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Editorial on the Research Topic

Neuromodulation using spatiotemporally complex patterns

Standard high-frequency deep brain stimulation (DBS) is an established therapy

for the treatment of Parkinson’s disease (PD) (Lozano et al., 2019). However, there

is still a significant clinical need for further improvement, as DBS may cause side

effects and its therapeutic effects may be limited, in particular, regarding axial symptoms

(Baizabal-Carvallo and Jankovic, 2016; Lozano et al., 2019). The articles in this Research

Topic highlight that stimulation with spatiotemporal patterns may engage the nervous

system in fundamentally different ways than can be achieved with conventional single-

frequency stimulation.

Theta burst stimulation (TBS) was initially developed for transcranial magnetic

stimulation, especially to induce long-lasting modulation of motor networks (Huang et al.,

2005). Later, this stimulus pattern was also applied to DBS. In a randomized, double-

blind, clinical short-term trial, Horn et al. (2020) compared two types of TBS unilaterally

delivered to the STN with standard unilateral DBS. Their results demonstrated safety and

efficacy in this acute (20-30min) setting, but no long-lasting aftereffects. Sáenz-Farret et al.

(2021) studied safety and efficacy of chronically applied bilateral low intra-burst frequency

TBS [as introduced by Horn et al. (2020)] in eight PD and one essential tremor patient. In

seven patients TBS had to be discontinued due to side effects. Gülke et al. performed an

analogous short-term study to test bilateral STN TBS under the same acute conditions and

retrospectively combined their data with the data by Horn et al. (2020). Both unilateral and

bilateral STN TBS reduced motor scores, where bilateral TBS did not lead to significant

additive benefit. Note that the parameters for TBS used in these studies were not all the

same which may explain the differences in results. In particular, Sáenz-Farret et al. (2021)

utilized a lower intra-burst frequency and twice the inter-burst period as that used in

Gülke et al..

Coordinated Reset (CR) stimulation is a patterned multi-site stimulation

technique that was computationally developed to specifically counteract abnormal

neuronal synchrony by demand-controlled delivery of stimuli that cause robust

desynchronization, thereby overcoming limitations of phase-dependent stimulation

(Tass, 2003). Using spike-timing dependent plasticity (STDP) (Markram et al., 1997)
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in a variety of neuronal network models, CR stimulation turned

out to induce cumulative and long-lasting desynchronizing effects,

by inducing an unlearning of abnormal synaptic connectivity

(Tass and Majtanik, 2006; Hauptmann and Tass, 2009). These

computationally predicted, cumulative and weeks-long stimulus

after-effects, very different compared to what was known from

standard DBS, were verified in MPTP Parkinsonian monkeys (Tass

et al., 2012; Wang et al., 2016, 2022; Bore et al., 2022) and human

PD patients (Adamchic et al., 2014). Bosley et al. study the impact

of CR-DBS delivered to the STN specifically on impaired gait in

MPTP Parkinsonian monkeys. Their results show that CR-DBS can

improve Parkinsonian gait. Kromer et al. present a computational

model of the STN-GPe circuit and investigate how connectivity

changes affect evoked responses and, hence, can be used to probe

functional channels in the basal ganglia by means of a suggested

two-site stimulation protocol. These results may lead to calibration

techniques for CR-DBS enabled by implantable pulse generators

that are able to sense.

In their review article, Najera et al. summarize alternative DBS

stimulation approaches and their potential clinical applications. By

the same token, in a review article, Cota et al. discuss standard

and alternative brain stimulation techniques, including non-

periodic stimulation. Different plasticity as well as compensatory

mechanisms appear to play crucial roles in Parkinson’s disease

(Blandini et al., 2000; van Nuenen et al., 2012; Madadi Asl et al.,

2022). Accordingly, in an opinion article, Asp et al. stress the

importance of neuroplasticity as a key target for the development

of novel stimulation techniques.

Adaptive deep brain stimulation (aDBS) has a long history,

dating back to the 1980s (Krauss et al., 2021). One goal of aDBS

is to reduce side effects by reducing stimulation current. In a

computational study, Bahadori-Jahromi et al. compare standard

DBS with aDBS with amplitude modulation in a cortico-BG-

thalamic network. In their model, aDBS outperformed standard

DBS with respect to reduction of beta band oscillations, restoring

fidelity of thalamic throughput and overall stimulation current.

As shown computationally, properly timed multi-channel

and multi-site stimulation can significantly reshape connectivity,

thereby inducing long-lasting activity changes (Khaledi-Nasab

et al., 2022; Kromer and Tass, 2022; Madadi Asl et al., 2023).

Depending on the condition, restoring function may require to up-

or down-regulate specific connections within and/or between brain

areas and corresponding patterns of synchrony. In an N-of-1 case

report study, Omae et al. use amplitude-modulated transcranial

alternating current stimulation (AM-tACS) (Witkowski et al., 2016;

Negahbani et al., 2018) to enhance low beta phase synchrony

between Broca’s area and the right homotopic area with the

intend to improve language function in a patient with chronic

post-stroke aphasia. Favorable electrophysiological outcomes and

clinical benefits indicate that this approach deserves further

clinical testing.

In mouse models of Alzheimer’s disease, entrainment by

gamma (40Hz) rhythmic light flicker enabled to attenuate

pathological processes associated with Alzheimer’s disease

(Iaccarino et al., 2016; Adaikkan et al., 2019). To computationally

study the electrophysiology of gamma flicker entrainment,

Wang et al. propose a neural network model for thalamocortical

oscillations (TCOs) and computationally studied the impact

of light flicker stimulation with different parameters in

dependence on different thalamocortical oscillatory states.

They revealed state-dependent stimulus responses that may inform

future experiments.

EEG plays an important role in monitoring treatment effects

and providing feedback for closed-loop stimulation techniques.

Motivated by deep learning and stack generalization theory, Zhang

et al. propose a novel method for the recognition of epileptic

EEG signals: deep extreme learning machine (DELM) which

consists of several independent, hierarchically aligned extreme

learning machine (ELM) modules. They compared DELM with

ELM alone, by applying it to the publicly available EEG data set

from the Department of Epileptology at Bonn University, Germany

(Andrzejak et al., 2001). In this comparison DELM outperformed

ELM regarding accuracy and computing time.

Modern neuromodulation devices, increasingly capable of

complex stimulation patterns, and modern tools for data analysis

may pave the way for leveraging the potential of novel patterned

and multichannel stimulation approaches for clinical use.
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1Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin,
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Rhythmic light flickers have emerged as useful tools to modulate cognition

and rescue pathological oscillations related to neurological disorders by

entrainment. However, a mechanistic understanding of the entrainment

for different brain oscillatory states and light flicker parameters is lacking.

To address this issue, we proposed a biophysical neural network model

for thalamocortical oscillations (TCOs) and explored the stimulation

effects depending on the thalamocortical oscillatory states and stimulation

parameters (frequency, intensity, and duty cycle) using the proposed model

and electrophysiology experiments. The proposed model generated alpha,

beta, and gamma oscillatory states (with main oscillation frequences at

9, 25, and 35 Hz, respectively), which were successfully transmitted from

the thalamus to the cortex. By applying light flicker stimulation, we found

that the entrainment was state-dependent and it was more prone to

induce entrainment if the flicker perturbation frequency was closer to

the endogenous oscillatory frequency. In addition, endogenous oscillation

would be accelerated, whereas low-frequency oscillatory power would be

suppressed by gamma (30–50 Hz) flickers. Notably, the effects of intensity

and duty cycle on entrainment were complex; a high intensity of light flicker

did not mean high entrainment possibility, and duty cycles below 50% could

induce entrainment easier than those above 50%. Further, we observed

entrainment discontinuity during gamma flicker stimulations with different

frequencies, attributable to the non-linear characteristics of the network

oscillations. These results provide support for the experimental design and

clinical applications of the modulation of TCOs by gamma (30–50 Hz)

light flicker.
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thalamocortical, oscillation, gamma light flicker, entrainment, biophysical model
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Introduction

The thalamocortical (TC) loop plays a central role in
cerebral rhythmogenesis (O’Reilly et al., 2021), and abnormal
TC rhythms have been associated with disorders, such as
depression, schizophrenia, Parkinson’s disease and Alzheimer’s
disease (Niedermeyer, 1997; Llinás et al., 1999; Hughes and
Crunelli, 2005; Madadi Asl et al., 2022). Gamma (40 Hz)
rhythmic light flicker can entrain cortical gamma neural
oscillations non-invasively and externally to restore cognitive
dysfunctions or promote learning and memory (Adaikkan
et al., 2019; Tian et al., 2021). Understanding the neurocircuit
mechanisms of visually evoked entrainment of gamma can
be useful when considering the possibility of the therapeutic
and clinical adoption of visual gamma stimulation. However,
how the stimulation paradigms interact with endogenous
neural activity is currently unknown. It is also unclear
how the stimulation effects depend on the TC state and
stimulation doses, such as light flicker frequency and intensity.
Addressing these issues requires a mechanistic understanding
and systematic examination of the stimulation effects on TC
network dynamics.

Neural oscillations are the rhythmic fluctuations of electrical
activity in the central nervous system, which emerge due to
the properties of different types of cells and interactions among
them (Mathalon and Sohal, 2015). Many biophysical neural
networks (NNs) based on mathematical models of different
types of cells have been developed to study the characteristics
of thalamus or cortex neural oscillations (Li and Cleland,
2013; Li et al., 2017; Chariker et al., 2018; Negahbani et al.,
2018; Huang et al., 2021). For example, a unified biophysical
thalamic NN model based on the Hodgkin–Huxley formalism
was developed to explore the effect of deep brain stimulation
(DBS) or repetitive transcranial magnetic stimulation (rTMS)
on thalamic neural oscillations (Li et al., 2017). Similarly,
a cortical NN model based on the Izhikevich formalism
was developed to study the effect of transcranial alternating
current stimulation (tACS) on cortical alpha-band (8–13 Hz)
oscillations (Negahbani et al., 2018). Later, the abovementioned
thalamic and cortical NN models were coupled to study
how tACS entrains the endogenous alpha-band oscillations
of TC NNs (Huang et al., 2021). These experiment-based
models were employed to analyze the interaction mechanism
of exogenous electromagnetic stimulation on internal neural
oscillation, providing a good reference for this study.

For visually evoked gamma-band (30–100 Hz) oscillations,
a neural synchronization may first be generated by retinal
mechanisms (Adaikkan and Tsai, 2020). Next, a feedforward
network carries the synchronization from the retina to the
lateral geniculate nucleus (LGN) and then to the visual cortex
(Adaikkan and Tsai, 2020). Thus, information about light
flicker frequency is processed at multiple levels along the
retinothalamocortical pathway. Early studies have shown the

response of retinal ganglion (GC) cells to frequency global
flicker stimulation (Schwartz et al., 2007; Schwartz and Berry,
2008) and how to simulate the transmission from the retina
to thalamus (Casti et al., 2008; Werner et al., 2008). However,
these studies on retinothalamocortical pathway simulation have
focused on the transmission of visual information rather than
the oscillation effect of networks; a TC oscillation (TCO) NN
model in response to light flicker is lacking.

To gain an in-depth understanding of the entrainment
mechanism of TCOs induced by gamma light flicker, we
developed and investigated a biophysically detailed TCO NN
model and explored the stimulation effects depending on the
TC oscillatory states and stimulation parameters (frequency,
intensity, and duty cycle).

Materials and methods

Thalamocortical network structure

We adopted a previously developed thalamic NN model
(Li et al., 2017), which was used to study the effect of
rhythmic stimulation on neural oscillations, and connected it
to a simplified cortex NN model (Susin and Destexhe, 2021),
which was used to study the mechanism of the gamma-band
(30–100 Hz) oscillation generation.

The thalamic network included 144 relay-model thalamic
cells (RTC), 100 reticular inhibitory neurons (RE), 49
high-threshold bursting thalamic cells (HTC), and 64 local
interneurons (IN) based on cat physiological data (Hughes
et al., 2004; Lörincz et al., 2008). All thalamic neurons were
modeled using the Hodgkin–Huxley formalism of point
neurons connected with glutamatergic (mediated by both
AMPA and NMDA receptors) and GABAergic (mediated
by GABAA receptors) synaptic currents (with implemented
short-term synaptic depression) or via gap junctions, with the
previously described parameter values (Li et al., 2017).

For the cortical part, we reduced the number of neural cells
in the original cortex NN model (Susin and Destexhe, 2021)
to match the thalamic NN and increased the possibility of a
synaptic connection as another cortex NN model that has the
same number of cells (Negahbani et al., 2018), including 80
pyramidal (PY) and 20 fast-spiking inhibitory (FS) neurons.
All neurons were connected globally with a probability of 0.8,
except for the connections within PY neurons, which was 0.5.
Individual PY and FS cells were modeled using the Izhikevich
formalism for point neurons with the previously described
parameter values (Susin and Destexhe, 2021).

The thalamic and cortex NN models were connected
in a biologically plausible manner (Izhikevich and Edelman,
2008) to form the TCO NN model (Figure 1); the essential
features are highlighted in the following brief description of the
model equations.
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FIGURE 1

A schematic of the proposed TCO NN model (left) and GC spike pattern under light flicker (upper right). The percentage value represents the
possibility of a connection between neuron groups.

Computational model of
thalamocortical network

Thalamic model
The current balance is described by the Hodgkin–Huxley

formalism:

Cm
dv
dt
= −gL (V − EL)− gKL (V − EKL)−

∑
Iint −

∑
Isyn

(1)
where Cm denotes the membrane capacitance, gL denotes
the leakage conductance, gKL denotes the potassium leak
conductance, EL denotes the leakage reversal potential, EKL
denotes the reversal potential for the potassium leak current (see
Supplementary Table 1 for details), and Iint and Isyn denote
the intrinsic ionic and synaptic currents, respectively. An ion
current is described as follows:

Ii = gimphq (V − Ei) (2)

where gi denotes its maximal conductance density (see
Supplementary Table 2 for details), m denotes its activation
variable (with exponent p), h denotes its inactivation variable
(with exponent q), and Ei denotes its reversal potential. The
gating variable (m or h) kinetic equations satisfy the first-order
kinetic model:

dx
dt
= φx

x∞ (V, [Ca]i)− x
τX (V, [Ca]i)

(3)

where φx denotes a temperature-dependent factor,
x∞ (V, [Ca]i) represents the voltage– or Ca2+-dependent
steady-state, and τX denotes the voltage– or Ca2+-dependent
time constant (see Supplementary Table 3 for details).
Intracellular calcium is regulated by a simple first-order
differential equation of the form:

d
[
Ca2+]

i
dt

= −
Ica
zFw
+

[
Ca2+]

rest −
[
Ca2+]

τCa
(4)

where Ica denotes the summation of all Ca2+ currents, w
denotes the thickness of the perimembranous “shell” in which
calcium can affect membrane properties, z denotes the valence
of the Ca2+ ion, F represents the Faraday constant, and τCa

denotes the Ca2+ removal rate.
[
Ca2+]

rest is the resting Ca2+

concentration (see Supplementary Table 1 for details).
For synaptic currents, the gap junction current is computed

as follows:
Igap = (Vpre − Vpost)/Rg (5)

where Vpre and Vpost denote the membrane potentials of the
presynaptic and postsynaptic neurons, respectively. Rg is the gap
junction resistance (Rg = 100 M� for the HTC-HTC synapses,
Rg = 300 M� for the HTC-RTC and RE-RE synapses), Chemical
synaptic currents are calculated as follows:

Isyn = sDgsynB (V)
(
V − Esyn

)
(6)

where gsyn denotes the maximal synaptic conductance, and
Esyn denotes the synaptic reversal potential. The function B(V)

Frontiers in Neuroinformatics 03 frontiersin.org

10

https://doi.org/10.3389/fninf.2022.968907
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-968907 August 17, 2022 Time: 16:44 # 4

Wang et al. 10.3389/fninf.2022.968907

FIGURE 2

Generation of alpha, beta, and gamma oscillatory states in the TCO NN model under different afferent excitations. (A) Voltage traces of
representative HTC, IN, RTC, RE, RS, and FS cells each: (A1,A2) alpha, beta, and gamma oscillatory states, respectively. (B) Spike rastergrams of
HTC, IN, RTC, RE, RS, and FS cells. (C) Simulated LFP (top) of thalamus and cortex networks with associated frequency power spectrum
(bottom).

implements the Mg2+ block for NMDA currents, the gating
variable, s, represents the fraction of open synaptic ion channels
and obeys the first-order kinetics:

ds
dt
= α [T] (1− s)− βs (7)

where [T] denotes the concentration of the neurotransmitter
in the synapse which is assumed to be a brief pulse that has
duration of 0.3 ms and amplitude of 0.5 mM following an
action potential in the presynaptic neuron, and α and β denote
forward- and backward-binding rates, respectively. Short-term
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FIGURE 3

Quantification of network activity. (A) Cross-correlation between each pair of the neuronal group during three oscillatory states. (B) Average
firing rates of all types of neurons across three oscillatory states. Cross-correlation between different groups of thalamic neurons during four
oscillatory states. (C) Average cross-correlation of the thalamus, cortex, and thalamus to cortex of neuronal groups. Error bars indicate standard
deviation.

synaptic depression is implemented in all chemical synapses
and is modeled by scaling the maximal conductance of a given
synaptic channel by a depression variable D, which is expressed
as follows:

D = 1− (1− Di (1− U)) exp
(
−
t − ti

τ

)
(8)

where U denotes the fraction of resources used per action
potential, τ denotes the time constant of the synaptic vesicle
recovery, Di represents the value of D immediately before
the ith presynaptic spike, and ti represents the timing of
the ith spike event. The numerical value of the above
parameters are indicated in the Supplementary materials
(Supplementary Table 4).

Cortical neural network model

In summary, the current balance equation is given by

Cm
dv
dt
= −gL (v− EL)+ gL1 exp

[
(v− vth)

1

]
τ− w− Isyn

(9)
where Cm denotes the membrane capacitance, gL denotes the
leakage conductance, EL denotes the leaky membrane potential,
vth denotes the effective threshold, and 1 denotes the threshold

slope factor. w is the adaptation current, given by

τw
dw
dt
= a (v− EL)− w+ b

∑
j

δ
(
t − tj

)
(10)

It increases by an amount b when the neuron emits a spike at
tj and decays exponentially with time scale τw. The parameter a
indicates the subthreshold adaptation. The synaptic current Isyn
is calculated as follows:

Isyn = gE (v− EE)+ gI (v− EI) (11)

where EE and EI denote the reversal potential of excitatory and
inhibitory synapses, respectively; gE and gI denote the maximal
synaptic conductances; they obey the first-order kinetics:

τE,I
dgE,I

dt
= −gE,I + QE,I

∑
k

δ (t − tk) (12)

where τE,I denotes the decay time constant. Every time
(tk) the presynaptic neuron generates a spike, the excitatory
(gE) or inhibitory (gI) synaptic conductance increases by
a discrete amount QE,I (excitatory or inhibitory synaptic
strength, respectively). When v = vth, the membrane potential
is reset to vrest , which is kept constant until the end of the
refractory period. After the refractory period, the equations
are being integrated again. The numerical value of the above
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parameters are provided in the Supplementary Materials
(Supplementary Table 5).

Formation of oscillations and neuronal
heterogeneity

All neurons in the thalamic network received independent
Poisson-distributed spike inputs at an average rate of 100 Hz.
The random inputs represent both the extrinsic sources
of background noise and asynchronous visual input and
were exclusively mediated by AMPA receptors modeled as
an instantaneous step followed by an exponential decay
with a time constant of 5 ms. Alpha, beta, and gamma
oscillatory states (with main oscillation frequencies at
9, 25, and 35 Hz, respectively) are formed by changing
random input synaptic conductances (2.5, 15, and 25 nS,
respectively). Each cortical neuron received an external
drive (noise), which was implemented as 80 independent
and identically distributed excitatory Poissonian spike trains
with a spiking frequency of 2 Hz, as in a previous study
(Susin and Destexhe, 2021). To introduce heterogeneity to
model neurons, the leakage conductance (gL) of thalamic
network neurons is drawn from a uniform distribution
within ± 25% of the default value (i.e., 0.0075–0.0125 ms/cm2).
The leakage conductance variation, random synaptic
connectivity, and random external inputs constituted
neuronal heterogeneity.

Input from ganglion cells
In this study, we focus on the intensity and frequency

of global flicker stimulation and set the gamma stimulation
frequency increased from 30 to 50 Hz with a 1-Hz step
increment. As in a biophysical NN model of the dorsal LGN
(dLGN) circuit (Heiberg et al., 2016), the input from GC cells
to the TC network is spike trains, which are modeled as a
firing-rate based model. Early experimental data showed that
GC cells had harmonic firing patterns during flicker sequences,
especially the ON-bipolar cells (a type of GC cells) that probably
oscillate resonantly at the stimulus frequency (Schwartz et al.,
2007; Schwartz and Berry, 2008). Thus, for the entire GC
cell network, periodic global flicker stimulation can entrain
the resonance response, and the input from GC cells can be
modeled as a periodic firing model with a frequency consistent
with the flicker stimulation. As the duration of each gamma
flicker is very short [about 10 ms, which is close to a GC spike
duration (Yan et al., 2016)] and the firing rate of GC cells
is positively correlated with the intensity of light stimulation
(Einevoll and Heggelund, 2000), the firing pattern of GC cells
is simplified to one, two, or three spikes during a flicker to
represent different light stimulation intensities. We also assume
that the duty cycle is proportional to the number of spikes
during each flicker and divide a 40-Hz flicker cycle into six equal
parts, considering each flicker can emit up to three spikes of
GC cells. Then, the 1/6 duty cycle flicker corresponds to GC

cells giving one spike during the 1/6 duty cycle, and the 2/6
duty cycle flicker corresponds to GC cells giving two spikes
during the 2/6 duty cycle, and so on (Figure 1, upper right).
Instead of using a group of GC cells firing with the flicker
frequency, we constructed one GC cell to generate spike trains
considering that the flicker is global and connected it to all TC
and IN cells consistent with physiological data of cat LGN (Van
Horn et al., 2000). The properties of the GC-IN synapse are
adapted to give responses in accordance with experimental data,
where EPSPs are dependent on AMPA and NMDA activation,
and typically, three to four simultaneous synapse activations are
required to evoke action potentials in IN cells (Acuna-Goycolea
et al., 2008). The response of TCs to GC spike is adapted to
experimental data (Blitz and Regehr, 2005), i.e., monosynaptic
excitation is assumed, mediated by AMPA receptors with a
reversal potential of 10 mV. The synaptic conductance agreed
with a retina-LGN transmission model (Casti et al., 2008), where
the maximal synaptic conductance of AMPA and NMDA was
0.15 and 0.05 µS, respectively.

Stimulation protocol
The computational modeling was implemented using the

Brian2 simulator in Python. All simulations were performed
using the fourth-order Runge-Kutta [RK(4)] method with
a fixed time step of 0.02 ms. After the initial parameters,
including the network connection and leakage conductance
(gL) of thalamic NNs, were determined, the flicker stimulation
of different frequencies (30–50 Hz), intensities (one, two,
and three spikes), and duty cycles (1/6–5/6) was applied
repeatedly to the same network. The simulation duration of each
parameter was 10 s.

Oscillatory evaluation index

Simulated local field potential
Thalamic Simulated local field potential (sLFP) was

constructed by filtering the mean membrane potentials across all
TCs (Li et al., 2019). Similarly, the cortical sLFP was constructed
by filtering the mean membrane potentials of all cortical cells as
follows:

sLFP =
1
N

N∑
i=1

V i, (13)

where N denotes the number of cells, and V denotes the
membrane potential. The raw sLFP was filtered numerically
using a bandpass filter (0.5–80 Hz). The frequency power
spectrum of the signal was obtained using the Fast Fourier
transform of the filtered sLFP with Python functions firwin.
The network oscillation frequency was determined from the
position of the spectral peak in the frequency spectrum, and
the power spectrum heat map was generated using the Python
function heatmap.
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Synchronization index
The phase of each spike (ϕ) was computed as follows:

φ =
tspike − tlastLFPpeak

tnextLFPpeak − tlastLFPpeak
× 360, (14)

where tspike denotes the spike time, tlastLFPpeak denotes the time
of the preceding positive sLFP peak, and tnextLFPpeak denotes
the time of the following positive sLFP peak. Then, the SI was
calculated as follows:

k = 1/N

√√√√
[

N∑
i=1

sin(φi)]2 + [
N∑
i=1

cos(φi)]2, (15)

where φi denotes the phase of each spike relative to the sLFP
peaks and N denotes the total number of spikes for both
HTC and RTC cells. The SI measures the degree of mutual
synchronization between neurons; when all spikes have identical
phases, the SI achieves its maximal value of unity.

Oscillation power
The oscillation power is calculated as the (maximal) spectral

peak of sLFP. For comparison among different states, the
oscillation power was normalized by the original spectral peak
(without stimulation).

Correlation index
To compute the CI, the peri-event time histogram (PETH)

for each of the cells (HTC, RTC, IN, RE, FS, and RS) was
generated by dividing the simulation time interval into small
bins (2 ms) and summing up the number of spikes in each
bin. The CI between two cell groups was determined as the
peak of the cross-correlation between the mean-removed PETH
of the two cell groups. For the thalamus network, the CI was
calculated as the mean of the respective index values for all six
pairs of neuronal populations within the thalamic network. For
the cortex network, the CI is the same as that of RS–FS. In
addition, the CI between the thalamic and cortex networks was
calculated as the mean of the respective indices for RS–RTC,
RS–RE, and FS–RTC.

Entrainment judgment
The network is judged to be entrained, when the flicker

stimulation frequency (fs), dominant oscillation frequency (fd),
spectral peak power (Pmax), and average TC firing rates (FHTC
and FRTC) satisfy the following criteria:

|fs − fd| <∈ (16)

Pmax

P0
> σ (17)

where P0 denotes the spectral peak without stimulation; ∈ and
σ denote the frequency and amplitude thresholds, respectively
(∈ = 1 Hz and σ = 1).

Electrophysiological recording and
flicker stimulation

Four adult male Sprague-Dawley rats weighing about 250 g
were used to implement electrophysiological recording. First,
the rat was anesthetized by intraabdominal injection with 2%
sodium pentobarbital (40 mg/kg), and pain sensitivity was tested
by paw pinches. Then, the head of the rat was shaved and
immobilized in a standard stereotaxic frame. After a midsagittal
incision was made in the scalp, the craniotomy window was
carefully made as a 3-mm square hole 4-mm anterior to the
Bergman and 4 mm to the right of the midline. Four skull
screws were placed in burr holes drilled with a microdrill.
Phosphate-buffered saline was used to wash away the bone
debris. After the endocranium was stripped, a microwire array
(Plexon, 2 × 2, column and row spacing of 250 µm) was
implanted in the thalamus. The reference and counter electrodes
were connected to the ground bone screws in the skull by
silver-coated copper wires. The electrode array was inserted
using a micropositioner and advanced about every 40 s at an
increment of 100 µm to a depth of 4,000 µm. After a week
of recovery, the LFP data were taken by a 64-channel neural
acquisition processor (Plexon, Dallas, TX, United States.) and
its preamplifier (Plexon, Dallas, TX, United States.). Neural
electrophysiological data were filtered by a 4–90-Hz bandpass
and analyzed by Neuroexplorer. A 30-W LED light source
(SENNO-HSL–39536, Shen Zhen, China) was placed above
the rat and triggered by a function signal generator to emit
light flicker with different parameters. Data were recorded for
10 min for each flicker stimulation parameter. The flicker was
turned on at 5 min.

Results

Quantification of the thalamocortical
network activity

From Figure 2, by varying the afferent excitation in
the TC cells of the TC network, we generated alpha, beta,
and gamma oscillatory states that appear under different
behavioral and cognitive conditions in the awake state (Bouyer
et al., 1981; Steriade et al., 1993; Brücke et al., 2013). The
network reproduces the main features of neural oscillations
(Li et al., 2017). For example, as the afferent excitation
increased, HTC cells switched from two spike high-threshold
bursts (HTBs) during the alpha oscillatory state to one spike
tonic spiking during the beta and gamma oscillatory states
while remaining well synchronized because of the gap junction
connections (Figure 2A1), and the depolarization-induced
transition from high-threshold bursting to high-frequency tonic
spiking in HTC cells matches the experimental data [Figure 2B
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in Steriade et al. (1991)]. The thalamus sLFP of the alpha
oscillatory state had a strong rhythmic structure (Figure 2B1)
and the spectrum revealed the peak power at 9 Hz (Figure 2C1),
which was close to the alpha frequency (8.9 ± 1.2 Hz) recorded
from freely moving cats during natural wakefulness (Lorincz
et al., 2009). The neural oscillations of the thalamic network
were transmitted to the cortex network during the three
oscillatory states (Figures 2B,C), i.e., the spike rastergrams and
simulated LFP of the cortex network had the same oscillatory
frequency as those of the thalamus network.

To quantify the network activity, we calculated cross-CI
between different neuronal populations. From Figure 3A, the
cross-CI was related to the direct or indirect connection of
synapses between two neuron groups, and when two groups
of neurons were connected through inhibitory synapses, such
as RTC–IN, the cross-CI was negative. When both inhibitory
and excitatory synaptic connections existed, such as RTC–
RE and HTC–RE, the CI between two groups of neurons
gradually became negative with an increase in the oscillation
frequency. Further, we calculated the average cross-CIs of the
thalamus, cortex, and thalamus to cortex, which decreased with
an increase in oscillation frequency (Figures 3B,C), attributable
to the change in the RTC cells firing pattern among the three
oscillations, which was well synchronized (Figure 2B1) with
high CIs for RS and FS cells during the alpha oscillatory state
(Figure 3A), but the synchrony fade away for the beta and
gamma oscillatory states (Figures 2B2,B3) with low CIs for
RS and FS cells (Figure 3A). From the average firing rates
given in Figure 3B, we found that the average firing rates of
HTC, RTC, FS, and RS cells, which formed the sLFP, increased
substantially with an increase in oscillatory frequency; the sLFP
power decreased more for the beta and gamma oscillatory states
than the alpha oscillatory state (Figure 2C).

Overall, the above results suggest that the thalamic network
could generate stable oscillatory states and transmit them
to the cortex through RTC cells, so the synchronization of
RTC cells would affect the cortex synchronization, which was
highly synchronous under the alpha oscillatory state with high
cross-CI but poorly synchronous under the beta and gamma
oscillatory states.

Effect of 40-Hz light flicker on signal
cells of the thalamocortical network

Before embarking on the TC network activity under gamma
(30–50 Hz) flicker stimulation, we demonstrate the effect of
light (take 40 Hz as an example) flicker on signal cells of the
TC network (Figure 4). As shown in Figure 4A, the excitatory
GC input to the HTC and RTC cells alone would evoke the
action potential of the HTC and RTC cells immediately, whereas
the IN cells need three GC spikes arriving in a short time to
evoke an action potential, which agreed with the experimental

data (Blitz and Regehr, 2005; Acuna-Goycolea et al., 2008). To
observe the response of cells stimulated by light in the circuit,
the response of the TC and IN cells under the alpha oscillation
with a low cell firing rate is shown in Figure 4B; not every GC
excitatory input could evoke a spike of TC cells in the network
in accordance with previous studies (Casti et al., 2008; Heiberg
et al., 2016). When the flicker was on, the firing rate of the HTC
and IN cells decreased, whereas that of the other cells increased
under the alpha oscillation (Figure 4C). Flicker stimulation
changed the firing pattern of HTC cells from HTBs to tonic
spiking, and the firing pattern of IN cells was a mix of HTBs
and tonic spiking under the alpha oscillatory state (Figure 4B).

For the beta and gamma oscillatory states, the HTC cells
fired in a tonic spiking pattern originally, and the light flicker
increased the firing rate of the TC and IN cells, which further
increased the firing rate of other cells in the network. We
found that the firing rate of the IN cells decreased with an
increase in the network oscillatory frequency ahead (Figure 3B);
however, it increased under flicker stimulation, which increased
the oscillatory frequency (Figure 4C). The IN cells received
excitatory synapses from the GC and HTC cells, inhibitory
synapses from the RE cells, and outputed inhibitory synapses to
the RTC cells. The firing rate of the RE cells changed slightly
(Figures 4C2,C3). Thus, flicker stimulation increased the firing
rate of the IN cells by excitatory input from the GC and HTC
cells and then enhanced its inhibition on the RTC cells, but
this inhibition effect was less than that of light stimulation on
the firing rate of the TC cells. Next, we further analyzeed the
influence of flicker stimulation on the TC network oscillation.

Entrainment of 40-Hz light flicker
depends on oscillatory states

A gamma frequency of 40 Hz, which is called the “cortical
arousal” or working frequency of the brain, is considered
an essential frequency for the interaction of various brain
regions (Mcdermott et al., 2018). Experimental results showed
that 40-Hz flicker stimulation induced the entrainment of the
visual cortex, prefrontal cortex, and hippocampus (Herrmann,
2001; Adaikkan et al., 2019; Jones et al., 2019). Thus, we first
explored the effect of the 40-Hz flicker stimulation on TCO
(Figure 5). For the alpha oscillatory state, the 40-Hz flicker
stimulation switched the firing pattern of the HTC cells and
accelerated the oscillation frequency (Figures 5A1,B1), and the
sLFP of both the thalamus and cortex revealed the occurrence
of 40-Hz frequency oscillation with lower power than the
endogenous oscillatory frequency (Figure 5C1). In addition, the
40-Hz flicker stimulation accelerated the endogenous oscillation
frequency and induced a 40-Hz oscillation of the beta oscillation
state (Figure 5C2). Meanwhile, for the gamma oscillation
state, the 40-Hz flicker stimulation changed the endogenous
oscillation frequency to 40 Hz and dramatically increased
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FIGURE 4

Effects of light (40 Hz) flicker on the TC network signal cells. (A) Single cells respond to incoming GC spikes: (A1–A3) HTC, RTC, and IN,
respectively. (B) Voltage traces of two representative cells in the TC network before (green) and under (blue) light (40 Hz) flicker stimulation.
(C) Average firing rate when the flicker was on and off: (C1–C3) alpha, beta, and gamma oscillatory states, respectively. The red dotted line
represents incoming GC spikes.

the oscillation power (Figure 5C3), i.e., the 40-Hz flicker
stimulation induced a resonant response (Herrmann et al.,
2016). Because the cortex oscillation was mainly regulated by the
RTC cells, these results suggest that the 40-Hz flicker induced
a resonant response of the RTC cells, which made the cortex
resonant at 40 Hz.

Effects of stimulation depend on
gamma light frequency and intensity

To explore how different response patterns unfolded as a
function of stimulation frequency and intensity, we generated
a frequency spectrum heatmap of the sLFP in response to
ascending gamma flicker stimulation (30–50 Hz) with three
stimulation intensities for the three oscillatory states (Figure 6).
In addition, to examine the oscillation dynamics and network
synchronization modulated by gamma (30–50 Hz) flicker, we
plot the peak network oscillation frequency, oscillation index
(normalized spectral peak) along with the SI as a function of
the stimulation frequency in response to the three stimulation
intensities for the three oscillatory states in Figure 7.

There were some common effects of the dynamic interaction
between stimulation and endogenous network oscillation across
the three oscillatory states. First, the flicker stimulations
accelerated all three oscillatory states (Figure 6). For the alpha
oscillatory state, the endogenous oscillatory frequency changed
from 9 to 12 Hz by flicker stimulation (Figures 2C1, 6A,D). For
the beta oscillatory state, the endogenous oscillatory frequency

changed from 25 Hz to the gamma band (about 30 Hz) by
flicker stimulation (Figures 2C2, 6B,E). Meanwhile, for the
gamma oscillatory state, the endogenous oscillatory frequency
changed from about 35–40 Hz (Figures 2C3, 6C,F). Second,
different from the results of electrical or magnetic stimulation
(Frohlich and McCormick, 2010; Li et al., 2019), the entrainment
frequency range and oscillation power did not increase with
the stimulation intensity, suggesting that more inputs at the
same stimulation frequency could not yield more entrainment.
For example, the entrainment frequency number decreased and
the endogenous oscillatory frequency changed slightly with an
increase in the stimulation intensity (Figures 7B,C,E,F). Finally,
we found that the stimulation with one spike during each
flicker induced the largest number of entrainment frequencies
in the cortex under a gamma oscillation state (Figure 7F1)
and the number of entrainment frequencies decreased non-
linearly with an increase in the stimulation intensity (Figure 7F).
For example, the entrainment phenomenon disappeared at
30, 32, 33, and 38 Hz of the cortex under the stimulation
intensity of two spikes (Figure 7F2) compared with that
of one spike (Figure 7F1), and 45-Hz stimulation induced
the cortex entrainment for the stimulation intensity of two
spikes, which was not entrainment under one spike stimulation
intensity. This entrainment discontinuity phenomenon can
also be observed in both the thalamus and cortex for the
beta and gamma oscillatory states (Figure 7), suggesting that
the network has the characteristics of a non-linear system,
which agrees with previous studies (Popovych et al., 2005;
Li et al., 2019).
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FIGURE 5

Effects of gamma (40 Hz) flicker on the TC network oscillatory state. (A) Spike rastergrams of HTC, RTC, RS, and FS cells before flicker
stimulation: (A1–A3) alpha, beta, and gamma oscillatory states, respectively. (B) Spike rastergrams of HTC, RTC, RS, and FS cells under flicker
stimulation. The red dotted line represents incoming GC spikes. (C) Frequency power spectrum of sLFP from the thalamus (top) and cortex
(bottom). The red circles indicate the main oscillation frequencies.

