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With cardiovascular diseases being one of the main causes of death in the world, quantitative 
modeling, assessment and monitoring of the cardiovascular control system plays a critical 
role in bringing important breakthroughs to cardiovascular care. Quantification of 
cardiovascular physiology and its control dynamics from physiological recordings and by 
use of mathematical models and algorithms has been proved to be of important value in 
understanding the causes of cardiovascular diseases and assisting the prognostic or diagnostic 
process. Nowadays, development of new recording technologies (e.g., electrophysiology, 
imaging, ultrasound, etc) has enabled us to improve and expand acquisition of a wide 
spectrum of physiological measures related to cardiovascular control. An emerging challenge 
is to process and interpret such increasing amount of information by using state-of-the-art 
approaches in systems modeling, estimation and control, and signal processing, which would 
lead to further insightful scientific findings. In particular, multi-disciplinary engineering-
empowered approaches of studying cardiovascular systems would greatly deepen our 
understanding of cardiovascular functions (e.g., heart rate variability, baroreflex sensitivity) 
and autonomic control, as it would also improve the knowledge about heart pathology, 
cardiovascular rehabilitation and therapy. Meanwhile, developing cardiovascular biomedical 
devices or heart-machine interface for either clinical monitoring or rehabilitation purpose is 
of greater and greater interest for both scientific advancement and potential medical benefits. 

This Research Topic will bring together established experts whose areas of research cover a 
wide range of studies and applications. Contributions include but are not limited to state-
of-the-art modeling methodologies, algorithmic development in signal processing and 
estimation, as well as applications in cardiovascular rehabilitation, and clinical monitoring. 
The Research Topic will consider both invited reviews and original research.
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With cardiovascular diseases being among the main causes
of death in the world, quantitative modeling, assessment and
monitoring of cardiovascular dynamics, and functioning play a
critical role in bringing important breakthroughs to cardiovas-
cular care. Quantification of cardiovascular physiology and its
control mechanisms from physiological recordings, by use of
mathematical models and algorithms, has been proved to be of
important value in understanding the causes of cardiovascular
diseases and assisting the diagnostic and prognostic process. This
E-Book is derived from the Frontiers in Computational Physiology
and Medicine Research Topic entitled “Engineering Approaches
to Study Cardiovascular Physiology: Modeling, Estimation and
Signal Processing.” Its goal is to bring established experts together
in order to present a sample of state-of-the-art studies in cardio-
vascular physiology, and to give a general idea of the very different
approaches that can be adopted to answer the research challenges
posed by the varied, complex nature of the cardiovascular system.
This book presents 10 contributions, in the form of review and
original research articles.

There are two review articles. The first review article by
Chen et al. (2012) presents a unified point process probabilistic
framework to assess heart beat dynamics and autonomic car-
diovascular control. Using clinical recordings of healthy subjects
during Propofol anesthesia, the authors demonstrate the effec-
tiveness of their approach by applying the proposed paradigm
to estimate instantaneous heart rate (HR), heart rate variability
(HRV), respiratory sinus arrhythmia (RSA) and baroreflex sen-
sitivity (BRS). The second review article, contributed by Zhang
et al. (2011), provides a comprehensive overview of tube-load
model parameter estimation for monitoring arterial hemody-
namics. The authors discuss the motivation, assumption and
validity of the proposed tube-load model, and summarize vari-
ous estimation techniques and their experimental results, as well
as potential applications.

The remaining eight original research articles can be mainly
classified into two categories. The two articles from the first cate-
gory emphasize modeling and estimation methods. In particular,
the paper “Modeling the autonomic and metabolic effects of
obstructive sleep apnea: a simulation study” by Cheng and Khoo
(2012), combines computational modeling and simulations to
study the autonomic and metabolic effects of obstructive sleep

apnea (OSA). The second paper, “Estimation of cardiac output
and peripheral resistance using square-wave-approximated aortic
flow signal” by Fazeli and Hahn (2012), presents a model-based
approach to estimate cardiac output (CO) and total peripheral
resistance (TPR), and validates the proposed approach via in vivo
experimental data from animal subjects.

The six articles in the second category focus on application of
signal processing techniques and statistical tools to analyze car-
diovascular or physiological signals in practical applications. the
paper “Modulation of the sympatho-vagal balance during sleep:
frequency domain study of heart rate variability and respira-
tion” by Cabiddu et al. (2012), uses spectral and cross-spectral
analysis of heartbeat and respiration signals to assess autonomic
cardiac regulation and cardiopulmonary coupling variations dur-
ing different sleep stages in healthy subjects. the paper “increased
non-gaussianity of heart rate variability predicts cardiac mortal-
ity after an acute myocardial infarction” by Hayano et al. (2011)
uses a new non-gaussian index to assess the HRV of cardiac mor-
tality using 670 post-acute myocardial infarction (AMI) patients.
the paper “non-gaussianity of low frequency heart rate variability
and sympathetic activation: lack of increases in multiple system
atrophy and parkinson disease” by Kiyono et al. (2012), applies
a non-gaussian index to assess HRV in patients with multiple
system atrophy (MSA) and parkinson diseases and reports the
relation between the non-gaussian intermittency of the heart-
beat and increased sympathetic activity. The paper “Information
domain approach to the investigation of cardio-vascular, cardio-
pulmonary, and vasculo-pulmonary causal couplings” by Faes
et al. (2011), proposes an information domain approach to eval-
uate nonlinear causality among heartbeat, arterial pressure, and
respiration measures during tilt testing and paced breathing
protocols. The paper “integrated central-autonomic multifractal
complexity in the heart rate variability of healthy humans” by Lin
and Sharif (2012), uses a relative multifractal complexity measure
to assess HRV in healthy humans and discusses the related impli-
cations in central autonomic interactions. Lastly, the paper “Time
scales of autonomic information flow in near-term fetal sheep”
by Frasch et al. (2012), analyzes the autonomic information flow
(AIF) with kullback–leibler entropy in fetal sheep as a function of
vagal and sympathetic modulation of fetal HRV during atropine
and propranolol blockade.
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In summary, this Research Topic attempts to give a general
panorama of the possible state-of-the-art modeling methodolo-
gies, practical tools in signal processing and estimation, as well as
several important clinical applications, which can altogether help
deepen our understanding about heart physiology and pathology

and further lead to new scientific findings. We hope that the read-
ership of Frontiers will appreciate this collected volume and enjoy
reading the presented contributions. Finally, we are grateful to all
contributed authors, reviewers, and editorial staffs who had all
put tremendous effort to make this E-Book a reality.
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In recent years, time-varying inhomogeneous point process models have been introduced
for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular con-
trol mechanisms and hemodynamics. Assessment of the model’s statistics is established
through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A vari-
ety of instantaneous cardiovascular metrics, such as heart rate (HR), heart rate variability
(HRV), respiratory sinus arrhythmia (RSA), and baroreceptor-cardiac reflex (baroreflex) sen-
sitivity (BRS), are derived within a parametric framework and instantaneously updated with
adaptive and local maximum likelihood estimation algorithms. Inclusion of second-order
non-linearities, with subsequent bispectral quantification in the frequency domain, further
allows for definition of instantaneous metrics of non-linearity. We here present a compre-
hensive review of the devised methods as applied to experimental recordings from healthy
subjects during propofol anesthesia. Collective results reveal interesting dynamic trends
across the different pharmacological interventions operated within each anesthesia ses-
sion, confirming the ability of the algorithm to track important changes in cardiorespiratory
elicited interactions, and pointing at our mathematical approach as a promising monitor-
ing tool for an accurate, non-invasive assessment in clinical practice. We also discuss the
limitations and other alternative modeling strategies of our point process approach.

Keywords: autonomic cardiovascular control, heart rate variability, baroreflex sensitivity, respiratory sinus arrhyth-

mia, point process,Wiener-Volterra expansion, general anesthesia

1. INTRODUCTION
Modeling physiological systems by control systems theory,
advanced signal processing, and parametric modeling and esti-
mation approaches has been of focal importance in biomedical
engineering (Khoo, 1999; Marmarelis, 2004; Xiao et al., 2005;
Porta et al., 2009). Modeling autonomic cardiovascular control
using mathematical approaches helps in the understanding and
assessment of autonomic cardiovascular functions in healthy or
pathological subjects (Task Force, 1996; Berntson et al., 1997;
Parati et al., 2001; Stauss, 2003; Eckberg, 2008). Continuous quan-
tification of heartbeat dynamics, as well as their interactions with
other cardiovascular measures, have also been subject of impor-
tant studies in the past decades (Baselli et al., 1988; Saul and
Cohen, 1994; Chon et al., 1996; Barbieri et al., 2001; Porta et al.,
2002). Non-linear system identification methods have also been
applied to heartbeat interval analysis (Christini et al., 1995; Chon
et al., 1996; Zou et al., 2003; Zhang et al., 2004; Xiao et al., 2005;
Wang et al., 2007). Examples of higher order characterization
for cardiovascular signals include non-linear autoregressive (AR)
models, Volterra-Wiener series expansion, and Volterra-Laguerre
models (Korenberg, 1991; Marmarelis, 1993; Akay, 2000). Several
authors have demonstrated the feasibility and validity of non-
linear autoregressive models, suggesting that heart rate dynamics
studies should put greater emphasis on non-linear analysis (Chris-
tini et al., 1995; Chon et al., 1996; Zhang et al., 2004; Jo et al., 2007).

However, the wide majority of these studies use either beat series
(tachograms) unevenly distributed in time, or they interpolate
these series with filters not supported by an underlying model of
heartbeat generation.

More recently, advanced statistical methods have been devel-
oped for modeling the heartbeat dynamics, treating the heartbeats,
detected from continuous electrocardiogram (ECG) recordings,
as discrete events that can be described as a stochastic point
process (Barbieri et al., 2005; Barbieri and Brown, 2006; Chen
et al., 2009a, 2010a). Several probability density functions (e.g., the
inverse Gaussian, Gaussian, lognormal, or gamma distribution)
have been considered to model the probability of having a beat
at each moment in time given the previous observations (Chen
et al., 2008). An important result of our recent studies pointed
at the inverse Gaussian model (here considered in the methods)
as the best probability structure to explain heartbeat generation
(Ross, 1997; Barbieri et al., 2005; Chen et al., 2009a), where the
expected heartbeat interval (the distributions mean) is modulated
by previous inter-beat intervals and other physiological covariates
of interest, such as respiration and arterial blood pressure (ABP).

In this tutorial paper, in light of the Wiener-Volterra theory, we
present a comprehensive point process framework to model linear
and non-linear interactions between the heartbeat intervals, respi-
ration, and arterial blood pressure. The point process framework
provides a coherent way to assess the important cardiovascular
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functions by instantaneous quantitative indices, such as heart
rate variability (HRV), respiratory sinus arrhythmia (RSA), and
baroreflex sensitivity (BRS). These indices of interest can be esti-
mated recursively based on online estimation approaches, such as
adaptive filtering and local maximum likelihood estimation (Bar-
bieri et al., 2005; Barbieri and Brown, 2006). The adaptive estima-
tion, combined with the point process framework, provides a more
accurate estimate in a finer timescale than conventional window-
based adaptive filtering methods, such as the recursive least squares
(RLS) filter (Haykin, 2001). Of note, we have also further extended
the point process approach to consider the non-linear nature of
heartbeat dynamics (Chen et al., 2010a).

Assessing and monitoring informative physiological indices is
an important goal in both clinical practice and laboratory research.
To provide an exemplary application, we employ the proposed
point process methods to analyze experimental recordings from
healthy subjects during administration of propofol to induce con-
trolled states of general anesthesia (Purdon et al., 2009). To this
extent, as reviewed in this article, our recent investigations have
reported promising results in monitoring cardiovascular regula-
tion under induction of anesthesia (Chen et al., 2009b, 2010b,
2011a).

2. OVERVIEW OF THE POINT PROCESS FRAMEWORK
In computerized cardiology, various types of data such as the ECG,
ABP (e.g., measured by invasive arterial line catheters or non-
invasive finger cuffs), and respiratory effort (RP, e.g., measured by
plethysmography or by piezoelectric respiratory belt transducers)
are recorded, digitized, and saved to a computer to be available
for off-line analysis. A specific goal in analyzing these data is to
discover and quantify the statistical dependence between the phys-
iological measurements, and consequently extract informative
physiological indices from the data. A direct approach computes
empirical statistics (e.g., mean and variance, spectral content, or
degree of non-linearity) without making any assumption on how
the observed quantities are motivated by the physiology. Con-
versely, a model-based approach relies on mathematical formula-
tions to define either a mechanistic or a statistical model to explain
the observed data. Despite the simplification, the model attempts
to describe the generative mechanism of the physiological mea-
surements, and therefore it is critical for further data simulation
and interpretation. Being defined by unknown parameters, identi-
fication of the model also requires a statistical approach to estimate
optimal sets of parameters that best fit the observed physiologi-
cal dynamics (Xiao et al., 2005). Typically, modeling the complex
nature of the data (e.g., non-linearity) would further call for more
complex model structures. Model selection or model assessment
can be evaluated by some established goodness-of-fit statistics.

Here we propose a unified point process statistical framework
to model the physiological measurements commonly acquired in
computerized cardiology. In statistics, a point process is a type
of random process for which any one realization consists of a set
of isolated points either in time or space (Daley and Vere-Jones,
2007). Point processes are frequently used to model random events
in time or space (from simple scenarios like the arrival of a cus-
tomer to a counter, to very complex phenomena such as neuronal
spiking activity). In our specific case, heartbeat events detected

from the ECG waveforms can be also viewed as a point process,
and the generative mechanism of the beat-to-beat intervals can be
described by a parametric probability distribution. To model the
heartbeat dynamics and cardiovascular/cardio respiratory interac-
tions, we will make some assumptions and simplifications about
the data generative mechanisms, while facilitating the ease for data
interpretation.

Our paradigm can be outlined in three separate phases (see the
flowchart in Figure 1): acquisition and preprocessing (Phase I)
where the raw physiological measurements are processed to obtain
proper input variables to the models, modeling and goodness-of-
fit assessment (Phase II) where a chosen number of models are
tested and optimal parameters are estimated to best fit the observed
input dynamics, and monitoring (Phase III) where a proper com-
bination of the estimated parameters can be manipulated to define
instantaneous indices directly related to specific cardiovascular
control mechanisms. Mathematical and technical details of Phase
II and Phase III will be described in the next section.

3. METHODS AND DATA
3.1. PROBABILITY MODELS FOR THE HEARTBEAT INTERVAL
Given a set of R-wave events {uj}Jj=1 detected from the recorded

ECG waveform, let RRj= uj− uj−1 > 0 denote the jth R-R inter-
val. By treating the R-waves as discrete events, we may develop a
probabilistic point process model in the continuous-time domain.
Assuming history dependence, the waiting time t − uj (as a contin-
uous random variable, where t > uj) until the next R-wave event
can be modeled by an inverse Gaussian model (Barbieri et al., 2005;
Barbieri and Brown, 2006; Chen et al., 2009a)

p (t ) =
(

θ

2π t 3

) 1
2

exp

(
−θ

(
t − uj − μRR (t )

)2

2
(
t − uj

)
μ2

RR (t )

)
, (1)

where uj denotes the previous R-wave event occurred before time
t, θ > 0 denotes the shape parameter (which might also be time-
varying), and μRR(t ) denotes the instantaneous R-R mean para-
meter. The use of an inverse Gaussian distribution to characterize
the R-R intervals’ occurrences is further motivated by a physio-
logical integrate-and-fire model of heartbeat generation: in fact,
if the rise of the membrane potential to a threshold initiating the
cardiac contraction is modeled as a Gaussian random-walk with
drift, then the probability density of the times between thresh-
old crossings (the R-R intervals) is indeed the inverse Gaussian
distribution (Barbieri et al., 2005).

Note that when the mean μRR(t ) is much greater than the vari-
ance, the inverse Gaussian distribution can be well approximated
by a Gaussian distribution with an identical mean and a variance
equal to μ3

RR(t )/θ . However, the inverse Gaussian distribution is
more robust since it can better model the outliers due to its long
tail behavior. In our earlier investigation (Chen et al., 2008, 2009a),
we have compared heartbeat interval fitting point process mod-
els using different probability distributions, and found that the
inverse Gaussian model achieved the overall best fitting results. In
practice, we can always conduct an empirical model fit analysis
(e.g., data histogram, the Q-Q plot, and the Kolmogorov-Smirnov
plot) for the raw R-R intervals, testing the appropriateness of the
inverse Gaussian model (Chen et al., 2011a).
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In point process theory, the inter-event probability p(t ) is
related to the conditional intensity function (CIF) λ(t ) by a
one-to-one transformation (Brown et al., 2003)

λ (t ) = p (t )

1− ∫ t
uj

p(τ )dτ
. (2)

The estimated CIF can be used to evaluate the goodness-of-fit
of the probabilistic heartbeat interval model.

3.2. INSTANTANEOUS INDICES OF HR AND HRV
Heart rate (HR) is defined as the reciprocal of the R-R intervals.
For time t measured in seconds, the new variable r = c(t − uj)−1

(where c = 60 s/min is a constant) can be defined in beats per
minute (bpm). By virtue of the change-of-variables formula, from
equation (1) the HR probability p(r)= p(c(t − uj)−1) is given
by p(r)= |dt /dr |p(t ), and the mean and the SD of HR r can be
derived (Barbieri et al., 2005)

μHR = μ̃−1+ θ̃
−1

, (3)

σHR =
√(

2μ̃+ θ̃
)

/μ̃ θ̃
2
, (4)

where μ̃ = c−1μRR and θ̃ = c−1θ . Essentially, the instantaneous
indices of HR and HRV are characterized by the mean μHR and
SD σ HR, respectively. In a non-stationary environment, where the
probability distribution of HR is possibly slowly changing over

time, we aim to dynamically estimate the instantaneous mean
μRR(t ) and instantaneous shape parameter θ t in equation (1) so
that the evolution of the probability density p(r) can be tracked in
an online fashion.

In Table 1, several potential probabilistic heartbeat interval
models are listed, along with the derived probabilistic HR mod-
els (Chen et al., 2008, 2009a). For all probabilistic HR models,
μHR and σ HR can be either analytically derived or numerically
evaluated. This provides a mathematically rigorous definition of
instantaneous indices of HR and HRV, which sidesteps some of
the difficulties in defining HR and HRV based on the series of
heartbeat intervals unevenly distributed in time.

3.3. AUTONOMIC CARDIOVASCULAR CONTROL AND MODELING
HEARTBEAT DYNAMICS

In line with a control systems engineering approach, short term
autonomic cardiovascular control can be modeled as a closed-
loop system that involves blood pressure (BP) and respiratory
(RP) measures as the two major variables that influence heart-
beat dynamics (Baselli et al., 1988; De Boer et al., 1995; Barbieri
et al., 2001). The closed-loop system can be illustrated by the sim-
plified diagram shown in Figure 2. In the feedforward pathway
(RR→BP), the R-R intervals influence the forthcoming BP mea-
sure as defined by the H 12 transfer function (either in the time
or frequency domains), including the effects of heart contractility
and vasculature tone on arterial pressure. In the feedback pathway
(BP→RR), the autonomic nervous system modulates the beat-to-
beat interval through a feedback control mechanism mediated by

FIGURE 1 |The flowchart of data acquisition and preprocessing (Phase I), modeling and goodness-of-fit assessment (Phase II), and monitoring (Phase

III).

Table 1 | List of four two-parameter parametric probabilistic models for the heartbeat R-R interval and heart rate (HR).

R-R interval model p(t |θ1, θ2) E(t ) Var(t ) HR model p(r |θ1, θ2) Note: c = 60 s/min

Gaussian 1√
2πθ2

exp(− (t−θ1)2

2θ2
) θ1 θ2

c√
2πθ2r2

exp(− (cr−1−θ1)
2

2θ2
)

invGaussian (
θ2

2π t3 )
1
2 exp(− θ2(t−θ1)2

2θ2
1 t

) θ1 θ3
1 /θ2 (

θ∗2
2π r )

1
2 exp(− θ∗2 (1−θ∗1 r )2

2 θ∗1
2 r

) θ∗1 = θ1/c, θ∗2 = θ2/c

Lognormal 1√
2πθ2t

exp(− (log(t)−θ1)2

2θ2
) eθ1+θ2/2 e2θ1+θ2 (eθ2 − 1) 1√

2πθ2r
exp(− (log(cr−1)−θ1)

2

20a2
)

Gamma θ
θ1
2

�(tθ−1
1 )

exp(−θ2t) θ1/θ2 θ1/θ2
2

θ∗2
θ1

�(θ1)r θ1+1 exp(− θ∗2 /r
2θ2

) θ∗2 = cθ2

www.frontiersin.org February 2012 | Volume 3 | Article 4 | 8

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Chen et al. A unified probabilistic framework

FIGURE 2 | A simplified diagram of the cardiovascular closed-loop

model. The beat-to-beat R-R interval is modulated by blood pressure (BP)
through the feedback baroreflex loop. The dashed box represents a
closed-loop baroreceptor-cardiac reflex (baroreflex) model. Outside the
dashed box, the respiratory (RP) input also modulates RR through
respiratory sinus arrhythmia (RSA) and modulates BP through mechanical
influences.

the baroreceptors, where the H 21 transfer function includes both
baroreflex and autonomic control to the heart. In a second feed-
back pathway (RP→RR), the changes in lung volume modulates
the beat-to-beat interval. The cardiovascular functions associated
with these two feedback influences, baroreflex sensitivity (BRS)
and respiratory sinus arrhythmia (RSA), operate within specific
frequency bands.

A common methodological approach to characterize a phys-
iological system is through system identification (Nikias and
Petropulu, 1993; Marmarelis, 2004; Xiao et al., 2005). In gen-
eral, let us consider a causal, continuous-time non-linear mapping
F between an output variable y(t ) and two input variables x(t )
and u(t ). Expanding the Wiener-Volterra series of function F (up
to the second-order) with respect to inputs x(t ) and u(t ) yields
(Schetzen, 1980)

y (t ) = F (x (t ) , u (t ))

=
∫ t

0
a (τ ) x (t − τ) dτ +

∫ t

0
b (τ ) u (t − τ) dτ

+
∫ t

0

∫ t

0
h1 (τ1, τ2) x (t − τ1) u (t − τ2) dτ1dτ2

+
∫ t

0

∫ t

0
h2 (τ1, τ2) x (t − τ1) x (t − τ2) dτ1dτ2

+
∫ t

0

∫ t

0
h3 (τ1, τ2) u (t − τ1) u (t − τ2) dτ1dτ2

(5)

where F(·): R2 �→R is a non-linear function, and a(·), b(·), h1(·,·),
h2(·,·), and h3(·,·) are Volterra kernels with appropriate orders. In
our cardiovascular system identification case, y(t ) represents the
expected heartbeat interval μRR(t ), x(t ) represents the previous
R-R intervals, u(t ) represents the vector of covariates (COV) such
as BP or RP, and the continuous-time integral (convolution) is
approximated by afinite and discrete summation. The first and
second-order Volterra kernels will be replaced by discrete filter
coefficients.

We consider four individual cases of discrete-time Volterra
series expansion, which lead to different formulations to model
the heartbeat interval mean μRR in equation (1).

• Dropping all of second-order terms as well as the COV terms
in the Volterra series expansion (5), we obtain a univariate
(noise-free) AR model

μRR (t ) = a0 (t )+
p∑

i=1

ai (t ) RRt−i (6)

where the a0 term is incorporated to compensate the non-zero
mean of the R-R intervals.
• Dropping the COV terms in the Volterra series expansion (5),

we obtain

μRR (t ) = a0 (t )+
p∑

i=1

ai (t ) RRt−i

+
r∑

k=1

r∑
l=1

hkl (t )
(
RRt−k − 〈RR〉t

) (
RRt−l − 〈RR〉t

)

(7)

where 〈RR〉t = 1/�
∑�

k=1 RRt−k (� = max{p, r}) denotes the
local mean of the past � R-R intervals.
• Dropping all of second-order terms in the Volterra series

expansion (5), we obtain a bivariate discrete-time linear system

μRR (t ) = a0 (t )+
p∑

i=1

ai (t ) RRt−i +
q∑

j=1

bj (t ) COVt−j (8)

where the first two terms represent a linear autoregressive (AR)
model of the past R-R intervals, and COV t−j denotes the pre-
vious jth covariate value prior to time t. Note that the COV
observations will be preprocessed to have zero mean (since the
DC component is of minimal importance to model the oscilla-
tion). Equation (8) can also be viewed as a linear (noise-free)
autoregressive moving average (ARMA) model (Lu et al., 2001).
Also note that here we have used RRt−i instead of μRR(t− i)
as regressors since this would require a higher order p due to
the long-range dependence of μRR(t− i) under a very small
timescale. Due to the absence of driving noise, Equation (8) can
also be viewed as an ARX model, where the COV term serves as
the exogenous input.
• Dropping the last two quadratic terms in the Volterra series

expansion (5), we obtain

μRR (t ) = a0 (t )+
p∑

i=1

ai (t ) RRt−i +
q∑

j=1

bj (t ) COVt−j

+
r∑

k=1

r∑
l=1

hkl (t )
(
RRt−k − 〈RR〉t

)
COVt−l

(9)

Equation (9) can be viewed as a bivariate bilinear system
(Tsoulkas et al., 2001), which can also be viewed as a (noise-free)
non-linear ARMA or non-linear ARX model (Lu et al., 2001).
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3.4. ONLINE ESTIMATION: ADAPTIVE POINT PROCESS FILTERING AND
LOCAL LIKELIHOOD ESTIMATION

Since our earliest point process cardiovascular characterizations
(Barbieri et al., 2005; Barbieri and Brown, 2006), in order to
optimize the estimation of the model parameters, we have devel-
oped two model fitting algorithms: the adaptive point process
filtering method (based on recursive adaptive filtering, and the
local maximum likelihood (based on local likelihood estimation
using a moving window). These two online estimation methods
enable us to update the parameters of the heartbeat probability
model at each moment in time in order to continuously track the
non-stationary nature of the observations.

In the adaptive filtering method, let ξ = [{ ai}
p
i=0, { bj }

q
j=1,

{ hkl } , θ ]T denote the vector that contains all unknown parameters
in the heartbeat interval probability model. Let the continuous-
time interval be binned with a constant bin size 	. A state-space
formulation of the discrete-time (indexed by k) point process fil-
tering algorithm is described here (Brown et al., 1998; Eden et al.,
2004; Barbieri and Brown, 2006)

ξ k|k−1 = ξ k−1|k−1

Pk|k−1 = Pk−1|k−1 +W

ξ k|k = ξ k|k−1 + Pk|k−1
(∇ log λk

)
[nk − λk	]

Pk|k =
[

P−1
k|k−1 + ∇λk∇λT

k

	

λk
− ∇2 log λk [nk − λk	]

]−1

where P and W denote the parameter and noise covariance matri-
ces, respectively; and 	 denotes the time bin size. The choice
of bin size reflects the timescale of estimation interest, we typi-
cally use 	= 5 ms. Diagonal noise covariance matrix W, which
determines the level of parameter fluctuation at the timescale of
	, can be either initialized empirically from the random-walk
theory,1 or estimated from the expectation-maximization (EM)
algorithm (Smith and Brown, 2003). In our experiments, a typical
value of noise variance value for the AR parameter is 10−6

∼ 10−7,
and the typical noise variance value for the shape parameter is
10−3

∼ 10−4. The sensitivity analysis of the noise variance will be
illustrated and discussed in the result section.

Symbols 	λk= ∂λk/∂ξ k and ∇2λk = ∂2λk

∂ξ k∂ξT
k

denote the first-

and second-order partial derivatives of the CIF with respect to ξ at
time t= k	, respectively. The indicator variable nk= 1 if a heart-
beat occurs in the time interval ((k − 1)	, k	] and 0 otherwise.
The point process filtering equations can be viewed as a point
process analog of the Kalman filtering equations in the presence
of continuous-valued observations (Eden et al., 2004). Given a
predicted (a priori) estimate ξ k|k−1, the innovations [nk− λk	]
is weighted by Pk|k−1(	logλk) (viewed as an adaptation gain)
to further produce the filtered (a posteriori) estimate ξ k|k. Since
the innovations term is likely to be non-zero in the absence of a
beat, the parameters are always updated at each time step k. The

1According to the Gaussian random-walk theory, the variance or the translational
squared distance of one random variable in one dimension within a time period
is linearly proportional to the associated diagonal entry of W and the total time
traveled.

a posteriori error covariance Pk|k is derived based on a Gaussian
approximation of the log-posterior (Eden et al., 2004). We always
use the a posteriori estimate to the HR, HRV, and other statis-
tics. The time-varying CIF λk is also numerically computed from
equation (2) using the a posteriori estimate.

In the local likelihood estimation method (Loader, 1999), we
can define the log-likelihood given an observation window (t − l,
t ] consisting of n heartbeat events {t − l < u1 < u2 < . . . < un≤ t }
as (Loader, 1999; Barbieri and Brown, 2006; Kodituwakku et al.,
2012)

log p
(
ut−l :t

) =
n∑

j=2

w
(
t − uj

)
log p

(
uj − uj−1

)

+ w (t − un) log

∫ ∞
t−un

p (v) dv

(10)

where w(t−uj) = αt−uj (0 < α < 1) is a weighting function for the
local likelihood estimation. The weighting time constant α governs
the degree of influence of a previous event observation uj on the
local likelihood at time t. The second term of equation (10) repre-
sents the log-likelihood of the partially observed interval since the
last observed beat un (right censoring). The local log-likelihood
(10) can be optimized using a Newton-Raphson method to obtain
a local maximum likelihood estimate of ξ (Loader, 1999).

The above estimation methods are by no means the only
options. Other alternative methods can be considered. For
instance,particle filtering is known to have a better tracking perfor-
mance for non-linear dynamics at the cost of increasing memory
and computational complexity (Brockwell et al., 2004; Ergun et al.,
2007). In addition, instead of the Gaussian approximation, other
types of approximation approaches may also be employed to
obtain a more accurate point process filtering algorithm (Koyama
et al., 2009, 2010).

3.5. FREQUENCY ANALYSIS
3.5.1. Estimating the frequency response at the feedback pathway

(baroreflex or RSA)
Assuming a linear relation between the input and output of inter-
est, we can estimate the transfer function (based on the Laplace
transform) and the associated frequency response between the
input and output variables (Saul et al., 1991; Pinna and Maestri,
2001; Xiao et al., 2005; Pinna, 2007).

In light of equation (8), the frequency response for the barore-
flex (BP→RR) or RSA (RP→RR) is computed as (Chen et al.,
2009a, 2011a)

H12
(
f , t
) =

∑q
i=1 bi (t ) z−i

∣∣
z=ej2π f2

1−∑p
i=1 ai (t ) z−i

∣∣
z=ej2π f1

, (11)

where f1 and f2 denote the rate (beat/s) for the R-R and COV-COV
intervals, respectively; here we assume f1≈ f2≡ f (we typically
assume that the heartbeat period is about the same as the BP-event
period, while the RP measurement can be resampled or interpo-
lated at the beat time). The order of the AR model also determines
the number of poles, or oscillations, in the frequency range. Mod-
ifying the AR coefficients is equivalent to changing the positions
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of the poles and reshaping the frequency response curve. With the
time-varying AR coefficients {ai(t )} and {bj(t )} estimated from
the point process filter, we can evaluate the dynamic frequency
response of (11) at different ranges (LF, 0.04–0.15 Hz; HF, 0.15-
min {0.5, 0.5/RR} Hz, where 0.5/RR denotes the Nyquist sampling
frequency).

In the case where COV is BP, the frequency-dependent
baroreflex gain or BRS, characterized by |H 12(f)|, represents the
frequency-dependent modulation effect of BP on the heartbeat,
mediated by the neural autonomic reflex. In the case where COV
is RP, |H 12(f)| represents the frequency-dependent RSA gain.

3.5.2. Estimating the frequency response at the feedforward
pathway

In the feedforward (RR→BP) pathway of Figure 2, the frequency
response allows us to evaluate the impact of the heartbeat dura-
tions on the hemodynamics. In light of AR modeling in the
feedback pathway, we can also model BP with a bivariate linear
AR model

BPk = c0 (k)+
p∑

i=1

ci (k) BPk−i +
p∑

i=1

di (k) μRR (k − i) , (12)

where μRR(k− i) represents the estimated instantaneous R-R
mean value at the time bin when BP-events occur. The coeffi-
cients {ci(k)}pi=0 and {di(k)}pi=1 are dynamically tracked by a RLS
filter. Unlike the point process filter, the update occurs only at the
occurrence time of BP-events, although it is important to highlight
that the point process framework allows for these innovations to
be associated with the evolution of the heartbeat dynamics at the
exact time when the hemodynamic changes occur, without hav-
ing to wait for the next heartbeat to be observed. Similarly, the
frequency response of the RR→BP pathway can be estimated as

H21
(
f
) =

∑p
i=1 di (k) z−i

∣∣
z=ej2π f

1−
p∑

i=1
ci (k) z−i

∣∣
z=ej2π f

, (13)

where f denotes the sampling rate (beat/s) for BP-BP intervals.
Likewise, we can estimate the dynamic gain and phase of H 21(f) at
each single BP-event (whereas during between-events period, the
coefficient estimates remain unchanged).

3.5.3. Estimating the dynamic R-R spectrum
Let QRR(f) denote the power spectrum of the R-R series. In the
case of equation (6), QRR(f) is estimated by

QRR
(
f , t
) = σ 2

RR (t )∣∣∣1−∑p
i=1 ai (t ) z−i

∣∣∣
z=ej2π f

. (14)

In the case of equation (8), QRR(f) can be estimated by

QRR
(
f , t
) ≈ σ 2

RR (t )∣∣∣1−∑p
i=1 ai (t ) z−i

∣∣∣
z=ej2π f

+
∣∣∑q

i=1 bi (t ) z−i
∣∣ σ 2

BP (t )∣∣∣1−∑p
i=1 ai (t ) z−i

∣∣∣
z=ej2π f

.

(15)

From QRR we can also compute the time-varying LF/HF
power ratio. Note that we have assumed that the variance σ 2

BP(t )
(estimated from the feedforward pathway) remains unchanged
between two consecutive systolic BP values.

3.5.4. Estimating the dynamic coherence
In order to estimate the cross-spectrum in the context of a
closed-loop system, we assume that the noise variance and the
non-linear interactions in the feedforward and feedback loops
are sufficiently small. From equation (11), we can estimate the
cross-spectrum (between BP and RR) in the feedback loop as
Cuy(f )≈H 12(f )QBP(f). As the coefficients {ai(t )} and {bj(t )} are
iteratively updated in time, the point process filter produces an
instantaneous estimate of BRS as well as the cross-spectrum. Sim-
ilarly, from equation (13) we can estimate the cross-spectrum in
the feedforward pathway: Cyu(f)≈H 21(f)QRR(f).

Furthermore, the instantaneous normalized cross-spectrum
(i.e., coherence) can be computed as

Coh
(
f , t
) =

∣∣Cuy
(
f , t
)∣∣√∣∣QBP

(
f , t
)∣∣ · ∣∣QRR

(
f , t
)∣∣

=
√∣∣Cuy

(
f , t
)∣∣ · ∣∣Cyu

(
f , t
)∣∣

√∣∣QBP
(
f , t
)∣∣ · ∣∣QRR

(
f , t
)∣∣

=
√∣∣H12

(
f , t
)

H21
(
f , t
)∣∣,

(16)

where |·| denotes the modulus of a complex variable. The sec-
ond equality in equation (16) holds due to the fact that Cyu(f ) =
C∗uy ( f ) = H12(−f )QBP(f ), where ∗denotes the Hermitian opera-
tor (note that |Cyu|= |Cuy| and has anti-phase against each other).
The third equality indicates that the time-varying coherence func-
tion can be expressed by the multiplication of two (feedback and
feedforward) time-varying transfer functions (Zhao et al., 2005),
computed from equations (11 and 13), respectively.

The time-varying closed-loop coherence function Coh(f, t ) can
be computed at very fine timescales by using two adaptive fil-
ters (i.e., the point process filter at the feedback pathway, and the
RLS filter at the feedforward pathway) either synchronously or
asynchronously, several studies have examined its properties (e.g.,
stability, numerical bound) in detail (Porta et al., 2002; Zhao et al.,
2005, 2007).

3.6. NON-LINEARITY ASSESSMENT
Heartbeat dynamics are well known to be non-linear (Christini
et al., 1995; Chon et al., 1996, 1997; Zhang et al., 2004; Chen
et al., 2010a). In the literature, various non-linear indices such
as the Lyapunov exponent, the fractal exponent, or the approxi-
mate entropy, have been proposed to characterize the non-linear
behavior of the underlying physiological system (Peng et al., 1995;
Ivanov et al., 1999; Akay, 2000; Teich et al., 2001; Costa et al., 2002;
Struzik et al., 2004; Voss et al., 2009). It has been suggested that
such non-linearity indices might provide informative indicators
for diagnosing cardiovascular diseases (Poon and Merill, 1997;
Goldberger et al., 2002; Tulppo et al., 2005; Atyabi et al., 2006).
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Motivated by the importance of quantifying the contribution
of non-linearity to HRV and the heartbeat dynamics, we have
proposed a quantitative index based on the spectrum-bispectrum
ratio (Chen et al., 2010a, 2011a)

Ratio = (cross) spectrum

(cross) spectrum+ (cross) bispectrum
, (17)

The nominator of equation (17) corresponds to the R-R spec-
trum (or cross-spectrum between RR and COV in the presence
of covariate), whereas the denominator corresponds to the sum
of the R-R spectrum and R-R bispectrum (or cross-spectrum and
cross-bispectrum in the presence of covariate). The above-defined
ratio is frequency-dependent, and it is dimensionless and bounded
between 0 and 1.

In both cases, the instantaneous ratio is derived as (see Chen
et al., 2010a, 2011a) for assumptions and details)

ρ (t ) = 1

1+ 2
∣∣h (t ) | · |QRR

(
f , t
)∣∣ , (18)

where |h(t )| =
√∑

k

∑
l h2

kl(t ). The spectrum norm defines the

area integrated over the frequency range under the spectral den-
sity curve. When the non-linear or bilinear interaction is small,
the coefficients {hkl} are small, and the ratio is close to 1.

3.7. MODELING NON-STATIONARY WITH THE ARIMA MODEL
In time series modeling, it is common to “detrend” a time series by
taking differences if the series exhibits undesired non-stationary
features. The autoregressive integrated moving average (ARIMA)
process may provide a suitable framework to achieve such a goal
(Vu, 2007). Simply, the original time series is applied by a difference
operator (one or more times) until the non-stationary trends are
not observed in the ultimate series. This is essentially equivalent to
applying a high-pass filter to get rid of the slow oscillation. Non-
stationary trends are often observed in the epochs of experimental
recordings of R-R intervals and/or other physiological measures,
especially during the periods of intervention by external factors
(e.g., drug administration, ventilation).

Motivated by this idea, we define the “increment of R-R
series” {δRRt−i}≡ {RRt−i −RRt−i−1} and the “increment of
COV series” {δCOVt−i}≡ {COVt−i−COV t−i−1}, and model the
instantaneous heartbeat interval mean by the following new
equation (Chen et al., 2010b)

μRR (t ) = RRt−1+
p∑

i=1

ai (t ) δRRt−i +
q∑

i=1

bi (t ) δCOVt−i . (19)

The new series {δRRt−i} and {δCOVt−i} have zero mean and
are combined within a new (noise-free) AR model in parallel with
equation (8). Note that the a0(t ) term in equation (8) has been
replaced by RRt−1 in equation (19).

From equation (19), we can compute the differential frequency
response between δRR and δCOV

H̃ 12
(
f , t
) =

q∑
i=1

bi (t ) z−i
∣∣
z=ej2π f2

1−
p∑

i=1
ai (t ) z−i

∣∣
z=ej2π f1

, (20)

When using BP as covariate, we call | H̃ 12 | as the differential
BRS; when using RP as covariate, | H̃ 12 | is referred to as the
differential RSA. Rearranging the terms {ai(t )} and {bj(t )} in equa-
tion (19) and applying the frequency analysis further yields the
frequency response (in the conventional sense)

H12
(
f , t
) =

b1 (t ) z−1 + bq (t ) z−q

+
q−1∑
i=2

(bi (t )− bi−1 (t )) z−i
∣∣
z=ej2π f2

1− (1+ a1 (t )) z−1 − ap (t ) z−p

−
p−1∑
i=2

(ai (t )− ai−1 (t )) z−i
∣∣
z=ej2π f1

,

Note: It shall be pointed out that, due to the absence of the dri-
ven noise (equations 6–9, and 19), the terms AR, ARMA, ARX, or
ARIMA models defined in this paper do not coincide with an AR-
type model in the traditional sense. These models can be viewed as
distinctive AR-type models with vanishing noise variance. In other
words, as the uncertainty is embedded in the probability structure,
we did not consider the noise component in modeling the mean.

3.8. MODEL ORDER SELECTION AND GOODNESS-OF-FIT TESTS
Once a model is selected, we would need to predetermine the
model order {p, q} of equations (6–9) in the selected Volterra series
expansion. In general, the need of a tradeoff between model com-
plexity and goodness-of-fit arises when a point process model is
considered. In practice, the order of the model may be determined
based on the Akaike information criterion (AIC; by pre-fitting a
subset of the data using either the point process filter or the local
likelihood method (Loader, 1999; Barbieri et al., 2005) as well as
the Kolmogorov-Smirnov (KS) statistic (Brown et al., 2003) in the
post hoc analysis. For different values p and q, we can compare
the AIC and choose the parameter setup with the minimum AIC
value. Let L designate the log-likelihood value obtained from the
pre-fitted data, the AIC is defined as

AIC = −2L+ 2dim (ξ) (21)

where dim(ξ) denotes the dimensionality of unknown parameter
vector ξ used in the probability model of the heartbeat interval. In
the presence of a non-linear or bilinear AR model, once the order
is determined, the initial Volterra coefficients will be estimated by
a least squares method (Westwick and Kearney, 2003). Specifically,
the coefficients {ai} are optimized by solving a Yule-Walker equa-
tion for the linear part using the first few hundreds sample points,
and the coefficients {hij} are estimated by fitting the residual error
via least squares. For the non-linear and bilinear models (equa-
tions 7 and 9), we use a sequential estimation instead of a joint
estimation procedure for fitting the Volterra coefficients, since we
prefer to preserve the interpretation of the linear AR coefficients.
A joint estimation procedure is possible based on orthogonal
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projection, cross-correlation, or least squares (Marmarelis, 1993;
Westwick and Kearney, 2003), although such method may destroy
the structure described by the linear AR coefficients.

The goodness-of-fit of the point process model is based on
the KS test (Brown et al., 2003). Given a point process specified
by J discrete events: 0 < u1 < . . . < uJ < T, the random variables

zj = ∫uj
uj−1 λ(τ)dτ are defined for j= 1, 2,. . ., J− 1. If the model

is correct, then the variables vj= 1− exp(− zj) are independent,
uniformly distributed within the interval [0, 1], and the variables
gj=�−1(vj) (where �(·) denotes the cumulative distribution
function (cdf) of the standard Gaussian distribution) are sampled
from an independent standard Gaussian distribution. To conduct
the KS test, the vjs are sorted from smallest to largest, and plot-
ted against the cdf of the uniform density defined as (j − 0.5)/J.
If the model is correct, the points should lie on the 45˚ line. The
95% confidence interval lines are defined as y = x ± 1.36

(J−1)1/2 . The

KS distance, defined as the maximum distance between the KS
plot and the 45˚ line, is also used to measure lack-of-fit between
the model and the data. The autocorrelation function of the gjs:

ACF(m) = 1
J−m

∑J−m
j=1 gj gj+m , can also be computed. If the gj s

are independent, ACF(m) shall be small for any lag m, which is
within the 95% confidence interval 1.96

(J−1)1/2 around 0.

3.9. EXPERIMENTAL PROTOCOL AND DATA
A total of 15 healthy volunteer subjects (mean age 24± 4), gave
written consent to participate in this study approved by the Mass-
achusetts General Hospital (MGH) Department of Anesthesia and
Critical Clinical Practices Committee, the MGH Human Research
Committee and the MGH General Clinical Research Center. Sub-
jects were evaluated with a detailed review of his/her medical
history, physical examination, electrocardiogram, chest X-ray, a
urine drug test, hearing test, and for female subjects, a pregnancy
test. Any subject whose medical evaluation did not allow him or
her to be classified as American Society of Anesthesiologists (ASA)
Physical Status I was excluded from the study. Other exclusion cri-
teria included neurological abnormalities, hearing impairment,
and use of either prescribed or recreational psychoactive drugs.
Intravenous and arterial lines were placed in each subject. Propofol
was infused intravenously using a previously validated computer
controlled delivery system running STANPUMP (a computer con-
trolled delivery system; Shafer et al., 1988) connected to a Harvard
22 syringe pump (Harvard Apparatus, Holliston, MA), using the
well-established pharmacokinetic and pharmacodynamic models
(Schnider et al., 1998, 1999). In Subject 1, five effect-site target
concentrations (0.0, 1.0, 2.0, 3.0, and 4.0 μg/ml) were each main-
tained for about 15 min respectively, where concentration level
0 corresponds to the conscious and wakefulness baseline. In the
remainder of subjects, an additional effect-site target concentra-
tion of 5.0 μg/ml was administered. Capnography, pulse oximetry,
ECG, and arterial blood pressure were monitored continuously by
an anesthesiologist team throughout the study. Bag-mask venti-
lation with 30% oxygen was administered as needed in the event
of propofol-induced apnea. Because propofol is a potent periph-
eral vasodilator, phenylephrine was administered intravenously to
maintain mean arterial blood pressure (ABP) within 20% of the
baseline value. ECG and ABP were recorded at a sampling rate of

1 kHz using a PowerLab ML795 data acquisition system (ADIn-
struments, Inc., Colorado Springs, CO). Four recordings (Subjects
#6, 11, 12, 14) were excluded for analysis either because the subjects
fell asleep during the experimental behavioral protocol or because
of poor quality of the data recordings.

4. RESULTS
Applications of the proposed point process framework to the
experimental data led to instantaneous assessment of HRV, RSA,
BRS, and of non-linearity of heartbeat dynamics in healthy sub-
jects under progressive stages of propofol anesthesia (Chen et al.,
2009b, 2010b, 2011a). All instantaneous indices are estimated
to accommodate the non-stationary nature of the experimen-
tal recordings. Overall, our observations have revealed interesting
dynamic trends across the experiment for individual subjects. Due
to the tutorial nature of the current article, only three subjects
(Subjects 5, 9, 15) are portrayed here for illustration purpose,
detailed group comparison statistics can be found in (Chen et al.,
2011a). The inverse Gaussian point process model for heartbeat
intervals is considered in all the examples reported here, and all
instantaneous indices are estimated using a point process filter
with 	= 5 ms temporal resolution.

4.1. TRACKING EXAMPLES AND ESTIMATED INDEX STATISTICS
Figure 3 shows results from a subject (Subject 15) transitioning
from level 0 to level 3 (several time intervals are replaced by shaded
areas to appropriately portray all transitions of interest in one
panel). In this subject, HRV, RSA, and BRS progressively decrease
with increasing propofol administration, accompanied by a rel-
evant increase in linear cardiorespiratory coupling as a result of
dispensation of the first propofol bolus. Two sharp drops in BRS
(within the LF range) are also observed at the level 0→ 1 and 1→ 2
transitions upon increasing the target drug concentration level.
Meanwhile, RSA (within the HF range) also drops accordingly.
Interestingly, the ratio ρ (computed with RP as COV) increases
from level 0 to level 1 and then remains steady, suggesting that
the non-linearity at the HF range slightly decreases with propofol
administration. Table 2 shows a summary of the averaged statis-
tics of the estimated instantaneous indices of interest within levels
1–3 as compared with baseline (level 0).

In a second example, Figure 4 shows a different subject (Subject
9) where, after the initial propofol administration, phenylephrine
is administered to compensate a critical drop in blood pressure,
followed by artificial ventilation. In this case, a sharp decrease in
RSA is observed with anesthetic intervention, respiratory coupling
is then partly restored, but systolic BP progressively decreases to
critical levels, possibly due to baroreflex failure. After phenyle-
phrine is administered (∼2960 s), BRS and systolic BP slightly
recover, but fail to go back to baseline levels. During the period of
apnea, artificial ventilation reflects in RSA variability and acts to
restore HRV (as seen by the increase in σ HR), only partly succeed-
ing in raising BP levels via the feedforward pathway. Table 2 shows
a summary of the averaged statistics of the estimated instanta-
neous indices for levels 1–3 as compared with the baseline (level
0), accompanied by a portrayal of the instantaneous dynamics
observed within each level for the considered indices (Figure 5),
confirming the progressive decrease in HRV, RSA, and BRS, as
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FIGURE 3 |Tracking results of various instantaneous indices for Subject 15. Three transient periods (level 0→ 1, level 1→ 2, level 2→ 3) are shown (Chen
et al. (2011b), Proceedings of EMBC. Reprinted with permission, Copyright ©2011 IEEE).

Table 2 | Averaged statistics of the estimated instantaneous indices in the general anesthesia protocol (level 0–3 for two selected subjects).

μHR (bpm) σHR (bpm) RSA (a.u.) ρ BRS (mmHg/ms)

SUBJECT 15

Level 0 66.8± 4.5 4.41± 0.88 39.0± 2.9 0.89± 0.03 6.16± 2.96

Level 1 75.1± 3.0* 2.09± 0.48* 15.2± 0.5* 0.97± 0.01* 3.34± 0.41

Level 2 74.7± 2.9* 1.72± 0.43* 11.1± 0.5* 0.98± 0.01* 2.91± 0.62*

Level 3 61.8± 5.2 3.82± 0.83 8.7± 1.5* 0.82± 0.07 10.07± 0.65*

SUBJECT 9

Level 0 61.2± 5.8 3.19± 0.92 20.8± 1.7 0.88± 0.05 8.55± 3.24

Level 1 61.8± 2.7 2.25± 0.42 34.7± 1.5* 0.95± 0.01* 7.33± 1.26*

Level 2 64.3± 4.1 2.65± 1.01 21.6± 4.2 0.97± 0.01* 3.77± 0.64*

Level 3 67.1± 2.5* 1.94± 0.67 16.1± 0.85* 0.85± 0.06 3.28± 0.42*

The ρ index here was computed based on the respiratory measure as covariate. RSA and ρ are computed in the HF range (0.15-min {0.5, 0.5/RR} Hz), while BRS

is computed in the LF range (0.04–0.15 Hz). RSA has an arbitrary unit since the recorded respiratory signal was non-calibrated. ∗Significant p < 0.05 by pairwise

rank-sum test (compared to level 0).

well as the linear cardiorespiratory coupling increase in the first
two levels of propofol anesthesia.

In addition, for pairwise comparison we also compute the mean
statistic (averaged over time in each epoch) of all instantaneous
indices during level 0 and level 1 drug concentrations for all 11
subjects. Figure 6 show the scatter plots for the mean HR, HRV,
and BRS (LF range) values. More details can also be found in
(Chen et al., 2011a).

4.2. EXAMPLE OF APPLYING THE ARIMA MODEL
Next, we illustrate how the use of ARIMA modeling (Section
3.7) can improve identification in the presence of highly

non-stationary scenarios. The left panels of Figure 7 show the raw
R-R interval series and systolic BP series are shown. In the con-
sidered subject (Subject 5), the systolic BP series has a decreasing
trend (dropping from around 160–130 mmHg) within about 150 s,
showing a high degree of non-stationarity (with a decreasing mean
statistic along time). In contrast, the first-order difference series
δRR and δSBP are stationary and have steady zero mean along
time. As expected, modeling the mean heartbeat interval using
equation (19) is more desirable than using equation (8). To verify
our hypothesis, we have used the same model order (p= q= 8)
for these two equations, and applied the point process model to
fit the observed R-R and systolic BP series. The goodness-of-fit
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FIGURE 4 |Tracking results of various instantaneous indices for

Subject 9. The two dashed lines (∼2010 and ∼3000 s) mark the
drug concentration level 0→ 1 (i.e., propofol administration onset
time) and level 1→ 2, respectively. The dotted dashed line (∼2960 s)

marks the time when phenylephrine was administered; and the
dotted line (∼3125 s) marks the time of hand ventilation (Chen et al.
(2011b), Proceedings of EMBC. Reprinted with permission,
Copyright ©2011 IEEE).

FIGURE 5 | Comparison of the estimated instantaneous indices from four drug concentration levels (0–3) for Subject 9. Note that at each row, the
vertical axes at all four panels have the same scale.

assessment shows that the ARIMA modeling improves the model
fit with decreasing KS distance (from 0.0893 to 0.0513) in the KS

test. Figure 8 shows the KS plot (including the KS statistic compar-
ison) and the autocorrelation plot based on the ARIMA modeling.

Frontiers in Physiology | Computational Physiology and Medicine February 2012 | Volume 3 | Article 4 | 15

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Chen et al. A unified probabilistic framework

The fact that the curves fall within the 95% confidence intervals in
both the KS and the autocorrelation plots indicates a good model
description of the point process heartbeat events.

4.3. SENSITIVITY ANALYSIS
Finally, we perform sensitivity analysis to test the robustness of
the proposed point process approach and the choice of parame-
ters. Two issues are examined here. One is the choice of probability
distribution (the inverse Gaussian against the Gaussian distribu-
tion) used for the R-R intervals. The other is the choice of the
parameters used in the model and the point process filter.

To illustrate the first issue, we select the raw R-R intervals from
one epoch at the level 0 drug concentration. Under the same point
process framework, we fit the data with both the inverse Gaussian
and Gaussian distributions for the inter-event intervals. Upon fit-
ting the data, we compare their corresponding KS statistics. From
the empirical data histogram (Figure 9A), it can be noticed that
the distribution of the R-R intervals is asymmetric and slightly
skewed (with a longer tail at the high value range). The Q-Q plot
analysis also confirms that the inverse Gaussian distribution pro-
vides a better fit for the data (Figures 9C,D). As expected, the

FIGURE 6 | Scatter plots of the mean statistic (averaged over time in

each epoch) of instantaneous HR, HRV, and BRS (LF range) indices

during level 0 and level 1 drug concentrations for all 11 subjects. The
dashed diagonal indicates a 45˚ line.

final KS statistic improves by using the inverse Gaussian (KS dis-
tance: 0.0562) rather than the Gaussian distribution (KS distance:
0.0719).In this case, although the fitted results from two models
are very similar, only the inverse Gaussian model passes the KS
test, i.e., its KS plot completely falls within the 95% confidence
interval (Figure 9E).

To illustrate the second issue of parameter estimation, the AR-
type model parameters are initialized based on a subset of the same
data used in Figure 9A at the start of the recordings. The data sam-
ple size used for initialization varies between 100, 200, and 300 (the
time duration varies depending on the HR). The noise covariance
matrix W in the filtering equation determines the level of parame-
ter fluctuation at the every time step of 	= 5 ms. For simplicity,
we select different scale levels for the elements of W related to
the AR parameters, on the order of 10−6, 10−7, and 10−8. Using
the inverse Gaussian model, we compare the fitting KS statistic
values under various parameter initialization setups and show the
comparative result in Figure 9F. As seen, under a wide range of
parameter choices, the fitted results are rather robust. The robust-
ness of the performance can be ascribed to the flexibility of the
random-walk model and to the fact that the tracking performance
is insensitive to the exact value of the noise covariance matrix.
Nevertheless, too large error covariance values will induce insta-
bility in the filtering operation, and cause unsatisfactory tracking
performances. Finding an optimal range of the noise covariance
matrix often involves a trial-and-error process based on a subset
of the available recordings.

5. DISCUSSION
Dynamic assessment of cardiovascular control is of fundamen-
tal importance to monitor physiological states that may change
dramatically in very short time intervals. We have devised a uni-
fied point process probabilistic framework to assess heartbeat
dynamics and autonomic cardiovascular control by using the
heartbeat interval occurrences extracted from ECG recordings,
together with other cardiovascular measures such as ABP and

FIGURE 7 | Experimental R-R interval series and systolic BP (SBP)

series (left panels) from one recording epochs during level 1

propofol concentration. Their corresponding incremental series are also

shown at the right panels. The raw SBP series has a decreasing trend
(Chen et al. (2010b), Proceedings of EMBC. Reprinted with permission,
Copyright ©2010 IEEE).
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FIGURE 8 |The estimated instantaneous indices from the data of

Subject 5 (level 1 epoch) and the associated KS plot (left) and the

autocorrelation plot (right). The KS statistic is improved from 0.0893
(standard model, red curve) to 0.0513 (ARIMA model, blue curve; Chen
et al. (2010b), Proceedings of EMBC. Reprinted with permission, Copyright
©2010 IEEE).

FIGURE 9 | (A) Histogram of the R-R intervals from one selected epoch. (B)

Maximum-likelihood-fitted Gaussian and inverse Gaussian distributions for
the R-R intervals. (C,D) Q-Q plots for the Gaussian and inverse Gaussian
distribution, respectively. (E) Comparative KS plots of point process model
assessment using the inverse Gaussian and Gaussian distributions. (F)

Comparison of KS statistics with different parameter initialization setups.

respiration. The proposed point process framework enables us
to estimate instantaneous heartbeat dynamics (HR and HRV) as
well as other cardiovascular functions (BRS and RSA) at fine tem-
poral resolution. The Wiener-Volterra series expansion allows to
model the instantaneous heartbeat interval based on the previ-
ously observed R-R intervals and selected cardiovascular covari-
ates. The online estimation (adaptive point process filter or local
likelihood method) allows us to track the fast transient dynamics of
the indices. Currently, the model parameters are initialized based
on small subset of recordings, and then allowed to be adapted

based on an online estimation method. In the presence of high
non-stationarity (e.g., baseline shift due to drugs or other effects),
special attention is required in both modeling (such as using the
ARIMA model) and parameter initialization (such as reinitializing
the parameters based on observed informative markers).

Some limitations of our approach are worth mentioning. Cur-
rently, we are using the inverse Gaussian distribution for modeling
the random heartbeat intervals. The inverse Gaussian distribution
is a good candidate since it is more robust in modeling outliers due
to its long-tailed behavior. However, just like many asymmetric
long-tailed distributions (e.g., lognormal), the inverse Gaussian
distribution can only capture outliers in the high value range
(i.e., the long tail lies in the high percentile of the distribution).
Therefore, it is insufficient to characterize potential outliers in the
low-value range (i.e., outliers’ values smaller than the mean statis-
tic). Another limitation of the current approach is that we have not
separated the influences of blood pressure from that of respiration
on HRV, which could produce some estimation bias for both BRS
and RSA due to simplification of our model. How to integrate
these physiological covariates all together still remains the subject
of future investigation. One possibility is to consider a trivariate
model. Another possibility is to incorporate a continuous-valued
latent input that modulates μRR(t ) within the point process model,
and might account for the non-modeled physiological effect; in the
maximum likelihood framework, for example, the latent variable
can be inferred using an EM algorithm (Smith and Brown, 2003).

