radio)

therapy regimens alter the TME. The quality and pattern of these

changes are associated with the type of tumor and the agents used

during treatment (21). To design more effective combination

therapies, we need to become more familiar with the exact

properties of the TME across different tumors and with the

changes induced by the chemo(radio)therapy. Many studies have

demonstrated the alterations in the expression patterns of the

immune checkpoints, as the crucial immunomodulatory

molecules in the TME, in response to different chemo(radio)

therapeutic regimens (22). Increasing our knowledge about the

exclusive characteristics of the immune checkpoints, their

mechanism(s) of function, and the related molecular pathways

can help us design more efficient blocking agents. These immune-

checkpoint inhibitors (ICIs) can be utilized as complementary

therapy based on the changes caused by the conventional

approaches, specifically chemo(radio)therapy. In the current

study, we have reviewed the detailed properties of the TME and

mentioned the bilateral role of the immune checkpoints in immune

system-tumor interactions. Also, we evaluated the studies that

assessed the changes caused by adjuvant and neoadjuvant chemo

(radio)therapeutic therapies in the expression patterns of clinically

valuable immune checkpoints.
Tumor microenvironment - a key
player in the immunoediting process
and anti-tumor immunity

The concept of immune surveillance is the process of

removing cancerous cells by the immune system based on

recognizing specifically expressed neoantigens and stress-

induced molecules in tumor cells. Lewis Thomas described this

concept clearly and experimentally in the late 1950s for the first

time (23, 24). Cancer immunoediting is a relatively new and

more comprehensive concept, comprised of three phases:
frontiersin.org

https://doi.org/10.3389/fimmu.2022.938063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hassanian et al. 10.3389/fimmu.2022.938063
elimination phase (involving immune surveillance), equilibrium

phase, and escape phase (3). Immune cells and factors put as

much pressure as possible on tumor cells that survived the

previous stage in the equilibrium phase. A significant population

of cancerous cells is destroyed in this course, while a proportion

develops new mutations making them resistant to the immune

system’s attack. In the final escape phase, tumor variants that

have become unsusceptible to the immune attacks extend in an

unrestrained pattern (25). As a result, immunologically carved

tumors expand steadily and become clinically evident (26). A

wide variety of mechanisms altogether lead to the formation of

tumor escape. These include decreased immune recognition by

losing strong neoantigens, MHC class I, and co-stimulatory

molecules. The other mechanism is increased resistance to

cellular death by overexpression of anti-apoptotic molecules

like Bcl-2. Tumors form an immunosuppressive tumor

microenvironment (TME) by secreting cytokines like TGF-b
and overexpressing co-inhibitory immune checkpoints such as

Programmed Cell Death Protein 1(PD-1, CD279)/Programmed

Death-ligand 1 (PD-L1), T cell Immunoglobulin domain, and
Frontiers in Immunology 03
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Mucin domain 3 (TIM-3, CD366)/Galectin9, and Lymphocyte

Activation Gene 3 (LAG-3) (27, 28).

The tumor microenvironment is a unique environment that

arises in the context of tumor progression due to tumor-host

interactions. It is composed of different elements such as

proliferating tumor cells, tumor stroma, infiltrating immune

cells, blood vessels, and related tissue cells (Figure 1). TME is

constructed, reformed, and controlled by the tumor at all times

and has dominance over molecular and cellular events

happening in neighboring tissues (25). Types of immune cells

from both innate and adaptive parts are present in the TME (29).

Natural killer (NK) cells are the innate immune system’s main

effectors, constituting the first line of defense against tumors

(30). Despite their ability to kill circulating cancerous cells, NK

cell’s significance for battling and destroying established solid

tumors seems to be unsure in the result of several mechanisms

compromising their capacity to eliminate solid tumor cells, such

as their inability to penetrate the core of the tumor and various

immunoediting events leading to tumor escape (31). Research

assessing immunophenotypes of several types of solid tumors in
FIGURE 1

Schematic view of the Tumor microenvironment (TME). The TME consists of different compartments, including the proliferating tumor cells,
tumor site, and tumor-infiltrating immune cells, such as Dendritic cells (DCs), Natural killer cells (NK cells), Tumor-associated macrophages
(TAMs), and Tumor-infiltrating lymphocytes (TILs), and the stromal part containing fibroblasts, extracellular matrix, and lymphatic and blood
vessels.
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a wide population of patients with different types of cancers has

shown some evidence of a T-cell infiltrated phenotype (32–34).

Tumor-infiltrating lymphocytes (TILs) with various CD4+ to

CD8+ T cells proportions build up a major part of TME. CD8+

cytotoxic T lymphocytes (CTLs) have been historically

considered the pivotal cells in the immune system’s battle

against tumors because of their ability to detect MHC class I

mediated presentation of the intracellular antigens, expressed by

all tumor cell types (35). CD4+ T helper cells (Th) also have a

crucial role in immune defense against malignancies by various

mechanisms such as activating antigen-specific effector cells and

alarming innate immune cells such as macrophages, mast cells,

and eosinophils (36, 37). These cells are activated in two main

ways, directly by MHC class II expressing tumor cells and

indirectly by antigen-presenting cells (APCs) present at the

TME, such as dendritic cells (DCs) (38). Antigen-primed Th

cells can directly activate tumor-antigen-specific CTLs through

different routes such as direct interaction, improving CTL

activity by co-stimulatory molecules on the surface of CTL,

like CD127, CD34, and MHC class II, and enhancing

CTL growth by secreting cytokines such as IL-12 (39).

In conditions associated with chronic inflammation like

cancer and chronic infection, persistent antigen presentation

and stimulation of T cell receptor (TCR) leading to activation of

CTLs results in a gradual decrease in the effector activity of CTLs

that finally disturbs response to tumors and infections. This

phenomenon is called exhaustion (40–42). In this process,

inhibitory molecules such as PD-1, Cytotoxic T lymphocyte

Antigen-4 (CTLA-4, CD152), LAG-3, TIM-3, CD160, and T cell

Immunoreceptor with Ig and ITIM domain (TIGIT) are

significantly overexpressed in exhausted T cells, so they do not

respond properly to the stimulation of TCR by presented

antigens (43, 44). Exhausted CD8+ T cells do not proliferate

well because they have impaired killing activity and secrete Low

levels of effector cytokines such as INF-g and TNF-a (45). The

other subsets of T cells in TME are regulatory T cells (Treg)

expressing the Foxp3 (Forkhead Box P3) molecule as their

primary marker. These cells play a central role in stabilizing

immune homeostasis and preventing autoimmunity (46).

Considering their ability to avoid self-antigen responses, they

may restrict anti-tumor immune response by different

mechanisms such as activating inhibitory molecules mentioned

before, like CTLA-4 (47–49). Plenty of studies have shown

considerable infiltration of Treg cells into different types of

tumors, such as in the head and neck, breast, lung,

gastrointestinal tract, liver, pancreas, and ovary. On this basis,

depleting TME from Tregs or manipulating their function in a

specific manner can experimentally induce efficacious tumor

immunity (50). Basic science findings clarifying the molecular

and cellular mechanisms involved in T cell biology, as the facts

mentioned above, have given rise to new therapeutic approaches

toward malignancies, including immune checkpoint blocking by

immunotherapy (51).
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Immune-checkpoints: A wide variety
of molecules with a bilateral role in
tumor-immune system battle

An appropriately working immune system protects the body

from foreign pathogens and developing malignant tumors (52).

Activation of immune effectors such as T cells is tightly

controlled to prevent malfunctions such as dysregulations

leading to autoimmunity. T lymphocytes need at least two

stimulatory signals to be activated. The first signal is provided

when the T cell receptor (TCR) recognizes the specific antigen

the MHC molecule presents. A co-stimulatory signal is also

needed to activate the T cell fully. For instance, CD80 or CD86

molecules on the surface of APCs interact with the CD28

molecule on the T cell and give rise to the co-stimulatory

signal (53, 54). Also, in addition to immune checkpoints,

different kinds of cytokines play crucial roles in this

process (Figure 2).

Immune checkpoint receptors are in the membrane of

various immune cells, mainly T cells and NK cells. When

these cells face the specific antigens and previously mentioned

ligands on the APCs, such as macrophages and DCs or the

cancerous cells, they induce some signals which can be positive

and stimulatory or negative and inhibitory. These signals

originate from the interaction between these immune

checkpoint receptors on the target cells and their ligands, i.e.,

checkpoint molecules on the effector cells. These negative and

positive regulations exerted by the immune checkpoints and

their receptors play a crucial role in stabilizing immune balance

and homeostasis in the normal physiologic condition (55, 56).

Molecules such as CTLA-4, PD-1, TIM-3, TIGITT, and

LAG-3 are checkpoint receptors with an immunosuppressive

role. They generate inhibitory signals that avoid the full

activation of effector cells, such as the CTLs. So, in the tumor-

immune system battle, these molecules lead to immune

exhaustion and provide a mechanism for the immune evasion

of the tumors, suppressing the immune system’s anti-tumor

potentiality (57, 58). Among checkpoint receptors with a co-

stimulatory function are glucocorticoid-induced TNFR-related

protein (GITR), CD 27, CD40, and OX40 from the superfamily

of tumor necrosis factor receptors (TNFR). CD28 and inducible

T cell co-stimulator (ICOS) are also stimulatory checkpoint

receptors belonging to the B7-CD28 superfamily (59). The

incompetent function of these molecules in the effector T cells

recognizing the neoantigens expressed by the malignant cells in

the TME weakens the anti-tumor immune response providing

another opportunity for the immune evasion of the tumors. The

concept of immunotherapy is based on the knowledge gained

through the years about the two categories of checkpoint

receptors and their ligands mentioned above. Based on these

two groups of immune checkpoint functions, i.e., their either co-

inhibitory or co-stimulatory function, there exist two approaches
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toward modulating and boosting the immune system to defend

against malignancies more efficiently. One approach is to inhibit

and antagonize the inhibitory checkpoints to prevent T cell

exhaustion. It neutralizes the immunosuppressive effects.

Immune checkpoint inhibitors (ICIs) are monoclonal

antibodies (mAbs) developed against various classical and

recently discovered inhibitory immune checkpoints (Figure 2)

(60–62). Some of these ICIs are FDA-approved and widely used

in treating different kinds of tumors such as melanoma, small

and non-small-cell lung cancers, renal cell carcinoma, and

gastric cancers (63).

The second approach in immunotherapy is based on the

concept that augmenting the stimulatory functions of co-

stimulatory immune checkpoints can empower the effector

cells such as CTLs in the TME. It leads to more effective
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killing of the tumor cells. It is achievable by designing and

utilizing agonistic antibodies that improve the positive signaling

of these checkpoint molecules. It leads to more effective immune

responses against malignancies (55).

The second approach has more extensive effects on the T

cells than the first approach. It originates from different types of

tumors expressing inhibitory immune checkpoints in different

patterns. So, inhibition of a particular checkpoint molecule by

the specific ICI is only beneficial when the targeted tumor

significantly expresses that molecule at high levels (55).

Despite broader effects, the second approach is accompanied

by more risk of dangerous adverse effects such as multiple organ

failure due to cytokine storm caused by CD28 activating

antibody, theralizumab (64). This phenomenon has restricted

the clinical use of this approach.
FIGURE 2

Cell to cell interactions and the role of the immune-checkpoint molecules and their receptors in the tumor microenvironment besides the
patterns of immune-checkpoints expression patterns’ changes post-NAC with different chemotherapeutic agents. Tumor site T-cells need two
activating signals to defend against and kill the tumor cells (shown by plus mark in a circle). The first signal is provided by the interaction
between the T cell receptor (TCR) and its specific antigen presented by the MHC molecule on the Antigen-presenting cells (APCs) or the tumor
cell. The second signal is a co-stimulatory one originating from CD28 and B7-1/B7-2 molecules interaction. Tumor cells overexpress inhibitory
immune checkpoints to produce inhibitory signals and neutralize the positive ones (shown by the negative mark in a circle). Immune checkpoint
inhibitors (ICIs), as a wide variety of drugs used in the immunotherapy of cancers, block the mentioned co-inhibitory function of the checkpoint
molecules. Different chemotherapeutic agents alter the expression patterns of immune-checkpoint molecules by whether down-regulating or
up-regulating the expression of these immune markers.
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There are some cardinal problems with using ICIs. The first

issue is that the quantity of the T cells present in the TME is a

restricting factor. Low numbers of the TILs in the tumor

compartment of the TME weakens the response of the tumor

to the ICIs. The other problem is the adaptation of cancerous

cells to a specific ICI by upregulating other co-inhibitory

immune checkpoints that preserves the negative signals and

avoids reversing TILs exhaustion. The latter problem can be

solved by designing and utilizing bispecific antibodies (bsAb)

that target two checkpoints simultaneously. Some of these bsAbs

are in the market now (65, 66).

To solve the first problem, i.e., low numbers of TILs in the

tumor site, the immunogenicity of the cancerous cells should be

improved. Prompting immunologically mediated tumor cell

death by taking advantage of cytotoxic methods or procedures

target ing specific immune molecules can increase

immunogenicity. The approach to combining other biological

and non-biological therapies with immune checkpoint

inhibition by ICIs to improve its efficacy is indeed the so-

called “combination therapies.” Among non-biological

therapeutic procedures are surgery, chemotherapy, and

radiotherapy (67–69). Anti-cancer vaccines, antibodies against

cytokines, oncolytic virotherapy, natural or synthetic cytokines,

and chimeric antigen receptor (CAR) T cells are biological

methods used in combination with ICIs (70–74). According to
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all we mentioned above, it is clear that cancer treatment is now

multidimensional. Combining conventional approaches such as

chemotherapy, radiotherapy, and surgery with relatively new

therapies like immunotherapy and other biological methods may

help us achieve better results by positively modifying the

prognosis of different types of cancers (38). We need to

improve our knowledge about the induced alterations in the

TME of various tumors in response to adjuvant therapies. It

helps us choose the most effective adjuvant therapies as different

regimens used in the chemo(radio)therapy of cancers have

diverse effects. Also, it can lead us to design more effective and

specific combination therapies consisting of immunotherapy

and conventional therapies. It is the first goal of this study. In

the ongoing parts, we have reviewed the history, expression

distribution, function, and changes in expression of some of the

most important and clinically targeted immune checkpoints.
PD-1

Programmed death-1 (PD-1) molecule, as a member of the

immunoglobulin gene superfamily, was first discovered in 1992

(75). PD-1 is expressed on the surface of particular subsets of T

cells and also non-T cell subsets like B cells and NK cells

(Table 1) (16). This co-inhibitory immune checkpoint has a
TABLE 1 A summary of the immune checkpoints and their expression changes pattern in response to chemo/radio therapy.

Immune
checkpoint
molecules

Ligands Distribution
of the

receptors

Function Immune checkpoint inhibitor (ICI)
drugs and some of the related clinical

trials on ICIs.

The dominant
pattern of expression
changes post-NAC

(R)

PD-1 PD-L1
(CD272)
PD-L2
(CD273)

T cell subsets
(TILs, Tregs,
Effector T cells)
Non-T cell
subsets (NK cells,
B cells, subsets of
DCs)

Co-inhibitory effect by the PD-1/
PD-L1 signaling pathway

Nivolumab (NCT01721759),
Pembrolizumab (NCT02256436),
Cemiplimab (NCT03002376)

A significant increase in
expression levels was seen
in most of the studies

PD-L1 PD-1
B7-1
(CD80)

T cells, B cells,
NK cells,
Monocytes, DCs

Co-inhibitory effect by the PD-1/
PD-L1 signaling pathway

Durvalumab (NCT02639065),
Avelumab (NCT03704467),
Atezolizumab (NCT02425891)

A significant increase in
expression levels was seen
in most of the studies

CTLA-4 B7-1
(CD80)
B7-2
(CD86)

Tregs
Activated T cells

Co-inhibitory function by
reducing IL-2 production,
inhibiting T-cell proliferation,
and eliminating B7-1,2 on APCs

Ipilimumab (NCT02279732),
Tremelimumab (NCT01853618)

Opposing results in
expression level alterations
were seen, indicating a
need for more studies

LAG-3
(CD233)

MHC-II,
LSEctin,
Galectin-3,
FGLP-1

TILs, NK cells, B
cells, DCs

Inhibitory regulatory effect on T-
cell proliferation and DC
activation

Eftilagimod alpha (NCT00349934), Relatlimab
(NCT04611126), LAG525 (NCT03499899), MK4280
(NCT03598608), Sym022 (NCT03489369),
REGN3767 (NCT03005782), TSR-033
(NCT02817633)

An increase in the
expression levels was
detected in the studies, but
the number of studies was
limited

B7-H4 B7-H4
receptor
(Not well-
known)

Cancerous cells
(as in ovarian,
uterus, and lung
tumors),
TAMs

Inhibitory function on activated
effector T cells by decreasing IL-2
production and inducing cell-
cycle arrest

FPA-150 (alsevalimab) (currently in phase Ia/Ib of
the clinical trial in solid tumors,NCT03514121)

A single study
demonstrated a decrease in
expression levels that was
associated with a better
prognosis
The table represents a summary of the characteristics of the immune checkpoints, some of the ICI drugs, and related clinical trials evaluating their efficacy. Also, the dominant pattern of
immune checkpoints’ expression changes in response to chemo/radio therapy due to the studies mentioned in previous sections on each immune checkpoint is presented.
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crucial role in stabilizing peripheral immune tolerance. For

example, its knockout in C57BL/6 mice leads to an

autoimmune pathology resembling what occurs in lupus

erythematosus pathogenesis (76). PD-1, despite its name, has

no role in the cell death induction process/apoptosis (47). This

immune checkpoint has two ligands, PD-ligand-1 (PD-L1),

expressed by a wide variety of somatic cells in response to

pro-inflammatory cytokines, and PD-L2 (CD273 or B7-DC),

with more restricted antigen-presenting expression (77).

Activation of the PD-1 signaling pathway gives rise to

transcriptional and epigenetics alterations in T cells, which

finally leads to a decrease in the production of proteins such

as inflammatory cytokines and finally T cell “exhaustion” in the

TME (78).

Considering the PD-1/PD-L1 axis and its role in T cell

anergy, several monoclonal antibodies have been designed to

target these immune checkpoints. Some are FDA-approved,

such as durvalumab, nivolumab, and pembrolizumab, which

are currently used in immunotherapy of several types of cancers

(Table 1) (60, 79–82). For example, CheckMate063, a phase2,

single-arm trial, proved the activity and safety of nivolumab for

patients with advanced, refractory NSCLC (83). Another clinical

trial study demonstrated a reduced rate of death in advanced

urothelial carcinoma patients with disease progression, during

or following chemotherapy, as a result of treatment with

pembrolizumab (Hazard Ratio (HR) = 0.73) (84). Realizing

changes in PD-1 expression in the TME in response to chemo

(radio)therapy across different types of tumors may help us

design better combination therapies for managing the cancers.

In recent years a limited number of studies have done

this (Table 1).

According to a systematic review by Van den Ende et al.,

eight studies had assessed alterations in PD-1 expression

patterns in response to chemo(radio)therapy until January

2019. Seven of these studies compared the level of PD-1

expression in the TME of pre-treatment to a post-treatment

tissue. Also, one of them compared treated vs. untreated groups

of a cohort. A total of five of these studies had statistically

significant results. A significant increase in PD-1 expression was

seen in four single studies in patients with ovarian cancer, breast

cancer, non-small cell lung carcinoma (NSCLC), and

glioblastoma. Also, a significant decrease after treatment was

observed in a study on patients with breast cancer (85). In the

latter study, breast tumor specimens of 33 women were

evaluated immunohistochemical ly before and after

neoadjuvant chemotherapy (NAC) with a regimen consisting

of Adriamycin, cyclophosphamide, capecitabine, and paclitaxel.

The results showed a significant decrease in the PD-1+ T-cells

population, but this reduction did not have a remarkable

association with prognosis and complete pathological response

(pCR) (86). A study on patients with stage II-III NSCLC

compared two treated and non-treated groups based on

receiving or not receiving NAC regimens including carboplatin
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plus paclitaxel or pemetrexed and cisplatin plus gemcitabine.

Immunohistochemistry (IHC) analysis revealed a higher density

of PD-1 expressing antigen-experienced and memory antigen-

experienced cells (87). In a cohort study by Lo and colleagues on

post-NAC tumor samples of 90 patients with high-grade serous

carcinoma (HGSC) of the ovary, despite the rise seen in density

of the favorable tumor-infiltrating T cells and B cells, no

remarkable changes were seen in patients’ survivals after NAC

with paclitaxel plus carboplatin. They hypothesized that this

poor association could be attributable to the probable

immunosuppressive effects of chemotherapy on the TME.

Assessment of the changes in the expression level of the

inhibitory immune markers clarified that levels of IDO-1,

FOXP3, and PD-L1 did not differ notably pre- and post-NAC. In

contrast, PD-1 levels showed a considerable and significant increase

in post-NAC samples compared with pre-NAC ones. This finding

meant that an increase in the number of tumor-infiltrating

lymphocytes (TILs) expressing PD-1 (as a co-inhibitory immune

checkpoint) has occurred and neutralized the positive immune-

stimulatory effects of the chemotherapy (88). Miyazaki et al.

assessed the alterations in the expression of immune markers

containing PD-1 and PD-L1 in initially and secondary resected

samples of glioblastoma (GBM) from 16 patients who received

chemotherapeutic agent temozolomide (TMZ) combined with

fractioned radiotherapy (FRT) after the first surgery, before

recurrent tumor surgery. IHC assays revealed significantly

increased staining scores for CD3, CD8, and PD-1 in secondary

resected specimens. Based on the PD-1 staining score, patients were

categorized into low or high PD-1 score groups. Assessments to

determine the prognostic value of PD-1 expression score in these

two groups showed that a high PD-1 expression score was

accompanied by longer progression-free survival (PFS), shorter

survival after recurrence, and briefly poor prognosis (89).

Considering what was mentioned above about the inhibitory role

of the PD-1 pathway, which leads to T cell exhaustion and

formation of an immunosuppressive context in the TME, and

also paying attention to the predominance of the increasing

pattern in PD-1 expression in the TME after chemo(radio)

therapy in some solid tumors, it seems that combining these

conditional treatments with immunotherapeutic agents inhibiting

PD-1 specifically, may promote the efficacy of these anti-tumor

approaches and improve the prognosis of many cancers.
PD-L1

Programmed death-ligand 1 (PD-L1), also known as CD274

and B7 homolog 1 (B7-H1), is a member of the B7 family of type

1 transmembrane protein receptors. B7-H1 gene was discovered

and cloned by Dong et al. 1999 (90), and its name changed to

PD-L1 after recognizing its interaction with previously known

PD-1 molecule (91). This protein is expressed in the many

immune cells subtypes, including T cells, B cells, NK cells,
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Monocytes, and APCs, such as dendritic cells (DCs) and

macrophages (Table 1) (53, 63). Expression of PD-L1 is

increased following stimulation of some cell types by pro-

inflammatory cytokines such as IFN-g and IL-4 (68). As

mentioned before, evidence indicates that activation of the

PD-1/PD-L1 signaling pathway suppresses T cell-mediated

immunologic responses in peripheral tissues and avoids

effector T cells giving rise to tissue damage, the process

described as immune “tolerance” (92, 93). Considering this

crucial role of the PD-1/PD-L1 pathway, it is expected that

cancerous cells use this property as an evasion mechanism

halting the immune system’s anti-tumor function (92, 94). It

has been proven that a wide variety of tumors upregulate the

expression of PD-L1 on the surface of their cells as a mechanism

to evade the immune system (95). Thus, inhibiting PD-L1

through designing and utilizing specified monoclonal

antibodies (mAbs) has been widely brought into play in cancer

immunotherapy in recent years. Some of these immune

checkpoint inhibitors (ICI) like Durvalumab, Avelumab, and

Atezolizumab are FDA-approved (Table 1) (51, 96, 97). A

clinical trial study (NCT02639065) of Durvalumab on thirty-

seven patients with esophageal cancer showed a relapse-free

survival (RFS) rate of 73% (98). Similar to other immune

markers and elements and as a consequence of alterations in

the TME, several studies have demonstrated variations in PD-L1

expression patterns after traditional cancer treatments, including

chemotherapy, radiotherapy, or a combination of them

(Table 1). According to a systematic review by Van den Ende

and colleagues, until January 2019, 48 studies had evaluated PD-

L1 exp r e s s i on change s in r e spons e t o common

chemotherapeutic regimens, radiotherapy, or a combination of

these approaches. Statistical analysis revealed that 30 articles

reported higher expression of PD-L1 comparing pre-treatment

and post-treatment specimens or comparing treated vs.

untreated patients’ samples in cohorts. Just half of these

increases were statistically significant. Among these studies are

fluoropyrimidine-based neoadjuvant chemoradiotherapy of

rectal cancer in 3 individual studies, two studies on ovarian

cancer treated with carboplatin/paclitaxel regimen, two studies

on head and neck squamous cell carcinoma with two different

NCT regimens based on cisplatin or docetaxel, platinum, and

fluorouracil and single studies on mesothelioma of the pleura,

NSCLC, and basal cell carcinoma (BCC). Conversely, only eight

studies reported decreases in the level of PD-L1 in post-

treatment samples. Six studies demonstrated significant

reductions, including single studies on FOLFOX-based treated

rectal cancer, vinorelbine-based treated NSCLC, and

nasopharyngeal cancer treated with chemoradiotherapy or

radiotherapy alone (85). In a study by Lim et al. on 123

patients with rectal cancer, they compared pre- and post-NCT

specimens immunohistochemically to assess the effects of NCT

on the expression of PD-L1 and CD8+ TILs in the TME. Results

demonstrated a rise in the expression levels of PD-L1 and the
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density of CD8+ TILs in post-NCT biopsies. Patients with high

expression of PD-L1 pre- and post-NCT showed a lesser rise in

CD8+ cells, and their overall survival and disease-free periods

were significantly poorer. These findings may indicate the

potentiality of applying combined methods such as

simultaneous therapy with NCT and immune-checkpoint

inhibitors (99). Ogura and colleagues did a similar study on

287 patients with rectal cancer evaluating PD-L1 expression and

CD8+ cells density in the stromal and tumor compartments of

the TME before and after chemoradiotherapy (CRT). This study

showed an increase in PD-L1 expression on the stromal immune

cells but not on the tumor cells. This finding was correlated with

a high count of the tumor area’s CD8+ cells pre-CRT and high

stromal density of CD8+ cells post-CRT (100). Song et al. carried

out a study on 76 patients with squamous cell carcinoma (SCC)

of the lung, comparing PD-L1 expression levels pre- and post-

NCT with gemcitabine or Taxane plus platinum agent. Results

demonstrated a significant up-regulation in PD-L1 expression

post-NAC. PD-L1 positive patients had a poorer prognosis with

shorter overall survivals (101). As mentioned before, some

studies have paradoxically reported a reduction pattern in the

expression of PD-L1 post-CRT. For instance, in a study by

Zhang et al. on 109 patients with rectal cancer, the proportion of

PD-L1+ TILs were significantly lower in post-NCT (FOLFOX

with or without radiotherapy) specimens associated with poorer

prognosis. The precise mechanism for this alteration was not

found, and a probable unknown stimulatory role for the PD-1/

PD-L1 signaling pathway was suggested as an underlying

mechanism (102). The noticeable point is that the

chemotherapeutic regimens used in these studies with

paradoxical findings differed from each other. So, the kind of

applied chemotherapeutic agents can be an impressive factor

altering TME positively or negatively in the case of every single

immune cell and immune marker such as PD-L1. However,

further investigations are needed to assess and confirm

this hypothesis.
CTLA-4

Activation of T-cell is a relatively sophisticated process that

needs more than one stimulatory signal. One of the components

is the co-stimulatory signal induced by the interaction of B7-1

(CD80) or B7-2 (CD86) molecules on the APCs with the CD28

molecules on the T-cells, which gives rise to signaling within the

T cells. The consequences of this signaling include the

proliferation of the T-cells , improved survival and

differentiation via synthesizing and secreting growth cytokines

such as IL-2, overexpressing genes involved in cell survival, and

improving energy metabolism (103).

CTLA-4 is a CD28 homolog with more affinity to the B7

molecule. Binding CTLA-4 to B7, opposite to what CD28 does,

not only does not lead to a stimulatory signal but also produces a
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co-inhibitory signal that results in limited Il-2 production,

restricted T-cell proliferation, and lower survival (Table 1)

(104, 105). CTLA-4 eliminates B7-1 and B7-2 molecules from

the membrane of APCs via trans-endocytosis and produces its

function inhibitory effect through signaling independent

mechanism (106). CD4+ Regulatory T cells (Treg) need

CTLA-4’s appropriate function to establish and preserve

immune tolerance. Blocking CTLA-4 leads to Treg dysfunction

and leads to multi-organ autoimmunity (107, 108). Ipilimumab

is an FDA-approved anti-CTLA-4 monoclonal antibody (mAb)

from the IgG-1 subclass, and its effect on melanoma metastasis

has been evaluated. However, some studies, including a clinical

trial (NCT02279732) evaluating the effect of combination

therapy of ipilimumab with chemotherapy in patients with

squamous lung cancer, have demonstrated that adding this

mAb to the chemotherapeutic regimen does not alter the

median OS significantly (HR=0.91) (109). Tremelimumab is

another mAb developed against CTLA-4 with the same

binding affinity (Table 1) (110, 111). A clinical trial study

(NCT01853618) in pat ients with HCC introduced

tremelimumab as a potential novel treatment for advanced

HCC (112). Two mechanisms have been suggested on how

these mAbs work, one of them emphasizing the inhibitory

effect of mAbs on CTLA-4, which leads to enhancement of the

CD28/B7 binding. The other suggestion proposes that these

mAbs exhaust the Tregs in the TME (113, 114).

Due to a systematic review, four studies involving two

studies on rectal cancer, a study on breast cancer, and another

single study on esophageal cancer have evaluated the changes

in the expression level of CTLA-4 in the TME after CRT or

NCT alone until January 2019. Only two of these mentioned

studies, including one on rectal cancer patients and the other

on breast cancer, had significant results, however, opposing

alterations in CTLA-4 expression (85). Kaewkangsadan and

colleagues designed and conducted a study on sixteen patients

with large and locally advanced breast cancers (LLABCs). They

u s e d a c h emo t h e r a p y r e g im en o f a d r i amy c i n ,

cyclophosphamide, capecitabine, and paclitaxel as the NCT.

Then they evaluated the alterations that occurred in the TME

of specimens and the association of these changes with the

prognosis of the disease by comparing pre- and post-therapy

biopsies. Different types of TILs and immune markers were

studied. The results demonstrated that NCT agents employed

in the study maintained the CD8+ TILs population. A

significant decrease was seen in the number of circulating

and tumor-infiltrating FOXP3+ and stromal CTLA-4+ T

cells. These changes reduce the secretion of inhibitory

cytokines such as IL-10 and TGF-b. No changes happened in

the population of intratumoral CD8+and CTLA4+ T cells. Also,

the analysis showed that high levels of CTLA-4+ T cells in the

stromal compartment were significantly associated with pCR.

However, there was no similar relation between intratumoral

CTLA4+ T cells and the pCR (86).
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In another study, Zhang et al. assessed the effect of two

different methods of neoadjuvant therapy on the TME cells and

immune markers such as CTLA-4 on 109 patients with rectal

cancer. A group of patients received the FOLFOX regimen as the

NCT. The other group received neoadjuvant chemoradiotherapy

(NACR) consisting of FOLFOX plus radiotherapy. Overall, the

results clarified that the expression level of CTLA-4 in both

groups was significantly higher post-neoadjuvant therapy. The

NACR group showed higher levels of CTLA-4 expression

compared with the other group in a meaningful manner. They

attributed this finding to the immune system’s response to

radiation exposure to avoid the autoimmunity caused by

radiation. This study also showed a strong correlation between

CTLA4+ and FOXP3+ TILs. It can be related to the increase in

the number of Tregs in response to radiotherapy. Despite these

changes, there was no significant relationship between CTLA-4

levels and the quality of response to the therapies (102). Overall,

considering what was said above, only a few studies have

evaluated the CTLA-4 expression levels alterations in response

to chemo(radio)therapy till now. So, it seems that there is a need

for more and more studies about this key immune checkpoint to

help us make firm statements on how and by which mechanisms

different types of neoadjuvant regimens change the expression of

CTLA-4, what is the clinical significance of these patterns and

their effect on the prognosis of various types of cancers and the

overall survival (Table 1).
LAG-3

Lymphocyte activating gene 3 (LAG-3), also known as

CD233 , i s another immune checkpoint f rom the

immunoglobulin superfamily. It was identified by Triebel

and colleagues in 1990 (115). This molecule is expressed on

TILs, NK cells, B cells, and DCs (116–119). LAG-3, with

structural similarity and a close gene placement to the CD4

gene, has more affinity to binding MHC class II molecule

(120). During the last years, several ligands have been

introduced for LAG-3 as MHC-II, LSECtin, Galectin-3, and

fibrinogen-like protein 1 (FGL1) (Table 1) (121–123). The

detailed mechanisms of the LAG-3 function have not been

known yet. However, this immune checkpoint exerts an

inhibitory regulatory effect in activating T-cells that restrains

autoimmunity and saves tissues (124). Co-expression of LAG-

3 and PD-1 on TILs in the TME gives rise to T cell exhaustion

and the consequent unlimited tumor growth (57). Some

studies have demonstrated improvement in anti-tumor

immun i t y b y i nh i b i t i n g t h e PD-L1 and LAG-3

simultaneously using bispecific antibodies (125). So,

inhibiting LAG-3 enhances the immune system’s anti-tumor

function by improving the effectiveness of other types of

immunotherapy (126). Some mAbs have been developed

against LAG-3 (Table 1) (127). These mAbs block the
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interaction between LAG-3 and MHC-II in the TME and

improve the induction of apoptosis in the tumor cells. For

example, LAG-3-Ig fusion proteins like IMP321 or eftilagimod

alpha increase the expression of co-stimulatory molecules and

IL-12 secretion that, finally enhances tumor immunity (78,

128). A clinical trial study (NCT00349934) in metastatic breast

cancer patients demonstrated that a combination of

eftilagimod alpha and paclitaxel empowered immune

responses and doubled the tumor response rate (129).

Relatimab, another LAG-3 blocking mAb, is currently being

used widely in clinical trials, such as the study on metastatic

ovarian cancer to improve the progression-free survival (PFS)

of the patients (NCT04611126). Another Anti-LAG-3 mAb,

Sym022, has been evaluated in some clinical trials, including a

study on patients with locally advanced/unresectable or

metastatic solid tumors or lymphomas (NCT03489369).

Only a few studies have investigated the alterations in LAG-3

expression patterns in the TME post-NCT and its relationship

with the disease prognosis (Table 1). Wang et al. studied the

effect of NCT with an Anthracycline/Taxane-based regimen on

the expression levels of LAG-3 and some other checkpoint

molecules and their prognostic value in 148 patients with

Triple-negative breast cancer (TNBC). Results of the study

demonstrated an increase in expression levels of four

molecules: CD8, PD-1, PD-L1, and LAG-3. A significant

increase occurred in the LAG-3 levels post-NCT. There was

also a significant correlation between high LAG-3, PD-1, and

PD-L1 levels in pre-NCT biopsies. Nevertheless, high levels of

LAG-3 on TILs in post-NCT samples demonstrated

remarkable differences in nodal status and PD-l expression

levels. At last high numbers of CD8+ TILs and nodal status

were introduced as the definite factors altering the prognosis of

tumor post-NCT. Also, high expression levels of LAG-3,

particularly combined with high levels of PD-1, were other

poor prognostic predictors (130). In another study, Bottai et al.

assessed the TILs by evaluating the density of CD4+, CD8+,

and FOXP3+ T cells. They also determined levels of expression

of some immune checkpoints, including LAG-3 and PD-1, in

the specimens of TNBCs from patients who underwent

operation post-NCT. The results revealed that high

quantities of stromal TILs were an independent good

prognostic predictor correlated with high expression levels of

the LAG-3 and PD-1. However, there was no significant

association between these molecules’ expression and patients’

outcomes (131). The controversy between the results of the

two mentioned studies may be attributable to the surgical

intervention involved in the latter study or may be due to the

tumor heterogeneity. These are just hypotheses and need more

evaluation to be confirmed. Considering what we discussed

above, we need more studies to evaluate the changes in LAG-3

expression patterns in response to NCT, determine the exact

mechanisms of its action, and determine its effect on the

prognosis across different cancers.
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B7-H4

B7-H4, as a member of the B7 family, is a transmembrane

protein discovered by three different teams of researchers in

2003 (132–134). Also, Salceda and colleagues isolated the

molecule again later in 2005. They researched to identify the

overexpressed genes in cancers, focusing on gynecologic ones

(135). There exists much inconsistency in the expression and

distribution of B7-H4 across various types of tumor cells and

normal cells (Table 1). Some studies have identified this

molecule’s mRNA in different normal tissues in the human as

the ovary, testis, pancreas, lung, spleen, and liver (136).

However, the IHC studies for this molecule on normal tissues

were negative, which indicates the firm translational control on

this immune checkpoint. The same study demonstrated the

expression of B7-H4 on a significant percentage of ovarian

and lung tumor biopsies (133). Other studies also identified

the molecule on uterus, colon, and breast tumors specimens. The

intensity of the staining and expression was correlated with the

cancer stage. Other cancers, such as gastric, kidney, and liver

tumors, did not show similar results (137, 138). Expression levels

of B7-H4 alter in a dynamic pattern along with the changes in

the TME. High levels of Treg-induced production of some

cytokines such as IL-6 and IL-10 by tumor-associated

macrophages (TAMs) give rise to the overexpression of B7-H4

on the surface of TAMs. Some studies have shown a negative

correlation between Treg count and the level of expression of B7-

H4 on TAMs with the tumor prognosis (139–141). Many studies

have suggested the inhibitory effect of B7-H4 on activated

effector T cells via different mechanisms such as reduced IL-2

secretion that leads to diminished cell proliferation. Also,

inducing cell cycle arrest is another mechanism (142). Several

studies assessed the effects of B7-H4 expression on cancer cells in

vitro and in vivo. The results clarified that B7-H4 empowers the

tumors in many aspects, as preventing the apoptosis of the

cancerous cells, augmenting proliferation and cell adhesion, and

finally increasing the ability of migration, invasion, and

metastasis (135, 143–146). B7-H4 overexpression in lung

adenocarcinoma gives rise to an immunosuppressive TME

(147). Until now, researchers have developed and used

different antibodies against B7-H4 in several studies, including

a clinical trial assessing the effect of an anti-B7-H4 drug,

FPA150 , in pat ients wi th advanced so l id tumors

(NCT03514121). (Table 1) (148, 149). Immune system

augmenting effects such as increased IL-2 production reversed

inhibitory effects of B7-H4 on effector T cells. It increased T cell

proliferation, indicating the promising results of bringing these

blocking antibodies into play (150). Only a few studies have

evaluated the changes caused by conventional cancer therapies

such as chemotherapy and radiotherapy in the expression level

of B7-H4 in the TME (Table 1). Maskey et al. performed a study

to evaluate the effect of NCT on TILs and B7-H4 expression in

patients with gastric cancer. The other goal was to determine the
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cells and markers associated with the overall survival. They also

evaluated their impact on the prognosis of the disease. To do

this, they assessed and compared the expression of different

subsets of TILs and the levels of B7-H4 molecule in two groups

of patients with gastric cancer. One of these groups went under

the NCT (NCT group) before the surgery, while the other did

not (nNCT group). The regimen used for NCT was the FOLFOX

regimen. The number of participants was 102. The results,

achieved by the IHC analysis on the post-surgery biopsies,

indicated that the NCT group had significantly lower levels of

expression of B7-H4 molecule but higher levels of CD4+ and

CD8+ TILs. More analysis demonstrated that NCT alone had no

significant effect on the overall survival (OS). However, patients

with lower expression of B7-H4 in the NCT group had

significantly higher OS. So, the level of expression of B7-H4 is

associated with the prognosis of the disease in patients with

gastric cancer. However, TILs levels do not correlate with the

disease prognosis (151). It seems that we need more research

across different types of tumors to assess the exact effects of

adjuvant therapies on the expression of B7-H4 in the TME and

to determine its effect on the response to therapies. Also,

determining the relationship between the expression of B7-H4

and disease prognosis is very crucial.
The role of personalized medicine in
combination therapy

Despite the wide use of the various kinds of targeted cancer

therapies, such as immunotherapy, and also their combination

with traditional ones, including chemotherapy, radiotherapy,

and surgery, a remarkable proportion of the patients getting

these therapies do not achieve the optimal cure, i.e., they show

full resistance at the first steps or face the tumor relapse after the

primary success (152). Many studies have demonstrated that the

underlying etiology of this failure is the intra-population

diversities, including their specific genetic composition that

gives rise to heterogeneities in their “omics” data, besides the

environmental factors. Omics, including the terms such as

transcriptomic and proteomic, are indeed the connectors of

the genotype of each individual to his phenotype. For example,

a transcriptome is the whole mRNA of a subject or specimen.

Methods such as microarray analysis and RNA sequencing

techniques help us provide the transcriptomic information we

need about the level of expression of different biomarkers and

proteins, such as immune checkpoints. Also, the proteome is the

entire protein expressed by a cell or a tissue, such as a tumor

sample. Tools like mass spectrometry provide proteomic data

about the characteristics of the proteins, such as expression

amounts, post-translational alterations, cellular sites, and types

of interactions between different proteins (153). Metabolomics is

about recognizing and analyzing the metabolites, i.e., the mid-
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level molecules produced by the metabolic reactions. Metabolites

are affected by genetic and environmental factors

simultaneously, so a complete analysis of them can enlighten

the specific response of an individual to a drug (154). The

different omics techniques mentioned above are, in fact, the

primary data collecting tools for a relatively new approach to

cancer treatment, i.e., “precision medicine” or “personalized

medicine.” The growing field of personalized medicine can be

considered a revolution concerning cancer therapy, emphasizing

designing and developing specific treatments for an individual or

a group of patients based on data demonstrating their unique

genetic, physiologic, and environmental features (155). The

mentioned data can help us predict the response of different

patients with diverse characteristics to a specific treatment

shifting the trend of using generic medicine for all the patients

of a particular disease to a specified and precise approach. The

TME heterogeneity is one of the cardinal factors that bring about

dissimilar responses in different individuals getting the same

treatment, whether a single or a combination therapy (156).

Cancer vaccines, mAbs (including ICIs), and CAR T-cells are

among the personalized medicine-based therapies currently

being used. As we mentioned in the previous sections,

immune checkpoints blocking agents or ICIs are currently

among the widely used drugs in both immunotherapeutic

strategies and combination therapies. From the perspective of

personalized medicine, to get more benefit from using ICIs and

other target therapies, we need data and diagnostics to assess the

possibility of a suitable response from a particular individual’s

tumor. So, we need more studies to clarify the details of the

immunologic pathways in which the immune checkpoints are

involved, intending to recognize and introduce more biomarkers

and other diagnostic elements that can help us anticipate a

patient’s response to a particular drug or treatment (16). Only a

few studies exist about personalizing traditional cancer therapies

while personalizing these methods seems necessary due to their

role and importance in different therapeutic approaches, such as

in developing combination therapies. Wang et al. suggested that

performing an appropriate diagnostic process before therapy can

help us execute personalized cancer chemotherapy (157).

Identifying biomarkers using “omics” technologies, especially

proteomics, can be useful in evaluating the possibility of good

responses to chemotherapy. Culturing a patient’s cancer cells to

determine drug sensitivity is another method for assessing the

probability of favorable responses to chemotherapeutic

agents (158).

The main concept of this paper, i.e., evaluation of the

alterations in immune checkpoint molecules’ expression

patterns in response to chemo/radiotherapy, is somehow

related to personalized medicine. Considering what we

mentioned about the TME features and its role in anti-tumor

immunity, also its changes in response to traditional adjuvant

therapies, including the alterations in immune checkpoints

expressions, and paying attention to what we mentioned about
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personalized medicine in this part, it seems logical to involve the

patient(s) individual features, such as omics and physiologic

characteristics in designing more specialized and effective

combination therapies for various types of cancers.
microRNA’s targeting of IC

We employed a miRNA target prediction approach to

consider the involvement of miRNAs during IC targeting

and modulation of predicted miRNAs upon chemotherapy

or radiotherapy. miRWalk v.3 was used to predict miRNAs

with the ability to target IC (159). Also, the miRTarBase

database of experimentally validated miRNA-gene targeting

was employed to confirm the predicted interactions (160)

(Figure 3). Then, the alteration of resultant miRNAs was

considered by pieces of literature review. It is found that

miR-194-3p is significantly down-regulated in docetaxel-

resistant colon cancer cells. In addition, over-expressed miR-

194-3p could promote SW620/docetaxel and SW480/

docetaxel apoptosis and improve their docetaxel sensitivities.

In addition, over-expressed miR-194-3p promoted docetaxel
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sensitivity of colon cancer cells by negatively regulating

KLK10 (161). Overall, it was predicted that miR-193-3p

could target PD-L1 and be involved in the activity of

docetaxel. The results of a recent study highlighted the

tumor suppressor roles of miRNA-486-5p mimic in bladder

cancer carcinogenesis, identifying miRNA-486-5p mimic as

an important therapeutic target in bladder cancer. Also, the

results revealed that miRNA-486-5p mimic could increase

cisplatin sensitivity in different bladder cancer cell lines and

provide a better outcome for chemotherapy with cisplatin

(162). A study conducted by Jin et al. showed the

downregulation of miR-486-5p in nonsmall-cell lung cancer

tissues compared with normal lung tissues and lower levels of

miR-486-5p indicated a poorer prognosis for patients with

nonsmall-cell lung cancer in terms of overall survival.

Furthermore, this study demonstrated that miR-486-5p

increased the sensitivity of A549 cells to cisplatin and

inhibited EMT by directly targeting TWF1 (163). Also, it

was predicted that miR-486-5p could target CD40 and

involved in the activity of cisplatin. miR-761 expression is

negatively associated with the expression of FOXM1 in

colorectal cancer tissues. Elevated expression of FOXM1
FIGURE 3

The interaction network of miRNAs and IC. These network shows the predicted interaction between some ICs and miRNAs. Targets or so-called
IC are shown as red rectangles and predicted miRNAs as blue ellipses. Most miRNAs could target a single IC; however, miR-149-3p, miR-34a-
5p, miR-6769a-3p, and miR-1226-3p could interact with more than one IC.
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suppressed the sensitivity of miR-761-overexpressing HT29

cells to 5-FU. It is also indicated that FOXM1 overexpression

promoted cell proliferation, cycle, and invasion of miR-761-

overexpressing HT29 cells. These data suggested that miR-761

played a tumor suppressor miRNA in colorectal cancer

progression, and reduced miR-761 expression might be a

major mechanism for 5-FU resistance in the colorectal

cancer cell (164). Besides, it was predicted that miR-761

could target CD137L and be involved in the activity of 5-

FU. A recent study indicated that miR-93-5p reduces the

proliferation and migratory capacity of breast cancer cells

and increases the ratio of apoptotic cells. Increasing apoptosis

by overexpression of miR-93-5p may increase radiosensitivity

in breast cancer cells (165). In addition, it was predicted that

miR-93-5p could target CD28 and be involved in the activity

of radiotherapy. It is demonstrated that CARM1 is highly

expressed in cervical cancer tissues and radio-resistant

cervical cancer cells, while miR-16-5p expression is low.

Under irradiation, up-regulation of CARM1 can induce

radiotherapy resistance of cervical cancer cells, while

overexpression of miR-16-5p or CARM1 knockdown could

inhibit the survival of CC cell and induced apoptosis.

Therefore, CARM1 was verified as a target for miR-16-5p.