Despite the similarities, stimulation also induced
substantially different effects among the three oscillatory
states. First, under the alpha oscillatory state, it did not evoke
entrainment as the flicker frequency was far from the main
endogenous oscillatory frequency. Similar to the non-linear
characteristics of entrainment, the oscillation disappeared for

the 36- and 39-Hz stimulation of one spike intensity and 48-Hz
stimulation of two spike intensity (Figure 6A). There were
multiple endogenous oscillations (about 14, 28, and 42 Hz)
in the range of 0–50 Hz with weakened oscillatory power for
high oscillatory frequency under the alpha oscillatory state,
explaining the 40-Hz harmonic oscillation occurrence under
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FIGURE 6

Frequency spectrum heatmap of the sLFP. (A) The alpha oscillatory state of the thalamus under light flickers: (A1–A3) intensity of one, two, and
three spikes, respectively. (B,C) The beta and gamma oscillatory states of the thalamus under light flickers, respectively. (D–F) The alpha, beta,
and gamma oscillatory states under light flickers of the cortex, respectively.

the 40-Hz flicker stimulation of the alpha oscillatory state
(Figure 5C1). Meanwhile, for the beta and gamma oscillatory
states, the network was prone to be entrained around the

endogenous frequency, which was reflected by the highlighted
spectral power along the diagonal in the frequency spectrum
heatmap (Figures 6B,C,E,F), and the network synchrony
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FIGURE 7

Oscillatory dynamics modulated by gamma flicker. (A) Effect of stimulation on the network dynamics of the alpha oscillatory state for the
thalamus. Top: Dominant network oscillation frequency; Bottom: Normalized spectral peak (black) along with SI (orange) as a function of
stimulation frequency (30–50 Hz) in the presence of three levels of stimulation intensity (A1–A3: one, two, and three spikes, respectively). (B,C)
The beta and gamma oscillatory states of the thalamus, respectively. (D–F) The alpha, beta, and gamma oscillatory states of the cortex,
respectively.
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(SI) and oscillation power were enhanced by stimulation
during entrainment (Figures 7B,C,E,F). These observations
were consistent with previous findings that coupled oscillator
systems failed to be entrained by a periodic drive if the
stimulation frequency was far away from the average frequency
of the system (Antonsen et al., 2008). Second, under the gamma
oscillatory state, there were more entrainment frequencies in the
cortex than in the thalamus (Figures 7C,F), attributable to the
flicker stimulation inducing RTC cell entrainment more easily
than both the HTC and RTC cells that made up the thalamus
sLFP, and then the entrainment of RTC cells induced cortex
entrainment. Finally, gamma (30–50 Hz) flicker stimulation
suppressed alpha oscillation in the thalamus, as the normal
peak power was always below 1 (Figure 7A), whereas the
normal peak power is above 1 when entrainment for beta and
gamma oscillations (Figures 7B,C,E,F). In addition, the highest
oscillation power did not correspond to the highest SI; 43- or
44-Hz frequency flickers would evoke an entrainment response
with the highest oscillation power under the gamma oscillatory
state (Figures 7C,F).

Effects of stimulation depend on
gamma (40 Hz) flicker duty cycle

A 50% duty cycle flicker stimulation is commonly used in
experimental studies to realize gamma oscillation entrainment
of the brain (Singer et al., 2018). The effects of light flicker duty
cycles have been examined on electroencephalogram responses
(Teng et al., 2011); it was found that for the flicker at 11–
22 Hz, 50% duty cycles were more reliable than 25 or 10%
duty cycles in inducing entrainment in the human occipital
lobe. However, whether the duty cycle has similar effects for
higher frequency flicker was not addressed. Considering the
40-Hz flicker stimulation as an example, the spectrum, peak
power, and SI of the 40-Hz flicker stimulation with different duty
cycles under the gamma oscillatory state are shown in Figure 8.
Entrainment occurs when the duty cycle is less than or equal
to 50%. For a duty cycle above 50%, the endogenous oscillatory
frequency exceeds 40 Hz with a decrease in peak power and SI
compared to that below 50%. For a duty cycle below or equal to
50%, one spike during each flicker could induce the entrainment
with the highest peak power and SI. These results suggest that an
effective method to enhance entrainment is ensuring each flicker
makes the GC cells give only one spike within a 50% duty cycle
instead of increasing the flicker intensity.

Experimental verification of the
simulation entrainment

To verify the simulation results, we recorded the response
of thalamic LFP under different light stimulation conditions.

From Figures 9A,B, the entrainment could be observed when
the flicker frequency was less than or equal to 40 Hz, and the
entrainment of double stimulation frequency occurred at 30 and
32 Hz, attributable to the GC cells having both on and off cells
that generated spikes when the light is on and off, respectively,
and then formed an oscillation of double stimulation frequency.
The spectral peak power was higher at 30, 32, and 34 Hz than
at 36, 38, and 40 Hz (Figure 9B), attributable to the endogenous
oscillatory power being higher at around 32 Hz than at around
38 Hz. These results suggest that the entrainment was affected by
the endogenous oscillation, which corresponds to the oscillatory
state. Compared with the frequency power spectrum without
flicker stimulation, the low-frequency oscillation, such as the
alpha oscillation, was suppressed (8–14 Hz), which agrees with
the simulation results (Figure 5C1). For all flicker stimulations
with different frequencies, the inhibitory effect is significant
(Figure 5B). We also found that the oscillatory power was
increased for beta oscillation (17–30 Hz). In addition, the flicker
stimulation of different duty cycles was tested (Figure 9C);
we found that the 10% duty cycle induced entrainment with
the highest oscillatory power which agreed with the simulation
results (Figure 8), and the oscillatory power was in descending
order for duty cycles, 10, 30, 50, 70, and 90% (Figure 9C).
Overall, part of the simulation results was verified by the
experiments, i.e., the low-frequency suppression and oscillatory
frequency acceleration effects were statistically significant, and
the duty cycle below 50% was easier to induce entrainment.

Discussion

The TC pathway is the main route of communication
between the eye and cerebral cortex (Kremkow and Alonso,
2018). Given how sensitive the human brain is to light, the use
of light flickers to modulate the brain is commonly employed to
improve cognition and restore cognitive dysfunctions (Martorell
et al., 2019; Park et al., 2020; Zheng et al., 2020). In recent
studies, visually evoked entrainment was evaluated in mice,
revealing that 40-Hz visual stimuli induced 40-Hz entrainment
in the visual, somatosensory, and prefrontal cortex, as well
as in CA1 (Adaikkan et al., 2019). However, it remains
unclear how the stimulation interacts with endogenous neural
dynamics. Computational modeling offers a robust tool to
examine the impact of rhythmic stimulation on oscillatory
brain dynamics, but a brain oscillations network model in
response to light flickers is lacking. To close this gap, we
developed a TCO NN model and observed state-dependent
entrainment of TCOs along with novel response mechanisms,
such as entrainment discontinuity. Notably, we observed the
modulation of TCOs by flickers from cell dynamics to network
responses through a computational model and verified the low-
frequency suppression and oscillatory frequency acceleration
effects of gamma (30–50 Hz) flicker through experiments. The
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FIGURE 8

Oscillatory dynamics modulated by 40-Hz flicker with different duty cycles. (A) The sLFP spectrum of the thalamus. (B) The peak power and SI
of the thalamus. (C) The sLFP spectrum of the cortex. (D) The peak power and SI of the cortex.

FIGURE 9

Experimental verification of the simulation entrainment. (A) Spectrogram analysis of 34-Hz flicker entrainment. Top: raw LFP of 10 min; Bottom:
heatmap of the raw LFP. The flicker was turned on at 300 s. (B) A 5-min frequency power spectrum of flicker stimulation with different
frequencies on a typic electrode. Error bars indicate s.e.m.; ∗ indicate two-sample t-test between the oscillatory power with flicker stimulation
and without flicker stimulation for all frequencies within the horizontal line, unequal variance statistical significance, n = 9, p < 0.01. (C) Power
spectra density of flicker stimulation with different duty cycles at 40 Hz. Error bars indicate s.e.m.; ∗ indicate two-sample t-test between 10%
duty cycle and 30% or 50% duty cycle; ∗∗ indicate two-sample t-test between 50% duty cycle and 70 or 90% duty cycle, unequal variance
statistical significance, n = 16, p < 0.01.

simulation results offered crucial mechanistic insights into the
modulation of TCOs in both dose- and state-dependent manner.

Entrainment mechanism of gamma
(30–50 Hz) flicker

In this study, we investigated the entrainment mechanisms
of gamma (30–50 Hz) flicker on TCOs; there were many
interesting findings. First, we observed that the TC network
carries oscillation information from the retina to the LGN

and then to the cortex. Partial GC cells may generate
resonant spike trains by light flicker, which agrees with a
previous experimental study (Schwartz et al., 2007). In addition,
the resonant spike trains induce TC cell entrainment when
the stimulation frequency matches the intrinsic frequency
of the NN (Figures 6B,C, 7B,C). Then, the entrainment
of TC cells further induces the cortex network resonant
response (Figures 6E,F, 7E,F). Second, the entrainment is state-
dependent. With the HTC cells’ firing pattern changed from
a highly synchronous burst mode to a tonic spiking mode,
gamma (30–50 Hz) flicker merely accelerated the network
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oscillation and reduced the oscillation power for the alpha
oscillatory state; moreover, all gamma (30–50 Hz) flickers fail to
induce entrainment for the endogenous oscillatory frequency,
which is almost unchanged by different gamma (30–50 Hz)
flicker frequencies and intensities (Figures 6A,D, 7A,D).
Meanwhile, for the beta or gamma oscillatory state, entrainment
occurs around the endogenous oscillatory frequency with
high oscillation power and SI (Figures 7B,C,E,F). Finally,
we found that a high firing rate of GC cells induced by
high gamma (30–50 Hz) light intensity was not positively
correlated with the enhancement of oscillation power or
synchronization and the entrainment probability decreased on
the contrary (Figure 7). As computational simulation and
human EEG studies have shown a positive relationship between
stimulus intensity and the level of entrainment (Herrmann
et al., 2016; Jones et al., 2019), it may be that the high
intensity flicker activated more GC cells to periodic firing
which enhance the entrainment. Further investigating the
effects of stimulation depending on the gamma (40 Hz)
flicker duty cycle, we found that a single periodic input
(GC cells give one spike during each flicker) could induce
stronger entrainment than a periodic input with more than
one spike during each flicker (Figure 8). In addition, part
of the simulation results was verified by the experiments.
These findings provide valuable insights into the application of
gamma (30–50 Hz) flicker stimulation to treat neurological and
psychiatric disorders.

Model limitations

Like any scientific study, there are some limitations to
our study. First, the input from GC cells to LGN induced by
gamma (30–50 Hz) flicker is simplified, as mentioned above.
GC cells had complex harmonic patterns during the flicker
sequence; we only simulated the resonant part, whereas some
GC cells exhibited period-doubling, period-tripling, or other
beat patterns (Schwartz et al., 2007), especially for flickers with
frequencies below 34 Hz, as the experimental results show
(Figure 9B). For the visual input of the non-resonant part,
it may become the noise input and contribute to neuronal
heterogeneity. More detailed experiment data are needed to
construct realistic oscillation input from the GC cell network
to LGN. Second, because the proposed model is a small-
scale network focusing on neural oscillation generation and
transition, it can only reproduce part of the NN characteristics.
The simulation findings provide ideas for the experiments, but
further experimental verification of the simulation is required.
For example, the dependence of entrainment on the endogenous
brain oscillatory states cannot be directly observed by animal
experiments in this study. Third, the proposed model is
based on data from several animal species, e.g., the GC cells’
responses to flickers were from salamander and mouse, whereas

the GC–TC and GC–IN synapse parameters were from cat
dLGN. The main features of thalamic physiology seem to be
well-conserved across species, but the comparison of model
predictions with experimental data from the various species
is required.

Conclusion

In conclusion, we demonstrated that the rhythmic
modulation of TCOs by gamma (30–50 Hz) flicker is state-
dependent. The endogenous oscillation state of the network
determines whether gamma (30–50 Hz) stimulation can induce
entrainment. In particular, the gamma (30–50 Hz) flicker
induces entrainment under the beta and gamma oscillatory
states but not for the alpha oscillatory state. Moreover, it is more
prone to induce entrainment for gamma (30–50 Hz) flicker
when GC cells give one spike during each flicker compared
with multiple spikes. Overall, this study provides insights into
how the biophysics of TCOs guides the emergence of complex,
state-dependent mechanisms of target engagement, which can
be leveraged for the future rational design of novel therapeutic
stimulation modalities.
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Introduction: Parkinson’s disease (PD) is a movement disorder characterized by the

pathological beta band (15–30 Hz) neural oscillations within the basal ganglia (BG).

It is shown that the suppression of abnormal beta oscillations is correlated with

the improvement of PD motor symptoms, which is a goal of standard therapies

including deep brain stimulation (DBS). To overcome the stimulation-induced side

e�ects and ine�ciencies of conventional DBS (cDBS) and to reduce the administered

stimulation current, closed-loop adaptive DBS (aDBS) techniques were developed. In

this method, the frequency and/or amplitude of stimulation are modulated based on

various disease biomarkers.

Methods: Here, by computational modeling of a cortico-BG-thalamic network in

normal and PD conditions, we show that closed-loop aDBS of the subthalamic

nucleus (STN) with amplitude modulation leads to a more e�ective suppression of

pathological beta oscillations within the parkinsonian BG.

Results: Our results show that beta band neural oscillations are restored to their

normal range and the reliability of the response of the thalamic neurons to motor

cortex commands is retained due to aDBS with amplitude modulation. Furthermore,

notably less stimulation current is administered during aDBS compared with cDBS

due to a closed-loop control of stimulation amplitude based on the STN local field

potential (LFP) beta activity.

Discussion: E�cient models of closed-loop stimulation may contribute to the

clinical development of optimized aDBS techniques designed to reduce potential

stimulation-induced side e�ects of cDBS in PD patients while leading to a better

therapeutic outcome.

KEYWORDS

beta oscillation, Parkinson’s disease, closed-loop deep brain stimulation, amplitude

modulation, synchronization

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized by

abnormal neural oscillations in the beta band (15–30 Hz) frequency within the basal

ganglia (BG) (Brown et al., 2001; Hammond et al., 2007; Mallet et al., 2008; Asadi

et al., 2022). The BG circuitry is massively modulated by dopamine (DA) released from

dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Significant

degeneration of DAergic neurons triggers a cascade of maladaptive or compensatory

changes within the BG (Blandini et al., 2000; Madadi Asl et al., 2022b), ultimately

resulting in the emergence of pathological patterns of activity and connectivity observed
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in experimental PD models (Galvan et al., 2015; Madadi Asl et al.,

2022b). Particularly, striatal inhibition in the direct pathway is

suppressed following DA loss, whereas it is enhanced in the indirect

pathway (Lemos et al., 2016). As a result, the inhibitory control

of globus pallidus externus (GPe) over subthalamic nucleus (STN)

reduced (Fan et al., 2012; Madadi Asl et al., 2022a) and excessive

beta oscillations emerged (Brown et al., 2001; Hammond et al.,

2007; Mallet et al., 2008; Asadi et al., 2022). Finally, globus pallidus

internus (GPi) receives more excitatory drive leading to an enhanced

inhibition of the thalamo-cortical circuits, which contributes to

motor dysfunction in PD (DeLong, 1990; Graybiel et al., 1994).

It is shown that the reduction of pathological beta oscillations

is correlated with improved motor performance in PD (Meissner

et al., 2005; Kühn et al., 2006, 2008). High-frequency (>100 Hz)

deep brain stimulation (HF-DBS) is the standard clinical therapy

for medically refractory PD (Benabid, 2003; Benabid et al., 2009).

In a conventional DBS (cDBS) protocol, a train of electrical pulses

is continuously administered to the target structure, for example,

the STN using chronically implanted depth electrodes (Benabid,

2003; Benabid et al., 2009). HF-DBS may cause side effects, such

as dysarthria, dysesthesia, and cerebellar ataxia (Volkmann, 2004;

Baizabal-Carvallo and Jankovic, 2016). On the other hand, some

patients with PD may show unsatisfactory outcomes despite proper

electrode placement (Limousin et al., 1999). This led to the pre-

clinical and clinical testing of closed-loop and on-demand adaptive

DBS (aDBS) (Little et al., 2013, 2016; Priori et al., 2013; Rosa et al.,

2015, 2017; Johnson et al., 2016; Piña-Fuentes et al., 2017; Tinkhauser

et al., 2017; Guidetti et al., 2021) for a more effective control of

pathological beta band oscillatory activity.

In a closed-loop aDBS configuration, the patient’s clinical state

is assessed and utilized to adjust stimulation parameters, that is, to

modify the frequency and/or amplitude of stimulation in a state-

dependent manner (Daneshzand et al., 2018; Popovych and Tass,

2019; Fleming et al., 2020b). This can ultimately reduce possible

side effects by reducing the amount of administered stimulation

current (Pyragas et al., 2020). The modulation of stimulation

parameters in closed-loop approaches is realized based on specific

biomarkers that are used to estimate the symptom severity. One of

the appealing biomarkers for closed-loop DBS in PD is the power

of beta band oscillatory activity in the STN local field potential

(LFP) that has been utilized in several variations of aDBS protocols

addressed both in computational (Tukhlina et al., 2007; Popovych

et al., 2017b; Popovych and Tass, 2019; Fleming et al., 2020a,b) and

experimental (Little et al., 2013; Rosa et al., 2015; Arlotti et al., 2018;

Velisar et al., 2019) studies.

One of the first closed-loop strategies tested in patients with

PD was the on–off stimulation strategy where stimulation is turned

on and off depending on whether the biomarker exceeded a

predefined threshold (Little et al., 2013, 2016). More specifically,

aDBS of the STN in patients with advanced PD improved motor

symptoms by 66%, which were 29% better than cDBS, despite

delivering . 50% less current than cDBS. These improvements

were achieved with a 56% reduction in stimulation time compared

with cDBS (Little et al., 2013). In comparison with the open-

loop stimulation, the on–off stimulation strategy can be more

effective in suppressing abnormal oscillations in patients with PD;

however, its effectiveness is limited by the fixed choice of stimulation

parameters (Little et al., 2013, 2016), as in open-loop cDBS.

Later, a dual threshold strategy was introduced that modifies the

amplitude of stimulation to confine the biomarker within the desired

range (Velisar et al., 2019). Alternatively, stimulation strategies

employing proportional amplitude modulation, in which the DBS

amplitude is proportional to the measured biomarker (e.g., LFP beta

band activity), can be, in principle, more beneficiary as demonstrated

both computationally (Tukhlina et al., 2007; Popovych and Tass,

2019) and clinically (Rosa et al., 2015; Arlotti et al., 2018). Indeed,

the adjustment of stimulation amplitude based on slowly varying beta

activity is not only well-tolerated by patients but also can effectively

reduce pathological beta oscillations to improve PD symptoms (Rosa

et al., 2015; Arlotti et al., 2018).

In the context of amplitude modulation stimulation strategies,

control theory incorporates a variety of schemes that may be more

efficient in suppressing PD symptoms, while reducing the amount

of delivered current. Development and testing of effective control

schemes for DBS in a clinical situation are challenging due to

the invasive nature of DBS surgery. Alternatively, computational

modeling offers a suitable framework for designing and testing

different versions of closed-loop DBS control (Goldobin et al.,

2003; Rosenblum and Pikovsky, 2004; Gorzelic et al., 2013;

Popovych et al., 2017a; Popovych and Tass, 2019; Su et al., 2019;

Fleming et al., 2020a,b). For example, adaptive pulsatile linear

delayed feedback stimulation (apLDF) with on–off delivery can

induce desynchronization in pathologically synchronized network

models (Popovych and Tass, 2019). Interestingly, introducing

interphase gap between the stimulation pulses can significantly

improve the stimulation-induced desynchronization (Popovych

et al., 2017b). Recent computational studies employed clinically

viable control schemes for amplitude and frequency modulation, for

example, proportional (P) and proportional–integral (PI) closed-loop

controllers to suppress PD-related pathological beta activity with a

reduced amount of delivered stimulation current in simple network

models (Fleming et al., 2020a,b; Weerasinghe et al., 2021). Other

closed-loop computational approaches such as phase-specific aDBS,

whereby the stimulation is locked to a particular phase of tremor, have

been shown to improve therapeutic efficacy (Toth andWilson, 2022).

Specifically, near-periodic phase-specific aDBS can effectively disrupt

excessive synchronization in large populations of oscillatory neurons

caused by strong coupling.

In this study, our aim was to present a simple, yet comprehensive

bio-inspired model of the cortico-BG-thalamic network comprising

cortex, striatal D1 and D2 medium spiny neurons (MSNs), GPe,

globus pallidus internus (GPi), STN, and thalamus. A more

complete set of the BG nuclei used here improves the model

predictions and its accuracy. Specifically, we set themodel parameters

in a way that the dynamics of the network were similar to

those reported experimentally for normal and PD states (Holgado

et al., 2010; Pavlides et al., 2015). Then, we administered high-

frequency stimulation to the parkinsonian STN in our model and

investigated its effect on the pathological beta oscillations within

the BG. First, we used a cDBS protocol where stimulation pulses

were continuously delivered to the STN with a fixed frequency

and amplitude. To improve the beta suppression efficiency while

consuming less stimulation current, we then used an aDBS protocol

that employed the same stimulation frequency but with a closed-loop

feedback control of stimulation amplitude based on the STN beta

activity.
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Our results show that aDBS protocol can effectively suppress

abnormal beta oscillations within the BG and preserve thalamus

reliability while a notably low level of stimulation current is

administered in comparison with the cDBS protocol. Particularly,

the beta band peaks in the power spectrum density (PSD) of

the parkinsonian STN, GPe, and GPi activities were robustly

suppressed and shifted to their normal range by aDBS. Comparison

between aDBS and cDBS shows that the aDBS protocol with

amplitude modulation can be more efficient at different stimulation

frequencies, that is, abnormal beta oscillations were effectively

suppressed while the administered stimulation current was

reduced. Developing such closed-loop models of aDBS may

contribute to the pre-clinical testing and clinical optimization

of more efficient aDBS techniques by reducing stimulation

current to reduce potential side effects in patients with PD

undergoing treatment.

2. Methods

2.1. Network model

We considered a bio-inspired and comprehensive cortico-BG-

thalamic network model implemented in MATLAB comprising

cortex (simulated as 500 external inputs), striatal D1 MSNs (85

neurons) and D2 MSNs (85 neurons), GPe (17 neurons), GPi

(17 neurons), STN (137 neurons), and thalamus (140 neurons),

as schematically shown in Figure 1A1. The ratio of cells was

estimated based on the experimentally reported number of neurons

per volume, that is, neuronal density in rats (Oorschot, 1996).

Connection probability and the strength of synaptic connections

between different pathways used in our simulations are shown

in Table 1, which are chosen in accordance with experimental

observations in rats (Kita and Kita, 1994; Mink, 1996; Baufreton et al.,

2009). Specifically, in the PD state, D2 −→ GPe synaptic strength was

increased, whereas D1 −→ GPi andGPe −→ GPe synaptic strengths

were decreased with respect to the normal state (see Figures 1A1, A2).

Furthermore, an external current mimicking the input from other

brain regions was applied to STN, GPe, and GPi, that is, Iapp(STN) =

18 pA/µm2, Iapp(GPe) = 12 pA/µm2, and Iapp(GPi) = 4.0 pA/µm2

in normal condition, and Iapp(STN) = 15.5 pA/µm2, Iapp(GPe) =

0.4 pA/µm2, and Iapp(GPi) = 0.0 pA/µm2 in the PD state. Other

parameters in the PD state were similar to those used in the

normal state.

In the cortico-BG-thalamic circuitry shown in Figure 1A1, the

striatum receives excitatory inputs from the cortex and relays them

toward GPi using two competing pathways: the direct pathway

comprising striatal D1 receptor expressing MSNs and the indirect

pathway governed by D2 receptor expressing MSNs. Cortical inputs

in the indirect pathway are then mediated by the inhibitory GPe

neurons, which are bidirectionally connected to STN neurons. The

output of STN is then transmitted to the GPi, which inhibits the

thalamus. The thalamus sends excitatory input to the cortex and

receives excitatory feedback. The STN also receives direct excitatory

input from the cortex using the hyperdirect pathway. Altered synaptic

transmission in the PD condition with respect to normal condition is

schematically presented in Figures 1A1, A2, by changing the relative

thickness of arrows in different pathways.

2.2. Neuron model

2.2.1. STN neurons
The membrane potential dynamics of STN neurons are described

by a single-compartment conductance-based model introduced by

Terman et al. (2002), as follows:

Cm
dVi

dt
=−IL−IK−INa−IT−ICa−IAHP−IGPe→STN+ISM+Iapp+IDBS,

(1)

where Cm = 1 pF/µm2 is the membrane capacitance. IGPe→STN

is the synaptic current, ISM is the cortical sensorimotor input to

the thalamus, Iapp is the external applied current, and IDBS is the

stimulation current (see below). The leak current (IL), potassium

current (IK), sodium current (INa), high-threshold calcium current

(ICa), and calcium-dependent afterhyperpolarization (AHP) (IAHP)

are described by Hodgkin–Huxley type equations as follows:

IL(V) = gL(V − VL),

IK(V) = gKn
4(V − VK),

INa(V) = gNam
3
∞(V)h(V − VNa),

ICa(V) = gCas
2
∞(V)(V − VCa),

IT(V) = gTa
3
∞(V)b2∞(r)(V − VCa),

IAHP(V) = gAHP(V − VK)([Ca]/([Ca]+ k1)).

(2)

The slowly operating gating variables (X = n, h, r) are treated

as functions of both time and voltage and have first-order kinetics

governed by differential equations of the form:

dX/dt = φX((X∞(V)− X)/τX(V)),

τX(V) = τ 0X + τ 1X/(1+ exp(−(V − θ τ
X)/σ

τ
X )),

(3)

where activation (and inactivation) time constants have a sigmoidal

dependence on voltage, such that the voltage at which the time

constant is midway between its maximum and minimum values is

θ τ , and σ τ is the slope factor for the voltage dependence of the time

constant (see Table 3).

Activation gating for the rapidly activating channels (m, a, and

s) was treated as instantaneous. For all gating variables (X =

n,m, h, a, r, s), the steady-state voltage dependence was determined

using:

X∞(V) = [1+ exp(−V−VX
kX

)]−1,

IT : b∞(r) = [1+ exp((r − θb)/σb)]
−1 − [1+ exp(−θb/σb)]

−1.

(4)

The intracellular concentration of Ca2+ ions ([Ca]) is governed

by the differential equation d[Ca]/dt = ε(−ICa − IT − kCa[Ca]).

The constant ε combines the effects of buffers, cell volume, and

the molar charge of calcium in units of mole-s/coulombs-liter. The

constant k1 is the dissociation constant of the calcium-dependent

AHP current. The constant kCa is the calcium pump rate constant

in units of coulombs-liter/mole-s. Relevant kinetic parameters used

in simulations are presented in Tables 2, 3.

2.2.2. GPe/GPi neurons
The membrane potential dynamics of GPe neurons are described

as follows Terman et al. (2002) and Rubin and Terman (2004):

Cm
dVi

dt
= −IL − IK − INa − IT − ICa − IAHP

− ISTN→GPe − IGPe→GPe − ID2→GPe + Iapp.
(5)
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FIGURE 1

Schematic illustration of the cortico-BG-thalamic network model and closed-loop stimulator. (A1, A2) The cortico-BG-thalamic circuitry in the normal

(A1) and PD (A2) conditions. Excitatory (green) and inhibitory (red) pathways are marked by arrows where their relative thickness indicates the strength of

the input. STN was the target of DBS in the PD condition. (B) Schematic representation of the closed-loop stimulator utilizing STN beta band activity. The

raw LFP recorded from STN is beta band (15–30 Hz) filtered, rectified, and averaged to calculate the average rectified value (ARV) of the LFP beta band

activity. The beta ARV is then fed to the controller, which updates the amplitude of the stimulation current. (C) Time trace of the cortical sensorimotor

input (ISM) to the thalamus given by Equation (17) below.
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The ionic currents are similar to STN neurons, as described in

Equation (2) except for the low-threshold T-type calcium current (IT)

that is defined differently:

IT(V) = gTa
3
∞(V)r(V − VCa), (6)

TABLE 1 Connection probability and the strength of synaptic connections

between di�erent pathways used in our simulations in normal and PD

conditions (Mink, 1996; Leblois et al., 2006; Corbit et al., 2016).

Pathway Connection probability g (nS/µm2)

Normal PD

STN −→ GPe 40% 0.82 0.82

STN −→ GPi 40% 0.15 0.15

GPe −→ STN 7% 0.14 0.14

GPe −→ GPi 6% 1.39 1.39

GPe −→ GPe 45% 0.61 0.25

D1 −→ GPi 37.5% 0.225 0.08

D2 −→ GPe 37.5% 0.221 0.66

GPi −→ Th 70% 0.03 0.03

where the dynamics of gating variable a are similar to

Equation (4) and the dynamics of variable r are the same as

Equation (3). GPe parameters used in simulations are presented in

Tables 2, 3.

The dynamics of GPi neurons were modeled similar to the

dynamics of GPe neurons. We used the following current balance

equation to calculate the GPi membrane potential:

Cm
dVi

dt
= −IL − IK − INa − IT − ICa − IAHP

−ISTN→GPi − IGPe→GPi − ID1→GPi + Iapp.
(7)

The corresponding numerical values for parameters are shown in

Tables 2, 3.

2.2.3. Thalamic neurons
The membrane potential dynamics of thalamic cells are modeled

as follows Rubin and Terman (2004):

Cm
dVTh

dt
= −IL − IK − INa − IT − IGPi→Th + ISM. (8)

The ionic currents INa and IL are similar to those defined for the

STN neurons, as described in Equation (2), whereas IT and IK are

TABLE 2 Kinetic parameters for STN, GP (GPe/GPi), and thalamus.

Variable Nucleus θx σx τ0x τ1x θτ
x σ τ

x Qx

m STN –30 15 — — — — —

GP –37 10 — — — — —

Th –37 7 — — — — —

h STN –39 –3.1 1 500 –57 –3 0.75

GP –58 –12 0.05 0.27 –40 -12 0.05

Th –41 4 — — — — —

n STN –32 8 1 100 –80 –26 0.75

GP –50 14 0.05 0.27 -40 –12 0.1

r STN –67 –2 7.1 17.5 68 –2.2 0.5

GP –70 –2 30 0 — — 1

Th –84 4 — — — — —

a STN –63 7.8 — — — — —

GP –57 2 — — — — —

s STN –39 8 — — — — —

GP –35 2 — — — — —

b STN 0.4 –0.1 — — — — —

p Th –60 6.2 — — — — —

TABLE 3 Maximal conductances (gx), calcium dynamic parameters, and reversal potentials (Ex) of the membrane currents for STN, GP (GPe/GPi), and

thalamus.

g (mS/cm2) E (mV)

L K Na T Ca AHP εCa kCa k1 L K Na Ca

STN 2.25 45 37.5 0.5 0.5 9 3.75×10−5 22.5 15 –60 –80 55 140

GP 0.1 30 120 0.5 0.1 30 1.00×10−4 20 30 –55 –80 55 120

Th 0.05 5 3 5 — — — — — –70 –90 50 0
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defined as follows:

IK(V) = gK[0.75(1− hTh)]
4(V − VK),

IT(V) = gT p2∞(V)r(V − VT).
(9)

The gating variables are of the form:

dh(t)/dt = (h∞(VTh)− hTh)/τh(VTh),

dr(t)/dt = (r∞(VTh)− rTh)/τr(VTh),

τh(V) = 1/(ah + bh),

ah = 0.128 exp(−(V + 46)/18),

bh(V) = 4/[1+ exp(−(V + 23)/5)],

τr(V) = 0.4[28+ exp(−(V + 25)/10.5)].

(10)

Relevant kinetic parameters used in simulations are presented in

Table 2.

2.2.4. Striatum: D1 and D2 MSNs
Two subpopulations of neurons representing D1 and D2

receptor-expressing MSNs were considered to model the striatum.

The membrane potential dynamics for MSNs are of the form (Mahon

et al., 2000):

Cm
dVi

dt
= −IL− IK− INa− IKir− IAf− IAs− IKrp− INaP− INaS. (11)

The ionic currents (INa, IK, and IL) are similar to those used for

modeling the STN neurons, as described in Equation (2), but gating

variables were taken from the study ofWang and Buzsáki (1996). The

gating variablem was approximated bym∞ = αm/(αm+βm), where

αm(V) = −0.1(V + 35)/(exp(−0.1(V + 35)) − 1) and βm(V) =

4 exp(−(V + 60)/18). Other gating variables (X = h, n) obey the

following first-order kinetics:

dX/dt = φ (αX(1− X)− βXX) (12)

where φ is constant, αh(V) = 0.07 exp(−(V + 58)/20), βh(V) =

1/(exp(−0.1(V+ 28))+ 1), αn(V) = −0.01(V+ 34)/(exp(−0.1(V+

34))− 1), and βn(V) = 0.125 exp(−(V + 44)/80).

Fast (IAf) and slow (IAs) A-type potassium currents, inward

rectifier potassium current (IKir), persistent potassium current (IKrp),

and persistent (INaP) and slowly inactivating (INaS) sodium currents

are defined as follows (Wood et al., 2004):

IX(V) = gXm
k
∞(V)h(V − EX), (13)

where X ∈
{

Kir, Af, As, Krp, NaS, NaP
}

. Gating variables obey

differential equations defined in Equations (3), (4). Other parameters

are defined as follows:

τ (V) = τ0[exp(−
V−Vτ

kτ
)+ exp(V−Vτ

kτ
)]−1, (14)

except for the inactivation of slow A-type potassium current for

which the kinetics were defined by τhAs(V) = 1790 + 2930 ·

exp(−(V+38.2
28 )2) · (V+38.2

28 ). The numerical values of parameters used

in our simulations are listed in Table 4.

2.2.5. Synaptic currents
The synaptic current Iα→β from the presynaptic nucleus (α) to

the postsynaptic nucleus (β), with α ∈ {STN,GPe, GPi, D1, D2}, and

β ∈
{

STN,GPe, GPi, Th
}

, is given by (Rubin and Terman, 2004):

Iα→β = gα→β (Vα − Eα→β )
∑

α

sα(t), (15)

where gα→β is the maximal synaptic conductance presented in

Table 1, and Eα→β is the synaptic reversal potential presented in

Table 3. sα(t) represents the synaptic gating variable that obeys the

following differential Equation (Rubin and Terman, 2004):

dsα

dt
= Aα(1− sα) · H∞(Vα − θα)− Bαsα , (16)

where H∞(Vα) = 1/(1 + exp[−(Vα − θHα )/σH
α ]) is a

smooth approximation of the Heaviside step function (relevant

parameters are given in Table 5), and Aα and Bα control the synaptic

time courses.

2.2.6. Cortical current
The cortical sensorimotor input to the thalamus is approximated

as a train of rectangular depolarizing current pulses (ISM), which is

shown in Figure 1C, based on Equation (17) (Rubin and Terman,

2004):

ISM = iSM H(sin(2π t/ρSM)) ·

[

1− sin

(

2π(t + δSM)

ρSM

)]

, (17)

Where iSM = 8 pA/µm2 is the amplitude of the current, ρSM =

166ms denotes the period of the current signal, and δSM = 5ms

represents the duration of each individual pulse.