In applying the proposed point process framework to physi-
ological data under a general anesthesia protocol, our outcomes
have revealed important dynamics involved with procedures of
induction of anesthesia. The study of transient periods due to
pharmacological and physical intervention has demonstrated the
capacity of the point process filter to quickly capture fast physio-
logical changes within the cardiovascular system. For example, sig-
nificant sudden variations in the instantaneous BRS in coincidence
with interventional maneuvers suggests that baroreflex responses
are supposedly triggered by sharp disturbances affecting the con-
trol system, whereas the clear reduction of BRS in correspondence
to increasing induction of anesthesia might suggest that barore-
flex responses are reset with propofol to control HR at a lower BP,
and that BRS further decreases after administration as a result. The
shift in the HR/BP set point may also reflect the propofol’s systemic
vasodilatory effect, whereas baroreflex impairment is most likely
the result of disruption of cardiac control within the central ner-
vous system. The instantaneous indices associated with respiration
further suggest that RSA gradually decreases from baseline after
administration of propofol anesthesia, that RSA is generally sup-
pressed by phenylephrine, and that the linear interactions within
cardiorespiratory control remain stable or increase (Chen et al.,
2009b). Specifically, RSA is likely to be mediated by withdrawal of
vagal efferent activity resulting from either baroreflex response to
spontaneous BP fluctuations, or respiratory gating of central arter-
ial baroreceptor and chemoreceptor afferent inputs. From baseline
to Level 1 we also observed an increase of non-linearity in the
bilinear interactions between RR and systolic BP, accompanied
by a significant decrease in linear coherence between these two
series (Chen et al., 2011a). This seems to indicate that the non-
linear component of the heartbeat dynamics during anesthesia is
mainly generated from the cardiovascular (baroreflex) loop, with a
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more stable linear interaction maintained within cardiorespiratory
coupling. It is also possible that the respiratory system indirectly
influences HR by modulating the baroreceptor and chemoreceptor
input to cardiac vagal neurons although, as in every cardiovascular
system identification study, it is difficult to disentangle the separate
influence of BP from the influence of respiration on HRV.

In light of these promising results, future directions of our
research are aimed at further development and integration of a set
of algorithms to preprocess the recorded signals prior to applica-
tion of the modeling framework, to perform a robust and auto-
mated classification and correction of ECG-derived heartbeats,
and to achieve an automatic determination procedure for tuning
and initialization of the model parameters, with the final goal to
devise a monitoring tool for real-time cardiovascular assessment.

CONCLUSION
In conclusion, we have appraised a comprehensive point process
probabilistic framework to simultaneously assess linear and non-
linear indices of HRV, together with important cardiovascu-
lar functions of interest. To date, the proposed point process
framework has been successfully applied to a wide range of exper-
imental protocols (Barbieri et al., 2005; Barbieri and Brown,

2006; Chen et al., 2009a, 2010a, 2011a; Kodituwakku et al., 2012).
Although all of data analyses have been done in off-line laboratory
settings, all of the developed statistical models pose a solid basis for
devising a real-time quantitative tool to bestow vital indicators for
ambulatory monitoring in clinical practice. Particularly in general
anesthesia settings, the proposed instantaneous indices may pro-
vide a valuable quantitative assessment of the interaction between
heartbeat dynamics and hemodynamics during general anesthe-
sia, and they could be monitored intraoperatively in order to
improve drug administration and reduce side-effects of anesthetic
drugs.
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A useful model of the arterial system is the uniform, lossless tube with parametric load.
This tube-load model is able to account for wave propagation and reflection (unlike lumped-
parameter models such as the Windkessel) while being defined by only a few parameters
(unlike comprehensive distributed-parameter models). As a result, the parameters may be
readily estimated by accurate fitting of the model to available arterial pressure and flow
waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper,
we review tube-load model parameter estimation techniques that have appeared in the
literature for monitoring wave reflection, large artery compliance, pulse transit time, and
central aortic pressure. We begin by motivating the use of the tube-load model for para-
meter estimation. We then describe the tube-load model, its assumptions and validity,
and approaches for estimating its parameters. We next summarize the various techniques
and their experimental results while highlighting their advantages over conventional tech-
niques. We conclude the review by suggesting future research directions and describing
potential applications.

Keywords: arterial compliance, blood pressure and flow waveforms, central pressure, hemodynamic monitoring,

pulse wave velocity, tube-load model, transfer function, wave reflection

INTRODUCTION
Mathematical modeling of arterial hemodynamics has been long-
standing. Two basic modeling approaches have been employed:
forward modeling and inverse modeling. Forward modeling con-
cerns building a model based on physical principles to predict
data (i.e., estimating data from physical models with known para-
meters). This approach is useful for testing our understanding of
the physiology underlying arterial hemodynamics. On the other
hand, inverse modeling concerns building a model from observed
data (e.g., estimating model parameters by fitting measured wave-
forms). Although less developed than its forward modeling coun-
terpart, this approach is becoming more and more important by
virtue of its ability to permit individualized monitoring of arterial
hemodynamics.

The available models may be divided into two classes: lumped-
parameter models and distributed-parameter models. The most
popular lumped-parameter model is the “Windkessel” model pro-
posed by Frank (Sagawa et al., 1990). It analogizes the arterial
system as a capacitor connected in parallel with a resistor. The
capacitor represents the large artery compliance, whereas the resis-
tor represents the total peripheral resistance. This two-parameter
Windkessel model can be extended to include additional cir-
cuit elements in order to improve accuracy (Stergiopulos et al.,
1999). Because Windkessel models are so simple, they are highly
suitable for parameter estimation purposes. That is, Windkessel
models are characterized by only a few parameters, which can
be readily estimated from the limited arterial waveforms typi-
cally available in practice. However, lumped-parameter models
assume infinite pulse wave velocity and therefore cannot reproduce

wave propagation and reflection phenomena that are essential in
shaping these waveforms.

By contrast, distributed-parameter models can reproduce wave
propagation and reflection phenomena through finite pulse wave
velocity. Most often, distributed-parameter models represent the
arterial system using a one-dimensional simplification of the
Navier–Stokes equation. These models usually account for both
geometrical and mechanical properties of the arteries explic-
itly as model parameters. Detailed distributed-parameter models
have been built that account for multi-level branching, elastic
and geometric tapering, and arterial terminations (Raines et al.,
1974; Avolio, 1980; Zagzoule and Marc-Vergnes, 1986; Wan et al.,
2002; Sherwin et al., 2003; Azer and Peskin, 2007; Huberts et al.,
2009). These comprehensive models can provide great accuracy.
However, the models cannot be readily applied for parameter esti-
mation purposes, because they are characterized by an excessive
number of model parameters that makes it virtually impossi-
ble to obtain unique parameter estimates from limited arterial
waveforms.

Less accurate, yet mathematically tractable, distributed-
parameter models have also been developed. These models usually
consist of multiple tubes with terminal loads in parallel. Often
times, the model comprises two such tubes and loads (“T-tube”
model). The tube represents the wave propagation path in the large
conduit arteries, whereas the load signifies the wave reflection site
(e.g., arterial bed distal to a peripheral artery). The tube can be
elastically and/or geometrically tapered or uniform as well as lossy
(i.e., exhibits energy dissipation) or lossless, while the load can
be non-parametric (i.e., characterized without a model structure
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through a generic frequency response) or parametric. It turns
out that the simplest of these models, the uniform, lossless tube
with parametric load, is almost as accurate as the most compli-
cated of the models. Indeed, this model, which will henceforth be
referred to simply as the tube-load model, is often able to fit arterial
pressure and flow waveforms remarkably well despite being char-
acterized by only a few parameters. Consequently, the tube-load
model carries advantages of both Windkessel and comprehensive
distributed-parameter models and therefore permits an attractive
platform for improved monitoring of arterial hemodynamics.

In this paper, we review tube-load model parameter estimation
techniques that have appeared in the literature for monitoring
wave reflection, large artery compliance, pulse transit time, and
central aortic pressure. We first provide a detailed explanation
of the tube-load model and the estimation of its parameters. We
then describe the various techniques and their experimental results
while highlighting their advantages over conventional techniques.
Table 1 provides a summary of the techniques. We conclude the
review by suggesting future research directions and describing
potential applications.

TUBE-LOAD MODEL AND PARAMETER ESTIMATION
MODEL DESCRIPTION
Figure 1A illustrates the tube-load model. This model represents
the arterial system as a parallel connection of m uniform, loss-
less tubes with parametric loads. The meaning of the tubes and
loads depend on perspective. From the perspective of the central
(ascending) aorta, a tube represents the wave propagation path
through a segment of the aorta, whereas the load represents an
effective reflection site due to the entire arterial network distal
to the segment. For example, for the T-tube model in which m
is equal to two, the two effective reflection sites correspond to
the head-end and body-end arterial beds. The flow through the
body-end tube represents the descending aortic flow, whereas the
flow through the head-end tube represents the difference between
central and descending aortic flows. From the perspective of a
peripheral artery, on the other hand, a tube represents the wave
propagation path from the central aorta to the peripheral artery,
whereas the load represents the reflection site due to the arterial
bed distal to the peripheral artery. In this case, m is equal to the
number of peripheral arteries. The flow at the proximal end of

Table 1 | Summary of available tube-load model parameter estimation techniques for monitoring arterial hemodynamics.

Monitored

variable

References Tube

type

Load

type

Parameter estimation Advantages over

previous techniques

Wave

reflection

Burattini and

Campbell (1989)

T-tube Type II Central aortic pressure waveform fitted in response to

central aortic flow waveform

Validated forward and backward waves
Arterial flow waveform and external

perturbations not required

Burattini et al.

(1991)

T-tube Type II Central and descending aortic flow waveforms fitted

in response to central aortic pressure waveform

Accuracy via use of all waveform

frequencies

Swamy et al.

(2010)

1 tube Type III Different combinations of central and femoral arterial

pressure waveforms fitted to each other

Detailed aspects of wave reflection

phenomena revealed

Large artery

compliance

Campbell et al.

(1990)

T-tube Type II Central aortic pressure waveform fitted in response to

central aortic flow waveform

External perturbation not required

Central aortic flow waveform fitted in response to

central aortic pressure waveform

Central and descending aortic flow waveforms fitted

in response to central aortic pressure waveform

Burattini and

Campbell (1993)

T-tube Type I Central and descending aortic flow waveforms fitted

in response to central aortic pressure waveform

Accuracy by accounting for wave

reflectionType II

Type III

Shroff et al.

(1995)

T-tube Type II Central and descending aortic flow waveforms fitted

in response to central aortic pressure waveform

Pulse transit

time

Xu et al. (2010),

Zhang et al. (2011)

1 tube Type I Central aortic pressure waveform fitted in response to

femoral arterial pressure waveform

True pulse transit time in the absence of

wave reflection revealed

Robustness to waveform artifact

Hahn et al. (2010) T-tube Type II Femoral arterial pressure waveform fitted in response

to radial arterial pressure waveform (or vice versa)

Central aortic waveform not required

Central

aortic

pressure

Hahn et al.

(2009a)

T-tube Type II Femoral arterial pressure waveform fitted in response

to radial arterial pressure waveform (or vice versa)

Accuracy by adapting to the

inter-subject and temporal variability

of the arterial treeSwamy et al.

(2009)

1 tube Type I Femoral arterial flow waveform fitted to zero during

diastole in response to femoral arterial pressure

waveform

Hahn et al. (2008) 1 tube Type II Derivative of central aortic pressure waveform fitted

to zero in response to derivative of radial arterial

pressure waveform at high sampling rate
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a tube is not measurable. It represents the component of central
aortic flow that reaches a peripheral artery. However, the sum of
the flows at the proximal end of all tubes corresponds to the total
central aortic flow.

The ith tube is of length di and has constant characteristic
impedance Zci =,

√
li/ci , where li and ci are the large artery

inertance and compliance, respectively. Pressure and flow waves
propagate with constant time delay Ti =

√
li · ci from one end

of the tube to the other. Note that this time delay corresponds to
pulse transit time and that its governing equation arises from the
Bramwell–Hill equation (Bramwell, 1922). The mean value of the
waves is constant throughout the tube.

The ith load has frequency-dependent impedance ZLi(jω),
where j is the imaginary number and ω is the frequency, that
is characterized by a pole–zero structure. Figure 1B shows three
types of commonly used loads along with the specific form of
their ZLi(jω). The Type I and Type II loads are three-parameter

Windkessel models. These models account for the resistance R
and compliance C of the effective load or peripheral resistance
and compliance (depending on perspective) while matching the
tube impedance at infinite frequency per arterial input impedance
studies (Noordergraaf, 1978; Nichols and O’Rourke, 2005). The
Type III load is a generic pole–zero model. A principal advantage
of this type of model is that it allows a flexible system order rather
than being fixed to first-order as with its Type I and Type II coun-
terparts. The disadvantage is that it has no physiologic meaning.
As a result, its coefficients are neither dependent on each other nor
constrained as they are with the Type I and Type II loads. For any
load, the wave reflection coefficient at the ith load is given by the
following relationship involving tube and load impedances:

Γi
(
jω
) = ZLi

(
jω
)− Zci

ZLi
(
jω
)+ Zci

. (1)

FIGURE 1 | (A) The tube-load model with arbitrary load. (B) Three types of commonly used loads along with their corresponding impedances and reflection
coefficients. See text for complete model details.
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Qualitatively, pressure and flow waves propagate in the forward
direction (proximal to distal tube ends) along a tube without
distortion and are proportional to each other. These waves are
reflected in the opposite direction at the load due to the imped-
ance mismatch [Zci �=ZLi(jω)]. The resulting backward pressure
and flow waves likewise propagate along the tube without distor-
tion and are proportional to each other but have opposite sign.
The actual arterial pressure and flow waveforms at any point on
the tube then arise as the sum of the forward and backward propa-
gating waves shifted in time to account for their wave propagation
time to the point of interest.

Quantitatively, pressure and flow waves on a tube are related
through its characteristic impedance as follows:

Qfi
(
x , jω

) = Pfi
(
x , jω

)
Zci

, Qbi
(
x , jω

) = −Pbi
(
x , jω

)
Zci

. (2)

Here, Pfi(x, jω) and Pbi(x, jω) are forward and backward prop-
agating pressure waves in the frequency-domain at a point x on
the ith tube, and Qfi(x, jω) and Qbi(x, jω) are the correspond-
ing flow waves at the same point. Note that the forward waves
actually represent the sum of all waves propagating from the prox-
imal to distal tube ends (i.e., the incident wave from the heart
and the backward waves re-reflected at the heart), while the back-
ward waves may be interpreted analogously. Also, note that x= 0
and x= di correspond to the distal and proximal ends of the tube,
respectively.

The forward and backward waves at a distal tube end are related
to each other through the wave reflection coefficient as follows:

Pbi
(
0, jω

) = Γi
(
jω
) · Pfi

(
0, jω

)
. (3)

The forward and backward waves at any point on a tube may be
expressed in terms of the corresponding waves at the distal tube
end as follows:

Pfi
(
x , jω

) = Pfi
(
0, jω

)
ejωTi ·x/di

Pbi
(
x , jω

) = Pbi
(
0, jω

)
e−jωTi ·x/di ,

(4)

where the exponential term is the frequency-domain time shifting
operator.

By combining Eqs 2–4, the actual arterial pressure and flow
waveforms at any point on a tube may then be expressed in terms
of the forward and backward waves as follows:

Pi
(
x , jω

) = Pfi
(
x , jω

)+ Pbi
(
x , jω

)
= Pfi

(
0, jω

) · [ejωTi ·x/di + Γi
(
jω
)

e−jωTi ·x/di

]

Qi
(
x , jω

) = Qfi
(
x , jω

)+ Qbi
(
x , jω

)

= Pfi
(
0, jω

)
Zci

·
[

ejωTi ·x/di − Γi
(
jω
)

e−jωTi ·x/di

]
,

(5)

where Pi(x, jω) and Qi(x, jω) are the arterial pressure and flow
waveforms in the frequency-domain at point x on the ith tube.

Due to the parallel connection of the model, the central aortic
pressure waveform is identical to the arterial pressure waveforms

at each proximal tube end, whereas the central aortic flow wave-
form is the sum of all flow waveforms at the proximal tube ends
as follows:

P
(
jω
) = Pi

(
di , jω

) = Pfi
(
0, jω

) [
ejωTi + Γi

(
jω
)

e−jωTi

]

Q
(
jω
) =∑m

i=1
Qi
(
di , jω

)

=
∑m

i=1

{
Pfi
(
0, jω

)
Zci

·
[

ejωTi + Γi
(
jω
)

e−jωTi

]}
,

(6)

where P(jω) and Q(jω) are the central aortic pressure and flow
waveforms in the frequency-domain.

Finally, Eqs 5 and 6 may be given explicitly in terms of the tube-
load model parameters by substituting a Γ(jω) from Figure 1B
into these equations.

ASSUMPTIONS AND VALIDITY
Assumptions of the tube-load model include: (a) wave propaga-
tion without energy loss in large conduit arteries, (b) a load char-
acterized by a few parameters, and (c) non-interacting reflections
occurring at distal sites only by virtue of neglecting elastic and
geometric tapering and multi-level branching. Assumption (a) is
quite valid. Friction in the large conduit arteries is indeed neg-
ligible, because resistance is inversely proportional to the fourth
power of the vessel radius. Pressure loss in the descending aorta,
for example, has been shown to be trivial (Burattini and Campbell,
2000). Assumption (b) is justifiable based on empirical data. That
is, while the actual load is certainly complicated with many para-
meters needed for its representation, the arterial input impedance
computed with the tube-load model has been shown to match
that determined with standard non-parametric Fourier analysis
(Burattini and Campbell, 1989, 1993). Note, however, that an even
simpler purely real load may not be supported by empirical data
(Burattini and Campbell, 2000). Assumption (c) is the least ten-
able but can be defended to some extent. The arterial terminations
do often constitute the dominant reflection sites for two reasons.
First, they pose the greatest impedance mismatch, as the radius
of the arterioles is much smaller than that of proximal arteries
(Pappano et al., 2007). Second, vessel tapering tends to be offset
by vessel branching in the forward direction so as to achieve rel-
ative impedance matching (Noordergraaf, 1978). In addition, the
tube-load model has been shown to fit experimental waveforms
almost as well as an exponentially tapered version of the model
(Fogliardi et al., 1997). On the other hand, backward waves should
experience strong re-reflections as they return to the heart due
to necessarily significant impedance mismatches in the backward
direction (Noordergraaf, 1978). Further, the multiple reflected
waves that return from distal sites actually interact in the aorta
due to multi-level branching.

In short, the tube-load model has a physiologic foundation
but does ignore aspects of actual arterial hemodynamics. Despite
its simplicity, it is able to fit experimental arterial pressure and
flow waveforms remarkably well. Figure 2 illustrates major wave-
form phenomena that the model can predict. This ability to fit
experimental data provides further validation of the tube-load
model and suggests that it may be phenomenological in addition
to physiological.
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FIGURE 2 | Experimental arterial pressure and flow waveforms with

increasing distance from the heart. Reproduced from Nichols and
O’Rourke (2005).

PARAMETER ESTIMATION
Most often, estimating the tube-load model parameters is accom-
plished by casting the governing equations into a transfer function.
The transfer function relating a pair of arterial pressure and/or
flow waveforms at any points on a tube may be obtained based on
Eq. 5. For example, using the T-tube model with Type II load, the
transfer function relating the central aortic pressure waveform to
the central aortic flow waveform is given as follows:

Qi
(
di , jω

) = Hi
(
jω
) · P (jω)

= 1

Zci

ejωTi − Γi
(
jω
)

e−jωTi[
ejωTi + Γi

(
jω
)

e−jωTi
] · P (jω)

= 1

Zci

[
(Ri + Zci) ejωTi − (Ri − Zci) e−jωTi

]
+jωCiZci

[
(2Ri + Zci) ejωTi + Zcie−jωTi

]
[
(Ri + Zci) ejωTi + (Ri − Zci) e−jωTi

]
+jωCiZci

[
(2Ri + Zci) ejωTi − Zcie−jωTi

]
· P (jω)

i = 1 or 2. (7a)

Q
(
jω
) = [H1

(
jω
)+H2

(
jω
)] · P (jω) . (7b)

As another example, using the Type I load, the transfer func-
tion relating the central aortic pressure waveform to a peripheral
arterial pressure waveform is given as follows:

Pi
(
0, jω

) = 1+ Γi
(
jω
)

ejωTi + Γi
(
jω
)

e−jωTi
· P (jω)

= jω+ 1
Ri Ci
+ 1

Zci Ci(
jω+ 1

Ri Ci
+ 1

2Zci Ci

)
ejωTi + 1

2Zci Ci
e−jωTi

· P (jω) .

(8)

The former transfer function is defined by the eight unknown
parameters of the T-tube model. However, while the latter transfer

function includes all four unknown model parameters of a sin-
gle tube and load, only three aggregate parameters are actually
observable (Ti, RiCi and ZciCi). Thus, all four parameters can-
not be estimated, but identification of the transfer function is
simplified to a three-parameter problem.

Estimation of the observable model parameters is accomplished
in two steps. First, arterial pressure and flow waveforms corre-
sponding to the input and output of the transfer function of
interest are measured. Then, the parameters are estimated by find-
ing the transfer function, which when applied to the measured
input, optimally fits the measured output. Alternatively, in some
instances, the parameters of the transfer function may be opti-
mally estimated using a priori physiologic knowledge (see Pulse
Transit Time Monitoring and Central Aortic Pressure Monitor-
ing). The advantage of this alternative is to reduce the burden
on the required waveform measurements. In either case, para-
meter estimation is usually performed in the time-domain by
converting the transfer function into a recursive difference equa-
tion, and the optimality is typically established in the least squares
sense.

The step of estimating the tube-load model parameters is actu-
ally quite challenging. First, the transfer functions are not simply
linear in distinct parameters. For example, as can be ascertained
from Eqs 7 and 8, the transfer functions are non-linear in the Ti

(pulse transit time) parameter. Second, the parameter values have
numerical constraints. For instance, the characteristic impedance
should be smaller than the peripheral resistance, and all para-
meters must be positive and not exceed physiologic bounds. For
these two reasons, straightforward parameter estimation tech-
niques with analytical solutions are generally not applicable. The
parameters are instead typically estimated via numerical search
in which the needed global optimum cannot be guaranteed. Use
of brute-force methods that search over a discretized grid in
multi-dimensional parameter space increases the likelihood of
identifying the global optimum at the expense of substantial com-
putational time. On the other hand, use of available local search
methods such as the steepest descent method, conjugate gradient
method, Newton’s method and its Levenberg–Marquardt modi-
fication, and simplex method (possibly with penalty factors for
keeping the parameters within physiologic bounds; Ljung, 1999)
require little computational time, but the global optimum is sel-
dom found without an initial guess that resides near the global
optimum. This problem is often mitigated by employing mul-
tiple, initial guesses and then choosing the solution that repre-
sents the optimum amongst the multiple solutions of the local
search method. However, the computational time will obviously
increase with the number of initial guesses. Another practical
issue is that the upper physiologic bounds on the parameters
are often unclear. However, the challenge of parameter estima-
tion can be alleviated to some degree by direct measurement
of one or more parameters, especially pulse transit time and
load resistance (Campbell et al., 1990; Burattini and Campbell,
1993; Hahn et al., 2009a; Swamy et al., 2009). Despite these chal-
lenges, asymptotic variance analysis has shown that the confidence
intervals on the parameters estimates can be tight (Hahn et al.,
2009a).
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WAVE REFLECTION MONITORING
SIGNIFICANCE
The magnitude and timing of the backward wave relative to the
forward wave in the central aorta can materially impact cardiac
afterload and myocardial perfusion. For example, a significant
reflected wave returning early from distal sites to the aorta during
systole can impede stroke volume, whereas such a wave arriving
later during diastole can augment myocardial perfusion. It would
therefore be useful to be able to precisely monitor wave reflection.

PREVIOUS TECHNIQUES
Several techniques are available to separate arterial pressure and
flow waveforms into their forward and backward wave compo-
nents. The most popular of these techniques (Westerhof et al.,
1972) models the proximal aorta as a short, uniform, lossless tube.
The tube characteristic impedance is then estimated from mea-
sured central aortic pressure and flow waveforms as the average
magnitude of the high frequency arterial input impedance. Finally,
the forward and backward pressure waves in the tube are calcu-
lated from the central aortic pressure and flow waveforms and the
characteristic impedance by adding pressure waves and subtract-
ing flow waves (i.e., solution of two equations with two unknowns
that arise from Eqs 2 and 5).

A couple of techniques are also available to calculate forward
and backward waves from arterial pressure waveforms alone. The
most interesting of these techniques (Newman et al., 1979) mea-
sures an arterial pressure waveform before and after complete
occlusion of a distal artery. The backward pressure wave is then
determined as half of the waveform obtained after the occlusion.
Finally, the forward pressure wave is determined by subtract-
ing this backward wave from the waveform obtained before the
occlusion.

While these techniques have shed light on wave reflection phe-
nomena, they have several disadvantages. First, it is generally
difficult to validate the calculated waves against reference mea-
surements. Indeed, to our knowledge, the techniques have yet to
be validated in this way. Second, these techniques require either
an arterial flow waveform, which is more difficult to measure than
arterial pressure waveforms, or an experimental perturbation and
are therefore not convenient to implement. Third, the estimation
of characteristic impedance can be problematic. For example, the
waveforms usually lack sufficient high frequency content. Finally,
detailed aspects of wave reflection phenomena such as the loca-
tion of the effective reflection sites cannot be ascertained with
these techniques.

TUBE-LOAD MODEL PARAMETER ESTIMATION TECHNIQUES
Wave reflection can be readily monitored using tube-load model
parameter estimation techniques. Once the model parameters are
estimated from measured waveforms, the forward and backward
waves can be determined. In particular, based on Eq. 5, the forward
wave can be calculated from the parameter estimates and measured
waveforms using standard deconvolution methods (Proakis and
Manolakis, 2007). Then, according to Eq. 3, the backward wave
can be computed from the forward wave and parameter estimates
via convolution. Because these techniques are based on a model
of the arterial system, they are able to overcome the disadvantages

of the previous techniques enumerated above. First, the calcu-
lated waves can be validated in terms of their ability to predict a
reference arterial pressure or flow waveform not utilized for para-
meter estimation (by adding or subtracting the waves after time
shifting to account for the wave propagation time to the refer-
ence measurement site). Second, the waves can be calculated from
only arterial pressure waveforms obtained without any external
perturbation. Third, the model parameters can be estimated more
accurately by the analysis of all waveform frequencies. Finally, the
model parameters reveal detailed aspects of wave reflection phe-
nomena. These advantages come at the cost of using a model
that is not entirely correct (see Tube-Load Model and Parameter
Estimation).

Burattini and Campbell (1989) calculated forward and back-
ward waves from central aortic pressure and flow waveforms,
validated the waves, and estimated the locations of the effective
reflection sites. The authors specifically utilized the T-tube model
with Type II load. They determined the load resistance parame-
ters from measured total peripheral resistance and an assumed
ratio of the head-end to body-end arterial flows. Then, based on
Eq. 7b, they estimated the remaining six parameters by fitting
the central aortic pressure waveform in response to the central
aortic flow waveform. The waveform fitting was always satisfac-
tory. From the model parameter estimates and Eq. 7a, they also
predicted the descending aortic flow waveform. This prediction
is equivalent to subtracting the calculated forward and backward
waves at the proximal end of the body-end tube. Figure 3 illus-
trates that the predicted waveform corresponded quite well to the
measured descending aortic flow waveform. The authors analyzed
the validated forward and backward waves. A prominent oscil-
lation observed in the central aortic pressure waveform during
diastole was caused by reflection from the body-end. Based on
phase velocity estimated with the descending aortic flow wave-
form, the effective body-end reflection site is located at abdom-
inal aorta. Finally, the effective head-end reflection site is closer
to the heart and responsible for reflection during late systole.
Later, these authors (Burattini and Campbell, 1993) would con-
firm that the abdominal aorta represents the effective body-end
reflection site using similar techniques and further validate the

FIGURE 3 | Descending aortic flow waveforms measured (line with

crosses) and predicted (solid line) from central aortic pressure and

flow waveforms. Adapted from Burattini and Campbell (1989).
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waves via prediction of the waveform at this site (see Large Artery
Compliance Monitoring).

Burattini et al. (1991) calculated forward and backward waves
to investigate the existence of two distinct reflection sites. The
authors specifically used the T-tube model with Type II load and
measured the load resistance parameters. Based on Eq. 7a, they
estimated the remaining six model parameters by fitting the central
and descending aortic flow waveforms in response to the central
aortic pressure waveform. Three waveforms were used in accor-
dance with an earlier study by the authors (Campbell et al., 1990;
see Large Artery Compliance Monitoring). They analyzed the for-
ward and backward waves when a diastolic oscillation was present
and absent in the central aortic pressure waveform. Two effec-
tive reflection sites could explain either case. When the diastolic
oscillation was present, both reflection sites were needed to fit the
oscillation. When this oscillation was absent, the backward waves
from the head-end and body-end either canceled each other out
or superimposed on each other to appear as a single backward

wave. In this case, one tube and load sufficed in fitting the cen-
tral aortic pressure waveform. Figure 4 illustrates the forward and
backward waves calculated during both cases. In short, there are
two reflection sites, but they can sometimes appear as one to the
heart.

Swamy et al. (2010) calculated forward and backward waves
from just two arterial pressure waveforms and validated the result-
ing waves during diverse hemodynamic interventions. The authors
specifically employed a single tube with Type III load to relate cen-
tral aortic and femoral arterial pressure waveforms and used the
foot-to-foot detection technique to estimate the pulse transit time
parameter (see Pulse Transit Time Monitoring). They re-cast Eq.
5 with Type III load to the following form:

Pi
(
0, jω

)
ejωTi − P

(
jω
)

︸ ︷︷ ︸
Y (jω)

= Γi
(
jω
) · P (jω)− Pi

(
0, jω

)
e−jωTi︸ ︷︷ ︸

X(jω)

Di
(
jω
) · Y (jω) = Ni

(
jω
) · X (jω) . (9)

FIGURE 4 | Measured central aortic pressure waveforms and forward and backward pressure waves in the central aorta (PF and PB) calculated from

central aortic pressure and flow and descending aortic flow waveforms. Adapted from Burattini et al. (1991).
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The waveforms X(jω) and Y (jω) can be easily constructed
from the measured waveforms. Given these constructed wave-
forms, Eq. 9 may be regarded as linear in distinct parameters
for one-step ahead fitting (i.e., fitting the output in response to
the past values of the input and output rather than fitting the
entire output in response to the input as described in Tube-Load
Model and Parameter Estimation). They therefore employed stan-
dard autoregressive exogenous input identification (Ljung, 1999)
to analytically estimate the parameters as well as to determine
the order of the wave reflection coefficient and thus the load
(see Figure 1B). Rather than using standard deconvolution to
calculate two versions of the forward wave from Eq. 5 and each
arterial pressure waveform, they computed a single, optimal for-
ward wave from both waveforms using multi-channel linear least
squares deconvolution (Abed-Meraim et al., 1997). From the cal-
culated forward and backward waves, the authors predicted the
abdominal aortic pressure and femoral arterial flow waveforms
(wherein the appropriate time shift was established by again using
the foot-to-foot detection technique to estimate the pulse tran-
sit time between the corresponding measured waveform and the
femoral arterial pressure waveform). Figures 5A,B illustrate that
the predicted waveforms agreed well with the corresponding mea-
sured waveforms. As further validation, Figure 5C shows that the
magnitude of the backward wave relative to the forward wave
correctly increased during vasoconstriction and decreased during
vasodilation. Finally, the estimated load order was second-order
on average. This finding indicates that the first-order Types I and
II loads are reasonable choices.

LARGE ARTERY COMPLIANCE MONITORING
SIGNIFICANCE
Large artery compliance characterizes arterial stiffness. The decline
in this parameter is a major part of the degenerative changes that
occur in aging and arterial disease (Haynes et al., 1979; Bene-
tos et al., 1993; Van Bortel and Spek, 1998; Lévy, 2001). Indeed,
in hypertension, the age-matched increase in pulse pressure is
mainly due to a decrease in large artery compliance caused in
part by intrinsic alteration of the arterial wall (London et al., 1989;
Reneman and Hoeks, 1995). Thus, large artery compliance is of
great clinical value. For example, it has been shown to be able
to sensitively discriminate the severity of coronary artery disease
(Waddell et al., 2001), and early recognition of abnormal compli-
ance may favor patients at risk for arterial disease (Glasser et al.,
1998). In addition, the ability to monitor large artery compli-
ance is important for advancing the understanding of its role in
pathophysiology.

PREVIOUS TECHNIQUES
The gold standard technique for monitoring large artery compli-
ance is to measure aortic volume (or cross-sectional area) and
pressure during an external perturbation (e.g., vena cava balloon
occlusion) and then determine the slope of the line that best relates
the resulting changes in volume to pressure. However, this tech-
nique is difficult to implement. More convenient techniques are
available in which large artery compliance is estimated from arter-
ial pressure and flow waveforms without the need for any external
perturbation. The simplest of these techniques is the ratio of the

stroke volume to pulse pressure (Hamilton and Remington, 1947).
Another popular technique is the diastolic decay time method
in which the RC time constant of the Windkessel model is esti-
mated from an arterial pressure waveform during diastole and
then divided by the ratio of the average arterial pressure to cardiac
output (Sagawa et al., 1990). However, these waveform analysis
techniques are subject to limited reliability, because they neglect
wave reflection phenomena.

TUBE-LOAD MODEL PARAMETER ESTIMATION TECHNIQUES
Large artery compliance can also be monitored from pressure
and flow waveforms using tube-load model parameter estima-
tion techniques. These techniques specifically calculate large artery
compliance by dividing the estimated pulse transit time para-
meter (Ti =

√
li · ci) by the estimated characteristic impedance

parameter (Zci =
√

li/ci). Their obvious advantage over the pre-
vious waveform analysis techniques is taking wave reflection into
account.

Campbell et al. (1990) compared large artery compliance and
other parameter estimates of different waveform analysis tech-
niques during three vasoactive states. The authors specifically used
the T-tube model with Type II load and measured the load resis-
tance parameters. Based on Eq. 7, they estimated the remaining
six model parameters by fitting (a) the central aortic pressure
waveform in response to the central aortic flow waveform, (b)
the central aortic flow waveform in response to the central aor-
tic pressure waveform, and (c) the central and descending aortic
flow waveforms in response to the central aortic pressure wave-
form. In all cases, the model was able to fit the waveforms well.
Figure 6A illustrates an example of the waveform fitting. However,
tight confidence intervals on the parameter estimates were only
obtained when all three waveforms were analyzed. They justified
this finding by arguing that the descending aortic flow waveform
carries additional information revealing distinct reflection char-
acteristics associated with the body-end arterial system and thus
advocated the use of three waveforms for estimating the T-tube
model. Further, the resulting large artery compliance estimates
(and other parameter estimates) were consistent with known phys-
iology. That is, the body-end compliance was greater than the
head-end compliance. Indeed, the body-end consists of the most
compliant arterial vessels (e.g., thoracic aorta) and has a greater
vascular network. In addition, both compliances decreased with
vasoconstriction and increased with vasodilation, as expected.
Finally, Figure 6B shows that the sum of the two compliances
was consistently smaller than that estimated with the Windkessel
model during the three vasoactive states. Thus, accounting for
wave reflection does make a difference in estimating large artery
compliance.

Burattini and Campbell (1993) validated the large artery com-
pliance estimates against gold standard reference measurements.
The authors specifically estimated the parameters of the T-tube
model with all three load types by fitting the central and descend-
ing aortic flow waveforms in response to the central aortic pressure
waveform as per Campbell et al. (1990). They then used pulse
wave velocity measurements via the foot-to-foot detection tech-
nique (see Pulse Transit Time Monitoring) to conclude that the
distal end of the body-end tube corresponds to the abdominal
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FIGURE 5 | (A) Abdominal aortic pressure waveforms measured (solid) and
predicted (dash) from central aortic and femoral arterial pressure waveforms
(left) and the raw central aortic and femoral arterial pressure waveforms
(center and right). (B) Femoral arterial flow measured (solid) and predicted
(dash; after a single calibration) from central aortic and femoral arterial

pressure waveforms during several interventions. (C) Measured central aortic
[Pc(t ), solid] and femoral arterial [Pp(t ), dash] pressure waveforms (upper) and
forward [Pf(t ), solid] and backward [Pb(t ), dash] waves in the central aorta
(lower) calculated from the measured waveforms. Adapted from Swamy et al.
(2010).

aorta. The estimated compliance of the body-end tube was very
close to the reference measurements obtained from the aortic
arch to the abdominal aorta (123± 20× 10−6 g−1 cm−4 s2 ver-
sus 119± 10× 10−6 g−1 cm−4 s2). On the other hand, they did
not find physiologic meaning in the compliance estimates of the
load model and therefore advocated the use of the Type III load.
The authors also validated the model as a whole by predicting the
abdominal aortic pressure waveform from the model parameter

estimates and Eq. 8 for the body-end tube and load (see Wave
Reflection Monitoring). The predicted waveform was in good
agreement with the pressure waveform measured at the abdominal
aorta.

Shroff et al. (1995) investigated the ability of the model para-
meter estimates to track changes during local as well as global
interventions, with emphasis on arterial compliance. The authors
employed the same parameter estimation technique as Campbell
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FIGURE 6 | (A) Measured central aortic pressure and flow and descending
aortic flow waveforms (solid) and waveforms fitted (dash) using the first two
waveforms only (left and center) and all three waveforms (right). Adapted

from Campbell et al. (1990). (B) Ratio of large artery compliance estimates
via Windkessel model (CWind) and tube-load model (CTube; Campbell et al.,
1990).

et al. (1990). For a local intervention, they inflated a balloon in
the iliac artery. The body-end tube compliance and all of the
head-end model parameters were not affected by this interven-
tion, whereas the compliance and resistances of the body-end load

were significantly altered. Figure 7 illustrates these physiologically
consistent results. For global interventions, they administered a
vasoconstrictor and vasodilator. The compliances and other model
parameters changed in the expected direction in response to these
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FIGURE 7 | Percent changes in (A) head-end tube and load compliances (Cth and Clh) and (B) body-end tube and load compliances (Ctb and Clb)

estimated from central aortic pressure and flow and descending aortic flow waveforms after inflation of a balloon in the left external iliac artery.

Adapted from Shroff et al. (1995).

interventions similar to Campbell et al. (1990). However, one
notable difference was that the head-end tube compliance did not
change during vasodilation.

PULSE TRANSIT TIME MONITORING
SIGNIFICANCE
As indicated above, pulse transit time varies with the square root
of large artery compliance. Indeed, pulse transit time, in the form
of pulse wave velocity, is now the most popular index of arterial
stiffness for two reasons. First, it is an independent predictor of
all-cause mortality and cardiovascular events in hypertensive and
other patients (Mancia et al., 2007). Second, it can be estimated
from only arterial pressure waveforms, whereas direct estimation
of large artery compliance requires more difficult arterial flow
waveform measurements.

PREVIOUS TECHNIQUES
Conventionally, pulse transit time is estimated by measuring cen-
tral and peripheral arterial pressure waveforms with non-invasive
transducers and then detecting the foot-to-foot time delay between
the waveforms. The premise of this foot-to-foot detection tech-
nique is that interference from the backward wave is negligible
during late diastole and early systole when the waveform feet occur.
However, wave reflection interference may not always be trivial at
the waveform feet. For example, at low heart rate, the backward
wave adds constructively to the forward wave. Thus, in this condi-
tion, the technique can grossly underestimate pulse transit time.
Just as important, the technique is not robust to artifact often
present in the non-invasive waveforms (Solà et al., 2010). These
two disadvantages of the foot-to-foot detection technique prevent
pulse transit time from realizing its potential clinical value. More-
over, in contrast to peripheral arterial pressure waveforms, central
arterial pressure waveforms are actually not easy to measure (Chen
et al., 1997). As a result, pulse transit time is not widely used in
clinical practice (Mancia et al., 2007).

Several other techniques are available for estimating pulse tran-
sit time/pulse wave velocity. However, for the most part, these
techniques have not revealed any practical advantage over the foot-
to-foot detection technique. As a relevant example, techniques

have been conceived for estimating the true pulse transit time (i.e.,
the pulse transit time in the absence of wave reflection) via a tube
model with a non-parametric load (see Milnor, 1989 and refer-
ences therein). However, these techniques are inconvenient in that
they necessitate three or more waveforms for measurement.

TUBE-LOAD MODEL PARAMETER ESTIMATION TECHNIQUES
Monitoring pulse transit time with tube-load model parameter
estimation techniques potentially has significant advantages over
the previous techniques. Since the model includes the true pulse
transit time as an explicit parameter and characterizes the load
with only a few parameters, these techniques can yield an artifact-
robust estimate of the pulse transit time in the absence of wave
reflection from only central and peripheral arterial pressure wave-
forms or even a pulse transit time estimate from just two peripheral
arterial pressure waveforms.

Xu et al. (2010) and Zhang et al. (2011) estimated pulse tran-
sit time from central and peripheral arterial pressure waveforms
during cardiac pacing and various other hemodynamic interven-
tions. The authors specifically employed a single tube with Type
I load. Based on Eq. 8, they estimated the true pulse transit time
and the other two observable parameters by fitting the central aor-
tic pressure waveform in response to a femoral arterial pressure
waveform. Since the entire waveforms, rather than just their feet,
were analyzed, they claimed that these pulse transit time estimates
would be more robust to artifact in addition to reflecting the pulse
transit time in the absence of wave reflection. To support this
claim, the authors compared the tube-load model parameter esti-
mation technique to the foot-to-foot detection technique in terms
of the ability of their pulse transit time estimates to track changes
in arterial pressure, a major, acute determinant of aortic stiffness
with an inverse relationship to arterial compliance. The tube-load
model parameter estimation technique showed tighter correlation
between the pulse transit time estimates and arterial pressure than
the foot-to-foot detection technique, especially during low signal-
to-noise and low heart rate conditions. Figure 8 illustrates that the
tube-load model parameter estimation technique revealed strong,
negative correlation at low heart rates, whereas the conventional
technique showed non-physiologic, positive correlation indicative
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FIGURE 8 | Measured arterial pressure versus pulse transit time (PTT) estimated from central aortic and femoral arterial pressure waveforms. Adapted
from Zhang et al. (2011).

of increasing underestimation of pulse transit time with decreasing
heart rate.

Hahn et al. (2010) estimated pulse transit time from two dia-
metric peripheral arterial pressure waveforms measured at the
radial and femoral arteries. The authors specifically employed a
T-tube model with Type II load. To estimate the model parameters
without using the central aortic pressure waveform, they assumed
that the head-end and body-end effective reflection sites corre-
spond to the arterial beds distal to the radial and femoral arteries,
respectively. They used Eq. 8 to define the transfer functions relat-
ing the central aortic pressure waveform to the radial and femoral
arterial pressure waveforms as follows:

P
(
jω
)

=

[
(R1 + Zc1) ejωT1 + (R1 − Zc1) e−jωT1

]
+jωC1Zc1

[
(2R1 + Zc1) ejωT1 − Zc1e−jωT1

]
2R1

(
1+ jωZc1C1

) · P1
(
0, jω

)

=

[
(R2 + Zc2) ejωT2 + (R2 + Zc2) e−jωT2

]
+jωC2Zc2

[
(2R2 + Zc2) ejωT2 − Zc2e−jωT2

]
2R2

(
1+ jωZc2C2

) · P2
(
0, jω

)
,

(10)

where the subscripts 1 and 2 denote the radial and femoral arteries,
respectively. The authors were then able to estimate the true pulse
transit time parameters and the other four observable parameters
by fitting the femoral arterial pressure waveform in response to
the radial arterial pressure waveform (or vice versa) via the second
equality in Eq. 10. To facilitate the parameter estimation, they con-
strained the pulse transit times so that their difference is equal to
the foot-to-foot time delay between the radial and femoral arterial
pressure waveforms. It is important to note that Eq. 10 may only
be used to estimate the model parameters, if the transfer functions

on the left- and right-hand sides of Eq. 10 do not share any poles
or zeros (i.e., the coprime condition Doyle et al., 2009). That is,
common poles and/or zeros would cancel each other out, and the
associated parameters would become unobservable in Eq. 10. In
addition to the coprime condition, the authors showed in ear-
lier work (Hahn et al., 2009a) that additional conditions must be
met in order to uniquely estimate the parameters in Eq. 10. They
further showed that these conditions can be fulfilled by appro-
priate choice of the peripheral arterial measurement sites and
sampling frequency. The estimated pulse transit time was highly
correlated with the foot-to-foot time delay between the central aor-
tic (end of aortic arch) and peripheral arterial pressure waveforms.
Figure 9 shows the estimates (after an initial calibration with the
foot-to-foot time delay) versus the foot-to-foot time delays.

CENTRAL AORTIC PRESSURE MONITORING
SIGNIFICANCE
Systolic and diastolic pressures measured specifically in the central
aorta truly reflect cardiac afterload and myocardial perfusion. Fur-
ther, pressure exerted on the central (elastic) arteries, as opposed to
the peripheral arteries, is a major determinant of the degenerative
changes that occur in hypertension and aging (Agabiti-Rosei et al.,
2007). Because of its greater physiologic relevance, central arterial
pressure can provide superior clinical value. Indeed, central arte-
rial pressure, but not peripheral arterial pressure, has been shown
to be an independent predictor of morality and/or cardiovascu-
lar events in geriatric patients (Pini et al., 2008), end-stage renal
disease patients (Safar et al., 2002), and coronary artery disease
patients (Jankowski et al., 2008). Moreover, compared to periph-
eral arterial pressure, central arterial pressure has been shown
to correlate more strongly with age (Choi et al., 2010) and bet-
ter discriminate the severity of coronary artery disease (Waddell
et al., 2001). However, peripheral arterial pressure waveforms can
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FIGURE 9 | Pulse transit time estimated from radial and femoral

arterial pressure waveforms (after a single calibration) versus PTT

estimated from aortic and peripheral arterial pressure waveforms via

foot-to-foot detection. Adapted from Hahn et al. (2010).

be measured more easily and safely and are therefore typically
measured in practice. Thus, it would be of great value to be able to
monitor central aortic pressure from peripheral arterial pressure.

PREVIOUS TECHNIQUES
Several generalized transfer function techniques are available for
deriving the central aortic pressure waveform from a peripheral
arterial pressure waveform (Karamanoglu et al., 1993; Chen et al.,
1997; Fetics et al., 1999; Söderström et al., 2002; Hope et al.,
2003). These techniques involve creating an average black-box
(rather than physiology-based) transfer function using central
aortic and peripheral arterial pressure waveform measurements
from a group of subjects and then applying this transfer func-
tion to the peripheral arterial pressure waveform of a new subject
to predict the central aortic pressure waveform. The techniques
therefore do not adapt to the inter-subject and temporal vari-
ability of the arterial tree due to, for example, age-related large
artery compliance differences and neuro-humoral modulation of
peripheral resistance, and consequently may be prone to serious
error.

To improve accuracy, a technique to adapt the transfer function
to arterial parameters has become available more recently (Sugi-
machi et al., 2001). This technique defines the transfer function in
terms of the tube-load model parameters (i.e., inverse of Eq. 8).
The pulse transit time parameter is then measured for each subject
using a non-invasive measurement of any waveform indicative of
the timing of the central arterial pulse. However, similar to gener-
alized transfer function techniques, this technique uses population
averages for the remaining observable parameters and is therefore
only mildly adaptive.

TUBE-LOAD MODEL PARAMETER ESTIMATION TECHNIQUES
The central aortic pressure waveform can also be monitored from
peripheral arterial pressure waveforms using tube-load model

parameter estimation techniques. These techniques estimate all
observable transfer function model parameters by exploiting
a priori physiologic knowledge. Thus, the resulting transfer func-
tions are fully adaptive by virtue of continually re-estimating the
model parameters for each subject.

Hahn et al. (2009a) derived the central aortic pressure wave-
form from radial and femoral arterial pressure waveforms. The
authors specifically employed a T-tube model with Type II load,
as opposed to a black-box model (Swamy et al., 2007; Swamy
and Mukkamala, 2008). They estimated the model parameters
based on Eq. 10 in accordance with their parallel work (see Pulse
Transit Time Monitoring). Then, they derived the central aortic
pressure waveform by deconvolving the peripheral arterial pres-
sure waveforms from the resulting transfer functions in Eq. 10
using a filtering technique they developed for stable deconvo-
lution of signals in multi-channel coprime systems. In addition
to the central aortic pressure waveform, the authors used the
model parameter estimates to derive the central aortic flow wave-
form. Figure 10A shows a block diagram of their derivation of
the central aortic pressure and flow waveforms. They specifically
used the six estimated parameters and the RC time constant, as
determined from the peripheral arterial pressure waveforms dur-
ing diastole, to determine all but one of the parameters of the
transfer function in Eq. 7b. They were then able to apply this
transfer function to the derived central aortic pressure waveform
to estimate the contour of the central aortic flow waveform (i.e.,
without absolute gain factor). Finally, the authors developed a
metric that correlates with the quality of the estimated T-tube
model parameters. The metric is defined as the distance between
the heart rate frequency and the frequency at which the transfer
function of the body-end tube model in Eq. 10 achieves its first
maximum modulus. The rationale is that the fidelity of the para-
meter estimates depends on how well the arterial pressure wave-
forms (with maximum energy located at the heart rate frequency)
excites the arterial tree at the first maximum modulus frequency
(where the T-tube model is highly sensitive to all of the observ-
able model parameters). Figure 10B illustrates that the derived
central aortic pressure and flow waveforms (the latter after an
initial calibration) agreed well with the corresponding measured
waveforms.

Swamy et al. (2009) derived the central aortic pressure wave-
form from a single peripheral arterial pressure waveform dur-
ing diverse hemodynamic interventions. The authors specifically
employed a single tube with essentially Type I load to relate a
peripheral arterial pressure waveform to the central aortic pres-
sure waveform through the inverse of Eq. 8. They then estimated
all three observable parameters by exploiting pre-knowledge that
central aortic flow is negligible during diastole. More specifically,
using Eq. 5, they first defined the transfer function relating the
peripheral arterial pressure waveform to the central aortic flow
waveform component to the peripheral artery in terms of the same
unknown model parameters as follows:

Qi
(
di , jω

) = 1

Zci

(
jω+ 1

Ri Ci
+ 1

2Zci Ci

)
ejωTi

− 1
2Zci Ci

e−jωTi

jω+ 1
Ri Ci
+ 1

Zci Ci

·Pi
(
0, jω

)
. (11)
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FIGURE 10 | (A) Block diagram of derivation of the aortic pressure and central aortic flow waveforms from radial and femoral arterial pressure waveforms. (B)

Measured (solid) and derived (dash) waveforms. Adapted from Hahn et al. (2009a).

They then estimated the common parameters by fitting the
central aortic flow waveform component to zero during dias-
tole (as estimated via heart rate Malik, 1996) in response to
a femoral arterial pressure waveform. To facilitate the parame-
ter estimation, they likewise obtained an initial pulse transit
time parameter estimate using a one-time, non-invasive mea-
surement of a central arterial waveform. Finally, they inserted
the parameter estimates into the inverse of Eq. 8 and applied
this transfer function to the femoral arterial pressure wave-
form to derive the central aortic pressure waveform. The derived
waveforms corresponded with reference central aortic pressure
waveforms significantly better than those waveforms derived
with the previous techniques, even though these techniques
had the unfair advantage of being developed with a subset of
the reference waveforms. Figure 11 illustrates examples of the
derived and measured pressure waveforms during three different
interventions.

Hahn et al. (2008) derived the central aortic pressure wave-
form from a single peripheral arterial pressure waveform at the
head-end circulation (e.g., radial or finger artery) without requir-
ing a pulse transit time measurement. The authors specifically
employed a single tube with Type II load to relate the two wave-
forms through the inverse of Eq. 8 with Type II load. First, they
utilized the physiologic knowledge that the rate of change of the
central aortic pressure waveform is smaller than that of the periph-
eral arterial pressure waveform. Thus, there exists a (sufficiently
high) sampling frequency for which the rate of change of only the
former waveform can be approximated as zero. By selecting this
sampling frequency, the following equation results:

{[
(R + Z ) ejωT + (R − Z ) e−jωT

]

+jωCZ
[
(2R + Z ) ejωT − Ze−jωT

]}
· jωP

(
0, jω

)
= [2R

(
1+ jωZC

)] · jωP
(
jω
) ≈ 0

(12)

For a set of candidate pulse transit times, they were able to esti-
mate the other two observable parameters by fitting the right-hand
side of this equation to zero in response to the time derivative of
the peripheral arterial pressure waveform. Second, to estimate the
pulse transit time, they applied a feature extraction technique to
the peripheral arterial pressure waveform. More specifically, they
utilized the physiologic knowledge that, at the central aorta, the
backward pressure wave from the head-end circulation will be
positioned between the forward systolic wave and the backward
pressure wave from the body-end circulation, which manifests
itself as the secondary diastolic peak in the forward wave. They
claimed that the forward systolic wave plus the head-end and
body-end backward waves superposed in this way minimizes the
sharpness of the central aortic pressure waveform (measured in
terms of the second derivative norm of the waveform). Indeed,
for small pulse transit time values corresponding to peripheral
arterial pressure waveforms, strong superposition of forward sys-
tolic and head-end backward waves occurs, which yields a high
systolic pressure that increases the sharpness of the waveform. On
the other hand, for very large pulse transit time values that are not
physiologically relevant, strong superposition of forward systolic
and body-end backward waves occurs, which essentially yield a
non-physiologic central aortic pressure waveform with a diastolic
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FIGURE 11 | Central aortic pressure waveforms measured (solid) and derived from a femoral arterial pressure waveform (dash). Adapted from Swamy
et al. (2009).

peak larger than its systolic counterpart. For each of the candidate
pulse transit time values, they inserted the three-parameter esti-
mates into the inverse of Eq. 8 with Type II load and applied this
transfer function to derive the candidate central aortic pressure
waveform. They then calculated its second derivative norm. The
central aortic pressure waveform was selected as the one with min-
imum sharpness among all candidate waveforms. Figure 12 shows
exemplary results of the derived central aortic pressure waveforms
in comparison with measured central aortic and radial arterial
pressure waveforms.

CONCLUSION
SUMMARY
The tube-load model of the arterial system represents an excellent
balance between accuracy and simplicity. That is, this model can
account for wave propagation and reflection phenomena (unlike
lumped-parameter models models) while being characterized by
only a few parameters that can be readily estimated from the lim-
ited arterial pressure and/or flow waveforms typically available in
practice (unlike comprehensive distributed-parameter models).
As a result, tube-load model parameter estimation represents an
attractive platform for improved monitoring of arterial hemo-
dynamics. A number of tube-load model parameter estimation

techniques have appeared in the literature for monitoring wave
reflection, large artery compliance, pulse transit time, and central
aortic pressure. These techniques can offer significant advantages
over previous waveform analysis techniques for monitoring these
quantities. Indeed, they (a) have yielded important insights into
the nature of wave reflections; (b) can allow for more convenient
monitoring of wave reflection and pulse transit time; and (c) can
permit more accurate monitoring of large artery compliance, pulse
transit time, and central aortic pressure. A notable hallmark of the
techniques is that their validation against reference measurements.

FUTURE DIRECTIONS
Although significant progress has been made in the area of tube-
load model parameter estimation, there are still quite a few oppor-
tunities for future investigation. First, since peripheral arterial
pressure waveforms are most easily measured, the application
of tube-load model parameter estimation to these waveforms
deserves further attention. The development of techniques for
specifically estimating pulse transit time and central aortic flow
from just a single peripheral arterial pressure waveform would
be of tremendous clinical value. Second, the methods for para-
meter estimation require significant improvement. In particular,
the development of efficient methods for honing in on the global
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FIGURE 12 | Measured aortic and radial arterial pressure waveforms and aortic pressure waveform derived from the radial arterial pressure waveform.

Adapted from Hahn et al. (2008).

optimum and useful physiologic bounds on the parameters would
constitute a major contribution. Some combination of brute-force
and local search methods may represent a good starting point.
Third, investigation of the added value in using higher order loads
that account for peripheral inertance for example would also be
worthwhile. Finally and most importantly, continued validation
of the techniques is necessary. The techniques have only been val-
idated as applied to invasive waveforms from animals up to now.
Therefore, validation in humans and as applied to non-invasive
waveforms is a must (see, e.g., Hahn et al., 2009b). It would also be
important to validate the pulse transit time estimates against gold
standard measurements of large artery compliance and determine
whether the techniques are applicable to waveforms measured at
any peripheral arterial site or just certain sites.

POTENTIAL APPLICATIONS
With further investigation, tube-load model parameter estimation
techniques have several potential applications. That is, the tech-
niques for monitoring wave reflection and large artery compliance

could be applied to invasive arterial pressure and flow waveforms
from animal models to advance the understanding of arterial
hemodynamics in health and disease. In addition, the techniques,
especially for monitoring central aortic pressure, could be conve-
niently employed in critically ill patients with peripheral arterial
catheters already in place for more precise titration of therapy
(Chen et al., 1997). Finally, and most importantly, the techniques
for monitoring pulse transit time and central aortic pressure in
particular could be applied to non-invasive arterial pressure wave-
forms obtained with applanation tonometry or finger-cuff pho-
toplethysmography to improve the management of hypertensive
and other outpatients as suggested by clinical guidelines (Mancia
et al., 2007).
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Long-term exposure to intermittent hypoxia and sleep fragmentation introduced by recur-
ring obstructive sleep apnea (OSA) has been linked to subsequent cardiovascular disease
and Type 2 diabetes. The underlying mechanisms remain unclear, but impairment of the
normal interactions among the systems that regulate autonomic and metabolic function is
likely involved. We have extended an existing integrative model of respiratory, cardiovascu-
lar, and sleep–wake state control, to incorporate a sub-model of glucose–insulin–fatty acid
regulation.This computational model is capable of simulating the complex dynamics of car-
diorespiratory control, chemoreflex and state-related control of breath-to-breath ventilation,
state-related and chemoreflex control of upper airway potency, respiratory and circulatory
mechanics, as well as the metabolic control of glucose–insulin dynamics and its inter-
actions with the autonomic control. The interactions between autonomic and metabolic
control include the circadian regulation of epinephrine secretion, epinephrine regulation on
dynamic fluctuations in glucose and free-fatty acid in plasma, metabolic coupling among
tissues and organs provided by insulin and epinephrine, as well as the effect of insulin on
peripheral vascular sympathetic activity. These model simulations provide insight into the
relative importance of the various mechanisms that determine the acute and chronic phys-
iological effects of sleep-disordered breathing. The model can also be used to investigate
the effects of a variety of interventions, such as different glucose clamps, the intravenous
glucose tolerance test, and the application of continuous positive airway pressure on OSA
subjects. As such, this model provides the foundation on which future efforts to simu-
late disease progression and the long-term effects of pharmacological intervention can be
based.