Besides, up-regulation of CARM1 reversed the increase in

radiosensitivity induced by miR-16-5p (166). In addition, it

was predicted that miR-16-5p could target PD-L1 and

involved in the activity of radiotherapy. Additionally, it is

reported that ionizing radiation (IR) exposure impaired lung

cancer cell viability and found that miR-339-5p is a novel IR-

inducible miRNA. Overexpression of miR-339-5p enhanced

radiosensitivity of A549 and H460 cells by inhibiting cell

viability, increasing apoptosis, inducing cell cycle arrest, and

suppressing cell proliferation. Further exploration validated that

miR-339-5p can target phosphatases of regenerating liver-1

(PRL-1) in lung cancer cells (167). Besides, it was predicted

that miR-339-5p could target ICOSL and involved in the activity

of radiotherapy.
Conclusion and future perspective

Over past decades, significant advances have been made in

cancer treatment, such as immunotherapeutic approaches

using ICIs. Despite this, only limited types of cancers and a

limited number of patients take advantage of immunotherapy.

To design more effective therapies, we need to recognize the

changes occurring in the TME across different types of tumors

in response to various treatments. In this study, we have

reviewed the alterations in the expression patterns of well-

known and relatively newly found immune checkpoints

during various RCTs. Different studies demonstrate that

many factors such as the type of tumor and the type of

chemo(radio)therapeutic regimen can influence the immune
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checkpoint expression patterns. Evaluating the results of

different studies showed that the changes in immune

markers in the TME are dependent on the number of TILs

present in the tumor to a great degree. Tumors with higher

numbers of TILs become more active, expressing higher levels

of immune molecules and neoantigens post-NCT. These

tumors are usually referred to as hot tumors, such as

ovarian, rectal, and pancreatic tumors, and seem to be more

promising targets for immunotherapy post-NCT and surgery.

There have been many studies on some of the immune

checkpoints, such as PD-L1. Most of them have shown the

upregulation of this molecule following NCT. However, there

are only a few studies with inconsistent results about other

immune checkpoints, such as CTLA-4, LAG-3, and B7-H4. It

indicates a need for designing more comprehensive studies. A

remarkable number of studies showed that some changes in

the immune checkpoints’ expression patterns were associated

with the prognosis of the disease. It shows the necessity of

becoming more knowledgeable about the alterations

happening in the TME and its different elements, such as

the checkpoint molecules in response to different chemo

(radio)therapeutic approaches. Also, the number of studies

about the effect of chemo(radio)therapeutic neoadjuvant

therapies on the expression patterns of co-stimulatory

immune checkpoints in the TME seems insufficient. So,

there is a need for more studies to prepare the field for

designing better combination therapies consistent with the

concept of personalized medicine. The other point not noted

in the mentioned studies is the link and association between

the expression patterns of different immune checkpoints.

Some studies have demonstrated a correlation and

association between immune checkpoints’ genes originating

from the “co-expression gene networks” (168, 169). This fact

indeed gives us some clues which guide us toward considering

immune checkpoints as a connected network rather than

single independent genes. However, almost all the studies

reviewed in this paper had not noticed this determining point.

So, we must pay attention to the co-expression gene networks,

i.e., the linkage between immune checkpoints’ genes, that

brings about their probable simultaneous and correlated up-

regulation or down-regulation in the TME before and after

interventions such as chemo/radiotherapy to develop more

effective and promising combination therapies.
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TN, United States, 2Department of Pharmacology, Vanderbilt University, Nashville,
TN, United States, 3Veterans Affairs Tennessee Healthcare System, Nashville, TN, United States
Cancer continues to be a substantial health concern and a leading cause of

death in the United States and around the world. Therefore, it is important to

continue to explore the potential of novel therapeutic targets and

combinatorial therapies. Triggering receptor expressed on myeloid cells 2

(TREM2) is a transmembrane receptor of the immunoglobulin superfamily

that associates with DNAX activation protein (DAP) 12 and DAP10 to

propagate signals within the cell. TREM2 has primarily been recognized for

its expression on cells in the monocyte-macrophage lineage, with the majority

of work focusing on microglial function in Alzheimer’s Disease. However,

expansion of TREM2 research into the field of cancer has revealed that

epithelial tumor cells as well as intratumoral macrophages and myeloid

regulatory cells also express TREM2. In this review, we discuss evidence that

TREM2 contributes to tumor suppressing or oncogenic activity when

expressed by epithelial tumor cells. In addition, we discuss the

immunosuppressive role of TREM2-expressing intratumoral macrophages,

and the therapeutic potential of targeting TREM2 in combination with

immune checkpoint therapy. Overall, the literature reveals TREM2 could be

considered a novel therapeutic target for certain types of cancer.

KEYWORDS

TREM2 (triggering receptor expressed on myeloid cells 2), immunotherapy, tumor
associated macrophage (TAM), immunosuppression, tumor infiltrating lymphocyte (TIL)
Introduction

Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane

receptor of the immunoglobulin superfamily that binds an array of ligands including

bacteria and polyanionic molecules (1), DNA (2), lipoproteins (3), phospholipids (4) and

sulfoglicolipids such as Sulfavant A (5). TREM2 itself does not contain intrinsic signaling

capabilities; therefore, it associates with the adaptor proteins DNAX activation protein

(DAP) 12 and DAP10; which, upon TREM2-ligand interaction are phosphorylated and

propagate signals within the cell (6). TREM2-ligand interaction and subsequent ITAM

phosphorylation of DAP12, which is the primary adaptor protein for TREM2, results in
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activation of Syk, which leads to the phosphorylation of ERK1/2,

PLCg1, and Cbl (7, 8). In contrast, activation of DAP10 results in

recruitment of PI3K and activation of Grb2, leading to Akt and

ERK signaling respectively (6). While the strength and direction

of TREM2 downstream signaling is differentially modulated

upon interaction with various ligands, many aspects of

TREM2 interaction and the downstream signals propagated

remain to be fully understood (7). In addition to signaling

through TREM2-ligand interaction and propagation of signals

through DAP12 and DAP10, cleavage of TREM2 by a

disintegrin and metalloproteinase (ADAM) proteases results in

soluble TREM2 (sTREM2), which can act as a signaling

molecule. ADAM 10 and 17 cleave human TREM2 at the

H157-S158 peptide bond to release the ectodomain of TREM2

(9). Treatment with sTREM2 in in vitro studies has resulted in

ERK and MAPK14 activation in bone marrow derived

macrophages (10) and NF-kB activation in microglia;

however, the receptors for sTREM2 remain unidentified (11).

Generally, TREM2 is appreciated for its expression on

the surface of cells in the monocyte-macrophage lineage, such

as microglia and osteoclasts , with implications for

neurodegenerative diseases (12–15) and bone disorders (16,

17). However, more recently, TREM2 has been identified on

certain epithelial-derived cancer cells and its expression

influences their behavior. This review will focus on the role of

TREM2 in cancer, including patient survival data and TREM2

expression in human tumor samples, as well as a discussion of

the potentially oncogenic or tumor suppressive roles of TREM2

when expressed by the epithelial tumor cells. In addition, it will

provide information on the immunosuppressive environment

created by tumor infiltrating immune cells expressing TREM2.
TREM2 discovery and early
implications to human health

TREM2 was first discovered in human monocyte-derived

dendritic cells (DCs), where its expression promoted DC

survival and upregulation of CCR7, major histocompatibility

complex class II, CD86, and CD40 (8). However, TREM2 was

first implicated in human health and disease when variants of

TREM2 and its adaptor protein DAP12 were identified in

families with Nasu-Hakola Disease, which is also known as

polycystic lipomembranous osteodysplasia with sclerosing

leukoencephalopathy. Patients with Nasu-Hakola Disease are

homozygous for loss-of-function mutations in either DAP12 or

TREM2, and the disease is characterized by presenile dementia

and bone cysts (18–20). With the realization of the importance

of TREM2 in neuronal health, investigators have also shown that

TREM2 plays a protective function against development of

Alzheimer’s Disease. Microglia in the brain express TREM2
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and mutations of TREM2 impact its ability to bind ligands,

diminish microglial activation, and accelerate progression of

Alzheimer’s Disease (21). Up to this point, the majority of work

on TREM2 has been conducted in the context of Nasu-Hakola

Disease and Alzheimer’s Disease and the role of TREM2 in these

settings has recently been reviewed elsewhere (22, 23). However,

the importance of TREM2 in cancer has recently come to light,

although it is not yet widely studied or understood, hence the

focus on cancer for this review.
TREM2 expression in human tumors
and correlations with human
survival data

TREM2 in human tumor samples

Multiple studies have analyzed TREM2 mRNA expression

and protein expression in human tumor tissue compared to

normal tissue as summarized in Table 1. However, the data from

different groups are sometimes contradictory even within the

same cancers, such as hepatocellular carcinoma (HCC) and

gastric cancer. In both of these cases, studies have analyzed

TREM2 expression and reported opposite findings despite using

similar methods. This highlights the heterogeneity of human

tumors as well as the need for further investigation and

understanding of the role of TREM2 in cancer.

An important first step to understanding the role of TREM2 in

cancer was to determine which cell type expresses TREM2 in the

tumor microenvironment (TME). A study on TREM2 in HCC

observed increased TREM2 expression in HCC samples compared

to surrounding normal tissue, and IHC staining revealed the

TREM2-expressing cells morphologically resembled macrophages

(25). Analysis of single cell sequencing from human HCC livers

confirmed this morphological observation as the data demonstrated

prominent TREM2 expression in the macrophages (25). These

findings have been corroborated by more recent analysis of single

cell RNA sequencing that confirmed specific expression of TREM2

in macrophages in HCC (27). Similarly, Molgora et al. observed

increased TREM2 staining in macrophages, as determined by cell

morphology, in 75% of carcinomas from various primary sites

compared to normal tissue (34). IHC of primary carcinomas and

melanomas demonstrated co-expression of TREM2 with

macrophage markers CD163, CD68, MAF-B, CSF1R, and MITF;

however, the study did not specify the types of cancer analyzed (34).

Interestingly, analysis of liver, lung, and lymph node

metastases originating from ovarian serous and breast

carcinoma and colorectal and lung adenocarcinoma by IHC

demonstrate specific TREM2+ staining within the metastatic

nodules and not in the surrounding normal tissue (34). Spatial

analysis of TREM2 expression by IHC within tumors shows
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TREM2+ macrophages are primarily localized in the tumor

nest in hepatocellular, lung, and pancreatic carcinomas. In

other cancers, TREM2+ macrophages were found within both

the tumor nest and tumor stroma (32). Although these studies

indicate TREM2 is expressed on tumor associated macrophages

(TAMs), the conclusions of these studies do not exclude that

other cell types in the tumor might also express TREM2.
Frontiers in Oncology 03
4443
Human survival data

In a systematic pan-cancer analysis of TREM2 across 33

cancer types, Cheng et al. identified positive and negative

associations of TREM2 expression with prognosis in different

cancers using data extracted from the TCGA. Kaplan Meier

analysis indicated high TREM2 expression was associated with
TABLE 1 TREM2 expression in human tumors.

Cancer type mRNA expression Protein expression Reference

Hepatocellular Carcinoma Decreased (qRT-PCR) Decreased (WB, IHC) Tang et al. (24)

Increased (TCGA) Increased (IHC) Esparza-Baquer et al. (25)

Increased (TCGA) Increased (IHC) Cheng et al. (26)

Increased (scRNAseq) Increased (IHC) Zhou et al. (27)

Gastric cancer Increased (qRT-PCR) Increased (IHC) Zhang et al. (28)

not assessed Decreased (IHC) Tang et al. (24)

Increased (TCGA) NA Cheng et al. (26)

Pancreatic cancer not assessed Increased (IHC) Tang et al. (24)

Glioma Increased (qRT-PCR, TCGA) Increased (IHC) Wang et al. (29)

Glioblastoma multiforme Increased (TCGA) NA Cheng et al. (26)

Renal cell carcinoma Increased (qRT-PCR) Increased (WB) Zhang et al. (30)

Kidney renal clear cell carcinoma Increased (TCGA) NA Cheng et al. (26)

Kidney renal papillary cell carcinoma Increased (TCGA) NA Cheng et al. (26)

Kidney chromophobe Increased (TCGA) NA Cheng et al. (26)

Colon cancer NA Decreased (IHC) Kim et al. (31)

Increased (TCGA) Increased (IHC) Cheng et al. (26)

Head and neck squamous cell carcinoma Increased (TCGA) Increased (IHC) Cheng et al. (26)

Uterine corpus endometrial carcinoma Increased (TCGA) NA Cheng et al. (26)

Cholangiocarcinoma Increased (TCGA) NA Cheng et al. (26)

Prostate adenocarcinoma Increased (TCGA) NA Cheng et al. (26)

Bladder urothelial carcinoma Increased (TCGA) NA Cheng et al. (26)

Breast cancer Increased (TCGA) Increased (IHC) Cheng et al. (26)

Increased (TCGA) NA Nalio Ramos et al. (32)

Cervical squamous cell carcinoma and endocervical adenocarcinoma Increased (TCGA) Increased (IHC) Cheng et al. (26)

Thyroid carcinoma Increased (TCGA) NA Cheng et al. (26)

Esophageal carcinoma Increased (TCGA) NA Cheng et al. (26)

Lung squamous cell carcinoma Decreased (TCGA) Decreased (IHC) Cheng et al. (26)

Non-small cell lung cancer Decreased (TCGA) Decreased (IHC) Cheng et al. (26)

NA Increased (FC) Zhang et al. (33)
qRT-PCR, quantitative real time polymerase chain reaction; TCGA, The Cancer Genome Atlas (transcript level); WB, western blot; IHC, immunohistochemistry; scRNAseq, single cell
RNA sequencing; FC, flow cytometry; NA, not assessed.
Increased or decreased expression of TREM2 in comparison to normal tissue is indicated for each cancer type at the mRNA and protein expression levels. The method of detection is also noted.
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better overall survival in cervical squamous cell carcinoma,

endocervical adenocarcinoma, lymphoid neoplasm diffuse

large B-cell lymphoma, lung adenocarcinoma, thyroid

carcinoma, and skin cutaneous melanoma (26). In contrast,

the study found that high TREM2 expression was associated

with worse overall survival in lower grade glioma, liver

hepatocellular carcinoma, and kidney renal clear cell

carcinoma (26). The seeming discrepancy between TREM2

benefitting or worsening patient prognosis in different types of

cancer may at first seem puzzling; however, the investigators

dove deeper to better understand TREM2 in each cancer type.

Gene expression data and protein-level data from IHC

demonstrate differences in TREM2 expression between cancer

types with the highest expression in glioblastoma multiforme

and the lowest in acute myeloid leukemia. IHC implementation

to compare TREM2 expression between normal and tumor

tissue showed increased TREM2 expression in the tumor

tissue compared to normal tissue in many cancers. However,

in other cancers, such as lung squamous cell carcinoma, TREM2

staining was moderate in the normal tissue and weak in the

tumor tissue. These deviations in expression of TREM2 indicate

that TREM2 may serve distinct roles and may exhibit differing

levels of influence in distinct types of cancer. By probing

associations between TREM2 and tumor mutation burden,

immune scores, tumor stage, DNA methylation, and

infiltration of immune cells the investigators highlight the

heterogeneity among tumor types. TREM2 may interact

differently with each of these factors, thus summing to

differing prognoses in patients.

While this pan-cancer analysis is a great resource, there are

also previous smaller studies that individually confirm or

contradict the findings from the pan-cancer analysis. In

agreement with this study, Wang et al. previously demonstrated

an association between high TREM2 and worse overall survival in

glioma (29). This same association has also been shown in gastric

cancer (28), colorectal cancer (CRC) (34), triple negative breast

cancer (34) and luminal breast cancer (32), suggesting TREM2

contributes to oncogenic activity in these cancer types. However,

in disagreement with the systematic pan-cancer analysis, a

previously published study by Tang et al. demonstrated

increased TREM2 expression correlates with better overall

survival in HCC (24), indicating TREM2 may contribute to

tumor suppressing activity in HCC. The discrepancy between

the two studies may be explained by use of data from two distinct

cohorts of patients. The pan-cancer analysis utilized the TCGA

while Tang et al. evaluated a cohort of 250 patients with HCC

whose surgically resected samples and survival data were obtained

and analyzed by the investigators. Furthermore, Tang et al.

collected primary tumor, matched non-tumor liver tissue and

venous metastasis from the subjects, which indicates all tumor

specimens had metastasized, thus skewing the data set. Another

more recent study demonstrated high levels of TREM2+ TAMs

predicted worse overall survival in both lung adenocarcinoma and
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lung squamous cell carcinoma, which is also in disagreement with

the pan-cancer analysis. This may be accounted for by the specific

attention of some groups to macrophage expression of TREM2

rather than overall expression of TREM2.

As discussed in the sections below, the in vitro and in vivo

data from mouse studies do not always align with the human

survival data. In the data covered in this review, this is the case

specifically in the models of CRC (31), which may be due to the

inability of the mouse model to fully recapitulate the human

disease. However, this discrepancy could also be related to the

method of TREM2 expression analysis in these Kaplan Meier

plots. The data used to generate these plots originate from bulk

RNA sequencing. Tumors are comprised of a heterogeneous

milieu of cells and TREM2 can be expressed by the cancer cells

or by other immune cell populations such as TAMs. Therefore,

the Kaplan Meier plots may be useful as a starting point to

evaluate overarching trends, but not as useful for the purpose of

delineating the specific role of TREM2 within the epithelial

tumor cells versus the immune cells in the TME. As we learn

more about the roles of TREM2 expressed by differing cell types,

the utilization of scRNAseq may be critical to advancing our

knowledge and understanding of TREM2 in cancer.
TREM2 in cancer progression

Due to the heterogeneous cellular composition of tumors, the

contribution of different proteins on the various cell types

complicates therapeutic strategies. When considering TREM2 as

a potential therapeutic target, it is critical to understand its

functions and properties in different contexts and to consider

the cell-type expressing TREM2. The emerging body of literature

on the subject of TREM2 expression by the epithelial tumor cells is

seemingly contradictory, with some studies suggesting TREM2

contributes to tumor suppressive activity and other studies

suggesting it supports oncogenic activity. However, the literature

consistently reports that TREM2 expression by immune cells

creates an immunosuppressive environment that allows the

cancer cells to thrive. In subsequent sections, we summarize

what is known about the immunosuppressive and oncogenic

roles of TREM2 and suggest areas for future investigation.
TREM2 contributes to either tumor
suppressing or oncogenic activity in
different types of cancer

The case for TREM2 contributing to
oncogenic activity

Data on TREM2 expression in epithelial tumor cells is still

limited, but two studies, one in renal cell carcinoma (RCC) and
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one in glioma have been conducted that point to an oncogenic

role of TREM2. The RCC study utilized the ACHN and Caki-2

RCC cell lines (30) and the glioma study used the U87 and U373

glioma cell lines (29). In both studies, silencing of TREM2

resulted in decreased cell proliferation and increased apoptosis

in vitro and decreased tumor volume in vivo with subcutaneous

cell injection models (29, 30). Additionally, in the RCC model,

silencing of TREM2 in vitro resulted in a decrease of Bcl2, a

regulator of apoptosis, an increase in the apoptosis genes Bax

and Casp3, and a decrease in the proliferation marker PCNA,

measured at both the gene and protein expression levels (30). In

the glioma study, silencing of TREM2 led to a decrease in cell

adhesion as well as decreases in the migratory and invasive

capacities of both cell lines (29). This work suggests epithelial

TREM2 contributes to oncogenic activity in the context of RCC

and glioma.
The case for TREM2 contributing to
tumor suppressing activity

In vitro and in vivo studies suggest that TREM2 may

contribute to tumor suppressing activity in CRC and HCC.

Using HT29 CRC cells, Kim and colleagues demonstrated that

antibody-mediated TREM2 neutralization resulted in increased

cell proliferation, induction of the S phase of the cell cycle,

increased cell migration, and increased invasive capacity.

Conversely, TREM2-overexpressing MC38 CRC cells resulted in

decreased tumor volume following subcutaneous injection inmice

(31). Together these data suggest that epithelial TREM2 may

support tumor suppressing activity in CRC. Similarly, in a mouse

model of HCC, knockdown of TREM2 resulted in increased cell

viability, increased migratory and invasive capacities, as well as

decreased epithelial markers with an increase in mesenchymal

markers (24). Subcutaneous injection of cells with TREM2

knockdown resulted in increased tumor volume suggesting
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TREM2 may also contribute to tumor suppressing activity in

HCC. To further support this conclusion, the same study found

that overexpression of TREM2 resulted in opposing results from

the knockdown conditions (24). Another study of HCC utilized

carcinogen-induced models of HCC in TREM2 deficient mice to

probe the function of TREM2 in HCC. The investigators found

that mice globally-deficient for TREM2, thus not expressing

TREM2 on the epithelial tumor cells or any other cell type

within the TME, developed an increased number of tumors of

all sizes following carcinogen (DEN: diethylnitrosamine)

administration and also developed an increased number of as

well as larger tumors in fibrosis associated HCC models (25).

While these data overall support TREM2 contributing to tumor

suppressing activity in HCC and CRC, mechanistic conclusions

are clouded by the global deletion of TREM2. All studies are

summarized in Table 2.
Cancer-associated fibroblast TREM2
expression may modulate paracrine
signaling and tumorigenicity

Perugorria et al. previously showed that TREM2 can be

expressed in activated hepatic stellate cells (HSCs) in the

context of liver injury, which modulates toll like receptor-

mediated inflammation (35). Therefore, following the

observation that TREM2 deficient mice developed an increased

number of tumors in carcinogen-induced models of HCC, the

investigators interrogated how TREM2 expressed by HSCs would

impact tumorigenicity. The researchers evaluated tumorigenicity

utilizing a hanging droplet liver cancer spheroid growth assay.

Consistent with findings from the TREM2 deficient carcinogen-

induced models of HCC, conditioned media from TREM2-

overexpressing HSCs suppressed spheroid growth (25). Further

analysis revealed that TREM2 overexpression in HSCs attenuated
TABLE 2 Summary of mouse studies with supporting evidence for TREM2 contributing to tumor suppressing or oncogenic activity in different
types of cancer.

Cancer type Cancer model Phenotype Reference

Tumor Suppressive Activity HCC s.c. TREM2 KD Increase tumor size Tang et al. (24)

s.c. TREM2 OE Decrease tumor size

i.v. (tail vein) TREM2 OE Suppress lung metastasis

HCC DEN-induced carcinogenesis, Trem2-/- mice Increase tumor number Esparza-Baquer et al. (25)

DEN/CCl4-induced carcinogenesis, Trem2-/- mice Increase tumor number

TAA-Induced carcinogenesis, Trem2-/- mice Increase tumor volume

CRC s.c. TREM2 OE Decrease tumor volume Kim et al. (31)

Oncogenic activity Glioma s.c. TREM2 KD Decrease tumor volume Wang et al. (29)

RCC s.c. TREM2 KD Decrease tumor volume Zhang et al. (30)
HCC, hepatocellular carcinoma; CRC, colorectal cancer; RCC, renal cell carcinoma; s.c., subcutaneous injection of cancer cells; i.v., intravenous; KD, knockdown; OE, overexpression; DEN,
diethylnitrosamine; CCl4, carbon tetrachloride; TAA, thioacetamide.
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expression of multiple canonical Wnt ligands, which may have

contributed to spheroid growth suppression. Although these data

are limited to HCC, they open up the prospect that activated

cancer-associated fibroblasts in other cancer types may express

TREM2, and in doing so may modulate paracrine signaling to the

surrounding cells. However, it is of note that these studies were

only conducted in vitro and thus, future studies should include

further analysis of cancer associated fibroblasts in both HCC and

other types of cancer both in vitro and in vivo.
TREM2 expression and functions
within the immune cell populations
of the TME

Expression of TREM2 by myeloid cells in
the TME creates an immunosuppressive
environment

CD8+ cytotoxic T lymphocytes are key immune cells for

controlling tumor growth by killing cancer cells that express

major histocompatibility complex class I molecules. However,

immunosuppressive crosstalk between cancer cells and other cell

types within the TME, such as cancer-associated fibroblasts,

regulatory T cells, and M2-polarized macrophages, can suppress

the effector functions of CD8+ T cells (36). Given that analysis of

human tumor samples from various primary carcinomas

including those of skin, liver, lung, breast, bladder, colon,

stomach, pancreas, and kidney contain TREM2+ macrophages

in 75% of samples (34), there is reason to consider that TREM2

expression contributes to the immunosuppressive phenotype. In

settings of infection, TREM2 enhances phagocytosis and reduces

pro-inflammatory cytokine secretion by macrophages, thus

serving an immunoregulatory role (7). Current knowledge

suggests that TREM2 expression on cells of the monocyte-

macrophage lineage may also serve an immunoregulatory role

in cancer, creating an immunosuppressive environment. Recent

work by Drake and colleagues uncovered a tumor-specific

C1Q+TREM2+APOE+ macrophage population in clear cell

renal carcinoma associated with post-surgical disease

recurrence for patients (37). This suggests that TREM2

expression in tumor-specific macrophages is associated with a

pro-tumorigenic environment.

TREM2 has primarily been shown to be expressed on the

surface of cells in the monocyte-macrophage lineage, including

microglia (38), osteoclasts (39), and other macrophages such

Kupffer cells (40) and lipid associated macrophages (LAMs) in

adipose tissue (41). Studies have used scRNAseq to understand

how TREM2 deficiency impacts the myeloid compartment in the

TME as well as tumor progression. One study identified two

populations of tumor-infiltrating myeloid suppressive cells that

express TREM2 in a subcutaneous MCA-205 fibrosarcoma
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model: a TAM population and a myeloid regulatory cell

population (42). A second study employed a subcutaneous

MCA/1956 model in Trem2+/+ and Trem2-/- mice to understand

how TREM2 deficiency impacts the myeloid compartment. The

initial analysis of all CD45+ cells demonstrated that Trem2 was

expressed on all macrophage clusters albeit at varying levels, but

no TREM2 was detected in DCs or lymphoid cells. Further re-

clustering of macrophages identified specific macrophage clusters

with high expression of Trem2 in the Trem2+/+ mice. The presence

of these specific macrophage clusters was significantly diminished

in the Trem2-/- mice suggesting that TREM2 may be responsible

for sustaining these populations of macrophages (34). This

demonstrates that TREM2 deficiency impacts the restructuring

of the myeloid cell compartment within a tumor.

Following these observations, tumor growth was evaluated

in Trem2-/- and Trem2+/+ mice utilizing a subcutaneous injection

model with either MCA-205 (42) or MCA/1956 (34) sarcoma

cell lines. Tumor growth attenuation was observed in the

Trem2-/- mice compared to the Trem2+/+ mice with both cell

lines (34, 42). Likewise, Molgora et al. observed tumor growth

attenuation in a MC38 CRC subcutaneous model and an

orthotopic mammary model in Trem2-/- mice (34). The

TREM2 expression profile on the cancer cells injected in these

studies was not reported. Both studies attribute the reduction in

tumor growth to the lack of TREM2 expression on the immune

cells and thus a reduced ability of the immune cells to create an

immunosuppressive environment. It is important to note, given

the differential effects by tumor type above, that both of these

papers utilized sarcoma models in their scRNAseq studies,

which are mesenchymal rather than epithelial derived tumors.

scRNAseq was not performed for the MC38 CRC subcutaneous

model or the orthotopic mammary model.

More recent studies utilizing scRNAseq have begun to

elucidate and characterize TREM2-expressing macrophages in

epithelial tumors. TREM2+ macrophages identified in the lungs

of a mouse mammary tumor model demonstrated a gene

expression profile akin to LAMs with positive enrichment for

pathways associated with cholesterol and lipid metabolism (43).

Interestingly, these LAMs are increased in the lungs of

mammary tumor-bearing mice compared to non-tumor

bearing mice and are enriched for protumorigenic pathways

related to negative regulation of T-cell responses, epithelial-

mesenchymal transition, and endothelial cell proliferation (43).

An increased presence of these LAMs in the lungs at a

premetastatic time point suggests an immunosuppressive

preparation of the metastatic niche. In complement to this

study, a TREM2-expressing macrophage subpopulation in

HCC patient tissues were reported to resemble hepatic LAMs

with upregulation of immunosuppressive pathways such as Treg

recruitment and angiogenesis stimulation (27). TREM2+ TAMs

in non-small cell lung cancer (NSCLC) patient tissues were also

enriched for fatty acid metabolism and protumorigenic

pathways (33).
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While there is much to learn about the role of TREM2 in

cancer, some key studies indicate that TREM2 is involved in

suppressing the function of CD8+ T cells as well as inhibiting

their proliferation, which would argue for myeloid-targeted

inhibition of TREM2 at least in some cancers.
Impairment of CD8+ T cells by TREM2+

myeloid cells and recruitment of T
regulatory cells may provide a
mechanistic link for immunosuppression

Although T cells don’t express TREM2, it is possible they can

be impacted by TREM2 expression on other cell types within the

TME. Subcutaneous MCA/1956 tumors in mice deficient for

TREM2 displayed an increase in CD8+ T cells as a percent of all

tumor infiltrating T cells compared to wild-type mice. These CD8+

T cells were deemed activated based on PD-1 expression and tumor

growth was restrained in the TREM2 deficient mice.

Administration of an anti-CD8 monoclonal antibody in both

Trem2+/+ and Trem2-/- mice accelerated tumor growth compared

to the controls (34). In another study utilizing subcutaneous

injection of MCA-205 fibrosarcoma cells in Trem2-/- mice, the

investigators not only observed a reduction in tumor growth, but

also an expansion of the natural killer and cytotoxic T cell

population accompanied by a decrease in dysfunctional CD8+ T

cells (42). Therefore, these data suggest that tumor growth

attenuation in the TREM2 deficient conditions is mechanistically

linked to the activation of CD8+ T cells. Additionally, the data

suggest that the presence of TREM2+ cells in the tumor stroma

contributes to the suppression of these cytotoxic T lymphocytes

and their ability to control tumor growth.

In addition to the impaired effector functions of cytotoxic T

lymphocytes, the proliferation of these cells may be diminished

by the expression of TREM2 on cells in the TME. Bone marrow

derived DCs were induced to express TREM2 by culturing with

conditioned media from 3LL lung cancer cells. Yao et al. found

that T cells co-cultured with Trem2+ DCs exhibited lower levels

of proliferation compared to T cells co-cultured with Trem2

deficient DCs or a combination of TREM2+ DCs with anti-

TREM2 mAb (44). In another recent study, N9 macrophages

either positive or deficient for TREM2 were co-cultured with

CD8+ T cells. The results demonstrate that co-culture of the

CD8+ T cells with Trem2+/+ N9 cells suppresses T cell

proliferation in a manner at least comparable to treatment

with transforming growth factor b (42).

These observations have also been corroborated in human

tumor tissue. Assessment of fresh NSCLC patient samples by flow

cytometry revealed that tumors with high TREM2+ TAM

infiltration exhibited a decrease in CD8+ T cells expressing

CD107a, perforin 1, and tumor necrosis factor-a suggesting a

decrease in effector function (33). This is corroborated in ex vivo

studies where co-culture of CD8+ T cells with TREM2+ TAMs also
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resulted in decreased T cell proliferation and reduction of

CD107a, perforin 1, and tumor necrosis factor-a production (33).

In addition to reduction of CD8+ T cell proliferation and

effector function, two independent studies in NSCLC and HCC

suggest immunosuppressive TREM2+ TAMs are also involved in

recruiting T regulatory cells (Tregs). Implementation of

CellPhoneDB, which infers cell-cell communication networks

from scRNAseq data, to HCC patient samples revealed

interaction of TREM2+ LAM-like cells with Tregs via the

CCL20/CXCL9/CXCL10/CXCL12-CXCR3 axis, suggesting

recruitment of Tregs by the TREM2+ LAM-like cells by means

of migration-related chemokines (27). Assessment of cell-cell

interactions in NSCLC patient sample scRNAseq data identified

an interaction between IL1b and IL1R from TREM2+ TAMs and

FOXP3+ Tregs, respectively (33). Further, NSCLC samples with

high TREM2+ TAMs exhibited an increase in transforming

growth factor-b-expressing FOXP3+ Tregs by flow cytometry

(33), and TREM2+CD163+ macrophages were found to

colocalize with FOXP3+ Tregs within HCC tumors (27). These

data suggest decreased effector functions of CD8+ T cells may be

due in part to the infiltration and function of Tregs. The

interplay between stromal cells in the TME is complex, and

while it is unlikely that TREM2 impacts the tumor via a single

mechanism, these data indicate that key mechanisms are

through suppression of cytotoxic T lymphocytes and

recruitment of regulatory T cells.
TREM2 expression may confer resistance
to immune checkpoint therapy

As noted, TREM2 expression by myeloid cells can impact T

cell activation and proliferation; thus, it is not surprising that

TREM2 may be able to serve as a biomarker for tumor burden

and high TREM2 expression may confer resistance to immune

checkpoint therapy (ICT). Yao et al. found an increase of

TREM2 positive monocytes in the peripheral blood of lung

cancer patients and in both the peripheral blood and lungs of

tumor-bearing mice (44). Furthermore, TREM2 expression on

macrophages in lung cancer patient samples increased with both

pathological staging of disease as well as degree of lymph node

metastasis (44). Lung cancer patients that responded to

chemotherapy with a reduction of tumor burden displayed a

decrease in TREM2 positive monocytes in the peripheral blood.

Additionally, lung cancer patients that underwent surgical

tumor resection, and thus had a reduced tumor burden, also

displayed a decrease in TREM2 positive monocytes in the

peripheral blood (44).

NSCLC patients with high TREM2+ TAM infiltration had a

lower objective response rate to ICT compared to patients with

low numbers of TREM2+ TAMs and were more likely to

experience tumor progression following PD-1 blockade (33).

Analysis of scRNAseq data frommelanoma patients divided into
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subgroups of responders and non-responders to ICT revealed a

significant enrichment of macrophages with high expression of

TREM2 in non-responders, implying that macrophage cell

populations with high expression of TREM2 may precipitate

ICT resistance (45). Overall, these studies demonstrate an

upregulation of TREM2 on TAMs with increasing disease

severity and in patients non-responsive to ICT.
TREM2 modulation enhances
anti-PD-1 therapy

Molgora et al. probed whether neutralization of TREM2 in

combination with ICT improves tumor response to treatment

(34). The investigators first established that treatment with aPD-
1 in TREM2 deficient mice led to further tumor control and

regression in sarcoma and CRC models. Furthermore,

subsequent treatment of wild-type mice with combined

aTREM2 and aPD-1 mAb led to complete reduction of tumor

burden in all mice tested. This demonstrates that deficiency of

TREM2 or treatment with anti-TREM2 mAb augments the

efficacy of aPD-1 ICT.

Currently, a Phase I clinical trial (ClinicalTrials.gov

identifier: NCT04691375) for a TREM2 mAb administered

either as a single agent or in combination with pembrolizumab
Frontiers in Oncology 08
4948
(aPD-1) is underway. The subjects in this clinical trial have

locally advanced and/or metastatic solid tumors that are

refractory or relapsed to standard of care treatment (46). This

specific TREM2mAb, PY314, is a depleting antibody designed to

deplete tumor associated macrophages expressing TREM2. This

study was initiated in October of 2020 and the estimated

completion date is October 2023 (46)
Conclusion and future directions

When considering novel therapeutic targets, it is important

to consider how different cell types may respond to therapy and

thus impact the patient’s overall response and outcome. As

covered in this review and summarized in Figure 1, TREM2 is

expressed by multiple cell types within the TME. TREM2 may

have tumor cell intrinsic functions in addition to its role in

stromal cells and fibroblasts that could be tumor suppressive or

oncogenic depending on the type of cancer. Therefore, moving

forward it is imperative that we better understand the

mechanisms by which TREM2 contributes to tumor

suppressive or oncogenic activity in the cancer types discussed

in this review. Within this review, discrepancies are

unsurprisingly found between in vitro studies, mouse models,

and human data. As future studies are conducted, use of in vitro
FIGURE 1

TREM2 in heterogeneous tumors. Tumors are composed of a heterogeneous makeup of cells including the tumor cells, tumor associated
macrophages, T cells, and tumor associated fibro blasts. Studies have shown that TREM2 can be expressed by both epithelial tumor cells and
infiltrating immune cells such as macrophages. When expressed by the epithelial tumor cells, studies indicate that TREM2 supports oncogenic
activity in renal cell carcinoma and glioma but contributes to tumor suppressing activity in renal cell carcinoma. Thus, contributing to oncogenic
or tumor suppressing activity, TREM2 can enhance or inhibit tumor cell proliferation and tumor cell migration and invasion. When expressed by
infiltrating immune cells such as macrophages, the literature indicates that TREM2 expressing immune cells contribute to creating an
immunosuppressive environment by inhibiting T cell activation and proliferation. Consequently, tumor cell proliferation is then enhanced. When
TREM2 is knocked out on the tumor infiltrating immune cells, increased T cell activation and proliferation is observed accompanied by a
decrease in tumor growth.
frontiersin.org

https://doi.org/10.3389/fonc.2022.984193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wolf et al. 10.3389/fonc.2022.984193
methods and cell lines should be accompanied with

complementary in vivo and human data to ensure the rigor of

the data. Additionally, we need to understand the tumor cell

intrinsic role of TREM2 in more types of solid cancers such as

breast cancer. This understanding is key since anti-TREM2 mAb

treatment is already undergoing clinical testing for a variety of

solid tumor types. Overall, the data indicate that high expression

of TREM2 on cells of the monocyte-macrophage lineage creates

an immunosuppressive environment in which T cells are less

activated and their proliferation is suppressed. Therefore, this

pro-tumoral role of TREM2 is the current prevailing opinion in

the literature. Thus, inhibition or blockade of TREM2 may be an

effective therapeutic strategy. However, depending on the role in

tumor cells, blockade of TREM2 may still be clinically

unfavorable. With these varying results, it is of the utmost

importance to continue to uncover the role of TREM2 in cancer.
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Triple-negative subtype of breast cancer (TNBC) is hallmarked by frequent

disease relapse and shows highest mortality rate. Although PD-1/PD-L1

immune checkpoint blockades have recently shown promising clinical

benefits, the overall response rate remains largely insufficient. Hence,

a l ternat ive therapeut ic approaches are warranted . Given the

immunosuppressive properties of CD73-mediated adenosine release, CD73

blocking approaches are emerging as attractive strategies in cancer

immunotherapy. Understanding the precise mechanism regulating the

expression of CD73 is required to develop effective anti-CD73-based

therapy. Our previous observations demonstrate that the transcription factors

driving epithelial-to-mesenchymal transition (EMT-TF) can regulate the

expression of several inhibitory immune checkpoints. Here we analyzed the

role of the EMT-TF SNAI1 in the regulation of CD73 in TNBC cells. We found

that doxycycline-driven SNAI1 expression in the epithelial -like TNBC cell line

MDA-MB-468 results in CD73 upregulation by direct binding to the CD73

proximal promoter. SNAI1-dependent upregulation of CD73 leads to increased

production and release of extracellular adenosine by TNBC cells and

contributes to the enhancement of TNBC immunosuppressive properties.

Our data are validated in TNBC samples by showing a positive correlation

between the mRNA expression of CD73 and SNAI1. Overall, our results reveal a

new CD73 regulation mechanism in TNBC that participates in TNBC-mediated
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immunosuppression and paves the way for developing new treatment

opportunities for CD73-positive TNBC.
KEYWORDS

CD73, SNAI1, epithelial-to-mesenchymal transition, adenosine, anti-tumor immune
response, immunotherapy, breast cancer, immune checkpoints
Introduction

Breast cancer is the most frequently diagnosed malignancy

in women. Triple-negative is a subtype of breast cancer (TNBCs)

that does not express estrogen receptors, progesterone receptors,

and human epidermal growth factor receptor-2/neu (HER-2).

TNBC accounts for 15% of all breast cancers exhibiting high

probability of disease relapse and the highest mortality rate

among breast cancer subtypes (1). TNBC patients do not benefit

from hormonal therapy or HER-2 blockade, making

conventional chemotherapy the only established therapeutic

option which does not prevent high recurrence rates, acquired

resistance, and metastasis [2].

Compared to other breast cancer subtypes, TNBCs have

enhanced intra-tumoral T cell infiltration and a higher

mutational burden (1, 2). Therefore, TNBCs have an increased

potential to generate immunogenic mutations and are

considered eligible tumors for immune checkpoint inhibition-

based therapy. Recent clinical trials in TNBC patients based on

PD-1/PD-L1 blockade revealed an overall response rate of 20%

(3). Despite this promising clinical response, most enrolled

patients showed little or no therapeutic benefit, fostering the

need for alternative immunotherapeutic approaches.

The ectonucleotidase CD73 is an attractive target in cancer

immunotherapy (4). CD73 is involved in generating extracellular

adenosine (ADO), a potent immunosuppressive molecule for both

innate and adaptive immunity (4, 5). Indeed, ADO inhibits the anti-

tumor function of T and Natural Killer (NK) cells and enhances the

immunosuppressive function of T regulatory cells and tumor-

associated macrophages (TAM).

CD73 is upregulated in many cancer types, including breast

cancer. CD73 expression is negatively regulated by estrogen receptor

signaling (6). Therefore, the absence of estrogen receptors in TNBCs

could contribute to CD73 expression. In addition, analysis of CD73

expression in TNBC patients shows that high CD73 is associated with

decreased overall and disease-free survival and increased resistance to

conventional chemotherapy (7, 8).

The molecular mechanisms involved in regulating CD73

expression are not yet fully understood. It is reported that the

transcription factor Hypoxia-inducible factor (HIF)-1 is involved in

directly activating CD73/NT5E expression (9, 10). However, no
02
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data are available on whether and how CD73 is regulated during

tumor progression and metastatic spread.

Epithelial-to-mesenchymal transition (EMT) is a process

whereby epithelial cells acquire motile and invasive mesenchymal

features. EMT is driven by a series of EMT-inducing transcription

factors (EMT-TFs). EMT in tumor cells is associated with increased

aggressiveness, drug resistance, and immune escape. We have

previously demonstrated that both PD-L1 and CD47 inhibitory

immune checkpoints are upregulated in human mesenchyma -like

breast cancer cell lines by mechanisms involving the EMT-TFs

ZEB1 or SNAI1 (11, 12). In line with our previous work and

considering the key functions of the EMT-TF SNAI1 in TNBC

aggressiveness (13), we investigated the role of SNAI1 in the

modulation of CD73 expression in TNBC cells and the functional

impact of such modulation on the immunosuppressive properties

of TNBC cells.

Materials and methods

Cell culture, treatment and transfection

Human TNBC cell lines MDA-MB-231 and MDA-MB-468

were purchased from DSMZ (Braunschweig; Germany). MDA-

MB-468-iSNAI1 and MDA-MB-468-iGFP cells stably expressing

doxycycline-inducible SNAI1 and GFP, respectively, were provided

by Dr. Brett G. Hollier (Brisbane, Queensland, Australia).

MDA-MB-231 cells were cultured in RPMI 1640-

GlutaMAX™, 10% FBS, and 1% Penicillin-Streptomycin. MDA-

MB-468 cells were cultured in DMEM-HighGlucose-Glutamax,

10% FBS, and 1% Penicillin-Streptomycin. The NK92-MI cell line

was cultured in RPMI 1640-GlutaMAX™, 10% FBS, 10% Horse

Serum (ATCC), and 1% Penicillin-Streptomycin. The mouse

TNBC cell line Py8119 was purchased from ATCC and was

cultured in F-12K Medium, 5% FBS.

NK cells from healthy donors (NKD) were obtained from

fresh apheresis products after Ficoll-Paque Plus centrifugation

(GE Healthcare) and purification using a human NK Cell

Isolation Kit (Miltenyi Biotec). Purified NKD were cultured in

RPMI 1640-GlutaMAX™, 10% pooled human serum (Jacques

Boy), 5% FBS, 1% Penicillin-Streptomycin, and IL-2 (150 UI/ml

(Immunotools). All cells were grown at 37°C under humidified
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conditions and 5% CO2 and routinely tested for Mycoplasma

free (MycoAlert Detection Kit; Lonza).

For SNAI1 induction, MDA-MB-468-iSNAI1 and MDA-MB-

468-iGFP cells were seeded 24h before Doxycycline (Dox) (D9891,

Sigma-Aldrich-Merck) treatment. The indicated doses of Dox were

added every 48 h in fresh medium for 5 days, and cells were

harvested on day 6. For rhEGF (#E9644; Sigma) treatment, MDA-

MB-468 cells were seeded 24 h before rhEGF treatment. rhEGF (50

ng/ml) were added every 48 h in a fresh medium containing 0.5%

FBS for 5 days, and cells were harvested on day 6.

Control CRISPR/Cas9 and SNAI1 CRISPR/Cas9 plasmids

were obtained from Santa Cruz Biotechnology and transfected

into Py8119 cells according to manufacturer’s protocol.
Antibodies

The following antibodies for Western blot, confocal, and

ChIP were from Cell Signaling: anti-SNAIL (#3879S), anti-ZEB1

(#D80D3), anti-E-cadherin (#24E10), anti-Vimentin (#D21H3)

XP®. For others: Anti-b-Actin−Peroxidase (A3854; Sigma-

Aldrich-Merck), Alexa 488-conjugated secondary antibody (1/

400, Molecular Probes), Actin-Stain 488 Phalloidin (1/400;

Cytoskeleton, Inc.). FACS and ImageStream antibodies were as

follows: CD73-PE antibody (344004; 1:100, Biolegend), Alexa

633-conjugated secondary antibody (1/500; Molecular Probes),

Ki67-PE (151210; 1:100; Biolegend).
Quantitative real-time PCR

Total RNA was extracted from cell lines using the Nucleospin

RNA Plus Kit (Macherey-Nagel). Total RNA from 12 TNBC patients

was purchased from Origene (CR561562, CR561706, CR561397,

CR562540, CR562125, CR560441, CR560325, CR561546,

CR561196, CR561161, CR561083, CR560707). RNA was reverse-

transcribed using the Maxima First-Strand cDNA Synthesis Kit

(Thermo Fischer Scientific) and amplified by qPCR using the

Power SYBR Green PCR Master Mix (Eurogentec). mRNA levels

of genes of interest were normalized to housekeeping 18S

mRNA levels.
Western blotting

Adherent cells were lysed on ice in 62.5 mMTris-HCl [pH 6.8],

2% w/v SDS, 10% glycerol, and 1× protease inhibitor cocktail

(Thermo Fischer Scientific). Protein extracts were separated by

SDS-PAGE and transferred onto nitrocellulose membranes (VWR).