2.3. Stimulation protocol

The stimulation was administered to the STN as schematically

shown in Figure 1A2. The stimulation current was modeled by the

following protocol (Rubin and Terman, 2004):

IDBS = iDBS H(sin(2π t/ρDBS)) ·

[

1− sin

(

2π(t + δDBS)

ρDBS

)]

, (18)

Where iDBS = 2mA/µm2 is the amplitude of the stimulation signal,

ρDBS = 1/130ms denotes the stimulation period, and δDBS = 5ms is

the duration of individual stimulation pulses (Fleming et al., 2020a).

In the cDBS protocol, the model stimulation signal was continuously

delivered to the STN with a 130-Hz frequency (Fleming et al., 2020a).

The same frequency was used for the aDBS protocol; however, the

amplitude of the signal was modulated based on a closed-loop control

scheme described later.

2.4. Data analysis

The LFP of the oscillatory neural activity was defined as LFP(t) =

N−1
∑

α sα(t), where s(t) is the synaptic variable introduced in

Equation (16). Rigorous computational approximations showed that

a simple weighted sum of the model synaptic currents excellently
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TABLE 4 Model parameters for striatal MSNs.

X∞(V) τ (V)

Current mk, h g (mS/cm2) Vx (mV) kx (mV) E (mV) τ0 (ms) Vτ (mV) kτ (mV)

Kir mKir 0.15 –100 –10 –90 — — —

Af mAf 0.09 –33.1 7.5 –73 1 — —

hAf –70.4 –7.6 25 — —

As mAs 0.32 –25.6 13.3 –85 131.4 –37.4 27.3

hAs –78.8 —10.4 — — —

Krp mKrp 0.42 –13.4 12.1 –77.5 206 –53.9 26.5

hKrp –55 –19 — — —

NaP mNaP 0.02 –47.8 3.1 45 1 — —

NaS mNaS 0.11 –16 9.4 40 637.8 –33.5 26.3

TABLE 5 Model parameters of the smooth approximation of the Heaviside

step function for STN, GP (GPe/GPi), and D1/D2 MSN.

θHα σH
α θα

STN –39.0 8.0 30.0

GP –57.0 2.0 20.0

MSN –42.0 5.0 18.0

captures the time course of the LFP signal (Mazzoni et al., 2015). This

provides a simple formula by which the LFP signal can be estimated

directly from network activity, providing a missing quantitative

link between simplified neuronal models and LFP measures in

vivo (Mazzoni et al., 2015).

The beta band-filtered LFP of the STN was calculated by using

the bandpass filter of the simulated raw STN LFP using the bandpass

filter function implemented in MATLAB within the frequency range

of 15–30 Hz.

The power spectrum of each calculated signal was computed by

the fast Fourier transform (FFT) function implemented in MATLAB.

2.5. Closed-loop control scheme

In the closed-loop control of aDBS administered to the STN,

the stimulation current is delivered in the form of high-frequency

pulses with the same frequency used in the open-loop cDBS but with

a modified amplitude. Amplitude modulation was implemented by

the closed-loop feedback of the measured beta band LFP activity of

the STN, which is schematically shown in Figure 1B. The average

rectified value (ARV) of the STN beta band LFP was calculated by

full-wave rectifying of the filtered LFP signal. The maximum value

of beta ARV in the normal state was assumed as a target value for

the beta ARV. During controller simulations, a beta ARV above the

target value was considered as the pathological beta activity, while a

beta ARV below the target value was assumed as the fluctuations of

normal beta activity.

The controller input (e) at a given time was calculated as the

normalized error between the measured beta ARV (βmeasured) and the

target beta ARV (βtarget), which is as follows (Fleming et al., 2020a,b):

e(t) =
βmeasured(t)− βtarget

βtarget
(19)

The controller operated with a sampling interval Ts =

50ms (Fleming et al., 2020a), updating the modulated aDBS

parameter at each controller call. Other choices for the sampling time

window resulted in the same observed beta power and stimulation

performance (see Supplementary Figure S1). The P controller for

closed-loop control of the aDBS amplitude can be defined as

follows (Fleming et al., 2020a,b):

u(t) = Kp · e(t). (20)

where u(t) is the modulated aDBS parameter value, that is, the

stimulation amplitude at a given time, Kp = 5 (Fleming et al., 2020a)

is the controller proportional gain of the aDBS parameter at each

controller call, and e(t) is the controller error input signal at a given

time. The aDBS current is given as follows:

IaDBS(t) = u(t) · IDBS(t). (21)

2.6. Stimulation performance assessment

Computational results show that synchronized activity interrupts

the thalamic reliability to transmit sensorimotor inputs, which may

lead to akinesia and rigidity (Rubin and Terman, 2004). One way

to assess and compare the efficiency of different DBS protocols

in restoring sensorimotor functionality is their effectiveness in

improving the response of the thalamus to sensorimotor stimuli.

Thalamic reliability (R) is a measure that quantifies the faithfulness

of the thalamic relay defined in terms of the generation of thalamo-

cortical activity patterns that match the inputs to thalamo-cortical

cells. It is determined by the fraction of sensorimotor stimuli that

elicit a single action potential in the thalamus so that a missed spike

is recorded when no spikes are fired in response to a sensorimotor

input, whereas a bad spike is recorded when multiple spikes are

fired in response to a single sensorimotor input. The reliability

of transmitting information of the thalamus can be regarded as an

evaluation of the effectiveness of DBS. This is quantified by the error
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index introduced by Rubin and Terman (2004) for the fidelity of

thalamic throughput such that the minimal error is achieved when

each sensorimotor input pulse results in a single action potential in

a thalamic neuron (also see Supplementary Figure S2 and Section 4).

The reliability of the thalamus is defined as follows (Gorzelic et al.,

2013):

R = 1−
b+m

NSM
. (22)

where b is the number of bad spikes,m is the number ofmissed spikes,

andNSM is the total number of sensorimotor inputs in the simulation.

Another way to quantify the performance of stimulation is to

calculate the energy (power) expenditure index (E), which is a

measure of the amount of administered stimulation current, defined

as the root mean square (RMS) of the stimulation current signal (Su

et al., 2018) as follows:

E =

√

1

T

∫

T
I2DBSdt. (23)

where T is the total time of the simulation.

Ultimately, the beta suppression efficiency of cDBS and aDBS

protocols was quantified as the percentage of beta suppression in the

STN per unit of the consumed energy, defined as follows (Fleming

et al., 2020a):

η =
1

E
×

(

1−
1

T

∫

T

βNoDBS(t)− βDBS(t)

βNoDBS(t)
dt

)

× 100 (24)

where E was introduced in Equation (23), T is the total time of

simulation, βNoDBS(t) is the beta ARV signal measured when DBS

is off, and βDBS(t) is the beta ARV signal measured when DBS

was administered.

3. Results

3.1. Properties of normal and PD network
model

First, we set the model parameters to mimic the normal and

PD network dynamics. The raster plots shown in Figures 2A1–C1,

top illustrate the dynamics of STN, GPe, and GPi neurons in

normal condition, respectively. The synchronized neural activity led

to pronounced rhythmic activity and large-amplitude oscillations

in the LFP of different nuclei (shown in Figures 2A1–C1, bottom).

The raster plots and LFP of STN, GPe, and GPi neurons in the PD

condition are shown in Figures 2A2–C2.

Notably, in the normal condition, STN exhibited a relatively

desynchronized neural activity (see Figure 2A1, top), characterized

by small-amplitude oscillations in the STN LFP shown in Figure 2A1,

bottom. In the PD state, however, the activity of STN neurons

became strongly synchronized (Figure 2A2, top), characterized by

large-amplitude rhythmic oscillations in the STN LFP (Figure 2A2,

bottom). The mean firing rate of STN neurons in the normal state

was 12 ± 0.6Hz, which increased to 19 ± 0.8Hz in the PD state.

The PSD of STN activity in the PD state is characterized by a sharp

peak in the beta band (approximately 20 Hz) as shown in Figure 3A

(red), whereas the normal PSD hardly showed any pronounced peak

(Figure 3A, blue).

In the normal condition, GPe neurons fired in a relatively

irregular manner, as it is shown in the raster plot (Figure 2B1, top)

and LFP activity (Figure 2B1, bottom), with a mean firing rate of

60 ± 2.4Hz. In the PD state, the mean firing rate of GPe neurons

decreased to 32 ± 1.3Hz where the firing activity of neurons was

more synchronized (Figure 2B2, top), characterized by rhythmic LFP

oscillations shown in Figure 2B2, bottom. The firing activity of GPi

neurons, however, was relatively sparse in the normal condition

(Figure 2C1), with a mean firing rate of 20 ± 0.9Hz. The activity of

GPi neurons in the PD condition is shown in Figure 2C2, where the

mean firing rate increased to 28 ± 1.3Hz. The PSD of GPe and GPi

activities in the PD state showed a sharp peak at approximately 20

Hz (Figures 3B, C, red), whereas their normal PSD did not show any

pronounced peak in the beta band (Figures 3B, C, blue). For example,

single-cell membrane voltage traces of randomly chosen STN, GPe,

and GPi neurons in normal (top) and PD (bottom) conditions are

presented in Figure 4.

3.2. Suppression of pathological oscillations
by model DBS

To suppress parkinsonian beta oscillations within the BG nuclei

(i.e., to suppress pronounced peaks in the PSD of STN, GPe, and GPi

activities in Figure 3, red), the model stimulation was administered to

the STN using two different stimulation protocols, that is, cDBS and

aDBS. In the cDBS protocol, high-frequency (130 Hz) stimulation

pulses are continuously delivered to STN with a fixed amplitude, as

described in Equation (18). In the aDBS protocol, stimulation pulses

were continuously delivered to STNwith the same frequency that was

used in cDBS; however, the stimulation amplitude is modulated by a

control signal that sets the current amplitude based on the beta band

activity of the STN, as described in Equation (21).

The closed-loop control stimulator of the model aDBS utilizing

the STN beta band activity is schematically shown in Figure 1B. In

the model, as presented in Figure 5A, the raw LFP recorded from

the STN was first filtered in the beta band (15–30 Hz) frequency

(Figure 5B, violet); also see Section 2. The beta band filtered output

of the parkinsonian STN activity, when the DBS was off (NoDBS),

is also depicted for better comparison (Figure 5B, gray). The beta

bandpass filtered was then rectified and averaged to calculate the ARV

of the LFP beta band activity (Figure 5C). The target level for the beta

ARV (i.e., βtarget = 0.005 mV) is denoted by a red dashed line in

Figure 5C, which was estimated based on the STN beta band activity

in the normal condition. To efficiently suppress the pathological beta

activity within STN (i.e., beta ARV above the target value), the beta

ARV is fed to the controller to update the amplitude of the aDBS

current, as shown in Figure 5D.

The dynamics of STN, GPe, and GPi neurons are shown

in Figure 6 when the STN was stimulated by both cDBS and

aDBS protocols. Before the stimulation onset (i.e., t < 0 s in

Figures 6A1, A2), the model parameters were set to mimic the PD

state characterized by the overly synchronized neural activity in

the STN raster plot (Figures 6A1, A2, top) and by large-amplitude

oscillations in the beta band-filtered LFP (Figures 6A1, A2, bottom).

The stimulation was then turned on at t = 0 s. When cDBS was

turned on (i.e., t > 0 s in Figure 6A1, top), the activity of STN

neurons was entrained to the stimulation frequency (i.e., 130 Hz) and
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FIGURE 2

Population dynamics of the STN, GPe, and GPi in normal and PD conditions. Raster plots (top) and LFPs (bottom) of the STN, GPe, and GPi activities in

normal (A1–C1) and PD (A2–C2) conditions.

FIGURE 3

Power spectrum of the STN, GPe, and GPi LFP activities. Power spectrum density of the STN (A), GPe (B), and GPi (C) LFP activities in normal (blue) and

PD (red) conditions.

the large-amplitude oscillations in the beta band-filtered LFP were

considerably suppressed (Figure 6A1, bottom). When aDBS was used

(i.e., t > 0 s in Figure 6A2, top), the stimulation pulse train was

delivered to the STN with a variable amplitude (see Figure 5D). In

this case, the suppression of parkinsonian beta oscillations in the STN

was less than cDBS (cf. Figures 6A1, A2, bottom). However, as we

will show later, overall less stimulation current was delivered in aDBS

while resulting in a more suppression efficiency of the aDBS protocol.

The stimulation of the STN not only directly affected the firing

activity of STN neurons but also indirectly mediated the firing activity

of GPe and GPi neurons. Particularly, cDBS of STN led to the

entrainment of GPe neurons to the stimulation frequency (i.e., t > 0

s in Figure 6B1), leading to the inhibition of the activity of GPi

neurons (i.e., t > 0 s in Figure 6C1). On the other hand, aDBS

of the STN just increased the firing activity of the GPe neurons

and did not result in the entrainment of the GPe activity to the

stimulation frequency (i.e., t > 0 s in Figure 6B2). Consequently,

the activity of GPi neurons was relatively the same before and after

stimulation (Figure 6C2). In addition, as it is shown in Figure 7,

PSD of the activity of neurons in STN, GPe, and GPi shows that
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FIGURE 4

Single-cell membrane voltage traces of STN, GPe, and GPi neurons. Time course of membrane voltages of single STN (A), GPe (B), and GPi (C) neurons

randomly chosen from the network in normal (top) and PD (bottom) conditions.

FIGURE 5

STN LFP and amplitude modulation of the aDBS current. (A–C) The simulated raw LFP of the STN (A), beta band filtered LFP (B), and beta ARV (C) for DBS

o� (NoDBS; gray) and aDBS (violet). The target level for the beta ARV (βtarget = 0.005 mV) is denoted by the red dashed line in (C). (D) Amplitude

modulation of the aDBS current by the P controller. The aDBS amplitude was restricted between 0.0 and 2.0 mA.

both cDBS and aDBS effectively suppressed beta band oscillations

(cf. Figures 3, 7). Interestingly, the suppression of parkinsonian beta

oscillations was more pronounced in cDBS of STN (cf. Figure 7A,

green and red) and in aDBS of GPe (cf. Figure 7B, green and red).

The effects of cDBS and aDBS on the GPi PSD were roughly similar

(Figure 7C).

Differential modulation of the STN, GPe, and GPi beta activities

by stimulation was directly related to the model connectivity. While

cDBS at 130 Hz effectively suppressed beta activity in the STN, aDBS

at the same frequency was less effective in the suppression of STN

beta activity, simply because less current was delivered to the STN

(Figure 7A). However, we evaluated the stimulation performance

based on the percentage of beta suppression in the STN per unit of

the consumed energy (see Figure 8). Therefore, based on Figure 8,

assuming that the energy consumption of cDBS at 130 Hz was

100%, aDBS at 130 Hz consumed approximately 50% less energy,

leading to efficiency about two times as high as the one for cDBS.

On the other hand, the STN was connected to the GPe (Table 1;

connection strength g = 0.82 nS/µm2) more stronger than GPi

(Table 1; connection strength g = 0.15 nS/µm2). Therefore, cDBS at

130 Hz entrained GPe neurons at the stimulation frequency, leading

to an enhanced inhibition among GPe cells and the STN itself,

which ultimately prevented effective beta suppression in the GPe. In

contrast, adaptive delivery of the stimulation current in the aDBS

protocol allowed stimulation to effectively suppress beta activity in

the GPe. Finally, weak connections from the STN to GPi minimized

the effect of stimulation on GPi, making no particular difference in

either case.
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FIGURE 6

Population dynamics of the STN, GPe, and GPi when the STN was the target of stimulation. Raster plot (top) and beta band filtered LFP (bottom) of the

STN, and raster plots of the GPe and GPi when cDBS (A1–C1) or aDBS (A2–C2) is administered to the STN. The model DBS was o� before time t = 0 s

and was switched on at t = 0 s.

FIGURE 7

Power spectrum of the STN, GPe, and GPi LFP activities. Power spectrum density of the STN (A), GPe (B), and GPi (C) LFP activities when cDBS (maroon)

or aDBS (green) is administered to the STN.

3.3. Stimulation performance

To evaluate the performance of cDBS vs. aDBS, we calculated

thalamic reliability given by Equation (22), the energy expenditure

index described in Equation (23) as a measure of the amount of

delivered stimulation current, and the beta suppression efficiency

of the stimulation protocol defined in Equation (24). The results

are presented in Figure 8 where the performance of the cDBS

protocol is compared with the aDBS protocol for a variety of

stimulation frequencies. The PD condition (NoDBS) was used to
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set a reference for the thalamic reliability (i.e., 0%). The reference

value for the energy expenditure (i.e., delivered stimulation current)

was set to 100%, measured when the cDBS protocol (with 130 Hz

stimulation frequency) was used for the STN model stimulation. The

administration of cDBS led to a 1.7% suppression efficiency and an

acceptable value for the thalamic reliability (i.e., 52%).

Interestingly, STN aDBS with the same stimulation frequency as

the cDBS protocol (i.e., 130 Hz) led to an increased beta suppression

efficiency (i.e., 3.6%), while the energy expenditure was 41% less

than cDBS, as shown in Figure 8. Notably, in this case, the value

of thalamic reliability was relatively unchanged (i.e., aDBS: 53%

vs. cDBS: 52%). Restoring the thalamic reliability and effective

suppression of beta oscillations by cDBS comes at the cost of

a higher administered stimulation current, resulting in a smaller

suppression efficiency than aDBS. In this way, amplitude modulation

by closed-loop aDBS (with the same stimulation frequency as the

open-loop cDBS) led to more efficient suppression of pathological

beta oscillations in the model while notably less stimulation current

was used.

As one could expect, increasing the stimulation frequency of

aDBS led to increased energy expenditure (Figure 8, gray bars)

where the thalamic reliability and suppression efficiency reached their

maximum values approximately at 130 Hz stimulation frequency.

The overall performance of the stimulation is determined by the

trade-off between the energy expenditure and beta suppression

outcome of the stimulation protocol.

3.4. Monopolar vs. bipolar stimulation

Typically, charge-balanced stimuli are used in DBS to avoid tissue

damage. We repeated our simulations to test whether the stimulation

performance is affected by charge-balanced stimulation. The biphasic

charge-balanced stimulation pulses were implemented similar to

those used by Popovych and Tass (2019), which consist of a short

cathodic pulse (first phase) followed by a longer charge-balancing

second phase with opposite polarity.We used the frequency of 130Hz

for the aDBS pulse train and the width of the short pulse (first phase)

PW = 0.5 ms (Popovych and Tass, 2019). The stimulation signal

consisting of electrical biphasic charge-balanced pulses is shown

in Figure 9A. The stimulation current can then be constructed as

follows (Popovych and Tass, 2019):

IDBS(t) =



















−10, tn ≤ t < tn + PW,

0, tn + PW ≤ t < tn + PW + GW,

1, tn + PW + GW ≤ t < tn + 11PW + GW,

0, otherwise,

(25)

For t ∈ (tn, tn+1), where tn = 1, 000n/f ms, n = 0, 1, 2, . . .

are the times of the pulse onsets, as presented in Figure 9A, and

f = 130 Hz is the frequency of the stimulation. We considered an

interphase time gap of width GW = 4.5 ms between the cathodic

and anodic phases of the biphasic pulses (Popovych and Tass, 2019).

While consistent with previous computational studies (Popovych

and Tass, 2019), the interphase gap utilized in our modeling of

biphasic stimulation pulses is a fair bit larger than in current DBS

systems, where the interphase gap is generally at the smaller time

scale of several tens ofmicroseconds (Boogers et al., 2022). Thismight

critically affect the outcome of the biphasic stimulation, for example,

shrink the corresponding therapeutic window (Boogers et al., 2022).

The amplitude modulation of the bipolar aDBS current is shown in

Figure 9B.

The power spectrum of the STN, GPe, and GPi LFP activities

is shown in Figure 10 when monopolar (red) or bipolar (blue)

aDBS is administered to the STN. In addition, the performances of

monopolar and bipolar aDBS protocols are presented in Figure 11.

Taken together, the results demonstrate that the performance of

the model aDBS is roughly the same for monopolar aDBS and

bipolar aDBS.

4. Discussion

Pre-clinical and clinical achievements of closed-loop DBS in

the treatment of PD attracted a lot of attention during the past

decade (Little et al., 2013, 2016; Priori et al., 2013; Rosa et al., 2015,

2017; Johnson et al., 2016; Piña-Fuentes et al., 2017; Tinkhauser

et al., 2017). One way for closed-loop control of pathologically

synchronized neural activity within the parkinsonian BG is to

monitor the collective activity of neurons in the target network

(e.g., the STN) and adapt the stimulation amplitude (strength) to

the level of neural synchrony (Tass, 2003; Popovych et al., 2017b;

Popovych and Tass, 2019; Fleming et al., 2020a,b). Neural synchrony

can be, for example, estimated by the large-amplitude oscillations

of collective activity in a population of interacting oscillatory

neurons. This idea was taken into account to develop a closed-

loop aDBS for the treatment of patients with PD where stimulation

delivery was modulated according to the level of STN beta band

activity (Little et al., 2013, 2016), leading to a better improvement

in motor symptoms while reducing the delivered stimulation current

compared with cDBS (Little et al., 2013, 2016).

Here, we developed a comprehensive cortico-BG-thalamic

network model to investigate the efficiency of closed-loop control

of the aDBS amplitude in comparison with the open-loop cDBS.

The parkinsonian network model was characterized by excessive

beta oscillations within STN, GPe, and GPi and reduced thalamic

reliability. Subthalamic aDBS effectively suppressed parkinsonian

beta oscillations and restored normal range of firing activity (in STN,

GPe, and GPi) and preserved thalamic reliability. STN aDBS led to

better suppression of pathological beta oscillations while notably less

stimulation current was delivered compared with cDBS. Particularly,

aDBS with the same stimulation frequency as cDBS led to a better

beta suppression efficiency (i.e., aDBS: 3.6% vs. cDBS: 1.7%), while

the energy expenditure was 41% less than cDBS (see Figure 8).

Interestingly, the value of thalamic reliability was similar for both

stimulation protocols (i.e., aDBS: 53% vs. cDBS: 52%).

In computational models of PD, response failures of thalamo-

cortical cell populations tend to coincide temporally, whereas under

DBS, these failures, when they occurr, are temporally dispersed (Guo

et al., 2008). To explore the effect of DBS frequency on the thalamic

reliability, we calculated the error index introduced by Rubin and

Terman (2004), defined as the total number of errors divided by the

total number of input stimuli (Rubin and Terman, 2004; So et al.,

2012; Alavi et al., 2022). In this context, the optimal performance

is achieved when each sensorimotor input pulse results in a single

action potential in a thalamic neuron. As shown previously, in a

model developed by Rubin and Terman (2004), DBS above 20 Hz
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FIGURE 8

Summary of the performance of cDBS and aDBS protocols. The thalamic reliability (orange), the energy expenditure index as a measure of the amount of

delivered stimulation current (gray), and the beta suppression e�ciency for the STN (green) of each stimulation protocol at a given frequency were used

to assess the performance of stimulation. Standard deviation bars are shown for 10 simulations under each condition.

FIGURE 9

Stimulation signal of electrical biphasic charge-balanced pulses. (A) Schematically depicted biphasic charge-balanced pulses without amplitude

modulation. Each pulse consists of an interphase gap between the cathodic and anodic phases of the pulse (inset). (B) The time course of the bipolar

stimulation with amplitude modulation.

was effective at restoring the accuracy of thalamic transmission. Later,

it was shown that stimulation below 40 Hz caused the rate of errors

made by the thalamic cell to remain high, while stimulation above 100

Hz restored thalamic fidelity in a computational model of the BG (So

et al., 2012). As shown in Supplementary Figure S2, our results show

that aDBS above 100 Hz is effective at restoring the thalamic fidelity

to its healthy level, with the best performance at 130 Hz.

In this study, the amplitude (strength) modulation in closed-

loop control of the STN aDBS was performed by using the P

controller scheme utilizing an LFP-derived measure of network

beta band oscillatory activity (Fleming et al., 2020a,b), similar

to that used during clinical closed-loop DBS protocols (Little

et al., 2013, 2016). However, several studies employed alternative

biomarkers for PD symptoms, such as entropy (Dorval et al.,
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FIGURE 10

Power spectrum of the LFP activity. Power spectrum density of the STN (A), GPe (B), and GPi (C) LFP activities when monopolar aDBS (red) or bipolar

aDBS (blue) is administered to the STN.

FIGURE 11

Performance of the monopolar and bipolar aDBS protocols. The thalamic reliability (orange), the energy expenditure index (green), and the beta

suppression e�ciency for the STN (gray) of each stimulation protocol at 130 Hz frequency were used to assess the performance of stimulation. Standard

deviation bars are shown for 10 simulations under each condition.

2010; Dorval and Grill, 2014; Anderson et al., 2015; Syrkin-

Nikolau et al., 2017), phase-amplitude coupling (De Hemptinne

et al., 2013, 2015), coherence (Al-Fatly, 2019), and gamma band

(30–80 Hz) activity-based measures (Swann et al., 2016, 2018).

While amplitude modulation by the P controller utilizing LFP

beta activity may not capture the neural mechanisms behind some

of the parkinsonian symptoms and their specifically developed

closed-loop DBS protocols, it may still be applicable to alternative

stimulation methods, such as phase-based (Tass, 2003; Holt et al.,

2016, 2019) linear delayed feedback (Popovych and Tass, 2019) and

optogenetic (Detorakis et al., 2015) stimulation paradigms.

Taken together, closed-loop aDBS protocols with different

stimulation frequencies led to better suppression of parkinsonian

beta oscillations than open-loop cDBS while reducing the amount

of delivered current and, thereby, may reduce potential stimulation-

induced side effects (Baizabal-Carvallo and Jankovic, 2016; Pyragas

et al., 2020). This suggests that closed-loop aDBS with amplitude

modulation can efficiently maintain the beta band activity in the

STN LFP below the target pathological level. As previously shown

in several studies (Su et al., 2019; Fleming et al., 2020a,b), the

suppression efficiency of closed-loop aDBS may depend on the

stimulation frequency, controller type, and parameters. For instance,

stimulation frequency modulation in closed-loop aDBS (instead

of stimulation amplitude modulation) can effectively suppress

abnormal beta oscillations, but it may also significantly increase the

amount of administered stimulation current (Fleming et al., 2020a).

Moreover, another limitation of our model is that we tuned

synaptic couplings and applied currents in the model to mimic

parkinsonian beta band oscillatory activity within the cortico-BG-

thalamic network, where cortical input was simplified as an external

current. However, cortical input shapes rhythmic activity in the

GPe-STN network in the PD state. Experimental findings suggest

that the beta band oscillatory activity of the cortex and STN

are significantly coherent and the beta band synchrony is notably

increased between the GPe and STN as well as between the STN

and the cortex following DA depletion (Sharott et al., 2005; Mallet

et al., 2008). Computationally, excessive beta band oscillatory activity

within the GPe-STN loop can be phase-locked to cortical beta

inputs in PD models (Koelman and Lowery, 2019). Hence, our

model may not be able to capture the complex network interactions

leading to pathological beta oscillations in PD but still can reproduce

suppression efficient characteristics of closed-loop aDBS compared

with the open-loop cDBS.

Several experimental findings suggested that DA deficiency in

PD can lead to exaggerated beta band (15–30 Hz) activity within

the BG (Brown et al., 2001; Sharott et al., 2005; Mallet et al.,

2008); however, the exact mechanisms underlying pathological

beta oscillations remain poorly understood. Experimental and

mathematical models have shown that beta oscillations can emerge

from inhibitory interactions among striatal MSNs (McCarthy et al.,

2011), increased levels of the striatal cholinergic drive (Kondabolu

et al., 2016), or GPe-STN interactions (Brown et al., 2001; Holgado
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et al., 2010; Tachibana et al., 2011). Yet, abnormal beta oscillations

may not appear until the advanced stages of PD and are supposedly

correlated with the extent of progressive degeneration of nigral

DAergic neurons (Asadi et al., 2022). The degree of neural beta

oscillatory activity is related to the magnitude of the response of

the BG to DAergic neurons rather than directly to the severity

of the patients’ symptoms (Weinberger et al., 2006). Variability

in the symptoms of patients with PD suggests that neural beta

oscillatory activity, alone, may not reflect the clinical state of the

patient, and other complex mechanisms must be involved in the

disease pathophysiology (Weinberger et al., 2006). For instance, it

has been shown that administration of some drugs increases STN

beta oscillations while decreasing tremor and rigidity (Priori et al.,

2004) and that clinical improvement after DBS is not associated

with an expected decrease in beta LFP activity in the STN (Foffani

et al., 2006). While our model did not take into account patient-

specific variability of abnormal beta oscillations, the development

of customized patient-specific models of DBS in future studies may

promote clinical improvements (Hollunder et al., 2022).

Intriguingly, a number of experiments failed to establish

a significant correlation among PD motor symptoms, such as

bradykinesia, akinesia and rigidity, and excessive beta oscillations

during parkinsonism (Weinberger et al., 2006; Stein and Bar-Gad,

2013). In fact, abnormal synchrony in patients with PD has been

observed in different frequency bands that can be related to different

disease symptoms (Kühn et al., 2006; Weinberger et al., 2006;

Steigerwald et al., 2008; Contarino et al., 2012). For instance, the

presence of tremor in patients with PD has been linked to beta band

(3–8 Hz) neural oscillations in the dorsal STN (Contarino et al.,

2012). While, in some studies, synchronized beta band (15–30 Hz)

oscillations in the STN were specifically attributed to the presence

of tremor (Levy et al., 2000), others did not find any difference

between PD patients with or without resting tremor in the frequency

distribution of oscillatory neural activity when considering the entire

frequency range of 1–100 Hz (Steigerwald et al., 2008). In the context

of the choice of frequency band used as a biomarker for closed-loop

aDBS, beta frequency oscillations in the LFP may capture variation

in bradykinesia and rigidity across patients (Little and Brown, 2012),

but this should be confirmed in each patient since it may impact

the set of symptoms that can be suppressed by the presented aDBS

approach (Little and Brown, 2012; Johnson et al., 2016). More

importantly, biomarkers that reliably reflect other impairments, such

as tremor, also need to be tested. Of note, beta band power may

not be the best biomarker for closed-loop aDBS. For instance, a

recent longitudinal study showed that although DBS significantly

suppressed beta band activity, the suppression effect appeared to

attenuate gradually during a long-term 6-month follow-up period

after surgery (Chen et al., 2020). While long-term attenuation of DBS

effects may be due to the progression of the disease or the stimulation

protocol itself (i.e., cDBS vs. aDBS), the sensitivity and reliability of

other frequency bands as potential biomarkers that are selective to

different PD symptoms need to be investigated.

The presence of beta oscillations (15–30 Hz) within the BG

may not be always pathological, and transient beta oscillations

can be related to the normal activity of the motor system, such

as the intention and initiation of movement (Little and Brown,

2014; Khanna and Carmena, 2017). However, beta oscillations

are significantly enhanced in PD, and there is strong correlative

evidence linking beta activity at rest to the changes in beta

power in response to treatment in patients with bradykinesia and

rigidity (Sharott et al., 2005; Mallet et al., 2008; Little and Brown,

2014). In our model, the stimulation has only been delivered

during periods of elevated beta activity through the closed-loop

aDBS protocol. Our model, therefore, ignores the selectivity of

the abnormal beta activity and always suppresses the beta activity

regardless of its causal or quantitative origin. It remains to be

studied in future how normal and pathological beta oscillations

can be distinguished and how stimulation delivery protocol can be

improved, accordingly.

Our aim was to present a simple, yet comprehensive model of

the BG. Therefore, we ignored the role of fast-spiking interneurons

(FSIs) in the BG circuitry since they supposedly constitute <5%

of total striatal neurons (Koós and Tepper, 1999). However, as

shown previously, the presence of FSIs may impact the emergence of

strong synchronization and propagation of beta oscillations, which

are a hallmark of parkinsonian circuit dysfunction (Corbit et al.,

2016). Particularly, when GPe spikes are synchronous, the GPe-

FSI pathway results in synchronous FSI activity pauses, allowing

for a transient window of disinhibition for MSNs (Corbit et al.,

2016). Accordingly, the inclusion of FSI into the BG circuitry in

our model may affect the presented results by indirectly modulating

the level of abnormal beta activity used as the biomarker of the

disease.

In our study, the model parameters were extracted from the

rodent models of PD. This might affect the impact of the aDBS

protocol used in this study and need to be adopted for success

in human clinical trials. Animal models may suffer from several

limitations. For instance, in rodents, interventions may precede

induction of the model and the outcomes may be less commonly

assessed at multiple time points (Zeiss et al., 2017). Therefore,

potential therapies for PD that are successful in animal studies may

fail in human trials. The translational gap for potential therapeutic

interventions in PD in part results from study designs that fail

to model the progressive nature and relatively late intervention

characteristic of PD (Zeiss et al., 2017). Yet, animal models enable the

possibility to study the pathological mechanisms and the therapeutic

principles of treating disease symptoms in humans. Once the

causative mechanisms are clarified, animal models can be helpful

in the development of therapeutic approaches and pave way for the

transition from animal models to translational application in patients

with PD.

Finally, abnormal synchronization is a hallmark of

PD (Brown et al., 2001; Hammond et al., 2007). Such abnormal

synchronization can be controlled by the administration of high-

frequency desynchronizing brain stimulation to the diseased

network (Popovych and Tass, 2014). However, the emergence

of abnormal neural synchronization during parkinsonism

cannot be solely ascribed to the pathological changes of neural

dynamics following DA loss. Other complex mechanisms may be

involved (Madadi Asl et al., 2018b, 2022b; Ziaeemehr et al., 2020).

For instance, dysfunction of DA-mediated synaptic plasticity during

parkinsonism shapes abnormal synaptic connectivity within the

BG (Fan et al., 2012; Madadi Asl et al., 2019, 2022b). This further

supports the emergence of pathological neural activity and synaptic

connectivity patterns (Madadi Asl and Ramezani Akbarabadi,

2022) within the parkinsonian BG (Madadi Asl et al., 2022b). Thus,
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an effective brain stimulation technique should in fact decouple

neurons (Madadi Asl et al., 2023), that is, desynchronize overly

synchronized neural activity and reduce pathological synaptic

connectivity to ensure long-lasting therapeutic effects that persist

after stimulation offset (Madadi Asl et al., 2023).

In this study, the synaptic connections among neurons in

the network model were assumed to be static, that is, the

synaptic strengths were fixed in time. However, beneficiary long-

lasting stimulation effects can be, in principle, achieved in

neural network models of PD with plastic synapses modified

by spike-timing-dependent plasticity (STDP) (Gerstner et al.,

1996; Markram et al., 1997; Bi and Poo, 1998), as shown by

computational studies (Tass and Majtanik, 2006; Hauptmann and

Tass, 2009; Popovych and Tass, 2012; Lourens et al., 2015;

Kromer and Tass, 2020). STDP can mold multistable neural and

synaptic network dynamics (Madadi Asl et al., 2017, 2018a,c;

Ratas et al., 2021) that can be computationally attributed to

physiological and pathological basins of attraction (Madadi Asl

et al., 2022b). In this way, appropriately tuned, STDP-targeting

stimulation protocols can shift patterns of neural activity and

synaptic connectivity in plastic networks from pathological states

(characterized by strong synchrony and strong connectivity)

to more physiologically favored states (characterized by weak

synchrony and weak connectivity) (Madadi Asl et al., 2022b,

2023).
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Introduction

Invasive neuromodulation is routinely used to effectively treat the symptoms of

movement (Dallapiazza et al., 2019; Limousin and Foltynie, 2019) and psychiatric

(Visser-Vandewalle et al., 2022) disorders with high success despite a limited understanding

of their mechanisms of action.While the distinct neuroanatomical targets that are stimulated

vary depending on the condition being treated and any existing comorbidities, the

predominant neuromodulation strategy is to apply a fixed-frequency electrical current to

the corresponding neural targets for symptom relief. In the case of movement disorders

such as Parkinson’s disease (PD), symptom reduction manifests within seconds or minutes

following stimulation onset and disappears within a similar time course following the

cessation of stimulation (Hristova et al., 2000; Temperli et al., 2003; Ducharme et al.,

2011; Pugh, 2019). Maladaptive neuroplasticity, defined as plasticity underlying a disruption

in normal neural network function, contributes to numerous neurologic and psychiatric

conditions such as chronic pain (Kuner and Flor, 2017), mood disorders (Duman, 2002),

movement disorders (McPherson et al., 2015; Li, 2017; Seeman et al., 2017; Peng et al.,

2018; Versace et al., 2018; Madadi Asl et al., 2022), tinnitus (Engineer et al., 2011), addiction

(Kauer and Malenka, 2007; Kalivas and O’Brien, 2008; Famitafreshi and Karimian, 2019),

and depression (Duman et al., 2016). While some invasive neuromodulation approaches

treat this underlying neuroplasticity (Creed et al., 2015; McPherson et al., 2015; Seeman

et al., 2017; Peng et al., 2018; Versace et al., 2018; Asl et al., 2023), most do not. Thus,

the neuromodulation community must consider well-characterized biophysical phenomena

such as synaptic plasticity as inspiration when developing next-generation neuromodulation

therapies rather than re-applying stimulation paradigms designed for movement disorders
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to improve treatment outcomes in all conditions, such as

psychiatric disorders.