Keywords: physiological model simulation, obstructive sleep apnea, sleep regulation, metabolic function,

autonomic–metabolic interactions, computational modeling, integrative modeling, metabolism

INTRODUCTION
The current obesity epidemic is contributing to the increasing
prevalence of the “metabolic syndrome,” the clustering of symp-
toms that include insulin resistance, hypertension, and dyslipi-
demia (Reilly and Rader, 2003). The components of metabolic
syndrome individually or collectively constitute high-risk factors
for cardiovascular disease and Type 2 diabetes. Since obstructive
sleep apnea (OSA) commonly occurs among obese individuals,
there is a growing recognition of the possibility that OSA may
constitute an independent risk factor for the metabolic syndrome
(Tasali and Ip, 2008). Indeed, OSA has been found to be strongly
associated with insulin resistance (Punjabi et al., 2002), Type
2 diabetes (Chasens, 2007), as well as hypertension and vari-
ous kinds of cardiovascular disease (Reaven, 1980). The causal
pathways that link OSA to hypertension and insulin resistance
remain unclear. However, it has been demonstrated that exposure
to intermittent hypoxia (IH) in humans can lead to prolonged
elevation of muscle sympathetic nerve activity following termi-
nation of the chemical stimulation (Xie et al., 2000). As well,
in an elegant canine model, artificially induced periodic airway
obstruction during sleep led to sustained elevation of daytime

blood pressure after several weeks of nocturnal exposure (Brooks
et al., 1997). Thus, a plausible scenario is that the sympathetic
overactivity resulting from OSA leads to increased catecholamine
release, which produces hyperglycemia and, in turn, hyperinsu-
linemia, which promotes insulin resistance. Increased sympathetic
activity is also known to stimulate lipolysis from adipose tissue
and thus contribute to the elevation of circulating free-fatty acids
(FFAs; Bamshad et al., 1998). Increased FFAs impair net glucose
uptake by the tissues, contributing further to the hyperglycemia
and hyperinsulinemia (Roy and Parker, 2006). Since hyperinsu-
linemia stimulates sympathetic activity, a vicious cycle could well
develop that leads to worsening autonomic function and insulin
resistance.

As mentioned in our previous work (Cheng et al., 2010),
many simulation models of cardiovascular and respiratory sys-
tems have been developed since 1950s and some models were
designed for special disorders in cardiorespiratory physiology but
very few were involved in the interactions between these systems
and none of them have studied the interactions of cardiorespi-
ratory response with sleep. Also, over the past several decades,
a large number of mathematical models of glucose and insulin
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dynamics have appeared in the literature. Most of the earlier
models were aimed at gaining a better understanding of glucose–
insulin dynamics during diagnostic tests (Himsworth and Ker,
1939; Steele, 1959; Bolie, 1961; Ackerman et al., 1965; Andres
et al., 1966; DeFronzo et al., 1979). The models employed pri-
marily for purposes of parameter estimation have generally been
simple in terms of the small number of free parameters, such as
Bergman’s minimal model (Bergman et al., 1979) and Turner’s
homeostatic model assessment (HOMA, Turner et al., 1979).
However, there are also many models that have more complex
structures, such as those used for quantifying β-cell mass, glucose
disappearance, β-cell glucose sensitivity, and insulin secretion and
resistance (Srinivasan et al., 1970; Sherwin et al., 1974; Insel et al.,
1975; Howard et al., 1984; Berger and Rodbard, 1989; Bergman,
1989; Berman et al., 1993; Genter et al., 1998; Bergman et al.,
2006). Some of these models have been designed to account
for glucose–insulin dynamics observed in subjects with Type 1
diabetes (Skowronski et al., 1991; Parker et al., 1999; Porksen
et al., 2002). Other models also incorporate the dynamics of
fatty acids (Skowronski et al., 1991; Nolan et al., 2006; Huck-
ing et al., 2007). Most of these models are useful in providing
better insight into metabolic regulation and for developing ther-
apeutic approaches to Type 1 and Type 2 diabetes, but none have
taken into account the potential mechanisms with which auto-
nomic dysfunction may contribute to metabolic dysfunction and
vice versa. To date, we know of no other modeling study that
has linked cardiovascular autonomic and respiratory control with
metabolic control, especially in the context of sleep-disordered
breathing.

As a first exploration of the hypothesis that the sympathetic
nervous system may be the crucial factor that lies at the center of
the causal pathways that link OSA to hypertension and metabolic
dysfunction, we extended our existing integrative model of respi-
ratory, cardiovascular, and sleep regulation (Cheng et al., 2010) to
incorporate a sub-model of metabolic function, capable of sim-
ulating the dynamics of glucose–insulin, and FFA dynamics in
wakefulness and sleep. The extended model includes features such
as the circadian regulation of sympathetic nervous activity and epi-
nephrine secretion, and the effects of epinephrine on the dynamic
fluctuations of glucose and FFA in plasma. The extended model
also incorporates the effect of hyperinsulinemia on the peripheral
sympathetic nervous system.

MATERIALS AND METHODS
Our existing comprehensive model of sleep-cardiorespiratory con-
trol, heretofore referred to as “PNEUMA,” includes the autonomic
control of the cardiovascular system, chemoreflex and state-related
control of breath-to-breath ventilation, state-related and chemore-
flex control of upper airway potency, as well as respiratory and
circulatory mechanics. It provides realistic predictions of the phys-
iological responses under a wide variety of conditions, includ-
ing the day-to-day sleep–wake cycle, hypoxia-induced periodic
breathing, Cheyne–Stokes respiration in chronic heart failure, and
OSA. It can be used to investigate the effects of virtual experi-
ments and interventions such as isocapnic and hypercapnic and/or
hypoxic gas administration, the Valsalva and Mueller maneuvers,
and the application of continuous positive airway pressure (CPAP)

on OSA patients. A detailed account of “PNEUMA” is given in
Cheng et al. (2010).

To better understand the causal link between OSA and insulin
resistance, it is necessary to extend “PNEUMA” to include a meta-
bolic model of glucose and insulin that involves with energy
metabolism and its interaction with the autonomic function.
One of the most widely used and validated models of glucose
and insulin dynamics is the three compartment minimal model
method by Bergman et al. (1981), which is commonly used to
estimate insulin sensitivity from an intravenous glucose tolerance
test (IVGTT). The model is “minimal” in the sense that it is suf-
ficiently complex enough to characterize the key features of the
dynamic interaction between glucose and insulin, and yet simple
enough to be fully estimated from blood measurements of insulin
and glucose in individual subjects. It provides a sufficient level
of complexity for characterizing glucose and insulin dynamics in
our large-scale model with minimum numbers of model parame-
ters, while the other metabolic models are either too simple or too
complex. FFA provides about 90% of the muscle energy at rest
and FFA has been shown to play an important role in glucose and
insulin dynamics in last three decades (Randle et al., 1988; Rebrin
et al., 1995). However, the metabolic regulation of FFA and its
incorporation with glucose and insulin has been largely ignored
by others. The extended minimal model (Roy and Parker, 2006)
takes into account the contribution of FFA metabolism and its
interaction with glucose and insulin, thereby allowing the synthe-
sis “lipid-based” metabolic models with meals. For this reason,
we have based our metabolic regulation sub-model on the Roy–
Parker extended minimal model. Furthermore, it is known that
sympathetic activation affects glucose and FFA metabolism. In
this model, we postulate that sympathetic activity directly affects
plasma epinephrine levels, and that epinephrine modulates glu-
cose and FFA metabolism via mechanisms modeled by Kim et al.
(2006).

The model of glucose dynamics employed here is a modified
version of the minimal model by Bergman et al. (1981). Plasma
glucose disappearance occurs in the peripheral tissues by oxidation
and in the liver mainly by glycogenesis. The dynamics of glucose
metabolism is given by Eq. 1, where G(t ) is the plasma glucose con-
centration, X(t ) is “remote” insulin action that accelerates glucose
utilization in the peripheral tissues and liver and inhibits hepatic
glucose production, Z (t ) is the plasma FFA concentration and is
described in the FFA dynamics section, subscript “b” stands for
basal level, u2int(t ) is the internal glucose flux rate, u2ext(t ) is the
glucose external input rate that could be food intake or external
infusion rate of glucose, and VolG is the glucose distribution space.

dG(t )

dt
= −p1G(t )+ p1Gb − p4X(t )G(t )+ p4XbGb

+ p6Z (t )G(t )− p6ZbGb + kEGu2 int(t )+ u2ext(t )

VolG
(1)

Plasma insulin dynamics is described using a two-compartment
model with three first-order functions given by Eqs 2–4 below,
where I (t ) is the plasma insulin concentration, X(t ) is time-course
of insulin action which presents a receptor for insulin in periph-
ery, Y (t ) is added in the extended minimal model to represent
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the insulin in peripheral tissues that promotes FFA storage and
inhibits FFA release from adipose tissue into the circulations, Gh is
the threshold glucose concentration, T Di is the variable time delay,
and u1(t ) is the external input rate for the insulin model.

dI (t )

dt
= γ (G (t − TDi)− Gh) t − n (I (t )− Ib)+ p5u1(t ) (2)

dX(t )

dt
= −p2 (X(t )− Xb)+ p3 (I (t )− Ib) (3)

dY (t )

dt
= −pF2 (Y (t )− Yb)+ pF3 (I (t )− Ib) (4)

Although FFA metabolism accounts for most of the energy pro-
duction in the body at rest, the role of FFA has been overlooked
in most models of glucose–insulin regulation. To incorporate the
contribution of FFA in metabolic control, we employed the model
introduced by Roy and Parker (2006). A schematic diagram of the
dynamics of FFA and the interactions among glucose, insulin, and
FFA is displayed in Figure 1; the model is characterized by Eqs
5–7 below, where F(t ) is the FFA concentration in plasma, Z (t )
is the additional first-order filter, acting as the remote plasma FFA
concentration that promotes the glucose uptake, subscript b rep-
resents basal level in the plasma, u3int(t ) is the internal FFA flux
rate, and u3ext(t ) is the external FFA uptake rate. Table 1 provides
a detailed listing of all model parameters and their values.

dF(t )

dt
= −p7F(t )+ p7Fb − p8Y (t )F(t )+ p8YbFb

+ pG
9 G(t )F(t )− pG

9 GbFb + kEFu3 int(t )+ u3ext(t )

VolF
(5)

dZ (t )

dt
= −k2 (Z (t )− Zb)+ k1 (F(t )− Fb) (6)

where

pG
9 = 0.00021e−0.0055G (7)

FIGURE 1 | Diagram of metabolic model with epinephrine regulation.

X, remote insulin level; Y, remote insulin promotes FFA production and
utilization; Z, remote FFA level. �ftas, feedback from metabolic system to
autonomic control; ω(f tas,meta), effect of efferent sympathetic activity and
circadian process on metabolic system. u1(t ), u2(t ), and u3(t ): inputs for
insulin, glucose, and FFA dynamics, respectively.

The model allows for insulin to be introduced intravenously
into the system (as external input rate u1(t ) in Figure 1) for sim-
ulation of IVGTT and hyperinsulinemic interventions. Glucose
can be introduced intravenously into the system for simulation
of hyperglycemia, euglycemia, and hypoglycemia in the form of
external infusion rate u2ext(t ). Another external source of glucose
is in the form of dietary glucose intake rate [u2ext(t )]; in this case,
we assume periodic pulses that represent three meals which occur
at regular times each day.

In the extended model, we assume that the peripheral sympa-
thetic activity and state index generated by PNEUMA affects epi-
nephrine dynamics, which in turn influences the neuroendocrine
inputs to the heart, skeletal muscle, and pancreas (Figure 1).
“Feedback” from the metabolic sub-model to the autonomic
part of PNEUMA is represented by the stimulatory effect of
insulin on alpha-sympathetic activity (ANS Control block on
Figure 2). The metabolic fluxes for glucose and FFA in heart,
skeletal muscle, gastrointestinal tract, adipose tissue, and other
tissues (including kidney) are modulated by epinephrine and
given in the form displayed as Eq. 8, which is derived from
the multi-scale model of Kim et al. (2006). The flux i in tis-
sue/organ x is mathematically characterized as the following flux
rates:

Vx ,i = V o
x ,i

(
1.0+ λE

x ,i
(Δ · E(t )− E(0))2

αE
x ,i + (Δ · E(t )− E(0))2

)
(8)

where subscript x =“heart,” “muscle,” “gastrointestinal tract,”
“adipose tissue,” or “other tissues”; subscript i=“glucose”
(assuming the metabolic pathway: GLC←→G6P←GLY) or
“FFA” (assuming the metabolic pathway: TGL←→ FFA→
ACoA).

For the heart, there are both glucose fluxes and FFA fluxes from
epinephrine regulation which provide inputs to glucose dynamics
and FFA dynamics in the whole metabolic control system; for mus-
cle, there are both glucose fluxes and FFA fluxes from epinephrine
regulation; and for the gastrointestinal tract, there is only FFA flux
involved. The internal input rates for glucose and FFA kinetics
are the sum of metabolic flux rates given by epinephrine regu-
lation as Eqs 9A and 9B, respectively. The arterial epinephrine
concentration is a static function of alpha-sympathetic activity
given by Eq. 10.

u2 int(t ) =
∑

x

Vx ,i(t ) (9a)

u3 int(t ) =
∑

x

Vx ,i(t ) (9b)

E(t ) = E(0)+ Eb · ω
(
ftas,meta

) · [1.0− exp (−t/τE )
]

(10)

Figure 3 shows the results of a simulation in which the exten-
sion to PNEUMA is run on a stand-alone basis (prior to being
linked with the rest of PNEUMA). Here, epinephrine regulation is
driven by the function ω(αsymp) which represents the time-course
of relative sympathetic activity over the circadian period of 24 h.
ω(αsymp) is assumed to remain at a constant level of zero over
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Table 1 | Simulation parameters and initial conditions in metabolic model and its link with autonomic control.

Parameter Definition Values Units Source

INTERLINK BETWEEN METABOLIC MODEL AND AUTONOMIC CONTROL

K Ce,0 Gain for basal level of epinephrine in plasma 9 Dimension-less Model

bREM Gain for REM sleep effect from autonomic control on epinephrine

regulations

0.4 Dimension-less Model

aw Parameter from autonomic control on epinephrine regulations 0.6 Dimension-less Model

f tas,0 Basal firing rate of sympathetic activity 2.1 1/s Cheng et al. (2010)

K as Gain of metabolic feedback to change of sympathetic activities 2 Dimension-less Model

f tas,I0 Parameter of metabolic feedback to change of sympathetic activities 1 Dimension-less Model

K isc,I Parameter of metabolic feedback to change of sympathetic activities 20 Dimension-less Model

τI Time constant of metabolic feedback to change of sympathetic

activities

30 Minute Model

PLASMA GLUCOSE DYNAMICS

P1 Utilization rate for plasma glucose concentration 0.068 1/min Roy and Parker (2006)

P4 Utilization rate for plasma glucose concentration under the influence

of remote insulin

1.3 mL/min/μU Roy and Parker (2006)

P6 Production rate for remote plasma glucose concentration that

promotes FFA

0.00006 L/min/μmol Roy and Parker (2006)

Gb Basal level of plasma glucose concentration 124.8 mg/dL Roy and Parker (2006)

VolG Glucose distribution space 117 dL Roy and Parker (2006)

K EG Gain from epinephrine to glucose uptake 0.04 Dimension-less Model

PLASMA INSULIN DYNAMICS

n Utilization rate for plasma insulin concentration 0.142 1/min Roy and Parker (2006)

P5 Factor for insulin inputs 0.000568 1/mL Roy and Parker (2006)

Ib Basal level of plasma insulin concentration 16.6 μU/mL Model

P3 Production rate for remote insulin concentration 0.000012 1/min Roy and Parker (2006)

γ Insulin sensitivity factor 0.038 μU/mL/min2/mg/dL Toffolo et al. (1980)

T Di Variable time delay 5± 3 s Model

Gh Threshold of plasma glucose concentration 125 mg/dL Roy and Parker (2006)

P2 Utilization rate for remote insulin concentration 0.037 1/min Roy and Parker (2006)

PF2 Utilization rate for remote insulin concentration that promotes FFA 0.17 1/min Roy and Parker (2006)

PF3 Production rate for remote insulin concentration that promotes FFA 0.00001 1/min Roy and Parker (2006)

Xb Basal level of remote plasma insulin concentration 0.08125 μU/mL Model

Yb Basal level of remote plasma insulin concentration that promotes FFA

production

0.008125 μU/mL Model

PLASMA FREE-FATTY ACID DYNAMICS

P7 Utilization rate for plasma FFA concentration 0.03 1/min Roy and Parker (2006)

P8 Utilization rate for remote plasma insulin involved FFA concentration 4.5 mL/min/μU Roy and Parker (2006)

Fb Basal level of plasma FFA concentration 380 μmol/L Roy and Parker (2006)

Zb Basal level of remote plasma FFA concentration 190 μmol/L Roy and Parker (2006)

k2 Utilization rate for remote FFA concentration 0.03 1/min Roy and Parker (2006)

k1 Production rate for remote FFA concentration 0.02 1/min Roy and Parker (2006)

VolF FFA distribution space 11.7 L Roy and Parker (2006)

K EF Gain from epinephrine to FFA uptake 0.01 Dimension-less Model

EPINEPHRINE REGULATION

Eb Basal level of epinephrine concentration in plasma 198 pM Kim et al. (2006)

τE Time constant for epinephrine regulation 30 min Kim et al. (2006)

Δ Epinephrine regulation factor for metabolic fluxes 1e6 Dimension-less Model

V 0_GLC_Heart Maximum rate coefficient in heart 88 μmol/min Kim et al. (2006)

λE_GLC_Heart Epinephrine regulated flux parameter in heart 3 Dimension-less Kim et al. (2006)

αE_GLC_Heart Epinephrine regulated flux parameter in heart 1000 pM Kim et al. (2006)

V 0_GLY_Heart Maximum rate coefficient in heart 320 μmol/min Kim et al. (2006)

λE_GLY_Heart Epinephrine regulated flux parameter in heart 0 Dimension-less Kim et al. (2006)

(Continued)
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Table 1 | Continued

Parameter Definition Values Units Source

αE_GLY_Heart Epinephrine regulated flux parameter in heart 0 pM Kim et al. (2006)

V 0_FFA_Heart Maximum rate coefficient in heart 280 μmol/min Kim et al. (2006)

λE_FFA_Heart Epinephrine regulated flux parameter in heart 2 Dimension-less Kim et al. (2006)

αE_FFA_Heart Epinephrine regulated flux parameter in heart 447.2 pM Kim et al. (2006)

V 0_TGL_Heart Maximum rate coefficient in heart 8 μmol/min Kim et al. (2006)

λE_TGL_Heart Epinephrine regulated flux parameter in heart 0.5 Dimension-less Kim et al. (2006)

αE_TGL_Heart Epinephrine regulated flux parameter in heart 1000 pM Kim et al. (2006)

V 0_GLC_Muscle Maximum rate coefficient in muscle 398 μmol/min Kim et al. (2006)

λE_GLC_Muscle Epinephrine regulated flux parameter in muscle 18 Dimension-less Kim et al. (2006)

αE_GLC_Muscle Epinephrine regulated flux parameter in muscle 1000 pM Kim et al. (2006)

V 0_GLY_Muscle Maximum rate coefficient in muscle 1000 μmol/min Kim et al. (2006)

λE_GLY_Muscle Epinephrine regulated flux parameter in muscle 0.3 Dimension-less Kim et al. (2006)

αE_GLY_Muscle Epinephrine regulated flux parameter in muscle 10 pM Kim et al. (2006)

V 0_FFA_Muscle Maximum rate coefficient in muscle 701 μmol/min Kim et al. (2006)

λE_FFA_Muscle Epinephrine regulated flux parameter in muscle 9 Dimension-less Kim et al. (2006)

αE_FFA_Muscle Epinephrine regulated flux parameter in muscle 447.2 pM Kim et al. (2006)

V 0_PYR_Muscle Maximum rate coefficient in muscle 80 μmol/min Kim et al. (2006)

λE_PYR_Muscle Epinephrine regulated flux parameter in muscle 2 Dimension-less Kim et al. (2006)

αE_PYR_Muscle Epinephrine regulated flux parameter in muscle 1000 pM Kim et al. (2006)

V 0_TGL_Muscle Maximum rate coefficient in muscle 260 μmol/min Kim et al. (2006)

λE_TGL_Muscle Epinephrine regulated flux parameter in muscle 2.5 Dimension-less Kim et al. (2006)

αE_TGL_Muscle Epinephrine regulated flux parameter in muscle 1000 pM Kim et al. (2006)

V 0_TGL_GI Maximum rate coefficient in GI tract 80 μmol/min Kim et al. (2006)

λE_TGL_GI Epinephrine regulated flux parameter in GI tract 2 Dimension-less Kim et al. (2006)

αE_TGL_GI Epinephrine regulated flux parameter in GI tract 1000 pM Kim et al. (2006)

V 0_TGL_adipose Maximum rate coefficient in adipose 190 μmol/min Kim et al. (2006)

λE_TGL_adipose Epinephrine regulated flux parameter in adipose 2 Dimension-less Kim et al. (2006)

αE_TGL_adipose Epinephrine regulated flux parameter in adipose 1000 pM Kim et al. (2006)

FIGURE 2 | Diagram of integrative model of autonomic and metabolic interactions.
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16 h of quiet wakefulness. During sleep, ω(αsymp) assumes the
form of the negative half of a sine wave, representing decreased
sympathetic activity in sleep. This decreased baseline in sympa-
thetic activity is punctuated by relatively short pulses, representing
increases in sympathetic activity during REM sleep over the subse-
quent 8 h of sleep (Figure 3A). The corresponding fluctuations in
epinephrine concentration [E(t )], glucose concentration [G(t )],
insulin concentration [I (t )], and FFA concentration [F(t )] are
shown in Figure 3B. G in represents the time-course of the exter-
nal glucose inputs that arise from meal ingestion three times
a day.

When the model extension is linked with the rest of PNEUMA
(see Figure 2), ω(αsymp) is replaced by ω(ftas,meta) which contains
the sum of all efferent alpha-sympathetic firing rates and a modu-
latory factor that reflects sleep–wake state changes, as shown in Eq.
11 below. E(0) is now no longer a constant (Eb) as in the stand-
alone version of the model extension, but this variable is assumed
to vary dynamically around its basal level Eb and is controlled by
the efferent alpha-sympathetic firing rate and sleep state index as
given in Eq. 14.

ω
(
ftas,meta

) = [ftas,meta − ftas,meta0 + 1
]−SI ·Gas_sleep

× (1+ bREM · REM) · (1− SI · aω) (11)

ftas,meta = ftas ·
(
1− SI · Gas_sleep

)
(12)

ftas,meta0 = ftas,0 ·
(
1− SI · Gas_sleep

)
(13)

E(0) = Eb + KCe,0 ·
(
ftas,meta − ftas,meta0

) · (1− SI ) (14)

When the extended version of PNEUMA is said to oper-
ate “with metabolic feedback,” we are referring to the configura-
tion in which plasma insulin concentration is allowed to influ-
ence alpha-sympathetic firing rate dynamically through Eq. 15
through Eq. 17.

W (I ) = kas + kas · ftas,I 0 · exp
[
(I − Ib) /kisc ,I

]− 1

exp
[
(I − Ib) /kisc ,I

]+ 1
(15)

Δftas = W (I ) · [1− exp (−t/τI )
]

(16)

ftas,FB = ftas +Δftas (17)

where ftas= ftas, res and ftas, vein, respectively.

FIGURE 3 | Simulation of normal subject in stand-alone model extension. (A) Time-course of ω(αsymp), the function that converts changes in
alpha-sympathetic activity into changes in epinephrine amount. (B) Model simulation showing 2-day time-courses of blood glucose, insulin, FFA, epinephrine,
and external glucose inputs (meals).
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The extended version of PNEUMA has been tested for sim-
ulation durations as long as 84 days (12 weeks). Each simulation
generally begins with sleep onset (10 pm) on the first day. Meals
during the day are simulated as step increases in blood glu-
cose, with “breakfast” starting 90 min after the end of sleep cycle.
However, since the model of sleep–wake regulation employed by
PNEUMA can produce variable sleep durations, depending on
whether the factor known as “sleep propensity” is sufficiently
reduced to a threshold value during sleep (Cheng et al., 2010), the
start times for breakfast can vary from 7 am to 9 am. Simulations
with PNEUMA have previously shown that the sleep fragmenta-
tion resulting from repetitive arousals during the night in OSA
delays the rate at which sleep propensity is reduced in the model
during sleep (Cheng et al., 2010). As such, simulated sleep dura-
tion is longer in the subject with OSA compared to the subject with
normal breathing, if sleep is not artificially interrupted. However,
in reality, total sleep duration is constrained due to the occurrence
of time cues, such as a clock alarm that goes off at a set time each
day. If one factors this in, then the “subject” who has OSA will suf-
fer from a small amount of sleep deprivation each day, since the
sleep propensity index is not allowed to decrease to its natural min-
imum before sleep is terminated and wakefulness occurs. In the
results that are presented here, we assume that sleep is terminated
7 h after the start of sleep onset.

The implementation of the model using Simulink® (The Math-
works, Natick, MA, USA) introduces the advantages of modularity,
flexibility, and platform-independence, and provides a convenient
basis for any future model extensions for modeling, simulating,
and analyzing dynamic physiological systems. In its current imple-
mentation, PNEUMA is a large model with 557 parameters and
92 states. It takes approximately 12 h of computational time to
run a 10-day simulation with variable time step where maximum
time step is 10 ms on a PC with an Intel Core 2 Duo E8500 central
processing unit. PNEUMA is implemented using a combination
of discrete and continuous states, solving ordinary differential and
algebraic equations that characterize physiological processes that
cover a broad temporal scale, ranging from milliseconds (e.g.,
heartbeat) to hours (e.g., changes in blood glucose) to days (e.g.,
circadian rhythm).

An accompanying graphical user interface (GUI) panel allows
users to conveniently change the values of a large number of
parameters or impose a variety of physiological conditions with-
out having to modify the program directly. Advanced users
can vary parameter values or make changes to the under-
lying models by directly modifying the graphical objects in
the Simulink® code. The details of the software are described
in the PNEUMA manual. The software and manual can
be downloaded free of charge from the following web-link:
http://bmsr.usc.edu/Software/BMSRsoftware.html

RESULTS
STAND-ALONE MODEL EXTENSION RESULTS
In the stand-alone version of the model extension, epinephrine
dynamics are generated through Eq. 10 with its own generated
input source of ω(αsymp) plotted in Figure 3A which presents the
effects from autonomic function to the metabolic system. Within
this initial closed-loop model without any external inputs and

external links, the resulting glucose–insulin and FFA dynamics
with epinephrine regulation for a 2-day simulation in the mid-
dle of a 60-day simulation is shown in Figure 3B. During sleep,
sympathetic tone is reduced below the wakefulness baseline, but
in REM sleep, the model assumes that there are transient surges in
sympathetic activity, which lead to small elevations of epinephrine
during the REM episodes. In wakefulness, during each meal, the
blood glucose level increases followed by a corresponding increase
in plasma insulin and subsequent drop in the plasma FFA, illus-
trating the antilipolytic effect of insulin. The model predicts the
occurrence of oscillations (with periodicities of ∼120 min) that
arise from the dynamic interactions among glucose, insulin, and
FFA, in particular between the meals. However, these “ultradian”
oscillations, most evident in insulin and FFA, persist during sleep
when there are no meals. In general, higher baseline levels of
plasma epinephrine enhance the frequency and amplitude of these
oscillations. These predictions are consistent with observations
of ultradian oscillations of insulin and glucose reported in the
literature (Polonsky et al., 1988; Sturis et al., 1991; Simon, 1998).

SIMULATION OF NORMAL SUBJECT: EFFECTS OF “METABOLIC
FEEDBACK”
Figure 4 shows the results for a normal subject on day 10 of sim-
ulation time. Breakfast is assumed to start 90 min after the end
of sleep. The predicted time-courses of the cardiovascular, res-
piratory, and metabolic variables following 10 days of simulation
without metabolic feedback (Δftas) are displayed in blue, whereas
the corresponding model predictions with metabolic feedback are
shown in red. The mean levels of systolic blood pressure (SBP)
and diastolic blood pressure (DBP) are higher in the case with
metabolic feedback relative to the case without metabolic feed-
back, consistent with the increased epinephrine amount in heart
and skeleton muscle during wakefulness when metabolic feedback
is present (Figure 4A – only a segment of 200 s is displayed for pur-
poses of clarity). On average, SBP/DBP values in wakefulness are
117/82 mmHg with metabolic feedback vs. 105/73 mmHg without
metabolic feedback. During sleep, the corresponding SBP/DBP
values are 108/72 with metabolic feedback vs. 102/67 without
metabolic feedback. There is a certain amount of autonomic com-
pensation for the elevation in blood pressure via the baroreflex
through a decrease in heart rate (HR). In wakefulness, mean
HR is approximately 78 beats/min with metabolic feedback vs.
85 beats/min without metabolic feedback, whereas in sleep, the
corresponding mean HR values are 74 vs. 76 beats/min.

The dynamics of glucose, insulin, FFA, and epinephrine over
the course of 24 h on “Day 10” are shown in Figure 4B. The surges
in glucose concentration represent the impact of meals taken dur-
ing the wakefulness period. As in the stand-alone case presented in
the previous section, the model predicts the occurrence of ultra-
dian oscillations in insulin, FFA, and (to a smaller extent) glucose.
These oscillations are most evident during sleep, consistent with
the ultradian fluctuations observed by others (Sturis et al., 1991;
Simon, 1998; Porksen et al., 2002; Kim et al., 2007). These dis-
play a periodicity of ∼54 min, which is within the range consistent
with experimental observations (Polonsky et al., 1988; Simon and
Brandenberger, 2002). During REM sleep, the epinephrine con-
centration in plasma is slightly higher than NREM sleep due to
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FIGURE 4 | Cardiorespiratory and metabolic responses predicted

by the extended model on Day 10 of total simulation duration. The
case with metabolic feedback (red) is compared with the case without
metabolic feedback (blue). Sleep starts at 10 pm and ends at 5 am
every day. (A) Time-courses of the key cardiorespiratory variables – a
segment of only 200 s duration, starting at 6 am of Day 10, is displayed
for clarity. SD, sleep state index (wake/sleep= 0/1); Dtotal , total

ventilatory drive (L/s); V T, tidal volume (L); HR, heart rate (beat/min);
SBP/DBP, systolic and diastolic blood pressure (mmHg); BF, breathing
frequency (breaths/min); P pl, pleural pressure (cmH2O); PaCO2 (Thin
Lines), arterial PCO2 (mmHg); SO2 (Thick Lines), saturation of oxygen
(%). (B) Predicted time-courses of plasma glucose, insulin, FFA,
epinephrine, and the external glucose inputs to the model
(representing three meals during wakefulness).

Frontiers in Physiology | Computational Physiology and Medicine January 2012 | Volume 2 | Article 111 | 45

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Cheng and Khoo Autonomic-metabolic effects of sleep apnea

increased sympathetic activity – this has also been reported in
the experimental literature (Linares et al., 1987). The plasma epi-
nephrine concentration is slightly higher with metabolic feedback
vs. no feedback during wakefulness. However, the model predicts
that the effect of metabolic feedback on the predicted time-courses
of glucose, insulin, and FFA is minimal. This result is somewhat
surprising and contrary to initial expectations that the plasma
insulin level would be higher in the case with metabolic feed-
back. We believe that this prediction reflects saturation effects that
are derived from the non-linear relationship between epinephrine
level and its effects on plasma glucose and FFA.

NORMAL BREATHING VS. OSA WITH METABOLIC FEEDBACK
As in our previous work (Cheng et al., 2010), to allow the model to
simulate OSA sleep, the upper airway sensitivity parameter (Sua)
was increased from its control value of 0.01 in normal breathing to
at least 0.38. Figure 5A (second through eighth panels) displays the
predicted time-courses of the key cardiovascular and respiratory
variables for the OSA “subject” during sleep (displayed as blue
tracings) on the 10th day of simulated time, contrasted against
the corresponding time-courses in a normal control (displayed
as red tracings). In both cases, the model simulations have been
run with metabolic feedback, and sleep duration has been limited
to 7 h. The first panel of Figure 5A shows the sleep state index
(“SD”), with SD= 1 representing deep sleep and SD= 0 repre-
senting wakefulness. The normal subject remains asleep (SD= 1)
throughout the duration displayed, whereas in the OSA subject,
arousals are triggered (SD changes from 1 to 0) at the end of
the obstructive episodes. Without or with metabolic feedback,
simulations of OSA during sleep produce the cardiovascular, res-
piratory, and neural responses similar in form to what we had
shown previously, as well as to observations reported in the lit-
erature (Bradley and Floras, 2003). With the metabolic feedback,
the model still predicts periodicities on the order of ∼52 s, which
is consistent with our previous work and literature (Leung and
Bradley, 2001; Cheng et al., 2010). The corresponding dynamics
of glucose, insulin, FFA, and epinephrine over the 10th day of
simulation are shown in Figure 5B. During sleep, reduced sym-
pathetic nervous system activity decreases epinephrine amount in
heart and skeleton muscle in both normal breathing and OSA,
but there is higher level of epinephrine in OSA sleep than in
normal sleep due to the elevated level of sympathetic activity
in OSA sleep. Epinephrine levels in OSA are further enhanced
in REM sleep relative to non-REM sleep, reflecting the relatively
higher sympathetic activity in REM. Because of the elevated epi-
nephrine levels during sleep in OSA, the ultradian oscillations
in insulin in the OSA subject are noticeably higher in amplitude
compared to the corresponding insulin oscillations in the normal
subject.

TIME-COURSE OF DEVELOPMENT OF METABOLIC AND AUTONOMIC
EFFECTS IN OSA
Figure 6 displays the results of a simulation (N→OSA) in which
the model is first run with the upper airway parameter Sua set at
0.01 for several days until a clear steady state has been achieved,
following which Sua is increased to 0.38 and the simulation trial
is continued for 10 more days. This simulation is equivalent to

conducting a hypothetical experiment in which a normal subject
“abruptly” develops OSA, allowing us to track, on a day-to-day
basis, the time-course of development of the metabolic and car-
diovascular effects of OSA, as predicted by the extended model.
In Figure 6, “Day 0” marks the point at which the change in Sua

occurs. The top two panels of Figure 6 show the serial values of
fasting plasma glucose (FPG) level and the fasting plasma insulin
(FPI) level, determined by averaging the predicted plasma glucose
and insulin values that appear during wakefulness in the hour
before “breakfast” occurs. The third panel displays the day-to-
day values of plasma epinephrine obtained by averaging predicted
epinephrine concentration over 1-h duration before and after
breakfast in each day. The remaining panels in Figure 6 show
averages of the key cardiovascular variables calculated over the
corresponding simulation segment between 120 and 60 min before
sleep ends for each day. Mean HR, SBP, and DBP attain their new
steady-state levels within a day following the “switchover” from
normal to OSA status. Also displayed in Figure 6 are the cor-
responding amplitudes of the dominant oscillations in HR, SBP,
and DBP; these oscillations occur at the tidal breathing frequen-
cies (respiratory sinus arrhythmia for HR and pulsus paradoxus
for blood pressure) in normal breathing, but in OSA, they occur
with considerably larger amplitudes and cycle durations consis-
tent with the repetitive episodes of apnea and arousals. FPG, FPI,
and epinephrine attain their new steady-state levels after 2 days.
All three variables are higher in the OSA vs. normal states, consis-
tent to what has been reported in clinical studies (McArdle et al.,
2007).

The autonomic and metabolic effects of artificially eliminat-
ing OSA by administering CPAP are presented in the simulation
results displayed in Figure 7. Here, the model is first run with Sua

set at a value of 0.4 to represent OSA for several days in simulation
time. Subsequently, during the duration of sleep on “Day 1,” CPAP
at a level of 15 cmH2O is applied. This eliminates the obstruc-
tive apnea episodes, thus drastically reducing the large amplitude
cyclic swings in HR, SBP, and DBP. Mean SBP and DBP attain
their new lower steady-state levels within a day of this change.
FPG, FPI, and epinephrine are lowered to their new steady-state
levels after 2 days, consistent with observations reported in the
clinical literature (Harsch et al., 2004).

Figure 8 summarizes and compares the magnitudes of the
changes in steady-state autonomic and metabolic responses for the
two cases ((N→OSA and OSA→OSA+CPAP) discussed above.
It is clear that the results produced by OSA→OSA+CPAP are,
in general, opposite in direction to those obtained in N→OSA,
except that mean HR is elevated in both cases. We believe that this
apparent inconsistency can be explained as follows. In N→OSA,
the onset of OSA led to an overall increase in sympathetic tone
(as manifested in the elevation of epinephrine), which increased
both blood pressure and HR. In OSA→OSA+CPAP, CPAP
administration led to a decrease in sympathetic tone and epi-
nephrine level, which decreased blood pressure – however, the
reduction in blood pressure triggered the baroreflexes, and this
increased HR.

Simulations of the OSA case were conducted over a range
of Sua values, representing varying degrees of upper airway
obstruction. Figure 9 summarizes the model predictions: FPI
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FIGURE 5 | Comparison of cardiorespiratory and metabolic responses in

normal breathing (red) vs. OSA (blue). Results displayed are from Day 10 of
the total simulation duration. Sleep starts at 10 pm and ends at 5 am each
day. (A) Time-courses of the key cardiorespiratory variables – a segment of
only 200 s duration, starting at 11 pm of Day 10, is displayed for clarity. SD,
sleep state index (wake/sleep= 0/1); Dtotal , total ventilator drive (L/s); V T, tidal

volume (L); HR, heart rate (beat/min); SBP/DBP, systolic and diastolic blood
pressure (mmHg); BF, breathing frequency (breaths/min); Ppl, pleural pressure
(cmH2O); PaCO2 (Thin Lines), arterial PCO2 (mmHg); SO2 (Thick Lines),
saturation of oxygen (%). (B) Predicted time-courses of plasma glucose,
insulin, FFA, epinephrine, and the external glucose inputs to the model
(representing three meals during wakefulness).
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FIGURE 6 | Cardiovascular and metabolic responses predicted by model

before, during, and after abrupt transition from normal breathing to

OSA. In this simulation, the model is run in normal breathing mode until a
steady state has been achieved, and at the end of “Day 0,” the upper airway
sensitivity parameter (Sua) is abruptly increased to simulate OSA. FPG and
FPI: mean levels of plasma glucose and insulin, respectively, calculated from

the 30 min segment immediately before the start of breakfast. Other
cardiovascular and metabolic values for wakefulness displayed above are the
means derived from the corresponding simulation segment between 60 and
120 min. after sleep ends. All cardiovascular values for sleep displayed above
are the means derived from the corresponding simulation segment between
120 and 60 min before sleep ends.

concentration increases as severity of OSA, as assessed using the
apnea–hypopnea index, increases. We believe that the mecha-
nistic basis for this result, as implemented in the model, is as
follows. Greater severity of OSA leads to increased sympathetic
tone, which increases epinephrine levels. The latter stimulates
glycogenolysis and gluconeogenesis, thus increasing the plasma

glucose level. This, in turn, stimulates the production of insulin,
which is also enhanced by the elevated epinephrine level. The
increased insulin level helps to attenuate the rise in blood glucose.
However, the system is left with a consequent hyperinsulinemia.
Thus, although the parameters that collectively represent insulin
sensitivity remain unchanged in the model, whole-body insulin
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FIGURE 7 | Cardiovascular and metabolic responses predicted by

model before and after the start of CPAP administration. In this
simulation, the model is run in OSA mode until a steady state has been
achieved, and at the end of “Day 0,” continuous positive airway pressure
(CPAP) at 15 cmH2O is applied. FPG and FPI: mean levels of plasma
glucose and insulin, respectively, calculated from the 30 min segment

immediately before the start of breakfast. Other cardiovascular and
metabolic values for wakefulness displayed above are the means derived
from the corresponding simulation segment between 60 and 120 min.
after sleep ends. All cardiovascular values for sleep displayed above are
the means derived from the corresponding simulation segment between
120 and 60 min before sleep ends.

resistance is effectively increased. These results are consistent with
several recent studies that point to the independent contribution
of OSA to insulin resistance (Manzella et al., 2002; Punjabi et al.,
2002).

SIMULATION OF EXTERNAL INTERVENTIONS: GLUCOSE CLAMPS
The hyperglycemic glucose clamp technique is used for the quan-
tification of beta-cell sensitivity to glucose and the euglycemic
hyperinsulinemic clamp technique is used for measuring tissue
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FIGURE 8 | Summary and comparison of the changes in steady-state

autonomic and metabolic responses for the two cases, N → OSA (red)

and OSA → OSA + CPAP (blue), displayed in Figures 6 and 7, respectively.

Each column represents the relative change from previous steady-state value
to the post-transition steady-state response. FPG, fasting plasma glucose;

FPI, fasting plasma insulin; Epi, arterial epinephrine concentration. ΔHR,
ΔSBP, and ΔDBP correspond to maximum amplitude of fluctuation in heart
rate (beats/min), maximum amplitude of fluctuation in systolic blood pressure
(mmHg), and maximum amplitude of fluctuation in diastolic blood pressure
(mmHg), respectively. Subscript “s” represents sleep.

FIGURE 9 | Correlation between plasma insulin and severity of OSA.

sensitivity to insulin. The extended model has been tested using
virtual experiments to simulate these intervention techniques. To
simulate a hyperglycemic+125 mg glucose clamp, the glucose con-
centration in plasma is first gradually increased to 125 mg/dl above
its basal level (Gb) by a series of stair-like priming blood glu-
cose infusion, and then maintained at the hyperglycemic level by
dynamically and continuously adjusting the rate of glucose infu-
sion. The dynamics of glucose, insulin, and FFA and corresponding
glucose infusion rate during first 2 h of hyperglycemic clamp are
shown in Figure 10, where the basal level of plasma glucose con-
centration (Gb) is given as 98 mg/dL, the basal levels of plasma
insulin concentration (Ib) and plasma FFA concentration (Fb) are
assumed to be 6 μU/mL and 380 μmol/L, respectively. The glucose
and insulin responses predicted by our model are comparable to
the corresponding observations reported in the literature (Figure
1 in DeFronzo et al., 1979).

To determine the response of the extended model to var-
ious euglycemic clamps, assuming Gb to be 98 mg/dL and Ib

to be 6 μU/mL, simulations have been conducted in which
insulin is infused at dynamically changing rates to maintain
plasma insulin concentration at various hyperinsulinemic levels.

Figure 11 displays the results at the three hyperinsulinemic levels
of 20, 30, and 100 μU/ml above its basal level (Ib), respectively,
with two stair-like inputs in the priming dose of glucose infusion
for each hyperglycemic level. These results also confirm that the
predicted dynamics of glucose, insulin, and FFA concentrations in
plasma are consistent with the literature (Figure 1 in Howard et al.,
1984; Figure 3 in Roy and Parker, 2006).

SENSITIVITY ANALYSES
The extended model contains 557 parameters, each of which is
assigned a value (if available) that is consistent with the subject
group and condition under study. This represents 85 parameters
more than the 472 parameters employed in PNEUMA prior to
this study. Thus we focused on identifying the key parameters that
mediate the most significant interactions between the autonomic
and metabolic subsystems, in order to minimize the number of free
parameters that have to be specified prior to running a simulation.
Sensitivity analyses were conducted to determine the relative con-
tributions of the key parameters that played the most significant
roles in various conditions. These sensitivity analyses were also
useful as checks of internal consistency and model stability within
the ranges of the parameter values considered physiologically
“realistic.”

Interaction between key parameters contributing to autonomic and
metabolic interactions
Table 2 displays the model predictions obtained from different
values of key parameters (gains K as and K isc,I ) that influence the
impact of metabolic feedback on autonomic function,as well as the
key parameters (gains K ce,0 and Gb) that control how sympathetic
activity influences the metabolic subsystem. In the control set of
normal subject and OSA subject, these key parameters are set to
equal to their initial values described in Table 1. For each simula-
tion, there is only one parameter changed by the desired percentage
or amount. We found, as might be expected, that the ability to sim-
ulate the effect of metabolic feedback on α-sympathetic activity
depends most sensitively on its gain K as. This is shown in the per-
centage change of mean HR, SBP/DBP from their control values in
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FIGURE 10 | Dynamics of glucose–insulin and FFA during hyperglycemia with +125 mg glucose clamp.

FIGURE 11 | Dynamics of glucose–insulin and FFA during hyperinsulinemic euglycemia with glucose clamps.

both normal and OSA subject and during both wakefulness and
sleep, as well as in the epinephrine level from its control corre-
sponding to the change of α-sympathetic activity. Also, as might
be expected, the analysis shows that the gain (K ce,0) for basal level
of epinephrine is the most sensitive parameter for epinephrine
regulation in wakefulness.

Interactions between key parameters contributing to epinephrine
regulation on glucose and FFA dynamics
Table 3 displays the model results of different levels of inter-
nal inputs controlled by the gains from epinephrine to glucose
and FFA, Keg and Kef, respectively. To start the simulations,
basal levels of glucose and insulin concentrations in plasma are
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Table 2 | Sensitivity analysis of key parameters in metabolic model that contribute to autonomic and metabolic interactions.

Percentage change from control K as K isc,I K ce,0 Gb

50% −50% 50% −50% 50% −50% 1 −1

NORMAL DAY 10

FPG (%) −0.04 0.07 0.02 0.00 0.05 −0.04 0.75 −0.72

FPI (%) 0.68 −0.61 −0.23 0.00 −0.59 0.60 0.81 −0.30

Epi (%) 2.69 −2.10 −0.22 0.41 10.98 −10.97 0.00 0.01

Mean HRw (%) −4.16 5.22 0.38 −0.61 0.00 −0.02 −0.03 −0.02

Mean HRs (%) −1.32 3.02 −1.53 −0.35 0.24 −0.01 0.01 −0.03

ΔHRw (%) −2.33 2.08 0.46 0.27 3.74 1.60 −1.19 −0.80

ΔHRs (%) −4.47 1.06 2.20 −2.89 0.88 0.55 3.75 −3.89

Mean SBPw (%) 3.92 −5.22 −0.35 0.57 0.00 0.00 0.01 0.03

Mean SBPs (%) 2.13 −2.80 −0.20 0.35 0.00 −0.01 −0.01 0.02

ΔSBPw (%) −4.79 3.99 −0.26 −0.17 −1.58 −0.30 −0.28 0.04

ΔSBPs (%) −1.95 0.66 −0.18 −0.83 −1.02 −0.61 −0.83 −0.03

Mean DBPw (%) 4.68 −6.16 −0.39 0.68 0.00 0.01 0.02 0.02

Mean DBPs (%) 2.60 −3.40 −0.23 0.45 0.00 0.00 0.00 0.01

ΔDBPw (%) −2.70 3.83 −0.06 −0.23 −0.07 0.03 −0.29 −0.24

ΔDBPs (%) −0.28 0.01 −0.38 −0.30 0.04 −0.08 −0.13 0.03

OSA DAY 10

FPG (%) 0.00 0.00 −0.01 0.00 −0.04 0.02 0.81 −0.83

FPI (%) 0.07 0.03 0.46 0.11 2.10 −2.53 −1.06 1.69

Epi (%) 2.69 −2.16 −0.23 0.37 11.05 −11.11 −0.01 −0.02

AHI (%) −0.03 0.00 0.93 −0.98 −0.01 0.93 −0.02 −0.01

Mean HRw (%) −4.24 5.38 0.43 −0.63 0.00 0.03 0.03 −0.01

Mean HRs (%) −1.64 1.92 0.15 −0.33 −0.01 0.03 −0.02 0.01

ΔHRw (%) −1.76 −0.52 2.08 1.52 −0.19 −0.23 2.15 2.35

ΔHRs (%) 2.75 3.45 −1.28 1.68 −3.31 −1.48 0.74 0.17

Mean SBPw (%) 3.87 −5.34 −0.46 0.57 −0.02 −0.03 0.00 −0.02

Mean SBPs (%) 1.71 −2.31 −0.05 0.35 0.03 0.03 0.15 0.12

ΔSBPw (%) −3.86 4.69 −0.46 −0.40 −1.15 −1.27 −0.83 0.86

ΔSBPs (%) −4.52 6.89 −0.76 0.44 0.50 −0.46 −0.26 −0.03

Mean DBPw (%) 4.70 −6.27 −0.50 0.71 0.03 −0.02 0.00 0.02

Mean DBPs (%) 1.82 −2.61 −0.09 0.38 0.02 −0.01 0.11 0.06

ΔDBPw (%) −2.11 3.83 0.15 −0.41 0.17 0.11 −0.01 0.19

ΔDBPs (%) −3.97 2.26 −0.10 0.16 1.13 0.16 −0.19 0.57

All results displayed are based on 10th day simulation (steady-state responses). FPG, fasting plasma glucose; FPI, fasting plasma insulin; Epi, arterial epinephrine

concentration in wakefulness; AHI, apnea–hypopnea index (per hour); ΔHP, maximum amplitude of fluctuation in heart period (ms); ΔSDP, maximum amplitude of

fluctuation in systolic blood pressure (mmHg); ΔDBP, maximum amplitude of fluctuation in diastolic blood pressure (mmHg). Subscript “w” means wakefulness,

subscript “s” means sleep.

set to 98 mg/dL and 6 μU/mL, respectively. As the gains grad-
ually increase, both FPG and FPI levels are elevated as the
epinephrine concentration in plasma increases. This leads to
more oscillations in insulin concentration between meals. Also,
as the gains increase, blood pressure is increased slightly and
this leads to slightly decreased HR in wakefulness and during
sleep.

Interactions between key parameters contributing to the severity of
obstructive sleep apnea effects
Table 4 shows the model predictions obtained from various com-
binations of values for the upper airway sensitivity to collapse,
Sua, and the arousal threshold upper limit. In normal subject,

Sua is set equal to 0.01 and the critical closing pressure, Pcrit, for
upper airway during sleep is −29.6 cmH2O. With stable sleep,
apnea–hypopnea index (AHI) is zero and maximum fluctua-
tions in HR, SBP, and DBP are consistent with normal respi-
ration. When Sua is increased to 0.38, Pcrit is less negative and
obstructive apnea starts to appear and be terminated by non-
frequent arousals (AHI= 9) with large amplitudes of fluctuations
in HR, SBP, and DBP during sleep and a large growth in FPI
and slightly increase in FPG and epinephrine level in plasma
in wakefulness. Raising Sua a little more to 0.4 leads to greater
periodicity of obstructive apnea and arousals (AHI= 18) and
slightly increases in FPI and epinephrine level in plasma, and
increasing Sua further to 0.5 produces more apnea and arousals
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Table 3 | Sensitivity analysis of gains from epinephrine to glucose and FFA that have effects on autonomic and metabolic interactions.

NORMAL DAY 10

Keg 0.04 0.20 0.40 0.60 0.80 1.00

Kef 0.01 0.05 0.10 0.15 0.20 0.25

FPG (mg/dL) 101.02 113.11 124.14 123.96 125.62 126.05

FPI (μU/mL) 6.60 6.60 21.79 56.98 97.17 142.32

Epi (pM) 238.55 238.61 240.66 244.45 246.85 247.83

Insulin oscillations between meals? No No Few More Many Many

AHI (per hour) 0 0 0 0 0 0

Mean HRw (beats/min) 78.44 78.35 77.18 75.44 74.43 74.07

Mean HRs (beats/min) 73.93 73.93 73.93 73.38 72.86 72.61

ΔHRw (beats/min) 3.01 3.14 3.02 3.01 2.96 2.95

ΔHRs (beats/min) 2.73 2.79 2.75 2.55 2.53 2.50

Mean SBPw (mmHg) 119.69 119.82 121.57 124.18 125.55 126.06

Mean SBPs (mmHg) 111.52 111.52 111.52 112.85 114.19 114.77

ΔSBPw (mmHg) 2.93 2.91 2.86 2.78 2.77 2.76

ΔSBPs (mmHg) 2.35 2.33 2.35 2.32 2.31 2.33

Mean DBPw (mmHg) 79.26 79.36 80.73 82.78 83.90 84.27

Mean DBPs (mmHg) 70.46 70.46 70.46 71.49 72.50 72.98

ΔDBPw (mmHg) 3.20 3.20 3.19 3.13 3.10 3.10

ΔDBPs (mmHg) 2.49 2.49 2.49 2.49 2.49 2.47

OSA DAY 10

FPG (mg/dL) 101.03 113.19 124.15 124.32 125.50 126.39

FPI (μU/mL) 6.60 6.60 25.81 52.82 94.42 137.18

Epi (pM) 240.22 240.18 242.48 246.62 249.16 250.01

Insulin oscillations between meals? No No Few More Many Many

AHI (per hour) 18 18 18 18 18 18

Mean HRw (beats/min) 78.43 78.35 77.06 75.25 74.34 74.00

Mean HRs (beats/min) 75.52 75.50 75.50 74.48 74.03 73.72

ΔHRw (beats/min) 3.03 3.06 2.99 3.05 2.96 2.95

ΔHRs (beats/min) 32.14 31.79 32.09 30.50 31.21 30.45

Mean SBPw (mmHg) 119.68 119.81 121.78 124.48 125.72 126.15

Mean SBPs (mmHg) 127.62 127.67 127.63 129.20 130.53 130.44

ΔSBPw (mmHg) 2.92 2.93 2.83 2.77 2.80 2.79

ΔSBPs (mmHg) 48.45 48.78 48.55 46.22 46.15 45.02

Mean DBPw (mmHg) 79.27 79.36 80.90 83.05 83.99 84.35

Mean DBPs (mmHg) 82.25 82.26 82.27 83.48 84.49 84.37

ΔDBPw (mmHg) 3.20 3.20 3.18 3.12 3.10 3.09

ΔDBPs (mmHg) 48.06 47.75 46.80 45.11 45.17 44.65

All results displayed are based on 10th day simulations (steady-state responses). FPG, fasting plasma glucose; FPI, fasting plasma insulin; Epi, arterial epinephrine

concentration in wakefulness; AHI, apnea–hypopnea index (per hour); ΔHP, maximum amplitude of fluctuation in heart period (ms); ΔSDP, maximum amplitude of

fluctuation in systolic blood pressure (mmHg); ΔDBP, maximum amplitude of fluctuation in diastolic blood pressure (mmHg). Subscript “w” means wakefulness,

subscript “s” means sleep.

(AHI= 46) and slightly more increases in FPI and epinephrine
level in plasma. But the maximum amplitudes of the swings in
HR, SBP, and DBP remain relatively constant, and FPG remains
slightly increased from its control level. Increasing arousal thresh-
old delays the appearance of obstructive apnea and arousals as
Sua is progressively increased. For the same value of Sua, the
periodicity of AHI is lower for mild and moderate OSA and
approximately the same for severe OSA. However, the amplitudes
of the swings in HR, SBP, and DBP are substantially higher, FPG is
relatively unchanged and FPI and epinephrine amount in plasma
are lower.

DISCUSSION
In this study, we have introduced the first comprehensive, struc-
tured physiological model that incorporates dynamic interac-
tions between the autonomic and metabolic control systems. The
approach we have taken has been to extend an existing integrative
model of cardiorespiratory system with sleep–wake state control
(“PNEUMA”) to include the regulation of epinephrine, glucose,
insulin, and FFAs. Although extended PNEUMA is based largely
on previously published models of the various subsystems in ques-
tion, our contribution has been to adapt the existing sub-models
for integration into the overall model structure. In particular,
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Table 4 | Sensitivity analysis of OSA effects on autonomic and metabolic interactions by changing key parameters in upper airway model.

Sua 0.01(Control) 0.3 0.38 0.4 0.5

Pcrit during Sleep (cmH2O) −29.6 −3.5 −2.8 −2.7 −2.2

AROUSALTHRESHOLD UPPER LIMIT= 0.75 (CONTROL VALUE)

FPG (mg/dL) 123.62 123.62 124.31 124.28 123.87

FPI (μU/mL) 17.76 17.77 30.23 32.72 35.05

Epi (pM) 240.41 240.39 241.37 242.35 244.26

AHI (per hour) 0 0 9 18 46

Mean HRw (beats/min) 77.47 77.46 77.21 77.16 77.12

Mean HRs (beats/min) 74.12 74.59 74.99 75.18 76.02

ΔHRw (beats/min) 3.01 3.01 2.99 3.01 3.09

ΔHRs (beats/min) 2.65 3.04 32.66 31.73 32.69

Mean SBPw (mmHg) 121.13 121.11 121.55 121.63 121.65

Mean SBPs (mmHg) 113.04 114.36 129.34 127.96 128.04

ΔSBPw (mmHg) 2.91 2.86 2.85 2.89 2.86

ΔSBPs (mmHg) 2.79 3.58 44.73 47.22 44.42

Mean DBPw (mmHg) 80.38 80.39 80.73 80.75 80.79

Mean DBPs (mmHg) 71.72 72.76 83.22 82.65 83.34

ΔDBPw (mmHg) 3.18 3.18 3.19 3.18 3.18

ΔDBPs (mmHg) 3.00 3.93 44.21 46.27 45.21

AROUSALTHRESHOLD UPPER LIMIT= 1.15

FPG (mg/dL) 123.62 123.62 123.82 124.12 124.06

FPI (μU/mL) 17.76 17.77 18.38 24.41 34.51

Epi (pM) 240.41 240.39 240.78 241.51 243.69

AHI (per hour) 0 0 5 12 45

Mean HRw (beats/min) 77.47 77.47 77.43 77.31 77.14

Mean HRs (beats/min) 73.61 74.12 72.39 72.57 74.57

ΔHRw (beats/min) 3.02 3.01 2.99 3.01 3.04

ΔHRs (beats/min) 2.62 2.65 30.76 33.52 33.66

Mean SBPw (mmHg) 121.12 121.13 121.22 121.41 121.66

Mean SBPs (mmHg) 112.32 113.04 143.95 144.82 140.81

ΔSBPw (mmHg) 2.89 2.91 2.86 2.89 2.85

ΔSBPs (mmHg) 2.35 2.79 51.26 54.86 57.30

Mean DBPw (mmHg) 80.37 80.38 80.44 80.59 80.79

Mean DBPs (mmHg) 71.08 71.72 91.37 92.24 91.07

ΔDBPw (mmHg) 3.19 3.18 3.19 3.19 3.19

ΔDBPs (mmHg) 2.49 3.00 52.46 55.62 60.55

All results displayed are based on 10th day simulations (steady-state responses). FPG, fasting plasma glucose; FPI, fasting plasma insulin; Epi, arterial epinephrine

concentration in wakefulness; AHI, apnea–hypopnea index (per hour), ΔHP, maximum amplitude of fluctuation in heart period (ms); ΔSDP, maximum amplitude of

fluctuation in systolic blood pressure (mmHg); ΔDBP, maximum amplitude of fluctuation in diastolic blood pressure (mmHg). Subscript “w” indicates wakefulness,

subscript “s” indicates sleep.

we have incorporated the following new features: a direct link
between sympathetic activity and epinephrine level, the coupling
between the epinephrine sub-model and the metabolic sub-model
that characterizes glucose, insulin, and FFA dynamics, the effect
of insulin on peripheral vascular sympathetic activity, and the
effect of sleep–wake state on epinephrine regulation. The primary
focus of extended PNEUMA is the simulation of a range of sleep-
related breathing disorders and the physiological consequences of
these disorders on cardiorespiratory control, sleep–wake regula-
tion, and metabolic regulation, along with the interactions among
these various subsystems. The comprehensive simulation model
allows the user to conduct virtual experiments such as isocapnic

and hypercapnic and/or hypoxic gas administration, the Valsalva
and Mueller maneuvers, and the application of CPAP on OSA sub-
jects, as well as external metabolic interventions such as different
glucose clamps, IVGTT, and insulin pumps.