Primary antibodies were incubated overnight at 4°C and visualized

using peroxidase-conjugated secondary antibodies (DAKO) and

Western Lightning Ultra (Perkin Elmer). Blots were scanned and

processed using ImageJ software.
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Flow and imaging cytometry

Cells were harvested in 10 mM EDTA (Invitrogen). Surface

staining was done at 4°C for 30 min. Intracellular staining was done

with Cyto-Fast™ Fix/Perm Buffer Set (426803; Biolegend). Ki67

staining in NK cells was performed following ice-cold ethanol

(70%) fixation. Dead cells were excluded using Live/Dead staining

Kits (L34976; Thermo Fischer Scientific) or BD Via-Probe™ Cell

Viability Solution (555815; Becton Dickinson). Samples were

processed on a CytoFLEX flow cytometer and analyzed using

CytExpert software. For imaging cytometry, cells were fixed on

ice for 20min in 1% PFA after staining, resuspended in 2%FBS at a

concentration of 2×107 cells/ml, and processed on ImageStreamX

MKII (EMD Millipore) and analyzed using IDEA software.
ChIP assay

ChIP was performed on MDA-MB-468-iSNAI1 lysates

using the SimpleChIP Enzymatic Chromatin IP kit (#9005;

Cell Signaling). EMT-TF binding to E-box in the proximal

region of human E-cadherin promoter was used as a positive

control (14). SYBR Green RT-qPCR was performed using

primers described in Table S1.
Extracellular adenosine measurement

Cell-conditioned media were collected and centrifuged at 2000

rpm, 4°C, for 15 min to remove cellular debris. Extracellular ADO

concentration was determined based on a standard curve using

Adenosine Assay Kit (K237-100; Biovision). Adenosine levels were

determined according to the number of cells counted at the end of the

experiment, as previously reported (9). The CD73 inhibitor APCP

(M3763; Sigma) was added at 100 µM simultaneously with Dox.
Adenosine analog (CADO) treatment and
immune-cytotoxicity assays

CADO (C5134; Sigma-Aldrich-Merck) was used at 5 µM or 10

µM. NK cells were treated with CADO every 2 days and harvested on

days 4 or 6. Cytotoxicity assays were performed as previously

described (15).
Confocal analysis

Cells were fixed for 20 min in 4% PFA at room temperature

(RT), permeabilized with 0.1% Triton (10min, RT), and blocked for

1 h with 10% FBS at RT. Antibodies were incubated for 1 h at RT,

and nuclei were stained with DAPI for 5 min at RT. Images were

acquired on confocal LSM880 Airy (Carl Zeiss). Scale bars were

determined using ZEN 3.0 (blue edition) software.
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In silico TNBC data mining

TNBC patients (n = 258) from the METABRIC dataset were

downloaded from cbioportal v3.4.12. TNBC patients were defined

based on their negative expression of ER, PR, and HER2. mRNA

levels of NT5E (CD73), SNAI1 (SNAI1), VIM (Vimentin), and

CDH1 (E-Cadherin) were extracted, and the co-expression was

defined on cBioPortal (https://www.cbioportal.org/). The

associations between NT5E/CD73, SNAI1, VIM, and CDH1

expressions were analyzed by using the Pearson correlation test.
Statistical analyses

All statistical analyses were done in GraphPadPrism v8.0.

Unpaired Student’s t-tests or Mann-Whitney tests were used

depending on whether the data presented Gaussian distribution

with P < 0.05 considered significant. The Pearson correlation

coefficient (two-tailed confidence interval of 95%) was used to

assess the correlation between EMT-TF and CD73.

Results and discussion

Upregulation of CD73 in TNBC cell lines
is associated with mesenchymal features

We analyzed the expression of CD73 in epithelial -like

MDA-MB-468 and mesenchymal -like MDA-MB-231 TNBC

cell lines. MDA-MB-468 cells express high levels of the epithelial

marker E-cadherin, whereas the mesenchymal -like MDA-MB-

231 cells express high levels of the mesenchymal markers ZEB1

and Vimentin (Figure S1). Using RT-qPCR, flow cytometry, and

imaging cytometry, we measured NT5E (encoding CD73)

mRNA and CD73 surface expression in both cell lines. We

found that NT5E mRNA and CD73 cell surface protein are

upregulated in mesenchymal MDA-MB-231 cells as compared

to epithelial MDA-MB-468 (Figures 1A–C).

To assess the impact of EMT on CD73 expression, we used

recombinant human epidermal growth factor (EGF), a potent

inducer of EMT in epithelial MDA-MB-468 cells (16). Treatment

of MDA-MB-468 cells with EGF for 6 days induced morphological

changes consisting of a loss of cell-cell contacts and the acquisition

of an elongated mesenchymal phenotype (Figure 1D, left panels).

EGF also increased the expression of the mesenchymal markers

SNAI1, ZEB1, and Vimentin and decreased the epithelial marker E-

cadherin (Figure 1D, middle and right panels). This transition was

associated with a significant increase in NT5E mRNA (Figure 1D,

middle panel) and in the percentage (%) of CD73 positive MDA-

MB-468 cells, as well as CD73 mean fluorescence intensity (MFI)

(Figure 1E). Together, these results suggest that acquiring

mesenchymal characteristics in TNBC cells is associated with

increased CD73 expression at transcriptional and protein levels.
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The EMT-TF SNAI1 is involved in the
upregulation of CD73 in MDA-MB-468

SNAI1 is relatively more expressed than other EMT-TFs in

TNBC (13). To assess the potential regulation of CD73 by SNAI1 in

TNBC cells, we used MDA-MB-468 cells expressing Dox-inducible

SNAI1 (MDA-MB-468-iSNAI1 cells). We first determined the

appropriate Dox concentration to induce SNAI1 in MDA-MB-

468-iSNAI1 cells. Using increasing Dox concentrations (0.25, 0.5,

and 1 µg/ml), we showed a consistent and dose-dependent

induction of SNAI1 and NT5E mRNA (Figure S2A), indicating

the potential role of SNAI1 in the transcriptional activation of

NT5E expression.

As the maximum increase in NT5E expression was observed

at 1 µg/ml Dox, we considered this concentration for subsequent

experiments. It should be highlighted that MDA-MB-468

expressing Dox-inducible GFP (MDA-MB-468-iGFP), used as

control, did not show SNAI1 or NT5E induction following Dox

treatment, thus ruling out any off-target effect of Dox on SNAI1

and/or NT5E expression (data not shown).

To elucidate the link between SNAI1 and NT5E/CD73

expression, we treated cells with Dox for 5 days to induce EMT in

epithelial cells (designated as EPI). We next removed Dox from the

culture medium of resulting mesenchymal-like cells (designated as

EMT) to revert EMT and re-acquire an epithelial-like phenotype,

designated as mesenchymal to epithelial transition (MET). Our data

(Figures 2A, B) show that driving EMT in MDA-MB-468-iSNAI1

cells was associated with an increase in SNAI1,ZEB1,VIM, andNT5E

and a decrease in CDH1 expression. Immunofluorescence staining

showed the acquisition of mesenchymal features under these

experimental conditions, as evidenced by the nuclear accumulation

of SNAI1 protein, actin microfilament remodeling, Vimentin

upregulation, and E-cadherin downregulation (Figures 2C, D). All

these events, observed by inducing EMT, were abrogated on day 17

following Dox removal leading to a MET switch (Figures 2A–D).

To evaluate whether the regulation of CD73 and SNAI1

following EMT and MET occurred in the same cell populations,

by flow cytometry, we quantified MDA-MB-468-iSNAI1

positive cells for both CD73 and SNAI1 under EPI, EMT and

MET conditions. We showed that under EPI conditions, only 2%

of cells were positive for both CD73 and SNAI1 (CD73+

SNAI1+). The percent of CD73+ SNAI1+ cells significantly

increased to 80% under EMT and subsequently decreased to

almost 1% under MET conditions (Figure 2E and Figure S2B).

Our results reported in Figure 2E, showing the regulation of

CD73 under EPI, EMT, and MET conditions, were reproduced

by imaging cytometry (Figure 2F). Together, our results

demonstrate a positive regulation of NT5E/CD73 following

SNAI1 induction at the transcriptional and protein level in

MDA-MB-468-iSNAI1 cells. The regulation of NT5E/CD73 by

SNAI1 is further confirmed using the additional mouse TNBC

cell line Py8119 displaying several mesenchymal features
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FIGURE 1

Expression of NT5E/CD73 mRNA and protein in mesenchymal-like MDA-MB-231 and epithelial like MDA-MB-468 TNBC cells. (A) RT-qPCR
measurement of NT5E mRNA in mesenchymal-like MDA-MB-231 and epithelial-like MDA-MB-468 TNBC cell lines. NT5E expression was
calculated relative to MDA-MB-468 cells. Bars represent means from four independent experiments ± SEM; *P < 0.05 calculated by Mann
Whitney. (B) Flow cytometry analysis of cell surface CD73 in TNBC cells. Left panel: percentage of CD73-positive (CD73+) cells; Middle panel:
representative FACS histograms of indicated cells stained with control isotype or anti-CD73 antibody. Right panel: mean fluorescence intensity
(MFI) of cell surface CD73 in MDA-MB-468 and MDA-MB-231 cells. Bars represent means from three independent experiments ± SEM, **P
<0.01, ***P < 0.001 calculated by unpaired t-test. (C) CD73 cell surface expression in MDA-MB-468 and MDA-MB-231 cells acquired by imaging
cytometry. Left panels: representative images for each cell line acquired on brightfield (BF), CD73-PE, and live/dead (L/D) channels. The scale
bar and event number are shown. Right panel: Violin plot quantification of CD73 mean fluorescence intensity (MFI) acquired by imaging
cytometry in MDA-MB-468 and MDA-MB-231 cells. Results are the average of 104 acquisitions, ***P < 0.001 by unpaired t-test. (D) Left panels:
Morphology of untreated (UNT)- and EGF (EGF)-treated MDA-MB-468 cells. Bar: 300mm. Middle panels: mRNA expression of CD73 and EMT
markers (SNAI1, ZEB1, VIM and CDH1) in MDA-MB-468 cells treated with rhEGF (50ng/ml for 6 days). The expression level of each gene in
treated (EGF) cells was calculated relative to untreated (UNT) cells. Bars represent means from four independent experiments ± SEM; *P < 0.05
calculated by Mann Whitney. Right panel: Representative Western-blot showing the protein expression of E-cadherin, SNAI1, Vimentin in (UNT)-
and EGF (EGF)-treated MDA-MB-468 cells. Actin was used as a loading control. (E). Flow cytometry quantification of surface CD73. Left panel:
Percentage of CD73 positive MDA-MB-468 cells treated as described in (D). Middle panel: representative FACS histograms of untreated or
rhEGF-treated MDA-MB-468 cells stained with isotype or anti –CD73 antibody. Right panel: Mean fluorescence intensity (MFI) of cell surface
CD73 in MDA-MB-468 treated as described in (D). Bars represent means from four independent experiments ± SEM; *P < 0.05, and ***P <
0.001 are calculated by unpaired t-test.
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FIGURE 2

Induction of SNAI1 in TNBC MDA-MB-468-iSNAI1 cells upregulates NT5E/CD73 mRNA and protein expression. (A) mRNA expression of SNAI1, ZEB1,
VIM, CDH1 NT5E and NT5E in EPI, EMT, and MET conditions. The expression of each gene in EMT and MET conditions was calculated relative to the
EPI condition. Bars represent means from four independent experiments ± SEM (*P < 0.05 calculated by Mann Whitney). (B) Representative
Western-blot showing the protein expression of SNAI1, Vimentin, and E-cadherin in MDA-MB-468 cells cultured under EPI, EMT, and MET
conditions. Actin was used as a loading control. (C, D) Immunofluorescence images of SNAI1 (C), Actin, E-cadherin, and Vimentin (D) staining (in
green) in MDA-MB-468 cells cultured under EPI, EMT, or MET conditions. Nuclei are stained with DAPI (blue). The images shown are representative
of two independent experiments. Scale bar: 50 µm. (E) Flow cytometry analysis of the percentage (%) of MDA-MB-468 cells cultured under EPI,
EMT, and MET conditions that are positive for both CD73/SNAI1 (CD73+ SNAI1+) and either CD73 (CD73+) or SNAI1 (SNAI1+). CD73 MFI is reported.
Bars represent means from three independent experiments ± SEM (*P < 0.05, **P <0.01, ***P < 0.001 by unpaired t-test). (F) CD73 surface
expression in MDA-MB-468 cultured under EPI, EMT, and MET conditions by flow imaging cytometry. Left panels: representative images of 104

acquisitions for each condition on brightfield (BF), CD73 and live/dead (L/D) channels. The scale bar and event number are shown. Right panel:
Violin plot quantification of CD73 mean fluorescence intensity (MFI) in MDA-MB-468. Results are the average of 104 events for each condition. (***P
< 0.001 calculated by unpaired t-test).
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(absence of E-cadherin expression, expression of the EMT-

transcription factors SNAIL1 and ZEB1, and higher expression

of N-Cadherin and Vimentin) compared to the epithelial-like

Py230 cell line. Both cell lines are derived from MMTV-PyMT

transgene-induced mammary tumors (17) (Figure S2C). Using

CRISPR/Cas9 technology, we generated Py8119 cells expressing

a truncated non-functional SNAIL1 (Py8119 Del SNAIL)

(Figure S2D). Compared to control cells, we showed that

Py8119 Del SNAIL cells expressed significantly lower levels of

NT5E mRNA (Figure S2E) and protein (Figure S2F).
CD73/NT5E is a direct target of SNAI1 in
MDA-MB-468 cells, and its expression
positively correlates with SNAI1 in
TNBC patients

To assess whether CD73 is a direct target of SNAI1, we

analyzed in silico the presence of the putative SNAI1 binding

motifs CAGGTG and CACCTG, called E-boxes, in the proximal

promoter of the NT5E gene. By using the Eukaryotic Promoter

Database (Swiss Institute of Bioinformatics) and fuzznuc

(EMBOSS explorer) software, we identified three CAGGTG

(E-box 1, 3, 5) and two CACCTG (E-box 2, 4) E-boxes in the

human NT5E proximal promoter (Figure 3A).

We next performed ChIP on EPI and EMT cells using the

SNAI1 antibody to validate our in silico data. Our results show a

consistently increased binding of SNAI1 (three-fold) to E-box 5,

similar to E-cadherin used as a positive control (Figure 3B). Our

results indicate that the CD73 gene is directly targeted by SNAI1

in MDA-MB-468 cells. This result agrees with a recently

published report showing the direct binding of SNAI1 on

CD73 promoter in mouse breast carcinoma cells (18).

Our data support that the regulation of CD73 in cells

undergoing EMT occurs by direct binding of EMT-TFs to E-

box motives in the NT5E/CD73 proximal promoter region.

Among EMT-TFs, we identified SNAI1 as a major regulator of

CD73 in TNBC. However, we cannot rule out that other EMT-

TFs could also be involved in CD73 regulation in TNBC and

other cancer types and settings. Consistent with this, it has been

reported that EMT genomic signature is associated with NT5E

expression in human HER2-positive breast tumors, and the

EMT-TF TWIST was described to upregulate CD73 in

immortalized mammary epithelial cells by a mechanism that is

not fully understood (19). Another possible non-mutually

exclusive mechanism by which EMT regulates the expression

of CD73 is through EMT-dependent induction of cytokines such

as TGF-b or TNF-a, as previously described (20, 21).

Nevertheless, our data, together with previous reports,

highlight the prominent role of EMT in CD73 immune

checkpoint upregulation.

We next investigated whether a correlation between SNAI1

and CD73 expression is observed in TNBC patients. We first
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analyzed by qRT-PCR NT5E/CD73 and SNAI1 gene expression

in tumor mRNA from 12 TNBC patients. We observed a

significant positive correlation between NT5E/CD73 and

SNAI1 expression (Figure 3C). We next validated our data

using the large TNBC cohort described in the METABRIC

dataset. We selected 258 TNBC patients based on their

negative ER/PR/HER2 status (Figure 3D). Our results revealed

a significant and positive correlation between NT5E and SNAI1

and the mesenchymal marker VIM in the selected TNBC

patients (Figure 3E). In contrast, NT5E was negatively

correlated with the epithelial marker CDH1 (Figure 3E). We

also found that the expression of SNAI1 and VIM is consistently

high in TNBC samples displaying high NT5E levels (Figure 3E).

These results support our data and strengthen the link between

EMT and CD73 expression in TNBC. Data related to TNBC

patients are provided in Table S2.
SNAI1-dependent upregulation of
CD73 increases the release of
extracellular adenosine and
mediates immunosuppression

We next assessed the functional impact of SNAI1-dependent

upregulation of cell surface CD73. We first analyzed the secreted

ADO level in the conditioned medium of MDA-MB-468-iSNAI1

undergoing EMT. Extracellular ADO concentration was

significantly increased from 2.82 ± 0.41 to 6.49 ± 0.74 µM

following SNAI1-dependent upregulation of CD73 (EMT

condition) and subsequently decreased to 2.17 ± 0.54 µM after

Dox removal and SNAI1 and CD73 downregulation (MET

condition) (Figure 4A). The increased release of extracellular

ADO by MDA-MB-468-iSNAI1 cells cultured under EMT

conditions was related to increased CD73 expression because

such an increase was no longer observed following treatment of

cells with the CD73 inhibitor Adenosine 5’-(a,b-methylene)

diphosphate (APCP) (Figure 4B).

CD73 is considered a major source of intra-tumoral ADO

production (22). Although its exact concentration in the tumor

microenvironment is not yet well defined, it has been proposed

that ADO concentration is in the micromolar range (23). In

keeping with this, we next evaluated whether the level of ADO

released following SNAI1-dependent EMT was sufficient to

impair the cytotoxic properties of NK cells. The rationale for

using NK cells relies on establishing a positive correlation between

NK cell signature genes and TNBC patient survival (24). Intra-

tumoral ADO elicits an immunosuppressive effect by interacting

with Adenosine receptors. Indeed, four adenosine receptors have

been identified including A1, A2A, A2B and A3 (25, 26). The

Adenosine A2A receptor subtype is the predominant subtype

found on T cells (27, 28) and NK cells (29).

We, therefore, analyzed the time- and concentration-

dependent effects of the adenosine analog CADO on cytotoxic
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FIGURE 3

SNAI1 directly regulates CD73 expression in human TNBC MDA-MB-468-iSNAI1 cells. (A) Schematic representation of the different E-boxes
identified in silico in the human CD73 promoter (CD73 mRNA, NCBI Reference Sequence: NM_002526). The transcription Start Site (TSS) and
the ATG start codon are reported at positions +1 and +58, respectively. The control motif (+800 to +995) corresponds to a region containing
no E-box and is used as a negative control. (B) ChIP was performed on MDA-MB-468-iSNAI1 cells cultured under EPI or EMT conditions using
anti-SNAI1 antibodies followed by five pairs of primers flanking the identified E-boxes (E-box-1-5) or primers flanking control region. E-cadherin
(E-CAD) primers were used as a positive control. For each gene, the RT-qPCR signals were normalized to control IgG. SNAI1 ChIP signal was
reported as fold enrichment over IgG control. Two individual experiments (done in triplicate) were performed (*P < 0.05, **P <0.01, ***P <
0.001 calculated by unpaired t-test). (C) Correlation between NT5E/CD73 and SNAI1 in tumor mRNA from 12 TNBC patients. Pearson
correlation coefficient (r) and P-value are shown. (D) Analysis process of METABRIC dataset. (E) Correlation between NT5E, SNAI1, VIM, and
CDH1 gene expression in TNBC patients from METABRIC dataset (n = 258). For each association: Upper panel: correlation between NT5E/CD73
and the indicated gene. Pearson coefficients and P values are shown. Lower panel: TNBC samples were separated according to NT5E/CD73
expression level to form high (Z score ≥ +0.5) and low (Z score ≤-0.5) NT5E/CD73 groups. In each group. SNAI1, VIM, and CDH1 gene
expression were evaluated. Dots represent mRNA level ± SEM (**P <0.01, ****P < 0.0001 calculated by unpaired t-test). ns, not significant.
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FIGURE 4

SNAI1-mediated CD73 upregulation results in increased extracellular ADO production. (A) Concentration of extracellular ADO released in the
culture medium of MDA-MB-468-iSNAI1 cells cultured under control conditions (EPI), after 5 days of Dox (EMT), and after Dox removal (MET).
Bars represent means from three independent experiments ± SEM (*P < 0.05, **P < 0.01 calculated by unpaired t-test). (B) Concentration of
extracellular ADO released in the culture medium of MDA-MB-468-iSNAI1 cells cultured under control conditions (EPI) and after 5 days of Dox
(EMT) in the absence or presence (+APCP) of APCP (100 µM). Bars represent means from three independent experiments ± SEM (*P < 0.05, **P
< 0.01 calculated by unpaired t-test). (C) NK cells from four healthy donors (NKD-1 to 4) were pre-treated with CADO at 5 µM or 10 µM during
4 days (NKD-1 and NKD-2) or 6 days (NKD-3 and NKD-4). NK cytotoxic activity against K562 cells was measured at the indicated E:T ratios. Bars
represent the mean percentage of lysis ± SD. (D) Cytotoxic activity of NK92-MI cells pre-treated for 6 days with CADO at 5 µM or 10 µM against
K562 cells at the indicated E: T ratios. Bars represent mean percentage of lysis from three independent experiments ± SD (*P < 0.05, **P < 0.01,
***P < 0.001 calculated by unpaired t-test). Only one experiment was performed for each NK healthy donor reported in panels (C, D).
Experiments were performed either in duplicates or triplicates.
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and proliferative capacities of NK cells isolated from four

different healthy donors (NKD1, NKD2, NKD3, NKD4) and

of the NK92-MI cell line. NKD1 and NKD2 were pre-treated for

4 days, whereas NKD3, NKD4, and NK92-MI were pre-treated

for 6 days with CADO before co-culture with target cells at

different effectors to target (E:T) ratios (30:1, 10:1, 3:1, and 1:1).

After 4 days of NK cell pre-treatment with 5 or 10 mM of

CADO, we observed a decrease in NK-mediated lysis of target cells

only at 3:1 and 1:1 E:T ratios (Figure 4C). After 6 days of NK cell

pre-treatment with 5 or 10 mM of CADO, the impairment of NK-

mediated lysis was observed at all E:T ratios tested except at the 30:1

ratio (Figure 4D). Similarly, pre-treatment of NK92-MI with 5 or 10

µM of CADO significantly impaired their cytotoxicity toward target

cells at all E:T ratios tested (Figure 4E). The impairment of NK cell

activity by CADO is associated with an impairment of their

proliferation, as reported in Figure S3. Together, these results

argue that ADO impairs the cytotoxic activity of NK cells in a

time and dose-dependent manner and are in line with previous

reports showing that adenosine analogs impair mouse NK cells’

mediated killing (30, 31).
Concluding remarks

During the EMT process, the transcription factor SNAI1 acts

as a direct repressor of E-cadherin promoter (32). In the present

report we provide additional mechanistic insights showing that,

similar to its role in CD47 upregulation (12), SNAI1-dependent

EMT upregulates the expression of CD73 in TNBC cells.

Furthermore, we show clinical evidence that such a regulation

may occur in TNBC patients. Considering the encouraging but still

moderate clinical responses of immune checkpoint blockades in

TNBC, our results provide a rationale for further investigating the

relevance of targeting EMT pathways in combination with immune

checkpoint blockades to enhance the clinical benefit of

immunotherapy in TNBC.
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FIGURE S1

Epithelial and mesenchymal protein expression in MDA-MB-468 and
MDA-MB-231 cells. Representative Western-blot analysis of three

independent experiments showing protein levels of ZEB1, Vimentin, and
E-cadherin in MDA-MB-468 vs. MDA-MB-231 cells. Actin was used as a

loading control.

FIGURE S2

Expression of SNAI1 and CD73 mRNA in MDA-MB-468 cells treated with

increasing doses of Dox. (A) RT-qPCR measurements of SNAI1 and

CD73 mRNA using increasing doses of Dox, n=4. *P < 0.05 by Mann
Whitney. Means ± SEM are shown. (B) Representative FACS contour plot

of three independent experiments showing intra-cellular SNAI1 and
surface CD73 staining in MDA-MB-468 iSNAI1 displaying EPI, EMT,

and MET phenotype conditions. (C) Expression of epithelial and EMT
markers (E-Cadherin, SNAIL1, ZEB1, N-Cadherin and Vimentin) in

epithelial-like Py-230 and mesenchymal-like Py-8119 cells. Actin was

loaded as a control. (D) The expression of full length (FL) and deleted
(Del) forms of SNAIL1 in Py-8119 cells transfected with control (CTRL) or

SNAIL1 (SNAIL1) CRISPR plasmids. Actin was loaded as a control. (E) RT-
qPCR measurement of Nt5e mRNA in Py-8119 described in D. Nt5e

expression was calculated relative to control cells expressing FL SNAIL1.
Bars represent mean from four independent experiments ± SD; *P <

0.05 calculated by Mann Whitney. (F) Flow cytometry analysis of cell

surface CD73 in cells described in D. Left panel: Delta mean
fluorescence intensity (MFI); middle panel: percentage of CD73-
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positive (CD73+) cells and left panel: representative FACS histograms
of indicated cells stained with control isotype or anti-CD73 antibody.

Bars represent means from three independent experiments ± SD; *P <
0.05 calculated by unpaired t test.
FIGURE S3

Ki67 quantification in NK cells isolated from healthy donors (NKD-3 and

-4) and NK92-MI cells following CADO treatment. Percentage of Ki67-

positive cells in NKD-3, NKD-4, and NK92-MI after treatment for 6 days
with CADO at 5 and 10 µM. For NK92-MI, bars represent themean of three

independent experiments ± SEM (*P < 0.05, ** P < 0.01 calculated by
unpaired t-test)Table S1 Sequence of SYBR-GREEN RT-qPCR primers

used for amplification of immunoprecipitated DNA samples from
ChIP assays.

TABLE S1

Sequence of SYBR-GREEN RT-qPCR primers used for amplification of

immunoprecipitated DNA samples from ChIP assays.

TABLE S2

Information about the TNBC patient described in Figure 3. The table
shows the METABRIC 258 TNBC patient and sample IDs; sex; ER, HER2,

PR, NT5E status, mRNA expression of NT5E, CDH1, SNAI1 and VIM. NP:
Not profiled.
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The yin-yang of immunity:
Immune dysregulation in
myelodysplastic syndrome with
different risk stratification

Xiaohuan Peng1,2, Xiaofeng Zhu1,2, Tianning Di1,2, Futian Tang3,
Xiaojia Guo1, Yang Liu1, Jun Bai2, Yanhong Li2, Lijuan Li1,2*

and Liansheng Zhang1,2*

1Department of Hematology, Lanzhou University Second Hospital, Lanzhou University,
Lanzhou, China, 2Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second
Hospital, Lanzhou University, Lanzhou, China, 3Key Laboratory of the Digestive System Tumors of
Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
Myelodysplastic syndrome (MDS) is a heterogeneous group of myeloid clonal

diseases with diverse clinical courses, and immune dysregulation plays an

important role in the pathogenesis of MDS. However, immune dysregulation

is complex and heterogeneous in the development of MDS. Lower-risk MDS

(LR-MDS) is mainly characterized by immune hyperfunction and increased

apoptosis, and the immunosuppressive therapy shows a good response.

Instead, higher-risk MDS (HR-MDS) is characterized by immune suppression

and immune escape, and the immune activation therapy may improve the

survival of HR-MDS. Furthermore, the immune dysregulation of some MDS

changes dynamically which is characterized by the coexistence and mutual

transformation of immune hyperfunction and immune suppression. Taken

together, the authors think that the immune dysregulation in MDS with

different risk stratification can be summarized by an advanced philosophical

thought “Yin-Yang theory” in ancient China, meaning that the opposing forces

may actually be interdependent and interconvertible. Clarifying themechanism

of immune dysregulation in MDSwith different risk stratification can provide the

new basis for diagnosis and clinical treatment. This review focuses on the

manifestations and roles of immune dysregulation in the different risk MDS, and

summarizes the latest progress of immunotherapy in MDS.

KEYWORDS

myelodysplastic syndrome, immune dysregulation, Yin-Yang theory, different risk
stratification, immunotherapy
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1 Introduction

“Yin-Yang theory” is an advanced philosophical thought in

ancient China, and it is also the earliest naive materialism. Yin

and Yang refer to two opposite aspects of interrelated things or

phenomena in the natural world, and contain the concept of

unity of opposites (1). In general, everything that is active,

external, ascending, warm, bright and hyperactive belongs to

Yang, while everything that is quiet, internal, descending, cold,

dark and hypofunction belongs to Yin. The essence of the “Yin-

Yang theory” includes four aspects: opposites between Yin and

Yang, mutual rooting of Yin and Yang, waxing and waning of

Yin and Yang, transformation between Yin and Yang (2).

“Opposites between Yin and Yang” refers to the mutual

restriction and struggle between Yin and Yang. “Mutual

rooting of Yin and Yang” means that Yin depends on Yang

and Yang depends on Yin. Neither side can exist independently

of the other. This interdependent relationship is also known as

“mutual root”. “Waxing and waning of Yin and Yang” means

that Yin and Yang are not in a static state, but in a state of

dynamic change. Waning of Yin will lead to waxing of Yang and

vice versa. “Transformation between Yin and Yang” refers to

either Yin or Yang may transform into its opposite side in given

conditions. If we regard the waning and waxing relation between

Yin and Yang is a process of quantitative change, then the inter-

transformation between Yin and Yang is a qualitative change.

There seems to be some concepts in common between “Yin-

Yang theory” and “ Immunology “. Specifically, the view of “Yin-

Yang theory” is that the immune system is a unity of opposites

between Yin and Yang, and it is necessary to keep relative

balance between Yin (immune suppression) and Yang

(immune hyperfunction), so as to fully play the role in the

normal function (3). Immune hyperfunction of body such as the

hypersensitive reaction of immunocompetent cells can be

defined as the disease of “Yin waning and Yang waxing” in the

traditional Chinese medicine, and its typical diseases are

autoimmune disorders (AD) and various allergic reactions. On

the contrary, immunodeficiency such as immune cell deficiency

can be regarded the disease of “Yin waxing and Yang waning” in

the traditional Chinese medicine, and its typical diseases are

immunodeficiency diseases and tumors. The treatment of

“adjusting Yin-Yang” in traditional Chinese medicine refers to

that “reducing excess” is immunosuppressive therapy, and

“supplementing insufficiency” is immunopotentiation therapy.

Myelodysplastic syndrome (MDS) is a heterogeneous group

of myeloid clonal diseases originated from hematopoietic stem

cells, with characteristics of dysplasia in the bone marrow (BM),

ineffective hematopoiesis, refractory cytopenias and a high risk

of transformation to acute myeloid leukemia(AML). The

pathogenesis of MDS has heterogeneity and most patients

have no clear etiological and causative factors. At present, the

research on its pathogenesis involves multiple aspects including

genetic abnormalities of endogenous hematopoietic stem/
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progenitor cells, epigenetic alterations, exogenous BM

microenvironment changes and immune dysregulation. The

dysregulation of immune and inflammatory signaling

pathways in BM microenvironment plays an important role in

the occurrence and development of MDS, which is also one of

the research hotspots in recent years.

Revised international prognostic scoring system (IPSS-R) is

one of the gold standard of risk stratification and prognostic

assessment for MDS patients. According to IPSS-R, patients with

lower-risk MDS (LR-MDS) are those with very low-risk, low-

risk and some subsets of intermediate-risk (≤3.5 points), and

patients with higher-risk MDS (HR-MDS) are those with some

subsets of intermediate-risk (> 3.5 points), high-risk and very

high-risk. With the deepening of the study on the immune

pathogenesis of MDS, researchers found that the immune

dysregulation in MDS with different risk stratification is

different, and changes dynamically in the process of disease

progression. The immune abnormalities of most LR-MDS such

as the significant increase of cytotoxic T lymphocyte (CTL) and

helper T cell 17 (Th17), and the significant decrease of regulatory

T cells (Treg) suggest that the immune system is in an activated

and pro-inflammatory state (Yang), resulting in an increase of

apoptosis rate of hematopoietic stem cells (HSCs) (4). In

addition, many patients with LR-MDS seem to benefit from

immunosuppressive therapy. On the contrary, the immune

system of most HR-MDS is in an inhibitory state (Yin), which

makes a massive expansion of abnormal clone in BM

microenvironment (5). Immune activation therapy including

immune checkpoint inhibitors and tumor vaccines may prolong

the survival for these HR-MDS patients. However, we should

recognize that the immune dysregulation of someMDS (possibly

mainly intermediate-risk patients) may be the coexistence of

immune hyperfunction and immune suppression, which

changes dynamically and transforms mutually in the process

of development and treatment. Specifically, there may be

immune suppression at a certain stage of LR-MDS so as to

promote the development of LR-MDS to HR-MDS and even

AML. There also may be immune activation during the process

of development and treatment of HR-MDS, which makes HR-

MDS good curative effect, even transforming to LR-MDS. In

conclusion, the immune dysregulation of LR-MDS and HR-

MDS can be summarized by an advanced philosophical thought

“Yin-Yang theory” in ancient China. The balance of immune

hyperfunction (Yang) and immune suppression (Yin) is

constantly changing between LR-MDS and HR-MDS (3–5),

and can transform to each other under certain conditions.

It is well known that there is clear evidence of immune

dysregulation in MDS patients. Many cytokines, almost all types

of immune cells, immune checkpoints, immune and

inflammatory signaling pathways participate in the

pathogenesis of MDS (Figure 1). However, the manifestation

and exact mechanism of immune dysregulation in MDS with

different risk stratification are different and the immunotherapy
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plans should also be different. This review focuses on the

different manifestations of immune dysregulation in MDS

patients with different risk stratification, and summarizes the

latest progress of relevant immunotherapy especially the

emerging immunotherapy methods.
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2 MDS and autoimmune disorders

Immune dysregulation and inflammatory reaction

participate in the pathogenesis of MDS. Therefore, the

relationship between AD which based on immune

inflammatory response and MDS has also attracted the

attention of the scholars. According to relevant researches, AD

appears in around one third of MDS patients which was

significantly higher than that of healthy people (6), while AD

also increased the risk of MDS with an odds ratio (OR) from 1.5

to 3.5 (6, 7). The effect of AD on the clinical characteristics and

prognosis to MDS patients is still controversial. In terms of

clinical characteristics, the MDS patients with AD seems to be

associated with female, lower hemoglobin levels and higher

IPSS-R score (4, 7, 8) (Table 1). In terms of prognosis, most

studies believe that AD has a positive or no effect on prognosis of

MDS (Table 1) (8–14). Most AD associated with MDS can be

efficiently managed with immune-therapeutic treatments. In

conclusion, there is a clear relationship between AD and MDS,

but its internal mechanism is not clear, and its potential

prognostic impact is still controversial.

Because the previous reviews had shown the relationship

and mutual influence between AD and MDS, this paper will not

review again in detail. This paper summarizes the relevant

research results in recent 5 years in Table 1 (8–14). At present,

most studies believe that immune dysregulation is the common

basis of the two diseases. Chronic immune stimulation may be

the trigger factor for MDS, and some patients with MDS can get

remission after immunosuppressive treatment, which provides

evidence for this view.
TABLE 1 The studies evaluated the frequency and characteristics of MDS patients with AD in the last 5 years.

Years
Authors

Country Ratio
(n/N)

Main type of AD Clinical features Impact on
survival

Reference

2021 Dongni
Jiang et al

China 27.7%
57/206

Vasculitis (19.3%, 11/57) Serum immune abnormality
(17.5%, 10/57) RA (12.3%, 7/57)

Lower risk group;More MDS-
MLD

Better PFSBetter OS (9)

2021 Na Xiao
et al

China 19.6%
21/107

Vasculitis (23.8%,5/21) SLE (19.0%,4/21) RA (14.3%,3/21) More MDS-MLDMore MDS-
EB1

No difference (10)

2019 Julie
Seguier et al

France 11%88/
801

Polyarthritis (27.2%,22/81) Immune cytopenias disorder
(18.5%,15/81) Vasculitis (13.6%,11/81)

More MDS-MLDMore
CMML-1

Better OS (11)

2018 Montoro
Jet al

Spain 48%68/
142

Hypothyroidism (16.2%,11/68) RA (13.2%,9/68)
Polymyalgia rheumatic (8.9%,6/68)

More FemaleLower
hemoglobin value

Inferior OS (12)

2016
Mekinian A et al

France 17.9%
123/688

Vasculitis (32.0%,39/123) CTD (25%,31/123) Arthritis
(23%,28/123)

More MDS-MLDMore MDS-
EB1More CMML-1

No difference (13)

2016 Komrokji
RS et al

USA 27.8%
391/
1408

Hypothyroidism (44%,171/391) ITP (12%,46/391) RA
(7%,28/391)

More FemaleLower RBC
transfusion dependent

Better OSLess AML
transformation

(8)

2016 Lee SJ et al Korea 33.3%
67/201

ND (35.8%,24/67) Behcet disease (14.9%,10/67) RA
(13.4%,9/67)

More 5q- and +8 No difference (14)
fro
AD, autoimmune disease; AIM, autoimmune manifestation; MDS-MLD, Myelodysplastic syndrome-with multilineage dysplasia; PFS, free survival time; OS, overall survival; SLE, Systemic
lupus erythematosus; RA, Rheumatoid arthritis; MDS-EB1, MDS with excess blasts 1; CTD, Connective tissue disease; ITP, Idiopathic thrombocytopenic purpura; RBC, Red blood cell;
ND, Neutrophilic dermatosis.
FIGURE 1

Many cytokines, immune cells, immune checkpoints, immune
and inflammatory signaling pathways in the BM
microenvironment participate in the pathogenesis of MDS.
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3 Immune dysregulation of MDS

Immune dysregulation in BM microenvironment plays an

important role in the occurrence and development of MDS

(Figure 2), which can be proved by the overexpression of TLR,

CD14 and other immune related genes. However, the

manifestations and intrinsic mechanisms of immune

dysregulation in LR-MDS and HR-MDS are different.

Cytokines, immune cells, immune checkpoints, immune and

inflammatory signaling pathways play different roles in immune

dysregulation of MDS with different risk stratification (Figure 3),

which is itemized here below.
3.1 Cytokines

The abnormal expression of cytokines, chemokine and

growth factors participate in the occurrence and development

of MDS especially the abnormal secretion of cytokines. The

levels of interferon-g (IFN-g), tumor necrosis factor-a (TNF-a),
transforming growth factor-b (TGF-b), lnterleukin-6 (IL-6), IL-

8, IL-32 and granulocyte macrophage colony stimulating factor

(GM-CSF) generally increase in MDS patients, and their

expression levels may be related to disease outcome (15, 16).

Pardanani et al. found that the levels of 19 of the 30 plasma

cytokines in MDS patients changed significantly, among which

the increased levels of CXCchemokineligand-10(CXCL10), IL-7

and IL-6 seemed to be predictors of lower survival (16), while the

increased levels of IL-4 and CCL3 were significantly correlated
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with higher remission rate (5). However, abnormal secretion of

cytokine is different in MDS with different risk stratification.

In LR-MDS patients, the levels of pro-inflammatory cytokines

such as TNF-a、IFN-g、IL-8、IL-12 and IL-17 increase and

induce the apoptosis of normal HSCs in BM (17, 18). In HR-MDS

patients, myeloid-derived suppressor cells (MDSCs) from BM

secrete a large number of immunosuppressive cytokines such as

IL-10, IL-1b and TGF-b, causing tumor cells to escape from

immune surveillance (19). IL-6 is an important regulatory factor

of immune and inflammatory response, having different biological

role and expression level in immune microenvironment in LR-

MDS and HR-MDS. When being at low level, IL-6 mainly

participates in clonal hematopoiesis of indeterminate potential

(CHIP), hemocytopenia and BM hypoplastic of LR-MDS. When

being at high level, IL-6 mainly participates in the tumor invasion,

metastasis and recurrence of HR-MDS. So the overexpressed IL-6

is a predictor of lower survival and poor prognosis in patients with

MDS (16, 20).

In addition, immunosuppressive cytokines (Yin) may also

exist in immunemicroenvironment of some LR-MDS (Yang), and

pro-inflammatory cytokines (Yang) may also be highly expressed

in immune microenvironment of some HR-MDS (Yin). There

may be a process of struggle between immunosuppressive

cytokines and pro-inflammatory cytokines in these patients,

which ultimately determines the development and outcome of

the disease. Just like the “Yin-Yang theory”, two opposing

immune status may also be interrelated and can transform to

each other. For example, as a typical pro-apoptotic cytokine, TNF-

a expression is generally increased in the peripheral blood ofMDS
FIGURE 2

Schematic of innate immune signaling dysregulation in the pathogenesis of MDS. CHIP - clonal hematopoiesis of indeterminate potential,
BM, bone marrow, HSCs - hematopoietic stem cells; My-HSCs, myeloid biased HSCs.
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patients and negatively correlated with IPSS-R prognostic score.

So, TNF-amainly participates in the occurrence and development

of LR-MDS (18). It is worth noting that the level of TNF-a in

some HR-MDS patient is also increased compared with healthy

controls and may affect its disease development. The results

confirms that immune activating molecules (Yang) have also

increased in the immunosuppression microenvironment of HR-

MDS (Yin), which is “Yin contains Yang” and “Yin generates

Yang” in “Yin-Yang theory”. TGF-b is a pleiotropic cytokine,

which is generally increased in the BMmicroenvironment ofMDS

and participates in the pathogenesis both of LR-MDS and HR-

MDS. In LR-MDS, high level of TGF-b can directly enhance the

p38-MAPK signaling pathway to promote the expression of pro-

inflammatory genes of downstream and the differentiation of

Th17 cells, increasing the expression of IL-17 and IFN-g and

finally inducing the occurrence and development of disease (21).

In HR-MDS, high level of TGF-b from mesenchymal stem cells

(MSCs) inhibits the normal function of B, T and NK cells and

induces the proliferation of Treg cells, so as to promote the

immunosuppressive microenvironment and development of

disease (22). The influence of TGF-b to the immune status of

MDS depends on the specific cell and microenvironment. It can

not only promote apoptosis in LR-MDS (Yang), but also play an

immunosuppressive role in HR-MDS (21, 22), and it also may

mediate the mutual transformation of LR-MDS and HR-MDS

under some conditions, reflecting the unity of opposites and

mutual transformation of Yin and Yang. In addition, there are

many dysregula ted cytokines in the BM immune

microenvironment of MDS, but the specific regulatory
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mechanism and impact on prognosis are still unclear, which

needs further research.
3.2 Immune cells

3.2.1 T lymphocyte subsets
T lymphocytes are the most important immune cells, and

take part in both the cell-mediated immunity and humoral

immunity at the same time. T lymphocytopenia is very

common in MDS patients, but its manifestations are different

in different risk stratification. CD8+T lymphocytes which are

also called CTL are the effector T cell of anti-tumor immunity

because they can directly kill tumor cells. CD8+T lymphocytes

have been shown to activate and proliferate, inhibit malignant

and normal HSCs hematopoiesis, and induce intramedullary

apoptosis in LR-MDS patients (23). However, CD8+T

lymphocytes show a significant decrease and induce the

overexpression of programmed cell death protein 1/

programmed cell death ligand 1 (PD-1/PD-L1) in the tumor

microenvironment of HR-MDS patients, thereby enhancing the

ability of tumor cells to escape host immunosurveillance (24).

Treg cells are key regulators of immune system with strong

immunosuppressive function and important for immune

tolerance. Treg cells in BM and peripheral blood of LR-MDS

patients are significantly decreased, and can be used as a

prognostic factor to predict the degree of anemia, the rate of

AML transformation and overall survival(OS) (25). On the

contrary, the number and activity of Treg cells in HR-MDS
FIGURE 3

The immune dysregulation of immune cells in HR-MDS and LR-MDS can be summarized by an advanced philosophical thought “Yin-Yang
theory” in ancient China, which are opposite, interrelated and can transform to each other under certain conditions.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.994053
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.994053
are increased, which promotesMDS to escape immunosurveillance

and transform to AML (26).

Th17 is originated from pluripotent CD4+T cells and mainly

secretes pro-inflammatory cytokine IL-17. The levels of Th17

and IL-17 in BM and peripheral blood in LR-MDS patients are

significantly higher than those in HR-MDS and healthy control

group, which stimulate a variety of cytokines to produce

inflammatory reaction, and finally lead to increased apoptosis

of BM cells and ineffective hematopoiesis (17, 27). Previous

study in our research group had got similar conclusions and

proved that cyclosporine A, an immunosuppressive agent, can

inhibit the function of Th17 cells to improve the morbid

hematopoiesis of LR-MDS, further confirming that Th17 taken

part in the immune hyperfunction of LR-MDS (28).

Interestingly, although the levels of Th17 and IL-17 are

significantly lower in HR-MDS than those in LR-MDS, they

are higher than those in healthy control group (27). It suggests

that there are also high expression of pro-inflammatory cell and

cytokine (Yang) in the immunosuppressive microenvironment

of HR-MDS (Yin), reflecting the concept of “Yin contains Yang”

and “Yin generates Yang”.

Th22 cells are a newly discovered subset of helper T cells,

which mainly secrete IL-22 and TNF-a. Based on the present

studies, Th22 cells may have a dual immunomodulatory activity

of pro-inflammatory and immunosuppression. For example,

Shao et al. found that Th22 cells in peripheral blood of MDS

patients increased significantly, and were significantly higher of

HR-MDS than that of LR-MDS, indicating that Th22 cells may

be more involved in immune escape (Yin) of MDS (29).

However, another study found that number and effectors of

Th22 cells in LR-MDS patients were higher than those in HR-

MDS, suggesting that Th22 tends to pro-inflammatory

characteristics (Yang) (30). Current studies have found that

Th22 cells in MDS immune microenvironment may have both

pro-inflammatory (Yang) and immunosuppressive (Yin)

functions, may change dynamically, and even transform to

each other under some conditions. Of course, it needs

further research.

3.2.2 Natural killer cells
NK cells are the first line of defense against antitumor

immunity with direct killing effect and take part in both innate

immunity system and adaptive immunity system. NK cells in

peripheral blood and BM of MDS patients decrease significantly

and show negative correlation with IPSS-R score (31, 32). In HR-

MDS, the number and function of NK cells such as cracking

tumor cells, secreting cytokines and proliferation in vitro are

significantly damaged, consequently inhibiting the normal anti-

tumor immune response and promoting disease progression

(31). In LR-MDS, the number of NK cells is also decreased but

higher than HR-MDS, and the existing NK cells seem to have

increased activity and cytotoxicity to CHIP of MDS, thereby
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inhibiting disease progression (32). In addition, it observed that

the number of NK cells in the BM immune microenvironment of

LR-MDS patients is reduced, but the existing NK cells have

stronger immune function. From the perspective of “Yin-Yang

theory”, that is “Yang contains Yin” and “Yin contains Yang”.

Activating killer immunoglobulin-like receptors (aKIRs) are

the most important molecules in regulating NK cell activation

and function. In recent years, it has been observed that the

number and haplotype of aKIR gene have changed in MDS

patients, which affects its immune monitoring and prognosis. In

2015, Daher et al. first reported that the number of aKIR gene

was associated with the risk stratification of MDS, and found

that the number of it in HR-MDS patients was significantly

lower than that in LR-MDS patients, but both of them were

lower than that in healthy volunteers (33). Stringaris et al. found

that the overexpressing aKIR haplotype A was significant

correlation with the higher risk of AML transformation in

MDS patients by further study, and may be an independent

predictor of clinical outcome in MDS patients (34).

3.2.3 Dendritic cell
DC is a important immunomodulatory factor, and the role

of it in MDS has not yet been fully elucidated up to now. Current

studies have shown that the number and the ability to activate T

cells of mature and immature DC in MDS patients are

significantly reduced, especially in HR- MDS (35), but the

concrete effects of DC on the immune response for MDS

patients with different risk stratification are different. The high

level of pro-inflammatory factors such as IFN-g and TNF-a in

the BM immune microenvironment of LR-MDS (Yang)

promote the maturation of reduced DC (Yin), and then fully

mature DC which pulsed with antigens can induce the specific T

cells to kill clonal MDS cells (Yang), resulting in the increased

apoptosis of precursor cell (36). DC dysregulation in LR-MDS

also reflects the view of “Yin-Yang theory”, that is “Yang

contains Yin”, “Yin contains Yang”, “Yang generates Yin” and

“Yin generates Yang”. In HR-MDS, the abnormality of DC is

mainly characterized by the reduction of the number especially

plasma like dendritic cells (pDCs), and the ability of DC to

activate T cells is also significantly weakened (35, 37). In

addition, whether HR-MDS or LR-MDS, the DC has obvious

problem of differentiation and maturation. For example, the

expression of some surface antigens such as CD54, CD80 and

CD86 are reduced, and the ability to stimulate T cells and

antigen presentation in mixed lymphocyte reaction is

significantly reduced (38). In conclusion, all of the above

studies illustrate the viewpoint of DC cell inefficiency in LR-

MDS patients especially HR-MDS.

3.2.4 Mesenchymal stem cells
MSCs are the key component of BM microenvironment in

MDS patients and play an important role in maintaining the
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immune stability by down-regulating the intensity of immune

response, regulating natural immunity and adaptive immunity.

