
Edited by  

Zhan Li, Shuai Li and Yan Wu

Published in  

Frontiers in Neurorobotics

Advanced planning, 
control, and signal 
processing methods 
and applications in 
robotic systems 
volume II

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/research-topics/36144/advanced-planning-control-and-signal-processing-methods-and-applications-in-robotic-systems-volume-ii
https://www.frontiersin.org/research-topics/36144/advanced-planning-control-and-signal-processing-methods-and-applications-in-robotic-systems-volume-ii
https://www.frontiersin.org/research-topics/36144/advanced-planning-control-and-signal-processing-methods-and-applications-in-robotic-systems-volume-ii
https://www.frontiersin.org/research-topics/36144/advanced-planning-control-and-signal-processing-methods-and-applications-in-robotic-systems-volume-ii
https://www.frontiersin.org/research-topics/36144/advanced-planning-control-and-signal-processing-methods-and-applications-in-robotic-systems-volume-ii
https://www.frontiersin.org/research-topics/36144/advanced-planning-control-and-signal-processing-methods-and-applications-in-robotic-systems-volume-ii


May 2023

Frontiers in Neurorobotics 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-2396-4 
DOI 10.3389/978-2-8325-2396-4

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


May 2023

Frontiers in Neurorobotics 2 frontiersin.org

Advanced planning, control, and 
signal processing methods and 
applications in robotic systems 
volume II

Topic editors

Zhan Li — Swansea University, United Kingdom

Shuai Li — Swansea University, United Kingdom

Yan Wu — Institute for Infocomm Research (A*STAR), Singapore

Citation

Li, Z., Li, S., Wu, Y., eds. (2023). Advanced planning, control, and signal 

processing methods and applications in robotic systems volume II. 

Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-2396-4

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-2396-4


May 2023

Frontiers in Neurorobotics 3 frontiersin.org

05 Harmonic Noise-Tolerant ZNN for Dynamic Matrix 
Pseudoinversion and Its Application to Robot Manipulator
Bolin Liao, Yuyan Wang, Jianfeng Li, Dongsheng Guo and 
Yongjun He

18 UAV Based Indoor Localization and Objection Detection
Yimin Zhou, Zhixiong Yu and Zhuang Ma

34 Refined Self-Motion Scheme With Zero Initial Velocities and 
Time-Varying Physical Limits via Zhang Neurodynamics 
Equivalency
Zanyu Tang and Yunong Zhang

49 Research on smooth path planning method based on 
improved ant colony algorithm optimized by Floyd algorithm
Lina Wang, Hejing Wang, Xin Yang, Yanfeng Gao, Xiaohong Cui and 
Binrui Wang

67 VSLAM method based on object detection in dynamic 
environments
Jia Liu, Qiyao Gu, Dapeng Chen and Dong Yan

83 NeuroVI-based new datasets and space attention network for 
the recognition and falling detection of delivery packages
Xiangyong Liu, Zhi-Xin Yang, Zhiqiang Xu and Xiaoan Yan

94 Estimation of knee joint movement using single-channel 
sEMG signals with a feature-guided convolutional neural 
network
Song Zhang, Jiewei Lu, Weiguang Huo, Ningbo Yu and Jianda Han

106 Compound motion decoding based on sEMG consisting of 
gestures, wrist angles, and strength
Xiaodong Zhang, Zhufeng Lu, Chen Fan, Yachun Wang, Teng Zhang, 
Hanzhe Li and Qing Tao

123 Design and torque control base on neural network PID of a 
variable stiffness joint for rehabilitation robot
Bingshan Hu, Binghao Mao, Sheng Lu and Hongliu Yu

136 A triple-step controller with linear active disturbance 
rejection control for a lower limb rehabilitation robot
Huanfeng Peng, Jie Zhou and Rong Song

148 UVMS task-priority planning framework for underwater task 
goal classification optimization
Yu-er Gao, Xiaohui Zhang, Yan Su, Jinbao Wang, Qihang Yang, 
Wenqi Bai and Songnan Yang

168 Design and dynamic analysis of jumping wheel-legged robot 
in complex terrain environment
Tiezheng Guo, Jinhui Liu, Haonan Liang, Yitong Zhang, Wei Chen, 
Ximing Xia, Meiqing Wang and Zhiming Wang

Table of
contents

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


May 2023

Frontiers in Neurorobotics 4 frontiersin.org

185 Interaction learning control with movement primitives for 
lower limb exoskeleton
Jiaqi Wang, Dongmei Wu, Yongzhuo Gao and Wei Dong

196 3D network with channel excitation and knowledge 
distillation for action recognition
Zhengping Hu, Jianzeng Mao, Jianxin Yao and Shuai Bi

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


ORIGINAL RESEARCH
published: 13 June 2022

doi: 10.3389/fnbot.2022.928636

Frontiers in Neurorobotics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 928636

Edited by:

Zhan Li,

Swansea University, United Kingdom

Reviewed by:

Dechao Chen,

Sun Yat-sen University, China

Yinyan Zhang,

Jinan University, China

*Correspondence:

Jianfeng Li

ljf_zy@163.com

Received: 26 April 2022

Accepted: 10 May 2022

Published: 13 June 2022

Citation:

Liao B, Wang Y, Li J, Guo D and He Y

(2022) Harmonic Noise-Tolerant ZNN

for Dynamic Matrix Pseudoinversion

and Its Application to Robot

Manipulator.

Front. Neurorobot. 16:928636.

doi: 10.3389/fnbot.2022.928636

Harmonic Noise-Tolerant ZNN for
Dynamic Matrix Pseudoinversion and
Its Application to Robot Manipulator
Bolin Liao 1, Yuyan Wang 2, Jianfeng Li 1*, Dongsheng Guo 3 and Yongjun He 1

1College of Information Science and Engineering, Jishou University, Jishou, China, 2College of Mathematics and Statistics,

Jishou University, Jishou, China, 3 School of Information Science and Engineering, Huaqiao University, Xiamen, China

As we know, harmonic noises widely exist in industrial fields and have a crucial impact

on the computational accuracy of the zeroing neural network (ZNN) model. For tackling

this issue, by combining the dynamics of harmonic signals, two harmonic noise-tolerant

ZNN (HNTZNN) models are designed for the dynamic matrix pseudoinversion. In the

design of HNTZNN models, an adaptive compensation term is adopted to eliminate the

influence of harmonic noises, and a Li activation function is introduced to further improve

the convergence rate. The convergence and robustness to harmonic noises of the

proposed HNTZNN models are proved through theoretical analyses. Besides, compared

with the ZNNmodel without adaptive compensation term, the HNTZNNmodels are more

effective for tacking the problem of dynamic matrix pseudoinverse under harmonic noises

environments. Moreover, HNTZNN models are further applied to the kinematic control of

a four-link planar robot manipulator under harmonic noises. In general, the experimental

results verify the effectiveness, superiority, and broad application prospect of the models.

Keywords: zeroing neural network, harmonic noise, matrix pseudoinverse, robot manipulator, robustness

1. INTRODUCTION

The matrix pseudoinverse (i.e., Moore Penrose generalized inverse) is the generalized inverse of a
singular matrix or non-squarematrix. Similar to the inverse of thematrix, thematrix pseudoinverse
is an important subject in the fields of science and engineering. It is considered a powerful formula
and design technology for image reduction (Juang and Wu, 2010), signal processing (Van der
Veen et al., 1997), linear classifier (Skurichina and Duin, 2002), and associative memory (Zhang
et al., 2004). Due to its importance, numerous efforts have been made in the calculation of matrix
pseudoinverse in the past few decades. For instance, Perković and Stanimirović (2011) developed
an iterative algorithm to estimate the Moore Penrose generalized inverse. Zhou et al. (2002)
presented a sequential recursive formula to calculate the pseudo inverse of the matrix based on
the famous Greville formula. Courrieu (2008) proposed an algorithm based on full rank Cholesky
decomposition for fast calculation of Moore Penrose inverse matrix. However, most of these serial
processing algorithms need to be executed in a single sampling period, and when the system order
becomes large, these algorithms may fail. Therefore, these studies are neither feasible nor valid for
real-time applications (Zhang and Yi, 2011). While the real-time computing of dynamic matrix
pseudoinverse problems often exists in industrial applications. For example, the inverse kinematics
control problem of a redundant robot manipulator needs to calculate the pseudoinverse of the
dynamic matrix in real time (Liao et al., 2016).
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Due to the nature of high-speed parallel, distributed
processing and the convenience of hardware implementation,
neural networks have been used to replace the numerical
algorithm of serial processing, and widely used in the fields
of scientific and engineering (Jin et al., 2017; Xu et al., 2019;
Jafari, 2020; Liu et al., 2020). Scholars have deeply studied many
recurrent neural networks and parallel computing schemes for
computing scientific problems includingmatrix pseudoinverse in
real time (Li et al., 2021; Kornilova et al., 2022). In particular, a
special kind of recurrent neural network termed zeroing neural
network (ZNN), has achieved remarkable success in solving
dynamic problems (Zhang et al., 2002; Ding et al., 2017; Xiao
et al., 2017; Jin, 2021). Ding et al. (2017) investigated a new
neural network based on ZNN to obtain the online solution of
complex-valued systems of linear equation in a complex domain
with higher precision and higher convergence rate. Xiao et al.
(2017) presented a ZNN to solve effectively the unified QP
problem and applied it to the coordinated path tracking of dual
robot manipulators. Specifically, ZNN successfully solved the lag
error generated by traditional recurrent neural networks which
uses the indefinite error monitoring function. In addition, the
traditional ZNN does not have obvious advantages in real-time
calculation of large-scale problems due to its slow convergence
speed. Thus, based on the essential nonlinear method of ZNN
design, Liao and Zhang (2014b) proposed two finite time
convergent ZNN models to solve the real time dynamic matrix
pseudoinverse effectively.

In industrial applications, harmonic noises exist widely (Du
et al., 2017; Karsli and Dondurur, 2018). In addition, any type of
signal can be expressed as the superposition of a sinusoidal signal
based on the Fourier transform. However, most of the current
studies are aimed at constant noises or linear noises, and there is
a lack of an adaptive mechanism to suppress harmonic noises.
Furthermore, high frequency and large amplitude harmonic
noises will seriously affect the calculation accuracy of the ZNN
model. Therefore, by incorporating the dynamics of harmonic
signals, we design and use the adaptive compensation term
to learn harmonic noises and compensate for the influence of
harmonic noises adaptively. Moreover, a well-defined activation
function is helpful to accelerate the convergence rate of the
ZNN model (Xiao et al., 2018). Therefore, on the basis of
harmonic noise adaptation, we employ the Li activation function
(Li et al., 2013) to speed up the convergence rate of ZNN and
finally design two harmonic noise-tolerant ZNN (HNTZNN)
models for solving the dynamic matrix pseudoinverse problem in
the harmonic-noise environment. Furthermore, these HNTZNN
models are applied to the kinematic control of a four-link planar
robot manipulator.

The remainder of this article is organized into six sections.
Section 2 introduces the problem formulation and preliminaries.
HNTZNN models are developed and studied in Section 3.
In Section 4, the convergence and noise suppression ability
of HNTZNN are proved theoretically. In Section 5, numerical
examples are used to prove the efficacy and superiority
of HNTZNN models for calculating the dynamic matrix
pseudoinverse. Section 6 shows the application of two ZNN
models on a four-link planar robot manipulator. Finally, the

conclusion of this article is given in Section 7. The main
contributions of this article are as follows.

• In this article, two novel harmonic noise-tolerant ZNNmodels
with a fast convergence rate are first proposed and investigated
for computing dynamic matrix pseudoinversion by combining
the dynamic properties of harmonic signals and the Li
activation function.

• Theoretical analyses are conducted, which deduce the excellent
convergence and robustness of these HNTZNN models in
coping with single-harmonic and multiple-harmonic noises.

• The experiment results are illustrated, which further
substantiate the efficacy and superiority of the proposed
HNTZNN models for the dynamic matrix pseudoinversion
under low-frequency, high-frequency, periodic, and aperiodic
harmonic noises.

• The proposed HNTZNN models are applied to the kinematic
control of a four-link planar robot manipulator in the presence
of harmonic noise, thereby depicting the application prospect
of the proposed models.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Definition 1. (Wang, 1997; Liao and Zhang, 2014a) For a given
dynamic matrix B(t) ∈ R

m×n, its pseudoinverse Y(t) ∈ R
n×m

satisfies the following Penrose equations:

B(t)Y(t)B(t) = B(t), Y(t)B(t)Y(t) = Y(t),

B(t)Y(t) = (B(t)Y(t))T, Y(t)B(t) = (Y(t)B(t))T,

where (·)T denotes the transpose of a matrix, Y(t) is called the
dynamic pseudoinverse of B(t), which is often denoted by B†(t).

It is worth noting that the dynamic pseudoinverse B†(t) always
exists and is unique (Liao and Zhang, 2014a). In particular, if
the matrix B(t) is a full rank matrix at any time instant t, i.e.,
rank[B(t)] = min{m, n} ∀t ∈ [0,∞), the dynamic pseudoinverse
of B(t) is obtained by the following lemma.

Lemma 1. (Wang, 1997; Liao and Zhang, 2014a) For
any dynamic matrix B(t) ∈ R

m×n, if rank[B(t)]
= min{m, n} ∀t ∈ [0,∞), the unique dynamic pseudoinverse
B†(t) can be expressed as:

B†(t) =

{

(

BT(t)B(t)
)−1

BT(t), if m > n,

BT(t)
(

B(t)BT(t)
)−1

, if m ≤ n.

When m > n, it represents the left pseudoinverse of the matrix
B(t). When m ≤ n, it represents the right pseudoinverse of the
matrix B(t). In the case of m ≤ n, the procedure of obtaining
the dynamic pseudoinverse B†(t) is similar to that ofm > n, and
thus this paper only considers the case of the left pseudoinverse of
the matrix B(t). Therefore, the dynamic pseudoinverse problem
studied in this study is in the form of

BT(t)B(t)Y(t) = BT(t) ∈ R
m×n. (1)

Our objective in this study is to find the Y(t) of the problem (1).
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3. HARMONIC NOISE-TOLERANT ZNN
MODELS

In this section, the improved ZNN models against harmonic
noises for dynamic pseudoinverse are detailed.

3.1. ZNN Model Against Single-Harmonic
Noise
In order to monitor the calculation process of dynamic matrix
pseudoinverse (1) in real time, the error function is defined as

E(t) = BT(t)B(t)Y(t)− BT(t).

To force E(t) to converge to zero, we choose

Ė(t) =
dE(t)

dt
= −τ9

(

E(t)
)

, (2)

where τ > 0 ∈ R is a positive design parameter, and 9(·)
denotes the activation function of the neural network, which is
a monotonically increasing odd function. Then,

Ė(t) =BT(t)B(t)Ẏ(t)

+
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)− ḂT(t). (3)

In this article, we choose the Li activation function (Li et al.,
2013), and its expression is as follows:

ψ(eij) = Lipλ(eij)+ Lip1/λ(eij), (4)

where eij represents the ijth element of E(t), parameter λ ∈ (0, 1),
and the function Lipλ(·) is defined as follows:

Lipλ(eij) =











|eij|
λ, if eij > 0,

0, if eij = 0,

−|eij|
λ, if eij < 0.

(5)

In view of the noise exiting, formula (2) can be rewritten as

Ė(t) = −τ9
(

E(t)
)

+ O(t), (6)

where O(t) ∈ R
m×n represents the matrix-form harmonic noises

and each element is defined as follows:

oij(t) = Ŵ sin(ωt + ϕ) = Ŵ sin(2π ft + ϕ), (7)

where i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. It is assumed that the
frequency f in (7) is known, the amplitude Ŵ and phase ϕ
are unknown. To adaptively learn the f -frequency harmonics
noise, an additional quantity −X(t) ∈ R

m×n is introduced into
equation (6):

Ė(t) = −τ9
(

E(t)
)

− X(t)+ O(t). (8)

The purpose of this study is to design and use−X(t) to adaptively
learn O(t) and compensate for the impact of O(t). Differentiating
(7) twice with respect to time t, the following result is obtained:

öij(t) = −4π2f 2Ŵ sin(2π ft + ϕ) = −4π2f 2oij(t).

Thus, the dynamics of oij(t) can be formulated as follows:

ȯij(t) = nij(t), ṅij(t) = −4π2f 2oij(t). (9)

Rewrite formula (9) into matrix form:

Ȯ(t) = N(t), Ṅ(t) = −4π2f 2O(t), (10)

where N(t) ∈ R
m×n with nij(t) as its element. The unknown

amplitude and phase information of a harmonic signal can be
adaptively eliminated from (10) when the frequency f is known.

Therefore, combing formulas (3), (8), and (10), the following
single-harmonic noise-tolerant ZNN (HNTZNN) model is
obtained:



















BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

− X(t)+ O(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t),

(11)
where λ ≥ 1 ∈ R.

3.2. ZNN Model Against Multiple-Harmonic
Noise
In this section, the proposed HNTZNNmodel (11) is extended to
multiple-harmonic noises, and a neural network model against
multiple-harmonic noises is obtained. Let Õ(t) ∈ R

m×n be the
matrix-form multiple-harmonic noises. Each element of such
matrix is defined as

õij(t) =

l
∑

k=1

ok(t) =

l
∑

k=1

Ŵksin(2π fkt + ϕk). (12)

Similarly, in (12), it is assumed that the frequency fk (with k ∈

1, · · · , l) is known, the amplitude Ŵk and phase ϕk are unknown.
Differentiating (12) twice with respect to time t, we have the

following results:

˙̃o(t) =

l
∑

k=1

ök(t)

=

l
∑

k=1

−4π2f 2k Ŵk sin(2π fkt + ϕk)

=

l
∑

k=1

−4π2f 2k ok(t).

The dynamics of õij(t) are obtained as follows:

˙̃oij(t) =

l
∑

k=1

nk(t), ȯk(t) = nk(t), ṅk(t) = −4π2f 2k ok(t),

which is rewritten in the matrix form as:

˙̃O(t) =

l
∑

k=1

Nk(t), Ȯk(t) = Nk(t), Ṅk(t) = −4π2fk
2Nk(t), (13)
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where Nk(t) ∈ R
m×n and Ok(t) ∈ R

m×n are the matrices
composed of nk(t) and ok(t), respectively.

Combined with the dynamic analysis in Formula (13), a
multiple-harmonic noise-tolerant ZNN model is as follows:



















BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

−
∑l

k=1 Xk(t)+ Õ(t),

Ẋk(t) = Ck(t)+ 4π2f 2
k
λE(t),

Ċk(t) = −4π2f 2
k
Xk(t), k = 1, 2, · · · , l.

(14)
When l = 1, (14) can be reduced to (11).

The corresponding theoretical analysis and proof are carried
out in the next section.

4. THEORETICAL ANALYSIS

Three theorems are proposed to verify the convergence and
robustness performance of the proposed HNTZNNmodel.

Theorem 1. For any smooth dynamic full rank matrix B(t) ∈

R
m×n (m > n), the state matrix Y(t) of HNTZNN model (11)

globally converges to the dynamic theoretical pseudoinverse B†(t)
of (1) in the free-noise situation.

PROOF: In the free-noise situation, (11) can be simplified as











cĖ(t) = −τ9
(

E(t)
)

− X(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t),

(15)

where E(t) = BT(t)B(t)Y(t) − BT(t), (15) is a compact matrix
form of the following set ofmn-decoupled equations:











cėij(t) = −τψ
(

eij(t)
)

− xij(t),

ẋij(t) = cij(t)+ 4π2f 2λeij(t),

ċij(t) = −4π2f 2xij(t).

(16)

Then, we could define the Lyapunov function candidate (Xiang
et al., 2019) to analyze the ijth subsystem (16) as

vij(t) =
e2ij(t)

2
+

x2ij(t)

8π2f 2λ
+

c2ij(t)

32π4f 4λ
, (17)

which guarantees vij(t) ≥ 0, i.e., vij(t) > 0 for any e2ij(t) 6= 0 or

x2ij(t) 6= 0 or c2ij(t) 6= 0, and vij(t) = 0 if and only if e2ij(t) = 0,

x2ij(t) = 0, c2ij(t) = 0. The time derivative of (17) could be

obtained as

dvij(t)

dt
=eij(t)ėij(t)+

xij(t)ẋij(t)

4π2f 2λ
+

cij(t)ċij(t)

16π4f 4λ
,

=− τeij(t)ψ
(

eij(t)
)

− eij(t)xij(t)+
xij(t)cij(t)

4π2f 2λ

+ xij(t)eij(t)−
cij(t)xij(t)

4π2f 2λ
,

=− τeij(t)ψ
(

eij(t)
)

.

Substituting (5) into the above equation, we further have

dvij(t)

dt
=

{

−τ |eij(t)|
λ+1, if eij 6= 0,

0, if eij = 0.

Thus, when eij(t) 6= 0, v̇ij(t) < 0, when eij(t) = 0, v̇ij(t) = 0.
According to Lyapunov stability theory (Khalil, 2001), it can be
concluded that eij(t) globally to 0 for any i ∈ {1, · · · ,m}, j ∈

{1, · · · , n}, which means that

lim
t→∞

‖E(t)‖F = 0.

In view of E(t) = BT(t)B(t)Y(t)−BT(t) and the nonsingularity of

BT(t)B(t), we can deduce Y(t) →
(

BT(t)B(t)
)−1

BT(t) as t → ∞.
Therefore, the state matrix Y(t) of HNTZNNmodel (11) globally
converges to the dynamic theoretical pseudoinverse B†(t) of (1).
The proof is, thus, completed.

Theorem 2. For any smooth dynamic full rank matrix B(t) ∈

R
m×n (m > n), the state matrix Y(t) of HNTZNN model (11)

globally converges to the dynamic theoretical pseudoinverse B†(t)
of (1) when the single-harmonic noise is considered.

PROOF: Let us consider a single harmonic noise O(t) =

[oij(t)] = [Ŵ sin(2π ft + ϕ)] with known frequency, and the
unknown amplitude and phase. Model (11) is simplified and
rewritten as































cĖ(t) = −τ9
(

E(t)
)

− X(t)+ O(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t),

Ȯ(t) = N(t),

Ṅ(t) = −4π2f 2O(t).

(18)

Defining 1(t) = X(t) − O(t) and 8(t) = C(t) − N(t) yields the
following reformulation of (18):











Ė(t) = −τ9
(

E(t)
)

−1(t),

1̇(t) = 8(t)+ 4π2f 2λE(t),

8̇(t) = −4π2f 21(t).

(19)

Noting that Equations (15) and (19) have exactly the same form,
therefore, one can also obtain

lim
t→∞

eij(t) = 0 and lim
t→∞

‖E(t)‖F = 0,

for any i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. In addition, according to
(16), we have

{

cẋij(t) = cij(t)+ 4π2f 2λeij(t) → cij(t),

ċij(t) = −4π2f 2xij(t).
(20)

According to the dynamic description in (9), Equation (20) can
generate a harmonic signal xij(t) that can adaptively compensate
for the influence of noise over time. Then, Equation (18) is
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FIGURE 1 | Results synthesized by the HNTZNN model (11) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

single-harmonic noise with frequency f = 0.001 Hz. (A) State trajectory. (B) Residual error.

FIGURE 2 | Residual errors of ZNN-1 model (24) for computing the pseudoinverse of the dynamic matrix (21) under the single-harmonic noise with different

frequencies. (A) f = 0.001 Hz. (B) f = 50 Hz.

a compact matrix form of the following set of mn-decoupled
equations:











cėij(t) = −τψ
(

eij(t)
)

− xij(t)+ oij(t),

ẋij(t) = cij(t)+ 4π2f 2λeij(t),

ċij(t) = −4π2f 2xij(t).

(21)

Because of limt→∞ eij(t) = 0, the harmonic signal xij(t) is
generated based on the analysis of (20), whichmeets the following
results:

−xij(t)+ oij(t) → 0, as t → ∞.

In particular, although only the frequency of oij(t) is known, the
second and third dynamics in (21) can adaptively predict the
unknown parameters of oij(t), i.e., amplitude Ŵ and phase ϕ. The
resultant signal xij(t) can adaptively compensate the impact of
oij(t).

In summary, the state matrix Y(t) of the HNTZNN model
(11) globally converges to the dynamic theoretical pseudoinverse
B†(t) of (1) when the single-harmonic noise is considered. The
proof is, thus, completed.

Theorem 3. For any smooth dynamic full rank matrix B(t) ∈

R
m×n (m > n), the state matrix Y(t) of the HNTZNN model

(14) globally converges to the dynamic theoretical pseudoinverse
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FIGURE 3 | Results synthesized by the HNTZNN model (11) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

single-harmonic noise with frequency f = 50 Hz. (A) State trajectory. (B) Residual error.

B†(t) of (1) when the multiple-harmonic noise is considered, i.e.,

Õ(t) = [oij(t)] =
[

∑l
k=1 Ŵksin(2π fkt + ϕk)

]

, i ∈ {1, · · · ,m},

j ∈ {1, · · · , n}.

PROOF: This theorem can be obtained through the proof of the
above two theorems and the superposition principle. Therefore,
it is omitted. The proof is, thus, completed.

Remarks: Generally, for any periodic noises which can
be decomposed into a series of harmonics through Fourier
transform, the proposed model is effective. The limitation of the
current work may lie in the suppression of random noises.

5. NUMERICAL VERIFICATIONS

Previously, we analyzed the convergence and noise tolerance of
models (11) and (14). In this section, we verify the efficacy and
the superiority of the proposed models for solving the following
dynamic matrix pseudoinverse:

B(t) =





sin(2t) cos(2t)
− cos(2t) sin(2t)
sin(2t) cos(2t)



 ∈ R
3×2. (22)

To check the correctness of the presented HNTZNN models, the
theoretical dynamicmatrix pseudoinverse of (22) is directly given
as

B†(t) =

[

0.5 sin(2t) − cos(2t) 0.5 sin(2t)
0.5 cos(2t) sin(2t) 0.5 cos(2t)

]

∈ R
2×3. (23)

In order to verify the superiority of the proposed model, the
ZNN-1 model (Liao and Zhang, 2014a) for dynamic matrix
pseudoinverse is directly given in this section:

BT(t)B(t)Ẏ(t) =ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

− τ9
(

BT(t)B(t)Y(t)− BT(t)
)

. (24)

The following experiments are carried out to solve the
pseudoinverse of the dynamic matrix (22) in the case of four
kinds of harmonic noise.

1) Single-harmonic noise with a low-frequency: Figures 1, 2
present the experimental result synthesized by HNTZNN
model (11) and ZNN-1 model (24) for the dynamic matrix
(21) pseudoinverse under the single-harmonic noise with a
near-zero frequency, i.e.,

O(t) = [oij(t)] = [103 sin(0.002π t + 1)] ∈ R
2×3,

where frequency f = 0.002π/(2π) = 0.001Hz. In Figure 1A,
the red dashed-dotted line denotes the theoretical dynamic
solution, and the blue solid line denotes the neural-state
solution. In addition, we set τ = 10 and λ = 1. As
shown in Figure 1A, for a random initial value Y(0) ∈

R
2×3, state matrix Y(t) ∈ R

2×3 of the proposed HNTZNN
model (11) converges to the theoretical pseudoinverse (23)
accurately and rapidly in a short period of time. Figure 1B
shows that the residual error ‖E(t)‖F of the HNTZNN model
(11) can converge to zero within 1 s. However, with the
same parameters, the residual error ‖E(t)‖F of the ZNN-1
model (24) can not converge to zero displayed in Figure 2A.
These experimental results verify the efficacy and superiority
of model (11) for solving the dynamic matrix pseudoinverse
under the single-harmonic noise.

2) Single-harmonic noise with high-frequency: HNTZNNmodel
(11) and ZNN-1 model (24) are tested for the following
harmonic noise:

O(t) = [oij(t)] = [103 sin(100π t + 1)] ∈ R
2×3,

where frequency f = 50 Hz, which is widely encountered
in power systems (Karsli and Dondurur, 2018). The
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FIGURE 4 | Residual errors of HNTZNN model (11) using different τ for computing the pseudoinverse of the dynamic matrix (21) under the single-harmonic noise with

frequency f = 50 Hz. (A) τ = 50, λ = 1. (B) τ = 100, λ = 1.

FIGURE 5 | Results synthesized by the HNTZNN model (14) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

multiple-harmonic noise with a periodic characteristic. (A) State trajectory. (B) Residual error.

corresponding results are shown in Figures 2, 3. As shown
in Figure 3A, the state matrix Y(t) ∈ R

2×3 of the
proposed HNTZNN model (11) still can converge to
the dynamic theoretical pseudoinverse (23) accurately and
rapidly. Figure 3B shows that the residual error ‖E(t)‖F of
HNTZNN model (11) can converge to zero rapidly. On the
contrary, Figure 2B shows that the residual error ‖E(t)‖F of
ZNN-1 model (24) has a large value under harmonic noise
and cannot converge to zero.

For further investigation, let λ = 1 and vary the value of
τ (i.e., let τ = 50 and τ = 100). The experimental results
are shown in Figure 4. It can be seen from Figures 3B, 4 that
the larger value of τ , the faster convergence rate of HNTZNN
model (11).

3) Multiple-harmonic noise with a periodic characteristic:
HNTZNN model (14) is tested for the following
harmonic noise:

Õ(t) = [õij(t)]

= [sin(2π t + 1)+ 2 sin(4π t + 2)+ 5 sin(10π t + 4)] ∈ R
2×3,

where frequencies are denoted by f1 = 1, f2 = 2,
f3 = 5 Hz. As shown in Figure 5, the state matrix
Y(t) of proposed HNTZNN model (14) converges to the
dynamic theoretical pseudoinverse (23), and the residual
error ‖E(t)‖F of HNTZNN model (11) is convergent
to zero.
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FIGURE 6 | Results synthesized by the HNTZNN model (14) using τ = 10 and λ = 1 for computing the pseudoinverse of the dynamic matrix (21) under the

multiple-harmonic noise with an aperiodic characteristic. (A) State trajectory. (B) Residual error.

4) Multiple-harmonic noise with an aperiodic characteristic:
HNTZNN model (14) is tested for the following harmonic
noise:

Õ(t) = [õij(t)]

= [sin(1)+ 2 sin(5t + 2)+ 5 sin(10π t + 3)] ∈ R
2×3,

where frequencies are denoted by f1 = 0Hz, f2 = 2.5/πHz,
f3 = 5Hz. The corresponding results are demonstrated in
Figure 6. As shown in Figure 6, the state matrix Y(t) of
proposed HNTZNN model (14) converges to the dynamic
theoretical pseudoinverse (23), and the residual error ‖E(t)‖F
of HNTZNNmodel (11) is convergent to zero.

In summary, the experimental results verify the
effectiveness and superiority of HNTZNN models (11)
and (14) for solving the dynamic matrix pseudoinverse in the
presence of harmonic noises.

6. ROBOT MANIPULATOR APPLICATION

In this section, HNTZNNmodels (11) and (14) are applied to the
kinematic control of a four-link planar robot manipulator under
the presence of harmonic noises.

6.1. ZNN-Combined Kinematic Control
The geometry of the four-link planar robot manipulator is shown
in Guo et al. (2018a). The Jacobian matrix J(θ(t)) ∈ R

2×4 of this
robot manipulator is:

J(θ(t)) =









−
4

∑

i=1
lisi −

4
∑

i=2
lisi −

4
∑

i=3
lisi −lisi

−
4

∑

i=1
lici −

4
∑

i=2
lici −

4
∑

i=3
lici −lici









,

where θ(t) ∈ R
4 denotes the joint-angle vector, li (with i =

1, 2, 3, 4) denotes the length of the ith link, si = sin(
∑i

j=1 θj), and

ci = cos(
∑i

j=1 θj). The redundancy-resolution problem of such a

robot manipulator, which corresponds to the kinematic control,
is described as follows. Given the desired end-effector path
rd(t) ∈ R

2, we need to obtain θ(t) in real time t. In particular,
the following acceleration-level redundancy-resolution problem
is formulated by adopting the solutions presented in previous
work (Siciliano et al., 2009; Guo et al., 2018b):

J(t)θ̈(t) = r̈a(t), (25)

where θ̈(t) ∈ R
4 is the joint-acceleration vector, ra(t) ∈ R

2

denotes actual end-effector path and r̈a(t) = r̈d(t) − J̇(t)θ̇(t) +
k1(ṙd(t) − J(t)θ̇(t)) + k2(rd(t) − ψ(θ(t))) with θ̇(t) ∈ R

4 as the
joint-velocity vector and J̇(t) as the time derivative of the Jacobian
matrix J(t). In addition, k1 and k2 > 0 are the feedback gains,
ψ(·) is a differentiable nonlinear mapping (Siciliano et al., 2009;
Guo et al., 2018b), and ṙd(t) and r̈d(t) are first-order and second-
order time derivatives of rd(t), respectively. By effectively solving
the acceleration-level kinematic equation in (25), the purpose of
kinematic control for robot manipulator is achieved.

According to Siciliano et al. (2009), the following
pseudoinverse-type (P-type) scheme, which is a typical solution
to (25), is presented for the four-link planar robot manipulator:

θ̈(t) = J†(t)r̈a(t) = (JTJ(t))−1JT(t)r̈a(t). (26)

The dynamic matrix inversion is integrated into (26) to achieve
the kinematic control of the four-link planar robot manipulator.
By defining B(t) = J(t), combining (11) with (26) yields the
following the new ZNN-combined kinematic control method
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FIGURE 7 | Block diagram of the new ZNN-combined kinematic control method for the four-link planar root manipulator.

FIGURE 8 | End-effector of the four-link planar robot manipulator tracking the tricuspid path synthesized by the noise-polluted kinematic control method in (29) using

τ = 10, where single-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory.

that is tolerant to single-harmonic noise:































θ̈(t) = B†(t)r̈a(t),

BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

− X(t)+ O(t),

Ẋ(t) = C(t)+ 4π2f 2λE(t),

Ċ(t) = −4π2f 2X(t).

(27)
Furthermore, by combining (14) with (26), the new ZNN-
combined kinematic control method for multiple-harmonic

noise can be obtained as follows:































θ̈(t) = B†(t)r̈a(t),

BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

−
∑l

k=1 Xk(t)+ Õ(t),

Ẋk(t) = Ck(t)+ 4π2f 2
k
λE(t),

Ċk(t) = −4π2f 2
k
Xk(t), k = 1, 2, · · · , l.

(28)
To provide a better understanding, we show Figure 7 to
depict the block diagram of the ZNN-combined kinematic
control method in (28) [including (27) as a special case] for
the four-link planar robot manipulator. The robot application
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FIGURE 9 | End-effector of the four-link planar robot manipulator tracking the tricuspid path synthesized by the ZNN-combined kinematic control method in (27) using

τ = 10 and λ = 1, where single-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

FIGURE 10 | End-effector of the four-link planar robot manipulator tracking the tricuspid path synthesized by the ZNN-combined kinematic control method in (28)

using τ = 10 and λ = 1, where multiple-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

in this study is clearly limited by the harmonic noise
associated with the ZNN model instead of that of the
robot manipulator.

6.2. Simulation Verification
In this subsection, the simulation results are presented to show
the effectiveness of the presented ZNN-combined kinematic
control methods in (27) and (28) for the four-link planar robot
manipulator. In the simulations, the lengths of the robot’s links
are l1 = l2 = l3 = l4 = 1 m, and the initial joint state is set to
θ(0) = [π/9,π/12,π/12,π/12]T rad.

1) Tricuspid path-tracking example: In this example, the
presented ZNN-combined kinematic control methods in
(27) and (28) are simulated for the four-link planar robot
manipulator with its end-effector tracking a tricuspid path.

⋆ Single-harmonic noise: The ZNN-combined kinematic
control method in (27) is investigated for the single-harmonic
noise of N(t) = [nij(t)] = [10 sin(2π t + 1)] ∈ R

2×3,
in which the harmonic frequency is f = 2π/(2π) = 1
Hz. For comparison, the following noise-polluted kinematic
control method based on the original ZNN design in (2) is

also simulated:











θ̈(t) = B†(t)r̈a(t),

BT(t)B(t)Ẏ(t) = ḂT(t)−
(

ḂT(t)B(t)+ BT(t)Ḃ(t)
)

Y(t)

−τ9
(

BT(t)B(t)Y(t)− BT(t)
)

+ O(t).

(29)
Figure 8 presents the simulation results synthesized by (29)
using τ = 10. The simulated end-effector trajectory of
the robot manipulator does not match the desired tricuspid
path, which means that (29) has failed to achieve the
kinematic control of the robot manipulator due to the
existence of harmonic noise. As shown in Figures 9A,B,
the simulated end-effector trajectory is very close to the
desired tricuspid path. Figure 9C shows that the maximal
end-effector positioning error is <2 × 10−7 m, suggesting
that the kinematic control is achieved successfully via (27)
even if harmonic noise exists. These comparative results
substantiate the effectiveness and noise-suppression capability
of the ZNN-combined kinematic control method in (27) for
the four-link planar robot manipulator.

⋆ Multiple-harmonic noise: The ZNN-combined
kinematic control method in (28) is investigated for the
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FIGURE 11 | End-effector of the four-link planar robot manipulator tracking the circular path synthesized by the ZNN-combined kinematic control method in (28) using

τ = 10 and λ = 1, where single-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

FIGURE 12 | End-effector of the four-link planar robot manipulator tracking the circular path synthesized by the ZNN-combined kinematic control method in (28) using

τ = 10 and λ = 1, where multiple-harmonic noise is considered. (A) Simulated motion trajectories. (B) Path and trajectory. (C) End-effector positioning errors.

multiple-harmonic noise:

Õ(t) = [õij(t)]

= [10 sin(2π t + 1)+ 102 sin(10π t + 2)+ 103 sin(20π t + 3)],

in which the harmonic frequencies are denoted by f1 = 1,
f2 = 5, and f3 = 10 Hz. The corresponding simulation results
synthesized by (28) are presented in Figure 10. The simulated
end-effector trajectory is close to the desired tricuspid path,
with themaximal positioning error being<5×10−6 m.Owing
to the robustness of (28), this method is tolerant of multiple-
harmonic noise, and the robot manipulator can track the
desired tricuspid path successfully. The effectiveness of the
ZNN-combined kinematic control method in (28) for the
four-link planar robot manipulator is, thus, demonstrated.

2) Circular path-tracking example: In this example, the
presented ZNN-combined kinematic control methods in
(27) and (28) are simulated for the four-link planar robot
manipulator with its end-effector tracking a circular path.
Similarly, the following two harmonic noises are considered

in the investigation of (27) and (28):











O(t) = [oij(t)] = [10 sin(136π t + 1)],

Õ(t) = [õij(t)] = [10 sin(130π t + 1)+ 102 sin(136π t + 2)

+103 sin(140π t + 3)] ∈ R
2×3.

The frequency of the single-harmonic noise approximates
the bandwidth of the robot manipulator. The corresponding
simulation results are illustrated in Figures 11, 12.

As shown in Figure 11, the simulated end-effector trajectory
of the robot manipulator matches the desired circular path,
and the maximal positioning error is less than 4 × 10−7

m. These results substantiate the successful application of the
ZNN-combined kinematic control method in (27) to the robot
manipulator. The results presented in Figure 11 also show that
(27) has achieved robustness against single-harmonic noise, even
if the noise frequency is nearly the same as the robot’s bandwidth.
Furthermore, the results presented in Figure 12 suggest that the
path-tracking task has been successfully completed even with the
presence of multiple-harmonic noise. The effectiveness of the
ZNN-combined kinematic control method in (28) for the robot
manipulator is further demonstrated.
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In summary, the simulation results (i.e., Figures 8–12) prove
that the presented ZNN-combined kinematic control methods
in (27) and (28) are more effective for the robot manipulator
under the presence of harmonic noise compared with the
noise-polluted the kinematic control method in (29). More
importantly, the results indicate the application prospect of the
proposed HNTZNNmodels in (11) and (14) via dynamic matrix
pseudoinverse.

7. CONCLUSION

In this article, by combining the harmonic signal dynamics
and the Li activation function, two harmonic noises tolerant
ZNN models with fast convergence have been proposed. The
theoretical analysis demonstrates that the proposed HNTZNN
models possess satisfactory convergence and robustness
properties. Furthermore, an example has been given to verify its
effectiveness in solving the dynamic matrix pseudoinverse under
different harmonic noises. Besides, such two HNTZNN models
have been applied to the kinematic control of the four-link
planar robot manipulator. In summary, the corresponding
experimental results substantiate the effectiveness, superiority,
and application prospect of the proposed HNTZNN models
even with the existence of harmonic noises. Future study may
lie in studying the proposed ZNN models activated by different

activation functions. Another future research direction is to
extend the proposed ZNN models to other application fields.
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This article targets fast indoor positioning and 3D target detection for unmanned aerial

vehicle (UAV) real-time task implementation. With the combined direct method and

feature method, a method is proposed for fast and accurate position estimation of the

UAV. The camera pose is estimated by the visual odometer via the photometric error

between the frames. Then the ORB features can be extended from the keyframes for the

map consistency improvement by Bundle Adjustment with local and global optimization.

A depth filter is also applied to assist the convergence of the map points with depth

information updates from multiple frames. Moreover, the convolutional neural network

is used to detect the specific target in an unknown space, while YOLOv3 is applied to

obtain the semantic information of the target in the images. Thus, the spatial map points

of the feature in the keyframes can be associated with the target detection box, while

the statistical outlier filter can be simultaneously applied to eliminate the noise points.

Experiments with public dataset, and field experiments on the established UAV platform

in indoor environments have been carried out for visual based fast localization and object

detection in real-time for the efficacy verification of the proposed method.

Keywords: visual SLAM, self-positioning, real-time localization, convolutional neural network, target detection,

UAV

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been developed rapidly in recent years, with diversified
applications from military to civil fields, i.e., police patrolling, urban management, agriculture
spraying, geology exploration, electric power patrolling, rescue and disaster relief, video shooting,
and other industries due to their small size, low cost, high maneuverability, and fast speed
(Chebrolu et al., 2018). As a common positioning system, GPS would lose function and fail to
provide accurate position information in indoor or GPS-denied environments, hence visual SLAM
(Simultaneous Localization And Mapping) technology can be adopted in such positioning scenes
owing to its abundant positioning information and wide applicability (Kasyanov et al., 2017). It
should be aware that the collected image information from UAV are 2-dimensional (2D) without
stereoscopic information, so the “what” of the target can be obtained while the “where” of the target
in the space is unknown. In order to complete such post-disaster rescuing tasks successfully under
complex, unknown environments, two fundamental problems should be solved simultaneously,
UAV self-localization and target detection (Cavaliere et al., 2017).

Visual localization is generally realized via visual SLAM technologies, where the visual odometry
(VO) (Jiang et al., 2018) can be used to estimate the pose variation of the camera via captured
consecutive frames, usually divided into two categories, i.e., indirect/feature-based methods and
direct methods (Su and Cai, 2018). The most representative of the feature methods is the ORB-
SLAM (Mur-Artal et al., 2015), with the aid of ORB (Oriented FAST and Rotated Brief) feature

18

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.914353
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.914353&domain=pdf&date_stamp=2022-07-08
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ym.zhou@siat.ac.cn
https://doi.org/10.3389/fnbot.2022.914353
https://www.frontiersin.org/articles/10.3389/fnbot.2022.914353/full


Zhou et al. UAV Based Navigation

possessing rotation invariance and scale invariance via pyramid
construction so as to assist SLAM algorithm to have endogenous
consistency in the feature extraction and tracking, keyframe
selection, 3D reconstruction, and closed-loop detection. Bundle
Adjustment (BA) is performed to minimize the feature
reprojection error in a local set of keyframes. Furthermore, the
localization precision can be improved in ORB-SLAM3 (Campos
et al., 2021), where the pose and map points are optimized
via cumulative errors avoidance at the back-end. However,
ORB-SLAM would fail to track in a less texture environment
due to insufficient feature points extraction. Unlike feature-
based methods, the direct method establishes the relationship
between frames through the gray information of pixels to
construct the camera motion estimation with a faster processing
speed. The direct sparse odometry (DSO) system is further
proposed to optimize the photometric parameters for robustness
improvement (Wang et al., 2017). However, the cumulative error
is inevitable due to a lack of global back-end optimization,
resulting in overall poor system accuracy.

Combining the advantages of the direct methods and feature-
based methods, a fusion scheme SVO (semi-direct visual
odometry) is proposed (Forster et al., 2014), where theminimized
photometric error is used to optimize the pose estimate.
Moreover, only feature points are extracted from the keyframes
for tracking without descriptors calculation for considerable
speed enhancement. However, the initialization of the pose could
fail in the head-up view if all the points are not on the same
plane and SVO lacks global optimization. Then the 2nd version
of SVO2.0 has been proposed by adding multi cameras to
improve the tracking of edges and corners and IMU (internal
measurement unit) pre-integration (Forster et al., 2016), which
can further increase the processing speed. Although vision-fused
IMU can enhance the robustness of the SLAM system, it would
also bring higher algorithm complexity and degrade the real-
time performance.

Object detection is dependent on the image understanding,
mainly including two parts, i.e., type decision and size and
position estimate of the object in the image. Since AlexNet
(Beeharry and Bassoo, 2020) won the championship in
ILSVRC2012, a deep convolutional neural network (CNN) has
widely been applied with autonomously learning features. RCNN
(region CNN) (Girshick et al., 2014) is a pioneering work of
applying deep CNN to target detection. FastRCNN (Girshick,
2015) and FasterRCNN (Ren et al., 2016) are further proposed to
effectively avoid the image scaling problem. On the other hand,
YOLO (You Only Look Once), has been proposed in Redmon
et al. (2016), which can directly regress multiple positions of the
image to acquire the target box and category, thus simplifying
the detection process. Combined with YOLO and FasterRCNN,
a new algorithm SSD (single shot multibox detector) (Liu et al.,
2016) is proposed to obtain the frame coordinates via different
convolutional layers. To date, YOLOv5 is released in Oct 2020,
possessing higher object identification accuracy (Kuznetsova
et al., 2020).

Different from 2D target detection, 3D target detection should
mark the spatial position of the target. In Chen et al. (2017), a set
of 3D object proposals with stereo images for 3D object detection

are generated by minimizing an energy function that encodes
several depth-informed features, i.e., prior object size, object
placement on the ground plane as an extension of FastRCNN
in 3D field. Although the proposed method can outperform in
object detection and orientation estimation tasks for all three
KITTI (database issued by Karlsruhe Institute of Technology
and Toyota Technological Institute) object classes, it has a
low processing speed per image up to 4s with worse real-time
performance. A stereo 3D object detection method is proposed
with Instance-DepthAware module and disparity adaptation and
matching cost reweighting in Peng et al. (2020), where solely RGB
(Red-Green-Blue) images are used as the training data to predict
the depth of the 3D bounding boxes centering in the images.
Although image-based methods have achieved great success in
object detection, the performance of 3D object detection falls
behind the LiDAR-based (Light Detection And Ranging-based)
approaches due to the inaccurate depth information. While the
image-based depth maps can be converted to pseudo-LiDAR
representation via transformation from the dense pixel depths of
stereo imagery and back-projecting pixels into a 3D point cloud
(Chen et al., 2020), the main challenge is the heavy computation
load of the LiDAR-based detection.

The combination of the visual SLAM and object detection
can increase the environment perception capability. For example,
VSO (visual semantic odometry) (Liu H. et al., 2019) can
optimize the reprojection error between images through
semantic information. A semantics SLAM system (Lee et al.,
2019) is proposed with the combination of sensor status and
semantic landmarks which can transform the semantic map
into a probability problem to optimize the reprojection error.
The system robustness can also be improved via the intensity-
SLAM (Wang et al., 2021) and loop detection (Liu Y. et al.,
2019) optimization. Moreover, SOF-SLAM (Cui and Ma, 2019)
can identify the dynamic features through semantic optical
flow and remove these features, achieving stable tracking in
dynamic scenes.

Visual SLAM can assist in target detection as well (Vincent
et al., 2020). A semantic fusion method (Li et al., 2018) is
proposed to combine CNN with a dense vision SLAM scheme
for semantic segmentation, where the category probability
distributions of the images are fused into a SLAM map to
construct a 3D dense semantic map. Further, the semantic
information acquirement efficiency can be greatly increased with
the adoption of the SSD or YOLO framework (Bavle et al.,
2020). For instance, Quadric SLAM (Nicholson et al., 2018) is
proposed to identify the position, size and direction of the object
simultaneously. However, this kind of method usually requires
semantic segmentation of the target based on dense pixel or point
cloud information.

The current target detection algorithms can only estimate the
target position in the images, while the spatial position of the
target still remains unknown. To tackle the mentioned problems
during UAV indoor localization, this article proposes an object
localization framework for object spatial location estimation
(refer to Figure 1). To be specific, the positioning method is
designed to achieve rapid and accurate location estimation of the
UAV. Then the target spatial position estimation based on CNN
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FIGURE 1 | The procedure of the proposed method.

is applied to detect the searched target in an unknown space. The
contributions of the article are summarized as follows.

1) A method is proposed for UAV fast self-positioning. Applying
the direct method with a visual odometer delicately, the
optical error is used for inter-frame matching to estimate
the camera posture. The ORB feature extracted from the
keyframes can improve the map consistency while a binocular
depth filter is introduced to increase the positioning accuracy.

2) A method is proposed for target spatial position estimation
based on YOLOv3. The spatial position of the target can be
constructed by correlating the relationship among the feature
points for reliable depth information providence and the
target detection frame in the keyframes. Furthermore, the
statistical outlier filter is used to eliminate the noise to acquire
more accurate target position.

3) Unmanned aerial vehicle platform has been setup for
indoor rapid positioning and object detection. A series of
experiments on the public dataset and in the actual scene have
been performed to verify the effectiveness of the proposed
method with real-time target spatial localization performance.

The remainder of the article is organized as follows. Section II
explains the method of indoor localization in detail. Section III
explains the objection detection and spatial position estimation.
In Section IV, the experiment platform of the indoor UAV fast

localization and objection detection is setup for the proposed
method verification with public data and field scenarios. Section
V concludes the article and future directions are provided.

2. METHOD OF INDOOR LOCALIZATION

Combined with the direct method and feature-based method, a
localization algorithm is proposed in this Section. Here, ORB-
SLAM2 rather than ORB-SLAM3 algorithm is adopted with only
an embedded stereo camera for the localization and the whole
procedure is depicted in Figure 2. The localization algorithm
includes four threads, i.e., tracking thread, feature extraction
and depth filter (FEDF) thread, local mapping thread, and loop-
closing thread.

The VO based on the direct method for localization in the
tracking thread is the first proposed algorithm while the second
algorithm for spatial point depth estimation is designed on the
basis of stereo depth filter embedded in the FEDF thread. The
other two local mapping and loop closing threads are kept the
same as in ORB-SLAM2.

2.1. Direct Method Based Visual Odometer
Since the VO in ORB-SLAM2 has to extract feature points
and calculate descriptors per frame, SVO is adopted for direct
frame matching via feature points. The procedure of the direct
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FIGURE 2 | The framework of the proposed localization algorithm.

method based VO contains three steps: pose estimate, feature
points alignment and pose optimization, where the coordinate
origin of the coordinate axes is the left lens optical center of the
stereo camera.

2.2. Step I. Direct Method Based Pose
Estimation
First, the feature points of the binocular image are extracted till
the number exceeds the threshold, then the image is designated
as the keyframe. Next, the parallax is obtained by binocular
image feature matching and the map point depth can be obtained
with triangulation so as to acquire the initial pose and map
points position. As depicted in Figure 3A, {Ik, Ik−1} are the

image intensities at the kth moment and the previous (k− 1)th

moment, while Tk,k−1 describes the pose variant from the

(k− 1)th moment to the kth moment. π is used to describe the
projection process from 3D space to the image space, while π−1

is the back projection process.
The initial pose of the Tk,k−1 can be obtained via the uniform

velocity model or the identity matrix, while the feature point

coordinate and the related spatial depth of the (k− 1)th frame
can be estimated from the previous multiple frames, denoted as
(pi, di). Then the specific feature point can be projected at the

spatial point pi with the coordinate Pi,k−1 in the (k− 1)th frame
reference. Through theTk,k−1 transformation, it can be converted
with the kth frame reference, denoted as Pi,k. Afterwards, it
can be projected on the kth image via camera model with the
coordinate p′i.

The brightness of the same point in the two consecutive
frames is assumed unchanged due to the transient time interval

(Jiang et al., 2018). Thus, the residual function can be formed
based on the gray value difference of the image patches adjacent
the (k − 1)th feature point and the reprojected point of the
kth frame,

δI
(

Tk,k−1, pi
)

= Ik
(

π ·
(

Tk,k−1 · π
−1

(

pi, di
)))

− Ik−1

(

pi
)

(1)

where δI
(

Tk,k−1, pi
)

is the intensity variation due to the pose

movement from the (k − 1)th moment to the kth moment. Then
the pose variation in Tk,k−1 transformation can be optimized
via the maximum likelihood estimation by minimizing the
photometric residual,

Tk,k−1 = arg min
Tk,k−1

1

2

∑

i∈R

∥

∥δI
(

Tk,k−1, pi
)
∥

∥

2
(2)

where R is the visible image points set in the kth frame back-
projected from the points with the known depth di in the image
at the (k − 1)th moment. Gauss-Newton (G-N) or Levenberg-
Marquadt (L-M) iterative methods (Balabanova et al., 2020) can
be used to solve Equation (2) for the update of Tk,k−1 estimation.

2.3. Step II. Alignment of the Feature Pixels
With the obtained pose Tk,k−1 between two consecutive frames
via direct method, the feature points from the previous frame
(k − 1) can be reprojected on the current frame k but with
coordinate inconsistency due to the noise. Since more accurate
pixel information exists in the common view keyframe adjacent
to the current frame k, the position of the feature pixels in
the k frame can further be optimized through the established
map points in the nearest common view keyframes. The pose
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FIGURE 3 | The illustration of image measurement. (A) The direct method based pose estimation. (B) The alignment of feature pixels. (C) Triangulation measurement

with stereo camera.
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relationship among the k frame and the common view keyframes
Ir1 and Ir2 can be acquired from Tk,k−1, so the feature points p1i
and p2i in the keyframes can be reprojected on the current frame
k, illustrated in Figure 3B. Assuming luminosity invariance, the
residual function can be reconstructed from the image gray
values difference to optimize the coordinates of feature points via
minimized luminosity error,

p′i = argmin
p′i

1

2

∥

∥Ik
(

p′i
)

− Ai · Ir
(

pi
)
∥

∥

2
(3)

where Ir(·) is the previously observed frame, Ai is the rotating
and stretching affine operation. If the common view keyframes
are far away from the current frame, the feature patch in the
keyframe should be first transformed via Ai operation for further
comparison. Again, Equation (3) can be solved via G-N or L-M
methods for more accurate coordinates estimate p′i obtainment.

2.4. Step III. Pose Optimization
With a more precise match between the features of the keyframe
and the previous frame, the feature points can be reprojected
on the current Ik frame. Then the position residual function is
formed by the pixel coordinate difference from the reprojection
point and the related p′i, written as,

∥

∥δpi
∥

∥ =
∥

∥p′i − π ·
(

Tk,wPi
)
∥

∥ (4)

and the pose of the current frame is optimized as,

Tk,w = argmin
Tk,w

1

2

∑

i

∥

∥pi − π ·
(

Tk,wPi
)
∥

∥

2
(5)

while the position Pi on the map can also be optimized via the
same maximum likelihood function simultaneously with G-N or
L-M methods for solution.

2.5. Binocular Based Spatial Point Depth
Estimation
Building an accurate and reliable map is necessary for the
camera pose calculation from the spatial map points via feature
matching and triangulation. Since the map point depth from
the triangulation is highly affected by the parallax from the two
frames, a depth filter is introduced for depth optimization with
the adoption of the calibrated stereo camera for the initial seed
point depth determination.

2.5.1. Triangulation Ranging Model
The stereo camera model should be rectified first, usually with
epipolar line adjustment (Bradski and Kaehler, 2008) to make
the optical axes parallel with OL and OR centers. As shown in
Figure 3C, b is the baseline of the stereo camera, f is the focal
length, pL and pR are the positions of the spatial point P in the
left and right cameras, and {|uL|, |uR|} are the distances from each
axis of {pL, pR}. Based on the similar triangles, it has,

z − f

z
=

b− uL + uR

b
, x = uL − uR ⇒ z =

fb

x
(6)

where x is the parallax, i.e., the difference of binocular abscissa,
and z is the spatial depth. The depth usually follows the normal
distribution (Ammann and Mayo, 2018), i.e., the depth zp of the
spatial point P follows N

(

µ, σ 2
)

distribution. With the depth
zk (followed by N

(

µo, σ
2
o

)

normal distribution) calculated via

epipolar line matching from the new kth frame, new depth
data are fused with the existing ones, still followed by normal
distribution N(µf , σ

2
f
),

µf =
σ 2
o µ + σ 2µo

σ 2 + σ 2
o

, σ 2
f =

σ 2
o σ 2

σ 2 + σ 2
o

(7)

The depth can be assumed as converged if σf is less than the
threshold, whereas the uncertainty of the depth should also be
considered. Given a spatial point P, it is projected on p1 and p2 of
any two frames with the optical centers O1 and O2, respectively,
as depicted in Figure 4A.

The pixel error of the spatial point P is considered as
the distance variation and the related angles changed from
{‖d‖, {p2,β , γ }} to {‖d′‖, {p′2,β

′, γ ′}}. Based on the geometric
relationship, it has,

Eα = Ed −Et

β = arccos < Ed, Et >

α = arccos < Eα, E−t >

(8)

It can be rearranged as,

∥

∥d′
∥

∥ = ‖t‖
sinβ ′

sin γ ′
(9)

where β is the angler between O2P and O1O2, and γ is the angler
between O1P and O1O2. Thus, the depth uncertainty caused by
one pixel bias is,

σo = ‖d‖ − ‖d′‖ (10)

Since the inverse depth also obeys the normal distribution
(Younes et al., 2019), the σo variance can be transformed as

σo =

∥

∥

∥

∥

1

d

∥

∥

∥

∥

−

∥

∥

∥

∥

1

d′

∥

∥

∥

∥

(11)

Finally, with the pose calculation of the new frame, the depth
filter is used to merge the depth and the depth uncertainty into
the previous ones until the uncertainty is less than the threshold
so as to generate the map points accordingly.

2.5.2. Depth Estimation
The depth filter is initialized with the calculated depth from
feature matching of the extracted ORB features from the
keyframe. Given a point P, the left and right image frames can
be triangled via Equation (6) to obtain their initial depth values
(seen in Figure 4B). The point P is assumed as the joint view with
a non-keyframe and keyframe, while the new estimated depth
can be calculated by matching through the feature block mean
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FIGURE 4 | The illustration of depth estimation. (A) Depth estimate with uncertainty. (B) Spatial point depth estimate.
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FIGURE 5 | The relationship between the object and spatial map points.

gradient and epipolar line searching so that the depth filter can
be updated.

Furthermore, the newly added spatial points are fused with
the existing map points. The minimized reprojection error
function is constructed to optimize the pose of the keyframe
and the coordinates of the spatial points. Finally, the redundant
keyframes are filtered out and sent to the loop-closing thread.

Here, the loop-closing thread is the same as ORB-SLAM2 for
similarity comparison of the bag of words of the new keyframes
and existing ones. If the similarity level exceeds a dynamic
threshold, a closed-loop occurs and the pose of the new keyframe
and the closed-loop keyframe are adjusted so that the poses
of all the keyframes are optimized. With the relocation and
loopback ability of ORB-SLAM2, the lost camera’s pose tracking
can be recovered via the position comparison of the feature
points among the previous keyframes and the current frame.
At the same time, a more accurate trajectory and map can be
obtained via closed-loop fusion with the data from different
tracking periods.

3. OBJECT DETECTION AND POSITION
ESTIMATION

3.1. Algorithm Framework
As general object detection algorithms, the target type and
position in the images can be estimated via salient feature
detection. However, especially in complex scenarios, only the
2D target position in the image is insufficient without the 3D
target spatial position. Although the constructed semantic map

combined with the objection detection and visual SLAM can
be used to estimate the object category and position in a 3D
environment, it is mostly achieved based on dense or semi-dense
point clouds for multiple targets estimation, which has a higher
requirement on the collection and calculation. As for the mission
of UAV in indoor environments, there is no need to rebuild the
3D mapping environment or estimate the detailed posture of
the target but only require to label the location of the target in
the searching paths. Hence, object detection and spatial location
estimate to the specific targets are proposed based on the sparse
space points.

The YOLOv3 object detection framework based on CNN is
adopted in this article, which is integrated into the visual SLAM
system. The keyframes are sent to the YOLOv3 object detection
framework to detect the specific target, i.e., people, and the spatial
map points stored in the keyframes are used to construct the
relationship between the detected target and the spatial point
position, so as to estimate the spatial position of a specific target.
The details of the YOLOv3 are omitted here, readers who are
interested in the algorithm can refer to Zhang et al. (2020).

3.2. The Estimate of the Target Spatial
Position
As seen in Figure 5, since the map points information of SLAM
is kept in the keyframes, the feature points in the keyframes can
thus be connected with the objects via the object detection so as
to estimate the spatial location of the target.

First, the keyframe images are sent to the YOLOv3 network
for object detection, which is used to determine the relationship
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FIGURE 6 | The procedure of the spatial target position estimation.

between the feature points in the keyframes and the object
detection frame. If the feature point is inside the detection boxes,
the map points related to the feature points are searched to
identify whether the map points have already been marked with
the target semantic information. If not, it will be marked as a
new pending target and if it is marked as the same pending
target in 3 consecutive frames, the point is thus marked as a
new spatial target point. The world coordinate is applied here as
the reference system to calculate the maximum distance of the
spatial target point distribution in the x, y, and z directions, where
these distances are used as the widths of the target bounding box
to mark the spatial target position in the object detection box.
Subsequently, the ratio of the map points is calculated carrying
semantic information to all map points in the bounding box.
When the ratio exceeds the threshold, the semantic information
of the map points related to other feature points in the box
is updated as the new semantic information, together with the
spatial target position and the detection box. The procedure of
the spatial object location estimation is illustrated in Figure 6.

The object detection box in the detection algorithm is usually
a rectangle, which cannot accurately represent the boundary
between the target area and the background area as background
points are often included inside the target box resulting negative
effect on the accuracy of the target spatial position estimation. For
instance, the target rectangle box in the left graph of Figure 7 not
only contains the target “teddy bear" but also the feature points
of the background wall.

Generally speaking, the distances between the background
points and the target points are large, and the number of
background feature points in the detection box is less than that

of the target. Therefore, the depth information of the feature
points in the object detection rectangle can be filtered by the
spatial point distribution. Here, SOF (Statistical Outlier Filter) is
adopted to remove the outliers (Bokovoy and Yakovlev, 2018).

As for any spatial point, the mean distance to its nearest k
points can be calculated. Assuming the mean distance of each
point follows the normal distribution with the expected average
value µ and variance σ 2, the threshold of the mean distance is
written as,

dmax = µ + α × σ (12)

where α is the scale factor of neighboring points. Therefore, the
points whose distances between the neighboring points are larger
than the defined threshold is removed (refer to the right graph
of Figure 7) so as to estimate the position of the target in space
more accurately.

4. EXPERIMENTS FOR INDOOR UAV FAST
LOCALIZATION AND OBJECT DETECTION

4.1. Experiments of Localization on Public
Data
The public UAV dataset EuRoC (ASL, 2012) is adopted here
containing indoor sequences collected from an AscTecFirefly
micro UAV where the resolution of the stereo camera is
752 × 480 and 20fps (frame per second) processing speed.
EuRoC data includes 11 sequences, while the sequences
{{MH01,MH02,MH03}, V201} are randomly selected from the
large industrial workshop and general office room such as two
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FIGURE 7 | (Left): The position illustration of the target box and the feature points; (Right): The result of the statistical outlier filter.

FIGURE 8 | Image processing time distribution per frame.

typical scenes. Besides, another real trajectory collected by the
Leica MS50 lasers canner is used for performance comparison.
The processing environment of the experiments is Ubuntu 16.04
system, GPU is Nvidia GeForce GTX 1080, and the processor
is Inteli7-8750 with 16GB RAM. Then the proposed method
is evaluated from the processing time per frame and pose
localization accuracy in two criteria indexes.

4.1.1. Processing Time Evaluation
Figure 8 shows the distribution of processing time spent for each
frame, while the horizontal coordinate is the frame number, and
the vertical coordinate is the processing time in seconds. The
red points and blue points delegate the processing rate of ORB-
SLAM2 and the proposed method, respectively. It is shown in

TABLE 1 | The processing time per frame.