Food intake triggers the release of insulin which acts to reg-
ulate glucose metabolism. However, excessive feeding in obese
individuals can lead to chronic hyperinsulinemia, which pre-
disposes to insulin resistance. Since OSA is highly prevalent in
obese individuals, it is likely that chronic exposure to the IH and
sleep fragmentation that accompany upper airway obstruction and
transient arousal from sleep would constitute another factor that
contributes to metabolic dysfunction. Moreover, OSA is associated
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with sympathetic overactivity (Leung and Bradley, 2001) and a
number of prospective studies, such as the canine model of Brooks
et al. (1997), have demonstrated that OSA can lead to systemic
hypertension. Thus, it is reasonable to expect that OSA could
play an important role in the development of hyperinsulinemia.
Recently, a couple of studies have demonstrated significant cor-
relations among OSA, type 2 diabetes, and metabolic syndrome
(Shaw et al., 2008; Tasali and Ip, 2008; Jun and Polotsky, 2009).
A comprehensive simulation model, such as extended PNEUMA,
provides a systematic framework with which we can investigate
in silico potential mechanistic pathways that could lead to the
observed correlations. For instance, with the extended model, the
metabolic feedback can be attenuated or eliminated to simulate
pharmaceutical blockade of autonomic nervous system activities.
Such interventions may be difficult to implement or sometimes
impossible to conduct in real experiments. In silico investigations
would also allow us to determine the relative importance of the
various potential mechanisms, including sympathetic overactivity,
that link OSA to metabolic dysfunction.

As mentioned in previous work, this model is largely an integra-
tion of smaller sub-models that have already been peer-reviewed
and validated; many of the other parameters were assigned val-
ues employed in these previously published sub-models (Cheng
et al., 2010). For the extended model with the new metabolic
system, wherever possible, the parameter values employed in the
model are based on population values published in the literature,
as indicated in Table 1 for the new parameters. In some cases
where the physiological values are unclear, the parameters have
been tuned to ensure that the dynamic behavior of the model
under the various conditions explored remains realistic. Model
verification and validation are performed by comparing the sim-
ulation output under baseline conditions in normal breathing
and sleep-disordered breathing and under different interventions
to the general population-averaged cardiorespiratory data and
glucose–insulin–FFA dynamics reported in the literature. Since the
focus of this study is on the dynamic interactions among the var-
ious mechanisms between autonomic and metabolic interactions,
verification, and validation are guided by employing a qualita-
tive goodness of fit approach. This contrasts with smaller, more
focused models in which the key parameters are estimated based
on quantitative fits to experimental data obtained from individual
subjects. In the present case, there is no single complete exper-
imental dataset that the model can be validated against. Rather,
we focus on comparing the model responses with the empir-
ically derived responses that represent the “average subject” in
each patient/subject population. The utility of this comprehen-
sive, highly parameterized model is“proven”by testing the internal
consistency of the simulated responses of a significant number of
state variables over a range of perturbations and conditions.

LIMITATIONS OF THE MODEL
The model that we have proposed here focuses on the question of
whether the autonomic changes resulting from sleep apnea char-
acterized with IH and repetitive arousal from sleep can lead to
chronic changes of metabolic consequences in glucose, insulin,
and fatty acid levels. This is the first quantitative model that has
ever addressed this question – and as such, it should be seen as

a first step in many further explorations in this area of work.
Animal models of IH have shown that chronic IH induces aug-
mented sympathetic activities, insulin resistance, systemic inflam-
mation, oxidative stress, hyperlipidemia, hepatic inflammation,
and increase in cholesterol content and glycogen content in the
liver. Nevertheless, very little is known about the ways in which IH
and OSA can lead directly to changes in the glucose–insulin–fatty
acid metabolic system –even in the experimental literature. Our
approach is to attack this problem one layer at a time – first start
with how the autonomic changes affect the metabolic control sys-
tem – and then move on to other mechanistic pathways that may
link IH and metabolic dysfunction more directly. A key premise
in the present model is that OSA leads to sympathetic overactivity
(partly due to chronic IH) which increases plasma epinephrine
levels which, in turn, alters the regulation of glucose, insulin, and
FFA, leading eventually to hyperinsulinemia.

The mechanisms for the long-term effects of IH on autonomic
and metabolic control are not well understood, but current stud-
ies have shown that the systemic and cellular responses for a given
level and duration of hypoxia exposure are more potent with IH
than with the sustained hypoxia (Prabhakar and Kumar, 2004).
There are several potential alternative pathways by which IH can
lead to insulin resistance and impaired insulin secretion. Results
from IH animal models show that IH can lead directly to hyperlipi-
demia. The mechanism of dyslipidemia induced by IH is unclear,
but it is believed to be stimulated through (1) up-regulation of key
hepatic transcription factors of lipid biosynthesis, (2) increased
lipolysis which might induce increased FFA delivery and impaired
beta oxidation which in turn can associate with OSA and fat liver,
liver injury, oxidative stress, and non-alcoholic steatohepatitis, and
(3) inhibited very-low density lipoprotein clearance (Drager et al.,
2010). Hepatic dyslipidemia can cause hepatic insulin resistance.
In addition, IH involves hypoxia-reoxygenation cycles that could
increase oxidative stress by hypoxia-inducible factor 1 (HIF-1;
Semenza, 1998) and thus may influence glucose metabolism by
modulating glucose transport and utilization through HIF-1. The
effect of IH in oxidative stress is similar to the effect of ischemia–
reperfusion injury. However, oxidative stress in OSA and IH has
not been clearly described (Svatikova et al., 2005) and the mech-
anism by which it can produce metabolic dysfunction is under
investigation. It is likely that the IH associated with OSA could
also lead directly to insulin resistance by reducing the rate of
oxidative metabolism and decreasing the rate of glycolysis in some
tissues, and thus making insulin less effective in disposing glucose
(Iiyori et al., 2008). IH can alter both acute and chronic glucose
homeostasis through decreased oxidative phosphorylation, leptin
signaling, and growth hormone axis suppression (Jun and Polot-
sky, 2009). IH could also affect many other processes, such as
circadian glucose homeostasis, lipid metabolism, and cholesterol
synthesis. However, much remains unknown and further stud-
ies are needed to answer these questions. As such, these alternative
pathways have not been included in the model. Moreover, our goal
in this paper is to first introduce a basic model structure that allows
interactions between the autonomic and metabolic aspects of the
model. Subsequently, we will add other relevant pathways that can
more accurately characterize the effect of IH on autonomic and
metabolic consequences of OSA.
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The current model postulates that α-sympathetic activity influ-
ences insulin production indirectly through the effect of epineph-
rine on plasma glucose and FFA concentrations, and that insulin
affects α-sympathetic activity only. Some studies have shown that
insulin also has a direct vasodilatory effect (Anderson and Mark,
1993), and this may offset the vasoconstrictive effect of insulin
through its action on sympathetic activity. Thus, the “feedback
effect” of insulin on sympathetic drive may not be as important as
one might generally surmise. Another major factor not included
in the present model is the effect of sympathetic drive, and thus
epinephrine, on insulin production in the pancreas (Kim et al.,
2006).

While recent clinical research shows that high-fat diets con-
tribute to progressive insulin resistance, in the present model,
meals are represented simply as step boluses of blood glucose with-
out consideration of the digestion process and the inevitable lags
between oral ingestion and appearance of glucose and FFA in the
bloodstream.

The time-course of “disease progression,” as currently pre-
dicted by the model in terms of the development of elevated
epinephrine, insulin, and FFA levels, is substantially more rapid
than one might expect based on clinical observation. This is
likely related to the fact that the model parameters in both the
autonomic and metabolic subsystems remain unchanged, even
though the model variables (e.g., mean blood pressures, insulin
levels, and FFA levels) are altered by the presence or absence
of OSA. This limitation stems from the lack of information
about how the disease process leads to time-varying changes
in the model parameters. Clearly, future efforts to improve the
model will require the incorporation of this knowledge from
either empirical observations or an advanced understanding

of the underlying mechanistic processes that give rise to such
time-varying alterations.

CONCLUSION
We have extended an existing integrative model of respiratory,
cardiovascular, and sleep–wake state control, to incorporate a
sub-model of glucose–insulin–fatty acid regulation. This compu-
tational model is capable of simulating the complex dynamics
of cardiorespiratory control, chemoreflex and state-related con-
trol of breath-to-breath ventilation, state-related and chemore-
flex control of upper airway potency, respiratory and circulatory
mechanics, as well as the metabolic control of glucose–insulin
dynamics and its interactions with the autonomic control. The
interactions between autonomic and metabolic control include the
circadian regulation of epinephrine secretion, epinephrine regu-
lation on dynamic fluctuations in glucose and FFA in plasma,
metabolic coupling among tissues and organs provided by insulin
and epinephrine, as well as the effect of insulin on peripheral
vascular sympathetic activity. This extended model represents a
starting point from which further in silico investigations into the
interaction between the autonomic nervous system and the meta-
bolic control system can proceed. The predictions generated from
this model may provide insight into the relative importance of
the various mechanisms that determine the acute and chronic
physiological effects of sleep-disordered breathing.
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This paper presents a model-based approach to estimation of cardiac output (CO) and total
peripheral resistance (TPR). In the proposed approach, the response of cardiovascular
system (CVS), described by the windkessel model, is tuned to the measurements
of systolic, diastolic and mean arterial blood pressures (BP) so as to yield optimal
individual- and time-specific system time constant that is used to estimate CO and TPR.
Unique aspects of the proposed approach are that it approximates the aortic flow as a
train of square waves and that it also assumes pressure-dependent arterial compliance,
as opposed to the traditional windkessel model in which aortic flow is approximated as
a train of impulses and constant arterial compliance is assumed. It was shown that the
proposed model encompasses the standard windkessel model as a limiting case, and that
it also yields more realistic BP waveform response than the standard windkessel model.
The proposed approach has potential to outperform its standard counterpart by treating
systolic, diastolic, and mean BP as independent features in estimating CO and TPR,
rather than solely resorting to pulse pressure as in the case of the standard windkessel
model. Experimental results from in-vivo data collected from a number of animal subjects
supports the viability of the proposed approach in that it could achieve approximately 29%
and 24% reduction in CO and TPR errors when compared with its standard counterpart.

Keywords: cardiovascular system, cardiac output, peripheral resistance, windkessel model, pressure-dependent

arterial compliance

INTRODUCTION
Cardiac output (CO) is one of the most important hemodynamic
parameters to be monitored and assessed in ambulatory and crit-
ically ill patients (Jansen et al., 1990). It is frequently used for
disease diagnostics and monitoring (Heldt, 2006). It is also a
very important hemodynamic variable for therapeutic titrations
(Heldt, 2006). In contrast to the use of arterial blood pres-
sures (BP) [which is a late indicator of hemodynamic instability
(Barcroft et al., 1944)], CO allows early detection of hemody-
namic collapse. Despite its clinical significance, direct measure-
ment of CO is extremely difficult. Presently, the clinical gold
standard accepted for CO measurement is the thermo-dilution
(Ganz et al., 1971), but it is known to be a highly invasive pro-
cedure that has limited accuracy (Botero et al., 2004) and may
incur cardiovascular risk (Manecke et al., 2002). Non-intrusive
techniques such as echo-cardiography (Ihlen et al., 1984) and
electrical velocimetry (Suttner et al., 2006; Zoremba et al., 2007)
are promising alternatives, but often their accuracy is not satis-
factory enough yet to be clinically applicable (Siegel and Pearl,
1992).

In order to overcome these drawbacks, efforts have been made
to estimate CO from arterial BP waveform(s) (see Liljestrand
and Zander, 1928; Welkowitz et al., 1991; Martin et al., 1994;
Redling and Akay, 1997; Jansen et al., 2001; Ishihara et al., 2004;
Mukkamala et al., 2006; Parlikar et al., 2007; Xu et al., 2009; Arai
et al., 2010; Reisner et al., 2011 for examples of recent efforts),
which are collectively known as the pulse contour methods.

In this framework, CO is estimated using the morphological fea-
tures in the BP waveform(s). Most of the existing pulse contour
methods are built upon the windkessel model of cardiovascu-
lar system (CVS) that involves lumped arterial compliance and
total peripheral resistance (TPR) [e.g., Modelflow (Jansen et al.,
2001; Reisner et al., 2011) and pulse pressure methods (Reisner
et al., 2011) and its variants (Ishihara et al., 2004), cycle-averaged
windkessel model-based method (Jansen et al., 2001), hybrid
windkessel model-based method (Jansen et al., 1990)], although
there are methods based on empiric features in the arterial BP
waveforms (Liljestrand and Zander, 1928; Parlikar et al., 2007;
Arai et al., 2010), more detailed distributed-parameter models
(Martin et al., 1994; Redling and Akay, 1997) and black-box mod-
els combined with advanced signal processing (Welkowitz et al.,
1991; Mukkamala et al., 2006; Xu et al., 2009).

Inspired by its wide acceptance and frequent application in
CO and TPR estimation, this study aims at developing a uni-
versal approach that has potential to enhance the efficacy of CO
and TPR estimation based on the standard windkessel model
(Frank, 1930) (collectively referred to as the standard windkessel-
model-based method hereafter). In this method, the aortic flow
signal is approximated as an impulse train, which essentially
yields a CO estimator based on the pulse pressure (see Section
“Methods” for details). Noting that a number of existing devel-
opments on CO estimation (Jansen et al., 2001; Ishihara et al.,
2004; Parlikar et al., 2007; Reisner et al., 2011) are variants
and/or extensions of this traditional method, it is anticipated
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that successful improvement of CO and TPR estimation meth-
ods based on the standard windkessel model with aortic flow
approximated as impulse train has potential to enhance its vari-
ants and/or extensions as well. In this study, we focus on two
main opportunities to enhance the CO and TPR estimation effi-
cacy of the standard windkessel-model-based method: (1) to
use a better approximation of aortic flow signal that can result
in more realistic BP waveform(s), and (2) to exploit indepen-
dent morphological features in the arterial BP waveform more
rigorously rather than solely relying on the pulse pressure as
in the standard CO estimator implemented with traditional
windkessel model.

This paper presents a new universal approach to the estima-
tion of CO and TPR that can improve the efficacy of wind-
kessel model-based CO and TPR estimation methods. In this
approach, the CVS model is characterized using the measure-
ments of systolic, diastolic, and mean BP. In contrast to the
standard windkessel-model-based approach to CO and TPR esti-
mation (which approximates the aortic flow signal as a train of
impulses), the proposed approach uses the aortic flow signal that
is approximated as a train of square waves, which can yield mor-
phologically more realistic arterial BP waveforms. It is shown that
the proposed method encompasses its standard counterpart as a
limiting case. It is also suggested that the proposed method can
outperform the standard method by treating systolic, diastolic,
and mean BP as independent features, rather than solely resort-
ing to a single feature (i.e., the pulse pressure) as in the standard
method. Experimental results from in-vivo animal study illus-
trated that the proposed approach could achieve 29% and 24%
reduction in CO and TPR errors against the standard windkessel
model-based method. We anticipate that the proposed approach
can be combined with a variety of existing windkessel model-
based CO and TPR estimation methods to enhance the methods,
accuracy, and reliability.

This paper is organized as follows. Section “Methods”
describes the proposed approach to CO and TPR estimation by
comparing it to the standard windkessel-model-based method.
Section “Methods” presents the details of experimental protocol
and data analysis. Section “Results” presents the results, which
are discussed in Section “Discussion”. Section “Conclusion” con-
cludes the paper with future directions.

METHODS
Our proposed method is built upon the two-parameter wind-
kessel model of the CVS (see Figure 1), which is essentially
an electrical circuit consisting of a capacitor (to represent the
compliance of the conduit arteries) and a resistor (to repre-
sent the resistance of the peripheral arteries). First of all, the
governing equation for the two-parameter windkessel model is
given by (1):

dP

dt
= − 1

RC
P + 1

C
Q (1)

where P is BP and Q is aortic flow. Figure 1 demonstrates that
the proposed windkessel method has strengths over its standard
counterpart in that (1) by using the aortic flow signal approxi-
mated as a train of square waves, the resulting BP waveform is
morphologically more realistic compared with its standard coun-
terpart (see the upper and lower right corners of Figure 1 for
BP waveforms resulting from impulse and square wave trains,
respectively), and (2) it exploits the features in BP waveform more
rigorously, i.e., it uses systolic, diastolic, and mean BP as indepen-
dent features to characterize the CVS model and estimate CO and
TPR, whereas the standard method depends solely on the pulse
pressure.

To clearly demonstrate the distinction between the stan-
dard and the proposed estimation methods for CO and
TPR, the standard windkessel method is first introduced,

FIGURE 1 | Standard versus proposed windkessel-model-based CVS model characterization methods.
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and then the proposed windkessel method is described in
detail.

STANDARD WINDKESSEL METHOD
Given the aortic flow signal approximated as a train of impulses
shown in the upper left corner of Figure 1, which has amplitude
equal to the stroke volume (SV) and the period equal to a car-
diac cycle (i.e., heart period) T, the resulting BP response of the
windkessel model (1) is given by:

P(t) = PDe−
t

RC + Q

C
Te−

t
RC , (2)

where PD is diastolic BP and Q is CO. Equation (2) is valid for a
single cardiac cycle, i.e., 0 ≤ t ≤ T. The systolic as well as diastolic
BP corresponds to the value of BP at t = 0 and t = T:

PS = PD + Q

C
T (3a)

PD = PSe−
t

RC (3b)

where PS is systolic BP. Equation (3a) is of particular interest in
estimating CO and TPR; rearranging it yields (4):

Q̂ = C
PS − PD

T
∝ PP

T
, (4a)

R̂ = 1

C
P

T

Pp
∝ P

T

Pp
, (4b)

where Q̂ and R̂ are the estimated CO and TPR, and PP denotes
the pulse pressure. Under the assumption that arterial compliance
C remains constant over a time window under consideration,
Equation (4) can be utilized to estimate the trend of CO and TPR
as the ratio of pulse pressure and heart period as well as mean BP.
Equation (4) can also be used to estimate the absolute CO and
TPR if initial measurements to calibrate C are available. It is obvi-
ous that the only information the standard windkessel method
exploits in the BP waveform for estimating CO and TPR is pulse
pressure.

PROPOSED WINDKESSEL METHOD
In contrast to its standard counterpart, the proposed windkessel
method for estimating CO and TPR intends to rigorously exploit
multiple independent features in the BP waveform in character-
izing the CVS model. For this purpose, the aortic flow signal is
approximated as a train of square waves shown in the lower left
corner of Figure 1, as opposed to a train of impulses used in the
standard windkessel method (shown in the upper left corner of
Figure 1). In this approximation, the amplitude of each square
wave is given by Q T

TS
where TS is the left ventricular ejection

period, since the area under each square wave must be equal to SV.
It then follows that solving Equation (1) for BP during 0 ≤ t ≤ TS

yields

P(t) = PDe−
t

RC +
∫ t

0
e−

t−τ
RC

Q

C

T

TS
dτ

= PDe−
t

RC + RQ
T

TS

[
1− e−

t
RC

]

= PDe−
t

RC + P
T

TS

[
1− e−

t
RC

]
. (5)

During TS ≤ t + TS ≤ T, on the other hand, BP is given by

P(t) = PSe−
t

RC

= PDe−
t+TS

RC + P
T

TS
e−

t
RC

[
1− e−

TS
RC

]
. (6)

Based on (5) and (6), the following expressions for systolic and
diastolic BP are obtained:

PS = PDe−
TS
RC + P

T

TS

[
1− e−

TS
RC

]
, (7a)

PD = PSe−
TD
RC = PDe−

T
RC + P

T

TS
e−

TD
RC

[
1− e−

TS
RC

]
. (7b)

In addition, mean BP can be obtained as follows based on (5)
and (6):

P = 1

T

{∫ TS

0
PDe−

τ
RC + P

T

TS

[
1− e−

τ
RC

]
dτ

+
∫ TD

0
PSe−

τ
RC dτ

}
. (8)

In the proposed windkessel method, the model-based expres-
sions in Equations (7) and (8) for systolic, diastolic, and mean
BP are compared with the actual BP measurements, and the set
of parameters in the windkessel model characterizing Equations
(7) and (8), i.e., RC, TS and TD, is optimized so that the discrep-
ancy between the model-predicted versus actual systolic, diastolic,
and mean BP are minimized. Specifically, the model-predicted
systolic, diastolic and mean BP values are evaluated as follows:

P̂S = PDe−
TS
RC + P

T

TS

[
1− e−

TS
RC

]
, (9a)

P̂D = PDe−
T

RC + P
T

TS
e−

TD
RC

[
1− e−

TS
RC

]
, (9b)

P̂ = 1

T

{∫ TS

0
PDe−

τ
RC + P

T

TS

[
1− e−

τ
RC

]
dτ

+
∫ TD

0
P̂Se−

τ
RC dτ

}
, (9c)

Noting that TS + TD = T, the optimal set of the windkessel
model parameters

{
RC∗, T∗S

}
is determined by solving the fol-

lowing constrained optimization problem:

{
RC∗, T∗S

} = arg min
[∥∥∥PS − P̂S

∥∥∥
+
∥∥∥PD − P̂D

∥∥∥+
∥∥∥P − P̂

∥∥∥] , (10a)
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where, with T inferred directly from measured BP, T∗D given by

T∗D = T − T∗S . (10b)

Using the CVS model parameters in (10a) thus identified, the
trend of CO and TPR can be estimated in two alternative ways,
depending on the assumption made in regards to the behavior
of arterial compliance C: (1) constant or (2) pressure-dependent.
First, assuming C is constant, the trend of CO can be estimated
by dividing the measured mean BP by RC∗, and the trend of TPR
can be estimated directly by RC∗:

Q̂ ∝ P

RC∗
, (11a)

R̂ ∝ RC∗, (11b)

where R̂ is the estimated TPR. On the other hand, if C is assumed
to be pressure-dependent, its effect must be cancelled out in esti-
mating the trend of CO and TPR. This can be accomplished by
first dividing the measured mean BP by RC∗, then multiplying C
as a function of BP:

Q = P

RC∗
× C(PS, PD, P), (12a)

R̂ = RC∗

C(PS, PD, P)
. (12b)

Note that the relationships in Equation (12) are strict equalities.
In this preliminary study, C is assumed as a simple monotonic
linear function of mean BP, i.e.,

C(PS, PD, P) = η1P + η2. (13)

Using Equation (13), Equation (12) can be re-formulated into the
following:

Q̂ = P

RC∗
× (η1P+ η2) = η1

P
2

RC∗
+ η2

P

RC∗
, (14a)

R̂ = RC∗

C(PS, PD, P)
= RC∗

η1P + η2
. (14b)

One advantage of Equation (14) compared with Equation (11)
is that it can accommodate into CO and TPR estimation the phys-
iological nature of the arterial compliance that indeed changes
with BP. However, a pre-calibration procedure is usually required
to determine η1 and η2, since arterial compliance is rarely known
a priori.

In essence, the proposed method is distinct from its standard
counterpart in the sense that it regards systolic, diastolic and
mean BP as independent features in characterizing the windkessel
CVS model and estimating CO and TPR, whereas the standard
method only concerns the pulse pressure.

METHODS
EXPERIMENTAL PROTOCOL
Under the experimental protocol #01–055 approved by the MIT
Committee of Animal Care, aortic flow and radial BP data were
collected from eight anaesthetized swine subjects.

The chest was opened with a midline sternotomy. An ultra-
sonic flow probe was placed around the aortic root for the
central aortic flow (T206 with A-series probes, Transonic Systems,
Ithaca, NY). Besides, a 25-gauge angiocatheter was placed in the
foreleg, distal to the brachial artery, and attached to an external
pressure transducer via short, rigid tubing for the radial arterial
BP. Each transducer output was interfaced to a microcomputer
via an A/D conversion system (MP150WSW, Biopac Systems).

The physiological conditions of the swine subjects were widely
altered in order to investigate how the CO estimation method
behaves over a broad range of physiological conditions. The
following interventions were performed to vary the physiolog-
ical conditions of the swine subjects: the infusions of crystal-
loid volume, phenylephrine, dobutamine, isoproterenol, esmolol,
nitroglycerine, and a progressive hemorrhage. The adminis-
tration of each medicine was followed by a brief recovery
period.

DATA COLLECTION, SIGNAL PROCESSING, AND STATISTICAL
ANALYSIS
The aortic flow and radial BP waveforms were first measured
at 250 Hz without filtering from each swine subject, which were
then pre-filtered using an FIR low-pass digital filter with 30 Hz
cut-off frequency and down-sampled to 125 Hz. Following filter-
ing and down-sampling, the aortic flow-radial BP data pair was
segmented into 8 s-long time series sequences having 1000 data
samples. Totally 4638 data segments were used in this study.

For each of the 8 s-long data segments obtained, CO and
mean BP representative of a data segment were calculated by
averaging the aortic flow and radial BP waveforms in the seg-
ment, respectively. The systolic and diastolic BP were calcu-
lated by averaging systolic and diastolic BP in all the cardiac
cycles in the segment. In each data segment, the estimate of the
trend of CO associated with the standard windkessel method
was calculated based on the pulse pressure associated with the
data segment using Equation (4). Also, the trend of TPR was
obtained directly from dividing mean BP by the estimated trend
of CO; R̂ = P T

PP
. For the proposed method, the optimal wind-

kessel model parameters
{

RC∗, T∗S , T∗D
}

were determined by
solving the constrained optimization problem in Equation (10)
using the measurements of systolic, diastolic and mean BP
associated with the data segment. Then the estimates of the
trends of CO and TPR were calculated with Equations (11) and
(14) for constant and pressure-dependent arterial compliance,
respectively.

Once the measured versus estimated CO
{

Qi, Q̂i

}
and TPR{

Ri, R̂i

}
pairs for all the data segments were obtained for each

swine subject (i = 1, · · · 8), the estimated CO and TPR were cali-
brated to the measurements via linear regression analysis in order
to compare the estimates with the gold standard measurements.
Specifically, the following calibration was applied to the standard
windkessel method:

Q = a1,QQ̂+ a2,Q = a1,Q
PP

T
+ a2,Q, (15a)

R = a1,RR̂+ a2,R. (15b)
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For the proposed windkessel method, different calibration proce-
dure was applied to Equations (11) and (14). For CO and TPR
estimation with constant arterial compliance, i.e., Equation (11),
the calibration similar to Equation (15) was applied:

Q = b1,QQ̂+ b2,Q = b1,Q
P

RC∗
+ b2,Q, (16a)

R = b1,RR̂+ b2,R = b1,RRC∗ + b2,R. (16b)

For CO and TPR estimation with pressure-dependent arterial
compliance i.e., Equation (14), on the other hand, the slope of
the linear regression must be unity because the relationship in
Equation (14) are strict equalities. Therefore, a simple intercept
calibration was applied to CO:

Q = Q̂+ η3 = η1
P

2

RC∗
+ η2

P

RC∗
+ η3, (17a)

where η1 and η2 represent pressure-dependent arterial compli-
ance [see Equation (14)], whereas the intercept η3 is intended to
compensate for the inaccuracy in approximating arterial compli-
ance to a monotonic linear function of mean BP. Using η1 and η2

obtained above, TPR is calibrated as follows:

R = c1,RR̂+ c2,R = RC∗

η1P+ η2
+ c2,R, (17b)

where c1,R = 1 was assumed because Equation (14b) is strict
equality.

Once calibrated, the fidelity of the standard and proposed CO
and TPR estimation methods were assessed quantitatively by cal-
culating (1) the coefficient of determination (CoD; r2 value),
(2) the limits of agreement (i.e., the Bland-Altman statistics)
between measured versus estimated CO and TPR, and (3) the
root-mean-squared normalized errors (RMNSE) between mea-
sured versus estimated CO and TPR, respectively. RMNSE was
calculated first for each swine subject as follows:

ei,Q = 100×
√√√√ 1

Ni

Ni∑
k=1

[
Qi(k)− Q̂i(k)

Qi(k)

]2

, (18a)

ei,R = 100×
√√√√ 1

Ni

Ni∑
k=1

[
Ri(k)− R̂i(k)

Ri(k)

]2

, (18b)

where Ni is the total number of data segments associated with

the ith swine subject, Qi(k) and Q̂i(k) are measured versus esti-
mated (and calibrated) CO for the kth data segment of the ith

swine subject, and Ri(k) and R̂i(k) are measured versus estimated
(and calibrated) TPR for the kth data segment of the ith swine sub-
ject. The comparison of standard versus proposed methods was
conducted based on the CoD, limits of agreement and RMNSE
aggregated over all the swine subjects. Statistical significance was
assessed using the repeated-measures ANOVA applied to CoD
and RMSNE associated with standard versus proposed CO and
TPR estimation methods. Difference was regarded as significant
if p < 0.05.

RESULTS
The ranges of the physiological conditions associated with the
experimental swine subjects are summarized in Table 1. It is obvi-
ous that all the subjects experienced large physiological changes
due to medical interventions.

Table 2 lists CoD and RMSNE values associated with standard
versus proposed CO and TPR estimation methods, where values
associated with constant Equation (11) and pressure-dependent
Equation (14) arterial compliance are presented for the proposed
method. Table 3 presents the limits of agreement between mea-
sured versus estimated (using standard method and proposed
method with pressure-dependent arterial compliance) CO and
TPR. Figure 2 shows a representative (a) correlation between
measured versus estimated CO and TPR and (b) Bland Altman
plot between measured versus estimated CO and TPR, in which
the proposed method is shown to outperform its standard coun-
terpart. Aggregated over all animal subjects, the proposed method
(both with constant and pressure-dependent arterial compli-
ance) resulted in CoD and RMSNE values significantly different
from those associated with the standard method (p < 0.05).
The coefficients of the pressure-dependent arterial compliance
model in Equation (13), determined by the calibration shown
in Equation (17a), are shown in Table 4. On the average, arterial
compliance was inversely proportional to mean BP (η1 < 0) but
assumed positive values (η2 > 0), as physiologically anticipated.

Table 1 | Physiological conditions of experimental swine subjects.

Subject ID Mean HR [bpm] Mean BP [mmHg] Mean CO [lpm] Mean TPR [mmHg/lpm]

1 68/120 (89) 41.0/119.0 (59.7) 1.6/4.8 (2.8) 13.0/26.4 (21.3)

2 150/195 (177) 36.5/93.9 (66.0) 1.9/7.3 (4.1) 12.7/20.2 (16.1)

3 97/165 (120) 40.6/104.0 (71.6) 1.9/5.5 (3.8) 12.0/35.0 (18.8)

4 97/180 (120) 50.5/157.2 (78.6) 2.3/4.9 (3.1) 15.0/53.3 (25.4)

5 90/187 (125) 58.9/123.7 (88.4) 1.5/5.9 (3.8) 12.4/43.4 (23.3)

6 97/195 (120) 44.0/112.1 (79.7) 1.8/4.6 (3.0) 14.4/37.4 (26.6)

7 90/203 (136) 53.0/121.2 (87.7) 2.4/5.7 (3.7) 12.8/37.8 (23.7)

8 68/165 (129) 27.1/123.3 (80.4) 0.6/6.2 (3.9) 12.6/48.2 (20.6)

All 68/203 (123) 27.1/157.2 (79.3) 0.6/7.3 (3.4) 12.0/53.3 (22.9)
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Table 2 | CoD and RMSNE associated with standard versus proposed CO and TPR estimation methods.

1 2 3 4 5 6 7 8 All

(A) CoD: CO ESTIMATION. VALUES IN () INDICATES IMPROVEMENT AGAINST STANDARD METHOD

Standard 0.895 0.985 0.823 0.663 0.712 0.600 0.720 0.876 0.737

Proposed (Constant C) 0.908 0.984 0.785 0.747 0.796 0.788 0.828 0.918 0.819 (11.1%)

Proposed (C = η1P + η2) 0.948 0.985 0.855 0.746 0.868 0.804 0.881 0.931 0.855 (16.0%)

(B) RMSNE: CO ESTIMATION. VALUES IN () INDICATES IMPROVEMENT AGAINST STANDARD METHOD

Standard 9.9 5.4 11.8 9.1 17.5 16.0 12.7 22.4 13.7

Proposed (Constant C) 9.2 5.7 13.3 8.0 14.6 11.5 9.6 18.3 11.4 (16.8%)

Proposed (C = η1P + η2) 7.1 5.6 10.0 8.0 12.0 10.5 7.8 16.1 9.7 (29.2%)

(C) CoD: TPR ESTIMATION. VALUES IN () INDICATES IMPROVEMENT AGAINST STANDARD METHOD

Standard 0.160 0.665 0.848 0.836 0.834 0.639 0.815 0.765 0.717

Proposed (Constant C) 0.647 0.716 0.888 0.905 0.668 0.765 0.872 0.692 0.781 (8.9%)

Proposed (C = η1P + η2) 0.782 0.711 0.872 0.907 0.758 0.789 0.899 0.748 0.808 (12.7%)

(D) RMSNE: TPR ESTIMATION. VALUES IN () INDICATES IMPROVEMENT AGAINST STANDARD METHOD

Standard 14.2 6.0 12.5 10.3 10.6 14.1 11.0 12.6 11.8

Proposed (Constant C) 9.6 4.9 10.4 7.9 13.2 10.8 9.0 14.0 10.3 (12.7%)

Proposed (C = η1P + η2) 6.8 4.9 9.9 7.8 11.3 10.3 7.4 13.0 8.9 (24.3%)

Table 3 | Limits of agreement between measured versus estimated CO and TPR.

1 2 3 4 5 6 7 8 All

(A) BLAND-ALTMAN STATISTICS: CO ESTIMATION (MEAN ± 1.96SD [mmHg])

Standard 0 ± 0.31 0 ± 0.15 0± 0.39 0± 0.29 0± 0.54 0± 0.43 0± 0.41 0± 0.47 0± 0.40

Proposed (C = η1P + η2) 0± 0.22 0 ± 0.15 0± 0.35 0± 0.25 0± 0.36 0± 0.30 0± 0.27 0± 0.35 0± 0.29

(B) BLAND-ALTMAN STATISTICS: TPR ESTIMATION (MEAN ± 1.96SD [mmHg])

Standard 0± 2.84 0 ± 0.98 0 ± 2.43 0± 2.63 0± 2.71 0± 3.52 0± 2.83 0± 3.61 0± 2.85

Proposed (C =η1P+η2) 0± 1.45 0 ± 0.91 0 ± 2.23 0± 1.99 0± 3.28 0± 2.69 0± 2.09 0± 3.73 0± 2.30

DISCUSSION
VALIDITY AND EFFICACY OF PROPOSED METHOD
On the average, the proposed method resulted in 16% and
13% reduction in CoD for CO and TPR, respectively (see
Tables 2A,C). It also resulted in 29% and 24% reduction of CO
and TPR errors, respectively, if the pressure-dependent arterial
compliance was used, and 17% and 12% reduction, respectively,
if constant arterial compliance was used (see Tables 2B,D). In
addition, the results with pressure-dependent arterial compliance
were consistently superior to those with constant arterial compli-
ance (see Table 2) with statistical significance. Table 3 indicates
that the proposed method exhibits improved limits of agreement
to the measured gold standard CO and TPR than its standard
counterpart. Altogether, the above results suggest that (1) the
fidelity of CO and TPR estimation may be improved by rigorous
exploitation of multiple independent features in the BP waveform
rather than resorting to a single feature (i.e., the pulse pressure)
as in the case of the standard windkessel method, and (2) the
explicit incorporation of pressure-dependent nature of arterial
compliance may further benefit high-fidelity estimation of CO
and TPR.

Table 4 indicates that the identified models of arterial compli-
ance exhibit physiologically meaningful behavior in most animal
subjects (i.e., 6 out of 8), i.e., it is inversely proportional to the
underlying BP (η1 < 0) and assumes positive values over the

underlying BP values (η2 > 0). Figure 3 supports the validity of
the pressure-dependent arterial compliance model used in this
study: indeed, (14a) suggests that RC∗Q must depend on mean
BP in a concave parabolic fashion (see the left panel of Figure 3):

RC∗Q = P × (η1P + η2) = η1P
2 + η2P, (19a)

while (14b) suggests that RC∗
R must be linearly decreasing with

respect to mean BP (see the right panel of Figure 3):

RC∗

R
= C(PS, PD, P) = η1P+ η2. (19b)

Figure 3 is consistent with what is anticipated, although some
degree of deviation can be found quantitatively. In particu-
lar, the quantitative trend of arterial compliance shown in the
right panel of Figure 3 is consistent with its typical pressure-
dependent behavior reported in existing literature (e.g., Richter
and Mittermayer, 1984). However, this was not the case for some
animal subjects. In fact, although qualitatively similar observa-
tions to Figure 3 could be made for subjects #2 and #7, the trends
were not as vivid and clear as those seen in Figure 3, which
led to misleading outcomes for these subjects (see Table 4). This
can be attributable to (1) the limited validity of the simple lin-
ear model of pressure-dependent arterial compliance (see Section
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FIGURE 2 | Representative correlation and limits of agreement:

measured versus estimated CO and TPR (Subject #1).

(A) Correlation between measured versus estimated CO and

TPR (left: standard, right: proposed). (B) Bland-Altman plot
between measured versus estimated CO and TPR (left: standard,
right: proposed).
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Table 4 | Model of pressure-dependent arterial compliance.

1 2 3 4 5 6 7 8 All

η1 × 105 −10.6 6.7 −25.4 −0.74 −13.3 −2.6 8.2 −1.5 −4.9

η2 × 102 4.2 2.4 6.1 2.2 4.2 3.6 2.1 3.2 3.5

FIGURE 3 | Validity of linear pressure-dependent arterial compliance model (Subject #1).

“Limitations of the study” for more discussion) as well as to
(2) the time-varying physiological conditions within the 8 s time
window (in which case determining the optimal windkessel time
constant RC∗ associated with the time window can be challeng-
ing, since it is subject to change within the time window when the
subject is affected by dynamic physiological states).

The validity of pressure-dependent arterial compliance (13)
can further be assessed by scrutinizing the intercept coefficients
η3 and c2,R. If the arterial compliance is truly dependent on mean
BP in a linear fashion, (13) is fully valid and η3 and c2,R must be
zero. In the absence of any restrictions imposed on the intercepts,
our regression analysis revealed that η3 and c2,R assumed 0.93l
pm and -10.6 mmHg/lpm on the average, respectively, suggesting
that the proposed approach consistently underestimated CO and
overestimated TPR. Considering the underlying CO and TPR val-
ues (see Table 1), the intercepts for both CO and TPR amounted
to approximately 30% of the underlying values. However, noting
that the slope coefficients in (17) were constrained at unity, it can
be concluded that the proposed approach is able to estimate the
absolute change of CO and TPR despite the non-negligible inter-
cept coefficients. It is also important to point out that restricting
c2,R to zero in the calibration procedure (17) did not yield any
noticeable degradation in performance of the proposed approach.
Indeed, even when c2,R = 0 was imposed (in which case η3 was
also very close to zero), the proposed approach improved CoD
of CO and TPR by 16.0% and 13.5%, respectively, and it also
improved RMSNE of CO and TPR by 27.3% and 27.2%, respec-
tively, when compared with its standard counterpart. In essence,
the performance of the proposed approach was insensitive against
whether or not c2,R was restricted to zero. Therefore, it can be
concluded that, though not perfect, (13) may be viewed as a valid
approximation of arterial compliance that can be used with the
proposed approach in order to reliably estimate CO and TPR.

MATHEMATICAL ANALYSIS OF PROPOSED METHOD
The advantage of the proposed windkessel method over the stan-
dard windkessel method in better estimating CO and TPR can be
demonstrated by analyzing the systolic BP it represents as a func-
tion of TS. First, assuming TS = 0, the systolic BP predicted in the
proposed method in Equation (7a) becomes

lim
TS→0

PS = lim
TS→0

{
PDe−

TS
RC + P

T

TS

[
1− e−

TS
RC

]}

= PD + P
T

RC
= PD + Q

C
T, (20)

which is equivalent to Equation (3a). Thus, the proposed wind-
kessel method reduces to its standard counterpart as expected,
because the square wave approaches to impulse by shrinking
TS to zero. By virtue of its generalization capability, therefore, the
proposed method can outperform its standard windkessel coun-
terpart. On the other hand, if TS = T, the systolic BP becomes

lim
TS→T

PS = PDe−
T

RC + P
[

1− e−
T

RC

]
. (21)

In the proposed method, an increase in TS results in decrease
in TD since T is fixed from the measurement of heart period.
Further, the relationship in Equation (7) on the ratio of systolic

and diastolic BP given by e−
TD
RC together with their given mea-

surements dictates that the ratio of RC and TD must be kept at
a constant regardless of the value of TD. Therefore, RC has to
decrease as TS increases in the proposed method. Since TS ≈ T
is equivalent to TD ≈ 0, RC must be very small as well. If RC is

sufficiently small such that e− T
RC ≈ 0 is valid, the systolic BP in
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Equation (21) can be approximated to:

lim
TS→T

PS = PDe−
T

RC + P
[

1− e−
T

RC

]
≈ P, (22)

which is simply the behavior of the CVS in the steady state. Given
the BP waveforms shown in Figure 4 associated with TS = 0
and TS = T as well as the constraint that the mean BP derived
from the model should be equal to its measured counterpart
regardless of the value of TS, it is obvious that the systolic
BP in Equation (20) is greater than the one in Equation (22).
Representative BP waveforms for 0 ≤ TS ≤ T are also shown in
Figure 4, where systolic BP is shown to decrease as TS increases,
which is anticipated from Equation (20) to Equation (22).
Moreover, scrutinizing the mean BP constraint in Equation (9c)
reveals that it essentially reduces to a constraint on diastolic BP
weighted by RC. Indeed, it can be shown that evaluating the
integration terms in Equation (9c) yields

P̃ = P̂ − P = −RC

T
(P̂D − PD) = −RC

T
P̃D. (23)

which essentially reduces Equation (10a) to the following:

{
RC∗, T∗S

} = arg min
[∥∥∥PS − P̂S

∥∥∥
+
(

1+ RC

T

)∥∥∥PD − P̂D

∥∥∥
]

. (24)

Though yet to be fully validated, we expect that, compared
with Equation (9b) which leads to the diastolic BP error term∥∥∥PD − P̂D

∥∥∥ in Equation (10a), (9c) which yields the mean BP

error term
∥∥∥P − P̂

∥∥∥ in Equation (10a) is useful in regularizing

RC (i.e., keeping it from growing too large) as well as minimizing
the diastolic BP error. Indeed, noting that systolic and diastolic
BP can be tuned independently of each other with TS and TD

RC in
the proposed method, incorporating the mean BP error term into
Equation (10a) via Equation (9c) allows the proposed method to

FIGURE 4 | Model-predicted BP waveforms associated with different

values of T S .

exploit the range of {RC, TS, TD} beyond the standard windkessel
method, i.e., the range corresponding to Ts > 0. In this context, a
unique strength of the proposed method is its capability to char-
acterize the CVS model by tuning the parameters {RC, TS, TD}
in order to fit the model-predicted systolic, diastolic and mean
BP to their measured counterparts, yielding a CVS model whose
parameters can be utilized to improve the fidelity of CO and TPR
estimation in comparison with the standard windkessel method
that is solely built upon the pulse pressure.

LIMITATIONS OF THE STUDY
This study has a number of limitations. First, it was assumed
that physiological condition of the animal subjects was time-
invariant over each time window of 8 s. Although this should be a
reasonable assumption for majority of the experimental data seg-
ments, it may not be well justified in part of the data, such as
those corresponding to transient responses to the onset of drug
administrations. Second, simple linear model was used to rep-
resent the pressure dependence of arterial compliance, although
in reality it is known to be dependent on BP in highly nonlinear
fashion. The linearity assumption may be valid for local approxi-
mation of arterial compliance within small pulse pressure range,
but its validity will be deteriorated as the range of pulse pres-
sure encompassed in the 8 s time window increases. In this regard,
future work on the use of globally valid arterial compliance model
in the proposed method is required. Third, despite the signifi-
cantly large improvement in CO and TPR estimation provided
by the proposed method, its utility may be limited to an extent
by its requirement for calibration. In this regard, the hybrid use
of proposed method with both constant and pressure-dependent
arterial compliance can be a viable resolution. For example, CO
and TPR can be estimated using Equation (11) until a num-
ber of CO measurements become available for calibration, after
which Equation (14) can be used to estimate CO and TPR more
accurately.

CONCLUSION
In this paper, a novel universal approach was proposed to improve
the performance of standard windkessel-model-based method in
estimating the trend of CO and TPR. The validity and initial
proof-of-principle of the proposed method was established via
experimental evaluation and its comparison with the standard
method. It has been suggested that the fidelity of CO and TPR
estimation can be improved by rigorous exploitation of multi-
ple features in the BP waveform to better characterize the CVS
model. Future work is required in regards to further understand-
ing on the capability and limitation of the proposed method as
well as its application to extensions and variants of the standard
windkessel-model-based CO and TPR estimation methods.
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Sleep is a complex state characterized by important changes in the autonomic modulation of
the cardiovascular activity. Heart rate variability (HRV) greatly changes during different sleep
stages, showing a predominant parasympathetic drive to the heart during non-rapid eye
movement (NREM) sleep and an increased sympathetic activity during rapid eye movement
(REM) sleep. Respiration undergoes important modifications as well, becoming deeper and
more regular with deep sleep and shallower and more frequent during REM sleep.The aim
of the present study is to assess both autonomic cardiac regulation and cardiopulmonary
coupling variations during different sleep stages in healthy subjects, using spectral and
cross-spectral analysis of the HRV and respiration signals. Polysomnographic sleep record-
ings were performed in 11 healthy women and the HRV signal and the respiration signal
were obtained. The spectral and cross-spectral parameters of the HRV signal and of the
respiration signal were computed at low frequency and at breathing frequency (high fre-
quency, HF) during different sleep stages. Results attested a sympatho-vagal balance shift
toward parasympathetic modulation during NREM sleep and toward sympathetic modu-
lation during REM sleep. Spectral analysis of the HRV signal and of the respiration signal
indicated a higher respiration regularity during deep sleep, and a higher parasympathetic
drive was also confirmed by an increase in the coherence between the HRV and the respi-
ration signal in the HF band during NREM sleep. Our findings about sleep stage-dependent
variations in the HRV signal and in the respiratory activity are in line with previous evidences
and confirm spectral analysis of the HRV and the respiration signal to be a suitable tool for
investigating cardiac autonomic modulation and cardio-respiratory coupling during sleep.

Keywords: heart rate variability signal, respiration, autonomic modulation, sympatho-vagal balance, sleep

INTRODUCTION
Although cardiac automaticity is intrinsic to various pacemaker
tissues, it is well established that the heart rate variability (HRV),
i.e., the oscillation in the interval between consecutive heart beats
(RR intervals), is under the control of the autonomic nervous sys-
tem (ANS), the main regulation circuit of internal body functions
(Pagani et al., 1986; Vanderlei et al., 2009). Thus, the study of the
HRV represents one of the most reliable and widely used tools to
investigate the cardiac autonomic modulation (Task Force of the
European Society of Cardiology and the North American Soci-
ety of Pacing and Electrophysiology, 1996). HRV measurements,
thanks to their relatively easy derivation and non-invasivity, are
useful to provide additional valuable insight into physiological and
pathological conditions (Pumprla et al., 2002). By analyzing the
HRV in the time and in the frequency domains, information about
autonomous activity can be obtained; three main spectral compo-
nents can be identified on the HRV signal spectrum: very low
frequency (VLF: 0.01–0.04 Hz), low frequency (LF: 0.04–0.15 Hz),
and high frequency (HF: 0.15–0.4 Hz) components. The HF is con-
sidered as a quantitative marker of parasympathetic activity, while

in the LF frequency band, both sympathetic and parasympathetic
contributions have been recognized. However, as the power in
the LF band always increases with sympathetic stimulation, a rise
in the LF band is considered as a marker of a sympathetic drive
to the heart. The LF/HF ratio is therefore thought to reflect the
sympatho-vagal balance controlling the heart rate (HR; Rajendra
et al., 2006). Physiological interpretation of the VLF component
has not been completely elucidated yet (Task Force of the Euro-
pean Society of Cardiology and the North American Society of
Pacing and Electrophysiology, 1996), but it seems to be related to
slow regulation mechanisms that cannot be studied in the time
intervals typically considered for the spectral analysis of the HRV
signal.

The distribution of the power and the central frequency of the
HRV spectral components are not fixed, but vary in relation to
changes in autonomic modulation of the HR and depending on
the central nervous system state.

In recent years, a growing interest has been manifested on the
cardiovascular control during sleep, also given the fact that many
sleep disorders, including insomnia and sleep apnea, have been

www.frontiersin.org March 2012 | Volume 3 | Article 45 | 68

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=41740&d=3&sname=RamonaCabiddu&name=Technology
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=38880&d=3&sname=Anna_M_Bianchi&name=Technology
mailto:sergio.cerutti@polimi.it
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive
http://www.frontiersin.org/Computational_Physiology_and_Medicine/10.3389/fphys.2012.00045/abstract
http://community.frontiersin.org/people/GeoffreyViardot/49464


Cabiddu et al. Cardiopulmonary coupling during sleep

proved to be associated with cardiovascular disorders (Caples et al.,
2007). Sleep is a complex state characterized, in physiological con-
ditions, by important changes in the autonomic regulation of the
cardiovascular activity (Viola et al., 2011). HRV is largely affected
during sleep by sleep stage organization: specifically, evidence sug-
gests a predominant parasympathetic drive to the heart and a
reduced sympathetic efferent vasomotor tone during non-rapid
eye movement (NREM) sleep and an increased sympathetic mod-
ulation, with remarkable fluctuations between parasympathetic
and sympathetic influences, during rapid eye movement (REM)
sleep (Scholz et al., 1997; Lanfranchi et al., 2007).

Respiration undergoes important modifications during sleep
as well, becoming deeper and more regular with synchronization
of sleep (deep sleep) and shallower and more frequent during
REM sleep (Lanfranchi et al., 2007). The association between car-
diac and respiratory rhythms has been widely recognized (Kabir
et al., 2010). Respiratory sinus arrhythmia (RSA), which consists
in rhythmic HR modifications that oscillate around the respiratory
frequency, has been reported in healthy humans (Lotric and Ste-
fanovska, 2000), both during wakefulness and sleep (Cysarz et al.,
2004). It is one of the main contributors to HRV, whose spec-
tral analysis typically reveals a HF component centered around
the respiratory frequency (Penttilä et al., 2001). Although the
mechanisms underlying the cardio-respiratory interaction and its
physiological significance have not been elucidated yet, there is
clinical evidence that reduced RSA is a prognostic indicator for
cardiac mortality (Casolo et al., 1992). The aim of the present study
was to assess autonomic cardiac regulation, respiratory variations,
and cardio-respiratory coupling during different sleep stages and
along the whole night in healthy subjects, using spectral analysis
of HRV and respiration variability signals.

MATERIALS AND METHODS
SUBJECTS
Eleven healthy women, with age ranging between 18 and 45 years,
participated in the study. None of them suffered from any psychi-
atric disorders, neither did any of them have a history of, or family
history of psychiatric disorders. None of them was undergoing
chronic medication. All participants provided their informed and
written consent to participate in the study.

POLYSOMNOGRAPHIC ACQUISITION
The acquisition protocol was implemented within the PSYCHE
European project and performed at Forenap R&D sleep labora-
tory. For each subject several signals were recorded simultane-
ously through standard polysomnography during a night of sleep.
The electrocardiogram (ECG) and the respiratory activity were
recorded with a sampling rate of 256 Hz. The electroencephalo-
gram (EEG), the electrooculogram (EOG), and the electromyo-
gram (EMG) were also recorded. The study was approved by the
local independent Ethical Committee.

SIGNAL PROCESSING
For each subject the hypnogram was obtained by visual scoring
performed on the EEG, EOG, and EMG signals by an expert physi-
cian according to the standardized procedure presented in the
American Academy of Sleep Medicine (AASM) Manual for the

Scoring of Sleep and Associated Events (Iber et al., 2007). Con-
cerning sleep stages visual scoring, these new rules are intended to
replace those introduced in 1968 by Rechtschaffen and Kales and
worldwide accepted. According to the AASM classification, sleep
stages S1 to S4 are referred to as N1, N2, and N3, with N3 com-
prising slow-wave sleep stages S3 and S4. REM and wakefulness
states are referred to as stage R and stage W, respectively. Following
the AASM indications, wakefulness and sleep stages were scored
by 30-s epochs.

The RR-interval signal was extracted from the ECG signal.
Peaks were detected from the ECG through the Pan–Tompkins
algorithm (Pan and Tompkins, 1985), which reliably recognizes
QRS complexes based upon the analyses of the signal slope, ampli-
tude, and width. As the original ECG signal might contain outliers
due to movement, noise, ectopic beats, or arrhythmias, in order
to identify and eliminate them, the following procedure was per-
formed: the ECG derived RR sequence was analyzed and samples
were considered as outliers when the following condition was met:

∣∣RRi − Average100
∣∣ > 5 ∗ Std 100

where RRi is the ith sample in the tachogram and Average100 and
Std100 are the mean and the SD values, respectively, of the previ-
ous 100 samples without outliers. A filtered signal was obtained
by applying a moving average filter with a 1000 sample window to
the original RR sequence and identified outliers were replaced with
the value of the corresponding sample in the filtered RR sequence
(Kemper et al., 2007).

The respirogram was extracted from the respiration signal by
sampling it in correspondence of each R peak identified in the
ECG (Baselli et al., 1988).

ANALYSIS
Stationary and free of artifacts signal portions were manually
selected within different sleep stages on both the tachogram and
the respirogram; autoregressive (AR) analysis was performed on
each portion of the signals in order to obtain an AR model, whose
general expression is as follows:

y(t ) =
p∑

k=1

ak y(t − k)+ ε(t )

where y(t ) is the series under investigation, ak are the autoregres-
sive coefficients and ε(t ) is the residual term, whose whiteness was
always verified.

The model order was chosen using the AKAIKE information
criterion (AIC) and the model coefficients were obtained using the
least squares method based upon the Yule–Walker equations (Kay
and Marple, 1981).

The AR model was used to calculate the power spectral density
(PSD) of each signal portion, which can be expressed as follows:

PSD(ω) = |H (ω)|2σ2 = σ2Δt∣∣∣∣∣1+
N∑

k=1
ak e−jωk

∣∣∣∣∣
2 =

C(z)2σ2Δt∣∣∏ (z − pk)
∣∣2
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where H (ω) is the model transfer function, z is defined as
exp(2πifT ), C(z) is the function bearing the zeros of the system,
Δt is the sampling period and pk are the poles of the process.
The poles were identified in order to decompose the PSD into
single spectral components, according to the method described in
Baselli et al. (1997). The frequency and power values associated
to each rhythmic component were calculated. The values of the
normalized power of the LF and the HF components [LF n. u.
and HF n. u., obtained as LF power/(total power–VLF power) and
as HF power/(total power–VLF power)], along with the LF/HF
ratio, were calculated for each analyzed signal portion of the
tachogram, while for the respirogram only the main peak, cor-
responding to the HF component (respirogram HF%, obtained as
HF power/respirogram total power), was taken into account.

For each stationary portion of the tachogram and of the
respirogram a bivariate analysis was also performed, in order to
obtain the cross-spectrum between the two variability signals.

According to the method described in Bianchi et al. (1990) a
bivariate AR model was estimated, whose general expression is as
follows:

Y(t ) =
p∑

k=1

A(k)Y(t − k)+W(k)

where Y(t ) is the vector of the series under investigation y(t ) and
x(t ), A is the autoregression coefficient matrix and W(t ) is the
vector of the residual terms ε(t ) and η(t ).

The AR bivariate model was used to calculate the cross-
spectrum of each signal portion, which can be expressed as
follows:

PSDxy (ω) = PSDyx (ω) = X(ω)Y ∗ (ω)

where X(ω) and Y (ω) are the autospectra of the signals.
The quadratic coherence between the signals in the LF and in

the HF bands was calculated as:

K 2
xy (f ) =

∣∣PSDxy (f )
∣∣2∣∣PSDx (f )

∣∣ ∣∣PSDy(f )
∣∣

where the cross-spectrum between the signals is normalized with
regard to the signals’ PSDs. The percentages of coherent and
not-coherent power between the signals were calculated for each
analyzed signal portion. An example of signals, spectra, and cross-
spectrum is illustrated in Figure 1. The parameters of interest (LF
n. u., HF n. u., LF/HF ratio, HF band coherence, % of tachogram
power coherent, and not-coherent with respiration) were studied
within each sleep cycle and their average value was calculated on all
subjects, for the whole night. For each subject the variation of the
LF/HF ratio for the tachogram and the tachogram–respirogram
coherence in the HF band were studied during the whole night
in relation with the subject’s hypnogram; average values over the
whole night were also calculated on all subjects. Analysis of Vari-
ance (ANOVA) was performed on the data in order to identify
statistically significant differences in the tachogram LF n. u., HF

FIGURE 1 | Exemplification of the procedure followed to obtain (E) the cross-spectrum of (A) the tachogram and (B) the respirogram of a subject

using (C) the tachogram spectrum and (D) the respirogram spectrum.
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n. u. and LF/HF ratio values, in the respirogram HF% power and
in the tachogram–respirogram coherence in the HF band values
during deep NREM sleep (stage N3) and REM sleep stages, during
the whole night.