However, there is significant difference in the density and

immune regulatory function of MSCs between LR-MDS and

HR-MDS patients. The density of MSCs in HR-MDS patients is

significantly higher than that in LR-MDS patients and has

independent prognostic significance which is associated with

lower OS and higher AML transformation rate (39, 40). MSCs of

HR-MDS patients have immunosuppressive properties which

are characterized by high level of TGF-b expression and the

significantly enhanced ability to induce Treg and inhibit the

proliferation and activation of T cells (5). There are great

differences in the ability of MSCs to induce Treg between HR-

MDS and LR-MDS. Compared with LR-MDS MSCs, HR-MDS

MSCs can induce more Treg (40). It also reflects that

immunosuppression from MSCs is more obvious in HR-MDS,

although they also mildly displays immunosuppression (Yin) in

the pro-inflammatory immune microenvironment of LR-MDS

(Yang). In addition, the effect of MSCs on DC will also change

dynamically with the disease state of MDS. The ability of MSCs

to inhibit DC differentiation and maturation in HR-MDS is

significantly better than LR-MDS MSCs (41). On the contrary,

the ability of MSCs to inhibit DC differentiation and maturation

is weak in BM immune microenvironment of LR-MDS (Yang),

but there is still mild inhibition (Yin). Finally, it leads to the over

activation of DCs with the strongest antigen-presenting function

in LR-MDS which induce the excessive proliferation and

activation of T cells in BM and then release a lot of pro-

inflammatory molecules (Yang) to induce massive apoptosis of

normal HSCs (40–42). In LR-MDS, the effect of MSCs on DC

reflects that the “Yang contains Yin” and “Yin generates Yang”

in “Yin-Yang theory”. In addition, some MSCs of HR-MDS

(Yin) can promote the pro-inflammatory cytokines such as

TNF-a and IFN-g secretion (Yang) which induce the increase

of PD-L1/2 synthesis and secretion, and finally inhibit the

activation and proliferation of CD4+T cells and promote the

apoptosis of T cells (Yin) (43). It is the “Yin contains Yang” and

“Yang generates Yin” in “Yin-Yang theory”. In conclusion, all of

these results suggest that MSCs have different immune

regulation in different risk stratification MDS, which may be

very important for understanding the pathogenesis of MDS and

developing new immunotherapies.

3.2.5 Myeloid-derived suppressor cells
MDSCs are special immune cells which are recently found and

have inhibitory effects on the body’s immunity. MDSCs take part in

the occurrence and development of MDS, but have different

immunomodulatory effects in different risk. The number of

MDSCs in LR-MDS patients is significantly lower than that in
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HR-MDS patients, whichmay be related to the immunosuppressive

BM microenvironment of HR-MDS (44). In clinical practice, it is

found that some LR-MDS (false Yang) will transform to HR-MDS

(Yin), and the number of MDSCs will gradually increase in this

process which may gradual ly induce the immune

microenvironment of LR-MDS from activated state to inhibited

state, that is “Yang generates Yin” and “Yin-Yang transformation”

(45). Under the interaction of S100A9 and CD33, the BM

microenvironment of HR-MDS drives the significant expansion

of MDSCs and induces the immunosuppressive cytokines such as

IL-10 and TGF-b overexpression. They inhibit the proliferation and
function of T cells and NK cells, thus directly inhibiting normal

hematopoiesis (46). MDSCs in HR-MDS can express CD155 to

connect T cell immune receptor with immune checkpoint molecule

T cell immunoglobulin and ITIM domain (TIGIT) and transmit

inhibitory signal to NK cells, further aggravating the

immunosuppressive microenvironment (46). In addition, high

levels of monocytic MDSCs (M-MDSCs) in HR-MDS showed

higher levels of intracellular IL-10, TGF-b and CXCR4 (45). In

conclusion, MDSCs play an important role in the imbalance of

immune monitoring of MDS and may be an important potential

therapeutic target.

3.2.6 Other immune cells
In addition to the above immune cells, other innate immune

cells in MDS patients also have abnormal regulation, such as

macrophages, monocytes, neutrophils and so on. In MDS, the

number of macrophages is decreased and phagocytosis of

macrophages is impaired. The study found that percentage of

macrophages in BM of HR-MDS is significantly lower than that of

LR-MDS (47). Macrophages in LR-MDS BM microenvironment

are mainly the M1 type and secrete a variety of pro-apoptotic

cytokines including TNF-a, inducing BM cell apoptosis. In

addition, macrophages which highly express S100A8s can

hinder the normal differentiation of erythrocytes in LR-MDS

microenvironment (48). In HR-MDS, M2 macrophages are

dominant in quantity and function, suggesting that high level of

M2 macrophages may be an early warning index for the poor

prognosis of MDS (49). Monocytes in MDS have a unique

phenotype and can reduce the production of matrix

metalloproteinase (MMP).which is an important secretion

product and can inhibit the supporting role of BM

microenvironment for HSCs (50). In addition, high level of

MMP significantly inhibited erythrocyte proliferation which

finally caused hemocytopenia, so monocytes mainly participate

in the pathogenesis of LR-MDS (51). MDS derived tumor-

associated neutrophils are the product of abnormal

hematopoiesis and have functional defects which may eventually

lead to high mortality of infection patients in HR-MDS (52).
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3.3 Immune checkpoint

Immune checkpoints have become a research hotspot in

recent years because of its unique immunosuppressive role in

tumor-specific immunity, and had achieved a series of results.

MDS cells have been proved to have ability to utilize the

immunosuppressive effect of immune checkpoints to promote

their survival and proliferation. Cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4) and PD-1/PD-L1 have been the

most extensively studied immune checkpoints (53). In addition,

many new immune checkpoint molecules including T cell

immunoglobulin mucin-3 (Tim-3), lymphocyte activation

gene-3 (LAG-3), CD47and TIGIT had also been successively

proved to participate in the occurrence and development of

MDS (54, 55).

As early as 2014, the University of Texas MD cancer center in

the United States found that the expression of PD-1, PD-L1 and

PD-L2 in CD34+ cells of MDS patients was significantly

increased, which was related to the risk stratification of disease

and the drug resistance mechanism of hypomethylating agent

(HMA) (24). In vitro and animal experiments further showed that

the BMmicroenvironment of MDS can induce the overexpression

of immune checkpoint molecules such as PD-1/PD-L1 by

activating MDSCs and specific cytokines (53, 56). The serum

concentration of CTLA-4 in MDS patients increased too, and the

HR-MDS group was significantly higher than LR-MDS. In

addition, the overexpressed CTLA-4 in MDS is associated with

high mortality (57). However, it can also be explained that CTLA-

4, an important immunosuppressive molecule, can be used by

tumor cells to induce immunosuppressive state and make tumor

growth and development.

Tim-3 is a newly discovered immune regulatory molecule in

recent years and combines with its ligand galectin 9 (Gal-9) to

produce negative immune regulation, leading to Th1 cell

apoptosis, IFN-g release decreased and MDSCs proliferation.

There are few studies on Tim-3 in MDS patients now, but the

existing studies have confirmed that the expression of Tim-3 in

BM of MDS patients is significantly higher than that of control

group. The expression level of Tim-3 in low-risk group,

medium-risk group and high-risk group increases successively,

suggesting that Tim-3 may be a marker of malignant clones of

MDS cells and participate in the malignant transformation of

MDS (58, 59). In addition, the study found that the LAG3

expression on CD8+T and Treg cells in MDS patients was

significantly higher than that in healthy controls. The

overexpression of LAG3 may be the molecular basis for the

low function of CD8+ effector T cells and the high function of

Treg cells, so as to promote immune escape and eventually lead

to disease progression (54). TIGIT is also a new immune

checkpoint molecule, which is high expression on NK and T

cells in MDS patients. TIGIT can directly inhibit the antitumor

immune function mediated by NK and T cells and indirectly
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reduce the secretion of activated cytokines such as CD107a, IFN-

g and TNF-a to participate in disease progression and immune

escape of MDS (55). As a new immune checkpoint molecule,

CD47 on tumor cells is combined with signal-regulatory

proteina(SIRPa)to send “don’t eat me” signal to immune

system, playing a key role in tumor cells recognition and

immune escape, and gradually becoming an effective target of

tumor immunotherapy. The studies have confirmed that MDS

cells significantly overexpress CD47, which is associated with

higher risk and poor OS (60). In conclusion, there is sufficient

evidence to indicate that immune checkpoint molecules

participate in the abnormal myeloid clonal response in MDS

patients, which provides a new immunotherapy for HR-MDS. In

addition, HMA treatment can significantly improve the

expression of several immune checkpoint molecules on MDS

cells such as PD-L1, Tim-3 and CD47, providing a theoretical

basis for the mechanism of HMA resistance and the

combination therapy with immune checkpoint molecular

inhibitors (61).

Immune checkpoints are significantly overexpressed in HR-

MDS patients, promoting the formation of immunosuppressive

microenvironment (Yin), which is related to lower OS and

higher AML transformation rate (57–60). Moreover, the

studies had proved that immune checkpoint inhibitors can

improve the prognosis of some HR-MDS patients and

promote the recovery or enhancement the functions of

immune active cells. From the perspective of “Yin-Yang

theory”, it may be that HR-MDS immunosuppressive

microenvironment (Yin) can also promote the production of

immune active cells and molecules (Yang) and enhance the anti-

tumor immune response under the certain conditions (such as

immune activation treatment), that is “Yin generates Yang” and

“Yin-Yang coexist”. In addition, the current study confirmed

that the expression of immune checkpoint molecules such as

PD-1/PD-L1 and CTLA-4 in some LR-MDS was also increased

(24, 53). The results further suggest that immunosuppressive

molecules are also expressed in the activated immune

microenvironment of LR-MDS (Yang), there is “Yang contains

Yin”. The expression of immune checkpoint molecules in some

LR-MDS may be further increased under certain conditions such

as the treatment of immunosuppressant, resulting in the gradual

transformation of the activated immune microenvironment of

LR-MDS to the inhibitory state (“Yin-Yang transformation”).

Clinically, it is manifested as LR-MDS finally developed into

HR-MDS, and immunosuppressant is ineffective in these LR-

MDS patients.
3.4 Immune signaling pathway

Chronic innate immune and related inflammatory signaling

pathways have been reported to play an important role in the
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pathogenesis of MDS for many years, but specific evidence has

not been found until recently. Next, we will focus on the role of

them in the occurrence and development of MDS in different

risk stratification.

3.4.1 Apoptosis signaling pathway
It is well known that abnormal apoptosis is an important

factor in the pathogenesis of MDS. However, due to the

heterogeneity of the disease, the different risk stratification

MDS are affected by apoptosis differently, and LR-MDS is

more closely related to apoptosis. Increased apoptosis was

observed in LR-MDS, while apoptosis resistance was observed

in HR-MDS. LR-MDS cells tend to pro-apoptotic phenotype,

while HR-MDS cells changed to anti-apoptosis phenotype (62).

As we all know that apoptosis is mediated by death receptor Fas

and its specific ligand (Fas-L). In LR-MDS patients, TNF-a, Fas-
L, TNF-Related apoptosis-inducing ligand receptor 1 (TRAIL-

R1) and other pro-apoptotic cytokines are up-regulated, which

promote the apoptosis of MDS clonal cells (63). The malignant

clones with dysplasia in HR-MDS patients may produce

resistance to pro-apoptotic effect of TNF-a, resulting in the

increase of abnormal MDS clonal cells. In addition, CD34+ cells

in HR-MDS show higher expression of anti-apoptotic gene Bcl-2

and lower apoptotic cell related antibody (Apo2.7), which

explains why BM cells in HR-MDS are more resistant to

apoptosis than those in LR-MDS.

Increased apoptosis is a unique characteristic of LR-MDS.

Recent studies have found that in addition to the differential

expression of apoptotic genes, a special inflammatory cell death

process called pyroptosis may also contribute to apoptosis in LR-

MDS (64). Reactive oxygen species produced by S100A9 and

tumor necrosis factor receptor-associated factor 6 (TRAF6) can

activate NLRP3 inflammasome, which eventually leads to the

formation of pyroptosis in MDS patients and promotes

hematopoietic failure of MDS (56). Inhibiting pyroptosis such

as neutralizing S100A9, inhibiting NLRP3 and eliminating

Caspase-1 have been shown to improve hematopoietic failure

in MDS, providing new therapeutic prospects in MDS (65).

3.4.2 Toll-like receptor signaling
Toll-like receptor (TLR) gene encodes key promoters of innate

immune signal and plays a core role in innate immune response.

The study found that more than 50% of MDS patients had

overexpression of TLR signaling pathway and downstream

effector molecules, including TLR-1, TLR-2, TLR-4, TLR-6, TLR-

7, TLR-9 and its downstream effector molecules such as MyD88 or

IRAK1 and IRAK4 kinases (66, 67). The enhanced TLR signaling is

particularly significant in LR-MDS and leads to increased apoptosis

and ineffective hematopoietic of the disease (66). In 2013, the

University of Texas MD Anderson Cancer Center detected the

mRNA expression of eight TLRs (TLR1-4 and TLR6-9) in HSCs of

MDS patients and found that the TLR of LR-MDS was significantly
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higher than that of HR-MDS, especially TLR2 and TLR4 which

were associated with increased apoptosis and better OS rate (67).

Except for TLR, the mRNA expression of MyD88, a downstream

molecule of TLR signaling pathway, is also increased, especially in

LR-MDS, and blocking MyD88 can lead to increased erythroid

colony formation (68). In addition, the levels of TLR4 ligands

S100A8 and S100A9 in BM and peripheral blood of MDS patients

especially LR-MDS are also increased. As an endogenous damage

related mode molecule (DAMP), S100A8 and S100A9 can enhance

the production of inflammatory components and pro-

inflammatory cytokines by binding with TLR4, so as promoting

the ineffective hematopoiesis of LR-MDS (69). In conclusion, the

above studies show that TLR signal enhancement is a significant

feature of MDS, especially LR-MDS. On the contrary, because the

immune microenvironment of HR-MDS is inhibitory (Yin), so

although the activated TLR signal (Yang) also plays a certain role in

the pathogenesis of HR-MDS, it may not be able to resist the whole

immunosuppressive microenvironment.
4 Immunotherapy for LR-MDS

Tumor immunotherapy is known as the most promising

ways to cure cancer. Immune dysregulation plays an important

role in the pathogenesis of MDS, so immunotherapy should also

be one of the most promising treatments for MDS patients, and

has achieved good clinical efficacy.

The “Yin-Yang of immunity in LR-MDS” shows us that

immune system of most LR-MDS is in an activated and pro-

inflammatory state, which leads to the increase of apoptosis. We

can regard these LR-MDS as a disease of “Yang excess”.

Therefore, immunosuppressant and immunomodulatory

treatment will be a reasonable treatment for the disease. From

the perspective of “Yin-Yang theory” of traditional Chinese

medicine, it is described as “damaging its excess Yang” and

“enriching Yin and suppressing Yang”. But some LR-MDS may

be the coexistence of immune hyperfunction and immune

suppression, so immunosuppressant treatment may accelerate

the progression of the disease. So we should closely monitor the

changes of immune indicators for these patients and provide

precise immunotherapy. Next, we will review current application

and prospect of immunotherapy in LR-MDS (Figure 4).
4.1 Immunosuppressant

The immune system of LR-MDS patients is in an activated

and pro-inflammatory state, so immunosuppressant can reverse

these immune responses to achieve the treatment effect. In

clinical practice, immunosuppressants have been successfully

used in LR-MDS patients for many years, and have achieved

good clinical efficacy and safety (70, 71). A recent study found
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that the total effective rate of immunosuppressants in LR-MDS

patients was 42.5%, of which the complete remission rate (CRR)

was 12.5% and red blood cell transfusion independence rate was

33.4% (72). It was confirmed that immunosuppressants can

successfully reduce the transfusion burden and related

complications in LR-MDS patients. Antithymocyte globulin

(ATG) and cyclosporin A (CSA) are the most commonly used

immunosuppressants in the treatment of LR-MDS patients.

ATG can reduce adaptive immunity to promote the recovery

of hematopoietic function by consuming T cells and up-

regulating Treg (70). CSA plays a role by inhibiting the

expansion of cytotoxic T lymphocyte and inhibiting apoptosis

related cytokines (71). When the ATG and CSA are combined, a

long-term efficacy can be obtained (73). In addition, the use of

immunosuppressants as the first-line treatment showed a better

response rate than that as the third-line treatment (7).

Immunosuppressants had no significant response in HR-

MDS patients.
4.2 Monoclonal antibody

Some monoclonal antibodies have been proved to have

therapeutic effect in LR-MDS because of their strong

immunosuppressive effect, and Alemtuzumab is one of them.

Alemtuzumab is a monoclonal antibody against CD52, which is

mainly located on the surface of mature lymphocytes and

weakens adaptive immunity by depleting lymphocytes.
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Therefore, Alemtuzumab can be used as an attractive

alternative therapy for immunosuppressants. The latest study

found that using Alemtuzumab to treat LR-MDS can achieve

68% hematological improvement or complete remission (CR),

with a median remission period of 30 months (74).

Increased apoptosis is one of the characteristics of LR-MDS,

so the treatment targeting for pro-apoptotic cytokines may be

beneficial. TNF-a is an important pro-apoptotic cytokine in LR-

MDS, so the monoclonal antibodies targeting for TNF-a such as

Infliximab and Etanercept may improve prognosis in theory.

However, the results of clinical trials showed that Infliximab

alone had low activity and poor treatment response in LR-MDS

(75). Another phase II clinical trial showed that the total effective

rate of Etanercept combined with ATG in the treatment of LR-

MDS was 56% (76). Anyways, the application of TNF-a
inhibitors in LR-MDS patients has not achieved ideal results.

But the TNF-a inhibitors have certain beneficial effects on BM

inflammatory indexes, and the combination with other specific

therapies may bring good news for LR-MDS patients.

TGF-b has been proved that it can participate in the

occurrence of LR-MDS by promoting expression of pro-

inflammatory genes, so inhibiting TGF-b is regarded as one of

the potential treatments. Sotatercept (ACE-011) is a TGF-b ligand

trap and has produced 49% of the total effective rate in a phase II

clinical trial and can effectively improve anemia symptoms (77).

Luspatecept (ACE-536) is new TGF-b Inhibitors. In a phase I/II

clinical trial, 63% of LR-MDS patients has good therapeutic

response and tolerability to ACE-536. Food and drug
FIGURE 4

The standard treatment approach of MDS with different risk stratification, and immunotherapy is an important part (orange and white).
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administration (FDA) has approved it to treat adult LR-MDS

patients (78). Using TGF-b inhibitors may be beneficial for these

patients who have few available treatments.
4.3 Novel immune pathway inhibitors

As mentioned earlier, TLR signaling pathway plays an

important role in LR-MDS and leads to ineffective hematopoietic

of the disease. Therefore, the use of TLR signaling pathway

inhibitory drugs can improve the prognosis of LR-MDS

in theory. At present, many related drugs have being undergone

preclinical trials. For example, the TLR2 inhibitor OPN-305 has

passed the phase I trial of healthy subjects and is currently being

tested in the phase I/II trial of MDS patients (NCT02363491) (79).
4.4 Immunomodulatory drugs

IMIDs represented by “Lenalidomide and Thalidomide” have

been proved to be beneficial and safe in patients with low or

medium risk, single 5q deletion (del (5q)) and transfusion

dependent MDS (80). Thalidomide mainly stimulates T cells,

monocytes and inhibits the pro-inflammatory cytokine

expression such as TNF-a, IL-12, IL-1 and IL-6 to play an

immunomodulatory role. Thalidomide can improve

erythropoiesis and prolong the time of non-transfusion-

dependence, but may have obvious neurotoxicity and other toxic

and side effects for some LR-MDS patients (81). Therefore,

Lenalidomide which was less toxic but more effect was

synthesized. Lenalidomide not only has many similar

immunomodulatory effects to Thalidomide, but also can induce

ubiquitination of specific substrates, degrade casein kinase 1 alpha

1, selectively inhibit the del(5q) MDS cells and reverse the

abnormality of karyotype (82). As early as 2006, Lenalidomide

has been approved by FDA to treat anemia of low-risk or medium-

risk MDS patients with transfusion-dependent and del(5q),

whether with or without additional cytogenetic abnormalities.

Lenalidomide is effective to treat del (5q) MDS patients, but

more and more evidence supports its sensitivity of Lenalidomide

to non del (5q) LR-MDS. National Comprehensive Cancer

Network (NCCN) has recognized that Lenalidomide has a

certain clinical efficacy in patients with non del (5q) MDS

after failure of erythropoiesis stimulating agent (ESA)

treatment, with a response rate of 43%, and more than a

quarter of patients have achieved blood transfusion

independence (83). In addition, the latest research indicates

that when Lenalidomide is used before Azacytidine, a higher

rate of hematological improvement can be obtained for patients

with non del (5q) MDS and fail ESA treatment (84).
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4.5 Hypomethylating agent

As a specific DNA methyltransferase inhibitor, HMA can

inhibit abnormal DNA methylation and have shown good

curative effect for MDS patients in clinical trials and practical

applications. However, in addition to the direct cytotoxicity and

demethylation to cancer cells, HMA also has epigenetic

regulation. HMA can promote the gene expression of anti-

tumor immunity, enhance tumor immunogenicity, and

stimulate a variety of immune cells including macrophages,

NK cells and CD8+T cells to secrete cytokines to exert

cytotoxic effects and promote tumor cells death (85). HMA

can also induce autologous antitumor immune response by

consuming MDSCs (86). Azacytidine can also inhibit Treg

proliferation and produce a large amount of IL-17, thus

playing an immunomodulatory role (87). All kinds of evidence

show that HMA has the function of immune regulation by

affecting epigenetic.

At present, HMA is a ideal treatment drugs for HR-MDS

and AML, but based on its apparent immunomodulatory

characteristics, it can also be a good choice for non del (5q)

LR-MDS patients who do not respond to first-line and second-

line treatment (88). In fact, HMA has been approved for the

treatment of LR-MDS in the United States and Japan and got

60% hematological improvement. CC-486 is a new oral

preparation of Azacytidine which produces an encouraging

total effective rate of 38% in LR-MDS and has good tolerance

and safety. The most common adverse events of CC-486 are

neutropenia, anemia and gastrointestinal disorders (89). The

authors think that LR-MDS patients who do not respond to first-

line and second-line treatment may be “false LR-MDS”, which is

very likely to transform into HR-MDS. Therefore, HMA is

effective for these patients.

In conclusion, immunosuppressive therapy and

immunomodulatory therapy have a good effect to some LR-

MDS patients, which can improve its hematological symptoms

and morbid hematopoiesis. It accords with the activated immune

microenvironment of LR-MDS. However, we should also

recognize that nearly half of LR-MDS patients have poor or

even ineffective effects on various immunosuppressive therapy

and immunomodulatory therapy (74), while HMA drugs have a

certain efficacy for these patients (90, 91). From a clinical point of

view, we highly suspect that these LR-MDS tend to be “false LR-

MDS”, and their clinical characteristics and prognosis are more

inclined to HR-MDS. It also suggests that there may also be

immunosuppressive factors (Yin) in the activated BM immune

microenvironment (Yang) of LR-MDS and immune activation

therapy can also improve the prognosis of some LR-MDS patients,

reflecting the “Yang contains Yin” and “Yang generates

Yin” again.
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5 Immunotherapy for HR-MDS

Different from the immune state of LR-MDS, the immune

microenvironment of HR-MDS is in an inhibitory state, which

makes CHIP dramatically expand and escape immune

surveillance. Traditional Chinese medicine regards this kind of

immune disease as “Yin excess and Yang deficiency disease”, so

immune activation therapy will be a reasonable treatment for

HR-MDS. From the perspective of “Yin-Yang theory”, it is

“supplementing its deficiency” and “supporting Yang and

suppressing Yin”. But, there are also a few HR-MDS who may

be the coexistence of immune hyperfunction and immune

suppression, so immunosuppressant treatment may produce

unexpected therapeutic effects for these patients. Next, we will

review the current application and prospect of immunotherapy

in HR-MDS (Figure 4).
5.1 HMA

From the above , we can know that HMA has

immunomodulatory effect and is the main drug of the first-

line treatment for HR-MDS patients. The initial response of

HMA in the treatment of HR-MDS is good, but 40% of patients

will become resistant to Decitabine and Azacytidine. So, there is

an urgent need to explore new HMA drugs to reduce resistance.

Guadecitabine (SGI-110) is a new type of HMA. The phase II

clinical trial of HR-MDS patients with Azacytidine resistance

showed that objective response rate was 14.3%, and the survival

time of responders was significantly improved (NCT02197676)

(90). ASTX727 is also a new oral HMA, which was approved by

FDA in 2020 for new and secondary MDS with specific FAB

subtypes (RA, MDS-RARS, MDS-RAEB and CMML) and IPSS

score (middle-1, middle-2 and high risk). The studies have

confirmed that oral ASTX727 and intravenous infusion of

Decitabine have similar area under the concentration-time

curve, safety, clinical response and lower drug resistance (91).

The mechanism of HMA resistance in MDS patients has not

been fully clarified, but the up-regulated expression of immune

checkpoint molecules may play a certain role. While enhancing

the anti-tumor immune response, HMA also up-regulates the

expression of immune checkpoint molecules, inhibits and even

depletes the tumor specific T cells, resulting in tumor immune

escape (61). Therefore, it seems very interesting to evaluate the

efficacy of HMA combined with immune checkpoint inhibitors

in HR-MDS patients, as shown below.
5.2 Immune checkpoint inhibitor

As we all know, immune escape is an important feature of

HR-MDS, and one of the main mechanisms is the up-regulation

of immune checkpoint molecules in BM microenvironment.
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Therefore, immune checkpoint inhibitor is a reasonable

treatment strategy for HR-MDS. CTLA-4 and PD-1 inhibitors

have been shown to play a role in HR-MDS by blocking the

inhibitory signals on T cells and stimulating antitumor immune

response (92–97). In addition, some new immune checkpoint

inhibitors such as Tim-3 and CD47 inhibitors are also actively

being conducted in various clinical trials.

5.2.1 PD-1/PD-L1 inhibitors
The expressions of PD-1, PD-L1 and PD-L2 were

significantly increased in MDS patients, and were related to

the risk stratification and the drug resistance mechanism of

HMA (24). Therefore, PD-L1/PD-1 is an ideal therapeutic target

for HR-MDS patients, and PD-L1/PD-1 inhibitors may be

potential drugs for recurrent and refractory MDS.

Pembrolizumab is a humanized anti-PD-1 monoclonal

antibody (98). The phase 1b clinical trial show that the OS of

Pembrolizumab in MDS patients with HMA refractory is 6.0

months, the 2-year total OS rate is 17% and has controllable

safety and clinical activity (NCT01953692) (92). Single PD-1

inhibitors have certain efficacy in the treatment of HR-MDS

patients failed by HMA, but the effect is limited. Therefore,

many scholars put forward a new viewpoint of “PD-1 inhibitors

combined with HMA”. The latest phase 2 clinical trial showed

that the objective remission rate (ORR) of Azacytidine combined

with Pembrolizumab in the treatment of newly diagnosed HR-

MDS patients was 76%, the CR rate was 18%. The ORR rate of

Azacytidine combined with Pembrolizumab to HR- MDS

patients who failed in the treatment of HMA was 25%, and

the CR rate was 5% (93). In addition, a phase 1 study found that

nivolumab, a PD-1 inhibitor, had good curative effect for

relapsed HR-MDS after allogeneic transplantation (99). PD-1

inhibitor combined with HMA has a certain effect in HR-MDS

patients, which makes some researchers focus on “PD-L1

inhibitor combined with HMA”. In 2022, the latest clinical

trial published on “Blood” found that the ORR of PD-L1

inhibitor Durmalumab combined with Azacytidine in the

treatment of HR-MDS was 61.5%, the ORR of Azacytidine

alone was 47. 6%, but Durmalumab combined with

Azacytidine had more toxic than Azacytidine alone

(NCT02775903) (94). Atezolizumab is a new type of PL-L1

inhibitor and Guadecitabine (SGI-110) is a new type of HMA. In

the phase 2 clinical trial, the combination of them in the

treatment of relapsed refractory HR-MDS can get 33% ORR

and prolong the survival for some HR-MDS patients

(NCT02197676) (90). In general, these clinical trials show that

the PD-1/PD-L1 inhibitor may have better antitumor activity

and safety in some patients. The curative effect is more obvious

in primary HR-MDS patients, and it also has a certain curative

effect in patients failed by HMA, which is worthy of further

research. In addition, many clinical trials of PD-L1/PD-1

inhibitors in the treatment of HR-MDS are in progress

(Table 2) (90, 93, 94, 99, 100), which bring hope to patients.
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5.2.2 CTLA-4 inhibitor
As mentioned earlier, MDS cells have been shown to

overexpress CTLA-4 which is associated with poor prognosis.

Therefore, inhibiting CTLA-4 is also one of the potential

treatments for HR-MDS. Lpilimumab is a humanized
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monoclonal antibody against CTLA-4 (101). A phase 1b

clinical trial showed that Ipilimumab alone to treat HR-MDS

patients failed by HMA can get 21% clinical benefit rate (clinical

benefit rate is defined as disease stable condition for more than

12 months) and increase the number of effector T cells (95).
TABLE 2 Clinical trials of immune checkpoint inhibitor in MDS.

ImmuneCheckpoint Drug Phase Status YearReported IPSS Risk
Category

Outcomes Conclusion Clinical
Trial

Identifier

PD-1 Pembrolizumab Ib Completed 2016 Int-1 and Int-2
and High;HMA

failure:28

ORR=14-25%
( 1PR)

Manageable safety
profile and potential

activity

NCT01953692

Pembrolizumab
+AZA

II Recruiting 2019 Int-1 andInt-2
andHigh;HMA

failue:20,
MDSfrontline:10

HMA failue:
ORR=30%,

MDSfrontline:
ORR = 70%

Relatively safe and
well-tolerated,

mayhave antitumor
activity

NCT03094637

Nivolumab I/Ib Active not
recruiting

2020 High; post-HSCT
relapse of MDS:7

ORR=43% Moderate antitumor
activity but severe
GVHD and irAEs

NCT01822509

Nivolumab
+AZA

II Completed 2018 Int-1 and Int-2
and High;MDS
frontline:20

ORR=75% (CR/
CRp=50%)

Manageable safety
profile and potential

activity

NCT02530463

PD-L1 Durvalumab
+AZA

II Completed 2022 High;42 MDS ORR = 61. 9% No significant
difference in safety

and efficacy

NCT02775903

Atezolizumab
+Guadecitabine

I/II Active,
not

recruiting

2018 Int-1 and Int-2and
High;R/R MDS:9

ORR=33%
(HI=22%,
CR=11%)

Had an acceptable
toxicity profile

NCT02935361

CTLA-4 Ipilimumab I/Ib Completed 2018 Int-1 and Int-2and
High;HMA
failue:29

ORR=7% Safe but had limited
efficacy as a
monotherapy

NCT01757639

Ipilimumab II Completed 2018 Int-1 and Int-2
andHigh;HMA

failue:20

ORR=35% Had limited efficacy
as a monotherapy

NCT02530463

Ipilimumab
+AZA

II Completed 2018 Int-1 and Int-2
and High;MDS
frontline:21

ORR=71% (CR/
CRp=38%)

Manageable safety
profile and potential

activity

NCT02530463

CTLA-4+PD-1 Ipilimumab+
Nivolumab

II Recruiting 2018 Int-1 and Int-2
and High;HMA

failue:8

ORR = 29% Clinical activity
could be seen in R/

R MDS

NCT02530463

Ipilimumab
+Nivolumab

+AZA

II On Hold 2018 Int-1 and Int-2
and High;MDS
frontline:6

ORR=50%(3 CR) Had a better efficacy
in frontline MDS

NCT02530463

TIM-3 MBG453+DEC I/Ib Recruiting 2020 High;MDS
frontline:19

ORR=58% Hada better efficacy
andmanageable
safety profile

NCT03066648

MBG453 +
AZA

I/Ib Recruiting 2020 High;MDS
frontline:13

ORR=70% Had better efficacy
and manageable
safety profile

NCT03066648

CD-47 Magrolimab Ib Recruiting Not Reported Int-1 and Int-2
andHigh;R/R

MDS:4

Not Reported Not Reported NCT03248479

Magrolimab+
AZA

Ib Recruiting 2020 Int-1 and Int-2
andHigh;MDS
frontline:39

ORR= 91% Had better efficacy
and manageable
safety profile

NCT03248479

TTI-621
(SIRPaFc)

I Recruiting Not Reported Not Reported Not Reported Not Reported NCT02663518
ORR, overall reponse rate; Int-1, Intermediate-1; Int-2, Intermediate-2; CR, complete response; PR, partial response; CRp, complete remission with incomplete platelet recovery; CR/CRp,
complete remission or complete remission with incomplete platelet recovery; AZA, Azacitidine; DEC, Decitabine; irAEs, immune-related adverse events.
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Subsequently, Garcia Manero et al. reported the results of phase

II clinical trials of Ipilimumab to treat patients failed by HMA

and newly treated HR-MDS. It was found that Ipilimumab alone

for HR-MDS patients failed by HMA can get an ORR of 35% and

the combination of Ipilimumab and Azacytidine for newly

treated HR-MDS patients can get an ORR of 71% (96). Above

clinical trials show that the efficacy of Ipilimumab alone is

limited, and the combination of HMA and Ipilimumab is

better, but it still needs further research.

5.2.3 Anti-Tim-3 monoclonal antibody
Tim-3 is a newly discovered negative molecule of immune

regulation in recent years. The study found that the ligand of

Tim-3 is preferentially overexpressed on leukemia and MDS

HSCs compared with normal HSCs (58). This discovery

eventually led to the production of anti-TIM-3 monoclonal

antibody, and Tim-3 has become a possible new therapy way

for HR-MDS. MBG453 is a new anti-Tim-3 monoclonal

antibody. The results of phase 1 clinical trial showed that

MBG453 combination with Decitabine has achieved 50% CR

and molecular CR (MCR) in HR-MDS patients (97). Another

phase 1b clinical trial conducted by Brunner et al. has reached

similar conclusions (102). In addition, the immune related

adverse events of MBG453 in the above clinical trials were

low, and only one patient had elevated liver enzymes (grade

3). More relevant clinical trials are also in progress, as shown

in Table 2.

5.2.4 Anti-CD47 monoclonal antibody
CD47 is significantly overexpressed in MDS patients and can

combine with the receptor SIRP-a to prevent macrophages from

phagocytizing MDS cells (103). Therefore, CD47 has also

become a new target for HR-MDS, and anti-CD47 monoclonal

antibodies such as Magrolimab, TTI-621 and CC-90002 were

finally introduced into the treatment. Magrolimab, also known

as Hu5F9-G4, is a humanized anti-CD47 monoclonal antibody.

A phase 1b trial of Magrolimab combined with Azacytidine in

the treatment of HR-MDS reported 54% CR with good tolerance

and safety (104). TTI-621, also known as SIRPa-IgG1 FC, is a

unique SIRPaFc decoy receptor, which can target CD47 and

block its activity and has been shown to be effective against

recurrent or refractory hematological malignancies (105). A

clinical trial to evaluate the efficacy of TTI-621 in the

treatment of HR-MDS has entered phase I (NCT02663518)

(105). CC-90002 is another humanized anti-CD47 monoclonal

antibody. The results of phase 1 clinical trial in relapsed or

refractory HR-MDS showed that it had poor efficacy and serious

treatment-related side effects, which eventually led to the

cessation of relevant clinical trials (106).

TIGIT, LAG3 and other immunosuppressive factors are also

highly expressed in HR-MDS patients and the potential

immunotherapeutic targets of HR-MDS in theory. However,
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there is no clinical trial using relevant monoclonal antibody now.

In conclusion, the current use of immune checkpoint inhibitor

in the treatment of MDS is still in its early stage, and more

clinical trials are still needed to evaluate the safety, efficacy,

optimal timing and potential combination therapy

methods (107).
5.3 Adoptive T-cell transfer therapy

Adoptive immunotherapy is an important part of tumor

immunotherapy, and adoptive T-cell transfer therapy is one of

the important components. The three adoptive T-cell transfer

therapy represented by chimeric antigen receptor T (CAR-T)

cell therapy, Tumor infiltrating lymphocytes (TIL) therapy and

T cell receptor T cells (TCR-T) therapy provide a possibility of

“theoretical curative” for hematological tumors. Current studies

have confirmed that T-cell transfer therapy has a good effect for

lymphoma, but there are few studies on myeloid malignancies.

CAR-T cell therapy is the most common and hot adoptive T-

cell transfer therapy. The clinical trials have preliminarily

explored its role in MDS and achieved promising results.

Finding suitable target antigen is the most critical link in

CAR-T cell therapy. Natural killer type 2 receptor (NKG2D) is

a positive immunomodulatory protein on NK and CD8+T cells,

and is one of the ideal target antigens for CAR-T cell therapy in

the treatment of HR-MDS. The phase I clinical trial of NKG2D-

CAR-T cell therapy for HR-MDS is in progress (NCT02203825)

and preliminarily report transient hematological improvement

in vitro treatment, but further research is still needed (108). In

2019, Steven et al. found that the cell surface antigen CD123 was

overexpressed on MDS stem cells and was related to the MDS

risk stratification. So they proposed that CD123 could be used as

one of the targets of CAR-T cell therapy for HR-MDS patients. It

was subsequently confirmed that CD123 CAR-T cells could root

out CD123+MDS stem cells in vitro (109). In addition, early

preclinical data showed that CD123 CAR-T cell therapy can

eliminate abnormal clones of MDS in derived xenotransplantation

model (110).
5.4 DC-targeted immunotherapy

The ability to stimulate T cells and antigen presentation inMDS

patients is significantly reduced, which makes DC cells become the

new target of immunotherapy. The anti-tumor immunotherapy

targeting DC cells is DC vaccine. Monocyte-Derived DC (mo DC)

and leukemia derived DC (DCleu) are the main DC vaccines used

for AML and MDS so far. Studies have confirmed that the Mo DC

vaccine loaded with leukemia associated antigen (LAA) can

effectively promote the apoptosis of HR-MDS and AML cells,

and may produce good results for these patients (111). Christian
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et al. found that Mo DC/DCleu vaccine can activate the innate and

adaptive immune system especially leukemia specific T cells, and

enhance the killing effect on leukemia cells (112). In conclusion,

treatment based on DC/mo-DCC/DCleu may be a promising way

for HR-MDS patients, but continuous research including animal

and human trials must be carried out.
5.5 NK cell adoptive transfer therapy

With the success of adoptive cell immunotherapy in tumor

immunotherapy, NK cells have attracted more and more

attention in cell adoptive therapy because they do not need

pre-sensitization and will not lead to graft versus host disease.

Then NK cell adoptive transfer therapy appears. NK cell

adoptive transfer therapy is a new research field, which has

shown a certain effect in AML and HR-MDS. In vitro

experimental studies found that NK cells whether from

umbilical cord blood, paired donors or autologous collection

can expand in the presence of K562 leukemia cell line and

produce strong tumor cell killing effect (113). The in vivo

experiments in 16 patients with recurrent refractory MDS or

AML also found that NK cell adoptive transfer therapy had good

efficacy and tolerance, which further proved that HR-MDS

would respond to adoptive transfer therapy, and supported the

NK cell infusion as a bridge treatment before HSCT in refractory

MDS or AML (114). Although it is confirmed that targeting NK

cells may be a potential and effective therapy for HR-MDS

patients, there are few relevant studies on NK cell adoptive

transfer therapy, and further research is still needed.
5.6 Vaccine treatment

Wilms’ tumor 1(WT1) is a tumor suppressor gene located

on chromosome 11p13. The immunotherapy targeting WT1 has

been proved to induce the immune system to produce memory T

cells and effector T cells which has the functions of immune

monitoring and immune killing. Studies have confirmed that

WT1 is overexpressed in CD34+MDS/AML stem cells and is

associated with a higher blast cell counts and a lower OS (115).

Therefore, WT1 can be used as the first target antigen for vaccine

treatment for HR- MDS. The phase I clinical trial conducted by

Tawara et al. found that WT1-specific T-cell receptor gene-

transduced lymphocytes had some safety and persistence in the

treatment of AML and HR-MDS. All patients had clonal

expansion of WT1-specific T-cell (mainly CD8+T cells)

at different degrees, of which 5/8 patients continuously had

WT1-specific T-cell (UMIN000011519) (116). WT4869 is a

synthetic peptide vaccine. Suzuki et al. evaluated the safety and

efficacy of WT4869 in 25 HR-MDA/AML patients. WT1-

specific T-cell was observed in 11 patients, and the median OS

reached to 55.71 weeks (CTI-101374) (117).
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Another tumor vaccine target in HR-MDS is PR1 peptide,

which is an HLA-A2-restricted peptide targeting myeloid tumor

cells. It can be recognized by CTL, and then forms PR1 specific

CTL (PR1-CTL) to mediate the specific lysis of AML and HR-

MDS cells. Muzaffar et al. had studied the efficacy and tolerance

of PR1 peptide vaccine in HR-MDS patients. The results showed

that PR1 peptide vaccine can induce specific immunity reaction

and related clinical reactions in MDS patients including

molecular remission and no adverse autoimmunity symptoms,

which finally lead to the increase of PR1-CTL in circulating

(118). In addition, in order to evaluate the effect of the combined

application of PR1 and WT1 peptide vaccine in HR-MDS, 8

patients were vaccinated with both PR1 and WT1 peptide

vaccines at the same time. The results showed that the number

of PR1 and WT1 specific T cells increased, and stable disease

lasted for more than 2 years (NCT00499772) (119).

NY-ESO-1 is another antigen with high immunogenicity

and expressed in a variety of tumors. It is also another candidate

target antigen in MDS and AML vaccine trials. The latest study

used HLA-unrestricted NY-ESO-1 vaccine combined with

Decitabine to treat HR-MDS patients, and all patients showed

NY-ESO-1 gene expression and induced NY-ESO-1 specific

CD4+ and CD8+T cells (120). In conclusion, the current

studies suggest that tumor vaccine has a certain efficacy in

HR-MDS patients, but there are few relevant clinical studies.

Future studies should further expand related clinical studies and

explore the efficacy and safety of vaccines combined with HMA

or immune checkpoint inhibitors in the treatment of HR-MDS,

so as to induce deeper and more lasting clinical response.

In summary, the immunotherapy principle of HR-MDS is to

actively find various targets to restore and enhance the number and

function of anti-tumor immune cells and cytokines (Yang) in the

BM immunosuppressive microenvironment (Yin). The current

results of studies confirm that immune activation therapy does

have a certain effect on some HR-MDS and can improve its

prognosis. It is further confirmed that immunosuppressive

microenvironment (Yin) of HR-MDS also contains the

immunocompetent cells and can promote its proliferation

(Yang) under certain conditions (such as immune activation

therapy), that is the “Yin contains Yang” and “Yin generates Yang”.
6 Conclusions and perspectives

In the past decade, we have deeply recognized that (1): There is

a close relationship between AD and MDS, and the immune

dysregulation may be the common driving force for AD and

MDS (2); Immune dysregulation are complex and heterogeneous

in the occurrence and development of MDS. LR-MDS is immune

hyperfunction and increased apoptosis, HR-MDS is immune

suppression and immune escape, while some MDS change

dynamically which is characterized by the coexistence and

mutual transformation of immune hyperfunction and immune
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suppression (3); Immune dysregulation of MDS with different risk

stratification can be summarized by an advanced philosophical

thought “Yin-Yang theory” in ancient China, meaning that LR-

MDS and HR-MDS are opposite to each other, have a balance of

waning and waxing, depend on each other andmay transform into

its opposite side under given conditions; (4) Immunotherapy

strategy has become one of the hotspots in the treatment of

MDS in recent years, and have achieved good results in clinic.

The present research difficulties and challenges are that (1) The

internal mechanism and mutual influence of the close relationship

between AD and MDS are not yet fully clear; (2) How to identify

these MDS patients who may be transformed and the concrete

time and condition of transformation in the process of clinical

diagnosis and treatment is important; (3) Whether these MDS

patients who may be transformed can receive immunotherapy and

what kind of immunotherapy they should receive, how to monitor

the relevant immune changes in the process of treatment, and how

to adjust the immunotherapy plan in time; (4) In addition,

immunotherapy can only be said to be a promising potential

treatment at present because immune dysregulation of MDS have

great heterogeneity, so how to explore more reasonable

combination therapy to improve the clinical response rate and

OS of MDS patients is very important.

Taken together, we think that a better understanding of the

mechanisms and manifestations of immune dysregulation in

MDS with different risk stratification can help us to provide a

new breakthrough in the area of MDS immunotherapy, and

more importantly that it will provide a scientific rationale for

clinical trials. Future research should further explore the

immune dysregulation status of MDS with different risk

stratification, and actively explore the new combination

therapy ways such as immunotherapy combined with HMAs,

hoping to bring new hope to patients who fail the standard

therapy of MDS.
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Case report: A successful re-
challenge report of GLS-010
(Zimberelimab), a novel fully
humanized mAb to PD-1,
in a case of recurrent
endometrial cancer

Yeshan Chen1, Ai Huang1, Qin Yang1, Jing Yu2*†

and Guiling Li1*†

1Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China, 2Department of Radiation and Medical Oncology, Hubei Key
Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital
of Wuhan University, Wuhan, China
With the widespread use of immune checkpoint inhibitors (ICI), there is

growing concern about reports of immune-related adverse events (irAE). In

clinical practice, patients who experience severe toxicities by ICI-based

therapies would require utmost caution in resuming ICI therapy because of

the potential risk of serious irAEs caused by the reintroduction of

immunotherapy. In this study, we report a case of recurrent endometrial

cancer patient with PD-L1 positive as well as dMMR suffering from

immunotherapy-associated myocarditis after first-line treatment with ICI

combined with a multi-targeted anti-angiogenic agent. After symptomatic

treatment, the patient was in complete remission from treatment toxicities.

Subsequently, through MDT discussions, we selected a new PD-1 agent,

zimberelimab, for rechallenge therapy, and the patient achieved a sustained

disease remission without any treatment-related toxicities. To date, the

manner and timing of the ICI re-challenge has been a subject of iterative

deliberation. We believe that our experience could shed some light on ICI

rechallenge therapy, and we look forward to more literatures to refine the ICI

rechallenge scenarios.

KEYWORDS

GLS-010, re-chal lenge, immune checkpoint inhibitors , endometr ia l
cancer, myocarditis
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Introduction

With the introduction of immune checkpoint inhibitors

(ICI) such as programmed cell death-1 (PD-1) and

programmed cell death-ligand 1 (PD-L1) antibodies, a

significant improvement of the efficacy was seen in numerous

malignancies (1–3). Supported by a growing body of evidence,

ICI-based therapies have gradually crossed over from backline to

frontline treatments (4, 5) and even emerged in the neoadjuvant

front (6). In the context of widespread use of ICIs, the number of

patients developing immune-related adverse events (irAE) is

also rising (7). The category and grading of irAE can be

attributed to a variety of factors, including the type of ICIs, the

mode of administration such as monotherapy or in combined

with chemo- or radiotherapy, and the duration of ICI use, etc.