Data Number of the

frames

Proposed

method(s)

ORB-SLAM2(s)

MH01 3,682 0.0128 0.0539

MH02 3,040 0.0129 0.0502

MH03 2,700 0.0127 0.0511

V201 2,280 0.0111 0.0357

Table 1 that the frame processing speed of our method is much
faster than that of the ORB-SLAM2 with four random selected
tracks, which is primarily due to the direct matching with the
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FIGURE 9 | Keyframe trajectory comparison on EuRoc datasets.

TABLE 2 | Keyframe trajectory accuracy comparison(m).

Proposed method ORB-SLAM2

Max Mean RMSE Max Mean RMSE

MH01 0.0902 0.0274 0.0347 0.0810 0.0307 0.0363

MH02 0.0900 0.0276 0.0331 0.1012 0.0312 0.0375

MH03 0.1112 0.0338 0.0378 0.1071 0.0391 0.0421

V201 0.1182 0.0588 0.0613 0.0964 0.0392 0.0458

photometric error during tracking with no feature extraction and
descriptor calculation.

4.1.2. Position Accuracy Evaluation
Due to the difficulty in measuring actual 3Dmap points, the track
error of the camera motion is generally used for VO or visual
SLAM algorithm performance evaluation. Figure 9 illustrates the
trajectories comparison among the four datasets and the actual
one from the proposed algorithm and ORB-SLAM2, denoted as
the blue curve, green curve, and dashed line, respectively. To be
specific, the Root Mean Square Error (RMSE) is used for location
evaluation between the estimate and the actual one,

RMSE =

√

√

√

√

1

n

n
∑

i

(

X̂i − Xi

)2
(13)

where Xi is the real data and X̂i is the estimate, n is the group
number of the data. “Max" and “Mean” represent the maximum
and mean discrepancy between the estimates and the real data.
Then the numerical comparison results are listed in Table 2. As
demonstrated in Table 2, the pose estimate accuracy is nearly the
same as the proposed method and the ORB-SLAM2, which is
due to the introduction of depth filter to optimize the depth of

the spatial points during map point location estimation, allowing
the position of the map points with higher accuracy. On the
other hand, it can improve the pose estimation accuracy while
the back-end optimization based on keyframes can enhance
the localization precision as well. Therefore, the whole location
precision is higher or the same compared to ORB-SLAM2.

4.2. Experiments of Target Detection on
Public Data
4.2.1. Image Object Detection
The original YOLOv3 network is used to detect various object
types, but only people are required to be detected under this
circumstance. In order to mitigate the impact of other objects,
the original network is retrained only for the human category.
The images selected from the public data set VOC2012 (PASCAL,
2012) are used for comparison between the original YOLOv3
and the modified network, where the involved parameters
setting in YOLOv3 are listed in Table 3. Figure 10 displays the
detection results where the modified network can well detect the
expected objects.
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4.2.2. Object Spatial Position Estimation
After the object is detected in the image, it is necessary to
associate the object semantic information with the map points
to estimate the spatial position of the object and mark it
on the map. In this article, the public data set TUM (TUM,

TABLE 3 | The parameters involved in YOLOv3.

Paramter Value Parameter Value

Batch 64 Exposure 1.5

Subdivisions 16 hue 0.1

Width 416 Learning-rate 0.001

Height 416 Burn-in 1,000

Channels 3 Max-batches 50,200

Momentum 0.9 Policy steps

Decay 0.0005 Steps 40,000, 45,000

Angle 0 Scales 0.1, 0.1

Saturation 1.5

2020) is used to test the object spatial position estimation.
The Tum data set is provided by the Technical University of
Munich, which includes RGBD, monocular, 3D reconstruction,
and other various experimental scenes. In order to meet the
requirement of indoor scenes containing the object (people) to
be detected, freiburg2− desk− with− person data set is selected
for verification (refer to Figure 11) with a resolution of 640×480
and average fps 28.6fps.

It is known that the relationship between the object detection
frame and the image feature point can be constructed by
detecting the specific object (people) in the keyframes by
YOLOv3, so as to establish the relationship between the object
and the spatial map point and estimate the object spatial position
on the map. As shown in the left graph of Figure 11, the human
object can be detected via the YOLOv3 model with the extracted
feature points in the keyframe images. The result of the spatial
object position estimation is demonstrated in the right graph
of Figure 11, including the spatial point cloud, camera running
trajectory, and the cubic mark of the detected human. Since
the direction of the spatial object frame in this article is based

FIGURE 10 | The result of category detection. (A) Multi-category detection. (B) Single-category detection.

FIGURE 11 | Estimation results of the object spatial position.
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TABLE 4 | The performance comparison of the tracking algorithms.

(A) AVERAGE PROCESSING TIME (S) PER IMAGE FRAME

Proposed algorithm ORB-SLAM2

Track 1 0.0158 0.0457

Track 2 0.0186 0.0560

(B) TRACKING ACCURACY COMPARISON(M)

Proposed algorithm

Max Mean RMSE

Track 1 0.0484 0.0309 0.0326

Track 2 0.0730 0.0433 0.0467

The bold values indicate the indexes of the proposed algorithm.

on the world coordinate system when the camera is initialized,
the spatial object frame is not completely consistent with the
direction of the image detection frame, but the relative spatial
position of the object remains unchanged.

4.3. Field Experiments
The UAV platform in the real world has been well set up for
fast localization and objection detection, which is configured
with Pixhawk as the controller, together with main processor
32bit STM32F427 Cortex M4, and other embedded sensors.
The experimental environment is an indoor laboratory scene,
with a length of about 7m and a width of about 6m, mainly
including tables, chairs, and several office supplies. The manually
set labels are equally distributed on the ground with a 0.5m
interval as the positioning reference, shown in Figure 12A.
In the experiments, the quadrotor UAV equipped with a
binocular camera is used as the experimental platform, where
the resolution rate is 2, 560 × 720, the frame processing rate
is 30 fps, and the length of the binocular baseline is 60
mm. In order to facilitate the comparison tests, the collected
binocular video is saved and converted into a data set, which is
analyzed offline.

4.3.1. Indoor Positioning Test
The indoor positioning test is mainly evaluated with the
processing time per frame and the positioning accuracy through
the collected dataset. The dataset consists of two tracks, and
the actual running screenshot is shown in the left graph of
Figure 12B, while the middle track is the linear motion and the
right track is the linear rotary motion.

With these two tracks, the processing rate is compared
between the proposed algorithm and ORB-SLAM2. Table 4A
lists the average processing time per frame under the two track
segments. It can be seen that the proposed algorithm has a faster
processing speed than that of the ORB-SLAM2 in actual scenes.

In order to acquire the positioning reference of the UAV
flight position, ArUco tags with different IDs are equally
distributed on the ground at 50 cm distance in the experimental
environment (refer to the left graph in Figure 12C). The actual
position of each ArUco tag in the world coordinate can be
obtained by the ID of each ArUco tag, and the captured ArUco

image is used to estimate the position of the ArUco tag, so
as to estimate the camera position in the world coordinate
accordingly.

The image of ArUco tag is captured by a vertically downward
high-definition camera installed on the UAV, which has a
resolution of 1, 920 × 1, 080 and frame processing rate 60 fps,
fixed relative to the binocular camera. It is difficult to obtain the
complete trajectory pose due to certain unrecognized phenomena
in the moving process. Then the posture of ArUco on the path
is used as the baseline for evaluation, while the results listed in
Table 4B demonstrate that the proposed algorithm can realize
real-time localization with high precision.

4.3.2. Object Detection Test
As for the object detection test, a dataset containing the detection
object (people) is used for the experiments. The people to
be detected are in a still sitting state. Through the UAV
moving in the scene, the spatial position of the people can
be estimated and marked with a box on the map (refer to
Figure 12C of the actual running screenshot). Since the object
detection is based on the keyframes, only the object detection
results and the object position estimation from the keyframes
are evaluated. In this experiment, the number of keyframes
including the object is 112, and the number of keyframes
with confirmed object detection is 88, while the recall rate is
78.6%.

As for the estimation of the object spatial position, the object’s
handheld ArUco tag is used as the comparison benchmark. With
the confirmed keyframes inclusion, the relative position of the
tag in the keyframes can be estimated via the identification of
the handheld ArUco tag, shown as the tag held by the people
in the left graph of Figure 12C. Whereas in the same keyframe,
the relative position between the center of the spatial object
frame and the current keyframe can also be obtained, compared
with the relative position estimated by the ArUco tag, as shown
in the right graph of Figure 12C. Then three keyframes are
randomly selected where the distance difference between the two
estimated positions is used for comparison, while the results of
the estimated distance difference (m) of the three keyframes are
{0.96, 1.04, 0.88}, respectively.

Through the evaluation of the detection recall rate and the
object spatial position estimation, it can be concluded that the
object can be detected effectively with more accurate spatial
position estimation in actual scenes, which is suitable for real-
time task implementation.

5. CONCLUSION

In this article, a real-time rapid positioning and object detection
method based onUAVhas been explored with the combination of
visual SLAM and CNN techniques. Considering the advantages
of feature-based methods with VO, a fast positioning algorithm
is proposed where the camera pose can be tracked via the
front-end VO with only ORB features extracted from the
keyframes for the purpose of map consistency improvement via
bundle adjustment. The feature-based method is also applied
at the back-end with the depth filter to assist the depth
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FIGURE 12 | The illustration of the indoor test procedure and results. (A) The experimental scene and binocular camera. (B)The tracking screenshot in the actual

scene. (C) (Left): The object detection in the actual scene; (Right): Comparison of object position estimation.

convergence of the map points so as to optimize the framework
for positioning accuracy improvement. Furthermore, a spatial
target position estimation algorithm has been proposed with
the CNN in an unknown space, while the YOLOv3 network
is also applied for the target semantic info obtainment in
the images so as to construct the relationship between the
spatial points and the target. Moreover, the spatial noise can
be removed from a statistical outlier filter so as to acquire a
clearer target boundary. A series of experiments with public
datasets and field tests have been performed to verify the
accuracy and portability of the still object localization method
with only embedded UAV hardware processor for surveillance
or rescuing such task execution, especially in GPS-denied
environments.

Future work will continue to study the UAV posture
estimation with appropriate semantic segmentation and IMU
modules to improve the robustness and accuracy of the UAV fast
localization. More efficient signal filtering algorithms could be
developed to remove the spatial noise in the key features. Besides,
the target attitude estimate should be investigated to increase the
localization accuracy since the actual orientation of the target has
not been considered. The proposed localization method will be
testified in more harsh field experiments.
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By considering the different-level time-varying physical limits in joint space, a refined

self-motion control scheme via Zhang neurodynamics equivalency (SMCSvZ) of

redundant robot manipulators is proposed, analyzed, and investigated in this manuscript.

The SMCSvZ is reformulated as a quadratic program with an equation constraint and a

unified bound inequation constraint, which meets the self-motion requirements including

the end effector keeping immobile and the initial joint-angle velocities being zero.

Simulative verifications based on a six-degrees-of-freedom planar redundant manipulator

substantiate the efficacy, accuracy, and superiority of the proposed control scheme,

additionally by comparing it with two previous self-motion control schemes. Besides,

simulative verifications based on a PUMA560 manipulator are carried out to further verify

the availability and correctness of the SMCSvZ.

Keywords: self-motion control scheme, zero initial joint-angle velocities, time-varying physical limits, Zhang

neurodynamics equivalency, redundant robot manipulators, quadratic program

1. INTRODUCTION

Redundant robot manipulators refer to such kind of manipulators whose degrees of freedom (DoF)
are more than the minimum number of DoF needed to perform specific end-effector tasks (Zhang
et al., 2018; Liao et al., 2019; Zhou et al., 2019; Chen et al., 2020; Xiao et al., 2020; Zhao et al., 2020;
Jin et al., 2021). Therefore, they have the capability to meet additional requirements, e.g., satisfying
physical limits, avoiding obstacles, and avoiding singularity configurations. In the practical
application, the redundant robot manipulator needs to adjust its configuration in some peculiar
situations. For instance, the repetitive motion of the redundant robot manipulator is planned
but joint-angle drift may happen. Similarly, the end-effector task may not be completed because
of operating space limitations or manipulator physical limitations. Adjusting the manipulator
configuration from one state to another state is essential and important for redundant robot
manipulators (Jin et al., 2020). Thereinto, the self-motion of redundant robot manipulators is
to adjust the manipulator configuration from the initial state to final state keeping the end
effector immobile at its current position or orientation (Li and Zhang, 2012; Zhang et al., 2021a).
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The self-motion could result in better manipulator performance
such as manipulability improvement (Jin et al., 2021), end-
effector task completeness, and singularity configuration
avoidance (Pardi et al., 2020).

In recent years, many self-motion control schemes (SMCSs)
or self-motion control approaches have been developed (Zhang
et al., 2009, 2016, 2021a; Li and Zhang, 2012; Zhang and
Xiao, 2012; Gong et al., 2019). For instance, a self-motion
scheme in form of a quadratic program (QP) was presented in
Zhang et al. (2009) and Liao et al. (2021), which was verified
on the functionally redundant robot manipulator PUMA560
considering joint-angle limits and joint-angle-velocity limits.
With singularities discussed, Zhang and Xiao (2012) proposed
a QP-based self-motion scheme for manipulators compared
with the pseudoinverse method and substantiated that the
proposed scheme was effective on three kinds of manipulators.
To eliminate the abrupt increase in joint velocity at the beginning
of the self-motion task execution, Li and Zhang (2012) put
forward a zero-initial-velocity self-motion scheme and verified
its feasibility on a 6-DoF planar manipulator. Besides, in order
to achieve high efficient self-motion tasks, Zhang et al. (2021a)
put forth a varying-gain neural self-motion approach.

In many previous studies, researchers developed QP-based
SMCSs considering time-invariant physical limits. However,
some redundant manipulators are inherently subject to varying
physical limits (Li and Zhang, 2012). Besides, in the engineering
field, with the passage of time and mechanical wear, the
physical limits may change with time, i.e., they are time-
varying. Considering this case, we establish a refined SMCS
for the redundant manipulators via the equivalency method in
this article.

Zhang neurodynamics equivalency (ZNDE) inspired by Ma
equivalency (Ma, 1996; Ma et al., 1996), is actually a class of
practice-accepted approximation, which is derived from Zhang
neurodynamics (Chen and Zhang, 2018; Qin et al., 2021).
Some schemes of complex systems via the ZNDE approach
were efficiently simplified (Guo et al., 2013; Qiu et al., 2016,
2018). Minimum-velocity-norm schemes of redundant robot
manipulators at two different layers were established by Guo
et al. (2013), and the equivalent relationship between two
manipulator control schemes was also developed via the Zhang
neurodynamics method. Zhang et al. (2020b) substantiated that
the schemes of redundant robot manipulators formulated by the
ZNDE approach were more robust. Zhang et al. (2020a) tried
to solve complex inequality-related problems through the ZNDE
approach. Besides, Zhang et al. (2021b) proposed a cyclic motion
control scheme at the acceleration layer for manipulator systems
via the ZNDE approach.

In this article, a refined self-motion control scheme via the
ZNDE approach (named SMCSvZ) in form of standard QP
is proposed to solve self-motion problems. With the time-
varying physical limits considered and zero initial joint-angle
velocities ensured, the proposed SMCSvZ is developed, proved,
and obtained by the ZNDE theorem and the corresponding
corollary. The simulation experiments based on two different
robot manipulators are designed and carried out to substantiate
the correctness and superiority of the proposed scheme by

comparing the previous SMCSs. The remainder of this article
consists of five sections. In Section 2, the requirements of self-
motion problems are presented first. Then, by analyzing and
comparing the two previous SMCSs, the refined SMCSvZ is
proposed via the ZNDE approach. In Section 3, the derivation
process of the SMCSvZ is provided, and the feasibility and
availability of the SMCSvZ are analyzed theoretically. In Section
4, the SMCSvZ composed of performance index, equivalent
equation constraint, and bounded inequality constraint is
presented in form of standard QP formulation, and its
corresponding neural network solver is also shown. In Section 5,
the simulation experiments based on a 6-DoF planarmanipulator
are carried out, and the simulation results substantiate the
efficacy and superiority of the SMCSvZ.Moreover, the simulation
experiments based on a PUMA560 manipulator are also carried
out to further verify the availability and correctness of the
SMCSvZ. Finally, we conclude the paper in Section 6. The main
contributions of the current study are presented as follows.

1. To better meet self-motion requirements, a refined self-
motion control scheme of redundant robot manipulators is
proposed with time-varying physical limits and zero initial
joint-angle velocities considered.

2. The theorem and corollary of the ZNDE approach are
proposed and theoretically proved, through which the
refined SMCSvZ is obtained. Then, the SMCSvZ is
applied to redundant manipulators to effectively realize
the self-motion task.

3. By comparing the SMCSvZ with the two previous SMCSs,
the simulation experiments based on a 6-DoF planar
redundant manipulator and a PUMA560 manipulator are
carried out with physical limits fully satisfied, which
verifies the availability, effectiveness, and superiority of the
proposed SMCSvZ.

2. PRELIMINARY, PROBLEM, AND
SCHEMES

The forward-kinematics equation of redundant robot
manipulators is written as r = ̥(2), where r ∈ Rm denotes
the end-effector actual position with 2 ∈ Rn denoting the
joint-angle vector and ̥(·) being a differentiable nonlinear
function. Furthermore, the inverse-kinematics equation about
relationship between the derivative of end-effector position
vector ṙ ∈ Rm and the derivative of joint-angle-velocity vector
2̇ ∈ Rn is written as

J(2)2̇ = ṙ,

where J(2) = ∂̥(2)/∂2 ∈ Rm×n is the Jacobian matrix.
In essence, the self-motion task of the redundant robot

manipulator is to utilize the redundant DoF of themanipulator to
adjust its configuration in joint space with the end effector being
immobile. For guaranteeing the end effector is immobile, the self-
motion task can be completed with the given joint angles being in
the motion region. If the given joint angles are out of the motion
region, the redundant robot manipulators also try to adjust the
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configuration to a suitable state. As a result, the manipulators
become more flexible after the self-motion task. To execute the
self-motion task, the SMCS of redundant robot manipulators
needs to meet the following requirements, which constitute the
problem formulation. 1© Robot manipulators adjust joint angles
2(0) to given joint angles 2g that are suitable joint angles
within the workspace of redundant robots (Akli, 2021). 2© Robot
manipulators try to keep the end effector immobile during the
process of self motion. 3© The initial velocities of the joint
angles equal zero. 4© The final velocities of the joint angles
equal zero. 5© Time-varying physical limits (including joint-
angle layer and joint-angle-velocity layer limits) of redundant
robot manipulators are all satisfied. Accordingly, we depict those
requirements as

2(t) → 2g, (1)

̥(2(t)) → ̥(2(0)), (2)

2̇(0) = 0, (3)

2̇(tend) = 0, with tend ∈ [0, tf] (4)

l−0 (t) ≤ 2(t) ≤ l+0 (t), (5)

l−1 (t) ≤ 2̇(t) ≤ l+1 (t), (6)

where 2(t) ∈ Rn and 2̇(t) ∈ Rn denote the joint-angle vector
and joint-angle-velocity vector, respectively;2g is the given joint-
angle vector; 2(0) is the initial joint-angle vector; 2̇(t) denotes
the derivative of 2(t) with time instant t ∈ [0, tf] and tf denoting
last instant time of the self-motion duration; 2̇(0) denotes 2̇(t)
with t = 0; 2̇(tend) denotes 2̇(t) with tend being the end time
of the self-motion task. In addition, l−0 (t) and l+0 (t) represent the
time-varying joint-angle lower limit and upper limit, respectively;
l−1 (t) and l+1 (t) represent the joint-angle-velocity lower limit and
upper limit, respectively. The traditional SMCS at the joint-angle-
velocity layer is formulated in Zhang et al. (2009) as

minimize ‖2̇(t)+ q(t)‖22/2, (7)

subject to J(2(t))2̇(t) = 0, (8)
1l− ≤ 2̇(t) ≤ 1l+, (9)

with q(t) = µ(2(t)− 2g), (10)
1l− = max{κ(l−0 − 2(t)), l−1 }, (11)
1l+ = min{κ(l+0 − 2(t)), l+1 }, (12)

where symbol ‖ · ‖2 denotes the two-norm of the vector, and
the time-varying vector q(t) ∈ Rn is defined according to the
self-motion task. The design parameters µ > 0 ∈ R and κ >

0 ∈ R are used to scale the magnitude of the manipulators. The
“max” and “min” functions are used to obtain the maximum and
minimum values of elements in the vector, respectively. The other
parameters are the same as those of the requirements (1)–(6). We
name the scheme (7)–(12) as SMCS-1 in this article.

As a further research of Zhang et al. (2009), a zero-initial-
velocity self-motion scheme for redundant robot manipulators is

proposed in Li and Zhang (2012) as shown below:

minimize ‖2̇(t)+ q(t)‖22/2, (13)

subject to J(2(t))2̇(t) = 0, (14)
2l− ≤ 2̇(t) ≤ 2l+, (15)

with q(t) = µ(2(t)− 2g), (16)
2l− = max{κ(l−0 − 2(t)), sin(π t/(2tf))l

−
1 }, (17)

2l+ = min{κ(l+0 − 2(t)), sin(π t/(2tf))l
+
1 }, (18)

where the physical limits (2l+ and 2l−) are partly different from
1l± presented in (17) and (18), which ensure 2̇(0) = 0. The
other parameters are the same as those of SMCS-1. The scheme
(13)–(18) is named SMCS-2 in this article.

However, equation limits (8) in SMCS-1 and (14) in SMCS-
2 are difficult to realize in practice. Different from SMCS-1
and SMCS-2, with comprehensive consideration of continuously
and differentially time-varying physical limits, zeroing initial
joint-angle velocities, and dynamically keeping the end-effector
position immobile, we propose a refined SMCSvZ for redundant
robot manipulators in this article, which is formulated as

minimize ‖2̇(t)+ q(t)‖22/2, (19)

subject to J(2(t))2̇(t) = −µ1(̥(2(t))−̥(2(0))), (20)
3l− ≤ 2̇ ≤ 3l+, (21)

with q(t) = µ2t(2(t)− 2g), (22)
3l−(t) = max{l̇−0 (t)+ κ(l−0 (t)− 2(t)), l−1 (t)}, (23)
3l+(t) = max{l̇+0 (t)+ κ(l+0 (t)− 2(t)), l+1 (t)}, (24)

where the positive design parameters µ1,µ2, and κ are used to
scale the magnitude of the manipulators. In addition, l−0 (t), l

+
0 (t),

l−1 (t), and l+1 (t) are the same as those of SMCS-1; l̇−0 (t) and l̇+0 (t)
represent the derivatives of l−0 (t) and l+0 (t), respectively.

3. SMCSvZ DERIVATION AND ANALYSIS

In this section, the performance index, the equation constraint,
and the unified bound inequation constraint in the QP-based
SMCSvZ are deduced via the ZNDE approach. The theorem and
corollary are given and proved for the analysis of the SMCSvZ.

3.1. Equation Constraint via ZNDE
In this subsection, the equivalence analyses of equations in
SMCSvZ are carried out. To be specific, (19), (20), and (22) in
SMCSvZ are derived and analyzed theoretically.

To ensure that initial joint-angle velocities are zero, physical
limits (2l±) in SMCS-2 are different from 1l± in SMCS-1, and one
part of 2l± is obtained through multiplying sin(π t/(2tf)) by

1l±.
These changes realize 2̇(0) = 0 but reduce the feasible region
of 2̇(t). That is when the physical limits verge, 2̇(t) change to
avoid exceeding the physical limits, but they can only change
slowly and thus make the task spend more time. In SMCSvZ, we
define (22) instead of (10) because the Equation (22) can better
meet the requirements of self-motion tasks and it is practically
and mathematically equivalent to Equation (10), which is proved
via the following ZNDE-EEV theorem.
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Theorem 1. (ZNDE-EEV theorem)With differentiable ǫ(t) ∈ Rn,
the zero vector 0 ∈ Rn, sufficiently large positive design parameter
µ ≫ 0 and time instant t ≫ 0,

ǫ̇(t) = −µtǫ(t) (25)

is practically mathematically equivalent (i.e., ZNDE equivalent) to

ǫ(t) = 0. (26)

Proof: The Equation (25) is a differential equation with ǫ̇(t)
denoting d(ǫ(t))/dt. The analytical solution of (25) is ǫ(t) =

ǫ(0) exp(−µt2/2) with ǫ(0) denoting the initial value of ǫ(t) and
µ denoting a large positive design parameter.

With t → ∞, ǫ(t) = ǫ(0) exp(−µt2/2) → 0 instantaneously.
That is, each element of ǫ(t) quickly decreases to a tiny value that
is considered to be zero in practical application, or ǫ(t) = 0 with
t large enough. Therefore, (25) is ZNDE equivalent to (26) with
µ ≫ 0 and t ≫ 0. The proof, thus, ends. �

To settle the self-motion problem of redundant robot
manipulators, we combine the self-motion requirement (1) and
define an error function as ǫ(t) = 2(t)−2g. Then, according to
Theorem 1, one gets that

ǫ̇(t) = 2̇(t) = −µt(2(t)− 2g) (27)

is ZNDE equivalent to 2(t) − 2g = 0. From (27), one can get
the following. First, the performance index at the velocity layer
can be expressed as ‖2̇(t) + µt(2(t) − 2g)‖

2
2/2, i.e., q(t) =

µt(2(t) − 2g), which corresponds to (19) and (22) in SMCSvZ.
Second, the self-motion task ends when the value of2(tend)−2g

equals 0 with tend ∈ [0, tf]. That is when the final velocities
of joint angles 2̇(tend) verge or equal 0, the self-motion task is
considered to be over. Finally, when t = 0, the initial joint-angles
velocity vector 2̇(0) equals 0. The above analyses show that (22)
in SMCSvZ obtained by the ZNDE better meets the requirements
(1), (3), and (4) of the self-motion task.

In addition, the self-motion requirement (2) is formulated
as J(2(t))2̇(t) = 0 in SMCS-1 and SMCS-2, which is difficult
to guarantee in practice. Hence, we handle the problem by
transforming this constraint to (20) in SMCSvZ via the ZNDE
approach, which is illustrated clearly by the following lemma
(Zhang et al., 2021b).

Lemma 1. With differentiable ǫ(t) ∈ Rn, the zero vector 0 ∈ Rn,
sufficiently large positive design parameter µ≫ 0 and time instant
t≫0, ǫ̇(t) = −µǫ(t) is practically mathematically equivalent (i.e.,
ZNDE equivalent) to ǫ(t) = 0.

To meet the self-motion requirement (2), the error function
is defined as ǫ(t) = ̥(2(t)) − ̥(2(0)). By Lemma 1, we
get that the equation J(2)2̇(t) = −µ(̥(2(t)) − ̥(2(0))) is
ZNDE equivalent to (8) in SMCS-1 and (14) in SMCS-2, which is
just equation constraint (20) in SMCSvZ. Meanwhile, equivalent
equation constraint (20) in SMCSvZ dynamically keeps the end
effector nearest to its initial position.

3.2. Inequation Constraint via ZNDE
In this subsection, we are to unify two-layer inequation
constraints into one equivalent bound inequation constraint
through the inequation type of the ZNDE that is described in the
following lemma (Zhang et al., 2021b).

Lemma 2. With differentiable ǫ(t) ∈ Rn, sufficiently large positive
design parameter ρ ≫ 0 and time instant t ≫ 0, in a ZND
manner, ǫ̇(t) ≤ −ρǫ(t) is practically mathematically equivalent
(i.e., ZNDE equivalent) to ǫ(t) ≤ 0.

According to Lemma 2, the following corollary at the velocity
layer is acquired.

Corollary 1. Assume that vector 2(t) and its time-varying
physical limits l±0 (t) are continuously differentiable. l̇

−
0 (t) and l̇

+
0 (t)

represent the derivatives of l−0 (t) and l+0 (t), respectively. With
design parameter ρ ≫ 0 and time t ≫ 0, in a ZND manner,

l̇−0 (t)− ρ(2(t)− l−0 (t)) ≤ 2̇(t) ≤ l̇+0 (t)− ρ(2(t)− l+0 (t)) (28)

is practically mathematically equivalent (i.e., ZNDE equivalent) to

l−0 (t) ≤ 2(t) ≤ l+0 (t). (29)

Proof: By defining the function ǫ(t) = 2(t) − l+0 (t) ≤ 0

according the left part of (29), one gets ǫ̇(t) = 2̇(t) − l̇+0 (t) ≤

−ρ(2(t)− l+0 (t)), which is ZNDE equivalent to 2(t) ≤ l+0 (t) via
Lemma 2. Then, 2̇(t) ≤ l̇+0 (t)− ρ(2(t)− l+0 (t)) is obtained.

Similarly, by defining the function ǫ(t) = l−0 (t) − 2(t) ≤ 0

according the right part of (29), one gets ǫ̇(t) = l̇−0 (t) − 2̇(t) ≤
−ρ(l−0 (t) − 2(t)), which is ZNDE equivalent to l−0 (t) ≤ 2(t)
via Lemma 2. Then, l̇−0 (t) + ρ(l−0 (t) − 2(t)) ≤ 2̇(t) is obtained.
Combined with the above results, the corollary is proved. �

From the above corollary, (28) is ZNDE equivalent to the
self-motion requirement (5). By combining (28) and the self-
motion requirement (6), the unified equivalent bound inequation
constraint (21) in SMCSvZ is obtained.

4. QP FORMULATION AND PROJECTION
NEURAL NETWORK (PNN) SOLVER

By using the ZNDE approach, the QP-based SMCSvZ is obtained
to control the redundant robot manipulators for realizing the
self-motion task, which is handled by a projection neural network
(PNN) solver.

4.1. Standard QP Formulation
On the basis of Theorem 1, Lemma 1, and Corollary 1,
the SMCSvZ with time-varying physical limits satisfied is
reformulated as a standard QP at the velocity layer as follows.

minimize
1

2
ϒT(t)A(t)ϒ(t)+ pT(t)ϒ(t), (30)

subject to B(t)ϒ(t) = b(t), (31)

l−(t) ≤ ϒ(t) ≤ l+(t), (32)

with l−(t) = max{l̇−0 (t)+ κ(l−0 (t)− 2(t)), l−1 (t)}, (33)

l+(t) = min{l̇+0 (t)+ κ(l+0 (t)− 2(t)), l+1 (t)}, (34)
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FIGURE 1 | Synthesized results of the planar manipulator using SMCSvZ with time-varying physical limits satisfied in case A. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of initial and final manipulator positions. (E) Profiles of the planar manipulator. (F) Profiles of

end-effector position errors.

where ϒ(t) = 2̇(t); A(t) = In denotes an n × n identity
matrix; B(t) = J(2(t)); p(t) = µ1t(2(t) − 2(0));
b(t) = −µ2(̥(2(t)) − ̥(2(0))) with µ1 and µ2

presenting the design parameters. Moreover, l+(t)
and l−(t) are the physical upper and lower limits of
synthesized time-varying unified layer, respectively. l−0 (t),
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FIGURE 2 | Synthesized results of the planar manipulator using SMCS-1 with time-varying physical limits satisfied in case A. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

l+0 (t), l−1 (t), l+0 (t), l̇−0 (t), and l̇+0 (t) are the same as above
SMCSvZ (19)–(24).

4.2. PNN Solver
To solve the QP-based SMCSvZ (30)–(34) in real time, we use a
PNN solver to obtain the solution ϒ(t) in this subsection, which
is developed in the following lemma (Xia et al., 2020).

Lemma 3. With γ ∈ R+ adjusting the convergence rate and large
enough ς , the PNN solver for SMCSvZ is developed as

u̇(t) = γ
(

In+m +MT(t)
)(

P�(u(t)− (M(t)u(t)+ h(t)))− u(t)
)

,

(35)

where u(t) = [ϒ(t);̟ ] ∈ Rn+m and h(t) = [p(t);−b(t)] ∈

Rn+m in MATLAB manner (Mathews and Fink, 2004).
Meanwhile, In+m denotes a (n + m) × (n + m) identity matrix,
and ̟ ∈ Rm is the dual decision vector defined corresponding to
(31). Besides,

M(t) =

[

A(t) −BT(t)
B(t) Om

]

∈ R
(n+m)×(n+m),

u−(t) =

[

l−(t)
−ς1v

]

∈ R
n+m, and u+(t) =

[

l+(t)
ς1v

]

∈ R
n+m,

in which Om denotes an m × m zero matrix and
1v = [1, · · · , 1]T ∈ Rm.

5. SIMULATIONS AND COMPARISONS

In this section, the simulation experiments are conducted
based on two different redundant robot manipulators,
which include a 6-DoF planar manipulator and a PUMA560
manipulator. Thereinto, the PUMA560 manipulator works in
three-dimensional space.

5.1. Simulations Based on 6-DoF Planar
Manipulator
In the ensuing simulations, the initial joint
states of the planar manipulator are set as

[0.628, 1.047,−1.570, 1.570,−0.785, 1.047]T rad with superscript
T denoting the transposition of the vector, and the given joint
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FIGURE 3 | Synthesized results of the planar manipulator using SMCS-2 with time-varying physical limits satisfied in case A. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

FIGURE 4 | Synthesized results of the planar manipulator using SMCS-1 with time-varying physical limits unsatisfied in case B. (A) Profiles of joint angles. (B) Profiles

of joint-angle velocities.
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FIGURE 5 | Synthesized results of the planar manipulator using SMCS-2 with time-varying physical limits verged in case B. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

states are set as [1.574, 0.129,−0.947, 1.091,−1.928, 1.067]T rad.
The task time-interval is set as [0, 3] s.

5.1.1. Case A: Loose Physical Limits
First, the simulation experiments are conducted with all physical
limits satisfied. The joint-angle limits and joint-angle-velocity
limits are time-varying, and the limits region are set loose.
Specifically, each element in l−0 (t) is set as −3 + 0.25sin2(t) rad,
and each element in l+0 (t) is set as 3 − 0.25sin2(2t) rad. Each
element in l−1 (t) is set as −3 + 0.25sin2(2t) rad/s, and each
element in l+1 (t) is set as 3−0.25sin2(2t) rad/s. The corresponding
parameters are set as γ = 104, ς = 106, and µ1 = µ2 = 3.

By PNN solver, the simulation results synthesized by the
planar manipulator using the SMCSvZ are generated and
presented in Figure 1. The curves of joint angles with the time-
varying physical limits satisfied are presented in Figure 1A. As
seen from Figure 1B, joint-angle velocities also satisfy their time-
varying physical limits, the initial joint-angle velocities vector
2̇(0) equals 0, and the time for 2̇(t) converging to zero is near

to 2 s. That is, all physical limits are satisfied in the process
of the self-motion task. Each joint angle as well as joint-angle
velocity is not out of physical limits and does not need to be
adjusted. Besides, Figure 1C depicts the value of e2 (joint-angle
error vector e2 = 2(t) − 2g with e2i being the elements of
e2 (i = 1, 2, · · · , 6) and t ∈ [0, tf]), and the curves show that
the joint angles gradually approach the given joint angles from
initial ones over time. In addition, Figure 1F depicts end-effector
position errors, which shows that the end effector keeps immobile
in the practice. In specific, the maximal position error of the

end effector is 1 × 10−4 m, and the position errors (i.e., eX and

eY) are near zero after 2 s. As seen in Figures 1D,E, the joint

angles are adjusted then gradually approach the given ones from
initial joint angles, and the planar manipulator completes the
task successfully.

The simulation experiments based on the planar manipulator

using SMCS-1 are carried out and the simulation results are

depicted in Figure 2. The curves of joint angles with time-varying
physical limits satisfied are shown in Figure 2A. However, the
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FIGURE 6 | Synthesized results of the planar manipulator using SMCSvZ with time-varying physical limits verged in case B. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

initial joint-angle velocities vector 2(0) does not equal zero as
presented in Figure 2B, one of which is close to time-varying
physical limits of joint-angle velocities. In this case, the time
for 2̇(t) converging to zero is before 2 s. The curves shown in
Figure 2C indicate that each element of e2 converges to zero
within 2 s, which also means the joint angles approach given
joint angles within 2 s. As seen in Figure 2D, the maximal
position error of the end effector is 1.5 × 10−4 m. Nevertheless,
the position errors converge to some stable values but are not
near zero. The joint angles also reach the given ones from
initial joint angles, and the planar manipulator completes the
task successfully. Due to similarity and space limitations, the
corresponding pictures are omitted in the article, and the same
is done in the following part.

The simulation results synthesized by SMCS-2 are shown in
Figure 3. Thereinto, Figure 3A presents the curves of joint angles
with time-varying physical limits satisfied. From Figure 3B,
one obtains the initial velocities of the joint angles equal
to zero with the time-varying physical limits satisfied, and
the time for 2̇(t) converging to zero is after 2 s, which

is fractionally longer than those shown in Figures 1B, 2B.
The curves shown in Figure 3C indicate that each element
of e2 converges to zero after 2 s, which also means the
joint angles approach the given joint angles after 2 s. Besides,
Figure 3D depicts that the maximal position error of the end
effector is 2 × 10−4 m with the position errors stabilized
after 1.5 s.

The above three experiment results in Figures 1–3 show that
when physical limits are all satisfied, the planar manipulator
using SMCS-1 completes the task fastest but it does not have the
zero initial velocities. On the premise that the values of initial
velocities equal zero, compared with the planar manipulator
using SMCS-2, the planarmanipulator using SMCSvZ has a faster
convergence speed and higher accuracy.

5.1.2. Case B: Stringent Physical Limits
Another simulation experiment based on the planar manipulator
using SMCSvZ, SMCS-1, and SMCS-2 is carried out when the
region of joint-angle physical limits is not large enough. The
joint-angle lower limit l−0 is set as[ξ , ξ , ξ , ξ , ξ , ξ ]T rad, where
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TABLE 1 | Values of e synthesized by SMCS-1, SMCS-2, and SMCSvZ in case A and case B with e = 2(tf )− 2g.

Joint-angle
1 2 3 4 5 6

ae1 × 10−3 ae∗

1 × 10−2 ae2 × 10−2 ae∗

2 × 10−1 aez × 10−3 ae∗

z × 10−3

21 0.4035277546 0.5782355172 0.0015447915 0.0565260232 0.2921514678 0.5103526402

22 0.3129608608 −0.0545327541 0.0818730936 −0.0038875074 0.3244167469 0.1505453049

23 −0.5012693542 −0.8850811496 −0.1953758157 −0.1167433302 0.3180588608 −0.2854495128

24 0.1551459332 −0.3796040427 0.1295147141 −0.0181627340 0.2767581164 −0.1041636237

25 −0.5392726233 0.8367928486 −0.0282762806 0.0922359849 0.1932659195 −0.3721375789

26 0.2316018914 −0.0482526950 0.1809797644 0.0281766251 0.1004131585 −0.0027968302

ae1, e2, and ez are obtained in case A, and e∗1, e
∗
2, and e∗z are obtained in case B with subscripts 1, 2, and z representing SMCS-1, SMCS-2, and SMCSvZ, respectively.

TABLE 2 | Relation between position-error order and parameter γ in simulations based on planar manipulator using different control schemes in case A and case B.

Order 10−6 Order 10−5 Order 10−4 Order 10−3

SMCSvZ Case A γ = 108, 107, 106 γ = 105 γ = 104 γ = 103

Case B γ = 108, 107, 106, 105 γ = 104 γ = 103 γ = 102

SMCS-1 Case A γ = 107 γ = 108, 106, 105 γ = 104 γ = 103

Case B γ = 107 γ = 108, 106, 105 γ = 104 γ = 103

SMCS-2 Case A – γ = 108, 107, 106, 105 γ = 104 γ = 103

Case B γ = 106 γ = 108, 107, 105 γ = 104 γ = 103

ξ = −2.1 + 0.25sin2(t). The other parameters are set the same
as the above situation.

The simulation experiments based on the planar manipulator
using SMCS-1 are carried out and the results are shown in
Figure 4. As seen from Figure 4A, the curve of 25 exceeds the
curve of time-varying lower physical limit, which means that
physical limits are not satisfied and the manipulator may be
damaged. The curves of the joint-angle velocities in Figure 4B

present that themanipulator has adjusted, but it still cannot avoid
the joint angle exceeding the physical limits.

In comparison, Figure 5 depicts the simulation results
synthesized by SMCS-2. To be specific, the manipulator
effectively adjusts 25 to avoid exceeding the curve of the joint-
angle physical limits, which means that the planar manipulator
continues the self-motion task without mechanical damage in
Figure 5A. As the allowable ranges of joint-angle velocities may
be narrowed, the joint angles are adjusted slowly. The time for
2̇(t) converging to zero is near 3 s as depicted in Figure 5B. It
takes nearly 3 s for the planar manipulator to adjust the joint
angles to the given ones as depicted in Figure 5C. The maximal
position error of the end effector depicted in Figure 5D is 1.5 ×
10−4 mwith the position errors converging to some stable values.

In addition to that, Figure 6 depicts the simulation results
synthesized by SMCSvZ. As seen in Figure 6A, each element of
2 satisfies the joint-angle physical limits in the process of the
self-motion task. When 25 is verging on its lower physical limit,
the manipulator adjusts the joint-angle velocities, and thus the
joint angles are correspondingly adjusted to avoid exceeding the
physical limits. The time for 2̇(t) converging to zero is near
2.5 s as depicted in Figure 6B, which is less than one spent by
the planar manipulator using SMCS-2. In addition, the curves
shown in Figure 6C indicate that each element of e2 converges to

zero within 2.5 s. The maximal position error of the end effector
depicted in Figure 6D is 6× 10−4 m.

5.1.3. More Simulation Results
In this subsection, some other simulation results synthesized by
the planar manipulator in case A and case B are presented. In
Table 1, the data in columns 1, 3, and 5 are the values of e2
obtained by the planar manipulator using SMCS-1, SMCS-2, and
SMCSvZ in case A, respectively. Thereinto, the maximal errors of
joint angles produced by SMCSvZ and SMCS-1 are of the order
of 10−3 m, while it is of the order of 10−2 m that produced by
SMCS-2. In addition, the data in columns 2, 4, and 6 in Table 1

are the error values of e2 obtained in case B. The maximal error
of joint angles produced by SMCSvZ is of the order of 10−3 m,
while it is of the order of 10−2 mwhen produced by SMCS-1, and
it is of the order of 10−1 m when produced by SMCS-2. In this
respect, the SMCSvZ is better than the other two schemes.

Generally, the parameters in the simulations influence the
simulation results. For example, the position errors of the end
effector reflect whether the end effector keeps motionless or
not. As shown in Figures 1F, 2D, 3D, 5D, 6D, the maximal
position errors are mostly of the order of 10−4 m when
the parameter γ is set as 104 in case A and case B, which
meet the practical requirements. If one desires to change the
precision of position error, the value of γ can be changed as
Table 2 shown. For example, if γ is set as 105, the 6-DoF
planar manipulator using SMCSvZ completes the self-motion,
and the maximal position errors are of the order of 10−6 m.
Furthermore, to improve the precision of position error, we can
also change the value of µ2. The simulation experiments are
conducted based on the planar manipulator using SMCSvZ with
different values of µ2 in case B, and the different results of
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FIGURE 7 | End-effector position errors of planar manipulator using SMCSvZ with time-varying physical limits verged in Case B. (A) With µ2 = 1. (B) With µ2 = 10.

(C) With µ2 = 100. (D) With µ2 = 1, 000.

position errors are displayed in Figure 7. As seen in Figure 7A,
when µ2 is set as 1, the position error of the end effector
does not converge within the duration of the task. When µ2

is set as 10, the maximal position error of the end effector

depicted in Figure 7B is 4 × 10−4 m and its convergence

time is shortened. The position errors depicted in Figures 7C,D

are of the orders of 10−5 m and 10−6 m, respectively. The

design parameters can be set as appropriate values according to
actual requirements.

In summary, with the desired precision and the physical limits

satisfied, the planar manipulator using SMCSvZ completes the

self-motion task more effectively and efficiently compared with
the ones using SMCS-1 and SMCS-2.

5.2. Simulations Based on PUMA560
Manipulator
To further verify the efficiency of the proposed SMCSvZ, we
conduct more simulation experiments based on the PUMA560
manipulator using SMCSvZ, SMCS-1, and SMCS-2.

The task time-interval of all simulation experiments is
also set as [0, 3] s. The initial joint angles are set as

[0,−π/4, 0,π/2,−π/4, 0]T rad, and the given joint angles are
set as [0.1723,−0.9099, 0.122, 0, 0.0067, 0]T rad. Specifically, each
element in l−0 (t) is set as −3 + 0.25sin2(t) rad, and each element
in l+0 (t) is set as 3 − 0.25sin2(2t) rad. Each element in l+1 (t) is
set as 3 − 0.25sin2(2t) rad/s, and each element in l−1 (t) is set as
−3 + 0.25sin2(2t) rad/s. The parameter γ = 1 × 105, and other
parameters are set the same as above situation.

The simulation experiment based on the PUMA560
manipulator using SMCSvZ with the time-varying physical
limits satisfied is done, and the results are displayed in Figure 8.
The curves of joint angles are presented in Figure 8A. As seen in
Figure 8B, the initial velocities of the joint angles equal zero, and
the values of 2̇(t) converge to zero before 2 s. Besides, Figure 8C
shows that the values of e2 also converge to zero before 2 s.
In addition, Figure 8F depicts that the maximal position error
of the end effector is 6 × 10−6 m, and the values of position
errors (i.e., eX, eY, and eZ) are close to zero over time. As seen
in Figures 8D,E, the joint angles reach the given ones from
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FIGURE 8 | Synthesized results of the PUMA560 manipulator using SMCSvZ with time-varying physical limits satisfied. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of initial and final manipulator positions. (E) Profiles of the planar manipulator. (F) Profiles of

end-effector position errors.

initial joint angles, and the PUMA560 manipulator completes
the task successfully.

When the joint-angle lower limit l−0 is set as [ξ , ξ , ξ , ξ , ξ , ξ ]T

rad with ξ = −1.15 + 0.25sin2(t), the simulation results

synthesized by the PUMA560 manipulator using the SMCSvZ
are shown in Figure 9. As seen in Figure 9A, the self-motion
task is completed in 3 s. Apparently, the curve of 22 verges
on the curve of the limit, and all physical limits are satisfied
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FIGURE 9 | Synthesized results of PUMA560 manipulator using SMCSvZ with time-varying physical limits verged. (A) Profiles of joint angles. (B) Profiles of joint-angle

velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

in task durations. In Figure 9B, the self-motion requirement
2̇(0) = 0 is satisfied, and 2̇(t) converges to 0 over time. In
Figure 9C, the values of e2 increasingly verge on 0. The maximal
position error of the end effector is 3× 10−4 m, and the values of
position errors change slightly but converge to zero over time in
Figure 9D, which indicates that the end effector also dynamically
keeps immobile.

The simulation results synthesized by the PUMA560
manipulator using the SMCS-1 or SMCS-2 are similar to the
results of the planar manipulator, which are omitted. To sum
up, the PUMA560 manipulator using SMCSvZ can better meet
the self-motion requirements, satisfy the time-varying physical
limits, and complete the self-motion task efficiently.

6. CONCLUSION

We have proposed a refined QP-based self-motion control
scheme of redundant robot manipulators with time-varying
joint limits and zero initial joint-angle velocities satisfied via

the ZNDE approach in the paper. The proposed scheme has
been composed of a ZNDE equation constraint and a bound
ZNDE inequation constraint. Compared with two previous
SMCSs, we have theoretically analyzed the proposed SMCSvZ
that well meets the self-motion requirements, then applied
it to control the redundant robot manipulators for the self-
motion task. The simulation experiments have been conducted
based on the 6-DoF planar manipulator in two different cases.
By comparing with the simulation results produced by the
redundant robot manipulators using SMCS-1, SMCS-2, and
SMCSvZ, the proposed SMCSvZ has shown its effectiveness,
superiority, and practicability. Besides, the simulation results
produced by the PUMA560 manipulator using SMCSvZ in two
different cases have been obtained, and they have also verified
the feasibility and correctness of the SMCSvZ. Based on ZNDE,
more kinds of time-varying problems would be simplified and
solved in future studies. Besides, the scheme established in the
article is continuous-time and is not convenient for hardware
implementation, and thus, the design and development of a
discrete-time scheme could be one future research direction.
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Aiming at the problems of slow convergence and easy fall into local optimal

solution of the classic ant colony algorithm in path planning, an improved

ant colony algorithm is proposed. Firstly, the Floyd algorithm is introduced

to generate the guiding path, and increase the pheromone content on the

guiding path. Through the di�erence in initial pheromone, the ant colony

is guided to quickly find the target node. Secondly, the fallback strategy is

applied to reduce the number of ants who die due to falling into the trap to

increase the probability of ants finding the target node. Thirdly, the gravity

concept in the artificial potential field method and the concept of distance

from the optional node to the target node are introduced to improve the

heuristic function to make up for the fallback strategy on the convergence

speed of the algorithm. Fourthly, a multi-objective optimization function is

proposed, which comprehensively considers the three indexes of path length,

security, and energy consumption and combines the dynamic optimization

idea to optimize the pheromone update method, to avoid the algorithm falling

into the local optimal solution and improve the comprehensive quality of the

path. Finally, according to the connectivity principle and quadratic B-spline

curve optimization method, the path nodes are optimized to shorten the path

length e�ectively.

KEYWORDS

Floyd algorithm, ant colony optimization, fallback strategy, multi-objective

optimization, quadratic B-spline curve

Introduction

The path planning of mobile robot is to plan the optimal path from the starting point

to the target point in the specified area (Chen et al., 2020). At present, path planning

algorithms is mainly presented in the form of traditional algorithms and intelligent

algorithms. The traditional algorithms include the A∗ Algorithm (Xiong et al., 2020),

Tabu Search (TS) (Khaksar et al., 2012), and D∗ Algorithm (Yao et al., 2021), etc. The

intelligent algorithms include Ant Colony Optimization (ACO) (Wang, 2020), Particle

Swarm Optimization (PSO) (Wang et al., 2020a), Genetic Algorithm (GA) (Chen and

Gao, 2020), etc.
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Intelligent algorithms can also be subdivided. Among them,

the ant colony algorithm and particle swarm optimization

algorithm belong to the swarm intelligent algorithm. Swarm

intelligent algorithm has been a hot spot in path planning.

There are two modes of swarm intelligence, namely, ant

colony algorithm and particle swarm optimization algorithm.

Swarm intelligence mainly refers to the intelligent behavior of

many non-intelligent individuals in a group through simple

cooperation. Swarm intelligence is applied to path planning,

taking the ant colony algorithm as an example. It shows that

a single ant in the ant colony has no intelligence, but through

cooperation to form a complete system, it evolves into an

intelligent whole that can explore the optimal path in a complex

environment. Therefore, it is widely studied and applied in

path planning.

Swarm intelligence is mainly manifested in five principles:

(1) Proximity principle; (2) Quality principle; (3) The

principle of diverse response; (4) Stability principle; (5)

Adaptability principle.

Swarm intelligence also has four features.

(1) The control of swarm intelligence is decentralized, and

there is no unified control center, so it can adapt to

various environments and has strong robustness. For

example, the ant colony algorithm can carry out path

planning in various complex environments and obtain

the optimal path.

(2) Each individual in the swarm can communicate by

changing the environment, which has good scalability.

For example, the ants change the pheromone content in

the environment by leaving pheromones on the path, to

realize communication with other individuals.

(3) The behavior of individuals in the swarm or the rules they

follow are very concise, so it is very convenient to realize

swarm intelligence. For example, individuals in the ant

colony only need to follow the state transition rules to find

the path and leave pheromones to inform the latecomers.

(4) The complex behavior of a swarm is the result of

individual communication and cooperation. Under

the guidance of appropriate rules, swarm intelligence

can play a role in some form of emergence through

communication and cooperation. For example,

individuals in the ant colony interact through

pheromones and then complete path exploration.

Then pheromone update mechanism plays a role in

guiding the ant colony to optimize the path further and

finally get the optimal path.

Ant colony algorithm in swarm intelligence fully reflects

the characteristics of swarm intelligence. It is simple to set

parameters, suitable for various complex environments, and has

strong robustness. Therefore, it is widely used in robot path

planning. In this paper, the ant colony algorithm will be deeply

studied and optimized.

Italian scholar Marco Dorigo proposed the ant colony

algorithm in 1992. The algorithm was derived from the path

finding behavior of ants looking for food sources in nature (Mac

et al., 2016). The most prominent feature of the ant colony

algorithm is the positive feedback mechanism (Zhang et al.,

2021) which is conducive to obtaining the optimal solution

quickly. Then, the ant colony can change the environment by

releasing pheromone, so as to communicate indirectly (Yi et al.,

2019). At last, the ant colony adopts the distributed computing

method to search the path (Zheng et al., 2020), and the parallel

computing is carried out by multiple individuals at the same

time. Nevertheless, the defects of slow convergence speed and

easy to fall into the local optimal solution cannot be ignored

(Yang et al., 2019).

For the defects of the ant colony algorithm,many researchers

have proposed optimization schemes that can be divided into

three categories. (1) In consideration of the slow convergence

speed of the ant colony algorithm, improve the initial

pheromone allocation method, or improve the state transition

probability matrix, such as Luo et al. (2020) and Li et al.

(2021); etc. (2) In order to optimize the defect of the ant colony

algorithm that it is easy to fall into local optimal solution, the

pheromonematrix updatingmethod is optimized or pheromone

concentration is limited, such as Akka and Khaber (2018) and

Wang et al. (2020), etc. (3) Many schemes to improve the path

smoothness of ant colony algorithm have been proposed. There

are mainly two ways: improving the heuristic function and

optimizing the path nodes, such as Dai et al. (2019) and Yang

et al. (2019), etc. Some optimization schemes will be introduced

in detail below.

To improve the ant colony algorithm, there are a lot of

optimization schemes (Akka and Khaber, 2018; Luo et al., 2020;

Li et al., 2021). In Luo et al. (2020), an improved ant colony

algorithm was proposed. The algorithm constructs unequally

distributed initial pheromone in the early stage of path planning.

At the same time, the pseudo-random state transition rule is

used to select the trail. The deficiency is that the algorithm only

sets the initial pheromone according to the position information

of the node, which is not conducive to avoiding obstacles in the

process of the ant search path, and the guidance of the ant colony

is not direct enough. In Li et al. (2021), an improved algorithm

based on turning angle constraint was proposed. Firstly, the

initial pheromone concentration between the starting node and

the target node is increased. Then, the evaluation function and

rotation constraint factor of the A ∗ algorithm is added to

the heuristic function. The nodes with the optimal path length

and rotation number can be selected in the next step. Finally,

in the pheromone updating part, the distribution principle

of the wolf swarm algorithm is introduced to strengthen

the influence of a high-quality population. The algorithm
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proposed by Li effectively avoids falling into optimal local

solutions, but the convergence speed in a complex environment

cannot meet the requirements. In Akka and Khaber (2018),

an improved ant colony optimization algorithm was proposed.

The algorithm uses stimulus probability to help ants select the

following grid, and uses new heuristic information to improve

visibility accuracy. In addition, the improved algorithm adopts

new pheromone updating rules and dynamically adjusts the

evaporation rate, which accelerates the convergence speed and

expands the search space. This algorithm does not consider the

requirements of path smoothness when effectively accelerating

the convergence speed, which is not conducive to reducing the

energy consumption and mechanical loss of the robot.

In summary, to solve the problems of slow convergence

rate and easily fall into the local optimal solution of ant colony

algorithm, this paper proposes an improved algorithm.

(1) For the difficulties in Luo et al. (2020), the Floyd

algorithm is introduced to generate the guidance path.

The path is a feasible path without collision with

obstacles. Setting the initial pheromone based on the track

can help the ant colony avoid blind search and take into

account the obstacle avoidance needs.

(2) Considering that the ants easily fall into the deadlock

and self-locking state, the fallback strategy is proposed

to reduce the number of dead ants and help improve the

success rate of the algorithm to solve the way.

(3) For the problems that have not been solved in Li et al.

(2021), the APF method and the concept of the distance

between the optional node and the target node are

introduced to optimize the structure of the heuristic

function, which improves the state transition probability

and accelerates the convergence rate.

(4) Given the shortcomings of Akka and Khaber (2018),

the connectivity principle and quadratic B-spline curve

optimization method are proposed to optimize the corner

nodes, further shortening the path length and reducing

the mechanical loss of the robot in the working process.

(5) Moreover, this paper proposes a multi-objective

optimization method, taking into account the path

length, path safety, and path energy consumption, to

solve the bearing with the highest comprehensive quality.

The pheromone updating method is improved based on

the multi-objective optimization method and dynamic

principle, which prevents the algorithm from falling into

the local optimal solution to the greatest extent.

The rest of this paper is as follows. The second part briefly

describes the two-dimensional grid environment modeling

method, which is a crucial environment for algorithm operation.

The third part introduces the core part of the classic ant

colony algorithm. The fourth part gives the progress measures

of the algorithm in detail. In the fifth part, the classic ant

colony algorithm and the improved algorithm are compared

and analyzed. The sixth part summarizes the contributions

and shortcomings of the improved algorithm, and briefly looks

forward to future work.

Environment modeling

Environment modeling is the basic part of a path planning

algorithm (Mac et al., 2016). The grid method is used in mobile

robot path planning algorithms because of its simple modeling

method, easy programming, and ability to express irregular

obstacles. It is a commonly used environmental modeling

method (Ouyang and Yang, 2014). The grid method converts

environmental information into grid form (Zhang et al., 2019),

and distinctive blocks are regularly processed and properly

expanded, as shown in Figure 1, which greatly reduces the

difficulty of path planning.

In the grid map, the white grid is the free space and optional

node, represented by “0.” The black grid is the obstacle space and

belongs to the tabu node, represented by “1.”

In addition, the selection of grid size is also a key factor of

the algorithm. If the grid is too small, the map resolution is high,

which is not conducive to fast decision-making. If the grid is too

large, themap resolution will be low, which is conducive to quick

decision-making. Still, it cannot guarantee a viable path in the

dense obstacle environment.

Although the grid sequence number method saves more

memory, it is not conducive to the rapid iteration of the ant

colony algorithm (Xiao et al., 2021). To ensure the convergence

speed, the grid sequence number will be converted to coordinate

(x, y), and the conversion formula is as follows.

{

x = mod(i,M)− 0.5

y = M − ceil(i/M)+ 0.5
(1)

In the formula, Mis the map size, mod is the solution

function that returns the abscissa of the grid, and theceilprocess

returns the grid ordinate (Ali et al., 2020).

FIGURE 1

Obstacle rule processing.
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FIGURE 2

Grid coordinate diagram.

The coordinate form of the grid map is shown

in Figure 2.

Ant colony optimization algorithm

Ant colony algorithm is derived from the path finding

behavior of ants looking for food sources in nature, which

has strong robustness in complex environment. The classic

ant colony algorithm is easy to implement, the parameter

setting is convenient, and the requirement for the computing

environment is low (Zhang et al., 2020). The two important

mechanisms of the ant colony algorithm are positive feedback

and pheromone communication. The positive feedback

mechanism guarantees the convergence of the ant colony

algorithm. The higher the path quality, the more pheromones

will accumulate when the pheromone is updated, which will

encourage more ants to choose and realize the fast convergence

of the algorithm. The pheromone communication mechanism

is indirect communication for ant colony individuals. Ants

leave pheromones on the path they traversed. Other individuals

combine known environmental information and pheromones

on the course to become new prior knowledge, which

will help ant colonies reduce blind search and find target

nodes faster.

These two mechanisms evolve into two key links in

algorithm implementation: state transition probability

(Chen et al., 2021) and pheromone update (Li and Wang,

2020).

State transition probability

Ants need to go through many intermediate nodes in

the process of finding the path. For the selection of each

intermediate node, the state transition probability matrix of

the optional node should be established first, and then select

from the probability matrix by roulette operation (Wang et al.,

2020b).

The state transition probability is shown in equation (2).

Pkij(t) =















τα
ij (t)η

β
ij (t)

∑

j∈allowedk

τα
ij (t)η

β
ij (t)

s ∈ allowedk

0 s /∈ allowedk

(2)

ηij =
1

dij
(3)

dij =

√

(xi − xj)
2 + (yi − yj)

2 (4)

Where, τij is the pheromone content from node i to node j,

ηij is the heuristic function, dij is the Euclidean distance from

node i to node j, α is the pheromone heuristic factor, β is the

expected heuristic factor, and allowedk is the set of optional

nodes in the next step (Xiong et al., 2021).

Pheromone update mode

Individuals in the ant colony will leave pheromones

when passing through each path. As a prior knowledge of

subsequent individuals, ants communicate indirectly through

the pheromones. After several iterations, the ants traverse

the map, and the pheromone content of the path indicates

the quality of the trajectory. The higher the quality of the

path pheromone concentration is higher. In the algorithm

implementation process, to facilitate calculation, a pheromone

update is placed after each iteration of the ant complete

path search.

The pheromone update method is shown in equation (5).

τij(t + 1) = (1− ρ) ∗ τij(t)+ 1τij(t) (5)

1τij(t) =

m
∑

k=1

1τ kij (t) (6)

1τ kij (t) =

{

Q
Lk

tour(i, j) ∈ tourk

0 tour(i, j) /∈ tourk
(7)

Where, ρ is the pheromone volatilization rate, 1τij(t) is the

total pheromone increment of the path in this iteration, 1τ kij (t)

is the pheromone increment brought by the k-th ant, m is the

number of ants,Q is the pheromone increase intensity, and Lk is

the path length traveled by the k-th ant (Tao et al., 2021).

Improvement of ant colony
optimization algorithm

Initial pheromone matrix

The Floyd algorithm is named after Robert Floyd (Hao and

He, 2008), one of the founders. Floyd algorithm is a dynamic

programming algorithm, suitable for dense maps, simple and
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effective, and easy to implement. Its efficiency is higher than the

Dijkstra algorithm (Shi and Wang, 2009). Taking the optimal

path obtained by the Floyd algorithm as the guiding path of the

ant colony algorithm can help set the initial pheromone matrix

with a guiding effect (Tian, 2021a).

Floyd algorithm can calculate the shortest path between each

node in the map environment, and the core idea is to solve

the shortest path matrix (Lyu et al., 2021). There are only two

possible shortest paths from nodeito nodej. One is the Euclidean

distance of two nodes. That is, two nodes are connected, and the

other is from node i to node j through several intermediate nodes

(Yang, 2020). Therefore, Dis(i, j) is set as the Euclidean distance

from nodeito nodej, and then all nodeskexcept these two nodes

are judged. IfDis(i, k)+Dis(k, j) < Dis(i, j)holds, it is proved that

the path fromnodeito nodekand then to node jis shorter than the

path from nodeito nodej, then let Dis(i, j) = Dis(i, k)+ Dis(k, j).

After traversing node k, the shortest distance from node i to node

j is recorded inDis(i, j).

The implementation of the Floyd algorithm is as follows.

(1) Initialize the shortest distance matrixDistas the adjacency

matrix of themap, and the path nodematrix pathis empty.

The elements in the adjacency matrix are initialized to

infinity. If two nodes have edges, the corresponding

elements in the matrix are set as weight values.

(2) For node i to node j, traversing the remaining nodes to

determine whether there is nodekmakes the distance from

node i to node k and then to node j shorter than the

known path. If it exists, updatematrixDistandmatrixpath.

The state transition equation is shown in equation (8).

Dist(i, j)

=

{

Dist(i, j) Dist(i, k)+ Dist(k, j) ≥ Dist(i, j)

Dist(i, k)+ Dist(k, j) Dist(i, k)+ Dist(k, j) < Dist(i, j)

(8)

After determining the starting node and the target node, the

Floyd algorithm can quickly obtain the optimal path. Then take

the generated path as the guidance to change the pheromone

content on the path so that it is different from other paths.

Because the ant will be affected by pheromone when choosing

the path, it is easier to choose the guidance path. The pheromone

difference between the guide path and other paths will make the

ant tend to the former to quickly find the target node. The initial

pheromone matrix is set as follows.

τij(0) =

{

k ∗ C tour(i, j) ∈ tourF

C tour(i, j) /∈ tourF
(9)

Where, τij(0)is the initial pheromone matrix. tourF is the

guiding path generated by the Floyd algorithm, and the

pheromone concentration of the guiding path is set toktimes of

other paths.

The APF has also been used to generate the guidance path of

the ant colony algorithm. Therefore, under the same conditions,

the path planning results of APF method and Floyd algorithm

are compared. The results are shown below.