RESULTS
The tachogram and respirogram were studied for each subject.
A typical example of the signals for one subject, along with the
hypnogram, is shown in Figure 2. PSDs for both the tachogram
and the respirogram were calculated and the cross-spectrum
between the two signals was computed for different sleep stages,
according to the clinical classification summarized in the hypno-
gram. Figure 3 shows the results obtained for a single subject,
during wakefulness and different sleep stages, during the first
NREM–REM cycle. The tachogram PSD shows that the LF com-
ponent, larger during wakefulness, decreases during NREM sleep
periods, and increases during the REM period; the HF compo-
nent, after an initial decrease during sleep stage 1, increases during
deep sleep stages, with the characteristic peak becoming narrower
and more pronounced, and decreases during REM sleep, when
the peak is only slightly visible. The VLF component, very large
during wakefulness, decreases during NREM sleep, and greatly
increases during REM sleep. A similar trend is followed by the
respirogram PSDs, which show an increase in the HF compo-
nent during NREM sleep, with the characteristic peak progres-
sively becoming more pronounced as sleep deepness increases,
and decreases during REM sleep, when a less pronounced and
more widely distributed peak can be observed. The cross-spectra

FIGURE 2 |Typical examples of (A) tachogram, (B) respirogram, and (C)

hypnogram for a subject.

between the tachogram and the respirogram show an increase in
the synchronization between the two signals during NREM peri-
ods, which reaches its highest value during sleep stage N3, and a
decrease during the REM period, when synchronization is hardly
visible. For the tachogram, the average values of the VLF power,
LF n. u. and HF n. u., and of the LF/HF ratio were calculated
for wakefulness and for each sleep stage, over the whole night, for
each subject. The average values of the respirogram HF% power,
of the maximum of the coherence between the tachogram and
the respirogram in the HF band and of the coherent and not-
coherent power percentages between the two signals were also
calculated. The results for a typical subject, along with correspond-
ing SD values, are plotted in Figure 4. The average values of the
same parameters calculated for all subjects during wakefulness and
different sleep stages, during the whole night, along with corre-
sponding SD values, are plotted in Figure 5. The results obtained
from the tachogram indicate that the LF n. u. and the HF n. u.
show an opposite behavior, with the LF n. u. power increasing
during sleep stage N1, progressively decreasing with synchroniza-
tion of sleep and increasing during REM sleep and with the HF
n. u. component decreasing during sleep stage N1, progressively
increasing during deeper sleep stages and finally decreasing during
REM sleep.

The LF/HF ratio, an index of sympathetic activation, after an
initial increase during sleep stage N1, decreases with synchroniza-
tion of sleep (deep sleep), and increases during REM sleep. The
results obtained from the elaboration of the respirogram show that
the HF% power increases during deep sleep and decreases during
REM sleep.

The bivariate analysis results show that the coherence between
the tachogram and the respirogram in the HF band progressively
increases with synchronization of sleep and decreases during REM
sleep.

The behavior of the LF/HF ratio and that of the coherence
between the tachogram and the respirogram in the HF band
were studied during the whole night to investigate the changes
among the different sleep cycles. Results obtained on two dif-
ferent subjects are presented in Figures 6 and 7. For the first
subject the tachogram LF/HF ratio increases during the REM
phase of every sleep cycle and the increase becomes slightly more
pronounced during the last part of the night, with the LF/HF
ratio reaching its highest value during the last sleep cycle REM
phase. An opposite behavior was observed for the second subject,
with the LF/HF ratio increase during the REM stage becoming
less pronounced as the night progresses. Table 1 summarizes the
average values of the tachogram normalized power in the LF
and HF bands, of the LF/HF ratio, of the respirogram power
in the HF band and of the tachogram–respirogram coherence
in the HF band observed on all subjects during each stage of
each sleep cycle. The results obtained from the ANOVA analy-
sis between the values observed during deep NREM sleep periods
(stage N3) and during REM sleep periods are also reported in
Table 1.

DISCUSSION
During the past decades a number of studies demonstrated that
fluctuations in the autonomic modulation on the HR are reflected
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FIGURE 3 | Power spectral density (PSD) computed from the tachogram

of a subject during wakefulness, sleep stages N1, N2, and N3 and REM

sleep, during the first sleep cycle (A); PSD computed from the

respirogram of the same subject during wakefulness, sleep stages N1,

N2, and N3 and REM sleep, during the first sleep cycle (B);

cross-spectrum between the tachogram and the respirogram of the

same subject during wakefulness, sleep stages N1, N2, and N3 and REM

sleep, during the first sleep cycle (C).

in changes in the spectral distribution of the HRV signal (Pagani
et al., 1986; Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiol-
ogy, 1996; Pumprla et al., 2002). This was confirmed to be an

accurate indicator of the ANS activity, with the LF and the HF
components being considered as representative of the sympathetic
and parasympathetic activity, respectively, and the LF/HF ratio
providing information about the sympatho-vagal balance (Task
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FIGURE 4 | Power of (A) VLF, (B) LF n. u. and (C) HF n. u. power, and

(D) LF/HF ratio calculated from the tachogram of one subject, for

wakefulness and the different sleep stages, for the whole night; (E)

HF % power calculated from the respirogram of the same subject, for

wakefulness and the different sleep stages, for the whole night; (F)

coherence between the tachogram and the respirogram in the HF

band, tachogram power % (G) coherent and (H) not-coherent with the

respirogram, calculated on the same subject for wakefulness and the

different sleep stages, for the whole night. SD values are indicated in
blue.

Force of the European Society of Cardiology and the North Amer-
ican Society of Pacing and Electrophysiology, 1996; Rajendra et al.,
2006).

In the present study the HRV signal and the respiration sig-
nal recorded from 11 healthy subjects during sleep were studied
to investigate the effects of the autonomic nervous modulation
during different sleep stages. Stage-dependent changes in the
autonomic modulation of cardiac activity were observed.

The LF n. u. power decrease during deep sleep and increase
during REM sleep suggested a diminished sympathetic modula-
tion during deep sleep as compared to the wakefulness state and an
augmented sympathetic tone toward the end of each sleep cycle.
The HF n. u. behavior was indicative of an increased vagal drive
to the heart during sleep, which decreased during REM sleep.

The sympatho-vagal balance drift toward the sympathetic com-
ponent during deep sleep and toward the parasympathetic com-
ponent during REM sleep was confirmed by the LF/HF ratio
behavior. The LF/HF ratio decreased during sleep, reaching its
minimum in correspondence of sleep stage N3 and increasing in
correspondence of the REM phase. Altogether, the observed behav-
ior is in accordance with previous studies (Scholz et al., 1997; Viola
et al., 2011). The changes in the sympatho-vagal balance could be
driven by oscillations in the metabolic demand during sleep, which

markedly decreases during deep sleep (Wilde-Frenz and Schulz,
1983), and increases during REM sleep.

A bivariate analysis was conducted in order to take into account
also the cardio-respiratory coupling during the different sleep
stages. The correlation between cardiac and respiratory rhythms
has been widely acknowledged (Kabir et al., 2010). The HF range of
the HRV signal coincides with the respiratory rhythm; thus, the HF
component is able to provide information about respiration fre-
quency and its modulation (Kobayashi, 2009). The cross-spectrum
between the tachogram and the respirogram presents a more pro-
nounced peak centered in the HF band during sleep stages N1,
N2, and N3 as compared to that of the wake state, whereas the
peak practically disappears during REM sleep. The peak becom-
ing more pronounced and more narrowly distributed during deep
sleep stages is indicative of a more regular respiratory rhythm, syn-
chronized with heart activity; the presence of a less pronounced
peak during REM sleep indicates that a less regular respiratory
rhythm and a less marked synchronization between respiration
and heart rhythm characterize this sleep stage, in line with the
results obtained from previous studies (Kabir et al., 2010). The
coherence value between the tachogram and the respirogram in the
HF band increases during deep sleep and decreases during REM
sleep. This confirms that a more pronounced synchronization
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FIGURE 5 | Average power of (A) VLF, (B) LF n. u. and (C) HF n. u.

power, and (D) LF/HF ratio calculated from the tachogram, on all

subjects, for wakefulness and the different sleep stages, for the whole

night; (E) average HF % power calculated from the respirogram, on all

subjects, for wakefulness and the different sleep stages, for the whole

night; (F) coherence between the tachogram and the respirogram in

the HF band, tachogram power % (G) coherent and (H) not-coherent

with the respirogram, calculated on all subjects for wakefulness and

the different sleep stages, for the whole night. SD values are indicated
in blue.

between respiration and heart beat is acquired with progression
of sleep, with them becoming less synchronized during the REM
phase, in accordance with a previous study (Unbehaun et al., 1996).
Cardiac and respiratory rhythms have been long known to inter-
act with each other and the investigation of their synchronization
can provide useful indications about the way they interact. Syn-
chronization was demonstrated to change during specific states,
such as during mechanical ventilation (Mangin et al., 2009), anes-
thesia (Galletly and Larsen, 2001), physical exercise (Kenwright
et al., 2008), and sleep (Kabir et al., 2010). Cardio-respiratory
coordination during sleep changes in pathological conditions, as
demonstrated in patients affected by Obstructive Sleep Apnea
(Kabir et al., 2010) or Sleep Disordered Breathing (Guo et al.,
2011). Furthermore, it changes depending on the general health
status of a subject, resulting, e.g., more pronounced in athletes
than in non-athletes (Kenwright et al., 2008). Thus, although
the functional role and physiological origin of such interaction
remain uncertain, synchronization analysis could be used as a
tool to obtain information about the health status of an indi-
vidual. To summarize, strong evidence was found of a drift of the
sympatho-vagal balance toward the parasympathetic activity dur-
ing deep sleep and toward the sympathetic activity during REM
sleep, in line with previous experimental evidence (Scholz et al.,

1997; Lanfranchi et al., 2007). Regularization of respiration was
found to go along with synchronization of sleep, with respiration
becoming more irregular during REM sleep.

A statistically significant difference (p-value≤ 0.05) was found
between the values of the tachogram normalized power in the
LF and HF bands, of the tachogram LF/HF ratio values, of the
respirogram % power in the HF band and of the tachogram–
respirogram coherence in the HF band values recorded during
deep sleep NREM periods and REM sleep periods, during the
whole night, as the ANOVA results show. The global results pre-
sented in Table 1 show that, with progression of sleep, sleep stage
N1 tends to disappear, suggesting a better quality of sleep is pro-
gressively reached along the night. Anyway, a clear trend in the
sympatho-vagal balance during the night could not be identified
for the whole group: a shift toward the sympathetic component
during REM sleep was more evident during the final sleep cycles for
some subjects and during the initial ones for others. Disagreement
exists about whether the sympathetic drive to the heart during
REM sleep becomes more or less intense along the night (Cajochen
et al., 1994; Marciani et al., 2003; Lanfranchi et al., 2007). Discor-
dant results might be due to differences in experimental protocols
and analysis methodologies and the sympatho-vagal behavior with
progression of the night needs to be further investigated.

www.frontiersin.org March 2012 | Volume 3 | Article 45 | 74

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Cabiddu et al. Cardiopulmonary coupling during sleep

FIGURE 6 | Hypnogram of one subject with indication in black of (A) the trend of the tachogram LF/HF ratio for the whole night and of (B) the trend

of the coherence between the tachogram and the respirogram in the HF band.

FIGURE 7 | Hypnogram of one subject with indication in black of (A) the trend of the tachogram LF/HF ratio for the whole night and of (B) the trend

of the coherence between the tachogram and the respirogram in the HF band.
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Table 1 | Average values of the tachogram normalized power in the LF and HF bands, of the LF/HF ratio values, of the respirogram % power in

the HF band and of the tachogram–respirogram coherence in the HF band values observed on all subjects during each stage of each sleep cycle.

Sleep

cycle

Sleep

Stage

Tachogram LF n. u.

(mean ± SD)

Tachogram HF n. u.

(mean ± SD)

Tachogram LF/HF ratio

(mean ± SD)

Respirogram HF% power

(mean ± SD)

Coherence in HF band

(mean ± SD)

1 W 0.371± 0.04 0.645± 0.04 0.905± 0.84 0.784± 0.07 0.767± 0.30

N1 0.565± 0.14 0.579± 0.08 4.183± 6.35 0.890± 0.02 0.751± 0.16

N2 0.936± 4.09 0.076± 4.11 0.882± 1.99 0.904± 0.02 0.814± 0.14

N3 0.270± 0.02 0.741± 0.02 0.439± 0.40 0.963± 0.00 0.949± 0.06

R 0.592± 0.03 0.408± 0.03 2.156± 1.53 0.904± 0.02 0.816± 0.12

2 W 0.586± 0.08 0.414± 0.03 1.538± 0.77 0.306± 0.05 0.381± 0.34

N1 0 0 0 0 0

N2 0.480± 0.15 0.528± 0.15 2.013± 3.04 0.895± 0.01 0.867± 0.15

N3 0.392± 0.02 0.706± 0.05 0.620± 0.62 0.938± 0.01 0.962± 0.04

R 0.484± 0.03 0.587± 0.06 1.361± 1.35 0.899± 0.00 0.686± 0.14

3 W 0 0 0 0 0

N1 0 0 0 0 0

N2 0.367± 0.05 0.656± 0.05 1.546± 3.36 0.915± 0.01 0.875± 0.12

N3 0.400± 0.10 0.766± 0.02 1.290± 1.92 0.932± 0.02 0.914± 0.07

R 0.550± 0.05 0.450± 0.07 2.903± 5.82 0.904± 0.00 0.689± 0.16

4 W 0 0 0 0 0

N1 0 0 0 0 0

N2 0.379± 0.02 0.621± 0.02 0.855± 0.81 0.921± 0.01 0.885± 0.21

N3 0.329± 0.10 0.671± 0.10 0.666± 0.57 0.938± 0.01 0.965± 0.03

R 0.474± 0.02 0.549± 0.02 1.084± 0.68 0.787± 0.03 0.747± 0.16

5 (Present

in only 10

subjects)

W 0 0 0 0 0
N1 0 0 0 0 0

N2 0.316± 0.01 0.719± 0.02 0.527± 0.27 0.917± 0.00 0.867± 0.11

N3 0.217± 0.00 0.783± 0.00 0.273± 0.02 0.996± 0.00 0.966± 0.07

R 0.414± 0.02 0.603± 0.02 0.799± 0.45 0.777± 0.09 0.689± 0.14

Stage N3-REM ANOVA p-Value= 0.0048 p-Value= 0.0012 p-Value= 0.0445 p-Value= 0.0143 p-Value= 3.339e-005

Parameters were assigned value “0” when the corresponding sleep stage was not identified within a sleep cycle (values equal to “0” were not considered in the

subsequent ANOVA analysis). The p-values obtained from the ANOVA analysis between the values observed during deep NREM sleep periods (stage N3) and during

REM sleep periods are reported.

In the present work sophisticated biosignal processing methods
were applied to assess autonomic cardiac and respiratory regula-
tion during different sleep stages. Spectral analysis has long been
applied to the HRV signal; the authors presented the results of the
application of spectral analysis methods to the respiration signal,
aimed to investigate the cardiopulmonary coupling during sleep.

Our findings affirm spectral analysis of HRV and res-
piration signals to be a useful tool to non-invasively and

accurately investigate the autonomous modulation of not only
the cardiac activity, but also of the respiratory activity and
to assess the cardio-respiratory coupling variations during
sleep.
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Non-Gaussianity index (λ) is a new index of heart rate variability (HRV) that character-
izes increased probability of the large heart rate deviations from its trend. A previous
study has reported that increased λ is an independent mortality predictor among patients
with chronic heart failure. The present study examined predictive value of λ in patients
after acute myocardial infarction (AMI). Among 670 post-AMI patients, we performed 24-h
Holter monitoring to assess λ and other HRV predictors, including SD of normal-to-normal
interval, very-low frequency power, scaling exponent α1 of detrended fluctuation analysis,
deceleration capacity, and heart rate turbulence (HRT). At baseline, λ was not correlated
substantially with other HRV indices (|r | < 0.4 with either indices) and was decreased in
patients taking β-blockers (P = 0.04). During a median follow-up period of 25 months, 45
(6.7%) patients died (32 cardiac and 13 non-cardiac) and 39 recurrent non-fatal AMI occurred
among survivors. While all of these HRV indices but λ were significant predictors of both
cardiac and non-cardiac deaths, increased λ predicted exclusively cardiac death (RR [95%
CI], 1.6 [1.3–2.0] per 1 SD increment, P < 0.0001). The predictive power of increased λ

was significant even after adjustments for clinical risk factors, such as age, diabetes, left
ventricular function, renal function, prior AMI, heart failure, and stroke, Killip class, and
treatment ([95% CI], 1.4 [1.1–2.0] per 1 SD increment, P = 0.01). The prognostic power of
increased λfor cardiac death was also independent of all other HRV indices and the com-
bination of increased λ and abnormal HRT provided the best predictive model for cardiac
death. Neither λ nor other HRV indices was an independent predictor of AMI recurrence.
Among post-AMI patients, increased λ is associated exclusively with increased cardiac
mortality risk and its predictive power is independent of clinical risk factors and of other
HRV predictors.

Keywords: heart rate variability, myocardial infarction, ambulatory ECG, sudden cardiac death, mortality, non-

Gaussianity, prospective study, ENRICHD study

INTRODUCTION
Experimental models for sudden cardiac death after myocardial
infarction (AMI) indicate that sympathetic stimulation under
impaired reflex vagal antagonism provokes ventricular vulnerabil-
ity to fibrillation during transient myocardial ischemia (Schwartz
et al., 1984; Vanoli et al., 1991). Usefulness of the detection of

Abbreviations: AC, acceleration capacity; AMI, acute myocardial infarction; CI,
confidence interval; DC, deceleration capacity; DFA, detrended fluctuation analy-
sis; ENRICHD, enhancing recovery in coronary heart disease; HF, high frequency;
HRT, heart rate turbulence; HRV, heart rate variability; IRQ, inter quartile range;
LF, low frequency; LF/HF, LF-to-HF ratio; PDF, probability density function; RR,
relative risk; SD, standard deviation; SDNN, SD of all normal-to-normal intervals;
TO, turbulence onset; TS, turbulence slope; ULF, ultra-low frequency; VLF, very-low
frequency.

autonomic dysfunction by heart rate variability (HRV) has been
proposed for post-AMI risk stratification (Kleiger et al., 1987;
La Rovere et al., 1998; Schmidt et al., 1999; Bauer et al., 2006).
Most of HRV indices proposed, however, primarily reflect reduced
or impaired vagal function (Camm et al., 1996; Marine et al.,
2002; Bauer et al., 2006). In contrast, few HRV indices have been
related to sympathetic function and their prognostic significance is
still uncertain. For example, a decrease in low-frequency-to-high-
frequency ratio, but not its increase, is associated with increased
risk of mortality (Tsuji et al., 1994; Huikuri et al., 2000).

As a marker potentially related to sympathetic cardiac over-
drive, we have recently proposed increased non-Gaussianity of
HRV (Kiyono et al., 2008). Non-Gaussianity has been used in fluid
dynamics for characterizing intermittency of turbulence (Castaing
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et al., 1990). When applied to analysis of HRV, it captures the
occurrence of intermittent heart rate increments (Kiyono et al.,
2004, 2007). In a cohort of chronic heart failure (Kiyono et al.,
2008),we previously observed that the increased non-Gaussianity
of HRV predicts increased risk of mortality, while none of the
conventional HRV indices were predictive of death among these
patients. In the present study, we sought to determine if increased
non-Gaussianity of HRV in post-AMI patients is also associated
with their increased mortality risk independent of clinical risk
factors and of the established HRV predictors.

MATERIALS AND METHODS
STUDY PATIENTS
Patients admitted to the coronary care units of four of the eight
clinical trial sites (Washington University, St. Louis, MO, USA;
Duke University, Durham, NC, USA; Harvard University, Boston,
MA, USA; Yale University, New Haven, CT, USA) of the enhancing
recovery in coronary heart disease (ENRICHD) study (Berkman
et al., 2003) for an attack of AMI between October 1997 and Jan-
uary 2000 were enrolled in this substudy. AMI was diagnosed
if a patient had at least 2 of the following findings: chest pain
for ≥20 min, creatine kinase >200 U/L, and ST-segment eleva-
tion of ≥0.1 mV in two or more limb leads or ≥0.2 mV in two
or more contiguous precordial leads at the time of admission.
The sample included 358 participants of the ENRICHD clinical
trial who scored 10 or higher on the Beck Depression Inven-
tory (BDI; Steeds et al., 2004) and 408 AMI control participants
who were not randomized in the ENRICHD trial because they
were not depressed (BDI < 10), but were otherwise medically eli-
gible for the trial. Patients were excluded if they: (1) had other
life-threatening illnesses; (2) were too ill or logistically unable to
participate; (3) had analyzable electrocardiographic data <22 h
or sinus rhythm <80% of total recorded beats in Holter mon-
itoring; (4) had atrial fibrillation, atrial flutter, or animplanted
pacemaker or defibrillator; or (5) declined to provide informed
written consent.

MEASUREMENTS
Holter electrocardiograms were recorded for 24 h within 28
(median [inter quartile range, IQR], 13 [6–19]) days after the
index AMI. To assure standardization of the Holter recordings, we
used Marquette Model 8500 monitors at each site. Holter record-
ings were scanned at the Heart Rate Variability Core laboratory
at Washington University on a Marquette SXP Laser scanner with
software version 5.8 (Marquette Electronics) using standard pro-
cedures. The labeled beat file was exported to a personal computer
and a workstation for analysis of non-Gaussianity and other HRV
indices.

ANALYSIS OF NON-GAUSSIANITY INDEX
This analysis is designed to detect intermittency of heart rate
increment. The intermittent behavior of HRV is related to non-
Gaussian probability distribution with marked fat tails and a peak
around the mean value, indicative of a higher probability of the
interspersed appearance of large and small increments than the
Gaussian fluctuations. To quantify such non-Gaussian behavior,
we calculated a non-Gaussianity index. The background and a

mathematical description of the non-Gaussianity index have been
reported previously (Kiyono et al., 2004, 2007). Briefly, this index
has been derived from a method for analyzing multi-scale statistics
of complex fluctuations, originally used for characterizing inter-
mittency of hydrodynamic turbulence (alternating transition of a
fluid regime between laminar flow and its breakdown into bursty
disorganized eddies, occurring in a seemingly random manner at
a variety of scales; Castaing et al., 1990).

The analysis of non-Gaussianity of HRV is divided into four
steps. In step 1, time series of normal-to-normal R–R intervals
are interpolated with a cubic spline function and resampled at an
interval (Δt ) of 250 ms (4 Hz), yielding interpolated time series
b(t ) (Figure 1). After subtracting average interval bave, integrated
time series B(t ) are obtained by integrating b(t ) over the entire
length,

B(t ) =
t/Δt∑
i=1

{b(iΔt )− bave}.

In step 2, the local trend of {B(t )} is eliminated by third-order
polynomial that is fit to {B(t )} within moving windows of length
2s, where s is the scale of analysis. In step 3, intermittent devi-
ation ΔsB(t ) is measured as the increment with a time lag s of
the detrended time series {B∗(t )}. For instance, in a window from
T− s to T+ s, the increments are calculated as

ΔsB(t ) = {B(t + s/2)− ffit(t + s/2)}−{B(t − s/2)− ffit(t − s/2)}

where T− s/2≤ t < T+ s/2 and ffit(t ) is the polynomial repre-
senting the local trend of B(t ), of which the elimination assures
the zero-mean probability density function in the next step. In
step 4, ΔsB is normalized by the SD to quantify the probability
density function (PDF). Then, the non-Gaussianity index λs is
estimated as

λs =
√

2

q(q − 2)

[
ln

(√
π〈|ΔsB|q〉

2q/2

)
− ln Γ

(
q + 1

2

)]
,

where <|ΔsB|q> denotes an estimated value of the q-th order
absolute moment of {ΔsB}. If the λs is close to zero, the observed
PDF is close to a Gaussian distribution. On the other hand, a
larger value of λs means that the observed PDF has fatter tails and
a sharper peak in comparison with the Gaussian distribution. This
λs was originally introduced as a parameter of a phenomenolog-
ical model to describe non-Gaussian distributions in the study of
intermittency of hydrodynamic turbulence (Castaing et al., 1990).
Kiyono et al. (2007) further showed that the λs can be estimated
by the above equation based on the q-th order absolute moment
of a time series independently of q.

In the present study, we calculated the λs based on the 0.25th
order moment (q= 0.25) to emphasize the center part of PDF and
to reduce the effects of large outliers such as those by ectopic
beats, if any, even after the correction. This implies that our
non-Gaussianity index with q= 0.25 more strongly characterize
speaked PDF around the center of the observed non-Gaussian dis-
tribution, differently from that with higher order moments, such
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FIGURE 1 | Representative examples of non-Gaussian heart rate

fluctuations with different values of λ25 s in post-AMI patients, survivor

(A) and cardiac death (B, C). Trend graphs of normal-to-normal sinus
rhythm interval (Top row), standardized time series of heart rate increments
{Δ25 sB(t )} (middle row), and standardized PDFs of heart rate increments
{Δ25 sB(t )} (bottom row). Estimated values of the non-Gaussianity index of
λ25 s are shown in each panel in the bottom row. In the solidline, we
superimposed the PDF approximated by a non-Gaussian model (Kiyono

et al., 2007) with the parameter λ25 s. The non-Gaussian model provides an
excellent approximation of the peaked PDF around center (particularly in the
gray shaded area covering ±3 SD) of the observed distribution, caused
mainly by intermittent alterations of quiet (laminar) phase and busty phase
(middle row), because our non-Gaussianity index with q = 0.25 characterizes
peaked shape of the observed non-Gaussian distribution and reduces the
effects of extreme outliers, if any. The dashed lines represent the Gaussian
distribution (λ25 s→ 0).

as kurtosis based on the fourth moment, emphasizing heavy tails,
and extreme deviations. Also, we previously showed that the accu-
racy of estimation of λs for typical Holter records (data points,
n≈ 105) is much higher when using q < 2, as compared to q > 2
(see Figure 3 of Kiyono et al., 2007). The C source codes and exe-
cutables for computing the non-Gaussianity index are available
online at www.ge.ce.nihon-u.ac.jp/∼kiyono/app/.

In the present study, we set the scale s at 25 s. In a previous
cohort study of chronic heart failure, we noted that λ40 beat > 0.6
had the best predictive power for mortality (Kiyono et al., 2008).
Because the λ40 beat is based on beat scale, could be affected by
both inter- and intra-individual differences in heart rate, we rean-
alyzed the previous data using time (s) as the unit of scale (see
Appendix). Then, we found that λ25 s was comparable to λ40 beat

in predictive power for mortality. We therefore used λ25 s as the
non-Gaussianity index and λ25 s > 0.6 as the cutoff threshold in
survival curve analyses.

ANALYSIS OF CONVENTIONAL HRV INDICES
We calculated the conventional indices of HRV that are recognized
as post-AMI risk predictors by the Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology (Camm et al., 1996): mean N–N interval,
SD of all N–N intervals (SDNN), the variances corresponding
to ultra-low frequency (ULF; 0–0.0033 Hz), very-low frequency
(VLF; 0.0033–0.04 Hz), low frequency (LF; 0.04–0.15 Hz) and high

frequency (HF; 0.15–0.40 Hz) bands, and LF/HF. The variances
of these frequency components were transformed in the natural
logarithmic values (Ln). We examined the fractal correlation prop-
erties of heart rate dynamics using detrended fluctuation analysis
(DFA) and calculated the short-term (4–11 beat) and long-term
(≥11 beats) scaling exponents as α1 and α2, respectively (Peng
et al., 1995). We also computed the deceleration and acceleration
capacity (DC and AC) by the phase rectified signal averaging of
the 24-h N–N interval time series (Bauer et al., 2006). Finally,
we assessed indices of heart rate turbulence (HRT; Schmidt et al.,
1999). In accordance with previous reports (Barthel et al., 2003;
Bauer et al., 2009), we defined abnormal turbulence onset (TO) as
≥0%, abnormal turbulence slope (TS) as≤2.5 ms/beat and abnor-
mal HRT as an instance when both TO and TS were abnormal. If
ventricular premature contractions suitable for calculating HRT
were five or less in the 24-h recording, the patients were classified
as having normal HRT.

ENDPOINT ANALYSIS
The end points of the present study were all-cause mortal-
ity and recurrent non-fatal AMI. Patients underwent follow-up
assessments 6 months after study enrollment and annually there-
after for up to 30 months. The end points were identified from
follow-up visits, telephone calls, routine hospital surveillance, and
contacts with patients’ physicians. The records of every identi-
fied hospitalization were obtained for review and confirmation.

www.frontiersin.org September 2011 | Volume 2 | Article 65 | 80

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Hayano et al. Heart rate intermittency

The ENRICHD ECG core laboratory classified electrocardiograms
obtained during hospitalizations by the Minnesota code using ser-
ial change rules. Death certificates were obtained for all reported
deaths. The mortality endpoints used for the present study were
either cardiac deaths (AMI, cardiac failure, and sudden cardiac
death) or non-cardiac deaths. Sudden cardiac death was defined
as unexpected death within 1 h after the onset of a new symptom,
or unexpected unwatched death.

STATISTICAL ANALYSIS
Cox proportional hazards regression analyses were used for deter-
mining the significant predictors of mortality and recurrent non-
fatal AMI. The independent associations of predictors were eval-
uated with the multivariable hazards regression analysis adjusted
for the ENRICHD risk score, which is a weighted sum of all inde-
pendent risk factors for mortality in the ENRICHD trial (Jaffe
et al., 2006). Potential risk factors that were considered included
factors such as smoking, and medications, including beta blockers.
The final risk score included age, diabetes, left ventricular ejection
fraction, creatinine level, prior AMI, history of pulmonary dis-
ease, prior transient ischemic attack or stroke, history of congestive
heart failure, Killip class at time of index AMI, and treatment with
vasodilators. The predictors of mortality were determined in the
entire subjects, while those of recurrent non-fatal AMI were deter-
mined within survivors. The survival curves were estimated by the
Kaplan–Meier method and compared using the Mantel–Haenszel
log-rank test.

The data are reported as the median and IQR for continu-
ous variables and counts and percentage for categorical variables
unless otherwise noted. Comparisons between groups were per-
formed by Chi-square test for categorical variables and one-way
analysis of variance for continuous variables with Tukey’s Studen-
tized range test for multiple comparisons. Pearson’s correlation
coefficient (r) was used to evaluate correlations between different
variables and an |r |≥ 0.4 was interpreted to show a substantial
correlation. We judged a P value of less than 0.05 to be significant.

RESULTS
Holter electrocardiograms were analyzable in 670 out of 766 eligi-
ble patients (88%). The 96 excluded patients were medically and
demographically similar to those included, except that they were
more likely to have diabetes and less likely to be currently smoking.
Table 1 shows the clinical characteristics of the 670 patients. β-
Blockers were prescribed at the Holter monitoring in 556 patients
(83%).

HRV AND NON-GAUSSIANITY INDICES
The HRV indices that are considered as relating to cardiac vagal
function were highly correlated with each other, while the non-
Gaussianity index of λ25 s showed no substantial correlations with
these indices (Table 2). Also,λ25 s correlated with neither the num-
ber of ventricular ectopies per 24 h (r =− 0.01) nor its products
with TO or TS (r = 0.01,− 0.07), indicating that λ25 s is unrelated
to heart rate fluctuations accompanying ventricular arrhythmias
(“HRT”). On the other hand, λ25 s was lower in patients taking β

blockers than in those not taking (mean [SD], 0.53 [0.12], and 0.56
[0.13], respectively, P = 0.04). No such effect on λ25 s was observed

Table 1 | Characteristics of patients.

Number of patients, n 670

OUTCOME

Follow-up (days), median (IQR) 748 (556–947)

Cardiac death 32 (4.8%)

Non-cardiac death 13 (1.9%)

Non-fatal AMI 57 (8.5%)

CLINICAL AND DEMOGRAPHIC CHARACTERISTICS

Age (years), median (IQR) 59 (51–68)

Women 270 (40%)

Body mass index (kg/m2), median (IQR) 28.1 (25.2–31.9)

Hypertension 140 (21%)

Diabetes mellitus 189 (28%)

Current smoker 220 (33%)

History of myocardial infarction 141 (21%)

History of coronary bypass surgery 72 (11%)

LVEF (%), median (IQR) 48 (25–55)

LVEF > 35% 388 (58%)

Creatinine (mg/dL), median (IQR) 1.0 (0.8–1.2)

Beck Depression Inventory score, median (IQR) 8 (3–15)

CHARACTERISTICS OF INDEX MI

Killip class III–IV 34 (5.1%)

Anterior wall AMI 219 (33%)

Inferior wall AMI 302 (45%)

TREATMENT

β-Blockers 556 (83%)

Angiotensin converting enzyme inhibitors 320 (48%)

Aspirin 602 (90%)

Calcium channel blockers 96 (14%)

Thrombolytic therapy after AMI 210 (31%)

Coronary bypass after AMI 89 (13%)

Coronary angioplasty <24 h after AMI 419 (63%)

Acute reperfusion ≤12 h after AMI 307 (47%)

AMI, acute myocardial infarction; IQR, inter quartile range.

for angiotensin converting enzyme inhibitors, aspirin, or calcium
channel blockers.

INCREASED NON-GAUSSIANITY AND PROGNOSIS
During follow-up for a median of 25 months, 45 (6.7%) patients
died, with 32 deaths classified as cardiac and 13 as non-cardiac
deaths, and 39(6.2%) patients among survivors had recurrent non-
fatal AMI. On average, all HRV indices including λ25 s and HRT
category showed no significant difference between survivors with
and without recurrent non-fatal AMI (Figure 2). SDNN, lnVLF,
DFA α1 and DC were lower and abnormal HRT was more preva-
lent in patients suffering both cardiac death and non-cardiac death
compared to survivors, whereas λ25 s was greater only in the car-
diac death patients. The typical relationships between λ25 s and
other HRV indices are shown in Figure 3. The surviving patient
(Figure 3A) showed large N–N interval variability, while both
cardiac (Figure 3B) and non-cardiac (Figure 3C) death patients
showed decreased variability. Figure 3D shows standardized PDFs
of heart rate increment constructed from the same data. The
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Table 2 | Correlations among HRV indices, HRT, and λ25 s.

Variable SDNN LnVLF DFA α1 DC TO TS λ25 s

Mean N–N 0.58 0.57 0.18 0.50 −0.17 0.37 −0.05

SDNN – 0.85 0.23 0.61 −0.33 0.41 −0.02

LnULF 0.93 0.80 0.30 0.58 −0.30 0.36 −0.08

LnVLF 0.85 – 0.45 0.71 −0.35 0.44 −0.15

LnLF 0.83 0.91 0.38 0.70 −0.36 0.47 −0.06

LnHF 0.77 0.73 −0.09 0.56 −0.26 0.38 0.06

LF/HF 0.00 0.16 0.72 0.12 −0.10 0.12 −0.13

DFA α1 0.23 0.45 – 0.43 −0.20 0.23 −0.17

DFA α2 −0.26 −0.41 −0.21 −0.34 0.15 −0.30 −0.19

AC 0.66 0.72 0.35 0.92 −0.37 0.53 −0.34

DC 0.61 0.71 0.43 – −0.38 0.52 −0.33

TO −0.33 −0.35 −0.20 −0.38 – −0.28 0.16

TS 0.41 0.44 0.23 0.52 −0.28 – −0.15

Values are correlation coefficients (|r| > 0.4 are shaded). Abbreviations for HRV indices are defined in the text.

surviving and non-cardiac death patients showed similar PDF
curves and comparable λ25 s (0.40 and 0.44, respectively) despite
the large difference in absolute variability. In contrast, the cardiac
death patient showed a PDF curve with a more tapered center and
fatter tails with a λ25 s of 0.80.

The unadjusted Cox hazards regression analysis revealed that
decreases in SDNN and DC were increased risk of recurrent non-
fatal AMI, while DFA α1, HRT, and λ25 s had no predictive power
for the recurrence (Table 3). All HRV indices but λ25 s and abnor-
mal HRT predicted increased risk of both cardiac and non-cardiac
death, while increased λ25 s predicted increased risk of only car-
diac death but not of non-cardiac death. The associations of λ25 s

and other HRV indices with mortality risk remained significant
even after adjustment for the ENRICHD risk score, while the
associations of HRV indices with AMI recurrence were no longer
significant (Table 3).

The predictive power of λ25 s for cardiac death was independent
of the other HRV indices. Increased λ25 s was a significant predictor
in the models including either HRV predictors (Table 4). Among
these models, the risk of cardiac death was best predicted by the
combination of increased λ25 s and abnormal HRT (Table 4).
We therefore generated Kaplan–Meier curves for this combina-
tion along with those for λ25 s dichotomized at 0.6 (Figure 4).
As expected, mortality was highest in the patients who had both
increased λ25 s and abnormal HRT. More importantly, however,
mortality was low not only in patients who had neither of the two
factors but also was low in those who had either one factor alone,
suggesting that these factors acted synergistically.

DISCUSSION
We assessed non-Gaussianity of HRV in post-AMI patients and
found that increased non-Gaussianity index of λ25 s predicts risk
of cardiac death in these patients. The λ25 s showed no substantial
correlation with HRV indices reflecting cardiac vagal functions
and was decreased in patients taking β-blockers. While the other
HRV indices were associated with both cardiac and non-cardiac
deaths, the increased λ25 s was associated exclusively with cardiac

death but not with non-cardiac death. The predictive power of
increased λ25 s was independent of clinical risk factors and of the
other HRV predictors. The survival curve analyses revealed that
increased λ25 s and abnormal HRT have a synergistic effect on the
risk of cardiac mortality. Additionally, λ25 s showed no predictive
power for the recurrence of non-fatal AMI, suggesting that λ25 s

may not be associated with the mechanisms developing AMI itself.
The non-Gaussianity of heart rate has several unique features

that had been undetected by conventional indices of HRV. First,
λ25 s is unrelated to the cardiac autonomic responsiveness reflected
in the magnitude of HRV. As shown in Figure 3, surviving and
non-cardiac death patients exhibited comparable λ25 s despite a
large difference in other HRV indices. Second, λ25 s captures inter-
mittent heart rate increments within a scale of 25 s. Although the
heart rate fluctuations in this scale are mediated almost exclusively
by neural autonomic activities (Camm et al., 1996), λ25 s showed
no substantial correlation with the HRV indices reflecting vagal
heart rate regulation and was decreased in patients taking β block-
ers. Thus, λ25 s is likely to capture heart rate fluctuation mediated
by intermittent activations of cardiac sympathetic activity at least
partly. Third, λ25 s is independent of heart rate fluctuations caused
by ectopic beats, i.e., HRT (Schmidt et al., 1999). Indeed, λ25 s

showed no significant correlation with the number of ventricular
ectopies per 24 h or its products with TO or TS. Additionally, λ25 s

is also independent of erratic rhythms detected by Poincare plot
(Woo et al., 1992; Stein et al., 2005), because beat-to-beat changes
in N–N intervals are averaged out when calculating λ25 s (Kiyono
et al., 2008).

The present study indicates that the risk of mortality is par-
ticularly high in the presence of increased λ25 s and abnormal
HRT compared with the presence of only one alone. This syner-
gistic effect between λ25 s and HRT is compatible with a patho-
physiologic paradigm for post-AMI sudden cardiac death; i.e.,
sympathetic stimulation under impaired reflex vagal antagonism
precipitates ventricular fibrillation during transient myocardial
ischemia in the heart with healed AMI (Schwartz et al., 1984;
Vanoli et al., 1991). The increased λ25 s appears to detect frequent
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FIGURE 2 | Heart rate variability indices, HRT, and non-Gaussianity

index (λ25 s) in post-AMI patients grouped by the endpoint of

follow-up: MF, recurrent AMI-free survival; RM, recurrent non-fatal AMI;

CD, cardiac death; and NCD, non-cardiac death. For box plots, upper and
lower boundaries of the box indicate the 75th and 25th percentiles and a
line within the box marks the median. Whiskers above and below the box
indicate the 90th and 10th percentiles and dots above and below the
whiskers indicate 95th and 5th percentiles. P values show significance of
ANOVA except for abnormal HRT, for which bar graphs show percentage of
patients who showed abnormal HRT and P value indicates the significance
of chi-square test. *Significantly different from the value for recurrent
AMI-free survivors (Tukey’s Studentized range test).

sympathetic activations and the abnormal HRT to reflect impaired
reflex vagal antagonism. The absence of the association of λ25 s

with the AMI recurrence also supports the hypothesis, suggesting
that the increased λ25 s maybe associated with the mechanisms
precipitating cardiac death after AMI rather than those deve-
loping AMI.

The present findings also indicate that λ25 s is unrelated to
the risk of non-cardiac death. This finding was not observed for

FIGURE 3 |Trend graphs of 24-h N–N interval in three representative

patients, recurrent AMI-free survivor (A), cardiac death (B) and

non-cardiac death (C), and their standardized PDF of intermittent heart

rate increments (D). Insets of panels (A–C) show values of HRV indices
obtained from each N–N interval time series. In panel (D), the Gaussian
distribution (λ25 s = 0), an inverted parabola in this semi-log plot without
“tapered” centers and “fat” tails, is shown as a dashed line. Abbreviations
for HRV indices are defined in the text.

the other HRV indices. Decreased HRV is associated with various
health conditions (Priori et al., 2001), including diabetes, uremia,
alcoholism, obesity, smoking, depression, and aging (Malik and
Camm, 2004) and with mortality among general elderly popu-
lations (Tsuji et al., 1994), which may explain the non-specific
associations of decreased HRV with increased risk for all – cause
mortality (Kleiger et al., 1987; La Rovere et al., 1998; Schmidt
et al., 1999; Bauer et al., 2006). The selective associations of
increased λ25 s with cardiac death seems useful for predicting
patients who would benefit from preventive approaches, such
as those with implantable cardioverter defibrillators (Moss et al.,
2002).
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Table 4 | Independent relative risk of λ25 s for post-AMI cardiac

mortality.

Prediction

model

λ25 s Model fit (likeli-

hood ratio test)

Adjusted RR

(95% CI)

P χ2 P

SDNN+λ25 s 1.4 (1.1–1.7) 0.007 21.6 <0.0001

LnVLF+λ25 s 1.3 (1.0–1.6) 0.04 22.6 <0.0001

DFA

α1+λ25 s

1.4 (1.1–1.8) 0.007 17.3 <0.0001

DC+λ25 s 1.3 (1.0–1.7) 0.01 22.5 <0.0001

Abnormal

HRT+λ25 s

1.3 (1.0–1.6) 0.02 45.0 <0.0001

CI, confidence interval; RR, relative risk.

Adjusted RRs represent those for 1 SD (0.13) increment in λ25 s.

STUDY LIMITATIONS
Our study has several limitations. First, the sample included a sub-
set of patients enrolled in the ENRICHD trial who had elevated
symptoms of depression, which could affect the generalizability of
our results. However, the proportion of the depressed patients with
BDI scores≥ 10 was 47%, which is comparable to the reported
prevalence of depression (45–47%) in general post-AMI popula-
tions (Schleifer et al., 1989; Steeds et al., 2004). Second, we did not
consider sudden cardiac death as a separate endpoint because the
causes of cardiac death were not subcategorized in the record of
ENRICHD study. Furthermore, the number of deaths, particularly
that of non-cardiac death was small (13) and the power to detect a
possible association between λ25 s and non-cardiac death was inad-
equate. Finally, to establish the λ25 s as a clinical risk factor of post-
AMI cardiac death, it will be necessary to demonstrate that a reduc-
tion of this index improves clinical outcomes; however, our obser-
vations suggest a potential effect of β-blockers in reducing λ25 s.

CONCLUSION
Among post-AMI patients, an increase in non-Gaussianity index
of λ25 s is independently associated with increased risk of cardiac
death. Our observations suggest that the increased λ25 s may reflect
the deleterious effects of heightened sympathetic cardiac activa-
tion, which may contribute to the increased risk of cardiac death
in post-AMI patients.
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APPENDIX
REANALYSIS OF PREVIOUS OBSERVATIONS IN A COHORT STUDY OF
CONGESTIVE HEART FAILURE PATIENTS
In a previously study (Kiyono et al., 2008), we reported that non-
Gaussian index λ40 beat is an independent predictor of increased
risk for mortality in patients with congestive heart failure (CHF).
We studied 108 patients who were consecutively referred for eval-
uation or treatment of CHF. They underwent 24-h Holter ECG
monitoring prior to hospital discharge and were subsequently
followed up for 33± 17 months. The Holter ECG was analyzed
to determine non-Gaussian index together with time and fre-
quency domain indices of heart rate variability (HRV), fractal
HRV measures, and heart rate turbulence.

In this previous study (Kiyono et al., 2008), we computed the
non-Gaussian index λ based on beat scale and we found that

the λ at a scale of 40 beats (λ40 beat) showed the best predictive
power for mortality. However, analyses based on beat scale could
be affected by both inter- and intra-individual differences in heart
rate. We therefore reanalyzed the same data based on time (s) scale.
Time series of R–R intervals were interpolated with cubic spline
function, resampled at 4 Hz, and submitted to the algorithm for
estimating λ. Cox proportional hazards regression analysis was
performed to determine the relative mortality risk of the indices.
Then, we found that the λ at a scale of 25 s (λ25 s) was the best
independent predictor of both all-cause and cardiac mortality.
The predictive power of λ25 s was comparable to that of λ40 beat

for both all-cause and cardiac mortality and even after adjustment
for other predictors (Table A1).
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Table A1 | Associations of HRV indices with mortality risk in CHF patients.

Predictor SD All-cause death Cardiac death

Unadjusted Adjusted* Unadjusted Adjusted*

RR (95% CI)† P RR (95% CI)† P RR (95% CI)† P RR (95% CI)† P

SDNN, ms 35 0.9 (0.7–1.3) 0.69 1.2 (0.8–1.6) 0.39 0.9 (0.7–1.3) 0.55 1.1 (0.8–1.6) 0.52

LnVLF 1.2 1.2 (0.9–1.6) 0.31 1.2 (0.9–1.6) 0.30 1.1 (0.8–1.6) 0.41 1.1 (0.8–1.6) 0.42

DFAα1 0.25 1.2 (0.9–1.6) 0.30 1.3 (0.9–1.8) 0.11 1.2 (0.8–1.6) 0.36 1.3 (0.9–1.9) 0.14

DC, ms 1.7 1.2 (0.8–1.6) 0.34 1.2 (0.8–1.6) 0.39 1.2 (0.9–1.8) 0.23 1.2 (0.9–1.8) 0.27

Abnormal HRT 1.6 (0.8–3.0) 0.15 1.4 (0.7–2.6) 0.31 1.6 (0.8–3.) 0.17 1.4 (0.7–2.7) 0.35

λ40 beat 0.16 1.6 (1.2–2.2) 0.001 1.5 (1.1–2.0) 0.005 1.6 (1.2–2.1) 0.003 1.4 (1.1–1.9) 0.01

λ25 s 0.16 1.6 (1.2–2.1) 0.001 1.5 (1.1–2.0) 0.003 1.6 (1.2–2.1) 0.002 1.5 (1.1–2.0) 0.01

CI, confidence interval; DC, deceleration capacity; DFA, detrended fluctuation analysis; HRT, heart rate turbulence; lnVLF, logarithm of the power of very-low frequency

component; RR, relative risk; SD, standard deviation; SDNN, SD of normal-to-normal R–R intervals during 24 h.
∗Adjusted for risk score that is the weighted sum of independent predictors of age, presence of ischemia, and natural logarithm of brain natriuretic protein level

(Kiyono et al., 2008).
† RR for 1 SD decrement in SDNN, LnVLF, and DC, and for 1 SD increment in DFA α1, λ25 s, and for the presence of abnormal HRT.

www.frontiersin.org September 2011 | Volume 2 | Article 65 | 88

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


ORIGINAL RESEARCH ARTICLE
published: 22 February 2012

doi: 10.3389/fphys.2012.00034

Non-Gaussianity of low frequency heart rate variability and
sympathetic activation: lack of increases in multiple
system atrophy and Parkinson disease
Ken Kiyono1, Junichiro Hayano2, Shin Kwak 3, Eiichi Watanabe4 andYoshiharuYamamoto5*

1 College of Engineering, Nihon University, Koriyama, Japan
2 Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
3 Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
4 Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
5 Educational Physiology Laboratory, Graduate School of Education, University of Tokyo, Tokyo, Japan

Edited by:

Riccardo Barbieri, Massachusetts
General Hospital, USA

Reviewed by:

Der Chyan Bill Lin, Ryerson
University, Canada
Roberto Sassi, Università degli Studi
di Milano, Italy

*Correspondence:

Yoshiharu Yamamoto, Graduate
School of Education, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
113-0033, Japan.
e-mail: yamamoto@p.u-tokyo.ac.jp

The correlates of indices of long-term ambulatory heart rate variability (HRV) of the auto-
nomic nervous system have not been completely understood. In this study, we evaluated
conventional HRV indices, obtained from the daytime (12:00–18:00) Holter recording, and a
recently proposed non-Gaussianity index (λ; Kiyono et al., 2008) in 12 patients with multiple
system atrophy (MSA) and 10 patients with Parkinson disease (PD), known to have varying
degrees of cardiac vagal and sympathetic dysfunction. Compared with the age-matched
healthy control group, the MSA patients showed significantly decreased HRV, most prob-
ably reflecting impaired vagal heart rate control, but the PD patients did not show such
reduced variability. In both MSA and PD patients, the low-to-high frequency (LF/HF) ratio
and the short-term fractal exponent α1, suggested to reflect the sympathovagal balance,
were significantly decreased, as observed in congestive heart failure (CHF) patients with
sympathetic overdrive. In contrast, the analysis of the non-Gaussianity index λ showed that
a marked increase in intermittent and non-Gaussian HRV observed in the CHF patients was
not observed in the MSA and PD patients with sympathetic dysfunction. These findings
provide additional evidence for the relation between the non-Gaussian intermittency of
HRV and increased sympathetic activity.

Keywords: heart rate variability, ambulatory ECG, multiple system atrophy, Parkinson disease, autonomic failure

INTRODUCTION
The correlates of indices of long-term ambulatory heart rate vari-
ability (HRV) of the autonomic nervous system have not been
completely understood. In particular, there is yet no established
index for sympathetic activation, and most HRV indices proposed
primarily reflect reduced or impaired vagal function (Camm et al.,
1996; Marine et al., 2002; Bauer et al., 2006). Considering a key
role played by the sympathetic overdrive as one of the univer-
sal precipitating factors for various chronic illnesses (McEwen,
1998, 2007) and as a factor responsible for cardiac electrical insta-
bility (Schwartz et al., 1984), the quest for HRV indices probing
sympathetic activation would be of great importance.

As a marker potentially related to the sympathetic cardiac over-
drive, we have recently proposed increased non-Gaussianity of
HRV (Kiyono et al., 2008). This form of non-Gaussianity has

Abbreviations: AC, acceleration capacity; AMI, acute myocardial infarction; CHF,
congestive heart failure; DC, deceleration capacity; DFA, detrended fluctuation
analysis; ECG, electrocardiogram; HF, high frequency; HRV, heart rate variabil-
ity; LF, low frequency; LF/HF, LF-to-HF ratio; MRI, magnetic resonance imaging;
MSA, multiple system atrophy; NN, normal-to-normal; PD, Parkinson disease; PDF,
probability density function; RMSSD, root mean square of successive difference of
NN intervals; SD, standard deviation; SDANN, standard deviation of 5 min aver-
aged NN intervals; SDNN, standard deviation of all NN intervals; ULF, ultra-low
frequency; VLF, very low frequency.

been used in fluid dynamics for characterizing intermittency
of turbulence (Castaing et al., 1990). When applied to HRV
analysis, it captures the occurrence of intermittent heart rate
increments (Kiyono et al., 2004, 2007). In a cohort of conges-
tive heart failure (CHF), Kiyono et al. (2008) initially observed
that the increased non-Gaussianity of HRV predicts increased
mortality risk, while none of the conventional HRV indices,
including those reflecting vagal heart rate control, were pre-
dictive of death among these patients. More recently, Hayano
et al. (2011) also reported that the increased non-Gaussianity
index, λ25s, which captures intermittent heart rate increments
within a scale of 25 s similar to that used in the study by Kiy-
ono et al. (2008), is associated with increased cardiac mortal-
ity risk in a cohort of acute myocardial infarction (AMI), with
the predictive power independent of other HRV indices. As
heart rate fluctuations in the scale within a minute are medi-
ated almost exclusively by neural autonomic activities (Camm
et al., 1996), but λ25s showed no substantial correlation with
vagally mediated HRV indices and the patients taking β-blockers
had lower λ25s, Hayano et al. (2011) conjectured that the non-
Gaussianity index in this scale probably captures heart rate fluc-
tuations mediated by intermittent activations of cardiac sympa-
thetic activity, affecting independently the mortality of cardiac
patients.
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In the present study, this conjecture is more directly tested by
studying long-term ambulatory HRV in patients with multiple
system atrophy (MSA). MSA is a sporadic and rapidly progres-
sive neurodegenerative disorder that presents with autonomic
failure in combination with Parkinsonism or cerebellar ataxia
(Wenning et al., 2008; Stefanova et al., 2009). The autonomic
symptoms are believed to be due to neuropathological abnormal-
ities in both preganglionic sympathetic (Sone et al., 2005) and
vagal (Benarroch et al., 2006) neurons. In previous HRV studies,
decreased high frequency, vagally mediated HRV was observed
in MSA patients than in age-matched healthy controls (Gure-
vich et al., 2004; Kuriyama et al., 2005), resembling the reduced
or impaired vagal function in cardiac patients (Camm et al.,
1996; Bauer et al., 2006). In contrast, because of degeneration
of the preganglionic sympathetic neurons, it is hypothesized that
the non-Gaussianity of HRV fails to markedly increase, such as
that observed in cardiac patients (Kiyono et al., 2008; Hayano
et al., 2011), in MSA patients. We test this hypothesis by com-
paring the results for MSA with those for CHF (Kiyono et al.,
2008); the results were reanalyzed in the same methodological
framework.

In the present study, we also studied ambulatory HRV in
patients with Parkinson disease (PD) in which autonomic fail-
ure is commonly observed (Lipp et al., 2009). As the autonomic
pathology of PD is different from that of MSA, being primarily
postganglionic as evidenced by decreased uptake of adrenergic
markers such as iodine-123 metaiodobenzylguanidine (Braune
et al., 1998, 1999), the degree, and balance of sympathetic and
vagal impairments could be different. Thus, it would be intriguing
to examine if the lack of increased non-Gaussianity is still observed
in PD.

MATERIALS AND METHODS
STUDY PATIENTS
Twelve MSA patients (six male and six female subjects; 61.9± 7.1,
54–76 years) and 10 patients with PD (two male and eight female
subjects; 71.1± 6.0, 63–81 years) at the Department of Neurol-
ogy of the University of Tokyo Hospital participated in this study
(Tables 1 and 2, respectively). Diagnosis was made according to
the UK Parkinson’s Disease Society Brain Bank Clinical Diagnostic
Criteria (Hughes et al., 1992) and the second consensus state-
ment on MSA diagnosis (Gilman et al., 2008). All patients were

Table 1 | Clinical characteristics of multiple system atrophy (MSA) patients.

No Age (years) Sex Clinical diagnosis Symptoms at onset Illness duration (years) Ataxia Parkinsonism Autonomic failure

1 60 F MSA-C Instability of gait 4 ++ − +
2 64 M MSA-P Gait disturbance 1 − ++ +
3 61 M MSA-C Dysautonomia 3 ++ − +
4 57 M MSA-C Orthostatic symptoms 9 + − +
5 64 F MSA-C Instability of gait 3 ++ + +
6 54 M MSA-P Dysuria 4 − ++ +
7 75 F MSA-C Urinary urgency 4 ++ − +
8 56 F MSA-C Instability of gait 2 ++ − +
9 60 M MSA-C Dysarthria, gait disturbance 2 ++ ++ +

10 61 F MSA-C Gait disturbance 4 ++ ++ +
11 55 M MSA-P Instability of gait 2 ++ ++ +
12 76 F MSA-C Orthostatic symptoms 2 + +

MSA-C, MSA with predominant cerebellar ataxia; MSA-P, MSA with predominant Parkinsonism.

Table 2 | Clinical characteristics of patients with Parkinson disease.

No Age (years) Sex Clinical diagnosis Symptoms at onset Illness duration (years) Drug Hoehn–Yahr score

1 68 M PD Tremor 3 D, AC, DA III

2 63 M PD Hand tremor 21 D, M, DA IV

3 75 F PD Hand tremor, gait disturbance 11 D, DA, AM IV

4 66 F PD Gait disturbance, dysarthria 13 D, DA III

5 75 F PD Tremor, gait disturbance 31 D. DA. AM, AC IV

6 81 F PD Gait disturbance 5 D V

7 68 F PD Tremor 8 D, AC, AM, DA, M III

8 65 F PD Hand Tremor 8 D, DA III

9 72 F PD Gait disturbance 5 D, DA, AC, AM IV

10 78 F PD-D Gait disturbance, dysarthria 2 D III

PD, Parkinson disease; PD-D, PD with dementia; D, L-DOPA/carbidopa or benserazide; DA, dopamine agonists; A, anticholinergic; AM, amantadine; M, selegiline.
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examined by neurologists, and all PD patients exhibited a response
to L-DOPA without remarkable MRI findings. All MSA patients
fulfilled the criteria for probable MSA (Gilman et al., 2008), and
most of them took adrenergic stimulants for controlling severe
orthostatic hypotension and anti-adrenergic or anti-muscarinic
medications for their neurogenic bladder.

In addition, we studied 108 patients who were consecutively
referred for evaluation or treatment of CHF (61 male and 47 female
subjects; 66.1± 14.8, 21–92 years). Of these patients, 39 (36.1%)
died within the follow-up period of 33± 17 months (range, 1–
59 months). The medication status before discharge from the
hospital was not significantly different between survivors and non-
survivors. The clinical details of the CHF patients were reported
previously (Kiyono et al., 2008).

The results were compared with data from age-matched healthy
subjects; the details of which were reported elsewhere (Kiyono
et al., 2004). All individuals within ±2 years of each patient’s age
were selected from a pool of 122 healthy subjects.

MEASUREMENTS AND PROTOCOL
The original electrocardiogram (ECG) data were derived from 24-
h Holter recordings. The ECG signals were digitized at 125 Hz and
12 bits and processed offline using a personal computer equipped
with a dedicated software. All QRS complexes in each recording
were detected and labeled automatically. The results of automatic
analysis were reviewed, and any errors in R wave classification were
corrected manually. Computer files were generated containing the
duration of individual R–R intervals and morphology classifica-
tions of individual QRS complexes (normal, supraventricular, and
ventricular premature complexes). The series of intervals between
two successive R waves of sinus rhythm [normal-to-normal (NN)
intervals] was analyzed. To avoid the adverse effects of any remain-
ing errors in the detection of the R wave, large (>20%) consecutive
R–R interval differences were thoroughly reviewed until all errors
were corrected. In addition, when atrial or ventricular prema-
ture complexes were encountered, the corresponding R–R intervals
were interpolated by the median of the two successive beat-to-beat
intervals. We also confirmed that no sustained tachyarrhythmias
were present in our HRV recordings. In this study, all HRV indices
were obtained from the daytime (12:00–18:00) data.

ANALYSIS OF CONVENTIONAL HRV INDICES
The following HRV indices were calculated: mean NN intervals,
standard deviation (SD) of all NN intervals (SDNN), SD of 5 min
averaged NN intervals (SDANN), root mean square of successive
difference of NN intervals (RMSSD), the variances corresponding
to ultra-low frequency (ULF; 0–0.0033 Hz), very low frequency
(VLF; 0.0033–0.04 Hz), low frequency (LF; 0.04–0.15 Hz), and
high frequency (HF; 0.15–0.40 Hz) bands, and LF/HF ratio, all of
which were proposed by the Task Force of the European Society of
Cardiology and the North American Society of Pacing and Electro-
physiology (Camm et al., 1996). The variances of these frequency
components were transformed to natural logarithmic values (ln
ms2).