Targeted neuroplasticity as a tool to treat
neurologic and psychiatric indications

Targeted neuroplasticity encompasses neuromodulation

approaches designed to induce and maintain a long-term

influence over nervous system function through long-term

potentiation (LTP) or long-term depression (LTD) such that

symptom improvement persists after stimulation cessation.

Examples of non-invasive neuromodulation approaches that

maintain targeted neuroplasticity include transcranial magnetic

stimulation (TMS) (Horvath et al., 2010; Valero-Cabré et al.,

2017) and vibrotactile coordinated reset (CR) (Syrkin-Nikolau

et al., 2018; Pfeifer et al., 2021). These approaches contrast

with some conventional invasive neuromodulation approaches

such as fixed-frequency deep brain stimulation (DBS), in

which acute symptoms are managed only during stimulation

(Herrington et al., 2015; Ashkan et al., 2017; Pugh, 2019).

Here, we postulate that targeted neuroplasticity through

spatiotemporally patterned stimulation may improve clinical

outcomes and enhance invasive therapies such as DBS by

reversing maladaptive plasticity rather than treating symptoms. To

this end, we propose four considerations for incorporating

targeted neuroplasticity into invasive neuromodulation

therapies (Figure 1).

FIGURE 1

Targeted neuroplasticity approaches for invasive neuromodulation therapies. Figure created with Biorender.com.

Control of complex networks requires
spatiotemporally precise stimulation at
multiple network locations to improve
clinically significant long-term symptom
reduction

Neurologic conditions are often associated with neural network

dysfunction (Spencer, 2002; Palop et al., 2006; Rosin et al.,

2007), and as such, clinically-effective outcomes require timely

interventions at multiple network locations (Tu et al., 2018). While

initial studies suggested neural activity could be altered from a

single node (Gu et al., 2015), the interconnected topology of

neural networks complicates selection of a single control node

from which to apply stimulation. Furthermore, multiple studies

using functional magnetic resonance imaging (fMRI) and other

techniques have demonstrated that stimulation at multiple nodes

enhances network control (Capotosto et al., 2014; Fox et al., 2014;

Pasqualetti et al., 2014; Tu et al., 2018). More importantly, studies

have shown that enhanced multi-node network controllability

can be achieved via paired stimulation of multiple connected

brain regions such as inter-hemispheric dPM-M1 cortex (Lafleur

et al., 2016). A clear example of this concept is the use of dual-

site DBS placed in the centromedian-parafascicular complex and

ventral capsule/ventral striatum to effectively treat motor and

non-motor symptoms of severe, medication-resistant Tourette

syndrome (Kakusa et al., 2019). Studies thus suggest that multi-

location stimulation may improve control of pathological network

function underlying symptoms.
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Spatiotemporally patterned stimulation enables
long-lasting desynchronization of pathological
network activity and sustained symptom
reduction

Spatiotemporally patterned stimulation has distinct advantages

over traditional high-frequency (>100Hz) stimulation such

as facilitation of long-lasting targeted neuroplasticity and

desynchronization of pathological network activity leading to

symptom reduction. The relative timing between presynaptic and

postsynaptic activation influences synaptic strength through a

mechanism known as spike-timing dependent plasticity (STDP),

is known to profoundly influence brain network function

through changes in the direction and magnitude of synaptic

strength (Markram et al., 1997; Bi and Poo, 1998; Dan and Poo,

2004; Caporale and Dan, 2008; Brzosko et al., 2019). STDP

mechanisms are leveraged by emerging spatiotemporally patterned

neuromodulation approaches such as decoupling time-shifted

stimulation (Kromer and Tass, 2020; Asl et al., 2023) periodic

multichannel stimulation (Kromer and Tass, 2022), and CR

(Pfister et al., 2010). These therapies facilitate long-lasting

desynchronization of pathologically coherent network activity

underlying conditions like Parkinson’s Disease (PD) by applying

spatiotemporally patterned electric stimulation across subcortical

targets such as the STN (Tass, 2003; Tass andMajtanik, 2006; Pfister

et al., 2010; Adamchic et al., 2014; Ebert et al., 2014; Wang et al.,

2016; Madadi Asl et al., 2018). From a therapeutic standpoint,

a major benefit of spatiotemporally patterned therapies is that

discontinuous and lower frequency stimulation may reduce the

risk of side effects attributable to chronic continuous stimulation

(Ferraye et al., 2008; Xie et al., 2012). Furthermore, therapies such

as CR demonstrate sustained symptom reduction after stimulation

cessation (Tass et al., 2012; Adamchic et al., 2017; Syrkin-Nikolau

et al., 2018; Ho et al., 2021; Pfeifer et al., 2021; Wang et al., 2022).

Similarly, paired phase-locked stimulation of the infralimbic cortex

and basolateral amygdala alters synaptic strength and theta band

coherence in a manner that that persists after stimulation cessation

(Lo et al., 2020).

Numerous studies achieve targeted neuroplasticity with

spatiotemporally patterned stimulation delivered across multiple

stimulation modalities. For example, repeated pairing of

low frequency (0.1Hz) DBS with TMS of M1-cortex alters

corticostriatal plasticity in humans (Udupa et al., 2016).

Similarly, the application of transcranial direct or alternating

current stimulation prior to TMS has been shown to alter the

effectiveness of the TMS-based plasticity induction protocol

(Cosentino et al., 2012; Guerra et al., 2018; Nakazono et al.,

2021). Additionally, pairing DBS of midbrain locomotor

regions with epidural stimulation of the lumbar spinal cord

improves motor function in a rat model of spinal cord injury

(Bonizzato et al., 2021). One clinical case report found improved

motor function in a patient with multiple system atrophy

and predominant parkinsonism when bilateral subthalamic

nucleus (STN) DBS and spinal cord stimulation were combined

(Li et al., 2022). Taken together, these examples demonstrate

that spatiotemporally patterned simulation may enable long-

lasting reductions in symptoms and side effects and expand

invasive neuromodulation indications while improving power

consumption efficiency.

Biofeedback may facilitate induction of targeted
neuroplasticity

Closed-loop neuromodulation approaches leverage

biofeedback to guide stimulation parameter selection in a wide

range of circuitopathies underlying conditions such as epilepsy

(Seitz, 2013), PD (Kühn et al., 2009; Weinberger et al., 2012),

essential tremor (Thompson et al., 2014), and dystonia (Barow

et al., 2014), in which oscillation frequency abnormalities serve

as biomarkers that can inform stimulation parameter selection to

improve symptom reduction (Thompson et al., 2014). For example,

electrophysiological activity recorded during electrographic

seizures can trigger DBS to interrupt seizure progression (Thomas

and Jobst, 2015; Razavi et al., 2020). Furthermore, studies indicate

that phase-aligned stimulation triggered by local field potentials

can alter pathological cortical-striatal-pallidal activity and cortico-

amygdalar coherence, reducing symptoms of obsessive-compulsive

disorder (OCD) (Olsen et al., 2020) and anxiety (Lo et al., 2020),

respectively. Stimulation of the ventrolateral (VL) thalamus aligned

to patients’ limb tremor reduces tremor severity in essential tremor

patients through a mechanism involving STDP (Cagnan et al.,

2017). Thus, initial exploration of closed-loop stimulation as a

mechanism to achieve targeted neuroplasticity promises to be a

versatile tool in the treatment of neurologic disease and injury. As

such, an expanded investigation of targeted neuroplasticity that

incorporates biofeedback measurements may expand this powerful

technique into a readily translatable clinical treatment.

Insights from non-invasive neuromodulation and
basic neuroscience may inform novel invasive
targeted neuroplasticity approaches

Non-invasive neuromodulation therapies such as TMS or

focused ultrasound have embraced the targeted neuroplasticity

philosophy out of necessity. The immobile nature of non-invasive

systems, frequently due to large size and cost of the necessary

hardware (Horvath et al., 2010; Anderson et al., 2012; Santarnecchi

et al., 2018; Carmi et al., 2019; Mehta et al., 2019; Sabbagh et al.,

2020), has necessitated the development of stimulation protocols

designed to induce long-term plastic changes in brain function.

Consequently, numerous non-invasive stimulation protocols have

been designed to facilitate long-term changes in neuroplasticity

(Todd et al., 2010; Bunday and Perez, 2012; Jacobs et al., 2012;

Urbin et al., 2017; Aftanas et al., 2018; Kozyrev et al., 2018). Despite

being limited to engaging cortical targets at a poor spatial specificity

on the order of 1,000mm2 (van de Ruit and Grey, 2016), TMS has

succeeded where more precise invasive approaches such as DBS

have failed (e.g., treatment-resistant major depressive disorder). It

is thus surprising that few studies are seeking to translate FDA-

approved non-invasive plasticity-inducing stimulation protocols to

invasive techniques such as DBS, which offer a more selective target

engagement and, therefore, fewer side effects (Ni et al., 2019).

Adapting classical neuroplasticity induction protocols rooted

in basic neuroscience may form the foundation for novel therapies

for treatment-resistant clinical indications. An example where DBS

has produced less-than-satisfactory results is in the treatment

of Alzheimer’s disease. A randomized, sham-controlled, double-

blinded clinical trial of patients with Alzheimer’s disease found
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continuous high frequency (130Hz) DBS of the fornix, a brain

region implicated in learning and memory (Douet and Chang,

2015), does not improve cognitive function (Lozano et al., 2016).

Theta burst microstimulation (5 pulses separated by 200ms,

100Hz) is a well-described plasticity induction protocol established

ex vivo to cause LTP in neural circuits (Abrahamsson et al., 2016).

Theta burst stimulation of the right entorhinal cortex significantly

increased performance on pattern separation and memory recall,

suggesting utility for the treatment of Alzheimer’s disease (Titiz

et al., 2017). Moreover, intermittent theta-burst stimulation results

in safe and reliable changes in dorsolateral prefrontal cortex

electrophysiology (Bentley et al., 2020) and may improve treatment

of neurological conditions with historically poor success rates.

Emerging optogenetics-inspired DBS protocols consisting of 1Hz

electrical stimulation of the Nucleus Accumbens paired with a D1-

Dopamine receptor antagonist reverse behavioral adaptations in

a rodent model of addiction (Creed et al., 2015). Similarly, brief

bursts of electrical stimulation in the external Globus Pallidus

enables control of distinct neuronal subpopulations and produces

long-lasting therapeutic benefits in dopamine depleted mice (Spix

et al., 2021). Taken together, targeted neuroplasticity induction

protocols should be considered as an alternative to high-frequency

stimulation to treat neurological conditions in which disease

symptomology is predicated on maladaptive neuroplasticity.

Discussion

A strong feature of traditional DBS is its reversibility, which

led it to become a favorable alternative to lesioning procedures for

treatment of neurologic and psychiatric disorders (Pugh, 2019).

While targeted plasticity can be viewed as a shift away from a

reversible surgical procedure, it must be noted that traditional DBS,

such as STN DBS also causes changes in plasticity (Herrington

et al., 2015; Melon et al., 2015; Chassain et al., 2016). However,

high-frequency STN DBS does not create long-lasting neuroplastic

changes that may support symptom reduction after cessation of

stimulation, supporting the reversibility of DBS therapies (Pugh,

2019).

Interventions that provide long-term changes in targeted

neuroplasticity through spatiotemporally patterned stimulation

offer distinct advantages over traditional high-frequency invasive

neuromodulation, chiefly the ability to manipulate underlying

disease pathophysiology, persistent symptom improvement after

stimulation cessation, reduced power consumption from lower

stimulation frequencies, amplitudes, and duty cycles, and improved

circuit specificity that minimizes off-target effects. Thus, targeted

neuroplasticity approaches may enable expanded avenues for

treatment of disorders associated with maladaptive plasticity,

such as Tourette’s syndrome (Nespoli et al., 2018), OCD

(Kreitzer and Malenka, 2008; Maia et al., 2008), Schizophrenia

(McCutcheon et al., 2019), PD (Shen et al., 2008; Kravitz et al.,

2010; Parker et al., 2018), and Manic Depression (Lee et al.,

2018).

Despite the advantages of leveraging targeted neuroplasticity

in spatiotemporally patterned invasive neuromodulation therapies,

there remain numerous barriers to clinical implementation.

When considering the need for multi-nodal circuit control,

it is paramount to consider that additional hardware may

incur additional surgical risks (Chiong et al., 2018). However,

multi-lead DBS procedures are safe and routinely performed

(Dallapiazza et al., 2019). Non-invasive options such as

TMS can be paired with invasive stimulation to decrease

surgical risk of additional implants while enabling additional

therapeutic approaches.

There remains a real risk that preclinical findings do

not translate between species, particularly to humans (de

Oliveira et al., 2021). Consequently, caution must be taken

when applying plasticity induction protocols clinically.

While application of any novel stimulation paradigm comes

with risk, a reasonable starting point for translating a novel

neuroplasticity induction protocol to humans is to test plasticity

induction protocols in individuals with existing implanted

pulse generators, particularly if the system is capable of

electrophysiological monitoring. An example of this strategy

is evident in the previously mentioned multi-modal approach,

where TMS pulses were paired with electrical stimulation

of previously indwelling STN DBS electrodes (Udupa et al.,

2016). Testing plasticity protocols in such a manner enables

feasibility testing in humans without risks inherent in de novo

surgical procedures.

Considering the advantages of invasive over non-invasive

neuromodulation approaches, we must ask the question, “Why

is it that targeted neuroplasticity-inducing protocols such as

those used by non-invasive therapies are not widely used invasive

neuromodulation therapies?” Perhaps the immediately effective

therapeutic benefits of invasive neuromodulation approaches

unnecessarily constrain parameter selection. Rather than treat

stimulation-induced synaptic plasticity as an obstacle that

interferes with long-term efficacy of traditional high-frequency

stimulation, stimulation-induced neuroplasticity should be

considered as a therapeutic mechanism. This mechanism may

be sensitive to numerous parameters, including the type of

underlying synaptic plasticity, synaptic transmission delays,

the spatiotemporal stimulation pattern, the stimuli shape, and

stimulation context. Borrowing inspiration from the protocols

of non-invasive neuromodulation like TMS, vibrotactile CR, and

basic neuroscience may help improve the clinical outcomes of DBS

by creating lasting symptom benefit while broadening the clinical

indications that can be treated with invasive therapies.

Clinical invasive neuromodulation approaches have remained

largely unchanged since their inception. For example, high-

frequency DBS is still the gold standard for treating medically

refractory movement disorders. However, neuromodulation is

limited in its ability to relieve disease symptoms after stimulation

cessation. Re-designing stimulation protocols to address the

underlying pathophysiology of disease circuitopathies may

improve the current treatment of disorders and expand clinical

applications. Integrating this approach into stimulation protocols

may require control of complex networks through input at

multiple nodes, long-lasting desynchronization of pathologically

coherent network activity for long-lasting symptom reduction,

and insight from non-invasive neuromodulation and basic

neuroscience. Thus, targeted neuroplasticity may pave new paths
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in neuromodulation, expanding indications and improving

disease pathophysiology.
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Rationalized development of electrical stimulation (ES) therapy is of paramount

importance. Not only it will foster new techniques and technologies with

increased levels of safety, efficacy, and efficiency, but it will also facilitate

the translation from basic research to clinical practice. For such endeavor,

design of new technologies must dialogue with state-of-the-art neuroscientific

knowledge. By its turn, neuroscience is transitioning—a movement started a

couple of decades earlier—into adopting a new conceptual framework for brain

architecture, in which time and thus temporal patterns plays a central role in the

neuronal representation of sampled data from the world. This article discusses

how neuroscience has evolved to understand the importance of brain rhythms

in the overall functional architecture of the nervous system and, consequently,

that neuromodulation research should embrace this new conceptual framework.

Based on such support, we revisit the literature on standard (fixed-frequency

pulsatile stimuli) and mostly non-standard patterns of ES to put forward our

own rationale on how temporally complex stimulation schemes may impact

neuromodulation strategies. We then proceed to present a low frequency,

on average (thus low energy), scale-free temporally randomized ES pattern

for the treatment of experimental epilepsy, devised by our group and termed

NPS (Non-periodic Stimulation). The approach has been shown to have robust

anticonvulsant effects in different animal models of acute and chronic seizures

(displaying dysfunctional hyperexcitable tissue), while also preserving neural

function. In our understanding, accumulated mechanistic evidence suggests such

a beneficial mechanism of action may be due to the natural-like characteristic of a

scale-free temporal pattern that may robustly compete with aberrant epileptiform

activity for the recruitment of neural circuits. Delivering temporally patterned

or random stimuli within specific phases of the underlying oscillations (i.e.,

those involved in the communication within and across brain regions) could

both potentiate and disrupt the formation of neuronal assemblies with random

probability. The usage of infinite improbability drive here is obviously a reference

to the "The Hitchhiker’s Guide to the Galaxy" comedy science fiction classic,

written by Douglas Adams. The parallel is that dynamically driving brain functional
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connectogram, through neuromodulation, in a manner that would not favor

any specific neuronal assembly and/or circuit, could re-stabilize a system that

is transitioning to fall under the control of a single attractor. We conclude by

discussing future avenues of investigation and their potentially disruptive impact

on neurotechnology, with a particular interest in NPS implications in neural

plasticity, motor rehabilitation, and its potential for clinical translation.

KEYWORDS

electrical stimulation, neuromodulation, coincidence-detection, temporal pattern,
power-law, phase coupling, synchronization, neural circuits

1. Introduction

The powerful intuition that electricity applied to the body
may bear therapeutic effects in many different ailments is
much older than the knowledge of moving electrical charges
itself, the potentials created by their separation, and all the
related electromagnetic phenomena. Roman physicians prescribed
Torpedo Ray Fishes to treat chronic pain and, before them, ancient
Greeks used electrically charged amber collars with therapeutic
intentions toward all natural and even unnatural afflictions
(Gildenberg, 2006). Therefore, as it happens to therapeutic
approaches with ancient roots, there was little to no theoretical basis
to explain, or even to hypothesize on possible reasons, as to why it
actually worked.

Following original insights of early investigators of bioelectrical
phenomenal, such as Luigi Galvani and Alessandro Volta, and
the development of rudimentary electrical devices (e.g., Leyden
Jar and Van de Graaf ’s generator), an era of wide application
of electricity as therapy quickly ensued. At this point, controlled
demonstrations of the effects of electricity on biological tissue, both
dead or alive (as in Giovanni Aldini’s and Guillaume Duchenne’s
demonstrations), evoked at the will of the experimenter/therapist
and observable to the naked eye, left no doubt that it could be used
to elicit involuntary and targeted responses in an organism. Here,
the early reasoning would state that if in fact, the human body could
respond to electricity through some sort of electricity "receptor",
there should also be an endogenous electricity generator to account
for its existence, a process later termed bioelectrogenesis.

As often occurs after a scientific breakthrough, the rapid
changes in paradigm not only spurred charlatanism—particularly
during the 19th century—but also inspired notable sound
technological and scientific progress. This story was extensively
shared with the fields of neurology and neurosurgery, even before
they were organized as areas of specific medical activity. Based
on animal models and experimentation guided by cases, or
even without so much scientific rigor, several physicians acted
as electrotherapists. Among them, Jean-Martin Charcot laid the
foundations of what many consider modern clinical neurology at
the Salpêtrière Hospital, while Guillaume Duchenne consolidated
electrotherapy as a treatment for diseases of the nervous system
(Hagner, 2012). In fact, studies with electrostimulation of the brain
were essential for supporting the localizationist theory, in which
each brain function can be bi-univocally correlated to a brain

area. In addition, the sometimes-conflicting interactions between
physiologists and physicians led to the introduction of ES as a basic
neurophysiology technique in clinical practice for questioning and
confirming preclinical models. An obvious example of the great
impact of this interdisciplinarity is Wilder Penfield’s studies on
adapting and applying electrical stimulation techniques to patients
submitted to neurosurgical procedures, which lead to the human
sensory-motor cortex topographical mapping [i.e., the sensory
and motor homunculus (Penfield and Boldrey, 1937; Penfield and
Jasper, 1954)].

The therapeutic application of electrical (and magnetic) fields
to the brain is today a very well-established medical and scientific
practice, known as neuromodulation or neurostimulation (Bao
et al., 2020; Krauss et al., 2021; Foutz and Wong, 2022). In fact, the
field bears testimony to its historical roots, displaying sometimes
the content of trial-and-error practice, but also solid principles
and protocols based on an ever-evolving conceptual framework
in neurosciences (Hopkins et al., 1992; von der Malsburgl, 1994;
Bennett, 1999; Varela et al., 2001). This conceptual framework is in
the kernel for our understanding of the very nature of information
processing within the nervous system, how the brain works, and
the physiopathology of its dysfunctions. As reminded by one of
the greatest geniuses of humanity’s past, Leonardo da Vinci, “He
who loves practice without theory is like the sailor who boards ship
without a rudder and compass and never knows where he may
cast.”.

In Section “2. The ever-evolving neuroscientific framework” of
this review, we revisit the evolution of such a conceptual framework
which establishes, in our understanding, the guiding principles that
pave the way for ever-more efficacious neurostimulation methods
based on evidence and sitting on a solid theoretical foundation.
Along with the advised practice of full disclosure, the authors
have a particular interest in the aspect of temporal patterning, a
considerably more recent strategy used in stimulation protocols.
Its use derives from the knowledge scaffold supporting modern
neurosciences, and how it relates to a more recently proposed
coincidence-detection cerebral architecture (Hopkins et al., 1992;
Abeles et al., 2004) rather than the more conventional integrate
and fire model of neuronal processing (not to confound with
IaF computational model) (McCulloch and Pitts, 1943; Rosenblatt,
1958). Therefore, it is not surprising that the review ends with
the authors putting forward their own contributions to the
field stemming from the proposition of a temporally complex
pattern of ES to suppress seizures and treat epilepsy, termed
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Non-periodic Stimulation (or NPS); as well as using ES for
probing neuronal circuitry for diagnostic purposes. NPS is a
non-standard form of ES in which the interpulse intervals (IPI)
are randomized in a unitary exponent power-law fashion with a
low average frequency (4 pulses per second). It has been shown
to have robust anticonvulsant properties in animal models of
acute seizure and also in animal models of epilepsy, in which
permanent changes to neural tissue is induced so that seizures
spontaneously occur in a chronic fashion. Mechanistic studies
suggests NPS has a synchronization buffer effect (i.e., it maintains
homeostatic levels, protecting against hypersynchronization), while
also preserving neural function (de Oliveira et al., 2019). It is
important to highlight here that research data from experiments
designed to explain how such neuromodulation protocols worked
only found a solid theoretical background under the coincidence
detection perspective. These findings will be reviewed and
discussed in Sections “3. Novel conceptions of the time dimension
in the design of neuromodulation approaches” and “4. NPS
meets the coincidence-detection framework: driving the infinite
improbability of the brain’s functional connectogram” of this text.

The lessons we learned from applying such temporally
complex stimulation protocol for treating epilepsy in experimental
animal models have fostered a diversity of investigational and
developmental venues, some of which are purely physiological and
have no association with brain dysfunctions. These include memory
engrams; a further in-depth investigation of the mechanisms of
NPS itself under the light of a coincidence detection conceptual
framework; the implications of the effects of the therapy in the
current neuroscientific understanding of the brain functioning
and disorders; novel therapeutic applications toward distinct
neurological disorders including pathological anxiety, Parkinson’s,
and motor deficits following stroke, and; translational research
in human patients. The group is currently carrying out all these
endeavors and such perspectives will be presented as a final
discussion in Section “5. Discussion” of this article.

2. The ever-evolving neuroscientific
framework

2.1. Beginning with the integrate and fire
architecture

Even rudimentary electricity devices such as Leyden Jar and
Van de Graaf ’s Generator, although quite popular as a handful
of parlor tricks and quackery, are methods and tools that had
noteworthy importance for evolving a conceptual framework to
explain functions and diseases of the brain. To highlight just
a few breakthroughs: the understanding that isolated nerves
(Jan Swammerdam; 1637-80) and muscles (Albrecht von Haller;
1734) were electrically "irritable"—see Pearce’s Historical Notes
(Pearce, 1997), that the spinal cord was an important pathway
for activating "body-motion", and the important role cortical
electrostimulation played in establishing the idea—championed by
Santiago Ramon y Cajal—of brain architecture based on functional
neuroanatomy (Fritsch and Hitzig, 1870; Ferrier, 1890; Jackson,
1898; Brodmann, 1909; see for historical review Finger, 1994;
Levine, 2007; Molnár and Brown, 2010). All these contributions

lead to the seminal work of Sir Charles Sherrington (e.g.,
"The integrative action of the nervous system", with notable
contributions of outstanding scientists such as Marshall Hall,
Edgar Adrian, and Yngve Zotterman) which helped shape a
hierarchical functional organization of the brain as layers upon
layers of sensory-motor circuits, with respective modulatory inputs
from several multimodal brain areas, coordinating an increasingly
complex network of reflex-actions (Levine, 2007). Sherrington’s
proposal for the brain architecture had its foundations on neuronal
communication, strongly based on four principles: (a) neurons
would transmit information "digitally" across long distances1 (i.e.,
action potentials) coding intensity as inter-pulse intervals—Adrian
and Zotterman’s work (Adrian, 1926; Adrian and Zotterman, 1926);
(b) the synapse would integrate the arriving "pulses” as postsynaptic
"analog" potentials—decoding the frequency of the all-or-nothing
"digital" input signals into signal intensity levels; (c) neurons
could receive inputs from several synapses, coming from different
sources, each either exciting or inhibiting postsynaptic potential
formation, and; (d) depending on the level of excitation of the
postsynaptic neuron, it could fire and propagate information. This
whole rational scheme is named integrate and fire.

The foundational work of Sherrington—and his predecessors—
was complemented by the important contribution, a couple of
decades later, of the theoretical framework of Frank Rosenblatt
and the McCulloch-Pitts neuron. In fact, while those previous
conceptions were mostly based on inductive thinking proposed
in order to develop a comprehensive theory of brain function,
Rosenblatt’s implemented the McCulloch-Pitts “perceptron” as
a means to test such a groundbreaking theory under a more
deductive thought process made possible by mathematical models
(McCulloch and Pitts, 1943; Rosenblatt, 1958). His attempt,
named connectionism, was significantly different from the pure
symbolic approach to "mimic" brain function without any concern
for its biological substrate, defended by none other than Alan
Turing (Daylight, 2015). On the contrary, the incorporation of
neuroscientific ideas, such as Hebbian rules for learning and
memory, largely contributed to the impact of such views in
neuroscience in general, creating back-propagation models with a
great impact on machine-learning systems (Lillicrap et al., 2020).
Of particular importance here, it was also instrumental in laying
down the later basis for ideas on how electrical stimulation could
relay its effects, for example: (a) the higher the intensity of the
current flowing through the stimulating electrodes, the higher
the number of neurons recruited; (b) the higher the frequency
of pulse stimulation, the higher the activation of each neuronal
unit; (c) the pulse should obey the time-constraints known to the
interpulse-interval associated to the "digital" propagation, i.e., the
refractory period intrinsic to action potentials; (d) the target of the
electrical stimulation should be chosen based on how its intrinsic
functionality (localization v.s. function) could serve to alleviate
symptoms, "remove" irritable areas (by either lesion or driving

1 Although the electric-field propagation within a conducting volume does
allow for synaptic communication if the distances are sufficiently small (i.e.,
electrotonic conduction, electrical synapses, ephaptic transmission etc.), in
order to overcome the constraints imposed by physics on electric field
decay, a biological solution based on voltage-gated channels, working
roughly as "repeater stations", allow for signal transmission over meter-long
axonal processes.
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them into refractory periods), and potentiate endogenous feedback
mechanisms to restore homeostasis (Beenhakker and Huguenard,
2009; Kalitzin et al., 2010).

Serrington’s work, although of undeniable genius and
importance, was criticized and deemed incomplete especially due
to its inability to properly address "the binding problem" and the
temporal constrains that a cascade of integrator circuits would
have on neuronal computation (Paz and Huguenard, 2015; Isbister
et al., 2018). In short, not only the proposed conceptual framework
struggled to explain how a "sensory-multimodal" object or process
would be represented by the underlying neuronal network, but also
that the neuronal computation of integrating neuronal frequency
of discharge to an analog transmembrane potential in every
synaptic relay would render complex sensory-motor integration
(or decision making in voluntary movements) way too long a
process to be useful in triggering behavior with an adaptive value.
Therefore, adjustments should be made to the proposed framework
regarding what kind of neuronal computational processes actually
takes place within the brain. Nowadays we are on the verge of
consolidating a new conceptual framework emerge: time. Time
is the key element missing from the former early 20th-century
debate.

2.2. Incorporating the coincidence
detection architecture

The idea of a temporal structured organization, with neuronal
circuitry designed to detect specific temporal discharge patterns,
based on coincidence detector motifs rather than integrate and
fire relays, has more recently (in the time frame of neuroscientific
reasoning) been proposed as a conceptual framework alternative
in neurosciences. Not that the current view completely erases
previous conceptions, but rather that it complements ideas on
brain physiology, in which an architecture based in space (i.e.,
anatomical-localizationism) on input areas (i.e., sensory systems)
yields to a structure in time on more rostral substrates, allowing
fast and reliable neuronal representation of the external world.
Furthermore, at the output (i.e., rostral motor areas), the time-
structured neuronal representations would gradually yield back to
a framework based on a spatial organization, thus more akin to the
integrate and fire paradigm. This central concept has received many
different names/views and branched into many different ideas,
all converging on the importance of time determining neuronal
network organization and function: temporal-coding, phase-
coding (Varela et al., 2001; Petersen and Buzsáki, 2020), phase-
synchronization (Singer and Gray, 1995), time-synchronization
(Grossberg and Schmajuk, 1989; Price and Gavornik, 2022), phase-
coherence (Fries, 2005), amplitude-phase coupling (Aru et al.,
2015), the neural syntax of brain rhythms (Buzsáki and Watson,
2012), spectral-signatures (Spadone et al., 2021), small-world
network scheme (Liao et al., 2017), etc.

The very idea of a synchronous or coincident activity implies
establishing the time-scale resolution deemed sufficiently small
to be considered simultaneous, i.e., if it falls within the same
time bin then it is synchronous. In fact, since multimodal
information processing time-lags can vary throughout primary
sensory pathways, due to the summation of sequential synaptic

delays, a form of sustained activation state must exist in order
to identify a "temporal pattern" of coincidental activity within
increasingly larger time scales. That is the precise role fast brain
oscillations are proposed to play within distributed local networks
(i.e., neuronal assemblies) and the gradually decreasing frequency
oscillations play on large-scale neuronal assembly integration
(Varela et al., 2001). Consequently, the transient link that is
established within local network assemblies (i.e., organized as
small-world networks; Liao et al., 2017) and the dynamical large-
scale transfer of information between such networks far apart
in the brain have been referred to as a functional connectome
(or connectogram)—in contrast with the quasi-static anatomical
definition of a connectome (Contreras et al., 2015). One major
corroboration of such perspective is the work done on selective
attention and feature-binding neuronal visual processing, which
has shown that phase-locking among neuronal groups ("temporal"
coherence) plays an important role in efficacious communication
between assemblies (Fries, 2005). In short, the same visual stimuli,
applied during different attentional conditions, generate different
temporal organizations amongst neuronal groups (not necessarily
affecting "who" is being recruited—or "how much" that particular
group is being recruited, but impacting "when" or in which
sequence the neuronal groups are activated). The "binding-tag"
could form transitory temporally coherent neuronal ensembles,
creating a much more flexible and effective neuronal representation
of a specific situation that could optimally trigger an appropriate
sensory-motor response (Isbister et al., 2018).

Advances have also been made in proposing alternate
mathematical models that are better suited to the idea of
representation and communication by temporal organization
of neuronal groups (i.e., binding-by-synchronization (BBS)
hypothesis, communication-through-coherence, engram
formation by temporal patterns). As an example, after observing
precise firing sequences on task-triggered cortical activity, Abeles
(Abeles, 1982; Abeles et al., 2004) coined the term "synfire-chain"
to represent his idea of neuronal network organization based on
"temporal patterns" of representation. Abeles "resurrected" previous
models proposed by Griffith (1963) and Grossberg (Grossberg,
1969; Grossberg and Schmajuk, 1989) in which a version
of Rosenblatt’s perceptron was reorganized into sequentially
connected layers of pools of neurons, i.e., a "complete transmission
lines", each representing neurons that "synchronously" fired within
a "hypothetical" time-bin. The "cortical songs", represented by
such a model, would have complex space-time patterns associated
with "specific" network states (Louie and Wilson, 2001). The
model received several modifications and suggestions along the
years, such as no need for the time bins (or synaptic delays) to be
constant—Bienenstock’s synfire braids (Bienenstock, 1995), and
that synchronicity could be reinterpreted as a time-locked activity
between neurons [not necessarily simultaneous firing (Izhikevich,
2006)]. These suggestions brought the proposed initial model
much closer to current biological findings while also addressing
criticisms against the model being able to provide an efficient,
reliable, adaptive, and flexible representation of how the "real"
world is represented by neuronal networks.

The aforementioned change in the conceptual framework of
brain function and dysfunction has had a profound impact on
conventional neuromodulation as a therapeutic and/or diagnostic
tool. Patients with Schizophrenia have impaired performance on

Frontiers in Neuroinformatics 04 frontiersin.org54

https://doi.org/10.3389/fninf.2023.1173597
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1173597 May 18, 2023 Time: 13:10 # 5

Cota et al. 10.3389/fninf.2023.1173597

Gestalt-related tests (e.g., Mooney Face Test) that nicely correlates
with large-scale neuronal synchronization deficits (Uhlhaas et al.,
2006). On the other hand, forcing network coupling between two
separate small-world networks, through electrotherapy-induced
neuromodulation, has been shown to significantly improve
impaired cognitive processes in patients (Reinhart and Nguyen,
2019; Reinhart, 2022). In short, in situations where physiological
function and brain disorders just would not correlate with the
changes in discharge frequency or metabolism of any one specific
area, the overall temporal patterns between areas became a much
more reliable diagnostic and therapeutic alternative. Furthermore,
it has been shown that targeting a specific brain nucleus for
ES, while using a pattern having the overall same frequency
(i.e., 6 pulses within 100 ms), may activate different functional
connectome pathways depending on the specific combination of
IPI values used (Mourão et al., 2016). This particular result comes
very close to demonstrating that the integrate and fire paradigm
is not as well suited as the coincident detector one regarding
higher-level neuronal processing.

All this theoretical framework substantially changed the
way we looked at neurophysiology and, consequently, how the
brain functions. There is an obvious two-way relation between
how we perceive function and the strategy we design to fix
things when they become dysfunctional; neuromodulation is no
exception to that rule.

3. Novel conceptions of the time
dimension in the design of
neuromodulation approaches

A brief discussion on the use of neuromodulation for the
diagnosis and treatment of patients with epilepsy is in order
before we start suggesting paradigm shifts on the matter. Roughly,
neuromodulation of targeted excitable nervous tissue has focused
on varying parameters such as polarity, waveform, amplitude,
frequency, electrode material, dipole distance among others in
search of an optimal therapy (Medeiros and Moraes, 2014). The
goal is often to cause disturbances on the underlying neural
network in effect to its ongoing intrinsic state (McIntyre et al.,
2004). Perhaps the most distinguished breakthrough in seizure
control using neuromodulation happened during the 80s: vagus
nerve stimulation (VNS) (Binnie, 2000). The VNS treatment
was proposed as an effective method for treating patients with
refractory epilepsy, found unfit for ablation surgery. The success of
VNS prompted other more invasive neuromodulation approaches
such as cortical stimulation and deep brain stimulation (DBS)
(Kinoshita et al., 2004; Vonck et al., 2005). These alternatives were
reserved for more extreme cases (i.e., patients with spasticity, severe
psychiatric disorders, etc.). Tackling the problem through the
development of new pharmacological agents had not significantly
improved seizure control on pharmaco-resistant patients. Thus, the
use of neuromodulation has regained the interest of both basic
science epileptologists and clinicians. The new interest spurred
a myriad of methods. Seizure suppressing neuromodulation has
been applied, with different levels of success, to the anterior
nucleus of thalamus (Mirski et al., 1997; Hamani et al., 2004), the
subthalamic nuclei (Benabid et al., 2002; Chabardès et al., 2002),

and even the epileptogenic focus itself (Vonck et al., 2002),
including large clinical trials (SANTE) and with state-of-the art
closed-loop systems (e.g., NeuroPace R© use in the treatment of
refractory epilepsy, United States Food and Drug Administration)
(Fisher et al., 2010; Morrell and RNS System in Epilepsy Study
Group, 2011; Fridley et al., 2012).