According to Figure 3 and Table 1, the path of APF method

will pass through obstacles, which is not allowed, while the path

of Floyd algorithm fully realizes the requirements of obstacle

avoidance. In addition, the Floyd algorithm has few redundant

nodes, and the length is only 51.40 % of the APF method.

The Floyd algorithm is much better than the APF method.

Therefore, introducing the optimal path of the Floyd algorithm

as the guiding path will help the ant colony algorithm quickly

find the target node and accelerate the convergence speed of

the algorithm.

Ant fallback strategy

The ants often encounter deadlock problems when exploring

paths (Dai et al., 2019), including self-locking and deadlock

caused by obstacles. The deadlock problem will cause excessive

death of ants, weaken the ability of the ant colony to explore

the path, and slow down the convergence speed of the algorithm

(Tian, 2020b; Wang, 2020).

Obstacles that will form ant deadlocks are usually concave.

Because the ant follows the rule of putting the passed nodes in

the tabu list when exploring the path to reduce the generation of

redundant nodes, when ants encounter concave obstacles, this

rule will make ants unable to stay away from the obstacles and

thus trapped near the obstacles. Self-locking is due to that ants

have no clear direction of the target node at the beginning of the

iteration, only blind search, and ultimately face the plight of no

optional nodes. The above two deadlock problems are shown in

Figure 4.

The particles in Figure 4 are the ants searching path. On

the left side of Figure 4, the ant at node P1 chooses the left

node P2. It cannot retreat away from the obstacles because

of the tabu list rules. The ant can only continue to select the

left node P3, and finally, it is trapped in the barrier. On the

right side of Figure 4, the ant at node P1 does not get a clear

direction of the target node and can only choose the next

node based on roulette. The ant follows the series of nodes

likeP1 → P2 → P3 → P4 → P5 → P6and finally, the ant

is trapped in a self-locking dilemma. In the classic ant colony

algorithm, ants are usually discarded after they fall into the

deadlock dilemma so that subsequent ants continue to search the

path. The situation when ants fall into deadlock can be described

by the following formula.

allowedi ∩ Obs = allowedi (10)
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FIGURE 3

Comparison of boot paths.

TABLE 1 Comparison of boot paths length.

APF method Floyd algorithm

Optimal path length 74.4853 38.2843

Where, allowediis the list of optional nodes, Obsis the

tabu list.

To solve the deadlock problem, the ant fallback strategy

is proposed. When the ant has no optional node and has not

reached the target point, the fallback strategy is implemented.

That is, the current node is added to the tabu list and returned

to the previous node, and the pheromone concentration at the

current node is reduced. If there are new optional nodes at this

time, the fallback strategy will end. If not, continue to execute the

fallback strategy until there are optional nodes for ants to select.

The fallback strategy is shown in Figure 5.

In Figure 5, the ant at node P3 falls into the deadlock and

starts to perform the fallback strategy. The node P3 is added to

the tabu list, and the ant returns to node P2. There is no optional

node for the ant to choose, so the ant continues to implement the

strategy. When returning to node P1, the ants find new optional

nodes. At this time, it ends the execution of the fallback strategy.

The ant selects the node P4 by the roulette rule and continues to

explore new paths. Since the trap has been added to the tabu list,

subsequent ants will no longer fall into the deadlock dilemma

here. The treatment of the self-locking dilemma is similar (Tian

and Chen, 2021a).

The pheromone update method when executing the fallback

strategy is as follows.

τij(t + 1) = (1− λ) ∗ τij(t) (11)

Where, λ is the pheromone penalty evaporation coefficient,

which reduces the pheromone concentration of the trap nodes

and helps the ant avoid the trap.

Heuristic function optimization strategy

To better solve the slow convergence problem of the ant

colony algorithm, some optimization schemes are proposed for

the heuristic function.

The heuristic function of the ant colony algorithm is the

reciprocal of the Euclidean distance between the current node

and the optional node, as follows.

ηij =
1

dij
, dij =

√

(xi − xj)
2 + (yi − yj)

2 (12)

The heuristic function does not contain the information of

the target node, and the ant lacks guidance in finding the path,

which is easy to search blindly, resulting in the slow convergence

of the algorithm. This paper proposes the concept of distance

between the optional node j and target node E, replacing the

original heuristic function, as follows.

ηij =
1

djE
, djE =

√

(xE − xj)
2 + (yE − yj)

2 (13)
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FIGURE 4

Deadlock and self-locking.

FIGURE 5

Fallback strategy.

The heuristic value of the optional node closest to the target

node is the largest, and the probability of being selected is

also the largest. With the information of the target node, the

ant colony has a clear direction in exploring the path, and the

convergence speed will be accelerated.

Based on the new heuristic function, considering further

improving the convergence speed of the algorithm, the APF

method is an option. The APF method has the advantages of

low calculation and fast convergence speed, so it is considered

to optimize the heuristic function (Wang et al., 2020c).

As one of the widely used path planning algorithms, the APF

method was first proposed by Khatib. O in 1985 (Pan et al.,

FIGURE 6

Artificial potential field method.

2019). The main idea of the APF method is to regard the motion

environment of the robot as a virtual force field (Li and Wang,

2022). The target node and obstacles generate gravitational and

repulsive forces, respectively, in the robot, and the motion of

the robot is controlled by the resultant force. The effect of the

APF method is shown in Figure 6. The particle is a mobile robot

(Wang and Wang, 2020a).

After simulation experiments, the gravity concept of the

target node to the robot in the APF method is used to optimize

the heuristic function, which is as follows.

Frontiers inNeurorobotics 07 frontiersin.org

55

https://doi.org/10.3389/fnbot.2022.955179
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2022.955179

Gra = sigma ∗

√

(xE − xj)
2 + (yE − yj)

2 (14)

djE = 1/

√

(xE − xj)
2 + (yE − yj)

2 (15)

ηij =
power(0.5,Gra)

djE
(16)

Where, Grais the gravitational effect of the target node on

the optional node, sigmais the gravitational constant, poweris the

power function that returns the value of the exponential power

of the given bottom number. j is the optional node and E is the

target node.

In the early iterations, the pheromone is accumulating, and

the state transition probability is dominated by the heuristic

function. In the middle and late iterations, the ants complete

the path exploration, and the pheromone accumulates a lot.

The pheromone dominates the state transition probability.

Therefore, the heuristic function needs to be adjusted adaptively

to match the pheromone matrix, so as to improve the update

mode of the state transition probability matrix.

The adaptive adjustment of the heuristic function is related

to the number of iterations. Therefore, the normal distribution

function is introduced and combined with the heuristic

function, as shown below.

Nd_function = e(−((k/K)ˆ2)/2) (17)

Pkij(t) =















τα
ij (t)∗(Nd_function∗ηij(t))

β

∑

j∈allowedk

τα
ij (t)∗(Nd_function∗ηij(t))

β s ∈ allowedk

0 s /∈ allowedk

(18)

Where, Nd_functionis the deformation of the standard

normal distribution function, omitting the coefficient, kis the

current number of iterations, Kis the maximum number of

iterations, Pkij(t)is the optimized state transition probability.

Optimization strategy of pheromone
updating method

In the classic ant colony algorithm, the pheromone updating

method is only related to the path length. The shorter the

path, the higher the pheromone increment. The updating

method ignores other requirements, such as path security and

energy consumption. In addition, the pheromone volatilization

coefficient is constant and does not dynamically update with

iterations. In the late iterations, the optimal path has been fixed.

The behavior of finding a better path has stopped, which causes

the local optimal solution (Wang and Wang, 2020b).

To solve the above problems, this paper proposes a

pheromone updating method based on the multi-objective

optimization method (Guo et al., 2020) and dynamic principle

(Tian et al., 2020; Tian, 2021b).

Multi-objective optimization has been used in other path

planning algorithms, mainly to improve the quality of the

algorithm. Based on the idea of multi-objective optimization,

this section puts forward three optimization objectives: path

length, path security, and path energy consumption, which are

used as the standard to update the pheromone matrix. Where,

the path length is the sum of the distances of the path nodes,

denoted as Length; path safety is the number of dangerous nodes

on the path, denoted as Risk; path energy consumption depends

on the number of turns and turning angles of the path, denoted

asConsumption. The multi-objective optimization function is

shown below.

Length =

j=E
∑

i=S

dij (19)

Risk =
∑

D_nodes (20)

Consumption =
∑

0.5 ∗ N_corner + 0.5 ∗ T_angle (21)

J_quality = k1 ∗ Length+ k2 ∗ Risk+ k3

∗ Consumption (22)

k1 + k2 + k3 = 1 (23)

Where, Length is the sum of distances of all nodes in the

path. Riskis the sum of dangerous nodes that the path passes.

Dangerous nodes refer to nodes whose ratio of optional nodes

to obstacle nodes is <1. Consumptionis the sum of the number

of corners and the turning angles of the path. J_qualityis the

comprehensive quality, a comprehensive index composed of

path length, path safety, and path energy consumption with

different proportions. The smaller the value is, the higher the

comprehensive quality of the path is.

Replacing the path length with the comprehensive quality

is the way to realize the multi-objective optimization idea. The

improved pheromone update method is as follows.

1τ kij (t) =











Q
Jbest

+ b∗Q
BEST tour(i, j) ∈ tourbest

Q
Jworst

− w∗Q
WORST tour(i, j) ∈ tourworst

Q
J tour(i, j) ∈ tourother

(24)

1τij(t) =

m
∑

k=1

1τ kij (t) (25)

τij(t + 1) = (1− ρ) ∗ τij(t)+ 1τij(t) (26)

Where, Jbest is the comprehensive quality of the local optimal

path, bis the number of ants on the local optimal path, BESTis

the comprehensive quality of the global optimal path. Jworst is the

comprehensive quality of the local worst path, wis the number

of ants on the local worst path, WORSTis the comprehensive

quality of the global worst path. The optimal path, the worst path
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and other paths update the pheromone according to the three

forms in equation (24), respectively.

The optimized pheromone updating method is based on the

comprehensive quality of the path. The reward and punishment

system is implemented for the optimal path and the worst path,

and the pheromone gap between them gradually increases. The

subsequent ants will be more inclined to the optimal path, which

helps to accelerate the convergence speed of the algorithm (Dai

et al., 2022).

In the late iteration of classic ant colony algorithm, the

pheromone accumulation is completed, and ants are affected by

pheromone, so it is difficult to continue to explore other paths,

and the local optimal solution needs to be solved (Tian and

Chen, 2021b).

In this paper, the concept of dynamic updating volatility

coefficient is proposed. In the late iterations, if the quality of the

optimal path of five consecutive iterations does not change, the

volatility coefficient is dynamically updated, which can increase

the volatilization of pheromone and weaken the attraction of

pheromone. This helps ants explore other paths. The dynamic

volatility coefficient is shown below.

ρ =

{

1.2 ∗ ρ J(k) = J(k− 5), k ≥ 35

0.8 ρ ≥ 0.8
(27)

Where, J(k)andJ(k− 5)are the comprehensive quality of the

optimal path of this iteration and five iterations ago, respectively.

In the late iterations, if the Jbest does not change in the five

consecutive iterations, the volatilization coefficientρ increases,

and the volatilization is enhanced, which makes the ants explore

better solutions. The upper limit of the volatilization coefficient

is 0.8.

Path smoothing

The path obtained by classic ant colony algorithm has

many redundant nodes and corners, which not only affects

the path length, but also is not conducive to reducing the

energy consumption of the robot. Therefore, the improved

ant colony algorithm needs to optimize the path nodes. In

this paper, the connectivity processing and quadratic B-spline

curve optimization method are proposed to optimize the nodes,

which further shortens the path length and reduces the energy

consumption of the robot (Tian, 2020a; Tian et al., 2021).

Aiming at the path feature of the ant colony algorithm,

which is composed of a series of nodes, the connectivity principle

is proposed. Due to the limitation of step size, there are many

redundant nodes. Connectivity processing is an effectivemethod

for eliminating redundant nodes, and its principle is shown in

Figure 7.

As can be seen from the Figure 7, the line between P1 and

P5 does not cross obstacles, so the two nodes are connected. P2,

P3, and P4 are redundant nodes. After connectivity processing,

the corner is reduced, and the path length is shortened, which is

beneficial to the robot.

The connectivity processing of the complete path is shown

in Figure 7.

As can be seen from the Figure 7, the left side is the

path obtained by the classic ant colony algorithm. There are

redundant nodes, and the path length is 43.6985. The right side

is the path processed by connectivity. The corner is reduced,

and the path length is 39.1901. It can be seen that the effect of

connectivity processing is significant.

In addition to redundant nodes, the path smoothing also

includes the smoothness operation of the corner. Therefore,

this paper introduces the quadratic B-spline curve optimization

method to optimize the corner.

In 1946, Schoenberg proposed a spline-based approach to

approximate curves. In 1972, based on Schoenberg’s work,

Gordon and Riesenfeld proposed B-spline curves and a series of

corresponding geometric algorithms. The B-spline curve is the

generalization of the Bezier curve, which solves the problem that

the Bezier curve is difficult to smooth transition at the endpoint.

Besides, the B-spline curve has higher accuracy (Zeng et al.,

2019). The definition of the B-spline curve is as follows.

P(t) =

n
∑

i=0

PiNi,k(t) (28)

Ni,k(t) =
1

k!
∗

k−i
∑

j=0

(−1)j ∗ C
j
k+1

∗ (t + k− i− j)k (29)

0 ≤ t ≤ 1, i = 0, 1, . . . , k− 1,C
j
k+1

=
(n+ 1)!

j! ∗ (n+ 1− j)!
(30)

Where, Piis the original endpoint, Ni,k(t)is the basic

function, andP(t)is the set of points on the curve.

The quadratic B-spline method needs only three endpoints

to construct a smooth curve. And it can meet the requirements

of curve smoothness. Therefore, this paper selects the quadratic

B-spline method to deal with the corner problem.

Whenn = 2in equation (28), the quadratic B-spline curve

of the following form can be obtained through the spline

basis function.

P(t) =
1

2
∗ (1− t)2 ∗ P0 +

1

2
∗ (−2 ∗ t2 + 2 ∗ t + 1)

∗ P1 +
1

2
∗ t2 ∗ P2 (31)

The quadratic B-spline method is shown below.

As can be seen from the Figure 8, the black path is the

original path, and the red path at the corner is the new path

generated by the quadratic B-spline method.
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FIGURE 7

Connectivity processing.

The comparison results between the path after connectivity

processing and the path generated by the quadratic B-spline

method based on connectivity processing is shown in Figure 8.

As can be seen from the Figure 8, the corner processed by

the quadratic B-spline method is smoother. The path length

before processing is 39.1901, and the path length after processing

is 38.9281.

There is almost no redundant node of the path processed by

connectivity and the quadratic B-splinemethod, which is shorter

than the path generated by the classic ant colony algorithm and

is more suitable for mobile robots.

Algorithm flow

To sum up, the flow of the improved ant colony algorithm is

shown in Figure 9.

The execution steps of the algorithm are as follows.

Step 1: Initialize the parameters of the improved ant colony

algorithm and Floyd algorithm.

Step 2: Set up the grid map, initialize the pheromone

matrix and tabu list according to the guidance path

generated by the Floyd algorithm.

Step 3: Build candidate solutions according to the tabu list

and state transition rules and select the next node by

roulette principle.

Step 4: Determine whether the ants fall into the deadlock. If

so, execute the fallback strategy until the ants get out

of the trap. Otherwise, continue step 5.

Step 5: Update the tabu list and record the path nodes

and length.

Step 6: Determine whether the ant reaches the target node.

If so, continue step 7. Otherwise, return to step 3.

Step 7: Determine whether the number of ants reaches the

upper limit. If so, continue step 8. Otherwise, return

to step 3.
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FIGURE 8

Quadratic B-spline curve.

Step 8: Smooth the path and update the global pheromone.

Step 9: Determine whether the maximum number of

iterations is reached. If so, outputs the optimal

solution and ends. Otherwise, return to step 3.

Step 10: Draw the algorithm iteration diagram and the

optimal path curve.

Experimental results and discussions

In this section, the effectiveness of the improved algorithm

in path planning is verified through different scenarios.

All experiments were performed using the same PC. The

MATLAB (R2016b) programming platform was used to

encode and implement all algorithms. In order to obtain

real experimental results and avoid accidental situations, all

experiments were carried out independently under the same

experimental conditions.

The 26 × 26 scale grid map is adopted in this paper. There

are three different environments, namely, the concentrated

obstacle environment, the partially dispersed obstacle

environment, and the decentralized obstacle environment.

The algorithm in this paper, the classic ant colony algorithm,

and the algorithm of Li et al. (2021), Luo et al. (2020), and Akka

and Khaber (2018) are compared experimentally. The algorithm

parameters are set as shown in Table 2.
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FIGURE 9

Flow chart of improved ant colony optimization algorithm.

TABLE 2 Parameter setting.

Parameter

Starting point S 1

Target point E 676

Maximum number of iterations K 100

The number of antsM 50

Pheromone heuristic factor α 1

Expected heuristic factor β 6

Pheromone volatilization factor ρ 0.6

Pheromone intensity factor Q 1

Pheromone penalty evaporation coefficient λ 15

Concentrated obstacle environment

In the concentrated obstacle environment with the 26 × 26

scale grid, the experimental results of five algorithms are shown

in Figure 10.

The specific results of the experiment are shown in Table 3.

Index 1 is the average path length, index 2 is the optimal path

length, index 3 is the average number of iterations, and index 4

is the average number of corners.

It can be seen from Figure 10 and Table 3 that the

comprehensive performance of the improved algorithm in this

paper is the best in the concentrated obstacle environment.

In terms of the optimal path length, the improved algorithm

is 4.29% less than the classic ant colony algorithm, 2.82%

less than the algorithm in Li et al. (2021), 8.10% less than

the algorithm in Luo et al. (2020), and 2.04% less than the

algorithm in Akka and Khaber (2018). In terms of the average

path length, the improved algorithm is 4.43, 2.68, 9.70, and

1.99% less than other algorithms, respectively. In terms of the

average number of iterations, the improved algorithm is 63

times less, 2 times more, 5 times less and 3 times less than

other algorithms, respectively. In terms of the average number

of corners, the improved algorithm is 41.67, 22.22, 53.33, and

30% less than other algorithms respectively. To sum up, in

the concentrated obstacle environment, the performance of the

improved algorithm in this paper is better than the other four

algorithms, including the classic algorithm.

Partially decentralized obstacle
environment

In the partially decentralized obstacle environment with the

26× 26 scale grid, the experimental results of five algorithms are

shown in Figure 11.
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FIGURE 10

Experimental results of three algorithms in the concentrated obstacle environment. (A) Classic ant colony algorithm, Luo et al. (2020), Li et al.

(2021), and Akka and Khaber (2018) (B) Improved algorithm and comparison of five algorithms.
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TABLE 3 Comparison of five algorithms.

Index Concentrated obstacle Partially decentralized Decentralized obstacle

environment obstacle environment environment

Classic ACO 1 39.2843 41.4578 43.2763

2 38.8701 40.0416 41.4558

3 70 65 75

4 12 14 18

Li et al. (2021) 1 38.5772 39.9771 48.6639

2 38.2843 39.1127 46.2543

3 5 10 18

4 9 12 15

Luo et al. (2020) 1 41.5772 40.4056 43.2132

2 40.4807 39.6985 41.7990

3 12 9 8

4 15 15 16

Akka and Khaber (2018) 1 38.3045 40.8078 41.3356

2 37.9793 39.6853 40.9214

3 10 10 12

4 10 13 16

Improved algorithm 1 37.5438 39.0204 39.6872

2 37.2033 38.9281 39.1280

3 7 11 10

4 7 9 11

The specific results of the experiment are shown in Table 3.

As can be seen from Figure 11 and Table 3, the performance

of the improved algorithm in this paper is still better than

that of other algorithms in the partially decentralized obstacle

environment. In terms of the optimal path length, the improved

algorithm is 2.87% less than the classic ant colony algorithm,

0.47% less than the algorithm in Li et al. (2021), 1.94% less

than the algorithm in Luo et al. (2020), and 1.91% less than

the algorithm in Akka and Khaber (2018). In terms of the

average path length, the improved algorithm is 5.88, 2.39, 3.43,

and 4.38% less than other algorithms respectively. In terms of

the average number of iterations, the improved algorithm is 54

times less, 1 time more, 2 times more and 1 time more than

other algorithms respectively. In terms of the average number

of corners, the improved algorithm is 35.71, 25, 40, and 30.77%

less than other algorithms respectively. It can be seen from the

above that the performance of the improved algorithm in this

paper still has certain advantages in the partially decentralized

obstacle environment.

Decentralized obstacle environment

In the decentralized obstacle environment with the 26×26

scale grid, the experimental results of five algorithms are shown

in Figure 12. The specific results of the experiment are shown in

Table 3.

It can be seen from Figure 12 and Table 3 that the improved

algorithm in this paper has more obvious advantages than other

algorithms in the decentralized obstacle environment. In terms

of the optimal path length, the improved algorithm is 5.62%

less than the classic ant colony algorithm, 15.41% less than the

algorithm in Li et al. (2021), 6.39% less than the algorithm in

Luo et al. (2020), and 4.38% less than the algorithm in Akka

and Khaber (2018). In terms of the average path length, the

improved algorithm is 8.29, 18.45, 8.16, and 3.99% less than

other algorithms, respectively. In terms of the average number

of iterations, the improved algorithm is 65 times less, 8 times

less, 2 times more and 2 times less than other algorithms,

respectively. In terms of the average number of corners, the

improved algorithm is 38.89, 26.67, 31.25, and 31.25% less than

other algorithms, respectively. From the above comparisons,

as the complexity of the environment increases, the improved

algorithm in this paper always has significant advantages.

From the above experiments, it can be seen that in the simple

environment, except for the classic ant colony algorithm, the

other three algorithms are close to the improved algorithm.

As the complexity of the environment increases, the indicators

of the five algorithms have changed, and the performance of

the improved algorithm has always remained stable, which has

been better than the other four algorithms, including the classic
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FIGURE 11

Experimental results of three algorithms in the partially decentralized obstacle environment. (A) Classic ant colony algorithm, Luo et al. (2020), Li

et al. (2021), and Akka and Khaber (2018). (B) Improved algorithm and comparison of five algorithms.
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FIGURE 12

Experimental results of three algorithms in the decentralized obstacle environment. (A) Classic ant colony algorithm, Luo et al. (2020), Li et al.

(2021), and Akka and Khaber (2018). (B) Improved algorithm and comparison of five algorithms.
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algorithm. Among the five algorithms, the improved algorithm

is the best, which is most conducive to the energy-saving and

stable operation of the robot.

Conclusion

The ant colony algorithm is widely used in robot path

planning. However, the classic ant colony algorithm still has the

problems of slow convergence speed and easily fall into the local

optimal solution. Therefore, this paper proposes an improved

ant colony algorithm. Firstly, the Floyd algorithm is introduced

to generate the guidance path to optimize the initial pheromone

matrix and effectively accelerate the initial convergence speed

of the ant colony algorithm. Ant fallback strategy can help

avoid ants dying due to the deadlock dilemma and improve the

global search ability of the algorithm. The improved heuristic

function proposed by referring to the gravity concept in the

APFmethod accelerates the convergence speed of the ant colony

algorithm. It makes up for the influence of the fallback strategy

on the convergence rate. The pheromone updating method

based on a multi-objective optimization idea and dynamic

principle considers the path length, path security, and path

energy consumption. It helps the ant colony algorithm avoid

the local optimal solution and improves the comprehensive

performance of the algorithm, which is more suitable for mobile

robots. Connectivity processing and the quadratic B-spline

method effectively reduce the redundant nodes of the path,

improve the smoothness of the path and further shorten the

path length.

Through experimental comparisons, as can be seen, the

improved algorithm has strong stability. From the simple

obstacle environment to the complex obstacle environment, it

can always maintain the optimal comprehensive performance,

the shortest path, and the least corner. The problems of the

classic ant colony algorithm has been solved. In addition, the

multi-objective optimization idea and the node optimization

method introduced in the improved algorithm can effectively

help the mobile robot to save energy and improve the

work efficiency.
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Jia Liu, Qiyao Gu, Dapeng Chen* and Dong Yan

School of Automation, C-IMER, B-DAT, CICAEET, Nanjing University of Information Science &
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Augmented Reality Registration field now requires improved SLAM systems to

adapt to more complex and highly dynamic environments. The commonly

used VSLAM algorithm has problems such as excessive pose estimation

errors and easy loss of camera tracking in dynamic scenes. To solve these

problems, we propose a real-time tracking and mapping method based

on GMM combined with YOLOv3. The method utilizes the ORB-SLAM2

system framework and improves its tracking thread. It combines the a�ne

transformation matrix to correct the front and back frames, and employs GMM

tomodel the background image and segment the foreground dynamic region.

Then, the obtained dynamic region is sent to the YOLO detector to find the

possible dynamic target. It uses the improved Kalman filter algorithm to predict

and track the detected dynamic objects in the tracking stage. Before building

a map, the method filters the feature points detected in the current frame and

eliminates dynamic feature points. Finally, we validate the proposed method

using the TUM dataset and conduct real-time Augmented Reality Registration

experiments in a dynamic environment. The results show that the method

proposed in this paper is more robust under dynamic datasets and can register

virtual objects stably and in real time.

KEYWORDS

dynamic target detection, VSLAM, YOLOv3, GMM, Kalman filter

1. Introduction

Initially, SLAM (Simultaneous Localization and Mapping) was proposed to solve

the problem of robot movement in an unknown environment. After the robot observes

the environment, it immediately feeds back its posture and movement trajectory, and

constructs a map of the environment simultaneously. The early SLAM system mainly

used single-line lidar, sonar and other sensors to realize its own positioning. With the

rapid development of computer vision, the VSLAM (Visual SLAM) system with the

help of cameras has begun to become the mainstream of research by various teams due

to its convenient use and low cost. The VSLAM system has been well applied in the

fields of augmented reality (Calloway and Megherbi, 2020), driverless driving (Nguyen

et al., 2018), and robotics (Liu, 2021). Virtual objects registered with VSLAM technology

have better stability and accuracy in today’s popular augmented reality applications. To

achieve a more immersive visual experience in the dynamic environment of mobile

Frontiers inNeurorobotics 01 frontiersin.org

67

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.990453
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.990453&domain=pdf&date_stamp=2022-09-02
mailto:dpchen@nuist.edu.cn
https://doi.org/10.3389/fnbot.2022.990453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2022.990453/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2022.990453

devices, the VSLAM system with AR (Augmented Reality)

technology needs a more excellent background update mode.

Many Augmented Reality Registration methods are

based on the front-end visual odometry of SLAM systems,

while many VSLAM systems are usually built on static

environments. However, the real environment is much

more complicated than the ideal environment. Dynamic

objects such as people and cars are often unavoidable in

scenarios such as classrooms, hospitals, and outdoor shopping

places. Those VSLAM systems built on a static environment

have poor adaptability to dynamic and complex scenes,

leading to substantial errors in the obtained map points and

pose matrix (Cheng et al., 2019). Indirectly, it will cause

problems such as drift of virtual objects registered in the

world coordinate system. Aiming at the problems of excessive

pose estimation error and easy loss of camera tracking in

the commonly used VSLAM algorithm in high dynamic

scenes, we propose a real-time tracking and mapping method

based on GMM combined with YOLOv3. This method

can guarantee the robust registration of virtual objects in

dynamic environments.

To ensure that the camera produces robust results when

moving, we combine the affine transformation matrix to correct

the continuous frame image (Sun et al., 2022). In the non-

key frame stage, we employ GMM (Gaussian Mixture Model;

Stauffer and Grimson, 1999) to model the background image,

effectively utilizes the global discontinuity of the keyframe, and

increases the GMM training time to improve the training effect

of the background model. When creating the keyframe, we

combine the image frame of the previous time series to segment

the foreground dynamic area, and provide prior knowledge

for the YOLO detector. To improve the detection accuracy

of the dynamic target of VSLAM, we employ the observation

value provided by YOLO (You Only Look Once) v3 (Redmon

and Farhadi, 2018) in the tracking thread to predict the area

of the dynamic target in real time. Our method combines

the dynamic area detected by YOLO with the dynamic area

obtained after GMM training, and uses the IOU (Intersection

Over Union) result as the probability information to obtain the

largest possible dynamic target. We choose YOLOv3 because it

is a single-stage detector that can achieve good accuracy while

meeting the real-time nature of Augmented Reality Registration.

Moreover, compared with traditional methods such as frame

difference method, optical flow method, and background

removal method, YOLOv3 has better real-time performance

and robustness. But the disadvantage is that YOLOv3 does not

provide prior knowledge that can identify dynamic regions.

Our method is complementary to both. It uses a GMM model

to train background images, estimates motion regions when

creating new keyframes, and provides priors for YOLOv3. At

the same time, YOLOv3 meets the real-time and robustness

requirements, and can achieve dynamic target detection between

consecutive frames.

The most traditional tracking algorithm is the filtering

algorithm based on the Bayesian framework (Goan and Fookes,

2020). It utilizes prior information to make an optimal

estimation of the state of the target in the current frame to track

the target, such as the Kalman filter (Xu Y. et al., 2018) and the

Particle filter (Chakravarty et al., 2017). In actual operation, the

observed value is easily affected by factors such as the camera

itself and lighting. The traditional Kalman filter will affect the

next predicted value when an error occurs in the observed

value, leading to the accumulation of errors. We provide an

improved Kalman filter method that uses the first N groups

of observations to establish a nonlinear fitting curve to predict

the next set of observations. Then, we employ an evaluation

metric to determine whether to choose the predicted “observed

value” or the value observed by the system. After the update,

it can obtain a more accurate and practical background. We

employ this improved Kalman filter algorithm to predict and

track YOLO objects to ensure the continuity of the regional

frame. The real-time accuracy of background map construction

determines the reliability of VSLAM applications in many

directions. This method can accurately eliminate the dynamic

noise during the mapping thread, and obtain a good mapping

effect, providing a good mapping environment for Augmented

Reality Registration. The system diagram is shown in Figure 1.

The rest of this paper is structured as follows. The second

section describes the related work of VSLAM implementation in

a dynamic environment. The third section describes the method

of this paper in detail. The fourth section gives the experimental

results. The fifth section gives some conclusions and analysis of

the experiment.

2. Related work

2.1. Classic VSLAM

The classic VSLAM system has gone through a series of

explorations and improvements and has formed an effective

execution framework. Davison et al. (2007) first proposed

MonoSLAM, a SLAM scheme based on a monocular camera.

Klein andMurray (2007) proposed a keyframemechanism in the

PTAM scheme, which realized the parallelization of tracking and

mapping, distinguished the front and back ends for the first time,

and used nonlinear optimization as the back-end optimization

scheme. The two earliest proposed VSLAM solutions have

problems such as small application scenarios and easy tracking

loss. However, these innovative framework ideas have been used

to this day.

Subsequently, scholars began to improve the front-end

visual odometer. At present, the feature point method composed

of key points and descriptors is the most mainstream front-

end algorithm, such as SIFT (Lowe, 2004), SURF (Bay et al.,

2006), and ORB (Rublee et al., 2011). This kind of method
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FIGURE 1

System diagram. This system mainly consists of three parts: tracking thread, mapping thread, and Augmented Reality Registration thread. The

tracking thread uses GMM combined with the YOLOv3 method for dynamic object detection and uses the improved Kalman filter method for

dynamic object tracking. Next, it removes the feature points of dynamic objects in the keyframes and transfers the keyframes that retain the

static feature points to the augmented reality registration thread. In the Augmented Reality Registration thread, it registers virtual objects

through the map points and camera poses of the current frame and tracks virtual objects through matrix calculation.

is stable and relatively mature. Another front-end algorithm

is the direct method based on pixel brightness information.

Engel et al. (2014, 2015) proposed LSD-SLAM, which uses the

direct method to build maps. It has the advantages of fast

speed and good real-time performance, but it is very sensitive

to the camera’s internal parameters and exposure, and it is

easy to lose when the camera moves quickly. Forster et al.

(2014) proposed high-speed real-time mapping using the sparse

direct method SVO. It is extremely fast, but due to abandoning

the calculation of the descriptor, its pose estimation is prone

to cumulative errors. When the camera moves quickly, the

location information is easy to lose, and it is difficult to relocate

after being lost. In the case of much noise in the dynamic

environment, the result of this method is still not satisfactory.

Mur-Artal et al. (2015) proposed a monocular ORB-SLAM

system. ORB-SLAM utilizes unified ORB features in each

link of tracking, mapping, relocation and loop detection. It

has high computational efficiency, good rotation and scaling

invariance (Mur-Artal and Tardós, 2017; Campos et al., 2021),

and its performance in a dynamic environment can be further

improved. Many SLAM systems improved through dynamic

target detection and deep learning are also implemented under

the ORB-SLAM’s framework.

2.2. Dynamic VSLAM scheme of deep
learning and geometric view

In terms of dynamic target detection, traditional methods

are greatly affected by scene brightness changes, noise, etc., and

there will be false detections and missed detections in the target

detection process. This also leads to drift during target tracking,

which in turn affects the accuracy of target tracking (Huang

et al., 2022).

In recent years, dynamic target detection has put forward

higher tracking accuracy and target number requirements, and

many excellent SLAM frameworks have emerged continuously

(Gehrmann et al., 2019). In the past, semantic segmentation

was used to train static objects to generate semantic maps

that increase the amount of information. For example, the

semantic map construction proposed by Goerke and Braun

(2009). When building a map in a dynamic environment, it

is necessary to segment and remove dynamic characters. The

method proposed by Wang et al. (2016) is a new method for

classifying human motion regions. It divides human activities

into categories and predicts the travel of the human body

through general movement patterns. But this method is only

suitable for fixed cameras. Riazuelo et al. (2017) proposed a

semantic SLAM method in dense portrait scenes. This method

solves the limitation of camera fixation. It completes a complete

SLAM system based on the visual odometer (Wang et al., 2007).

It can detect which are dynamic objects, but it cannot detect

changes caused by static objects. Bescos et al. (2018) proposed

DynaSLAM, which employs the Mask RCNN (Ammirato and

Berg, 2019) to arrange the scene prior knowledge and estimate

the possible moving targets through the geometric view method.

This method removes the feature points of the moving target

through a mask to maintain the algorithm’s accuracy. After

removing the dynamic target, the previously observed static

information is used to repair the area. However, when repairing

the occluded background of the current frame, using the pixel

area corresponding to the last frame will cause the accumulation

of errors. Zhong et al. (2018) proposed Detect-SLAM. It

combines the single shot multibox detector (Liu et al., 2016)
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on the basis of ORB-SLAM, and uses semantic information to

eliminate the influence of dynamic targets in SLAM. In addition,

it also contains a method to propagate the dynamic possibilities

of each feature point in real time, which solves the problem

of delay in the transmission of semantic information. Yu et al.

(2018) proposed DS-SLAM, which utilizes the optical flow

method to track feature points and employs RANSAC (Raguram

et al., 2012) to eliminate outliers and calculate the basic matrix.

The dynamic and static points are judged based on the distance

from the feature point to the epipolar line. Then, SegNet

(Badrinarayanan et al., 2017) is used to divide the dynamic area

and eliminate the feature points of the dynamic area. However,

because the semantic information is not comprehensive enough

and the semantics are untargeted, there are problems in dynamic

filtering in some aspects, such as gesture occlusion. Xiao et al.

(2019) proposed Dynamic-SLAM. Based on the same work as

DynaSLAM (Bescos et al., 2018), it reduces the dynamic error

and builds a better map (Fan et al., 2020).

These SLAM systems for dynamic scenes generally use

semantic information, either using geometric information or a

simple combination of methods for dynamic object detection.

Cui and Ma (2019) proposed SOF-SLAM, which combines

semantics and optical flow methods. It fully utilizes the dynamic

characteristics of features hidden in semantic and geometric

information. Cui and Ma (2020) proposed SDF-SLAM, utilizes

a depth filter to describe each map point’s inverse depth,

updates the inverse depth of the 3D map points in the Bayesian

framework, and divides the 3Dmap points into active or inactive

points. However, the problem of using a semantic combination

of VSLAM is still undeniable. They all rely heavily on the

training effect of the network model. The prestage workload is

enormous, but it can only be divided and cannot be tracked well.

For the classic network model of target detection, the candidate

area method proposed by RCNN is very time-consuming and

cannot be run in real time. YOLO innovatively proposed

merging the candidate area and recognition process in RCNN

to increase computing speed significantly (Redmon and Farhadi,

2018).

Inspired by deep learning, improved view geometrymethods

are also constantly advancing, and new system models appear.

Sun et al. (2017) proposed a motion removal method based

on RGB-D cameras. Since this method relies on the maximum

posterior scheme to determine the foreground, the segmentation

results are limited (Sun et al., 2019). Xu X. et al. (2018) proposed

a multi-view spectral clustering framework that combines

multiple models together, integrating the affine, tomography,

and basic matrix. Sun et al. (2018) proposed MR-SLAM, which

improved their previous method (Sun et al., 2017) to model

prospects in different classes, so the number of moving objects

was not limited during segmentation. This method adds online

learning capabilities, allowing it to update the foreground model

incrementally. Although, MR-SLAM can effectively deal with

dynamic factors, it consumes too much time in the process

of precise detection and segmentation of moving targets, and

it is not outstanding in real-time performance. Cheng et al.

(2019) inspired by deep neural networks, proposed SMR-

SLAM, which employs the Bayesian formula to solve the

probability distribution of the feature point area of the geometric

view. Small-probability events are eliminated to help SLAM

distinguish dynamic regions as much as possible. It can learn

and perform well in scenes with low dynamics, but the error is

more evident in highly dynamic scenes or excessive complexity.

Liu et al. (2022) optimized the sparse point cloud map through

the YOLOv4 framework to enhance the interactivity of the

robot. Gao et al. (2020) proposed a feature map fusion one-shot

multi-box detector, which has higher detection accuracy and

real-time performance compared to SSD and DSSD methods.

The occlusion of the hand is also one of the reasons for the

failure of virtual object registration, and the detection of the

hand is also very necessary (Gao et al., 2019). YOLOv3 has

better real-time and accuracy in hand detection, and can detect

hand occlusion in real time, helping to complete better virtual

object registration.

We provide the method of GMM combined with YOLOv3.

Our method uses the ORB-SLAM2 framework and improves

its tracking thread to analyze dynamic targets. The method

provided in this paper detects and tracks dynamic targets,

eliminates dynamic points in real time, and optimizes the update

mode of the background to ensure the accuracy of pose solving

and map creation.

3. Method

3.1. Dynamic target detection

3.1.1. Moving target detection algorithm based
on GMM

GMM is a method to accurately quantify things with a

Gaussian probability density function and decompose them into

several models based on a Gaussian probability density function.

The GMM application in background elimination establishes

a Gaussian mixture model for each pixel in the video frame.

If the pixel model has a significant weight, it is indicated as

a background pixel; otherwise, it is a foreground image. Since

background pixels often occupy high weights, the generated data

is more trustworthy on the background pixels so that GMM can

distinguish the foreground and the background in the long-term

observation sequence generated by the video.

Our method employs the ORB feature extraction and

matching to extract feature points, calculates the affine matrix

M by matching the front and back frames, corrects the current

frame image through the affine matrix M. Then, the method

employs GMM to learn background pixels and segment the

foreground and background images by finding the pixel group
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FIGURE 2

GMM dynamic solution.

closest to the background. The dynamic target detection process

is as follows:

a. In the initialization phase, the method completes the initial

setting of the parameters of the GMMmodel.

b. In the non-key frame stage, the feature points are extracted

from the VSLAM to match the continuous frame images.

Calculate the affine transformation matrix M by this method,

utilize the M matrix to make affine changes, and set the

threshold (the threshold is 20 in this paper) to correct the

current frame.

c. At the same time, to reduce the image shift caused by the

affine matrix error, the method uses the mean filter to process

the images before and after the transformation.

d. Our method trains the corrected image on the GMM

Gaussian mixture model. It combines the image frame of the

previous time series to determine the foreground dynamic

area when the keyframe is created.

The principle diagram of dynamic target detection

combining VSLAM and GMM is shown in Figure 2, and the

specific flow chart is shown in Figure 3.

3.1.2. Target detection algorithm based on
YOLOv3

The moving target detection algorithm based on the GMM

extracts the keyframes and then performs the difference.

Between keyframes, we employ the YOLOv3 algorithm to detect

objects that may need to be tracked. YOLOv3 is a single-stage

detector that can meet real-time performance for Augmented

Reality Registration while maintaining accuracy compared to

methods via R-CNN. The method divides the input image into

a 13×13 table and then lets each cell detect the target. The

bounding box and the discrimination probability value through

each grid are obtained to judge whether the target object and

the position information and probability information of the

target area in the grid. The dimensional clustering method on

the bounding box is chosen to select 3 scales and nine types

of bounding boxes, the bounding box detection problem is

FIGURE 3

Flow chart of dynamic target detection combining GMM and

a�ne matrix.

FIGURE 4

Schematic diagram of bounding box regression.

converted into a regression problem, and the 4 coordinates

tx, ty, tw, th (as shown in formulas 1–4) of each bounding box

are predicted. For the problem of bounding box regression, for

the 13×13 feature scale map, we utilize three bounding boxes

of 10×13, 16×30, and 33×23 pixels; for the 26×26 feature

scale map, we utilize three bounding boxes of 30×61, 62×45,

59×119 pixels; for the 52×52 feature scale map, we utilize

three bounding boxes of 116×90, 156×198, 373×326 pixels. The

regression diagram of the bounding box is shown in Figure 4.

The definition formula for the bounding box is as follows:

bx = σ (tx) + cx (1)

by = σ
(

ty
)

+ cy (2)
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FIGURE 5

YOLOv3 detection process.

bw = pwe
tw (3)

bh = phe
th (4)

where tx, ty, tw, and th represent the offset of x coordinate,

y coordinate, width, and height offset, respectively. bx, by, bw,

and bh represent the result of the final goal box. σ (x) represents

the Sigmoid function. The result of x is normalized to speed

up network convergence, where pw and ph are the width and

height of the bounding box, respectively. The overall YOLOv3

detection process is shown in Figure 5.

In VSLAM, to ensure the accuracy of map point

construction, it is necessary to eliminate all possible dynamic

targets in the keyframe by comparing the information of

the last frame when generating the keyframe. Due to the

instability of the feature points, the calculated affine matrix has

errors, so when the dynamic target is moving, the real-time

calculation result using the frame difference method is often

not satisfactory. Our method in this paper establishes dynamic

candidate areas through keyframes. At the same time, it

employs the YOLOv3 algorithm to receive each candidate area

and discard candidate areas that cannot be identified. The

method employs the GMM model to train the background

image, estimates the motion area when creating new keyframes,

provides prior knowledge for YOLOv3, and exploits the fast

and robust advantages of YOLOv3 to achieve dynamic target

detection between consecutive frames. With the advantage

of discontinuous VSLAM keyframes in time series, each time

a keyframe is established, this method analyzes the dynamic

area to increase or decrease the dynamic tracking frame. This

method can ensure the real-time performance of VSLAM and

avoid the problem of local map tracking failure caused by too

few map points due to multiple additions and reductions of

candidate areas. The schematic diagram is shown in Figure 6.

The dotted box represents the dynamic candidate area

provided by GMM, and the solid box represents all targets

detected by YOLOv3. Then we use the IOU result as the

probability information to get the largest possible dynamic

target [such as at 2©], discard the area where GMM dynamic

FIGURE 6

Schematic diagram of dynamic area detection.

detection fails [such as 1©], discard other static targets obtained

by YOLOv3 [such as 4©], and detect the area (solid box) such as

2© 3©.

3.2. Dynamic target tracking based on an
improved Kalman filter

Multi-target detection algorithms are easily affected by

factors such as illumination, occlusion, and pixel blur when

moving (Li and Shi, 2019). The dynamic area will not disappear

irregularly, so we build a tracking model to achieve multi-

target tracking between two keyframes to ensure the continuity

of the bounding box detected by YOLO. The Kalman filter

algorithm itself is a linear system. Since the value observed in

this paper is the state value, it is easy to estimate the value

from the previous state to the next state by using the state

transition matrix of the Kalman filter algorithm. The Kalman

filter algorithm only considers the relationship between the

upper and lower frames to a certain extent, so the Kalman filter

algorithm needs a very accurate observation effect. However,

in the actual operation process, the observed values are not
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FIGURE 7

Improved observation value selection principle diagram.

necessarily accurate, whether due to the influence of the camera

or lighting effects. To solve such problems, we propose an

improved Kalman filter method. We exploit the improved

Kalman filter to predict the maximum probability position and

length and width information of the next frame. It uses its error

covariance to calculate the predicted value of the state variable,

find the observed value by combining the detection algorithm,

correct the predicted value with Kalman gain, and finally obtain

the optimal value of the variable.

The improved Kalman filtering algorithm exploits the first

N groups of observations to establish a nonlinear fitting curve

to predict the next group of observations. The algorithm uses an

evaluation index to determine the selected predicted “observed

value” or the value observed by the system. Since the feature

points are affected by environmental factors or camera shake

factors, linear fitting is performed according to the absolute

values of the errors of the previous N-1 groups of predictions

and observations. While ensuring the real-time performance

of the algorithm, it can distinguish whether the target is

moving fast or instantaneously due to observation errors. The

improvement principle is shown in Figure 7 (Ẋn are fitted

observations, and Xn is an actual observation. P1, P2... Pn−1

represent the error covariance).

The observation values selected in this paper are the central

pixels
(

1
2

∑2
2i x2i,

1
2

∑3
2i+1 y2i+1

)

of the four boundary corners

of the target image to input to the Kalman filter system to obtain

the predicted value. Then, take the predicted point as the center,

use the value of max
{
∣

∣xj − xi
∣

∣

}

obtained in the last frame as the

width of the rectangle, and the value of max
{
∣

∣yj − yi
∣

∣

}

as the

length of the rectangle, and then crop a new area. The camera

pose is detected and calculated in this area to obtain a new set

of measured values, and the rectangular area size and area of the

next frame are updated from the measured values and the new

boundary corner points.

First, we establish an 8-dimensional state vector and

a 4-dimensional observation vector according to the linear

condition satisfied by the Kalman filter. The 8-dimensional

state vector values represent the center pixel position x and

y, the aspect ratio and height of the bounding box, and

their corresponding velocity values. Expressed by the equation

of motion xk = Akxk−1 + Bkµk + wk, due to the lack of a

control vector, Bk is set to a 0 vector, which satisfies the state

transition matrix:

A =





























1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





























(5)

This formula expresses the displacement of the previous

state plus the unit velocity to represent the displacement

of the current state, and considers the system error and

the observation error, wk ∼ N
(

0,Qk

)

, vk ∼ N
(

0,Rk
)

. The

observation equation is expressed as zk = Hkxk + vk according

to the Kalman filter. Because of the special relationship between

the observation equation and the state equation in this paper,Hk

is a 4×8 matrix, where the observation equation is only related

to the first four dimensions of the current state vector, that is, the

displacement point, so take:

Hk =











1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0











(6)

To satisfy the system’s optimal estimation of the state

equation, wemodify the state value during the observation phase

and introduce the covariance matrix to update:

Pk|k−1 = A · Pk−1|k−1 · A
T + Q (7)

where Pk|k−1 represents the covariance matrix of the

predicted state value and obtains the optimal estimation of the

current state through the prediction result of the current system

and the measurement of the current state:

xk|k = xk|k−1 + Kk

(

zk −H · xk|k−1

)

(8)

where Kk represents the current Kalman gain coefficient,

which is represented by the covariance matrix P and the

measurement matrix H:

Kk = Pk|k−1 ·
HT

(

H · Pk|k−1 · H
T + R

) (9)

We bring the Kalman gain at this time into the optimal

estimation solution and exploit this gain to calculate the required

covariance matrix value at the next moment:

Pk|k =
(

1− Kk · H
)

Pk|k−1 (10)
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We can completely predict the center point’s position at the

next moment through observations. However, the selection of

observations affects the stability of the entire system. In the case

of minimal noise, if there is a significant error in the observed

value, the predicted value will also be inaccurate. We improve

the performance of the entire system by improving the selection

of observations, and the method is as follows:

(1) Initialization phase

First, we establish a non-linear loss function model. Our

method sets the model as:

f (x) − exp
(

a · x2 + b · x+ c
)

(11)

Secondly, we define N groups of observation data (N is set

to 20 in this chapter), and establish the least square function

through the observation data:

again
∑

x

||f (x) − exp
(

a · x2 + b · x+ c
)

||2 (12)

At the same time, we assign values to the initial values of

the first N groups. If all the first N groups are assigned a value

of 0, the finally obtained parameters are easy to fall into the

local optimal solution, and the parameters to be sought are

solved incorrectly in the initialization stage. Therefore, we add

Gaussian disturbance to the value of f(x) and x to make them in

a fluctuating state.

(2) Solving stage

To ensure that the data of a given fitting does not increase

over time, the problem of incorrect fitting parameters and a

significant increase in the number of calculations does not

occur. Our method accepts new data while removing the old

data to maintain it at the value of N. Within the parameter

range. Our method uses the L-M method to iterate, and finally

finds the solution of the unit at the next time through the

known parameters, which is the “observation point” for solving

the prediction.

(3) Judgment stage

Our method has obtained two sets of observation points:

the observed points and the predicted “observation points.”

Of course, it is hoped that the actual observation points are

accurate, but regardless of the presence of noise or the influence

of light factors, the observed data may always be wrong. This

paper introduces third-party evaluation indicators to determine

which value is more accurate.

We assume that the previous observation data are accurate

(or the observation data has been corrected), and there are also

errors between the predicted value of the Kalman filter and

the observation of the next frame, and the error may be small.

Our method builds a set of fitting data by the absolute value of

the error between the observation value of the next frame and

FIGURE 8

Improved Kalman forecast update flow chart.

the predicted value of Kalman filter. At the same time, we fit

the linear equations with the previous N-1 sets of data, predict

the “observed value” of the Nth set of data, and calculate the

absolute value of the error between it and the Kalman predicted

value. Finally, we judge which observation value is more reliable

according to the error growth rate. The calculation function of

the judgment is as follows:

zk = min
zk

{

3×
∣

∣

∣

∣ẑk − pk−1

∣

∣ − gk
∣

∣

}

,
{
∣

∣

∣

∣zk − pk−1

∣

∣ − gk
∣

∣

}

(13)

where gk is the predicted value of the error, ẑk is the

predicted “observed value,” zk is the observation value of the

system, and pk−1 is the predicted value of the last frame. In order

to ensure the reliability of system prediction, we assign weight

to both of them to avoid local optimization. Finally, the closer

“observation point” is selected as the new observation point. The

flow chart of the algorithm is shown in Figure 8.

3.3. Incremental model

The method provided in this paper performs the above

dynamic target detection and tracking on the image sequence

between every two keyframes. When VSLAM constructs a

keyframe, it rejudges whether a new target area needs to be

constructed. Therefore, the following incremental model is

added during the keyframe construction to ensure that the

dynamic increment can be tracked stably in the tracking thread

or use the incremental model to determine whether to cancel

tracking the lost target information. The incremental model is

shown in Figure 9, where FLast represents the last frame of the

keyframe, FCur represents the current frame that can also be

understood as a keyframe, and Tracker is the tracker designed

in this paper.

4. Experiments

This experiment utilizes the dynamic objects dataset in the

TUM dataset for dynamic target detection and the verification
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FIGURE 9

Incremental model.

TABLE 1 Dynamic target detection results.

Data sets Temporal

difference method

Optical

flow method

Ours

fr2/desk with person 0.2514 0.4613 0.5756

fr3/sitting static 0.1011 0.2167 0.4783

fr3/sitting xyz 0.2331 0.5098 0.5933

fr3/sitting halfsphere 0.4060 0.4200 0.5749

fr3/sitting rpy 0.1991 0.2340 0.6764

fr3/warking static 0.4788 0.6993 0.6032

fr3/warking xyz 0.5423 0.5745 0.7220

fr3/warking halfsphere 0.4421 0.6421 0.6854

fr3/warking rpy 0.5322 0.3210 0.6010

Bold values mean the best result among the methods.

of the tracking algorithm based on the improved Kalman filter.

Finally, the algorithm is integrated into the VSLAM to eliminate

the dynamic target. We verify the effectiveness of the algorithm

proposed in this paper by two metrics: ATE (absolute trajectory

error) and RPE (relative pose error). The test platform for this

experiment is Ubuntu 16.04, the primary language for building

the platform is C++, and the Python environment is applied for

ATE and RPE analysis.

4.1. Analysis of target detection results
based on the dynamic environment

At present, there is no clear data set for dynamic target

detection in a dynamic environment. In order to verify the

robustness of the dynamic target detection algorithm proposed

in this paper, we search for dynamic targets in the Dynamic

Object dataset in the TUM dataset. First, we employ YOLOv3

to set prior knowledge to label dynamic targets artificially.

Next, we find the IOU value of the target detected by

YOLOv3 and the result of dynamic target detection. The larger

the experimental result, the more concentrated the detection

FIGURE 10

Dynamic detection performance e�ect of the data set.

distribution and the higher the detection accuracy. In order to

reflect the superiority of the detection algorithm proposed in this

paper, this experiment employs the traditional frame difference

method, optical flowmethod and other algorithms that are often

used in dynamic target detection to compare. Table 1 shows

the results (calculate the average IOU value for each frame

detected under each data set). For multiple dynamic targets in an

image frame, calculate the average value of IOU in the current

frame and then map it to the global data set. The algorithm’s

performance in this paper on the data set fr2/desk with person is

shown in Figure 10.

It can be seen from the data in Table 1 that the target

detection algorithm used in this paper effectively improves the

detection accuracy of the dynamic region.

4.2. Analysis of long-term tracking results
based on YOLOv3 and improved Kalman
filter

This experiment utilizes the Dynamic Object dataset to

verify the effectiveness of target tracking, and utilizes theMOT16

dataset to verify the robustness of the multi-target tracking

algorithm used in this paper. This experiment utilizes YOLOv3

to detect pedestrians, and utilizes an improved Kalman filter

algorithm to track the observation results provided by YOLOv3.

Frontiers inNeurorobotics 09 frontiersin.org

75

https://doi.org/10.3389/fnbot.2022.990453
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2022.990453

FIGURE 11

Operation e�ect of the tracking algorithm MOT16 in this paper.

We employ the Hungarian algorithm to find the match between

the previous and next frames in terms of data association. The

effect of running on MOT16 is shown in Figure 11.

The experimental results show that in a highly dynamic

environment, the detection and tracking algorithm can better

assign weights and find the best prediction results. It assigns

the maximum possible motion trajectory to the target through

cascade matching, avoiding the problem of target loss caused

by occlusion.

4.3. Analysis of experimental results
based on the VSLAM dynamic
environment

The segmentation idea we adopt is that under the target area

frame, the proportion of target pixels is always the larger one, so

we perform a sliding window search according to the depth value

of the depth image to search for the pixel area with the largest

proportion (we divide the depth image pixels into 16. There are

16-pixel areas per copy to ensure that each pixel value from 0

to 255 can be searched). In the augmented reality technology,

the reason for the deviation of the virtual object in the map is

often the calculation error of the posture point. Therefore, we

use two indicators, ATE and RPE, to verify the algorithm in this

paper. At the same time, in order to ensure that the method

can be effectively applied to the augmented reality environment,

we exploit the TUM data set fr3/w xyz combined with the

Augmented Reality Registration algorithm for verification. The

feature collection effect of our method under the TUM data set

fr3/w xyz is shown in Figure 12. The binary image on the left is

the result of dynamic target segmentation, and the image on the

right is the feature points detected by VSLAM.

We analyze the results of multiple dynamic data sets in

the TUM data set, and employ the absolute trajectory error

graph ATE to verify the algorithm in this paper. It directly

measures the point difference between the real trajectory and

the estimated trajectory. The longer the red segment, the larger

the estimation error and the lower the positioning accuracy. The

ground truth, the estimated camera motion, and the localization

FIGURE 12

The feature collection e�ect of our method under the TUM data

set fr3/w xyz.

error for each camera pose are represented as the black,

blue, and red segments, respectively. The algorithm proposed

in this paper is compared and analyzed with ORB-SLAM2

(Mur-Artal and Tardós, 2017) and SMR-SLAM (Cheng et al.,

2019). Figure 13 shows the analysis results of the performance

comparison between the proposed algorithm and ORB-SLAM2

under the conditions of three dynamic data sets fr3/w half,

fr3/w rpy, and fr3/w xyz. Figure 14 shows the analysis results of

the performance comparison between the proposed algorithm

and SMR-SLAMunder the conditions of three dynamic data sets

fr3/w half, fr3/w xyz, and fr2/desk with person.

Through the analysis of Figures 13, 14, it can be seen

from the results of absolute trajectory error analysis that

the algorithm proposed in this paper has more significant

advantages in dynamic scenes and still maintains good results

in low-dynamic scenes.

To reflect that the algorithm in this paper can maintain

stable and superior performance under different data sets,

we employ the official ATE and RPE test files provided by

TUM to test the fr2 and fr3 series of data sets and obtain

the data results shown in Tables 2–4. RMSE is the mean root

mean square error, and SD is the standard deviation, using

ORB-SLAM2 (RGB-D) (Mur-Artal and Tardós, 2017), MR-

SLAM (Sun et al., 2018), and SMR-SLAM (Cheng et al., 2019)

as comparisons.

It can be seen from Tables 2–4 that the performance results

of the VSLAM method proposed in this paper on the dynamic
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FIGURE 13

The (top) row is the trajectory error graph of ORB-SLAM2, and the (bottom) row is the trajectory error graph of ours. The ground truth, the

estimated camera motion, and the localization error for each camera pose are represented as the black, blue, and red segments, respectively.

FIGURE 14

The (top) row is the trajectory error graph of SMR, and the (bottom) row is the trajectory error graph of ours. The ground truth, the estimated

camera motion, and the localization error for each camera pose are represented as the black, blue, and red segments, respectively.

data set are much better than ORB-SLAM2. Compared with

the more advanced VSLAM systems, MR-SLAM and SMR-

SLAM, currently proposed, it also has an advantage. Although

the performance on the low-dynamic dataset is slightly inferior

to that of the SMR-SLAM algorithm, it still maintains a better

advantage than ORB-SLAM2. This result is consistent with the

results in Figures 13, 14. Our method occupies an absolute

advantage in evaluating rotation drift, which can effectively

avoid errors caused by dynamic target interference in many

applications such as AR.
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TABLE 2 Ate in meters for the experiments using ORB-SLAM2, MR-SLAM, SMR-SLAM, and Ours.

Data sets ORB-SLAM2 MR-SLAM SMR-SLAM Ours

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.

w halfsphere 0.2668 0.1429 0.0668 0.0266 0.0352 0.0207 0.0342 0.0206

w xyz 0.2774 0.1230 01230 0.0657 0.0186 0.0098 0.0331 0.0176

w rpy 0.1677 0.0958 0.0729 0.0335 0.0436 0.0253 0.0347 0.0160

w static 0.0250 0.0147 0.0334 0.0207 0.0238 0.0113 0.0142 0.0071

s halfsphere 0.0219 0.0133 0.0664 0.0386 0.0210 0.0127 0.0438 0.0305

s xyz 0.0089 0.0046 0.0514 0.0280 0.0138 0.0076 0.0255 0.0113

desk person 0.0056 0.0030 0.0759 0.0313 0.0068 0.0031 0.0728 0.0207

Bold values mean the best result among the methods.

TABLE 3 Translational drift (RPE) in m/s for the experiments using ORB-SLAM2, MR-SLAM, SMR-SLAM, and Ours.

Data sets ORB-SLAM2 MR-SLAM SMR-SLAM Ours

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.

w halfsphere 0.8078 0.4958 0.0611 0.0268 0.0816 0.0419 0.0539 0.0301

w xyz 0.6181 0.3778 0.0668 0.0369 0.0337 0.0162 0.0470 0.0227

w rpy 1.5083 0.9031 0.0968 0.0510 0.0337 0.0162 0.0214 0.0134

w static 0.5436 0.3783 0.0307 0.0205 0.0829 0.0479 0.0276 0.0165

s halfsphere 0.0326 0.0198 0.0547 0.0318 0.0307 0.0183 0.0654 0.0429

s xyz 0.0132 0.0063 0.0357 0.0225 0.0242 0.0106 0.0363 0.0167

desk person 0.0383 0.0228 0.0213 0.0151 0.0369 0.0213 0.0121 0.0646

Bold values mean the best result among the methods.

TABLE 4 Rotational drift (RPE) in m/s for the experiments using ORB-SLAM2, MR-SLAM, SMR-SLAM, and Ours.

Data sets ORB-SLAM2 MR-SLAM SMR-SLAM Ours

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.

w halfsphere 17.7267 10.2391 1.9004 0.7629 1.1556 0.5359 1.0076 0.4283

w xyz 10.9428 7.1977 1.5950 0.8236 0.7473 0.4333 0.7427 0.4266

w rpy 28.0287 17.3043 2.5936 1.3210 1.6024 0.9284 1.0777 0.5112

w static 9.9384 6.9106 0.8998 0.6470 1.1366 0.6269 0.4823 0.2975

s halfsphere 0.8217 0.3594 2.2677 1.3861 0.8038 0.3495 1.0254 0.4454

s xyz 0.5775 0.3016 1.0362 0.5304 0.6905 0.3474 0.6601 0.2998

desk person 1.4668 0.6857 0.7744 0.4767 1.3784 0.6742 1.4410 0.6932

Bold values mean the best result among the methods.

4.4. Experiments with augmented reality
registration

4.4.1. Robustness experiments

The above experiment is the result analysis of the VSLAM

algorithm we proposed under the dynamic data set. At the same

time, in order to verify the robustness of our proposedmethod in

the Augmented Reality system, we utilize the fr3/w xyz data set

to test, select the appropriate Kth frame, insert a virtual object,

and observe the dynamic performance of the virtual object

during operation. The experimental results of the ORB-SLAM2

method are shown in Figure 15. The experimental results of our

proposed method are shown in Figure 16.

We choose to insert a virtual square in the 20th frame of the

data set fr3/w xyz. From frame 100 to frame 500, we sampled the

result six times. In these six images, there are objects entering,

a single object moving slowly, a single object moving quickly,

multiple objects moving, the lens moving up and down, the

lens moving left and right, and the lens rotating. Figures 15,

16 show the AR implementation effects of the ORB-SLAM2

method and the method in this paper, respectively. It can be seen

from Figure 15 that under the influence of camera motion and
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video portrait motion, ORB-SLAM2 cannot accurately analyze

the plane, and the error situation shown in Figure 15 often

occurs. In terms of long-term attitude tracking, theORB-SLAM2

method has attitude offset, which will also cause the inserted

virtual object to not be in the original position. It can be seen

from the results in Figure 16 that the VSLAM method proposed

in this paper can accurately fit and create a virtual object, which

greatly improves the registration of augmented reality and the

tracking of virtual objects.

4.4.2. Real-time experiment

We conduct real-time comparison experiments of

Augmented Reality Registration in a dynamic laboratory

environment. We register virtual objects at the 50th, 100th,

200th, 350th, and 500th frames after initialization, calculate

the response time, and compare with our method through

several classical algorithms such as SURF+KLT, ORB-SLAM2,

TABLE 5 Real-time analysis (ms).

Frame SURF+KLT VINS-Mono ORB-SLAM2 Ours

50 42.5 26.3 22.3 23.9

100 44.5 29.5 22.5 23.1

200 49.0 44.9 23.5 24.5

350 50.2 69.9 23.2 24.9

500 50.5 108.6 23.4 24.8

Bold values mean the best result among the methods.

FIGURE 15

The application e�ect of ORB-SLAM2 method in augmented reality experiment.

FIGURE 16

The application e�ect of our method in the augmented reality experiment.
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FIGURE 17

Application of VINS and our method in augmented reality experiment.

and VINS-Mono (Mur-Artal and Tardós, 2017). The data

are shown in Table 5. The experimental results show that

the registration real-time performance of our method is

better than the traditional SURF+KLT method at different

time stages. Although, the computational cost of detection

causes our method to consume slightly more time than the

ORB-SLAM2 method for Augmented Reality Registration, this

method provides better robustness while the registration latency

remains stable below 25 ms.

4.4.3. Comparison experiment with VISLAM

VISLAM is the most commonly used registration method

for AR today. Although, the use of IMU provides good

assistance for camera pose, it does not perform so well when

tracking for long periods of time in dynamic environments.