Myocarditis is a very rare but highly lethal irAE, with the

reported incidence of less than 1% (8). According to irAE

management guidelines, once myocarditis has occurred,

restarting ICI therapy requires great caution even after

complete resolution of symptoms, and the manner and timing

of ICI resumption is still an open issue. Herein, we would share a

case of endometrial cancer who had developed immune-

associated myocarditis and was successfully treated with a re-

challenge of PD-1.
Case report

A 58-year-old female patient was admitted with

“intermittent vaginal bleeding for 1 month”. After admission,

the patient was diagnosed with endometrial cancer by

hysteroscopy. On December 9, 2020, she underwent a total

hysterectomy combined with pelvic and para-aortic lymph

node dissection. The postoperative pathological diagnosis

showed low-differentiated endometrioid adenocarcinoma,
Frontiers in Immunology 02
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invading the outer 1/2 layer of the uterine wall, with a large

number of vascular carcinoma thrombi visible, no cancerous

tissue involved in the cervix and parametrium area, 1/13

metastases in the para-aortic lymph nodes and 1/33 metastases

in the pelvic lymph nodes, the combined positive score (CPS) for

PD-L1 (22C3) was 2 and the tumor presented as dMMR. Since

January 2021, the patient received 3 cycles of adjuvant

chemotherapy with liposomal paclitaxel (135 mg/m2, iv. Q3w)

in combination with carboplatin (AUC = 5, iv. Q3w), during

which, after 2 cycles of chemotherapy, she underwent an

adjuvant radiotherapy to the pelvic and para-aortic lymph

node areas at a dose of 50.4Gy in 28 fractions. On May 12,

2021, she underwent a routine computed tomography (CT)

review showing abnormally enlarged left parietal abdominal

aortic lymph nodes and diagnosed as tumor progression. On

May 21, 2021, she was enrolled in a clinical study of Fruqintinib

in combination with Sintilimab for advanced solid tumors

(registry number: CTR20190514), in which Fruquintinib (5

mg, po. d1-21, Q4w), and Sintilimab (200 mg, iv. Q3w) for 2

cycles. Fortunately, the tumor was in partial remission at the end

of 2 cycles of treatment by routine review.

However, on June 30, 2021, the patient began complaining of

shortness of breath after mild activity and abnormally elevated

blood troponin up to 250 ng/L, along with the abnormal

elevation of creatine kinase (up to 432 U/L) and lactate

dehydrogenase (up to 325 U/L). No significant abnormalities

were seen on the electrocardiogram, and she was diagnosed with

grade 2 ICI-associated myocarditis. ICI therapy was immediately

suspended and symptomatic treatment with methylprednisolone

was administered. On September 2, 2020, the patient

complained of increased chest tightness and shortness of

breath, and blood troponin showed 47.3 ng/L. Chest CT

reported interstitial pneumonia in both lungs (Figure 1A), and

genetic testing of pathogenic microorganisms from alveolar

lavage fluid was diagnosed as secondary Pneumocystis jirovecii
FIGURE 1

The performance of CT scan of the pulmonary infection induced by hormone use (A) and the result of CT image after anti-infection as well as
symptomatic treatment (B).
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infection due to immune depression. Targeted anti-infective

therapy was given, along with symptomatic treatment with

methylprednisolone combined with human immunoglobulin.

Until November 2, 2021, the patient’s shortness of breath

gradually improved, and the chest CT showed that the

inflammatory manifestations of the lungs basically disappeared

(Figure 1B), and the myocardial enzyme index returned to the

normal range. However, unfortunately, due to the interruption

of antitumor treatment for 5 months, the para-aortic lymph

nodes were significantly enlarged and fuses into clusters, which

was considered as tumor progression.

Given the benefit of previous immunotherapy, after a multi-

disciplinary treatment (MDT) discussion and a thorough risk

communication with the patient, she began treatment with

Zimberelimab (240 mg, iv. Q3w), a novel fully humanized

mAb to PD-1, from January 25, 2022, the tumor was in partial

remission after 2 cycles of treatments (Figure 2), and the disease

remained in continuous remission until our latest follow-up

visit, September 14, 2022. Surprisingly, the patient did not

experience any elevation of cardiac enzymes or symptoms

related to myocarditis throughout the immunotherapy. The

entire treatment history could be seen in Figure 3.
Frontiers in Immunology 03
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Discussion

Based on the published experience, for those who had severe

irAEs, the restart of ICI therapy can be implemented in three

main scenarios: first, by switching from anti-PD-(L)1 antibodies

to anti-CTLA-4 approach or vice versa, which must be initiated

on the premise that both types of ICI have a definite efficacy in

that disease; second, by choosing the same class of ICI but with a

different agent when irAEs have largely resolved; and third, the

restarting ICI should be under conditions where a secondary

prevention efforts has been well-established (9).

In this case, by a multidisciplinary discussion, we chose to

restart ICI therapy in the second script. A retrospective study

that adopted the same class of ICI re-challenge method reported

that 40 (50%) of the 80 patients would reoccur with varying

degrees or types of toxicities, but only 14 (18%) cases would

experience a recurrence of those initial irAEs (10). Another

retrospective study including 38 NSCLCs showed that by the

same type of ICI treatment, 18 (48%) patients would not

experience any further irAEs and 10 (26%) patients developed

new irAEs, compared with only 10 (26%) of the initial irAEs.

These recurrent and new irAEs were mild and manageable (11).
FIGURE 2

Results of abdominal MRI scans before and after ICI rechallenge treatment in a patient with endometrial cancer. Prior to PD-1 rechallenge, T2-
weighted image (A) and T1-weighted enhanced scans (C) showed enlarged lymph nodes visible next to the abdominal aorta. After 2 cycles of
PD-1 rechallenge, T2-weighted image (B) and T1-weighted enhanced sequence (D) indicated that those lymph nodes achieved partial
remission. The yellow arrow represented tumor locations.
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Accordingly, it is worthwhile to consider similar PD-(L)1

rechallenge therapy for this patient. Through 6 cycles of

treatment, her disease achieved a well control. More

importantly, she did not experience any further irAEs.

Targeting inhibition of vascular endothelial growth factor

(VEGF)/VEGF receptor 2 (VEGFR2) could not only reduce

tumor growth but also improve the vascular normalization

and modulate the response to immunotherapy (12). Although

the patient suffered from the immune myocarditis after first-line

Fruqintinib/Sintilimab treatment, we could not deny that the

modulation of the immune microenvironment by Fruqintinib

underlined her long survival benefit.

It has been reported that cardiovascular toxicity is one of the

major toxicities of anti-angiogenic drugs (13). However,

published literature showed that the most common toxicities

of the multitargeted agent, Fruqintinib, were hypertension,

coagulation disorders, and thrombosis. Elevated cardiac

enzymes were a very rare event. Therefore, we hypothesized

that the myocardial injury in this case was largely attributed to

ICI-related toxicity.

To summarize, our courage to re-challenge ICI was based on

the following conditions. Her postoperative pathological results

showed tumor was positive PD-L1 expression and dMMR status,

which strongly predicted that she would most likely benefit from

PD-1 therapy (14, 15), and previous literatures showed that the

risk of initial irAEs after re-challenge treatment was not

irreversible and those initial toxicities did not necessarily
Frontiers in Immunology 04
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return. Then, Zimberelimab, as a new PD-1 antibody, has not

been reported any cardiovascular events based on the current

evidence. In addition, there are no superior later line options for

her after failure from first-line therapy. In light of the recent

study, Zimberelimab has demonstrated favorable preliminary

results in the recurrent gynecologic malignancies (16). Finally,

on the basis of MDT, we reduced the dose intensity of

Zimberelimab (from 240mg Q2w to 240 mg Q3w) to possibly

maximize the safety of the restart ICI treatment.
Patient perspective

Although ICIs-associated myocarditis is an uncommon

event, it is a highly lethal toxicity. According to retrospective

studies, the probability of recurrence of initial toxicities after

ICIs re-challenge was less than 30%. It was confirmed by our

case report that, under the framework of MDT, PD-1 re-

challenge would be feasible and manageable for those who are

potential benefit from ICIs.
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FIGURE 3

The entire treatment history of a patient with recurrent endometrial cancer treated with PD-1 rechallenge.
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The development of chimeric antigen receptor T (CAR-T) cell therapy, a specific

type of immunotherapy, in recent decades was a fantastic breakthrough for the

treatment of hematological malignancies. However, difficulties in collecting

normal T cells from patients and the time cost of manufacturing CAR-T cells

have limited the application of CAR-T-cell therapy. In addition, the termination of

related clinical trials on universal CAR-T cell therapy has made further research

more difficult. Natural killer (NK) cells have drawn great attention in recent years.

Chimeric antigen receptor-NK (CAR-NK) cell therapy is a promising strategy in the

treatment of malignant tumors because of its lack of potential for causing graft-

versus-host disease (GVHD). In this review, we will address the advances in and

achievements of CAR-NK cell therapy.
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Introduction

In recent decades, CAR-T-cell therapy was a research focus and was thought to be a

promising targeted immunotherapy, especially in the treatmentof relapsedandrefractoryB-cell

malignant tumors. To date, two CD19-CAR-T-cell therapies have been approved for the

treatmentofacute lymphocytic leukemia(ALL)anddiffuselargeB-cell lymphoma(DLBCL)(1).

StudiesofCAR-Tcells targetingCD38andBCMAforthetreatmentofmultiplemyeloma(MM)

have been implemented in clinical trials (2). However, CAR-T cell therapy is still facing several

problems. The FDA has terminated all clinical trials concerning universal CAR-T-cell therapy

due to safety consideration and related increased attention on gene editing. It is also difficult to

collect sufficient numbers of T lymphocytes from patients who have been heavily pretreated.

Furthermore, several weeks of CAR-T-cell preparation time hinder the use of this therapy to

patients with rapid disease progression (3). In addition, cytokine release syndrome (CRS) and
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neurological toxicity (NT), the most common adverse events of

CAR-T-cell therapy, are life-threatening (4). All of these factors

may restrict further clinical applications of CAR-T-cell therapy.

In recent years, NK cells have been regarded as an alternative to

T cells due to their accessibility and safety (5). Considering the short

duration in vivo, the cytotoxicity and adverse events of CAR-NK-

cell therapy are better manageable than those of CAR-T cell

therapy. Moreover, the lower incidence of GVHD induced by NK

cells makes them a promising immunotherapy for allogenic cell

transplantation (6). CAR-NK-cell therapy has thus become a

research hotspot and new strategy for malignancies.

In this review, we will discuss the similarities and differences

between CAR-T cells and CAR-NK cells and focus on recent

advances and preclinical studies of CAR-NK cells.
The biological characteristics
of NK cells

NK cells are innate immune effectors and are found mainly in

the bone marrow, peripheral blood, spleen and liver (7). NK cells

possess cytotoxic features similar to those of CD8+ T cells and play

important roles in tumor immunology. CD8+ T-cell-mediated

cytotoxicity relies on the combination of the T-cell receptor

(TCR) and an antigen presented by major histocompatibility

complex-I (MHC-I). NK cells can recognize MHC-I expressed on

healthy cells and avoid attacking them (8, 9). Tumor cells can

down-modulate MHC-I to escape CD8+ T-cell-mediated

cytotoxicity, while NK cells can be activated through the loss of

MHC-I and control the proliferation and metastasis of tumors (8,

10). Thus, NK cells have more specific anti-tumor effects and are

associated with fewer off-target complications (9, 11).

The activation of NK cells can be mediated through different

pathways, including signals from Toll-like receptors (TLRs)

recognizing pathogen-associated molecular patterns (PAMPs),

cytokines such as interleukin (IL)-2 or IL-15, and interplay

between activating and inhibitory receptors (7, 12, 13). Activating

NK-cell receptors include members of the natural cytotoxicity

receptor (NCR) family (NKp30, NKp44 and NKp46), C-type

lectin-like activating receptors (NKG2C and NKG2D), activating

killer immunoglobulin receptors (KIR2DS1, KIR2DS4 and

KIR2DL4) and costimulatory receptor DNAX accessory molecule

1 (DNAM-1) (14). While killer cell immunoglobulin-like receptors

(KIRs) and the heterodimeric C-type lectin receptor NKG2A are

inhibitory receptors associated with the tolerance of NK cells to

normal cells (14).
The sources of NK
cells for immunotherapy

NK cells for preclinical studies and clinical therapy may be

derived from a wide range of sources, such as peripheral blood
Frontiers in Immunology 02
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(PB), cord blood (CB), hematopoietic stem cells (HSCs), induced

pluripotent stem cells (iPSCs) and NK-cell lines (15–19).

The most accessible source of NK cells is peripheral blood.

However, a number of issues limit the use of NK cells from

peripheral blood, including the high monetary and time costs,

low cell proliferation capacity and short survival time (20). The

expression of genes related to the cell cycle and cell proliferation

is higher in NK cells from umbilical cord blood (UCB) than in

those from peripheral blood (21). Furthermore, the advantages

of UCB-derived NK cells, including the convenience of

collection and low associated incidence of GVHD, make UCB

a better source of NK cells than PB (22, 23). In addition, human

stem and progenitor cells (HSPCs) isolated from cord blood can

also be derived into NK cells with the stimulation of various

growth factors and cytokines, including IL-2, IL-7 and IL-15

(24). Similarly, NK cells can also be derived from iPSCs in the

presence of these stimulators (25).

NK-cell lines, mostly derived from NK/T-cell lymphoma

(NKTCL) patients, such as the NK-92 and KHYG-1 cell lines,

may be a potential rapid and abundant source for NK cells for

immunotherapy (26, 27). These cell lines are easily transduced

and maintain cytotoxicity during expansion. The NK-92 cell

line, obtained from a good manufacturing practice (GMP)-

compliant master cell bank and treated in a GMP-compliant

procedure, is the only cell line approved by the FDA for clinical

use (28, 29). Since the first report of the transfusion of irradiated

NK-92 cells for adoptive immunotherapy of malignancies (30)

and the first CAR-NK-92 cells targeting HER-2 (31), NK-92 cells

has been applied in several clinical trials, and some encouraging

results have been achieved in the treatment of refractory

lymphoma, multiple myeloma and other solid tumors. Several

patients even achieved a complete response (CR) (32–34). NK-

cell lines must be irradiated before infusion due to the risk of

tumor engraftment and tumorigenicity. The short lifespan of

irradiated cells may result in treatment failure or a short

duration of disease remission, thus limiting their clinical

application (32, 33, 35).
The similarities and
differences between
CAR-T cells and CAR-NK cells

CARs consist of an extracellular domain (a single-chain variable

antibody fragment (scFv) or a functional domain of a specific

ligand) for the identification of target antigens, a transmembrane

region and an intracellular domain (36). The intracellular domain of

CAR-T cells is composed of CD3z activation signaling (first

generation of CARs) and costimulatory molecules (CD28, 4-1BB

or CD134) (second or third generation of CARs) (Figure 1A). Based

on NK-cell characteristics, several CAR-NK cells contain DNAX-

activation protein (DAP) 10 or DAP12 as an intracellular domain
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(Figure 1C). DAP12 and NKG2D are expressed on NK cells and

participate in the activation of downstream signals, while DAP10 is

necessary for NKG2D costimulatory signaling. These CAR-NK cells

were mainly designed for the treatment of both leukemia and solid

tumors and showed strong anti-tumor effects (37, 38). A lack of

cytokines such as IL-2 or IL-15may lead to the short in vivo lifetime

of NK cells. NK cells can be engineered to both express CARs and

autonomously produce IL-2 or IL-15 (fourth generation of CARs),

thus enhancing their persistence and proliferation (Figure 1B)

(39, 40).
Frontiers in Immunology 03
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Lentivirus-based vectors have been extensively used in CAR

gene transduction of T cells. Compared with T cells, NK cells

showed resistance to viral transfection and lower transduction

efficiency, which may be due to the natural capacity of NK cells

to defend against viral infection (41, 42). Other approaches,

including retroviral vectors, transposon vectors and the

electroporation of DNA or mRNA plasmids, are alternative

ways to transfer the CAR gene into NK cells (43–48).

CAR-T cells can kill tumor cells with specific target antigens

through active cell lysis and the production of cytokines,
A

B

C

FIGURE 1

The structure of chimeric antigen receptors (CAR). (A) CAR consist of an extracellular antigen binding domain, a transmembrane hinge and
intracellular domain. The extracellular domain could be a single chain fragment of variable region (ScFv) antibody or a functional domain of
specific ligand. The intracellular domain is composed of a signaling domain (first generation) and one costimulatory domain (second generation)
or two (third generation). (B) Fourth generation CARs include a constitutive or inducible expression of a transgenic product (cytokine,
chemokine or receptor, etc.). (C) Differences in CAR constructs between CAR-T and CAR-NK: CAR-T cells usually contains a CD8
transmembrane domain, CD3z signaling domain and 4-1BB and/or CD28 costimulatory domain. CAR-NK cells may be with different domains
(for example, NKG2D transmembrane domain, DAP10 or DAP12 signaling domain and 2B4 costimulatory domain).
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including IL-1a, IL-2, IL-6, IL-8, IL-10, and tumor necrosis

factor-a (TNF-a) (6, 49). However, these cytokines are also

highly associated with CRS and severe neurotoxicity (49). CAR-

NK cells secrete a different cytokine profile, such as IFN-g and
GM-CSF, which are associated with a lower risk of CRS and

neurotoxicity (50). In addition, CAR-NK cells can lyse tumor

cells directly by releasing cytoplasmic granules containing

perforin and granzyme or inducing tumor cell apoptosis by

expression of Fas ligand or TNF-related apoptosis-inducing

ligand (TRAIL) (51). NK cells also participate in antibody-

dependent cellular cytotoxicity (ADCC) (52). NK cells can

activate and interact with other immune cells, such as T cells,

dendritic cells and macrophages (53). All these features enable

them to exert anti-tumor activity in pathways other than the

CAR-specific pathway and reduce the risk of relapse or

resistance mediated by target antigen escape (54–56).
Preclinical studies of
CAR-NK cells in the treatment
of hematopoietic malignancies

NK cells have been engineered to express CARs to redirect

their activity against B-cell malignancies. To date, CD19 is the

most common target in both preclinical and clinical studies of

CAR-T-cell therapy. Similarly, a number of preclinical studies of

CAR-NK therapy have focused on this target. NK-92 cells

engineered with CARs recognizing CD19 showed increased

cytotoxicity against B-cell malignancies (57, 58). CD19-CAR-

NK cells from other cell sources, including PB, iPSCs and CB,

also showed activity against B-cell malignancies in vitro (40, 59,

60). Other molecules, including CD20 and Flt3, were also

developed as specific targets for CAR-NK immunotherapy

against B-cell tumors (61, 62).

CD38 and CD138 are classic markers of plasma cells and are

highly expressed in multiple myeloma (MM). Although CD38-

CAR-T-cell therapy for MM and CD38-CAR-NK-cell therapy

for acute myeloid leukemia (AML) have been reported in several

studies (63, 64), CD38-CAR-NK cells have not been evaluated

for the treatment of multiple myeloma. Jiang et al. developed

CD138-targeting CAR-NK cells and demonstrated enhanced

anti-tumor activity in vitro and in xenograft mouse models

(65). B-cell maturation antigen (BCMA) is another ideal target

for CAR cell therapy due to its restricted expression in B-cell

lineage cells. BCMA-CAR-NK cells modified with CXCR4

significantly reduced the tumor burden and extended the

survival of tumor-bearing mice (66). Signaling lymphocytic

activation molecule family member 7 (SLAMF7 or CS1) is

another potential target for its high expression in plasma cells

and MM. Second-generation CS1-specific CAR-NK-92 cells
Frontiers in Immunology 04
9190
were established by Chu et al. and showed cytotoxicity against

CS1-positive MM cells and xenograft models (67).

To date, T-cell malignancies, including peripheral T-cell

lymphoma and T-cell acute lymphoblastic leukemia (T-ALL),

remains a refractory disease. Three CAR-NK cell therapies

targeting CD3, CD5 and CD7 have been investigated for the

treatment of T-cell malignancies. These modified CAR-NK-92

cells showed significant anti-tumor cytotoxicity against T-cell

lymphomas and T-ALL both in vitro and in vivo (68–70).

In addition to specific tumor markers, antigens that are

widely expressed in multiple malignancies have been developed

as immunotherapy targets. For example, NKG2D ligands are

expressed on a variety of tumor cells. MHC class I chain-related

protein A (MICA), an NKG2D ligand, has been identified on

some leukemia cells and solid tumor cells, such as lung, breast,

ovary and colon cancer cells (71–73). NKG2D ligands have also

been detected on MM cells and glioma cells (74, 75). Leivas et al.

developed engineered NK cells targeting NKG2D ligands in MM

(76). Data from in vitro tests and mouse models showed

enhanced anti-tumor activity of NKG2D-CAR-NK cells

compared with memory CAR-T cells (76). Du et al. generated

peripheral blood-derived NK cells coexpressing NKG2D-specific

CAR and IL-15 and demonstrated their activity in lysing tumor

cells both in vitro and in a xenograft AML model (77).
Preclinical studies of CAR-NK cells
in the treatment of solid tumors

Although CAR-T-cell therapies have achieved great progress

in the treatment of hematological malignancies, their effect on

solid malignancies has been poor. This poor efficacy may be due

to the insufficient homing capacity and the immunosuppressive

tumor microenvironment (78). Thus, CAR-NK cell therapies for

solid tumors have become a promising immunotherapy strategy.

Glioblastoma, breast cancer and ovarian cancer are the most

widely researched solid tumors to determine the potential of

CAR-NK-cell therapy (summarized in Table 1).
Glioblastoma

Glioblastoma is the most common malignant primary

cerebral tumor in adults. Even though patients undergo

surgical resection and receive radio- and/or chemotherapy, the

median survival time is approximately 15 months (98).

Interleukin-13 receptor a2 (IL-13Ra2), epidermal growth

factor receptor (EGFR), EGFR variant III (EGFRvIII) and

growth factor receptor tyrosine kinase Erb2 (HER2) have been

explored as immunotherapy targets for glioblastoma. They are
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overexpressed in 40-60% of glioblastoma patients, while these

antigens are undetectable or only minimally expressed in normal

brain tissue (99–102). IL-13Ra2 can enhance the invasiveness of

glioblastoma (103). EGFRvIII drives tumorigenicity and

mediates resistance to radiotherapy and chemotherapy (104,

105). Together, IL-13Ra2 and EGFRvIII can promote the

proliferation of glioblastoma cells (103), while overexpression

of HER2 contributes to malignant transformation (106).

There have been several preclinical studies of IL-13Ra2-
specific CAR-T-cell therapy in the treatment of glioblastoma

(107–110). Other studies demonstrated the significant

cytotoxicity of CAR-T cells against EGFRvIII- or HER2-

positive glioblastoma both in vitro and in vivo (111–114).

Until now, most preclinical studies of CAR-NK-cell therapy

for glioblastoma were targeting EGFR, EGFRvIII and HER2.

Different NK cells, including NK-92, NKL, KHYG-1 and YTS

cells, engineered to target EGFR and/or EGFRvIII, showed

enhanced cytotoxicity against glioblastoma both in vitro and

in vivo (80–83). CAR-NK cells recognizing both EGFR and
Frontiers in Immunology 05
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EGFRvIII showed stronger anti-tumor effects than single

targeted NK cells (84). NK-92/5.28z cells, engineered HER2-

specific NK cells with CD28 and CD3z signaling domains, have

been demonstrated to have the ability to lyse HER2-positive

glioblastoma cells in vitro and in orthotopic glioblastoma

xenograft NSG mouse models (79).
Breast cancer

As a very common malignancy in female patients, breast

cancer is another solid tumor that is studied for CAR-NK-cell

immunotherapy. Similar to glioblastoma, HER2, EGFR and

EGFRvIII are also targets for breast cancer.

The anti-tumor activity of NK-92/5.28z cells was also

evaluated in HER-2-positive breast cancer. Data revealed that

tumor cells expressing HER-2 enhanced the proliferation and

cytokine release (such as granzyme B, IFN-g, IL-8 and IL-10) of

NK-92/5.28z cells [87]. The modified NK-92 cells displayed
TABLE 1 Preclinical studies of CAR-NK cell therapy.

Malignancy Target Source of NK cells Reference

Hematological cancer

B-cell malignancies CD19 NK-92, PB-NK or CB-NK (40, 57–60)

CD20 NK-92 (61)

Flt3 NK-92 (62)

Multiple myeloma CD138 NK-92 (65)

BCMA NK-92 (66)

CS1 NK-92 (67)

NKG2D PB-NK (77)

T-cell malignancies CD3 NK-92 (68)

CD5 NK-92 (69)

CD7 NK-92 (70)

AML NKG2D PB-NK (77)

Solid cancer

Glioblastoma HER2 NK-92 (79)

EGFR and/or EGFRvIII NK-92, NKL, KHYG1 or YTS (80–84)

Breast cancer HER2 NK-92 (29, 85, 86)

EGFR and/or EGFRvIII NK-92 or PB-NK (87)

EpCAM NK-92 (88)

TF NK-92 (89)

B7-H6 NK-92 (90)

Ovarian cancer HLA-G PB-NK (91)

CD24 NK-92 (92)

CD44 NK-92 (93)

CD133 NK-92 (94)

Mesothelin iPSC-NK or NK-92 (95, 96)

aFR NK-92 (97)
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significant cytotoxicity in vitro and in xenograft mouse models

(85). NK-92 cells engineered to target HER2 developed by Liu

et al. also demonstrated similar anti-tumor effects (86).

A second-generation CAR that can recognize both EGFR

and EGFRvIII was constructed by Chen et al. (87). NK-92 cells

transduced with this CAR showed enhanced cytotoxicity and

production of IFN-g against breast cancer cells. Xenograft mouse

models of breast cancer brain metastasis were used for in vivo

evaluation of anti-tumor activity. CAR-NK-92 cell infusion

significantly suppressed tumor growth. Similarly, two EGFR-

targeted CAR-NK cells were developed (87). Cytokine release

and cytotoxicity assays were performed and revealed that EGFR-

CAR NK cells specifically lysed triple-negative breast cancer cells

in vitro and suppressed breast cancer cell line-derived xenograft

and patient-derived xenograft (PDX) tumors in mouse

models (87).

Epithelial cell adhesion molecule (EpCAM), tissue factor

(TF) and B7-H6 have also been reported as targets for the

treatment of breast cancer. Studies have shown the increased

tumor killing ability of these CAR-NK-92 cells against breast

cancer cells (88–90).
Ovarian cancer

Ovarian cancer is a highly malignant tumor with a 5-year

survival rate lower than 40% (115). Several studies have focused

on CAR-NK immunotherapies for the treatment of

ovarian cancer.

Human leukocyte antigen G (HLA-G) is a tumor-associated

antigen (TAA) that is expressed on 40-100% of solid tumors and

a limited subset of immune-privileged tissues and adult tissues,

such as erythroid precursors and pancreatic islets (116, 117). Jan

et al. developed CAR-NK cells targeting HLA-G and evaluated

the synergy of CAR-NK cells combined with low-dose

chemotherapy (118). Jan et al. developed CAR-NK cells

targeting HLA-G and evaluated the synergy of CAR-NK cells

combined with low-dose chemotherapy (116). Their study

showed that pretreatment with low-dose chemotherapy can

induce the overexpression of HLA-G, thus enhancing the anti-

tumor cytotoxicity of HLA-G-CAR-NK cells (91).

Since cancer stem cells (CSC) play an important role in

metastatic spread and chemoresistance in solid tumors, CSC

markers such as CD24, CD44 and CD133 have been explored as

specific targets for ovarian cancer immunotherapy (92–94).

CAR-NK-92 cells targeting CD24, CD44 or CD133 have

shown significant anti-tumor effects in preclinical studies

(92–94).

Mesothelin and folate receptor alpha (aFR) are alternative

targets that are overexpressed in ovarian cancer. Both iPSC-
Frontiers in Immunology 06
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derived CAR-NK cells and NK-92 cell line-derived CAR-NK

cells targeting mesothelin showed robust specific anti-tumor

activity both in vitro and in vivo (95, 96). Ao et al. developed

aFR-targeted CAR-NK-92 cells and demonstrated not only their

antigen-specific cytotoxicity and proliferation in vitro but also

their ability to eliminate cancer cells in mouse models (97).
Clinical applications of CAR-NK cells

Since the first CAR-NK-cell clinical trials (NCT00995137,

clinicaltrials.gov) started in 2009, there have been 39 studies

registered in clinicaltrials.gov evaluating the feasibility, safety

and efficacy of CAR-NK cells in the treatment of malignancies.

Eight clinical trials sponsored by PersonGen BioTherapeutics

and Asclepius Technology Company Group, including

NCT02742727, NCT02839954, NCT02892695, NCT02944162,

NCT03941457 , NCT03931720 , NCT03940820 and

NCT03940833, which were estimated to be completed in

2018-2019, have been stopped updating for 3 years. It’s a pity

that no data of these trials were reported till now. The rest of 31

trials were summarized in Table 2.

Similar to CAR-T-cell therapies, most CAR-NK-cell trials

target markers on hematopoietic malignancies, such as CD19,

CD20, CD22 and BCMA. Notably, there have been eight CAR-

NK-cell clinical studies have focused on solid malignancies,

which are thought to poorly responsive to CAR-T cells. These

CAR-NK cells may target markers such as HER2, NKG2D,

mesothelin and PSMA expressed on malignancies, including

brain, prostate, ovarian, pancreatic and lung cancers (Table 2).
Discussion

Studies in recent years suggest that CAR-NK-cell therapies

may be equally effective as CAR-T-cell therapies. Compared

with CAR-T cells, CAR-NK cells have multiple advantages for

the treatment of malignancies. CAR-NK-cell therapy seldom

causes severe CRS or neurotoxicity. The low associated risk of

GVHD and the safety of allogeneic NK-cell infusion shorten the

time of cell preparation, which greatly benefits patients with

lymphopenia or rapid progression. However, several

nonnegligible problems still exist. The best source of NK cells

and their in vitro expansion strategy, and the most effective

signaling domain for CAR activation still need to be elaborated.

Antigen escape and tumor heterogeneity, the most common

difficulties in immunotherapies, as well as in vivo duration, are

also problems to be considered. CAR-NK-cell immunotherapy is

still in its early stages. Strategies to improve the efficacy and
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TABLE 2 Clinical trials for CAR-NK cell immunotherapy.

NO. NCT Other
Name/ID
Numbers

States Start
Date

Phase Disease Target Sponsor locations NK
source

NCT00995137 NKCD19
R01CA113482
NCI-2011-
01226

Completed in May 2013. October
2009

I B-Lineage Acute
Lymphoblastic
Leukemia

CD19 St. Jude Children’s Research
Hospital

PB-NK

NCT01974479 NKCARCD19 Suspended for an interim
review of (CAR) CD19
research strategy

September
2013

I B-Lineage Acute
Lymphoblastic
Leukemia

CD20 National University Health
System, Singapore

PB-NK

NCT03056339 2016-0641
NCI-2018-
01221

Active, not recruiting
Primary results
published.(119)

June 21,
2017

I and
II

B Lymphoid
Malignancies

CD19 M.D. Anderson Cancer
Center

UCB-NK

NCT03383978 EudraCT
2016-000225-
39

Recruiting December
1, 2017

I Glioblastoma HER2 Johann Wolfgang Goethe
University Hospital

NK-92

NCT03415100 NRC-NK-01 Completed Results
submitted in February 2021

January 2,
2018

I Metastatic Solid Tumors NKG2D The Third Affiliated
Hospital of Guangzhou
Medical University

PB-NK

NCT03656705 CNK-101 Enrolling by invitation September
29, 2018

I Non-small Cell Lung
Carcinoma

PD-1 Xinxiang medical university NK-92

NCT03692663 TABP EIC-01 Recruiting December,
2018

Early I Castration-resistant
Prostate Cancer

PSMA Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03824964 CD19/CD22
CAR NK-
BJZL-01

Unknown February 1,
2019

Early I Relapsed or Refractory
B Cell Lymphoma

CD19/
CD22

Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03692767 CD22 CAR
NK-BJZL-01

Unknown March
2019

Early I Relapsed and Refractory
B Cell Lymphoma

CD22 Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03690310 CD19 CAR
NK-BJZL-01

Unknown March
2019

Early I Relapsed and Refractory
B Cell Lymphoma

CD19 Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03692637 Mesothelin
Car NK-
HNRM-01

Unknown March
2019

Early I Epithelial Ovarian
Cancer

Mesothelin Allife Medical Science and
Technology Co., Ltd.

PB-NK

NCT04245722 FT596-101 Recruiting March 19,
2020

I B-Cell Lymphoma,
Chronic Lymphocytic
Leukemia

CD19 Fate Therapeutics iPSC-NK

NCT04623944 NKX101-101 Recruiting September
21, 2020

I Adults With AML or
MDS

NKG2D Nkarta Inc. PB-NK

NCT05215015 IBR733-T01
WX-IBR-7

Recruiting November
30, 2020

Early I Acute Myeloid
Leukemia

CD33/
CLL1

Wuxi People’s Hospital Unknown

NCT04639739 CAR NK for
NHL

Not yet recruiting December
17, 2020

Early I Relapsed or Refractory
B Cell Non-Hodgkin
Lymphoma

CD19 Xinqiao Hospital of
Chongqing

Unknown

NCT04747093 ITNK-2021 Recruiting January 29,
2021

I and
II

B Cell Malignancies CD19 Nanfang Hospital of
Southern Medical
University

Induced-T
Cell
Like NK
cells

NCT04796675 CAR-NK-
CD19 cells

Recruiting April 10,
2021

I B Lymphoid
Malignancies

CD19 Wuhan Union Hospital,
China

CB

NCT04887012 IR2021002168 Recruiting May 1,
2021

I Refractory or Relapsed
B-cell Non Hodgkin
Lymphoma

CD19 Second Affiliated Hospital,
School of Medicine,
Zhejiang University

PB-NK

NCT05020678 NKX019-101 Recruiting August 20,
2021

I Adults With B-cell
Cancers

CD19 Nkarta Inc. PB-NK

NCT05137275 IBR854-03 Recruiting November
24, 2021

Early I Locally Advanced or
Metastatic Solid Tumors

5T4 Shanghai East Hospital Unknown

NCT05008536 BCMA NK for
MM

Recruiting October 1,
2021

Early I Relapsed or Refractory
Multiple Myeloma

BCMA Xinqiao Hospital of
Chongqing

UCB-NK
and CB-NK

(Continued)
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safety of CAR-NK-cell immunotherapy must be further explored

in the future.
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TABLE 2 Continued

NO. NCT Other
Name/ID
Numbers

States Start
Date

Phase Disease Target Sponsor locations NK
source

NCT05247957 CARNK-001 Recruiting October
13, 2021

I Relapsed or Refractory
Acute Myeloid
Leukemia

NKG2D Hangzhou Cheetah Cell
Therapeutics Co., Ltd

UCB-NK

NCT05213195 CARNK-002 Recruiting December
10, 2021

I Refractory Metastatic
Colorectal Cancer

NKG2D Zhejiang University Unknown

NCT04847466 10000096,
000096-C

Recruiting December
14, 2021

II Recurrent or Metastatic
Gastric or Head and
Neck Cancer

PD-L1 National Cancer Institute
(NCI)

NK-92

NCT05008575 CD33 CAR
NK-AML

Recruiting December
23, 2021

I Relapsed or Refractory
Acute Myeloid
Leukemia

CD33 Xinqiao Hospital of
Chongqing

Unknown

NCT05194709 IBR854-T01,
WX-IBR-8

Recruiting December
30, 2021

Early I Advanced Solid Tumors 5T4 Wuxi People’s Hospital Unknown

NCT05379647 NK-002 (QN-
019a)

Recruiting November
4, 2021

I B-Cell Malignancies CD19 Zhejiang University iPSC-NK

NCT05182073 FT576-101 Recruiting November
24, 2021

I Multiple Myeloma BCMA Fate Therapeutics iPSC-NK

NCT05110742 2021-0526 Not yet recruiting June 30,
2022

I and
II

Relapse or Refractory
Hematological
Malignances

CD5 M.D. Anderson Cancer
Center

CB-NK

NCT05092451 2021-0386 Not yet recruiting August 1,
2022

I and
II

Relapse or Refractory
Hematological
Malignances

CD70 M.D. Anderson Cancer
Center

CB-NK

NCT05336409 CNTY-101-
111-01

Not yet recruiting December
2022

I Relapsed or Refractory
CD19-Positive B-Cell
Malignancies

CD19 Century Therapeutics, Inc. iPSC-NK
fro
Allife Medical Science and Technology has just revised the completion date of NCT03692663. As for their other clinical trials, NCT03824964, NCT03692767, NCT03690310 and
NCT03692637, we are looking forward to their renewal.
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Effects of gut microbiota
on immune responses and
immunotherapy in
colorectal cancer

Xinxin Hou †, Zongmei Zheng †, Jiao Wei and Ling Zhao*

Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
China
Accumulating evidence suggests that gut microbial dysbiosis is implicated in

colorectal cancer (CRC) initiation and progression through interaction with

host immune system. Given the intimate relationship between the gut

microbiota and the antitumor immune responses, the microbiota has proven

to be effective targets in modulating immunotherapy responses of preclinical

CRC models. However, the proposed putative mechanisms of how these

bacteria affect immune responses and immunotherapy efficacy remains

obscure. In this review, we summarize recent findings of clinical gut

microbial dysbiosis in CRC patients, the reciprocal interactions between gut

microbiota and the innate and/or the adaptive immune system, as well as the

effect of gut microbiota on immunotherapy response in CRC. Increased

understanding of the gut microbiota-immune system interactions will benefit

the rational application of microbiota to the clinical promising biomarker or

therapeutic strategy as a cancer immunotherapy adjuvant.

KEYWORDS

colorectal cancer, gut microbiota, inflammation, immune response, immunotherapy
Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading

cause of cancer-related death with more than 1.9 million new cases and 935,000 deaths

estimated to occur in 2020 worldwide (1). Although risk factors are recognized as western

dietary patterns, excess body weight, and lifestyle factors including heavy alcohol

consumption and cigarette smoking, the specific underlying pathogenetic mechanisms

are still not fully-elucidated.

The gut microbiota has been discussed widely over the past decades which plays an

important role in all the different phases of CRC process from oncogenesis to metastasis,

from treatment to prognosis prediction (2, 3). Investigators have identified specific

microbial features relevant to CRC, data from cross-sectional epidemiological studies and
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unbiased microbiome profiling of stools and colorectal tissues

have uncovered specific bacterial taxa that contribute to CRC

(4). Mechanistic insights into a microbe’s contributions to

carcinogenesis support that gut microbiota alterations induce

genotoxin production, inflammation, metabolic regulation, and

local and systemic immune response, thereby influencing the

development of CRC (5). Immune escape or suppression has

long been proposed to constitute a critical step in both tumor

formation and progression (6). Studies have highlighted that

intact mucosal immunity maintains a balanced bacterial

composition in the gut, whereas disruption of this

immunological circuit, either prior to, or as a consequence of

tumor development, accelerates CRC initiation and progression

(7, 8). In addition, some specific bacterial taxa are shown to

regulate immunotherapy responses in both animal models and

human cohorts (9–12). In this sense, researchers are focusing on

the deep and complex relationship between microbiota and

immune regulation to better understand cancer biology and to

formulate novel therapeutic approach. In this review, we outline

the clinical findings of changes in gut microbiota composition in

CRC patients, highlight potential mechanisms of gut

microbiota-modulated immune responses and the possible

impacts on responses to immunotherapy in CRC.
Clinical findings of microbial
changes in CRC patients

Next-generation sequencing studies have revealed the

potential association of microbial compositional changes

(dysbiosis) within CRC patients, including increased

proportions of Fusobacterium nucleatum, Bacteroides fragilis,

Escherichia coli, and Streptococcus, Peptostreptococcus species

(13–15). These findings raised the possibilities for clinical

applications using gut microbiota analysis as screening,

prognostic or predictive biomarkers. Moreover, deciphering

key microbiome signatures within different stages of cancer

progression may offer possibilities for treatment stratification

and metastasis surveillance (16). The gut microbiota changes

across all stages of CRC patients were summarized in Table 1. As

indicated, dynamic shifts in microbial composition in gut

microbiota were observed during multistep CRC progression.
Gut microbiota elicits
tumor-promoting inflammation

It is well-known that chronic inflammation is a risk for CRC

initiation and development. Overall, 2.2 million new cancer cases

were attributable to infections by different etiological agents,

including viruses, bacteria and parasites in 2018, representing

13% of all cancer cases (28). The bacterium enterotoxigenic
Frontiers in Immunology 02
10099
Bacteroides fragilis (ETBF) is a significant source of chronic

inflammation and has been implicated as a risk factor for CRC,

which can up-regulate spermine oxidase (SMO)-dependent

generation of reactive oxygen species (ROS) and induce

inflammation, leading to DNA damage in colonic epithelial cells

(29). Diverse cytokines like tumor necrosis factor (TNF)a,
interlukin (IL)-6, IL-1b, IL-23, and IL-17, can be triggered by

microbes or their products, contribute to the progression of

intestinal tumorigenesis (30). Upon invading the stroma, bacteria

can trigger both innate responses via recognition through pattern

recognition receptors (PRRs), eliciting secretion of a repertoire of

cytokines and chemokines. Streptococcus gallolyticus has long been

associated with colonic pathologies. Although a causal relationship

to CRC is not clear, increased production of inflammatory factors,

including cyclooxygenase (COX)-2, IL-1 and IL-8, in Streptococcus

gallolyticus-bearing tumor tissue might indicate its possible

contribution to tumor progression (31). Fusobacterium

nucleatum has been reported to drive a pro-inflammatory

intestinal microenvironment through metabolite receptor

-dependent modulation of IL-17 expression in Apcmin/+ mice

(32). Fusobacterium nucleatum colonization leads to increased

intestinal short chain fatty acid (SCFA) levels and human CRC

tissues harboring Fusobacterium nucleatum are primed to sense

these immunomodulatory metabolites, with higher expression of

the genes encoding the SCFA receptors FFAR2 and NIACR1.

Furthermore, in Ffar2-/- mice, Fusobacterium nucleatum failed to

increase Th17 cell frequency, suggesting that Fusobacterium

nucleatum shaped Th17 response is FFAR2-dependent (32). The

inflammasome NACHT, LRR, and PYD domains-containing

protein 3 (NLRP3) is a global sensor of pathogen-associated

molecular pattern molecules (PAMPs) and damage-associated

molecular patterns (DAMPs) and its activation leads to secretion

of both IL-1b and IL-18. Studies have provided evidence to indicate
that the gut microbiota serve as critical modulators of

inflammasome activity and susceptibility to the development

of intestinal inflammation and cancer (33). Indeed, the presence

of some of the cytokines (IL-17, IL-6, IL-1b, TNFa) also correlate
withpoorprognosis inCRCpatients (34).The chronic activationof

inflammatory signals not only suppresses adaptive immune

responses but simultaneously supports tumor growth, via

mechanisms such as the increased release of growth and

immunomodulatory factors (35). For example, tumor infiltrating

myeloid cells release growth factors, such as epidermal growth

factor (EGF), hepatocyte growth factor (HGF), and fibroblast

growth factor (FGF) (36, 37). These growth factors can support

cancer cell proliferation, survival, motility, and invasion, by

triggering the activation of MAPK, Wnt/b-catenin or PI3K/AKT/

mTOR signaling pathway, thus facilitate CRC progression (38).

The continuation of inflammatory responses and tumor

progression to malignancy on the one hand, changes the

composition of immune cells from immune activators to

immune suppressors, on the other hand, potential cytokines and

chemokines facilitate the recruitment of immune cells with
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immunosuppressive functions, suchasmyeloid-derived suppressor

cells (MDSCs) and regulatoryT cells (Tregs) (39), which eventually

maintains tumor cell survival and immune escape (discussed

below). In addition, chronic inflammation is now accepted as a

major influence in the outcome of CRC, treatment with anti-

inflammatory (such as aspirin) mitigates CRC progression and

extends patient survival (40).
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Gut dysbiosis facilitates immune
escape in CRC

Here, we outline the potential mechanisms of microbial-

modulated immune escape from innate and adaptive immune

perspectives and discuss dysbiosis-immune interaction during

CRC progression.
TABLE 1 Summary of microbial changes across stages of CRC.

References Specimens Sample size Stage I Stage II Stage III Stage IV

(15) Stool Healthy (n = 251)
MP (n = 67)
S0 (n = 73)
SI/II (n = 111)
SIII/IV (n = 74)

↑ Gemella morbillorum ↑ Fusobacterium nucleatum, Colinsella aerofaciens, Dorea
longicatena, Porphyromonas uenonis, Selenomonas
sputigena, Streptococcus anginosus, Desulfovibrio
vietnamensis, Bilophila wadsworthia

(16) Tissue Healthy (n=61)
Adenoma (n=47)
Carcinoma
(n=52)

↑ Fusobacterium, Parvimonas, Gemella, Leptotrichia
↓ Bacteroides, Blautia, Faecalibacterium prausnitzii,
Sutterella, Collinsella aerofaciens, Alistipes putredinis

— —

(17) Stool Healthy (n=358)
Adenoma (n=42)
S0-II (n=47)
SIII-IV (n=44)

↑ Fusobacterium nucleatum, Peptostreptococcus stomatis,
Porphyromonas asaccharolytica;
↓ Eubacterium Rectale, Eubacterium eligens,
Streptococcus salivarius

— —

(18) Stool Healthy (n=45)
CRC (n=53)

↑ Enterobacteriaceae, Fusobacterium nucleatum;
↓ Lactobacillus, Bifidobacterium, Clostridium cluster I

— —

(19) Tissue SI (n=7)
SII (n=37)
SII (n=31)

↑
Peptostreptococcus,
Parvimonas

↑ Fusobacterium, Streptococcus,
Parvimonas, Burkholderiales,
Caulobacteraceae, Delftia,
Oxalobacteraceae

↑ Fusobacterium,
Burkholderiales,
Caulobacteraceae,
Oxalobacteraceae,
Faecalibacterium,
Sutterella

—

(20) Tissue
Stool

S0 (n=8)
SI-II (n=97)
SIII-IV (n=73)

— — ↑ Peptoclostridiu, Akkermansia; ↓ Gelria

(21) Tissue Dysplasia (n=3)
Adenocarcinoma
(n=15)

— — ↑ Fusobacteria, b-Proteobacteria

(22) Stool Healthy (n=178)
SIII-IV (n=74)

— — ↑ Fusobacterium nucleatum, Peptostreptococcus stomatis,
Gemella morbillorum, Parvimonas micra

(23) Stool Healthy (n=187)
SI-II (n=74)
SIII-IV (n=63)

— ↑ Fusobacterium nucleatum, Parvimonas micra

(24) Tissue SI-II (n=12)
SIII-IV (n=11)

↑ Escherichia, Halomonas, Shewanella, Granulicatella,
Lactobacillus

↑ Bacteroides, Prevotella, Peptostreptococcus,
Streptococcus, Ruminococcus, Fusobacterium,
Akkermansia;
↓ Granulicatella, Lactobacillus

(25) Tissue SI-II (n=32)
SIII-IV (n=48)

↑ Dietzia, Paludibacter, Porphyromonadaceae,
Propionibacterium

↑ Granulicatella, Coprococcus, Phycisphaeraceae

(26) Stool Healthy (n=30)
SI-II (n=19)
SIII-IV (n=23)

↑
Peptostreptococcus,
Collinsella
Ruminococcus,
Parvimonas,
Peptostreptococcus

↑ Hydrogenoanaerobacterium ↑ Akkermansia ↑ Phascolarctobacterium,
Parasutterella,
Comamonas, Cloacibacillus,
Olsenella;
↓ Escherichia-Shigella, Alistipes,
Blautia, Eisenbergiella,
Intestinimonas, Eggerthella,
Anaeroglobus

(27) Stool Healthy (n=91)
SI-II (n=39)
SIII-IV (n=32)

↑ Klebsiella quasipneumoniae, Klebsiella oxytoca,
Klebsiella variicola

↑ Faecalibacterium prausnitzii, Bacillus cereus,
Lactococcus species
MP, multiple polypoid adenomas with lowgrade dysplasia; S0, intramucosal carcinoma, stage 0/pTis CRC; SI, stage I CRC; SII: stage II CRC; SIII, stage III CRC; SIV, stage IV CRC.
↑, increase in the abundance; ↓, decrease in the abundance.
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Modulating innate immune surveillance
against tumors

The immune system has an extraordinary capacity to

recognize and respond to a range of microbial patterns and

danger signals. The first cells to fight microbes are the myeloid

derived innate immune cells (41). Bacterial species that

translocate through the epithelial barrier induce recruitment of

myeloid cells. Through their PPRs, these cells recognize

microbes, thus influencing the type and intensity of innate and

adaptive immunity (42). Dysbiosis can enhance gut

responsiveness to bacteria and its products, however during

chronic infections, it may lead to a miscoordination between

inflammation and immune suppression, thus favors tumor

growth. In fact, an important feature of tumors is the

generation, development, and expansion of myeloid cells with

special immunosuppressive properties including tumor-

associated neutrophils (TANs), tumor-associated macrophages

(TAMs), regulatory dendritic cells (DCs), and MDSCs (43). For

example, Fusobacterium promotes the growth of colorectal

cancer through the induction of the activity of MDSCs and

TAMs (44, 45). Tumor invading pathogen bacteria also trigger

the activation of neutrophils that infiltrate into tumor stroma,

whereby the earliest tumor-infiltrating neutrophils may serve to

inhibit expansion of colon microbiota to limit tumorigenesis and

progression (46–48). However, established tumors may evolve a

more pro-tumorigenic TAN phenotype and elicit the production

of tumor-promoting cytokines (49). Neutrophils can also

produce ‘neutrophil extracellular traps’ (NETs), upon

activation to ensnare and neutralize pathogens. Recent studies

highlight the function of NETs in cancer progression and

metastasis, NETs are able to wake up dormant cancer cells

promoting cancer relapse, and are able to entrap circulating

cancer, thus enhancing metastasis spread (50). Bacteria

derivations also play a role in escalating the tumor-associated

immune suppression. Tryptophan-derived microbial

metabolites activate the aryl hydrocarbon receptor in TAMs to

suppress anti-tumor immunity (51). Gut microbiota tend to

produce butyrate, which in turn can inhibit the DCs’ antigen

presentation (52, 53). Beyaz et al. showed that high fat diets

(HFDs) resulted in changes in the composition of the gut

microbiota (54), and in a Kras-driven mouse model of

intestinal cancer, HFD-altered gut microbiome, which, in turn,

resulted in reduced major histocompatibility complex (MHC) II

expression on DCs and engages in immune evasion (55),

suggesting that dietary in association with the gut microbiota,

are critical modulators to the development of intestinal cancer.