It is not trivial to pinpoint the exact study or paper in which
the time dimension for neuromodulation was first broadened
into aspects beyond the integrate and fire framework and started
affecting the design of the temporal structure of ES patterns.
Although electrical stimulation has been used for rigorous scientific
investigation of brain function for more than a century (Ferrier,
1887; Sherrington, 1906; Penfield and Boldrey, 1937)—see for
review (Guenther, 2016), it was only after the birth of the modern
era of neuromodulation in the ’60s, with DBS and Spinal Cord
Stimulation (SCS) for the treatment of motor disorders and chronic
pain (Buyten et al., 2013; Tiede et al., 2013; Chakravarthy et al.,
2018), that its therapeutic usage started to share the same rigorous
scientific foundations. Only then, the bidirectional knowledge
transfer between basic neurosciences and neuromodulation truly
deepened. Thus, it is natural that the first publications that more
comprehensively reviewed the neurophysics of ES, such as the
works of Ranck (1975) and Tehovnik (1996), were naturally
committed to the integrate and fire framework. In these reviews,
which are nonetheless bibliographic cornerstones to the field,
the contribution of the temporal dimension for recruitment and
control of behavior is described in terms of pulse frequency
and duration, naturally conditioned to the target area. Even
later work and theories aimed at understanding the mechanisms
underlying therapeutic effects of DBS—such as depolarization
blockade, synaptic inhibition, synaptic depression, and network
modulation—were, to a large extent, linked to such framework
as illustrated, for instance, to the prominent importance given to
stimulation frequency (Breit et al., 2004; McIntyre et al., 2004;
Theodore and Fisher, 2004; Vonck et al., 2004). In the same vein,
much of contemporary work aimed at finding optimal parameters
for DBS was focused on pulse morphology parameters, pulse
frequency, and anatomical target (Kuncel et al., 2006; Cymerblit-
Sabba et al., 2013), not on the temporal structure of stimuli.

Possibly, a major pioneering contribution toward
better incorporating the time dimension into the design of
neuromodulation strategies can be found in a series of in silico
studies by Peter Tass and collaborators who, inspired by the
phase resetting of circadian rhythms phenomena, set out to
investigate analogous processes related to brain oscillations and
stimulation (Tass, 1996, 2001a,b, 2002a,b). By using different
mathematical-computational models of neural oscillators, that
author and his group studied effects, mechanisms, and applications
of pulsatile stimuli which are time-locked to ongoing synchronized
oscillations in order to obtain phase resetting of the rhythm and
thus desynchronization. Based on these findings, that same author
later proposed the Coordinated Reset (CR) approach, which was a
novel DBS variation to be applied in the treatment of neurological
diseases such as Parkinson’s, motor disorders, and even epilepsy.
Investigation of CR was first carried out in silico (Tass, 2003; Tass
and Majtanik, 2006), and later in pre-clinical (Tass et al., 2012;
Wang et al., 2016) and clinical settings (Adamchic et al., 2014) with
considerable success.
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In a parallel line of development, another important
contribution stemmed from the efforts to better understand
the mechanisms by which DBS is capable of suppressing motor
symptoms of essential tremor. In 2004, Grill and colleagues
put forward the informational lesion hypothesis to explain the
therapeutic effects of high-frequency neurostimulation, stating that
pathological activity would be masked by the input stimulus in a
frequency-dependent fashion (Grill et al., 2004). In this in silico
study, authors observed that the regularity of the firing of neurons
increased (and thus the information content decreased) when
increasing the stimulation frequency, which would corroborate
two important DBS hallmarks: its efficacy in higher frequencies
and its similarity to electrolytic lesions. This led the authors to
postulate that application of irregular temporal patterns would be
less efficacious in reducing essential tremor symptoms. This was,
in fact, observed in a few following studies carried out in silico
and also with human patients, by applying DBS in which IPI were
drawn from Gaussian distributions with different coefficients of
variation or in paired pulses (Birdno and Grill, 2008; Birdno et al.,
2008, 2012). On the other hand, irregular temporal patterns—but of
distinct features—of ES (uniform and unipeak distributions) were
later demonstrated to improve the performance of Parkinsonian
individuals in a finger-tapping task, while also suppressed aberrant
electrophysiological spectral content in the beta band (Brocker
et al., 2013). This set of results was of central importance in
establishing the fact that temporal pattern is a determinant (a
“new dimension”) in the efficacy of an ES method, even though
effects may vary according to several other factors such as the
disorder being treated, target area, and general parameters (Grill,
2018). In any case, Grill and colleagues have recently proposed
new approaches (e.g., Temporally optimized patterned stimulation
or TOPS R©) in which parameters—including temporal—have been
carefully engineered using, among others, machine learning tools
(Brocker et al., 2017; Okun et al., 2022).

Considering the well-known aberrations of electrophysiological
neural activity underlying epileptic phenomena in general and
hyper-synchronism of seizures in particular (Avoli et al., 2002,
2004; Benini et al., 2003; Garcia et al., 2005; Nariai et al., 2011;
Medeiros et al., 2014; Edakawa et al., 2016; Li et al., 2016; Abreu
et al., 2018; Yu et al., 2018; Batista Tsukahara et al., 2022), epilepsy
was also a natural application field for temporally complex ES. At
the beginning of 2000’s, our group devised, patented, and tested—
possibly the first therapeutically successful in vivo application of
temporally structured ES—a novel temporally irregular pattern of
ES later termed non-periodic stimulation (or NPS), in which the
IPI were randomized in real-time, with the important advantage
of being low frequency on average (mean of 4 pulses per second)
(Cota et al., 2009, 2021; de Oliveira et al., 2019). Considering that
therapeutic efficacy was obtained with pulse parameters compatible
with other high-frequency methods, the low frequency directly
implied low energy transfer from the stimulator to the neural tissue.
This is highly advantageous for perspectives in engineering (greater
autonomy of IPG batteries, less degradation of electrodes), medical
practice (less interventions for battery substitution), and safety
(lower risk of lesions and habituation) (Cota et al., 2016). In the
first report on NPS anticonvulsant effects, seizures were induced
in rats by the controlled intravenous infusion of pentylenetrazole
(PTZ), a chemoconvulsant of broad action, while the occurrence
of and latency to stereotypical convulsive behaviors were measured

(Cota et al., 2009). Animals submitted to NPS applied to the right
basolateral amygdala needed almost double the amount of PTZ
to display generalized tonic-clonic seizures and displayed lower
mortality levels when compared to fixed-frequency, burst, and
quasi-uniformly distributed IPI patterns, as well as unstimulated
controls. In an fMRI study using the same "ramp"-like infusion of
PTZ, Mesquita and collaborators showed that the ipsilateral site of
stimulation significantly increased activity during fixed frequency
(also termed periodic) stimulation, while showing significant
dampening of hyperactivity during NPS. These results confirmed
the original 2009 data from Cota et al. (2009) and showed that
the temporal dynamics of brain site activation during PTZ seizure
onset was dependent on the temporal organization (inter-pulse-
interval) of the same 4 pulses per second stimulation applied to the
amygdala. In a way, NPS seemed to have a disruptive effect on the
binding-by-synchronization dynamics of circuitry involved in the
PTZ seizure model while the periodic stimulation facilitated and/or
potentiated communication to the stimulated hemisphere.

The anticonvulsant effects of NPS were also demonstrated
later in spontaneous seizures displayed by animals submitted to
the temporal lobe epilepsy/chronic seizure experimental model
of pilocarpine. After administering a bolus injection of the drug,
animals develop status epilepticus which induces maladaptive
plastic changes that will culminate in seizure susceptibility after a
latent phase of 15 to 45 days (Turski et al., 1983; Clifford et al.,
1987; Persinger et al., 1988). NPS-treated animals displayed fewer
seizures, which were shorter and possibly less severe (Medeiros
et al., 2014). Additional investigation also showed that the method
is more efficacious if applied bilaterally and in an asynchronous
fashion (Oliveira et al., 2018). While the anticonvulsant effects were
confirmed by several mechanistic studies of our group (see next
section) and other authors (see below), we also found preliminary
evidence of beneficial effects in suppressing epileptogenesis and
in the application towards pathological anxiety, which is mostly
mediated by the amygdala (Cota et al., 2021). Finally, we recently
demonstrated that neural function, including the sleep-wake cycle
architecture, is preserved in animals undergoing NPS intervention
(Réboli et al., 2022).

Among other groups that contributed to the investigation of
non-standard temporal patterns of ES applied to the treatment of
epilepsy, Wyckhuys and colleagues reported in 2010 the successful
suppression of seizures in rats induced by kainate using ES
with Poisson-distributed IPI at high frequency (130 Hz mean)
(Wyckhuys et al., 2010). Quinkert and colleagues created non-
standard temporal patterns of electrical stimulation with a mean
frequency of 50 Hz by using a logistic equation and applied
them to the hippocampus and medial thalamus of mice. They
assessed behavioral and electrophysiologic biomarkers of arousal
which may be related, by their turn, to disorders such as epilepsy
or Parkinson’s disease. The authors found pattern-dependent
behavioral alterations of increased arousal with concomitant
increases in delta-range power of local field potentials. The effects
were particularly strong with the non-linear patterns and depended
on the applied substrate (Quinkert et al., 2010). Furthermore,
following a sequence of studies aimed at developing closed-
loop neurotechnology for the treatment of epilepsy, Nelson
and colleagues also used ES with Poisson-distributed pulses
to investigate the tolerability of different spatial and temporal
regimes in multisite application to the cortex of rats with
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electrically-induced seizures. Authors found that synchronicity
(temporal regime across areas) was more determinant in the
suppression of seizures than the periodicity; fixed-frequency versus
Poisson distributed IPI (Nelson et al., 2011). More recently, a
temporal pattern similar to NPS was demonstrated to have, beyond
anticonvulsant effects, anti-epileptogenic action in the amygdala
kindling model in rats (Santos-Valencia et al., 2019).

All the studies discussed here show that the precise temporal
structure of stimuli, beyond the fundamental concepts of frequency
(or mean frequency) and pulse duration, is central in determining
the effects, including therapeutic efficacy and collaterals, of a given
neuromodulation approach. In our understanding, this should be
considered a fact of past debate by now, even though several
nuances remain to be elucidated. On the other hand, finding the
precise common conceptual thread that binds all of them together
into a unified scientific theory capable of explaining both brain
function and the therapeutic efficacy of temporally structured ES,
is challenging. In any case, we can benefit from some shared
aspects of the neurological disorders and their neurostimulation
methods discussed so far that, in our understanding, support
the coincidence detection framework. In the next section of this
manuscript, we will adopt this strategy, taking advantage of these
ideas and also of the lessons learned from our own investigation
of the mechanisms behind NPS, to put forward our attempt at
a novel understanding of the mechanisms of temporally complex
electrical stimulation. Naturally, this conceptual framework is
largely based on coincidence-detection neuroscience introduced in
earlier sections of this manuscript.

4. NPS meets the
coincidence-detection framework:
driving the infinite improbability of
the brain’s functional connectogram

The choice of how to frame any problem, including brain
function and dysfunction, has an obvious impact on how one
attempts to solve it. Thus, the first step to designing efficacious and
safe ES and understanding the mechanisms behind its therapeutic
effects is to reinterpret the pathophysiology of brain disorders in
a shared perspective of the coincidence-detection framework. In
this sense, while normal levels of coupling within neural circuits
and between areas of the brain are central for proper brain
function (Womelsdorf et al., 2007), deviations from the natural
setpoint may cause dysfunction (Uhlhaas and Singer, 2006). Some
disorders, such as epilepsy, can be seen as abnormal coupling
and indiscriminate propagation of information along neuronal
pathways, without the apparent proper homeostatic modulation
of inhibitory feedback mechanisms, thus compromising overall
network stability (Moraes et al., 2000; Medeiros et al., 2014; Cota
et al., 2021). Conversely, there are other cases, in which the core of
the disorder seems to be related to the compromise of information
transfer from one processing relay to the next (i.e., either by
lesion or interference from other abnormally activated brain areas).
An illustrative result, in this case, is the significant cognitive
improvement found in age-related working memory deficits after
"forcing" the coupling between brain regions using high-density

transcranial alternating current stimulation (HD-tACS) ES. The
dual-site HD-tACS was effective not only in reversing age-related
cognitive deficits but also improved spatial task performance in
adult human subjects (Zhang et al., 2022). In other words, by
"grossly" stimulating two different brain areas using a non-invasive
procedure, Reinhart and Nguyen were able to frequency tune theta
wave synchronization along the frontoparietal cortex (Reinhart and
Nguyen, 2019; Reinhart, 2022). If one considers gamma oscillation
as the electrophysiological counterpart of local circuitry motifs
(Hasenstaub et al., 2005; Vida et al., 2006; Bartos et al., 2007),
then theta-gamma phase-amplitude codes would represent a long-
range sender-receiver flow of information throughout the neural
network; which was enhanced after the synchronized stimulation.

The model of temporally structured information being
transferred from one area to the next, as we saw in the
BBS hypothesis or the communication-through-coherence, also
requires a modulating oscillatory process phase-locking both
regions. By creating "time-pockets” that favor activation of distinct
and specific groups of neurons in the target network (i.e., in terms
of propensity/probability to fire), in a selective fashion linked to
the phase of the slow modulatory oscillation, distinct temporal
patterns of discharge could be channeled through a particular node-
hub from the origin—i.e., high degree participation coefficient
nodes (Liao et al., 2017)—and thus would elicit an equally
complex temporal and spatial activation pattern on the target
network (Figure 1). Of particular importance here, this phase-
locking scheme of neuronal communication between assemblies
is only possible by looking through the coincidence-detection
network framework. Following this logic, one could ask, what
would happen, according to this scheme, if a random (or pseudo-
random) distribution of discharge patterns is applied within a
period of a coherent oscillation waveform between areas A and B?
According to what was explained, a different and complex spatial
and temporal pattern of activation on the target region would
emerge every single time (Figure 1C). However, if a fixed pattern
within an oscillation period were to be applied, then the same
spatiotemporal pattern would be recruited over and over again
in a reverberatory fashion (Figure 1D). Furthermore, this could
result in its increasing control of the overall network activity due
to Spike-Timing Dependent Plasticity—STDP (Feldman, 2012),
eventually rendering the entrained circuit a self-sustained oscillator
(Figure 1E).

The results we have been finding so far are evidence that this
is precisely what happened when NPS produced anti-convulsant
effects on animal models of epilepsy and periodic ES produced
a proconvulsant effect (Cota et al., 2009; Figure 2). In other
words, the therapeutic pattern resulted in a complex spatial and
temporal activation of neuronal groups in the target and its afferent
projections, thus preventing aberrantly synchronous recruitment
of any specific neural circuitry into ictogenesis (Figure 2B).
Conversely, using the same principles, simple low-frequency
periodic activation resulted in the entrainment of the same network
into pathological oscillation (Figure 2A). The imaging results using
fMRI carried out by our group and discussed here (Mesquita et al.,
2011) can be understood as first more direct evidence of that.
Furthermore, functional characteristics of the stimulated neural
substrate are naturally a major factor in these effects, as it happens
with any other therapeutic application of ES, temporally complex
or not. As mentioned, most of the findings are the result of the
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FIGURE 1

The time dimension in the processing of information across neural circuitry underlies the bidirectional interplay between temporal patterns of
activity and the dynamic connectivity of neural circuits. (A) Neuronal motifs of multiple cells, codified by distinct colors, are organized as a highly
interconnected network of nodes which are recruited in a time-basis locked to the oscillation phase, color-coded to match the motif which has a
greater probability of recruitment. (B) Oscillations, which can be generated externally, synchronously entrain neural assemblies in a small-world
network fashion for the transfer of information across long ranges (Varela et al., 2001). (C) By this coincidence detection scheme, the moment of
occurrence of a given neuronal activity (e.g., firing of an action potential) in relation to the phase of the binding oscillation will determine which
node will be activated in the afferent local network. (D) A specific temporal pattern coherently (to the phase of the slow oscillation) repeated over
multiple cycles of reverberation will always recruit the same nodes in the local network. (E) Finally, the consistent spatiotemporal pattern of
recruitment will induce, by means of mechanisms such as STDP, the creation of new engrams in the network.
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FIGURE 2

Temporally complex electrical stimulation applied to a hub-node (such as NPS target at the basolateral amygdala) benefits from the coincidence
detection mechanism to deliver treatment by means of driving the functional connectivity of the brain with “infinite improbability”. (A) Periodic
stimulation, with a fixed frequency (as seen in the center panel), always recruits the same nodes in the network and in the the same temporal order.
This consistent spatiotemporal recruitment will thus induce a set of brain phenomena, such as synchronization (as observed by electrophysiology or
fMRI), reverberation and creation of stereotypical electrographic signatures, increases in synaptic weights (coupling of nodes), and even ictogenesis
in susceptible tissue. (B) Conversely, temporally complex stimulation, with continuously randomized IPI, induces an equally complex spatial (and
temporal) recruitment of nodes in the network, never repeating the same circuit or the same order. By its turn, the lack of repetition will induce
desynchronization, decrease of synaptic weights (decoupling), and thus robust anticonvulsant effects. If stimuli are organized as a natural-like
activity, network response may be putatively tuned to homeostasis levels, rectifying synchronization to baseline, while being innocuous to neural
function and acting in a demand-only fashion. It is important to highlight that the relationship between frequencies of stimuli and of the slow
oscillation are not depicted to scale. Yet, the same effects on the consistency of the resulting recruitment of nodes in the network will probably
remain unaltered given only that fixed frequencies can entrain the slow oscillation (e.g., by means of phase resetting) and temporally complex
patterns can not. Naturally, investigation of these specific aspects is of paramount importance to better understand the validity of this framework.

application of NPS to the basolateral amygdala, which is known to
be a major node-hub connecting many territories in the forebrain,
midbrain, and even hindbrain for the support of multiple neural
functions (Antoniadis et al., 2009; Freese and Amaral, 2009), while
also playing a major role in epileptic phenomena (Hirsch et al.,
1997; Cota et al., 2016), directly or indirectly (de Oliveira et al.,
2019). In the same vein, it is important to notice that more caudal
structures in the primary-sensory relays may not be sensitive to
such temporal organization of stimuli (Medeiros et al., 2012), while
multiple site stimulation may contribute itself to uncoupling the
coherence between large-scale information transfer (Oliveira et al.,
2018).

Another important aspect that must be observed when
considering the effects of NPS or other temporally complex
approaches in the coincidence-detection perspective is that, in
order to fit the idea of communication-through-coherence or
BBS, the entire code generated by the ES pattern (i.e., the whole
temporospatial representation within the network) must fit within
a period of the oscillation in which communication is effective,
whatever IPI distribution is chosen (Figures 1, 2). Not forgetting,
as said before, e.g., the synfire chains, that layers upon layers of
such time-coded representations could be combined into one single

temporally structured sequence (i.e., “a cortical song”) representing
a complex experience, object, qualia, or event. Nevertheless, the
smallest unit of representation would still be organized within one
oscillatory period of the “coupling” portion of the synchronization
wave between two connected small-world- networks, thus allowing
complex spatiotemporal representations to be channeled through
node-hubs (i.e., optimizing neuronal processing and white matter
taking up too much space). Importantly, in the end, this leads also
to the understanding that frequency (in this case mean frequency)
has also an important influence on the outcome of the pattern.

At this point, it is also important to recall that several
of the proposed temporally complex ES protocols seem to
have taken inspiration from the intuitive notion that temporal
complex patterns of ES (random, non-linear, Poisson, and power-
law distribution of IPI, etc.) mimicking physiological firing
patterns of neurons would be able to resonate with neural
circuitry and induce homeostatic physiological brain activity,
suppressing aberrant sustained and/or high-intensity oscillations
and promoting treatment. Such a concept has, in fact, inspired
distinct studies non-related to therapeutic neurostimulation in
the past. For instance, Gal and Marom used input-output joint
statistics in order to assess the level of fidelity that a single
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synaptically-isolated neuron would respond to temporally complex
stimuli (Gal and Marom, 2013). They have found that neuronal
firing better reproduces input stimulation (optimal fidelity) when
it is structured with natural-like, scale-free statistics, in which IPIs
are distributed following a power-law of unitary exponent. These
observations were later reproduced and extended to small neuronal
networks in vitro (Scarsi et al., 2017).

Moreover, these aspects also served as a basis for speculating
on the nature of many of our own results, particularly in the
perspective of why just a specific form of temporal distribution
is therapeutic (power law), while others are not (quasi-uniform)
(Cota et al., 2021). A recent in silico study of our group using
an amygdala-like network of Izhikevich neurons showed that
power-law distributed stimulation more effectively recruited the
local network into synchronized activity when compared to quasi-
uniform (Oliveira et al., 2022). Particularly, in our proposed
therapeutic temporal distribution, we were careful, as were other
stimuli (Brocker et al., 2013), to limit the minimum IPIs to
a value large enough to overcome integration time determined
by membrane potential decay; i.e., not falling within a time-bin
short enough for being considered coincident. Nevertheless, by
choosing also an upper limit to the IPI distribution, Brocker and
colleagues had much better results treating Parkinson’s; arguably
making their distribution more alike a power-law distribution.
On the other hand, it is also of paramount importance to
recognize that different IPI distributions directly affect, as already
mentioned, the mean frequency of stimuli or, when this parameter
is controlled, its frequency content in distinct ranges of low versus
high frequencies. Furthermore, other patterns very distinct from
power-law or Poisson distributions (which are closely related
to each other) have been shown to be efficacious in recruiting
distributed local networks (Mourão et al., 2016). In fact, these
data would corroborate the idea that normal base-line brain
functioning would not favor one specific temporal arrangement
over another; however, it would still depend on synchronizing
such arrangements into timeframes established by oscillations (i.e.,
phase-coded processes) involved in the process, but not the pattern
itself, of information transfer between nuclei. Finally, one has to
consider the many differences across all these studies, such as
the overall condition (homeostasis versus dysfunction) and the
differences in experimental approaches (in vivo versus in vitro
versus in silico). In the opinion of the authors, such a discussion is
certainly related to a major knowledge gap in temporally complex
ES. Hence, a thorough and careful investigation of the precise
temporal structure of the ES must be carried out, with experiments
specifically tailored to study the effects of all these aspects (IPI
distribution, mean frequency, anatomical target) separately.

Looking at the problem from another angle, if the system
has intrinsic transient “brain states” that favor abnormal coupling
between brain areas, ES could be also used to probe how easily a
signal from A would reach area B; thus, working quite effectively
as a predictor of such brain-states. Medeiros et al. (2014) showed
that a single pulse of ES applied every 2 s would be enough to
synchronize spontaneous pre-ictal spikes long before any changes
in parameters associated with passively recording EEG activity
would be significantly different. Kalitzin et al. (2005) used probing
ES to evaluate a measure (relative phase clustering index) of
how much “synchronicity-prone” evoked activity existed between
different regions of the brain as a form of predicting the emergence

of seizures. Actually, probing ES as a surrogate marker of seizure
onset was not only more effective than passively observing the
electrographic activity of brain structures, but was also shown to
be “plastically enhanced” if pre-conditioned to previous seizure
episodes themselves (Medeiros et al., 2018)—i.e., the circuit learns
to be a better biomarker if properly taught. These results not only
show that the therapeutic, diagnostic, or predictive use of ES has
very much shifted from the initial dogma that synchronicity is a
consequence of excitability (Kudela et al., 2003), but rather that a
myriad of new applications for ES arise if these two concepts (i.e.,
excitation/synchronicity) are untwined under the new proposed
conceptual framework (Moraes et al., 2021). In fact, even the
rationale for how some pharmacological targets are effective in
treating epilepsy has been revisited under the coincidence-detector
framework (Medeiros et al., 2020).

The intrinsic “brain states” mentioned at the beginning
of the last paragraph, in some cases, could reflect structural
abnormalities in the underlying neural network, with much
more constant and permanent aftermath to the patients’ health
(Uhlhaas and Singer, 2006). Uhlhass and collaborators showed
that patients with schizophrenia not only did not perform well
in the Mooney Face Test (i.e., Gestalt perception), but that the
“communication-through-coherence” long-scale information
transfer between brain structures was also compromised during the
test. Several neuropsychiatric disorders (i.e., anxiety, depression,
bipolar disorder, ADHD, sleep disorder/apnea, movement
disorder/tremor), pain disorders (i.e., migraine, chronic pain,
fibromyalgia, neuropathic pain), and other conditions could share
a “gradual” commitment of neuronal network stability and inter-
assembly communication deficits, within an intensity spectrum,
with common physiopathological origins. It is not surprising
that all these conditions are comorbid with what would be the
extreme expression of abnormal coupling, network instability, and
mass neuronal recruitment: epilepsy. Genetic animal models of
epilepsy, possessing an innate propensity to seize, even if naive
to having had a seizure, still display abnormal behavioral traits
associated with the aforementioned comorbidities (Jobe et al.,
1999; Jobe, 2003; Castro et al., 2017). And not only can brain-states
compromise proper large-scale interactions, information transfer
between small-world networks and modulate overall neural
network processing, but specific temporal patterns of stimulation
are required to induce brain-states [e.g., arousal (Quinkert et al.,
2010)].

5. Discussion

Development and assessment of novel neurotechnologies in
which the practice of experiments are tightly conditioned to
the best of our knowledge of the underlying mechanisms is a
major contributing factor for the fostering of impactful findings
and disruptive technology (Sunderam et al., 2010; Cota and
Moraes, 2022). We can envisage several perspectives for temporally
patterned ES in general and also NPS in particular.

A major interest of our research has been epilepsy, due not
only to its high morbidity and prevalence, but also because it can
serve as an optimal platform for neuroscientific investigation and
neurotechnolgical development. Although up to 70% of patients
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have seizure control with pharmacological treatment, a substantial
number of individuals depend on surgical modalities for treatment
(Sander, 1997; Brown, 2016; Johannessen Landmark et al., 2020).
When it is not possible to identify the epileptogenic zone, or
it is unresectable, the use of neuromodulation with electrical
stimulation is an alternative for the reduction in the frequency and
severity of seizures (George et al., 1994; Fisher et al., 2010; Heck
et al., 2014; Velasco et al., 2022). Three modalities currently have
devices commercially available for clinical use: VNS (George et al.,
1994), DBS (Fisher et al., 2010), and RNS closed-loop responsive
brain stimulation (Heck et al., 2014). Despite significant differences
in the site and periodicity of stimulus administration, all use fixed
frequency ES and show similar results with an approximate 50%
reduction in seizure frequency in patients with focal refractory
epilepsy (Ryvlin et al., 2021). They also use high-frequency fixed
patterns with the main effect of putative direct target inhibition
(functional injury) or activation interrupting pathological activity
(jamming effect) of neural circuits (Carlson et al., 2010). On
the other hand, robust evidence of therapeutic effects of using
non-standard temporal patterns, from computational, animal, and
human studies, has been accumulating over the years, as reviewed
here. Together with the contribution of our own group, this support
that NPS could also be an interesting alternative to increase the
effectiveness of neuromodulation in the treatment of epileptic
seizures, with a reduction in dysfunctions related to the effect
of functional injury. Despite requiring hardware modifications,
the adoption of this approach can be incorporated into clinical
practice, as it does not increase the energy administered to the
neural tissue, is reversible and can be applied to the same targets
already used. As mentioned previously, NPS has been shown
to be effective in dysfunctional tissue in animal models of the
disease (de Oliveira et al., 2014), while also preserving neural
function and the architecture of the sleep-wake cycle (Réboli et al.,
2022). Both studies corroborate the translational potential of the
method.

Despite the high morbidity of seizures, they represent only a
small percentage of brain activity time. In this scenario, adoption
of on-demand treatment measures is a logical path to pursue.
Seizure prediction is pivotal to achieve this goal, but despite all the
effort in trying to optimize such functionality using the recording
of spontaneous brain activity, the time scale for anticipation is
very small. Even with non-linear analyses, the prediction capacity
usually does not exceed minutes, being debatable whether it is
really a prediction or just early detection (Mormann et al., 2007;
Andrzejak et al., 2009). The epileptic brain behaves as a complex
system that, upon undergoing a critical transition, changes from
a system resilient to hypersynchronism to a hypersynchronous
and hyperexcitable system (Da Silva et al., 2003; Uhlhaas and
Singer, 2006; Truccolo et al., 2011; Jiruska et al., 2013). More
recently, algorithms that combine linear and non-linear analysis
approaches have shown improvement in detection performance,
although they still show large variability between individuals
(Freestone et al., 2017; Karoly et al., 2017; Kuhlmann et al.,
2018a,b). Thus, active probing of neural circuits, assessing the
degree of resilience through stereotyped and predictable responses
generated by external stimuli, can help detect critical transitions
and favor better seizure detection (Moraes et al., 2021). With less
effect of functional deficit associated with stimulation, NPS is also a
promising technique in active probing, with the potential for more

frequent circuit checks, using less energy. The lower functional
deficit by suppression of local synaptic activity would cause fewer
side effects in patients with non-ideally positioned electrodes.
Targets where the functional deficit is unacceptable, could also be
used.

If, in fact, temporally complex ES works by taking advantage
of coincidence detection within the brain to recruit multiple
microcircuits in the afferences of the node-hub target, a myriad
of therapeutic possibilities ensues. The group is currently pursuing
some of them by using the devised method NPS. Based on the
rationale that the hyperfunction of the amygdala is directly related
to pathological anxiety and/or chronic stress (Prager et al., 2014,
2016), we have been investigating therapeutic effects of NPS in
animals submitted to stress model induced by chronic short-
time confinement (Cota et al., 2021). We have also proposed its
application to Parkinson’s disease (PD) and it is envisaged for the
application in the suppression of aberrant activity displayed by
animals submitted to a stroke model, this last in the realm of the
EU-funded project MoRPHEUS. Understanding time-dependent
events in the target neural circuit is critical to optimize parameters
for activity disruption. Therefore, computational modeling and
case analysis, fundamental in translating the method to greater
applicability in clinical practice, is currently being carried out
(Carvalho et al., 2021; Batista Tsukahara et al., 2022; Oliveira et al.,
2022; Terra et al., 2022). Finally, spatiotemporally complex ES
(NPS included) is a major plus if one considers the application
of neuromodulation in a personalized or individualized fashion.
Such approach is in line with the concept of electroceuticals in
which neuromodulation therapy should be delivered in a manner
that is finely tuned to the dysfunction, including individual patient
particularities (Famm et al., 2013). In fact, several groups have
been pioneering the application of stimulation in which the
temporal pattern is optimized for therapeutic efficacy (Okun et al.,
2022) and/or when the stimulation pattern resembles that of
spontaneous neural activity (Cottone et al., 2018; Persichilli et al.,
2022). Thus, besides anatomical target, frequency, pulse duration,
phase, and amplitude, physicians will be able to choose different
temporal patterns that may be better suited to different scenarios,
encompassing the variability seen in distinct patients suffering from
the same neurological disorder.

Overall, like in the Douglas Adams’ fiction—mentioned here
simply to create a captivating analogy—in which zero-time space
travel has been made possible due to an infinite improbability
drive (a generator of randomness with infinite capacity), NPS
applied to an important neural hub such as the amygdala creates
ever changing temporal patterns of stimuli that would translate to
ever changing recruitment of neural circuits or motifs and thus
impair hypersynchronization; which, by its turn is characterized
by excessive regularity. Differently from science fiction, the
interchangeability between space and time in brain phenomena is a
known and well-stablished scientific fact, with a powerful capability
of explaining neural function and dysfunction, as we believe we
made clear in this manuscript. We particularly envisage a future
in which neurostimulation technology, enabled by closed-loop
design and advanced-computing capability (e.g., neuromorphism;
Chiappalone et al., 2022), will automatically choose among myriad
parameters and also distinct temporal patterns (from fixed low
frequency probing stimuli to high frequency random pulses) to
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deliver efficacious, efficient, and safe therapy. Further investigation
of this promising strategy should be encouraged.
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Deep brain stimulation (DBS) is a widely used clinical therapy that modulates

neuronal firing in subcortical structures, eliciting downstream network effects.

Its effectiveness is determined by electrode geometry and location as well as

adjustable stimulation parameters including pulse width, interstimulus interval,

frequency, and amplitude. These parameters are often determined empirically

during clinical or intraoperative programming and can be altered to an almost

unlimited number of combinations. Conventional high-frequency stimulation

uses a continuous high-frequency square-wave pulse (typically 130–160 Hz), but

other stimulation patterns may prove efficacious, such as continuous or bursting

theta-frequencies, variable frequencies, and coordinated reset stimulation. Here

we summarize the current landscape and potential clinical applications for novel

stimulation patterns.

KEYWORDS

theta-burst stimulation, deep brain stimulation, coordinated reset stimulation
(CRS), paired pulses, closed-loop, interleaved stimulation, neuromodulation, cycling
stimulation

Introduction

Deep brain stimulation (DBS) uses implantable depth electrodes to modulate neuronal
firing in subcortical structures, eliciting downstream effects in human brain circuits
(Figure 1). Intraoperative placement is followed by device programming where parameters
such as pulse width, interstimulus interval (ISI), frequency, and amplitude are titrated to
improve pathologic symptoms and avoid adverse side effects. Current DBS applications
target motor symptoms of Parkinson’s disease (PD), essential tremor (ET), and various
forms of dystonia as well as neuropsychiatric symptoms of treatment-resistant obsessive-
compulsive disorder (OCD), Tourette syndrome (TS), and treatment-resistant depression
(TRD) with continuous high-frequency stimulation (HFS; typically, 130–160 Hz) (Figure 2).
Although its exact mechanism of action is unknown, numerous theories exist. Some studies
suggest that HFS may exert its effects via desynchronization or reorganization of pathologic
network oscillations (Wilson and Moehlis, 2015; Ozturk et al., 2021). Similarly, Rosenbaum
et al. (2014) theorized that HFS works through short-term depression and decoupling of
specific circuits. Other groups have theorized that HFS directly inhibits neural activity
(Benazzouz and Hallett, 2000; Jensen and Durand, 2009), while some suggest the opposite,
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that it acts through direct excitation of neural activity (Hashimoto
et al., 2003; McIntyre et al., 2004). Another theory is that HFS
introduces an “information lesion,” producing similar effects to
neural ablation that is also used to treat the same disease processes
(e.g., PD, OCD, etc.) (Grill et al., 2004; Agnesi et al., 2013; Lowet
et al., 2022), however, to date, there is no single accepted theory
on the mechanism of action of HFS and further work is required
to elucidate its mechanism (Hammond et al., 2008; Lozano et al.,
2019).

While the benefits of HFS are well-established for motor
outcomes, its impact on cognitive control is less clear. Cernera
et al. (2019) reviewed studies of how DBS impacts various aspects
of cognitive function and found heterogenous results within and
between neurocognitive metrics based on sample size, DBS target,
and disease pathology. General trends suggested declines in verbal
fluency, assessed by various measures such as “phonemic fluency”
(ability to recall words starting with a specific letter) and “semantic
fluency” (ability to recall words related to a certain category of
knowledge). These declines occurred regardless of whether the DBS
target was the subthalamic nucleus (STN), globus pallidus interna
(GPi), or various thalamic nuclei (Ostrem et al., 2011; Pedrosa
et al., 2014; Dinkelbach et al., 2015). Other global metrics such as
mini-mental state examination (MMSE) or measures of executive
function such as Wisconsin Card Sorting Test (WCST) have yielded
mixed results (Cernera et al., 2019). In contrast, STN low-frequency
stimulation (LFS) in the theta-range has been shown to improve
VF in PD patients (Lee et al., 2021). Negative impacts of HFS on
verbal fluency and other aspects of cognitive function challenge
the notion of expanding DBS or other neuromodulation therapies
for cognitive dysfunction in patients with movement disorders and
other complex neuropsychiatric diseases.