As shown in the VINS-Mono data in Table 5, after 350

frames, it shows a great drift and the registration time is

also much longer. In the laboratory dynamic environment,

we carried out many experiment of dragging the chair

to move. After initialization, insert a virtual object, and

verify by dragging the chair to move together. We select

one of the experimental results for comparison, as shown

in Figure 17. It can be seen from the results that the

virtual objects registered by the VINS-Mono method are not

very robust in dynamic environments. However, the virtual

objects registered by our method remain stable in long-term

dynamic environments.

5. Conclusion

In recent years, augmented reality technology is prevalent,

and it is often applied in small map scenarios. Therefore, a

small number of dynamic points in the map will significantly

affect the registration effect. The dynamic target detection and

tracking algorithm proposed in this paper can effectively help

the stable operation of the Augmented Reality Registration

technology in a dynamic environment. The stable operation

of YOLOv3 can effectively help eliminate the feature points of

small dynamic targets. Considering that the offset of augmented

reality in the map is always the calculation error of the pose

point is too large, this paper uses the ATE and RPE indicators

to verify the algorithm of this paper. The final result analysis

shows that the algorithm proposed in this paper has an excellent

performance in each target detection stage and long-term

tracking. The results of the ATE and RPE indicators indicate

that the algorithm proposed in this paper performs well in both

small and large dynamic scenarios and can be well applied in

augmented reality technology. When we integrated the object

detection method into the SLAM system, we did not choose

the more efficient YOLOv4 due to the problem of computing

power. Therefore, we use the prior data provided by GMM

to compensate for the accuracy problem, which can use less

computing power while maintaining the accuracy and real-

time required for Augmented Reality Registration. There are

better solutions now, like YOLOv5 and the recently released

YOLOv7, and we’re working on it. And, we need to optimize the

computational cost in the next work so that Augmented Reality

Registration requires less computational power and has better

real-time performance.
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With the popularity of online-shopping, more and more delivery packages

have led to stacking at sorting centers. Robotic detection can improve sorting

e�ciency. Standard datasets in computer vision are crucial for visual detection.

A neuromorphic vision (NeuroVI) camera is a bio-inspired camera that can

capture dynamic changes of pixels in the environment and filter out redundant

background informationwith low latency. NeuroVI records pixel changes in the

environment with the output of event-points, which are very suitable for the

detection of delivery packages. However, there is currently no logistics dataset

with the sensor, which limits its application prospects. This paper encodes

the events stream of delivery packages, and converts the event-points into

frame image datasets for recognition. Considering the falling risk during the

packages’ transportation on the sorting belt, another falling dataset is made for

the first time. Finally, we combine di�erent encoding images to enhance the

feature-extraction on the YOLO network. The comparative results show that

the new datasets and image-confusing network can improve the detection

accuracy with the new NeuroVI.

KEYWORDS

neuromorphic vision, delivery packages, recognition and falling datasets, space

attention network, detection

Introduction

As the internet grows in popularity, more andmore people would like to shop online.

The increased amount of packages amount has led to the stacking of packages. Vision-

based robotic detection and grasp will become the trend at the packages’ sorting centers.

Large datasets are critical for the development of computer vision algorithms. At present,

many sensors, such as RGB cameras, radars, and depth cameras, have been adopted to

annotate object datasets (Ouaknine et al., 2020). The COCO, VOC, and KITTI datasets

are the most representative image datasets in the field of computer vision (Cheng et al.,

2020). The Cornell dataset is a representative dataset in the field of object grasping,

which uses rectangular annotation boxes (Liu et al., 2022a). With the use of the Kinect

camera, it has become popular to obtain RGB and depth information in the environment
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(Liu et al., 2017). However, the above datasets are mainly based

on RGB cameras, and are mainly used for indoor and outdoor

object recognition, industrial parts, etc. (Zhao et al., 2020). The

traditional sensors can simultaneously capture the background

and objects’ information, which increases the computational

complexity of the detection network. At the same time, when

the delivery packages move quickly, the RGB images will

appear blurred, which will also increase the detection difficulty.

Therefore, previous RGB-D based detection is only suitable for

slowlymoving objects. As the packages increase in amount, there

is an urgent need for faster testing.

Different from traditional cameras, NeuroVI can capture

pixels’ changes in the image and generate event points at a

certain pixel point. The outputs of the NeuroVI are a series of

digital “events” and “spikes” (Sun et al., 2021; Gallego et al.,

2022). In a static environment, only the moving packages can

lead to the pixel changes, especially breeding on the packages’

edges (Liu et al., 2022b). When the NeuroVI camera is fixed,

it can only capture the contours of delivery packages. So,

the NeuroVI has great advantages in capturing the moving

packages particularly. Therefore, the NeuroVI camera with the

ability of capturing color changes will be very suitable for the

movement detection of delivery packages, which will promote

the sorting speed of packages and the development of the

logistics industry in the future. However, there are currently

no delivery packages’ detection datasets associated with the

NeuroVI cameras.

Accurate sorting of delivery packages includes the

recognition and grasping operations (Xu et al., 2017). In

addition, packages may fall due to the rapid movement on

the sorting belt. In fact, the recognition and falling occur

pre-detection before the following robotic grasping operation.

Our research provides the only package detection dataset with

the NeuroVI camera (Mueggler et al., 2017a). Some other

object detection can also be achieved with NeuroVI, such as

moving cars, bicycles, pedestrians, and flying objects (Liu et al.,

2022a). They do not appear in the packages’ sorting scenario,

so it is not necessary for the package dataset to contain other

unrelated objects. Our work is the first to apply a NeuroVI

camera to the field of logistics in a sorting center. In summary,

our contributions include the following three aspects:

• We provide the dynamic recognition and falling datasets of

delivery packages for the first time.

• Three encoding methods are provided to achieve

different feature-extraction for network detection.

And the TAE instant encoding method can provide

a space attention branch layer to improve the

position-detection accuracy.

• The comparative detection experiments demonstrate that

our dataset and attention-based network can improve the

detection accuracy.

Related Work

The NeuroVI camera is an event-spired vision sensor. The

events stream produced by this sensor is recorded in the form

of a tuple unit [t, x, y, p], where t denotes the time of the event,

(x, y) denote the pixel coordinates of the event, and p denotes

the polarity of the event (Gallego et al., 2022). Based on the

principles of NeuroVI camera, the pixels along the contours of

the objects usually change harshly, and the features along the

edges can be more prominent and further enhanced. The depth

camera has similar properties to a certain extent, which can

show sudden depth changes along objects’ contours (Mueggler

et al., 2017b). Ni et al. (2011) utilized a depth camera to identify

objects. But depth cameras are susceptible to the depth changes

along slope surfaces. Besides, there may be no depth feedback

when encountering weak-reflection material.

As a new sensor from the last decade, one of the main

challenges faced by the NeuroVI camera is the lack of datasets,

which limits the further maturity of event cameras. Previously,

several datasets by NeuroVI camera were provided. Orchard

et al recorded a paragraph of pedestrian behavior with a

fixed NeuroVI camera, and the recordings could be played

automatically without image extraction (Serrano-Gotarredona

and Linares-Barranco, 2015). Krishnan and Koushik (2022)

provided a pedestrian-falling detection dataset, which was

mainly used for human safety warnings. Barranco et al. (2016)

recorded an image dataset of QR codes with a NeuroVI camera

for automatic navigation. A dataset of highway vehicles was

recorded, and the segmentation of the event points was achieved

by a clustering method (Chen et al., 2018). Li (2020) proposed

the first NeuroVI dataset for grasping dataset, but it is still

a statically grasping dataset with the external requirement of

light-compensation, not a dynamic grasping dataset for delivery

packages. In addition, there are no recognition and falling

datasets in the previous research. Although several datasets are

currently available, there is still a lack of datasets for sorting

scenarios, which limits its application prospects in the logistics

sorting field.

Compared with the traditional RGB-represented images,

NeuroVI cameras have the following advantages: simple pixel

generation, low latency, and high resolution. But the difficulty

faced by NeuroVI cameras is that they cannot directly generate

images like traditional cameras (Gallego et al., 2022). At present,

FRE and LIF spike methods are the most effective clustering

methods for NeuroVI images’ extraction (Cheng et al., 2020;

Zhang et al., 2021). The image of the FRE algorithm is the

accumulation of all event-points in a fixed time-interval, and

the image of the LIF algorithm is the accumulation of the spike

potential energy in the time-interval. For another time-interval

changing method, an events segmentation was introduced to

cluster the event-points with a fixed number of points (Song

et al., 2020). For the objects with different moving speeds, the
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encoding time-interval is adjusted instantly to display different

types of moving objects (Li and Shi, 2019). To filter the noise

events, an OTSU method is introduced to calculate the event-

points’ thickness threshold, which can distinguish the event

points and noise points (Liu et al., 2020). However, all the

encoding methods can lead to the profile-extension fluctuation

of moving objects, especially viewing the objects within a

closer distance. The extended or bolded profiles will reduce the

predicted position accuracy.

As for the visual detection, the traditional methods mainly

include SIFT method (Yi et al., 2015), optical flow method,

and frame difference method (Li et al., 2020). However,

traditional methods have poor feature-extraction capabilities,

so some researchers use techniques such as deep learning and

convolutional neural networks to extract features (Mahler et al.,

2018). Currently, detection algorithms based on convolutional

neural networks are usually two-stage classes, including R-CNN

and FastR-CNN (Ren et al., 2017; Zhang et al., 2019). Although

the accuracy of two-stage detection is high, the process is

complex and slow. In order to reduce the complexity of the

two-stage algorithm, some scholars have proposed single-stage

detection, such as SSD and YOLO (Lu et al., 2015; Zhou et al.,

2020). In addition, some scholars achieve better detection results

by adding channel or spatial attentions on the detection network

(Hori et al., 2017). However, the above research is all based on

single-frame image detection, which is limited by the delay of

image-sampling intervals, and the real-time position accuracy is

not satisfactory.

Materials and methods

In this section, we first introduce the system construction

for the two types of datasets. Then, the event stream’s

encoding methods are further elaborated. Finally, the YOLO-

attention detection network is designed to combine different

encoding methods.

The system’s construction and delivery
packages’ types

The datasets were recorded by a fixed bracket and a DVS346

camera. All the datasets were recorded at a logistics sorting

center. The DVS346 camera has a resolution of 346∗260 pixels.

Each event point is recorded as a tuple of [t, x, y, p] (Figure 1A).

The unit of t is us. The x parameter distributes in the range of [0,

345]. The y parameter distributes in the range of [0, 259]. And

the polarity p is a binary variable that takes the values 0 or 1. All

the information is recorded by the JAER software.

We conduct the detection experiment with the package’s

different viewing scales. The detection results show that our

method can reach the minimum resolution of 14∗13 pixels on

the NeuroVI image. In fact, the delivery packages are usually

distributed and sorted within several meters from the robot. And

the package’s viewing scale is far beyond the 85∗65 pixels. So, the

346∗260 pixel resolution is enough to achieve detection.

The DVS camera is fixed and owns a suitable viewing angle

to record themoving scope of the delivery packages. The viewing

zones of the camera are distributed at different distances, and

the sorting belts carrying the packages are set with different

moving speeds. As shown in Figure 2A, the delivery packages

come in three different shapes, namely cube type with a hard

surface, round type with a hard surface, and flat type with a

soft surface. The length-width-height ratio can be the definitive

criteria to categorize the package types for dataset annotation

with subjective judgment. Then, the packages can be annotated

in the datasets, which can be learned and predicted with a

state-of-the-art network. The definition can be found in Table 1.

Different packages (cube, round, flat) use different grasping

claws (Figure 3A), and the recognition dataset can be used to

select and replace the claws of the robots in advance. Falling

dataset can be used to warn of drop hazards.

Encoding methods

As the scattered event-points cannot be trained, the

traditional computer vision methods cannot be directly applied

to event-points from the NeuroVI camera. To deal with

this problem, this paper introduces three methods, namely

Frequency, TAE, and LIF. They can achieve the event-points’

accumulation for the delivery packages, and the encoding effects

are shown in Figure 2B. The encoding processes are drawn in

Figure 2C.

Frequency

Considering that more event points occur along the edges

of the object, we use the event frequency as the pixel value to

enhance the contour display of the packages (Chen et al., 2019).

The main challenge is the noise event-points with small event

point’s number. Compared with a large number of event-points

on the packages’ contours, the frequency method can restrict

the pixels’ gray values on the noise-events pixels. Therefore, the

encoding method can weaken the pixels appearance caused by

the discrete noise from the environment. We accumulate all

event points on each pixel, and the corresponding pixel value

of the event points is calculated in formula (1). The exponent

value (e−n) is greater than 0, which ensures that the calculated

value of the pixel is distributed in [0, 255]. In addition, with

the increase of event-points, the pixel value increases, which is

consistent with the principle of NeuroVI camera.

δ(n) = 255 ∗ 2 ∗ (
1

1+ e−n
− 0.5) (1)
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FIGURE 1

(A) The frame-based camera captured the RGB pixels with a fixed frequency. (B) The NeuroVI camera captured the pixel events with low latency

(Chen et al., 2020). (C) The delivery packages are needed to be grasped and sorted in the logistics center. (D) A robotic arm grasps the

packages automatically.

Among them, n denotes the number of positive/negative events

generated on the pixel (x, y), δ(n) denotes the pixel value of the

event points on the NeuroVI image, and its value is distributed

in [0, 255].

Time of active events (TAE)

In order to take advantage of the event timestamp recorded

by the NeuroVI camera, the TAEmethod is designed to enhance

the contours of the delivery packages. Specifically, regardless of

the polarity of the event points, the pixel value of each event

point will be calculated according to the maximum occurrence

time tp−max within the fixed time interval.

[TAE : t ⇒ tp−max(x, y)] (2)

In order to obtain the frame image of the event points, the pixel

value is optimized by calculating the time-interval between the

last time and the initial time in one accumulated period, and the

relevant calculation is shown in equation (3). The pixel value

calculated by the TAE method can capture the most recent time

features of the delivery packages. And the TAE method is able to

avoid bolding the profiles of the packages.

g(x, y) = 255*
tp-max − t0

T
(3)

Leaky integrate-and-fire (LIF)

According to the Leaky Integrate-and-Fire model, each pixel

can be viewed as a neuron associated with the potential energy

and the number of spikes. The potential energy is influenced by

both the number of event points and the elapsed time. When an

event occurs, the potential energy increases. When there is no

event point, the potential energy decreases gradually. Specially,

when the potential energy exceeds the threshold, a spike is

generated, and the associated potential energy is set to zero. In

a fixed time-interval, we count the number of spikes, which is

encoded as the pixel value of the frame image (Lansky et al.,

2016).

As shown in Figure 2B, the frequency or LIF encoding

methods will extend or bold the packages’ profiles. The TAE

algorithm can strengthen the appearance of the nearest event-

points and weaken the event-points in the time-interval’s initial

moment. Although the bolded profiles are beneficial to reduce

the class and object loss, they are harmful when improving the

box-position loss.

Space attention-based network model

Object detection is an important task in computer vision,

and is defined as finding target objects in an image. Object

detection not only requires identification of these objects, but

also requires marking the locations of these objects. There

are five information parameters on each object, and they are

the object’s center position (x, y), width-height (h and w),

and category.

The YOLO detection network has the advantages of a

fast detection speed, simple pipeline, and strong versatility.
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FIGURE 2

(A) The di�erent delivery packages, namely cube, round, and flat types. (B) The frame images encoded by the Frequency, TAE, and LIF methods.

(C) The link and outputs among the three encoding methods in a time-interval. The TAE algorithm can strengthen the display of the nearest

event-points and weaken the event-points in the time-interval’s initial moment, which can promote the packages’ actual appearance instantly.

TABLE 1 The definitive criteria of di�erent delivery packages.

Criteria Cube package Round package Flat package

Length-width ratio Rl−w ≤ 3 8 < Rl−w 3 < Rl−w ≤ 8

Length-hight ratio Rl−h ≤ 5 5 < Rl-h≤ 10 10 < Rl−h

Width-hight ratio Rw−h ≤ 4 4 < Rw−h ≤ 8 8 < Rw−h

Compared with other detection networks (FastR-CNN network

SDD, etc.), it can be adapted to the detection requirements of

different object’s sizes and categories. But YOLO also has the

disadvantage of lower position accuracy of objects. Therefore, we

combine the different encoding methods of NeuroVI to design a

spatial attention network to improve the detection accuracy.

YOLO is a single-stage object detector that consists

of backbone and head networks. Backbone network adopts

the Resnet structure to realize down-sampling and features-

extraction. The head network combines the features of backbone

to achieve up-sampling. The detection head contains nine

anchors, and the Non-maxima suppression is adopted to predict

the best prediction box.

The up-sampling extraction process can be facilitated by

a spatial attention model that can focus on feature attention
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FIGURE 3

NeuroVI-based YOLO detection model is fused with space attention. The TAE images are used to construct the space attention layer, which

avoids the time delay and improves the box-position accuracy. The backbone layer extracts features from the frequency or LIF image.

for location information. TAE images have the advantage of

recent event-points appearance, so the feature information can

be optimized by using the spatial attention mechanism with the

accessibility of TAE images. Different from the backbone layer,

the attention layer adopt a scaledmechanism on the TAE images.

Spatial attention is able to generate regions with different weight

distributions. The more obvious part on the TAE image will

be exerted with higher calculation weight. Since this method

only adds additional cross-layer connections on the basis of the

original network, it adds hardly any extra time and computation

in practical applications.

Through such connections, the features of different

resolutions and different semantic strengths are fused. The

feature maps with different resolutions are fused for object’s

detection. This ensures that each layer has the appropriate

resolution and strong semantic features.

Results

We built two NeuroVI-based datasets, including the

packages’ recognition and falling datasets (Specian et al., 2018).

All these datasets can be downloaded from the public website in

this paper.

Different motion directions, distances, and viewing angles

will lead to different counter recordings, which will influence the

detection accuracy of NeuroVI images. Therefore, the recording

process of the dataset should include all scenarios as much

as possible, including straight driving, turning, and different

viewing distances. The ring sorting belt can cover all of the above

scenarios. At the same time, the recordings of the dataset should

TABLE 2 The experimental settings of two datasets for delivery

packages.

Recognition

dataset

Falling dataset

Number of the packages 15 15

Shapes of package Cube, round and

flat

Cube, round and flat

Number of videos 9 6

Average video length 30 s 20 s

Scenarios Ring sorting belt Ring sorting belt

Sensor DAVIS346 Color DAVIS346 Color

Resolution 346 * 320 346 * 320

Movement Going straight,

turning left,

turning right

Falling down, falling down

with inclination, throwing

up, throwing up with

inclination

Number of annotated

frame images

3,920 3,400

be kept for a period of time, to avoid missing any viewing details.

A summary of the three datasets is shown in Table 2.

Delivery packages’ datasets for
recognition and falling

The recognition dataset of delivery packages are mainly

recorded from linear movement, turning-left movement,

and turning-right movements. Each recording lasts for 30s,
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FIGURE 4

(A) The event points and encoded frames of recognition dataset. (B) The event thickness of recognition dataset. (C) The event points and

encoded frames of falling dataset. (D) The event thickness of falling dataset. (E) The up-thrown experiment process with a falling angle of

(0◦∼90◦). (F) The down-thrown experiment process with a falling angle of (−90◦∼0◦).

including different viewing distances and moving speeds. And

these scenarios can be found in the packages’ sorting center.

Figure 4A shows the recognition datasets for three types of

delivery packages. By setting the time-interval as 20ms, the ideal

frame image can be extracted through the Frequency encoding

method. This is equivalent to ordinary RGB images captured

with a frequency of 50 fps. All the frame images were annotated

by LabelImg software.

The falling dataset includes 15 packages with different sizes.

The falling phenomenon is defined as dropping down off the

belt, not as the rolling movement. Each package includes up-

movement, down-movement, and incline-movement, which are
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FIGURE 5

(A) The process visualization of extraction features. (B) Di�erent packages’ prediction results with the recognition dataset. (C) Di�erent

packages’ falling detection with the falling dataset.

TABLE 3 The encoding time-intervals’ comparisons for di�erent

delivery packages.

Time

period

Box loss Class loss Object loss

Cube type 10ms 1e-2 0 4e-3

20ms 5e-3 0 2e-3

30ms 4e-2 0 3e-3

Flat type 10ms 1e-2 0 4e-3

20ms 5e-3 0 2e-3

30ms 5e-2 0 3e-3

Round type 10ms 1e-2 0 5e-3

20ms 4e-3 0 2e-3

30ms 3e-2 0 4e-3

Three mixed types 10ms 1e-2 1e-3 4e-3

20ms 6e-3 0 2e-3

30ms 3e-2 2e-3 3e-3

used to simulate the possible falling phenomenon caused by

high speed or collision with surroundings. Among them, the

packages’ images with a falling angle of (-90◦∼0◦) are marked

as falling samples in the down-thrown experiment. And the

packages’ images with a falling angle of (0◦∼90◦) are marked as

other falling samples in the up-thrown experiment. The process

of each falling experiment lasted for 20 s. The down-thrown

and up-thrown experiments can be utilized to make the falling

datasets with subjective annotation. If the package on the sorting

belt has a stable transportation, the falling angle is 0◦. Figure 4C

shows the frame images obtained by the encoding method.

Compared with the recognition dataset, the falling dataset

appears with obvious inclinations on the packages’ profiles,

which can be learned by the intelligent network to achieve the

falling dangers’ warning. Figures 4E,F shows an illustration to

explain the observed falling (up or down) movements, including

the successive moving sequences.

The event thickness comparisons for
di�erent packages

Event thickness is the event-points number on a pixel

within a fixed time-interval. If the event thickness is larger,

the corresponding pixel value will be more obvious, and

the packages’ profiles on the NeuroVI image will be more

obvious. So the higher event thickness will promote the package

appearance and detection work.

The time-interval is an important factor to influence the

packages’ appearance on the NeuroVI image. In Figures 4A,C,

the different time-intervals are set to compare the image

appearance effects. The larger time-interval, the more obvious

the packages’ appearance. As the packages move during the

interval, the profiles of the packages will be bolded or extended,

which will weaken the position prediction. So, the time-interval

should not be very large or small.

The moving speed is another important factor to influence

the NeuroVI image appearance. In Figures 4B,D, we compare

the event thickness in two datasets. In each dataset, the cube,

round, and flat packages were set to the same moving speed

and distance. It is easy to find that the cube package has

a larger event thickness than the other packages, which is

mainly contributed to by package’s longer profiles. At the

same time, the vertical velocity is overlaid when the package

falls, which makes the packages in the falling dataset have

a higher moving speed and event thickness than the other

two datasets.

The comparative detection experiments
with the recognition and falling dataset

Based on the recognition dataset and YOLO-attention

network, we predict the recognition results of different packages
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FIGURE 6

The training comparisons among di�erent datasets and networks. (A) The precision curves in training process. (B) The recall curves in training

process. (C) The F1 scores curves with the di�erent confidence. (D) The ROC curves with the validation dataset.

(Figure 5A). The tested part in the datasets contains both the

individual and mixed packages. As shown in Figure 5B, three

types of packages are all accurately predicted with the marked

detection accuracy. Based on our dataset, every recognition

accuracy of the packages is beyond 90%.

In Figure 5C, the falling dataset is utilized to warn of drop

hazards. There are two statuses: the “safe” label means that the

package is moving stably on the sorting belt, and the “fall” label

means that the package is dropping down. The distinguishing

criteria may be that the packages appear to be in inclined

or non-inclined states, which can be learned by the YOLO-

attention model. All the falling predictions have accuracies

beyond 85%.

Different encoding time-intervals can lead to different image

appearances, which will bring different training loss. Therefore,

we set different time-intervals to get the most feasible time-

interval. At the same time, the Cube, Flat, and Round packages

all appear with the same forms of event points, which raises

concerns on its discriminatory ability with the new datasets.

So, we also compare the training loss results of single and

mixed packages.

The training loss includes Box loss, Class loss, and Object

loss (Liang et al., 2018). The box loss is defined as the distribution

deviation between the actual and predicted boxes. The class loss

is defined as the labels’ deviation (cube, flat, or round labels; safe

or fall labels). The object loss is defined as whether there are

true objects on the image. The loss comparisons are recorded

in Table 3. When the interval time reaches 30ms, the box loss

reaches the maximum. This is because the larger time-interval

enlarges the package profiles and reduces the instant position
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display. When the interval time reaches 10ms, the object loss

reaches the maximum. This is because the lower time-interval

makes the package profiles less obvious. Experiments verify

that the encoding time interval of 20ms is most reasonable. As

there is only one class in the cube, flat, and round packages

respectively,the class losses of them in Table 3 are 0. The results

also demonstrate that the single and mixed NeuroVI datasets

own the ability to distinguish different types of packages.

In order to compare the superiority of NeuroVI images

and the YOLO-attention model, we also collected the package

dataset with the RGB images, and then conducted the

comparative detection experiments. There are 300 epochs in the

training process. Precision, recall, F1 score, and ROC are the

test metrics.

As shown in Figure 6, NeuroVI images have higher detection

accuracy and lower fluctuation than RGB images. Although they

both have high recall metrics, NeuroVI owns a faster and better

convergence rate. The main reason is that NeuroVI images

cannot be disturbed by complex backgrounds, and it can capture

the key morphological information of moving parcels.

The YOLO-attention network with the TAE spatial attention

achieves the best precision. For the recall metric, the YOLO-

attention model has smaller fluctuations than the YOLO model.

This is mainly because the TAE image can optimize the spatial

features’ weights, which is used to obtain more accurate spatial

location information for convolution operation.

F1 Score is another indicator that is used to measure

the accuracy of the detection model. It can be defined as a

weighted calculation of model precision and recall. By setting

different confidences during the training process, we calculated

the F1 Score. The ROC curve is related to the true positive

rate (TPR) and false positive rate (FPR). The larger the area

under the ROC curve, the better the detection performance of

the model. By comparing the F1 Scores and ROC curves, the

detection based on NeuroVI and YOLO-attention achieved the

best detection results.

Conclusion

In order to improve the efficiency of logistics sorting, we are

the first to provide the datasets of delivery packages with the

DAVIS346Color NeuroVI camera. According to the application

requirements, the packages’ datasets include recognition dataset

and falling dataset. Video files are recorded in the format of

(.aedat4) type. In order to facilitate neural network training,

three encoding methods of event streams are utilized to extract

the packages’ frame images. All the codes have been opened now.

In addition, three encoding methods are provided to achieve

different feature extraction for network detection with a space

attention layer.

The NeuroVI camera has the advantage of capturing pixel

changes in the environment, which can accumulate the profiles

of the objects. Therefore, the simplified frame image can simplify

the design of the network, improve the learning efficiency,

and output stable detection results. At the same time, the

high-speed processing capability of the NeuroVI camera can

improve the detection speed, especially for the delivery packages’

dynamic grasping. In the next work, we will design a lightweight

detection network with the above datasets, and achieve a faster

grasping operation.

In summary, our recognition and grasping datasets can

improve the detection speed and dynamic grasping accuracy,

which can sort more delivery packages within a limited time.

Although a high transmission speed may lead to dropping risk,

our falling dataset can provide online feedback and alarms. We

hope that the established dataset can promote the application of

the NeuroVI camera in the field of logistics sorting, and improve

the sorting speed of delivery packages.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding authors.

Author contributions

The discussion and assistance are from the University

of Macau and Tongji University. Z-XY and XY are greatly

appreciated for their work. All authors listed have made a

substantial, direct, and intellectual contribution to the work and

approved it for publication.

Funding

This work was funded in part by Science and Technology

Development Fund, Macau SAR (Grant Nos. 0018/2019/AKP,

0008/2019/AGJ, and SKL-IOTSC-2021-2023), the State Key

Laboratory of Process Automation in Mining and Metallurgy

(No. BGRIMM-KZSKL-2021-02), the Chinese Postdoctoral

Fund (No. 2020T130474), the Guangdong Science and

Technology Department (Grant No. 2020B1515130001), and

UMMTP-MYSP-2021 (AM2021003).

Acknowledgments

The authors would like to thank University of Macau and

Tongji University for the discussion and assistance.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers inNeurorobotics 10 frontiersin.org

92

https://doi.org/10.3389/fnbot.2022.934260
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu et al. 10.3389/fnbot.2022.934260

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Barranco, F., Fermuller, C., Aloimonos, Y., and Delbruck, T. A. (2016). dataset
for visual navigation with neuromorphic methods. Front. Neurosci. 10, 1–9.
doi: 10.3389/fnins.2016.00049

Chen, G., Cao, H., Aafaque, M., Chen, J., Ye, C., Röhrbein, F., et al.
(2018). Neuromorphic vision based multivehicle detection and tracking for
intelligent transportation system. J. Adv. Transp. 28, 1–13. doi: 10.1155/2018/481
5383

Chen, G., Cao, H., Ye, C., Zhang, Z., Liu, X., Mo, X., et al. (2019).
Multi-cue event information fusion for pedestrian detection with
neuromorphic vision sensors. Front. Neurorobot. doi: 10.3389./fnbot.2019.
00010

Chen, G., Chen, W., Yang, Q., Xu, Z., Knoll, A. (2020). A novel visible light
positioning system with event-based neuromorphic vision sensor. IEEE Sensors J.
20, 10211–9. doi: 10.1109/JSEN.2020.2990752

Cheng, G., Yang, J., Gao, D., Guo, L., and Han, J. (2020). High-quality proposals
for weakly supervised object detection. IEEE Transact. Image Proc. 29, 5794–804.
doi: 10.1109/TIP.2020.2987161

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi,
A., et al. (2022). “Event-based vision: a survey,” in IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 44 (IEEE), 154–180.
doi: 10.1109/TPAMI.2020.3008413

Hori, C., Hori, T., Lee, T. Y., Sumi, K., Hershey, J., Marks, T., et al. (2017).
Attention-based multimodal fusion for video description. IEEE Int. Conf. Comput
Vis. 4203–12. doi: 10.1109./ICCV.2017.450

Krishnan, K. S., and Koushik, K. S. (2022). Benchmarking conventional vision
models on neuromorphic fall detection and action recognition dataset. arXiv.
doi: 10.1109./CCWC54503.2022.9720737

Lansky, P., Sacerdote, L., and Zucca, C. (2016). The Gamma renewal process as
an output of the diffusion leaky integrate-and-fire neuronal model. Biol Cybern.
110, 193–200. doi: 10.1007/s00422-016-0690-x

Li, B., Cao, H., Qu, Z., Hu, Y., Wang, K., Liang, Z., et al. (2020).
Event-based robotic grasping detection with neuromorphic vision sensor and
event-grasping dataset. Front Neurorobot. 14, 1–14. doi: 10.3389/fnbot.2020.
00051

Li, C. (2020). Dangerous posture monitoring for undersea diver based on frame
difference method. J. Coastal Res. 103, 93–104. doi: 10.2112/SI103-195.1

Li, H., and Shi, L. (2019). Robust event-based object tracking combining
correlation filter and CNN representation. Front. Neurorobot. 13, 1–11.
doi: 10.3389/fnbot.2019.00082

Liang, Y., Tang, Z., Yan, M., and Liu, J. (2018). Object detection based on deep
learning for urine sediment examination. Biocybern Biomed Eng. (2018) 38:661–70.
doi: 10.1016/j.bbe.05.004

Liu, D., Tao, X., Yuan, L., Du, Y., and Cong,M. (2022a). Robotic objects detection
and grasping in clutter based on cascaded deep convolutional neural network. IEEE
Trans. Instrum Meas. 71, 1–10. doi: 10.1109/TIM.2021.3129875

Liu, X. Y., Chen, G., Sun, X. S., and Alois, K. (2020). Ground moving vehicle
detection and movement tracking based on the neuromorphic vision sensor. IEEE
Int. Things J. 7, 9026–39. doi: 10.1109/JIOT.2020.3001167

Liu, X. Y., Yang, Z., Hou, J., and Huang, W. (2022b). Dynamic scene’s
laser localization by neeuroVI-based moving objects detection and
LIDAR points evaluation. IEEE Trans. Geosci. Remote Sens. 60, 1–14.
doi: 10.1109/TGRS.2022.3184962

Liu, Z., Huang, J., Han, J., Bu, S., and Lv, J. (2017). Human motion tracking by
multiple RGBD cameras. IEEE Trans. Circuits Syst. Video Technol. 27, 2014–27.
doi: 10.1109/TCSVT.2016.2564878

Lu, Y., Shu, J., Guo, J., Li, S., andMutlu, O. (2015). High-performance lightweight
transaction support in flash-based SSD. IEEE Transacti Comp. 64, 2819–32.
doi: 10.1109/TC.2015.2389828

Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K., et al. (2018).
Dex-Net 3, 0. computing robust vacuum suction grasp targets in point clouds
using a new analytic model and deep learning. IEEE Int. Conf. Robot. 5620–5627.
doi: 10.1109/ICRA.2018.8460887

Mueggler, E., Bartolozzi, C., and Scaramuzza, D. (2017b). Fast event-
based corner detection. In: British Machine Vision Conference (BMVC).
doi: 10.5244./C.31.33

Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., and Scaramuzza,
D. (2017a). The event-camera dataset and simulator: Event-based data for
pose estimation, visual odometry, and SLAM. Int. J. Rob. Res. 36, 142–9.
doi: 10.1177/0278364917691115

Ni, B., Wang, G., andMoulin, P. (2011). RGBD-HuDaAct: A Color-Depth Video
Database for Human Daily Activity Recognition. In: International Conference
on Computer Vision Workshops. Barcelona, Spain: ICCV Workshops. p. 6–13.
doi: 10.1109./ICCVW.2011.6130379

Ouaknine, A., Newson, A., and Tupin, F., Pérez l. (2020). CARRADA dataset:
camera and automotive radar with range-angle-doppler annotations. Comput Soc
Conf Comput. Vis.

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: towards
real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 1137–49. doi: 10.1109/TPAMI.2016.25
77031

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and
MNIST-DVS their history, how they were made, other details. Front Neurosci. 9.
doi: 10.3389./fnins.2015.00481

Song, G., Wang, K., Kang, H., Liu, T., Gao, Y., Li, T., et al. (2020). Bin loss
for hard exudates segmentation in fundus images. Neurocomputing. 392:314–24.
doi: 10.1016/j.neucom.10103

Specian, A., Mucchiani, C., Yim, M., and Seo, J. (2018). Robotic edge-rolling
manipulation: a grasp planning approach. IEEE Robot. Autom. Lett. 3, 3137–44.
doi: 10.1109/LRA.2018.2849828

Sun, R., Shi, D., Zhang, Y., Li, R., and Li, R. (2021). Data-driven technology in
event-based vision. Complexity. doi: 10.1155./2021/6689337

Xu, J., Alt, N., Zhang, Z., and Steinbach, E. (2017). Grasping posture
estimation for a two-finger parallel gripper with soft material jaws using a curved
contact area friction model. IEEE Int. Conf. Robot. doi: 10.1109./ICRA.2017.79
89258

Yi, C., Cui, L., and Luo, C. (2015). Moving target tracking algorithm based
on improved optical flow technology. Open. Autom. Control. Syst J. 7, 1387–92.
doi: 10.2174/1874444301507011387

Zhang, D., Li, J., Lin, L., and Yang, S. (2019). Cycle-consistent domain adaptive
faster RCNN. IEEE Access. 7, 123903–11. doi: 10.1109/ACCESS.2019.2938837

Zhang, S., Xu, H., Li, Z., Liu, S., Song, B., Li, Q. A., et al. (2021). Compact model
of ovonic threshold switch combining thermal dissipation effect. Front Neurosci.
15, 1–9. doi: 10.3389/fnins.2021.635264

Zhao, J., Jiang, X., Wang, X., Wang, S., and Liu, Y. (2020). Assembly of
randomly placed parts realized by using only one robot arm with a general
parallel-jaw gripper. IEEE Int. Conf. Robot. doi: 10.1109./ICRA40945.2020.91
97396

Zhou, L., Min,W., Lin, D., Han, Q., and Liu, R. (2020). Detecting motion blurred
vehicle logo in IoV using filter-DeblurGAN and VL-YOLO. IEEE Trans. Control
Syst. Technol. 69, 3604–14. doi: 10.1109/TVT.2020.2969427

Frontiers inNeurorobotics 11 frontiersin.org

93

https://doi.org/10.3389/fnbot.2022.934260
https://doi.org/10.3389/fnins.2016.00049
https://doi.org/10.1155/2018/4815383
https://doi.org/10.3389./fnbot.2019.00010
https://doi.org/10.1109/JSEN.2020.2990752
https://doi.org/10.1109/TIP.2020.2987161
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109./ICCV.2017.450
https://doi.org/10.1109./CCWC54503.2022.9720737
https://doi.org/10.1007/s00422-016-0690-x
https://doi.org/10.3389/fnbot.2020.00051
https://doi.org/10.2112/SI103-195.1
https://doi.org/10.3389/fnbot.2019.00082
https://doi.org/10.1016/j.bbe.05.004
https://doi.org/10.1109/TIM.2021.3129875
https://doi.org/10.1109/JIOT.2020.3001167
https://doi.org/10.1109/TGRS.2022.3184962
https://doi.org/10.1109/TCSVT.2016.2564878
https://doi.org/10.1109/TC.2015.2389828
https://doi.org/10.1109/ICRA.2018.8460887
https://doi.org/10.5244./C.31.33
https://doi.org/10.1177/0278364917691115
https://doi.org/10.1109./ICCVW.2011.6130379
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3389./fnins.2015.00481
https://doi.org/10.1016/j.neucom.10103
https://doi.org/10.1109/LRA.2018.2849828
https://doi.org/10.1155./2021/6689337
https://doi.org/10.1109./ICRA.2017.7989258
https://doi.org/10.2174/1874444301507011387
https://doi.org/10.1109/ACCESS.2019.2938837
https://doi.org/10.3389/fnins.2021.635264
https://doi.org/10.1109./ICRA40945.2020.9197396
https://doi.org/10.1109/TVT.2020.2969427
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 25 October 2022

DOI 10.3389/fnbot.2022.978014

OPEN ACCESS

EDITED BY

Zhan Li,

Swansea University, United Kingdom

REVIEWED BY

Hui Zhou,

Nanjing University of Science and

Technology, China

Rui Li,

Xi’an University of Technology, China

*CORRESPONDENCE

Ningbo Yu

nyu@nankai.edu.cn

Weiguang Huo

weiguang.huo@nankai.edu.cn

†These authors have contributed

equally to this work and share first

authorship

RECEIVED 25 June 2022

ACCEPTED 28 September 2022

PUBLISHED 25 October 2022

CITATION

Zhang S, Lu J, Huo W, Yu N and Han J

(2022) Estimation of knee joint

movement using single-channel sEMG

signals with a feature-guided

convolutional neural network.

Front. Neurorobot. 16:978014.

doi: 10.3389/fnbot.2022.978014

COPYRIGHT

© 2022 Zhang, Lu, Huo, Yu and Han.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Estimation of knee joint
movement using single-channel
sEMG signals with a
feature-guided convolutional
neural network

Song Zhang1,2†, Jiewei Lu1,2†, Weiguang Huo1,2*, Ningbo Yu1,2,3*

and Jianda Han1,2,3

1College of Artificial Intelligence, Nankai University, Tianjin, China, 2Tianjin Key Laboratory of

Intelligent Robotics, Nankai University, Tianjin, China, 3Institute of Intelligence Technology and

Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, China

Estimating human motion intention, such as intent joint torque and

movement, plays a crucial role in assistive robotics for ensuring e�cient and

safe human-robot interaction. For coupled human-robot systems, surface

electromyography (sEMG) signal has been proven as an e�ective means for

estimating human’s intended movements. Usually, joint movement estimation

uses sEMG signals measured from multiple muscles and needs many sEMG

sensors placed on the human body, which may cause discomfort or result

in mechanical/signal interference from wearable robots/environment during

long-term routine use. Although the muscle synergy principle implies that

it is possible to estimate human motion using sEMG signals from even

one signal muscle, few studies investigated the feasibility of continuous

motion estimation based on single-channel sEMG. In this study, a feature-

guided convolutional neural network (FG-CNN) has been proposed to

estimate human knee joint movement using single-channel sEMG. In the

proposed FG-CNN, several handcrafted features have been fused into a

CNN model to guide CNN feature extraction, and both handcrafted and

CNN-extracted features were applied to a regression model, i.e., random

forest regression, to estimate knee joint movements. Experiments with 8

healthy subjects were carried out, and sEMG signals measured from 6

muscles, i.e., vastus lateralis, vastus medialis, biceps femoris, semitendinosus,

lateral or medial gastrocnemius (LG or MG), were separately evaluated

for knee joint estimation using the proposed method. The experimental

results demonstrated that the proposed FG-CNN method with single-channel

sEMG signals from LG or MG can e�ectively estimate human knee joint

movements. The average correlation coe�cient between the measured

and the estimated knee joint movements is 0.858 ± 0.085 for LG and

0.856 ± 0.057 for MG. Meanwhile, comparative studies showed that the

combined handcrafted-CNN features outperform either the handcrafted

features or the CNN features; the performance of the proposed signal-

channel sEMG-based FG-CNN method is comparable to those of the

traditional multi-channel sEMG-based methods. The outcomes of this study
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enable the possibility of developing a single-channel sEMG-based human-

robot interface for knee joint movement estimation, which can facilitate the

routine use of assistive robots.

KEYWORDS

single-channel sEMG signals, human-robot interaction, joint movement estimation,

level walking, feature-guided convolutional neural network (FG-CNN)

1. Introduction

Surface electromyography (sEMG) has been extensively used

to ensure accurate and safe human-robot interaction (HRI) in

robotic devices for rehabilitation or performance enhancement

(Nam et al., 2014; Spanias et al., 2016; Caulcrick et al., 2021).

Regarding the sEMG-based HRI, one crucial issue is to estimate

human motion intention (e.g., intended joint movements)

from the sEMG signals (Ding et al., 2017; Bi et al., 2019; Lu

et al., 2019). Due to the sEMG signal with the characteristics

of preceding the corresponding motion by 20–100 ms and

containing neuromuscular control information, the sEMG-

based motion estimation benefits in achieving a more natural

and fluent HRI and can differentiate how much of the motion

is caused by muscles: a unique advantage compared with the

inertial measurement unit (IMU)/optical-based method (Xiong

et al., 2021). Recently, many approaches have been proposed to

estimate the human joint movements based on multi-channel

sEMG signals, such as adaptive hybrid classifier for hand gesture

recognition (Ding et al., 2019) and Hill-based method or deep

learning method for joint movement prediction (Fleischer and

Hommel, 2008; Wang et al., 2021; Zhong et al., 2022).

Although multi-channel sEMG signals can provide rich

information and contribute to estimate the corresponding

joint movement accurately, using multi-channel sEMG

has some practical limitations: first, collecting multi-channel

sEMG subjects is subject to some limitations, such as

weakness or spasticity of one or more specific muscles and

mechanical/signal interference between sEMG sensors and

wearable robots/environment (e.g., sitting on a chair); second,

increasing the number of physical channels would increase the

system complexity, making it difficult to deploy, as well as

increase the power consumption (He et al., 2019). The above

drawbacks limit the routine use of sEMG-based assistive robots.

Therefore, it is important to investigate the estimation of human

motion using sEMG signals from fewer muscles or even a single

muscle.

Recently, some related studies on hand gesture identification

(Kumar et al., 2013), upper limb movement recognition

(Shao et al., 2020), terrain identification (Gupta and Agarwal,

2019), and lower limb movement recognition (Wei et al.,

2022) used single-channel sEMG signals. However, the existing

studies mainly focused on recognizing discrete motion modes

rather than estimating continuous joint movements. Compared

with discrete modes, continuous joint movements can enable

simultaneous and proportional control (Bao et al., 2021),

realizing more effective and safer HRI for rehabilitation and

assistive robots and orthoses. To the best of our knowledge, few

studies demonstrated an accurate joint movement estimation

method based on single-channel sEMG. According to themuscle

synergy principle, which is widely accepted as a constitutional

function unit of the central neural systems that control muscles

in groups (d’Avella et al., 2003; Jiang et al., 2014; Dwivedi

et al., 2020; Kubota et al., 2021), a group of related muscles’

activities have certain common components or patterns, which

enables the possibility of estimating joint movements using

sEMG signals from one or fewer muscles. Therefore, developing

a single-channel sEMG-based continuous joint movement

estimation method has great potential for facilitating the routine

use of assistive robots.

Compared to recognizing motion modes, it is more

challenging to accurately estimate continuous joint movements

using single-channel sEMG signals due to the limited muscular

information. To guarantee an accurate and robust estimation

of human joint movement, it is crucial to extract muscular

information from single-channel sEMG signals adequately.

There are two main ways of extracting muscular information:

One is directly computing handcrafted features using

mathematical equations (Phinyomark et al., 2012; Thongpanja

et al., 2016) and another one is to extract learning features by

deep learning, e.g., convolutional neural network (CNN). The

learning features may complement the handcrafted features

(Atzori et al., 2016; Phinyomark and Scheme, 2018; Côté-Allard

et al., 2020). Therefore, it is possible to obtain relatively adequate

muscular information from single-channel sEMG by fusing the

handcrafted and learning features.

In this study, a new feature extraction method, namely

feature-guide convolutional neural network (FG-CNN),

was proposed to estimate knee joint movements using

single-channel sEMG signals. In the proposed FG-CNN, 14

handcrafted features (Wei et al., 2019) were first fed into

a fusion layer to guide a traditional CNN in extracting 14

implicit features (i.e., CNN extracted features). The 28 FG-CNN

features containing 14 handcrafted features and 14 CNN
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features were applied to a regression model, e.g., random forest

regression, to estimate continuous knee joint movements. To

verify the effectiveness of the FG-CNN, the proposed method

was respectively evaluated on six kinds of single-channel

sEMG signals measured from vastus lateralis (VL), vastus

medialis (VM), biceps femoris (BF), semitendinosus (ST),

lateral and medial gastrocnemius (LG and MG) for estimating

the movements. Meanwhile, the 28 FG-CNN features were

respectively compared to 14 handcrafted features and 28

CNN features (extracted by the traditional CNN) on the

same regression model. The experimental results show that

the proposed FG-CNN method with single-channel sEMG

signals from LG or MG can effectively estimate the movement.

The FG-CNN features outperform the handcrafted features

and CNN features on single-channel sEMG-based movement

estimation, suggesting that the FG-CNN features contain more

muscular information.

The main contributions of this study are as follows:

1) This is the first study, to our knowledge, to investigate

the feasibility of using single-channel sEMG signals to

estimate the human knee angles.

2) A new feature extraction algorithm has been developed to

extract muscular information from single-channel sEMG

adequately and a new scheme is proposed to estimate knee

joint angles based on single-channel sEMG signals using

FG-CNN and regression models.

3) The effectiveness of the proposed method has been

evaluated via experiments with eight subjects during

walking. sEMG signals from a single muscle, LG or MG,

can be used to improve the estimation performance with

the proposed method.

2. Methods

2.1. Feature-guided convolutional neural
network

The proposed FG-CNN was depicted in Figure 1. In the FG-

CCN, 14 typical sEMG features, i.e., the handcrafted features,

were extracted from the raw sEMG data and fed into a fusion

layer of a CNN to guide the CNN in extracting implicit muscular

information. Furthermore, both the handcrafted features and

the CNN extracted features were connected and used to estimate

knee joint movements using a regression model, e.g., random

forest regression (RF) and light gradient boosting machine

(LGBM).

2.1.1. Handcrafted feature extraction

A method called overlapping analysis windows with a

window length of 50 ms and an increment of 20 ms was used

to segment the sEMG signals. The vector x = {x1, x2, . . . , xn}

represents sEMG signal in a window, where n is the length of

x. 14 handcrafted features, including integrated EMG (IEMG),

mean absolute value (MAV), mean, root mean square (RMS),

variance (VAR), Kurtosis, skewness, zero crossing (ZC), slop

sign change (SSC), waveform length (WL), and four auto-

regressive (AR) model coefficients are calculated using the

overlapping analysis windows (Wei et al., 2019). The above

14 handcrafted features are concatenated as a vector (p =

{IEMG,MAV, . . . , AR4}) fused into a CNN to extract CNN

features.

2.1.2. FG-CNN feature extraction

The CNN feature extraction (see Figure 1) is used to extract

implicit muscular information from the input sEMG signal

vector x. In the CNN structure, five convolution layers had 2,

4, 8, 16, and 32 filters, respectively, where the filters were 5×1,

4×1, 3×1, 2×1, and 1×1. Max pooling was conducted on 2×1

area with a stride of 1. The two fully-connected layers contain

192 and 14 neurons. For each convolutional layer, x ∈ R
L′×D′ is

defined as the input, where the L′ and D′ denote the length and

the number of channels. Assuming the D convolutional kernels

k, the output of the convolutional layer y ∈ R
L×D is described

as:

y = f
(

k ∗ x+ w
)

, (1)

where f represents an activation function, w is a bias parameter

vector, and ∗ denotes convolution.

The LeakyReLU nonlinearity (Maas et al., 2013) is applied as

the activation function of convolutional layers mentioned in (1),

which is defined as:

f (x) =











x, if x > 0

ax, otherwise,

(2)

where a is a learnable parameter.

To avoid overfitting the model, batch normalization (BN)

(Ioffe and Szegedy, 2015) is applied after each convolutional

layer. The convolutional layer is followed by amax-pooling layer

with a length of 2, which transforms the outputs of multiple

neurons in one layer into a single neuron in the next layer. The

input of the pooling layer is the output of the convolutional

layer before it, i.e., y ∈ R
L×D. The output of each pooling layer

y′ ∈ R
L
2×D is described as:

y′(i, j) = max(y(2i− 1, j), y(2i, j)), (3)

where i = 1, 2, . . . L2 , j = 1, 2, . . .D.

The output of the last pooling layer is then flattened into a

vector, l ∈ R
14×1, which is called CNN features.

A fusion layer is introduced to combine the extracted

handcrafted features (p) and the CNN extracted features (l). In
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FIGURE 1

The overall framework of the FG-CNN-based motion estimation. The FG-CNN consists of the operation of extracting handcrafted features, five

CNN layers, one flatten layer, and one fusion layer for fusing CNN features and handcrafted features. IMU represents the inertial measurement

unit; Conv denotes the convolutional layers; IEMG, VAR, ZC, and WL represent the handcrafted features. The symbols wl and wp, respectively,

represent the weights of the handcrafted and CNN features in the fusion layer. RF and LGBM represent the random forest model and light

gradient boosting machine, respectively.

FIGURE 2

The experimental setup. (A) Schematic diagram of the experimental setup. (B) The locations of sEMG electrodes.
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the fusion scheme, both the handcrafted and CNN extracted

features are fed into the last fully connected layer to estimate the

joint motion (ŷ) (see Figure 1). Instead of using the LeakyReLU,

the tanh function, which normalizes fused features to [-1,1], is

chosen to avoid the blow-up phenomenon. The fusion scheme is

defined as follows:

ŷ = tanh(wpp+ wll), (4)

where wp and wl refer to the connection weights.

The built FG-CNN model is trained using a mean squared

error function (MSEp) as follows:

MSEp =
1

N

N
∑

i=1

(y(i)− ŷ(i))2

=
1

N

N
∑

i=1

(y(i)− tanh(wpp(i)+ wll(i)))
2, (5)

where y and ŷ denote the measured and estimated knee joint

movements, respectively. N is the total number of samples.

During the training, Adam algorithm (Diederik and Jimmy,

2015) is utilized to update the weights. Unlike the traditional

CNN, the proposed FG-CNN includes the handcrafted features

in the weight updating process to guide the CNN to extract

features. Correspondingly, the weights of the fusion layer of the

FG-CNN are updated in the following steps.

Step 1: Compute the gradients:



































∂MSEp

∂wp
=

∂MSEp

∂ ŷ(i)

∂ ŷ(i)

∂wp
= −

2p

N

N
∑

i=1

(y(i)− ŷ(i))(1− ŷ(i)2)

∂MSEp

∂wl
=

∂MSEp

∂ ŷ(i)

∂ ŷ(i)

∂wl
= −

2l

N

N
∑

i=1

(y(i)− ŷ(i))(1− ŷ(i)2)

(6)

Step 2: Update the weights:











































wp ← wp −
ap + b

∂MSEp
∂wp

√

cp − d(
∂MSEp
∂wp

)2 + ǫ

wl ← wl −
al + b

∂MSEp
∂wl

√

cl − d(
∂MSEp

∂wl
)2 + ǫ

,

(7)

where ǫ denotes the constant, ǫ = 10−8. ap, al, b, cp, cl, and d

are given as follows:

ap =
αβ1sp

1− βt
1

al =
αβ1sl

1− βt
1

cp =
αβ2rp

1− βt
2

cl =
αβ2rl

1− βt
2

b =
α(1− β1)

(1− βt
1)

d =
α(1− β2)

(1− βt
2)

,

(8)

where sp and sl denote the first and second order moment vector

of handcrafted features, rp and rl denote the first and second

order moment vector of FG-CNN features, and β1, βt
1, β2, βt

2

are the exponential decay rates for the moment estimations. α

denotes the step-size.

As seen in Equation (7), the updated weights of the fusion

layer are updated using both handcrafted and CNN extracted

features. With a learning rate of 0.001, the FG-CNN was trained

on NVIDIA Quadro P5000 GPU by using the Adam algorithm

for 50 epochs in our experiments.

2.2. Experimental protocol and data
acquisition

Eight healthy subjects (six men and two women, aged

25.13 ± 3.27 years old) participated in the experiments. All

experiments were conducted in accordance with the ethical

standards encoded in the latest Declaration of Helsinki. Before

the experiments, each participant was fully informed of the

experimental purpose and procedures and provided their

written consent to participate in this study. The experiments

were proved by the local ethics committee of Nankai University.

The experiment scheme is shown in Figure 2. Six channels

of sEMG electrodes were respectively placed on six muscles,

namely, vastus lateralis (VL), vastus medialis (VM), biceps

femoris (BF), semitendinosus (ST), lateral gastrocnemius (LG),

and medial gastrocnemius (MG) (Lu et al., 2021), which are

relative to the knee joint motion. The data of sEMG were

obtained by an acquisition system (Bagnoli, Delsys, MA, USA)

under the sampling rate of 5 kHz. At the same time, the data of

knee joint angles were also measured using two IMUs with the

sampling rate of 100 Hz. Each subject was asked to walk for 1

min with a velocity of 1.25 m/s on the treadmill per trial and

perform 11 trials in total with a 3-min rest in between to avoid

muscle fatigue. The raw sEMG signals were pre-processed using

a Butterworth bandpass filter with cutoff frequencies of 10 Hz

and 500 Hz. The sEMG signals measured from the six muscles

were tested separately to estimate the knee joint movements.

Five cross-validations were used to split the dataset into training

data and testing data that are independent of each other. For

each time, the proposed FG-CNN model was trained on 80% of

data and evaluated on 20% of data.

2.3. Evaluation indicators

The estimation performance of the trained FG-CNN was

evaluated by using two indicators: normal root-mean-squared

error (NRMSE) and correlation coefficients (CC), respectively

(Kwon and Kim, 2011; Qing et al., 2022). The NRMSE is used to

reflect the deviation between the measured and estimated knee

joint angles, in percentage (%) (Zhu et al., 2022). The CC value
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can reflect the strength of the correlation between the measured

and estimated knee joint angles, which is close to 1, which

indicates meaning a good match between the measurement and

the estimation.

The NRMSE is defined as

NRMSE =

√

1
n ·

∑n
i=1(yi − ŷi)2

ymax − ymin
, (9)

where yi and ŷi are the measured and estimated knee joint

angles, respectively, n denotes the total number of samples, and

ymax and ymin are the maximum and minimum values of the

measured angles, respectively.

CC is defined as

CC =
Cyŷ

σy · σŷ
, (10)

where Cyŷ denotes the covariance between the measured and

estimated angles and σy and σŷ represent the standard deviation

of measured and estimated angles, respectively.

2.4. Statistical analysis

Statistical analyses were performed to compare the

estimation performances between the proposed FG-CNN and

the other compared methods. As the evaluation indicators were

not normally distributed, the Kruskal-Wallis test was conducted

to compare the different estimation methods with the FG-CNN

to identify differences in NRMSE and CC. For all tests, the

significance level was set at a p < 0.05. Statistical analyses were

conducted with MATLAB (MathWorks, Natick, MA, USA).

3. Experimental results

3.1. Performance of knee joint estimation

To verify the effectiveness of the proposed method in

extracting implicit features from single-channel sEMG signals,

a comparison study was carried out, in which the handcrafted

features, the CNN features, and the FG-CNN features were

separately used to estimate the knee joint movements via a

random forest (RF) regression model (see Figure 1).

The details are given as follows:

1) HF-RF: Fourteen handcrafted features were fed into the RF

regression.

2) CNN-RF: Twenty-eight CNN features were used as the

inputs of the RF regression.

3) FG-CNN-RF: Twenty-eight FG-CNN features were fed

into the RF regression.

Figure 3 shows the knee joint angles measured using the

IMUs (i.e., the reference) and the ones estimated using the

HF-RF, CNN-RF, and FG-CNN-RF. For all approaches, the

estimated angles from FG-CNN-RF are closer to the reference

than those fromHF-RF and CNN-RF. For all muscles, it can also

be seen that the estimated knee joint angles using single-channel

sEMG signals measured from LG or MG are more accurate than

those estimated using sEMG signals from VL, VM, BF, or ST.

Meanwhile, to quantitatively evaluate the estimation results,

the indicators of NRMSE and CC were used. The NRMSE

values using the LG and MG from the FG-CNN-RF were,

respectively, 15.2±3.5% (LG) and 15.7±3.1% (MG), and the

CC values were, respectively, 0.858 ± 0.085 (LG) and 0.856

± 0.057 (MG). Although the estimation performance obtained

from single-channel sEMG signals (LG or MG) is slightly lower

than that from six-channel signals (NRMSE: 10.2±1.4%; CC:

0.948±0.013, shown in Figure 4), the estimation accuracy using

the proposed single-channel based method is comparable to the

that using six-channel sEMG. The results can be explained by

the muscle synergy analysis, in which the muscles are controlled

in groups to generate a desired joint movement, and all relevant

muscles share some common components.

For each muscle, the mean NRMSE values of the FG-CNN-

RF were lowest and decreased by 15% (VL), 19.2% (VM), 8.1%

(BF), 13.3% (ST), 37.6% (LG), and 39.4% (MG) compared to

those of the HF-RF and by 11.3% (VL), 9% (VM), 8.6% (BF),

12.1% (ST), 18.8% (LG), and 19.2% (MG) compared to those of

the CNN-RF (shown in Figure 5A). The average CC values of

FG-CNN-RF were highest, which were increased by 33.4% (VL),

59.3% (VM), 42.4% (BF), 51.7% (ST), 27.3% (LG), and 33.8%

(MG) compared to those of the HF-RF, and increased by 32.2%

(VL), 24.8% (VM), 34.1% (BF), 42.8% (ST), 7.9% (LG), and 9.8%

(MG) compared to those of the CNN-RF (see Figure 5B).

The Kruskal-Wallis test was conducted to identify

differences in NRMSE and CC between the case using FG-CNN

features and the cases using the other two kinds of features

(handcrafted features and CNN features). Both the NRMSE and

CC values of FG-CNN had statistically significant differences

with respect to handcrafted features and CNN features (see

Figure 5). The above results implies that the FG-CNN features

contain more muscular information than the handcrafted

features or CNN features for ensuring a more accurate

estimation of knee joint movement.

3.2. Comparison of various regression
models

To further test the effectiveness of the FG-CNN features,

five difference regression models were used, including RF

regression, light gradient boosting machine (LightGBM),

multilayer perceptron (MLP), support vector regression (SVR),
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FIGURE 3

Knee joint angles profiles averaged across 57 strides with subject 2. Dashed and solid lines are reference angles measured by IMUs and

estimated angles by FG-CNN-RF, CNN-RF, and HF-RF, using single-channel sEMG signals. The gray shaded area indicates the stance phase.

FIGURE 4

Comparison of angle estimation accuracy between six kinds of single-channel sEMG and six-channel sEMG (SC). (A) Comparison of NRMSE. (B)

Comparison of CC. Bars are means, error bars are standard error of the mean (SEM), and asterisks denote statistically significant di�erences with

respect to the six-channel sEMG (P < 0.05).

and k-nearest neighbors (KNN) regression. The inputs of the

five models were FG-CNN features. Figure 6 shows the NRMSE

and CC values for knee joint movement estimation using the five

regression models. The regression models of RF, LightGBM, and

MLP have similar estimation performance with lower NRMSE

and greater CC values than the other two models.

The Kruskal-Wallis test was also used to determine if there

were differences between the RF and the other four regression

models. Table 1 showed the statistical analysis results on CC

and NRMSE. For each single-channel sEMG, the NRMSE values

of RF significantly decreased compared to these of SVR and

KNN. Meanwhile, the CC values of RF significantly increased
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FIGURE 5

Comparison of angle estimation accuracy by HF, CNN, and FG-CNN. (A) Comparison of NRMSE. (B) Comparison of CC. Bars are means, error

bars are standard error of the mean (SEM), and asterisks denote statistical significance (P < 0.05).

compared to those of SVR and KNN. The CC values of MLP

from LG and MG were different compared to that from the

RF (LG: P = 0.015; MG: P = 0.0015), while no significant

differences were found between RF and the other two models

(LightGBM and MLP) on NRMSE and CC.

4. Discussion

Human joint movement estimation using multi-channel

sEMG signals has been widely used to enable HRI systems’

intuitive and voluntary control. However, some issues have

inhibited the collection of high-quality sEMG signals from all

relevant muscles, such as weakness or spasticity of one or more

specific muscles, mechanical/signal interference between EMG

sensors and wearable robots/environment, discomfort for long-

term use, etc. Therefore, using fewer channels or single-channel

sEMG signals is of practical importance. It remains unknown

whether the continuous knee joint movement can be estimated

using single-channel sEMG signals. In addition, it is a challenge

to ensure high estimation accuracy using only single-channel

sEMG signals. This study verified the feasibility of continuous

joint movement estimation only using single-channel sEMG

signals and proposed a new feature extraction scheme, namely

FG-CNN, to improve the estimation performance effectively.

The main advantage of FG-CNN is that it contains both

handcrafted features and CNN features, which can improve the

motion estimation performance just by using single-channel

sEMG signals (as shown in Figure 5). When multi-channel

sEMG signals were used, the handcrafted features or CNN

features contained enough muscular information and could be

successfully adopted in motion estimation. However, with the

number of channels decreasing, the muscular information in the

handcrafted features or CNN features will not be sufficient. To

further extract implicit features, this study fed the handcrafted

features into a fusion layer to guide the extraction of CNN

features. Compared with both the handcrafted features and

CNN features, the FG-CNN features can ensure a more accurate

joint movement estimation, which implies that the FG-CNN

features contained more muscular information.

Based on the single-channel sEMG signals of LG or MG,

the estimated angle profiles were similar to the reference during

the gait cycle, as shown in Figure 3. On the contrary, for single-

channel sEMG of VL, VM, BF, or ST, the trends of estimated

angles profiles were reversed, especially at the stance phase. In

this study, the used estimation methods, such as random forest

regression and light gradient boosting machine, directly mapped

the sEMG features to knee angles without any biomechanics.

The estimation performance was influenced by the correlation

between inputs (sEMG features) and outputs (knee angles). In
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FIGURE 6

Comparison of angle estimation accuracy on di�erent regression models. RF, random forest regression; LGBM, gradient boosting machine; MLP,

multilayer perceptron (MLP); SVR, support vector regression; KNN, k-nearest neighbors regression. (A) Comparison of NRMSE. (B) Comparison

of CC. Bars are means, error bars are standard error of the mean (SEM), and asterisks denote statistically significant di�erences with respect to

the RF (P < 0.05).

a gait cycle, compared to the other four muscle activity profiles,

the correlation between the gastrocnemius activity profiles and

the knee angle profiles was stronger (shown in Figure 7). This

can explain why the estimation accuracy from LG or MG

is highest.

sEMG will be changed on different days and subjects due to

the changing skin impedance, which is affected by physiological

factors such as subcutaneous tissue, the physiological cross-

sectional area of the muscle, or dynamic factors such as sweat.

It is a complex and significant issue need to be addressed in

practical application. To date, some studies made efforts to

address this issue. Bao et al. established a two-stream CNN

with shared weights to enhance inter-subject performances in

the wrist kinematics estimation (Bao et al., 2021). The results

showed that the NRMSE and CC values were 22% and 0.67,

respectively, which outperformed a state-of-the-art transfer

learning method. Dantas et al. demonstrated that the CNN

decoder performed significantly better than polynomial Kalman

filters in most analyzed cases of temporal separations (0–150

days) between the acquisition of the training and testing datasets

(Dantas et al., 2019). The above studies demonstrated the

potential for the utilization of CNN to address the limitations of

using sEMG on different days and subjects. Therefore, although

the proposed FG-CNN degrades its estimation performance

using sEMG from different subjects or days, it is possible

not to degrade too much. Future studies should advance in

this direction.