In addition, we also computed the deceleration and acceler-
ation capacity (DC and AC) based on the phase rectified signal
averaging of NN intervals (Bauer et al., 2006), and the fractal

scaling exponents, the short-term exponent α1 and the long-term
α2, using detrended fluctuation analysis (DFA; Peng et al., 1995).

MULTISCALE PROBABILITY DENSITY FUNCTION ANALYSIS
Recent studies from our group have shown that human HRV
exhibits the intermittent dynamics or temporal heterogeneity of
variance leading to non-Gaussian probability density function
(PDF) of heart rate increments (Kiyono et al., 2004), especially
in cardiac patients within timescales corresponding to LF and VLF
ranges (Kiyono et al., 2008; Hayano et al., 2011). As such a fea-
ture, called heteroscedasticity, cannot be captured by conventional
HRV indices, we conducted multiscale PDF analysis to character-
ize intermittent large deviations and the resultant non-Gaussianity
of HRV.

The procedure starts from interpolating observed series of NN
intervals with a cubic spline function and resampling at an interval
(Δt ) of 250 ms (4 Hz), yielding interpolated time series b(t ). Next
after subtracting average interval bave, integrated time series B(t )
are obtained by integrating b(t ) over the entire length,

B(t ) =
t/Δt∑
i=1

{b(iΔt )− bave}.

As in previous studies (Kiyono et al., 2004, 2008; Hayano et al.,
2011), the local trend of B(t ) is eliminated by a third-order poly-
nomial fit to B(t ) within moving windows of length 2s, where s
is the scale of analysis. Thereafter, intermittent deviation ΔsB(t )
is measured as the increment with a time lag s of the detrended
time series. For instance, in a window from time T− s to T + s,
the increments are calculated as follows:

ΔsB(t ) = {B(t + s/2)− ffit (t + s/2)
}

− {B(t − s/2)− ffit (t − s/2)
}

where T− s/2≤ t < T+ s/2 and ffit(t ) is the polynomial repre-
senting the local trend of B(t ). ΔsB(t ) reflects an average degree
of tachycardia if negative [b(t ) < bave] or bradycardia if positive
[b(t ) > bave] over a moving window with length s (in seconds)
after detrending. To quantitatively characterize the non-Gaussian
property of ΔsB(t ) at scale s, the standardized PDF (variance set
to one) constructed from all ΔsB(t ) values is approximated by the
Castaing’s model (Castaing et al., 1990) with a single parameter
λs, which we refer to as the non-Gaussianity index. A greater λs

indicates a fatter non-Gaussian tail and a sharper peak of PDF
compared to the Gaussian distribution. On the other hand, if
λs is close to zero, PDF is close to a Gaussian distribution. The
parameter λs is estimated as follows:

λs
2 = 2

q(q − 2)

[
ln
(√

π
〈|ΔsB|q 〉)− ln Γ

(
q + 1

2

)
− q

2
ln 2

]
,

where q �= 0 or 2, q > -1, and 〈|ΔsB|q〉 denotes the estimated
value of the q-th order absolute moment of ΔsB (Kiyono et al.,
2007).

In the present study, we calculated λs using the 0.25-th order
moment (q= 0.25) to emphasize the center part of PDF and
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reduce the effects of large outliers such as those resulting from
ectopic beats. This implies that our non-Gaussianity index with
q= 0.25 more strongly characterizes peak PDF around the center
of the observed non-Gaussian distribution, as opposed to higher-
order moments, such as kurtosis based on the fourth moment,
emphasizing heavy tails and extreme deviations. Based on our
recent findings that increased λs at scale s= 25 s is associated with
increased cardiac mortality risk and that this predictive power
is independent of clinical risk factors in CHF and AMI patients
(Kiyono et al., 2008; Hayano et al., 2011), we evaluated the non-
Gaussianity index λ25s at s= 25 s, which is at the edge of LF and
VLF ranges.

An important feature of this multiscale PDF analysis is that
if a time series has temporally homogeneous and finite variance,
the increment PDF of the integrated series rapidly converges to
a Gaussian distribution as the time-scale s increases because of
the well-known statistical law called the central limit theorem.
On the other hand, if neither condition is fulfilled, slow con-
vergence to a Gaussian distribution or a scale-dependent λs and
non-Gaussian fat tail can arise, suggestive of increased intermit-
tency as observed in hydrodynamic turbulence (Castaing et al.,
1990; Ghashghaie et al., 1996). Indeed, in the so-called multi-
plicative cascade model (Monin and Yaglom, 1975), one of the
representative models describing intermittency of hydrodynamic
turbulence and also used as a model of heart rate intermittency
(Lin and Hughson, 2001), λs is known to have scale dependence

in the form of λ2
s ∼ ln s (Kiyono et al., 2007; Figure 1). In the

cascade model, multiscaling properties of the increments called
structure functions also exist in the corresponding scales (Kiyono
et al., 2007). To evaluate such a dynamic (cascade-like) aspect of
intermittent fluctuations, we calculated the slope of λ2

s vs. ln s
(λ2-slope) in the range 20 < s < 200 s (mainly covering LF and
VLF ranges).

STATISTICAL ANALYSIS
The data are reported as the mean± SD. One-way ANOVA was
used to test for statistical differences across groups, and Tukey’s
honestly significant difference test was used for pair-wise com-
parisons. For variables with skewed distributions, values were
transformed to natural logarithms. The Kolmogorov–Smirnov test
was used to assess differences in age distribution between groups.
In addition, the bootstrap method (Efron and Tibshirani, 1993)
was used to assess possible selection biases of age-matched control
groups. Bootstrap samples having the same size as each of MSA
and PD groups were generated by randomly drawing age-matched
subjects with replacement from a pool of healthy subjects. P < 0.05
was considered significant.

RESULTS
Indices of autonomic function were derived from HRV recordings
from MSA, PD, and CHF patients as well as from the three separate
age-matched control groups (MSA controls, 63.6± 8.6 years vs.

FIGURE 1 | Illustration of the definition of λ2-slope. (A) An example of
intermittent fluctuation generated by a cascade model (Kiyono et al., 2007)
and (B) the scale dependence of λ2, which is proportional to the logarithmic
scale. To quantify this kind of intermittent behavior of HRV, λ2-slope is defined

as the slope of a regression line between λ2 and the logarithmic scale in the
range between 20 and 200 s. (C) Scale dependence of λ2 for a patient with
multiple system atrophy (MSA) and a patient with congestive heart failure
(CHF).
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MSA patients,62.3± 7.4 years; PD controls,68.5± 8.3 years vs. PD
patients, 68.6± 7.9 years; CHF controls, 59.1± 16.0 years vs. CHF
patients, 66.1± 14.8 years). The age distributions for the control
groups were not significantly different from those for the patients’
groups. Mean duration since MSA diagnosis was 3.3± 2.1 years
(range, 1–9 years; Table 1). Mean duration since PD diagnosis was
10.7± 9.1 years (range, 2–31 years), and the mean Hoehn and Yahr
score was 3.6± 0.7 (range, 3–5; Table 2).

CONVENTIONAL HRV INDICES
Table 3 presents HRV indices derived from HRV recordings from
MSA patients and age-matched healthy control subjects, together
with the bootstrap estimators for the healthy controls. Compared
with the control group, the MSA patients showed significantly

decreased HRV as indicated by lower SDNN, SDANN, and RMSSD
values, reduced power in all spectral bands (HF, LF,VLF, ULF), and
lower DC and AC. Indices such as LF/HF and DFA α1 were also
significantly decreased. Compared with the control group, the PD
patients showed significant decreases only in LF and VLF power
and significantly lower DC and AC (Table 4). LF/HF and DFA
α1 were significantly decreased. As shown in Tables 3 and 4, these
findings were largely supported also by comparing mean values for
the patient groups with 95%-confidence intervals of the bootstrap
estimators. Table 5 presents the HRV indices in CHF patients and
age-matched healthy control subjects. Compared with the control
group, both surviving and non-surviving CHF patients exhibited
significantly decreased HRV as indicated by lower SDNN and
SDANN, reduced power in LF, VLF, and ULF ranges, and lower

Table 3 | Heart rate variability measures in patients with multiple system atrophy (MSA) and age-matched controls.

MSA (n = 12) Age-matched control (n = 69) P value Bootstrap samples of age-matched control (n = 12)

Mean NN, ms 766± 89 775± 110 0.745 776 (723–832)

SDNN, ms 59.7± 23.0 90.4± 28.6 <0.001 89.0 (75.4–104.2)

SDANN, ms 19.9± 6.5 47.5± 28.7 <0.001 48.8 (35.5–64.5)

RMSSD, ms 13.6± 4.4 22.5± 11.4 <0.001 21.6 (16.3–27.6)

ln HF, ln ms2 3.75± 0.90 4.97± 1.08 <0.001 4.93 (4.34–5.50)

ln LF, ln ms2 4.02± 0.90 5.90± 0.97 <0.001 5.90 (5.39–6.36)

ln VLF, ln ms2 5.92± 0.84 7.26± 0.81 <0.001 7.30 (6.89–7.72)

ln ULF, ln ms2 7.78± 0.93 8.47± 0.64 0.029 8.45 (8.14–8.79)

LF/HF ratio 1.69± 1.24 3.28± 2.49 0.002 3.47 (2.25–4.87)

DC, ms 3.38± 0.98 6.23± 1.59 <0.001 5.82 (5.11–6.53)

AC, ms −3.38± 0.93 −6.51± 1.77 <0.001 −6.13 (−6.94 to −5.28)

α1 0.86± 0.24 1.17± 0.15 <0.001 1.21 (1.08–1.33)

α2 1.23± 0.09 1.18± 0.04 0.118 1.19 (1.15–1.23)

λ25s 0.46± 0.07 0.39± 0.07 0.005 0.38 (0.35–0.43)

λ2-slope −0.05± 0.12 −0.01± 0.08 0.309 0.00 (−0.04 to 0.04)

Fifth column shows mean value and 95%-confidence interval based on 2000 bootstrap samples. P< 0.05.

Table 4 | Heart rate variability measures in patients with Parkinson disease and age-matched controls.

Parkinson disease (n = 10) Age-matched control (n = 60) P value Bootstrap samples of age-matched control (n = 10)

Mean NN, ms 779± 118 780± 112 0.975 801 (717–885)

SDNN, ms 70.4± 33.5 91.6± 29.6 0.086 95.8 (76.1–118.7)

SDANN, ms 34.0± 26.7 46.6± 27.4 0.191 44.4 (30.3–62.2)

RMSSD, ms 18.2± 11.6 23.1± 12.8 0.240 26.3 (17.9–35.5)

ln HF, ln ms2 4.21± 1.19 4.96± 1.13 0.089 5.00 (4.30–5.71)

ln LF, ln ms2 4.22± 1.31 5.70± 0.97 0.006 5.69 (5.21–6.17)

ln VLF, ln ms2 5.82± 1.20 7.17± 0.82 0.006 7.13 (6.68–7.56)

ln ULF, ln ms2 8.15± 0.77 8.55± 0.64 0.148 8.66 (8.25–9.08)

LF/HF ratio 1.30± 1.03 2.62± 1.69 0.003 2.48 (1.60–3.54)

DC, ms 3.93± 1.41 5.46± 1.60 0.008 5.27 (4.45–6.11)

AC, ms −4.03± 1.57 −5.80± 1.81 0.007 −5.74 (−6.80 to −4.73)

α1 0.83± 0.28 1.12± 0.24 0.011 1.07 (0.96–1.19)

α2 1.17± 0.08 1.19± 0.07 0.456 1.18 (1.14–1.23)

λ25s 0.42± 0.09 0.40± 0.08 0.574 0.41 (0.37–0.46)

λ2-slope −0.01± 0.11 −0.02± 0.09 0.81 −0.02 (−0.06 to 0.03)

Fifth column shows mean value and 95%-confidence interval based on 2000 bootstrap samples. P< 0.05.
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Table 5 | Heart rate variability indices in patients with congestive heart failure and age-matched controls.

CHF (NS; n = 39) CHF (SV; n = 69) Control (n = 90) P value NS–SV P value NS–C P value SV-C

Mean NN, ms 758± 114 755± 140 782± 110 0.99 0.56 0.37

SDNN, ms 59.1± 31.1 59.7± 39.6 93.4± 29.0 0.99 <0.001 <0.001

SDANN, ms 33.0± 27.2 37.7± 33.6 51.6± 30.0 0.73 0.006 0.016

RMSSD, ms 37.6± 40.0 40.0± 48.3 24.5± 12.8 0.94 0.13 0.017

ln HF, ln ms2 5.43± 1.57 5.30± 1.67 5.13± 1.12 0.89 0.82 0.75

ln LF, ln ms2 4.97± 1.80 4.85± 1.63 5.97± 1.01 0.90 0.001 <0.001

ln VLF, ln ms2 5.73± 1.36 6.04± 1.45 7.33± 0.83 0.40 <0.001 <0.001

ln ULF, ln ms2 5.73± 1.23 6.04± 1.45 8.81± 0.64 0.66 <0.001 <0.001

LF/HF ratio 0.83± 0.79 0.93± 0.78 3.01± 2.31 0.95 <0.001 <0.001

DC, ms 3.39± 1.60 3.84± 2.01 5.87± 1.70 0.43 <0.001 <0.001

AC, ms −4.34± 2.29 −4.69± 2.13 −6.27± 1.96 0.68 <0.001 <0.001

α1 0.79± 0.26 0.72± 0.24 1.17± 0.25 0.44 <0.001 <0.001

α2 0.93± 0.16 1.00± 0.21 1.18± 0.08 0.048 <0.001 <0.001

λ25s 0.57± 0.18 0.48± 0.15 0.40± 0.08 <0.001 <0.001 <0.001

λ2-slope −0.21± 0.23 −0.13± 0.18 −0.02± 0.08 0.03 <0.001 <0.001

P< 0.05.

DC and AC. Indices such as LF/HF, and DFA α1 and α2 were also
significantly decreased.

In the MSA patients, the pattern of changes in conventional
HRV indices was similar to that observed in the CHF patients.
While the decreased HRV in both MSA and CHF patients might
reflect reduced vagal heart rate control, decreases in LF/HF and
DFA α1 were observed for both MSA, a disease with reported pre-
ganglionic sympathetic failure (Sone et al., 2005), and for CHF,
a pathology associated with sympathetic overdrive (Packer, 1988;
Ciarka et al., 2008). In contrast, no decreases in SDNN and HF
power, indices of reduced HRV, were observed in the PD patients,
which might reflect relatively intact vagal heart rate control. How-
ever, decreases in LF/HF and DFA α1 were also observed in PD, a
disease with reported postganglionic sympathetic failure (Braune
et al., 1998, 1999).

NON-GAUSSIAN AND INTERMITTENT PROPERTIES OF HRV
Figure 2 shows representative results of the multiscale PDF analy-
sis for MSA, CHF, and PD patients (one patient from each group)
and a healthy subject. As shown in Figures 2M–P, HRV data from
the MSA and PD patients and the healthy subject yielded similar
PDF curves at each scale. In contrast, recordings from the CHF
patient yielded a PDF curve with a more tapered center and fatter
tails at relatively smaller scales. This reflects intermittent large devi-
ations or bursts observed at s= 20 s in CHF patients (Figure 2G),
while this increased intermittency was not observed in the MSA
and PD patients. In addition, as the scale s increases, deformation
of PDFs toward a Gaussian distribution was clearly observed only
in the CHF patient. The deformation process of the non-Gaussian
PDF can be described by the relation between the non-Gaussianity
index λs and scale s. As shown in Figure 3, the MSA and PD patient
groups and the healthy subject groups showed nearly constant λ2

s
values across a wide range of scales s, resulting in an almost zero
value λ2-slope. In contrast, the CHF patient group, particularly
non-survivors, was characterized by almost linear increases in λ2

s
as the log scale decreased from 200 to 20 s, similar to that observed

for a cascade model of intermittent turbulence (Figure 1B). Con-
sequently, the λ2-slope for the CHF patients was significantly more
negative than that for the healthy controls.

λ25s for the MSA patients was slightly but significantly higher
than that for healthy controls (Table 3), although the level was
much lower than that for CHF non-survivors (Table 5). λ25s for
the PD patients failed to increase compared with that for healthy
controls (Table 4). Both MSA and PD patients with sympathetic
failure had λ2-slopes of almost zero, which were not significantly
different from those of healthy controls (Tables 3 and 4). Only
CHF patients with known sympathetic overdrive had significantly
negative λ2-slopes (Table 5).

DISCUSSION
Long-term ambulatory HRV continues to attract clinical interest
as a useful tool for risk stratification in AMI (Kleiger et al., 1987;
Bigger et al., 1996; La Rovere et al., 1998; Schmidt et al., 1999;
Huikuri et al., 2000; Bauer et al., 2006) and chronic heart failure
(Ho et al., 1997; Nolan et al., 1998; Mäkikallio et al., 2001). Patients
at higher mortality risk frequently have higher heart rates with
reduced and less complex (or monotonic) HRV, and most indices
used to characterize such HRV dynamics primarily reflect reduced
or impaired vagal function (Camm et al., 1996; Marine et al., 2002;
Bauer et al., 2006). In contrast, few HRV indices are related to sym-
pathetic function and their autonomic correlates and prognostic
significance are still uncertain. For example, a decrease, but not
the increase, in LF/HF, believed to reflect the sympathovagal bal-
ance (Pagani et al., 1986), is associated with increased mortality
risk (Tsuji et al., 1994; Huikuri et al., 2000) in patients exhibiting
sympathetic activation (Ciarka et al., 2008). Similarly, a decrease
in DFA α1, known to be correlated with LF/HF and sensitive
to changes in the sympathovagal balance (Huikuri et al., 2009),
is associated with increased mortality risk (Huikuri et al., 2000;
Mäkikallio et al., 2001). The present study further demonstrated
that both of these indices are also decreased in MSA, a neurodegen-
erative disorder associated with preganglionic sympathetic failure
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FIGURE 2 | Multiscale PDF characterization of heart rate variability.

Illustrative examples of time series of NN intervals b(t ) (A–D), time series of
Δ20sB(i ) (E–H), time series of Δ180sB(i ) (I–L), and standardized PDFs (in
logarithmic scale) of ΔsB(i ) for (from the top to bottom) s= 20, 60, 180, 300 s
(M–P), where σs denotes the SD of ΔsB(i ). In solid lines, we superimpose the
PDF approximated by Castaing’s model (Castaing et al., 1990). The panels on
the leftmost side (A,E,I,M) are data for a 60-year-old male patient with
multiple system atrophy (MSA). The panels on the left-of-center side (B,F,J,N)

are data for a 68-year-old male patient with Parkinson disease (PD). The panels

on the right-of-center side (C,G,K,O) are data for a 83-year-old female patient
with congestive heart failure (CHF) who died 54 days after the measurement.
The panels on the rightmost side (D,H,L,P) are data for a control subject
(84-year-old male). For comparison, the dashed line denotes a Gaussian
distribution. Note that, while the raw b(t ) for the patients looks much different
from that for the control subject, the degrees of non-Gaussianity (i.e., the
shapes of PDF) remain unaltered across scales for MSA and PD patients and
the healthy control, except for those for the CHF patient at shorter scales
(G,O).

(Sone et al., 2005), and in PD, which is often accompanied by
postganglionic sympathetic failure (Braune et al., 1998, 1999).

As a marker potentially related to sympathetic cardiac over-
drive, we have recently introduced increased non-Gaussianity of
HRV within LF and VLF ranges in patients with CHF and AMI
(Kiyono et al., 2008; Hayano et al., 2011), cardiopathologies known
to be associated with sympathetic overdrive (Packer, 1988; Cia-
rka et al., 2008). In the present study, we further demonstrated
that a marked increase in intermittent and non-Gaussian HRV
was not observed in MSA and PD patients with sympathetic fail-
ure. We still have not determined why λ25s for the MSA patients
was slightly but significantly higher than that for healthy controls;
this enhanced non-Gaussianity may be due to adrenergic stimu-
lants administered to ameliorate severe orthostatic symptoms in
the MSA patients. However, the scale-dependent increase in λ2

s
with decreasing log scales mainly within the VLF range, leading

to a markedly higher λ25s in the CHF patients (Table 5), was not
observed in MSA. Therefore, we suggest that the systematically
increased non-Gaussianity of HRV within LF and VLF ranges
could be a hallmark of sympathetic cardiac overdrive and that
indices such as λ25s and λ2-slope could be used to measure the
degree of sympathetic activation. Indeed, we recently observed
decreased λ25s in the AMI patients taking (anti-sympathetic)
β-blockers (Hayano et al., 2011).

Using concepts developed in statistical and non-linear physics,
it has been demonstrated that the healthy human heart rate fluctu-
ates in a complex manner even under resting conditions, exhibiting
fractal long-range correlations (Peng et al., 1993; Yamamoto and
Hughson, 1994) and multifractal properties (Ivanov et al., 1999;
Amaral et al., 2001; Ching and Tsang, 2007). Based on these
findings, Lin and Hughson (2001) proposed an analogy between
heart rate dynamics and hydrodynamic turbulence because a
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FIGURE 3 |Time-scale dependence of the non-Gaussianity index, λ2. The
results for (A) multiple system atrophy (MSA), (B) Parkinson disease (PD),
and (C) congestive heart failure (CHF) patients, both for survivor (SV; n= 69)

and non-survivor (NS; n= 39). Age-matched controls were selected from a
database of healthy subjects. Error bars indicate 95%-confidence intervals of
the group averages.

phenomenological model of hydrodynamic turbulence, called the
multiplicative cascade model (Monin and Yaglom, 1975), can also
have multifractal properties. Using multiscale PDF analysis, we
later demonstrated that the healthy human HRV does not show
slow and gradual convergence to a Gaussian distribution (Kiyono
et al., 2004; Figure 3), an important requirement of the multiplica-
tive cascade model (Figure 1B). In contrast, the present study and
previous work (Kiyono et al., 2008) suggest that HRV within LF
and VLF ranges of CHF patients, especially non-survivors, is more
compatible with the multiplicative cascade model.

The multiplicative (log-normal) cascade model used to gener-
ate fluctuations with intermittent bursts such as those shown in
Figure 1A is given by

xi = ξi exp

⎡
⎣ m∑

j=1

ω(j)
(⌊

j − 1

2m−j

⌋)⎤⎦ ,

where ξi is Gaussian white noise with zero mean, ω(j)(k) are inde-
pendent Gaussian random variables with zero mean and constant
variance, and (·( is the floor function (Kiyono et al., 2007). The m
is the total number of cascade steps, yielding the total number of
data points 2m (i= 1, . . ., 2m). An essential part of the model is that
ξi is modulated by multiplication of random (log-normal) weights
exp[ω(j)(k)] (k = 0, 1, . . ., 2j− 1) at the j-th step every 2m−j

subintervals; therefore, large fluctuations are observed only when

the momentary weights for (many) different steps with varying
timescales are simultaneously large (refer to Figure 5 of Kiyono
et al., 2007). Using multiscale PDF analysis, Kiyono et al. (2007)
further showed that this model exhibits the scale dependence of a
non-Gaussianity index in the form of λ2

s ∼ ln s (Figure 1B).
The fact that heart rate dynamics of CHF patients with sym-

pathetic activation exhibit a non-Gaussianity index which decays
with scales within LF and VLF ranges suggests a sympathetic ori-
gin for HRV intermittency. In these scales (20–200 s), heart rate
dynamics reflect cardiovascular regulation by neural, humoral,
and thermal influences (Kitney and Rompelman, 1980). These
subsystems are considered to be compensatory; therefore, it is
likely that only simultaneous failure of all these subsystems oper-
ating at multiple timescales, compatible with the reciprocal of
cascade steps “j” in the above example, could result in sympathetic
overdrive, leading to large and intermittent heart rate deviations.
We propose that such a multiplicative picture would provide a
deeper physiological understanding of the nature of sympathetic
function. In addition, it would provide a reason why methods
requiring stationary, not intermittent, dynamics have not been
successful in finding the sympathetic correlates of ambulatory
HRV.

In the present study, we focused on daytime HRV for the follow-
ing reasons. First, as reported in our previous study (Kiyono et al.,
2005), there are large differences in non-Gaussianity and its scale
dependence between day and night in healthy humans,presumably
because of the difference in the sympathovagal balance. Second,
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disorders of sleep and sleep breathing are common in MSA
(Colosimo, 2011); therefore, incorporating nighttime data would
inevitably introduce additional complexity. Third, one of our goals
is to assess sympathetic activity, which is predominant during the
day. Note that this shift from 24-h HRV to daytime HRV does
not change our previous finding of the increased non-Gaussianity
of low frequency HRV in CHF patients than in healthy controls
(Kiyono et al., 2008).

In agreement with previous studies (Gurevich et al., 2004;
Kuriyama et al., 2005), our MSA patients showed significantly
decreased HRV, as evidenced by lower SDNN and HF power. This
decrease is probably related to the known abnormalities in cen-
tral vagal (Benarroch et al., 2006) and sympathetic function in
these patients (Sone et al., 2005). On the other hand, changes in

SDNN and HF power were not significant in PD patients, imply-
ing relatively intact vagal heart rate control despite the impaired
peripheral, cardiac sympathetic function (Braune et al., 1998,
1999). Thus, analyses of ambulatory HRV may facilitate discrim-
inative diagnosis between MSA and PD, particularly the difficult
distinction between early stage PD and MSA with predominant
Parkinsonian symptoms (Lipp et al., 2009).
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The physiological mechanisms related to cardio-vascular (CV), cardio-pulmonary (CP), and
vasculo-pulmonary (VP) regulation may be probed through multivariate time series analysis
tools. This study applied an information domain approach for the evaluation of non-linear
causality to the beat-to-beat variability series of heart period (t ), systolic arterial pressure
(s), and respiration (r ) measured during tilt testing and paced breathing (PB) protocols.The
approach quantifies the causal coupling from the series i to the series j (Cij) as the amount
of information flowing from i to j. A measure of directionality is also obtained as the differ-
ence between two reciprocal causal couplings (Di,j=Cij−Cji ). Significant causal coupling
and directionality were detected respectively when the median of Cij over subjects was
positive (Cij > 0), and when Di,j was statistically different from zero (Di,j > 0 or Di,j < 0). The
method was applied on t, s, and r series measured in 15 healthy subjects (22–32 years, 8
males) in the supine (su) and upright (up) positions, and in further 15 subjects (21–29 years,
7 males) during spontaneous (sp) and paced (pa) breathing. In the control condition (su,
sp), a significant causal coupling was observed for Crs, Crt, Cst, and Cts, and significant
directionality was present only from r to t (Dr,t > 0). During head-up tilt (up, sp), Crs was
preserved, Crt decreased to zero median, and Cst and Cts increased significantly; direction-
ality vanished between r and t (Dr,t= 0) and raised from s to t (Ds,t > 0). During PB (su, pa),
Crs increased significantly, Crt and Cts were preserved, and Cst decreased to zero median;
directionality was preserved from r to t (Dr,t > 0), and raised from r to s (Dr,s > 0). These
results suggest that the approach may reflect modifications of CV, CP, and VP mechanisms
consequent to altered physiological conditions, such as the baroreflex engagement and
the dampening of respiratory sinus arrhythmia induced by tilt, or the respiratory driving on
arterial pressure induced by PB. Thus, it could be suggested as a tool for the non-invasive
monitoring of CV and cardiorespiratory control systems in normal and impaired conditions.

Keywords: arterial pressure variability, baroreflex, causality, conditional entropy, head-up tilt, heart rate variability,

paced breathing, respiratory sinus arrhythmia

INTRODUCTION
The heart period (HP), measured from the ECG as the duration
of the temporal interval occurring between two consecutive R
waves in the ECG (RR interval), and the systolic arterial pressure
(SAP), measured from the arterial pressure signal as the maxi-
mum pressure value following each R wave (Figure 1A), exhibit
spontaneous beat-to-beat fluctuations around their mean value,
which are clearly visible in time series recordings of few hun-
dred beats (Figures 1B–D). These fluctuations, generally known

Abbreviations: CE, conditional entropy; CP, cardio-pulmonary; CV, cardio-
vascular; ECG, electrocardiogram; HP, heart period; pa, paced breathing condition;
PB, paced breathing protocol; R wave, deflection in the ECG representing early
depolarization of the ventricles; RF, respiratory flow; RR interval, temporal interval
between two consecutive R waves in the ECG; SAP, systolic arterial pressure; sp,
spontaneous breathing condition; su, supine body position; TT, tilt test protocol;
up, upright body position; VP, vasculo-pulmonary.

as cardio-vascular (CV) variability, are the result of the complex
interplay of several physiological mechanisms (Malpas, 2002). It
is indeed well known that HP and SAP interact in a closed-loop:
HP changes affect SAP variations according to Starling law and
arterial Windkessel, while, in turn, SAP changes are sensed by
baroreceptors and induce corresponding HP variations through
the baroreflex (Baselli et al., 1988; Saul et al., 1991; Taylor and
Eckberg, 1996; Mullen et al., 1997; Nollo et al., 2005; Porta et al.,
2011b). Besides the reciprocal regulation of HP and SAP, CV vari-
ability is continually perturbed by the respiratory activity, in accor-
dance with a number of mechanisms including mechanical effects
on intrathoracic pressure and stroke volume (Toska and Eriksen,
1993), Bainbridge reflex (Jones, 1962), and inhibition of central
vagal outflow by respiratory neuron firing (Gilbey et al., 1984). As
the interaction and/or competition among all these mechanisms is
solicited by experimental maneuvers and is altered in the presence
of CV diseases, the joint analysis of HP, SAP, and respiratory
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FIGURE 1 | Illustrative example of time series measurement

and visualization. (A) Measurement of heart period (T ), systolic
arterial pressure (S) and respiration (R) variability series from the
ECG, arterial blood pressure, and respiratory flow signals;
consecutive R waves, representing early depolarization of the

ventricles, correspond to the sharp positive deflections of the ECG.
Representative examples of the three measured time series are
reported for a subject breathing spontaneously in the supine
position (B) and in the upright position (C), and undergoing paced
breathing in the supine position (D).

flow (RF) variability series is widely exploited to non-invasively
assess CV, cardio-pulmonary (CP), and vasculo-pulmonary (VP)
regulations.

Indeed, a variety of time series analysis methods have been
proposed in the last decades to quantify CV and cardiorespiratory
interactions through the study of simultaneously measured HP,
SAP, and RF spontaneous variability. While classical approaches
were used to detect the presence of an interaction and quantify
its strength, e.g., by means of linear coherence or non-linear cou-
pling measures (De Boer et al., 1985; Taylor and Eckberg, 1996;
Hoyer et al., 1998; Pompe et al., 1998; Cooke et al., 1999; Baumert
et al., 2005; Bai et al., 2008; Suhrbier et al., 2010; Kabir et al.,
2011), recent developments aimed to infer the causal direction
along which a given interaction occurs. The assessment of causal-
ity in CV, CP, and VP interactions is relevant because it suggests
which is the mechanism governing the interaction under analysis.
A common approach to quantify the causal coupling between two
variability series is the causal coherence (Porta et al., 2002), which
quantifies causality from the frequency domain representation of
a linear parametric bivariate model fitted to the two considered
series. This method has been exploited to study causality between
HP and SAP in physiological and impaired conditions (Nollo et al.,
2005; Faes et al., 2006). It has been also extended to multivariate
models including respiration for the contemporaneous assessment
of CV and CP causal couplings both in the time domain (Porta
et al., 2011a) and – following the introduction of partial directed
coherence (Baccalà and Sameshima, 2001) – even in the frequency
domain (Faes and Nollo, 2010). Linear time series analysis meth-
ods are well suited for the study of CV, CP, and VP interactions
because they lend themselves to spectral representation, so that
coupling and causality can be assessed for specific rhythms such
as Mayer waves and respiratory frequency oscillations. Notwith-
standing this, non-linear approaches are often desired as they may
account better than linear methods for the high number and com-
plexity of the mechanisms underlying CV and cardiorespiratory
variability. The evaluation of non-linear causal coupling between

cardiac, vascular, and respiratory time series has been performed
in the past according to approaches based on phase synchroniza-
tion (Rosenblum et al., 2002), non-linear prediction (Faes and
Nollo, 2006; Faes et al., 2008b), non-linear model identification
(Faes et al., 2008a; Riedl et al., 2010), symbolic coupling traces
(Wessel et al., 2009; Suhrbier et al., 2010), and information theory
(Porta et al., 1999; Palus et al., 2004). Among others,methods based
on information theory constitute a valid, model-free approach to
quantify non-linear causality based on the information amount
transferred from one series to the other. In particular, informa-
tion theoretic tools based on conditional entropy (CE) estimation
have been framed in the so-called information domain (Porta
et al., 2000b), and have been exploited to detect causal information
transfers in the CV loop in a variety of physiological conditions
(Nollo et al., 2002; Faes et al., 2011b; Porta et al., 2011b).

A major issue with the approaches to non-linear causality listed
above stands in the fact that their application to CV and cardiores-
piratory interactions has been limited so far to bivariate analysis
involving only two of the available variability series. When more
than two variables are expected to contribute to the dynamics
under investigation, time series may be linked to each other in a
direct or indirect manner. In this case, the use of bivariate analysis
to assess causality between two of the series may be misleading.
For example, one series may falsely appear to cause another if
they are both influenced by a third series but with different delays.
This situation is likely occurring in CP and VP analysis, where
respiration acts as an exogenous input on both HP and SAP vari-
ability. Therefore, there is the need to extend traditional bivariate
approaches to multivariate time series analysis able to settle issues
of false causalities. In the frame of information theory, such an
extension of is not a trivial task because it is hindered by practical
aspects like the bias in CE estimation, or the issues of arbitrariness
and redundancy related to the choice of the analysis parameters
(Vakorin et al., 2009; Angelini et al., 2010; Faes et al., 2011a). To cir-
cumvent these problems, we have recently proposed an approach
for estimating in the information domain the non-linear causal
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coupling between two series taken from a multivariate data set
(Faes et al., 2011a). The approach, which combines an objective
and non-redundant procedure for the selection of the analysis
parameters with an efficient estimation of the CE (Porta et al.,
1998, 1999), has been validated on several simulation schemes
and tested on representative multivariate physiological time series.
In the present study, it is exploited to assess the causal cou-
pling between cardiac, vascular, and respiratory variability series
in physiological conditions. To this end, HP, SAP, and RF series
were measured in a group of healthy subjects during two pro-
tocols able to solicit CV, CP, and VP regulatory systems, i.e., tilt
testing and paced breathing (PB). The subsequent analysis allowed
us to describe the physiological mechanisms involved in the reg-
ulation of cardiac, vascular, and respiratory systems, and to track
their alterations consequent to modification of the experimental
conditions.

MATERIALS AND METHODS
EXPERIMENTAL PROTOCOLS AND DATA ANALYSIS
We considered 30 young subjects (25.7± 2.7 years old), all nor-
motensive and free from any known disease based on anamnesis
and physical examination at the time of the study. Experiments
were performed at the Cardiology Unit of the S. Chiara Hospital
of Trento, Italy. Informed consent was provided by all subjects, and
the experimental protocol was approved by the Ethical Committee
of the hospital. Fifteen subjects were assigned to the tilt test (TT)
protocol, while the remaining 15 subjects participated to the PB
protocol. In both protocols, CV and cardiorespiratory signals were
acquired in the morning, in comparably comfortable and quiet
ambiance conditions with subjects in sinus rhythm. After a period
of 10 min allowed for stabilization of the subjects, signals were
acquired for 15 min in the resting supine position with sponta-
neous breathing. In the TT protocol, head-up tilting of the subjects
was then achieved passively using a motorized table, and signals
were acquired for further 15 min in the 60˚ upright position. In the
PB protocol, the second part of the experiment consisted in signal
acquisition for further 15 min with subjects inhaling and exhaling
in time with a metronome acting at 15 cycles per minute (forced
respiration at 0.25 Hz).

The acquired signals were the surface ECG (lead II), the
finger photoplethysmographic arterial blood pressure (Finapres,
Ohmeda), and the respiratory nasal flow (by differential pressure
transducer). Signals were collected simultaneously and digitized
at 1 kHz sampling rate and 12 bit precision. The beat-to-beat vari-
ability series of HP, SAP, and RF were then offline measured
respectively as outlined in Figure 1A. Specifically, the n-th car-
diac interval was identified from the ECG as the temporal interval
occurring between the n-th and the (n+ 1)-th R waves, and its
duration was taken as the n-th HP and denoted as T (n); the cor-
responding SAP and RF values, denoted as S(n) and R(n), were
measured respectively as the local maximum of the pressure signal
inside the n-th cardiac interval, and as the sample of the respira-
tory tracing taken at the onset of the n-th cardiac interval. This
measurement convention allows instantaneous (i.e., non-delayed)
effects from S(n) to T (n), as well as from R(n) to S(n) and to
T (n). The subsequent data analysis was performed on windows
of 300 beats, judged as stationary by visual inspection, taken in

the two conditions of each protocol, i.e., supine (su) and upright
(up) body positions for the TT protocol, and spontaneous (sp)
and paced (pa) respiration for the PB protocol (an example is in
Figures 1B–D). For each selected window, the measured series T,
S, and R were normalized to zero mean and unit variance prior to
the execution of non-linear analyses; for each series, normaliza-
tion was performed by mean subtraction followed by division to
the SD, thus obtaining the dimensionless normalized series t (n),
s(n), and r(n), n= 1,. . .,300.

ANALYSIS OF NON-LINEAR CAUSAL COUPLING
The assessment of non-linear causal coupling is performed accord-
ing to the approach proposed in (Faes et al., 2011a). This approach
is grounded on the notion of Granger causality (Granger, 1969),
that leads to compute the strength of the directional coupling from
one series to another, say from x to y, as the improvement in the
ability to describe y yielded by incorporating information from x
into the considered descriptive scheme. In this study, time series
description is framed in the information domain, and causality
is quantified exploiting the concept of CE. The CE quantifies the
amount of information carried by a time series, conditioned to the
knowledge of a so-called conditioning vector formed by properly
chosen samples of the available time series. As such, the CE is a
measure inversely related to the ability to describe a series, because
it drops to zero when the series is fully described by the assigned
conditioning vector. Then, the assessment of causality from x to
y is based on computing two times the CE of y, using different
conditioning vectors: in the first repetition the conditioning vec-
tor includes past samples of y only, in the second repetition it
includes past samples of both x and y. The difference between the
CE computed at the two repetitions is a measure of causality from
x to y, because it quantifies the amount of information carried by
y that can be explained exclusively by the past of x. This idea is at
the basis of the concept of transfer entropy proposed by Schreiber
(2000), and is exploited also in the present study. The novelty of
the approach used here, which is presented in detail in the next
subsections, stands in the procedures followed to define the condi-
tioning vector and to estimate the CE from time series data (Faes
et al., 2011a).

Scheme for conditional entropy computation
Entropy computation presupposes to work in a probabilistic
framework where, for instance, p(y(n)) is the probability for the
process underlying the measured series y to take the value y(n)
at the time instant n. Within this framework, the entropy of the
series y, H (y), measures the amount of information carried by its
most recent sample, y(n), and is defined as H (y)=−Σ p(y(n))·log
p(y(n)) (Porta et al., 1998). Then, to compute the CE we need to
determine a conditioning vector formed by properly chosen terms
of y and of the other available time series. Here a “term” is a time
series point identified with respect to the present time sample n:
for instance, y(n) is the current term of y, x(n− 1) is the first past
term of x, and so on. Formally, the CE of the series y conditioned
to the vector V, H (y |V ), is defined as the residual amount of infor-
mation carried by y(n) when the conditioning vector V is assigned,
and is commonly computed as an entropy rate: H (y |V )=H (y(n),
V )−H (V ).
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Since the CE is a measure of the degree of unpredictability
of a series when the conditioning vector is known, its interpre-
tation depends on how the conditioning vector is formed. For
instance, H (y |V ) is a measure of irregularity of y when V is com-
posed exclusively by past terms of y (Porta et al., 1998), while – as
shown in the next subsection – H (y |V ) can be exploited to assess
causality from x to y when V incorporates also past terms of
x. In either case, conditioning vectors are traditionally formed
according to an uniform scheme whereby all past terms up to a
maximum lag are selected simultaneously. However, uniform con-
ditioning introduces issues of arbitrariness and redundancy that
are likely to hinder CE estimation in many situations (Faes et al.,
2011a). To overcome this limitation, we follow here a condition-
ing scheme based on a non-uniform, sequential procedure that
builds progressively the conditioning vector by selecting, from
a properly defined set of initial candidate terms, the terms that
optimize the description of the observed series; optimization of
the description is intended here as minimization of CE. For the
generic series y and set of initial candidate terms Y, the proce-
dure starts with an empty conditioning vector V 0 and, at the k-th
step, tests all the candidate terms z∈Y computing the entropy
of y conditioned to the vector [z, Vk− 1], i.e., H (y |[z, Vk− 1]);
among all candidates, the selected term is the one which mini-
mizes the CE, i.e., the updated conditioning vector at step k is
Vk= [ź, Vk− 1] such that ź= arg min(H (y |[z, Vk− 1])). As stop-
ping criterion for the conditioning scheme, we chose to terminate
the procedure when a minimum of the CE is found, i.e., at the
step K such that H (y |VK) > H (y |VK− 1); in non-uniform con-
ditioning, the minimum obtained CE is taken as a measure of
the information carried by y when the set of initial candidates is
assigned, i.e., H (y |Y )=H (y |VK− 1). We note that the criterion
for candidate selection is based on information reduction (i.e., CE
minimization after testing all candidates at each step) rather than
on temporal ordering. Hence, it may happen that a past term is
selected before a more recent term; however, this does not affect
the resulting measure, as the joint probabilities used in entropy
computation are insensitive to the ordering of components within
vector variables.

An example illustrating the difference between uniform and
non-uniform conditioning is depicted in Figure 2. If we want to
compute the entropy for a generic time series y conditioned to
its own past, and we choose to include three terms into the con-
ditioning vector, the uniform scheme simply picks up the terms
y(n− 1), y(n− 2), and y(n− 3) to form the conditioning vector
Vu= [y(n− 1), y(n− 2), y(n− 3)] (Figure 2A); this vector is then
used to compute the CE value H (y |Vu) depicted in Figure 2C
(red dashed line). On the contrary, the non-uniform procedure
first defines a set of candidate terms [Y= {y(n− 1),. . .,y(n− 10)}
in this example, white circles in Figure 2B], then proceeds iter-
atively, testing at each step all the terms and selecting the one
which minimizes the CE: in the example, the first selected term
is y(n− 2), the second is y(n− 6), and the third is y(n− 4); the
three CE minimum values obtained progressively using the vectors
V 1= [y(n− 2)], V 2= [y(n− 2), y(n− 6)], and V 3= [y(n− 2),
y(n− 6), y(n− 4)] are depicted as blue squares in Figure 2C,
where the final CE value H (y |Y )=H (y |V 3) is also indicated (blue
dashed line). Note that the non-uniform procedure reaches a lower

FIGURE 2 | Illustrative example of CE computation for a representative

short sequence of a time series y (dots), with overlapped the terms

exploited for uniform conditioning [(A), red] and for non-uniform

conditioning [(B), blue]; in (B), empty circles denote the set of initial

candidate terms, while filled circles denote selected terms, with the

number indicating the step k at which selection occurred; the vertical

dashed lines mark the current time sample n. (C) CE computed after
uniform conditioning [H (y |Vu), red dashed line] and after non-uniform
conditioning [H (y |Y ), blue dashed line]; the CE computed at each step k of
the sequential procedure for non-uniform conditioning is indicated by blue
squares.

CE than the uniform one, indicating a higher capability of describ-
ing the time series which comes from the purposeful selection of
the candidate terms allowed by the repeated exploration of the
whole set of candidates.

Conditional entropy-based computation of causal coupling
The assessment of causality between two series taken from a multi-
variate data set in the information domain is based on performing
two times the procedure explained in Section “Scheme for Condi-
tional Entropy Computation,” modifying the conditioning vector
used to estimate the CE. Specifically, to assess causality from x to
y the procedure is repeated starting from different sets of initial
candidates: first, using the set Y 1 in which the past samples of the
series x are excluded; then, using the set Y 2 in which the terms of x
are included. The causal coupling from x to y is defined as the nor-
malized difference between the CE minima estimated for the two
repetitions of the procedure, i.e., Cx→ y= 1−H (y |Y 2)/H (y |Y 1).
The enlargement of the set of candidates at the second repeti-
tion allows the possibility for some terms from x to be included
in the conditioning vector describing y. When this happens, the
inclusion is interpreted as the existence of causality from x to
y ; in such a case, the CE decreases compared to the first repeti-
tion [H (y |Y 2) < H (y |Y 1)], and a positive causal coupling Cx→ y

is measured; in the limit case when the CE decreases to zero, the
maximum causal coupling Cx→ y= 1 is measured. On the con-
trary, when no terms from x are selected at the second repetition,
the CE is unchanged and Cx→ y= 0, indicating the absence of
causality. Note that the whole analysis may be performed reversing
the roles of the two series, so that the causal coupling from y to x,
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Cy→ x, is estimated. Finally, an index of directionality is defined as
the difference of the two causal couplings: Dx,y=Cx→ y−Cy→ x.
With this definition, the directionality index is positive (respec-
tively, negative) when the prevailing causal direction is that from
x to y (from y to x).

In this study, the role of the generic series x and y is assumed
by two of the available normalized variability series t, s, and r.
The sets of initial candidates may include, depending on the spe-
cific direction of interaction under analysis, the past values of the
normalized HP series, Yt= {t (n− τ),. . .,t (n− Lτ)}, SAP series,
Ys= {s(n− τ),. . .,s(n− Lτ)}, and RF series, Yr= {r(n− τ),. . .,
r(n− Lτ)}, where L is the number of candidate terms to be
included in the initial set for each series (L= 10 in this study).
Note that in this application the candidate terms are not immedi-
ately subsequent terms of the time series, but are separated in time
using a so-called time delay τ; the time delay is introduced to opti-
mize the description of the dynamics of each variable accounting
for its peculiar time scale (Small, 2005). In this study, the time
delay τ was optimized separately for each series by testing it on the
range (1, 20) and taking the lag such that the autocorrelation of
the series has first dropped below 1/e (the so-called decorrelation
time Small, 2005). Moreover, when appropriate the extended sets
Ỹ r = {r(n), Yr} and Ỹ s = {s(n), Ys} may be used in place of
Yr and Ys as they account for instantaneous causality. Specifically,
since the adopted measurement conventions allow for the exis-
tence of instantaneous causality from r(n) to s(n) and to t (n), as
well as from s(n) to t (n) (see Figure 1A), the extended set Ỹ r was
used in place of Yr to compute the CE of s and t, while the extended
set Ỹ s was used in place of Ys to compute the CE of t. With this
notation, we define the following indexes of causal coupling and
directionality for the VP regulatory loop:

Cr→s = 1− H
(
s| {Ys , Ỹr , Yt

})
H (s| {Ys , Yt }) , Cs→r = 1− H (r | {Ys , Yr , Yt })

H (r | {Yr , Yt }) ,

(1a)

Dr ,s = Cr→s − Cs→r , (1b)

the CP regulatory loop:

Cr→t = 1− H
(
t | {Ỹs , Ỹr , Yt

})
H
(
t | {Ỹs , Yt

}) , Ct→r = 1− H (r | {Ys , Yr , Yt })
H (r | {Ys , Yr }) ,

(2a)

Dr ,t = Cr→t − Ct→r , (2b)

and the CV regulatory loop:

Cs→t = 1− H
(
t | {Ỹs , Ỹr , Yt

})
H
(
t | {Ỹr , Y

}) , Ct→s = 1− H
(
s| {Ys , Ỹr , Yt

})
H
(
s| {Ys , Ỹr

}) ,

(3a)

Ds,t = Cs→t − Ct→s . (3b)

Figure 3 reports an illustrative example of estimation of the causal
coupling from RF to HP (i.e., from the series r to the series t ). In
the first repetition of the conditioning procedure (Figure 3A), the
series r is excluded from the analysis so that the conditioning

vector is formed drawing terms from the set of initial candi-
dates Y1 = {Ỹ s, Yt } = {s(n), s(n − τs), . . . , s(n − Lτs), t (n −
τt ), . . . , t (n − Lτt )}. In the second repetition (Figure 3B), all the
three series are used so that the set of initial candidates becomes
Y2 = {Ỹ s, Yt , Ỹ r} = {s(n), s(n − τs), . . . , s(n − Lτs), t (n −
τt ), . . . , t (n − Lτt ), r(n), r(n − τr ), . . . , r(n − Lτr )}. In the rep-
resentation of Figure 3 we set L= 10, while the optimal time
delays for the HP, SAP, and RF series are τt= 2, τs= 3, and τr= 1,
respectively. At the first repetition, the terms selected sequentially
from Y 1 are t (n− 2), s(n− 3), and t (n− 4), then the proce-
dure terminates at the step K= 4 because the CE minimum,
H (t |{Ỹ s, Yt }) = H (t |V3) , is reached at k= 3 (Figure 3C, black).
At the second repetition the first selected term is the same as before
[i.e., t (n− 2)], but with k= 2 a term from r, r(n), is selected
such that a lower CE is estimated; the final conditioning vec-
tor is V 3= [t (n− 2), r(n), s(n− 3)] and the corresponding CE
minimum, H (t |{Ỹ s, Ỹ r , Yt }), is lower than that at the first rep-
etition, so that the resulting causal coupling, Cr→ t, is larger than
zero.

Estimation of conditional entropy
The implementation of the procedure described above for quanti-
fying non-linear causal coupling requires estimation of the CE
from time series of finite length, which in turn relies on esti-
mation of entropy for any vector V composed of terms of the
analyzed time series (see Scheme for Conditional Entropy Compu-
tation). In this study we adopted the estimation strategy proposed
in (Porta et al., 1998, 1999), which is based on performing uni-
form quantization of the available time series to estimate CE in
terms of entropy rate, and then on introducing a corrective term

FIGURE 3 | Illustrative example of estimation of causal coupling from

respiratory flow to heart period time series. (A,B) Representative short
sequences of the three series t, s, and r (dots), plotted together with the
sets of initial candidate terms (circles, separated to each other by the lag τ

peculiar of each series) for the first repetition (A) and the second repetition
(B) of the conditioning scheme followed to estimate the causal coupling
from r to t ; filled circles denote the selected terms, with the number
indicating the step k at which selection occurred; the vertical dashed lines
mark the current time sample n. (C) Conditional Entropy computed for the
first (black) and second (red) repetitions of the conditioning procedure; the
candidate components selected at each step of the procedure are indicated
in the plot; horizontal dashed lines mark the resulting entropies
H(t |{Ỹ s, Yt}) and H(t |{Ỹ s, Ỹ r , Yt}), which, combined as in Eq. 2a, yield
the causal coupling Cr→ t .
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to compensate the estimation bias due to shortness of the analyzed
time series.

Specifically, each normalized series was coarse grained spread-
ing its dynamics over Q quantization levels, so that a symbol in the
range 1,. . .,Q is associated with each sample. For an assigned vec-
tor of k terms, uniform quantization corresponds to partitioning
the k-dimensional space, into which the terms may take values, in
Qk disjoint hypercubes, such that all vectors falling within the same
hypercube are considered as undistinguishable to each other. Once
the partition is assigned, entropies may be computed approximat-
ing the probabilities with their frequency of occurrence within the
hypercubes. In order for this approximation to hold reasonably,
a relation should exist between the number of quantization lev-
els Q and the number of time series point N such that N ≈Qk

(Porta et al., 1998). Therefore, we chose Q= 6 in this study where
N= 300 and the length of the conditioning vectors, k, is typically
equal to 3 or 4. The strategy for CE estimation is illustrated in the
example of Figure 4, which makes reference to the estimation of
the CE of the series t conditioned to the vector V 2= [t (n− 2),
s(n− 3)] [Figure 3A and H (t |V 2) in Figure 3C]. Figure 4A refers
to the estimation of the entropy H (V 2), where the range of all
possible values for the past terms t (n− 2) and s(n− 3) is quan-
tized in Q= 6 levels and then entropy is estimated extending the
summation to all hypercubes (which have square form in this
case with k= 2). In Figure 4B the dimensionality of the space
is increased as a consequence of considering the present term
t (n), and entropy is computed again. Finally, the CE results as
the information increase.

A problem with CE estimation consists in the bias due to bad
estimation of probabilities in high dimensional spaces and short
time series (Porta et al., 1999; Faes et al., 2011a). This bias affects
causality estimates, and prevents from reaching a CE minimum
to be used as stopping criterion for the sequential procedure of
candidate selection. The effect is due to the fact that, letting k
increase, an increasing number of vectors V will be found alone
within an hypercube of the k-dimensional space (gray squares in
the example of Figure 4A). As a consequence, the correspond-
ing vectors [y(n), V ] will be also alone inside an hypercube of
the (k+ 1)-dimensional space (gray squares in Figure 4B), and
therefore their contribution to the CE will be null. To counter-
act this bias, we use the corrected CE defined as (Porta et al.,
1999; Faes et al., 2011a): Hc(y |V )=H (y |V )+ n(V )·H (y(n)),
where n(V ) is the fraction of values for V that fall alone inside
a hypercube. With the correction, in the presence of a single
point inside a hypercube, its null contribution is substituted with
the maximal information amount carried by a white noise with
the same amplitude distribution of the observed series y [i.e.,
H (y(n))].

STATISTICAL ANALYSIS
We performed the Kolmogorov–Smirnov normality test for each
distribution of causal coupling index C and directionality index
D obtained for the various pairs of series in the various exper-
imental conditions. If normality was verified, a paired Student’s
t -test was used to check the significance of differences of C and D
between experimental conditions (su vs. up for the TT protocol,

FIGURE 4 | Example of space partitioning for CE computation at the

step k = 2 of Figure 3A (first repetition of the procedure). (A)To compute
H (V 2), all values assumed by the vector V 2 = [t (n− 2), s(n− 3)] are assigned
to hypercubes resulting from uniform quantization of the two coordinates
(gray grid); then, the entropy is computed as H (V 2)=−Σp(V 2)·logp(V 2). (B)

The analysis is repeated for all values assumed by the vector [t (n),
V 2]= [t (n), t (n− 2), s(n− 3)] to compute H (t (n), V 2)=−Σp(t (n),
V 2)·logp(t (n), V 2). In both cases, the probability p is estimated for an
hypercube as the frequency of occurrence of the points inside each
hypercube. Then, the CE is measured as H (t |V 2)=H (t (n), V 2)−H (V 2). The
corrected CE is finally computed as Hc(t |V 2)=H (t |V 2)+ n(V 2)H (t (n)), where
n(V 2) is the fraction of V 2 values found alone into a hypercube in panel (A)

(gray squares, n(V 2)= 4/47 in this example). Note that single points in (A)

remain always single also in the higher dimensional space in (B), while
other single points may arise in (B) (black squares).

or sp vs. pa for the PB protocol). The Student’s t -test was used also
to assess the significance of the directionality index D, i.e., to test
the hypothesis that the data in D come from a distribution with
zero mean. If the normality test was not fulfilled, the Wilcoxon
signed rank test for paired data was used in place of the Student’s
t -test.

We used the McNemar test for paired proportions to check
the significance of changes in the number of subjects for which
the causal coupling C was larger than zero (i.e., at least one
candidate term from x is selected at the second repetition of
the conditioning procedure for computation of Cx→ y) between
experimental conditions. In all tests, a p < 0.05 was considered
statistically significant.
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RESULTS
TIME DOMAIN ANALYSIS
A representative example of HP, SAP, and RF variability series
recorded in the different experimental conditions during the TT
and PB protocols is reported in Figure 1 (Figure 1B: su, sp;
Figure 1C: up, sp; Figure 1D: su, pa). The trends of the time
domain CV parameters for the whole population are summa-
rized in Table 1. While in the control condition of spontaneous
breathing in the supine position results were averaged over all
30 subjects, the statistical analysis was performed by paired tests
involving only the 15 subjects who underwent tilt testing or PB;
in the control condition, no differences were observed for the
time domain parameters computed between the groups partici-
pating to the two protocols. The mean HP decreased significantly
moving from the supine to the upright position, and increased
significantly moving from spontaneous to PB. The HP variabil-
ity, measured as the SD of the RR intervals, was unchanged
after tilt and increased significantly with PB. While the mean
SAP was not modified, its SD increased significantly during tilt
testing.

The optimal time delay for candidate selection estimated in
the supine position during spontaneous breathing, reported in
Table 2, was lower for the RF than for the SAP and HP series
(N= 30 subjects). When subjects moved to the upright position
(TT protocol, N= 15) the time delay increased significantly for
RF and HP series, and was stable for the SAP series. During paced
breathing (PB protocol, N= 15), the delay values decreased signif-
icantly for RF and HP series, while the decrease was not statistically
significant for the SAP series.

CAUSAL COUPLING AND DIRECTIONALITY ANALYSES
The results of causal coupling and directionality analyses per-
formed during the two considered experimental protocols are
summarized in Table 3. A graphical representation of the results
and statistical trends for coupling and directionality indexes is
reported in Figure 5 for the TT protocol, and in Figure 6 for the
PB protocol.

The control condition with subjects in the supine position
with spontaneous breathing is described by the distributions of

Table 1 |Time domain characterization of heart period (HP) and

systolic arterial pressure (SAP) variability during tilt test and paced

breathing protocols.

Supine,

spontaneous

breathing

(N = 30)

Upright,

spontaneous

breathing

(N = 15)

Supine,

paced

breathing

(N = 15)

Mean HP, ms 910± 116 696± 75** 1019± 126*

SD HP, ms 46± 19 41± 18 74± 38*

Mean SAP, mmHg 124.0± 24.9 117.0± 15.1 129.5± 24.4

SD SAP, mmHg 3.4± 1.4 5.9± 1.7** 3.6± 1.0

Values are mean±SD. *p < 0.05, **p < 0.005 vs. supine spontaneous breathing

(Paired test over N= 15 subjects).

white symbols in Figures 5 and 6, which show agreeing results.
Specifically, for VP interactions (Figures 5 and 6, white triangles)
the causal coupling distributions have non-zero median from RF
to SAP (Cr→ s), and zero median from SAP to RF (Cs→ r); how-
ever, the prevalence of causality from RF to SAP is not marked
enough to set statistically significant directionality Dr,s. The causal
coupling for CP interactions (Figures 5 and 6, white squares) is
clearly unidirectional, as Cr→ t is remarkable while Ct→ r has zero
median; moreover, a statistically significant directionality is set
from RF to HP variability. As to the CV loop (Figures 5 and 6,
white circles), both Cs→ t and Ct→ s have non-zero median, but
there is no prevalence of one of the two couplings as Ds,t is not
significantly different from zero.