These relative shortcomings of HFS, as well as a need to avoid
sensorimotor side effects, have prompted investigation of non-
continuous, or “patterned,” stimulation paradigms such as theta
burst stimulation (TBS) (Titiz et al., 2017; Horn et al., 2020), paired
pulse stimulation (Birdno et al., 2007; Awad et al., 2021), variable
frequency stimulation (VFS) (Jia et al., 2015; Zhang et al., 2019),

FIGURE 1

A standard DBS setup including the use of a six-contact ECoG strip
over anterior PFC and eight-contact strip over lateral PFC which
can be used to simultaneously record and stimulate from the DBS
electrodes. DBS electrodes in this case are 3 separate macro/micro
pairs which allow the recording of LFP (macro) and action
potentials (micro). Adapted from Zavala et al. (2017).

interleaved stimulation (ILS) (Barbe et al., 2014; Kern et al., 2018),
burst cycling stimulation (Velasco et al., 2007; Kuncel et al.,
2012), coordinated reset stimulation (CR-DBS) (Adamchic et al.,
2014), temporally optimized stimulation (Brocker et al., 2017;
Okun et al., 2022), and adaptive, or “closed-loop” stimulation
(aDBS/CL-DBS) (Little et al., 2016a; Piña-Fuentes et al., 2019)
as alternatives. These paradigms were derived either from more
physiologic patterns of neuronal firing or feedback-based systems
that were computationally designed to better disrupt pathologic
circuits. In this review, we provide an overview of alternative
stimulation patterns and their potential applications.

Methods

We conducted PubMed searches in November 2022 (TBS,
paired pulse, VFS, CR-DBS, aDBS) and March 2023 (ILS,

FIGURE 2

(First row) High frequency stimulation (HFS) is the current
gold-standard and consists of continuous regular pulses with equal
spacing at a high frequency (in this case 130 Hz). (Second row)
Intermittent theta-burst stimulation (iTBS) usually given as 3 pulses
at 50 Hz grouped into bursts delivered at a theta frequency (5 Hz)
within a train. Each train lasts 2 s and contains 10 bursts. Trains are
separated by 8 s intervals in this example but could be longer or
shorter. (Third row) Continuous theta burst stimulation (cTBS) is like
iTBS in that stimulation is delivered as three 50-Hz pulses grouped
into bursts which are delivered at a theta frequency. However, the
trains are not separated by a long (8 s) period. Instead, the
stimulation is one long train. (Fourth row) Paired pulse stimulation
utilizes biphasic paired pulses separated by short interstimulus
intervals (ISI), the time from the first to the second stimulus within a
single paired pulse (ISI = 3 ms in this example, but this value varies).
Of note, the stimulation parameters used to create the figures for
each alternative pattern of stimulation presented here are examples
of possible parameters; however, these vary greatly across studies.
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burst cycling, temporally optimized stimulation) to review
the existing literature on alternative patterns of DBS. Search
terms included: TBS {[(“Deep Brain Stimulation”[Mesh]) OR
(“Deep Brain Stimulation”)] AND [(“theta burst stimulation”)
OR (“intermittent theta burst”) OR (“intermittent theta burst
stimulation”) OR (“continuous theta burst stimulation”) OR
(“continuous theta burst”) OR (“iTBS”) OR (“cTBS”) OR (“theta
burst”)]}; paired pulse {[(“Deep Brain Stimulation”[Mesh]) OR
(“Deep Brain Stimulation”)] AND [(“paired pulse stimulation”)
OR (“paired pulse”)]}; VFS {[(“Deep Brain Stimulation”[Mesh])
OR (“Deep Brain Stimulation”)] AND [(“variable frequency
stimulation”) OR (“variable frequency”)]}; ILS {[(“Deep
Brain Stimulation”[Mesh]) OR (“Deep Brain Stimulation”)]
AND [(“interleaving”) OR (“interleaved stimulation”)]}; burst
cycling {[(“Deep Brain Stimulation”[Mesh]) OR (“Deep Brain
Stimulation”)] AND [(“cycling”) OR (“cyclical stimulation”) OR
(“burst cycling”) OR (“cycling stimulation”)]}; CR-DBS {[(“Deep
Brain Stimulation”[Mesh]) OR (“Deep Brain Stimulation”)]
AND [(“coordinated reset stimulation”) OR (“coordinated reset”)
OR (“CR-DBS”)]}; temporally optimized stimulation {[(“Deep
Brain Stimulation”[Mesh]) OR (“Deep Brain Stimulation”)]
AND [(“temporally optimized stimulation”) OR (“temporally
optimized patterned stimulation”)]}; aDBS {[(“Deep Brain
Stimulation”[Mesh]) OR (“Deep Brain Stimulation”)] AND
[(“closed loop stimulation”) OR (“closed loop”) OR (“closed-
loop”) OR (“adaptive stimulation”) OR (“adaptive DBS”) OR
(“aDBS”) OR (“adaptive deep brain stimulation”) OR (“closed-loop
stimulation”)]}.

Studies meeting these search criteria with original clinical
data on human subjects undergoing DBS were included.
Exclusion criteria included animal studies, computational
models, reviews, non-DBS studies (i.e., transcranial magnetic
stimulation, responsive neurostimulation), DBS studies using only
HFS and not the alternative pattern of interest, and non-English
manuscripts. Abstracts and full texts were manually screened by a
single author using the inclusion and exclusion criteria mentioned
above. Our goals were to qualitatively review the current literature
on alternative neuromodulation techniques, and therefore we did
not utilize Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines.

Results

Literature search

Our literature search of TBS yielded 29 studies, six of which
were included (Miller et al., 2015; Titiz et al., 2017; Kim et al.,
2018; Bentley et al., 2020; Horn et al., 2020; Sáenz-Farret et al.,
2021). Of the excluded studies, 11 were reviews, seven were non-
human animal studies, three were TMS studies without DBS, and
two were editorials or commentaries with no original clinical data.
The paired pulse search yielded 28 studies, of which three were
included (Baker et al., 2002; Birdno et al., 2007; Awad et al., 2021).
Of the excluded studies, nine were non-human animal studies, six
did not use paired pulse stimulation, five were reviews, and five
were TMS studies without DBS. The search for VFS resulted in 12
studies, five of which were included (Jia et al., 2015, 2017, 2018;

Zhang et al., 2019; Chang et al., 2021). Of the excluded studies,
two used stimulation modalities other than DBS (e.g., TMS), two
were protocols for upcoming studies with no original clinical data,
one was a review, one was a non-human animal study, and one did
not utilize VFS. For ILS, our search yielded 27 results, of which 16
were included (Wojtecki et al., 2011; Baumann et al., 2012; Kovács
et al., 2012; Barbe et al., 2014; Miocinovic et al., 2014; Ramirez-
Zamora et al., 2015; Zhang et al., 2016, 2018; Kern et al., 2018;
Shu et al., 2018; Aquino et al., 2019; França et al., 2019; Karl et al.,
2019, 2020; Goftari et al., 2020; Zafar et al., 2021). Of the excluded
studies, five were reviews, three did not use ILS, one was in silico
(i.e., no human subjects), one was a video, and one was not in
English. For burst cycling, the search found 32 studies, of which
14 were included (Montgomery, 2005; Velasco et al., 2007; Tai
et al., 2011; Kuncel et al., 2012; Min et al., 2013; Boongird et al.,
2016; Huang et al., 2019; Enatsu et al., 2020; Kaufmann et al., 2020;
Dayal et al., 2021; Vázquez-Barrón et al., 2021; Wong et al., 2021;
Dalic et al., 2022; Loeffler et al., 2022). Of the excluded studies, five
did not report clinical outcomes (e.g., imaging study with fMRI),
four did not use burst cycling, four did not use DBS, three were
reviews, one was a conceptual study with no human subjects, and
one combined VNS and DBS. For CR-DBS, our search found 32
studies, but only one was included (Adamchic et al., 2014). Of the
excluded studies, 21 tested computational or theoretical models of
coordinated reset, six were non-human animal studies, two were
reviews, and two used stimulation modalities other than DBS (e.g.,
TMS). For temporally optimized stimulation, our search yielded
93 results, of which two were included (Brocker et al., 2017; Okun
et al., 2022). Of those excluded, 25 were reviews, 21 did not utilize
temporally optimized stimulation, 15 did not use DBS, 13 were
animal studies, nine did not provide clinical outcomes, seven were
computational models, and one was theoretical/conceptual with
no human subjects. Finally, our literature search of aDBS yielded
576 studies, of which 31 were included (Little et al., 2013, 2016a,b;
Rosa et al., 2015, 2017; Malekmohammadi et al., 2016; Cagnan
et al., 2017; Herron et al., 2017a; Piña-Fuentes et al., 2017, 2019,
2020a,b; Tinkhauser et al., 2017; Arlotti et al., 2018, 2021; Swann
et al., 2018; Velisar et al., 2019; Castaño-Candamil et al., 2020;
Ferleger et al., 2020; He et al., 2020; Opri et al., 2020; Petrucci
et al., 2020; Gilron et al., 2021; Johnson et al., 2021; Louie et al.,
2021; Molina et al., 2021; Nakajima et al., 2021; Sasaki et al.,
2021; Scangos et al., 2021; Cagle et al., 2022; Sarikhani et al.,
2022). Of the excluded studies, 180 were reviews, 139 did not use
closed-loop systems, 112 tested purely theoretical or computational
models of closed-loop stimulation, 51 were non-human animal
studies, seven explored stimulation modalities other than DBS
(e.g., TMS), and 56 were excluded for various other reasons (e.g.,
editorials, commentaries, study protocols, non-English language
studies). Results from the literature search are summarized
in Table 1.

Theta burst stimulation

TBS began in the context of transcranial magnetic stimulation,
most notably when Huang et al. applied repetitive TMS (rTMS) to
modulate motor networks. TBS can be delivered in a continuous or
intermittent fashion (cTBS or iTBS), consisting of repeated trains
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TABLE 1 Literature review of alternative patterns of stimulation.

Author (Year) N Diagnosis Pattern of
stimulation

Miller et al. (2015) 4 Epilepsy TBS

Titiz et al. (2017) 13 Epilepsy TBS

Kim et al. (2018) 4 Epilepsy TBS

Horn et al. (2020) 17 PD TBS

Bentley et al. (2020) 7 PD TBS

Sáenz-Farret et al. (2021) 10 PD, ET,
Dystonia

TBS

Baker et al. (2002) 5 PD, Epilepsy Paired pulse

Birdno et al. (2007) 5 ET Paired pulse

Awad et al. (2021) 17 PD, ET Paired pulse

Adamchic et al. (2014) 6 PD CR-DBS

Jia et al. (2015) 1 PD VFS

Jia et al. (2017) 1 PD VFS

Jia et al. (2018) 4 PD VFS

Zhang et al. (2019) 1 PD VFS

Chang et al. (2021) 1 PD VFS

Wojtecki et al. (2011) 1 PD ILS

Baumann et al. (2012) 1 PD, ET ILS

Kovács et al. (2012) 4 Dystonia ILS

Miocinovic et al. (2014) 3 PD ILS

Barbe et al. (2014) 10 ET ILS

Ramirez-Zamora et al. (2015) 9 PD ILS

Zhang et al. (2016) 12 PD ILS

Kern et al. (2018) 50 PD, ET,
Dystonia

ILS

Shu et al. (2018) 1 Meige syndrome ILS

Zhang et al. (2018) 1 Dystonia ILS

Aquino et al. (2019) 20 PD ILS

Karl et al. (2019) 76 PD ILS

França et al. (2019) 17 PD ILS

Karl et al. (2020) 20 PD ILS

Goftari et al. (2020) 1 PD ILS

Zafar et al. (2021) 19 PD ILS

Montgomery (2005) 7 PD Burst cycling

Velasco et al. (2007) 22 Epilepsy Burst cycling

Tai et al. (2011) 1 Dystonia Burst cycling

Kuncel et al. (2012) 10 ET Burst cycling

Min et al. (2013) 2 Epilepsy Burst cycling

Boongird et al. (2016) 1 Epilepsy Burst cycling

Huang et al. (2019) 3 Chronic Pain Burst cycling

Kaufmann et al. (2020) 23 Epilepsy Burst cycling

Enatsu et al. (2020) 3 PD Burst cycling

Wong et al. (2021) 10 PD Burst cycling

(Continued)

TABLE 1 (Continued)

Author (Year) N Diagnosis Pattern of
stimulation

Dayal et al. (2021) 6 PD, Progressive
Supranuclear
Palsy

Burst cycling

Vázquez-Barrón et al. (2021) 6 Epilepsy Burst cycling

Dalic et al. (2022) 20 Epilepsy Burst cycling

Loeffler et al. (2022) 1 Spinocerebellar
Ataxia

Burst cycling

Brocker et al. (2017) 26 PD TOPS

Okun et al. (2022) 8 PD TOPS

Little et al. (2013) 8 PD aDBS

Rosa et al. (2015) 1 PD aDBS

Little et al. (2016a) 4 PD aDBS

Malekmohammadi et al.
(2016)

5 PD aDBS

Little et al. (2016b) 10 PD aDBS

Cagnan et al. (2017) 9 ET, Dystonia aDBS

Tinkhauser et al. (2017) 13* PD aDBS

Herron et al. (2017a) 1 ET aDBS

Rosa et al. (2017) 10 PD aDBS

Piña-Fuentes et al. (2017) 1 PD aDBS

Arlotti et al. (2018) 13 PD aDBS

Swann et al. (2018) 2 PD aDBS

Piña-Fuentes et al. (2019) 13 PD, Dystonia aDBS

Velisar et al. (2019) 13 PD aDBS

He et al. (2020) 3 ET aDBS

Petrucci et al. (2020) 1 PD aDBS

Piña-Fuentes et al. (2020a) 7 Dystonia aDBS

Piña-Fuentes et al. (2020b) 13 PD aDBS

Castaño-Candamil et al.
(2020)

3 ET aDBS

Opri et al. (2020) 3 ET aDBS

Ferleger et al. (2020) 2 ET aDBS

Sasaki et al. (2021) 12 PD aDBS

Louie et al. (2021) 16 PD aDBS

Molina et al. (2021) 5 PD aDBS

Gilron et al. (2021) 5 PD aDBS

Scangos et al. (2021) 1 TRD aDBS

Johnson et al. (2021) 1 Dystonia aDBS

Arlotti et al. (2021) 3 PD aDBS

Nakajima et al. (2021) 1 PD aDBS

Sarikhani et al. (2022) 15 ET, PD aDBS

Cagle et al. (2022) 4 TS aDBS

*Some patients included in other Little et al. studies.

of 5 Hz bursts, each consisting of three pulses at 50 Hz. In cTBS,
these bursts occur regularly at 5 Hz intervals, whereas iTBS consists
of repeated trains of 5 Hz bursts for 2 s followed by an 8-s pause
interval (Figure 2) (Huang et al., 2005).
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Since then, TBS has been applied successfully in several
neurologic disorders and has been shown to modulate neuronal
activity and associated cognitive functions. Our group found that
subcortical iTBS can evoke theta oscillatory activity, known to
be important in cognitive domains such as decision making and
memory (Zavala et al., 2017; Jones et al., 2020; Vivekananda et al.,
2021; Zeng et al., 2021; Chen et al., 2022), in connected dorsolateral
prefrontal cortex (Bentley et al., 2020). Others expanded on this
and found that cortical TBS evokes frequency-specific oscillations
(Solomon et al., 2021), such that 5 Hz TBS maximally increases
5 Hz power. Behavioral modulation with TBS is evident with
studies showing improvements in visual-spatial memory with
fornix stimulation (Miller et al., 2015) and declarative memory with
entorhinal stimulation (Titiz et al., 2017). Titiz et al. additionally
states that delivering stimulation through microwires as opposed
to large DBS stimulation electrodes can yield improved outcomes
in various cognitive functions such as face categorization and
learning rate during reinforcement learning. Kim et al. (2018)
found differential effects on which components of memory were
recalled by identifying and stimulating network nodes that were
involved in these processes using theta coherence as a marker. For
example, they were able to specifically impair ability to recall spatial
details of a memory while sparing recall of temporal details.

Paired-pulse stimulation

Paired stimulus pulses have been used for decades to investigate
neural refractoriness, augmentation, and plasticity (Zucker and
Regehr, 2002; Bueno-Junior and Leite, 2018). These paradigms
typically consist of a “conditioning” pulse followed by a “test”
pulse separated by a specific ISI (Figure 2). The goal is to record
short-term changes in neural activities that propagate through the
engaged network. At certain ISIs, paired pulses likely increase
presynaptic influx of calcium ions (Ca2+), and, in turn, enhance
secretory exocytosis of neurotransmitters into the synaptic cleft
(Zucker and Regehr, 2002). Paired pulses can be studied rapidly and
elicit diverse neural responses, such that they are a versatile tool
to study network dynamics and mechanisms of action in various
circuits of interest (Paek et al., 2013), including the STN, GPi (Baker
et al., 2002; Yamawaki et al., 2012; Awad et al., 2020; Campbell
et al., 2022), and the ventrolateral thalamus (Anderson et al., 2006;
Birdno et al., 2007).

Baker et al. (2002) demonstrated that paired-pulse stimulation
is feasible in humans in both PD and drug-resistant epilepsy
(n = 4), using externalized DBS leads and custom external pulse
generators. Awad et al. (2021) investigated the mechanism of
action of DBS using paired pulses in PD (n = 8) and essential
tremor (ET; n = 6). The authors validated the neural origin of
short- and long-latency tissue responses and suggested that paired
DBS pulses increase local tissue electrophysiologic synchrony.
Specifically, they observed that certain properties (e.g., long latency,
amplitude) of later oscillatory response [i.e., evoked resonant
neural activity (ERNA)] mirrored properties consistent with
orthodromic synaptic activity and vesicle release. Moreover, ERNA
was faster at specific ISIs (∼5–10 ms), which corresponded with
the timing of therapeutic stimulation frequencies (100–200 Hz),
suggesting that the timing of prior effective stimulation may

facilitate recruitment of subsequent responses within the same local
circuit. Thus, the authors concluded that ERNA evokes short-term
facilitation/plasticity in the STN-GPi circuit in various movement
disorders and showed a positive correlation with both clinical
efficacy and resting beta power. Campbell et al. (2022) investigated
the effects of pulse timing on DBS evoked potentials within the
basal ganglia-thalamocortical (BGTC) circuit using a wide range
of ISIs in a paired pulse stimulation paradigm in patients with PD
(n = 5). They demonstrated that ISIs with frequencies > 250 Hz
significantly impacted evoked potentials recorded from the STN
(via DBS leads) and motor cortex (via scalp EEG). Specifically,
ISIs from 1.0 to 3.0 ms produced enhanced activation (i.e., greater
wavelet amplitude), while ISIs outside of this range yielded no
significant changes.

Birdno et al. (2007) evaluated the effects of pulse-to-pulse
changes in DBS frequency in ET (n = 5) using biphasic paired
pulses (ISI 0.3–7.7 ms). They applied monopolar stimulation for
40–60 s in blinded subjects and found that tremor suppression
decreased as “IPIdiff” increased. In other words, as the ISI increased
and/or the time between each pair of pulses increased, paired
pulse stimulation became less effective than continuous HFS for
treatment of ET [for more on “IPIdiff ,” see Birdno et al. (2007)].
Furthermore, continuous HFS at 130 Hz with regular temporal
spacing was more effective at reducing tremor than paired pulse
stimulation with irregular ISIs at the same overall rate (130 pulses
per second). This and similar studies suggest that DBS is dependent
not only on the average frequency but also on the temporal spacing
of DBS pulses (Birdno et al., 2008).

Variable frequency stimulation

While HFS DBS effectively treats PD motor symptoms (i.e.,
bradykinesia, rigidity, and tremor) (Perestelo-Pérez et al., 2014;
Xie et al., 2016), it is less beneficial for levodopa-unresponsive
elements of gait dysfunction, freezing of gait (FOG), postural
instability, and speech disorders (e.g., dysarthria, hypophonia)
(Benabid et al., 2009; Schlenstedt et al., 2017). Moreover, HFS
may exacerbate existing symptoms or cause side effects such as
decreased verbal fluency (Parsons et al., 2006). Studies investigating
LFS (<100 Hz) provide evidence for greater improvements in
speech, dysphagia, gait dysfunction, and FOG versus HFS (Yu et al.,
2020; Conway et al., 2021; Razmkon et al., 2022). Additionally, a
double-blind study found that LFS was associated with improved
speech intelligibility, prosody, and both semantic and phonemic
verbal fluency (Grover et al., 2019; Lee et al., 2021). One meta-
analysis reported that while HFS did have more pronounced
effects on tremor reduction, LFS was significantly more effective in
treatment of gait dysfunction, FOG, and akinesia (Su et al., 2018).
However, some studies show that the benefits of LFS versus HFS
decrease with long-term use and may depend on PD phenotype
(Vallabhajosula et al., 2015; Xie et al., 2018).

To address these issues, researchers have experimented with
VFS, with the rationale that combined elements of HFS and
LFS might more optimally improve both appendicular and axial
symptoms of PD. The VFS paradigm alternates between high
(>100 Hz) and low (<100 Hz) frequencies within a stimulation
cycle (<60 s) (Figure 3). Three studies from a single group (n = 6)
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demonstrated the feasibility of VFS in the context of bilateral
STN DBS for PD. They delivered VFS, cycling between HFS and
LFS patterns with a variable duty cycle (≤300 s; PINS Medical,
Beijing), in patients who had previously undergone HFS DBS
optimization without resolution of axial motor symptoms or with
development of side effects. Their VFS paradigm involved 10–
50 s trains of alternating HFS and LFS (e.g., 130 Hz for 30 s
and 60 Hz for 20 s per 50 s cycle). VFS increased gait speed,
mitigated FOG, and improved bradykinesia, while tremor and
rigidity either remained stable or further improved compared to
HFS alone (Jia et al., 2015, 2017, 2018). In two cases, HFS-associated
decline in verbal fluency and dysarthria resolved with VFS without
diminishing HFS-related improvement in primary appendicular
motor symptoms (Jia et al., 2017; Zhang et al., 2019). An additional
case report showed improvement in freezing and limb dyskinesia
in a single patient with bilateral STN and GPi leads programmed
for VFS, which did not occur with HFS alone (Chang et al., 2021).
In ET, HFS was superior to LFS for tremor reduction but worsened
verbal fluency, while LFS was more effective at enhancing verbal
fluency compared to DBS-OFF and HFS (p = 0.0119), but had no
significant incremental effects on tremor (Pedrosa et al., 2014) and
in some cases actually exacerbated the tremor (Pedrosa et al., 2013).
Thus, while VFS appears promising in PD, its potential seems
less promising for ET with the frequency range and duty cycles
previously applied in PD patients. Larger, prospective randomized
controlled trials of VFS versus HFS for PD are currently underway
(Jia et al., 2019; Karl et al., 2019).

Interleaved stimulation

Standard DBS contact configurations are either monopolar,
where the contact serves as the cathode, or bipolar, where two
different contacts serve as an anode and cathode, respectively. The
shape or coverage of the generated stimulation field can be modified
by alternating between these two settings. Suboptimal position of
an electrode can result in inadequate coverage of the target with
overlap into anatomic regions that cause side effects. If adjusting
between monopolar, double monopolar, bipolar, and double bipolar
stimulation or changing stimulation parameters fails to achieve
therapeutic effect, ILS can be used to contour the stimulation field
and avoid unwanted overlap with non-target regions. ILS is a novel
strategy that is supported in newer- generation DBS electrodes
and involves rapidly alternating between two different stimulation
settings using two different contacts on the same lead. Contacts can
be programmed to deliver different amplitudes and pulse widths,
however, the combined frequency is set to a maximum of 250 Hz
per device by manufacturers to avoid potentially harmful charge
delivery. ILS has been successfully used in PD to improve rigidity,
bradykinesia, tremor (Wojtecki et al., 2011; Miocinovic et al., 2014;
Ramirez-Zamora et al., 2015; Zhang et al., 2016; França et al.,
2019; Karl et al., 2019), and gait (e.g., FOG) symptoms (Zhang
et al., 2016; Karl et al., 2019; Zafar et al., 2021), as well as to
decrease unwanted side effects such as dysarthria (Wojtecki et al.,
2011; Ramirez-Zamora et al., 2015; Zhang et al., 2016), dyskinesias
(Ramirez-Zamora et al., 2015; Zhang et al., 2016; Kern et al., 2018;
Aquino et al., 2019; França et al., 2019; Goftari et al., 2020), and
diplopia or paresthesias (Miocinovic et al., 2014).

Baumann et al. described a case of concomitant PD and ET
where initially one set of stimulation parameters relieved PD but
not ET symptoms and another set of parameters did the opposite.
However, ILS using alternating unipolar pulses with different
amplitudes at opposite poles of the STN and ventrolateral anterior
thalamic region relieved both PD and ET symptoms (Baumann
et al., 2012). Barbe et al. reported the successful use of ILS in
several ET patients to relieve stimulation-induced dysarthria while
maintaining therapeutic tremor suppression (Barbe et al., 2014).

Kovács et al. (2012) published the first case series (n = 4)
of successful ILS use to treat dystonia in patients who had not
previously responded to conventional high-frequency pallidal DBS.
Zhang et al. (2018) later published a case report with similar
findings, supporting the need for further exploration of ILS use in
dystonia patients not responding to HFS DBS. Finally, Shu et al.
(2018) described a case of pallidal DBS for Meige syndrome where
ILS settings greatly improved the patient’s symptoms compared to
HFS DBS.

Burst cycling

Unlike traditional continuous HFS DBS (Deuschl et al., 2006;
Okun et al., 2009), a temporal pattern of “burst cycling” stimulation
ON and OFF has also gained traction (Figure 3). This pattern
has been tested in a variety of neurologic disorders with varying
results. For PD-associated tremor, there is some evidence that
cycling stimulation (10s/1s or 30s/5s ON/OFF) in the STN or
thalamus may help prevent tremor rebound and tolerance to DBS
(Enatsu et al., 2020). A later study found that the implementation
of a cycling stimulation pattern improved FOG in one PD patient
who had developed tolerance to DBS (Dayal et al., 2021). On the
other hand, Wong et al. (2021) did not find significant differences
between cycling and conventional HFS in the treatment of FOG in
patients with PD. Montgomery et al. found that continuous HFS
of the STN provided greater symptom relief than burst cycling,
showing a linear relationship between cycling interval and motor
performance, with increasing efficacy of cycling from 0.1 to 0.5 s,
both of which were inferior to continuous HFS. However, their
results were likely underpowered and did not provide definitive
conclusion (Montgomery, 2005). While stimulating the thalamus
in the treatment of postural tremor, Kuncel et al. (2012) similarly
found that cycling parameters more closely matching continuous
HFS produced the greatest reduction in tremor power.

In dystonia, burst cycling has shown some therapeutic effects
while increasing battery life and reducing the frequency of battery
replacements (Tai et al., 2011). Loeffler et al. employed a unique
cycling stimulation paradigm in an attempt to treat tremor in a
patient with FGF-14 associated spinocerebellar ataxia. Their cycling
paradigm used HFS (180 Hz) during the day and switched to
LFS at night (30 Hz). This group found that alternating high and
low frequency in the daytime and nighttime, respectively, led to
a significantly better tremor response than with stimulation OFF
at night (Loeffler et al., 2022). Burst cycling has also been used
to treat non-motor conditions, the most common being various
forms of drug-related epilepsy (DRE). Velasco et al. (2007) applied
a burst cycling paradigm consisting of 1 min ON and 4 min OFF
in the centromedian nucleus of the thalamus to effectively treat
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FIGURE 3

(First row) This is a representation of high-frequency (HF) Coordinated-Reset (CR) Deep Brain Stimulation (DBS). Specifically, we depict a shuffling
pattern of stimulation, during which each cycle of stimulation has a new order in which the electrode contacts are stimulated. We also show how
the CR-DBS paradigm typically consists of a series of ON cycles interspersed with OFF cycles. (Second row) This is a representation of variable
frequency stimulation (VFS). During a stimulation cycle lasting 50 s, stimulation alternates between high frequency (130 Hz) and low frequency
(60 Hz). (Third row) This is a representation of burst cycling stimulation with alternating ON/OFF periods (10 s/2 s). Of note, the stimulation
parameters used to create the figures for each alternative pattern of stimulation presented here are examples of possible parameters; however,
these vary greatly across studies.

generalized tonic-clonic seizures and atypical absence seizures in
Lennox-Gastaut syndrome. A double-blind, randomized control
trial (ESTEL trial) found cycling 145 Hz for 1 min ON and 5 min
OFF significantly reduced seizures in Lennox-Gastaut syndrome
compared to no stimulation (Dalic et al., 2022). The stimulation
parameters selected for this trial were in large part influenced
by a prior double-blind, randomized control trial (SANTE trial)
that found a significant reduction in seizure frequency in patients
with refractory epilepsy using cycling stimulation of the thalamus
(Fisher et al., 2010). These findings have been corroborated by
other groups, such as Boongird et al. (2016), who showed a 60%
seizure reduction 24 months after surgery with a 145 Hz 1 min ON,
5 min OFF cycling paradigm. A similar cycling paradigm (1 min
ON, 4 min OFF) was used with success to stimulate the subiculum
in six patients with mesial temporal lobe epilepsy associated with
hippocampal sclerosis (Vázquez-Barrón et al., 2021). This is in
line with conclusion of another study with mesial temporal lobe
epilepsy patients where amygdalohippocampal cycling stimulation
(1 min ON, 3 min OFF) resulted in seizure reductions at 2
and 18 months (Min et al., 2013). When directly comparing
anterior nucleus of thalamus cycling stimulation to conventional
stimulation in DRE patients, Kaufmann et al. (2020) observed no
significant difference in seizure frequency; however, they found an
increase in restlessness with increased cycling frequency (shorter
duration OFF period). Finally, cycling stimulation has been shown

to be useful to avoid after-discharges and resultant seizures when
using anterior cingulate DBS to treat chronic pain (Huang et al.,
2019).

Coordinated reset

Synchronous neuronal firing is thought to underlie critical
behavioral processes such as memory formation. In fact, recent
studies suggest that greater neuronal synchrony between
mesial temporal lobe structures correlates with improved
memory performance (Jutras and Buffalo, 2010). However,
hypersynchronous activity in neural circuits may also underlie
pathological brain states, such as PD, epilepsy, and tinnitus
(Ebert et al., 2014). For example, synchronization among
populations of neurons in the thalamus and basal ganglia in PD
and ET is associated with characteristic pathological movements
that are typically seen in these movement disorders. More
importantly, studies exploring pharmacological interventions with
dopaminergic drugs (e.g., Levodopa) and/or surgical interventions
with DBS have recently shown a direct correlation between
reduced synchronized oscillatory activity in the β-band (8–35 Hz)
and improved motor performance, suggesting the potentially
critical role that synchronized neuronal activity may play in the
pathogenesis of movement disorders such as PD (Chung et al.,
2018).
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CR-DBS is an alternative stimulation protocol that delivers
intermittent high-frequency bursts to disrupt hypersynchronous
neuronal firing (Figure 3). Typical CR-DBS parameters consist
of high-frequency trains with an intra-burst frequency of 130 Hz
(current: 2.0–4.0 mA), cycle repetition rate of 3–20 Hz, and pulse
width ranging from 60 to 120 µs. Each pulse train typically consists
of three to five pulses and the total duration of a pulse train
ranges from 23 to 38 ms (Adamchic et al., 2014). This pattern of
stimulation can be applied to electrode contacts in either a serial
(non-shuffled) or shuffled (random order stimulation of electrode
contacts) fashion (Wang et al., 2022). Developed in 2003, the
rationale of CR-DBS is to desynchronize neuronal populations
in the basal ganglia-motor cortical circuit to achieve therapeutic
benefits in movement disorders such as PD (Tass, 2003). In a
proof-of-concept study by Adamchic et al. (2014), six PD patients
underwent bilateral implantation of quadripolar DBS electrodes
in the STN. The patients were evaluated before and after once-
daily 2-h CR-DBS treatments for a total of 3 days. Their CR-DBS
stimulation protocol (detailed above) was specifically delivered
to the three distal contacts of the electrode. They demonstrated
that after 3 days of CR-DBS treatment, there was a significant
reduction in β-band activity, with a mean reduction in β-power
of 42% (p = 0.03), and an associated significant improvement in
motor function [mean Unified Parkinson’s Disease Rating Scale
(UPDRS) score reduction of 58%, p = 0.03] (Adamchic et al.,
2014). It is important to note that this study was limited by a lack
of comparison to traditional HFS DBS, however, it is the first to
show the therapeutic efficacy of CR-DBS in managing PD motor
symptoms.

Temporally optimized stimulation

Traditional HFS DBS parameters are selected empirically
based on individual patient testing and programmer experience.
Newer alternative patterns have focused on using biomarkers
or computational models to predict the “best settings” for a
stimulation paradigm. Temporally optimized stimulation is a non-
standardized computationally optimized pattern of DBS. In theory,
a temporally optimized pattern of stimulation would significantly
reduce energy consumption and frequency of implantable pulse
generator (IPG) replacement, improving overall clinical outcomes.

In 2013, Brocker et al. (2013) tested a wide variety of
temporally irregular DBS patterns in PD patients (n = 10)
while assessing motor outcomes via a finger-tapping task in the
operating room. This group found that stimulation pattern, and
not rate, more significantly impacted DBS efficacy. Interestingly,
they employed several patterns that relieved motor symptoms
more effectively than temporally regular HFS, including “absence,”
“presence,” “unipeak,” and “uniform,” with varying pulse entropy
and frequencies (see Brocker et al., 2013 for detailed review).

Later, in a proof-of-concept study, Brocker et al. used model-
based computational evolution to develop a temporally optimized
stimulation paradigm (Brocker et al., 2017). They coupled a model
of the basal ganglia with a genetic algorithm (GA) thought to
operate similarly to evolution, with “natural selection” occurring
to optimize stimulation. Three patterns were tested: temporally
regular 185 Hz HFS, temporally regular 45 Hz LFS, and the

optimized, GA pattern of stimulation, with an average frequency
of 45 Hz. In a finger-tapping task in bradykinesia-dominant PD
patients (n = 4), there was no significant difference in the rate
and regularity of finger tapping between the HFS and GA groups,
though both improved these parameters compared to baseline.
Similarly, in the tremor-dominant PD subjects (n = 4), they found
no significant difference in the reduction of tremor between the
HFS and GA groups, though both significantly decreased tremor
compared to baseline. Thus, despite significant study limitations,
GA was tentatively deemed equivalent to HFS in terms of efficacy,
but superior to HFS in terms of energy efficiency and battery life
preservation (Brocker et al., 2017).

Recently, in a prospective, randomized, cross-over, multi-
center feasibility study (n = 26), Okun et al. tested both
versions of temporally optimized stimulation (TOPS) from the two
aforementioned Brocker et al. studies [TOPS1 (Brocker et al., 2017)
and TOPS2 (Brocker et al., 2013)] (Okun et al., 2022). They defined
TOPS as pulse trains with a repeating sequence of non-regular and
non-random intervals between pulses. TOPS2 used a long burst
sequence (inter-burst interval ∼50 ms) followed by a short burst
sequence (inter-burst interval ∼5 ms), with an average frequency
of ∼158 Hz [see “absence” in Brocker et al. (2013)]. Like Brocker
et al., this group found that TOPS reduced motor symptoms as
effectively as conventional HFS DBS (Okun et al., 2022). As this
was a safety and feasibility study, the results were not powered to
provide statistically significant conclusion on efficacy. Nonetheless,
the promising findings of potential non-inferiority of TOPS vs.
HFS, with the added knowledge that TOPS is more energy efficient,
should lead to well-powered randomized, controlled clinical trials
comparing TOPS against HFS.

Closed-loop and adaptive stimulation

Current DBS systems use open-loop stimulation in which
stimulation is always ON. Closed-loop adaptive neuromodulation
relies on a control signal to initiate changes in stimulation
parameters in real-time. Biomarker-controlled DBS may be useful,
as symptoms fluctuate throughout the day in many neurologic
and neuropsychiatric disorders. In PD, tremors occur at rest and
rigidity occurs with the onset of movement (Reich and Savitt, 2019),
whereas in ET, tremor occurs with movement (Shanker, 2019).
In neuropsychiatric conditions such as treatment-resistant OCD,
symptoms fluctuate throughout the day, with obsessive fixation
alternating with ritualistic compulsive behaviors, all of which vary
widely from patient to patient (Goodman et al., 2014). In treatment-
resistant depression (TRD), symptoms may be more pronounced
in times of stress and minimally present at rest, though this disease
is also characterized by highly heterogeneous symptoms (Filatova
et al., 2021). In Tourette syndrome (TS), tics emerge frequently
when the patient is under high stress, but manifest in different
areas of the body, with variable duration and intensity (Jankovic
and Kurlan, 2011). Thus, neuromodulation strategies for these
diseases might be more effective, more efficient, or better tolerated
with on-demand stimulation paradigms. The goal of adaptive DBS
(aDBS) is to treat each patient’s constellation of symptoms in an
individualized manner, to reduce stimulation-induced side effects
(including during sleep), and to prolong battery life through more
efficient energy consumption.
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The majority of studies in aDBS focus on PD (Little et al.,
2013, 2016a,b; Rosa et al., 2015, 2017; Malekmohammadi et al.,
2016; Piña-Fuentes et al., 2017, 2019, 2020b; Tinkhauser et al.,
2017; Arlotti et al., 2018, 2021; Swann et al., 2018; Velisar et al.,
2019; Petrucci et al., 2020; Gilron et al., 2021; Molina et al.,
2021; Nakajima et al., 2021; Sasaki et al., 2021; Sarikhani et al.,
2022). Several groups suggest that STN aDBS is equivalent or
non-inferior to open-loop or constant DBS (cDBS) in reducing
the UPDRS score in PD (Little et al., 2016a; Piña-Fuentes et al.,
2017, 2020b; Rosa et al., 2017; Arlotti et al., 2018; Swann et al.,
2018; Velisar et al., 2019; Sasaki et al., 2021; Sarikhani et al.,
2022). Some studies found greater score reductions with aDBS
compared to cDBS (Little et al., 2013, 2016b; Rosa et al., 2015;
Malekmohammadi et al., 2016). A potentially important limitation
of these studies is that they were conducted with externalized
leads and experimental pulse generators in a controlled research
environment in the immediate post-lead-implantation period.
Further studies are needed to demonstrate the generalizability of
these findings in long-term studies and non-clinical environments.