In comparison with the previous studies, themain advantage

of the proposed method is to achieve good estimation

performance using single-channel sEMG signals rather than the

multi-channels, which can be used to improve the usability of

low limb wearable robotics in weakness or spasticity of one or

more specific muscles (Wei et al., 2022). Although the mean

CC values of the proposed FG-CNN with single-channel EMG

signals were slightly lower than the CC values of the state-of-

the-art studies with multi-channel sEMG (shown in Table 2), the

mean CC values of the proposed FG-CNN is around 0.85, which

suggests the strong correlation strength between the estimated

and the measured.

It is worth noting that the proposed methods have

limitations. Onemethod is that the sEMGdata from each subject

were recorded on the same day and the proposed FG-CNN

was trained and tested on the same subject. This study did

not consider the influence of sEMG changes on different days

and subjects. Future studies should advance in this direction.

Another method is that the estimation performance still has

room for improvement. Future studies would be required to

recruit more subjects and further to improve the accuracy

of knee joint estimation by advanced single-channel sEMG-

based methods.
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FIGURE 7

Muscle activity profiles and knee angle profiles during the gait cycle.

TABLE 1 Statistical analysis results between RF and the other

regression models (including LGBM, MLP, SVR, and KNN) on NRMSE

and CC.

Muscle NRMSE CC

LGBM MLP SVR KNN LGBM MLP SVR KNN

VL 0.7847 0.6135 0.0000 0.0000 0.5101 0.2079 0.0019 0.0000

VM 0.4528 0.0867 0.0000 0.0000 0.3551 0.2391 0.0039 0.0000

BF 0.6847 0.1712 0.0014 0.0000 0.2615 0.1744 0.0016 0.0000

ST 0.3291 0.1341 0.0000 0.0000 0.3622 0.3445 0.0120 0.0000

LG 0.4885 0.0993 0.0000 0.0000 0.3879 0.0150 0.0000 0.0000

MG 0.5874 0.0806 0.0000 0.0000 0.3993 0.0015 0.0000 0.0000

The bold values indicate the statistical significance values of p < 0.05 with respect to RF.

5. Conclusion

In this study, a new feature extraction method, namely FG-

CNN, was proposed to estimate human knee joint movement

using single-channel sEMG signals. To verify the effectiveness

of this method, sEMG signals measured from six muscles,

TABLE 2 Comparison with related research.

References Number

of

sensors

Method Performance (knee

angle)

Yi et al. (2022) 9 LSTM CC= 0.88± 0.04

Zhong et al. (2022) 8 Muscle

synergy-driven

CC= 0.92± 0.02

ANFIS model

Wang et al. (2021) 8 Multi-branch

neural

network

CC= 0.96± 0.03

This work 1 FG-CNN CC= 0.858± 0.085 (LG)

CC= 0.856± 0.057 (MG)

The bold values indicate the results of this work.

including the vastus lateralis, the vastus medialis, the biceps

femoris, the semitendinosus, the lateral or medial gastrocnemius

(LG or MG), were separately evaluated for estimating knee joint

movements using the proposed FG-CNN. The experimental
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results showed that combined handcrafted-CNN features

outperform either the handcrafted features or the CNN features.

In addition, the results demonstrated that the proposed FG-

CNNmethod with sEMG signals from LG or MG can effectively

estimate the movements with average NRMSE values of 15.2 ±

3.5% (LG) and 15.7 ± 3.1% (MG) and average CC values of

0.858 ± 0.085 (LG) and 0.856 ± 0.057 (MG). The performance

of the proposed signal-channel sEMG-based FG-CNN method

was comparable to those of traditional multi-channel sEMG-

based methods. The proposed FG-CNN have the potential

to provide an alternative means for knee joint movement

estimation to overcome the aforementioned limitations faced by

the traditional multi-channel sEMG-based methods.
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This study aimed to highlight the demand for upper limb compound

motion decoding to provide a more diversified and flexible operation for

the electromyographic hand. In total, 60 compound motions were selected,

which were combined with four gestures, five wrist angles, and three strength

levels. Both deep learning methods and machine learning classifiers were

compared to analyze the decoding performance. For deep learning, three

structures and two ways of label encoding were assessed for their training

processes and accuracies; for machine learning, 24 classifiers, seven features,

and a combination of classifier chains were analyzed. Results show that for

this relatively small sample multi-target surface electromyography (sEMG)

classification, feature combination (mean absolute value, root mean square,

variance, 4th-autoregressive coe�cient, wavelength, zero crossings, and slope

signal change) with Support VectorMachine (quadric kernel) outstood because

of its high accuracy, short training process, less computation cost, and stability

(p < 0.05). The decoding result achieved an average test accuracy of 98.42 ±

1.71% with 150ms sEMG. The average accuracy for separate gestures, wrist

angles, and strength levels were 99.35 ± 0.67%, 99.34 ± 0.88%, and 99.04 ±

1.16%. Among all 60 motions, 58 showed a test accuracy greater than 95%,

and one part was equal to 100%.

KEYWORDS

surface EMG, compound motion decoding, deep learning, machine learning,

myoelectric prosthesis

Introduction

Surface electromyography (sEMG) is a bioelectric signal naturally produced during

the neural activation of muscles (Vredenbregt and Rau, 1973). Through the mapping

relationship between the activation degree and the position of muscles, sEMG contains

the movement intention of the human body. It has been considered to be one of

the modalities of human-machine interface (HMI) in the context of human-centered

robotics (Zhang et al., 2015). Compared with other bioelectric signals, such as

electroencephalograms, sEMG shows stronger controllability, more decoding patterns,
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and higher stability. As one popular representation of human

intention, sEMG gets its widest application in controlling a

myoelectric hand (De Luca, 1997), an exoskeleton (Kiguchi and

Hayashi, 2012), and so on.

To realize the sEMG-based control, a number of research

studies focused on gesture decoding were carried out first. As

early as the 1970s, Taylor D began using the sEMG collected by

multi-electrode arrays to control upper limb prostheses (Wirta

et al., 1978). In 2007, Chu et al. (2007) achieved an average

accuracy of 97.4% in nine kinds of hand motion decoding with

four surface electrodes (Chu et al., 2007). In 2016, Adenike

realized the decoding of 19 classes, including hand grasps and

individual finger motions, and achieved an accuracy of 96% for

non-amputees (Adewuyi et al., 2016). To reduce the individual

differences, Xue proposed a novel user-independent framework

on 13 gesture decoding with an accuracy of 78.15% in 2021,

which combined the canonical correlation analysis and optimal

transport (Boschmann et al., 2013).

Gesture decoding above took the lead in ensuring the basic

grasping function. For a human hand, the complete movement

relies not only on the fingers and the palm but also on the

cooperation of the wrist and elbow. Beyond basic EMGdecoding

of gestures, researchers have paid attention to the wrist, the

elbow, and the compound motions. In 2010, Zeeshan used the

forearm sEMG to classify 19 wrist torques, which showed an

88% accuracy (Khokhar et al., 2010). In 2019, Zhang et al.

(2019) proposed a novel preprocessing method for joint force

estimation with high-density sEMG. In 2021, Xiang Chen

reported a convolutional neural network with a transfer learning

strategy in decoding 30 hand gestures involving various states

of the finger, elbow, and wrist, which achieved an accuracy

of 92.13% with high-density sEMG (Chen et al., 2021). Other

studies, such as Zhang et al. (2011), Lu et al. (2014), McIntosh

et al. (2016), and so on, have made gesture classification with

wrist coupling by combining sEMG with additional sensors.

The sEMG-based decoding of joint movement allows for a

more versatile application. Meanwhile, considering the spatio-

temporal difference, the decoding of compound actions also

guarantees the stability of gesture decoding in multiple poses

of the upper limbs. A more practical way to apply the decoded

targets to the control of the myoelectric hand is by combining

machine intelligence with human intention. By fully using the

closed-loop control and the sensory feedback, the decoded

target can be viewed as merely enabling a flag, relying upon

the prosthesis to complete the blind grasp. In 2011, Hao

Dang proposed a stable robotic grasping method based on

tactile feedback and hand kinematics, which can further be

applied to the blind grasping of the myoelectric hand (Dang

et al., 2011). In 2016, Xiong reported the implementation

of an anthropomorphic hand for replicating human grasping

functions, which realized the blind grasp automatically and was

further endued with myoelectric control (Xiong et al., 2016).

In 2020, Mayer et al. (2020) reported a closed-loop control

method based on tactile feedback to ensure the grasping of the

myoelectric hand. Meanwhile, leading commercial prostheses

such as the Michelangelo prosthetic hand by Ottobock©

(Hashim et al., 2017) and the i-Limb by Össur© (van der

Niet et al., 2013) provide customers with EMG-based solutions

combined with intelligence control to ensure better practice for

daily usage.

By properly combining human intention and machine

intelligence, grasping the myoelectric can be more stable and

realistic than relying on real-time sEMG-decoding alone. In

addition to the grip, through daily observation, we have noticed

that different control purposes can exist within the same gesture,

such as “grip an egg” vs. “crush an egg.” The expression of

these detailed purposes has been mostly neglected in the design

of the myoelectric hand. Most of the research has focused on

one purpose, possibly firmly grasping, to carry out the closed-

loop control.

For a fixed gesture, different control purposes (such as

griping vs. crushing) mainly correspond to different strength

levels. Considering the controllability and the measurement

in research, we mapped the strength level to different load

levels. In addition to the distinction of control purpose, to

ensure the stability of gesture decoding at different wrist angles,

there was also a demand for composite motion decoding. In

this paper, focusing on flexible myoelectric control and the

control purposes of switching, the decoding of compound

motions was proposed. These compound motions consisted

of the product of gestures, wrist angles, and strength levels,

allowing for simultaneous control of the gesture and wrist, as

well as switching control purposes. The Materials and Methods

section describes the selection basis for compound actions, the

experimental setup and data segment, and the various methods

adopted for compound motion decoding and performance

comparison. The Result section reports the detailed result. The

Discussion and the Conclusion sections state the discussion and

conclusion separately.

Materials and methods

Demands of compound motion decoding

Control strategy of the myoelectric hand

In reality, the myoelectric hand control merely relies

on sEMG-decoding, which is obviously unstable due to the

inevitable onlinemisrecognition. Even a tinymisrecognition can

result in the failure of a whole task. Moreover, the misoperation

caused by the misrecognition may decrease the user’s faith in

the myoelectric system, resulting in a worse operating state.

Therefore, a good combination of human intention andmachine

intelligence is more realistic to ensure practical controllability.

When reaching into a bag, it is intuitive and straightforward

for a natural human hand to grasp objects without any
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FIGURE 1

The selection basis of compound motions (A) the sEMG-based control strategy for the myoelectric hand (B) the illustration of compound

motions.

pre-existing geometric or visual information (Dang et al., 2011).

To implement the same function in the anthropomorphic hand,

blind grasping, also known as the hot spot technique, has been

studied by many research groups worldwide. As human beings,

the grasping gesture was gradually formed according to the

tactile perception of the object’s surface. Depending on the

sensory-feedback closed-loop control, the myoelectric hand can

share the same grasping strategy as human hands. By adopting

blind grasping to grip firmly, the gesture of the myoelectric

hand can automatically be detected instead of being defined by

the sEMG-decoding. Compared with sEMG-dependent gesture

decoding, such a scheme has higher stability and practicability.

Thus, with this strategy, the sEMG target can be viewed as

an enabling flag rather than a real-time control command for

firmly grasping. It significantly reduced the grasping gestures

that needed to be decoded via sEMG. According to tactile-

based blind grasping, the robust control law tends to use all

known fingers to perceive unknown objects, thus completing

the power grasp (Shaw-Cortez et al., 2019). By selecting one

sEMG enabling flag corresponding to the blind power grasping

with all fingers (Shaw-Cortez et al., 2019), another sEMG-based

detailed decoding can be left to precision grasp gesture (such

as pinch), gestures with specific usage (such as poke) and other

sign languages.

During grasping, since there can be multiple purposes under

one same gesture (such as griping vs. crushing), the specification

of control purpose via sEMG is necessary. Under one fixed

gesture, different purposes mainly correspond to different levels

of muscle strength and can be mapped to multiple control logics

of the anthropomorphic hand. In the classic, such myoelectric

control directly associated with the proportion of strength is

regarded as the direct control (DC) approach (Mereu et al.,

2021). By going a step further to distinguish the strength level

under different postures, a more diverse purpose of control

can be provided to the myoelectric hand based on the existing

posture control logic.

Following the statement above, Figure 1A illustrates the

sEMG-based control strategy for the myoelectric hand in

this work.

Selection of compound motions

According to the control strategy, under different

combinations of multi-targets decoded via sEMG, the

myoelectric hand would adopt different logic to execute the

desired movements.

As stated in Feix’s report, there are 33 different grasp

types in daily usage, including power and precision (Feix

et al., 2016). By adopting this sEMG-based strategy above, for

power blind grasping with all myoelectric fingers participating,

the fist gesture (five-finger fist) was set as the enabling

flag, which represents the grasp intention intuitively. Once

enabled, according to the control strategy, the myoelectric

hand would execute the blind grasp or the crush according

to different strength levels. Besides the power grasp, the

most representative pinch gesture (with index finger and

thumb) was selected in the instruction set for precision

grasp. Meanwhile, to fulfill the prior functionality, the
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poke (as one commonly used specific gesture with index

finger stretch) and the palm (corresponding to the reset of

myoelectric hand gesture) was also chosen as the sEMG-

decoded gestures.

Since the gestures needed to be significantly decoded were

reduced to only a few gestures, the core comes down to

the decoding stability under various postures. Completing the

hand task is inseparable from the flexible movement of the

wrist. The angle of the wrist was taken into consideration

to ensure the sEMG decoding stability. To ensure robust

gesture decoding and further provide potential wrist control

ability for the myoelectric prosthesis, discrete wrist angles

were selected to form complex wrist-hand compound motions.

The wrist has two degrees of freedom flexion/extension and

radial/ulnar deviation. Thus, five discrete wrist angles were

set, including flexion maximum, extension maximum, radial

deviation maximum, ulnar deviation maximum, and neutrality

position. As for the angle values, considering the individual

differences and the feasibility when being applied to the

myoelectric control, each maximum corresponds to the user’s

own limit.

Three strength levels were determined to increase the

difference sufficient to switch the control purpose while

providing adequate possibilities for subsequent development.

Since the measurement of the strength level lacked calibration,

as one initial work, different load levels were adopted to activate

corresponding strength levels. Considering the experimental

repeatability, the dimension of the adult’s hand (Standardization,

1988) and counterweight, and the strength difference across

genders, with the Fe adhesive weight, 0 g, 480 g, and 960 g, were

selected. The underside of the weight was 134mm in length and

37mm in width, which fit the size of most adults’ hands. Among

three levels, 0 g represented the stably grip in blind grasping,

480 g (the approximated weight of a bottled drink) represented

the grip with deformation, and 960 g represented the crush.

According to the basis above, by multiplying these four

gestures, five wrist angles, and three strength levels, 60 modes

decoded via sEMG were formed, as illustrated in Figure 1B.

FIGURE 2

Experiment. (A) The Neuracle EMG acquisition system. (B) The electrode’s placement. (C) The illustration of upper limb posture. (D) The way to

load counterweight with di�erent gestures. (E) The timing diagram of one session, along with the on-screen prompt example.
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Materials

sEMG recording

The commercial wireless portable EMG acquisition system

(Neuracle Technology Co., Ltd., Changzhou, PRC) supporting

up to 16 channels (each channel consisted of two surface

differential electrodes) with a 1000Hz sampling rate was

adopted, as shown in Figure 2A. To decode the composite

motion of fingers and wrist, sEMG electrodes were placed on

the forearm. Eight large forearm muscles, which play a major

role in grasping gestures and wrist movements, were selected,

as illustrated in Figure 2B. Eight channels were targeted at these

muscles with electrode patches (sized 42mm in length and

25mm in width), and the reference electrode was placed at the

elbow. Before sticking the sEMG patches, alcohol was used to

clean the skin.

Subjects

In total, 12 healthy subjects (aged 22–30 years, ten males and

two females) participated in this study (Association, 2013). None

of the subjects has a history of the upper extremity or other

musculoskeletal complaints. Before starting, each subject was

informed of the content, the purpose, and the detailed process

of this experiment.

Experimental protocol

The experiment was conducted on the right arm. During the

experiment, subjects sat with their elbows naturally hung down,

and their forearms raised nearly horizontally. All the motions

were completed with the palm kept vertically. The upper body

posture is shown in Figure 2C.

In the experiment, each motion was recorded for one trial.

Each trial began with a countdown for 3 s, followed by a motion

mode hold for 60 s. Between every two trials, a 1-min break was

arranged to avoid fatigue. A total of 60 trials were collected,

corresponding to 60 modes (multiplied by four gestures, five

wrist angles, and three strength levels). During the experiment,

the loads were added to the hand. To stably add loads, tapes

were attached to ensure the loads could be directly stuck to the

palm. Figure 2D demonstrates how to load the counterweight

with different gestures.

During the collection, subjects followed the on-screen

prompt and the beeper to complete the specified motions. The

timing diagram of each trial and the on-screen prompt example

are illustrated in Figure 2E.

Dataset

For each subject, a total of 60 trials were collected. The

first 20 trials were sEMG under-strength with 0 loads. The

21st-40th trials were with a 480 g load, and the 41st-60th trials T
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FIGURE 3

Summary of methods.

were with a 960 g load. Each gesture was held for five trials in

order at one strength level, with the wrist angle shifted in turn,

according to the order in Figure 1B. The specific number ID

of each compound motion is listed in Table 1. All data were

preprocessed through detrending, the 2nd-order infinite impulse

response notch filter at 50Hz, and the 4th-order Butterworth

bandpass filter at 20–250Hz (Zhao et al., 2020).

Considering the real-time performance of sEMG decoding,

Lauer et al. (2000) stated that any delay greater than

200ms would degrade the performance of one neuro-based

task accomplishment. Taking the data acquisition and signal

processing processes together, to ensure the system delay was less

than 200ms, data were sliced with a window length of 150ms

and 0 overlap. Thus, for each mode, there were 400 samples.

Decoding methods comparison

To study the decoding performance with these 60 compound

motions, both deep learning and machine learning combined

with different designs were evaluated, as summarized in

Figure 3. The dataset from S1-S6 was adopted in the methods

comparison. According to the chronological order, the first 90%

of samples of each mode were selected as the training set (i.e.,

1s−54s), and the rest were the validation set (i.e., 55s∼ the 60s).

Within each dataset, the samples were shuffled.

Deep learning

Structure

The most well-known typical computations in deep learning

were convolutional neural network (CNN), which originated

from image decoding (Bengio and Lecun, 1997), and the

recurrent neural network (RNN) from the natural language

processing (Rumelhart et al., 1986). Developed from the RNN,

the long short-term memory (LSTM) layers (Hochreiter and

Schmidhuber, 1997) gained broader attention as its variant.

Based on the CNN and the LSTM, lots of works achieved

impressive results in sEMG decoding (Zhai et al., 2017; Hu et al.,

2018; Rehman et al., 2018; Ameri et al., 2019). This work studied

three structures (CNN-based, LSTM-based, and CNN+LSTM

based) for their performance in 60 compound motion decoding.

CNN-based: In the CNN-based structure (Figure 4A), each

convolution block consisted of a 2-dimensional convolution

layer (Conv2D), a batch normalization layer (BN), a max

pooling layer, and a dropout layer. Formulti-convolution blocks,

the number of filters descended, as the first block was 32 filters,

the second was 16 filters, and the third was 8. For both 2

convolution blocks and 3 convolution blocks, the dense layer

with 4096 nodes were deleted.

LSTM-based: Based on the RNN concept, the LSTM layer

as a variant was adopted instead for better performance. Both

the time positive and the time reverse order were considered the

bidirectional LSTM, as illustrated in Figure 4B.

CNN+LSTM-based: This study adopted their combination

to take advantage of CNN and LSTM. For the temporal

sequence, the 1-dimensional convolution layer (Conv1D) along

the temporal domain was taken first, followed by the LSTM,

as in Figure 4C. For the convolution block, the same as the

CNN-based structure, the first block comprised 32 filters.

Label encoding

Since these 60 compound motions consisted of gestures,

wrist angles, strength levels, and two different ways of label

encoding were adopted to compare their performance.

One-hot label: One-hot label treated compound motion

decoding as a single-labeled multiclass problem. The

corresponding output was 60 dimensions (Figure 4D). In

accordance, the activation for the output layer was SoftMax.
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FIGURE 4

Deep learning methods have di�erent structures and label encoding ways. (A) CNN-based structure. (B) LSTM-based structure. (C)

CNN+LSTM-based structure. (D) One-hot label. (E) Multilabel.

TABLE 2 The specific number ID of each compound motion.

Feature Mathematical definition

MAV TMAV = 1
N

N
∑

i=1

|xi|

RMS TRMS =

√

1
N

N
∑

i=1

xi2

VAR TVAR = 1
N−1

N
∑

i=1

(xi − x)2

4th-ARC xi = −
4

∑

k=1

akxi−k + ωi

WL Twl =
N−1
∑

i=1

|xi+1 − xi|

ZC Tzc =
N−1
∑

i=1

sgn(−xixi+1)

SSC (xi − xi−1)× (xi − xi+1) ≥ ω, where ω = 0.05std

Multilabel: By decomposing these compound motions into

their corresponding modes in gesture, wrist angle, and strength,

the problem could be transferred to the multilabel, multiclass

classification. Thus, the output dimension was 12 (Figure 4E).

For multilabel, the activation adopted was Sigmoid.

Machine learning

As mentioned in the dataset segment ahead, there were only

400 samples for each motion. The scale of the dataset was far

from large. Thus, the traditional machine learningmethods were

also adopted in this work.

Feature

Considering the short window length (150ms), several

commonly used features in the time domain were selected,

such as mean absolute value (MAV), root means square

(RMS), variance (VAR), 4th-autoregressive coefficient (ARC),

wavelength (WL), zero crossings (ZC), and slope signal change

(SSC) (Englehart and Hudgins, 2003; Zhao et al., 2020). Their

mathematical definitions are listed in Table 2, where xi(i =

1, 2, ...,N) is the EMG time series, N equals 150 according to

the window length, ak is the autoregressive coefficient, and is the

white noise. Different feature vectors can be formed through the

permutations of these three features from eight sEMG channels.

Combining these three features, a 56-dimension feature vector

can be extracted in maximum, as shown in Figure 5A.

Algorithm

Various types of classifiers were adopted to evaluate the

decoding performance, including tree, discriminant, support

vector machine (SVM), K-nearest neighbor (KNN), and some

ensemble methods. The details of these 24 algorithms are

listed in Table 3, where G(xi, xj).denotes elements in the gram

matrix, xi, xj denote the observations, and γ is the width of the

Gaussian kernel.

Chain

Similar to the label encoding way in deep learning, the

structure of machine learning classifiers can also be designed

in one integrated or three separated ways (Figures 5B,C). There

was a single classifier decoding 60 categories for the integrated

structure. The separate, triple-parallel structure was set, and each

took charge of strength, wrist angle, or gesture separately.

Compound motion decoding

Throughout the methods above, the best was selected

under the comparison with average accuracy, prediction speed,

training speed, and so on. Then, with the best decoding method,

datasets from S1-S12 were all adopted to provide a detailed

Frontiers inNeurorobotics 07 frontiersin.org

112

https://doi.org/10.3389/fnbot.2022.979949
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al. 10.3389/fnbot.2022.979949

FIGURE 5

The feature vector and the classifier chain of machine learning methods. (A) Feature vector. (B) Integrated classifier. (C) Separated classifier.

TABLE 3 The specific number ID of each compound motion.

Algorithm Subdivided Attribute Notes

Decision trees Fine Maximum leaf 100 Split criterion Gini Index

Medium Maximum leaf 20

Coarse Maximum leaf 4

Discriminant Linear \ \

Quadratic \ \

Naïve bayes Gaussian Distribution Normal

Kernel Type Gaussian Width Automatic

SVM Linear Kernel G(xi , xj) = xi
′xj

Quadratic G(xi , xj) = (1+ xi
′xj)

2

Cubic G(xi , xj) = (1+ xi
′xj)

3

Fine gaussian G(xi , xj) = exp(−
∥

∥xi − xj
∥

∥

2
/γ ) Scale γ 0.56

Medium gaussian G(xi , xj) = exp(−
∥

∥xi − xj
∥

∥

2
/γ ) Scaleγ 2.2

Coarse gaussian G(xi , xj) = exp(−
∥

∥xi − xj
∥

∥

2
/γ ) Scaleγ 8.9

KNN Fine Distance d2st = (xi − xj)(xi − xj)
′ Neighbors 1

Medium d2st = (xi − xj)(xi − xj)
′ Neighbors 10

Coarse d2st = (xi − xj)(xi − xj)
′ Neighbors 100

Cosine dst = (1− xixj
′/

√

(xix′ i)(xjx′ j) ) Neighbors 10

Cubic dst = 3

√

n
∑

u=1

∣

∣xiu − xju
∣

∣

3
Neighbors 10

Weighted d2st = (xi − xj)V
−1(xi − xj)

′ Neighbors 10

Ensemble Boosted trees \ \

Bagged trees \ \

Subspace discriminant \ \

Subspace KNN \ \

RUSBoosted trees \ \

decoding performance analysis among all these 60 compound

motions. Similarly, according to the chronological order, the first

samples of each mode were selected as a training set, and the rest

were test-set. Within each dataset, the samples were shuffled.

To focus more on the decoding performance among all 60

compound motions, the analysis included (1) the change of

test accuracy with the decrease of the training set; (2) the test

accuracies of each motion and their confusion matrix; (3) and

the test accuracy for separatemotions of strength levels, gestures,

and wrist angles.

Results

Decoding methods comparison

Deep learning

Through comparisons, considering the accuracy, stability,

overfitting, and training time, the CNN+LSTM-based structure

with one-hot label achieved the best performance at 94.61 ±

3.20% for training and 94.20± 4.06% for validation. The details

are given below.
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Structure

The TensorFlow (Abadi et al., 2016) 2.0 framework

was adopted as the supporting backend for deep

learning realization. The optimizer and batch size

remained the same for CNN-based, LSTM-based, and

CNN+LSTM-based structures (Table 4). At first, a one-

hot label connected with SoftMax activation was adopted.

The training and validation curves are illustrated in

Figure 6.

The subject-average accuracy curve in Figure 6 indicates

that the CNN+LSTM-based structure outstands these three

structures. The final subject-averaged training and validation

accuracies for CNN+LSTM-based are 94.61 ± 3.20% and

94.20 ± 4.06%. Especially for subject S4, the validation

accuracy approaches 99.77% for 60 modes with CNN+LSTM.

Structure (a) with only one convolution block showed an ideal

training curve but poor validation. An extensive validation

TABLE 4 Compile setting in structure comparison.

Type Method Parameter Value

Optimizer RMSprop Learning rate 0.0008

Clip value 1.0

Decay 1e-8

Training Batch Batch size 1,024

Epoch 70

decay in the post-training period emerged from S3, S5,

and S6 (9.36, 2.19, and 40.36%); for S1, S2, and S4, the

validation accuracy ended at 78.72, 87.19, and 99.47%. Such

huge individual differences indicate the instability of structure

(a) in this compound motion decoding. For bidirectional

LSTM-based structure (b), the highest validation accuracy

was 61.38% by S4, while the rest of the subjects remained

below 10%. Under the same configuration environment,

with Win 10, i5-6500 (3.20 GHz), and GTX 960, the

average time cost for training 70 epochs was 278.91s for

CNN-based, 1,491.74s for LSTM-based, and 528.94s for

CNN+LSTM based.

For the CNN-based network, with the increase of

convolution blocks and the deletion of the dense layer

(4,096 nodes), the final decay in Figure 6 has been greatly

relieved, as shown in Figure 7. Compared with only one

convolution block in Figure 6, the validation performances

are largely improved, ending at nearly 90%. However, more

blocks led to higher overfitting, with the gaps between

training and validation being 8% for two blocks and 10%

for three blocks. The early decline in the validation curve

indicated that great overfitting occurred in the early stage

due to insufficient training. The validation accuracy is

improved with the adjustment of convolution blocks but

is within the CNN+LSTM. The average training time cost

for two blocks was 76.90 s and 56.54 s for three blocks. The

training was accelerated by reducing trained parameters as the

block increased.

FIGURE 6

Accuracy curves during training and validation with three structures. (A) CNN-based structure with a one-hot label. (B) LSTM-based structure

with a one-hot label. (C) CNN+LSTM-based structure with a one-hot label.
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FIGURE 7

Subject-averaged training and validation performance of CNN based networks with increased convolution block. (A) 2 CNN blocks. (B) 3 CNN

blocks.

FIGURE 8

Performance with multilabel. (A) CNN-based structure. (B) LSTM-based structure. (C) CNN+LSTM-based structure.

Label encoding

The influence of multilabel is shown in Figure 8. The

performance of the one-hot label is already shown in Figure 6.

The compilation was kept the same as in Table 4. Compared

with the one-hot label, the filling part in Figure 8 shows a larger

individual difference, led by the multilabel. For bidirectional

LSTM, the performance of S3–S6 was significantly improved

with multilabel, while there was no help for S1 and S2. It

illustrates that multilabel classification of compound motion

resulted in greater instability.
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TABLE 5 Comparison of machine learning classifiers.

Model type Accuracy* (%) Training

time* (sec)

Prediction

Speed*

(obs/sec)

Accuracy* (%)

S1 S2 S3 S4 S5 S6 AVE Std Dev Strength Gesture Angle

Tree Fine 63.9 63.9 63.4 99.9 63.7 99.0 75.63 16.84 \ \ 96.50 93.05 85.38

Medium 27.4 22.9 30.0 35.0 29.7 35.0 30.00 4.23 \ \ 94.20 78.30 66.87

Coarse 6.6 6.5 8.2 8.3 7.0 8.3 7.48 0.80 \ \ 88.72 57.68 47.73

Linear

discriminant

90.7 90.3 91.9 99.5 96.7 99.7 94.80 3.98 11.3 228.3 92.98 77.95 72.02

Quadratic

discriminant

94.2 94.5 95.2 \ 99.3 99.9 \ \ \ \ 92.57 89.75 87.73

Naive bayes Gaussian 90.2 91.0 87.1 99.9 96.9 99.6 94.12 4.93 \ \ 83.45 56.32 47.50

Kernel 92.1 93.8 92.3 99.6 97.9 99.6 95.88 3.25 619.3 429.3 91.65 79.93 \

SVM Linear 96.0 96.1 96.4 100.0 98.8 99.8 97.85 1.73 467.0 696.7 94.28 87.72 81.70

Quadratic 96.5 96.5 97.3 100.0 99.2 99.9 98.23 1.51 443.8 586.7 98.35 98.57 97.35

Cubic 96.2 96.2 97.1 100.0 99.1 99.9 98.08 1.64 452.0 485.0 \ \ \

Fine Gaussian \ \ \ 95.6 \ \ \ \ \ \ 98.62 98.13 97.27

Medium

Gaussian

95.4 95.8 96.0 99.9 98.9 99.9 97.65 1.95 538.8 421.7 98.48 98.17 96.00

Coarse

Gaussian

93.5 93.9 94.0 100.0 97.9 99.7 96.50 2.78 539.2 418.3 94.18 84.52 74.28

KNN Fine 91.0 90.2 94.5 100.0 97.4 99.7 95.47 3.89 153.4 730.0 98.63 98.33 97.30

Medium 91.9 91.0 94.5 99.9 97.2 99.7 95.70 3.51 158.8 768.3 98.68 98.38 97.38

Coarse 88.0 87.2 90.5 99.4 94.1 99.3 93.08 4.94 \ \ 97.70 97.05 95.60

Cosine 91.0 89.6 93.2 100.0 96.8 99.6 95.03 4.04 \ \ 98.52 98.02 97.03

Cubic 91.0 89.9 \ 99.9 \ \ \ \ \ \ \ \ \

Weighted 92.4 91.7 94.8 100.0 97.5 99.7 96.02 3.29 196.7 935.0 98.80 98.52 97.65

Ensemble Boosted Trees 65.2 62.4 59.0 99.9 73.8 97.3 76.27 16.43 \ \ 73.52 89.52 77.18

Bagged Trees 94.7 94.8 95.6 100.0 98.3 99.7 97.18 2.23 225.7 661.7 98.98 98.55 97.57

Subspace

Discriminant

88.0 87.8 90.2 99.4 95.1 99.6 93.35 4.97 \ \ 91.62 71.85 65.47

Subspace KNN 89.3 88.3 93.4 99.9 97.4 99.5 94.63 4.64 \ \ \ 97.70 \

RUSBoosted

Trees

26.2 21.3 30.0 35.0 29.7 35.0 29.53 4.81 \ \ 71.97 78.32 66.87

*Evaluated on the Win10, AMD R7 (integrated graphics). The ‘ín accuracy indicated that the training time for this classifier exceeded 1,000 s. The ‘ín training time and prediction speed

indicated that the performance of this classifier did not meet expectations, so no analysis was done.

Machine learning

For this relatively small sample multiclass sEMG

classification, combined with feature engineering, several

machine learning classifiers show great applicability and

excellent performance. Through comparison, the quadratic

SVM for 60 modes once achieved the best (p= 0.04 < 0.05 with

T-Test). The details are as given below.

Algorithm

The averaged validation accuracy of 60 modes from various

machine learning classifiers is listed in Table 5, along with their

training times and prediction speeds. In Table 5, among all 24

classifiers, the average accuracies of 16 classifiers exceed 90%,

and ten classifiers exceed 95%. Such generally high performance

demonstrates the applicability of traditional feature extraction

and machine learning methods in the small sample multiclass

sEMG decoding. Among all classifiers, the SVMwith a quadratic

kernel achieved the highest subject-averaged accuracy at 98.23±

1.51%. Its 1.5% standard deviation indicates a small individual

difference among subjects and stable overall performance. In

terms of time spent, the average time cost for quadratic SVM

training is 443.8 s without acceleration.

Chain

The subject-averaged validation accuracies using the triple-

parallel classifier chain for decoding the gestures, the wrist

angles, and the strength levels are presented in Table 6. The

highest accuracies were achieved by subspace discriminant for
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TABLE 6 Averaged validation accuracies for triple-paralleled classifier

chain.

Model type Accuracy (%)

Strength

level

Gesture Wrist angle

Tree Fine 96.50 93.05 85.38

Medium 94.20 78.30 66.87

Coarse 88.72 57.68 47.73

Linear discriminant 92.98 77.95 72.02

Quadratic discriminant 92.57 89.75 87.73

Naive bayes Gaussian 83.45 56.32 47.50

Kernel 91.65 79.93 \

SVM Linear 94.28 87.72 81.70

Quadratic 98.35 98.57 97.35

Cubic \ \ \

Fine Gaussian 98.62 98.13 97.27

Medium Gaussian 98.48 98.17 96.00

Coarse Gaussian 94.18 84.52 74.28

KNN Fine 98.63 98.33 97.30

Medium 98.68 98.38 97.38

Coarse 97.70 97.05 95.60

Cosine 98.52 98.02 97.03

Cubic \ \ \

Weighted 98.80 98.52 97.65

Ensemble Boosted Trees 73.52 89.52 77.18

Bagged Trees 98.98 98.55 97.57

Subspace Discriminant 91.62 71.85 65.47

Subspace KNN \ 97.70 \

RUSBoosted Trees 71.97 78.32 66.87

three strength levels (98.98 ± 1.51%); quadratic SVM for four

gestures (98.57 ± 1.15%); and weighted KNN for five wrist

angles (97.65 ± 1.72%). By combining these three classifiers to

form the triple-paralleled chain, we can see that the theoretical

decoding accuracy was the product of three accuracies, which

equals 92.93, 90.79, 92.47, 100.00, 96.05, and 99.60% for S1∼S6.

The average subject accuracy for the classifier chain was 95.30±

3.54%. The classifier chain did not show superiority compared

with the one integrated classifier.

Feature

In total, seven kinds of temporal features were adopted.

Figure 9 illustrates the change in validation accuracy as the

number of features increases. As the number of features

increases, the average validation accuracy and the standard

deviation decrease from 1.68 to 0.63%. The performance

remained above 99.00% in the range of 5–7 features. Among

them, the combination of all seven features was the best.

Compound motion decoding

In the overall comparison, the SVM with a quadratic kernel

performed the best after 443.8 s of training. Feature engineering

was the combination of all seven features. Figure 10 depicts the

variation in test accuracy resulting from altering the proportion

of the training set to the testing set for such a decoding method.

In each mode, the latter data were used for testing.

As the training proportion decreased from 90 to 50%, the

average test accuracy remained higher than 95%, which showed

great generalization. However, the standard deviation increased

from 1.71 to 2.96%, and the individual differences became

prominent. Six of the twelve subjects kept their test accuracy

higher than 95% in all the processes, while S3 and S8 gradually

dropped to approach 90%. S3 performed the worst (from 94.29

to 89.98%). S8 decreased the most (from 99.21 to 90.07%). S6

achieved the most stable performance (with an average accuracy

of 99.97 ± 0.01% from 90% training to 50%). Figure 11A shows

the test accuracy of each mode with a 90% training set.

The average test accuracy with a 90% training set was 98.42

± 1.71%. Among all subjects, S4 and S6 achieved the best at

99.96 ± 0.32%. Four of these twelve subjects maintained their

accuracies for 60 modes to be all greater than 95%, and most

were equal to 100%. Figure 11B is the confusion matrix.

Within 60 modes in Figure 11B, eleven modes achieved

100% test accuracy for all twelve subjects. Thirty-one modes

are higher than 99%. Fifty-eight modes are higher than 95%.

Motion 38 [palm, ulnar deviation, 480g], and motion 57 [palm,

extension, 960g] performed lower than 95%, with motion 38

the worst at 85.2%. Table 7 lists the test accuracy for separate

motions, which achieved 99.35 ± 0.67% for three classes of

strength-level decoding, 99.34± 0.88% for four classes of gesture

decoding, and 99.04 ± 1.16% for five classes of wrist-angle

decoding. Meanwhile, since the addition of wrist angles ensures

decoding stability in various postures, the average test accuracy

of “strength+ gesture” is 98.95± 1.11%.

Discussion

This study stated the need for compound motion decoding

in myoelectric control and further investigated and realized

the classification of 60 compound motions with 150ms sEMG

collected from eight forearmmuscles. Different methods of deep

learning and machine learning were adopted to assess their

capability. In deep learning, three structures and two ways of

label encoding were analyzed. Among them, the CNN+LSTM

with a one-hot label performed the best. In machine learning,

24 classifiers, different combination of features, and classifier

chain were tested. The quadratic SVM combined with seven

features showed the highest validation accuracy and the smallest

variance. Compared with deep learning, classifiers frommachine

learning showed more stability and robustness. Overall, the
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FIGURE 9

Validation accuracies of quadratic SVM with an increased number of features.

FIGURE 10

The change of validation accuracies with quadratic SVM combining seven features.

quadratic SVM exceeded the CNN + LSTM with higher

validation accuracy, lower training time, and less variance. This

result demonstrated the ability of traditional machine learning

on relatively small sample sEMGmulti-classification problems.

The significance and the performance

Considering the ultimate goal to be a more flexible control

of the myoelectric hand by incorporating the blind grasp,

this study proposes the need for sEMG-based compound

motion decoding, paying particular attention to the need

for control purpose switching (such as grip vs. crush), the

differentiation between power grasp and precision grasp, and

the manipulation of the wrist joint. With the 60 compound

motions in this work (as the product of four gestures, five

wrist angles, and three strength levels), we shall not only

guarantee the flexibility of control ability but also guarantee

the stability of sEMG-based decoding under a variant upper

limb posture.
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FIGURE 11

Testing performance of 60 compound motions with quadratic SVM combining seven features. The label 1∼60 match Table 1. (A) The validation

and test accuracy. (B) Subject average confusion matrix of 60 compound motions.

Frontiers inNeurorobotics 14 frontiersin.org

119

https://doi.org/10.3389/fnbot.2022.979949
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al. 10.3389/fnbot.2022.979949

TABLE 7 The test accuracy for separate motions of strength levels,

gestures, and wrist angles with quadratic SVM combining seven

features.

Subject Test accuracy (%)

Strength Gesture Angle Strength+Gesture

S1 98.54 98.71 98.08 97.63

S2 98.25 99.04 99.13 97.54

S3 98.71 97.00 95.83 96.92

S4 100.00 100.00 99.96 100.00

S5 100.00 99.92 99.17 99.92

S6 100.00 100.00 99.96 100.00

S7 99.96 99.79 99.96 99.79

S8 99.54 99.96 99.25 99.50

S9 98.58 98.38 98.13 97.79

S10 99.96 99.75 99.96 99.71

S11 98.79 99.58 99.33 98.75

S12 99.83 99.96 99.79 99.83

AVE 99.347 99.340 99.045 98.948

Std 0.674 0.880 1.159 1.109

In comparing deep learning methods and machine learning

classifiers, facing the same ultimate goal as flexible control,

besides the accuracy, the training time, the prediction speed, and

the dependence on computing hardware, all matter. Combined

with manual feature engineering, most classifiers in Table 5

showed appreciating results with small variance among subjects.

While among the three structures in the deep learning method,

only CNN + LSTM steadily converged (Figure 6). This result

indicates that the information contained in the short-windowed

original sEMG is sparse and chaotic. The capability of simply

designed CNN or LSTM in auto feature extraction is limited in

this multi-classification with only small samples. This affirms the

value of traditional manual feature engineering in small-sample

multiclass sEMG decoding.

With the help of this manual feature engineering, the

training process of machine learning classifiers was speedy. For

most classifiers, without the acceleration of GPU, the training

process can still be kept for approximately 5 mins. Conversely,

the shorter time for deep learning is consistent with the longer

time in machine learning.

As for stability, since the SVM has a high generalization,

although the accuracy decreases with the training proportion,

the overall performance was still acceptable. For the balance

among 60 modes, considering the individual differences, the

standard deviation varied from 0.32% (S4, S6) to 14.74% (S3).

Two subjects showed excellent decoding performance, with the

standard variance close to 0.00%.

In conclusion, with the addition of feature extraction,

the machine learning approaches in this very small sample

multiclass sEMG compound motion decoding stand out

for their excellent accuracy, fast training procedure, low

computation cost, and stability.

The limitation and future work

Experiment protocol

In the materials, limited by the size of the electrode patches

adopted in this study, targeted placement was adopted instead of

equally spaced. However, several studies have reported that the

equally spaced placement achieved better performance for the

machine learning method. In future research, tinier patches will

be used to compare the performance under different electrode

placements. Meanwhile, it has been noticed that the motions

executed in sequence might increase the inter-class difference

and decrease the intra-class difference. This may lead to a

seemingly appropriate decoding performance. In future work,

we are considering further reducing the data collection work of

each motion and improving the data collection scheme to be

decentralized and disordered.

Decoding performance

In the subsequent research work, feature engineering

with the quadratic SVM resulted in regretful test accuracies

for the contralateral decoding and cross-subjects. This

demonstrated that manual feature engineering has distinct

personal characteristics and that transferring the trained

network to other people or extra objects is difficult. However,

for deep learning, several papers reported the transfer

learning ability in cross-subject sEMG decoding. In 2021,

Chen constructed a CNN-based general gesture EMG feature

extraction network of 30 hand gestures, then transferred it into

the decoding of extra gestures, which improved the recognition

accuracy by 10 and 38% (Chen et al., 2021). Jiang proposed

a correlation-based data weighting method that achieved a

low root mean square error in cross-subject evaluation with

significant performance improvement (Hautier et al., 2000).

Based on CNN, Yu proposed a transfer learning strategy for

instantaneous gesture recognition that improved the average

accuracy of new subjects and new gesture recognition by 18.7

and 8.74% (Yu et al., 2021). In 2017, Cote-Allard used the CNN-

based transfer learning techniques to leverage inter-user data

from the first dataset and alleviate the data generation burden

imposed on a single individual (Cote-Allard et al., 2017). The

above research makes us believe that, with the help of transfer

learning, deep learning is more suitable for cross-subject and

cross-object research. However, manual feature engineering and

machine learning still have a place in subject-specific decoding

with small samples and large categories. Further, the paper

lacks online validation on amputees as an initial work. When

verifying the feasibility of compound motion decoding under a

150ms window length, some degradation of decoding accuracy
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may occur when applied to online decoding. Meanwhile,

the study on decoding methods, the study of blind-grasp,

and the research on improving stability and reducing noise

interference are equally important for amputees’ successful

online task operation.

Improvements in compounded motions

As for the selection of compound motions, considering

the repeatability and controllability during the experiment,

loads with counterweights are used to activate the strength

levels. However, such specified strength levels can hardly be

reproduced in the realistic online control of the myoelectric

hand for the disabled. Since the separability of three levels of

strengths in 60 compound motions has been demonstrated,

future research will emphasize the practicality by replacing

strength levels with three different loads (stuck to the hand) with

one’s maximum strength, medium strength, and weak strength,

thereby realizing the switch of control purposes during the

online control of the myoelectric hand. Meanwhile, with the

more complex design of the myoelectric hand’s control purpose,

the number of strength levels would be increased according

to the demand of the control purposes. Next, on the premise

of stability, more gestures would be included to enlarge the

instruction sets. The four gestures now selected in this work

were all functional gestures, and none of themwas sign language.

In the following research, according to the proposed control

logic, besides the functional gestures, more sign languages are

planned to be added to enrich the communicational usage of

the myoelectric hand. Moreover, based on this work, transfer

learning is planned to be studied next for the adaptation of more

users and more complex and personalized decoding sets.

Conclusion

Considering the control purpose switching (such as grip

vs. crush), the distinction between power grasp and precision

grasp, and the manipulation of the wrist joint in the control

of the myoelectric hand, this work puts forward the need

for compound motion decoding. With 150ms sEMG from

eight muscles, decoding 60 upper limb compound motions

achieved an average accuracy of 98.42 ± 1.71%. These

60 motions were the product of four gestures, five wrist

angles, and three strength levels. Among all 60 motions,

48 showed a test accuracy greater than 95%, and one part

was equal to 100%. In comparing decoding performance,

several deep learning methods and machine learning classifiers

were adopted, with the contrast among structures, label

encoding ways, and algorithms. The feature engineering

(MAV+RMS+VAR+ARC+WL+ZC+SSC) combined with the

SVM (quadratic kernel) stood out for its high accuracy, short

training process, less computation cost, and well stability (p <

0.05). The comparison results highlighted the value of manual

feature engineering and machine learning classifiers in relatively

small sample multiclass sEMG decoding. As a prerequisite work

for myoelectric control, this study provides a flexible solution

for the subsequent involvement of blind grasping and control

purposes, aiming to provide a more stable, diversified, and

convenient operation for the myoelectric hand.
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Variable sti�ness joints have been gradually applied in rehabilitation robots

because of their intrinsic compliance and greater ability to adjust mechanical

sti�ness. This paper designs a variable sti�ness joint for upper limb

rehabilitation training. The joint adopts the variable sti�ness principle based

special curved surface. The trapezoidal lead screw in the variable sti�ness

module has a self-locking function, and the sti�ness can be maintained

without the continuous output torque of the motor. In the aspect of control,

back propagation (BP) neural network PID control strategy is used to control

the torque of variable sti�ness joint. Experiments show that this controlmethod

can e�ectively improve the torque control performance of variable sti�ness

joints in the case of low sti�ness, and the isotonic centripetal resistance training

can be realized by using the joints and control methods designed in this paper.

KEYWORDS

mechatronics, variable sti�ness actuators, rehabilitation robotics, neural network PID,

torque control

Introduction

Based on medical theory, the upper limb rehabilitation robot drives the affected

limb to carry out scientific and effective training (Xu et al., 2011), so that the patient’s

motor function can be recovered better (Lin et al., 2003). According to the process

of patient rehabilitation, the rehabilitation training stage of upper limb rehabilitation

robot includes passive training (Lizheng et al., 2015), robot-assisted training (Chang

and Kim, 2013) and resistance training (Song et al., 2014). During passive rehabilitation

training, the joints of rehabilitation robot are required to have high stiffness to

ensure the stability and high bandwidth of closed-loop position control, so as to

drive the limbs of patients to reach the specified position accurately (Gopura et al.,

2016). In the stage of assisted and resistance training, the rehabilitation robot must

have good flexibility and exert different forces on the patient’s limbs to ensure the

safety and comfort of the rehabilitation process (Marchal-Crespo and Reinkensmeyer,

2009). It can be seen that at different stages of rehabilitation training, the driving

joints of the rehabilitation robot need to have different stiffness (Ma et al., 2016).

The traditional robot usually collects a large number of position, torque, speed and
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other data by increasing the type and number of sensors on

the basis of rigid driving joints (Palazzolo et al., 2019), and

then designs a controller that can process these data effectively,

so as to achieve the effect of controlling the impedance of

the rehabilitation robot (Yuan et al., 2013). This requires that

the sensors, driving and control circuits of the rehabilitation

robot run fast enough, and the system needs to establish an

accurate dynamic model (Cestari et al., 2014). For example,

the biped robot designed by Hubicki et al. (2018) uses inertial

measurement units, encoders and other sensors to collect

large amounts of data, and then processes these data through

algorithms to achieve stable control effects. The driving joint of

the traditional rehabilitation robot is not inherently compliant

and cannot store energy, which leads to its inability to absorb

the energy of the instantaneous impact (Caldwell et al., 2015).

In recent years, some scholars have developed a variety of

rehabilitation robots with variable stiffness joints instead of rigid

joints. Vanderborgh et al. summarized the variable impedance

actuators, and classified it into active impedance by control,

inherent compliance and damping actuators, inertial actuators,

etc. based on the principle of variable stiffness and impedance

(Vanderborght et al., 2013). Yi et al. designed a variable stiffness

joint of exoskeleton (Yi et al., 2018). Yang et al. used a variable

stiffness rehabilitation robot to perform elbow rehabilitation

training for stroke patients (Yang et al., 2021). Baser and Kizilhan

designed a wearable ankle exoskeleton with variable stiffness

(Baser and Kizilhan, 2018).

According to the working principle, the working principle

of variable stiffness actuator (VSA) can be divided into variable

lever arm, special curved surface, changing the number of

elastic elements and so on. The way of changing lever arm

is to change the transmission ratio between load and spring

according to the proportion of lever arm. It is mainly composed

of load point, pivot and spring contact point. Changing any

position can adjust the stiffness of the mechanism. For example,

Chaichaowarat designed a variable stiffness spring mechanism,

which is composed of a slider, a roller and an adjustable

unsupported length leaf spring. The adjustment of the slider

position changes the spring contact point, thus obtaining the

variable stiffness characteristics (Chaichaowarat et al., 2021).

Similar variable stiffness actuators include AWAS-I (Jafari

et al., 2010), AWAS-II (Jafari et al., 2014), COMPACT-VSA

(Tsagarakis et al., 2011), etc. In the variable stiffness principle

of special curved surface, the variable stiffness mechanism is

connected in series between the reducer and the output shaft

of the joint. The stiffness control motor changes the relative

position of the cam disc to control the pretension force of the

spring to adjust the stiffness of the joint. For example, the FSJ

joint developed by Wolf, when the joint is subjected to passive

torque load or the spring preload is changed, the cam disc

rotates relatively, the spring is compressed, and the stiffness

of the joint changes (Wolf et al., 2016). Similar special surface

variable stiffness actuators include MESTRAN (Hung Vu et al.,

2011), VSM (Sun et al., 2018) and SJM-II (Park and Song, 2010).

Some variable stiffness joints adjust their stiffness by changing

the number of elastic elements. In the discrete variable stiffness

actuator designed by Hussain, the spring set is connected in

series between the drive motor and the load end. The springs are

controlled by the clutch, respectively. The on-off of the clutch

can be realized by changing the number of spring connections

(Hussain et al., 2021). In addition, there are other methods. For

example, Garabini et al. designed a soft robots that mimic the

neuromusculoskeletal system, which reproduces many of the

characteristics of an agonistic-antagonistic muscular pair acting

on a joint (Garabini et al., 2017). For the variable lever arm type

variable stiffness joint, the torque curve depends on the length

of the lever. If the length of the lever is increased, the volume

of the mechanism will increase accordingly. For the variable

number of elastic elements type, the volume of the mechanism

will also increase due to the number of elastic elements. The

ideal asymptote torque curve can be obtained only by changing

the contour of the special surface, which is easier to achieve

miniaturization in terms of volume and weight. Therefore, the

principle of variable stiffness of the special curved surface will be

used in this paper.

In terms of control, variable stiffness joints operate in a

large stiffness range. In the case of low stiffness, vibration is

often accompanied, and its torque response performance is

also affected (Albu-Schaffer et al., 2010), which reduces the

safety of human-machine interaction in rehabilitation training.

To solve such problems, Liu investigated a closed-loop torque

controlled variable stiffness actuator (VSA) combined with

a disturbance observer, and a better dynamic response with

high and low stiffness was achieved (Liu et al., 2021). Albu-

Schaffer proposed a general variable stiffness joint model

for nonlinear control design, and then designed a simple

gain scheduling state feedback controller for active vibration

reduction of weak damping joints (Albu-Schaffer et al., 2010).

Misgeld designed a gain scheduling torque controller to improve

the human-machine interaction characteristics of the joint.

The eigenvalue of the gain scheduling is determined by the

zeros and poles of the multi-channel H∞-control strategy,

which can perform gain-scheduled control on multiple stiffness

values of the joint in discrete time (Misgeld et al., 2017).

In the interactive control of the manipulator, the gradient of

the gain scheduled variable hyperplane is adjusted according

to the real-time identified environmental stiffness to achieve

stable position and torque control in different environments

(Iwasaki et al., 2002). Mengacci et al. designed an iterative

learning control scheme based on torque by decoupling the

motion/stiffness of the articulated soft robot and learning the

expected action of the robot, and accurately controlled the

position trajectory of the articulated soft robot without changing

the flexibility of the articulated soft robot. In this paper, the

PID control scheme based on BP neural network is adopted

to improve the torque response speed of variable stiffness
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actuator under different stiffness conditions (Mengacci et al.,

2020).

In this paper, based on the existing research, a variable

stiffness joint used in upper limb rehabilitation training is

designed to improve the safety and comfort of the rehabilitation

process. Compared with the previous work, the contributions of

this paper can be summarized as follows.

(1) From the mechanical design point of view, the joint

adopts the variable stiffness principle based special curved

surface. The trapezoidal lead screw in the variable stiffness

module has a self-locking function, and the stiffness can

be maintained without the continuous output torque of

the motor.

(2) From the control algorithm point of view, the PID control

based on BP neural network is adopted to improve the

torque control response performance of the elbow joint

rehabilitation robot driven by variable stiffness joints under

low stiffness by adjusting the gain parameters under

different stiffness.

(3) Based on the principle of variable stiffness, this paper

designs a variable stiffness joint for the elbow joint, and

combines the PID control method based on BP neural

network to build the experimental platform of the variable

stiffness elbow joint rehabilitation robot, and the isotonic

centripetal resistance training experiment of elbow joint is

carried out to verify the effect of BP neural network PID

torque control.

The rest of this paper is organized as follows: the second

section introduces the mechanical design of the variable

stiffness joint based on principle of special curved surface.

The third section establishes the dynamic model of the

joint, studies the PID control method based on BP neural

network, and conducts simulation verification. The fourth

section builds an experimental platform for a variable stiffness

elbow joint rehabilitation robot, and takes the elbow joint

isotonic centripetal resistance training as an example to verify

the effect of BP neural network PID torque control. The fifth

section is conclusions and discussions.

Mechanical design of variable
sti�ness joint

Mechanical structure design

As shown in Figure 1, the overall size of the variable stiffness

joint designed in this paper is 500∗110∗137.5mm, and the

total mass is 1.5 kg. According to the structure and function,

the mechanism can be divided into main drive module and

variable stiffness module. The main drive module provides the

output torque, and the variable stiffness module adjusts the joint

output stiffness.

The main drive module includes a main motor and a

harmonic reducer. The main motor is a brushless DC motor

with a rated torque of 269 mNm, and the reduction ratio

of the harmonic reducer is 100:1. Figure 2 is the schematic

diagram of the variable stiffness module mechanism. The

stiffness adjustment motor drives a pair of gears to rotate, the

gears drive the trapezoidal lead screw to rotate, the lead screw

nut moves forward, the spring is compressed, and then the cam

rotates to adjust the joint stiffness.

The specific variable stiffness module is shown in Figure 3A.

The left is the input flange connecting the main drive module,

and the right is the output flange connecting the load. The input

flange and output flange are supported by cross roller bearings.

The driving source of the variable stiffness module is a brushless

DC motor with a rated torque of 10.8 mNm. The output of

the motor is connected with a planetary reducer. The stiffness

adjustment motor is installed on the input flange. The output

of the reducer drives the gear 1 to rotate, and one end of the

gear 2 is meshed with the gear 1, the other end of the gear 2 is

connected with the trapezoidal lead screw. The trapezoidal screw

rotates to push the screw nut forward. Due to the introduction

of trapezoidal lead screw, the variable stiffness module has self-

locking function. So, the stiffness adjustment motor does not

need to output torque while maintaining the compression of

spring to reduce energy consumption. The slide block 1 installed

on the right side of the lead screw nut moves forward and

compresses the upper end of the spring. The lower end of the

spring is connected with the sliding block 2, and a cam follower

is installed on the sliding block 2. The cam follower is tangent

to the cam contour in the output flange and transmits the spring

force to the output flange.

In addition, as shown in Figure 3B, a rotary encoder is

installed on the input flange, and the magnetic steel of the

encoder is installed in the gear 3. An internal gear groove is

designed in the output flange to mesh with gear 3. When there is

relative rotation between the input flange and the output flange,

the gear 3 rotates, and the encoder collects the rotation degree of

the magnetic steel to obtain the relative rotation angle between

the two flanges, that is, the deformation angle.

Analysis of variable sti�ness
characteristics of special curved surface

In the variable stiffness joint with special curved surface, the

design of cam contour determines the stiffness characteristics

of the compliant joint, which needs to be analyzed and

designed according to the contour. The variable stiffness joint

designed in this paper is intended to be applied to the

elbow rehabilitation robot. According to the existing literature

research, the stiffness of the human elbow joint varies from 0

to 20 Nm/rad, and the output torque is 10Nm. Therefore, the
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FIGURE 1

Variable sti�ness joint model.

FIGURE 2

Schematic diagram of variable sti�ness module mechanism.

FIGURE 3

Three-dimensional model of variable sti�ness joint (A) Sectional view 1 of variable sti�ness module (B) Sectional view 2 of variable sti�ness

module.

variable stiffness joint designed in this paper should meet the

above index requirements.

Here, for the convenience of analysis, the output flange in

Figure 3A is fixed, and the cam follower is idealized as a point.

As shown in Figure 4, the cam contour is designed as an ellipse,

the center of the cam disc is the o origin, the long axis of the cam

contour is in the positive direction of the y axis, and the short

axis is in the positive direction of the x axis. The xoy coordinate

system is established.

Assuming that the length of the short axis of the ellipse

is a and the length of the long axis of the ellipse is b,

combined with Figure 4, the general equation of the elliptic
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FIGURE 4

Theoretical analysis of special surface.

FIGURE 5

Relationship between joint torque and deformation angle.

curve is parameterized:

{

x0 = a · sin (α)

y0 = b · sin (α)
(1)

According to the previous section, the input flange rotates α

rad, spring OA also rotates α rad and reach to OB position. At

this time, the tangent slope k1 of the ellipse at point B and the

length c of OB are:

k1 =
y0

x0
(2)

c =
−→
OB =

√

x02 + y02 (3)

At point B, due to the compression of the spring, the elastic

force Ft is generated, then Ft is:

Ft = 2∗kk∗
(

b− c+ l0
)

(4)

In equation (4), l0 is the initial compression of the spring,

and kk is the spring stiffness coefficient.

The slope k2 of Ft can be obtained:

k2 = −
b2∗x0

a2∗y0
(5)

According to equations (2) and (5), the slope k3 of the

tangential force Fn of the output flange can be obtained as:

k3 =

∣

∣

∣

∣

k1 − k2

1+ k∗1k2

∣

∣

∣

∣

(6)

According to equations (2)–(6), the functional relationship

between the output torque Tn, deformation angle of the variable

stiffness joint α and the initial compression of the spring l0 can

be obtained.

Tn = f
(

α, l0
)

=
2∗kk∗

(

b−
√

x02 + y02 + l0

)

∣

∣

∣

k1−k2
1+k1∗k2

∣

∣

∣

∗

√

x02 + y02∗10
−3 (7)

In equation (7), x0 and y0 are functions of α, and it can be

measured by the encoder.

The expression of static stiffness of variable stiffness joint is:

Ks =
dTn

dα
(8)

According to equation (7), the cam profile on the output

flange determines the nonlinear relationship between the output

torque Tn, the deformation angle of the variable stiffness module

α and the initial spring compression l0, which determines the

stiffness characteristics of the joint. The initial compression l0 of

the spring can be changed by the screw actuated by the stiffness

adjustment motor to adjust the joint stiffness. Take the spring
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FIGURE 6

Dynamic model of elbow joint with variable sti�ness.

FIGURE 7

PID control model based on BP neural network.

stiffness coefficient kk = 88 N/mm, the ellipse long axis a as

60mm, and the short axis b as 30mm. According to the above

theoretical equation, the relationship curve between the output

torque Tn, the deformation angle α and the spring compression

l0(0, 0.5, and 1mm) is shown in Figure 5.

It can be seen from Figure 5 that the joint output torque

curve shows an upward trend as a whole. With the increase

of deformation angle, the joint output torque curve shows an

upward trend. The rising slope of the first half is small, the joint

stiffness is low and the range of stiffness change is small, so it can

be used for resistance training. The second half of the output

torque curve has a large rising slope, high joint stiffness and

a wide range of stiffness changes, which is suitable for passive

training. The greater the initial compression of the spring l0, the

greater the joint stiffness at the same joint deformation angle α.

Finally, it is found that the range of joint deformation angle is 0–

0.4 rad, the corresponding output torque range is 0–14Nm, and

the stiffness variation range is 0–35 Nm/rad, which meets the

requirements of human elbow joint stiffness and torque output,

ant it can used in elbow rehabilitation.

Dynamic modeling and control

Dynamic model

In this section, a variable stiffness joint dynamic model

is established to derive the joint transfer function. As shown

in Figure 6, the variable stiffness joint is composed of motor,

reducer, elastic element, transmission system and load. Themain

motor provides the power source, which is output to the flexible

link through the harmonic reducer. The torque is output from

the end of the flexible link and connected with the external load.

The torque of main motor τa satisfy the following relation:

τa = Jaθ̈a + Caθ̇a + τ (9)

Frontiers inNeurorobotics 06 frontiersin.org

128

https://doi.org/10.3389/fnbot.2022.1007324
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hu et al. 10.3389/fnbot.2022.1007324

In equation (9), Ja and Ca are the inertia and damping

coefficient of the main motor, τ is the output torque of the main

motor, θa is the output angle of the main motor. Torque and

position at the output end of harmonic reducer are τb and θb. τa

and θa satisfy the following relation,

{

θa =
θb
N

τb =
τa
Nη

(10)

In equation (10), N is the harmonic reduction ratio, η is the

transmission efficiency. In this joint mechanism, the flexible link

only plays the role of transmitting torque, so the torque at both

FIGURE 8

BP neural network construction process.

ends of the flexible link has the following relationship:

τa = τc = Jcθ̈c + Ccθ̇c + τext = Ks
(

θb − θc
)

+Cs
(

θb − θc
)

(11)

In equation (11), τcis the output torque of the flexible link,

Jc is the equivalent inertia of the transmission system, Cc is

the damping coefficient of the transmission system, Cs is the

damping coefficient of the flexible element, θc is the rotation

angle of the output end, τext is the external load torque. Finally,

the dynamic model of variable stiffness joint can be obtained as:














Ta = Jaθ̈a + Caθ̇a +
τb
Nη

τb = τc = Ks

(

θa
N − θc

)

+ Cs

(

θ̇a
N − θ̇c

)

τc = Jcθ̈c + Ccθ̇c + τext

(12)

Then the variable stiffness joint transfer function is:

G (s) =
τc (s)

τa (s)
=

Jcs
2θc (s) + Ccsθc (s) + τext (s)

Jcs2θc (s) + Casθa (s) + τc(s)
Nη

(13)

PID torque control based on bp neural
network

Generally, the traditional PID control method is adopted for

the joint torque control, and the control command is τd. τd, τa

and τc has the relationship as following,

τa = kp
(

τd − τc
)

+ ki

∫

(

τd − τc
)

dt + kd
d

(

τd − τc
)

dt
(14)

In equation (14), kp, ki and kd are proportional, integral and

differential control parameters, respectively. At this time, the

joint torque transfer function is:

G1 (s) =

(

kds
2 + kps+ ki

)

G (s)
(

kds
2 + kps+ ki

)

G (s) + s
(15)

TABLE 1 Partial input vector and target vector parameters.