Table 2 | Optimal time delay for the selection of candidate terms to be

tested in the estimation of conditional entropy.

Supine,

spontaneous

breathing

(N = 30)

Upright,

spontaneous

breathing

(N = 15)

Supine,

paced

breathing

(N = 15)

Respiratory flow 1.2± 0.4 1.5± 0.5* 1.0± 0.1*

Systolic arterial pressure 3.7± 1.5 3.6± 0.8 2.9± 1.4

Heart period 1.9± 0.6 3.8± 0.7** 1.5± 0.5*

Values are measured in beats and are expressed as mean±SD. *p < 0.05,

**p < 0.005 vs. supine spontaneous breathing (Paired test over N= 15 subjects).

Table 3 | Causal coupling index C and directionality index D computed

between respiratory flow (r ), systolic arterial pressure (s), and heart

period (t ) time series measured during the tilt test protocol (TT; su:

supine position, up: upright position) and during the paced breathing

protocol (PB; sp: spontaneous breathing, pa: paced breathing) in the

study of vasculo-pulmonary (VP), cardio-pulmonary (CP), and

cardio-vascular (CV) coupling.

TT protocol (N = 15) PB protocol (N = 15)

su up sp pa

VP Cr→ s 0.010 (8) 0.031 (9) 0.008 (8) 0.046** (12)

Cs→ r 0 (5) 0 (6) 0 (6) 0 (3)

Dr,s 0.010 0.022 0 0.046#**

CP Cr→ t 0.040 (13) 0** (4§) 0.113 (15) 0.079 (15)

Ct→ r 0 (1) 0 (2) 0 (2) 0 (4)

Dr,t 0.040# 0** 0.104# 0.067#

CV Cs→ t 0.022 (9) 0.118** (15§) 0.017 (9) 0 (6)

Ct→ s 0.035 (9) 0.046* (9) 0.017 (9) 0.011 (8)

Ds,t 0 0.072#** 0 0

Values are the median over 15 subjects; values in brackets are the number of

subjects (out of 15) for which non-zero causal coupling was found. *p < 0.05,

**p < 0.005 up vs. su and sp vs. pa (paired test); #p < 0.005, directionality index

D is different from zero (paired test); §p < 0.05, su vs. up or sp vs. pa (proportion

test).
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FIGURE 5 | Causal coupling index C (A) and directionality index D (B)

computed for subjects in the supine position (su, white symbols) and

in the upright position (up, black symbols) in the study of

vasculo-pulmonary (VP, triangles), cardio-pulmonary (CP, squares), and

cardio-vascular (CV, circles) coupling (r : respiration, s: systolic

pressure; t : heart period). Horizontal red marks denote the median of
each distribution. *p < 0.05, **p < 0.005 supine vs. upright; #p < 0.005,
directionality index D is different from zero.

When subjects are tilted in the 60˚ position (Figure 5), causal
coupling values do not change substantially between s and r,
decrease significantly from r to t, and increase significantly both
from s to t and from t to s. As a result, in the upright position
directionality is still non-significant for VP interactions, disap-
pears for CP interactions, and is set from s to t in the CV regulatory
loop (Figure 5B; Table 3). When subjects undergo PB (Figure 6),
the causal coupling increases significantly from r to s and does
not change significantly along any other direction compared to
spontaneous breathing. As a result, directionality is set from r
to s in the VP loop, remains significant from r to t in the CP
loop, and remains non-significant in the CV loop (Figure 6B;
Table 3).

The results of causal coupling and directionality analysis are
reflected by looking at the trends of the proportion of subjects
for which the adopted conditioning procedure reveals significant
causality. As summarized in Table 3 and depicted in Figure 7A,
moving from the supine to the upright position the number of
subjects for which at least one term from r is selected to describe
t decreases significantly, while the number of subjects for which
at least one term from s is selected to describe t increases sig-
nificantly. During forced respiration, noticeable variations in the
number of subjects for which candidate terms from the input
series are selected to describe the output series, though not reach-
ing statistical significance, can be observed from r to s, from s to
r, and from s to t (Figure 7B). These results suggest that HP
variability is driven to a larger extent by SAP and to a lesser

FIGURE 6 | Causal coupling index C (A) and directionality index D (B)

computed for subjects during spontaneous breathing (sp, white

symbols) and during paced breathing (pa, black symbols) in the study

of vasculo-pulmonary (VP, triangles), cardio-pulmonary (CP, squares),

and cardio-vascular (CV, circles) coupling (r : respiration, s: systolic

pressure; t : heart period). Horizontal red marks denote the median of
each distribution. **p < 0.005 spontaneous vs. paced breathing;
#p < 0.005, directionality index D is different from zero.

FIGURE 7 | Number of subjects (N ) for which at least one candidate

term of the input series is selected in the causality analysis (i.e., the

causal coupling index is non-zero) during the tilt test protocol [(A); su:

supine position; up: upright position] and during the paced breathing

protocol [(B); sp: spontaneous breathing; pa: paced breathing] in the

study of vasculo-pulmonary (VP), cardio-pulmonary (CP), and

cardio-vascular (CV) coupling (r : respiration, s: systolic pressure; t :

heart period). §p < 0.05, su vs. up or sp vs. pa.
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extent by RF during TT, and that SAP is more driven by RF
during PB.

DISCUSSION
In this study we exploited an information domain approach to
characterize directionality in CV and cardiorespiratory interac-
tions. The method is based on quantifying the information transfer
from one variability series to another as the (normalized) amount
of information carried by the second series that can be explained
exclusively by the first series, in agreement with the notion of
Granger causality. We remark that our method performs a “black
box” analysis in which physiological mechanisms are not directly
probed but are tested from time series data, and that it is based
on the assessment of the coupling strength along predetermined
causal directions. Therefore, it cannot provide deep information
about some basic structures of physiological closed-loop systems
such as distinguishing between excitatory or inhibitory or, accord-
ing to the control system theory, between negative or positive
closed-loop systems. Nevertheless, the method is quite helpful in
the evaluation of closed-loop interactions between time series.
This skill was demonstrated for simulated time series in Faes
et al. (2011a), and has been exploited in this study to detect the
presence of open-loop or closed-loop interactions between two
physiological variability series. Indeed, comparing the informa-
tion transferred along the two causal pathways of the closed-loop
interaction between two series we may infer the dominant causal
direction: for instance, if the information transfer from SAP to HP
is higher than that from HP to SAP, we conclude that causality
of CV interactions is set from SAP to HP. The same analysis per-
formed between RF and SAP, and between RF and HP, allowed us
to investigate causal couplings and dominant directions of inter-
action for the VP regulation and the CP regulation, respectively.
Moreover, the utilization of paired tests applied between direc-
tions of interaction, or between conditions, brought statistical
significance respectively to the observed presence of dominant
causal directions, or to the observed modifications of coupling
mechanisms occurring in the two considered experimental pro-
tocols. To favor physiological interpretation of the main findings,
a graphical representation of the statistical results is reported in
Figure 8.

METHODOLOGICAL ASPECTS
The information theoretic approach utilized in this study to
assess directional interactions was specifically devised to deal with
experimental time series measured from complex physiological
systems (Faes et al., 2011a). The proposed method is grounded
on the concept of transfer entropy (Schreiber, 2000), and fol-
lows a recent generalization of this concept – denoted as partial
transfer entropy – dealing with estimation of causal information
flow within a network of multiple interacting time series (Vako-
rin et al., 2009). Despite the appeal of these information-based
tools in causality assessment, their utilization in experimental time
series analysis is usually a daunting task, because entropy esti-
mation is problematic in the presence of short and noisy time
series. With the aim of dealing with this issue, the two main pecu-
liarities of the approach proposed in (Faes et al., 2011a) help to
improve the estimation of CE and, consequently, the identification

FIGURE 8 | Graphical representation of the results of causality analysis

in the three considered conditions: supine position, spontaneous

breathing (A), upright position, spontaneous breathing (B), and supine

position, paced breathing (C). Arrows between two variability series (r :
respiration, s: systolic pressure; t : heart period) are present when the
corresponding causal coupling index is non-zero in at least half of the
subjects (i.e., the index C has a non-zero median). The style of the arrow is
arranged so that to reflect the statistical significance of changes in the
index C observed between conditions (i.e., the coupling is significantly
stronger for solid arrows than for dashed arrows, and for bold arrows than
for solid arrows). Further, the statistical significance between the two
causal directions for a given condition (i.e., the significance of the
directionality index D) is marked with an asterisk.

of causality: the sequential procedure for candidate selection over-
comes the issues of redundancy and arbitrariness which often
lead to detection of spurious directionality, while the utilization
of a corrected estimator for the CE (Porta et al., 1998, 1999)
compensates the bias otherwise affecting traditional estimates.
These methodological improvements allow one to obtain accu-
rate causal coupling estimates, and then to exploit the potential
advantages of information domain approaches to the study of
time series interactions. For instance, these approaches do not
make strong assumptions about the nature of the investigated
dynamics (e.g., linear stochastic or non-linear deterministic), so
that they can be used for CV and cardiorespiratory analysis where
the type of interaction cannot be stated a priori. On the con-
trary, other very popular indices able to detect causal coupling
in bivariate or multivariate time series, i.e., the causal coherence
(Porta et al., 2002) and the partial directed coherence (Baccalà
and Sameshima, 2001), are devised to deal with linear stochas-
tic autoregressive processes and thus may fail when non-linear
causality occurs and, more generally, when the underlying model
does not fit the observed data. While limitations related to the
linearity assumption are overcame by recently proposed methods
such as non-linear autoregressive exogenous models (Faes et al.,
2008a; Riedl et al., 2010) or kernel Granger causality (Marinazzo
et al., 2008), these methods may suffer from the shortcomings of
model misspecification. Model misspecification is a key issue in
modeling connectivity, which can be critical when complex para-
metric models are identified on short and noisy multivariate time
series. Working under the information theoretic framework, the
method used in this study offers the advantage of not requiring the
prior specification of a model for the investigated interactions. We
note that similar model-free statistics for causality detection might
be developed extending to the multivariate case other suitable
frameworks for time series analysis, such as cross-sample entropy
(Richman and Moorman, 2000), local non-linear prediction (Faes
et al., 2008b) and causal symbolic coupling traces (Wessel et al.,
2009).
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Information domain approaches have been already proposed
for the assessment of causality in CV interactions (Nollo et al.,
2002; Palus et al., 2004; Porta et al., 2011b). In particular, Porta
et al. (2011b) have recently shown that cross-CE indexes perform
better than more traditional approaches relying on the transfor-
mation of frequency domain phase shifts into time delays (Taylor
and Eckberg, 1996; Pitzalis et al., 1998; Cooke et al., 1999). Though
widely used, approaches inferring causality from a phase diagram
require prior knowledge to solve the ambiguities related to mul-
tiple admissible phase values (e.g., comparison of time lags from
SAP to HP with expected baroreflex latency) and, even with that
knowledge, may be misleading (Porta et al., 2011b). On the con-
trary, information domain methods as well as other methods
based on the concept of Granger causality (Granger, 1969) are
directly linked to the concept of directionality as they incorpo-
rate the flow of time in the procedure developed to estimate the
causality index. As this property is shared by many methods for
causality assessment, ranging from linear and non-linear para-
metric models (Baccalà and Sameshima, 2001; Faes et al., 2008a)
to symbolic coupling traces (Wessel et al., 2009), we expect that
also the causality indexes derived through these methods are able
solve the ambiguities related to estimation of causality from phase
diagrams.

A key property of the information domain approach proposed
in this study stands in its multivariate nature, which lets it to out-
perform the bivariate approaches followed so far for estimation
of causality in CV and cardiorespiratory interactions (Nollo et al.,
2002, 2009; Faes et al., 2008a; Suhrbier et al., 2010; Kabir et al.,
2011; Porta et al., 2011b). Indeed, the consideration of variables
other than the two specifying the causal direction under analysis
makes it possible to quantify complex interactions between two
variables avoiding the confounding effects of the others (Vakorin
et al., 2009). This property allows one to elicit the direct causal
effects between the two considered variables, i.e., the effects not
mediated by the other considered variables. In the context of our
application, this is extremely useful to clarify the nature of joint
exogenous influences of respiration on cardiac and vascular vari-
ability series. In particular, the joint multivariate analysis of RF,
SAP, and HP interactions can be used to rule out possible con-
founding effects of CP and VP couplings on the estimation of CV
interactions.

This study exploits a method based on amplitude quantiza-
tion to assess causality between two variability series. As such,
the method works in practice on sequences of symbols obtained
after uniform partitioning of the vector coordinates for each
time series. Similar coarse graining procedures are followed by
cross-approximate entropy and cross-sample entropy methods
(Richman and Moorman, 2000), as well as by methods based on
symbolization (Baumert et al., 2005; Wessel et al., 2009), which
perform a non-uniform partition of the series amplitudes. There-
fore, the coupling indexes derived from these approaches capture
relationships related to the dominant oscillations in the time
series. With reference to our application, these dominant oscil-
lations are likely the Mayer waves in the upright tilting position,
the respiration-related waves during PB, and a combination of
both waves during spontaneous breathing in the supine position
(Malliani, 1999). Thus, although the estimated causal couplings

cannot be assessed for specific oscillations as done by linear fre-
quency domain measures (Porta et al., 2002; Faes and Nollo, 2010),
they provide an overall information related to the dominant phys-
iological mechanisms in each specific condition, intended as the
mechanisms inducing the larger amplitude variations in the time
series. The emergence of dominant oscillations during TT and
PB protocols (which is also visible in the example of Figure 1) is
confirmed indirectly by the analysis of the time delays peculiar of
each variability series in the different conditions. Indeed, besides
serving in the optimization of the temporal range to be used for
candidate selection in non-linear analysis, these delays indicate
also the decorrelation time of each series. The reported values
suggest that cardiac, vascular, and respiratory dynamics tend to
be slower during tilt testing and faster during PB. This presum-
ably reflects the presence of a dominant low frequency oscillation
in the upright position, which is enhanced by the sympathetic
activation consequent to tilt on one side, and the presence of a
dominant, respiration-driven oscillation during PB on the other
side.

ANALYSIS OF CARDIO-VASCULAR INTERACTIONS
The study of the causal coupling along the two directions of the
CV loop confirmed that HP and SAP are likely to interact in a
closed-loop, according to the possible existence of neural barore-
flex feedback mechanisms acting from SAP to HP on one side, and
of mechanical feedforward mechanisms acting from HP to SAP on
the other side (Saul et al., 1991; Taylor and Eckberg, 1996; Mullen
et al., 1997; Nollo et al., 2005; Porta et al., 2011b). With the sub-
jects lying in the supine position and breathing spontaneously, we
observed a detectable information transfer through both feedback
and feedforward pathways of interaction (Figures 6A, 7A, and
8A). Since the directionality index was not significantly different
from zero, we conclude that feedback and feedforward mecha-
nisms are balanced in this resting condition. At variance with
this result are the findings of previous studies performing pure
bivariate analyses of SAP and HP series, which indicated in supine
healthy subjects the prevalence of feedforward mechanisms from
HP to SAP over the baroreflex-mediated effects of SAP on HP
(Nollo et al., 2005, 2009; Faes et al., 2008a; Porta et al., 2011b).
We ascribe the difference to the fact that our analysis of causal-
ity between SAP and HP explicitly includes RF, separating its
direct contributions to CV variability. Therefore it is likely that,
while direct effects between SAP and HP are balanced, bivari-
ate analyses implicitly accounting for indirect effects mediated
by respiration detect a stronger coupling over the feedforward
branch of the loop. This supposition is also supported by the
stronger driving which RF seems to apply on HP than on SAP
(Figure 8A).

The causal interactions between SAP and HP variability were
substantially modified during the two considered experimen-
tal protocols. When subjects were tilted from the supine to the
upright position, the reciprocal interaction between the two CV
variables was substantially enhanced (Figures 5A and 8B). Specif-
ically, the causal coupling was increased over both pathways of
the CV loop, with a particular enhancement over the feedback
direction documented by the significant directionality set from
SAP to HP. These results agree with bivariate analyses performed

Frontiers in Physiology | Computational Physiology and Medicine November 2011 | Volume 2 | Article 80 | 108

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Faes et al. Cardio-vascular and cardiorespiratory information transfer

in similar protocols (Nollo et al., 2005, 2009; Faes et al., 2008a;
Porta et al., 2011b), and document the increased involvement of
the baroreflex in controlling heart rate consequent to the tilt-
induced activation of the sympathetic nervous system. In this
case, the agreement with bivariate measures is likely related to
the lower importance of direct effects of respiration on cardiac
and vascular variability in the upright position. During PB, direct
influences between HP and SAP were not modified substan-
tially (no statistically significant changes are denoted in Figure 6
for CV causal couplings and directionality measures), although
a tendency to decreasing of the feedback causal coupling was
noticed (Figures 5A and 8C). Since in this condition CP and
VP mechanisms seem predominant (Figure 8C), we advocate the
necessity of a multivariate approach like ours to properly charac-
terize CV regulation; simple bivariate approaches involving only
SAP and HP series in PB protocols (Pitzalis et al., 1998) may
indeed be misleading because they tend to reflect more the dif-
ferent strength and latency with which RF affects directly HP
and SAP, rather than the true direct coupling between HP and
SAP.

ANALYSIS OF CARDIO-PULMONARY AND VASCULO-PULMONARY
INTERACTIONS
The utilization of a multivariate approach able to elicit direct
effects from one series to another allowed us to disambiguate the
effects of respiration on the two CV variables, through the separa-
tion of CP and VP interactions from CV interactions. Our analysis
of CP and VP interactions indicates that, when present, significant
causal coupling occurred always from respiration to HP or arterial
pressure, and never over the opposite direction (the distributions
of Cr→ t and Cr→ s always have zero median). This result confirms
the expected role of respiration acting as an exogenous variable on
the CV loop (Cohen and Taylor, 2002). Moreover, since the result
is derived without imposing causality from RF to SAP and/or HP
as done in open-loop modeling studies (Baselli et al., 1994; Porta
et al., 2000a), the result confirms on physiological data the abil-
ity of the approach to capture unidirectional causal interactions
between variables.

As regards the strength of the unidirectional coupling in CP
and VP interactions, we found that, in the supine position with
spontaneous breathing, the information transfer originating from
respiration variability is detectable toward both CV variables
(Figures 6A, 7A, and 8A). The causal coupling from RF to HP
quantifies the strength of respiratory influences affecting the heart
rate independently of arterial pressure changes. Therefore, this
coupling can be taken as a measure of the central effects of the
respiratory drive on the cardiac vagal motor neurons, reflecting a
central mechanism underlying respiratory related fluctuations in
the heart rate (Gilbey et al., 1984). On the other hand, the cou-
pling from RF to SAP is thought as the result of the perturbing
action of breathing on intrathoracic pressure, causing fluctuations
in stroke volume, cardiac output, and thus blood pressure (Toska
and Eriksen, 1993; Triedman and Saul, 1994).

The modifications of these two causal couplings observed dur-
ing PB (Figures 6 and 8A,C) may be explained considering that
voluntary control of respiration is likely to change respiratory

parameters, thus affecting SAP and HP variability through both
peripheral and central respiratory effects on the basic CV reflexes
(Eckberg, 2000; Pinna et al., 2006). In particular, Pinna et al. (2006)
found that PB at 0.25 Hz is accompanied by an increased respira-
tory drive (increased tidal volume and minute respiration), which
in turn increases the amplitude of respiratory related oscillations
in SAP but not in HP variability. Accordingly, we may interpret the
increase of coupling from RF to SAP with the increased mechan-
ical effect of the respiratory drive on intrathoracic pressure, and
the absence of significant modifications in the coupling from RF to
HP with the negligible effect of tidal volume on respiratory sinus
arrhythmia (Cooke et al., 1998; Pinna et al., 2006).

During head-up tilt, the observed absence of causal coupling
from RF to HP (Figures 5 and 8A,B) may be explained with regard
both to physiological mechanisms and to the adopted method-
ology. Physiologically, the shift of the sympathovagal balance
toward sympathetic activation and vagal withdrawal occurring
with the assumption of the upright position decreases the ampli-
tude of respiration-related HP oscillations (Montano et al., 1994;
Cooke et al., 1999), and this phenomenon is likely reflected in our
study by the decreased causal influence of RF on HP variability.
Methodologically, the decrease of respiration-related oscillations
and the contemporaneous increase of low frequency, respiration-
unrelated HP oscillations consequent to tilt is likely to mask causal
effects at the respiratory frequency, which are not detected because
the predominant part of the information transfer is that regarding
low frequency oscillations. On the contrary, the substantially unal-
tered causal coupling measured from RF to SAP after the tilting
maneuver is in agreement with findings indicating that respiratory
fluctuations in arterial pressure are preserved, in their proportion
to low frequency fluctuations, in the upright position (Taylor and
Eckberg, 1996; Cooke et al., 1999).

RESPIRATORY FLUCTUATIONS IN CARDIAC AND VASCULAR
VARIABILITY
In the previous section we have discussed the direct mechanisms
that may determine respiration-related fluctuations in heart rate
and arterial pressure. Here we integrate the discussion exploiting
the combined analysis of the causal couplings measured for CP
and VP interactions on one side, and for CV interactions on the
other side, to compare direct and indirect mechanisms underlying
the effects of RF on HP and on SAP.

The effects of RF on HP, commonly denoted as respiratory
sinus arrhythmia, are exerted according to two possible – and
still debated – driving mechanisms, i.e., the central vagal effects
of RF on HP, and the mechanical effects of RF on SAP which
are transferred to HP through the baroreflex (Gilbey et al., 1984;
Toska and Eriksen, 1993; Eckberg, 2009). According to our results,
both these mechanisms seem to be present at rest, with a preva-
lence of the central mechanism suggested by the strong direct
causal coupling from RF to HP (Figure 8A). During head-up
tilt the baroreflex-mediated mechanism seems to be predomi-
nant, as the coupling is preserved from RF to SAP, is increased
from SAP to HP, and is blunted from RF to HP (Figure 8B). On
the contrary, respiratory sinus arrhythmia seems to be driven by
the direct mechanism from RF to HP during PB, in a way even
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stronger than during spontaneous breathing (Figure 8C). As to
respiratory fluctuations in SAP variability, we found that the direct
component representing respiration-induced effects on stroke vol-
ume (Innes et al., 1993; Toska and Eriksen, 1993) is detectable
in all conditions (Figure 8). Moreover, indirect effects mirroring
the transmission of HP fluctuations through mechanical feedfor-
ward mechanisms (Taylor and Eckberg, 1996; Mullen et al., 1997)
cannot be excluded, especially in the supine position with either
spontaneous or PB.

The discussion above reported completes the characterization
of the possible mechanisms underlying the generation of car-
diac and vascular variability, as can be done by our multivariate
approach considering the information transfer between HP, SAP,
and RF time series. It is worth noting that our interpretations can-
not describe sources of variability due to regulatory mechanisms
which do not involve the three observed variables; these mecha-
nisms may possibly include central autonomic effects determining
directly HP variability (Cooley et al., 1998), or mechanisms regu-
lating SAP variability via control variables different from HP and
RF (Baselli et al., 1988).

CONCLUSION
The main advantages of the approach applied in this study to
assess directional interactions in CV and cardiorespiratory vari-
ability can be summarized as: the general applicability (the method
captures both linear and non-linear interactions); the possibility to
quantify the coupling strength reflecting directional mechanisms,
such as baroreflex and CP couplings, which work in physiological,
closed-loop conditions; and the multivariate nature that allows
one to account for the disturbing action of several variables on
the causal interactions between the pair of signals under focus,
as done in the characterization of respiration-driven mechanisms.
The analysis performed in resting physiological conditions and in
response to widely used experimental maneuvers indicated that
the approach is able to reflect well known regulatory mechanisms
of CV and cardiorespiratory physiology, as well as to support the
interpretation of other more debated mechanisms. Hence, the
approach may be favorably suggested for the description of mecha-
nism impairment in a wide spectrum of CV and cardiorespiratory
pathologies, ranging from heart failure to neurally mediated and
breathing disorders.
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Purpose of Study: The aim of this study was to characterize the central-autonomic inter-
action underlying the multifractality in heart rate variability (HRV) of healthy humans.
Materials and Methods: Eleven young healthy subjects participated in two separate
∼40 min experimental sessions, one in supine (SUP) and one in, head-up-tilt (HUT), upright
(UPR) body positions. Surface scalp electroencephalography (EEG) and electrocardiogram
(ECG) were collected and fractal correlation of brain and heart rate data was analyzed
based on the idea of relative multifractality. The fractal correlation was further examined
with the EEG, HRV spectral measures using linear regression of two variables and princi-
pal component analysis (PCA) to find clues for the physiological processing underlying the
central influence in fractal HRV. Results: We report evidence of a central-autonomic frac-
tal correlation (CAFC) where the HRV multifractal complexity varies significantly with the
fractal correlation between the heart rate and brain data (P = 0.003). The linear regression
shows significant correlation between CAFC measure and EEG Beta band spectral com-
ponent (P = 0.01 for SUP and P = 0.002 for UPR positions). There is significant correlation
between CAFC measure and HRV LF component in the SUP position (P = 0.04), whereas
the correlation with the HRV HF component approaches significance (P = 0.07).The corre-
lation between CAFC measure and HRV spectral measures in the UPR position is weak.
The PCA results confirm these findings and further imply multiple physiological processes
underlying CAFC, highlighting the importance of the EEG Alpha, Beta band, and the HRV
LF, HF spectral measures in the supine position. Discussion and Conclusion:The findings
of this work can be summarized into three points: (i) Similar fractal characteristics exist
in the brain and heart rate fluctuation and the change toward stronger fractal correlation
implies the change toward more complex HRV multifractality. (ii) CAFC is likely contributed
by multiple physiological mechanisms, with its central elements mainly derived from the
EEG Alpha, Beta band dynamics. (iii) The CAFC in SUP and UPR positions is qualitatively
different, with a more predominant central influence in the fractal HRV of the UPR position.

Keywords: multifractal HRV, central nervous system, autonomic nervous system, fractal correlation

1. INTRODUCTION
Heart rate regulation in healthy humans is known to exhibit com-
plex variability over an extensive dynamic range. Specifically in the
beat-to-beat RR interval (RRi) sequence, the underlying fluctua-
tion is intrinsic (Aoyagi et al., 2000, 2003; Amaral et al., 2001) and
exhibit scale-free characteristics of the multifractal type (Ivanov
et al., 1999; Sassi et al., 2009). The scale-free component of the
heart rate variability (HRV) is of basic importance. Not only is
this dynamic feature broadly observed in diverse natural and arti-
ficial systems (Task Force of ESC and NASPE, 1996; Gisiger, 2001),
it also carry relevant information in the clinical context, where
a diminishing fractal HRV was consistently reported in various
heart disease processes (Task Force of ESC and NASPE, 1996;
Komatsu et al., 1997; Lombardi, 2000; Mahon et al., 2002), and
in old age (Makikallio et al., 2001; Kors et al., 2007). Although the
HRV scale-free dynamics has been a subject of intense study, its
dynamic origin and possible functional correlates remain largely
unclear.

The sympathetic (SNS) and parasympathetic (PNS) branches
of the autonomic nervous system (ANS) are known to have
strong influence on the pace maker cells of the heart (Aksel-
rod et al., 1981; Task Force of ESC and NASPE, 1996; Malliani
et al., 1997). However, the complex interaction between SNS and
PNS does not provide an immediate characterization of the frac-
tal HRV. For example, via pharmaceutical means, SNS blockade
is known to have a minor effect on the multifractal property
of HRV, but PNS blockade can dramatically change the HRV
scale-free dynamics into one characterized by a much narrower
range of scaling exponents (Amaral et al., 2001; Gisiger, 2001).
In passive head-up-tilt (HUT), where there is a SNS activation
and PNS withdrawal caused by the reduced baroreflex afferent
input (Tulppo et al., 2001), the change of the HRV multifractal
property may not follow these pharmaceutical effects interpreted
separately (Lin and Sharif, 2010). It is thus plausible, at least in pas-
sive HUT, that other factors exist to influence the HRV scale-free
dynamics.
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One potential source that could provide further insights of
fractal HRV is the central nervous system (CNS). While fractal
fluctuation can emerge from the spontaneous activity of cultured
cardiac myocytes (Kucera et al., 2000), the changing fractal HRV
properties reported in sleep (Bunde et al., 2000; Brandenberger
et al., 2001; Van den Berg et al., 2005; Togo et al., 2006; Pereda
and Gonzalez, 2008) and mental exercise (Lucini et al., 1997; Peng
et al., 1999; Kubota et al., 2001; Phongsuphap et al., 2008) provide a
stronger support for a central-autonomic interaction in the HRV
scale-free dynamics. In general, the central influence on cardiac
functions is well known (Loewy and Spyer, 1990; Dampney et al.,
2002). Despite the brainstem centers that interact with the afferent
inputs, “direct” central command can trigger efferent responses to
influence heart rate and blood pressure in such events as antici-
pation of threat (Loewy and Spyer, 1990; Dampney et al., 2002),
onset of exercise (Goodwin et al., 1972; Loewy and Spyer, 1990;
Dampney et al., 2002). However, specific to the fractal compo-
nent of HRV, the potential role of CNS, whether anatomical or
functional, is mostly unclear.

The objective of the present study is to examine and charac-
terize the central link in fractal HRV. The presence of the central
component implies that the fractal properties of the heart rate
and brain activity data should be correlated to each other. But
fractal correlation of time series should be interpreted differ-
ently from the commonly used two-point correlation based on
the second order statistics. There are at least two reasons to make
such a distinction. First, fractal characterizes the property of a
distribution and cannot be fully described using only the sec-
ond order statistics (Falconer, 1990). For example, the two-point
cross correlation of fractal signals is self-similar and qualitatively
the same. Secondly, physiological data are not purely fractal sig-
nal and can exhibit rhythmic oscillation in a narrow frequency
band. Such Fourier modes can lead to a false impression of the
two-point cross correlation that has little to do with the fractal
component. A novel solution to the fractal correlation problem
in general was independently developed by Riedi and Scheuring
(1997), and Lévy-Léhel and Vojak (1998). Among others, their
main idea implies the scaling exponents of the time series is not
sufficient to describe the fractal correlation and the need for a mul-
tivariate approach. Indeed, time series can be coupled to exhibit a
wide range of fractal correlation without changing the underlying
scaling exponents (Lin and Sharif, 2007; Appendix A). It is thus
believed that a bi-variate multifractal approach is necessary for the
current investigation.

The main goals of the paper are to report evidence of a central-
autonomic fractal correlation (CAFC) in the heart rate and brain
data from the passive head-up-tilt (HUT) experiment. The CAFC
was further examined based on the regression with HRV and EEG
frequency domain measures. Both linear regression of two vari-
ables and principal component analysis (PCA) were employed to
gain insights of the physiological processes underlying CAFC.

2. MATERIALS AND METHODS
2.1. SUBJECTS AND EXPERIMENTS
Eleven subjects (eight males and three females; age: 25.72± 4.3-
year-old; weight: 69.48± 12.2 kg; height: 173.83± 8.2 cm)
without known cardiovascular, pulmonary, and neurological

conditions participated in the study. Our experiment is a pas-
sive HUT body maneuver, which is sufficient to exert measurable
effects on the ANS and the fractal HRV property (Tulppo et al.,
2001). All subjects were fully explained about the goal and detail
of the test reviewed and approved by the University Ethic Board,
and signed an informed consent form.

The pre-test protocol requires the subject to maintain normal
daily activity and routine, and have sufficient sleep. Heavy exercise
and alcohol consumption were not allowed before the test. The
subjects were asked to stay calm and remain steady on a tilt table
with foot rest and to keep their eyes open. Moreover, only sponta-
neous breathing protocol was considered. For the tilt test, subjects
were first in the SUP position for 10–20 min before tilted up to
a 75˚ UPR position. The test was conducted in a temperature-
controlled and shielded room of slightly dim lighting condition
(≤200 lx). No syncope event occurred in the tilt test.

Standard electrocardiogram ECG (five-lead) recording and
electroencephalography EEG bipolar measurement (International
10-20 system) were taken simultaneously via a 16-bit ADC ambu-
latory recorder at a 256 Hz sampling rate (g.MobiLab, GTEC Inc.,
Austria). The recorder has a hardcoded passband of 0.01–100 Hz
for the ECG recording and 0.01–30 Hz for the EEG recording. The
R wave in ECG was examined and any skip beat or erroneous
detection (due mostly to a significant P wave in ECG) was manu-
ally corrected. These problematic beats account for a small portion
of the entire record. On average, there are 3,849 uninterrupted
RRi in SUP (mean± SD: 0.965± 0.079 s) and 5,308 RRi in UPR
(mean± SD: 0.662± 0.055 s). All data analyzed below are based
on the frontal site recordings (FP1-FC3, FP2-FC4). Neighboring
frontal sites (AF3-F3, AF6-F4) were also recorded and showed
similar results.

2.2. RELATIVE MULTIFRACTALITY BETWEEN TIME SERIES
The traditional multifractal analysis of a time series is achieved
in two technical steps: first, estimate the singularity exponent, α,
which quantifies the fluctuation strength from one sample to the
next, and, second, calculate the multifractal spectrum, f(α), of the
intervals in which α is observed. The value of f(α) is also pro-
portional to the number of intervals that exhibit the fluctuation
strength α (Falconer, 1990). Hence, the larger the f(α) is, the more
frequent the fluctuation strength α is observed. The width of f(α)
is an important indicator for fractal complexity and one of the
primary variables used in this work. When the fluctuation is char-
acterized by one single α=α0, such as the fractional Brownian
motion, f(α) reduces to a singleton: i.e., f(α0)= 1 at α=α0 and
f(α)= 0 for α �=α0 (Falconer, 1990). In this case, the width of
f(α) is 0 and the fluctuation is considered relatively simple since
it is uniformly “the same.” This is to compare to the case where
α spans an interval, such as the binomial cascade (Falconer, 1990;
Riedi and Scheuring, 1997; Lin and Sharif, 2007 and Appendix A).
In this case, f(α) has a finite width and the fluctuation is consid-
ered complex since it consists of a mixture of different fluctuation
strengths. The width of f(α) can therefore properly measure the
fractal complexity of a time series.

Riedi and Scheuring (1997), and Lévy-Léhel and Vojak (1998)
made an important extension to the multifractal analysis. These
authors introduced the idea of relative multifractality (RM) by
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using the fractal property of one time series to measure that of the
other. While the technical details remain similar, one now focuses
on the relative singularity exponent, denoted as αRM. It is in this
setting that the fractal correlation is addressed. In particular, for
identical fractal time series, αRM= 1, which simply reflects the
same fluctuation of the time series. Having a constant αRM also
implies the corresponding f(αRM) is a singleton of zero width. In
general, strongly correlated fractal properties imply a small αRM

range and a small f(αRM) spectrum width. As the difference of
fluctuation in time series widens, in both the αRM value and the
interval scale in which αRM is observed, the αRM range increases
and f(αRM) attains a finite width (Lévy-Léhel and Vojak, 1998;
Lin, 2008; Lin and Sharif, 2010; Lin and Sharif, 2007; Riedi and
Scheuring, 1997). Hence, the width of f(αRM) of two time series
measures a different property from the width of f(α) of a sin-
gle time series; namely, a smaller (larger) f(αRM) width implies a
stronger (weaker) fractal correlation between the time series.

To employ RM in the present work, we first constructed the
aggregated EEG sequence based on the RRi. Let the EEG be e(t ),
and RRi, and its time stamp be r(n), t (n)=�nr(i), respectively.
The aggregated EEG sequence is defined by: y(n)=�e(t ′)/Mn for
t ′ in [t (n− 1), t (n)], n= 1,2, . . ., where Mn denotes the number
of EEG samples in [t (n− 1), t (n)]. To perform RM analysis, the
method of joint wavelet transform modulus maxima (JWTMM)
was used to determine the relative singularity exponent, denoted
as αR/E, and the corresponding f(αR/E) spectrum (Lin and Sharif,
2007, 2010; Lin, 2008). The JWTMM consists in the following four
steps (Appendix B):

(i) Calculate the wavelet transforms of R(n), E(n) where
R(n)=�nr(n′), E(n)=�ny(n′), and identify the corre-
sponding modulus maxima lines in the time scale plane. The
issues of using other wavelets or higher order Gaussian deriv-
ative wavelet have been discussed in the past (Lin and Sharif,
2007). We used the first order Gaussian derivative wavelet in
this work as it shows more robust scaling [see (1) below].

(ii) Estimate the scaling exponent τ (q, p) in the power law
relationship

Z (a; q, p) =
∑

CR(a)qCE (a)p ∼ aτ(q, p) (1)

where a represents the scale, CR, CE are, respectively, the
wavelet modulus maxima of R(n), E(n), of the nearest maxima
lines.

(iii) Extract the (q∗, p∗) values from the level set L= {(q∗, p∗),τ (q∗,
p∗)= 0} and, by considering p∗ as a function of q∗, p∗(q∗),
calculate

αR/E = (d/dq∗)(−p∗(q∗)),

f (αR/E ) = q∗αR/E + p∗(q∗)
(2)

where the derivative term is approximated using finite
difference.

(iv) Estimate the width of f(αR/E), W λ
R/E , λ= SUP, UPR, for q∗ in

the interval (Appendix B).

The background of these calculations are rooted in the mathe-
matics of multifractal theory and has a statistical physics analog

(Falconer, 1990). It should be noted that the level set extracted in
step (iii) above was designed to capture the exact idea of “using
the fractal of one time series to measure that of the other” in the
RM analysis. We will leave these background and technical details
in the references for interested readers (Falconer, 1990; Riedi and
Scheuring, 1997; Lévy-Léhel and Vojak, 1998; Lin, 2008; Lin and
Sharif, 2007, 2010). In order to distinguish from the traditional
multifractal spectrum, f(αR/E) will henceforth be called the RM
spectrum.

The RM spectrum width W λ
R/E estimated in (iv) above will

be used to measure the fractal correlation between the r(n) and
y(n) sequences. In addition, the UPR-SUP width-ratio UR/E =
W UPR

R/E /W SUP
R/E were calculated to examine the changing fractal

correlation in HUT. Thus, UR/E < 1 (>1) implies the transition
toward a stronger (weaker) fractal correlation in the UPR position.
Note, a superscript λ= SUP, UPR is added hereafter to the variable
when it is necessary to reference the body position. Separately, we
also estimated the spectrum width of the RRi sequence and cal-
culated the UPR-SUP width-ratio, U RRi, to address the changing
fractal complexity of HRV in HUT. Here, U RRi > 1 (<1) implies
the transition toward a more (less) complex RRi fluctuation in the
UPR position.

2.3. SURROGATES
Two types of surrogates were generated from the r(n), y(n)
sequences to test the fractal correlation result: shuffle and iter-
ated amplitude adjusted Fourier transformed (IAAFT) surro-
gates. While the shuffle surrogates completely change the original
data into uncorrelated random noise, IAAFT surrogates preserve
both the 1/f-like power spectra and the amplitude distribution
(Schreiber and Schmitz, 2000). We followed the algorithms docu-
mented in the literature (Schreiber and Schmitz, 2000) and verified
these properties. Once the surrogates of r(n), y(n) were gener-
ated, their RM spectrum width was estimated and compared to
the original data.

2.4. HRV AND EEG SPECTRAL COMPONENTS
Normalized LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) spectral
components (in unit nu) of HRV were calculated to character-
ize the SNS-PNS interaction and PNS activities in the autonomic
control of the heart rate (Akselrod et al., 1981; Task Force of ESC
and NASPE, 1996; Malliani et al., 1997). To track the changing
ANS activities, these calculations were carried out in segments of
B heart beats: Kj= {r((j − 1) B+ 1), . . ., r(jB)}, j = 1, . . ., NB. For
each Kj, the corresponding EEG segment over the time interval of
B heart beats was obtained: Yj= {e(mj�t ), . . ., e(nj�t )}, where �t
denotes the sampling time, mj�t = t ((j − 1) B+ 1), nj�t = t (jB).
We then estimated the spectrum based on the segment Yj in Theta
(4–7 Hz), Alpha (8–13 Hz), and Beta (13–30 Hz) bands and the
result is normalized by the total EEG spectral power of the seg-
ment. Since RRi is unevenly spaced, the Lomb periodogram (Press
et al., 2007) was used to estimate the normalized LF, HF com-
ponents. The spectral measures for each EEG segment Yj was
estimated using the Welch method. Results reported in this work
are based on the intervals of B= 128 beats with 50% overlap (64-
beat). Using B= 64,256 and/or using non-overlapping segments
yield similar results (Figure A1).
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2.5. REGRESSION ANALYSIS
To examine the underlying physiological processing in fractal cor-
relation, regressions were performed between the RM spectrum
width and the HRV, EEG spectral measures. There are a total of
six variables of interest:

A = { W λ
R/E , μλ

LF, μλ
HF, μλ

Theta , μλ
Alpha , μλ

Beta} , (3)

where μλ
η for η= LF, HF, Theta, Alpha, Beta are, respectively, the

mean HRV and EEG spectral measures averaged over all segments
in λ= SUP, UPR positions.

Two approaches were adopted. The first is a standard linear
regression between W λ

R/E and any one of the remaining five vari-
ables in A. Motivated by the possibility of multiple physiological
processes influencing fractal HRV, principal component analy-
sis, PCA, was also conducted to achieve a higher dimensional
regression (Jolliffe, 2002).

In PCA, we first built a 11× 6 data array with the variables
in A arranged from column i= 1–6. Hence, each row of this data
array contains the subject’s response in RM and spectral measures.
Conceptually, one could also imagine the data in a six dimen-
sional Euclidean space spanned by the coordinate X1 = W λ

R/E ,

X2 = μλ
LF, . . ., X6 = μλ

Beta (following the order listed in A).
We then applied PCA to seek an optimal coordinate transforma-
tion of X i to best capture the data scattering in the six dimensional
space. The transformed axes, denoted as Z i, i= 1, . . . 6, are known
as the principal axes and are given by the linear combination
of the X i’s:

Zi =
6∑

j=1

djiXj (4)

where dji are the coefficients that measure the contribution of the
coordinate X j in the ith principal axis. Each Z i is also associated
with a principal value, PVi, that measures the data scattering along
the Z i. Arranging PVi in descending order, we used the cumulative
PVi

�PV (k) =
k∑

i=1

PVi/

6∑
i=1

PVi . (5)

and report only the first NP principal axes that satisfy the criterion
�PV (NP) < Th, Th ∼ 1. The remaining principal axes are of little
importance since they capture only a minute fraction of the data
scattering. Geometrically, it means the data scatter in almost the
perpendicular directions of these remaining principal axes.

2.6. STATISTICS
Standard methods were used to calculate the mean and SD of
the EEG, RRi spectral measures. Normal distribution was veri-
fied using the Kolmogorov-Smirnov test. Differences between the
spectral measures were tested for significance using the, two-tail,
paired t -test. Pearson’s product moment correlation coefficient
was used in the regression analysis between the spectrum width
estimates and the HRV, EEG spectral measures.

3. RESULTS
Our results will be given using two sets of variables. The first is
the spectrum width. They include the width of the RM spectrum
of the r(n), y(n) sequences and the width of the RRi multifractal
spectrum. The width-ratios UR/E and U RRi will be used to com-
pare the response between the SUP and UPR positions. The second
set of variables are the HRV and EEG spectral measures and their
regression results.

3.1. RM AND RRI SPECTRUM WIDTH
Figure 1 shows the RRi, EEG data, the spectral measures, as well
as the multifractal property of the r(n), y(n) sequences from two
subjects. The power law (1) estimated in the RM analysis is given
in Figure 2A. Most subjects exhibit robust scalings, ranging from
one to two heart beats to about 102 heart beats (Table 1). This
scaling range may be of interest as it could give a rough idea of the
time scale associated with the fractal correlation.

The main result of this work is given in Figure 2B, which
shows the width-ratios UR/E versus U RRi. It is evident that the
HUT maneuver stimulates a range of different “fractal reaction”
in the subjects. In particular, we identify a subgroup of subjects
G= (S2, S5, S9, S10) that are characterized by U RRi > 1; i.e., these
subjects exhibited more complex fractal fluctuation in the UPR
position. These subjects are also characterized by a much smaller
UR/E� 1, indicating a stronger fractal correlation in their RRi and
EEG sequences. The remaining seven subjects are characterized
by U RRi < 1, showing less complex RRi fluctuation in the UPR
position.

The overall negative trend is observed in this empirical relation-
ship and it is significant (P = 0.003). To this end, it is important to
emphasize that the fractal property of the individual sequence does
not dictate the outcome of the fractal correlation. As shown in the
past, fractal time series can be coupled to result in a wide range of
fractal correlation without changing their scaling exponents (Lin
and Sharif, 2007; Appendix A). Hence, the empirical relationship
between UR/E and U RRi represents a non-trivial result that suggests
the change toward a more correlated EEG, RRi fractal fluctuation
is associated with the change toward a more complex fractal HRV.

The above result was further examined using shuffle and IAAFT
surrogates. The null hypothesis of the shuffle surrogates is to test
whether there is any dynamics at all; namely, would the underly-
ing phenomenon be simply reproduced by independent identically
distributed random variates. The shuffling serves to achieve this
purpose by destroying the temporal correlation of the original
data. As a result, shuffle surrogates exhibit completely indepen-
dent fluctuations, which, in the present context, means weaker
fractal correlation, or a large RM spectrum width. The IAAFT
surrogate, on the other hand, is to test the null of a linear gauss-
ian process under (static) non-linear transformation, say, from
the measurement device (Schreiber and Schmitz, 2000). The sur-
rogate preserves both the amplitude distribution and the second
order scaling property of the original sequence, e.g., the power law
power spectrum. Hence, a relatively stronger fractal correlation
with a smaller RM spectrum width is expected. Our result is based
on the ensemble of 80 pairs of such surrogates from the original
r(n), y(n) sequences.
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The fractal correlation results of the surrogates are consistent to
the characteristics described above; i.e., the RM spectrum width
of the shuffle surrogate is consistently larger than the IAAFT’s
and the original data (Figures 2C,D). Using the group-mean sta-
tistic, the averaged RM spectrum width of the shuffle surrogate
is significantly larger than the original sequences’ (P < 1E−5 for
both SUP, UPR positions). It implies that destroying the temporal

correlation in r(n), y(n) sequences can result in a qualitatively
different outcome and suggests the importance of fractal dynam-
ics in the fractal correlation result. For the IAAFT surrogate, the
RM spectrum width is seen to lie in a noticeably narrower range
compared to the original data. But the group-mean statistic is
not significant in the UPR position and only approaches signif-
icance in the SUP position (P = 0.07). The non-rejection of the

FIGURE 1 | Continued

www.frontiersin.org February 2012 | Volume 2 | Article 123 | 116

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Lin and Sharif Central-autonomic fractal correlation in fractal HRV

FIGURE 1 | Data segments from a subject (S5) in the group G: (A) Left

column: RRi in SUP (top), UPR positions (middle), and their

multifractal spectra f (αr) (bottom). Right column: EEG in SUP (top), UPR
positions (middle), and the multifractal spectra of y (n), f (αy) (bottom). The
multifractal spectra were estimated using WTMM with the third Gaussian
derivative wavelet and q ∈ [−2, 2]. (B) The LF/HF spectral component ratio

(sympathovagal index), Sλ
LF(j)/Sλ

HF(j) in λ=SUP (“◦”) and λ=UPR
positions (“•”). (C) Top to bottom rows: normalized EEG spectral
components in Theta, Alpha, Beta bands, Sλ

Theta(j), Sλ
Alpha(j), Sλ

Beta(j),
respectively, in λ=SUP (left column) and λ=UPR (right column) positions
from the same subject. (D–F) Show the same set of plots for a different
subject (S11).

null hypothesis means, either the width estimate fails to discrimi-
nate against the alternative in the data, or the non-linear property
in r(n), y(n) may not be essential for CAFC.

3.2. HRV, EEG SPECTRAL MEASURES
Typical segment-to-segment spectral components from two sub-
jects have been shown in Figure 1. The expected SNS activation
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FIGURE 2 | (A) Scaling relationship (1): log Z (a; q, p) versus log(a) in the
SUP position from the same subject (S5) shown in Figure 1A; (q,
p)= (−1.4, −1.4), (2.6, −1.4), (0.6, 0.6), (2.6, 2.6), (−1.4, 2.6) from bottom
to top. The curves are separated for clarity purpose. The scaling range is
indicated by the vertical long-dash lines. The scaling exponent τ (q, p) is
estimated from the best-fit line shown as the solid line in the figure. (B)

URRi versus UR/E relationship. The filled circle indicates the result from the
subjects in group G. The solid line is the regression line (ρ=−0.80,

P = 0.003). The spectrum width was calculated for q in [−2, 2] (Appendix
B). (C) The RM spectrum width of the shuffle surrogates (“•”) and IAAFT
surrogates (“�”) in the SUP position. (D) The RM spectrum width of the
shuffled surrogates (“•”) and IAAFT surrogates (“�”) in the UPR position.
The width estimates of the original data are also included (“◦”) for
comparison. The error bars represent one SD. The results for the IAAFT
surrogates are shifted slightly to the right for clarity. The insets in (C,D)

show the group-mean RM spectrum width.

and PNS withdrawal due to the reduced baroreflex afferent input
in HUT (Tulppo et al., 2001) is indicated by the consistently
higher LF and HF spectral components ratio (sympathovagal
index) in the UPR position (Figures 1B,E). The HRV spectral
measures, μλ

η , η= LF, HF, along with their EEG counterparts:

μλ
η , η = Theta, Beta, Alpha, are summarized in Figure 3, and

are mostly significantly different between the λ= SUP and UPR
positions (see also group averaged statistics in Table 2).

Table 1 |The mean±SD of the lower (amin) and upper (amax) scales of

the scaling range in (1) (unit: heart beat).

Body position amin amax

SUP 6.23± 1.70 76.21± 11.54

UPR 6.24± 1.46 107.10± 28.46
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FIGURE 3 | Averaged LF, HF spectral components μλ
LF

(“•”), μλ
HF

(“◦”) in (A)

λ = SUP, (B) λ = UPR positions, and the averaged EEG spectral

components (C) μλ
Theta , (D) μλ

Alpha , (E) μλ
Beta , λ = SUP (“◦”), UPR (“•”).

Significant difference (P < 0.05) between the SUP and UPR positions is

indicated by the asterisk (*). Note that the HF components in (A,B) and the
EEG spectral components in the SUP position are shifted slightly to the left
for clarity. The error bar represents 1 SD of the segment-to-segment variation
of the spectral components.

Table 2 | Group averaged EEG, HRV spectral components: mean ± SD,

μλ
η , η =Theta, Alpha, Beta, LF, HF, λ = SUP, UPR.

λ = SUP λ = UPR

μλ
Theta 0.17± 0.03 0.15± 0.05

μλ
Alpha 0.31± 0.12 0.28± 0.13

μλ
Beta 0.18± 0.06 0.20± 0.07

μλ
LF 0.47± 0.12 0.77± 0.11*

μλ
HF 0.43± 0.11 0.15± 0.10*

*P < 1E−5, SUP versus UPR.

Since their physiological correlates, better understanding of
the relation between these spectral measures and the RM spec-
trum width could shed lights into the physiological processing
underlying CAFC. A standard linear regression of two variables
and a multivariate PCA were conducted for this purpose. The
correlation coefficient (ρλ) and the associated P value from the

linear regression are reported in Table 3 and described in the
next two subsections. The results from the PCA are reported
last. To avoid confusion, we shall use the term correlation here-
after to refer to the two-point correlation in the linear regression
result. We shall always specify fractal correlation or CAFC wherever
necessary.

3.3. LINEAR REGRESSION WITH EEG SPECTRAL MEASURES
Figure 4 shows the scatter plots between the RM spectrum width
W λ

R/E and the EEG μλ
Theta, μλ

Alpha, and μλ
Beta in λ= SUP, UPR posi-

tions. It is observed that W λ
R/E is significantly and negatively corre-

lated with μλ
Beta (P = 0.01 for λ= SUP, P = 0.02 for λ=UPR), fol-

lowed by the weaker correlation with μλ
Theta (P = 0.42 for λ= SUP,

P = 0.26 for λ=UPR), and μλ
Alpha (P = 0.18 for λ= SUP, P = 0.40

for λ=UPR). Further of note is the generally larger μλ
Beta for the

subjects in G (inset of Figure 4C).

3.4. LINEAR REGRESSION WITH HRV SPECTRAL MEASURES
Figure 5 shows the scatter plots between RM spectrum width W λ

R/E

and HRV spectral components, μλ
LF, μλ

HF, λ= SUP, UPR. For the
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Table 3 | Regression results between averaged EEG, RRi spectral components and W λ
R/E .

Theta band Alpha band Beta band LF HF

ρSUP, P −0.27, 0.42 −0.43, 0.18 −0.73, 0.01 0.63, 0.04 −0.56, 0.07

ρUPR, P −0.37, 0.26 −0.28, 0.40 −0.70, 0.02 −0.11, 0.74 0.28, 0.40

FIGURE 4 | W λ
R/E versus μλ

η
scatter plot for λ = SUP (“◦”), UPR

(“�”) in the (A) η =Theta band, (B) η =Alpha band, and (C)

η = Beta. The regression lines for the SUP (UPR) data are shown as
solid (long-dashed) lines. The subgroup of subjects G are

highlighted using filled symbols (“•” for SUP and “�” for UPR
data). The inserts show the comparisons of the average of μλ

η

between the group G and the rest. The symbol follow the same
description given in (A–C).

SUP position, strong correlations with the LF (P = 0.04), HF com-
ponents (P = 0.07) are observed (Table 3). In addition, different
regression trends are noted: LF component is positively correlated
and HF component is negatively correlated. For the UPR posi-
tion, weak correlation with the LF (P = 0.74) and HF components
(P = 0.40) are observed. Observe also the larger difference of LF,
HF components for subjects in G (insets of Figures 5A,B).

3.5. MULTIVARIATE REGRESSION: PRINCIPAL COMPONENT ANALYSIS
RESULTS

The PCA results are summarized in Figure 6. Using Th= 0.95,
most of the data scattering can be captured by the first three prin-
cipal axes (Figure 6A). The actual �PV value sums up to a Th value
of ∼0.97, meaning that 97% of the data scattering is captured by
the selected principal axes.

The importance of the coordinate composition of a particu-
lar principal axis is determined by the dji value in (4). We will
focus mainly on the ones with a large d1i coefficient since it
corresponds to the coordinate associated with W λ

R/E , and thus
CAFC. They are Z1, Z3 for the SUP position and Z1 for the
UPR position (Figure 6B). Two unique features can be found in
these principal axes. The first is the relatively comparable dji val-
ues. The only exception is the much smaller d4i related to the EEG
Theta band spectral measure. These principal axes also share the
common characteristic of having significant d5i , d6i coefficients
that are associated to the EEG Alpha, Beta band spectral mea-
sures. The second feature is the difference between the SUP, UPR
positions. For Z1, Z3 of the SUP position and Z1 of the UPR
position, it can be seen the different compositions associated with
the HRV spectral measures: those for the SUP position are sig-
nificantly larger than those for the UPR position. In this regard,
the UPR position is qualitatively different in that the HRV spectral

measures play a less significant role in CAFC than those in the SUP
position.

4. DISCUSSIONS
The main finding of this work is the CAFC in fractal HRV. The
surrogate testing quickly confirms that the fractal dynamics in
r(n), y(n) sequences are indeed crucial for CAFC. The result from
IAAFT surrogates suggests that the non-linear characteristics in
r(n), y(n) sequences may not be essential for CAFC, although
there is always the possibility that the RM spectrum width does
not provide the discriminative statistics necessary to reflect CAFC.
Further examination on other surrogate types and alternative sta-
tistic should lead to deeper insights. The potential physiological
processing underlying CAFC was examined using regression on
various spectral measures. These results are discussed below.

4.1. Wλ
R/E

AND EEG SPECTRAL MEASURES
In the context of postural change, Cole reported elevated EEG Beta
band activity in the SUP to UPR transition as a result of a pro-
posed arousal factor (Cole, 1989; see also Nikulin and Brismar,
2004). Consistent to Cole, Schneider and co-workers reported
decreased Beta band activity in the zero gravity phase of the
parabolic flight (Schneider et al., 2008). Lipnicki pointed out a
baroreflex induced cortical inhibition contributing to the phe-
nomenon, and further suggested reduced activity in the locus
coeruleus noradrenergic system of the brainstem (Lipnicki, 2009).
The activation/inhibition of this area of the brain is interesting.
Not only does it have widespread projections through out the brain
(Berridge and Waterhouse, 2003), neural pathways to the region
where preganglionic parasympathetic cardiac neurons are located
were also found in the animal study (Ter Horst et al., 1991, 1996).
Given the known PNS effect on fractal HRV (Aoyagi et al., 2000,
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FIGURE 5 | W λ
R/E versus μλ

η
scatter plot for λ = SUP (“◦”), UPR (“�”) and

(A) η = LF, (B) η = HF. The regression lines for the SUP (UPR) data are shown
as solid (long-dashed) lines. The subgroup of subjects G are highlighted using

filled symbols (“•” for SUP and “�” for UPR data). The inserts show the
comparisons of the average of μλ

η
between the group G and the rest. The

symbol follow the same description given in (A,B).

2003; Amaral et al., 2001; Makikallio et al., 2005; Heffernan et al.,
2008), it is plausible that the link between the EEG Beta band
activity and HRV scale-free dynamics could exist.

In the current result (Figure 3E), we did not observe a consis-
tent Beta band elevation in the subjects. The length of the UPR test
in the protocol could explain this variation. The UPR test in this
work lasted mostly above 40 min and some degree of fatigue in the
subject is expected to dampen the effect. But the two-point corre-
lation between μλ

Beta and W λ
R/E was indeed significant (P = 0.01

for λ= SUP and P = 0.02 for λ=UPR; Table 3), suggesting the
possible link between EEG Beta band activity and fractal HRV.
However, we were not able to further imply an arousal factor as
suggested in the literature. This is because not all subjects exhib-
ited elevated Beta band activity, notably the lower μλ

Beta of S5,
S10 in the UPR position (Figure 3E). The underlying matter is
likely more complex due to the multiple processes contributing
to CAFC. The PCA result provides the support of this view. In
particular, the principal axes with a large W λ

R/E component all
share the similar feature of having, not only a large d6i coefficient
related to the Beta band spectral measure, but also a relatively
large d5i coefficient related to the Alpha band spectral measure. If
one restricts to the subspace spanned by the coordinates X 1, X 5,
X 6 (associated with W λ

R/E , μλ
Alpha , μλ

Beta), i.e., the group with

large dji coefficients in the selected principal axes, the subgroup
G can again be singled out, as it was by using the width-ratios in
Figure 2B. The same characterization achieved separately by these
spectral measures suggests the importance of the EEG Alpha, Beta
dynamics in CAFC.