Adaptive DBS is also of interest in neurocognitive aspects of
PD. Little et al. (2016b) investigated a binary (ON-OFF) aDBS
paradigm in eight PD patients with bilateral STN leads. They
developed a threshold-based algorithm using beta oscillations (13–
30 Hz) that switched ON and OFF automatically with a ramp
up/down time of 250 ms (Little et al., 2013). They administered a
speech intelligibility test (SIT) at baseline, during cDBS, and during
aDBS (15-min duration) to measure speech-related side effects and
improvement. They found that aDBS was associated with improved
SIT scores compared to both baseline and cDBS (baseline SIT
67.9%; aDBS 70.4%; cDBS 60.5%; p = 0.02).

In ET, several studies report outcomes of unilateral VIM or
zona incerta aDBS combined with recordings from subdural strip
electrodes over primary motor cortex (Herron et al., 2017a,b;
Castaño-Candamil et al., 2020; Ferleger et al., 2020; He et al.,
2020, 2021; Opri et al., 2020). Two studies showed greater tremor
suppression with aDBS (Castaño-Candamil et al., 2020; Ferleger
et al., 2020) and one study showed aDBS to be equivalent or non-
inferior to cDBS (Opri et al., 2020). On the other hand, Herron
et al. (2017a) demonstrated decreased tremor control with aDBS
compared to cDBS.

Dystonia presents both opportunities and challenges for aDBS
applications. Piña-Fuentes et al. (2020a) found that short-term GPi
aDBS (n = 7) did not lead to acute changes in low frequency
oscillations (4–12 Hz) or to any significant clinical changes.
However, dystonia typically has a delayed response to cDBS such
that aDBS effects could be difficult to extrapolate in the context of
short-term stimulation. DBS programming in dystonia patients is
often more complex than for PD or ET, such that robust, effective
closed loop stimulation strategies could play a useful role in these
patients.

In neuropsychiatric disease, aDBS has been described in TRD
(Scangos et al., 2021) and TS (Cagle et al., 2022). In TRD,
Scangos et al. (2021) demonstrated safety and feasibility of a
fully integrated aDBS system in a single patient. They found that
bilateral amygdala gamma power is correlated to elevated symptom
severity with high reproducibility. Stimulating at the VC/VS,
they demonstrated improved depressive symptoms correlating to
reduced amygdala gamma power in two of five stimulation trials.
Cagle et al. (2022) compared aDBS to cDBS in four TS patients

with bilateral centromedian-parafascicular complex thalamic leads.
Using a subdural strip overlying M1 and thalamic leads, they found
increased low-frequency thalamic power (3–10 Hz) at the onset of
involuntary tics that was not present during voluntary movements.
Though there was no statistically significant difference between
the two, both cDBS and aDBS significantly reduced symptoms
compared to DBS OFF, suggesting possible non-inferiority of
aDBS versus cDBS in TS. As in all indications, seeking a suitable
control signal presents challenges, but recent studies show that
aDBS for OCD may be on the horizon (Provenza et al., 2019,
2021). For example, Provenza et al. (2021) recently found that
delta-band (0–4 Hz) power showed a strong negative correlation
with symptom severity in five patients with OCD implanted with
sensing-capable IPGs and bilateral ventral capsule/ventral striatum
(VC/VS) electrodes. Though this remains to be tested with aDBS,
this finding may represent a suitable biomarker. While aDBS is of
increasing interest, these studies are all limited by small sample sizes
and require more robust investigation.

Discussion

As our familiarity with continuous high-frequency DBS,
the gold-standard stimulation paradigm in the treatment of
both neurologic and neuropsychiatric disorders, grows, clinicians
and scientists increasingly recognize the need for programming
optimization and improved efficacy, which has led to the
development of numerous alternative patterns of stimulation. In
this review, we provide a snapshot of current human evidence
supporting these patterns–including TBS, paired pulse, VFS, ILS,
burst cycling, CR-DBS, TOPS, and aDBS–as possible alternatives
to HFS DBS. With small case series in most cases, the existing
literature is not sufficient to reach definitive conclusion regarding
non-inferiority/superiority of an alternative pattern versus HFS
DBS. However, based on our findings, in addition to these
being safe and technically feasible, they generally present two
specific advantages over HFS DBS: (1) optimization leads to a
more energy-efficient delivery of stimulation, prolonging battery
life and reducing the frequency of costly IPG replacements; (2)
non-continuous paradigms have the potential to simultaneously
deliver therapeutic levels of stimulation, treating both motor and
non-motor symptoms of various neurologic and neuropsychiatric
diseases, while mitigating stimulation-induced side effects. By the
temporal nature of their designs (i.e., non-continuous), many
of the alternative patterns of stimulation discussed here would
draw less power from an IPG than continuous HFS DBS when
delivering stimulation. In TBS, specifically iTBS, stimulation trains
or bursts are followed by pauses (DBS OFF periods) (Huang
et al., 2005). Similar to iTBS, VFS presumably would draw less
electrical energy than HFS alone because of the alternating periods
of LFS and HFS in a given cycle. However, though theoretically
iTBS and VFS would consume less battery life than cTBS or HFS
DBS alone, direct evidence of this is limited. Continuous TBS
appears to improve motor PD symptoms, although the therapeutic
threshold is higher with low intraburst frequencies (∼50 Hz vs.
100 Hz) (Horn et al., 2020). The impact of burst cycling on battery
longevity has been directly investigated, and one of the main
motivations for using burst cycling stimulation over conventional
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continuous HFS has been to conserve device battery and decrease
the frequency of IPG replacements (Kuncel et al., 2012; Wong et al.,
2021). In the case of TOPS and aDBS battery life is conserved
in a more indirect approach, using computational modeling
or biomarker-driven auto-regulating systems, respectively, which
ultimately leads to more efficient energy consumption. Studies of
ILS have shown conflicting results, with some indicating that ILS
may lead to higher energy consumption and decreased battery
life (Kern et al., 2018; Karl et al., 2019), and others showing
evidence that certain ILS settings may conserve energy relative
to continuous HFS DBS (Karl et al., 2020). In contrast to the
primary motivation of increasing battery longevity, several studies
focused on the potential mitigation of stimulation-induced side
effects provided by these non-traditional paradigms, specifically
VFS, ILS, burst cycling, CR-DBS, and aDBS. Many VFS studies
showed improvement in gait dysfunction, FOG, and stimulation-
induced speech disorders (e.g., dysarthria, hypophonia) with the
use of VFS. Additionally, ILS studies observed improvements in
rigidity, bradykinesia, tremor, and gait (e.g., FOG) symptoms as
well as mitigation of unwanted side effects such as dysarthria,
dyskinesias, diplopia, and paresthesias.

Finally, we found that some alternative patterns of stimulation
may mimic a more physiologic neuronal firing pattern, which may
be an explanation for why some alternative stimulation patterns
seem to better address cognitive or memory-related symptoms
of movement disorders and other neuropsychiatric disorders. For
example, there is evidence that dorsolateral prefrontal cortex TBS
can modulate networks involved in mood and cognitive function
(e.g., memory). The ability to increase theta-power on-demand may
provide a way to modulate specific neuronal populations, since it
is believed that higher power theta oscillations can entrain high-
frequency activity more efficiently (Kahana et al., 1999). Indeed,
theta-gamma coupling (and theta band activity entraining single
neuron firing) has functional relevance for cognition in humans
across multiple domains including memory and decision making.

We acknowledge that our broad review of alternative patterns
of stimulation has some methodological limitations. The most
important limitation of this study is that, though we hope to
review all alternative patterns of stimulation with published human
data in a comprehensive manner, we are unable to account for
those patterns for which we did not search. Additionally, there are
likely some alternative patterns which may not have a standard
naming convention and thus are difficult to review. For example,
Akbar et al. (2016) conducted a study using square biphasic
pulses and other irregular pulse patterns in PD (n = 8) and ET
(n = 3) patients. Briefly, their findings showed that certain non-
conventional patterns of stimulation may extend battery life and

minimize stimulation-associated side effects. The goal of their
randomized, blinded pilot study was to provide a framework for
rigorously testing non-HFS patterns of stimulation; however, they
specify that further testing is needed to assess efficacy of alternative
patterns of stimulation and compare them to conventional HFS
(Akbar et al., 2016).

Conclusion

Alternative patterns of stimulation such as theta burst, paired
pulse, variable frequency, interleaving, burst cycling, coordinated
reset, temporally optimized stimulation, and adaptive DBS are
promising novel patterns of stimulation that may provide improved
efficacy for both motor and non-motor symptoms of neurologic
and neuropsychiatric disorders. In doing so, these patterns
may also extend battery life and lead to fewer replacements,
ultimately improving quality of life for these patients. However,
current evidence is limited and warrants rigorous trials before
implementing in the clinical domain.
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Introduction: The basal ganglia (BG) are involved in motor control and play

an essential role in movement disorders such as hemiballismus, dystonia,

and Parkinson’s disease. Neurons in the motor part of the BG respond to

passive movement or stimulation of di�erent body parts and to stimulation of

corresponding cortical regions. Experimental evidence suggests that the BG are

organized somatotopically, i.e., specific areas of the body are associated with

specific regions in the BG nuclei. Signals related to the same body part that

propagate along di�erent pathways converge onto the same BG neurons, leading

to characteristic shapes of cortically evoked responses. This suggests the existence

of functional channels that allow for the processing of di�erent motor commands

or information related to di�erent body parts in parallel. Neurological disorders

such as Parkinson’s disease are associated with pathological activity in the BG

and impaired synaptic connectivity, together with reorganization of somatotopic

maps. One hypothesis is that motor symptoms are, at least partly, caused by

an impairment of network structure perturbing the organization of functional

channels.

Methods: We developed a computational model of the STN-GPe circuit, a central

part of the BG. By removing individual synaptic connections, we analyzed the

contribution of signals propagating along di�erent pathways to cortically evoked

responses. We studied how evoked responses are a�ected by systematic changes

in the network structure. To quantify the BG’s organization in the formof functional

channels, we suggested a two-site stimulation protocol.

Results: Our model reproduced the cortically evoked responses of STN and GPe

neurons and the contributions of di�erent pathways suggested by experimental

studies. Cortical stimulation evokes spatio-temporal response patterns that are

linked to the underlying synaptic network structure. Our two-site stimulation

protocol yielded an approximate functional channel width.

Discussion/conclusion: The presented results provide insight into the

organization of BG synaptic connectivity, which is important for the development

of computational models. The synaptic network structure strongly a�ects the

processing of cortical signals and may impact the generation of pathological

rhythms. Our work may motivate further experiments to analyze the network

structure of BG nuclei and their organization in functional channels.

KEYWORDS

basal ganglia, evoked responses, functional channels, network connectivity,multichannel

stimulation, neural networks
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1. Introduction

The BG are a sub-cortical complex that consists of several

nuclei, such as the subthalamic nucleus (STN) and the globus

pallidus (Soghomonian and Jagaroo, 2016). Due to different

synaptic projections, the latter is divided into internal (GPi)

and external segments (GPe). The BG play an important role

in decision-making, motor control, and motor learning. Several

neurological disorders are associated with abnormal BG activity,

such as excessive synchronization in Parkinson’s disease, and

alternations in synaptic connectivity (Hammond et al., 2007;

Madadi Asl et al., 2022b). The STN and GPe circuit is in the

center of the BG and is believed to be critical for the generation of

oscillations (Plenz and Kital, 1999; Bevan et al., 2002; Crompe et al.,

2020). Furthermore, the STN is a major target for high-frequency

deep brain stimulation, the current standard of care for medically

refractory Parkinson’s disease (Krack et al., 2003).

The STN receives topographically organized glutamatergic

inputs from the cerebral cortex via the cortico-STN hyperdirect

pathway, and gamma-aminobutyric acid (GABA)ergic inputs from

the GPe via the cortico-striato-GPe-STN indirect pathway (see

Figure 1) (Jeon et al., 2022). Additionally, synaptic input to the

BG nuclei is organized somatotopically (Nambu, 2011), i.e., motor

cortical neurons in regions representing different body parts project

to different regions in these nuclei (Monakow et al., 1978; Nambu

et al., 1996, 2002; Miyachi et al., 2006). On the other hand, BG

neurons respond to motor cortex stimulation (Nambu et al., 2000;

Kita and Kita, 2011; Polyakova et al., 2020) and to active and passive

movement of corresponding body parts (DeLong et al., 1985).

These characteristics are harnessed during stereotaxic surgery for

electrode placement for deep brain stimulation as a treatment for

movement disorders such as Parkinson’s disease (Kaplitt et al.,

2003; Krack et al., 2003).

Experimental studies in primates and rodents analyzed the

response of STN and GPe neurons to electrical stimulation of

different cortical areas, including the limb regions of the motor

cortex, the primary sensory cortex, and the supplementary motor

area (Nambu et al., 2000; Kita et al., 2004; Kita and Kita, 2011;

Polyakova et al., 2020). The effect of local injections of glutamate

and GABA antagonists into the STN (Polyakova et al., 2020), the

GPe (Kita et al., 2004) as well as into the putamen and the GPe

(Polyakova et al., 2020) on evoked responses was studied to get

further insight into the involved pathways (Kita et al., 2004; Jaeger

and Kita, 2011; Polyakova et al., 2020). Responding STN neurons

showed complex response patterns characterized by an early and

a late excitation followed by a late inhibition. These patterns

indicated that signals from the stimulated cortical region reach

STN neurons via two pathways: the monosynaptic cortico-STN

pathway and the polysynaptic cortico-striato-GPe-STN pathway

(Nambu et al., 2000; Kita and Kita, 2011; Polyakova et al.,

2020). Furthermore, responding GPe neurons show characteristic

responses consisting of an early excitation, an inhibition, and a late

excitation (Nambu et al., 2000; Jaeger and Kita, 2011; Kita and Kita,

2011). The analysis of these evoked responses revealed the complex

interplay of synaptic pathways in the cortico-basal ganglia circuit.

Evidence from animal models suggests that Parkinson’s disease

is not only accompanied by abnormal neuronal synchrony

(Hammond et al., 2007) but also by alterations of synaptic

connectivity in the BG (Fan et al., 2012; Chu et al., 2015,

2017; Madadi Asl et al., 2022b) and impaired somatotopy (Filion

et al., 1988; Boraud et al., 2000; Cho et al., 2002). Furthermore,

characteristic features of cortically evoked responses change in

6-hydroxydopamine (6-OHDA) lesioned rats, an animal model

for Parkinson’s disease (Kita and Kita, 2011). Besides Parkinson’s

disease, abnormal alterations of the somatotopic organization of

the BG and their cortical inputs have been observed in other

movement disorders (Bronfeld and Bar-Gad, 2011), such as motor

tics (McCairn et al., 2009), appearing as a symptom, for instance, in

Tourette syndrome, and dystonia (Tamburin et al., 2002; Delmaire

et al., 2005). This suggests that alterations of synaptic connectivity

shape cortically evoked responses, and likely affect the processing

of cortical stimuli.

In the present paper, we build on these results and explore to

which extent cortically evoked responses of STN and GPe neurons

can be used to infer characteristics of the underlying synaptic

network structure. In a computational model, we show that a

characteristic width of parallel “functional channels” in the BG,

which allow for parallel processing of multiple stimulation-induced

cortical inputs, can be obtained based on the cortically evoked

responses of STN and GPe neurons. Considering the underlying

channel structure may be advantageous for the parameter

adjustment and stimulation contact usage during multisite deep

brain stimulation, for instance, for the delivery of coordinated reset

stimulation in animal models for Parkinson’s disease (Tass et al.,

2012; Wang et al., 2016, 2022; Bore et al., 2022) or Parkinson’s

disease patients (Adamchic et al., 2014).

To study the relation between synaptic connectivity and

cortically evoked responses, we developed a computational model

of the BG that incorporates a simplified type of somatotopy

(Nambu, 2011), where neurons tend to project to neurons that

represent similar body parts characterized by similar (spatial)

coordinates, as well as two modified somatotopy variants.

Our model produces cortically evoked responses that mimic

experimental data from rats (Kita and Kita, 2011). We analyzed

the spatio-temporal pattern of cortically evoked responses and

explored how it is affected by perturbations of the synaptic network

structure. To quantify the width of parallel functional channels

in the BG, we suggest a two-site stimulation approach in which

two cortical stimuli cause two evoked responses in the STN and

GPe. We quantify the modulation of the evoked response to a test

stimulus by the presence of a priming stimulus and show how an

approximate channel width can be inferred. The latter measures the

minimum distance between cortical areas whose input to the BG is

processed independently.

The present paper is organized as follows. First, we introduce

our computational model and present details on the incorporated

experimental data on synaptic connectivity as well as the

suggested two-site stimulation technique. Next, we show that

our computational model reproduces the experimentally observed

characteristic sequence of excitations and inhibitions. Then, we

analyze the spatio-temporal response pattern and study how it is

affected by variations of the synaptic network structure. We present

simulation results on evoked responses of STN and GPe neurons

during two-site cortical stimulation and show how an estimate of
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FIGURE 1

Schematics of neuron placement and the three network structures considered throughout the paper. (A) Neurons (black dots) were placed in the

interval [−L/2, L/2] (Model and methods). Similar coordinates, sX, refer to neurons representing similar body parts. A total of 103 cortical (CTX), 100

STN, 300 GPe, and 103 striatal (STR) medium spiny neurons (MSN) was considered. (B) Schematic of the STN-GPe circuit and its CTX and STR Poisson

input (gray). Green arrows indicate glutamatergic and red arrows GABAergic synaptic interaction. Stimulation (yellow) is delivered to the CTX Poisson

spike generators and leads to a transient increase of spiking activity in the cortex. Excitatory CTX input to the striatum is modeled by increasing STR

MSN activity following CTX stimulation (see Model and methods). (C1–C3) Schematics of nearest postsynaptic neurons networks (N-networks) (C1),

displaced postsynaptic neurons networks (D-networks) (C2), and skip postsynaptic neurons networks (S-networks) (C3). A small number of

connections of each type are shown for a single presynaptic neuron in a small portion of the network (dashed gray box in A). The actual numbers of

connections are given in Table 2. In N-networks (C1), neurons project to postsynaptic neurons at similar coordinates. In D-networks (C2), 10% of the

synaptic connections are randomly selected to connect to postsynaptic neurons with coordinates shifted by d (blue, see Model and Methods).

Connections before shifting are marked by dashed light blue arrows. In S-networks (C3), neurons project to postsynaptic neurons with similar

coordinates except that every second postsynaptic neuron is skipped.

the width of functional channels in the cortico-BG network can be

obtained. Finally, we discuss our results.

2. Model and methods

We developed a computational model of the STN-GPe

circuit that accounts for topographically organized synaptic

connections. Following earlier studies, individual neurons were

modeled by adaptive quadratic integrated-and-fire neurons to

ensure low computational costs (Lindahl et al., 2013; Fountas

and Shanahan, 2017). The organization of synaptic connections

was partly motivated by earlier computational studies (Terman

et al., 2002; Hahn and McIntyre, 2010; Kumaravelu et al., 2016),

partly based on experimental data on the synaptic connectivity

in the STN-GPe circuit (Oorschot, 1996; Sadek et al., 2007;

Baufreton et al., 2009; Kita and Kita, 2011; Koshimizu et al.,

2013; Ketzef and Silberberg, 2021), and partly obtained from

parameter optimization to reproduce experimentally observed

mean firing rates of the neurons (Fountas and Shanahan,

2017). Note that firing rates of BG neurons in rats vary

depending on the state, e.g., awake, anesthetized, resting.Whenever

possible, we considered the data from Kita and Kita (2011) in

anesthetized rats, as they provide a detailed analysis of cortically

evoked responses.

2.1. Neural network model

2.1.1. Dynamics of membrane potentials
Following the approach of Lindahl et al. (2013) and Fountas and

Shanahan (2017), individual neurons were modeled using adaptive

quadratic integrate-and-fire neurons. This class of models was

found to reproduce a wide class of neuronal spiking and bursting

behavior (Izhikevich, 2003). The dynamics of the membrane

potential, vi, of the ith GPe neuronwasmodeled as follows (Fountas

and Shanahan, 2017)

CGPe
i

d

dt
vi = kGPe(vi − vr,GPe)(vi − vt,GPe)− u1i + IGPe,

d

dt
u1i = aGPe(bGPe(vi − vr,GPe)− u1i). (1)

CGPe
i is themembrane capacitance, IGPe the applied current, and u1i

is a slow recovery variable with time scale given by 1/aGPe. vr,GPe

is the resting potential and vt,GPe corresponds to the threshold

potential. The other parameters adjust the shape of the nullclines

and were chosen according to Fountas and Shanahan (2017).
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We considered the parameter set for GPe neurons that

exhibited periods of high frequency discharges (referred to as

“GPe type B” neurons in Fountas and Shanahan (2017). These

correspond to prototypic GPe neurons which present the largest

neuronal population in the GPe and project to the STN (Mallet

et al., 2012; Abdi et al., 2015). Neurons with this type of dynamics

were observed more often than others in experiments in monkeys

at rest (≈ 85% of GPe neurons in DeLong, 1972). Abdi et al. found

that about two-thirds of GPe neurons are prototypic neurons in

dopamine-intact rats (Abdi et al., 2015).

Whenever the membrane potential passed a threshold vGPe
peak

, the

state variables were reset, i.e., vi → cGPe and u1i → u1i + dGPe

(Fountas and Shanahan, 2017).

To describe the dynamics of the membrane potential of the ith

STN neuron, an additional slow variable was introduced (Fountas

and Shanahan, 2017):

CSTN
i

d

dt
vi = kSTN(vi − vr,STN)(vi − vt,STN)− u1i − wSTNu2i

+ ISTN,

d

dt
u1i = aSTN(b

STN(vi − vr,STN)− u1i),

d

dt
u2i = ãSTN(G(vi)b̃

STN(vi − ṽr,STN)− u2i). (2)

The first two equations describe the dynamics of the membrane

potential and a recovery variable, similar to the dynamics of GPe

neurons given in Equation (1). In addition, a second recovery

variable u2i is used to describe the dynamics of STN neurons.

G(vi) is the Heaviside step function, H(ṽr,STN − vi), such that u2i
activates below ṽr,STN and causes a rebound response (Fountas and

Shanahan, 2017).

In rat brain slices, the majority of STN neurons was found to

produce rebound burst firing after removal of a hyperpolarizing

current (17 out of 20 neurons in Bevan et al., 2000). We modeled

such STN neurons using the parameter set for rebound bursting

STN neurons from Fountas and Shanahan (2017).

Whenever the membrane potential passed a threshold vSTN
peak

+

Uu2i, the state variables of STN neurons were reset vi → cSTN −

Uu2i, u1i → u1i + dSTN, and u2i → u2i + d̃STN (Fountas and

Shanahan, 2017). Here,U = (wSTN|u2i|+1/wSTN)−1 (Fountas and

Shanahan, 2017).

To ensure heterogeneity, the membrane capacitances of

neurons of each type X=STN or X=GPe were distributed according

to a Gaussian distribution with mean 〈CX
j 〉 and standard deviation

0.1〈CX
j 〉. A complete list of the parameter values used to model GPe

and STN neurons can be found in Table 1.

Cortical (CTX) neurons and striatal medium spiny neurons

(MSN)s expressing D2 receptors were modeled as Poisson spike

generators with baseline firing rates rCTX and rMSN, respectively.

We used rCTX = 4 Hz since Dejean et al. (2008) reported 4.1± 1.3

spikes per second in freely moving rats. In addition, we selected

rMSN = 0.67 Hz, representing the firing rate of spontaneously

active medium spiny D2 neurons in anesthetized rats in the

dopamine-intact state in Kita and Kita (2011). Note that rMSN is

well in the range of 0.8±0.2 Hz reported by Dejean et al. (2008) for

freely moving rats.

TABLE 1 Parameters for single-neuron dynamics according to Fountas

and Shanahan (2017).

GPe STN

〈CSTN / GPe
j 〉 (pF) 68.0 23.0

kSTN / GPe (nS/mV) 0.943 0.439

vr,STN / GPe (mV) −53.0 −56.2

ṽr,STN / GPe (mV) −60.0

vt,STN / GPe (mV) −44.0 −41.4

ISTN / GPe
bias (pA) 64.0 56.1

wSTN / GPe 0.1

˜wSTN / GPe 0.0

aSTN / GPe (1/ms) 0.0045 0.021

bSTN / GPe (nS) 3.895 4.0

ãSTN / GPe (1/ms) 0.123

b̃STN / GPe (nS) 0.015

vSTN / GPe
peak (mV) 25.0 15.4

cSTN / GPe (ms) −58.36 −47.7

dSTN / GPe (pA) 0.353 17.1

d̃STN / GPe (pA) −68.4

θSTN / GPe 3.0 0.5

In our computational model, we simulated 103 CTX and 103

MSN Poisson spike generators that provided synaptic input to the

STN and GPe, respectively. The STN consisted of 100 neurons and

the GPe of 300 neurons. The ratio of the total numbers of STN and

GPe model neurons was selected to reproduce the ratio observed

in young adult rats by Oorschot (1996). There, the total number of

STN neurons was estimated as (13.56 ± 1.41) ×103 (mean ± std.)

and the total number of GPe neurons as (45.96±5.12)×103 (mean

± std.).

2.1.2. Synaptic dynamics
To model synaptic connections, we considered the time-

dependent conductances gX,Yj (t), with dynamics given by

τX,Y
dgX,Yj

dt
= −gX,Yj . (3)

τX,Y is the synaptic time scale. gX,Yj (t) describes the total input

conductance for synaptic inputs from neurons in nucleus X to the

neuron j in nucleus Y. gX,Yj was increased instantaneously at all

spike arrival times: gX,Yj → gX,Yj + GX,Y, at times ti + λX,Y. Here,

ti is the spike time of a presynaptic neuron and λX,Y is the synaptic

transmission delay between presynaptic spike time and the arrival

of the action potential at the synapse.

We considered GABAergic synapses and two types of receptors

for glutamatergic synapses: alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors and slower N-methyl-

D-aspartic acid (NMDA) receptors. As GABA and AMPA are

considered rather fast, we neglect the rise time of the corresponding
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synaptic conductances. The resulting postsynaptic currents were

given by Fountas and Shanahan (2017)

IX,YZ,j = gX,Yj (EX,Y − vj), Z = GABA,AMPA. (4)

EX,Y is the synaptic reversal potential. The dynamics of gX,Yj is given

by Equation (3) and the corresponding τX,Y is the decay time of the

synaptic potentials.

In contrast, NMDA receptors are rather slow and the rise time

of the corresponding conductance is of the order of the decay

times for GABA and AMPA currents (Kumaravelu et al., 2016).

We therefore modeled the rise and the decay of the corresponding

synaptic conductances after each spike arrival:

IX,YZ,j (vj) = (gX,Y
slow,j

− gX,Y
fast,j

)(EX,Y − vj), Z = NMDA. (5)

The dynamics of both the slow, gX,Y
slow,j

, and fast conductance,

gX,Y
fast,j

, were given by Equation (3), and the corresponding synaptic

time scales quantify the fast rise and the slow decay of the

total synaptic conductance gX,Y
slow,j

− gX,Y
fast,j

, respectively, for the

resulting postsynaptic currents. In addition, we considered a

voltage-dependent magnesium plug for the NMDA receptors given

by Fountas and Shanahan (2017)

B(v) = 1.0/(1.0+ 0.28 exp(−0.062 v)). (6)

The total postsynaptic current IYj into neuron j in Equations (1)

and (2) was then given by

IGPej = ISTN,GPeAMPA,j (vj)+ B(vj) I
STN,GPe
NMDA,j (vj)+ IMSN,GPe

GABA,j (vj)

+ IGPe,GPeGABA,j (vj)+ IGPebias +
√

2θGPeCGPe
j ξj(t) (7)

and

ISTNj = ICTX,STNAMPA,j (vj)+ B(vj) I
CTX,STN
NMDA,j (vj)+ IGPe,STNGABA,j (vj)+ ISTNbias

+
√

2θSTNCSTN
j ξj(t),

(8)

respectively. Here, ISTN
bias

and IGPe
bias

are constant bias currents that

adjust the baseline activity of STN and GPe neurons, respectively.

ξj(t) is zero mean, white Gaussian noise with amplitude scaled by

θX. All parameter values related to the synaptic dynamics are given

in Table 2.

2.1.3. Synaptic network structure
Synaptic connections in the BG are somatotopically organized

(Nambu, 2011). To incorporate somatotopy in our computational

model, we introduced coordinates sX, where X denotes the

corresponding nucleus, as before. The maximal range of these

coordinates is denoted by L and will be set to one. For a

given neuron, sX represents the feature that is represented, e.g.,

the body part or motor program. Similar coordinate values of

different neurons refer to similar features. Alternatively, given

that synaptic connections in the BG are organized somatotopically

(Nambu, 2011), sX can be interpreted as a spatial coordinate.

Neurons in each nucleus were equidistantly placed in the

interval [−L/2, L/2].

In our reference scenario, which will be referred to as N-

network throughout the paper, neurons connect to postsynaptic

neurons with similar features, i.e., sX ≈ sY, where X refers to

the presynaptic nucleus and Y to the postsynaptic nucleus. Thus,

the somatotopic organization of synaptic connections is intact.

In the computational model, we fixed the number of outgoing

connections per neuron, NX,Y, according to the values given in

Table 2. Below, we give more details on the choices of NX,Y. Then,

for each presynaptic neuron, we chose the postsynaptic neurons

such that the difference in coordinates |sY−sX|wasminimal among

all possible postsynaptic neurons.

Parkinson’s disease and other neurological disorders impact

many aspects of the nervous system. Here, as discussed below,

we focus on synaptic reorganization. We compared the results

for N-networks with perturbed network structures in which a

portion of synaptic connections was rearranged. Specifically, we

considered D-networks and S-networks, which were constructed

as follows.

• D-networks: The first type of perturbation of N-networks

was a displacement of a fraction of connections. Specifically,

we randomly selected a portion P of the connections and

rearranged them such that |(sY − d) − sX| was minimal

(see Figure 1C2 for an illustration). Thus, these connections

then targeted postsynaptic neurons that were displaced by

d. Throughout the present paper, we chose P = 0.1

and d = 0.15L. Connections were randomly selected for

displacement according to a uniform probability distribution.

D-networks mimic the situation were the somatotopy is

perturbed such that a region representing a certain body part

also forms projections to a region that represents a different

body part. This was motivated by results in the 1-methyl-

4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) monkey model

of Parkinson’s disease, where pallidal neurons in control

conditions responded to movement of a single joint but

neurons responded to movement of multiple joints after

MPTP intoxication (Filion et al., 1988; Boraud et al., 2000;

Pessiglione et al., 2005; Bronfeld and Bar-Gad, 2011).

• S-networks: The second type of perturbation of the network

structure was a skipping of neurons in the postsynaptic

nucleus (see Figure 1C3 for an illustration). This led to an

increase in the projection area in the postsynaptic nucleus.

In the present paper, we considered the case where every

second postsynaptic neuron was skipped. Thus, synaptic

connections were implemented as in N-networks, except

that each presynaptic neuron projected only to every second

postsynaptic neuron, starting with the one for which |sY −

sX| was minimal (see Figure 1C3). This network structure

was motivated by experimental studies on striatal neurons

in the 6-OHDA rat model for Parkinson’s disease (Cho

et al., 2002). There, neurons related to a certain body part

occurred in clusters in healthy controls. After 6-OHDA

lesion, the cluster size shrank and some of the neurons

at the borders became related to different body parts,

suggesting a larger overlap of regions representing different

body parts.
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TABLE 2 Parameters used to model synaptic interaction.

τX,Y (ms) λX,Y (ms) GX,Y (nS) EX,Y (mV) NX,Y

CTX→STN (AMPA) 2 [1] 1.01 opt. 0 [1] 3 [1]

CTX→STN (NMDA) 2 [3], 100 [1] λ
CTX,STN
AMPA 0.6 GCTX,STN

AMPA 0 [1] 3 [1]

STN→GPe (AMPA) 2 [1] 1.02 opt. 0 [1]

STN→GPe (NMDA) 2 [3], 100 [1] λ
STN,GPe
AMPA 0.36 GSTN,GPe

AMPA 0 [1]

GPe→GPe 5 [4] 5.0 [5] opt. −85 [3] 20 [6]

MSN→GPe 5 [3] 7.4 [5]3 opt. −85[3] 10 [1]

GPe→STN 8 [4] λSTN,GPe opt. −84 [4] 1 [7]

CTX→MSN 10.5 [2]

For NMDA receptors, the first synaptic time scale τX,Y represents the rise and the second the decay time. Values obtained from numerical optimization (“opt.”) are given in Table 3. NSTN,GPe

was a free parameter. References: [1] Fountas and Shanahan (2017), [2] Kita and Kita (2011), [3] Kumaravelu et al. (2016), [4] Lindahl et al. (2013). [5] Ketzef and Silberberg (2021), [6] Kita

(2007), and [7] Baufreton et al. (2009).

1. Was adjusted such that the onset of the early excitation in cortically evoked response occurs at∼5− 6 ms [2].

2. Was adjusted such that the onset of the early excitation in cortically evoked response occurs at∼7− 10 ms [2].

3. Onset delay of prototypic neurons to striatial stimulation was 7.34± 0.35 ms and that of arkypallidal cells 8.6± 0.43 ms [5]. Here, we only considered prototypic neurons.

To ensure that the obtained network did not depend on the

order in which synaptic connections were added between neurons,

we added small random offsets to the neurons’ coordinates

that were uniformly distributed between zero and 10−4L for

CTX and MSN Poisson spike generators and between zero and

10−3L for STN and GPe neurons. This way, there were no

two neuron pairs that had identical distances to each other.

Then, pairs of pre- and postsynaptic neurons were sorted

according to the distances between them, and synaptic connections

were added.

The numbers of outgoing connections per presynaptic

neuron, NX,Y, were either motivated by experimental data,

taken from earlier computational studies, or obtained from

parameter optimization.

• For the outgoing synaptic connections of the two populations

of Poisson spike generators, we chose NCTX,STN = 3

and NMSN,GPe = 10, which reproduced the connection

probabilities used for random connections in Fountas and

Shanahan (2017), where the connection probability for CTX

to STN connections was 0.03 and the connection probability

for MSN to GPe connections was 0.033.

• Baufreton et al. (2009) studied GPe→STN connections. They

found that these connections were sparse but highly selective.

Based on the number of synaptic boutons per GPe neuron

in the STN, they estimated that each GPe neuron forms only

enough synaptic boutons to contact< 2% of the STN neurons.

Furthermore, they reported that GPe neurons form many

synapses with each postsynaptic STN neuron. Their data also

suggest that neighboring STN neurons rarely receive input

from the same GPe neuron. Based on these findings, we chose

NGPe,STN = 1.

• Kita (2007) observed that large areas of somata and dendrites

of the GPe projection neurons are covered with synaptic

boutons. The majority of which belonged to striatal axons.

We chose NGPe,GPe = 20 outgoing GPe→GPe connections

per GPe neuron such that the majority of GABAergic synapses

came from striatal neurons.