In addition to the aforementioned myeloid cells, another

example is the inhibitory effect of Fusobacterium nucleatum on

natural killer (NK) cells. Fusobacterium nucleatum produces the

Fap2 protein, which binding to the inhibitory receptor T cell

immunoglobulin and ITIM domain (TIGIT) on NK cells, thus
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directly inhibiting cell-killing of tumor cells (56). Yet, we have

very little insight into the roles of microbiota on innate immune

cell populations, further studies are needed to interrogate the

precise functional contributions of gut microbe on these innate

immune cell subsets.
Reprogramming adaptive
anti-tumoral responses

With improved tools, recent work has suggested two broad

categories of bacteria-related tumor escape of adaptive immune

attack: 1. Microbes influence anti-tumor effectors directly by

serving as antigens which mediate recognition by host T cells

(57, 58), 2. Microbes facilitate the resistance of immune attack

through the immune suppressive pathways such as inducing

immune exhaustion (59, 60).

Intestinal microbiota has been proposed to induce

commensal-specific memory T cells that cross-react with

tumor-associated antigens. Indeed, memory responses by

CD4+ and CD8+ T cells specific for Enterococcus hirae,

Bacteroides fragilis, and Akkermansia muciniphila are

associated with favorable clinical outcome in cancer patients

(11, 57, 58), suggesting that microbe-specific T lymphocytes may

contribute to anti-tumoral immune responses. The optimal

recognition of the antigen induces a specific activation of T

cells, thereby driving T cell activation and differentiation of

CD4+T cell subsets into Th1, Th2, and Th17 or Tregs (61, 62). It

should be noted that dysbiosis induced T cells are capable of

switching their phenotypes, which in turn set the proclivity to

inflammatory, immunostimulatory or immunosuppressive

reactions depending on tumor context and specific bacteria.

The modulation by distinctive microbiome antigens can also

consequently affect the activation of cytotoxic CD8+ T cells that

limit the direct lysis of cancer cells (63).

In cancer, like in chronic infection, the long exposure to the

antigen leads to a dysfunction of T cells, represents the state of

“exhaustion” (64, 65). In the early stage of azoxymethane

(AOM)/dextran sulfate sodium (DSS) mice model, gut

dysbios is ( increased Prevote l laceae and decreased

Anaeroplasmataceae) promoted tumorigenesis by stimulating

CD8+ T cells activation, durable hyperstimulation of CD8+ T

cells resulted in T cell exhaustion, leading to increased tumor

susceptibility (66). Microbiota can also provoke sustained

expression of the inhibitory molecules, such as cytotoxic T

lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin and

mucin domain-containing protein 3 (TIM3), programmed cell

−death protein 1 (PD−1), or the ligand PD-L1, which are the

most prominent examples of immune−checkpoint molecules

underlying immune−escape mechanisms (60). The FAS/FAS

ligand (FASL) apoptotic pathway is also highly relevant to

immune evasion, which induces apoptosis of lymphocytes
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(67). Histopathological analyses have revealed that FASL is

upregulated in metastatic tumor compared the primary tumor

in patients with CRC (68). Thus, simultaneous loss or

downregulation of FAS and upregulation of FASL on tumor

cells might contribute to tumor evasion of immune−mediated

cytolysis. The microbiota-derived SCFAs, such as butyrate, can

be absorbed across the intestinal epithelium and exert their

influence on T cells via G-protein-coupled receptors (GPRs).

Butyrate was shown to promote cellular metabolism, enhance

memory potential of activated CD8+ T cells through promoting

mitochondrial function and cellular metabolism (69). Taken

together, these findings reveal a role for the microbiota in the

modulation of T cell responses in CRC which may have

important implications on immunotherapy.

As another important adaptive immune cell type, B cells

perform immune surveillance as antigen presenting cells (APCs)

or function by stimulating immunoglobulins (Ig A) and

producing cytokines (IL-10, TGFb, often terms as regulatory B

cells, Bregs) (70). Changes in gut microbiota composition and a

diverse role of B cells have been implicated at the mucosal

interface. Helicobacter hepaticus colonization has been shown to

relieve tumor burden in CRC mice and increase B cells

maturation and infiltration (71). Parvimonas micra was also

shown to be closely associated with the antigen-presenting HLA-

DR (+) B cells in a CRC cohort (72). In another study of familial

adenomatous polyposis (FAP), loss of resident memory T cells

and gd T cells, excess IgA antibody secretion and increased IgA+

peripheral B cells were found to accompany intestinal microbial

dysbiosis, implicating mucosal immune dysfunction as a

contributing factor in the etiology of CRC (73). Above studies

highlighted the interactions between microbiota and B cells in

CRC, but the underlying mechanism remains largely unresolved.

Some recent reports have shed light on the microbial

metabolites, SCFAs and microbial tryptophan catabolites to

regulate B cell activation and antibody responses (74–76).

More recently, Wang et al. found that leucine-tRNA-

synthetase-2 (LARS2)-expressing B cell (LARS B) with TGF-

b1-dominant feature correlates with shortened survival in CRC,

mechanistical ly, LARS2 programmed mitochondrial

nicotinamide adenine dinucleotide (NAD+) regeneration and

oxidative metabolism, thus determining the regulatory feature of

LARS B cells in which the NAD-dependent protein deacetylase

sirtuin-1 (SIRT1) was involved (77).

Overall, the immune impact of gut microbiota on CRC

partially depends on shaping innate and adaptive immune

responses (e.g., suppressing immunosurveillance, inducing T

cell exhaustion and apoptosis, etc.), consequently leading to

immune escape (Figure 1). In future, clarification of possible

role of microbiota in modulation of populations and functions of

innate and adaptive immune cells, as well as the crosstalk

between different types of immune cells remain important

research areas.
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Role of gut microbiota in shaping
an immune-privileged (pre-)
metastatic niche

Although studies have observed the presence of microbiota

in metastatic liver or lung organs of CRC patients, the underline

mechanisms by which microbiota affects CRC metastases

formation are only now being uncovered. In the secondary

sites, immunosuppressive cell types, such as TAMs and

MDSCs populate (pre) metastatic niches, where they help

direct metastatic dissemination by creating a niche that is

permissive to tumor colonization (78). These cells have been

shown to achieve these pro-tumoral functions by (1) generating

a proinflammatory milieu (2), remodeling the matrix and

creating a pro-angiogenic, pro-invasive environment (3),

maintaining an immunosuppressive microenvironment, and

(4) secreting growth factors that maintains the growth of

metastatic cells. Pathogen Escherichia coli can upregulate

Cathepsin K (CTSK) expression which serves as a vital

mediator between the imbalance of intestinal microbiota and

CRC metastasis (79). CRC-secreted CTSK stimulates CRC

progression through accelerating M2 polarization of TAMs in

a TLR4-mTOR-dependent pathway. Meanwhile, cytokines (IL-

10, IL-17) secreted by activated M2 macrophage, in turn,

promote CRC cells invasion and metastasis by activating NF-

kB pathway (79). Fusobacterium nucleatum can boost liver

metastasis by modulating liver microenvironment featured

with accumulation of MDSCs, and reduction of NK and Th17

cells (80, 81). Peptostreptococcus anaerobius was also reported to

induce chronic inflammation and modulate tumor

microenvironment by recruiting MDSCs, TANs and TAMs

(82). More recently, Bertocchi et al. demonstrate that

Escherichia coli induces gut vascular barrier (GVB) disruption,

which allows bacteria to reach the liver and initiate the

recruitment of inflammatory cells, contributing to pre-

metastatic niche maturation and favoring metastases

formation (83). These results demonstrate that host microbiota

acts as a key modulator during CRC metastasis by facilitating

(pre-) metastatic niche formation which support cancer cells

seeding in secondary organs (Figure 2). Re-education of the

metastatic niche, through alterations in metastasis-related

bacteria and associated pathways, may have favorable

consequences for metastatic CRC therapy.

Microbiota influence response of
cancer immunotherapy

Cancer immunotherapies, specifically immune checkpoint

inhibitors (ICIs) PD-1/PD-L1 and CTLA-4, have become

effective strategies for cancer treatment (84). The reciprocal

interactions between gut microbiota and cancer immune
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response raised the possibility that gut microbiota could

significantly influence cancer immunotherapy response. In

CRC, microbiota-based methods to enhance immunotherapy

efficacy has not yet been demonstrated in human cohort.

However, in animal models, specific bacterial species have

been shown associated with immunotherapy response,

including Bifidobacterium spp (9, 85). Bacteroides fragilis (10),

Akkermansia muciniphila (11, 86), and Alistipes shahii (12). In

Microsatellite Stability (MSS)-type CRC tumor-bearing mice,

changes in gut microbiome affected the expression of immune-

r e l a t ed cy tok ine s IFN-g and IL-2 in the tumor

microenvironment, resulting in a different therapeutic effect of

PD-1 antibody, and Prevotella_sp._CAG:485 and Akkermansia

may maintain the normal efficacy of PD-1 antibody (87). Mager

et al. investigated the efficacy of ICIs therapy in both AOM/DSS

induced colitis-associated cancer and MC38 tumor-bearing

models, they found that Bifidobacterium pseudolongum,

Lactobacillus johnsonii, and Olsenella species—that significantly

enhanced efficacy of anti-PD-L1 and anti-CTLA-4 (88). Another
Frontiers in Immunology 06
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study identified that tumors in antibiotic-treated or germ-free

mice did not respond to CTLA-4 blockade, oral gavage of

Bacteroides thetalotaomicron, Bacteroides fragilis, Burkholderia

cepacia, or the combination of Bacteroides fragilis and

Burkholderia cepacian recovered the anticancer response to

CTLA-4 Ab following antibiotic treatment in mice

subcutaneously engrafted with MC38 cells (10). Tanoue et al.

isolated a consortium of 11 bacterial strains that is capable of

enhancing therapeutic efficacy of ICIs in subcutaneous MC38

tumor models (89). Furthermore, gut microbiota was shown to

impact immunotherapy efficacy related to innate responses.

Researchers have observed that systemic administration of

Bifidobacterium converts the nonresponder mice into

responders to anti-CD47 immunotherapy and improves the

antigen-presenting capacity of DCs (90). Song et al. found that

an engineered LPS-targeting fusion protein significantly boosts

anti-PD-L1 therapy against CRC tumors (91), suggesting that

anti-LPS treatment may promote anti-PD-L1 immunotherapy

for mouse model of CRC. Collectively, these results indicate that
FIGURE 1

Overview of gut microbiota-modulated immune responses in tumor progression. The underlying actions and mechanisms by which the
microbiota affects tumor immune escape are summarized as follows: 1) Under pathogenic conditions (dysbiosis), bacterial species that
translocate through the epithelial barrier induce recruitment of myeloid cells. Myeloid cells recognize microbes via their pattern recognition
receptors (PPR). During this process, the immunosuppressive mechanisms observed in the tumor microenvironment (TME) are activated
underlie chronic infections. 2) Intestinal microbiota and intra-tumoral bacteria can be directly presented by antigen-presenting cells, thereby
driving T cell activation and differentiation of CD4+T cell subsets into Th1, Th2, and Th17 or Tregs. Microbiota may also inhibit the dendritic
cells’ antigen presentation, consequently decreasing the CD8+T cell response. 3) By modulating T cell immune checkpoint receptor-ligand pairs
(e.g., CTLA-4/CD80/CD86 and PD1/PD-L1/PD-L2), they impact T cell exhaustion, and directly impacting efficacy of immune checkpoint
inhibitors. Additional mechanisms of immune escape include expression of the apoptotic proteins FAS/FASL to induce immune cell apoptosis. 4)
Gut microbiota may also regulate B cell infiltration, development, and polarization. These B cells exert anti/pro-tumor immunity through acting
as APCs to reshape T cell responses, secreting tumor/bacteria-specific antibodies (IgA), and producing cytokines (IL-10, TGFb), all of which are
associated with immune processes in CRC.
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the gut microbiota could be used to develop new therapeutic

strategies to enhance CRC immunotherapy response. Recently, a

human clinical trial (NCT04729322) which studies the effect of

fecal microbiota transplant and re-introduction of anti-PD-1

therapy (pembrolizumab or nivolumab) for the treatment of

metastatic CRC in anti-PD-1 non-responders is under

recruiting. Although still under investigation, we are beginning

to exploit the tremendous potential of the gut microbiota to

predict immunotherapy response, and to enhance immune

surveillance for a more precise immunotherapeutic intervention.
Conclusions and perspectives

It is important to decipher the specialized roles of gut

microbiota in regulating the immune response in cancer, as the

current landscape of the gut microbiota-host immune axis has

expanded from basic research to clinical development (92). We

have gained insights into the gut microbiota dysbiosis in CRC

patients (Table 1). However, considerable challenges remain, for

example, although multiple studies have identified specific

bacteria that are associated with CRC, inconsistency across

these studies exists. This may due to diverse life styles, various

diet patterns and different disease stages, since gut microbiome

varied substantially according to these factors (93). More studies

mining of clinical large cohort data, omics, and preclinical

models are needed to facilitate consensus for potential
Frontiers in Immunology 07
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characteristics of bacterial alternation and to determine

whether such changes are a cause or an effect in CRC

development. Additionally, although we have deepened our

view on the innate and adaptive immune responses modulated

by gut microbiota in CRC (Figure 1), owing to the complex

relationship between commensal and pathogenic microbes and

host immunity, more detailed studies of the sophisticated

network between gut microbiota and host immune system are

required. In CRC, the individual heterogeneity between patients

in the response to ICIs is largely associated with the gut

microbiota composition, suggesting that manipulation of gut

microbiota could improve immunotherapy responses (2).

Therapeutics that target microbiota is explored in conjunction

with cancer immunotherapies such as FMT, prebiotics,

probiotics, Chinese traditional medicine, and dietary

approaches (94–97). At present, microbial intervention is

mainly performed in preclinical studies at the animal level,

whereas it is not yet tested with large samples in the context of

clinical trials and more clear mechanisms of effective microbiota

to enhance immune surveillance and influence immunotherapy

responses remain unknown in CRC.

In summary, substantial efforts must be devoted to pursue a

deeper understanding of the mechanistic links and to exploit for

clinical benefit. The insight gained into the specialized functions

of the microbiota on immunity and cancer will help to apply gut

microbiota-based strategies into the clinical anti-tumor adjuvant

therapies, particularly in the context of conjunction with

existing immunotherapies.
FIGURE 2

Overview of gut microbial dysbiosis on CRC initiation and metastasis. Dysbiosis can cause a chronic, pro-inflammatory milieu, by eliciting
secretion of a repertoire of cytokines or growth factors, and thereby facilitates tumor cell invasion, adhesion, extravasation and survival. Some
pathogens (eg: Escherichia coli) can induce gut vascular barrier (GVB) disruption, which allows bacteria to reach the distant organ and initiate
the recruitment of immune cells with immunosuppressive functions, such as MDSCs and Tregs. Thus, the microbiota can contribute to the
immune escape of distant tumors, the pre-metastatic niche maturation, adhesion, angiogenesis, and eventually the formation of metastasis.
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The mechanisms on evasion of
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Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin
University, Changchun, Jilin, China
The immune system and the tumor have been at each other’s throats for so

long that the neoplasm has learned to avoid detection and avoid being

attacked, which is called immune evasion. Malignant tumors, such as gastric

cancer (GC), share the ability to evade the body’s immune system as a defining

feature. Immune evasion includes alterations to tumor-associated antigens

(TAAs), antigen presentation mechanisms (APMs), and the tumor

microenvironment (TME). While TAA and APM are simpler in nature, they

both involve mutations or epigenetic regulation of genes. The TME is

comprised of numerous cell types, cytokines, chemokines and extracellular

matrix, any one of which might be altered to have an effect on the surrounding

ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/b-catenin, Notch,
Hippo and TGF-b/Smad signaling pathways are all associated with gastric

cancer tumor immune evasion. In this review, we will delineate the functions

of these pathways in immune evasion.

KEYWORDS

gastric cancer, immune evasion, tumor associated antigen, antigen presentation,
tumormicroenvironment, signaling pathway
Abbreviations: APCs, antigen-presenting cells; APM, antigen presentation mechanism; CAFs, cancer-

associated fibroblasts; CCL, C-C motif chemokine ligand; CCR, C-C motif chemokine receptor; CD, cluster

of differentiation; CTLs, cytotoxic T lymphocytes; CTLA-4, cytotoxic T lymphocyte associated protein 4;

CXCL, C-X-C motif chemokine ligand; IDO 1, indoleamine 2,3-dioxygenase 1; MDSCs, Myeloid-derived

suppressor cells; MHC, major histocompatibility complex; TAA, tumor-associated antigen; TAMs, tumor-

associated macrophages; TAP, transporter associated with antigen processing; Teff, effector T cell; TGF-b,

transforming growth factor-b; Th cell, helper T cell; TME, tumor microenvironment; TNF-a, tumor

necrosis factor-a; Treg, regulatory T cell.
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1 Introduction

Gastric cancer (GC) was fifth most frequently occurring and

fourth most lethal among malignant tumors worldwide as of the

year 2020 (1). GC is a malignant disease characterized by a

convoluted immune response, in particular to persistent

inflammation. Therefore, the immune system is pivotal in

cancer initiation and progression (2). As our understanding of

gastric cancer’s immune-related research grows, we find that

gastric cancer’s immune escape mechanism is distinct from that

of other malignancies. This could point immunotherapy against

GC in a novel route. In 2002, Gavin P. Dunn and Robert D.

Schreiber developed the notion of tumor immunoediting, which

divides the process into three stages: elimination, equilibrium

and evasion (3). The preclinical tumor is killed during the

elimination stage of the immune response to neoplasms. To

survive the immune system’s destruction during the equilibrium

phase, tumor cells may constantly mutate, for example. There is

a dynamic equilibrium between the breakdown of the immune

system and the growth of tumor cells. Malignant tumors, such as

GC, are characterized by immune evasion, the ability of the

neoplasm to elude the monitoring and attack of the immune

system (4). Antigen loss or variation, a deficiency in class I Major

Histocompatibility Complex (MHC I) molecules, the production

of immune-suppressing cytokines, a lack of co-stimulators and

other immune-suppression mechanisms are all biological

processes that contribute to immune evasion (5). We classify

them as follows: loss or alterations in tumor-associated antigen

(TAA), damage to the antigen presentation mechanism (APM),

and immunosuppression by the tumor microenvironment

(TME). The immune system plays a crucial role in tumor

development, hence researchers are looking into using

immunologic techniques to increase the longevity of GC

patients. Despite the fact that tumor immunotherapy

(especially immune checkpoint inhibitor) has had a lot of

achievements, many patients do not respond to treatment and

many cases become resistant to treatment. For this reason, it is

essential to always be on the lookout for cutting-edge therapies.

Multiple signaling pathways have emerged as possible

contributors to immune evasion. Inhibitors of signaling

pathways may therefore form part of future immunotherapies.

Consequently, the signaling pathway is highlighted as a crucial

component of GC’s immune evasion strategy in this paper.
2 The mechanism of
immune evasion

In order to escape immune monitoring and eradication,

tumor cells modify their TAA and APM in a number of ways,

then entering the final evasion stage (5). Tumor cells that have

evaded the immune system are able to survive and have an effect
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on the tumor microenvironment (TME) through a number of

signaling pathways, dampening the anti-tumor immune

response (6).
2.1 Escaping surveillance by invalid TAA

To a certain extent, TAA can be divided into three categories

(7): first, TAA presented on the surface of tumor cells by major

histocompatibility complex (MHC) molecules or antigen

presenting cells (APCs) and recognized by autoantibody or

heteroantibody; second, target molecules or ligands recognized

by natural killer (NK) cell receptors; and third, TAA presented

on the surface of tumor cells by MHC molecules or APCs and

recognized by autoantibody or heteroantibody (APCs).

Correspondingly, TAA’s modulation can also be divided into

three groups: 1) the up-regulation of immunosuppressive

antigen; 2) the loss of original recognized antigen; 3) the

generation of unrecognizable antigens (4). Antigen expression

is known to be influenced by epigenetic regulation, as well as

mutations in genes (8). A genetic mutation is any alteration to

the gene’s base pair sequence or makeup. Epigenetic regulation is

the heritable alteration of gene expression that does not involve a

change in nucleotide sequence and includes DNA methylation,

histone modification, and regulation by non-coding RNA

(ncRNA). Gene silencing occurs when DNA is methylated at

the C-terminus of 5’-CpG-3’ by DNA methyltransferases

(DNMTs) to produce 5-methylcytosine (5-mC) (9). Enzymes

collaborate to modify histones in various ways, including

methylation, acetylation, phosphorylation, ubiquitination and

ADP ribosylation (10). Complexity of the regulation

mechanisms of ncRNAs in immune evasion will be detailed in

the later section.

Carcinoembryonic antigen (CEA), HER2, carbohydrate

antigen 19-9 (CA19-9) and CA72-4 are some of the most

common GC autoantigens. They are highly expressed, but

their immunological impact is quite modest (11). The main

function executor is a member of the CEA family called CEA-

related cell adhesion molecule-1 (CEACAM1). Evidence

suggests that CEACAM1 inhibits NKG2D ligand (NKG2DL)

expression in tumor cells (11). To make tumor cells more

susceptible to NK cell-mediated cytotoxicity, Chen et al. (11)

found that silencing CEACAM1 in mice and human tumor cells

increases surface NKG2DL expression. Since HER2 belongs to a

member of the EGFR family, it can also activate the downstream

PI3K/AKT and ERK pathways, which in turn control cell

proliferation, invasion and migration (12). Previous studies

have shown that CD8+ cytotoxic T lymphocytes (CTLs) can

recognize HER2, which aids in the immune system’s fight

against tumors (12). A recent study by Wu et al. (13)

demonstrates, however, that HER2 protects cancer cells from

STING-mediated innate antitumor immunity by activating

AKT1, suggesting that HER2 recruits AKT1 to lower STING
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signal, hence restricting anti-virus defense and anti-tumor

immunity. Nevertheless, the mechanism by which CA19-9 and

CA72-4 play a role in immune escape remains unexplored at this

time and warrants further investigation.

The main activating receptor expressed by NK cells, NK

group 2D (NKG2D), binds to ligands such as MHC class I

peptide related sequence A (MICA), MICB and six UL16

binding proteins (ULBPs) (14). The primary ligand on the

surface of tumors is a variant of the traditional MHC protein

called MIC A/B. Both b2-microglobulin (b2m) and antigen are

inaccessible to MIC A/B (14). Gene promoter hypermethylation,

histone deacetylation and protein shedding contribute to

reduced MIC A/B expression on tumor surfaces (15, 16),

hence dampening NK cell-mediated innate immunity.

Immune checkpoints (ICPs) and co-inhibitory molecules

(CIMs) consist of ligands and their respective receptors.

Particularly, these ICPs are focusing on the PD-1/PD-L1 field.

PD-L1 on the tumor surface interacts to PD-1 on the T cell

surface, leading to T cell depletion (17). Studies show that PD-L1

is highly expressed on the surface of tumors, and its induction

process is complex. Helper T (Th) cells, cytotoxic T lymphocytes

(CTLs) and natural killer (NK) cells that have been activated can

all generate interferon (IFN), which can then activate the JAK/

STAT pathway and lead to PD-L1 expression. In the meantime,

IL-10 can boost PD-L1 expression (12, 18). Moreover, the C > G

variant of the rs4143815 SNP in the 3’-UTR of the PD-L1 gene

increases PD-L1 expression and may increase cancer risk (19).

Tumor-associated macrophage (TAM) production of tumor

necrosis factor alpha (TNF-a) and interleukin-6 (IL-6)

positively regulated PD-L1 (20). High expression of MHC II in

GC cells can be partially explained by the lack of traditional co-

stimulatory proteins CD80 and CD86 in the tumor, which limit

MHC class II recognition (21). In addition, researchers

discovered a decreased expression of co-stimulatory molecules

such as 4-1BBL (tumor necrosis factor receptor superfamily

member 9 ligands), B7-1 and CD40 on the tumor surface (22–

24). ICPs inhibitors paired with co-stimulatory molecular

agonists may be a viable way for tumor treatment, according

to these studies. CD47, also called integrin-related proteins, is a

cell surface glycoprotein of 50-kDa that inhibits APM induced

by macrophages through the “don’t eat me” signaling CD47/

SIRP pathway (25). Macrophage-mediated innate immune and

APM inactivation is aided by the CD47/SIRP (signal-regulatory

protein) axis, which inhibits phagocytosis by downregulating

integrin signal activation from the interior of macrophages (26).

The MYC mutation causes CD47 upregulation and contributes

to PD-L1 overexpression in a similar fashion (27). The work by

Yoshida K et al. (25) found that GC that express the surface

marker CD47 proliferated strongly in both vitro and in vivo.

Factor-associated suicide (Fas) is a member of the tumor

necrosis factor (TNF) family of type II transmembrane proteins.

It is also known as CD95 or apoptosis antigen-1 (Apo-1). This

protein has the ability to connect with its ligand, set off the
Frontiers in Oncology 03
111110
apoptosis cascade, and maintain a pro-apoptotic environment

(FasL) (28). Activated T and NK cells are the most common

sources of FasL. Wang et al. found that low levels of Fas

expression on the surface of GC cells were associated with a

poor prognosis in vitro studies (29). The rs2234767 G> A

polymorphism in the Fas promoter region may be associated

with susceptibility to GC (30), which may be associated with

SNP-induced down-regulation of Fas. Similarly, epigenetic

changes can affect Fas expression. Fas expression was

downregulated due to hypermethylation of its promoter

region (31).
2.2 Escaping surveillance by
damaged APM

Antigen presentation involves antigen processing and

degradation by APCs such macrophages and dendritic cells

(DCs), followed by presentation of the antigen peptide/major

histocompatibility complex (MHC) complex to T lymphocytes

(32). APCs deliver antigen polypeptides by joining them with

processed MHC class II for specific recognition by CD4+ T

lymphocytes (33). CD8+ T lymphocytes, and in particular CTLs,

are capable of direct MHC class I detection (34).

The major histocompatibility complex (MHC) family is a

group of membrane proteins responsible for presenting antigens

on cell surfaces, where they can be recognized by T lymphocytes,

which then kill the cell (35). The humanMHC locus, also known

as the human leukocyte antigen locus, is found on chromosome

6 and contains around 200 genes (HLA) (35). Many malignant

tumors include aberrant expression of class I and class II

molecules, the primary types responsible for presenting

antigens to T lymphocytes (36). HLA class I molecules consist

of the heavy chains (HLA-A, -B, -C, -E, -F and -G) and the b2m
(37). Changes in epigenetic regulation and a mutation in the

HLA gene, called b2m, are primarily responsible for the

dramatic reduction in class I HLA expression (38–40). Down-

regulation of HLA class I is caused by hypermethylation of the

promoters of the HLA-A, -B and -C genes, which is a hallmark

of GC (39, 40). An example is the finding by Ye et al. that

promoter methylation is linked to reduced HLA-A expression in

BGC-823 cells (40). Recent research has indicated that HLA-G is

overexpressed, leading researchers to hypothesize that non-

canonical HLA class I may have a deleterious effect in GC due

to unidentified antigen (41). EZH2 (enhancer of zeste homolog

2) is a major component of Polycomb inhibitor complex 2,

which catalyzes histone H3 lysine 27 trimethylation

(H3K27me3) (42). Activation of EZH2 in tumors results in

H3K27 methylation, which in turn silences key immune genes

including HLA class I (42). The HLA class II trans-activator

promoter is associated with epigenetic control of HLA class II

(CIITA) (43). Decoy receptor 3 for interferon beta and tumor

necrosis factor (TNF) inhibits HLA class II (mostly HLA-DR
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gene) expression by hypermethylation and histone deacetylation

of CIITA-Promoter IV (CIITA-PIV), which is activated by

STAT1 and requires histone deacetylases (HDACs) (DCR3)

(41). HLA class II antigen presentation stimulates Th cells

activation without co-stimulatory molecule, and its

upregulation has been described in some forms of GC (41).

Antigen presentation can be improved by binding TAA to HLA,

but this cannot happen without TAP (transporter associated

with antigen processing) and tapasin (TAP binding protein)

(44). A decrease in histone H3 acetylation and TAP1 expression

is caused by the decreased binding of histone acetyltransferases

(HATs) to gene promoters, which in turn decreases the

accessibility/transcription of the RNA polymerase II complex

(27). When EZH2 is turned on in a tumor, TAP1 and TAP2 are

also suppressed (42). The results of these studies provide

evidence that inhibiting key enzymes that regulate epigenetics

may be an effective treatment for GC.

APM impairment impacts the TME as a result of a

combination of fewer invading APCs and their malfunction,

which means that tumor cells are able to evade immune

monitoring and clearance due to the combined effects of

inefficient TAA and defective APM (45). Those tumor cells

that are able to avoid being eliminated by the immune system

join with other local cells and cytokines to create an

immunosuppressive microenvironment that aids in the growth

and survival of the tumor. (Figure 1)
2.3 Signaling pathways involved in
immune evasion

The term tumor microenvironment (TME) encompasses

everything from other cells to their secretions to the

metabolites they create. The signal route of tumor infiltrating

lymphocytes (TILs) can be further regulated and inhibited by

inflammatory substances secreted by tumor cells (Table 1).

Tumor cells are able to evade immune surveillance when the

early microenvironment regulates many signaling pathways,

resulting in a diminished anti-tumor immune response and,

ultimately, immune suppression (92).

2.3.1 NF-kB signaling pathway
The nuclear factor kappa B (NF-kB) pathway plays a crucial

role in modifying the immune response to infection, especially in

chronic inflammation. This pathway is composed of two main

subgroups: 1) NF-kB1/NF-kB2 (p50/p52); 2) Rel A (p65), Rel B

and c-Rel (93). Toll-like receptors (TLR), EGF, PI3K, IL-1 and

TNF can all activate the NF-kB signaling pathway (93).

Interleukin-6 (IL-6), tumor necrosis factor (TNF), T helper 2

(Th2) cells, regulatory T cells (Treg), type 2 (N2) neutrophils,

myeloid-derived suppressor cells (MDSCs) and mesenchymal

stem cells (MSCs) are all up-regulated when the NF-kB p65 or c-

Rel pathway is active (46, 47, 50, 83, 94). Recently, O’Reilly
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found that NF-kB1 has anticancer qualities since activating the

STAT1 pathway increased GC growth in NF-kB1-/- mice by

decreasing TAP gene expression and inhibiting innate immunity

(79). Furthermore, deleting NF-kB1 also increased the

expression of CTLA-4 and PD-1 in lymphocytes and the

expression of programmed death ligand-1 (PD-L1) in myeloid

and gastric epithelial cells (79). Similarly, HLA class II was up-

regulated in GC epithelial cells from NF-kB1-/- mice (79).

Tumor-induced MSCs interact with neighboring cells in the

tumor microenvironment (TME) to promote tumor progression

(48). The exosomes secreted by GC cells modulate the

immunomodulatory activity of MSCs via the NF-kB signaling

pathway, thereby boosting MSCs’ capacity to activate immune

cells, sustaining an inflammatory milieu and promoting tumor

growth (49). In addition to regulating angiogenesis and

morphogenesis, mesenchymal stromal cells (MSCs) have been

demonstrated to recruit cancer-associated fibroblasts (CAFs),

IL-6 and M2macrophage, all of which have been linked to cancer

progression (46, 49, 83). Examples include MSC-derived M2

macrophages, which express vascular endothelial growth factor

(VEGF) in an NF-kB p65-dependent manner (93), MSC-derived

IL-6 activating neutrophils, which in turn increases angiogenesis

and tumor spread (84), and tumor-derived factor being able to

polarize neutrophils to the N2 phenotype. N2-polarized

neutrophils support metastasis and inhibit the immune system

(95). Different kinds of circulating neutrophils include high-

density neutrophils (HDN) and low-density neutrophils (LDN)

(96). According to research by Sagiv JY et al. (96), LDN is

associated with cancer and is induced by HDN through

activation of transforming growth factor (TGF), which

promotes tumor progression. The TME of GC also inhibits

apoptosis in neutrophils and promotes the production of

inflammatory molecules like IL-1 and TNF-a, dampening the

immune response (97). Furthermore, TNF-a also increases

CD47 expression via the NF-kB signaling pathway at the

transcriptional level (98). Since MSCs have the ability to

regenerate, they are a promising tool in the fight against

cancer (51). CAFs are derived from bone marrow-derived

stem cells, pericytes and normal gastric fibroblasts stimulated

by TGF–b. A possible contributor to the development and

spread of cancer is the accumulation of CAFs in GC tissue

(51). Also, CXC motif chemokine ligands 1/2 (CXCL1/2) can be

induced by TNF in an NF-kB-dependent manner in stromal cells

and endothelial cells (51). On the one hand, IL-8 produced by

CAFs increases cisplatin resistance in GC via activating NF-kB

p65 and binding CXCR1/2 (46, 53). On the other one hand, IL-

17 can heighten the inflammatory response by stimulating NF-

kB p65 and MAPK, which in turn increases IL-8 secretion (83).

These cytokines cause the production of S100A8/9, a calcium-

binding protein with a small molecular weight. High levels of

S100A8/9 are found in inflammatory conditions; these

conditions are related with a decrease in DCs and an increase

in MDSCs (90). Also, S100A8 can stimulate the expression of
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PD-L1 and the polarization of TAMs from M1 to M2 (90). In

contrast to M1 macrophages, which suppress antitumor

immunity, M2 macrophages have been shown to have an

Immunosuppressive effect. Furthermore, Probst et al. (99)

discovered that immature DCs can enhance CD8+ T cell

tolerance through the PD-1 and CTLA-4 molecules.

MDSCs, immature cells derived from bone marrow that can

grow into dendritic cells, macrophages and granulocytes once

enlarged, recruited and activated. In turn, an increased number

of MDSCs can suppress DC maturation, lead to the production

of Tregs, and ultimately dampen the immune response (51).

Additionally, the presence of FasL on activated T lymphocytes
Frontiers in Oncology 05
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mediates the activation of the Fas signal in tumor cells (51). It

induces prostaglandin E2 (PGE2) secretion from tumor cells,

which in turn increases tumor cells’ potential to entice MDSCs

(51). By regulating arginine and tryptophan metabolism with the

help of arginase, inducible nitric oxide synthase, and

indoleamine-2, 3-dioxygenase 1 (IDO1), MDSCs are also able

to inhibit the activation and proliferation of T cells and NK cells

(51). IL-33, a member of the IL-1 family, was found to increase

the immunosuppressive capacity of MDSCs by stimulating the

up-regulation of arginase-1 and blocking the death of MDSCs by

enlisting MSCs (53). On the other hand, IL-33 expression was

up-regulated in MDSCs following NF-kB activation. While IL-
A

B

FIGURE 1

Escaping immune surveillance by changing TAA and APM. (A) Tumors have altered self-antigen expression through genetic mutations or
epigenetic regulation, resulting in tumor cells escaping immune surveillance and clearance. Tumor cells that have escaped clearance survive to
form an immunosuppressive microenvironment together with surrounding cells/cytokines, which further promotes tumor survival. (B) These
changes up-regulate inhibitory molecules, such as ICPs (PD-1, CTLA-4, LAG-3 and TIM-3) ligands, CD44 and CD47; meanwhile, new
unrecognizable antigens appear. On the other hand, the expression of co-stimulatory molecules, CD40, Fas, NKG2D ligands (MICA/B, ULBPs)
and HLA is down-regulated. These changes lead to the obstacle of TAA and APM, which makes tumor cells escape immune surveillance.
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12 expression was down-regulated, M2 macrophage and Th2 cell

polarization was enhanced (53). A novel and effective treatment

may be IL-33 therapy in combination with NF-kB

inhibitors.CD8+ CTLs, an HLA class I co-stimulatory

molecule, are a major effector cell for eliminating tumor cells

(90). Unlike the theoretical effect, IFN-g generated by CTLs can

also cause MDSCs to clump together, inhibiting the activation

and proliferation of T and NK cells (90). IFN-g can also up-

regulate the expression of IDO1 from the transcriptional level

(99). In addition, an active NF-kB pathway can increase CD36

transcription and fatty acid (FA) absorption activity, decreasing

DC numbers, by directly modifying the s468 and t470 sites of

CD36 (100, 101). CD36 prevents Treg cells from committing

apoptosis and boosts Treg cell activity in specific settings (102).

In addition, a rise in Treg cells occurs when NF-kB c-Rel is

activated (94). Interestingly, vasoactive intestinal peptide (VIP)

generated by GC cells increases responsiveness of Th2 cells,

lowers proliferation of Th1 cells, interferes with the formation of

B cells and suppresses the activity of NK cells by down-

regulating NF-kB p65 (61). Th2 cells, on the other hand, often

boost and repress the activation of effort T cells, which is counter

to the antitumor effect of Th1 cells. There is a direct correlation

between NF-kB pathway activation and the suppression of Fas

expression on tumor surfaces (62), which in turn leads to a

decrease in tumor cell death and an endless proliferation of
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tumor cells. Because of its significance in the immune response,

inhibiting the NF-kB pathway may be helpful.

2.3.2 MAPK cascade
The mitogen-activated protein kinase (MAPK) cascade

controls a wide variety of physiological and pathological

processes, including cell proliferation, differentiation, stress

and inflammation (103). After cells were stimulated by

receptor protein tyrosine kinases (RPTKs) like growth factors

(GFs), chemokines, or other stimuli, MAPK was activated by

increased phosphorylation (66, 103). The MAPK pathway is

separated into three branches: p38 MAPK, ERK and JNK.

Extracellular regulated protein kinase (ERK) is largely

activated by EGF (104). c-Jun N-terminal kinase (JNK) and

p38 MAPK signaling are triggered by numerous stress stimuli,

including ROS and inflammatory cytokines (such as TNF–a, IL-
1b and IL-18), causing inflammation and apoptosis (70,

104, 105).

Both immune-suppressing cells (MDSCs and Treg) and

immune-promoting cells (Th17 cells) can proliferate in

response to GFs, chemokines and Ras mutations, which

activate the ERK cascade (66). The pro-inflammatory

cytokines IL-17 and IL-22 are produced mostly by Th17 cells,

which evolved from Th0 cells (67). Differentiation of Th17 cells

is encouraged by TGF-b, IL-1, IL-6, IL-21 and IL-23 (67), but is
TABLE 1 The main component and function of TME.

component function ref

MSCs recruiting CAFs, M2 macrophage and IL-6; maintaining an inflammatory milieu (46–49)

MDSCs limiting DC maturation and inducing Treg generation due to its accumulation; suppressing T cell and NK cell activation (21, 50–53)

M1
macrophage

secreting pro-inflammatory factors through IFN-g and LPS activation in the early stage of inflammation (46, 47, 49, 52,
54, 55)

M2
macrophage

inhibiting inflammatory reaction through IL-4, IL-13 activation (46, 47, 49, 52,
56, 57)

CAFs secreting IL-6, IL-8, VEGF, CXCL9 and TGF-b to inhibit T cell function (49, 51, 58–60)

Th1 cell promoting inflammatory response viasecreting IL-2, IFN-gand TNF-ain the early stage of inflammation (61–64)

Th2 cell inhibiting Th1 cell proliferation and inflammatory reaction (53, 61, 63, 65)

Th17 cell promoting inflammatory response via secreting IL-17, IL-22;participating in maintaining Treg/Th17 cells balance (66–69)

Treg regulating the inflammatory response to be chronic; secreting inhibitory cytokines to inhibit immune response; inhibiting the
proliferation and activation of Teff cells and Th1 cell

(65, 66, 68, 70,
71)

DCs antigen presentation (72–77)

Fas/FasL inducing apoptosis of activated Teffcells to escape immunerecognition andelimination (28–30, 51, 62,
78)

PD-1/PD-L1 exhausting Teff cells (18, 66, 79–82)

IL-6 mainly secreted byTh2 cells,CAFs and tumor cells;activating STAT3 andNF-kBpathwaytochange its phenotype to variants (20, 68, 83–85)

IL-8 mainly secreted by MSCs andCAFs;stimulatingPD-L1expression viaSTAT3andmTORpathway (46, 86)

IL-10 mainly secreted byTh2cells andTreg;inhibiting the proliferation and activation ofTeff;increasing infiltration ofTAMs, MDSCs, Th2
cells andTreg;stimulatingPD-L1expression

(18, 65, 87, 88)

IL-17 intensifying inflammatoryresponse via activatingNF-kB and MAPK pathway; promoting the activation ofT cells and the secretion of
IL-6,IL-8 and GM-CSF

(66, 67, 83, 89)

IL-33 activating NF-kB and MAPK pathway; promoting inflammation and the secretion of GM-CSF (53, 90)

CXCL12/
CXCR4

promotingEMTandpreventtumor cell death;promotingMDSCs accumulation;regulating PI3K/mTORpathway (51, 91)
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inhibited by IFN-g, IL-2 and IL-4. Treg and Th17, both CD4+ T

cells, make up a balance system, and their breakdown is

intimately linked to inflammatory immunosuppression in

cancer (66). TGF-b is a bidirectional cytokine that, in the late

stages of cancer, induces Treg and Th17 cell development from

naive T cells to protect tissues against an overactive immune

response (68). This functional change of TGF-b is interesting to

investigate because it may offer a novel explanation for the

degradation of the microenvironment. Inducing Treg cell

differentiation and suppressing Th17 cell proliferation are two

ways in which GC generated MSCs have recently been shown to

reduce antitumor immune responses (69). C-X-C motif

chemokine ligand 8 (CXCL8, IL-8) increases the malignant

phenotype of GC cells, yet IL-17, which is produced by GC,

can stimulate the transition of normal fibroblasts into CAFs by

stimulating NF-kB signaling (106). Whether IL-17 produced by

GC cells or Th17 cells serves the same purpose is currently

unknown. Therefore, the role of Th17 cells in the immunological

response to GC is yet to be investigated. Surprisingly, the route

also increases the expression of ICPs (such as PD-1, LAG3 and

CLTA4) on T cell surfaces, depleting effector T cells (Teff). PD-

L1 and PD-L2 can be up-regulated at the transcriptional level by

oncogenic mutations of Ras or EGFR (66). Besides,

inflammatory chemicals, especially IFN-g, often upregulate

PD-L1 expression, a phenomenon known as adaptive immune

resistance (81). Even though IFN-g exerts anti-neoplastic effects
in the early stages of tumor development, it has been shown that

chronic IFN-g activation of tumor cells suppresses T cells and

leads to the accumulation of MDSCs (107). If we can better

understand how IFN produces MDSCs, we may be able to

employ interferon more effectively to treat tumors. Apoptosis

in CD3+ T cells, the most abundant group of T cells, is an

indication of T cell dysfunction and weakening. Apoptosis of

CD3+ T cells, the main subgroups of T cells, can be induced via

the PD-1/PD-L1 axis, when KRAS mutations increase PD-L1

(81). When the MAPK pathway is in charge of IL-10’s activity, it

can decrease CD8+ T cells and promote Treg-mediated

immunological tolerance to cancer (70, 87). Tumor

immunosuppressive cells including M2 macrophages, MDSCs

and Treg can multiply while effector CD4+ and CD8+ T

lymphocytes are inhibited from doing so by IL-10 and TGF-b
(66). Tumor-derived cytokines such as PGE2, IL-10, IL-1, TGF-

b and VEGF may induce the differentiation of immature

myeloid cells (CD33+ cells) into MDSCs (87, 108). In

addition, IL-1, IL-6 and IL-17 are believed to increase

production of CXCL12, which can recruit MDSCs (89, 91).

CXCL12 is produced in the stomach mucosa in response to

inflammation, and this helps CXCR4+ MSCs and CAFs migrate.

The elevated levels of CXCL12 promote EMT and inhibit tumor

cell death by upregulating CXCR4 and CXCR7 in a positive

feedback loop (59). Additionally, PGE2 can promote MDSC
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recruitment by stabilizing CXCR12 and activating chemokines

including CXCL12 and CXCR4 (51). These results suggest that a

combination of DC immunization and measures to decrease

MDSCs accumulation is an effective way to treat tumors.

A MAPK cascade is useful for dampening the anti-tumor

immune response (65). A decrease in the expression of DCs-

related molecules such CD40, CD80, CD86 and IL-12 was

observed, while an increase in IL-10 secretion was observed

(72, 85). IL-12 is a critical cytokine for T cell activation and DC

maturation and survival (73). It has been established that TGF-b,
IL-6, IL-10 and VEGF all work together to produce tolerant DCs,

which in turn promotes the growth of Th2 cells and Tregs (65).

For instance, Marigo et al. demonstrated that IL-10 can

transform naive T cells into Treg in vivo and in vitro,

facilitating immune evasion (66, 71). Another need for CD8+

T cell death is active p38 MAPK (109). Expression of TNF-a, IL-
6 granulocyte macrophage colony-stimulating factor (GM-CSF)

are all controlled by p38 MAPK (110). Previous research has

shown that the cytokines GM-CSF and IL-6 can rapidly produce

MDSCs from bone marrow progenitor cells in both mice and

humans (111). The therapeutic efficacy of a tumor vaccination

can be diminished by the presence of tumor-derived GM-CSF,

which suppresses apoptosis in MDSCs that are linked with

tumors. The up-regulation of arginase-1 that is induced by IL-

33 is another way in which this autocrine GM-CSF signal of

MDSCs is amplified (53). Moreover, oxidative stress may

activate the p38 MAPK pathway to down-regulate NKG2DL,

including MICA/B and ULBP1-4 (11). In addition to its role in

tumor evasion, the JNK pathway is essential for its maintenance.

For instance, aberrant tumor glycolysis promotes JNK pathway

expression, which in turn promotes PD-L1 expression (112,

113). Besides, IL-18 promotes tumor cell adhesion, migration,

invasion and angiogenesis via the JNK pathway, which leads to

an increase in thrombospondin 1 (TSP-1) (105). Besides, Kim

and his team demonstrated that down-regulating Fas expression

on the tumor surface in vitro by activating the JNK/p38 MAPK

signaling pathway (78). Hence, MAPK inhibitors could be

utilized to treat patients by decreasing the number of MDSCs

and immature DCs that have accumulated in the body.