Input vector Target vector

Ks(Nm/rad) τd(Nm) τext(Nm) kp ki kd

3 10 5 2,862.667 42,101.83 6.594912

6 10 5 2,425.731 54,381.63 3.2941

9 10 5 3,103.1 133,517.8 2.352503

12 10 5 2,092.687 75,721.37 0.289952

15 10 5 1,648.609 52,694.09 1.162397

18 10 5 1,712.596 65,955.46 0.892257

21 10 5 1,489.212 54,583.03 0.701764

24 10 5 1,235.035 40,014.22 0.580256

27 10 5 1,134.435 36,022.09 0.477105

30 10 5 1,005.529 34,946.03 0.734407

35 10 5 980.4292 39,073.43 0.66269
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FIGURE 9

Correlation coe�cient of each sample set.

From equations (12) and (13), it can be seen that the

torque response of variable stiffness joint is related to joint

stiffness Ks, external load τext , torque command τd and PID

gain parameters. Ks and τd are determined by the control

command, and the external load τext is determined by the

human-machine interaction torque. When the traditional PID

control method is adopted, the fixed PID gain parameters are

difficult to meet the torque control performance under different

stiffness conditions, especially in the case of low stiffness,

improper parameter adjustment will produce oscillation, slow

response, large overshoot, long system stability time and other

phenomena, which will reduce the safety of in rehabilitation

training. Therefore, a PID control strategy based on BP neural

network is designed as shown in Figure 7.

BP off-line neural network can optimize the gain parameters

of PID controller for three groups of variables: different joint

stiffness Ks, external load τext and driving torque τd, so as

to improve the real-time, accuracy and stability of torque

response of joints under low stiffness furtherly. The specific

implementation process is shown in Figure 8. Select a limited

sample set (Ks, τd, τext) as the input vector, the Ks parameter

covers the range of 3–40 Nm/rad, the τd parameter covers

the range of 0–20Nm, and the τext parameter covers the

range of 0–20 Nm/rad. In the case of finite set, the optimal

kp, ki, kd parameters are used as the objective vector. Total

600 groups of samples (Combination 1: τd and τext remain

unchanged, Ks changes, and the optimized kp, ki and kd
parameters are obtained by simulation. Combination 2: Ksand

τd remain unchanged, τextchanges, and the optimized kp, ki and

kd parameters are obtained by simulation. Combination 3: Ks

and τext remain unchanged, τd changes, and the optimized kp,

ki and kd parameters are obtained by simulation). Optimized

parameters are shown in Table 1. Due to space limitations,

only some parameters are shown here. Because BP neural

network has the characteristic of back propagation, which

can improve the accuracy of target vector, this paper selects
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FIGURE 10

Joint torque response based on PID controller and

Gain-scheduled control.

BP neural network framework, its hidden layer adopts tansig

transfer function, and its output layer adopts purelin transfer

function. The transfer equation between different layers has the

following relationship:

{

a1 = tansig
(

IW1,1 · p1 + b1
)

a2 = purelin
(

LW2,1 · a1 + b2
) (16)

In equation (16), a1 is the output of the first hidden layer, a2

is the output of the first output layer, p1 is the input vector of the

first layer, IW1,1 is the weight of the first hidden layer, b1 is the

threshold of the first hidden layer, LW2,1 is the weight of the first

output layer, b2 is the threshold of the first output layer, 80%

of the random samples are used as the training set, 10% of the

samples are used as the verification set, and 10% of the samples

are used as the test set for training. As shown in Figure 9, the

abscissa represents the target output, and the ordinate represents

the fitting function between the prediction output and the target

output. In Figure 9, the regression r value of the training set is

0.90598, the regression r value of the verification set is 0.99356,

the regression r value of the test set is 0.87803, and the overall

R value is 0.91155. When the regression r value after training is

close to 1, it indicates that the error is very small.

Finally, the PID torque control model based on BP neural

network is built in Simulink for simulation analysis. Under the

conditions of low stiffness (spring compression of 0mm) and

high stiffness (spring compression of 1mm), the simulation

results are compared with the traditional PID torque control,

and the results are shown in Figure 10. It can be seen that the

response of the joint based on BP neural network PID torque

control is better than that of the traditional PID torque control

in the case of low stiffness and high stiffness, especially in the

case of low stiffness, which is more suitable for the resistance

training of the joint in the case of low stiffness. Under the

condition of high stiffness, the joint system based on BP neural

network PID torque control reaches the maximum overshoot of

11.6Nm after 0.03 s, which is 0.02 s faster than the traditional

PID torque control and the overshoot is 0.6Nm smaller. In the

case of low stiffness, the joint system based on BP neural network

PID torque control reaches the maximum overshoot of 11.8Nm

after 0.045 s, which is 0.02 s faster than the traditional PID torque

control, and the overshoot is about 1 Nm smaller.

Experimental verification

Experimental platform

In the experiment, the simulation platform developed by

Links company is used, as shown in Figure 11. On this platform,

the static stiffness experiment is carried out firstly, and then

the BP neural network PID torque control experiment is

carried out to verify the joint torque control performance under

the condition of low stiffness. Finally, the isotonic centripetal

resistance rehabilitation training experiment is carried out.

The host-computer in the experimental platform runs RT-

sim andMATLAB/Simulink software. RT-sim software compiles

the Simulink model into C code that can be executed under

VxWorks system, and the host-computer is equipped with

operation and monitoring modules. The slave-computer is

composed of VxWorks, servo motor driver. VxWorks runs the

program compiled by RT-sim, and sends the command to the

motor servo driver to control the variable stiffness joint. At the

same time, the sensor signals in the variable stiffness joint are

collected to monitor the joint state.

Static sti�ness test

Firstly, the static torque of the variable stiffness joint is

measured. When the joint is fixed, pull the rotating arm through

the tension meter to rotate. The length of the rotating arm is

30 cm, and the joint deformation angle is measured by the rotary

encoder. Under different initial spring compression, the joint

rotates evenly between 0 and 0.35 rad by the same interval, and

the measured tension value is recorded to obtain the variable

stiffness joint torque. As the deformation angle increases, the

joint torque shows an upward trend, and under the same torsion

angle, the greater the spring compression, the greater the torque,

and the greater the joint stiffness. Compared with the theoretical

value in Figure 5, the experimental value in Figure 12 has a large

error, which is mainly caused by the machining and assembly

errors of the mechanism.

Torque control experiments

The torque control experiment was carried out under the

conditions of low stiffness (spring compression of 0mm) and

high stiffness (spring compression of 1mm). PID control and

BP neural network based PID controller were used to carry out

the step response experiment, and the step command was 3 Nm.
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FIGURE 11

Principle of variable sti�ness joint experimental platform.

FIGURE 12

Torque-deformation angle curve.

As shown in Figure 13, in the low stiffness experimental

group, the time for BP neural network PID torque control to

reach the steady state is about 1.0 s, and the response time of

traditional PID controller is about 1.5 s, an increase of 0.5 s. In

the high stiffness experimental group, the time for the BP neural

network PID torque control response to reach the steady state

is about 1.2 s, the time for the traditional PID response to reach

the steady state is about 1.4 s, and the response rate is increased

by 0.2 S. It is found that the lower the stiffness is, the more

significant the effect of BP neural network PID torque control

on improving torque response is, which is more conducive to

resistance training.

Isotonic centripetal resistance training
experiment

Finally, the isometric resistance training experiment is

carried out. The tester needs to overcome the resistance

FIGURE 13

Comparison of joint torque response using di�erent control

methods.

moment of the variable stiffness joint to complete the elbow

flexion movement, and the extension movement is brought

back to the initial position by the active torque provided

by the variable stiffness mechanism, so as to complete

the isometric centripetal resistance training by reciprocating

motion. The experiment was divided into two groups. One

group set the variable stiffness joint to provide a constant

resistance torque of 8Nm under the condition of high

stiffness (spring compression 1mm) and the other group

under the condition of low stiffness (spring compression

0 mm).

Figure 14A shows the torque-time curve of isometric

concentric resistance training. 0–4s is the preparation stage

for the tester, and 4–20s is the active resistance training

stage. The human-machine interaction torque gradually rises

from 0 to 8Nm within about 1s and maintains for a period

of time. 20–30s is the relaxation stage. The human elbow

joint reaches the limit flexion position, and the elbow joint

starts to extend driven by the variable stiffness joint. The

human-machine interaction torque gradually decreases from
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FIGURE 14

Elbow isotonic centripetal resistance training (A) Torque-Time curve (B) Torque-Angle curve (C) Angle-Time curve.

8 to 0Nm. The torque-angle curve is shown in Figure 14B.

Due to the active torque of the user’s elbow joint, the

human-machine interaction torque rises sharply at 0◦ until

the mechanism starts to rotate when it overcomes the set

isotonic resistance torque of 8Nm, and the rotation angle

moves from 0 to 90◦. At this time, the elbow joint flexes to

the limit position and is about to enter the relaxation stage.

After that, the human elbow joint release active torque, and

the human-machine interaction torque drops to 0Nm at 90◦

rapidly. Then the variable stiffness joint drives the elbow to

extend, and the joint angle returns to 0 from90. The angle-

time curve in the training process is shown in Figure 14C,

corresponding to the preparation stage, the mechanism is

in the zero position and does not rotate. In the resistance

training stage, the mechanism keeps moving at a constant

speed, from 0 to 90◦. If the user maintains the torque, the

rotation angle of the variable stiffness joint does not change.

In the relaxation stage, the mechanism drives the patient’s

elbow joint to return to its original position. It can be seen

from the Figure that under high and low stiffness, the flexible

elbow rehabilitation robot can complete isometric resistance

training, and the torque is stable, which verifies that the PID

torque control method based on BP neural network designed in

this paper is suitable for torque control ability under different

stiffness again.

Conclusions

The driving joint of the traditional upper limb rehabilitation

robot is rigid, which is difficult to ensure the safety and

comfort of the rehabilitation process. To solve this problem,

this paper proposes a variable stiffness joint applied to the

elbow rehabilitation robot. The joint adopts the variable stiffness

principle of special curved surface, and the trapezoidal screw

in the joint has a self-locking function, and the stiffness can

be maintained without the continuous output torque of the

stiffness adjustment motor. In the control aspect, the BP neural

network based PID controller is used to improve the torque

control response performance by adjusting the gain parameters

under different stiffness. The experimental platform of elbow

rehabilitation robot with variable stiffness joint is built, and the

isotonic centripetal resistance training experiment of elbow joint

is carried out to verify the effect of BP neural network PID torque

control. The future work will be combined with online neural

network to match the elbow stiffness of patients in real time for

resistance rehabilitation training.
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Lower limb rehabilitation robots (LLRRs) have shown promising potential

in assisting hemiplegic patients to recover their motor function. During

LLRR-aided rehabilitation, the dynamic uncertainties due to human-robot

coupling, model uncertainties, and external disturbances, make it challenging

to achieve high accuracy and robustness in trajectory tracking. In this study, we

design a triple-step controller with linear active disturbance rejection control

(TSC-LADRC) for a LLRR, including the steady-state control, feedforward

control, and feedback control. The steady-state control and feedforward

control are developed to compensate for the gravity and incorporate the

reference dynamics information, respectively. Based on the linear active

disturbance rejection control, the feedback control is designed to enhance the

control performance under dynamic uncertainties. Numerical simulations and

experiments are conducted to validate the e�ectiveness of TSC-LADRC. The

results of simulations illustrate that the tracking errors under TSC-LADRC are

obviously smaller than those under the triple-step controller without LADRC

(TSC), especially with the change of external loads. Moreover, the experiment

results of six healthy subjects reveal that the proposedmethod achieves higher

accuracy and lower energy consumption than TSC. Therefore, TSC-LADRC has

the potential to assist hemiplegic patients in rehabilitation training.

KEYWORDS

lower limb rehabilitation robot, triple-stepmethod, linear active disturbance rejection

control, dynamic uncertainties, trajectory tracking

Introduction

Globally, stroke is a major threat to human health, and post-stroke

care has brought a substantial economic burden to society (Johnson et al.,

2019). Due to brain injury, stroke often leads to lower limb dysfunction,

which greatly reduces patients’ quality of life (Hobbs and Artemiadis, 2020).
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Therefore, rehabilitation training is needed to help these

patients recover their motor function or reduce the risk of

several medical consequences secondary to paralysis, such as

muscle atrophy and obesity (Chen et al., 2016). In traditional

rehabilitation training, the physiotherapist manually guides the

patients with impaired limbs to perform repetitive movement

training, which is labor-intensive and difficult to quantitatively

assess the level of recovery (Akdogan and Adli, 2011). In order

to reduce the workload of physiotherapists and enhance the

rehabilitation effect, many studies have been conducted on lower

limb rehabilitation robots (LLRRs), such as LOPES (Veneman

et al., 2007), HAL (Sankai, 2007), and Lokomat (Riener et al.,

2005).

Controllers are the critical factor determining the

effectiveness of LLRR-aided rehabilitation (Hussain et al.,

2013). Among the present research works, most controllers

are designed to assist dysfunctional lower limbs in tracking a

predefined trajectory (Li et al., 2021). As a model-free controller

with a simple and generic control structure, the proportional-

integral-derivative (PID) controller has been widely applied to

LLRRs (Wu et al., 2015; Zhang et al., 2016; Al-Waeli et al., 2021).

However, due to the underutilization of model information,

the robotic systems based on the PID controller show poor

robustness to external disturbances. Therefore, model-based

controllers are proposed to strengthen the anti-disturbance

ability of LLRRs. Shen et al. (2020) combined the kinematics

and friction models with adaptive robust position control to

improve the tracking performance of LLRR under a complex

interaction environment. Hernández et al. (2020) designed a

non-singular fast terminal sliding mode control for a powered

four-degree-of-freedom LLRR, showing strong robustness

to external disturbances. Based on a unilateral human-robot

dynamical model, a robust controller was designed to drive a

LLRR to follow a pre-specified trajectory (Qin et al., 2020). In

fact, the LLRR system is characterized by non-linearity, hence

the calculation and deduced process of the designed controllers

is complicated. Inspired by the triple-step method (Gao et al.,

2014; Zhou et al., 2019) proposed a triple-step non-linear

controller for LLRR to guarantee control accuracy under

different levels of interaction torque. The triple-step method

simplified the complicated design of a non-linear controller as

a triple-step design process, including the design of steady-state

control, feedforward control, and feedback control. On this

basis, the structure of the deduced controller was concise.

Dynamic uncertainties of the LLRR system are the main

issue that should be considered in controller design (Li

et al., 2021). In the LLRR-aided rehabilitation training, the

dynamic uncertainties such as human-robot coupling, model

uncertainties, and external disturbances, significantly affect

the tracking performance. Owing to the non-linear mapping

capability, Zhang et al. (2020) combined a radial basis functions

neural network (RBFNN) with a sliding mode controller to

approach and compensate for the model uncertainties and

external disturbances. Besides, Huang et al. (2022) integrated

a disturbance observer (DO) into the controller design to

compensate for dynamic uncertainties. Khamar et al. (2021)

used a non-linear DO in the backstepping sliding controller

to assess the wearer’s muscle effort and the uncertainties in

modeling. Although the control performance of LLRR can

be improved by the RBFNN and DOs, the parameters they

introduce are difficult to adjust. Long et al. (2017) presented a

controller for trajectory tracking under dynamic uncertainties

based on active disturbance rejection control (ADRC), which

facilitated the parameter tuning. First proposed by Han (2009),

the core idea of ADRC is to view the system’s external

disturbances and internal uncertainties as “total disturbance”,

estimate the real-time value of the total disturbance by an

extended state observer, and finally compensate for it through

feedback to achieve satisfying control performance. Moreover,

Gao (2003) proposed a linear version of ADRC (LADRC), i.e.,

a combination of linear extended state observer (LESO) and

linear state feedback, which simplified the control structure and

reduced the number of tuning parameters.

Although the LADRC technique is a powerful tool to

cope with dynamic uncertainties, extra model information

is necessary to further improve the control performance (Li

et al., 2022; Long and Peng, 2022). In this paper, a triple-

step controller with LADRC (TSC-LADRC) is designed for a

LLRR to accurately assist the user in tracking a predefined gait

trajectory. On the one hand, the triple-step method establishes

the main framework of a model-based controller. On the other

hand, the feedback control is modified based on the control

conception of LADRC using a second-order error auxiliary

system. Accordingly, the total disturbance will be estimated in

real time by the LESO and compensated with the feedback

control input. To validate the effectiveness of TSC-LADRC,

simulations considering the dynamic uncertainties are carried

out, and experiments with the LLRR are performed on six

healthy subjects. All results show that the trajectory tracking

performance under TSC-LADRC is more accurate and robust

than that under TSC, especially with different external loads.

System description

Mechanical structure

Based on the physiological characteristics of the human’s

lower limb, we have developed a LLRR with three degrees of

freedom, as shown in Figure 1A. The LLRR includes the hip,

knee, and ankle joints, where the hip and knee joints of this

LLRR are active joints driven by brushless motors (EC 90flat,

Maxon, Switzerland) to assist the movement of the wearer’s

lower limb in the sagittal plane. The linkage is mainly made of

lightweight aluminum and nylon materials through machining

and three-dimensional printing. Besides, both the thigh and the
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FIGURE 1

The structure of the LLRR. (A) is the actual prototype of the

LLRR. (B) is the simplified two-linkage model of the LLRR.

shank parts are designed as a two-segment mosaic structure

that can adapt to subjects of different heights. The wearer’s

lower limb is fixed to the exoskeleton by Velcro. And the fixed

points in the limb are equipped with force sensors (FSSM-

500N, Forsentek, China), which can measure the human-robot

interaction forces.

Since the exoskeleton and the wearer perform motions

in a shared workspace, the designed exoskeleton must be

safe. According to the ranges of motion for the lower limb

exoskeleton (Veneman et al., 2007), once the program detects

that the joint angle or speed is out of the normal range, the

control system will immediately stop driving the motor. In

addition, an emergency shutdown button is set to allow the

operator to turn off the motor in time. Mechanical limit plays

the ultimate role in protection. Please refer to our previous work

for more details (Zhou et al., 2021).

Dynamics model

As shown in Figure 1B, the exoskeleton can be simplified to

a two-link model in the sagittal plane. Considering the external

disturbances, joint friction torques as well as the uncertain

model parameters, the dynamics of the LLRR can be modeled

by the Euler-Lagrange method as follows:

M̂(θ)θ̈+Ĉ(θ ,θ̇)θ̇+Ĝ(θ) =τ−T (1)

T=τHR+f (θ̇)+M(θ)θ̈+C(θ ,θ̇)θ̇+G(θ) (2)

Where θ= [θ1; θ2]∈R
2 × 1, θ̇ ∈ R

2 × 1 and θ̈ ∈ R
2 × 1

are joint angle, velocity and acceleration vectors, respectively;

τ = [τ1; τ2] ∈ R
2 × 1 are the control torques; f

(

θ̇

)

∈ R
2 × 1

and τHR ∈ R
2 × 1 are joint friction torques and human-robot

interaction torques; M̂ (θ) ∈ R
2 × 2, Ĉ

(

θ ,θ̇
)

∈ R
2 × 2 and

Ĝ (θ) ∈ R
2 × 1 are the nominal inertia matrix, the nominal

centripetal and Coriolis matrix, and the nominal gravitational

vector, respectively; M (θ) ∈ R
2 × 2, C

(

θ ,θ̇
)

∈ R
2 × 2 and

G (θ) ∈ R
2 × 1 are the corresponding model uncertainties

between nominal dynamics and actual dynamics; T ∈ R
2 × 1

is defined as the total disturbances including the structural and

non-structural uncertainties.

The nominal dynamics matrixes are expressed in detail as:







































M̂(θ) =

[

M̂11(θ) M̂12(θ)

M̂21(θ) M̂22(θ)

]

M̂11(θ) = m̂1d
2
1 + m̂2l

2
1 + m̂2d

2
2 + 2m̂2l1d2 cos(θ2)+ Î1 + Î2

M̂12(θ) = m̂2d
2
2 + m̂2l1d2 cos(θ2)+ Î2

M̂21(θ) = M̂12(θ)

M̂22(θ) = m̂2d
2
2 + Î2

(3)







































Ĉ(θ , θ̇) =

[

Ĉ11(θ , θ̇) Ĉ12(θ , θ̇)

Ĉ21(θ , θ̇) Ĉ22(θ , θ̇)

]

Ĉ11(θ , θ̇) = −2m̂2l1d2 sin(θ2)θ̇2

Ĉ12(θ , θ̇) = −m̂2l1d2 sin(θ2)θ̇2

Ĉ21(θ , θ̇) = m̂2l1d2 sin(θ2)θ̇1

Ĉ22(θ , θ̇) = 0

(4)

Ĝ (θ) =

[

(m̂1gd1 + m̂2gl1) sin θ1 + m̂2gd2 sin(θ1 + θ2)

m̂2gd2 sin(θ1 + θ2)

]

(5)

Where m̂1 and m̂2 are the mass of the thigh part and the calf

part; l1 and l2 are the length of the thigh part and the calf part;

d1 and d2 are the distances from the center of mass to the center

of rotation; Î1 and Î2 are the moments of inertia of the thigh part

and the calf part.

Triple-step controller with LADRC

In this section, a position controller for LLRR is proposed

by combining the triple-step method with LADRC, in order to

ensure that the robot follows the reference gait trajectory with

high accuracy. Designed by the triple-step method, the control

framework of the position controller is shown in Figure 2. The

core concept is to divide the design process of a non-linear

controller into three steps: steady-state control is to compensate

for the effect of gravity, which can improve the steady-state

performance of the system; feedforward control takes the change

of reference dynamics into account, so as to improve the system

response speed; feedback control is designed through LADRC

using a second-order error auxiliary system, to reduce the

influence of dynamic uncertainties during trajectory tracking.
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FIGURE 2

Control framework of the triple-step controller with LADRC.

FIGURE 3

Tracking performance of TSC with di�erent loads. (A,B) are the joint angles of the hip and knee. (C,D) are the tracking errors of the hip and knee.

I, II, and III represent three cases of di�erent loads. RT, reference trajectory.

Steady-state control

By assigning zero to θ̇ , θ̈ andT, and replacing τ with τs in (1),

we can obtain the control input defined by steady-state control:

τ s = Ĝ (θ) (6)

Feedforward control

For a complex system with non-linear and time-varying

characteristics, steady-state control alone cannot achieve good

control performance. Hence, a feedforward control input is

designed to improve the system response speed by considering

the variation of the reference dynamics.

By defining θ̈ = θ̈ r , θ̇ = θ̇ r , τ = τ s + τ f and assigning zero

to T in (1), the control input defined by the reference-dynamics-

based feedforward control can be obtained:

τ f = M̂ (θ) θ̈ r + Ĉ
(

θ , θ̇ r
)

θ̇ r (7)

where θ̇ r , θ̈ r∈R
2 × 1 are the derivative and the second

derivative of the reference joint angle θ r .
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FIGURE 4

Tracking performance of TSC-LADRC with di�erent loads. (A,B) are the joint angles of the hip and knee. (C,D) are the tracking errors of the hip

and knee. I, II, and III represent three cases of di�erent loads. RT, reference trajectory.

FIGURE 5

Tracking errors of TSC-LADRC under di�erent values of ωo. The part plots are the initial response of joints’ tracking errors in the time interval [0,

0.5s].
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FIGURE 6

Tracking performance of the exoskeleton robot under TSC-LADRC and TSC. (A,B) are the joint angles of the hip and knee. (C,D) are the tracking

errors of the hip and knee. RT, reference trajectory.

FIGURE 7

The mean values of each evaluation index in all experiments: (A) RMSE results of hip joint; (B) RMSE results of knee joint; (C) Energy index. The

error bars indicate the standard errors. The asterisk reveals significant di�erence (p<0.05).
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Feedback control

As for the dynamics equation of the non-linear exoskeleton

in (1), the uncertainties such as external disturbances and the

change of structural parameters will degrade the performance of

the controller. Therefore, it is significant to design a feedback

control input to improve the accuracy and robustness of the

non-linear system.

Since M̂ (θ) is a positive definite symmetric matrix, the

dynamics equation (1) can be rewritten as:

θ̈ =M̂ (θ)−1 (τ − T)−M̂ (θ)−1 Ĉ
(

θ , θ̇
)

θ̇ − M̂ (θ)−1 Ĝ (θ) (8)

By letting τ = τ s + τ f + τu and defining the tracking error

e=θ r − θ , we can obtain:

ë = M̂ (θ)−1 Ĉ
(

θ , θ̇
)

θ̇ − M̂ (θ)−1 Ĉ
(

θ , θ̇ r
)

θ̇ r

−M̂ (θ)−1
τu + M̂ (θ)−1 T (9)

Based on the LADRC, a second-order error auxiliary system

is defined:

ë = M̂ (θ)−1 T + (b− b0) u+ b0u (10)

Where e = [e1; e2], u = [u1; u2], and b = diag
(

b1, b2
)

are

the output, the input, the dynamic characteristics of the auxiliary

system respectively, and b0 = diag
(

b01, b02
)

are the presetting

values of the dynamic characteristics.

τu = −M̂ (θ) bu+ Ĉ
(

θ , θ̇
)

θ̇ − Ĉ
(

θ , θ̇ r
)

θ̇ r (11)

The second-order auxiliary system constructed in (10) is

studied as follows.

Defining the total disturbance as d =
[

d1; d2
]

=

M̂ (θ)−1 T+(b− b0) u, the auxiliary system can be rewritten as:

ëi = di + b0iui, i = 1, 2 (12)

The core concept of LADRC is to estimate the real-

time action value of the external disturbances and internal

uncertainties, and compensate for it in the feedback to eliminate

the influence of the total disturbance and thus enhance the

performance of disturbance rejection. Specifically, the value of

di can be estimated as d̂i by LESO.

The extended state space model of (12) can be expressed as:



















ẋi = Aixi + Biui + Eidi

ei = Cixi

(13)

Where xi =
[

ei; ėi; di
]

is the extended state vector, Ai =






0 1 0

0 0 1

0 0 0






, Bi =

[

0; b0i; 0
]

, Ei = [0; 0; 1], Ci = [1, 0, 0 ].

The corresponding continuous LESO is:



















ȯi = Aioi + Biui + Li
(

ei − êi
)

êi = Cioi

(14)

Where oi = [zi1; zi2; zi3] =
[

êi; ˆ̇ei; d̂i

]

is the state

vector of the observer, and Li = [βi1;βi2;βi3] is defined as
[

3ωoi; 3ω
2
oi;ω

3
oi

]

, so that the gain vector of the observer is

uniquely related to the bandwidth of the observer, i.e., ωoi. The

explanation will be given in Section Stability of the LESO.

Replacing ei− ėi withCi (xi − oi), the observer equation can

be rewritten as:























ȯi = Aeioi +
[

Bi Li

]

uci

yi = oi

(15)

Where uci = [ui; ei] is the combined input of the observer,

yi = oi is the observer output, and Aei = Ai − LiCi.

For the second-order error auxiliary system, LESO can

estimate the external and internal disturbances in real time.

Therefore, the integrator in classical PID for eliminating static

error under constant disturbance is no longer needed. The linear

state feedback control law is further simplified to a proportional–

derivative controller:

u0i = −kLpizi1 − kLdizi2 (16)

Where zi1 and zi2 are states obtained from LESO; kLpi and

kLdi are the gain coefficients, defined as kLpi = ω2
ci and kLdi =

2ωci, based on the closed-loop transfer function of the auxiliary

system (12):

Gi =
kLpi

s2 + kLdis+ kLpi
=

ω2
ci

(s+ ωci)
2

(17)

In this way, the auxiliary system becomes a pure second-

order system without zeros and the controller parameters are

uniquely related to the controller bandwidth, i.e., ωci.

Remark 1: The ways to determine the gains of the LESO and

the linear error feedback control are termed as ωo-Optimization

and ωc-Optimization respectively (Gao, 2003). The empirical

value of the controller bandwidth ωci is one-third to one-

fifth of the observer bandwidth ωoi. Generally as the value
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of bandwidth increases, the estimated error decreases and the

controller performs better. When the bandwidth increases to a

certain extent, the observer will introduce high-frequency noise

and reduce the robustness of the system (Han et al., 2021).

Since the bandwidths are significantly related to the control

performance of the system, the tuning process of the controller

is greatly simplified.

The control input of the error system is designed as follows

to reject the estimated disturbance:

ui =
u0i − zi3

b0i
=

−kLpizi1 − kLdizi2 − zi3

b0i
(18)

Therefore, the final control input of feedback control is:

τu = M̂ (θ) bb−1
0

(

KLpZ1 + KLdZ2 + Z3
)

+Ĉ
(

θ , θ̇
)

θ̇ − Ĉ
(

θ , θ̇ r
)

θ̇ r (19)

whereb = diag
(

b1, b2
)

, b0 = diag
(

b01, b02
)

,

KLp = diag
(

kLp1, kLp2
)

, KLd = diag
(

kLd1, kLd2
)

,

Z1 = [z11; z21] Z2 = [z12; z22], Z3 = [z13; z23 ].

Sum up (6), (7), and (19), and the final control law of the

triple-step controller with LADRC is obtained as:

τ = τ s + τ f + τu = M̂ (θ) bb−1
0

(

KLpZ1 + KLdZ2 + Z3
)

+M̂ (θ) θ̈ r + Ĉ
(

θ , θ̇
)

θ̇ + Ĝ (θ) (20)

Stability analysis

Assuming the derivative of the total disturbance ḋi

is bounded, the closed-loop system (1) can be bounded-

input-bounded-output stable under the triple-step controller

with LADRC.

Stability of the LESO

Defining the estimated error of the observer as

e∗i = xi − oi =
[

e∗i1; e
∗
i2; e

∗
i3

]

(21)

and subtracting (13) and (14), we can obtain the error

equation of LESO:

ė
∗

i = Aeie
∗

i + Eiḋi (22)

where

Aei =







−βi1 1 0

−βi2 0 1

−βi3 0 0






(23)

The characteristic polynomial of Aei is

λ (s) = s3 + βi1s
2 + βi2s+ βi3 (24)

By the way of ωo-Optimization, βi1 = 3ωoi, βi2 = 3ω2
oi,

βi3 = ω3
oi, and thus all the roots of λ (s) are in the left part of the

complex plane. Based on this, the LESO is obviously bounded-

input-bounded-output stable because ḋi is bounded (Qing et al.,

2007).

Stability analysis of the triple-step controller
with LADRC

According to the second-order error auxiliary system

defined by (10) and the control input defined by (18), we

can obtain:



















ë = d + b0u

u = −b−1
0

(

KLpZ1 + KLdZ2 + Z3
)

(25)

which can be simplified as:

ë+ KLpZ1 + KLdZ2 + Z3 = d (26)

Combining (21) with (26), the dynamics equation of the

tracking error can be obtained:

ë+ KLpe+ KLd ė = KLpE
∗

1 + KLdE
∗

2 + E
∗

3 (27)

where E
∗

1 =
[

e
∗

11; e
∗

21

]

, E
∗

2 =
[

e
∗

12; e
∗

22

]

, E
∗

3 =
[

e
∗

13; e
∗

23

]

.

As stated in Section Stability of the LESO, as long as Aei is

a Hurwitz matrix and ḋ is bounded, the boundness of E
∗

1, E
∗

2

and E
∗

3 can be guaranteed. Besides, KLp and KLd are positive-

definite by the way of ωc-Optimization. Therefore, according

to the Routh criterion, the tracking error e is bounded and the

system is bounded-input-bounded-output stable.

Simulation

Simulation setup

The uncertainties of the dynamics model, such as the

uncertainty of model parameters, sensor measurement noises,

external disturbances, load changes and so on, have a significant

impact on the performance of a model-based control method.

In this section, numerical simulations with uncertainties are

carried out in Matlab (R2020b, MathWorks), to verify the

excellent performance of the triple-step controller with LADRC
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(TSC-LADRC) compared with the original triple-step controller

(TSC). The control law of TSC is expressed as (Zhou et al., 2019):

τ = M̂ (θ)

(

Kpe+ Ki

∫

edt + Kd ė

)

+ M̂ (θ) θ̈ r

+Ĉ
(

θ , θ̇
)

θ̇ + Ĝ (θ) − τHR (28)

Where Kp, Ki and Kd denote the proportional, the integral

and the derivative gain vectors.

The nominal physical parameters are set as m̂1 = 2.582 kg,

m̂2 = 3.192 kg, l1 = 0.390 m, l2 = 0.464 m, d1 = 0.328 m,

d2 = 0.355 m, and the actual mass parameters are set as m1 =

m̂1 × 120%, m2 = m̂2 × 120%. Referring to Yang et al. (2019),

the interaction torques are assumed to be periodic, i.e., τHR =

[2 cos (0.2πt) ; 2 sin (0.2πt)]. The reference angle of each joint is

fitted from a healthy subject’s gait data (Zhou et al., 2021). The

trajectory’s period is set to 10s and a simulation includes three

cycles. All the simulations are conducted with a sample time

0.01s. For simplicity, the observer bandwidths of hip and knee

joints are set to be the same value ωo = 60, and the controller

bandwidth is one-third of the observer bandwidth. Moreover,

b = diag (10, 10),b0 = diag (5, 5),Kp = diag (950, 1, 020),Ki =

diag (80, 90),Kd = diag (110, 130 ).

The interaction between the wearer and the exoskeleton

can be measured by force sensors. However, it is difficult to

accurately measure the disturbances exerted by the time-varying

load through the force sensors. Hence, in order to demonstrate

the robust control performance of TSC-LADRC against external

loads, three sets of time-varying external torques with different

magnitudes are applied to the system to simulate different

external loads, i.e., (I) τL1 = 5 cos (0.4πt), τL2 = 5 sin (0.4πt);

(II) τL1 = 10 cos (0.4πt), τL2 = 10 sin (0.4πt); and (III) τL1 =

15 cos (0.4πt), τL2 = 15 sin (0.4πt ).

Simulation results

The results of the simulations are shown in Figures 3, 4. It

can be seen from Figure 3 that TSC is able to follow the reference

trajectories. However, the presence ofmodel uncertaintiesmakes

it difficult to reduce the tracking errors. Furthermore, TSC is

susceptible to the changes of the load. As the load increases, the

tracking errors of TSC increase significantly, with the maximum

errors of the two joints exceeding 0.05 and 0.1 rad, respectively.

By contrast, the absolute value of the tracking errors shown in

Figures 4C,D are almost less than 0.02 and 0.04 rad, respectively,

demonstrating that the proposed TSC- LADRC is robust against

different external loads and can achieve higher control accuracy.

To further verify the effect of the observer bandwidth

described in Remark 1, the simulation results of TSC-LADRC

under different bandwidths are shown in Figure 5. External

loads are fixed to τL1 = 5 cos (0.4πt) and τL2 = 5 sin (0.4πt).

TABLE 1 Control parameters.

Method Parameter Value

TSC-LADRC b diag (0.3, 0.5)

b0 diag (1, 1)

ωo diag (36, 36)

ωc diag (12, 12)

TSC Kp diag (76.01, 126.78)

Ki diag (91.28, 253.57)

Kd diag (2.11, 5.87)

For simplicity, the observer bandwidths of hip and knee joints

keep the same value ωo. From Figure 5, the larger the value

of ωo, the smaller the tracking errors, which means larger

observer bandwidths can enhance the control performance of

TSC-LADRC. Besides, when the bandwidth increases to 70, the

observer will introduce high-frequency noise and reduce the

smoothness of the trajectories. These results are consistent with

what we described in Remark 1, hence we can intuitively set the

parameters by control performance.

Experiment

Experiment protocol

To further validate the superiority of the proposed

method to the original triple-step controller, experiments were

conducted on the actual exoskeleton robot, based on LADRC-

TSC and TSC, respectively. Six healthy subjects were recruited

to perform passive trajectory tracking experiments on the LLRR

(four males and two females; age, 24.33 ± 2.56 years; height,

1.69 ± 0.07m; weight, 59.33 ± 7.76 kg). The reference angle

of each joint and the sampling time were set the same as

those in the simulations. Each subject was asked to perform

five experiments for each controller. The experimental operator

assisted the subjects in getting familiar with the LLRR before

the experiments. Besides, the ethical approval of our study

was authorized by the Ethics Committee of Guangdong Work

Injury Rehabilitation Center and written informed consents

were signed by all subjects. The control parameters of TSC

and TSC-LADRC shown in Table 1 are chosen according to the

control performance by a trial-and-error method.

During the experiments, the workflow of the robotic system

can be described as follows. First, the actual positions of

the joints are measured using the angle encoders, which are

assembled with the joint motors. Second, a data acquisition

board (NI USB-6341, National Instruments, USA) transfers

the angle data to a laptop computer with an Intel i5 12500H

CPU (2.5 GHz) and 16 GB of RAM. Next, the computer

processes the signals in LabVIEW 2018 software based on the
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position controller. The software generates the control input

and translates it into pulse width modulation (PWN) signals.

Finally, the PWN signals are transferred to the data acquisition

board through a USB interface, and the board sends the signals

to the motor drivers, which can supply specific voltages for the

joint motors. Meanwhile, the actual positions of the joints are

measured again. Therefore, the robot can be driven to follow the

reference angles based on this workflow.

Evaluation method

To evaluate the control performance of TSC-LADRC, we

calculate the root mean square error (RMSE) based on the

trajectory tracking errors of the hip and knee joints, respectively:

RMSE =

√

1

n

∑

n
k=1

e2
(

k
)

(29)

Where e
(

k
)

is the tracking error at the kth sampling time

point, and n is the sample number.

Besides, we calculate the amount of energy that motors

consume during trajectory tracking, based on an energy index

E (Jiang et al., 2017):

E =
∑

2
i=1

∫ l

0
|τi (t)| dt (30)

Where τi (i=1, 2) is the control torque and l is the length of

the torque signal.

The two evaluation indicators were calculated across each

experiment. All the indicators are expressed in the form of

mean± standard error. And the paired t-test with a significance

level of 0.05 was utilized to test the effect of the control

algorithms statistically.

Experiment results

The tracking results in one experiment are shown in

Figure 6. TSC can assist the LLRR in following the reference

angles. However, due to the factors such as friction, sensor

noise, model uncertainties, and so on, the actual trajectories

based on TSC have undesirable chattering phenomena and

deviate from the reference trajectories at some point. Compared

with TSC, the proposed TSC-LADRC is able to realize more

accurate trajectory tracking, and the problem of chattering

can be reduced. From Figures 6C,D, the maximum tracking

errors of TSC-LADRC are almost half smaller than those

of TSC.

The calculation results of RMSE are shown in Figures 7A,B.

The RMSE results of the TSC- LADRC are 0.0086 ± 0.0007

and 0.0179 ± 0.0005 rad, while the RMSE results of TSC

are 0.0173 ± 0.0017 and 0.0286 ± 0.0035 rad, respectively.

It can be seen from Figures 7A,B that the RMSE results

of the TSC-LADRC are reduced significantly by 50.29 and

37.41% respectively compared with those of TSC. Besides, the

standard error of the RMSE results under TSC-LADRC is

less than that under TSC, which means that the proposed

controller is more robust than the TSC when coping with

different loads. Hence, the TSC-LADRC can improve the

accuracy and robustness of trajectory tracking for the lower limb

rehabilitation robot.

The energy consumption of each controller is given in

Figure 7C. We can see that the energy consumption of

LADRC-TSC is less than that of TSC in all experiments. The

average energy consumption of LADRC-TSC is 1,414.62 N2m2s

and that of TSC is 2,081.00 N2m2s, showing a significant

difference. From the above results, it can be concluded that

TSC-LADRC not only realizes more accurate and robust

trajectory tracking but also achieves less energy consumption

than TSC.

Discussion

Control accuracy and robustness are critical during

robot-aided rehabilitation training, while LLRR is

vulnerable to dynamic uncertainties due to the unexpected

behavior of stroke patients, model uncertainties,

and external disturbances (Yang et al., 2019, 2020).

In this study, TSC-LADRC was a robust position

controller that addressed the dynamic uncertainties in

trajectory tracking through a simple and easy-to-apply

control structure.

Our previous work has verified that TSC can guarantee

control accuracy under different interaction torque levels (Zhou

et al., 2019). However, the simulation results in this study

revealed that the model errors and external loads would degrade

the tracking performance of TSC. Compared with TSC (Zhou

et al., 2019), the key feature of TSC-LADRC was to define

a second-order error auxiliary system, which could estimate

and reject the total uncertainties based on the LADRC (Gao,

2003). On the other hand, the parameter tuning of TSC-

LADRC was more straightforward than that of TSC. Based

on LADRC (Gao, 2003), TSC-LADRC had only two main

parameters to be tuned, the controller bandwidth ωci and the

observer bandwidth ωoi. Moreover, an empirical setting of ωci

was 1
5 ∼ 1

3ωoi, meaning that the tuning of TSC-LADRC

was further simplified. From the simulation results shown

in Figure 5, the tracking errors decreased with the observer

bandwidth increasing, which was consistent with the results of

Long et al. (2017). Therefore, the main control parameter ωoi

of TSC-LADRC was directly related to the control performance

and easy to be tuned.

Frontiers inNeurorobotics 10 frontiersin.org

145

https://doi.org/10.3389/fnbot.2022.1053360
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Peng et al. 10.3389/fnbot.2022.1053360

Trajectory error directly reflects the tracking ability of

the position controller. Compared with TSC, the decrease in

RMSE values of TSC-LADRC demonstrated that the tracking

ability of TSC-LADRC improved significantly, which could

be explained by the reason that the total disturbances of the

robotic systemwere estimated and compensated by the LADRC-

based feedback control. It is worth mentioning that, the RMSE

values of TSC-LADRC were smaller than the RMSE results

of Huang et al. (2022), and the tracking errors shown in

Figures 6C,D were under the average errors of Zhang et al.

(2020). Thismeans that, compared with theDO-based controller

(Huang et al., 2022) and RBFNN-based controller (Zhang

et al., 2020), TSC-LADRC not only facilitates the parameter

tuning, but can also address the dynamic uncertainties and

improve the tracking accuracy. Moreover, compared with TSC,

the decrease in E value of TSC-LADRC demonstrated that

the energy consumption efficiency of the controller improved

significantly (Jiang et al., 2017). We attributed this phenomenon

to the fact that, by combining LADRC with TSC, small and

bounded tracking errors were guaranteed, which could also

lead to a smaller feedback gain in the control law. For the

rehabilitation robot system, the energy reduction is beneficial to

improving the portability of the exoskeleton design (Ferris et al.,

2007).

In future work, experiments will be carried out on patients

withmotor dysfunction to further verify the clinical effectiveness

of TSC-LADRC. Moreover, the LLRR will be combined with

treadmill and the motor performance of the wearer’s non-

paretic limb will be assessed in real time. Based on this real-

time assessment, we will focus on the adaptation law of the

observer bandwidth to improve patients’ gait symmetry and

promote their active effort (Wolbrecht et al., 2008; Zhong et al.,

2022).

Conclusion

In this study, a triple-step controller with LADRC

was proposed for a LLRR to improve gait tracking

performance. Under the design framework of the triple-

step method, LADRC was incorporated into the feedback

control to improve the accuracy and robustness against

dynamic uncertainties. Results of numerical simulations

and experiments showed that TSC-LADRC could achieve

better control performance than TSC. Moreover, our

proposed controller facilitated the tuning of control

parameters. Therefore, it has the potential to be an easy-

to-implement position controller for LLRRs to achieve

promising performance, and can be extended to other

rehabilitation robots.
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This paper presents a task prioritization strategy based on a generic underwater

task goal classification transformation for multitasking underwater operational

tasks: attitude control, floating manipulation, collision-free motion, especially

optimizing trajectory of the end-e�ector of an underwater vehiclemanipulator

system (UVMS) in a complex marine environment. The design framework aims

to divide the complex underwater operational tasks into UVMS executable

generic task combinations and optimize the resource consumption during

the whole task. In order to achieve the corresponding underwater task

settings, the system needs to satisfy di�erent task scheduling structures.

We consider the actual application scenarios of the operational goals and

prioritize and define each category of task hierarchy accordingly. Multiple

tasks simultaneously enable fast adaptation to UVMSmovements and planning

to complete UVMS autonomous movements. Finally, an underwater vehicle

manipulator system implements the task prioritization planning framework for

a practical scenariowith di�erent constraints on di�erent goals. We quickly and

precisely realize the interconversion of di�erent tasks under goal constraints.

The autonomous motion planning and real-time performance of UVMS are

improved to cope with the increasing operational task requirements and the

complex and changing practical engineering application environments.

KEYWORDS

underwater vehicle manipulator system, task prioritization strategy, motion planning,

trajectory optimization, nonlinear optimization

Introduction

As the largest ecosystem on Earth, the ocean regulates not only global climate change

but also supports global economic development by providing humans with productive

resources such as protein, water, and energy. In the past decades, understanding and

developing the oceans require various high technologies and equipment, including

underwater robots, which have been the focus of attention worldwide. In particular, the

underwater vehicle manipulator system (UVMS) plays a pivotal role in national projects

[RAUVI (Sanz et al., 2011) or ARCHROV (Casalino et al., 2012)] and European projects

[FP7 STREP TRIDENT (Sanz et al., 2010), PANDORA (Heshmati-Alamdari et al., 2018),

MORPH, Eurofelts2 (Olguin-Diaz et al., 2013), etc.] about underwater robots, which

indicates that the emergence as one of the most powerful tools for human research and

exploitation activities of marine resources.
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Due to the redundancy of degrees of freedom, nonlinearity,

strong coupling, time variation, high dimensionality, low

bandwidth of sensor data acquisition, and interference by

hydrodynamic forces, the system design, autonomous control,

and operation planning of UVMS has become a challenging

topic in the field of underwater robotics at home and abroad.

Since the underwater environment is different from the

surface, the realization of the control task of the robot system

becomes more difficult. The control problem of UVMS as

a redundant system is challenging to be solved completely.

However, the redundancy characteristics of the system can be

explored reasonably to perform multiple tasks simultaneously

and ensure that each task is eventually completed. Therefore,

it is necessary to coordinate the motions of the body and the

manipulator when meeting the operational task requirements

(Fujie et al., 2020). The most commonly used methods

for motion planning are the minimum parametric solution

method, the weighted pseudo-inverse method, the gradient

projection method, and the task prioritization method to

achieve UVMS motion planning (Whitney, 1969). On top of

this method, some scholars have improved and extended it

by introducing the weight matrix into the robot body and

manipulator’s joints to achieve weighted parametric optimality

in robot configuration. Gianluca Antonelli in Italy proposed

a task priority-based planning method for UVMS motion,

which sets the primary and secondary tasks, prioritizes to

ensure the completion of the primary task, and completes

the secondary tasks as much as possible under the premise

of completing the primary task (Han et al., 2011). Task

prioritization methods are used to decide the order of task

execution according to the task priority level when multiple

tasks are in conflict and are often used to solve redundancy

problems. For example, Antonelli and Chiaverini (1998), Cieslak

et al. (2015), Changmi (2022), and Gancet et al. (2016) used

this approach. Tang et al. (2017) proposed an acceleration

level task priority redundancy decomposition method. Simetti

et al. (2018) proposed a task priority approach that can be

applied to different scenarios in UVMS. The multitask weight

gradient method has also been used for secondary task weight

assignment (Wang et al., 2017). Sotiropoulos et al. (2015)

proposed a fast motion planning algorithm for UVMS in

semi-structured environments. Youakim et al. (2017) used

different motion planning methods to simulate and analyze the

motion of an underwater manipulator, solving the problem of

“which planner to choose”. Depending on the specific situation,

different strategies are needed for the dual-arm problem (Moe

et al., 2014; Bae et al., 2018) and the cooperative operation

problem (Xuefeng and Xinqian, 2000; Chang, 2004; Conti

et al., 2015; Simetti and Casalino, 2016). Some researchers have

developed analysis software packages, such as UWSim (Prats

et al., 2012) and MoveIt! For example, it is guaranteed that

the end position pose of UVMS reaches the desired value,

and then constraints such as system energy consumption or

manipulator limit are implemented. Subsequently, based on this

algorithm, researchers introduced the fuzzy theory to adjust

the parameters online for the problem of optimal allocation of

primary andmultiple secondary tasks (Antonelli and Chiaverini,

2000) to improve task self-adaptability and achieve multitask

planning. The literature (Podder and Sarkar, 2000) decomposed

the overall motion into the body and the manipulator motion

based on the response differences between the body and the

manipulator systems in the dynamics model. Based on the

UVMS kinetic model, Huang Hai et al. of Harbin Engineering

University proposed pairwise optimization combined with a

genetic algorithm for trajectory planning of UVMS motion

(Huang et al., 2016), which obtained a set of hull positions and

manipulator joint angles by genetic, crossover, and variation

operations. If the set of sequences satisfied the error range, then

the adaptive function was compared and continuously iterated

to obtain the optimal global solution.

However, most of the above studies consider a single task

during planning. Few have come to deal with task coordination

and planning of transitions between tasks in underwater vehicle

manipulator system. Tasks can be kinematic (position) or kinetic

(force) goals for robot motion control. The ability of a robot

to accomplish a goal depends on its physical limitations and

surrounding environmental obstacles. Nakamura et al. (1987)

introduced the concept of task prioritization associated with the

inverse problem of redundant degree manipulator kinematics

to determine joint motions with sequential tasks. A general

framework for managing multiple tasks of highly redundant

robotic systems was proposed in Siciliano and Slotine (1991),

but only equality tasks were considered. Researchers tended to

transform inequality tasks into equality tasks with the highest

priority (Sentis and Khatib, 2005; Mansard and Chaumette,

2007), which could lead to discontinuities. Mansard et al. (2009)

used a weighted solution to overcome this drawback with a

limited number of inequalities. Inspired by the sequential least-

squares formulation of the classical task framework (Jin, 1996),

Kanoun et al. (2011) extended the task prioritization framework

to inequality tasks. They applied the algorithm to the humanoid

robot HRP-2. While much work has been done at the UVMS

control level, many scholars have proposed many approaches to

the trajectory tracking control of UVMS. Han et al. considered

the effect of external disturbances and proposed nonlinear H-

optimal control with disturbance observer for implementing

tracking control of UVMS in Ref. (Han and Chung, 2008).

Mohan et al. proposed an indirect adaptive control method

based on the Kalman filter for autonomous operation of

UVMS, which overcomes the drawbacks of existing disturbance

observer and direct adaptive control. The method can target

the consideration of load compensation, underwater currents,

or external disturbance compensation. Xu et al. proposed a

neuro-fuzzy-based intelligent control algorithm for operational

control of UVMS. The proposed decentralized neural network

compensator was used to estimate UVMS dynamics, which can
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better cope with load variations and hydrodynamic disturbances

(Xu et al., 2012). Olguin-Diaz et al. (2013) proposed a force-

motion-based control framework for operational control of

UVMS, which does not require prior modeling of UVMS

dynamics and applies a second-order model-free sliding mode

control method to calculate the control rate in the force-motion

framework. Lynch and Ellery (2014) combined feedback and

a feedforward approach to achieve robot attitude and position

stabilization for effective manipulator control. However, the

problem of task planning as the highest level of the control

system, task goal assignment, and transformation during under-

water tasks performed by UVMS remains a critical issue in the

field of robotics. Although studies consider the uncertainty of

its operation in the real world, this is an open research area that

needs to produce robust planning algorithms.

Optimization is a high-level task in trajectory planning

to seek safety when per-forming tasks in a cluttered, dense,

and complex underwater environment. Since resources are

limited in the marine environment, mission planning needs to

be done under the given constraints, solving its underwater

constraints, optimization objectives, physical limitations, and

resource invocation problems. Therefore, this paper focuses on

the UVMS-based task prioritization strategy. Here, we define

the hierarchy of underwater control tasks and their priority

relationships. The lowest priority optimization objective is a

linear constrained quadratic programming problem. Multiple

objective functions with priority equation constraints on the

tasks define this optimization problem in this study. The

main contributions of this paper are twofold: (1) We develop

a UVMS-based task prioritization framework to select the

priority of the control tasks in terms of the hierarchy of

tasks used and the difference in the priority of the objectives.

We give the final planning results in task sequences and

resource allocation schemes for each phase, which has been

achieved successfully. In addition, we deal with the difficulties

of multiple task interconversion activation and multi-objective

classification definition at one time. Furthermore, the proposed

task prioritization framework can extend widely to underwater

operations in real scenarios. (2) Based on the highest objective

optimization as the lowest priority objective setting, we propose

a soft constraint optimization method to avoid possible

collisions and expect the optimization trajectory to reach the

ideal trajectory to ensure the underwater task execution of

high quality.

The rest of this paper is organized as follows. In Section

UVMS system modeling, we complete the modeling of the

UVMS. Section Task Planning presents the task prioritization

framework composition, defines the division of control

objectives and control tasks, and provides detailed definitions

of the five categories of tasks. Section Trajectory planning

explains the trajectory optimization algorithm and proposes an

improved collision avoidance method based on soft constraints.

In Section Simulation results, we develop code for the task

manager and part of the kinematic control layer, do the

most important related simulation experiments, and verify the

method’s effectiveness with two case studies. Finally, Section

Conclusions gives conclusions and future work.

UVMS system modeling

As shown in Figure 1, the UVMS consists of a vehicle and

a seven-function manipulator, which is very flexible and well

suited for task scenarios with continuous underwater operations.

As shown in Figure 2, where the fixed inertial frame of the

world < w >, the vehicle frame of the UVMS < v >, the sensor

frame < s > and the operational target frame < o >, the tool

frame< t>.

Kinematics of UVMS

The kinematics of the end-effector needs to be represented

by the whole system, and the system’s structure c is described by

a vector of the parameters of the degrees of freedom of each part

of the structure.

c =

[

q

η

]

(1)

where q is the description vector of the underwater manipulator

q =







q1
:

qn






(2)

where η is the description vector of the vehicle

η =

[

η1

η2

]

∈ R6 (3)

The relationship between the Euler angular derivative (RPY) and

the angular velocity υ2 of the vehicle chassis is shown below.

η1 =







x

y

z






, η2 =







φ

θ

ψ






(4)

.
y =

[ .
q

ν

]

ν =

[

ν1

ν2

]

ν1 =v v

ν2 =v w
(5)

where the relationship between the Euler angular rate (φ̇, θ̇ , ψ̇)

and the angular velocity (p, q, r) of the object in the ontological

coordinate system is given by the following equation.















φ̇ = p+ q(sinφ tan θ)+ r(cosφ tan θ)

θ̇ = 0+ q(cosφ)+ r(− sinφ)

ψ̇ = 0+ q(sinφ/ cos θ)+ r(cosφ/ cos θ)

(6)
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FIGURE 1

UVMS system structure diagram.

FIGURE 2

The UVMS and its relevant frames.
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Putting it into matrix form yields







φ̇

θ̇

ψ̇






= J







p

q

r






(7)

For the angular velocity, the rotation matrix J(η) is

J(η) =







1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ






(8)

i.e.,






φ̇

θ̇

ψ̇






=







1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ






υ2 (9)

Therefore, the following relationship exists between the world

frame<w> of the Earth and the vehicle frame< v> of UVMS.

wẋ = Jvẏ (10)

Dynamics of UVMS

This part is modeled by the Lagrangian method. The kinetic

energy of UVMS consists of two parts: the translational kinetic

energy and the rotational kinetic energy. The mathematical

expression is

Ti =
1

2
mi ṙ

2
i +

1

2
Jiω

2
i (i = 0, 1, 2) (11)

where

ω0 = α̇Z0;

ω1 = (α̇ + θ̇1)Z1; (12)

ω2 = (α̇ + θ̇1 + θ̇2)Z2

The kinetic energy of the entire single-arm system is

T =

2
∑

i=0

Ti

=
1

2
m0

(

ẋ20 + ẏ20

)

+
1

2
J0ω

2
0 +

1

2
m1

(

ẋ21 + ẏ21

)

+
1

2
J1ω

2
1 +

1

2
m2

(

ẋ22 + ẏ22

)

+
1

2
J2ω

2
2

= f1

(

ẋ20 + ẏ20

)

+ f2α̇
2 + f3

(

α̇ + θ̇1
)2

+ f4
(

α̇ + θ̇1 + θ̇2
)2

+f5α̇
(

ẋ0 cosα − ẏ0 sinα
)

+ f6
(

α̇ + θ̇1
)

[

ẋ0 cos (α + θ1)− ẏ0 sin (α + θ1)
]

+f7
(

α̇ + θ̇1 + θ̇2
)

[

ẋ0 cos (α + θ1 + θ2)

− ẏ0 sin (α + θ1 + θ2)

]

+f8α̇
(

α̇ + θ̇1
)

cos θ1 + f9α̇
(

α̇ + θ̇1 + θ̇2
)

cos (θ1 + θ2)

+f10
(

α̇ + θ̇1
) (

α̇ + θ̇1 + θ̇2
)

cos θ2 (13)

Here, assuming the gravitational potential energy of the system

V = 0, the Lagrangian function of the system: L = T − V , and

using the Lagrangian equation:

Q =
d

dt

(

∂L

∂ q̇0

)

−
∂L

∂q0
(14)

where q̇0 =
[

ẋ0 ẏ0 α̇ θ̇1 θ̇2

]T
is the state vector of the system;

Q =
[

0 0 τ0 τ1 τ2

]T
is the control torquematrix of the system.

Substituting into Equation (14) yields the following

kinetic equation.

D
(

q0
)

q̈0 + H(q0, q̇0)q̇0 = Q (15)

where D
(

q0
)

is the 5∗5-dimensional symmetric, positive

definite mass matrix. H(q0, q̇0) is the 5∗1 dimensional matrix

with Koch forces and centripetal forces.

At this point, the dynamics model of the UVMS is

established using the Lagrangian modeling method. This

dynamical model provides the basis for the task priority control

of the underwater manipulator and the underwater robot. Due

to the dynamical coupling effect between the manipulator and

the base, the motion of the base, and the end effector in

free-floating mode is highly dependent on the joint trajectory.

Therefore, rational design of task planning solves the problem

of multitasking underwater operation tasks such as precise

positioning, floating manipulation, or collision-free motion.

Task planning

A two-tier framework for task planning

The UVMS control system in this research consists of

task planning, trajectory planning, and motion control. As the

top layer of the manipulator control system, task planning

is responsible for receiving, analyzing, and disassembling task

targets. The purpose is to divide complex task targets into

action sequences that the manipulator can directly plan and

execute. Due to the diversity of ways for the manipulator to

complete tasks, task planning also involves scheduling various

types of resources for the manipulator system to optimize

resource consumption during the entire task. We give the

final planning result through task combination sequences and

activation methods. Figure 3 shows the two-layer framework of

task planning designed in this paper.

The implementation architecture of the task planning

approach proposed in this research is shown in Figure 4.

1. Task Manager: Notifies the Kinematic Control Layer

about the actions that must be executed based on the

current mission.

2. Kinematic Control Layer: Implements the task priority

control framework and generates the system reference
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FIGURE 3

Two-tier framework diagram for task planning.

FIGURE 4

General architecture of the task prioritization approach.

velocities. The kinematics control layer mainly manages

the end position, joint angle, and speed of UVMS in

real-time. For the end-effector, it moves according to the

motion trajectory generated by the optimization algorithm

designed in this paper and according to the specified

motion parameters.

3. Dynamic Control Layer: Tracks the system reference

velocities by generating appropriate force/torque references

for the vehicle and manipulator.

In the simulation, we develop the code for the Mission

Manager and parts of the Kinematic Control Layer.

Task-priority handling strategy

Considering the task requirements for autonomous

UVMS underwater operations, we designed two categories of

control tasks.

1. Reactive control task (R): Capable of tracking feedback-

generated reference rate ẋ.

2. Non-Reactive control task (NR): Defined

directly in specific task velocity space. Thus,

the reference velocity tracked is not generated

by feedback.
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TABLE 1 Control tasks and prioritization.

Priority Category Description Objective

1 Safety [R,I,S] Minimum Altitude

Control (MAC)

2 Prerequisite [R,I,P] Horizontal Attitude

(HA)

3 Action-defining [R,E,AD] Landing Altitude

(LA)

4 Prerequisite [R,E,C] Alignment Target

(AT)

5 Action-defining [R,E,AD] Position Control

(PC)

[R/NR, I/E, C/S/P/AD] Name of the task/objective.

Also, depending on the type of task, we have designed two

different types of objectives.

1. Equality control objective (E): Given by x (c) = x0, which

is given as a constant equation.

2. Inequality control objective (I): Given by x (c) ≥ xmin or

x (c) ≤ xmax, which is given as an interval range.

Among them, the objectives can be classified into the

following five major categories according to their categories, and

this feature assigns priority to each task. The constraint tasks

have the highest priority, and the optimization tasks have the

lowest priority:

1. Constraints (C): Objective related to the physical

constraints of the system.

2. Safety (S): Objectives related to the safety of the robot.

3. Operational Prerequisite (P): Objective that is a

prerequisite for the given action.

4. Action Defining (AD): Action-oriented objectives.

5. Optimization (O): Trajectory optimization objective.

Finally, the UVMS task priorities designed in Table 1 are

described in conjunction with the definitions of goal types, goal

categories, and control tasks elaborated above.

In Table 1, for task-related factors, the typical underwater

tasks of UVMS are first decomposed into the following five basic

task categories according to their requirements for autonomous

underwater operations.

1. MAC—Assure safeminimum altitude control task [R, I, P]:

used to keep the UVMS altitude above a certain threshold.

2. HA—Horizontal attitude task controls the horizontal

attitude [R, I, S]: it is critical tomaintaining the vehicle-level

relative to the whole world frame< w>.

3. LA—Altitude control task, also known as the landing task

[R, E, AD]: This action-defining task has the same priority

as the vehicle position. The minimum task altitude is not

enabled there because we need to land; therefore, UVMS

needs to be below a fixed minimum altitude threshold.

4. AT—Target Control Alignment Target Task to Task

Alignment [R, I, P]: this is a prerequisite task with a higher

priority than the action-defining task. The error range of

the inequality is equal to 0.07m.

5. PC—The vehicle position control task [R, E, AD]: This

action-defining task has a lower priority.

Next, we will explain these five types of tasks in

detail regarding their task priority selection relationships and

reference relationships.

Highest priority task “MAC”

The minimum altitude control task “MAC” set in this

paper is the security control target. Therefore, its priority

must be higher than the actions that define the objective,

such as task “PC”. Task “MAC” is the highest priority because

avoiding collisions with the seafloor is more important than

maintaining the vehicle’s horizontal altitude objective during

UVMS underwater tasks. This task improves the ability of the

UVMS to avoid collisions with the seafloor.

The following Jacobian relationship characterizes the

task “MAC”:

wẋmac = Jmac
vẏ (16)

where wẋmac ∈ R6 represents the task description, Jmac ∈

R6×13 represents the Jacobian matrix of this task; Jmac has three

rows corresponding to the dimensions of the reference velocity

(ẋmac), where ẋmac has only linear components.

wẋmac =
w v3×1 =

[

03×7
wRv3×3 03×3

]v







q̇7×1

v3×1
vω3×1






(17)

The task “MAC” is based on an inequality objective, the main

goal of which is to ensure that the vehicle maintains its altitude

above a certain minimum threshold.

hactual ≥ hmin−thresh (18)

Because the control variable uses the convention [X Y Z], the

task references we compute have the following structure:

wẋmax =







0

0
wvz






(19)

wẋmax = k[(dlimit +1)−w dsensor] (20)
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where k is the control gain, dlimit is the desired minimum

distance from the seafloor, 1 is the safety distance at which

the activation of the task starts to trigger, wdsensor is the third

component of the distance vector, measured by the sensor and

projected on the world frame< w>.

Here, we provide a direction of the velocity we need to

control the movement along the z-axis. We use the same vehicle

position Jacobi matrix but only select the components associated

with the z-axis. To ensure that UVMS achieves the goal of

“MAC”, the activation variable Amac for this task have the

following structure:

Amac =







a1,1 0 0

0 a2,2 0

0 0 a3,3






=







0 0 0

0 0 0

0 0 a3,3






(21)

where a1,1 and a2,2 are equal to zero because the intent is to

constrain the system for only the velocity in the z direction of

the world frame< w>, given by Equation (21). Thus, for x and

y components, the activation should always remain zero.