4.2. Wλ
R/E

AND HRV SPECTRAL MEASURES
We will first discuss the results of the SUP position. The linear
regression shows strong correlation between W SUP

R/E and the LF, HF
HRV spectral measures. The underlying characteristics are consis-
tent to the known SNS, PNS effects on fractal HRV. In particular,

concurrent SNS activation and PNS withdrawal were found to lead
to relatively simpler HRV fractal pattern (Aoyagi et al., 2000, 2003;
Amaral et al., 2001; Makikallio et al., 2005; Heffernan et al., 2008).
These past studies and the link between CAFC and the HRV fractal
complexity (Figure 2A) are consistent to the current finding. In
particular, the increase or decrease of the HRV fractal complexity
can be separately predicted from the two different sets of vari-
ables, one from the known fractal effects based on the changing
HRV spectral measures, and one from the empirical relationship
between UR/E and U RRi. For example, the HF component is neg-
atively correlated with W SUP

R/E , indicating a large HF component
enhances CAFC (toward more complex fractal HRV), and the LF
component is positively correlated with W SUP

R/E , indicating a large
LF component weakens CAFC (toward less complex fractal HRV).
These results imply that a strong CAFC in the SUP position can in
part be attributed to the strength of the PNS activity.

The linear regression result from the UPR position, however,
shows quite a different picture. Here, a much weaker correlation
between W UPR

R/E and the HRV spectral components are found. In
addition, there is a dramatic increase of the P value from the SUP
to the UPR positions (Table 3). The known autonomic effects on
fractal HRV no longer seems to hold (Figure 2A). For example,
not all subjects exhibit “simpler” fractal HRV pattern with the SNS
activation and PNS withdrawal in the UPR position (Figure 2B).
This is most evident from the subjects in group G, who are charac-
terized by the transition toward more complex HRV fractal pattern
(U RRi > 1), stronger CAFC (UR/E� 1) in the UPR position. We
do not have further insights as to why these group exhibit quali-
tatively different behavior from the rest, except that three of them
are trained athletes that participate in the University sport teams.
Reports separately on the fractal HRV and EEG spectral pow-
ers did indicate that intense exercise can have a marked effect,
such as resulting in a smaller scaling exponent in HRV (Tulppo
et al., 2003; Karavirta et al., 2009) and higher EEG spectral powers
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FIGURE 6 | Principal component analysis results. (A) The principal values
PVi in SUP (“◦”) and UPR position (“•”). The inset shows the cumulative
�PV (k ) as given by (4). (B) The principal axis coefficients dji, i = 1, . . ., 6, (top
to bottom) in SUP (left column) and UPR (right column) positions. The x -label,
j = 1,. . .,6, specifies the coordinate number associated with Wλ

R/E , μλ
LF, μλ

HF,

μλ
Theta , μλ

Alpha , and μλ
Beta , respectively. The first three principal axes selected by

the criterion �PV (3) < 0.97 are shown with gray bars. (C) The projection of
the data 11× 6 data array into the subspace spanned by Wλ

R/E , μλ
Alpha , μλ

Beta in
SUP (left) and UPR (right) positions. The data correspond to the subgroup of
subjects G are shown as filled circles.

(Lardon and Polich, 1996). However, one of the subjects (S5) in G
does not engage in the same level of exercise as the other three.

The PCA results imply similar interpretations. In particular,
considering the principal axes with a large d1i coefficient (related

to W λ
R/E ), the coefficients d2i , d3i associated with HRV spectral

measures are much more significant in the SUP position than in
the UPR position (Figure 6B). This may be read in parallel to
the stronger correlation between the W SUP

R/E and the HRV spectral
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measures from above, and implies a more substantial central-
autonomic interaction contributing to the fractal HRV in the SUP
position.

The main implications from the PCA are the multiple physio-
logical processes underlying CAFC and the important roles of the
EEG Alpha, Beta band dynamics. The qualitative difference of the
HRV spectral measure composition reported above implies the
predominant central influence in CAFC in the UPR position.

LIMIT OF STUDY
The current study is limited by the number of participants and
some aspects of the protocol. Particular to the ∼40 min tilt test, it
is expected that certain degree of stress and fatigue could develop
during the test. However, these factors were not directly measured
in this study. We should also remark the intrinsic limit on the
methodology, which has affected the protocol used in the study.
We held the view that a “free running” of the mind in wakeful-
ness could facilitate the RM analysis, albeit the subject’s mental
state was influenced by being physically constrained on the tilt
table. This is because certain rhythmic patterns can emerge in
the more specific brain state, such as the Alpha rhythm in med-
itation or Theta rhythm in cognitive processing. Such rhythmic
patterns typically manifest into few dominant Fourier modes
in the EEG that will inevitably “mask” the underlying fractal
pattern (Lin et al., 2006) and limit one’s ability to characterize
CAFC.

CONCLUSION
Although cardiovascular dynamics has long been a subject of
intense interest, the importance and implication of its fractal

dynamics are only realized in recent decades. By the general
framework of RM and the autonomic perturbation induced
by the postural change, we found the empirical support of a
central component in fractal HRV, i.e., the CAFC. The regres-
sion analysis further implies the importance of the EEG Alpha,
Beta band dynamics in CAFC, and thus fractal HRV. Evi-
dently, such central components introduce additional factors to
be included in the fractal HRV analysis. It is thus not sur-
prising to learn the difficulty of finding a consistent “base-
line” scaling property in HRV (Tan et al., 2009). The current
result may offer a reasonable explanation since other psycho-
physiological factors may come into play and affect the fractal HRV
property.

The PCA results provide us much insight into the potential
physiological processing in CAFC. Qualitatively different behav-
iors between the SUP, UPR position imply the importance of
considering central component in fractal HRV. Additional tests on
larger ensemble size and demographic differences, as well as with
specifically designed protocol to provoke the Alpha, Beta band
activities, are warranted to assess the robustness of these findings.
In conclusion, we believe CAFC could play the key role in the man-
ifestation and interpretation of fractal HRV. In application, CAFC
may also hold the key for the state of reduced HRV, with further
implications on the “simpler” HRV pattern witnessed in certain
heart diseased conditions.
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APPENDIX A
Fractal time series can be coupled together in various ways,
while maintaining the same set of scaling exponents. This has
been demonstrated by using binomial cascades (Falconer, 1990).
Albeit being a phenomenology model, the binomial cascade is
used extensively to simulate multifractal property in many nat-
ural processes. It is constructed iteratively from coarse to fine
scales. Each iterative step produces a version of the time series
according to the scale of resolution. As this process continues ad
infinitum, the time series so generated exhibits power law power
spectrum and multifractal property (Falconer, 1990), the styl-
ized facts of fractal HRV (Ivanov et al., 1999;Sassi et al., 2009).
By coupling two binomial cascades systematically can produce a
wide range of fractal correlation property, while maintaining the
same set of scaling exponents of the individual cascades. This was
shown for the binomial cascade built by using random placement
scheme and deterministic weights [equations (10, 16, 17) in Lin

and Sharif, 2007]. It is an important fact since it implies the need
to adopt a bi-variate approach to analyze the brain-heart fractal
interaction.

APPENDIX B
Equation (1) is generally known as the partition function in the
literature; (see, e.g. Falconer, 1990). The relative scaling expo-
nent estimated in (2) follows the multifractal formulism using the
Legendre transform (Falconer, 1990). In theory, the width estimate
of the multifractal spectrum is defined for q in the entire real line
(−∞,∞). But this requires accurate statistics of the very small
and large αR/E exponents, which in turn demands very long time
series. For this reason, only a finite interval q ∈ [−q0, q0] could be
used to estimate the width since we are limited by the time a HUT
test can be performed. The width estimated turns out to be robust
in that the ratio UR/E does not vary sensitively with the range of q
(Lin et al., 2006).
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FIGURE A1 | Spectral measures of y(n) using different aggregation: 64 beats (red), 128 beats (black), and 256 beats (blue). The error bar corresponds
to 1 SD.
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Autonomic information flow (AIF) characterizes fetal heart rate (FHR) variability (fHRV)
in the time scale dependent complexity domain and discriminates sleep states
[high voltage/low frequency (HV/LF) and low voltage/high frequency (LV/HF) electrocortical
activity (ECoG)]. However, the physiologic relationship of AIF time scales to the underlying
sympathetic and vagal rhythms is not known. Understanding this relationship will enhance
the benefits derived from using fHRV to monitor fetal health non-invasively. We analyzed
AIF measured as Kullback–Leibler entropy (KLE) in fetal sheep in late gestation as function
of vagal and sympathetic modulation of fHRV, using atropine and propranolol, respectively
(n = 6), and also analyzed changes in fHRV during sleep states (n = 12). Atropine blockade
resulted in complexity decrease at 2.5 Hz compared to baseline HV/LF and LV/HF states
and at 1.6 Hz compared to LV/HF. Propranolol blockade resulted in complexity increase in
the 0.8–1 Hz range compared to LV/HF and in no changes when compared to HV/LF. During
LV/HF state activity, fHRV complexity was lower at 2.5 Hz and higher at 0.15–0.19 Hz than
during HV/LF. Our findings show that in mature fetuses near term vagal activity contributes
to fHRV complexity on a wider range of time scales than sympathetic activity. Related to
sleep, during LV/HF we found lower complexity at short-term time scale where complexity
is also decreased due to vagal blockade. We conclude that vagal and sympathetic
modulations of fHRV show sleep state-dependent and time scale-dependent complexity
patterns captured by AIF analysis of fHRV. Specifically, we observed a vagally mediated
and sleep state-dependent change in these patterns at a time scale around 2.5 Hz (0.2 s). A
paradigm of state-dependent non-linear sympathovagal modulation of fHRV is discussed.

Keywords: fetal heart rate, HRV, autonomic nervous system, permutation entropy, complexity, sleep, atropine,

propranolol

INTRODUCTION
Autonomic vagal and sympathetic activities in sheep and human
fetuses vary with behavioral states and with the health of the fetus.
This has been shown non-invasively in human fetuses and in
ovine models of human fetal development by analysis of the fetal
heart rate (FHR) variability (fHRV) (Karin et al., 1993; Groome
et al., 1994; Metsala et al., 1995; Kimura et al., 1996; Van Leeuwen
et al., 2003; Frank et al., 2006a,b; Schneider et al., 2008, 2009;
Frasch et al., 2009a,b; Hoyer et al., 2009; Lange et al., 2009; van
Laar et al., 2011). In the sheep fetus in late gestation, electro-
cortical activity (ECoG) is characterized by the alternating high
voltage/low frequency (HV/LF) and low voltage/high frequency
(LV/HF) states. The HV/LF states are similar to the human 1F
state, while the LV/HF states are similar to 2F in the human fetus
(Frank et al., 2006a,b; Keen et al., 2011a,b).

FHRV holds promise as a non-invasive, continuous, sensi-
tive, and specific measure that may identify fetuses at risk of
adverse outcomes and requiring intervention. Methods assessing
linear properties of fHRV to estimate the sympathetic and vagal

modulation of fHRV enhanced our knowledge of fetal physiol-
ogy and pathophysiology (Karin et al., 1993; Groome et al., 1994;
Metsala et al., 1995; Kimura et al., 1996; Van Leeuwen et al., 2003;
van Laar et al., 2011). However, due to the fundamentally non-
linear structure of HRV additional methods are required in order
to capture the non-linear fHRV properties, thus overcoming the
methodical limitation of the linear HRV analysis (Groome et al.,
1999; Frasch et al., 2009a,b; Hoyer et al., 2011).

The origin of the non-linearity of sympathovagal interactions
lies in their intrinsic complexity which emerges from interac-
tion of neuronal brainstem networks as weakly coupled non-
linear oscillators that are influenced by various afferent signals
(Szeto et al., 1992; Fleisher et al., 1997; Lambertz et al., 2000;
Vandenhouten et al., 2000). Our knowledge on the impact of the
sympathovagal activities on fHRV complexity and non-linearity
is still very limited (Hoyer et al., 2005; Frasch et al., 2009a,b;
Cysarz et al., 2011; Doret et al., 2011; Hoyer et al., 2011).
Specifically, while the influence of the vagal and sympathetic
modulations on fHRV properties is non-linear and dependent
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on the time scale of observation (Frasch et al., 2009a,b; Hoyer
et al., 2011), the time scale-dependent changes in fHRV com-
plexity during physiological electrocortical state activity or under
conditions of pharmacological vagal or sympathetic blockade are
unknown.

Consequently, our objective was to assess the contribution of
vagal and sympathetic activities to all time scales of fHRV com-
plexity during HV/LF and LV/HF states in near-term fetus. To
this end, we studied fHRV complexity parameters derived from
Kullback–Leibler entropy (KLE). KLE has been introduced and
validated in human and sheep fetuses (Frank et al., 2006a,b).
Briefly, decreasing KLE values correspond to increasing fHRV
complexity until they reach zero for noise. KLE’s main features
are (1) robustness with respect to some noise possibly corrupt-
ing the data as is often the case in real life fHRV, and (2) easy
computation. Thus, KLE appears to be particularly well suited for
fHRV computation offline as well as for potential future develop-
ment of online fHRV analysis tools (Frasch, 2011). Moreover, in
agreement with the non-linear nature of sympathovagal interac-
tions and our objective, computation of KLE over all time scales
allowed us to make no a priori assumptions as to the physiolog-
ically relevant “temporal cross sections” through KLE function
describing fHRV complexity. We thus captured all potentially
relevant fHRV complexity changes dependant on the pharmaco-
logical blockades or behavioral ECoG states.

METHODS
SURGICAL PROCEDURE
Experimental procedures were approved by the animal wel-
fare commission of Thuringia. Thirteen Long-Wool Merino ×
German Blackheaded Mutton cross-bred ewes of known gesta-
tional age were acclimated to the animal facilities for at least
5 days before surgery. After food withdrawal for 24 h, surgery
was performed under halothane general anesthesia. Following 1 g
of ketamine (Ketamin 10, Atarost, Germany) i.m., anaesthesia
was induced by 4% halothane (Halothane Liquid 250 ml, Rhodia
Organique Fine Ltd., UK) using a face mask. Ewes were intu-
bated and anaesthesia was maintained with 1.0–1.5% halothane
in 100% oxygen. Ewes were instrumented with catheters inserted
into the common carotid artery for blood sampling and into the
external jugular vein for post-operative administration of drugs.

Following hysterotomy, fetuses were instrumented with
polyvinyl catheters (Rüschelit, Rüsch, Germany) inserted into the
left common carotid artery for arterial blood pressure (ABP)
recordings and blood sampling and into the left external jugu-
lar vein for drug administration. An additional catheter was
placed in the amniotic cavity to record the amniotic pressure
in order to permit correction of fetal mean ABP for hydro-
static pressure. Wire electrodes (LIFYY, Metrofunk Kabel-Union,
Germany) were implanted into the left suprascapular muscles,
muscles of the right shoulder and in the cartilage of the ster-
num for electrocardiogram (ECG) recording, into the uterine wall
to record myometrial activity and into the skull to record elec-
trocorticogram (ECoG) as bihemispherial leads from frontal and
parietal regions and fixed with dental cement on the skull bone.

All ewes and fetuses received 0.5 g ampicillin (Ampicillin,
Ratiopharm, Germany) intravenously and into the amniotic sac

twice a day during the first 3 post-operative days. Metamizol
(Arthripur, Atarost, Germany) was administered intravenously to
the ewe (30–50 mg·kg−1) as an analgesic for at least 3 days. All
catheters were maintained patent via a continuous infusion of
heparin at 15 IU·ml−1 in 0.9% saline delivered at 0.5 ml·h−1.

EXPERIMENTAL PROTOCOL
After at least 3 days of post-operative recovery, the experimental
protocol started at 09:00 a.m. In seven sheep, at 127± 3 days ges-
tational age (dGA, term 150 days) ECG, ECoG, ABP, and uterine
EMG were recorded continuously for the duration of the whole
experiment. Arterial blood samples were taken daily at 09:00.
The samples were analyzed for fetal blood gases, hemoglobin
concentration, and oxygen saturation using a blood gas ana-
lyzer (ABL600, Radiometer, Denmark; measurements corrected
to 39◦C). We reported these data to be within physiological range
(Frasch et al., 2009a,b).

Five minute ECG epochs were selected in HV/LF and LV/HF
ECoG, since at this gestational age sleep state cycling is devel-
oped (Frank et al., 2006a,b). Sleep states were determined from
ECoG visually and confirmed quantitatively by means of spec-
tral edge frequency analysis of the bifrontal ECoG. This group
of fetuses received 2.5 mg atropine-sulfate (Atropinsulfat, B.
Braun, Melsungen, Germany) intravenously as a 5 ml bolus to
induce vagal blockade and, 24 h later, 2 mg propranolol (Obsidan,
Alpharma-Isis, Langenfeld, Germany) as a 2 ml bolus over 60 s to
induce a beta-receptor mediated sympathetic blockade according
to Yu et al. (Yu and Lumbers, 2000). Starting five minutes after
the injections, ECG was analyzed over five minutes.

DATA ACQUISITION
ABP and amniotic pressure were recorded continuously using cal-
ibrated pressure transducers (B. Braun, Germany). Myometrial
activity was monitored to recognize pressure artifacts during con-
tractures. All biophysical parameters were amplified (Amplifier
Model 5900 and 6600, Gould, USA) and digitized using a
16-channel A/D board (DI-400-PGH, DATAQ Instruments, USA)
at a sample rate of 1000 s−1 for ECG and 100 s−1 for blood pres-
sures and uterine EMG and continuously stored on a hard disc
of a PC.

ANALYSIS OF PHYSIOLOGICAL VARIABLES
The software package Matlab 6.1, R13, was used to calculate
all fHRV measures (The MathWorks, Natick, MA, USA). First,
for calculation of FHR and fHRV the individual R peaks were
sequentially detected and triggered with a precision of ± 0.49
milliseconds. The fHRV was further processed as described ear-
lier (Frasch et al., 2007a,b, 2009a,b). Briefly, the artifacts were
visually controlled for and removed manually. The resulting
instantaneous R–R interval sequence was linearly interpolated at
a 1000 Hz equidistant sample rate and re-sampled at 10 Hz for
further signal analysis.

We reported the behavior of FHR as well as the linear fHRV
measures in time and frequency domains (Frasch et al., 2009a,b).
Here we aimed to characterize the behavior of the non-linear time
scale properties of fHRV under physiological perturbations.
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PERMUTATION ENTROPY AND KULLBACK–LEIBLER ENTROPY
Permutation entropy is a complexity measure for time series
operating on an ordinal level, i.e., only the ranks of the data in
the time series are analyzed, not the distances (metric) of the
data. Permutation entropy measures the entropy of sequences of
ordinal patterns derived from m-dimensional delay embedding
vectors. In the following we briefly summarize the definition of
the permutation entropy. A more detailed introduction can be
found in the references (Bandt and Pompe, 2002; Cao et al., 2004).

The scalar time series {x(t)}Tt= 1 is embedded into an
m-dimensional space Xt = [x(t), x(t + L), . . . , x(t + (m− 1)L],
where m is called the embedding dimension and L the embedding
delay time. For m = 2, there are two possible ordinal patterns of
Xt , namely π1 = x(t) < x(t + L) and π2 = x(t + L) < x(t). (For
this moment we suppose that there are no equal values in Xt , i.e.,
no tied ranks.) For m = 3, Xt can attain one of six different order
patterns,

π1 = x(t) < x(t + L) < x(t + 2L),

π2 = x(t + L) < x(t) < x(t + 2L), . . . ,

π6 = x(t + 2L) < x(t + L) < x(t).

In general, there are just m! possible order patterns, which is the
number of permutations of the m X t .Now, let p(π)

denote the relative frequency of order pattern π,

p(π) = #
{

t|1 ≤ t ≤ T − (m− 1)L, where Xt has type π
}

T − (m− 1)L
(1)

Then, for fixed embedding dimensions m ≥ 2, and fixed delay L,
permutation entropy is defined as:

H(m; L) = −
∑
π

p(π) log2 p(π), (2)

where the sum runs over all m! patterns π.
Equal values in the time series, which can occur because of

the limited accuracy of measurement, will be treated as follows.
In case, Xt contains two equal values xa(t + aL) = xb(t + bL),
a,b = 0, 1, . . . , (m− 1), the relative frequency of the permu-
tations which correspond to the cases xa < xb and xa > xb is
increased by 1/2. For n equal values the respective n! permuta-
tions are increased by 1/n!. Practically this can be done by adding
a random number to the data, which is smaller than the accuracy
of measurements.

For convenience we normalize H(m, L) by its maximum value
log2 m!

0 ≤ H(m, L)/ log2(m!) ≤ 1. (3)

Now we introduce the (normalized to 1) [KLE, Kullback, 1968]

KLE = 1− H(m, L)/ log2(m!) (4)

which is an information measure for the distance between the
probability distribution of the ordinal patterns (permutations)
and the uniform distribution. With increasing complexity of

the time series, KLE decreases until it reaches zero for noise
(independent and identically distributed (i.i.d.) process) that cor-
responds to a uniform distribution of all patterns. Note that
due to our handling of tied ranks, a constant series would also
provide KLE = 0.

We have to choose appropriate values for m and L. The value of
m should be at least three; the maximum is limited by the length
of time series. For an accurate estimation of KLE, the length of
the time series must be considerably larger than the factorial of
the embedding dimension. This allows for short series around
256 heartbeats only embedding dimensions m = 3 and m = 4.
We tried both values and could not find significant differences
in the discriminatory impact of the respective entropy measures
(Frank et al., 2006a,b). Thus, based on the shortest length of time
series studied, computation rate and memory requirements we
chose the embedding dimension m = 3 in this paper. It means, in
order to predict future heart beats in fHRV, three preceding heart
beats from the past are taken as known information which corre-
sponds to ED = 3. The delay time L is varying between 0 and 5 s.
KLE of oscillators has its peaks at half the period. Thus, frequency
values correspond to the time scales L as:

f = 1/(2L). (5)

Finally, to get an equidistant time scale, all data were re-sampled
with a sampling frequency of 10 Hz.

STATISTICAL ANALYSIS
We used a method to discriminate between ECoG states based
on the AIF time scale-dependent function of KLE. To avoid over-
fitting due to the limited number of subjects available we used a
parsimonious model with acceptable discriminatory power. The
time scale-dependent variability of KLE between the animals was
greater than the variability within one animal across ECoG states.
This prevented the formation of global rules, such as “if KLE is
above X at time scale Y, then the fetus is in LV/HF state.” Instead,
we looked for rules that could be used to discriminate ECoG state
of the animal when compared to other records of the same animal.

Thus, all physiological parameters were tested for differ-
ences between baseline and after drug administration or groups
using the Wilcoxon or Mann–Whitney tests, respectively. Baseline
LV/HF and HV/LF states were compared to the respective
atropine and propranolol treatment fHRV data-set. Hence,
Bonferroni–Holm correction for multiple comparisons was used.
Data-sets that were 1.8 min long were used to compare the effects
of atropine and propranolol blockades with the effects of HV/LF
and LV/HF sleep states on fHRV complexity. This data length was
chosen to be consistent in comparison of all four data-sets and,
consequently, the Mann–Whitney test was used. For analyses of
the 12 paired HV/LF and LV/HF data-sets, the Wilcoxon test was
applied and data length could be increased to 3.5 min (as was the
case in the shortest recording). All results are given as mean ±
SEM. P-values < 0.05 were considered significant.

RESULTS
As reported, we found the fetal physiological parameters to be
within the norm for the gestational age throughout the study
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(Frasch et al., 2009a,b). Mean FHR at baseline during LV/HF
ECoG state was 165 ± 5 bpm which was lower than FHR dur-
ing HV/LF ECoG state at 188 ± 8 bpm. Atropine administration
resulted in FHR increase to 237 ± 17 bpm. Propranolol admin-
istration lead the FHR to decrease to 151 ± 4 bpm. In all cases
the results were statistically significant with the exception of pro-
pranolol’s effect on FHR compared to the baseline LV/HF ECoG
state, which was of borderline significance (p = 0.052).

VAGAL AND SYMPATHETIC BLOCKADES
When compared to HV/LF and LV/HF sleep states, atropine
blockade resulted in an increase of KLE on the time scale
of 0.2 s corresponding to a decrease in fHRV complexity in
the 2.5 Hz range (Figures 1 and 2). Compared to the LV/HF
state, the complexity also decreased at the 0.3 s time scale
(1.6 Hz). Propranolol blockade resulted in complexity increase
at 0.5–0.6 s time scales (0.8–1 Hz) compared to the LV/HF state

FIGURE 1 | KLE for varying delay time L (in seconds). Increasing
complexity corresponds to decreasing KLE values. The whiskers indicate
the standard error of the mean. Atropine administration results in profound
reduction of complexity on most of the time scales, while propranolol causes

a subtle increase in complexity on time scales associated with both vagal and
sympathetic modulations of fHRV. The HV/LF curve (lower complexity) lies
above the LV/HF curve (higher complexity) within a long-term time scale
range. N = 6. ∗p < 0.05.

FIGURE 2 | Focus on the short-term time scale KLE segment. This figure demonstrates changes induced by pharmacologic blockades on short-term time
scale fHRV complexity measured by KLE. N = 6. ∗p < 0.05.
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and no changes compared to the HV/LF state (Figure 2). Figure 1
demonstrates that short (beat-to-beat) and long-term (an integral
over 10 heart beats) time scale auto-autonomic information flow
(aAIF) approaches to estimate fHRV complexity are relatively
crude compared to the millisecond precise dissection of fHRV
complexity fluctuations on each time scale that we attempted here
with the KLE complexity function (Frasch et al., 2009a,b).

HV/LF AND LV/HF ELECTROCORTICAL STATE ACTIVITY
In 1.8 min long data-sets used to compare effects of
atropine/propranolol blockades on fHRV complexity vs.
HV/LF and LV/HF sleep states no differences between the sleep
states were found. We increased the data-set length to 3.5 min
based on the shortest fHRV recording for the analyses of all
12 paired HV/LF and LV/HF data-sets. We found that fHRV
complexity in LV/HF vs. HV/LF state in 11 out of 12 fetuses
was lower at the time scale of 0.2 s (2.5 Hz) and in 10 out of 12
fetuses higher at the time scale 2.7–3.3 s (Frank et al., 2006a,b)
(0.15–0.19 Hz) (Figures 3 and 4).

DISCUSSION
Here we show that the variation in fHRV complexity due to
changes in sympathovagal activity depends on the time scale
used for the analysis. This sympathovagal activity is dependent
on behavioral states. It is intriguing that these neural influences
can be dissected mathematically using an a posteriori approach
toward estimating fHRV complexity on physiologically relevant
time scales.

VAGAL AND SYMPATHETIC MODULATIONS OF fHRV IMPACT
SPECIFIC TIME SCALES OF fHRV
The KLE function allows a more sophisticated detection of
state-dependent differences in fHRV complexity. Subtle effects
of behavioural states on fHRV time scales retreat and are likely
methodically “undersampled” vis-à-vis the more pronounced

changes induced by the β-receptor-mediated sympathetic block-
ade and even more so by the vagal blockade. Thus, for the sake of
comparing our previous work using aAIF and the current paper
we will first focus on the effects of the pharmacological block-
ades vs. baseline rather than dissecting the baseline into HV/LF
or LV/HF ECoG state activities.

Our findings have several implications for understanding near-
term fetal sheep physiology of fHRV complexity properties and
present possibilities for using fHRV to monitor fetal health.

First, we identified precise time scales of fHRV fluctuations
which result from the vagal modulation of fHRV to be 0.2 s
(2.5 Hz) and 0.3 s (1.6 Hz). This is in line with previous studies
in sheep and human fetuses (Frank et al., 2006a,b; David et al.,
2007; Frasch et al., 2007a,b, 2009a,b). These time scales find them-
selves within the frequency domain equivalent to the upper end
of the high frequency spectral power band of fHRV (0.2–2.5 Hz).
Of note, atropine blockade of vagal modulation of fHRV resulted
in a drop of fHRV complexity at 1.6 Hz and 2.5 Hz compared to
the baseline LV/HF ECoG state activity, but not when compared
to the HV/LF ECoG state activity. Comparison to the latter ren-
dered a drop in fHRV complexity at 2.5 Hz only, a value high
enough to be potentially overlooked by studies designed with
certain frequency bands set a priori.

Similarly, β-receptor-mediated blockade of the sympathetic
modulations of fHRV revealed increases in fHRV complexity at
the 0.5–0.6 s time scale (0.8–1 Hz) when compared to LV/HF
ECoG state activity, but not when compared to the HV/LF ECoG
state activity. While we anticipated the complexity increase fol-
lowing this blockade of sympathetic fHRV modulations based
on previous studies (Frasch et al., 2009a,b), the time scale on
which we detected this decrease is less intuitive. It may be due
to unmasking vagally-mediated fluctuations within fHRV time
scales corresponding to a somewhat lower range of high frequency
band power spectrum associated with vagal influences on fHRV
(Van Leeuwen et al., 2003; Frank et al., 2006a,b; David et al., 2007;

FIGURE 3 | Relationship of HV/LF and LV/HF electrocortical state

activities to the time scales of fHRV complexity. KLE complexity
of fetal heart rate variability (fHRV) measured during high voltage/low

frequency, HV/LF and low voltage/high frequency, LV/HF, electrocortical
activites. N = 12, mean ± SEM. ∗L = 3 s; p < 0.05; L = 0.2 s;
p = 0.05.
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FIGURE 4 | KLE at the time scale of 2.5 Hz (0.2 s) for each animal during

HV/LF versus LV/HF state. Each line color represents a different animal.
N = 12, ∗p = 0.005.

Frasch et al., 2007a,b, 2009a,b; Van Leeuwen et al., 2007). This
may now explain the physiological mechanism behind our earlier
finding that propranolol blockade in these fetal sheep resulted in
a selective decrease in the nonlinear part of fHRV complexity on
the short-term time scale (i.e., beat-to-beat in that case) (Frasch
et al., 2009a,b). The mechanism may be as follows: propranolol-
blockade results in a relative increase of vagally mediated fluctu-
ations in fHRV, which we measure here as a complexity increase
at∼0.9 Hz. However, measured with aAIF function over all phys-
iologically relevant time scales this sympathetic blockade appears
to result in a fHRV complexity decrease—a meaningful finding
reflecting an overall reduction in system complexity due to block-
ade of one of the branches of the autonomic nervous system.
Moreover, we showed that vagally mediated fHRV complexity
was sufficiently explained by its linear properties (Frasch et al.,
2009a,b). In light of this “Gedankenexperiment,” it is conceiv-
able that the pinpointed fHRV complexity increase measured
by the KLE function due to sympathetic blockade within the
vagally mediated time scale corresponds to a complexity decrease
in the non-linear part of fHRV complexity, which represents an
emergent component that is due to non-linearly superimposed
interactions of vagal and sympathetic fluctuations of fHRV.

Second, fetal sheep and human HV/LF and LV/HF ECoG sleep
state dynamics are in contrast regarding vagal and sympathetic
contributions to FHR and fHRV (Frank et al., 2006a,b). This
should be kept in mind when inferences to autonomic nervous
system contributions during respective ECoG states are made
in this paper with the intent of comparing them to human
fetal physiology. With this in mind, the relatively high frequency
time scales of vagal fHRV modulations reported in the present
study appear to be in contrast with some human fetal stud-
ies near-term (Van Leeuwen et al., 2003, 2007). These studies
did not account for fetal behavioral states. Accounting for the
behavioral states renders similar ranges of state-dependent fHRV
fluctuations (Frank et al., 2006a,b).

Hence, for the first section of our discussion we make two key
observations: First, fetal behavioral states should be accounted for
when effects of treatments or conditions are studied with fHRV.
Second, to account for the behavioral state-dependent fluctua-
tions of vagal and sympathetic modulations of fHRV complexity,

a posteriori study of fHRV time scales appears to be a more
encompassing approach to capture all possible time scale dynam-
ics. This challenge is unique to HRV monitoring during the
perinatal stage of development when ∼90% of time is spent dur-
ing HV/LF (NREM) or LV/HF (REM) behavioral states and only
∼10% of time is spent in wakefulness (Richardson and Gagnon,
2008).

CONTRIBUTIONS OF VAGAL AND SYMPATHETIC ACTIVITIES TO
ECoG STATE-DEPENDENT CHANGES IN fHRV COMPLEXITY
Our results on ECoG state-dependent differences in fHRV com-
plexity provide several insights into what appears to be a species-
specific and time scale-specific behavior in sheep and human
perinatal brain development.

First, confirming our previous findings in a different set of
fetal sheep of the same gestational age, here we also found
higher complexity during LV/HF on long-term time scale of
2.7–3.3 s (0.15–0.19 Hz) (Frank et al., 2006a,b). This time scale
region corresponds to fHRV low frequency band spectral power
(0.04–0.2 Hz) known in sheep fetuses to contain both sympa-
thetic and vagal influences on fHRV (Frasch et al., 2007a,b,
2009a,b). This finding is in physiological contrast to human
mature fetuses of comparable gestational age who show an inverse
relationship to behavioral sleep states throughout all physiologi-
cally relevant time scales (Frank et al., 2006a,b).

Of note, we did not detect a difference in fHRV complexity
at the time scale where the complexity increased due to sympa-
thetic blockade (∼0.5 s or 0.9 Hz). It is possible that sleep state-
dependent fluctuations in sympathetic activity on time scales
unaffected by β-receptor sympathetic blockade may contribute to
the observed lower complexity in the 0.15–0.19 Hz range. We and
others have shown that propranolol blockade results in low fre-
quency spectral power decrease of fHRV (0.04–0.2 Hz) (Yu and
Lumbers, 2000; Frasch et al., 2009a,b). However, the precise dis-
tribution of spectral power was not described. Hence, it seems
advantageous for approaches in frequency and multiscale com-
plexity domains of fHRV analysis to report the most complete
possible spectra or time horizons (0–5 s appears to be an ade-
quate choice) instead of limiting the results by reporting a priori
predefined frequency bands or time scales, respectively.

Second, it is intriguing in this context that in the present
study we found—in a seeming paradox—lower complexity dur-
ing LV/HF ECoG state at the same short-term time scale where
complexity is also decreased following vagal blockade (at 0.2 s or
2.5 Hz). At first examination, this should mean that lower fHRV
complexity during LV/HF ECoG state is due to a relatively lower
contribution (i.e., lack of dominance) of vagal activity to modu-
lations of fHRV complexity at this short-term time scale. A closer
look suggests two following interpretations.

On one hand, this finding closely resembles the human fetal
physiology of fHRV complexity at a comparable gestational age
with regard to this specific time scale. This suggests that the
species difference may in fact be maturational and not fundamen-
tal (Frank et al., 2006a,b). That is, the time scale-specific species
difference may be related to the fine tuning of the state-dependent
sympathovagal activation/inhibition patterns and their degree of
fHRV modulation. It is known that various organ systems, such as
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the brain, mature at different speeds in different species (Dobbing
and Sands, 1979). In addition, postnatally the autonomic nervous
system and cardiovascular controls in lambs appear to behave
somewhat similarly to human neonates in relation to sleep states
and bivariate heart rate/blood pressure coupling, while the heart
rate itself continues to be higher during quiet sleep (∼HV/LF
ECoG state) versus active sleep (∼LV/HF ECoG state) in contrast
to human neonates (Silvani et al., 2005; Frasch et al., 2007a,b;
Booth et al., 2011a,b). Further comparative research is needed to
address the sleep state-dependent differences in bivariate and uni-
variate cardiovascular control patterns found in sheep and human
species. Such research will render valuable data to better inter-
pret animal research findings in human physiological and clinical
contexts, e.g., in the field of Sudden Infant Death Syndrome
(SIDS).

On the other hand, our finding of lower fHRV complexity dur-
ing the LV/HF ECoG state at the 0.2 s time scale where fHRV
complexity is also decreased following vagal blockade is in direct
contrast with studies also carried out in fetal sheep near-term that
showed a dominance of vagal control of cardiovascular system
during LV/HF state with lower FHR and blood pressure values
versus HV/LF state (Zhu and Szeto, 1987; Jensen et al., 2009).
Of note, these studies did not examine higher order properties
of fHRV which contain the information about influences of vagal
and sympathetic rhythms on fHRV. In a smaller study (n = 6)
using the same signal analytical approach and comparable gesta-
tional age of fetal sheep as presented here, we could not detect
differences between ECoG states at this time scale of fHRV com-
plexity (Frank et al., 2006a,b). We cannot exclude that this may be
due to a smaller sample size. Similarly, in this study, we could not
detect any differences between the ECoG states regarding fHRV
complexity at an equally small sample size of n = 6.

We believe this paradox can be resolved in the following
complementary ways:

(1) In the current study we did not investigate the contribution
of non-linearities to the overall complexity as done previ-
ously (Frasch et al., 2009a,b). In that study we showed that
vagal modulations of fHRV contribute to fHRV linear prop-
erties on short-term (beat-to-beat) time scales in near-term
sheep, rather than to its non-linear components (Frasch et al.,
2009a,b). This means that the vagal blockade-induced fHRV
complexity decrease we found here on the same time scale
as the fHRV complexity decrease during LV/HF ECoG state
vs. HV/LF ECoG state may be due to different contribu-
tions of non-linear parts of fHRV complexity to the overall
complexity changes we assessed in the present study.

(2) Inferring about contributions of the underlying sympathetic
and vagal rhythms from pharmacological blockade-induced
fHRV complexity changes to observations made during phys-
iological, unperturbed, ECoG state cycling carries an inher-
ent limitation discussed earlier (Frasch et al., 2009a,b). The
limitation is the same that led us to deploy complexity anal-
yses of fHRV in the first place, namely, the non-linear nature
of the influences sympathovagal fluctuations have on fHRV.
The decreases of overall fHRV complexity following vagal

and sympathetic blockades that we reported suggest that
both vagal and β-receptor-mediated sympathetic modula-
tions contribute to the complexity of fHRV (Frasch et al.,
2009a,b). In agreement with this, the concept of reciprocal
vagal or sympathetic activation has been challenged by the
evidence of nonreciprocal autonomic modulation of HRV
(Guzzetti et al., 2005; Paton et al., 2005), suggesting con-
comitant vagal and sympathetic activation as in a complex
network.

In summary, for the second section of our discussion and to
address the apparent “paradox,” we suggest that our findings for
differences in fHRV complexity during LV/HF vs. HV/LF ECoG
states should be seen as reflecting changes in sympathovagal acti-
vation patterns as they modulate fHRV, rather than as distinct,
independent effects of sympathetic or vagal modulations of fHRV.

IMPLICATIONS FOR HUMAN FHR MONITORING
Our data suggest that relatively short FHR segments of as few
as ∼600 heart beats per behavioral state appear to be sufficient
to allow for state discrimination based on a posteriori time scale
fHRV complexity analysis. Moreover, R–R intervals with sam-
pling rates obtainable from regular ultrasound- or scalp-electrode
derived FHR read-outs should still permit state discrimination at
the time scale of ∼3 s or 0.17 Hz. This is relevant for the prospect
of using antepartum FHR monitoring to detect and grade chronic
fetal hypoxia. This might be possible because chronic hypoxia dis-
rupts fetal HV/LF and LV/HF ECoG states and may also have
a similar effect on the accompanying fHRV dynamics (Keen
et al., 2011a,b). Further studies will be needed to investigate these
physiologic and pathophysiologic relations.

PERSPECTIVES AND IMPLICATIONS
Vagal and sympathetic modulations of fHRV show sleep state-
dependent and time scale-dependent complexity patterns.

The pathophysiologically motivated “fight and flight response”
paradigm of the “linearizing,” complexity-decreasing effect of
sympathetic HRV modulation may be not comprehensive enough
to capture the “every day” physiological context. Further stud-
ies are needed to enhance this paradigm toward the concept of
sympathovagal co-activation, a synergistically occurring physio-
logical pattern of autonomic nervous system activity within the
larger multi-organ network. In this context, a unified a pos-
teriori multi-scale approach to HRV complexity estimation is
required to facilitate cross-study and cross-species comparisons
and translation of knowledge into improved HRV monitoring.
Ultimately, to more fully account for behavioral state-, time scale-
and species-dependent fluctuations in such physiologic patterns,
this paradigm should allow for inclusion of multivariate data-sets
such as ECoG and blood pressure signals.

ACKNOWLEDGMENTS
The authors thank Holger Friedrich, Petra Dobermann, and
Claudia Sommer for technical assistance and Drs. Matthias
Schwab and Dirk Hoyer for advice. We acknowledge funding sup-
port from Molly Towell Perinatal Research Foundation, CIHR
and FRSQ (M. G. Frasch).

www.frontiersin.org September 2012 | Volume 3 | Article 378 | 133

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Frasch et al. Time scales of fetal HRV complexity

REFERENCES
Bandt, C., and Pompe, B. (2002).

Permutation entropy: a natural
complexity measure for time series.
Phys. Rev. Lett. 88, 174102.

Booth, L. C., Bennet, L., Guild, S. J.,
Barrett, C. J., May, C. N., Gunn,
A. J., and Malpas, S. C. (2011a).
Maturation-related changes in the
pattern of renal sympathetic nerve
activity from fetal life to adulthood.
Exp. Physiol. 96, 85–93.

Booth, L. C., Gunn, A. J., Malpas, S.
C., Barrett, C. J., Davidson, J. O.,
Guild, S. J., and Bennet, L. (2011b).
Baroreflex control of renal sym-
pathetic nerve activity and heart
rate in near-term fetal sheep. Exp.
Physiol. 96, 736–744.

Cao, Y., Tung, W. W., Gao, J. B.,
Protopopescu, V. A., and Hively,
L. M. (2004). Detecting dynamical
changes in time series using the per-
mutation entropy. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 70, 046217.

Cysarz, D., Van Leeuwen, P.,
Edelhauser, F., Montano, N.,
and Porta, A. (2011). Binary sym-
bolic dynamics classifies heart
rate variability patterns linked to
autonomic modulations. Comput.
Biol. Med. 42, 313–318.

David, M., Hirsch, M., Karin, J., Toledo,
E., and Akselrod, S. (2007). An
estimate of fetal autonomic state
by time-frequency analysis of fetal
heart rate variability. J. Appl. Physiol.
102, 1057–1064.

Dobbing, J., and Sands, J. (1979).
Comparative aspects of the brain
growth spurt. Early Hum. Dev. 3,
79–83.

Doret, M., Helgason, H., Abry,
P., Goncalves, P., Gharib, C.,
and Gaucherand, P. (2011).
Multifractal analysis of fetal
heart rate variability in fetuses
with and without severe acidosis
during labor. Am. J. Perinatol. 28,
259–266.

Fleisher, L. A., Dipietro, J. A.,
Johnson, T. R., and Pincus, S.
(1997). Complementary and non-
coincident increases in heart rate
variability and irregularity during
fetal development. Clin. Sci. (Lond.)
92, 345–349.

Frank, B., Frasch, M. G., Schneider, U.,
Roedel, M., Schwab, M., and Hoyer,
D. (2006a). Complexity of heart rate
fluctuations in near-term fetal sheep
during sleep. Biomed. Tech. (Berl.)
51, 233–236.

Frank, B., Pompe, B., Schneider, U.,
and Hoyer, D. (2006b). Permutation
entropy improves fetal behavioural
state classification based on heart
rate analysis from biomagnetic
recordings in near term fetuses.

Med. Biol. Eng. Comput. 44,
179–187.

Frasch, M. G. (2011). Fetal heart rate
variability monitoring. Montebello
Round Table. Complexity and
Variability at the Bedside.
September 28 – October 1.
Montebello, QC, Canada. J. Crit.
Care 26, 325–327.

Frasch, M. G., Muller, T., Hoyer, D.,
Weiss, C., Schubert, H., and Schwab,
M. (2009a). Nonlinear properties
of vagal and sympathetic modu-
lations of heart rate variability in
ovine fetus near term. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 296,
R702–R707.

Frasch, M. G., Muller, T., Weiss, C.,
Schwab, K., Schubert, H., and
Schwab, M. (2009b). Heart rate
variability analysis allows early
asphyxia detection in ovine fetus.
Reprod. Sci. 16, 509–517.

Frasch, M. G., Muller, T., Wicher,
C., Weiss, C., Lohle, M., Schwab,
K., Schubert, H., Nathanielsz, P.
W., Witte, O. W., and Schwab, M.
(2007a). Fetal body weight and the
development of the control of the
cardiovascular system in fetal sheep.
J. Physiol. 579, 893–907.

Frasch, M. G., Zwiener, U., Hoyer, D.,
and Eiselt, M. (2007b). Autonomic
organization of respirocardial func-
tion in healthy human neonates in
quiet and active sleep. Early Hum.
Dev. 83, 269–277.

Groome, L. J., Mooney, D. M., Bentz, L.
S., and Singh, K. P. (1994). Spectral
analysis of heart rate variability dur-
ing quiet sleep in normal human
fetuses between 36 and 40 weeks of
gestation. Early Hum. Dev. 38, 1–9.

Groome, L. J., Mooney, D. M., Holland,
S. B., Smith, L. A., Atterbury,
J. L., and Loizou, P. C. (1999).
Human fetuses have nonlinear car-
diac dynamics. J. Appl. Physiol. 87,
530–537.

Guzzetti, S., Borroni, E., Garbelli, P.
E., Ceriani, E., Della Bella, P.,
Montano, N., Cogliati, C., Somers,
V. K., Malliani, A., and Porta, A.
(2005). Symbolic dynamics of heart
rate variability: a probe to investi-
gate cardiac autonomic modulation.
Circulation 112, 465–470.

Hoyer, D., Pompe, B., Chon, K. H.,
Hardraht, H., Wicher, C., and
Zwiener, U. (2005). Mutual infor-
mation function assesses autonomic
information flow of heart rate
dynamics at different time scales.
IEEE Trans. Biomed. Eng. 52,
584–592.

Hoyer, D., Heinicke, E., Jaekel, S.,
Tetschke, F., Di Pietro Paolo, D.,
Haueisen, J., Schleusner, E., and
Schneider, U. (2009). Indices of fetal

development derived from heart
rate patterns. Early Hum. Dev. 85,
379–386.

Hoyer, D., Nowack, S., Bauer, S.,
Tetschke, F., Ludwig, S., Moraru, L.,
Rudoph, A., Wallwitz, U., Jaenicke,
F., Haueisen, J., Schleussner, E.,
and Schneider, U. (2011). Fetal
development assessed by heart rate
patterns-Time scales of complex
autonomic control. Comput. Biol.
Med. 42, 335–341.

Jensen, E. C., Bennet, L., Guild, S. J.,
Booth, L. C., Stewart, J., and Gunn,
A. J. (2009). The role of the neural
sympathetic and parasympathetic
systems in diurnal and sleep state-
related cardiovascular rhythms
in the late-gestation ovine fetus.
Am. J. Physiol. Regul. Integr. Comp.
Physiol. 297, R998–R1008.

Karin, J., Hirsch, M., and Akselrod, S.
(1993). An estimate of fetal auto-
nomic state by spectral analysis of
fetal heart rate fluctuations. Pediatr.
Res. 34, 134–138.

Keen, A. E., Frasch, M. G., Sheehan,
M. A., Matushewski, B., and
Richardson, B. S. (2011a).
Maturational changes and effects of
chronic hypoxemia on electrocorti-
cal activity in the ovine fetus. Brain
Res. 1402, 38–45.

Keen,A.E.,Frasch,M.G.,Sheehan,M.A.,
Matushewski, B. J., and Richardson,
B. S. (2011b). Electrocortical activ-
ity in the near-term ovine fetus:
automated analysis using amplitude
frequency components. Brain Res.
1402, 30–37.

Kimura, Y., Okamura, K., Watanabe,
T., Murotsuki, J., Suzuki, T., Yano,
M., and Yajima, A. (1996). Power
spectral analysis for autonomic
influences in heart rate and blood
pressure variability in fetal lambs.
Am. J. Physiol. 271, H1333–H1339.

Kullback, S. (1968). Information Theory
and Statistics. New York, NY: Dover
Publications.

Lambertz, M., Vandenhouten, R.,
Grebe, R., and Langhorst, P. (2000).
Phase transitions in the common
brainstem and related systems
investigated by nonstationary time
series analysis. J. Auton. Nerv. Syst.
78, 141–157.

Lange, S., Van Leeuwen, P., Schneider,
U., Frank, B., Hoyer, D., Geue, D.,
and Gronemeyer, D. (2009). Heart
rate features in fetal behavioural
states. Early Hum. Dev. 85,
131–135.

Metsala, T., Siimes, A., and Valimaki,
I. (1995). The effect of change in
sympatho-vagal balance on heart
rate and blood pressure variability
in the foetal lamb. Acta Physiol.
Scand. 154, 85–92.

Paton, J. F., Boscan, P., Pickering, A. E.,
and Nalivaiko, E. (2005). The yin
and yang of cardiac autonomic con-
trol: vago-sympathetic interactions
revisited. Brain Res. Brain Res. Rev.
49, 555–565.

Richardson, B., and Gagnon, R. (2008).
“Behavioural state activity and
fetal health and development,” in
Maternal-Fetal Medicine, eds R. K.
Creasy, and R. Resnik (Philadelphia,
PA: WB Saunders Co.), 171–179.

Schneider, U., Frank, B., Fiedler, A.,
Kaehler, C., Hoyer, D., Liehr, M.,
Haueisen, J., and Schleussner, E.
(2008). Human fetal heart rate
variability-characteristics of auto-
nomic regulation in the third
trimester of gestation. J. Perinat.
Med. 36, 433–441.

Schneider, U., Schleussner, E., Fiedler,
A., Jaekel, S., Liehr, M., Haueisen,
J., and Hoyer, D. (2009). Fetal heart
rate variability reveals differential
dynamics in the intrauterine devel-
opment of the sympathetic and
parasympathetic branches of the
autonomic nervous system. Physiol.
Meas. 30, 215–226.

Silvani, A., Asti, V., Bojic, T., Ferrari,
V., Franzini, C., Lenzi, P., Grant, D.
A., Walker, A. M., and Zoccoli, G.
(2005). Sleep-dependent changes in
the coupling between heart period
and arterial pressure in newborn
lambs. Pediatr. Res. 57, 108–114.

Szeto, H. H., Cheng, P. Y., Decena, J.
A., Cheng, Y., Wu, D. L., and Dwyer,
G. (1992). Fractal properties in fetal
breathing dynamics. Am. J. Physiol.
263, R141–R147.

Vandenhouten, R., Lambertz, M.,
Langhorst, P., and Grebe, R.
(2000). Nonstationary time-series
analysis applied to investigation
of brainstem system dynamics.
IEEE Trans. Biomed. Eng. 47,
729–737.

van Laar, J. O., Peters, C. H.,
Houterman, S., Wijn, P. F., Kwee, A.,
and Oei, S. G. (2011). Normalized
spectral power of fetal heart rate
variability is associated with fetal
scalp blood pH. Early Hum. Dev.
87, 259–263.

Van Leeuwen, P., Geue, D., Lange, S.,
Hatzmann, W., and Gronemeyer, D.
(2003). Changes in the frequency
power spectrum of fetal heart rate
in the course of pregnancy. Prenat.
Diagn. 23, 909–916.

Van Leeuwen, P., Lange, S., Geue, D.,
and Gronemeyer, D. (2007). Heart
rate variability in the fetus: a com-
parison of measures. Biomed. Tech.
(Berl.) 52, 61–65.

Yu, Z. Y., and Lumbers, E. R. (2000).
Measurement of baroreceptor-
mediated effects on heart rate

Frontiers in Physiology | Computational Physiology and Medicine September 2012 | Volume 3 | Article 378 | 134

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Frasch et al. Time scales of fetal HRV complexity

variability in fetal sheep. Pediatr.
Res. 47, 233–239.

Zhu, Y. S., and Szeto, H. H. (1987).
Cyclic variation in fetal heart rate
and sympathetic activity. Am.
J. Obstet. Gynecol. 156, 1001–1005.

Conflict of Interest Statement: The
authors declare that the research

was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 21 May 2012; accepted: 04
September 2012; published online: 21
September 2012.

Citation: Frasch MG, Frank B, Last M
and Müller T (2012) Time scales of auto-
nomic information flow in near-term
fetal sheep. Front. Physio. 3:378. doi:
10.3389/fphys.2012.00378
This article was submitted to Frontiers
in Computational Physiology and
Medicine, a specialty of Frontiers in
Physiology.

Copyright © 2012 Frasch, Frank, Last
and Müller. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

www.frontiersin.org September 2012 | Volume 3 | Article 378 | 135

http://dx.doi.org/10.3389/fphys.2012.00378
http://dx.doi.org/10.3389/fphys.2012.00378
http://dx.doi.org/10.3389/fphys.2012.00378
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

	Cover
	First pages
	Editorial: engineering approaches to study cardiovascular physiology: modeling, estimation, and signal processing
	References

	A unified point process probabilistic framework to assess heartbeat dynamics and autonomic cardiovascular control
	Introduction
	Overview of the Point Process Framework
	Methods and Data
	Probability Models for the Heartbeat Interval
	Instantaneous Indices of HR and HRV
	Autonomic Cardiovascular Control and Modeling Heartbeat Dynamics
	Online Estimation: Adaptive Point Process Filtering and Local Likelihood Estimation
	Frequency Analysis
	Estimating the frequency response at the feedback pathway (baroreflex or RSA)
	Estimating the frequency response at the feedforward pathway
	Estimating the dynamic R-R spectrum
	Estimating the dynamic coherence

	Non-linearity Assessment
	Modeling Non-stationary with the ARIMA Model
	Model Order Selection and Goodness-of-fit Tests
	Experimental Protocol and Data

	Results
	Tracking examples and estimated index statistics
	Example of applying the ARIMA model
	Sensitivity analysis

	Discussion
	Conclusion
	Acknowledgments
	References

	Tube-load model parameter estimation for monitoring arterial hemodynamics
	Introduction
	Tube-Load Model and Parameter Estimation
	Model Description
	Assumptions and Validity
	Parameter Estimation

	Wave Reflection Monitoring
	Significance
	Previous Techniques
	Tube-Load Model Parameter Estimation Techniques

	Large Artery Compliance Monitoring
	Significance
	Previous Techniques
	Tube-Load Model Parameter Estimation Techniques

	Pulse Transit Time Monitoring
	Significance
	Previous Techniques
	Tube-Load Model Parameter Estimation Techniques

	Central Aortic Pressure Monitoring
	Significance
	Previous Techniques
	Tube-Load Model Parameter Estimation Techniques

	Conclusion
	Summary
	Future Directions
	Potential Applications


	Acknowledgments
	References

	Modeling the autonomic and metabolic effects of obstructive sleep apnea: a simulation study
	Introduction
	Materials and Methods
	Results
	Stand-alone model extension results
	Simulation of normal subject: effects of ``metabolic feedback''
	Normal breathing vs. OSA with metabolic feedback
	Time-course of development of metabolic and autonomic effects in OSA
	Simulation of external interventions: glucose clamps
	Sensitivity analyses
	Interaction between key parameters contributing to autonomic and metabolic interactions
	Interactions between key parameters contributing to epinephrine regulation on glucose and FFA dynamics
	Interactions between key parameters contributing to the severity of obstructive sleep apnea effects


	Discussion
	Limitations of the model

	Conclusion
	Acknowledgments
	References

	Estimation of cardiac output and peripheral resistance using square-wave-approximated aortic flow signal
	Introduction
	Methods
	Standard Windkessel Method
	Proposed Windkessel Method

	Methods
	Experimental Protocol
	Data Collection, Signal Processing, and Statistical Analysis

	Results
	Discussion
	Validity and Efficacy of Proposed Method
	Mathematical Analysis of Proposed Method
	Limitations of the Study

	Conclusion
	Acknowledgments
	References

	Modulation of the sympatho-vagal balance during sleep: frequency domain study of heart rate variability and respiration
	Introduction
	Materials and Methods
	Subjects
	Polysomnographic acquisition
	Signal processing
	Analysis

	Results
	Discussion
	Acknowledgments
	References

	Increased non-Gaussianity of heart rate variability predicts cardiac mortality after an acute myocardial infarction
	INTRODUCTION
	Materials AND METHODS
	STUDY PATIENTS
	MEASUREMENTS
	ANALYSIS OF NON-GAUSSIANITY INDEX
	ANALYSIS OF CONVENTIONAL HRV INDICES
	ENDPOINT ANALYSIS
	STATISTICAL ANALYSIS

	RESULTS
	HRV AND NON-GAUSSIANITY INDICES
	INCREASED NON-GAUSSIANITY AND PROGNOSIS

	DISCUSSION
	STUDY LIMITATIONS
	CONCLUSION
	Acknowledgments
	References
	Appendix
	Reanalysis of previous observations in a cohort study of congestive heart failure patients



	Non-Gaussianity of low frequency heart rate variability and sympathetic activation: lack of increases in multiple system atrophy and Parkinson disease
	Introduction
	Materials and methods
	Study patients
	Measurements and protocol
	Analysis of conventional hrv indices
	Multiscale probability density function analysis
	Statistical analysis

	Results
	Conventional hrv indices
	Non-gaussian and intermittent properties of hrv

	Discussion
	Acknowledgments
	References

	Information domain approach to the investigation of cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings
	Introduction
	Materials and Methods
	Experimental Protocols and Data Analysis
	Analysis of Non-linear Causal Coupling
	Scheme for conditional entropy computation
	Conditional entropy-based computation of causal coupling
	Estimation of conditional entropy

	Statistical Analysis

	Results
	Time Domain Analysis
	Causal Coupling and Directionality Analyses

	Discussion
	Methodological aspects
	Analysis of Cardio-Vascular Interactions
	Analysis of Cardio-Pulmonary and Vasculo-Pulmonary Interactions
	Respiratory Fluctuations in Cardiac and Vascular Variability

	Conclusion
	References

	Integrated central-autonomic multifractal complexity in the heart rate variability of healthy humans
	Introduction
	Materials and Methods
	Subjects and Experiments
	Relative Multifractality between Time Series
	Surrogates
	HRV and EEG Spectral Components
	Regression Analysis
	Statistics

	Results
	RM and RRi Spectrum Width
	HRV, EEG Spectral Measures
	Linear Regression with EEG Spectral Measures
	Linear Regression with HRV Spectral Measures
	Multivariate Regression: Principal Component Analysis Results

	Discussions
	WR/E and EEG Spectral Measures
	WR/E and HRV Spectral Measures

	Limit of Study
	Conclusion
	Acknowledgments
	References
	Appendix A
	Appendix B

	Time scales of autonomic information flow in near-term fetal sheep
	Introduction
	Methods
	Surgical Procedure
	Experimental Protocol
	Data Acquisition
	Analysis of Physiological Variables
	Permutation Entropy and Kullback-Leibler Entropy
	Statistical Analysis

	Results
	Vagal and Sympathetic Blockades
	HV/LF and LV/HF Electrocortical State Activity

	Discussion
	Vagal and Sympathetic Modulations of fHRV Impact Specific Time Scales of fHRV
	Contributions of Vagal and Sympathetic Activities to ECoG State-Dependent Changes in fHRV Complexity
	Implications for Human FHR Monitoring
	Perspectives and Implications

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