2.3.3 PI3K/AKT signaling pathway
Protein kinase B (AKT) is triggered in response to

phosphatidylinositol 3-kinase (PI3K) activation, and once in

the nucleus, it affects cell proliferation, invasion, metabolic

reprogramming, migration, autophagy, senescence and

carcinogenesis. Besides, the non-classical NF-kB signaling

pathway can also be activated by AKT (82). When the

phosphatase and tension homolog deleted on chromosome 10

(PTEN) gene is lost or mutated, a negative regulator of AKT is

turned off, leading to PD-L1 overexpression in cancer (82, 114).

T cell proliferation and effector function are inhibited by PD-1
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and PD-L1 or PD-L2 interaction, which also induces apoptosis

and encourages the conversion of CD4+ T cells into Foxp3+

Treg cells (88). In contrast, PD-1 up-regulates FasL and

increases IL-10 production, which further suppresses the

immune response (88). For example, TGF-b signaling

enhances Treg cell activity by upregulating Foxp3 expression

under the chronic inflammation (115). Inducer of the epithelial-

mesenchymal transition (EMT) that can upregulate pro-

inflammatory cytokines including IL-1, IL-6 and IL-8 to

improve immune cell chemotaxis and migration is SNAIL

(115), whose gene transcription is promoted by AKT

activating NF-kB (115). By the way, IL-8 from MSCs increases

PD-L1 expression in GC cells via the c-MYC signaling, which is

regulated by the STAT3 and mTOR signaling pathways (86). In

addition, AKT-supported immune evasion enhances the activity

of immunosuppressive Treg cells by making themmore resistant

to CD8+ T cell-mediated death (115). AKT activation of NF-kB

increases the migration of Th17 cells to TME, which are

primarily regulated by C-C motif chemokines ligands 20

(CCL20) (91). C-C motif chemokine 20 (CCL20) has been

found to have a crucial role in cancer as a mediator by

interacting with C-C motif chemokine receptor 6 (CCR6)

(116). Moreover, the presence of both CXCL12 and CXCR4 in

gastric adenocarcinoma promotes GC invasion by up-regulating

the PI3K/mTOR pathway and the MET process (91). Finally,

through modulating Treg differentiation and PD-1/PD-L1

expression, the PI3K/AKT signaling pathway facilitates

immune evasion. T cells, B cells and NK cells can all have

their activation and proliferation suppressed by CD4+ Treg and

CD4+ Treg can also attract MDSCs in the tumor stroma (117).

For instance, stopping CD8+ T lymphocytes from being

recruited to malignancies can be achieved by stimulating the

PI3K/AKT/mTOR signal in M2 macrophage (118). High

frequencies of Treg cells and low numbers of Teff were found

to be characteristic of GC, as revealed by Kumagai’s research

(119). While glucose deprivation is lethal to CD8+ T cells and

conventional CD4+ T cells, RhoA Y2-mutation increases the

PI3K/AKT/mTOR signaling pathway, increasing the quantity of

free fatty acids (FFA) in the TME, allowing Treg cells to survive

and operate under FFA metabolism, which demonstrates that

RhoAY42-mutant GC is not a promising candidate for PD-1

blocking monotherapy (119). Still, Targeted PI3K and PD-1

inhibitor combo therapy still outperforms PD-1 inhibitor

therapy alone.

2.3.4 JAK/STAT signaling pathway
Janus kinase (JAK) rapidly recruits and catalyzes the tyrosine

phosphorylation of signal transducers and tyrosine activators

(STAT) situated on the receptor after receiving a signal from

upstream receptor molecules. As soon as these receptors are
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activated, STAT proteins bind to them via the SH2 domain and

translocate to the nucleus, where they control the transcription

of specific genes (120). Interestingly, if JAK stimulates SHP-2, it

may enter the MAPK cascade, and if PI3K is active, the PI3K/

AKT pathway is initiated (120). Conversely, the p38 MAPK

cascade can activate downstream STAT1. In addition to

promoting carcinogenesis, STAT3 activation can block

STAT1-mediated tumor suppression (121). In spite of this,

STAT1 is typically regarded as a tumor suppressor.

Intriguingly, Gabrilovich discovered that inducible nitric oxide

synthase (iNOS) and arginase-1 overexpression in TAMs

suppressed T cells via activation of STAT1 (122). Similar to

what we see with PD-L1 expression in vitro, O’Reilly discovered

that activating the STAT1 pathway may also enhance GC

formation in NF-kB1-/-mice (79).

The JAK/STAT cascade was first discovered in the IFN-a,
IFN-g and IL-6-mediated signaling pathways (123). What’s

more, IL-8, IL-17, IL-22, TGF-b, GM-CSF and EGF all

stimulate the JAK/STAT pathway as well (124, 125).

Activation of STAT3 results in increased expression of the

genes encoding for Th17, M2 macrophage, MDSCs, Th2, Treg,

PD-L1 and IDO 1 (86, 120, 121, 126). The expression of IL-6 is

triggered by the aromatic hydrocarbon receptor (AHR) being

activated by indoleamine IDO1 (82). At the same time, IDO1

activity can keep its expression continuing via the autocrine

Kyn/AhR/IL-6/STAT3 signal loop (126). STAT3 and NF-kB

were also activated by the Ras/Raf/MEK pathway, which led to

the expression of IL-1, IL-6, IL-10, TNF and VEGF (127). This is

because cytokines belonging to the IL-10 family block APCs,

which in turn impedes CLT function and promotes Treg

formation (127). Foxp3 expression by Tregs is dependent on

STAT5 activation, which in turn is required for the production

of GM-CSF-stimulated T cells (124, 127). Studies showed that

immunosuppressive cytokines and cells accumulated in the

TME due to the JAK/STAT cascade’s primary role in this

process. Given these results, we believe that STAT inhibitor is

a potential drug and may one day be used to treat GC by

enhancing positive TME.

2.3.5 Wnt signaling pathway
The Wnt signaling pathway is essential for the maintenance

of pluripotency in stem cells, the regulation of embryogenesis,

homeostasis, regeneration, the formation of malignant tumors

and more (128). The primary objective of immunotherapy is to

induce an immunocompetent response within the tumor

microenvironment in order to improve recognition of the

tumor, destruction of tumor cells, and responsiveness to

treatment. Recent years have revealed a number of Wnt

signaling pathways to be involved in immune evasion and

immunological control of cancer (129).
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The Wnt/b-catenin pathway relies heavily on b-catenin as a

signaling molecule. Abnormal activation of Wnt/b-catenin was

linked to an increase in Th2 cells, Tregs, tolerant DCs and PD-L1

(63, 74). Meanwhile, CD8+ T cell infiltration and IFN-g release
were also both suppressed by the abnormal activation of theWnt

pathway (63, 130). Furthermore, previous studies demonstrated

that CD4+CD25+b-catenin+Treg cells were more robust and

competitive than control Treg cells in vivo (131). The b-catenin/
TCF4 signaling pathway induces the production of immature

DCs and Treg cells phenotypes through metabolizing vitamin A

to produce retinoic acid (132). Similarly, the immunosuppressive

effect of over-activated Wnt/b-catenin pathway on DCs and CTLs

in human melanoma has been shown by Yaguchi’s team (133).

Ample evidence indicates that abnormally activated Wnt/b-
catenin pathway up-regulated the expression of PD-1, thereby

inhibiting the infiltration of T cells in the immune environment

(134). The loss of Teff cell infiltration was linked to improperly

active Wnt signal transduction, and this relationship was

frequently accompanied by gene mutation and abnormal

methylation, according to a large-scale genomic analysis of

tumor samples (135). A recent bioinformatics analysis found

that the abnormal activation of tumor cells intrinsic Wnt/b-
catenin signaling is critically important in non-T cells

infiltration tumors (136), which is of great significance for the

treatment of immune desert tumors. For example, Wang et al.

demonstrated that the b-catenin/TCF inhibitor iCRT14

significantly suppressed tumor growth via effectively enhancing

the infiltration of T and NK cellsin anexperimental model of T cell

deficiency (137). However, it is more important to determine the

sequence of Wnt pathway’s abnormal activation and T cell

infiltration in immune desert tumors. Besides, its abnormal

activation also prevented CD4+ T cells from developing into

Th1 and Th17 cells (63). In addition, the Wnt pathway regulates

multiple immune cell functions, including those of MDSCs and

NK cells, that plays a crucial role in cancer immune editing (138).

Studies have demonstrated that the Wnt pathway is primarily

responsible for cell cycle progression and the production of

aberrant proteins that might cause cancer in cells. The Wnt

pathway’s mechanism has recently been refined thanks to

studies in the field of immunology. There is a stronger

infiltration of Treg cells, immature DCs and lower Teff cells

after activation of the Wnt pathway (139, 140).
2.3.6 TGF-b signaling pathway
Differentiation, apoptosis, migration and other cellular

activities are all controlled by the TGF-b signaling pathway,

which is produced in the TME and secreted by tumor cells and

stromal cells (141). Therefore, this pathway and its interruption

play an important role in tumor suppression or promotion

(142). The function of TGF-b mainly involves two pathways,

namely the canonical pathway (Smad-dependent) and the non-

canonical pathway (Smad-independent). When it comes to
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canonical pathway, the drosophila mothers against

decapentaplegic protein (Smad) are essential. Activated R-

Smads join with Smad4 to create a heteromeric Smad

complex, then entering cell nuclear. It regulates gene

expression by binding transcription factors and transcription

co-regulators (143). Restoring tumor immunity in vivo may be

as simple as blocking the TGF-b signaling pathway in CD8+ T

cells, as discovered by Thomas et al. (144). TGF-b/Smad

pathway also aided in the infiltration of Treg cells (145). These

findings support the hypothesis that the TGF-b/Smad signaling

pathway, by suppressing immune responses, promotes cancer.

In addition, the tumor cells activate TGF-b signaling, which

alters a major component of the TME known as CAFs, which in

turn alters the extracellular matrix (ECM) in a way that rejects

immune cells and may affect immunotherapy responses (146).

Besides, TGF-b also operates on both ends of the NKG2D axis,

and studies have demonstrated that it substantially inhibits

NKG2D-mediated tumor killing (147).

2.3.7 Other signaling pathways
Notch and Hippo pathways are also engaged in immune

evasion; high levels of Notch receptor expression correspond

with the presence of immature DCs, M2 macrophages, N2

neutrophils and CD4+ T cells in GC tissue (75). Similarly,

high expression of Notch3 is associated with low infiltration of

activated CD8+ T cells in TME (140). To decrease tumor

growth, Hippo signaling has been studied extensively.

Depletion of CD8+ CTLs and elevation of FoxP3+ Treg have

both been linked to interference with the Hippo pathway (148).

However, Hippo pathway inactivation can activate EGFR, which

then activates the PI3K/mTOR and Ras/Raf pathways (149). As

a result, one therapeutic strategy involves focusing on molecules

that set off the Hippo pathway. In short, these intricate pathways

work together to keep the surrounding tissue hospitable to

tumor growth (Figure 2).
3 Impact of ncRNAs on
immune evasion

As we will see, ncRNAs are an integral part of the epigenetic

regulatory process, and their interference with gene

transcription and translation has an effect on TAA, AMP and

TME. Epstein-Barr virus (EBV) and Helicobacter pylori (Hp)

infection in GC entail a more sophisticated process of ncRNAs,

and this review will not cover it.

Micro RNAs (miRNAs) adversely regulate gene expression

by interacting with mRNA 3’-UTR targets, resulting in

polyadenylation, decreased mRNA stability, and translational

inhibition (150). On the other hand, miRNAs can influence

transcription by binding to certain genes in a targeted manner

(150). Inhibiting PD-L1 protein translation by binding to the 3’-
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UTR of PD-L1 mRNA, miR-200c enhances the anti-tumor

response by decreasing PD-L1 expression (151). MiR-16-5p,

miR-152, miR-375 and miR-570 are other micro RNAs that

can inhibit PD-L1 expression (54, 60, 152–154). In particular,

miR-152 is down-regulated by TGF-b and can improve

immunological recognition by targeting the 3’-UTR of HLA-G

and PD-L1 mRNA (60, 152). By inactivating JAK2, a common

upstream inhibitor of STAT3, miR-375 suppresses the JAK2/

STAT3 pathway to down-regulate PD-L1 (153). Also, miR-588,

miR-29a-3p, miR-34a and miR-30c increase anti-tumor immune

response by promoting CD8+ T cell, M1 macrophage, B cells,

GZMB and IFN-g infiltration (55, 155–157). It has been shown

that CAFs infiltration can be suppressed by miR-141-3p, which

can directly target STAT4 to inhibit its expression and restrict the

Wnt/b-catenin pathway (158). On the contrary, miR-1920 and

miR-675-3p could up-regulate the expression of PD-1/PD-L1

(159, 160). There is a drop in CD8+ T cells and NK cells in

response to miR-494, miR-1269a andmiR-17-5p, but an increase

inMDSCs, M2macrophages, tolerance DCs and Treg infiltration

(56, 64, 76). A protein called monocyte chemoattractant protein-

1 (ZC3H12A) is encoded by this gene, which has anti-tumor

effects because it suppresses chronic inflammation. Mir-425-3p

can directly target this gene to boost the inflammatory response

and facilitate immune evasion (161).

Sponging with miRNAs to interfere with its function,

influencing downstream targets, is also relevant for long

noncoding RNAs (lncRNAs) and circular RNAs (circRNAs).

For instance, linc00936 works together with miR-425-3p to

enhance the body’s natural anti-inflammatory response by

increasing ZC3H12A expression (161). Oppositely, lncRNA

POU3F3, HOTAIR, MALAT1, H19, MIR100HG and
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linc00963 favored immunological escape by down-regulating

IL-21R, Treg, M2 macrophages and TGF-b and up-regulating

the infiltration of mature DCs, CD8+ T cells, M1 macrophages

and IFN-g (57, 77, 162–166). Additionally, PD-L1 expression

was boosted by SNHG15 and UCA1 through spongingmiR-141,

miR-193a and miR-214, respectively (167, 168). There has been

little exploration into the role of circRNAs in GC immune

escape, but this could be an exciting new field of study.

Table 2 summarizes this paper’s discussion of the role of

ncRNAs as regulatory mechanisms in GC immune evasion.
4 Perspectives

Despite progress in gene sequencing technology and the

promise of precision medicine, there are still too many examples

when treatment causesmore harm than good. The primary goals of

modern immunotherapy are Teff function restoration and ICPs

inhibition (169). In recent years, however, monotherapy has been

found to have drawbacks; For example, RhoA Y42 mutant GC is

not a viable candidate for PD-1 blocking monotherapy (119).

Furthermore, several signaling pathway components, such as

EGFR, HER2 and VEGF, have become effective therapeutic

targets because of their crucial involvement in GC (170).

Specially, the HER2 inhibitor, Trastuzumab, can reduce the

activity of the PI3K/AKT pathway, which is responsible for the

uncontrolled growth of tumor cells, and so restore innate antitumor

immunity (12, 13, 170). Tumor cell proliferation, invasion,

migration, and the development of an immunosuppressive TME

can all be stifled by inhibiting these signaling pathways. In addition,

ncRNAs are treated in two major ways, either as an alternative
frontiersin.org
FIGURE 2

Immune evasion by changing TME. When tumor cells escape immune surveillance, they form early TME, enhancing immunosuppressive
environment, weakening anti-tumor response, and further promote tumorigenesis through a variety of signaling pathways. Conversely, this
advanced TME promotes tumor progression through these pathways.
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therapy or an inhibitory therapy, each of which could be used as a

therapeutic target (171). Hence, research into immunotherapies

that use molecularly targeted drugs in tandem with conventional

ones has great potential in the future.
5 Conclusion

Tumor immune evasion, which includes TAA insufficiency,

APM abnormalities, TME composition changes, etc., is a

significant research field. Tumor cells’ immunogenicity can be
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changed by even a little change in the antigen, allowing them to

evade immune detection. Tumor formation and spread into the

TME are aided by the early microenvironment once the tumor

escapes immune monitoring. We present a brief overview of the

immune evasion pathways associated with GC that can be used

as immunotherapy targets. While the immune evasion process

may be complicated, it must be deciphered in order to provide

targeted care. More research and clinical trials are needed to

better understand immune evasion, particularly in relation to the

prognosis of GC and the development of new therapeutic

options for the many distinct subtypes of the disease.
TABLE 2 Impact of epigenetic regulation on immune evasion in GC.

Mechanism Effect Ref

miR-200c down-regulating PD-L1 expression anti-
oncogene

(151)

miR-16-5p down-regulating PD-L1 expression; increasing Teff infiltration anti-
oncogene

(54)

miR-152 down-regulating HLA-G and PD-L1 expression anti-
oncogene

(60, 152)

miR-375 inactivating JAK2/STAT3 pathway to decrease PD-L1 expression anti-
oncogene

(153)

miR-570 down-regulating PD-L1 expression anti-
oncogene

(154)

miR-588 increasing CD8+ T cellsinfiltration by up-regulating CXCL5/9/10 anti-
oncogene

(155)

miR-29a-3p increasing M1 macrophage and B cell infiltration by targeting COL1A2 anti-
oncogene

(156)

miR-34a reducing lactic acid accumulation in T cells; increasing Teff, IFN-g and GZMB infiltration anti-
oncogene

(157)

miR-30c promoting M1 macrophage polarization anti-
oncogene

(55)

miR-141-3p inhibitingSTAT4/Wnt/b-catenin pathway to decrease CAFs anti-
oncogene

(158)

miR-1290 up-regulating PD-1 expression via Ghl2/ZEB1 axis oncogene (159)

miR-675-3p up-regulating PD-L1 expression via CXXC4/MAPK axis oncogene (160)

miR-494 increasing MDSCs infiltration by PTEN/PI3K/Akt axis oncogene (64)

miR-1269a inhibiting CXCL9 expression to increase MDSCs, M2 macrophage and decrease CD8+, CD4+ T, NK and B cells oncogene (56)

miR-17-5p inhibiting DCs endocytosis; promoting Treg differentiation;decreasingTNF-a, IL-12 and increasing IL-10 infiltration oncogene (76)

miR-425-3p amplifying inflammation by targeting ZC3H12A oncogene (161)

linc-00936 amplifying anti-inflammatory response via sponging miR-425-3p anti-
oncogene

(162)

linc-POU3F3 recruiting TGF-b to activate TGF-b/SMAD2/3 pathway; promoting Treg differentiation oncogene (163)

linc-00963 inhibiting DCsmaturationvia miR-612/CDC5L axis oncogene (77)

lncRNA HOTAIR up-regulating COL5A1 to decrease the infiltration of CD8+ T cell,
M1 macrophage, neutrophils and mature DCs by sponging miR-
1277-5p; up-regulating CXCR4 by sponging miR-126

oncogene (164,
165)

lncRNA MALAT1 up-regulating IL-21R/JAK2/STAT3 via sponging miR-125a oncogene (57)

lncRNA H19 attenuating Teff(especially Th1 andCD8+ T cells), NK cell functionand increasing M2 macrophage number by activating
LDHA

oncogene (166)

lncRNA
MIR100HG

decreasing Teffand IFN-gviaactivating ERK1/2 oncogene (167)

lncRNA SNHG15 up-regulating PD-L1 expression via sponging miR-141 oncogene (168)

lncRNA UCA1 up-regulating PD-L1 expression via sponging miR-193a, miR-214 oncogene (150)
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Characterization of immune
checkpoint inhibitor-associated
fulminant type 1 diabetes
associated with autoantibody
status and ethnic origin

Junlin Qiu1, Shuoming Luo1*, Wenfeng Yin1, Keyu Guo1,
Yufei Xiang1, Xia Li1, Zhenqi Liu2 and Zhiguang Zhou1*

1Department of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology (Central
South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases,
The Second Xiangya Hospital of Central South University, Changsha, China, 2Division of
Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System,
Charlottesville, VA, United States
Objective: Fulminant type 1 diabetes may uniquely occur as a fatal adverse

event during immune checkpoint inhibitor (ICI) therapy. We investigated the

clinical and immunological characteristics of ICI-associated fulminant type 1

diabetes (IFD).

Research design andmethods:We enrolled 80 patients with IFD (77 cases from

the literature), 56 patients with ICI-associated type 1 diabetes (IT1D) (55 cases

from the literature), 45 patients with traditional fulminant type 1 diabetes (TFD),

and 43 patients with acute-onset type 1 diabetes for comprehensive analysis

including islet autoantibodies and subgroup analysis based on ethnic origin.

Results: Patients with IFD accounted for 58.8% (80/136) of patients with ICI-

related diabetes. IFD had a more rapid onset than IT1D after ICI therapy (90.5

days vs. 120 days, p <0.05). The onset time and number of infusions after ICI

therapy initiation were lower in the antibody-positive IFD group than that in the

antibody-negative IFD group (both p <0.001). IFD had a more rapid onset and

more serious among Caucasians than that among Asians (p <0.01, p <0.05,

respectively), and the prevalence of islet autoantibody positivity in the

Caucasian IFD were prominently higher than those in the Asian IFD (p <0.05).

Onset age and plasma glucose levels were significantly higher in the IFD group

than those in the TFD and acute-onset type 1 diabetes groups. HbA1c levels

were slightly higher in patients with IFD than those with TFD.
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Conclusions: IFD is relatively common in Caucasian population where TFD is

very rare or almost absent. IFD occurrence is significantly related to islet

autoantibody status and ethnic origin.
KEYWORDS

fulminant type 1 diabetes, immune checkpoint inhibitors, side effects, clinical
characteristics, cancer immune checkpoint therapy
Introduction

Immune checkpoint inhibitors (ICIs), which are the most

popular means of tumor immunotherapy, have been

increasingly used to treat solid tumors. ICIs have an

anticancer effect by removing a negative regulatory signal for

T cell activation from the tumor microenvironment. Common

ICIs include programmed death 1 (PD-1) inhibitors,

programmed death-ligand 1 (PD-L1) inhibitors, and cytotoxic

T lymphocyte antigen 4 (CTLA-4) inhibitors. Many studies have

confirmed that the application of these ICIs is associated with

immune-related adverse events involved in multiple organs and

systems. Endocrine dysfunctions are among the common

adverse events that have been reported in clinical trials with

ICIs, including insulin-dependent diabetes. ICI-associated

diabetes is characterized by acute onset of hyperglycemia with

insulin deficiency and occurrence following exposure to ICIs.

According to the literature, there are two subtypes of insulin-

dependent diabetes, namely, ICI-associated type 1 diabetes

(IT1D) and ICI-associated fulminant type 1 diabetes (IFD).

There has been an increasing number of reports of patients

presenting with IT1D and IFD due to the increase of tumor

immunotherapy (1–5). If not promptly recognized, IT1D and

IFD can be life threatening.

Traditional fulminant type 1 diabetes (TFD) is a rare subtype

of type 1 diabetes that differs from acute-onset type 1 diabetes

with a distinct entity and unique clinical characteristics, and it

may be mediated by multiple factors, including viral infection

and pregnancy (6). TFD is characterized by the following

symptoms: 1) a remarkably abrupt onset of ketosis or

ketoacidosis; 2) a low glycosylated hemoglobin (HbA1c) value

despite a high plasma glucose level; and 3) an absence of insulin

secretion capacity (7). It remains unclear whether differences

exist in clinical phenotypes and immunological characteristics

between IFD and TFD. The prevalence and risk of developing
utoantibodies; IA-2A,

et cell autoantibodies;

ted fulminant type 1

Traditional fulminant

dies.

02
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IFD following the use of ICIs regimens are also unknown.

Furthermore, all clinicians need to be more aware of IFD to

prevent deaths due to diabetic ketoacidosis and failure of timely

intervention. Therefore, further understanding of the

characteristics of IFD patients is needed for improved

prognostic and diagnostic application to reduce overall

morbidity for this already at-risk population.

Anti-PD-1 agents (nivolumab, pembrolizumab, cemiplimab,

s int i l imab, and camrel izumab) , ant i-PD-L1 agents

(atezolizumab, avelumab, and durvalumab), and an anti-

CTLA-4 monoclonal antibody (ipilimumab) have been

reported to cause type 1 diabetes. According to the safety

database of a Japanese pharmaceutical company, the incidences

of IT1D and IFD were 0.19% and 0.13%, respectively, from July

2014 to August 2017 among 20,600 patients who received

nivolumab treatment. Among 3603 patients who received

pembrolizumab from December 2016 to August 2017, the

incidences of IT1D and IFD were 0.11% and 0.03%,

respectively (8). Stamatouli et al. reported that the estimated

incidence of type 1 diabetes in a large American medical center

was 0.9% (9). In a recent study, Tsang et al. reported that among

538 patients with metastatic melanoma who received anti-PD-1

immunotherapy, 1.9% patients developed type 1 diabetes (10).

The World Health Organization (WHO) Safety Report database

shows that the number of ICI-related type 1 diabetes patients is

increasing (11), whichmay be related to the increased use of anti-

PD-1 and anti-PD-L1 therapies in various cancers. Additionally,

combination therapy with CTLA-4 and PD-1 inhibitors may also

increase the incidence of IT1D, IFD, and other immune-related

adverse events (12). In these cases, the increment of IFD brings

challenges to the clinical diagnosis and treatment management

of diabetes.

TFD is common in Asians, including Japanese, Koreans, and

Chinese, but is rare in Caucasians from the Americas and

Europe (13). Patients with IFD have been sporadically

reported in China and other Asian countries (14). However,

there is increasing number of reported cases of IFD in

Caucasians. Thus, it is worth exploring whether there are

differences between IFD in Asians and IFD in Caucasians.

Therefore, the present study investigated the clinical and

immunological features of IFD by comparing important clinical
frontiersin.org
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indexes among four groups of diabetes, namely, IFD, IT1D,

TFD, and acute-onset type 1 diabetes. We enrolled 80 patients

with IFD (77 cases from the literature), 56 patients with IT1D

(55 cases from the literature), 45 patients with TFD, and 43

patients with acute-onset type 1 diabetes for comprehensive

analysis, including analysis of islet autoantibodies, and subgroup

analysis based on ethnic origin. The present study will provided

precise data on the risk of patients with IFD receiving ICI

regimens and demonstrated that patients with islet

autoantibody positivity or Caucasian ethnic origin are at an

increased high risk of IFD.
Research design and methods

Patient inclusion and data collection

IFD was defined as fulminant type 1 diabetes induced by

exposure to ICIs. TFD was defined as fulminant type 1 diabetes

generally associated with viral infection or pregnancy but not

associated with ICI. IT1D was defined as type 1 diabetes induced

by exposure to ICIs but does not meet the diagnostic criteria for

fulminant type 1 diabetes. Acute-onset type 1 diabetes was

defined as typical insulin-dependent type 1 diabe with a

duration of hyperglycemic symptoms less than 6 months but

does not meet the diagnostic criteria for fulminant type 1

diabetes. ICI-associated diabetes included IFD and IT1D. It

should be noted that ICI-associated diabetes excluded pre-

existing type 2 diabetes or patients with history of diabetes

prior to the use of ICI in the present study.

A total of 224 subjects were enrolled, including 80 patients

with IFD, 56 patients with IT1D, 45 patients with TFD, and 43

patients with acute-onset type 1 diabetes. Among all subjects,

132 patients were reported from the literature, including 77 cases

of IFD and 55 cases of IT1D. Three cases of IFD, one case of
Frontiers in Immunology 03
127126
IT1D, 45 cases of TFD, and 43 cases of acute-onset type 1

diabetes were enrolled from the existing database of our diabetes

center (Figure 1).

We conducted a systematic search of the literature to identify

clinical case reports or articles on the use of ICIs that reported

diabetes adverse events. A literature search was used to collect data

from patients who developed IFD and IT1D. We gathered data on

the clinical characteristics of these cases from literature in online

databases, including the CNKI database (Chinese), Wanfang

Medical Database (Chinese), and PubMed database. The

following keywords were used: “type 1 diabetes mellitus”,

“nivolumab”, “pembrolizumab”, “sintilimab”, “toripalimab”,

“camrelizumab”, “ipilimumab”, “tremelimumab”, “avelumab”,

“durvalumab”, “atezolizumab”, “PD-1”, “PD-L1”, “CTLA-4”, and

“immune checkpoint inhibitors”. The CTLA-4 inhibitors included

ipilimumab and tremelimumab, and the other inhibitors were PD-1

or PD-L1 inhibitors. The database was searched for articles

published on or before December 31, 2021. The search focused

on type 1 diabetes related to different ICI regimens in patients with

advanced solid tumors. The exclusion criterion was duplication of

data. Case reports/series of individuals previously diagnosed with

type 2 diabetes prior to the start of ICI therapy and case reports of

individuals without confirmed diagnosis of diabetes type were also

excluded. Two researchers read and evaluated the literature

independently. A third individual was consulted to reach a

consensus in cases when both researchers differed on the

inclusion or exclusion decision. Ultimately, 99 articles and 132

patients, including 77 patients with IFD and 55 patients with IT1D,

between January 2014 and December 2021 were enrolled.

Fulminant type 1 diabetes met the following diagnostic

criteria of the Committee of the Japan Diabetes Society in

2012: 1) diabetic ketosis or ketoacidosis occurred soon after

the onset of hyperglycemic symptoms; 2) patient presented with

plasma glucose ≥16.0 mmol/L and HbA1c <8.7% at the first visit;

and 3) patient had urinary C-peptide excretion <10 µg/day,
FIGURE 1

Flow diagram of study participants selection. ICI, Immune checkpoint inhibitor; TFD, Traditional fulminant type 1 diabetes; IFD, ICI-associated
fulminant type 1 diabetes; IT1D ICI-associated type 1 diabetes.
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fasting serum C-peptide level <0.10 nmol/L, or postprandial

serum C-peptide <0.17 nmol/L at onset (15).

Data on the following parameters were recorded for each

patient: demographic data (including sex, onset age, and body

mass index (BMI)), tumor types, past history, family history, date

of diabetes onset, hyperglycemic symptoms, number of ICI

therapy infusions, and types of ICI therapy. The following

laboratory data were recorded at onset: plasma glucose,

electrolytes, blood gas analysis results, HbA1c, type 1 diabetes-

associated autoantibody status, and human leukocyte antigen

(HLA) class II alleles or genotypes if available. HLA typing was

performed in a subset of the published IFD or IT1D cases. We

determined whether this allele or genotype belonged to the

susceptibility of spontaneous type 1 diabetes according to the

corresponding literature as a reference. For example, DR3-DQ2

and DR4-DQ8 confer increased risk for Caucasian population,

while DR4-DQ4 and DR9-DQ9 confer high risk for Asian

populations. The onset date was defined as the day of diagnosis

and commencement of treatment for diabetes. The unit of C-

peptide was uniformly converted into ng/ml, and the unit of blood

glucose was uniformly converted into mg/dl. The detection

methods of islet autoantibodies, HbA1c, and HLA typing from

most cases reported in the literature were unavailable.
Statistical analysis

All statistical analyses were performed using SPSS version

19.0 (IBM Corporation, Chicago, IL, USA). Continuous

variables that were normally distributed are presented as

means ± standard deviations (SDs), and continuous variables

that were not normally distributed are described as the median

and interquartile range (IQR). Differences between groups were

analyzed using independent sample t tests, rank sum tests, or

variance analysis as appropriate. The chi-squared test was used

for correlation analysis of categorical variables. Other clinical

variables of interest were evaluated descriptively. According to

the comparison results of IFD and IT1D, a logistic regression

model was used to incorporate antibody, race, and HLA

susceptibility alleles to analyze the predictors of IFD after ICI

treatment. For all computational analyses, p < 0.05 was

considered statistically significant.
Results

Background of patients with IFD

Patients with IFD accounted for 58.8%(80/136) of patients

with ICI-associated diabetes. The onset age of patients with IFD

was 60.7 ± 12.6 years, and the BMI was 22.0±5.1 kg/m2. Both
Frontiers in Immunology 04
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IFD and IT1D mainly involved with anti-PD-1 and anti-PD-L1

agents was associated with the treatment of various malignancies

and various ICI drugs. Regarding the profile of primary cancers

(Figure 2A), lung cancer, melanoma, and renal cancer accounted

for 38.8%, 30.0%, and 8.8%, respectively, while the remaining

22.2% was attributed to other cancer types for IFD. Similarly,

lung cancer (25.0%) and melanoma (25.0%) accounted for the

highest proportion for IT1D (Figure 2C). As shown in

Figures 2B, D, nivolumab (32.5%) and pembrolizumab (30.0%)

were the most common tumor immunotherapy regimens in IFD

patients. Similarly, pembrolizumab (39.3%) and nivolumab

(37.5%) were the most common ICI regimens for IT1D. A

summary of the case reports for IFD and IT1D is shown in

Supplemental Tables 1, 2, respectively.

IFD was reported in 17 countries on a global scale, including

UK, Greece, Belgium, France, Australia, Portugal, Austria, Canada,

Italy, Norway, USA, Brazil, Ireland, Spain, Japan, Korea, and China.

IFD patients were diagnosed with a median of 90.5 days (IQR, 36.5-

150 days), and they a median offive infusions (IQR, 2.3-8 infusions)

after initiation of ICI therapy. The duration of symptoms at onset in

patients with IFD was 5 days (IQR, 3-8 days). All patients had

marked hyperglycemia (638.77±244.29 mg/dl), low C-peptide levels

[0.06 (0.01-0.16) ng/ml], and low HbA1c levels (7.36±0.75). All

patients with IFD exhibited abrupt onset of ketosis or ketoacidosis

(arterial pH: 7.18 ± 0.16, HCO3
–: 12.07±6.94 mmol/L), and 80.3%

of patients presented with diabetic ketoacidosis. All patients with

IFD were insulin dependent.
Islet autoantibodies and HLA typing

Sera collected at diabetes onset were tested for type 1

diabetes-related autoantibodies. Islet autoantibodies testing

results were available for 77 of 80 patients with IFD, among

which the percentage of patients who were positive for at least

one autoantibody was 26.0% (20/77) (Supplemental Table 1).

The autoantibody with the highest positive rate was glutamic

acid decarboxylase antibody (GADA), which was found in 21.1%

(15/71) of patients, followed by protein tyrosine phosphate

antibody (IA-2A) (17.5%, 7/40), insulin autoantibody (IAA)

(8.3%, 3/36), islet cell autoantibody (ICA) (0.04%, 1/25), and

zinc transporter 8 autoantibody (ZnT8A) (6.3%, 1/16).

In total, 36 patients with IFD underwent HLA typing, and

58.3% of these patients had the high-risk HLA genotype for type

1 diabetes. As shown in Table 1, the proportions of type 1

diabetes HLA susceptibility alleles were not statistically different

between IFD and IT1D. The proportion of type 1 diabetes HLA

susceptibility alleles was higher in the antibody-positive IFD

group compared to the antibody-negative IFD group, but there

was no statistically significant difference when comparing the

different ethnic IFD subgroups.
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Comparison of clinical characteristics
between IFD and IT1D

To further understand whether the clinical features of IFD

are specific, we compared the clinical and biological
TABLE 1 The clinical and biological characteristics of different ICI-associated diabetes.

IFD IT1D P

N 80 56

Onset age (years) 60.7 ± 12.6 63.4 ± 13.0 NS

Sex (male %) 55.7 76.1 0.023

BMI (kg/m2) 22.0±5.1 28.1 ± 7.4 0.003

Family history of diabetes (%) 15 23.5 NS

Time from initiation of therapy to onset of diabetes (days) 90.5 (36.5, 150) 120 (63, 270) 0.017

Number of courses before diabetes onset 5.0 (2.3, 8.0) 5 (3.0, 10.5) NS

Diabetic ketoacidosis (%) 80.3 58.0 0.007

Plasma glucose (mg/dl) 638.77 ± 244.29 585.34 ± 235.71 NS

HbA1c (%) 7.36 ± 0.75 9.05 ± 1.32 0.000

Arterial PH 7.18 ± 0.16 7.22 ± 0.16 NS

HCO3
-(mmol/l) 12.07± 6.94 15.27 ± 7.35 NS

Serum C-peptide (ng/ml) 0.06 (0.01, 0.16) 0.46 (0.20, 0.99) 0.000

Islet autoantibodies (%) 26.0 46.0 0.017
&Proportion of HLA susceptibility alleles
for type 1 diabetes (%)

58.3 (21/36) 75(12/16) NS

Values are expressed as the mean ± standard deviation or median (first quartile–third quartile).
IFD, Immune checkpoint inhibitor associated fulminant type 1 diabetes; IT1D, Immune checkpoint inhibitor associated type 1 diabetes but not fulminant type 1 diabetes
NS, no significance.
& HLA typing was performed in a subset of the published IFD or IT1D cases. We determine whether this allele or genotype belongs to the susceptibility of spontaneous type 1 diabetes on
their own according to the corresponding literature as a reference. For example, DR3-DQ2 and DR4-DQ8 confer increased risk for Caucasian population, while DR4-DQ4 and DR9-DQ9
confer high risk for Asian populations.
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characteristics of IFD and IT1D. Compared to IT1D, the

percentage of men was lower in IFD (p < 0.05), whereas the

percentage of patients with diabetic ketoacidosis was

significantly higher in IFD (p < 0.05) (Table 1). The time from

initiation of ICI therapy to onset of diabetes in patients with IFD
A B

DC

FIGURE 2

Profile of primary cancer types and ICI regimens in patients with IFD and IT1D. (A) Cancer types in IFD, (B) Regimens of ICI in IFD, (C) Cancer
types in IT1D, (D) Regimens of ICI in IT1D. IFD, ICI-associated fulminant type 1 diabetes; IT1D, ICI-associated type 1 diabetes; N/A, Not Available.
;
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was significantly less than that in patients with IT1D (90.5 days

vs. 120 days, p < 0.05). However, no statistically difference was

observed for the median number of ICI infusions before diabetes

onset (5 infusions vs. 5 infusions). Patients with IFD displayed a

lower BMI, lower HbA1c levels, and lower serum C-peptide

levels than those with IT1D (all p < 0.01). Compared to IT1D,

the prevalence of islet autoantibodies in IFD also had a

significant decreasing trend (p = 0.017). There was no

significant difference between IFD and IT1D with respect to

onset age, family history of diabetes, plasma glucose, arterial PH,

and HCO3- levels.

According to the comparison results, there was a difference

in the positive ratio of islet autoantibodies between the IFD and

IT1D groups. In the present study, correlation analysis showed

that autoantibody status in patients with IFD was associated with

ethnicity (Table 2). Therefore, a logistic regression model,

including three variables (antibody, race, and susceptibility

genotype) was used to evaluate the predictors of IFD after ICI

treatment (Supplemental Table 3). Unexpectedly, we were

unable to identify any interactions or predictive risk factors for

IFD and IT1D (all p > 0.05).
TABLE 2 Correlation analysis of autoantibody and ethnic origin in IFD.

Ethnic origin

Asian Caucasian

Autoantibody -positive 4 16

Autoantibody -negative 38 19

IFD, Immune checkpoint inhibitor associated fulminant type 1 diabetes.

TABLE 3 The clinical and biological characteristics of IFD in different autoan

Autoanti

N

Age (years) 57

Sex (male %)

BMI (kg/m2) 24

Time from initiation of therapy to onset of diabetes (days) 28.5

Number of courses before diabetes onset 2

Diabetic ketoacidosis (%)

Plasma glucose (mg/dl) 662.5

HbA1c (%) 7.

Arterial PH 7.

HCO3
- 11.

Serum C-peptide (ng/ml) 0.1

Proportion of HLA susceptibility alleles for type 1 diabetes (%) 8

Values are expressed as the mean ± standard deviation or median (first quartile–third quartile)
IFD, Immune checkpoint inhibitor associated fulminant type 1 diabetes; NS, no significance.
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Clinical characteristics of different
subgroups of IFD

Subgroup analysis was performed for patients with IFD

according to their autoantibody status and ethnic origin. As

shown in Table 3, the median number of infusions and time

from initiation of ICI therapy to onset of diabetes in the

antibody-positive IFD group were significantly lower than

those in the antibody-negative IFD group (2 infusions vs. 6

infusions, p < 0.001; 28.5 days vs. 114 days, p < 0.001).

In the present study, 45.0% (36/80) of the patients were

Caucasians from Belgium, Italy, Greece, and 13 other countries,

whereas 55.0% (44/80) of the patients were Asians from the UK

(South-East Asian origin), Japan, Korea, and China

(Supplemental Table 1). As shown in Table 4, Caucasian

patients with IFD had a lower median number of infusions

and a more rapid onset than Asian patients with IFD (3

infusions vs. 6 infusions, p < 0.05; 40 days vs. 110 days, p <

0.01), and the proportions of diabetic ketoacidosis and positive

rate of autoantibodies in Caucasian patients with IFD were

significantly higher than those in Asian patients with IFD
Total c2 r P value

20 11.19 0.380 0.001

57

tibody status.

body-positive
IFD

Autoantibody-negative
IFD

P

20 57

.4 ± 17.6 61.2 ± 10.3 NS

36.8 63.2 0.039

.7 ± 7.3 20.8 ± 3.3 NS

(20.3, 40.3) 114 (71, 168) 0.000

(1, 3.5) 6 (4, 9) 0.000

89.5 75.9 NS

1 ± 262.49 619.83 ± 239.74 NS

14 ± 0.77 7.39 ± 0.71 NS

19 ± 0.16 7.18 ± 0.16 NS

33 ± 5.06 12.63 ± 7.52 NS

(0.02, 0.1) 0.05 (0.1, 0.17) NS

8.9 (8/9) 44.0 (11/25) 0.01

.
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TABLE 4 The clinical and biological characteristics of IFD in different ethnic origin.

Asian origin Caucasian origin P

N 44 36

Age (years) 62.9 ± 11.2 58.0 ±13.9 NS

Sex (male %) 54.5 57.1 NS

BMI (kg/m2) 20.2 ± 3.5 24.3 ± 6.0 NS

Time from initiation of therapy to onset of diabetes (days) 110 (72, 171) 40 (28, 128) 0.007

Number of courses before diabetes onset 6 (4.5, 8) 3 (2, 9) 0.033

Diabetic ketoacidosis (%) 71.4 91.2 0.029

Plasma glucose (mg/dl) 629.23 ± 260.75 650.42 ± 225.65 NS

HbA1c (%) 7.37 ± 0.75 7.36 ± 0.76 NS

Arterial PH 7.19 ± 0.17 7.16 ± 0.16 NS

HCO3
- 13.13 ± 7.36 10.95 ± 6.45 NS

Serum C-peptide (ng/ml) 0.03 (0.01, 0.1) 0.10 (0.02, 0.19) NS

Islet autoantibodies (%) 9.5 (4/42) 45.7 (16/35) 0.001

Proportion of HLA susceptibility alleles for type 1 diabetes (%) 68.4 (13/19) 47.1 (8/17) NS

Values are expressed as the mean ± standard deviation or median (first quartile–third quartile).
IFD, Immune checkpoint inhibitor associated fulminant type 1 diabetes; NS, no significance.
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(91.2% vs. 71.4%, p < 0.05; 45.7% vs. 9.5%, p < 0.01). Correlation

analysis showed that autoantibody status in patients with IFD

may be associated with ethnicity of patients with IFD (Table 2).
Comparison of clinical characteristics
among IFD, TFD, and acute-onset
type 1 diabetes

To eliminate the influence of racial differences, we selected

20 patients with IFD (17 cases from the literature and 3 case
TABLE 5 Comparison of the clinical and biological characteristics among IF

TFD

N 45

Onset Age, years 31.0 ± 13.9*

BMI (kg/m2) 22.0 ± 3.7

Male (%) 57.8

Duration of symptoms (days) 3 (2, 5)*

Diabetic ketoacidosis (%) 77.8*

Plasma glucose (mg/dl) 557.90 ± 198.73*

Arterial PH 7.14 ± 0.28

HCO3
- 10.14 ± 5.82

Serum C-peptide (ng/ml) 0.05 (0.03, 0.15)*

HbA1c (%) 6.81 ± 0.86*

Islet autoantibodies (%) 14.0 (6/43)*

Values are expressed as the mean ± standard deviation or median (first quartile–third quartile)
T1D, type 1 diabetes.
TFD, Traditional fulminant type 1 diabetes.
IFD, Immune checkpoint inhibitor associated fulminant type 1 diabetes.
*P <0.05, vs. acute-onset T1D; #P<0.05, vs. TFD.
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from our existing database), 45 patients with TFD, and 43

patients with acute-onset type 1 diabetes for comparison of

clinical characteristics, and all of these patients were Chinese. As

shown in Table 5, the onset age, plasma glucose levels, and

proportion of patients with diabetic ketoacidosis at onset in the

IFD group were significantly higher than those in the acute-

onset type 1 diabetes group (all p<0.001). The duration of

symptoms, fasting C-peptide levels, mean HbA1c levels, and

prevalence of positive autoantibody in the IFD groups were

significantly lower than those in the acute-onset type 1 diabetes

group (all p<0.001). The onset age, plasma glucose levels, and
D, TFD, and acute-onset T1D in Chinese patients.

IFD acute-onset T1D

20 43

58.0 ± 9.3*# 24.2 ± 17.0

21.2 ± 3.2 19.4 ± 3.7

75.0 60.5

6 (3, 7)* 30 (10, 34)

85.0* 48.8

680.22 ± 283.83*# 449.33 ± 118.53

7.17 ± 0.13 7.25 ± 0.15

11.77 ± 4.09 12.98 ± 6.95

0.01 (0.01, 0.05)* 0.32 (0.14, 0.54)

7.68 ± 0.60*# 12.41 ± 2.59

10.5 (2/19)* 72.1 (31/43)

.
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HbA1c levels in patients with IFD were significantly higher than

those in patients with TFD (58.0 ± 9.3 years vs. 31.0 ± 13.9 years,

680.22 ± 283.83 mg/dl vs. 557.90 ± 198.73 mg/dl, and 7.68% ±

0.60% vs. 6.81% ± 0.86%, respectively, all p<0.001).
Discussion

ICIs, especially PD-1 inhibitors, can cause type 1 diabetes as

an immune adverse event, which is usually accompanied with

severe complications, such as diabetic ketoacidosis. The present

study comprised the largest sample size of IFD patients to date.

The present results indicated that IFD was not uncommon in

patients receiving ICI treatment, especially among Caucasians.

Nivolumab and pembrolizumab were the most common ICIs

leading to diabetes, and the most common tumor types were

melanoma and lung cancer. The median HbA1c was low,

suggesting abrupt onset of diabetes. The proportion of IFD

patients with positive autoantibodies was 26.0%, and GADA

was the most prevalent diabetes-associated autoantibody.

Autoantibody-positive IFD patients showed faster onset due to

a lower median number of infusions and time from initiation of

ICI therapy to onset of diabetes. Interestingly, Caucasians with

IFD had a more rapid onset and more serious disease than

Asians with IFD. At the same time, the antibody-positive rate of

the Caucasian population was higher than that of the Asian

population. However, it remains unknown whether the high

proportion of autoantibodies in the Caucasian population causes

different conditions and disease progression from those in the

Asian population, thereby additional studies are warranted.

The increased number of reports of ICI-related diabetes,

which are mainly related to the use of PD-1 or PDL-1

inhibitors, has provoked widespread concern. The exact

mechanisms of these cases of acute insulin-dependent diabetes

are currently unknown. The PD-1/PDL-1 axis affects islet

autoimmunity through different mechanisms involving innate

and adaptive immune cells, and these affects occur in draining

lymph nodes and pancreatic tissue (16). The rarity of these

secondary diabetes events makes them challenging to

characterize. However, if severe hyperglycemia is not detected

and treated in time, the patient is likely to die from diabetic

ketoacidosis rather than the malignant tumor. Therefore, it is

necessary to summarize the IFD patients reported all over the

world and conduct comprehensive analyses to identify early

prediction risk factors.