The desired behavior for reactive control of our inequality

objective is:

1. The task should be fully active only when the inequality

is false.

2. The transition for activation should be smooth.

Therefore, we use DecreasingBellshaped function in order to

calculate a3,3:

a3,3 ,



















1 hactual < hmin−thresh

decreasingbell hmin−thresh ≤ hactual
≤ hmin−thresh +1

0 hactual > hmin−thresh +1

(22)

We compute variable wvz using the below equation:

wvz = λ

(

wh̄−whactual

)

(23)

where whactual is the distance given by the vdsensor on the z-axis

of the world frame < w >. This quantity represents the vehicle’s

distance from the seafloor seen from the vehicle itself.

Note: yx, where y represents the name of the frame and x

represents the vector.

The division of the minimum altitude threshold defines

the interval.

• hactual < hmin−thresh: The reference velocity (Equation

23) will be positive and will drive the robot toward

hmin−thresh +1 with activation a3,3 = 1.

• hmin−thresh < hactual < hmin−thresh + 1: The reference

velocity (Equation 23) will be positive and will drive the

robot toward hmin−thresh +1 with activation a3,3 < 1 and

a3,3 > 0 (transition region).

TABLE 2 Comparison between behavior for di�erent thresholds for

di�erent types of seafloor.

Type of

seafloor

hmin−thresh
= 1 hmin−thresh

= 5 hmin−thresh
= 10

Almost flat Safe Safe Safe

Small

protuberances

Not completely safe Safe Safe

Large

protuberances

Not safe Not always safe Safe

• hactual > hmin−thresh + 1: The reference velocity

(Equation 23) will be negative, but the activation a3,3 = 0

and therefore does not have any effect on the UVMS.

As seen from the above intervals, we choose to implement

a minimum altitude threshold wh = hmin−thresh + 1 , which

helps us avoid over-constraining the system.

Therefore, different thresholds apply to different types of

seafloor. We have simulated different values of the minimum

altitude in Table 2. These values all have the same k-gain; we

summarize the possible scenarios.

The sensorDistance we used is the distance measured by the

sensor on the UVMS along the z-axis of the sensor frame< s>.

vdsensor =







0

0
ssensorDistance






(24)

However, vdsensor is the distance vector measured by the sensor

and projected on the vehicle frame < v >. Since we need to

project it onto the world frame < w >, we apply the following

rotation matrix:

wdsensor =
w Rv

vdsensor (25)

To obtain the distance between seafloor and robot in the world

frame< w>, we use the below equation:

wdsensor =











w X − component
w − component

whactural
0











=w Tv
vdsensor (26)

where with hactual extracted by the z component of the

sensorDistance projected in the world frame< w>. We assume

that sensor frame< s> and vehicle frame< v> coincide.

The next highest priority “HA” and its mutually
binding “PC” and “LA” tasks

The “HA” is the horizontal attitude task set in this paper and

is the next highest priority task. This task ensures that UVMS
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does not flip for a given reference speed. Suppose we try to swap

the priority of “PC” and “HA”. In that case, the vehicle will try

to achieve the direction of the target if its horizontal roll or

vertical sway is different from zero. Therefore, when we change

the priority, the behavior observed during the simulation is

almost the same as when the horizontal attitude task is disabled.

The horizontal attitude is not enabled, and it will appear that

the UVMS is not parallel to the bottom. In addition, swapping

priorities is wrong because a horizontal attitude is a safety task

and should have a higher priority than the task that defines the

action. As can be seen above, the multiple solutions of the higher

priority task (“HA”) already constrained task “PC”. We give that

the vehicle position control task “PC” and the horizontal attitude

task “HA” are mutually constrained as follows:

ẏ = ρ1 + Q1ż1 ∀ż1 (27)

The vehicle position control task “PC” is set in this paper. We

initialize the UVMS at a place far from the seabed, i.e., at sea

level, and give the target position far enough, considering the

actual situation. This task aims to perform the vehicle position

control task to ensure that the vehicle achieves the required

position and orientation.

The Jacobian of the task “PC” is:

wẋ2=
wẋposc = Jposc

vẏ (28)

ẋposc ∈ R6, Jposc ∈ R6×13, ẏ ∈ R13

where the Jacobi matrix has 13 columns corresponding to the

dimensions of the control variables at the kinematic level, the

control variables are the seven joints of the manipulator and

the six D.O.F of the vehicle base. Six rows correspond to the

dimensions of the reference velocity. The time volume is the

difference between the initial and target positions or λ-value.

wẋposc6×1 =

[

wv3×1
wω3×1

]

=

[

03×7
wRv3×3 03×3

03×7 03×3
wRv3× 3

]







q̇7×1
vv3×1
vω3×1







(29)

Since the task “PC” is a reactive control task, the task reference

is computed using the formula of the closed-loop feedback

reference rate such that:

• Required position:

wν = λl

(

wxposition_goal−
wxactual_position

)

(30)

• Required orientation:

wω̄ = λa VersorLemma
(

wxorientation_goal,
wxactual_orientation

)

(31)

and in a compact form:

wx̄ =
[

λ1 λr

]

[

w r
wδ θ

]

(32)

with:

[

r

θ

]

= CartError
(

wxposition_goal,
wxactual_position

)

(33)

We use “CartError” function to calculate r and θ , and we set the

two gains equal to λl = 0.2 and λa = 0.5.

The altitude control task “LA” is set in this paper, and since

“LA” is an action definition (AD) target, it is placed after the

security task. It is important to note that the objectives of “LA”

and “PC” are so different that it is unlikely that they will be

activated simultaneously. Therefore, their relative priority does

not affect the solution. There are two main differences between

this task and the minimum altitude control task in this paper,

the first being that landing is not a safety task but rather an action

that defines a safety task. While using the minimum altitude task

to avoid collisions with the seafloor, the landing task “LA” defines

an action as a vehicle position, therefore, has a lower priority; the

second difference is that the minimum altitude is unequal to the

landing is an equal task.

The Jacobian for task “LA” is:

wẋla =w v3×1 =
[

03×7
wRv3×3 03×3

]







q̇7×1

v3×1
vω3×1






(34)

As with the minimum altitude control objective, only the Jacobi

matrix is needed to control the components along the z-axis. We

calculate the task reference as:

w ˙̄xland = k
[(

dlanding +1safeguard

)

−wdsensor

]

(35)

where k is the control gain, dlanding is the distance from

the seafloor, in this case, 1safeguard is set to 0.17m to avoid

interpenetration between UVMS and the seafloor. wdsensor is

the component along the z axis of the distance vector measured

by the sensor and projected on the world frame< w>.

Goal control alignment target task “AT”

If we only use the position control task “PC”, we can only

guarantee that we reach the target position, but not that we are

aligned with the job target to complete the job task. We must

add additional constraints to make the vehicle face the target

task. The approach we take is to add an alignment task between
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the vehicle x-axis and the target. In particular, the vehicle x-axis

should be aligned with the projection of the unit vector on the

inertial level that connects the vehicle frame < v > to the target

frame< o>.

So we add the target control alignment task “AT” to the

task hierarchy. We decide to place “AT” under “PC” to take

advantage of the remaining arbitrariness to align the robot in the

direction we want during the target task activation phase. Before

landing, the robot tries to align itself with the operational target.

When it reaches sufficient alignment (θ< 0.5), the “PC” phase is

activated, during which the robot reaches the target position and

aligns as much as possible.

The main goal of this task is to align the vehicle, especially

the direction to the target. For this purpose, we have to calculate

the rotation vector ρ between the two necessary vectors.

The two vectors are:

• a: x-axis of the vehicle frame

va =







1

0

0






(36)

• b: A vector between the vehicle frame and target projected

onto the inertial horizontal plane and expressed in the

vehicle frame< v>.

vb=vRw

(

I − kk⊤
)w

Distance_target (37)

Now, we can proceed to compute ρ vector in the following way:

a ∧ b = n sin(θ) (38)

ρ = nθ (39)

where that returns the direction n and the magnitude θ that

vector amust perform to be aligned with b. Since our final goal is

to have the x-axis of the vehicle aligned with the target, we have

to study the behavior of this resulting vector during the time.

Thus, we want:

.
x ref =

.
ρ = γnθ (40)

Considering a generic observer, we have:

Dαρ = θ̇n+ θDa(n) = nnωb/α + Nα(θ)(ωb/α ,ωa/α) (41)

Considering an observer inside the rigid space of the vehicle

frame< v> on which there is vector a:

Daρ = nnωb/a + Nα(θ)ωb/a = nnωb/a (42)

where the second term is exactly equal to zero due to the fact that

we have ρ and
.
ρ aligned. Finally, we want:

γnθ = ωb/a (43)

Since the quantity ωb/a is not easy to compute we can compute

it using the law of addition of angular velocity vectors:

ωb/a = ωb/w-ωa/w (44)

where ωa/w is the angular velocity of the vehicle with respect to

the world. ωb/w is the angular velocity given by the movement

of the vehicle with respect to the target that produces a change

of direction of unit vector joining the vehicle frame< v> to the

target frame < o >. It is important to compute this quantities

using the same observer as for ρ , computed in Equation 38, thus

in our case:

It is essential to calculate this quantity using the same

observer as for ρ in Equation (38), therefore, in the vehicle frame

< v>.

vωb/a=
vωb/w−

vωa/w (45)

in particular:

vωb/a =

(

vb
∥

∥vb
∥

∥

∧
−vvp
∥

∥vvp
∥

∥

)
∥

∥
vvp
∥

∥

∥

∥vb
∥

∥

(46)

where vvp is the projection of the linear velocity of the vehicle

on the inertial horizontal plane expressed in vehicle frame < v

> thus:

vvp =v Rw

(

I − kkT
)w

Rv
vv (47)

We can now proceed to compute the desired Jacobian matrix

that, according to Equations 5 and 6, must be the following one:

.
x =

.
ρ =

[

03×7 −
‖vvp‖
‖vb‖

(

vb
‖vb‖

∧
vRw

(

I−kkT
)w

Rv
‖vvp‖

)

1

]







.
q
vv
vw







(48)

Moreover, the Jacobian relationship for the alignment target

control task “AT” is derived from the following formula.

Dw(p) = Jat ẏ (49)

where p is the misalignment vector. Dw(p) is the derivative of

the misalignment vector. Jat is the Jacobian we want to compute.

We know that

Dw(p) =
w nρ θ̇ + θDw

wnρ
︸ ︷︷ ︸

orthogonal

(50)

Since we are not interested in the orthogonal components, we

can ignore them. By looking at the first term of the sum, we know
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that wnρ is the misalignment vector projected on the world and

θ can be written as

θ̇ =w ωv−
wωgoal (51)

where wωv is the angular velocity of the vehicle, referred to the

world. wωgoal is the angular velocity of the projected distance

between the target and the vehicle, referred to the world.

By describing wωv in terms of ẏ, we can deduce the

following Jacobian

Jvehicle =
[

03×10
wRv3×3

]

(52)

In order to describe wωgoal in terms of ẏ, we use the

following relationship

wυv =
w ωgoal ∧

wd (53)

where wυv is the linear velocity of the vehicle projected on

the world frame < w >.wd is the projected distance on the

horizontal inertial frame, between the target and the z-axis of

the vehicle.

Jgoal =
1

∥

∥wd2
∥

∥

[wd∧
]

wυv (54)

Since we are interested only in the x and y component of wυv,

we select such components by premultiplying as given below:

Jgoal =
1

∥

∥wd2
∥

∥

[wd∧
]







1 0 0

0 1 0

0 0 0







wυv (55)

From the last equation, we deduce the following Jacobian

Jgoal =
1

∥

∥wd2
∥

∥

[wd∧
]







1 0 0

0 1 0

0 0 0







[

03×7
wRv3×3 03×3

]

(56)

The resulting Jacobian is obtained by substitution and it is

equal to

Jat =
w n⊤r

[

Jvehicle − Jgoal

]

(57)

We compute the task reference as:

w ˙̄xat = k
(

0−
∥

∥

wp
∥

∥

)

(58)

where k is the control gain.
∥

∥
wp
∥

∥ is the norm of the

misalignment vector, in this case, we want it to be 0.

Trajectory planning

Trajectory optimization goal

Once the task is divided into subtasks, the placement of

the job manipulator is critical because it affects the subsequent

manipulation tasks. Poor essential placement may even fail

to reach the final target state. A significant problem with

this approach is the suboptimality of the generated solution

trajectories. Even though optimal solutions can be generated

for each subtask, the set of these solutions does not necessarily

produce a globally optimal solution. The goal state of the

previous subtask will significantly affect the planning of the next

task. It may even prevent the generation of feasible solutions,

resulting in the need to replan the previous task. As a result,

this approach will lead to local optima, global suboptimal paths,

or many unsuccessful motion planning queries. Combining the

system with high-degree-of-freedom maneuver planning for

the entire task can alleviate the suboptimal global problem,

but this requires extensive computation. Motion coordination

between the vehicle and the manipulator, collision checking

and self-collision checking with the environment, and motion

constraints are some added complexities in this approach.

In this research, the trajectory optimization objective is

the lowest priority to address this issue. After the vehicle

has completed all priority tasks, we focus on considering the

desired trajectory of the end-effector on the UVMS. We convert

the trajectory planning problem into finding feasible joint

trajectories considering the priority tasks first while optimizing

the cost function given by the expectation. In velocity-resolved

inverse kinematics, the task is the expectation of the robot

configuration function, represented in the task description by

an equation or inequality constraint. Finally, the trajectory

planning problem for the end-effector can be formulated as the

following optimization problem.

The optimized smooth trajectory needs to consider its

boundary conditions, including the start and end states, the

relay node as the waypoint through which the robot passes,

and the smoothing criterion to evaluate whether the generated

trajectory is smooth. Knowing the angles to be reached by M

joint, a polynomial fit will result in segment M-1 trajectories,

each represented by a polynomial, and the set of trajectories

needs to satisfy the following constraints:

• Desired angle constraint:







f
(k)
j

(

Tj−1
)

= x
(k)
0,j

f
(k)
j

(

Tj
)

= x
(k)
T,j

(59)

• Continuity constraint:
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The velocity and acceleration of adjacent trajectories

are continuous:

f
(k)
j

(

Tj
)

= f
(k)
j+1

(

Tj
)

(60)

The cost function is chosen to minimize the Snap value for

all trajectories. Snap is the fourth-order derivative of position,

and minimizing Snap allows the end-effector to meet the

autonomous operational movement suitable for UVMS. At the

same time, its kinetic states, such as velocity and acceleration,

cannot change abruptly. Reducing the range of acceleration and

deceleration enables UVMS to work longer in energy-limited

underwater environments.

The cost function determined to minimize snap is expressed

as follows:

J(T) =

∫ Tj

Tj−1

(f 4(t))2 dt

=
∑

i≥4,l≥4

i(i− 1)(i− 2)(i− 3)j(l− 1)(l− 2)(l− 3)

i+ l− 7

× (Ti+l−7
j − Ti+l−7

j−1 )pipj (61)

The coefficients of each order are extracted separately, and the

cost function can be written in the quadratic form:

Jj(T) = pTj Qjpj (62)

where Qj is the Hessian matrix that transforms the trajectory

optimization problem into a quadratic programming problem,

for the final trajectory of the manipulator, each trajectory point

should satisfy the following constraints.

Track point constraint, each trajectory should pass through

the track point obtained by the path search, and the

displacement, speed, acceleration, jerk, and snap at the track

point should all exist. To satisfy f
(k)
µ (Ti) = dik, where

µ ∈ {x, y, z}, k ∈ {0, 1, 2, 3}, i ∈ {1, 2, · · · ,M} continuity

constraints, the displacement, velocity, acceleration, jerk, and

snap at the track point should also be continuous. That is

satisfied f
(k)
µ (Ti) = dik, where µ ∈ {x, y, z}, k ∈ {0, 1, 2, 3}, i ∈

{1, 2, · · · ,M}. It can be written as an equality constraint.

We need to fix each trajectory time Tj = 0.1s for all joints.

Ensure that all robot joints reach the desired angle and end

position at the same moment is always stable.

Summarizing the above constraints and cost functions, they

are written in matrix form.

• Desired angle constraint:

f
(k)
j

(

Tj
)

= x
(k)
j (63)

⇒
∑

i≥k

i!

(i− k)!
Ti−k
j pj,i = x

(k)
T,j (64)

⇒
[

... · · · i!
(i−k)!

Ti−k
j · · · ...

]







:

pj,i
:






= x

(k)
T,j (65)

⇒













i!
(i−k)!

Ti−k
j−1

:

:

i!
(i−k)!

Ti−k
j



















:

pj,i
:






=





x
(k)
0,j

x
(k)
T,j



 (66)

⇒ Ajpj = dj (67)

• Continuity constraint: smoothness constraint ensures

continuity between trajectory segments without giving a

specific derivative.

f
(k)
j

(

Tj
)

= f
(k)
j+1

(

Tj
)

(68)

⇒
∑

i≥k

i!

(i− k)!
Ti−k
j pj,i −

∑

l≥k

l!

(l− k)!
Tl−k
j pj+1,l = 0 (69)

⇒
[

· · · i!
(i−k)!

Ti−k
j ... ... − l!

(l−k)!
Tl−k
j · · ·

]











pj,i
:

:

pj+1,l











= 0 (70)

⇒
[

Aj − Aj+1
]

[

pj

pj+1

]

= 0 (71)

Substitution function:

J(T) =
∫ Tj
Tj−1

(

f 4(t)
)2
dt

=







:

pi
:







T
[

. . .
i(i−1)(i−2)(i−3)l(l−1)(l−2)(l−3)

i+l−7
Ti+l−7 . . .

]







:

pl
:







(72)

Jj(T) = pTj Qjpj (73)

Writing the above problem as an equation constraint in

standard form, then the quadratic programming problem can be

expressed as:

min







p1
:

pM







T 





Q1 0 0

0 : 0

0 0 QM













p1
:

pM






(74)

s.t. Aeq







p1
:

pM






= deq (75)

The above equation is a linear constraint quadratic

programming problem (QP).
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Collision avoidance

UVMS requires only six degrees of freedom to reach an

arbitrary position in underwater motion. Adding a manipulator

gives the entire system more than six degrees of freedom,

resulting in the redundancy of degrees of freedom. Kinematic

redundancy allows the planner to satisfy additional constraints,

such as collision avoidance. Researchers have mainly focused

on approximating the robot or the obstacle with strictly convex

targets and considering only the closest points in the detection

algorithm to avoid collisions to reduce computational effort.

The optimization process has no environmental constraints

after the trajectory planning solution based on the minimum

snap principle. When a new trajectory is encountered after

optimization, the obstacles force the trajectory to be modified

again, wasting computational resources and reducing the

planning frequency. For example, it is necessary to add

constraints on the environment during optimization, generally

based on hard constraint solving. The hard constraint solution

is to generate a safe region in the environment by extending

the algorithm and using it as a hard constraint. Adding hard

constraints in the optimization process forms a convex polygon,

which transforms the QP problem into a convex optimization

problem that can be solved by convex optimization algorithms

such as the interior point method.

While the process of underwater obstacle avoidance, most

of the surrounding objects are non-strictly convex polyhedra,

and these approximation methods are not accurate enough

when operating in close range. The problems in the practical

application process are ignored. Because the remaining safe

regions are treated equally during optimization, there is no good

way to handle the extreme cases with underwater sensor noise.

The optimized trajectory may go past the edge of the safety zone.

Once the controller makes an error, it leads to a severe failure of

the manipulator body by colliding with the internal and external

environment. Inspired by the penalty function, we propose a

more intuitive collision-free motion planning method oriented

to UVMS.

An improved collision avoidance method
based on soft constraint

By design, we use the principle of soft constraint to

improve the collision avoidance method. The essence of the

soft constraint method is to apply a “pushing force” to push

the trajectory away from the direction of the obstacle. The core

problem is the designed objective function. When the objective

function is not set correctly, the path may hit an obstacle, which

is the shortcoming of soft constraint. Therefore, a gradient-based

optimization algorithm sets the objective function to impose

a soft constraint on the underwater manipulator to push the

underwater manipulator body away from the obstacle.

For Equation 16, the objective function becomes:

J = Js + Jc + Jd = λ1J1 + λ2J2 + λ3J3 (76)

JS =
∑

µ∈{x,y,z}

∫ T

0

(

dkfµ(t)

dtk

)

dt (77)

[

dF

dP

]T

CTM−TQM−TC

[

dF

dP

]

=

[

dF

dP

]T [

RFF RFP

RPF RPP

][

dF

dP

]

(78)

where the smoothness cost function Js is the cost of smoothness

generated using minimum-snap.

Jc =

∫ TM

T0

c(p(t))ds

=

T|δt
∑

k=0

c(p(Tk))‖

∥

∥

∥

∥

v(t)

∥

∥

∥

∥

‖δt,Tk = T0 + kδt (79)

where the collision cost function Jc, i.e., the collision cost,

penalizes obstacles that are too close.

where the kinetic cost function Jd penalizes exceeding the

kinetic constraints. Since the objective function of penalizing the

velocity and acceleration is not a convex function, it needs to be

solved by step-by-step derivation. The smooth term solution is

shown in the previous derivation, and the relationship between

the collision term and the free variables dpµ is as follows.

Jc =

∫

{

T|δt
∑

k=0

{∀µc(p(Tk))‖‖v‖‖F + c(p(Tk))
vµ

‖

∥

∥

∥

∥

v

∥

∥

∥

∥

‖

G}δtdpµ},

µ ∈ {x, y, z} (80)

where the F and G are, respectively:

F = TLdp, G = TVmLdp (81)

where Ldp is the right half of the matrix M−1C, Vm is the

mapping matrix of joint position variables to joint velocity

variables, T =
[

T0
k
,T1

k
, . . . ,Tn

k

]

.

The second-order derivative results in:

Ho =

[

∂2fo

∂d2Px

,
∂2fo

∂dP2y

,
∂2fo

∂dP2z

]

∂2fo

∂d2Pµ
=

τ/δt
∑

k=0

{FT∇µc(p(Tk))
vµ

‖v‖
G+ FT∇2

µc(p(Tk))‖v‖F

(82)

+GT∇µc(p(Tk))
vµ

‖v‖
F+ GTc(p(Tk))

v2µ

‖v‖3
G}δt
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TABLE 3 Control tasks and priorities for fixed base manipulation

operations.

Priority Category Description Objective

1 Constraint [NR,E,C] NR

2 Safety [R,I,S] MAC

3 Prerequisite [R,I,P] HA

4 Action-defining [R,E,AD] LA

5 Prerequisite [R,E,P] AT

6 Action-defining [R,E,AD] PC

[R/NR, I/E, C/S/P/AD] Name of the task/objective.

Simulation results

In this section, the task priority processing strategy

and soft-constrained trajectory optimization objective

designed in this paper are verified on a kinematically

redundant underwater vehicle manipulator system. The

system consists of a free-floating underwater vehicle and a

seven-function manipulator. The simulation is performed in a

MATLAB/Simulink environment.

Case 1: Test the given tasks

The simulation phase first initializes the UVMS for safe

waypoint navigation. Afterward, we move the vehicle to a

position close to the currently defined end-effector target

position, slightly above the target position. Finally, the action

change is triggered, and the UVMS executes the ocean float

operation. We do not consider any disturbances and assume

that the robot can provide the desired speed without delays. In

addition, once the robot reaches the desired position, the rest

of the tasks are responsible for the end-effector reaching the

desired target position and orientation, so the “PC” task will also

be closed. For the end-effector to operate as a stationary-based

robot, we need to constrain the vehicle not to move. Because, as

we noticed, the vehicle will “help” the arm to reach the desired

position by moving itself (in line with the expected behavior

of the tool task). To avoid this problem, we need to perform a

non-reactive task to constrain the vehicle to move or reach the

operating position where the task will make the vehicle move. In

this case, we test UVMS landing on the seafloor, try the vehicle

to its target coordinate system, and then use the end-effector

to reach the operational target position. Observe whether the

vehicle does not move and perform the ocean float operation of

the UVMS.

The uniform hierarchy of tasks we use and their priorities,

with the addition of constrained tasks at the priority level, is

described in Table 3, with non-reactive tasks (“NR”) added at the

top of the hierarchy to constrain the vehicle not to move.

TABLE 4 Examples of external activation states for di�erent tasks.

Priority Tasks Way point Alignment Landing Tool frame

1 NR 0 0 0 1

2 MAC 1 1 0 0

3 HA 1 1 1 1

4 LA 0 0 1 0

5 AT 0 1 1 0

6 PC 1 0 0 0

0/1 External inactive/active.

We have the following tasks in an active/inactive state for

each of the different phases, is described in Table 4.

We conducted amultitask prioritization strategy experiment

to explain the task prioritization strategy better. First,

multitasking is divided into multiple action phases.

1. Action A, safe waypoint navigation with all the safety tasks

enabled. This action finishes when the position error is

below a fixed threshold (in this case 0.1m), as Figure 5

shows.

2. Action B, alignment to the nodule with all the safety tasks

enabled. This action finishes when the misalignment error

is below a fixed threshold (in this case 0.07m).

3. Action C, landing, and smooth rotation align with

the target. This action finishes when the vehicle

touches the seafloor (in the simulation, this happens

at approximately 0.17m).

4. Action D, manipulator actuation after landing. In this

action, Vehicle Null Velocity task is enabled, preventing

vehicle movements. The only movement will be the

extension of the manipulator to reach the desired

target position.

From Figure 6, we observe that the position and orientation

errors of the vehicle base remain almost constant after 30 s

of simulation when the UVMS has completed the landing

phase and started the tool holder phase. Therefore, the tool

frame phase’s active task “NR” helps us achieve a fixed datum

operation. Because after a reasonable time, the position error r

and orientation error θ converge to near zero. When the error

of the carriage position remains constant, the tool frame error

of the manipulator operation is almost zero. Action A’s fixed

threshold of position error is within 0.1m. Action B sets the fixed

maximum of unaligned error by 1.3mm, well below the set fixed

threshold of 0.07m, which provides the basis for the subsequent

accurate completion of the operational target. Figure 7 shows

the corresponding simulation results. Figure 8 shows that the

maximum range of vehicle error aligned with the target is 0.17m
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FIGURE 5

Position-directional linear velocity angular velocity tracking curve of the completed vehicle initialization.

in Action C. The Action ends when the vehicle touches the

seabed, i.e., when the height is 0.

Since the Vehicle Null only puts vehicle velocities to zero,

it cannot compensate for the disturbance. In a similar scenario,

the currents will influence the UVMS: the vehicle can arrive

at the desired position and land if the disturbance is not

too big. However, when the vehicle Null task is triggered in

Action D, the UVMS will drift, eventually losing its target

position. The manipulator will keep trying to reach the goal by

stretching as much as possible. With a check on the position

error during the mission phase update, it is possible to return

to Action A and achieve the desired position again. Then

the task phase update transition requires a new command

relationship to achieve it. Therefore, the transition from one

activity to another when completing a given job task using the

“task” “phase” variable in the Matlab structure. The “phase”

variable is updated when the previous Action completes the

desired precision. The task update phase starts when the UVMS

approaches the desired M path point navigation target position.

The “UpdateMissionPhase” of each loop performed the phase

update condition check.

As shown in Figure 9, by taking into account the buffer time,

achieving a seamless transition (from one activity to another)

is by using a bell curve (increasing or decreasing) activation.

The transition triggers Actions A and B by realizing the vehicle’s

target position. We calculate the Cartesian error between the

target frame and the vehicle frame, and the task phase changes

when the error is below a given threshold (0.1m in this case).

When we want to disable the running task, use a decreasing

bell function to perform a smooth transition. In this case, the

minimum height and vehicle position tasks are disabled at the

beginning of the second phase.

Similarly, when we want to activate the task, a smooth

transition is performed using an increasing bell function, as
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FIGURE 6

(A) The change curve of vehicle base error during the test and (B) the tool frame error.

FIGURE 7

(A) The vehicle error completed for action A and (B) the unaligned error vehicle error completed for action B.

we did for the landing task. We calculate the slope of such a

function based on the task phase time, which helps us determine

the time interval between vehicles switching from one activity

to another (0.2 s in our case). At the same time, we obtain a

smoother shape and avoid discontinuities in the motor drive.

Due to the active hold state of the landing task “LA” and

the horizontal attitude task “HA”, the vehicle’s altitude and

velocity in the Z-axis direction remain constant during this

process and continue to be 0. Figure 9B indicates that the vehicle

does not float with the external during the task transition.

The task prioritization strategy has a strong constraint, proving

its stability.

Case 2: Add an optimal control target

After the task transition is complete, begin completing

a joint limits avoidance task. Attempt to reach the specified

operating position using the end-effector. Moreover, we observe

that the vehicle does not move and that all joints are within

their soft restraint limits. This task is a safety task, so it has a

higher priority than other tasks that define movements. It can

control the operation of the joints without exceeding their fixed

thresholds. The action is the same as before; the only difference

is that the joint restraint is always active, as this is a safety task.

It is essential to ensure that the end-effector performs the final
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FIGURE 8

(A) The vehicle error for the completion of action C. (B) The smooth landing state of the vehicle after action C.

FIGURE 9

(A) The task activation status used for action transitions and (B) the behavior of the landing task.

operation. This case adds the optimization goal of keeping the

four joints of the manipulator’s end-effector to complete the

trajectory optimized for the target behavior. For the rest of the

tasks, we kept the same hierarchy as in the previous case and

added only the optimization task “MP”. This task has the lowest

priority because we can only perform trajectory optimization of

the end-effector after the UVMS completes all actions.

We mainly activate the state of the four joints near the end

of the end-effector, as shown in Figure 10A, and limit themotion

of the remaining joints. The designation of the joint limit task is

to test whether we can effectively control the activation state of

each joint and motion-tracked it in real-time during the vehicle

manipulation task. Figure 11 shows that while the end-effector

optimization task is active, the horizontal attitude task “HA” is

kept highly active tomaintain the stability of the vehicle position.

Figure 12 shows the optimal end-effector trajectory based on the

trajectory optimization objective. The trajectory optimization is

performed based on the satisfaction of the proposed constraints,

and the desired optimal trajectory of the end-effector coincides

with the trajectory tracking as much as possible. We ensure

the accuracy and idealization of the task execution. In addition,

Figure 12A shows the joint motion and Figure 12B is smoother

compared to Figure 10B. The optimal solution here satisfies the

primary collision-free motion task, meaning that the solution

found here satisfies the primary collision-free task but is optimal

compared to the suboptimal pose task. Therefore, the pure QP
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FIGURE 10

(A) Joint limitation task activation of action D. (B) Robot arm joint position and velocity variation curve.

FIGURE 11

(A) Optimized task activation of the end-e�ector. (B) Task activation of the vehicle position.

process cannot handle more than one task simultaneously, so we

have placed the optimization task at the lowest priority.

Conclusions

This paper studied the problem of multiple-task planning

from the motion planning level for the underwater vehicle

manipulator system. The task prioritization strategy to perform

various tasks at once is considered in the mission planning to

derive an optimal and feasible planning scheme; secondly, the

optimization algorithm is adopted during the execution of the

tasks, considering the system’s limitations and the interference of

the environment. We proposed soft constraints as an improved

collision avoidance method to add more conditions to smooth

the joint trajectory. The combination of the above two aspects

can achieve the continuous planning of the phased execution

of the task, ensure the stability of the end-effector work,

and improve the reliability of UVMS autonomous underwater

operations. We perform a series of simulations in a simulation

environment established by kinematic and dynamic analysis

of the underwater vehicle manipulator system. The simulation

results verify the effectiveness and feasibility of this paper’s task

prioritization processing strategy. In this sense, we believe that

the approach of using a simulation environment instead of a

natural underwater application environment proves to be cost-

saving in planning and effective in improvement. And in this
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FIGURE 12

(A) Two-joint angular tracking of end-e�ector. (B) Two-joint angular tracking of end-e�ector.

sense, we believe that our work has achieved some progress

in extending the scope of applying task prioritization planning

methods based on themotion planning level in control studies of

UVMS. In addition, our proposed method provides an optional

way of thinking for controlling underwater robots and other

types of robots. In the future, we plan to extend the research for

different kinds of robots for real-time planning.

Indeed, the current research has its limitations, along with

some results. In the algorithm proposed in this research, we

run the simulations carried out under ideal conditions, so it

needs to complete realistic experiments to verify the correctness

and feasibility of the proposed method. In addition, more

influencing factors should be considered, such as the reliability

of the sensor, actuator, and controller execution methods.

Moreover, adding and improving the controller’s performance

and stability to accomplish the smooth execution of the task is

an essential topic for further research. Ultimately, UVMS-related

research has broad application background and important

theoretical and engineering significance. Our proposed method

will be applied to UVMS for autonomous motion planning in

unknown sea environments to enhance its subsea operation

capability and meet the application requirements of keeping up

with the times.
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Wheel-legged robots have fast and stable motion characteristics on flat roads,

but there are the problems of poor balance ability and low movement level

in special terrains such as rough roads. In this paper, a new type of wheel-

legged robot with parallel four-bar mechanism is proposed, and the linear

quadratic regulator (LQR) controller and fuzzy proportion differentiation (PD)

jumping controller are designed and developed to achieve stable motion so

that the robot has the ability to jump over obstacles and adapt to rough

terrain. The amount of energy released by the parallel four-bar linkage

mechanism changes with the change of the link angle, and the height of

the jump trajectory changes accordingly, which improves the robot’s ability to

overcome obstacles facing vertical obstacles. Simulations and real scene tests

are performed in different terrain environments to verify obstacle crossing

capabilities. The simulation results show that, in the pothole terrain, the

maximum height error of the two hip joint motors is 2 mm for the obstacle

surmounting method of the adaptive retractable wheel-legs; in the process

of single leg obstacle surmounting, the maximum height error of the hip joint

motors is only 6.6 mm. The comparison of simulation data and real scene

experimental results shows that the robot has better robustness in moving

under complex terrains.

KEYWORDS

complex terrain environment, wheel-legged robot, dynamic analysis, adaptive
obstacle crossing, motion analysis

Introduction

With the continuous development of robot technology, the application scope of
mobile robots is constantly expanding, and the diversification of application scenarios
leads to the increase of robots facing complex terrain environments (Zhang et al., 2014;
Gao et al., 2020). Wheeled robots have the advantages of high efficiency and high energy
utilization on flat roads (Wu, 2020; Xin et al., 2020), but they have poor adaptability to
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complex terrain. When the height of obstacles is greater
than the radius of the wheels, they cannot effectively cross
obstacles (Ding and Zhang, 2022). Legged robots have excellent
adaptability when moving on the uneven and rough roads,
but slow moving speed and low movement energy efficiency
have always been technical problems that are difficult to break
through (Xin et al., 2019; Xin and Vijayakumar, 2020). To solve
this problem, the researchers turned their attention to wheel-
legged robots. Wheel-legged robots combine the advantages of
wheeled robots and legged robots. Double wheels can maximize
energy utilization efficiency and maneuverability, and the leg
structure makes the robot more adaptable to complex terrain
environments.

At present, scholars have carried out a lot of research on
the stability and high obstacle crossing ability of wheel-legged
robots in unstructured terrain and have achieved a series of
results: Liu et al. (2019, 2022) and Zhang et al. (2019) proposed
a bipedal wheeled robot SR600 for logistics in scenarios such
as distribution and home services, it can change height while
maintaining dynamic balance. The size design of the human
body can make it better interact with people. Kim et al. (2014)
developed the Wheel Transformer, a variable-diameter wheel-
legged robot. When encountering an obstacle, the wheels are
transformed into two three-legged wheels to complete the action
of crossing over the obstacle. It can overcome obstacles that 3.25
times higher than the wheel radius, but there is also the problem
of low efficiency of crossing obstacles. In nature, animals jump
over obstacles and avoid enemies attack by jumping (Fei et al.,
2012; Cheng, 2021). Inspired by this, the bionic jumping theory
was applied to the wheel-legged robot, and the jumping obstacle
was realized by the wheel-legged robot (Zhuang et al., 2021;
Hao et al., 2022). Chen et al. (2021) studied the jumping
of a bipedal wheel-legged robot, proposed a W-SLIP model
to characterize the jumping process dynamics, and verified
the robot’s jumping performance through V-REP simulation.
Bipedal wheel-legged robot Ascento produced by ETH Zurich
that adopted a compact design structure and can jump over
obstacles while keeping the robot flexible and compact (Klemm
et al., 2019; Klemm et al., 2020). The quadruped wheel-legged
robot ANYmal (Bjelonic et al., 2019) of ETH Zurich also
reflected the advantages of the combination of legged robots and
wheeled robots to a large extent. The typical wheel-legged robot
Handle developed by Boston Dynamics Ltd (2017). Achieved
self-balancing through a dynamic control center, and used a
hydraulic drive to jump to a height of 1.2 m (Zhang et al., 2018).
At present, wheel-legged robots are still mainly used in simple
application scenarios such as logistics handling, while wheel-
legged robots suitable for complex terrain environments have
been rarely reported.

Aiming at the problems that the wheel-legged robot is
not stable in the complex terrain environment, a jumping
wheel-legged robot is proposed in this paper, and an adaptive
retractable wheel-leg mechanism is designed to keep the

body parallel to the ground to achieve smooth obstacle-
surmounting. The main motion forms of the robot include
wheel and wheel-leg movement modes, and the modes are
switched by the rotation of the hip motor. The wheel
movement mode is used on flat terrain, and the wheel-
leg movement mode is used on obstacles and rough terrain
to improve energy utilization efficiency. In the wheel-leg
movement mode, the robot cannot only use the wheels
to move quickly and stably, but also jump over obstacles
through the expansion and contraction of the wheel-leg linkage
mechanism. The paper is structured as follows: In Section
“Kinematics and dynamics analysis,” the robot is introduced
and the kinematics and dynamics modeling, including the
self-balancing dynamics model and the jumping dynamics
model. In Section “Analysis of obstacle crossing conditions,”
the wheeled overcoming obstacles and jumping over obstacles
are analyzed respectively, and the conditions for overcoming
the obstacles are obtained. The control system is presented in
Section “Robot Control System,” divided into self-balancing and
jump control. Section “Simulation and experiment” conducts
simulation tests on robot crossing obstacles in different terrains,
and conducts actual test verifications. The paper is concluded in
the last section.

Kinematics and dynamics analysis

The overall structure design of the robot is shown in
Figure 1, which consists of the body, six motors, two linkage
mechanisms, two pairs of universal wheels and two wheels. The
two waist motors (including No. 4 in Figure 1) are hidden inside
the body, and two motors are installed in the left and right
wheels to drive the wheels to move. The waist motors are used
to adjust the pitch angle of the body, and the hip motors are
used to control the robot to change the height of the body and
realize the jumping function. The hip motor rotates, and under
the action of gravity, the connection between the Connecting
rod 2 and the hip motor rotates around the rotation axis of
the hip joint to realize the expansion and contraction of the
leg linkage mechanism. The height of the body is raised and
lowered through the expansion and contraction of the linkage
mechanisms, and the wheel-leg linkage mechanisms contract
and stretch in a short time, completing the accumulation and
release of the energy required for jumping, and the robot
realizes the jumping action. The wheel movement mode and the
wheel-leg movement mode are shown in Figures 2A,B below,
respectively.

Kinematic modeling

As shown in Figure 3, the kinematic model of the standing
posture of the wheel-legged robot is established. {W} is the
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FIGURE 1

Schematic diagram of the robot structure. 1. Right wheel (driving wheel); 2. Universal wheel; 3. Body; 4. Waist motor; 5. Hip motor;
6. Connecting rod 1; 7. Connecting rod 2; 8. Connecting rod 3; 9. Left wheel (driving wheel).

world coordinate system, the Z axis is vertically upward, the
X axis is perpendicular to the Z axis and points to the right
end, and the Y axis direction is determined according to the
right-hand rule. In order to simplify the kinematics problem,
the base coordinate system {B} is established at the contact
point between the wheel and the ground, the direction is
parallel to the world coordinate system, and the coordinate
system {0} is established at the center of the wheel. The
coordinate system {1} is established at the connection between
the Connecting rod 3 and the wheel, the coordinate system
{2} is established at the connection between the Connecting
rod 1 and the Connecting rod 3, and the coordinate system
is established at the position shown in the Figure 3 in turn.
The Zi(i = 1 ∼ 5) axis of the link is along the joint. The
positive direction of the axis is placed perpendicular to the
surface of the paper, the positive direction of the Xi axis points
to the common perpendicular of the i axis and the i+1 axis,
and the direction of the Yi axis is determined by the right-
hand rule.

In the kinematic model of Figure 3, ai−1 is the length of
the connecting rod, αi−1 is the rotation angle of the connecting
rod, di is the offset distance of the connecting rod, θi is
the joint angle, li is the distance between the origin of the
coordinate system {i− 1} and the origin of the coordinate
system {i} in the Z-X plane. where i = 1 ∼ 5 is the
rotational joint of the robot, d1 = 0.026 m, d2 = 0.021 m,
d3 = 0.016 m, d5 = 0.016 m. l2 = 0.14 m, l3 = 0.14 m,
l4 = 0.09 m, l5 = 0.14 m, l6 = 0.09 m, the robot wheel radius
r = 0.095 m.

According to the established kinematics model, the forward
kinematics is solved, and the connecting rod transformation

matrix is obtained as:

0
1T =


C1 −S1 0 0
S1 C1 0 0
0 0 1 0
0 0 0 1

 , 0
2T =


C12 −S12 0 C1l2
S12 C12 0 S1l2
0 0 1 −d1 − d2

0 0 0 1

 (1)

0
3T =


C123 −S123 0 C1l2 + C12l3
S123 C123 0 S1l2 + S12l3

0 0 1 −d1 − d2 − d3

0 0 0 1

 ,

0
4T =


C1234 −S1234 0 C1l2 + C12l3 + C123l4
S1234 C1234 0 S1l2 + S12l3 + S123l4

0 0 1 −d1 − d2 − d3

0 0 0 1

 (2)

0
5T =


C1234 −S1234 0 C1l2 + C12l3 + C123l4 + C1234l5
S1234 C1234 0 S1l2 + S12l3 + S123l4 + S1234l5

0 0 1 d5 − d1 − d2 − d3

0 0 0 1

 (3)

Where, C1234 is the meaning of cos(θ1 + θ2 + θ3 + θ4), S1234 is
the meaning of sin(θ1 + θ2 + θ3 + θ 4).

The robot is a parallelogram linkage mechanism, and the
robot body is expected to be parallel to the ground while
maintaining balance, so the constraint equation is attached:

θ2 = θ4 = π− θ3, θ1 =
1
2
θ3 (4)

Use UG software to analyze the position of the center of mass of
each rod and the body of the robot, and obtain the coordinates
of the center of mass c1 of the Connecting rod 3, the center of
mass c2 of the Connecting rod 1, the center of mass c3 of the
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FIGURE 2

Schematic diagram of robot motion posture: (A) Wheel movement mode; (B) Wheel-leg movement mode.

body, and the center of mass c4 of the Connecting rod 2 relative
to the X-Y plane of the {1}, {2}, {3}, {4} coordinate system:

{
1Xc1 = 0.0545
1Yc1 = 0

,

{
2Xc2 = 0.0802
2Yc2 = −0.0128

,

{
3Xc3 = −0.0219
3Yc3 = −0.0235

,

{
4Xc4 = 0.0714
4Yc4 = −0.0152

(5)

The angle between the line connecting the center of mass c2
and the origin of the coordinate system {2} and the positive
direction of the X2 axis is ϕ2 = atan2(2Yc2,

2 Xc2), the angle
between the line of the center of mass c3 and the origin of
the coordinate system of {3} and the positive direction of the
X3 axis is ϕ3 = atan2(3Yc3,

3 Xc3), the angle between the
line connecting the center of mass c4 and the origin of the
coordinate system of {4} and the positive direction of the X4 axis
is ϕ4 = atan2(4Yc4,

4 Xc4), the center of mass of the hip motor
c5 is at the center of rotation. Let the lengths of the center of
mass c1, c2, c3, and c4 from the origin of the {1}, {2}, {3}, and {4}
coordinate systems be lc1, lc2, lc3, and lc4, respectively. Then the
position of the center of mass of each rod ci relative to the world

coordinate system is (Xci, Zci), and the velocity is
√
˙X2
ci +
˙Z2
ci,

i = 1 ∼ 5.

Dynamic modeling

Self-balancing dynamic modeling
When the robot maintains a standing posture, the leg

linkage mechanism is kept fixed by locking the hip joint motor.
At this time, the robot can be equivalent to a two-wheeled self-
balancing robot, as shown in Figure 4. The center of mass is
located above the wheel axis of the robot, and the pose of the
robot in the world coordinate system is [xb, yb, zb, α]T , where
the position coordinate of the midpoint of the axis of the driving
wheels of the robot is [xb, yb, zb + r], α is the heading angle of

the robot, the distance between the centers of the two wheels
is D, and the radius of the wheel is r, the angles that the left and
right wheels have turned are θL, θR, and the displacements of the
left and right wheels are xL, xR, respectively. Assume that the
body mass of the simplified robot is M, the length of the body
is L, the moment of inertia of the body around the Y axis is Ib,
and the position coordinate of the center of mass of the body
is [x, 0, z]. The moment of inertia of each connecting rod at
the center of mass is Ici, which is obtained with the assistance
of Adams simulation software. The tilt angle and body length of
the equivalent model are:

φ = arctan(
x

z − r
), L =

√
x2 + (z − r)2 (6)

Taking the left wheel of the robot as an example to analyze the
force on the wheel and the body, the balance formula of the force
and moment of the body and the wheel can be obtained:{

FsL − FxL = mẍL

FnL − FzL = mbg
,

{
TL − rFsL − TfL = IW θ̈L

TfL = b
(
θ̇L − φ̇

) (7)

According to the relationship between the displacement of the
midpoint of the line connecting the centers of the two wheels
and the wheel rotation, the equation can be obtained:

(TL + TR)− r (FsR + FsL)− b
(
θ̇L + θ̇R

)
+

2bφ̇− Iw
(
θ̈L + θ̈R

)
= 0 (8)

According to the balance relationship between force and
moment, follows is got:

(TL + TR)+ML cos φ
(
ẍb + φ̈L cos φ− φ̇2L sin φ

)
+

ML sin φ(−g + φ̈L sin φ+

φ̇2L cos φ)− b
(
θ̇L + θ̇R

)
+ 2bφ̇ = Ibφ̈

(9)

Among them, assuming that there is no slippage between the
wheels and the ground, then xL = rθL, the relationship between
the displacement of the midpoint of the line connecting the
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FIGURE 3

Kinematics model of robot.

centers of the two wheels and the left and right wheel angles is:
xb = 1/2(θL + θR). Iw is the moment of inertia of the wheel, Fx

is the interaction force between the wheel and the body in the
X-axis direction, Fz is the interaction force between the wheel
and the body in the Y-axis direction, TL and TR are the output
torques of the left and right wheel motors, respectively, TfL and
TfR are the friction torque, b is the friction coefficient between
the wheel and the rod, the support force between the wheel and
the ground is Fn, and the friction force is Fs.

The top view of the robot is shown in Figure 5, the ṡL

and ṡR are the speeds of the left and right wheels in the X
direction, respectively. Assuming that the moment of inertia of
the robot around the vertical direction is It , the robot realizes

differential turning when there is a differential speed between
the two wheels. The turning dynamics equation is:(

DIw

r
+mDr +

2Itr
D

)
α̈ = TL − TR (10)

The dynamic equations of the robot in the self-balancing mode
can be sorted out as:

TL + TR − ẍb
(
2mbr +Mr + Iw

2
r
)
−

Mr
(
φ̈L cos φ− φ̇2 sin φ

)
− 2b

(
ẋb
r + φ̇

)
= 0

ẍbML cos φ−MgL sin φ+ φ̈
(
ML2
− Ib

)
−

2b
r ẋb + 2bφ̇+ TL + TR = 0(
DIw

r +mbDr + 2Itr
D

)
α̈ = TL − TR

(11)
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Organize the dynamic equations into non-linear dynamic
equations in state-space form:

φ̈ =

(a21 cos φ− a11) (TL + TR)+

(a11a24 − a15a21 cos φ) ẋb − (a14a21 + a11a25) φ̇

+a13a21φ̇
2 sin φ cos φ+ a11a22 sin φ

a11a23 + a12a21 cos2 φ

ẍb =

− (a23 + a12 cos φ) (TL + TR)− a13a23φ̇
2 sin φ+

(a14a23 − a12a25 cos φ) φ̇

+ (a15a23 + a12a24 cos φ) ẋb + a12a22 sin φ cos φ

a11a23 + a12a21 cos2 φ

α̈ =
TL − TR

a31

(12)
Where, a11 = 2mbr +Mr + 2Iw

r , a12 = MLr, a13 = Mr,
a14 = 2b, a15 =

2b
r , a21 = ML, a22 = Mgl, a23 = ML2

− Ib,
a24 =

2b
r , a25 = 2b, a31 =

DIw
r +mbDr + 2Itr

D .
For the dynamic equation of the robot in the self-balancing

mode, take X = [xb, ẋb, φ, φ̇, α, α̇]
T as the system state

variable and u = [TL, TR]
T as the system input variable for

linearization. Assuming that the robot is near the equilibrium
position, there is φ ≈ 0, φ̇ ≈ 0, which is brought into the
non-linear dynamic equation to obtain the linearization of the
system. Equation of state:


ẋb
ẍb
φ̇

φ̈
α̇
α̈

 =


0 1 0 0 0 0
0 A22 A23 0 0 0
0 0 0 1 0 0
0
0
0

A42
0
0

A43
0
0

0
0
0

0 0
0 1
0 0




xb
ẋb
φ

φ̇
α
α̇

+


0 0
B2 B2
0 0

B4 B4
0 0

B6 −B6


[

TL
TR

]

(13)
Among them,

1 = r2(2M2L2
+ 2mbML2

− 2mbIb −MIb)+ 2ML2Iw − 2IwIb

A22 = 2(bML2
− bIb +MLrb)/1

A23 = M2gL2r2/1

A42 = (4brmb + 2Mbr + 4bIw/r − 2MbL)/1

A43 = (2MmbgLr2
+M2gLr2

+ 2IwMgL)/1

B2 = (−ML2r + Ibr −MLr2)/1

B4 = (−2mbr2
−Mr2

− 2Iw +MLr)/1
B6 = Dr/(D2Iw +mbD2r2

+ 2Itr2)

The linear system is decoupled into a separate balance subsystem
and steering subsystem, and the straight-running torque Tφ and
the steering torque Tω of the robot are, respectively, input. The
relationship between the left and right wheel torques and Tφ and
Tω is expressed as a matrix:[

TL

TR

]
=

[
0.5 0.5
0.5 0.5

][
Tφ

Tω

]
(14)

Then the state space equations of the equilibrium system and the
steering system are:

Ẋ1 = A1X1 + B1Tφ, Ẋ2 = A2X2 + B2Tω (15)

FIGURE 4

Force diagram of equivalent model.

Where,

X1 =


xb

ẋb

φ

φ̇

 , A1 =


0 1 0 1
0 A22 A23 0
0 0 0 1
0 A42 A43 0

 , B1 =


0

B2

0
B4

 ,

X2 =

[
α

α̇

]
, A2 =

[
0 1
0 0

]
, B2 =

[
0
B6

]
. (16)

Jump phase dynamic modeling
The inertia tensor of the robot is calculated by Adams

software. The coordinate origin of the inertia tensor is the
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FIGURE 5

Top view of the robot.

center of mass of each rod. The jumping action of the robot
is analyzed on the XOZ plane of the base coordinate system.
The rotation axis of the rod is the Z axis of the corresponding
joint coordinate system. In order to simplify the calculation of
the inertia tensor, let the coordinate system with the center of
mass of each rod as the origin of the inertia tensor coincide
with the three inertia axes of the rod, and according to the
parallel shift axis theorem, the change of the rotation axis of the
connecting rod only changes the size of the moment of inertia
in the inertia tensor, so the inertia tensor can be easily calculated
using Adams software.

In this paper, the Lagrangian equation is used to establish the
dynamic model of the wheel-legged robot, and θ3 is used as the
generalized coordinate, and the Lagrangian equation is applied
to the process of the robot’s take-off phase. The kinetic energy K
and potential energy V of the system are:

K0 =
1
2 mbẊ2

B

K1 =
1
2 mc1(Ẋ2

c1 + Ż2
c1)+

1
2 Ic1θ̇

2
1

K2 =
1
2 mc2(Ẋ2

c2 + Ż2
c2)+

1
2 Ic2(θ̇1 + θ̇2)

2

K3 =
1
2 mc3(Ẋ2

c3 + Ż2
c3)

K4 =
1
2 mc4(Ẋ2

c4 + Ż2
c4)+

1
2 Ic4(θ̇1 + θ̇2 + θ̇3 + θ̇4)

2

K5 =
1
2 mc5(Ẋ2

c5 + Ż2
c5)+

1
2 Ic5θ̇

2
3

(17)

V = 2mc1gZc1 + 2mc2gZc2 +mc3gZc3 + 2mc4gZc4+

2mc5gZc5 + 2mbgZb (18)

L = 2K0 + 2K1 + 2K2 + K3 + 2K4 + 2K5 − V (19)

Where, L is the Lagrangian, which represents the difference
in value between the kinetic energy K and potential energy
V of the robot.

The hip joint motor torque τ =
[

d
dt

(
∂K
∂ θ̇3

)
−

∂K
∂θ3
+

∂V
∂θ3

]
/2

is obtained, and the hip joint space dynamics state space
equation of the robot is sorted out as:

M
(
q
)

q̈+ V
(
q, q̇

)
+ G

(
q
)
= τ (20)

Where, M(q) is the inertia matrix of the robot, V(q, q̇) is
the centrifugal and Coriolis matrix, and G(q) is the gravity
compensation vector.

Analysis of obstacle crossing
conditions

The robot’s ability to overcome obstacles is mainly affected
by its own structure and road conditions. The wheel movement
mode of the wheel-legged robot proposed in this paper is mainly
used for smooth road movement, and the wheel-leg mode is
used to pass the rough road with obstacles. In the following,
the obstacle crossing analysis is carried out, respectively, for the
cases that the obstacle height is lower than the wheel radius
and the obstacle height is higher than the wheel radius in
the wheel-leg mode.

Wheeled obstacle crossing analysis

When the height of the obstacle is less than the radius of the
wheel, the analysis is performed at the initial stage of the robot
crossing the obstacle. At the beginning of obstacle crossing, keep
the center of mass of the robot and the center of rotation of the
wheel on the same vertical line, and perform force analysis on it.

Figure 6 shows the robot cross over the obstacle in wheel-
leg mode, at the beginning of obstacle crossing, the robot is
balanced by the forces and moments between the ground and
the wheels and between the obstacles and the wheels. The
balance formula of the robot’s two legs over obstacle is shown
in Equation (21):


M − Gr cos α+ FN1r cos α = 0
FN2 cos α− f1 − f2 sin α = 0
G− FN1 − FN2 sin α = 0

(21)

In Equation (21), Mw is the torque of the wheel motor, G is its
own gravity, FN1 is the support force of the ground facing the
wheel, FN2 is the support force of the obstacle contact point to
the wheel, f1 is the friction force of the ground facing the wheel,
and f2 is the frictional force on the wheel at the contact point
of the obstacle, α is the angle between the supporting force of
the contact point between the wheel and the obstacle and the
ground, h is the height between the contact point of the obstacle
and the ground, and r is the radius of the wheel.
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FIGURE 6

Wheel over obstacles in wheel-leg mode: (A) Cross obstacle on two legs; (B) Cross obstacle on one leg.

FIGURE 7

Schematic diagram of the robot over the obstacle.

The balance formula of the robot’s one leg over obstacle is
shown in Equation (22):

Mw − Gr cos α+ FN1r cos α+ Fhr cos α = 0
FN2 cos α− f1 − f2 sin α = 0
G− FN1 − FN2 sin α− Fh = 0

(22)

In Equation (22), Mh and Fh are, respectively, the torque of the
hip motor in the adaptive contraction state of the robot when
crossing the obstacle with one leg, and the force transmitted by
the torque of the hip motor to the wheel through the connecting
rod of the wheel leg. The meanings of other parameters are
consistent with Equation (21).

In Equations (21, 22), f1 = µFN1, f2 = µFN2,
α = arcsin r−h

r . When α > 0, the wheel can advance over the
obstacle by its own rotational motion driven by the motor.

Analysis of jumping over obstacles

In the analysis of the robot jumping over obstacles,
due to the symmetric design of the robot, the center of
mass in the process of movement can be kept only in the
X and Z direction displacement in the world coordinate
system, and the jumping process is analyzed according to
the plane robot analysis method. Assume that the take-off
phase time of the robot is [t0, t1) and the flight phase time
is [t1, t4). If the robot wants to jump off the ground after
energy storage, it needs to meet the following conditions:

{
Żc > 0
Z̈c = −g

(23)
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FIGURE 8

Fuzzy Proportion Differentiation (PD) control block diagram.

FIGURE 9

Control effect of fuzzy PD controller.
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FIGURE 10

Screenshot of movement process: (A) Mode switching process
diagram; (B) Jump process diagram.

Therefore, the following conditions should be met in the take-
off phase time [t0, t1):

Ẋc(t1) = Ẋc0 ≥ 0
Żc(t1) = Żc0 ≥ 0
Z̈c(t1) ≥ −g

(24)

When the speed of the robot in the horizontal and vertical
directions is greater than zero, it will make an oblique
throw motion with only the initial speed in the flight
phase. It is assumed that the robot makes uniform linear
motion in the horizontal direction before jumping, and
the velocity of the center of mass in the horizontal and
vertical directions is vx and vy, respectively. Then, the robot’s
flight time is t = 2vy

g , the highest jumping height is

Hmax =
v2

y
2g , and the horizontal displacement distance is

S = 2vxvy
g .

The obstacle crossing process is shown in Figure 7, it’s
required that when the horizontal displacement is St2 = D1,
the jump height Ht2 > Ho. When the horizontal displacement
is St3 = D1 + Do, the jump height Ht3 > Ho. Then, the
conditions under which the robot can overcome obstacles are:

Hmax =
V2

y
2g > Ho

Ht2 > Ho

Ht3 > Ho

S = 2VxVy
g > D1 + Do

(25)

When considering the robot perform jumps has higher request
to the speed and acceleration, vertical direction of the robot
center of mass in accordance with the planned five times
polynomial interpolation method, the initial and the end of a
robot position, velocity and acceleration, respectively, yinit , vinit ,
ainit and yend, vend, aend, using the method of undetermined
coefficients can get desired trajectory:

y(t) = a0 + a1t + a2 + t2
+ a3t3

+ a4t4
+ a5t5 (26)

FIGURE 11

Position and velocity curve of state switching process.

Among them,

a0 = yinit

a1 = vinit

a2 = ainit/2
a3 = [20yend − 20yinit − (8vend + 12vinit)t4−

(3ainit − aend)t2
4]/2t3

4

a4 = [30yinit − 30yend − (14vend + 16vinit)t4−

(3ainit − 2aend)t2
4]/2t4

4

a5 = [12yend − 12yinit − (6vend + 6vinit)t4−

(ainit − aend)t2
4]/2t5

4

Robot control system

Balance and speed control

In general, the wheel-leg movement mode of the robot
proposed in this paper can be divided into two forms: wheel
movement and jumping over obstacles, which are self-balancing
mode and jumping mode, respectively. The robot can switch
between the two modes to complete the task, and it is necessary
to design controllers for the two motion modes, respectively.
The balance and speed control of the robot are realized by the
Linear Quadratic Regulator (LQR) method. The state equation
of the linear time-invariant system is:

ẋ(t) = Ax(t)+ Bu(t) (27)

For the balance system of the robot, the speed, tilt angle and
tilt angle velocity are taken as the state variables, and the state
variable is x = [ẋb, φ, φ̇]. Then the equilibrium system can be
expressed as: ẍb

φ̇

φ̈

 =
A22 A23 0

0 0 1
A42 A43 0


 ẋb

φ

φ̇

+
B1

0
B2

Tφ (28)

If the robot takes ẋref as the reference speed and keeps balance,
then φ̇ = 0, ẋ = ẋref , the system stable state variable
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A B

FIGURE 12

Jump process curve: (A) Position curve; (B) Vertical velocity curve.

FIGURE 13

Ground support reaction force variation curve.

xs = f
(
ẋref

)
, the stability control input us = g

(
ẋref

)
, take

the new state variable 1x = x− xs, the new system input
1u = Tφ − us, then the new system state equation is:

1x =

A22 A23 0
0 0 1

A42 A43 0

1x+

B1

0
B2

1u (29)

The optimal control input is obtained as follows:

u = us − k1x (30)

Where, f
(
ẋref

)
=

 ẋref
A22B2−A42B1
A43B1−A23B2

0

, g
(
ẋref

)
=

A42A23−A22A43
A43B1−A23B2

.

Jumping control

In this paper, the jump control of the robot adopts fuzzy
Proportion Differentiation (PD) control. According to the
dynamic equation of the jump stage obtained in the dynamic
analysis:

M
(
q
)

q̈+ V
(
q̇, q

)
+ G

(
q
)︸ ︷︷ ︸

H(q̇,q)

= τ (31)

The control scheme for calculating torque is set as:

M
(
q
) (

q̈d + Kpe+ Kd ė
)
+ V

(
q̇, q

)
q̇+ G

(
q
)
= τ (32)

Where, e = qd − q, e = q̇d − q̇, qd and q are the ideal angle
and the actual angle, respectively.

The fuzzy PD controller is designed to calculate the torque
control, e and ė are taken as the input of the fuzzy controller.
Mamdan rule is used for fuzzy inference, and min-max-center
of gravity method is used for fuzzy resolution. The output is
1Kp and 1Kd, let the self-tuning parameters Kp = Kp0+1Kp,
Kd = Kd0+1Kd. Kp0 and Kd0 are initial values, KP and KD are
final values. The block diagram of the control scheme is shown
in Figure 8.

For the dynamic model of the robot in the take-off phase,
assuming that the angle tracking command of the robot hip
joint is qd = 2sin(πt)rad, the dynamic equation is written
as s-function by the Simulink module in Matlab to test the
simulation effect. Fuzzy PD control is used to design the control
law, and the initial values of PD parameters are set as Kp0 = 20
and Kd0 = 20. The simulation results are shown in Figure 9.

It can be seen that the joint angle tracking curve of the fuzzy
PD controller is close to the expected tracking angle curve in
Figure 9, and has a fast response speed, no obvious overshoot,
and has a good control effect.

Simulation and experiment

Simulation

The 3D model of the robot was imported into Adams
simulation software, and the co-simulation of the self-balance
and obstacle crossing of the robot is carried out by using
Simulink module of Matlab. The hip motor rotates at different
angles, which can adjust the height of the robot when standing.
First, the simulation of the robot shifting from the wheel mode
to the wheel-leg mode is carried out. When the hip motors
rotate in wheel-leg mode, the robot switches to wheel movement
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FIGURE 14

Curve change of jump process: (A) Curve of joint angle change; (B) Output torque diagram of motors.

mode, and then reverts to the original posture through motors
reversals. The simulation process is shown in Figure 10A. In
order to realize the function of jumping over obstacles, the hip
motors need to rotate with different steering to complete the
contraction and extension of the wheel leg connecting rod, so as
to storage and release the energy needed for jumping. Taking the
single jump process of the robot as an example, its screenshot is
shown in Figure 10B. When the robot moves at a constant speed
of 1 m/s, the robot reaches the highest jump height of 0.16 m at
0.8 s. The take-off phase of the robot is 0.5–0.6 s, the flight phase
is 0.6–0.95 s, and the landing phase is 0.95–1.2 s.

FIGURE 15

Schematic diagram of pits.

FIGURE 16

Left and right motor location diagram.

In the process of mode switching, the position and velocity
change curve of the robot’s center of mass in the vertical
direction are shown in Figure 11. It can be seen that the velocity
change curve is smooth and continuous, which can ensure the
stable mode switching. According to different expected jumping
heights, the jumping trajectories of the robot are different.
Jump simulation experiments are conducted for the expected
heights Hd = 0.16 m and Hd = 0.11 m, and the longitudinal
trajectories of the bottom of the robot wheel and the robot
center of mass are obtained as shown in Figure 12A. It can be
seen from Figure 12B, the motion of the robot after take-off
is oblique throwing motion, and the planned motion wants to
achieve a higher jumping height, so a larger longitudinal velocity
is needed at the take-off point to prolong the time of flight. In the
take-off phase, the wheel-leg linkage mechanisms successively
contract and extend to realize the energy storage and release
of the machine mechanisms. When the condition of leaving
the ground is reached, the end of the robot’s wheels leave the
ground and enter the phase of flight. In the flight phase, the
robot system is in the state of momentum conservation, so the
method of contracting the wheel-legs to increase the jumping
height causes the overall centroid velocity to fluctuate. In order
to reduce the impact of landing, a method is used to keep the
mechanism retraction until the wheels touch the ground. After

FIGURE 17

Obstacle crossing of wheel-leg without adaptive contraction.
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FIGURE 18

Process diagram of single-leg obstacle crossing.

A B

FIGURE 19

Crossing the obstacle with one leg: (A) Diagram of motors’ locations; (B) Diagram of motors’ torques.

FIGURE 20

Schematic diagram of different motion states.

FIGURE 21

Diagram of jump process.
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FIGURE 22

Moving over potholed ground.

the robot lands, the wheel-legs extend back to the position before
the jump.

In Figure 13, the curve of ground support reaction force on
the wheel in the process of jumping is measured, and it’s found
that the support reaction force gradually increases in the take-off
phase, reaches the maximum value at 0.6 s at the end of wheel-
leg contraction, and decreases rapidly at the moment of take-off.
When the wheels leave the ground, the support reaction force
is 0. At the moment of landing, the support reaction force will
change due to impact. The change of the support reaction force
corresponds to the height above the ground in each stage of
the robot jumping process, which verifies the feasibility of the
jumping.

Figure 14A shows the angle variation of each joint when
the jump height is 0.16 m. Since the wheel-leg of the robot is
a parallelogram linkage mechanism, q4 = q5. Among them,
the angles q2, q3, q4, and q5 represent are the angle between
Connecting rod 3 and Connecting rod 1, the angle between
Connecting rod 3 and Connecting rod 2 at the hinge point,
The angle between Connecting rod 2 and the motor rotation
center and the Connecting rod 2 hinge, and the angle between
Connecting rod 2 and Connecting rod 3. Robot hip motor
torque curves is shown in Figure 14B, it can be seen two
hip motors’ output torques are basically consistent, the motors’
torques of the wheel-legs contraction in the take-off phase are
shown in the curves from 0.5 to 0.6 s, which are the torques
curves of the wheel-legs extension from 0.6 to 0.65 s, and the
torque generated near 0.97 s is generated when the robot lands
and touches the ground.

When the robot passes over the pavement with pothole
(major diameter: 15 cm, minor diameter: 10 cm, depth: 5 cm)
as shown in Figure 15, the robot is required to keep moving
smoothly. When the left leg of the robot passes over the pothole,
the linkage mechanism of the right leg contracts to keep the axes
of the motor rotation of the hip joint of the two legs coincide
as much as possible. Figure 16 shows the height of the rotation
axes of the left and right wheel-leg hip motors in this process. It
can be seen that the axes of the two motors basically coincide. At
time of 1.2 s, the deviation of the axis of the two legs is relatively
large, but as a whole, the deviation is small, only about 2 mm.
The robot can smoothly pass through the pothole terrain.

The following simulation experiments are done for the
robot to cross the slope obstacle with one leg. The obstacle
set by the simulation is about 6.5 cm in height and 65 cm in
length. When the robot crosses the obstacle without adaptive
contraction wheel-legs, the side view of the obstacle crossing
process of the robot is shown in Figure 17. In this case,
crossing the obstacle may cause damage to the connecting rod
structure of the robot wheel-leg or the motors of the hip joints.
Therefore, when the vertical height of the contact between the
left and right wheels and the ground is different, the wheel-
leg linkage mechanism with relatively high vertical position of
the contact point needs to be properly contracted to ensure
the stability of the robot body. For this purpose, the one-leg
obstacle crossing simulation experiment was carried out, and
the whole process of obstacle crossing was captured, as shown
in Figure 18.

Figure 19A shows the height variation curve of the rotation
axis of the left and right hip joint motors in the vertical direction.
It can be seen from the figure that the left leg of the robot
starts to cross the obstacle when it contacts the obstacle at
about 2 s, and the robot starts to leave the obstacle at about
7.15 s. In the process of obstacle crossing, the highest position
deviation of the motor axis of the hip joint of the two legs is
generated at 7.9 s, and the maximum deviation between the
motor position of the left leg and the motor position of the right
leg is about 6.6 mm. It can be seen that in the whole process
of obstacle crossing, the position height deviation of the two
hip motors is low, and the performance of obstacle crossing
is better. And because of gravity, the time for going up and
down is different, and the time for going down is less than
that for going up. Figure 19B is the robot’s left leg hip motor
torque figure, can be seen from the figure when the robot starts
uphill because access to the obstacles, will jump a torque value,
and in the process of uphill, with the contraction of the wheel-
leg, it gradually attenuates to the torque value of maintaining
the motor position locking, and also produces a sudden torque
when downhill.

Experimental verification

On the basis of simulation, in order to verify the feasibility
of jumping over obstacles designed in this paper and the
correctness of the simulation results, real robot tests are carried
out. The experiments are based on the DDT robot platform of
Direct Drive Technology Ltd. The total mass of the robot is
about 30 kg, the height of the robot in the wheeled mode is about
21 cm, the length of the robot is about 35 cm, and the width is
about 53 cm. The height of the robot can be adjusted under the
wheel-leg mode. The robot moves in wheel mode and wheel-leg
mode at different height of center of mass on flat ground, the
motion posture is shown in Figure 20.

The real tests are carried out in different terrain, first of
all, the jump height and jump feasibility will be analyzed and
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FIGURE 23

Comparison of different height of obstacle crossing.

verified under flat ground. Control the robot to jump and
compare the jump height with the scale of the preset whiteboard
(see Figure 21). The energy needed for the robot to jump is
stored by the contraction of the leg mechanisms, the energy
release is completed by the extension of the leg mechanism and
the jump is carried out, the wheel-legs are contracted in the flight
phase to improve robot’s height off the ground, and the purpose
of jumping over obstacles is realized. After comparing with the
scale of the white board, it is found that when the robot jumps
at a low speed, the jump height can be 0.16 m. The experimental
results are basically consistent with the simulation results, which
verifies the feasibility of the jump action of the wheel-legged
robot designed in this paper.

The adaptive contraction of the wheel leg is actually tested
on the pothole ground. In Figure 16, it can be seen that in
the simulation experiment of pothole terrain, the robot passes
through the pothole in about 1.2 s, corresponding to the
robot state shown in serial number À and serial number Á

of Figure 22. At this time, the robot walks on the road with
potholes. The axes of the two hip motors are always in the same
vertical position by contracting the wheel-leg which is at a higher
position, it ensures the stability of the robot when walking on the
pothole ground.

For the test of single-leg obstacle crossing, a single block, two
blocks and three blocks of wood are set in front of the right leg
as obstacles. The height of a single plank is 2 cm, the height of
the corresponding obstacles is 2, 4, and 6 cm, respectively, and
the radius of the wheel is 9.5 cm. The obstacle crossing process
is shown in Figure 23. The process from contacting the obstacle
to adaptively adjusting the expansion of the wheel-leg is shown.
It can be seen that the degree of contraction of the wheel-leg is
different when the height of the obstacle is different. The robot
can easily cross the obstacles with height lower than the radius
of its own wheels, and keep moving smoothly through obstacles
by adjusting the wheel-leg adaptively.

FIGURE 24

Jumping process on uneven ground.

In addition to jumping on the flat and open ground,
jumping over obstacles on the uneven ground is an important
embodiment of the robot’s ability to jump over obstacles. The
jumping ability was further tested on the uneven grass outside,
and the test results in Figure 24 shows that the robot still had
good jumping ability on the uneven ground.

Conclusion

In this paper, a bipedal wheel-legged robot with parallel
four-bar linkage wheel-leg structure is proposed. The kinematics
and dynamics of the robot are analyzed, and LQR controller
and fuzzy PD controller are designed for balance and jump,
respectively. According to the output torque curve and hip
joint angle tracking curve obtained by Simulink simulation
experiment, it can be seen that it has a good control
effect. In view of the different ground conditions that the
robot may encounter in the complex terrain environment,
Adams and Simulink are used to simulate the robot’s obstacle
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crossing, respectively, for the pothole road surface, the obstacle
height is higher than the wheel radius and the obstacle crossing
with one leg. Under the gait strategy of adaptive wheel-leg
contraction, the error of each simulation data of the robot is
small and the output torque is within the effective output range
of the motor, which can ensure the smooth obstacle crossing. In
the jump simulation, when the expected jump height is 0.11 and
0.16 m, the vertical velocity of the former is lower than that of
the latter. To increase the height of obstacle crossing, the vertical
velocity of the take-off should be increased. The gait strategies
used in each simulation experiment are verified in real scene test,
and the robot can smoothly cross the obstacles, which verifies
the feasibility of the jumping and control method.
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Interaction learning control with
movement primitives for lower
limb exoskeleton

Jiaqi Wang, Dongmei Wu, Yongzhuo Gao and Wei Dong*

State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China

Research on robotic exoskeletons both in the military and medical fields has

rapidly expanded over the previous decade. As a human–robot interaction

system, it is a challenge to develop an assistive strategy that makes the

exoskeleton supply e�cient and natural assistance following the user’s

intention. This paper proposed a novel interaction learning control strategy for

the lower extremity exoskeleton. A powerful representative tool probabilistic

movement primitives (ProMPs) is adopted to model the motion and generate

the desired trajectory in real-time. To adjust the trajectory by the user’s real-

time intention, a compensation term based on human–robot interaction force

is designed and merged into the ProMPs model. Then, compliant impedance

control is adopted as a low-level control where the desired trajectory is put

into. Moreover, the model will be dynamically adapted online by penalizing

both the interaction force and trajectory mismatch, with all the parameters

that can be further learned by learning algorithm PIBB. The experimental results

verified the e�ectiveness of the proposed control framework.

KEYWORDS

human–robot interaction, hierarchical control, lower limb exoskeleton,

reinforcement learning, movement primitives

Introduction

Technological improvements have led to the prosperous development of lower

extremity exoskeletons for the physical assistance and recovery of human locomotion

since the 1960s (Mosher, 1967). Major gains in robotic hardware, electronics, actuators,

sensors and energy supplies have propelled the use and acceptance of viable prototypes

further. A significant issue that still remains is how to effectively control the exoskeletons

to maximize the benefits of these robotic devices. Unlike with other technologies,

there is not a general convergence of solutions for exoskeleton control as a very wide

variety of controls are used (Young and Ferris, 2016). The intended use and the target

individuals vary, as well as the development of a single control strategy for each

particular design. Therefore, the control strategies should be considered from the actual

application requirements.
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For the exoskeletons that are used for walking assistance in

daily living for able-bodied and elderly individuals, which is the

focus of this paper, the aim of control is not only to provide

appropriate assistance but also to make the robots actively

cooperate with the human user. In this case, it is important for

the exoskeleton to possess the cognition of human movement

and encode it intelligently in order to achieve flexible and

coordinated human-robot cooperation.

Human movement modeling has been extensively

investigated by researchers in the field of bipedal walking.

The most classic strategy that is based on dynamic model and

stability criteria, like the link model (Hirai et al., 1998; Fu and

Chen, 2008), inverted pendulum model (Yokoi et al., 2001;

Komura et al., 2005; Kazemi and Ozgoli, 2019), zero-moment

point (Kagami et al., 2002; Vukobratović and Borovac, 2004;

Huang and Nakamura, 2005; Al-Shuka et al., 2016; He et al.,

2017) have been widely used. This kind of method has over-

reliance on the model, mostly expensive computation, and

poor adaptability to the environment (Kazemi and Ozgoli,

2019). Besides, the exoskeletons are wearable and literally work

in parallel with humans which leads to higher requirements

for flexibility. In order to encode and reproduce human

motion rather than just copy, the approaches learning from

the demonstration have gained considerable interest in robot

systems (Deng et al., 2018; Yang et al., 2018).

In our case, lower limb exoskeletons can possess a better

understanding of human behavior and reproduce it by learning

human movements. Movement primitives (MPs) is a well-

established approach to modular robot movement (Schaal et al.,

2003; Schaal, 2006; Kulić et al., 2012). Dynamic movement

primitives (DMPs) presented by Ijspeert et al. (2002, 2013) has

been widely used in exoskeleton systems (Huang et al., 2018;

Yang et al., 2018). In Huang et al. (2018), motion trajectories

are modeled with DMPs and learned with locally weighted

regression method. Except for a powerful representative model,

it is also necessary that themodel should be adjustable online, for

the benefit of the different users (Tran et al., 2014), and to reduce

the effect of uncertainties and disturbances. The exoskeleton is

required to continuously improve the trajectory generation by

optimizing the objective function. Reinforcement learning (RL)

(Schmidhuber, 2015) is one of the most general frameworks

of learning control to provide truly self-autonomous learning

systems. PI2 (Theodorou et al., 2010) is a reinforcement learning

policy improvement algorithm that combines optimal control

and dynamic programming. Lots of works have illustrated the

functionality of PI2 in a complex robot learning scenario (Tran

et al., 2014; Huang et al., 2018), it offers currently one of themost

efficient, numerically robust, and easy to implement algorithms

for RL. Yuan et al. (2019) proposed a trajectory-learning scheme

based on PI2 combined with DMP for motion generation.

The combination of DMPs and PI2 performs well, but there’s

still room for improvement. DMPs has some limitations, like

the generalization to new situations (Paraschos et al., 2018).

To this effect, a novel ProMPs is proposed by Paraschos et al.

(2013, 2018), which incorporates a variety of advantages from

other well-known previous MP representations (d’Avella and

Bizzi, 2005; Schaal et al., 2005; Kober et al., 2010). As for

PI2, the exploration and parameter update methods are slightly

complicated for an online system. Stulp and Sigaud (2012)

proposed a new algorithm PIBB, which is a simplified version

of PI2 but has better performance. PIBB belongs to black-box

optimization in essence, and it has been proven that PIBB

outperform PI2 in terms of convergence speed and final cost.

Therefore, in our previous work, ProMPs combined with PIBB

are innovatively adopted to model the motion in lower limb

exoskeletons, and the effectiveness has been verified under zero-

mode control that themotion generation process is more quickly

and accurately.

In this paper, we present an interaction learning control

strategy for the lower limb exoskeleton, which is based on

previous work motion generation research. The motion learning

part is still based on the powerful representative tool ProMPs

to generate desired trajectories. For considering the current

intention of the user, the human–robot interaction (HRI)

shouldn’t be ignored in assistive mode control, which is an

important indicator of the naturalness and comfort of the

exoskeleton HRI system. Therefore, we integrate the real-

time HRI force into motion online generation. In specific, a

compensation term modeled by HRI force, which can reflect

the user’s current intention, is designed and incorporated in

ProMPs. Also, the learning algorithm PIBB is adopted to tune

the parameters of the whole new model for different gait

patterns. In this way, the exoskeleton will not only have a better

understanding and reproduction of human motion, but also can

quickly respond to the new situation. And based on that, to

complete the entire hierarchical control for assistive mode, then

the very efficient and often adopted method, impedance control,

is used in low-level control, endowing compliance between the

exoskeleton actuators and the user (Hogan, 1984). Experimental

results reveal that our method can model the present motion

more precisely and quicken the convergence of HRI force. The

performance of the method meets the practical requirements in

the application of the lower limb assistant exoskeleton.

The structure of this paper is organized as follows. Section

Methods introduces the process and the details of the proposed

interactive motion learning strategy. In Section Experiments

and analyses, the experiments are carried out, and the results

are presented and analyzed. Finally, the paper is concluded in

Section Conclusion and future work.

Methods

This section presents the methodology details of the

proposed interaction learning control strategy. Figure 1

illustrates the whole framework, which can be seen as a
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FIGURE 1

The interaction learning control framework.

hierarchical control. In high-level motion learning, the

trajectory generation ProMPs model is firstly built in offline

initial modeling. Besides, the model is incorporated with a

compensation term, which is a transformation of HRI force that

can reflect the user’s current intention. In the actual application,

the real-time position will be put into PIBB and optimize the

model further. Afterward, the low-level control works on a new

generated trajectory. The following Motion generation model,

Motion model compensation, and Motion model adaptive

learning section introduces motion learning sequential, and

the Section Low-level control is the low-level control part. The

meaning of the letters in the figure will be introduced in the

corresponding part.

Motion generation model

The fundamental of the motion learning part is ProMPs

model. The concept of ProMPs introduced in d’Avella and Bizzi

(2005) is a probability distribution over robot trajectories. To

establish ProMPs motion model, the first is the representation of

the probabilistic trajectory. A joint of the limb of the exoskeleton

corresponds to a degree of freedom. To facilitate the description

of the robot’s motion trajectory distribution, qt andq̇tare used

to respectively represent the joint angular position and joint

angular velocity of each degree of freedom at time t. Amovement

trajectory of time length T is modeled by yt =
{

qt
}T
t=1. For

encoding the time-varying variance of movements, ω is used to

compactly represent a trajectory as an underlying weight vector.

The trajectory is given as a linear basis function model,

yt =

[

qt

q̇t

]

= 8T
t ω + εy (1)

where 8t =
[

φt , φ̇t
]

is the N × 2 dimensional time-

dependent basis matrix,N defines the number of basis functions

of each degree of freedom. εy ∼ N(0,
∑

y) Gaussian noise with

0 mean.

Temporal modulation is needed for modeling the human

walking motion because the speed of walking is not fixed.

A phase variable z is introduced to separate the movement

from the time signal. The phase can be any function that

monotonically increases with time zt , and the speed of the

movement can be modulated by modifying the rate of the phase

variable. In this paper, zt is adopted as equation (5),

zt = αt. (2)

At the beginning of the gait movement, phase z0 is defined

as 0 and zE = 1 at the end. The basis function ϕt now directly

depends on the phase instead of time,

φt = φ (zt) . (3)

The choice of the basis functions depends on the type of

movement. For human walking motion, the movement of the

joint is more like a rhythmic movement rather than a stroke-

based. Hence, Von-Mises basis functions bi (Spiegelhalter et al.,

2002) is used to model periodicity in the phase variable z,

bi (zt) = exp

(

cos (2π (zt − ci))

h

)

, (4)

where h denotes the width of the basis and ci is the center of

the ith basis function. Then it is normalized by

φi (zt) =
bi(zt)

∑N
j=1 bj(zt)

. (5)

Then based on Paraschos et al. (2013) the probability of

observing a trajectory yt is introduced as,

p
(

yt |ω
)

=
∏T

t=1
N

(

yt

∣

∣

∣
8tω,

∑

y

)

. (6)

The probability distribution equation (6) depends on the

parameter vector ω. Therefore, vector ω is the essential

parameter for describing the trajectory, and what we mainly

working on in this paper. In specific, according to Paraschos

et al. (2013), a Gaussian distribution is assumed p (ω ; θ) =

N
(

ω
∣

∣µω ,
∑

ω

)

with parameters θ to capture the variance of

the trajectories by learning it. θ = {µω ,
∑

ω} is a set of

parameters that specifies the mean and the variance of ω, which

capture the similarities and differences of different realizations

of the MPs.

To generate more reasonable motion, p (ω ; θ) need to

be learned from multiple demonstrations. Assuming there are

M demonstration trajectories, M sets of weight vectors can

be obtained by linear fitting of the basis function. In this

case, the weights for each trajectory are estimated using linear

ridge regression,

ωm =
(

8
T
8 + λI

)−1
8

T
Ym. (7)
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where Ym represents the position of all steps for the mth

demonstration trajectory, and λ = 0.1. Then the parameters

θ = {µω ,
∑

ω} are obtained by the maximum likelihood

estimation algorithm. The mean µω and covariance
∑

ω are

computed from samples ωm,

{

µω = 1
M

∑M
m=1 ωm

∑

ω = 1
M−1

∑M
m=1 (ωm − µω) (ωm − µω)T

(8)

Now the trajectory distribution p
(

yt ; θ
)

can be defined by

the hierarchical Bayesian model whose parameters are given by

the parameters θ and the observation noise variance
∑

y,

p
(

yt ; θ
)

=

∫

p (τ |ω) p (ω ; θ)dω

=

∫

N
(

yt |8tω,6y
)

N (ω|µω , 6ω)dω

= N

(

yt|8tµω , 8t

∑

ω
8T
t + 6y

)

. (9)

Motion model compensation

MPs is a well-established approach for representing

modular robot movement generators, due to their compact

representation of the inherently continuous and high-

dimensional robot movements. However, the wearable lower

limb exoskeleton is a typical human-in-loop human-robot

coupled system, so we should adapt ProMPs model to our

local conditions by means of combining HRI with it. This

combination can cooperate the human and exoskeleton

together. Besides, HRI force is the most intuitive and practical

way to estimate the user’s intention, so the user’s intentions

are considered when generating trajectories. In this paper,

the interaction between the user and the exoskeleton has

been modeled, and then innovatively incorporated into the

ProMPs as a compensation term. Then the trajectory generation

for the current step can be affected by the HRI from the

last step. Therefore, the linear basis function model of the

trajectory becomes,

yI
t
=

[

qt

q̇t

]

= 8T
t ω + 9T

t ωI + εy (10)

Where 9t = [ϕt , ϕ̇t] is an N × 2 dimensional time-

dependent basis function matrix. Gaussian function is adopted

in here.

The weight vector ωI is associated with the interaction force

τI on each joint, then the trajectory generation will be affected

by the real-time HRI force. In order to compensate for the track

position more reasonably, discretize the interaction force into a

form corresponding to ωI by zero-order holder (ZOH)

τDI = τI

(

1 (t) − 1
(

t − TL�N

))

(11)

FIGURE 2

PIBB policy improvement process. (13)-(20) Are corresponding

formulas.

Where 1 (·) is a unit step function, and TL is the period of

the last gait step. There are total N force values of FDI that are

arranged in order. These values are denoted as a vector FDI . Now,

we can obtain the weight vector ωI as follows,

ωI = αIτ
D
I (12)

Where αI is the scaling factor.

Motion model adaptive learning

Even though the trajectory can be compensated in real-

time with HRI force, it still lacks agility when the system faces

very different gait patterns. The exoskeleton is required to

continuously improve the trajectory generation by optimizing

the objective function. Hence, the decisive parameters ω in the

motion generation model need to be updated constantly.

Figure 2 is the PIBB motion learning policy improvement

process. One execution of a policy is called a ‘roll-out’. In

each iteration, the policy is perturbed and executed K times.

A total of K alternative trajectories with slightly different is

randomly generated around the last optimal trajectory. Based on

these trajectories, policy improvement methods then update the

parameter vector ω → ωnew such that the policy is expected to

incur lower costs.

First, the policy parameter perturbation during a roll-out is

generated from the model of the trajectory with noise

y
′

t = 8T
t (ω + ε)+9T

t ωI (13)

Where ε is interpreted as a constant exploration noise.

The immediate cost function is the mismatch of the time

point positions of trajectories,

rt =
(

q
′

t − qdt

)2
(14)

where qdt represent the joint angle and the actual position of

the last gait step. The trajectory cost R is,

R =

√

1

E

∑E

t=1
r. (15)
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The cost function formula of each of the kth roll-out

trajectory is computed with noise,

Mt,k =
R−18t,k8

T
t,k

8T
t,k
R−18t,k

, (16)

Sk = φE,k +
∑E−1

t=0
rt,k +

1

2

∑E−1

t=1

(

ω +Mt,kεk
)T
, (17)

whereMt,k is a projection matrix onto the range space of 8t

under the metric R−1. φE,k is the terminal cost of kth trajectory,

and rt,k is the immediate cost of kth trajectory at time t.

The probability of the kth roll-out trajectory is obtained by

mapping the cost of each trajectory to [0,1] through the Softmax

function, as shown in equation (18),

Pk =
e
− 1

γ
Sk

∑K
k=1

[

e
− 1

γ
Sk

] , (18)

where the parameter γ is a constant coefficient within (0, 1].

It can be seen from equation (18) that the higher the cost, the

lower the probability, thus ensuring PIBB converges to the value

with low cost.

For PIBB, the parameters are updated based on the scalar

aggregated cost. Therefore, the parameter updating through

reward-weighted averaging is,

δω =
∑K

k=1

[

Pkεk
]

. (19)

The final parameter updates with,

ωnew = ω + δω. (20)

There are many index notations in this paper, so for the

convenience of the readers, they are concluded: ith represents

N basis functions; The tth of E number of time steps; The kth of

K roll-out trajectories; Themth ofM demonstration trajectories.

Low-level control

The hierarchical control scheme needs a compliance control

to work with motion learning results as a low-level control

layer. The impedance control strategy emphasizes the active

compliance of the exoskeleton system by establishing the

dynamic relationship between the interaction force and the

position. It can provide the exoskeleton with certain compliance

while following the generated trajectory, and also allow the user

to actively deviate from the desired trajectory to his comfortable

way. In the application, the desired force τd is generated

according to the position difference and the desired impedance

model, then the desired force added to the compensation force

τc calculated by the robot dynamics model is the joint driving

force τr, as shown in Figure 1 lower-level control. In this way,

the robot system exhibits the desired characteristics of the

impedance model. As for the mathematical description, a typical

formulation of the impedance model is

τd = M
(

q̈d − q̈
)

+ B
(

q̇d − q̇
)

+ K
(

qd − q
)

(21)

Where M is the target impedance inertia parameter matrix;

B is the damping, and K is the stiffness. q̈d, q̇d, qd are the desired

acceleration, velocity, and position of the exoskeleton, andare

the corresponding actual values.

It can be seen from the formula that the choice of parameters

directly determines the quality of the system control effect.

The target impedance inertia parameter matrix M reflects the

smoothness of the system response. B can reflect the energy

consumed by the system. K measures the contact stiffness of the

robot with the external environment. In our case, M is 1, B is 5

and K is 10.

As mentioned before, the dynamic model of the exoskeleton

is required for this kind of impedance control. There are many

ways to analyze robot dynamics. In this paper, the Lagrange

equation is adapted which is standardized,

τc = H
(

q
)

q̈+ C
(

q, q̈
)

q̇+ G
(

q
)

+τf (22)

Where H(q) is the Inertia matrix, C
(

q, q̈
)

is the Centrifugal

force and the Coriolis force matrix, G(q) is about gravity. τf is

the friction.

The human gait dynamicmodel is complex, and the dynamic

model varies with different gait phases. For the swing phase

and standing phase, the models are simplified as two connecting

rods and three connecting rods respectively. The process of the

calculation and identification are not exhibited here in detail.

Experiments and analyses

Hardware

To verify the control scheme, real-time implementations

were performed on an exoskeleton system named HEXO.

Figure 3 shows the main components of the HEXO (Wang et al.,

2022). The backpack is equipped with the ARM control board

(ARM-Cortex-A9, ARM, UK), the power supply, and the data

acquisition card. The lower limb exoskeleton is designed as an

anthropomorphic device, so it has the same DOFs as the human

lower limb. There are seven DOFs of the exoskeleton in total,

four of which are active DOF (hip and knee flexion/extension

DOFs). The actuation system is powered by a brushless DC

motor (EC 60 flat, Maxon Motor, Switzerland), which is

efficient and reliable. The incremental encoder (MILE Encoder

1024 CPT, Maxon Motor, Switzerland) is integrated into the

motor. The servo drivers of these motors are arranged on the
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FIGURE 3

The hardware system of HEXO exoskeleton. 1. Backpack; 2. SFS;

3. Encode and torque sensor; 4. Hip joint; 5. IMU; 6. Thigh limb;

7. Knee joint; 8. Calf limb.

thigh segment and the shank segment respectively (G-SOLTWI

10/100SE, ELMO, Israel). The lower limb motion is measured

by the inertial measurement unit (IMU) (LPMS-CU2, ALUBI,

China) mounted on the thighs and shank carbon-fiber limbs

to avoid the signal burrs caused by the angular difference. The

torque sensors (type: 2210C, SRI, China) are placed at hip and

knee joints, which are used to measure the torque of the joint.

Besides, three six-axis force sensors (SFS) (M3715D, SRI, China)

are installed at the back and sensing shoes between the user

and the exoskeleton to perceive the human–robot interaction

force. The sensing shoes also have four load cells (AT8106,

AUTODA, China) for each shoe. All sensor data is transmitted

to ARM (type: ARM-Cortex-A9, ARM, UK) through the CAN

(Controller Area Network) bus, whose transmission rate is up

to 1Mbits.

Experimental protocol

Six healthy subjects (average height: 1.77± 0.07m; averaged

weight: 67.7 ± 10.1 kg) volunteered to participate in the

experimental activities. As shown in Figure 1, in the process

of adaptative motion learning, there is an initial modeling

procedure need to be done before online application. A

fundamental parameter set of ProMPs will be acquired in this

offline procedure, and then the parameters will be updated

in real-time. The walking data for the network modeling are

collected from subjects 1#, 2#, and 3# by performing the defined

track under the zero-torque mode of the exoskeleton at a self-

selected pace. Figure 4 exhibited part of the walking data profiles.

As can be seen, the differences between each step are inevitable

FIGURE 4

The walking trajectory data of subjects 1#, 2#, 3#.

in walking even though participants are asked to keep their

cadences constant during the execution of their track.

For online experiments, subjects 4#, 5#, and 6# are recrewed.

In order to testify the effectiveness of the proposed method,

comparative experiments with different strategies are set up.

Subjects 4#, 5#, and 6# are asked to perform and repeat

the track under different assistive-mode utilization at a self-

selected pace. In both offline and online procedures, the system

works at 100Hz. The four joints of the HEXO are processed

simultaneously. All angle profile figures in this paper are from

the right leg.

Initial modeling

After trajectory data are obtained, the first step is to represent

and model the trajectory by ProMPs. The process of ProMPs

modeling the reference trajectory is described in section Motion

generation model. The regression parameter λ in equation (8)

is generally set to 10-12, and the basic function width h in

equation (4) adopts 0.05. The number of basis functions N is

a crucial factor in the representative ability of primitives. Thus,

one step of the walking trajectory is learned firstly for choosing

an appropriate N. Figure 5A shows the learning result under

different N, and Figure 5B is the RMSE (Root Mean Square

Error) between the learned trajectory and target trajectory. It

can be seen that the representation ability is weak when the N

is small which is normal, but it grows extremely faster with the

increase of N compare to other primitives. The shape of the

trajectory can be approximately described by 8 basis functions

with 0.017 RMSE, and converged after 15 basis functions within

0.0046 RMSE. The trajectory learned by 10 basis functions which

is the purple line in Figure 5A completely coincides with the
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FIGURE 5

Trajectory learning results for di�erent number of basis functions. (A) Curve after Learning. (B) RMSE of learning.

FIGURE 6

(A) The cut and normalized walking data of subjects 1#, 2#, 3#. (B) ProMPs learning result.

target dotted blue one. Therefore, the basis function of ProMPs

is adopted 15.

Then the walking data was fed to the ProMPs that were

collected from three subjects 1#, 2#, and 3# in the formal

initial modeling. Figure 6A shows the mean and covariance of

the walking data of three subjects’ right hip, which is cut and

normalized based on the gait cycle. Only the profiles of the right

hip joint are shown in this paper in order to be brief. The red

area of Figure 6B is the result learned by ProMPs from all three

of them, which contains all their possibilities. The red line can be

regarded as the average of all acquired trajectories, so it is more

representative of the characteristics of human gait behavior than

any other ones. Besides, the more trajectories are learned, the

more general the reference trajectory is.

Experiments

For online experiments, the hardware platform is HEXO as

mentioned before, embedding the corresponding control frame.

The trajectory learned in section Initial modeling is regarded

as the reference trajectory at the beginning. In order to test

and verify the performance of the proposed method, we also

set up other two baselines as comparisons. The first strategy
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FIGURE 7

Experimental results of subject 4# with strategy P-I.

FIGURE 8

Experimental result of subject 4# with strategy PP-I.

denoted as “P-I” is the exoskeleton works only with the ProMPs

model as motion learning. The model is unchangeable so the

desired trajectory remains the same. The impedance control

provides adequate compliance which makes sure the subjects

can walk naturally in the way that he wants. In the second

comparison “PP-I”, the motion learning model ProMPs can be

constantly updated by the PIBB. The data from the actual joint

trajectories are imported into the PIBB algorithm to calculate

the corresponding cost value, and the PIBB adjusts the decisive

parameters ω in motion learning according to the cost. Then a

new trajectory with new characteristics is able to be generated.

The last is the proposed interaction learning control strategy,

entitle “PIP-I”. There is a dynamical interaction compensation

term added into the motion learning part compared to the

second “PP-I”, which is promising to reduce human–robot

interaction force timely. Except that, the updating process is

the same.

Figure 7 shows the result of the first baseline P-I. It compares

the generated trajectory and the actual one at the beginning

of the walking of subject 4#. Note that the actual trajectory

FIGURE 9

Experimental result of subject 4# with strategy PIP-I.

FIGURE 10

Comparison of the RMSE of the mismatch error of three

strategies, P-I, PP-I, and PIP-I.

represents the intention of the users’ in this situation. In

practice, the reference trajectories learned by ProMPs still differ

across the users, maybe owing to the learning samples of the

ProMPs model is not enough based on our limited experimental

conditions. However, even though there are much more samples

to learn, the difference cannot be eliminated due to different

physical characteristics and the uniqueness of the human gait.

In addition, it can be seen that the generated trajectory is the

same for every step if there is no adaptation of the model, and

when the step time between the actual and generated one are

unsynchronized then the generated angel keeps the last value.

Usually, the impedance control will drive the actual angle close

to the ideal to a certain extent, but we ask subjects to insist on

their own walking way because the ultimate goal is exoskeleton

actively consistent with the humans instead of the opposite.

Therefore, there are mismatches between the desired trajectory

and the actual one. In this way, it will cost a lot to maintain the

gait of the subjects, and the HRI is not ideal without a doubt. The

HRI force is an intuitive benchmark tomeasure the performance

of synchronization.
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FIGURE 11

The performances of PP-I and PIP-I in RMSE of error profiles. (A) Subject 5#. (B) Subject 6#.

With regard to the second strategy PP-I, the experimental

result is demonstrated in the Figure 8. The updating rate is one

step, which is also the minimal unit because of the motion

trajectory that ProMPs modeled is for every step. For the first

step, there still is a big difference. Nevertheless, with the help of

the adaptation, the generated trajectory is adjusting constantly

by the PIBB, and closely follows the actual after 8-9 steps.

Moreover, the HRI force decreased a lot after convergence, as

a result of trajectory adaptation which decreased the conflict

between human and exoskeleton. That is to say, PP-I is able

to provide a more coordinated HRI for the system and a more

comfort assistant experience.

Up to now, the superiority of dynamic adaptation is

quite apparent. Adjusting the generated trajectory constantly

adds flexibility to the system, by enhancing the ability to

adapt to the new situation. However, the adaptation rule is

only extracted from trajectory mismatch seems inadequate,

which brought the next experiment. Figure 9 illustrates the

adaption performance of PIP-I, which is the proposed method

in this paper. It indicates that the convergence trend is

similar to PP-I, but the convergence speed is improved a lot.

For subject 4#, the convergence only takes 3-5 steps. The

underlying reason is that our adaptation is extracted from a

cost function that penalizes both interaction and trajectory

mismatch, by adding the HRI compensation term into the

motion generation model.

Figure 10 compares the average mismatch errors of three

strategies. Note that, comparing the errors of the first step is

of no necessity because the value is random. After the first

step, the errors gradually reduced both in PP-I and PIP-I, while

there is no obvious convergence in P-I. There is not much

difference in steady state error of PP-I and PIP-I, but the PIP-

I approaches the stable error faster. The decrease in mismatch

errors indicates that adapted trajectories are more consistent

with the human-exoskeleton dynamics. It is a very promising

result for the proposed method, in terms of the exoskeleton

system can consistent with the different users more quickly.

Figure 11 illustrates the experimental result of error profiles

on subjects 5#, 6#. The results of baseline P-I are the same as

the subject 4#, so it will not be pointed out in further detail.

For the PP-I and PIP-I, PIP-I shows the absolute advantage of

convergence speed in all cases. It is hard to tell which step the

errors converges to, but it is about 7-10 steps for PP-I while only

3-6 steps are needed by PIP-I for all three subjects.

The interaction force was almost proportional to the errors

and followed the same trend as the errors. In Table 1, we

show the average HRI force of the 4–6th step and 9–11th step

respectively. We can see from the Table 1, that the HRI force
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TABLE 1 The comparison of HRI force performance for strategies P-I,

PP-I, and PIP-I.

Average HRI force(N m) 4–6th step 9–11th step

P-I PP-I PIP-I P-I PP-I PIP-I

Subject 4# 1.21 1.20 0.74 2.09 0.48 0.56

Subject 5# 2.65 1.10 0.62 2.12 0.49 0.47

Subject 6# 1.86 0.78 0.55 1.93 0.28 0.44

with P-I is not changed as the number of steps increases. PP-I

reduces the force to stable until the 9–11th step, but PIP-I can

reach the steady states just with only the 4–6th steps needed.

Although there is the effect of the gait randomicity, it is still

can be drawn that PIP-I is able to reduce the adaptation time

nearly by half. As a matter of fact, adjustment time halved has

a great impact on the actual wearing experience. Moreover,

according to the subjects, it is stable and comfortable when

the exoskeleton works on PP-I and PIP-I, and the adaption

process of PIP-I is rapid and hardly conscious. Consequently, the

experiments exhibited that the proposed method can model the

human trajectory and perceive the human intention online with

not only low error but also, most importantly, high efficiency.

With this dynamical interaction learning control, the lower limb

exoskeleton can provide natural and comfortable assistance to

the users in the way that he wants, and the system can also adapt

to different users and situations due to the adaptive updating

procedure. With the HRI compensation term, the flexibility and

coordination of the human-robot system are further improved.

Conclusion and future work

We presented a novel interaction learning control

framework for the lower limb exoskeleton to naturally assist

people. The motion learning model generates desired trajectory

online which is a combination of movement primitives and

human–robot interaction force, and it is adjustable to converge

to human intention and adapt to different users. We firstly

adopted ProMPs to model the human motion trajectory in the

lower limb exoskeleton, and in this paper, it is further integrated

with HRI working on assistive mode. Furthermore, the motion

learning model is constantly updated online by PIBB, which can

ensure the adaptability of the method to different gait patterns of

various users. The experiments reveal that the proposed strategy

can timely provide a smooth and natural trajectory online which

is in line with the user’s pattern so that the exoskeleton system

could cooperate with the human user with smaller HRI. Most

importantly, the convergence time is further reduced by adding

the HRI compensation term, which improved the efficiency of

the system and its comfort. Our analysis and experiment results

show the applicability and effectiveness of the proposed method

and its feasibility to be used in lower limb exoskeletons.

For this paper, the locomotion mode involved in testing is

only level walking. In the future, all basic rhythmic locomotion

modes in daily living will be included, such as stair ascent,

stair descent, ramp ascent, and ramp descent. The performance

of the learning should be similar since there is no essential

difference between these motions. Besides, the situation of speed

changing in walking should be taken into consideration, so the

adaptability of the method for that need to be verified further.
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Modern action recognition techniques frequently employ two networks: the

spatial stream, which accepts input from RGB frames, and the temporal stream,

which accepts input from optical flow. Recent researches use 3D convolutional

neural networks that employ spatiotemporal filters on both streams. Although

mixing flow with RGB enhances performance, correct optical flow computation is

expensive and adds delay to action recognition. In this study, we present a method

for training a 3D CNN using RGB frames that replicates the motion stream and, as

a result, does not require flow calculation during testing. To begin, in contrast to

the SE block, we suggest a channel excitation module (CE module). Experiments

have shown that the CE module can improve the feature extraction capabilities of

a 3D network and that the e�ect is superior to the SE block. Second, for action

recognition training, we adopt a linear mix of loss based on knowledge distillation

and standard cross-entropy loss to e�ectively leverage appearance and motion

information. The Intensified Motion RGB Stream is the stream trained with this

combined loss (IMRS). IMRS surpasses RGB or Flow as a single stream; for example,

HMDB51 achieves 73.5% accuracy, while RGB and Flow streams score 65.6% and

69.1% accuracy, respectively. Extensive experiments confirm the e�ectiveness of

our proposed method. The comparison with other models proves that our model

has good competitiveness in behavior recognition.

KEYWORDS

action recognition, channel excitation, knowledge distillation, 3D convolution, deep

learning

1. Introduction

With the advent of new, sophisticated deep learning architectures that are based on 3D

Convolutional Neural Network variations, video processing has advanced dramatically in

recent years (Diba et al., 2018; Feichtenhofer et al., 2019; Feichtenhofer, 2020; Zhu et al.,

2020; Fayyaz et al., 2021). They have excelled at both the upstream and downstream tasks

of video action recognition (Jiang et al., 2018; Xu et al., 2020; Zhao et al., 2020). However,

it can be difficult and expensive to install these networks for inference tasks. Recent work

treats recognition from motion as its objective, in which a “temporal stream” observes just a

hand-designed motion representation as input, while another network, the “spatial stream,”

observes the raw RGB video frames (Simonyan and Zisserman, 2014). When the spatial

stream is a 3D Convolutional Neural Network, however, it has Spatio-temporal filters that

respond to motion in the video. This, in theory, should allow the spatial stream to learn

motion properties, a notion supported by the research (Tran et al., 2015; Lee et al., 2018).

However, integrating a “temporal” 3D CNN that takes an explicit motion representation,

often optical flow, as input yields significant accuracy gains (Carreira and Zisserman, 2017).

The method of mixing 3D CNN-based RGB and Flow streams delivers better results, but

it has considerable downsides. For starters, two-stream techniques necessitate explicit and
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precise optical flow extraction from RGB frames, which is

computationally demanding. Second, the optical flow must be

evaluated before the network’s forward pass can be computed.

Thus, two-stream techniques not only necessitate a large number of

CPU resources but also result in excessive latency when identifying

actions in an online context.

In this study, we present a unique learning strategy based

on channel excitation and the distillation idea that avoids flow

computation at test time while maintaining the performance of

two-stream approaches. To begin, we train a 3D CNNwith channel

excitation on RGB input that hallucinates features from the Flow

stream. More specifically, we minimize the difference between

high-level features from the layer preceding the network’s last

fully-connected layer and motion stream features at the same

level (see Figure 1). In other words, our stream is architecturally

and input-wise comparable to the RGB stream, but it is trained

FIGURE 1

Training to make use of motion and appearance data. Initially, we use optical flow clips with cross-entropy loss to train the flow stream to identify

activities and then freeze its weights. IMRS exploits both motion and appearance information by backpropagating the linear combination loss

between features’ overall network levels.

using a different loss function called the linear combination

loss function. We demonstrate that by utilizing this method,

flow features can be extracted from RGB frames without the

need for explicit optical flow computation during inference. This

network is referred to as the Intensified Motion RGB Stream

for convenience (IMRS). IMRS demonstrates that by precisely

simulating the Flow stream, knowledge gathered from optical flow

can be efficiently transferred to a stream with RGB inputs based

on 3D Convolutions. More crucially, it indicates that at test time,

flow computation can be avoided. Experiments show that a network

trained using our innovative approach outperforms individual

RGB and Flow streams. This demonstrates how IMRS effectively

uses both appearance and motion information. Specifically, IMRS

achieves 74.1% accuracy on HMDB51 (split-1), whereas RGB and

Flow achieve 67.6 and 70.2% accuracy, respectively. The main

contributions of this paper are summarized as follows:
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1. A channel excitation module CE is presented to improve

the effectiveness of video frame feature representation by

strengthening the channel information interaction in a

3D network.

2. To improve the knowledge distillation effect between the

teacher and student models, a linear combination loss function

is developed.

3. With channel excitation and knowledge distillation, we design

a network. Experiments suggest that it is more successful for

action recognition issues, with higher accuracy on UCF101

and HMDB51.

2. Related work

Methods for recognizing video actions can be divided into

two categories. To begin, there are 2D CNN techniques that use

single-frame models to process each frame independently. Second,

there are 3D CNN techniques, in which a model learns video-level

information through the use of 3D filters. As we will see, both types

of approaches frequently employ a two-stream approach, with one

stream capturing features from appearance and the other capturing

data from motion. Our research focuses on Two-Stream 3D CNNs.

2.1. 2D CNNs

Many ways take advantage of the power of single-image (2D)

CNNs by applying a CNN to each video frame and pooling the

predictions over time (Simonyan and Zisserman, 2014; Donahue

et al., 2015). However, naive average pooling overlooks the

video’s temporal dynamism. Two-Stream Networks incorporate a

second network termed the temporal stream to capture temporal

information, which accepts a sequence of successive optical flow

frames as input (Simonyan and Zisserman, 2014). The outputs of

these networks are then integrated using late fusion or, in certain

cases, early fusion, which involves allowing the early layers of the

spatial and temporal streams to interact (Feichtenhofer et al., 2016).

Other methods have used other approaches to includemotion, such

as modifying how characteristics are pooled across time with an

LSTM or CRF (Donahue et al., 2015; Sigurdsson et al., 2017). These

approaches have proven to be quite effective, especially when video

data is scarce and training a 3D CNN is difficult. However, recent

large-scale video dataset releases have accelerated progress in 3D

CNNs (Zisserman et al., 2017).

2.2. 3D CNNs

By increasing the filters to three dimensions and applying them

temporally, single-frame CNNs can be generalized to video (Ji

et al., 2013). Because 3D CNNs have more parameters, they require

more data to train. The earliest 3D CNNs were enabled by large-

scale video datasets such as Sports-1M, but they were typically not

significantly more accurate than 2DCNNs applied frame-by-frame,

raising the question of whether 3D CNNs model motion (Karpathy

et al., 2014). To compensate, many 3D CNN systems employ

additional motion-incorporation algorithms. Motion is included in

C3D utilizing Improved Dense Trajectory (IDT) features, resulting

in a 5.2% gain in absolute accuracy onUCF-101(Wang and Schmid,

2013; Tran et al., 2015). Using a two-stream strategy in I3D, S3D-

G, and R(2+1)D results in absolute improvements of 3.1, 2.5, and

1.1% on Kinetics, respectively (Carreira and Zisserman, 2017; Tran

et al., 2018; Xie et al., 2018). These studies also show that optical

flow input can significantly increase 3D CNN recognition ability.

2.3. Attention mechanism

The attention mechanism can direct the model’s attention to

key regions and enable the enhancement of critical features, hence

enhancing recognition performance. SENet (Hu et al., 2018) uses

the Squeeze and Excitation (SE) module to explicitly characterize

channel dependency and improve channel characteristics. Woo

et al. built an attention module (Convolutional Block Attention

Module, CBAM) based on the channel excitation module to

perform adaptive feature refinement on the input feature map

(Woo et al., 2018). Based on a self-attention mechanism, Fu

et al. suggested a dual-attention network to capture feature

interdependence in the spatial and channel dimensions separately

(Fu et al., 2019). Chi et al. offer a Cross-Modality Attention (CMA)

algorithm that allows a two-stream network to acquire information

from other modalities in a hierarchical fashion (Chi et al., 2019). In

this paper, we propose a channel excitation module (CE) starting

from the structure of SE Block, and verify the effectiveness of the

module through experiments.

2.4. Distillation

The concept of distillation is central to our proposed learning

strategy. Distillation was first proposed for knowledge transfer from

a complicated to a simple model by using the complex model’s class

probabilities as a “soft goal” for the smaller one (Hinton et al.,

2015). In a similar vein, our goal is to transmit knowledge from

the motion stream to a network that simply accepts RGB input and

does not do explicit flow computation. In our scenario, optical flow,

along with RGB, is available for training, but only RGB is available

during test time.

3. Methodology

3.1. Network architecture

Figure 1 depicts the network structure described in this article.

The instructor model is one of the optical flow inputs, while

the RGB input is the student model. Freeze the parameters of

the teacher model after training it with the cross-entropy loss,

and then train the student model. During the student model’s

training, the optical flow is fed into the teacher model with

frozen parameters, and the RGB stream is fed into the student

model. The combined loss function introduced in this research

is used to calculate the loss of the output of the student model’s

fully connected layer and the output of the teacher model’s fully

connected layer. Backpropagation is used in the student model to
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TABLE 1 Network size information.

Layer N F Output size

Input – 3 or 2 16× 112× 112

Conv1 – 64 16× 56× 56

Max pool – 64 8× 28× 28

Res2 3 256 8× 28× 28

CE module – 256 8× 28× 28

Res3 4 512 4× 14× 14

CE module – 512 4× 14× 14

Res4 23 1,024 2× 7× 7

CE module – 1,024 2× 7× 7

Res5 3 2,048 1× 4× 4

CE module – 2,048 1× 4× 4

Avgpool – 2,048 1× 1× 1

FC – – 1× classes

update the parameters so that they can take advantage of motion

and appearance information.

We employ 3DResNext101 (Hara et al., 2018) as the network

backbone in this paper to extract deep features from input

consecutive video frames. 3DResNext101 utilizes ResNet’s repeated

layer technique, which minimizes network complexity while

boosting network width and depth to increase classification

accuracy. Table 1 shows the network size after we introduced the

CEmodule. F denotes the number of feature map channels,N is the

number of residual blocks in each convolutional layer, and classes

the number of action categories. The convolutional layer Conv1 is

a 3D convolutional layer with a convolution kernel size of 7 × 7

× 7, 64 output channels, stride (1, 2, 2), and padding (3, 3, 3). The

subsequent residual layers Res2-Res5 are stacked by residual blocks.

3.2. Channel excitation module

We insert a CE module after each residual layer of the

network, hoping to increase channel excitation, to improve the

network’s ability to pay attention to relevant information. SE

Block, which adaptively calibrates channel feature responses by

explicitly modeling channel interdependencies, won first place in

the ILSVRC2017 classification (Hu et al., 2018). We propose a

channel excitation module (CE Module) based on the structure of

the SE Block and test its usefulness through experiments.

3.2.1. Local cross-channel interaction
SE Block reduces the dimension of the channel information

using the squeeze operation, then utilizes the ReLU function

to execute non-linear interaction on the squeezed channel

information. As illustrated in Figure 2A, an expansion operation

is added to the channel information after extrusion to restore the

channel number before the extrusion operation. For a given feature

FIGURE 2

(A) SE block structure. (B) CE module structure.

y ∈ RC without dimensionality reduction, the channel excitation

can be learned by the following formula:

η = σ
(

Wky
)

, (1)

where η is the channel excitation coefficient, σ is the Sigmoid

function,Wk is a parameter matrix of k×C dimension and its form

is as follows:

Wk =













w1,1 · · · w1,k 0 0

0 w2,2 · · · 0 0
...

...
...

. . .
...

0 · · · 0 · · · wC,C













. (2)

Its meaning is: to calculate the weight wi of the channel yi,

only considering the interaction with its k neighbors, where i is the

channel number, j is the number of the neighbors. That is

ηi = σ

(

∑k

j=1
w
j
iy
j
i

)

, y
j
i ∈ �k

i , (3)

where ηi is the channel excitation coefficient numbered i and �k
i

represents the set of k adjacent channels of the channel yi. One way

is to have all channels share the same weights, i.e.,

ηi = σ

(

∑k

j=1
wjy

j
i

)

, y
j
i ∈ �k

i . (4)

This method of parameter sharing can be implemented by a 1D

convolution with a convolution kernel size of, i.e.,

η = σ
(

C1Dk(y)
)

, (5)
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where C1D represents 1D convolution. The method in formula

(5) is implemented by the channel excitation module CE and only

involves k parameters.

3.2.2. Local cross-channel interaction scope
The extent of the interactions (i.e., kernel size of 1D

convolutions) must be established for the CE module to correctly

capture local cross-channel interactions. Because 3 × 3 is the

most commonly used convolution kernel size in 2DCNNs and the

number of parameters is limited, we select k = 3 as the default

choice. Figure 2B depicts the construction of the CE module that

we employed.

3.3. Knowledge distillation and loss
function

Distillation was first proposed as a method for transferring

knowledge from complex to simple models by employing complex

model class probabilities as “soft targets” for smaller models

(Hinton et al., 2015). Crasto et al. (2019) translates knowledge

from motion flow to RGB input-only networks without explicitly

computing optical flow. We train an RGB-enhanced flow model

with high-level optical flow characteristics (Intensified Motion

RGB Stream, IMRS) using knowledge distillation with a linear

combination loss function, which requires just RGB inputs

during testing.

In the field of image recognition, the cross-entropy loss is

frequently employed as the classification model’s loss function, and

it takes the following form:

Loss = CrossEntropy
(

s, ŷ
)

, (6)

where s is the class score predicted by the model and ŷ is the true

class. The proposed teacher model in this paper only uses optical

flow as input, and adopts cross-entropy loss for model training, i.e.,

LFlow = CrossEntropy
(

sFlow, ŷ
)

, (7)

where LFlow is the teacher model classification loss and sFlow is the

class score predicted by the teacher model. A linear combination

loss function of the following form is used to train the student

model using only RGB input:

L = CrossEntropy
(

sRGB, ŷ
)

+ λ1 ·
∥

∥fcRGB − fcFlow
∥

∥

+λ2 · KL(P(fcRGB)||P(fcFlow)), (8)

where sRGB is the class score predicted by the student model.

CNN’s first layer output represents low-level local information,

while later layer outputs represent high-level global features

(Zeiler and Fergus, 2014). fcRGB and fcFlow in formula (8)

represent the high-level global features of the student model

and the teacher model, λ1 is the scalar weight that adjusts the

influence of the motion feature and λ2 is the scalar weight

that adjusts the influence of the probability distribution of the

motion feature. The values of λ1 and λ2 will be introduced in

the experimental part. KL(P(fcRGB)||P(fcFlow)) denotes the relative

entropy (Kullback-Leibler divergence) of the RGB model’s high-

level feature probability distribution and the FLOW model’s high-

level feature probability distribution. The formula for calculating

relative entropy is as follows:

KL(P||Q) =
∑

P(x)
log(P(x))

log(Q(x))
, (9)

where P(x) and Q(x) are the probability distributions of two

discrete variables. In this paper P(x) and Q(x) are replaced by

P(fcRGB) and P(fcFlow).

4. Experiments and evaluations

4.1. Datasets

We concentrate on two popular action recognition

benchmarks: HMDB51 (Kuehne et al., 2011) and UCF101

(Soomro et al., 2012). HMDB51 comprises 6,849 video clips

divided into 51 activity categories. Human actions, face actions,

and interactive activities are all featured in the videos. UCF101

comprises 13,320 video clips with an average duration of around

7 s and 101 action categories. Human-object interaction, human-

human contact, human movement, sports, and musical instrument

performance are some of the activity categories covered in videos.

Figure 3 shows some of the data from the above two datasets. The

two datasets mentioned here were trained and evaluated using

the three officially provided splits, which means that there is no

intersection between the training and evaluation data. To the best

of our knowledge, the same works as the dataset used in our work

are (Wang et al., 2016b; Crasto et al., 2019; Li et al., 2021). The first

splits of HMDB51 and UCF101 are denoted as HMDB51-1 and

UCF101-1, respectively.

4.2. Implementation details

The experiments in this paper generate models and conduct

research in the Python3.6 environment using the Pytorch deep

learning framework. All programs are executed on a server that has

a V100 GPU.

4.2.1. Data preprocessing
In this paper, the OpenCV toolkit in the Python environment

is used to frame the original video dataset and extract the optical

flow. In the process of video framing, all frames of the video data

are extracted, and the image size of the video frame is adjusted to

256 × 256 pixels and saved in jpeg format. After the video frame

is divided, the optical flow extraction operation is performed. In

this paper, the TV-L1 (Zach et al., 2007) method is used to extract

the optical flow, and the default parameter settings of OpenCV are

used.We truncate the value of the optical flow file between−20 and

20 and map it to the (0,255) pixel range, saving it in jpeg format.

4.2.2. Training
We use consecutive 16 frames as input during training after

setting (Hara et al., 2018). A random cut to 112 × 112 size is
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FIGURE 3

(A) HMDB51 dataset. (B) UCF101 dataset.

performed on the input image, and a horizontal flip is randomly

applied, which includes a random horizontal flip of the x-direction

component for the optical flow input. Subtract the mean of the

ActivityNet distribution for RGB input and 127.5 for FLOW input,

assuming that the FLOW distribution is centered at 0. Following

the settings of Hara et al. (2018), we adopt the SGD optimization

method with a weight decay of 0.0005, a momentum of 0.9, and

an initial learning rate of 0.1 for ab initio training. During the fine-
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TABLE 2 The influence of CE module position and number.

Location Number HMDB51-1(%)

Res2 1 65.9

Res3 1 65.8

Res4 1 67.0

Res5 1 66.2

Res2−5 4 67.6

The bold values represent the highest accuracy.

TABLE 3 The e�ect of the CE module.

Model Params (M) UCF101-1
(%)

HMDB51-1
(%)

3DResNeXt101 48.34 90.7 63.8

3DResNeXt101+SE 49.04 91.0 65.4

3DResNeXt101+CE 48.34 91.8 67.6

The bold values represent the highest accuracy.

tuning phase, we use a pre-trainedmodel on the Kinetics400 dataset

with a learning rate of 0.001, and when the performance no longer

improves for 10 consecutive epochs, the learning rate becomes 0.1

times the previous one. The number of training cycles in this paper

is 80 epochs, the batch size in the training phase is 32, and the batch

size in the testing phase is 1.

4.3. Ablation experiments

4.3.1. Impact of CE module
In this study, we investigate the effect of CE module position

and number onmodel performance using RGB input onHMDB51-

1. Table 2 shows that the ideal method for embedding the CE

module into the network is to add a CE module to each Res2-Res5

residual layer, for a total of 4 CE modules added to the network.

In this research, we investigate the effects of the SE block

and the CE module on model performance using RGB input

on UCF101-1 and HMDB51-1, respectively. It can be seen from

Table 3 that the amount of model parameters hardly increases after

the CEmodule is embedded in the network. Compared with adding

the SE block to the network, the number of parameters is less and

higher recognition accuracy is achieved.

4.3.2. The e�ect of λ1 and λ2

Regarding the linear combination loss function scalar weights

λ1 and λ2 in formula (8), we conduct an experimental manual

search on HMDB51-1. The experimental results are shown in

Table 4. The optimal parameters obtained from the experiment are

λ1 = 50, λ2 = 200.

4.4. Results and discussion

Figure 4 depicts the accuracies of the single-stream

3DResNext101+CE model on the UCF101 and HMDB51

TABLE 4 The e�ect of λ1 and λ2.

λ1 λ2 HMDB51-1(%)

1 1 73.1

10 10 73.3

50 50 72.1

50 100 73.3

50 200 74.1

50 300 73.0

The bold values represent the highest accuracy.

validation sets, with average accuracy over Top-1 and Top-5. The

overall performance of the dataset is calculated by averaging the

dataset’s three parts.

In terms of single-stream performance, the FLOW stream

outperforms the RGB stream, demonstrating that motion

information is more effective than appearance information for

action recognition. The models all outperformed HMDB51 on

UCF101, indicating that HMDB51 is more difficult to recognize

actions than UCF101.

On both datasets, IMRS outperforms RGB and FLOW

single-stream, indicating that the strategy of transferring

motion flow information to appearance flow in the form

of knowledge distillation is effective. On HMDB51-1, IMRS

Top-1 accuracy is 6.5 and 3.9% greater than pure RGB and

FLOW streams, respectively. On UCF101-1, IMRS Top-1

accuracy is 3.6 and 2.8% greater than pure RGB and FLOW

streams, respectively.

4.5. Comparison with mainstream methods

Table 5 compares the model suggested in this paper to the

industry standard approaches for behavior recognition. This paper’s

recognition effect on UCF101 and HMDB51 is the average of

three splits. Our method outperforms the two-stream method in

terms of recognition accuracy, but the number of parameters and

computation rises due to the usage of 3D convolution.

Compared with 3D CNN methods, our method outperforms

some models, such as T3D+TSN (Diba et al., 2017), and ECO.En

(Zolfaghari et al., 2018), 3DCNN Ensemble+iDT (Huang et al.,

2020), STDA-ResNeXt-101 (Li J. et al., 2020). Compared with

MARS (Crasto et al., 2019), the channel excitation module is

introduced in the network structure, which brings a small number

of parameters and a small amount of calculation. MARS only

reported the accuracy on split1 for 16 frames input in the

original text, and the average effect of this paper on the three

splits of the dataset was higher than that of MARS. Among

them, the performance of S3D-G (Xie et al., 2018) on the two

datasets is higher than IMRS proposed in this paper. The main

reason is that S3D-G is pre-trained on ImageNet+Kinetics and

needs 64-frame input. In this paper, we just use 16 frames

of input and solely employ Kinetics’ pretrained parameters.

On UCF101 and HMDB51, S3D-G is 1.1 and 2.4% higher

than ours, respectively, but the computational cost of ours

is much lower than S3D-G (18.04 vs. 71.38). On HMDB51,
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FIGURE 4

(A) HMDB51 accuracy top-1. (B) HMDB51 accuracy top-5. (C) UCF101 accuracy top-1. (D) UCF101 accuracy top-5.

RGB-I3D (Carreira and Zisserman, 2017) is 1.3% higher than

ours, but it is higher in terms of the number of input frames

and computation.

Compared with the 2D CNN method, the method in this

paper has an advantage in terms of computational complexity, and

the recognition accuracy is less different from TSM (Lin et al.,

2019). On HMDB51, our technique has a 1.3% greater recognition

accuracy than STM (Jiang et al., 2019). On UCF101, our method’s

recognition accuracy is lower than that of 2D CNN, but it has an

absolute advantage in terms of computational complexity. Based

on these findings, we can conclude that our method has some

advantages over conventional methods.

5. Conclusions and discussions

We present an action recognition network based on channel

excitation and knowledge distillation in this work. A channel

excitation module is employed by the network to improve

channel information interaction and the network’s capacity to

extract relevant features. At the same time, the constitutes the

linear combination loss function to train the teacher-student

model to improve the student model’s knowledge-learning

ability in comparison to the teacher model. Furthermore,

during student model inference, the network only takes

RGB as input, which decreases model inference delay, and

demonstrates good performance on behavior recognition tasks,

which has reference relevance for the research of video behavior

recognition algorithms. Future studies will concentrate on

reducing the number of model parameters to boost recognition

accuracy yet further. At the same time, we will focus on

improving the training speed of the model and reducing the

reasoning time.

In this work, we apply attention mechanism and knowledge

distillation to the field of behavior recognition, and the

experimental results show that these methods are simple and
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TABLE 5 Compared with the mainstreammethods.

Method Frame Params (M) FLOPs (G) Pre train UCF101 (%) HMDB51 (%)

Two-stream (Simonyan and Zisserman, 2014) 1+1 12 – I 88.0 59.4

TSN(3 modalities) (Wang et al., 2016a) 3+3 10.4 16.4 I 94.2 69.4

CMA_iter1_R (Chi et al., 2019) 64 43.74 – K 95.3 –

AMFNet-C (Liu and Ma, 2022) 6+5 – – I 95.9 71.2

RGB-I3D (Carreira and Zisserman, 2017) 64 12 108 I+K 95.6 74.8

T3D+TSN (Diba et al., 2017) 16 – – K 93.2 63.5

S3D-G (Xie et al., 2018) 64 11.56 71.38 I+K 96.8 75.9

3DResNeXt101 (Hara et al., 2018) 16 48.34 9.57 K 90.7 63.8

ECO.En (Zolfaghari et al., 2018) {16,20,24,32} 150 267 K 94.8 72.4

MARS (Crasto et al., 2019) 16 95.23 18.03 K 94.6 (s1) 72.3 (s1)

3DCNN Ensemble+iDT (Huang et al., 2020) 36 1324.7 – I 92.7 69.1

STDA-ResNeXt-101 (Li J. et al., 2020) 64 382 – K 95.5 72.7

TSM (Lin et al., 2019) 8 24.3 33 I+K 95.9 73.5

STM (Jiang et al., 2019) 16 23.88 32.93 I+K 96.2 72.2

TEA (Li Y. et al., 2020) 16 – 70 I+K 96.9 73.3

CT-Net (Li et al., 2021) 16 – 145.5 I+K 96.2 73.2

IMRS (ours) 16 95.23 18.04 K 95.7 73.5

“S” stands for Sports-1M, “I” stands for ImageNet, “K” stands for Kinetics, “s1” stands for the first split and “–” means that the original text does not report this item. The bold values highlight

the effect of our proposed method.

effective. We believe that this approach is not only suitable for

solving action recognition problems, subsequent work could

consider extending this approach to other fields, such as action

prediction and anticipation (Dessalene et al., 2021), and robot

self-learning (Yang et al., 2015). We will explore the application of

this method to action prediction in the future.
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