Recent studies have found that islet autoantibodies,

especially GADA, which is considered the main autoantibody

in patients with type 1 diabetes, are related to IFD. However,

GADA negativity does not indicate that other islet

autoantibodies are negative, suggesting that other antibodies

may be positive. In the present study, the prevalence of islet

autoantibodies was 26.0% and 46.0% in IFD and IT1D,

respectively. Similar to this study, Clotman et al. found that
Frontiers in Immunology 08
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56% of patients with ICI related diabetes are positive for islet

autoantibodies, including GADA (17). De Filette et al. reported

that at least one autoantibody is positive in 53% of ICI related

diabetes patients with GADA having the highest positive rate

(51%) (18). It has been reported that an antibody-positive ICI

related diabetes group has a more rapid onset and higher

incidence of diabetic ketoacidosis compared to an antibody-

negative ICI related diabetes group (19). The median time from

ICI treatment to the diagnosis of type 1 diabetes is 5 weeks for

GADA-positive cases and 9 weeks for GADA-negative cases

(17). GADA-positive patients use ICIs for a median of 3.1 cycles,

while GADA-negative patients use ICIs for 5.9 cycles (18). In

line with this, the present study demonstrated that patients in

the autoantibody-positive IFD group had a significantly lower

number of median infusions and time from initiation of ICI

therapy to onset of diabetes compared to patients in the

autoantibody-negative IFD group. These findings provide

evidence supporting the importance of detection of islet

autoantibodies for patients before and after using ICI therapy.

Studies have determined that islet autoantibodies are not

directly involved in disease pathogenesis (20) but that they

precede and predict the development of clinical diabetes (21). In

some patients, islet autoantibodies may be present prior to type 1

diabetes (22, 23), whereas in other patients who develop type 1

diabetes, seroconversion may occur after the initiation of ICI

therapy (24, 25). Some researchers have suggested that baseline

autoimmune antibodies may not be particularly useful as

biomarkers to predict individual susceptibility to ICI related

diabetes (26), whereas others have suggested that the presence of

islet autoantibodies prior to treatment may predispose patients to

the development of autoimmune diabetes (23). In our opinion, the

absence of diabetes-related autoantibodies cannot rule out the

occurrence of IFD, but in such cases, the onset will be slower

than that of cases with positive autoantibodies. Autoantibodies are

usually considered a biomarker of islet cell destruction. A previous

prospective study with a 3-year follow-up has shown that islet

autoantibodies may accelerate the decline in b cell function (27).

Therefore, we suspect that ICIs inhibit immune tolerance, leading

to T cell activation and loss of immune tolerance to B cells,

producing islet autoantibodies. However, B cells are not

necessarily involved in all patients, that is, not all patients have

islet autoantibodies. If B cells are involved, the onset of type 1

diabetes will occur sooner. In the present study, most

autoantibodies were measured at the onset of diabetes, and only

one patient had antibody data before the onset of diabetes.

Interestingly, a frozen blood sample obtained prior to treatment

with nivolumab has been shown to be positive for islet

autoantibodies despite no prior history of diabetes and no family

history of diabetes (23). ICI may have simply accelerated a pre-

existing autoimmune process that ultimately led to the

development of type 1 diabetes in this patient. If the

autoantibody is found to be positive at first, timely intervention

will reduce the chance of ketoacidosis at the onset of the disease. In
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addition, the presence of both GADA and IA-2A in the first degree

relatives of patients with type 1 diabetes has been shown to confer a

61% risk of developing type 1 diabetes in 10 years (28). However,

the incidence of type 1 diabetes is low in Asian populations. The

prevalence of islet-specific autoantibodies has been reported to be

lower in Asians compared to Caucasians (29). In the present study,

the prevalence of autoantibodies in Caucasian patients with IFD

was also higher than that in Asian patients with IFD. Thus, if islet

autoantibodies can be a predictor of IFD, it may not work as well in

Asian populations as in Caucasian populations.

TheHLA class II gene is themost important susceptibility gene

for type 1 diabetes. The most common allele in patients with IT1D

is HLA-DR4 (9, 18). A previous study has shown that the

DRB1*0405-DQB1*0401 and DRB1*0901-DQB1*0303

haplotypes contribute to the susceptibility to fulminant type 1

diabetes (30). Unfortunately, no available detailed haplotypes could

be analyzed in most of the IFD cases in the present study. On a

different basis, we determined that the proportion pof type 1

diabetes HLA susceptibility alleles was high regardless if the

patient had IFD or IT1D, which suggested that type 1 diabetes

HLA susceptibility alleles may be predictors of IFD. However, the

effect of HLA susceptibility genes on IFD remains unknown. In the

future, large sample size case-control studies are needed to evaluate

the correlation between HLA susceptibility gene and IFD.

TFD is a rare subtype of type 1 diabetes that is especially

prevalent in east Asians and rare in western Caucasians. In the

present study, we found an interesting phenomenon that IFD

was not infrequent in the Americas and Europe with a

proportion of 45.0% in the present dataset. According to

previous reports, the rate of islet autoantibody positivity may

be relatively lower among Japanese individuals with ICI related

diabetes than that among Caucasians (4.76% vs. 56%) (8). In the

present study, the rate of autoantibody positivity in Asian IFD

patients was also lower than that in Caucasian IFD patients.

Compared to Asians with IFD, Caucasians with IFD had a more

rapid onset and a higher proportion of diabetic ketoacidosis,

which may be attributed to their higher rate of autoantibody

positivity. In the present study, the correlation analysis

supported this conjecture that autoantibody status in patients

with IFD is associated with ethnic origin. More prospective

studies are needed in the future for confirmation of these results.

The global increase in ICI use across cancer types highlights

the importance of early monitoring and identification of IFD as

well as increasing awareness for clinicians. The Japanese

Diabetes Association recommends that patients receiving ICI

therapy should have their blood glucose levels checked at each

visit (every 2-3 weeks). The American Society of Clinical

Oncology recommends that blood glucose levels should be

measured during each course of treatment for 12 weeks during

the induction period and every 3-6 weeks after ICI therapy (31).

The present findings indicated that IFD can occur at various

time points during the use of ICIs. According to the present

study, the currently advocated responses may be insufficient to
Frontiers in Immunology 09
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detect IFD early and reduce its severity at onset because IFD

often presents with diabetic ketoacidosis within a week of

diabetes symptoms. For early diagnosis and treatment of IFD,

we propose the following procedures: 1) blood glucose should be

monitored every week during ICI treatment; 2) diabetes-

associated autoantibodies should be tested before or during

treatment with ICIs, and if the autoantibodies are positive, it is

necessary to pay close attention to the symptoms of

hyperglycemia and strengthen the frequency of blood glucose

monitoring to protect against the occurrence of diabetic

ketoacidosis; 3) before initiation of ICI treatment, the patient

should be informed of the rare possibility of insulin-dependent

diabetes and the corresponding countermeasures; and 4) when

conditions permit, the detection of type 1 diabetes susceptibility

gene should be considered.

The present study had important strengths. Although

obtaining IFD cases is difficult because IFD is rare, the novel

design of the present study allowed collection of detailed case

information by searching the literature to obtain a considerable

sample size for analysis and research. We focused on fulminant

type 1 diabetes as an adverse event of ICI therapy and found

several interesting results. These results highlighted that the

occurrence of IFD is related to autoantibody status and ethnic

differences as IFD patients with positive islet autoantibodies or

patients with Caucasian ethnicity have a more rapid onset.

The present study had several limitations. Most cases were

obtained from existing literature, which led to incomplete clinical

data, such as lack of pancreatic enzymes and daily dose of insulin.

The consistency of the detection methods of some important

parameters, such as islet autoantibodies and HbA1c, was not

guaranteed, resulting in potential confounding factors in

statistical analysis. There was also a lack of sufficient comparable

HLA genotype information. Clearly, if we had conducted HLA

typing in the form of case-control study, it would have allowed

greater insight into the IFD risk associations. In addition, the

analysis in the present study was cross-sectional, allowing the

predictive potential of autoantibodies to be inferred from the

clinical state only at the time of observation. Additional

longitudinal cohort studies are required to demonstrate the

clinical usefulness of autoantibodies. Finally, larger studies will

improve the IFD risk prediction associated with autoantibodies or

susceptibility genes.

In summary, IFD is relatively common in the Caucasian

population, in which TFD is rare or almost absent. The present

data suggested that IFD occurrence may be significantly related

to autoantibody status and ethnic differences. Patients with

positive islet autoantibodies or Caucasians have a more rapid

and more serious onset. Prospective studies are needed to

identify more effective risk prediction methods for

developing ICI-induced diabetes. Due to the rapid onset of

IFD, all acutely unwell patients on ICI should have their blood

glucose checked and a full work-up for diabetes ketoacidosis

if necessary.
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pembrolizumab can induce exceptional fulminant type 1 diabetes. Diabetes Care
(2015) 38(11):e182–3. doi: 10.2337/dc15-1331
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The b-carboline Harmine
improves the therapeutic
benefit of anti-PD1 in
melanoma by increasing the
MHC-I-dependent
antigen presentation

Muhammad Zaeem Noman1, Irene Adelaide Bocci1,
Manale Karam2,3, Kris Van Moer1, Manon Bosseler1,
Akinchan Kumar1, Guy Berchem1,4,
Christian Auclair2,3† and Bassam Janji 1*†

1Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research,
Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg, 2AC Bioscience, Biopôle,
Route de la Corniche 4, Epalinges, Switzerland, 3AC Biotech, Villejuif Biopark, Villejuif, France,
4Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
Harmine is a dual-specificity tyrosine-regulated kinase 1A (DYRK1A) inhibitor

that displays a number of biological and pharmacological properties. Also

referred to as ACB1801 molecule, we have previously reported that harmine

increases the presentation of major histocompatibility complex (MHC)-I-

dependent antigen on melanoma cells. Here, we show that ACB1801

upregulates the mRNA expression of several proteins of the MHC-I such as

Transporter Associated with antigen Processing TAP1 and 2, Tapasin and Lmp2

(hereafter referred to as MHC-I signature) in melanoma cells. Treatment of

mice bearing melanoma B16-F10 with ACB1801 inhibits the growth and weight

of tumors and induces a profound modification of the tumor immune

landscape. Strikingly, combining ACB1801 with anti-PD1 significantly

improves its therapeutic benefit in B16-F10 melanoma-bearing mice. These

results suggest that, by increasing the MHC-I, ACB1801 can be combined with

anti-PD1/PD-L1 therapy to improve the survival benefit in cancer patients

displaying a defect in MHC-I expression. This is further supported by data

showing that i) high expression levels of TAP1, Tapasin and Lmp2 was observed

in melanoma patients that respond to anti-PD1; ii) the survival is significantly

improved in melanoma patients who express high MHC-I signature relative to

those expressing low MHC-I signature; and iii) high expression of MHC-I
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signature in melanoma patients was correlated with increased expression of

CD8 and NK cell markers and overexpression of proinflammatory chemokines

involved in the recruitment of CD8+ T cells.
KEYWORDS

MHC-I antigen presentation, harmine, DYRK1A, anti-PD1 Immunotherapy,
T lymphocyte and NK cells infiltration, melanoma, inflammatory chemokines
Introduction

Immune escape represents a major obstacle to successful cancer

treatment based on immune checkpoint inhibitors (ICIs) (1). To

escape CD8 T lymphocyte recognition, tumor cells lose their

antigenicity through loss of immunogenic tumor antigens or

defects in the antigen presentation machinery mediated by MHC-I

(2). Moreover, malignant cells can gain additional aggressive

properties by releasing factors that are responsible for the

establishment of an immunosuppressive tumor microenvironment

and the expression of immune checkpoint ligands (3).

MHC-I antigen presentation is the mechanism responsible for

presenting “foreign” proteins on the surface of APC (antigen

presenting cells) or cancer cells, thus allowing their recognition by

CD8 T cells. Endogenously synthesized proteins are subjected to

continuous degradation by the immunoproteasomes which is

composed of several proteins, such the proteasome activator

complexes 28a and b (PA28a and b ) and low-molecular-weight

proteins 2 and 10 (LMP2 and LMP10). Such degradation process is

needed for the generation of a majority of MHC-I-presented

peptides. Some peptides produced by the immunoproteasomes

(containing 9 to 13 residues) are transferred into the lumen of the

endoplasmic reticulum (ER) by the Transporter Associated with

antigen Processing (TAP) complex, which is composed of two

different subunits (TAP1 and TAP2). The heavy and light b2-
microglobulin (b2M) chains of MHC-I molecules are co-

transported into theERwhere they fold into theMHC-Iheterodimer.

Upon transport into the lumen of the ER, peptides are in the

vicinity of newly assembling MHC I molecules. The complex is

stabilized through interactionswithchaperones suchascalreticulin.

Additional component of this complex includes the peptide

“editor” Tapasin which helps in maintaining peptide-empty

MHC I molecules in the ER. Assisted by the peptide-editors

Tapasin, MHC-I molecules can bind peptides displaying the right

length and sequences. Stable peptide-MHC I complexes are finally

released from the ER to be exposed to the plasma membrane and

displayed to CD8 T cells by the exocytic pathway (reviewed in (4)).

Despite the success of anti-PD-1 therapy, many patients

experience intrinsic or acquired resistance involving several

non-mutually exclusive mechanisms (5). In addition to the low

mutational burden, the most straightforward cause of the lack of
02
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responsiveness to anti-PD-1/PD-L1 is defects in the recognition

of tumor cells by T cells, which can be related to the absence of

tumor antigens or defects in the antigen presentation

mechanism by MHC (6). Therefore, improving tumor antigen

presentation by cancer cells is an attractive clinical approach to

restore anti-tumor immunity and improve anti-PD-1 therapy.

The beta-carboline alkaloid harmine inhibits members of the

dual-specificity tyrosine-regulated kinases (DYRK), including

DYRK1A, DYRK1B, DYRK2, and DYRK4, with highest affinity

for DYRK1A (7). In addition to its wide range of pharmacological

activities, harmine displays anti-tumor properties by suppressing

cell proliferation and inducing cell death in breast, lung, and

ovarian cancers (8–11) and sensitizing pancreatic cancer cells to

gemcitabine (12). Harmine plays a role in the actin cytoskeleton-

dependent tumor reversion process (13), a key element in the

formation of immunological synapses between T-cell receptors

(TCRs) and MHC-I expressing tumor cells (14).

In this study we assessed the impact of the beta-carboline

derivative ACB-1801 on the expression of proteins of the MHC-I

and evaluate the functional significance on the improvement of

anti-PD-1 therapy

Here, we report that, in B16-F10 melanoma cells, ACB1801

upregulates the expression of proteins involved in the MHC-I

peptide-loading complex, such as transporter associated with

antigen processing proteins 1 and 2 (TAP1 and TAP1), Tapasin

and low-molecular-weight proteins 2 (Lmp2). The therapeutic

value of ACB1801-dependent increase of TAP1, TAP2, Tapasin

and Lmp2 is underscored by clinical data showing that high

expression levels of these proteins was observed in melanoma

patients that respond to anti-PD-1 and associated with an

improved survival of melanoma patients. Using B16-F10 as

melanoma mouse model, we show that ACB1801 treatment

induces a profound modification of the tumor immune landscape

and significantly improves the therapeutic benefit of anti-PD-1.

Materials and methods

Cells and reagents

B16-F10, GEMM, A375, and CT26 cell lines were purchased

from ATCC and cultured as described in the data sheet of ATCC
frontiersin.org
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and a previous report (15). U87 and U251 cells were kindly

provided by Dr. Anna Golebiewska (NorLux laboratory, LIH,

Luxembourg) and cultured in Dulbecco’s modified Eagle’s

medium-F12 (DMEM/F12, Gibco) supplemented with 10%

fetal bovine serum (Gibco), 50-U/ml penicillin, and 250-mg/ml

streptomycin. All cells were cultured in an incubator at 37°C

with 5% CO2. All cell lines were frequently checked for whether

they were free of mycoplasma using a Mycoalert kit (Lonza).

ACB1801 was provided by AC Bioscience (Lausanne,

Switzerland), mouse Tap1 monoclonal antibody (3D4), goat

anti-mouse Phycoerythrin conjugated IgG secondary antibody

and mouse IgG1 Isotype control (11711) were obtained from

Novus, and MHC-class I H-2Kb antibody was obtained

from Invitrogen.
RNA extraction and SYBR Green real-
time (RT)-qPCR

As reported previously (16), total RNA was extracted using

TRIzol solution (Invitrogen) according to manufacturer’s

instructions. 1 mg of total RNA was treated with DNase I and

converted into cDNA using TaqMan Reverse Transcription

Reagent (Applied Biosystems). The mRNA expression levels

were quantified by the SYBR-GREEN qPCR method (Applied

Biosystems). Relative expression was calculated using a

comparative Ct method (2-DCt). The primer sequences are

available upon request.
In vivo study approval

Animal experiments were conducted according to the European

Union guidelines. The in vivo experimentation protocols were

approved by the LIH ethical committee, Animal Welfare Society,

and Luxembourg Ministry of Agriculture, Viticulture and Rural

Development (agreements n. LECR-2018-12).
In vivo tumor growth and
mouse treatments

C57BL/6 mice (7 weeks old) were purchased from Janvier

and housed in pathogen-free conditions for one week before

experiments. The mice were injected subcutaneously in the right

flank with cell lines diluted in 100 µl of PBS. ACB1801 was

administered to them with doses of 50, 20, and 10 mg/kg by oral

gavage (per os) or 1 mg/kg by an i.p. route. Vehicle treatment

was performed using methyl cellulose.

InVivoMab anti-mouse PD-1 (CD279) (BE0273) and

InVivoMab rat IgG2a isotype control (BE0089) were purchased

from BioXCell (Lebanon, USA), diluted in InVivoPure pH 7.0

Dilution Buffer (IP0070), and administered as indicated in the
Frontiers in Immunology 03
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corresponding figures. Tumor volume (V) was measured using

caliper every other day and estimated as follows: V (cm3) = ½

(Length × Width2). Mice were excluded if they did not develop

tumors or developed tumors larger than the threshold defined in

the approved experimentation protocols (volume > 2000 mm3), as

previously reported (15).
Tumor immune phenotyping and flow
cytometry analysis

As previously reported (15), tumors were harvested,

mechanically dissociated into fragments (<4 mm), and

enzymatically digested using a mouse tumor dissociation kit

(Miltenyi Biotec) for 45 min at 37°C. Single-cell suspensions were

prepared, and red blood cells were lysed using Ammonium-

Chloride-Potassium (ACK) lysis buffer (10-548E, Lonza). Live/

Dead dye was used to select only live cells which were then counted

using a Countess Automated Cell Counter (Invitrogen) and

blocked for 30 minutes on ice with Fc block (TruStain fcX™

(anti-mouse CD16/32) Antibody 101320 Biolegend). Samples

were stained for surface markers for lymphoid and myeloid

immune populations. For FoxP3 and intracellular staining, True-

Nuclear™ Transcription Factor Buffer Set 424401 Biolegend was

used according to the manufacturer’s recommended protocol.

CD45+ CD3- NK1.1+ cells were defined as NK cells. Lymphocytes

were defined as theCD3+ subpopulation of theCD45+NK1.1- gate.

CD4+ and CD8+ T lymphocytes were derived from the CD3+

subpopulation. Tregs were subdivided from CD4+ T lymphocytes

and defined as Foxp3+ and CD4+ Foxp3- cells were considered as

CD4+T effector cells population. CD45+CD11b+ cellsweredefined

as a subset of livemyeloid cells.DCweredefinedas theCD11c+ sub-

population of the CD45+ CD11b+ subset. Polymorphonuclear

MDSCs (PMN-MDSCs) were defined as the Ly6G+ Ly6Clow

subpopulation of CD45+ CD11b+ subset. Total macrophages

were defined as the F480+ subpopulation of the CD45+ CD11b+

subset. Inflammatory anti-tumoral macrophages (M1) were

defined as F4/80+ CD206-, and protumoral macrophages (M2)

were defined as F4/80+ CD206+ subpopulations of the F480+

CD45+ CD11b+ cells. The percentages of the different immune

cell populations described above were calculated by reporting back

to the total CD45+ live cells.

For flow cytometry, cells were harvested in 10 mM EDTA

(Invitrogen). Surface staining was done at 4°C for 30 min using

appropriate antibodies according to according to the

manufacturer’s protocol. Dead cells were excluded using Live/

Dead staining Kits (L34976; Thermo Fischer Scientific) or BD

Via-Probe™ Cell Viability Solution (555815; Becton Dickinson).

Samples were processed on a CytoFLEX flow cytometer and

analyzed using CytExpert software.

The following antibodies were purchased from Biolegend:

FITC anti-mouse CD45, Brilliant Violet 785 anti-mouse CD3,

APC anti-mouse CD8a, APC/Fire 750 anti-mouse CD4, PE/Cy7
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anti-mouse CD49b (pan-NK cells), PE/Cy7 anti-mouse NK-1.1

antibody, Brilliant Violet 605 anti-mouse CD69, PE/Cy5 anti-

mouse CD25, Brilliant Violet 421 anti-mouse FOXP3, PE/Dazzle

594 anti-mouse CD279 (PD-1), Brilliant Violet 785 anti-mouse/

human CD11b, APC anti-mouse F4/80, PE/Cy5 anti-mouse

CD11c, PE/Cy7 anti-mouse Ly-6G, APC/Fire 750 anti-mouse

Ly-6C, Brilliant Violet 605 anti-mouse CD206 (MMR), and

Brilliant Violet 421 anti-mouse CD274 (B7-H1, PD-L1). A

LIVE/DEAD Fixable Blue Dead Cell Stain Kit (ThermoFisher

Scientific) was used for viability dying. For compensation

controls, single dye stains were performed and the

fluorescence spread was checked using Fluorescence Minus

One (FMO) controls. The levels of non-specific binding was

evaluated using isotype controls.
Melanoma patient data mining

RNA expression reported as FPKM (Fragments Per Kilobase

Million) values of anti-PD-1 treatedmelanoma patients fromGEO

(GSE78220)were retrievedandclinicaldataweredownloaded from

the corresponding published paper (17) for all the individual

patients reported as responders or no responders to anti-PD-1.

The FPKM value of MHC-I signature [TAP1, TAP2, TAPBP

(Tapasin) and PSMB9 (Lmp2)] gene was compared between the

two groups (Responders vs Non-responders). Mann Whitney U

test was used to compute statistical significant difference using

Graphpad Prism 8 software. Data from the TCGA skin cutaneous

melanoma (SKCM) cohort (448 patients) were downloaded from

cBioPortal (http://www.cbioportal.org/). IDs of patients displaying

high and low TAP1, TAP2, TAPBP (Tapasin) and PSMB9 (Lmp2)

mRNA expression (z-score relative to all samples) were extracted.

Each patient’s vital status and survival values (overall survival and

disease-specific survival) were downloaded from the TCGA

database. In patients displaying high and low MHC-I signature,

the log2mRNA expression levels (batch normalized from Illumina

HiSeq_RNASeqV2) of markers for NK (NCR1 and NCR3), CD8

(CD8A, CD8B, KLRG1), Cytotoxicity [Granzyme B (GZMB),

Perforin (PER), TNF alpha (TNF) and Interferon gamma

(IFNg)] were identified. The expression of inflammatory

chemokines (CCL2, CCL4, CCL5, CCL19, CCL21, CXCL9,

CXCL10, CXCL11, CXCL13, XCL2) was extracted from patients

displaying low and high levels of MHC-I signature, NK markers

and CD8 markers. The differential expression of genes of interest

was found using GraphPad software. The median survival and the

p-value were calculated using the log-rank (Mantel-Cox) test in

GraphPad software.
Statistical analysis

Statistical analyses were performed using GraphPad Prism 8. An

unpaired two-tailed t-test was used to determine p-values between
Frontiers in Immunology 04
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indicated groups. Results are represented as the mean ± standard

error of the mean (SEM). A p-value < 0.05 was considered

statistically significant (p ≤ 0.05 = *; p ≤ 0.01 or ≤ 0.05 = **; p ≤

0.001 or ≤ 0.005 = ***; p > 0.05 = not significant, ns).
Results

ACB1801 increases the expression of
several proteins of the MHC-I in various
murine and human cancer cells

We assessed the impact of ACB1801 on the expression of

antigen presentation genes (TAP1, TAP2, Tapasin, b2m, Lmp2,

Lmp10, PA28a and PA26b) in murine B16-F10 melanoma. B16

cells are poorly immunogenic because they express low levels of

MHC-I. This deficiency is attributed to the downregulation or

loss in expression of multiple components of the MHC-I

antigen-processing machinery (18). Cells treated with the

culture medium alone were used as a control to evaluate the

basal expression levels. We showed that ACB1801 upregulates

the mRNA expression of TAP1, TAP2, Tapasin and Lmp2 genes

involved in the antigen presentation in B16-F10 in a dose-

dependent manner (Figure 1A).

The increased expression of TAP1, TAP2, Tapasin was

also observed in colorectal CT26 cancer cells treated with 10

mM ACB-1801 (Figure 1B). Furthermore, the overexpression

of TAP1, as a representative protein of the MHC-I, was

detected in human melanoma cells A375, and colorectal

HCT166 cells (Figure 1C) as well as in glioblastoma (U87

and U251) cells (Supplementary Figure 1). The increase of

TAP1 mRNA by ACB1801 was translated into an increase of

the protein expression of TAP1 in a dose-dependent

manner (Figure 1D).

Initially named H−2, murine MHC-I comprises three gene

loci: H−2K, H−2D, and H−2L. Several allotypes of these have

been described, including H-2Kb (19). B16-F10 melanoma cells

express low to undetectable levels of H-2Kb (20) which is critical

for peptide-binding of murine MHC-I (21). We have previously

reported that treatment of B16-F10 cells with ACB1801

increases H-2Kb bound OVA (SIINFEKL) peptide presentation

by MHC-I (22). We believe that this could be related to an

increase in the expression of the H-2Kb variant on the surface of

B16-F10 cells following treatment with ACB1801, as shown

in Figure 1D.
ACB1801 inhibits B16-F10 tumor growth
and improves the therapeutic benefit of
anti-PD1

The efficacy of anti-PD-1 therapy relies on the

effectiveness of neoantigen presentation by MHC-I on the
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surfaces of cancer cells (23). Melanoma patients displaying a

low expression level of MHC-I are unlikely to benefit from

anti-PD-1 (24). Based on these data, we assessed the impact of

combining ACB1801 on the therapeutic benefit of anti-PD-1.

We used a B16-F10 tumors since they are poorly

immunogenic (18) and they do not respond to anti-PD-1

(15). The treatment schedule is shown in Figure 2A. Our

results demonstrate that treatment with ACB1801 alone (10

mg/kg per os) decreased the tumor growth and weight of B16-

F10 tumors and prologue the survival of tumor-bearing mice

(Figures 2B, C, left panels, D). This effect is not restricted to

B16-F10 tumors but is also observed in genetically engineered

mouse melanoma (GEMM) tumors (Supplementary Figure 2)

harboring genetic alterations (BrafV600E/wt Pten−/− Cdkn2−/−)

found in human melanomas.
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We also showed that anti-PD-1 monotherapy had no effect

on B16-F10 tumor growth, tumor weight and mice survival, as

expected (Figures 2B, C, middle panels, and D). However,

combining ACB1801 with anti-PD-1 remarkably improved the

therapeutic benefit compared to anti-PD-L1 monotherapy

(Figures 2B, C, right panels and D). Our results depicted in

Figures 2E, F further indicate that ACB-1801 inhibits the growth

of B16-F10 tumors in a doses dependent manner.

We next assessed whether lower doses of ABC1801 are still

able to inhibit B16-F10 melanoma tumor growth and improve

the therapeutic benefit of anti-PD-1. We found that ACB1801 at

1 mg/kg i.p. significantly improves the therapeutic benefit of

anti-PD-1 (Figures 2G–I). Our results provide strong evidence

that treatment with ACB1801 makes non-responder B16-F10

tumors strong responders to anti-PD1.
A

B

D EC

FIGURE 1

ACB1801 upregulates the expression of TAP1 in various murine and human tumor cells (A, B). The mRNA expression of Tap1, Tap2, Tapasin,
B2m, Lmp2, Lmp10, PA28a, PA28b, in mouse melanoma B16-F10 (A) and colorectal CT26 (B) cancer cells. (C) The mRNA expression of TAP1 in
human melanoma A375 and colorectal HCT-116 cells. B16-F10, A375, CT26, and HCT-116 cells were treated for 24 h with culture medium
(control) or with two concentrations of ACB1801 (5 and 10 uM). Results are reported as fold change (FC) relative to control cells treated with
medium (black bars). (D) Flow cytometry analysis of the expression of TAP1 protein in B16-F10, CT26, A375, and HCT-116 cells treated for 24 h
with culture medium (control) or two concentrations of ACB1801 (5 and 10 uM). Results are reported as % of positive cells relative to live cells.
(E) Flow cytometry analysis of the expression of MHC-class I H-2Kb allotype on the cell surface of B16-F10 cells treated for 24 h with culture
medium (control) or ACB1801 (5 uM). Results in (A–E) represent the averages of three independent experiments and are shown as mean ± SEM
(error bars). Statistically significant differences were calculated relative to control conditions using an unpaired two-tailed student’s t-test (ns,
not significant, * =p< 0.05, ** =p< 0.005, and ***=p<0.0005).
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FIGURE 2

ACB1801 inhibits B16-F10 melanoma tumor growth and improves the therapeutic benefit of anti-PD-1. (A) Experimental schedule of B16-F10
melanoma treatment with mono and combination therapies of ACB1801 and/or anti-PD-1. B16-F10 cells (0.2 x 106 cells) were injected
subcutaneously in the right flank of C57BL/6 mice at day 0. Palpable tumors were observed at day 8. Treatment with ACB1801 (10 mg/kg) or
vehicle was started at day 8 to day 17 and delivered daily per os. Treatment with anti-PD-1 (aPD-1, 1 mg/kg) was delivered i.p. at days 9, 11, 13,
and 15. Mice were euthanized at day 17. (B–D) Tumor growth curves (B), weight (g) at day 17 (C), and mice survival (D) of B16-F10 melanoma in
mice treated with vehicle and isotype (vehicle + isotype), ACB1801 (10 mg/kg) and isotype (ACB-1801 10 mg/kg), vehicle and anti-PD-1 (vehicle
+ anti-PD-1), or ACB1801 (10 mg/kg) and anti-PD-1 (ACB1801 + anti-PD-1). Results are reported as the average of 10 mice per group and
shown as mean ± SEM (error bars). Statistically significant differences are calculated using an unpaired two-tailed student’s t-test (ns= not
significant, * =p< 0.05, ** =p< 0.005, and ***=p<0.0005). Mice survival curves (5 mice per group) were generated from B16-F10 tumor-bearing
mice. Lack of survival was defined as death or tumor size >1000 mm3. Mice survival percentage was determined using Graph Pad Prism, and p-
values were calculated using the log-rank (Mantel-Cox) test (* = p ≤ 0.05, ** = p ≤ 0.01). (E, F) Tumor growth curves (E) and weight (g) at day 17
(F) of B16-F10 melanoma in mice treated with vehicle or ACB1801 at 10, 20, and 50 mg/kg. Results are reported as the average of 10 mice per
group. Enlargement of the tumor growth at days 9 and 11 is shown in the right of panel (E) Results are shown as mean ± SEM (error bars).
Statistically significant differences are calculated using an unpaired two-tailed student’s t-test (ns, not significant, and ***=p<0.0005). (G–I)
Experimental schedule (G), tumor growth (H), and tumor weight (I) of B16-F10 melanoma treatment with mono and combination therapies of
ACB1801 and/or anti-PD-1. B16-F10 cells (0.2 x 106 cells) were injected subcutaneously in the right flank of C57BL/6 mice at day 0. Palpable
tumors were observed at day 8. Treatment with ACB1801 (1 mg/kg) or vehicle was started at day 8 to day 17 and delivered daily by i.p. injection.
Treatment with anti-PD-1 (anti-PD1, 1 mg/kg) was delivered i.p. at days 9, 11, 13, and 15. Mice were euthanized at day 17. Tumor growth curves
(H) and weight in g at day 17 (I) of B16-F10 melanoma in mice treated with vehicle and isotype (vehicle + isotype), ACB1801 and isotype
(ACB1801-s 1 mg/kg), vehicle and anti-PD-1 (anti-PD1), or ACB1801 and anti-PD-1 (ACB-1801-s + anti-PD1). Results are reported as the average
of 7 mice per group as mean ± SEM (error bars). Statistically significant differences are calculated using an unpaired two-tailed student’s t-test
(ns, not significant, * =p< 0.05, ** =p< 0.005, and ***=p<0.0005).
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ACB1801 modifies the immune
landscape of B16-10 tumors and
enhances the infiltration of various anti-
tumor immune effector cells

We have previously reported that ACB1801 treatment had

no effect on B16-F10 tumor-bearing immunodeficient NOD scid

gamma mice (NSG) lacking mature B, T, and NK cells (22).

These results indicate that ACB1801-dependent inhibition of

B16-F10 melanoma tumor growth involves the immune system.

To evaluate whether ACB-1801 impacts the infiltration of

immune cells into the tumor microenvironment, we

performed a comprehensive analysis of the immune landscape

of ACB1801-treated tumors using the gating strategies for

lymphoid and myeloid immune phenotyping, which we have

defined previously (15).

We showed a significant increase in the infiltration of NK cells,

CD4Teffector (eff) cells, andCD8+Tcells. Thiswas associatedwith

a significantdecrease in the infiltrationof immunosuppressiveTreg

cells in ACB1801-treated B16-F10 tumors compared to vehicle-

treated controls (Figures 3A). We therefore found that the ratio

CD8/Treg was increase in ACB-1801-treated tumors compared to

controls (Figures 3B). By analyzing the infiltration of myeloid

immune cells, we showed that there is no significant difference

was observed in the infiltration of total (CD11b+) myeloid cells,

total (F4/80+) macrophages, M1 (CD206-) macrophages, M2

(CD206+), and polymorphonuclear myeloid derived suppressor

cells (PMN-MDSCs), but a significant increase was detected in the

infiltration of CD11c+ dendritic cells (DCs) in ACB1801-treated

B16-F10 tumors compared to vehicle-treated controls (Figure 3C).

To evaluate the functional statusNK cells, CD4T effector (eff) cells,

and CD8+ T cells infiltrating ACB-1801-treated tumors, we

evaluate the expression of the activation marker CD69 and the

early exhaustion marker PD-1. Our data showed a significant

increase in the expression of CD69 and PD-1 markers on CD4 T

effector (eff) cells and CD8+ T cells, but not onNK cells, infiltrating

ACB1801-treated B16-F10 tumors (Figures 3D, E).
High expression level of MHC-I signature
is associated with improved survival
benefit, overexpression of CD8 and NK
markers as well as high expression of
chemokines associated with CD8+ T cell
recruitment in melanoma patients

Based on our in vitro data, we have defined TAP1, TAP2,

TAPASIN (TAPBP) and LMP2 as an MHC-I signature which is

regulated by ACB-1801.

To evaluate the therapeutic value of the MHC-I signature

overexpression, we used clinical and RNA-seq data of patients

treated with either pembrolizumab or nivolumab as the anti-PD-

1 therapy for their metastatic melanoma (17). We showed that
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melanoma patients who were responsive to anti-PD-1 expressed

significantly higher levels of TAP1, TAPASIN, LMP2, but not

TAP2, compared to those who were not responsive to this

therapy (Figure 4A). We next assessed the survival and

expression of NK cell markers (NCR1 and NCR3) and CD8 T

cell markers (CD8A and CD8B) in 448 patients with skin

cutaneous melanoma reported in the TCGA database. The

data mining workflow is shown in Figure 4B. Our results show

that the overall survival (OS) and disease specific survival (DSS)

are significantly higher in melanoma patients expressing high

MHC-I signature than those expressing low MHC-I signature

(Figure 4C). We also found that improved survival in patients

expressing high MHC-I signature is associated with higher

expression of NK and CD8 T cell markers (Figures 4D, E).

Furthermore, we showed that the expression of the cytotoxic

markers GZMB, PRF1, TNF, IFNg are significantly increased in

patients displaying high MHC-I signature compared to those

having low MHC-I signature (Supplementary Figure 3).

Our data suggest that melanoma patients expressing high

MHC-I signature are more infiltrated by CD8 T cells compared

to those expressing low MHC-I signature. We believe that the

infiltration of CD8 T cells and NK cells is presumably due to the

over-expression of chemokines involved in driving these cells in

the tumor microenvironment. This assumption was supported

by our data in Figure 4F showing high expression of the

chemokine signature involved in the CD8 T cell recruitment

(25) in patients displaying high MHC-I signature, CD8 and NK

cells compared to those having low MHC-I signature, CD8 and

NK cells. Interestingly, among patients with high MHC-I

signature, 65% of them express high levels of effector CD8 T-

cell markers (CD8a+ CD8b+ KLRG1+), while 50% of them

express high levels of Treg markers (CD4+ Foxp3+ ISG20+)

(Supplementary Figure 4A). Moreover, we also found that 46%

of patients with high MHC-I signature express increased M2

markers ADGRE1+ (Adhesion G Protein-Coupled Receptor E1)

and MRC1+ (Mannose Receptor C-Type 1) which are almost all

positive for CD274 (PD-L1), but not for ARG1 (Arginase 1)

(Supplementary Figure 4B). These results suggest that, in

addition to cytotoxic effector cells, immunosuppressive cells

and M2 macrophages could also be present in the tumor

microenvironment of tumors expressing high MHC-I

signature. Nevertheless, the function of immunosuppressive

cells needs to be deeply investigated under these conditions.

Information about the TCGA melanoma patients is shown

in Supplementary Tables 1–6. Collectively, these data highlight

the therapeutic value of increasing the expression levels of TAP1,

TAP2, TAPBP and PSMB9 in melanoma.
Discussion

Numerous studies are currently ongoing to understand the

resistance mechanisms to immune checkpoint blockades and
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explore novel combinatorial approaches. We have shown that

the b-carboline derivative ACB1801 potentiates the therapeutic

benefit of anti-PD-1 in a B16-F10 melanoma mouse model,

reported to resist to anti-PD-1 therapy (26, 27) and to express

low levels of MHC-I (18). B16-F10 is, therefore, an appropriate

mouse model for investigating the properties of molecules

regulating MHC-I and assessing strategies to overcome the

resistance to anti-PD-1/PD-L1.

Our in vitro results showed that ACB1801 increases the

expression of several proteins of the MHC-I such as TAP1,

TAP2, TAPBP, and the low-molecular-weight protein 2 (LMP2).

Therefore, it is tempting to speculate that the effect of ACB-1801

on the increase of the antigen presentation in B16-F10 cells,

previously reported by us (22), could be the result of the

upregulation of several proteins involved in the MHC-I.
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The precise mechanism by which ACB-1801 increases the

antigen presentation to MHC-I is still not fully understood.

However, we believe that the mode of action of ACB-1801 relies

on its ability to remodel the actin cytoskeleton through

inhibiting DYRK1A. DYRK1A is a negative regulator of the

actin-related protein 2/3 (Arp2/3), which is involved in the actin

polymerization process through Wiskott–Aldrich syndrome

protein (WASP) phosphorylation (7, 13, 28). Therefore, we

argue that inhibiting DYRK1A by ACB1801 would enhance

the reorganization of the actin cytoskeleton, a prerequisite

process for TCR/MHC immune synapse stabilization between

T cells and APC (29–31).

Our in vivo data showed that, even without combination

with anti-PD-1, monotherapy with ACB-1801 alone

significantly inhibits the growth of B16-F10 tumors.
A

C
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FIGURE 3

Treatment of B16-F10 tumor-bearing mice with ACB-1801 increases the infiltration of cytotoxic immune cells into the tumor
microenvironment. (A) Flow cytometry quantification of the percent (%) live natural killer (NK) cells, CD3+, CD4+ effector T cells, CD8+ T cells,
and regulatory T lymphocytes (Treg) infiltrating B16-F10 tumors treated treated with vehicle or 50 mg/kg of ACB-1801. (B) The ratio of CD8/
Treg reported as percent (%) of cells infiltrating B16-F10 tumors treated as described in (A). (C) Flow cytometry quantification of the percent (%)
of live myeloid cells (CD11b+), dendritic cells (DC), polymorphonuclear myeloid derived suppressor cells (PMN-MDSC), total macrophages (F4/
80), M1 macrophages (CD206- M1), and M2 macrophages (CD206+ M2) infiltrating B16-F10 tumors treated as described in (A). (D, E) Flow
cytometry quantification of the percent (%) of live CD69+ (D), PD-1+ (E) NK cells, CD4+ effector T cells, and CD8+ T cells infiltrating B16-F10
tumors treated as described in (A). All quantifications were performed on well-established tumors harvested at day 17. The immune cell
populations were gated and quantified in live CD45+ cells. Each dot represents one tumor. Data are reported as the average of 5 mice per
group as mean ± SEM (error bars). Statistically significant differences are calculated in comparison to vehicle-treated tumors using an unpaired
two-tailed student’s t-test (ns, not significant, * =p< 0.05, and ** =p< 0.005).
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FIGURE 4

Retrospective analysis of the therapeutic value of MHC-I signature (TAP1, TAP2, TAPBP and LMP2) upregulation in melanoma patient cohorts.
(A) The expression of MHC-I signature (TAP1, TAP2, TAPBP and LMP2) reported as FPKM in metastatic melanoma patients who are not
responsive (NR) or responsive (R) to anti-PD-1. Statistically significant difference was determined using Mann Whitney U test in Graphpad Prism
9 software. (B) Workflow used for analyzing melanoma patient data in TCGA database. (C) Kaplan-Meier overall survival (OS, left panels) and
disease-specific survival (DSS, right panels) curves of melanoma patients expressing high and low mRNA of MHC-I signature. Patients displaying
high MHC-I signature have significantly improved OS and DSS compared to those with low MHC-I signature. The p-value of each curve was
determined using the log-rank (Mantel-Cox) test. (D) Volcano plot of differentially expressed genes in melanoma patients with high and low
mRNA expression of MHC-I signature. Scattered points represent genes. The x-axis shows the log2 fold change for the ratio of high compared
to low expression of MHC-I signature. The y-axis shows significance by -log10 transformed p-value value. Red dots in the right of the dashed
vertical line at +1 value represent genes that are significantly over-expressed in patients with high MHC-I signature. Green dots on left of the
dashed vertical line at -1 value represent genes that are significantly under-expressed in in patients with high MHC-I signature. A gene is
considered significantly differentially expressed if |log(FC)| ≥ 0.1 and |log10 (p-value)| ≤ 0.01. TAP1, TAP2, TAPBP, PSMB9, CD8 markers (CD8A
and CD8B) and NK (NCR1 and NCR2) are shown in blue. (E) The mRNA expression of NK markers (NCR1 and NCR3) and CD8 markers (CD8A
and CD8B) reported as log2 in melanoma patients displaying high and low MHC-I signature. Results are shown as mean ± SEM (error bars).
Statistically significant differences of high MHC-I signature are calculated compared to patients with low MHC-I signature using an unpaired
two-tailed student’s t-test (**** = p<0.0001). (F) Upper panel: Strategy used to extract melanoma patient data in TCGA database expressing low
and high TAP1, TAP2, Tapasin (TAPBP), Lmp2 (PSMB9), CD8A, CD8A and NCR1 and NCR3 genes. Doted boxes define patients that we have
considered to assess the expression of CCL2, CCL4, CCL5, CCL19, CCL21, CXCL9, CXCL10, CXCL11, CXCL13 and XCL2 chemokines. Lower
panel: The mRNA expression of CCL2, CCL4, CCL5, CCL19, CCL21, CXCL9, CXCL10, CXCL11, CXCL13 and XCL2 in patients defined in the upper
panel. The differential expression of genes of interest was defined using GraphPad software. Results are represented as the mean ± standard
error of the mean (SEM). Statistically significant differences are calculated using an unpaired two-tailed student’s t-test (**** = p<0.0001).
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Consistence with these data, it cannot ruled out that, through

remodeling the actin cytoskeleton, ACB-1801 induces a

reversion of the aggressive phenotype of the B16-F10 cells,

thereby making them more prone to immune recognition and

killing. Indeed, accumulating evidence suggests that tumor

reversion refers to a process where cancer cell lose their

malignant phenotype (also termed bad or tumor escape

phenotype) and gain a good phenotype (also called tumor

rejected phenotype) due to extensive genetic reprogramming

(32, 33). Tumor cells with bad phenotype are derived from

established tumors after escaping T-cell-mediated immune

surveillance (34). From these evidences, we suspect that ACB-

1801 increases tumor antigen presentation most likely through

its potent property to inhibit DYRK1A and revert tumor

malignant phenotype. Although a direct experimental evidence

of such a mechanism is still needed, this concept is supported by

evidences showing that: i) several kinases negatively regulate

MHC-I expression and antigen presentation machinery in

multiple cancers (35); and ii) one of the major characteristics

of the malignant phenotype is the impairment of tumor antigen

presentation due to genetic aberrations that provide growth and

survival benefit to tumors (36). Therefore, the reversion of the

malignant phenotype has been proposed to result in the

unmasking of tumor cells, which would mainly occur through

the rescue of tumor antigen presentation (4). Nevertheless, it is

unlikely that the anti-tumor effect of ACB1801 results from

exclusive action on tumor cells.

In addition to increasing the tumor antigen presentation,

ACB1801 induces a deep modification of the immune landscape

of B16-F10 tumors characterized by an increase of NK, CD4, and

CD8 T cells and decrease of Tregs infiltration in the tumor

microenvironment. Although the mechanism(s) underlying the

tumor immune landscape modification by ACB1801 is still

under investigation, we cannot exclude that one of these

mechanisms relies on the regulation of the cytokine/

chemokine repertoire in tumor cells, which are subjected to

the phenotypic reversion. This statement is supported by

previous studies showing that tumor cells undergoing

phenotypic switch can regulate the release of cytokine/

chemokine repertoire, thereby modifying the tumor immune

landscape (37, 38). Schematic representation of the proposed

role of ACB-1801 is provided in Figure 5.

Soluble factors released in the tumor microenvironment may

act via an autocrine mechanism on tumor cells themselves or by

a paracrine mechanism on other cells present in the tumor

microenvironment, including immune cells. Therefore, it is

tempting to speculate that the increased expression of CD69

and PD-1 on both CD4 effectors and CD8 T cells resulted from

yet undefined soluble factors released by tumor cells. It should be

highlighted that the overexpression of PD-1 on tumor-specific T

cells should not only predict the exhaustion status, but can also

be considered as a marker of activated tumor-reactive T cells

(39, 40).
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Nevertheless, further investigations must be carried out to

profile the secretome of tumor cells treated with ACB1801 and

understand its impact on the anti-tumor activity of different

immune cells infiltrating treated tumors. In line with this work,

previous study suggested that Harmine enhances the

differentiation of Treg cells and strongly inhibits Th17 cell

differentiation with minimal impact on Th1 responses in vitro

(41). Based on our preclinical data showing an increased

infiltration of cytotoxic immune cells in the tumor

microenvironment of ACB-1801-treated tumors, which are

further supported by clinical results, our results provides a

framework for rational combination immunotherapy

development of ACB-1801 and anti-PD-1.

The relevance of our study is underscored by clinical data

showing that about 50% of cancer patients displayed an

abnormal antigen presentation. Therefore, combining

ACB1801 could substantially increase the number of cancer

patients that would benefit from the impressive therapeutic

value of ICI. Overall, our data can contribute to the emergence

of a new wave of combination immunotherapy that would

provide durable clinical outcomes and create support

for immunotherapy.
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FIGURE 5

Schematic representation of the proposed role of ACB-1801. By
inhibiting DYRK1A (1), ACB-1801 induces actin cytoskeleton
remodeling (2) and phenotypic switch of cancer cells. Such
phenotypic switch can regulate the expression of several genes
(3) of the MHC-I and various cytokines and chemokines by
mechanism(s) which are not fully understood. The regulation of
several genes of MHC-I (TAP1, TAP2, Tapasin and Lmp2) leads to
an overexpression of MHC-I (4). Whereas, the regulation of
cytokine/chemokines genes induces a modification of the tumor
immune landscape (4).
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