• The numbers of outgoing STN→GPe connections differ

substantially among previous computational models. Hahn

and McIntyre (2010) considered rather focused projections of

STN neurons to GPe neurons, resembling a high degree of

specificity of STN→GPe connections in functionally related

areas in the GPe as observed experimentally in monkeys

(Shink et al., 1996). In their computational model, STN

neurons only project to GPe neurons in the same channel, i.e.,

each STN neuron projected to the three closest GPe neurons

(NSTN,GPe = 3). Other computational studies considered

more diffuse STN→GPe connections, e.g., in Fountas and

Shanahan (2017) each STN neuron projected to 30% of the

GPe neurons (corresponding to 90 STN→GPe connections

per STN neuron). In Lindahl et al. (2013), each STN neuron

had 30 STN→GPe connections. These latter numbers were

motivated by experimental data on the organization of STN

and STR synaptic terminals in the GPe obtained from earlier

labeling studies in monkeys (Hazrati and Parent, 1992; Parent

and Hazrati, 1993). In these studies, it was suggested that

STN→GPe and STR→GPe connections are highly organized

and that STN excitation targets larger groups of GPe neurons.

In contrast, STR inhibition specifically targets subsets of

these groups. Later, STN projections were studied in more

detail in rat brain segments (Koshimizu et al., 2013). There,

STN neurons were found to form large numbers of axon

boutons inside the GPe. Furthermore, boutons were highly

clustered in groups indicating projections to localized groups

of pallidal neurons. Furthermore, there was high variability

in the number of axon boutons formed per STN neuron.

Throughout the present paper, we varied the number of STN-

GPe connections to study to which extent our results depend

on NSTN,GPe. Specifically, we considered the cases NSTN,GPe =

3 (Hahn and McIntyre, 2010) and NSTN,GPe = 30 (Lindahl

et al., 2013), spanning the range from highly focused (each

STN neurons targets 1% of GPe neurons) onto a small cluster

of GPe neurons to diffuse projections onto a macroscopic

portion of the GPe (each STN neurons targets 10% of GPe

neurons).

Frontiers inNeuroinformatics 06 frontiersin.org86

https://doi.org/10.3389/fninf.2023.1217786
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Kromer et al. 10.3389/fninf.2023.1217786

The values of all maximal synaptic conductances, GX,Y, were

chosen such that experimental data for the stationary mean firing

rate of STN and GPe neurons were reproduced. In particular,

we followed Fountas and Shanahan (2017) and considered a

sequence of scenarios in which different neuronal populations

were inhibited. Following, we describe the resulting parameter

adjustment algorithm:

1. Estimation of G
CTX,STN: In the first step, we applied a

parameter optimization algorithm to find values of GCTX,STN

such that the mean firing rate of STN neurons was close to

experimental data from Farries et al. (2010) in rats in vivo. In

these rats, a large excitotoxic lesion was applied to the GPe. In

our computational model, this was implemented by considering

only the CTX spike generators and the STN neurons, i.e., the

STN was isolated from the GPe by setting GGPe,STN = 0 nS.

Farries et al. (2010) reported STN firing rates of 20.7 ± 5.2

Hz during these experiments, which was about twice as large

as the firing rate of STN neurons measured in rats with intact

GPe (9.5 ± 3.5 Hz). The parameter optimization procedure

was performed as follows: The firing rate of STN neurons

was estimated by performing simulations of the computational

model for 40 s and 12 different initial conditions. Each initial

condition had a random realization of membrane capacitances,

initial values of membrane potentials, and slow variables. To

reduce finite size effects, neurons close to the borders of the

interval for sX were ignored and only spikes of the center third of

STN neurons were recorded (STN neurons with indices 33−66)

during the time interval t ∈ [30, 40) s. Then, an estimate

of the average mean firing rate rSTNest was obtained based on

the spike count. These simulations were repeated for different

values of GCTX,STN and the difference between rSTNest and 20.7 Hz

(Farries et al., 2010) was minimized using the python function

“scipy.optimize.minimize” (scipy version 1.5.4) with “Nelder-

Mead” method and a tolerance of 0.1. We used GCTX,STN = 1

nS as the initial guess. This procedure led to GCTX,STN = 0.125

nS.

2. Estimation of GGPe,STN: To estimate the value of GGPe,STN, we

followed the approach of Fountas and Shanahan (2017) and

added the GPe to the model from (1) using GCTX,STN = 0.125

nS. For this step, the GPe neurons were modeled by a population

of 300 Poisson spike generators with mean firing rate of 30.4

Hz (Kita and Kita, 2011, anesthetized rats). Then, we applied

a similar algorithm as described in the previous paragraph

optimizing the value of GGPe,STN such that the firing rate of STN

neurons became close to 11.8 Hz. Kita and Kita (2011) measured

11.8 ± 9.1 Hz in rats that were anesthetized with isoflurane.

The initial guess was GGPe,STN = 6.82 nS which was the peak

conductance measured by Baufreton et al. (2009). Baufreton

et al. reported a range for GGPe,STN of 0.51 − 25.33 nS). This

optimization led to GGPe,STN = 1.11 nS

3. Estimation of G
STN,GPe: Next, we adjusted the parameters

GSTN,GPe and NSTN,GPe. For NSTN,GPe, we considered two

values that were taken from previous computational studies:

NSTN,GPe = 3 (Hahn and McIntyre, 2010) and NSTN,GPe = 30

(Lindahl et al., 2013). For both values of NSTN,GPe, GSTN,GPe was

adjusted by considering the CTX-STN-GPe network without

GABAergic inputs to GPe neurons. Celada et al. (1999) found

that local bicuculline infusion, a GABA antagonist, into the

globus pallidus of anesthetized rats led to a ≈ 55% increase

of the mean firing rate of neurons in the globus pallidus.

Note that the firing rate of these neurons in anesthetized rats

might differ from the one in awake rats. Motivated by these

experiments, we performed a similar optimization algorithm as

in the previous paragraphs. During optimization, we replaced

the STN neurons with a population of Poisson neurons firing

with a mean firing rate of 11.8 Hz. This implicitly assumed

that altered spiking of pallidal neurons in response to local

bicuculline infusion had little effect on the majority of STN

neurons. During optimization, the value of GSTN,GPe was varied

such that GPe firing rates were 55% higher than in control

conditions. For the control case, we used the firing rates from

Kita and Kita (2011), who measured 30.4 ± 11.4 Hz in rats

anesthetized with isoflurane. Thus, our target firing rate for GPe

neurons was 47.12 Hz. To tune GSTN,GPe, we ran the parameter

optimization algorithm to find a value of GSTN,GPe for which the

GPe firing rate was close to the target values. For NSTN,GPe = 3

the algorithm led to GSTN,GPe = 15.8 nS for which we obtained

rGPeest ≈ 47.1 Hz. For NSTN,GPe = 30, we found GSTN,GPe = 1.5

nS resulting in rGPeest ≈ 47.0 Hz.

4. Estimation of GMSN,GPe and G
GPe,GPe: For the two different

values ofNSTN,GPe described in the previous paragraph and their

corresponding values of GSTN,GPe, we searched for values of the

maximal conductances GMSN,GPe and GGPe,GPe such that the

STN firing rate was close to the target value 11.8 Hz (Kita and

Kita, 2011, anesthetized rats) and the GPe firing rate was close to

the target value 30.4 Hz (Kita and Kita, 2011, anesthetized rats)

in the intact STN-GPe circuit (Figure 1). We minimized

1R =

∣

∣

∣

∣

rSTN − 11.8 Hz

σSTN

∣

∣

∣

∣

+

∣

∣

∣

∣

rGPe − 30.4 Hz

σGPe

∣

∣

∣

∣

, (9)

with σSTN = 9.1 Hz and σGPe = 11.4 Hz being the

estimated standard deviations of single neuron baseline firing

rates obtained from Kita and Kita (2011) (anesthetized rats)

(see Tables 1, 2 in Kita and Kita, 2011). Using a similar

optimization algorithm as in the previous paragraphs, we found

thatGMSN,GPe = 5.54 nS andGGPe,GPe = 0.44 nSminimized1R

for NSTN,GPe = 3 (the resulting firing rates were rSTNest ≈ 13.6

Hz and rGPeest ≈ 30.5 Hz). For NSTN,GPe = 30, we found that

GMSN,GPe = 12.0 nS and GGPe,GPe = 0.21 nS minimized 1R,

which led to rSTNest ≈ 11.8 Hz and rGPeest ≈ 30.4 Hz.

2.2. Cortical stimulation

Cortical stimulation was modeled by temporally increasing the

firing rate of cortical Poisson spike generators. We implemented a

spatial stimulus profile that determined the probability P(sCTXi |s0)

at which a cortical Poisson spike generator at coordinate sCTXi

spikes in response to a stimulus delivered to s0

P(sCTXi |s0) =



1+

(

sCTXi − s0

σs

)2




−1

. (10)
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TABLE 3 Parameters for network connectivity.

Parameter Value Source

NCTX,STN 3 (Fountas and Shanahan, 2017)

NMSN,GPe 10 (Fountas and Shanahan, 2017)

NGPe,STN 1 (Baufreton et al., 2009)

NGPe,GPe 20 estimated, (Sadek et al., 2007; Baufreton

et al., 2009)

NSTN,GPe 3 (Hahn and McIntyre, 2010)

30 (Lindahl et al., 2013)

GCTX,STN 0.125µscale nS Result of optimization (1)

GGPe,STN 1.11µscale nS Result of optimization (2)

GSTN,GPe 15.8µscale nS Result of optimization (3) for

NSTN,GPe = 3

1.5µscale nS Result of optimization (3) for

NSTN,GPe = 30

GMSN,GPe 5.81µscale nS Result of optimization (4) for

NSTN,GPe = 3

12.0µscale nS Result of optimization (4) for

NSTN,GPe = 30

GGPe,GPe 0.44µscale nS Result of optimization (4) for

NSTN,GPe = 3

0.21µscale nS Result of optimization (4) for

NSTN,GPe = 30

We introduced a scale factor of µscale = 0.85.

This profile was motivated by the shape of the profile of

electrical stimuli used in Lysyansky et al. (2013). σs is the width

of the stimulus profile and will be set to σs = 0.05L/π if not

mentioned otherwise.

In experiments, cortical stimulation of the limb region resulted

in a response of STR MSNs (Kita and Kita, 2011). We modeled the

effect of the cortex on MSN activity by modifying the firing rate

of the MSNs in response to afferent cortical neurons. Specifically,

the MSN spike generator that was the closest to a cortical spike

generator that spiked at time t0 in response to the stimulus, fired

a spike between time t and time t + h with probability

P(t|sMSN
i , t0) =

{

p(t − t0 − λCTX,MSN)h, spike of closest cortical spike generator at t0

rMSN, otherwise
.(11)

Here, p(t − t0) was chosen such that it approximated the shape

of the probability density for a striatal spike after a stimulus at time

0 given in Figure 4A of Kita and Kita, 2011

p(t) =



























ηe
−(t−µ)2

2σ2 , t < 2µ

0, 2µ ≤ t < 2µ + tstart
t−tstart

tend−tstart
, 2µ + tstart ≤ t < 2µ + tend

rMSN, t ≥ 2µ + tend

, t > 0, (12)

with η = 0.145, µ = 2.1, σ = µ/3. We used tstart = 100 ms and

tend = 300 ms.

Cortical activation consisted of periodic sequences of 500

stimulus pulses delivered every 1.7 s (Kita and Kita, 2011). We also

considered two-pulse stimulation where two pulses were delivered

every 1.7 s.We refer to the first of the two pulses as priming stimulus

and to the second pulse as test stimulus. The priming stimulus was

centered at sCTX = −1s/2 and the test stimulus was delivered after

1t and centered at sCTX = 1s/2. 1s and 1t were varied. The

two-pulse stimulation setup is illustrated in Figure 2.

2.3. Numerical details

Numerical integration was performed using the Euler–

Maruyama method (Kloeden and Platen, 1992) with an integration

time step of 0.05 ms. Numerical integration and data analysis

was done in python. The times when the dynamics of individual

neurons was reset were considered as the spike times.

The peristimulus time histograms (PSTHs) in Figures 3, 4

were calculated as follows: first, simulations were run for five

different trials, i.e., while the same realizations of single neuron

parameters and network realizations were used in each trial,

different realizations of the noisy input currents and Poisson inputs

were considered. After, 40 s of simulated time the stimulation

was started. A total of 500 stimuli was delivered for one-site

stimulation. From the recorded spike trains, PSTHs were calculated

by estimating the probability of a spike of the neuron in the very

center of the sX axes during a certain time bin of width 1 ms relative

to the closest stimulus onset. Results are shown in Figures 3, 4.

To estimate the distributions of single-neuron mean firing

rates (Figure 6), we performed simulations of 96 trials for each of

the networks and each value of NSTN,GPe. For each neuron, the

mean firing rate was estimated by calculating the number of spikes

during a time interval of nine seconds starting after 31 seconds of

simulated time. Results in Figure 6, show a histogram of the single-

neuron mean firing rates of the center 30 STN (−1/6 < sSTNi <

1/6) and the center 100 GPe neurons (−1/6 < sGPei < 1/6).

To estimate the spatio-temporal responses in Figures 5, 7, 8,

we performed simulations for 24 trials and calculated PSTHs as

in Figures 3, 4 for neurons at different coordinates sX. From these

PSTHs, the probability for a neuron with coordinate between sX

and sX+0.01/L (STN and GPe) and sX and sX+0.001/L (CTX and

MSN) at a time lag between t and t + 1 ms relative to the closest

stimulus onset was estimated by calculating the average number of

spikes in that time and coordinate bin per trial and stimulus from

the set of obtained single-neuron PSTHs. For one-site stimulation

(Figures 5, 7) 500 stimuli were delivered, as in Figures 3, 4. For

two-site stimulation (Figure 8), 500 pairs of stimuli were delivered.

For each data point in Figure 9, we performed simulations

similar to the ones in Figure 8 for two scenarios. In the first

scenario, one-site stimulation was delivered to the cortical location

1s/2 and in the second one two-site stimulation was delivered to

±1s/2, respectively. Then, LX
base

(Equation 13) and L
X
re (Equation

14) were calculated as described in Section 3.6.

3. Results

Responses of STN and GPe neurons evoked by cortical

stimulation were studied in monkeys (Nambu et al., 2000; Kita

et al., 2004; Polyakova et al., 2020) and in rodents (Kita and

Kita, 2011). Electrical stimuli were delivered to the motor cortex
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FIGURE 2

Schematics of two-pulse stimulation. (A) The priming stimulus (red) and the test stimulus (yellow) were delivered to two cortical locations. The

distance between these locations was 1s. (B) We delivered periodic sequences of priming and test stimuli and studied how the time lag, 1t, and the

distance between stimuli, 1s, a�ected the response of BG neurons.

FIGURE 3

PSTHs obtained from computational model. (A–D) PSTHs for the center STN (A, C) and the center GPe (B, D) neuron obtained from simulations for

the N-network. Colored curves show single-neuron PSTHs for five di�erent trials. In each trial 500 stimuli were delivered and the center neurons’

PSTHs were recorded. The black curves show averages of these trials. Simulations were performed for two N-networks with di�erent numbers of

STN to GPe connections, NSTN,GPe, corresponding to a small projection area (NSTN,GPe = 3 as used in Hahn and McIntyre, 2010) and to a large

projection area (NSTN,GPe = 30 as used in Lindahl et al., 2013), respectively. The vertical dotted line marks the stimulus delivery at t = 0 and the

horizontal gray line marks the baseline firing rates rSTN and rGPe in the absence of stimulation.

(Nambu et al., 2000; Kita et al., 2004; Kita and Kita, 2011;

Polyakova et al., 2020) and the primary sensory cortex (Nambu

et al., 2000) and PSTHs of responding STN and GPe neurons

were recorded.

Responses of STN neurons showed an early and a late

excitation followed by a long inhibition, whereas responses of

GPe neurons showed an early excitation, an inhibition, and a

late excitation. These characteristics were observed in rodents

and in monkeys. Combining cortical stimulation with local drug

injection, experiments inmonkeys revealed that these characteristic

features result from the interplay of two pathways: the cortico-STN

glutamatergic hyperdirect pathway and the cortico-striato-GPe-

STN indirect pathway (Kita et al., 2004; Kita, 2007; Jaeger and Kita,

2011; Polyakova et al., 2020).

Using our computational model, we explored how the

characteristics of motor cortical stimulation-evoked responses

depend on synaptic network connectivity. To this end, we

mimicked the experimental setup in our computational model and

studied PSTHs of STN and GPe neurons. We delivered cortical

stimulation (Model and methods). Cortical stimuli were centered

at sCTX = 0, if not mentioned otherwise.

3.1. Evoked responses in computational
model

PSTHs obtained from simulations of our computational model

are shown in Figure 3. PSTHs of STN and GPe neurons show the

typical characteristics observed in experiments. In particular, the

characteristic sequence of an early excitation, a late excitation, and a

long inhibition in responding STN neurons (Figures 3A, C) and the

sequence of an early excitation, an inhibition, and a late excitation

in respondingGPe neurons (Figures 3B, D) were reproduced by our

computational model.

The number of STN→GPe connections had a strong impact

on how well the individual features were pronounced. The early

excitation in GPe neurons was most pronounced for NSTN,GPe = 3

(Figure 3B), whereas it became less pronounced for large NSTN,GPe

(Figure 3D). This was because the model with NSTN,GPe = 3 had

stronger excitatory STN to GPe connections. The corresponding

maximal conductance was chosen such that the STN and GPe

firing rates were close to experimental data. Consequently, a small

number of STN inputs strongly excited postsynaptic GPe neurons

(see Table 3).
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FIGURE 4

Local blockage of incoming connections a�ects evoked responses. (A–F) PSTHs for center STN (A, C, E) and center GPe (B, D, F) neurons obtained

from simulations of the N-network, when incoming connections of respective types were blocked. Thin colored curves show single-neuron PSTHs

from five di�erent trials, each averaged over 500 stimuli. Black curve shows average over PSTHs from di�erent trials. The red curve shows the control

case (same as black curves in Figures 3A, B). Simulations were performed for three di�erent cases: (top) all incoming cortical connections to the

center three STN neurons were blocked; (center) all incoming GPe connections to the center three STN neurons were blocked; and (bottom) all

incoming STR MSN connections to the center three GPe neurons were blocked. The vertical dotted line marks the stimulus delivery at t = 0 and the

horizontal gray line marks baseline firing rates in the absence of stimulation. Parameters: NSTN,GPe = 3.

3.2. Glutamatergic and GABAergic inputs
shape cortically evoked responses

Experimental studies explored the origin of the characteristic

pattern of excitations and inhibitions in the PSTHs. In monkeys,

incoming connections were blocked by local injection of

GABA and glutamate antagonists (Kita et al., 2004; Polyakova

et al., 2020). In our computational model, we created similar

scenarios by cutting incoming connections to individual

STN or GPe neurons. The resulting PSTHs are shown

in Figure 4.

Cutting cortical inputs to single STN neurons led to a reduction

of the amplitude of the early excitation in the response of these

neurons to cortical stimuli (Figure 4A). Furthermore, their mean

firing rate decreased. In responding GPe neurons, cutting cortical

input to STN neurons reduced the amplitude of the early excitation

substantially (Figure 4B).

Cutting all GPe inputs to the responding STN neurons strongly

diminished the amplitude of the second excitation and the late

inhibition. Furthermore, it increased the mean firing rate of STN

neurons (Figure 4C). It also led to slow, damped oscillations of

the instantaneous firing rate following the initial early excitation

(Figure 4C). In responding GPe neurons, we also found an increase

in the mean firing rate. Furthermore, the amplitude of the early

excitation increased, and slow oscillations occurred after the second

excitation (Figure 4D).

Finally, cutting striatal inputs to responding GPe neurons

led to a reduction of the amplitude of the second excitation

of responding STN neurons and to a shortening of the

late inhibition (Figure 4E). In responding GPe neurons, it

strongly suppressed the inhibition between early and late

excitations (Figure 4F).

3.3. Spatio-temporal characteristics of
cortical stimulation-evoked responses

Next, we studied the spatio-temporal characteristics of

cortically evoked responses in the computational model. To this

end, we analyzed the trial-averaged responses of BG neurons with

different coordinates (see schematics in Figure 1).

In Figure 5, we show the trial-averaged instantaneous firing

rate, p(t, sX), of a neuron with coordinate sX in nucleus X. For

comparison, we marked the mean firing rate of cortical neurons

(4 Hz), STR MSNs (0.67 Hz), STN neurons (11.8 Hz), and of GPe

neurons (30.4 Hz) on the color axes in Figure 5. The response of

BG neurons strongly depended on their baseline firing rate and on

|sX|, i.e., the coordinated difference to the stimulus center. Neurons

with similar coordinates as the stimulated cortical neurons, sX ≈ 0,

possessed the characteristic responses presented in Figure 3. STN

neurons with small |sSTN| showed a pronounced late inhibition

(Figure 5B). In the GPe, neurons with moderate |sGPe| showed

a substantially shorter late excitation than GPe neurons with

|sGPe| ≈ 0. The dependence of cortically evoked responses on

the coordinate sX was more pronounced for large NSTN,GPe = 30

(Figures 4C, D).

Motivated by the impact of NSTN,GPe on the evoked responses

of BG neurons, we studied the impact of the network structure

on the distributions of single-neuron mean firing rates and the

spatio-temporal characteristics of cortically evoked responses.
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FIGURE 5

Cortically evoked spatio-temporal responses in a simulated N-network. Rows show responses of inner CTX (top), MSN (second to top), STN (second

to bottom), and GPe neurons (bottom). Columns (A, B) show results of the computational model for NSTN,GPe = 3 and columns (C, D) show results for

NSTN,GPe = 30. (A) Raster plots of spiking activity in the computational model triggered by a cortical stimulus at t = 0. y-axes shows neuron

coordinates, sX. (B) trial-averaged instantaneous firing rate p(t, sX) of neurons at location sX obtained by averaging over 500 stimuli and 24 realizations

of noise and Poisson input. Color code indicates firing rate changes relative to baseline firing rate in the absence of stimulation (white). Increases in

firing rate are shown in red/black and decreases in blue. (C, D) Same as (A, B) but for NSTN,GPe = 30. Parameters: NSTN,GPe = 3 (A, B) and NSTN,GPe = 30

(C, D). CTX stimuli were centered at sCTX = 0.

3.4. Network structure shapes distribution
of single-neuron mean firing rates

Next, we analyzed how the network connectivity affected the

dynamics of STN and GPe neurons. We considered three network

structures: N-networks, D-networks, and S-networks. N-networks

were obtained by implementing outgoing synaptic connections

such that the presynaptic neurons connect to postsynaptic neurons

with similar coordinates. D-networks were obtained in the same

way, except that 10% of synaptic connections were randomly

selected and displaced systematically (Model and methods). Lastly,

S-networks were obtained like N-networks except that neurons

were only allowed to project to every second neuron in the

postsynaptic nucleus (see Model and methods for more details).

Estimated distributions of single-neuron mean firing

rates of STN and GPe neurons obtained from simulations of

the computational model are shown in Figure 6. Firing rate

distributions were unimodal except for D-networks and small

NSTN,GPe. For the latter, individual STN to GPe connections

were strong, and random displacement of connections in the

D-network led to variability in the number of incoming STN

connections per GPe neuron. Few incoming connections resulted

in low mean firing rates, whereas many incoming connections

resulted in high mean firing rates. This led to the additional peaks

in Figure 6B.

Following, we will restrict our analysis to networks with

NSTN,GPe = 3, thereby modeling a high degree of specificity

of STN→ GPe connections as reported by experimental studies

in monkeys (Shink et al., 1996). We continue by analyzing

how the network structure affects the spatio-temporal pattern of

evoked responses.

3.5. Network structure shapes evoked
spatio-temporal responses

We studied cortically evoked responses in N-networks, D-

networks, and S-networks. Figure 7 shows simulated responses of

BG neurons to cortical stimuli for the three network structures.

Column A shows the results for the N-network from Figure 5B. In

the D-network, a displacement of randomly selected connections

by d = 0.15L led to additional responses of STN neurons near

sSTN = 0.15L and responses of GPe neurons near sGPe = 0.15L

(Figure 7B). We also find that the evoked response of neurons with

lower baseline activity deviated from the characteristic response

patterns (blue horizontal lines in Figure 7B). In contrast, in an S-

network, neurons showed less pronounced response patterns than

in N-networks and overall reduced baseline activity (Figure 7C).

The strong variability of single-GPe neurons’ mean firing

rates in D-networks (see also Figure 6) can be seen in Figure 7B.
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FIGURE 6

Distribution of single-neuron mean firing rates depended on network structure. Panels (A–D) show distributions of single-neuron mean firing rates

for an N-network, a D-network, and an S-networks. The left column shows simulation results for STN and the right column results for GPe neurons.

Panels (A, B) show results for NSTN,GPe = 3 and panels (C, D) for NSTN,GPe = 30. Estimates of single-neuron mean firing rates were obtained by

counting the number of spikes in a simulated time window of 9 s. Prior to that a 31 s time window was simulated to ensure stationary dynamics.

Mean firing rates of the inner 30 STN neurons (−1/6 < sSTNi < 1/6) (A, C) and the inner 100 GPe neurons (−1/6 < sGPei < 1/6) (B, D) for a total of 96

realizations of the noise and the Poisson input are shown.

FIGURE 7

Representative cortically evoked spatio-temporal responses in an N-network, a D-network, and an S-network. Rows show spatio-temporal response

patterns of CTX (top), MSN (second to top), STN (second to bottom), and GPe neurons (bottom). Columns (A–C) show results from simulations of

the computational model for an N-network (A), a D-network (B), and an S-network (C). Blue arrows mark displacement d = 0.15L in D-network.

Results were averaged over 24 trials with di�erent realizations of noise and Poisson input. For each trial results were averaged over a sequence of 500

stimuli. Cortical stimuli were centered at sCTX = 0. Responses of individual STN and GPe neurons strongly depended on, |sX|, with X=STN,GPe (see

also Figure 5).
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While neurons at some coordinates, sGPe, fired at a low rate and

responded only weakly to cortical stimuli, others were highly active

and showed strong responses. In our computational model, this

resulted in high trial-averaged instantaneous firing rates p(t, sGPe)

for certain sGPe and low p(t, sGPe) for others.

So far, our results suggest that alterations of the network

connectivity lead to changes in the evoked spatio-temporal

response pattern. We studied two types of alterations: first, in

D-networks, we randomly selected 10% of the connections and

exchanged the postsynaptic neurons by postsynaptic neurons

at different locations (shifted by d relative to the original

postsynaptic neuron). This led to a weaker response in the

original target region and an additional response in another

region. Second, in S-networks, the responding region was larger;

however, responses to cortical stimulation were weaker as a

whole.

3.6. BG responses to cortical two-site
stimulation

Next, we delivered a sequence of pairs of priming and

test stimuli to different cortical coordinates. This mimicked the

stimulation of neuronal populations representing different features.

In our computational model, this was implemented by delivering

the priming stimulus to a cortical population centered at sCTXI =

−1s/2 and the test stimulus to a population centered at sCTXII =

1s/2 (Figure 2). The stimulus profiles were given by Equation

(10).

Representative spatio-temporal responses for 1s = 0.1L are

shown in Figure 8. For a rather large time lag of 1t = 100 ms,

each stimulus caused spatio-temporal responses that were similar

to the ones caused by a single stimulus in the respective network

(compare Figures 7, 8).

Next, we performed a more detailed analysis of the response

patterns. To this end, we compared two cases: (i) only the test

stimulus was delivered to sCTXII = 1s/2 at time ts and (ii) the

priming stimulus and the test stimulus were delivered: the priming

stimulus to sCTXI = −1s/2 at time ts − 1t and the test stimulus

to sCTXII = 1s/2 at time ts. Note that we only considered positive

inter-stimulus intervals, 1t > 0. In what follows, we mark

quantities corresponding to case (i) by the index “i” and quantities

corresponding to case (ii) by the index “ii”.

For our analysis, we averaged the trial-averaged PSTHs of

all neurons with coordinates that were close to sCTXII , i.e., sX ∈

[1s/2− A/2,1s/2+ A/2], with X=STN,GPe. Here, A is the width

of the coordinate range over which responses were averaged. In

the case (i), only the test stimulus was delivered at time ts to the

stimulation site at 1s/2. We denote the average response of BG

neurons in nucleus X with sX ∈ [1s/2 − A/2,1s/2 + A/2] at

time t as FX
(i)
(t|1s/2). In case (ii), an additional priming stimulus

was delivered to the stimulation site at −1s/2 at time ts − 1t. We

denote the average response of BG neurons in nucleus X with sX ∈

[1s/2−A/2,1s/2+A/2] at time t asFX
(ii)
(t|1s/2,−1s/2,1t). We

used A = 0.045L.

To study how much the presence of the priming stimulus

alters the response evoked by the test stimulus, we evaluated two

quantities. The first quantity was

L
X
base(1t,1s) : =

∫ ts

ts−T−

dt

∣

∣

∣

∣

F
X
(ii)

(

t

∣

∣

∣

∣
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2
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2
,1t

)

− F
X
(i)

(

t

∣

∣

∣
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2
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∣

∣

2

. (13)

Here, T− > 0 is the time range prior to the test stimulus during

which the change of the neurons’ trial-averaged instantaneous

firing rate due to the presence of the priming stimulus was

evaluated. LX
base

(1t,1s) measures how much the presence of the

priming stimulus affects spiking of neurons in nucleus X shortly

before their evoked response to the test stimulus. It therefore

provides information on howmuch the baseline activity of neurons

in nucleus X is affected by the priming stimulus. The second

quantity we evaluated was

L
X
re(1t,1s) : =

∫ ts+T+

ts

dt

∣

∣

∣
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L
X
re(1t,1s) measures how much the presence of the priming

stimulus affected the responses of neurons in nucleus X evoked by

the test stimulus.

In Figure 9, we show results for LX
base

(1t,1s) and L
X
re(1t,1s)

for an N-network, a D-network, and an S-network obtained

from simulations of our computational model. LX
base

(1t,1s) and

L
X
re(1t,1s) showed different dependencies on 1t and 1s. For

short inter-stimulus intervals, 1t, LX
base

(1t,1s) was close to zero,

indicating that the baseline activity prior to the test stimulus was

not affected by the presence of the priming stimulus. For long inter-

stimulus intervals, LX
base

(1t,1s) increased and finally saturated for

fixed 1s as more and more of the response evoked by the priming

stimulus impacts the baseline activity of neurons before their

response to the test stimulus. The saturation for large 1t indicates

that the impact of the response evoked by the priming stimulus was

over before neurons responded to the test stimulus. Additionally,

increasing the coordinate difference, 1s, between stimulated

cortical subpopulations reduced the impact the priming stimulus

had on neurons responding to the test stimulus in N-networks

and S-networks. Accordingly, a characteristic width of functional

channels in which cortical inputs are processed independently

may be derived. In contrast, in D-networks LX
base

(1t,1s) attained

another local maximum as a function of 1s when 1s was close to

the displacement, d, of synaptic connections (Figures 9E, G).

Remarkably, LX
re(1t,1s) showed a more complex dependence

on 1t and 1s than L
X
base

(1t,1s). Several local maxima occurred

at small 1s and at 1t ≈ 5 − 10 ms, 1t ≈ 30 − 40 ms, and

1t ≈ 50−60 ms for STN neurons (Figure 9B) and at1t ≈ 10−15

ms for GPe neurons. A comparison of these times with the PSTHs

in Figure 3 suggested that they correspond to the timings of the two

excitations and the gap in between in the PSTHs of STN neurons

(Figure 3A) and the timing of the first excitation in the PSTHs of

GPe neurons (Figure 3B). However, the delay between STN and

GPe neurons needs to be considered (1 ms in simulations; however,

it took about 5 ms for the postsynaptic neurons to respond to
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FIGURE 8

Spatio-temporal response to cortical two-site stimulation. Panels (A–C) show representative trial-averaged responses of simulated BG and cortical

neurons at di�erent locations, sX, to cortical two-site stimulation. Stimulation sites were at ±1s/2 and the inter-stimulus interval was 1t. Column (A)

shows results for an N-network, column (B) results for a D-network, and column (C) results for an S-network. Blue arrows mark displacement

d = 0.15L in D-network. Rows show the instantaneous firing rates of neurons at location sX in the cortex, the striatum, the STN, and the GPe (from

top to bottom). Parameters: σs = 0.05L/π , 1s = 0.1L, 1t = 100 ms, NSTN,GPe = 3. Results were averaged over 500 stimuli and 24 realizations of noise

and Poisson input.

incoming excitatory input due to the finite time constant of the

membrane potential).

Most remarkable, for all considered network structures,

L
STN
re (1t,1s) was more sensitive than L

X
base

(1t,1s) or

L
GPe
re (1t,1s) in the sense that the influence of the priming

stimulus was measurable for larger 1s, i.e., when stimulation

sites were further apart. In particular, an inter-stimulus interval

of about 30 − 40 ms between the stimulus deliveries led to

the largest coordinate difference between stimulation sites for

which the influence of the second stimulus was measurable using

L
STN
re (1t,1s) (Figures 9B, F, J). Note that this time interval

also corresponded to the inter-stimulus intervals for which

L
STN
re (1t,1s) showed a local maximum for at 1s ≈ d in

D-networks (Figure 9F).

4. Discussion

Cortically evoked responses of STN and GPe neurons exhibit

characteristic sequences of excitations and inhibitions that were

observed in rodents (Kita and Kita, 2011) and primates (Nambu

et al., 2000; Kita, 2007; Jaeger and Kita, 2011; Polyakova et al., 2020).

We developed a computational model of the STN-GPe circuit

that reproduced these response characteristics and related them

to aspects of the topology of synaptic connections. Furthermore,

we presented a one- and a two-site stimulation technique to

quantify the width of functional channels in the BG network.

Our results suggest that details of the synaptic connectivity

are critical for the processing of cortical signals. They further

support the use of computational models that include synaptic

connectivity that is derived from experimental findings rather

than random connections. The presented one- and two-site

stimulation protocols enable probing of connectivity patterns in

preclinical experiments. Based on our computational results on

the effect of alterations of network connectivity on cortically-

evoked responses, one may design preclinical experiments to falsify

or verify our predictions. With such a combined computational

and experimental approach, one may reveal further characteristics

of synaptic connectivity in the BG and may identify patterns of

synaptic reorganization in neurological diseases, e.g., Parkinson’s

disease.

The characteristic pattern of excitations and inhibitions in

cortically evoked responses of STN and GPe neurons was studied

experimentally (Nambu et al., 2000; Kita et al., 2004; Kita, 2007;

Kita and Kita, 2011; Polyakova et al., 2020). Cortical stimulation

triggered characteristic responses of STN neurons that consisted of

an early excitation and a late excitation, which were separated by a

gap, and a long, late inhibition (Nambu et al., 2000; Polyakova et al.,

2020). In GPe neurons, responses showed an early excitation that

was followed by an inhibition and a late excitation (Nambu et al.,
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FIGURE 9

Modulation of evoked responses by a priming stimulus. Panels (A–D) show results for N-networks, panels (E–H) for D-networks, and panels (I–L) for

S-networks. In the left column, we show the natural logarithm of LX
base(1t,1s) and in the right column the natural logarithm of LX

re(1t,1s) for

X = STN and X = GPe, respectively. Parameters: NSTN,GPe = 3. PSTHs used for the calculation of LX
base(1t,1s) and L

X
re(1t,1s) were averaged over

sequences of 500 stimuli and over 24 realizations of noise and Poisson input. For D-networks, we used d = 0.15L (red, dashed line). T+ = 200 ms and

T− = 190 ms.

2000; Kita, 2007; Jaeger and Kita, 2011). These features were well

reproduced by our computational model (Figure 3).

Polyakova et al. (2020) found that local injection of glutamate

receptor antagonists into the STN diminished the early excitation,

and that the injection of muscimol (a GABA receptor agonist) into

the striatum or the GPe diminished the late excitation. Their results

supported the suggestions of earlier studies that the early excitation

in the evoked response of STN neurons is caused by glutamatergic

input via the cortico-STN hyperdirect pathway and the late

excitation results from disinhibition due to GABAergic input via

the cortico-striato-GPe-STN indirect pathway (Nambu et al., 2000).

In our computational model, we modeled these experiments by

cutting glutamate inputs to single STN neurons (to mimic the

local injection of glutamate receptor antagonists) and by cutting

inhibitory inputs to STN neurons (to mimic the local injection of

GABA antagonists) (Figure 4). In accordance with Polyakova et al.

(2020) we observed a suppression of the early excitation in the

former case (Figure 4A) and a suppression of the late excitation

in the latter case (Figure 4C). However, in our computational

model, the latter case also led to damped beta oscillations in the

instantaneous firing rate of STNneurons (Figure 4C). Such damped

oscillations were not reported by Polyakova et al. (2020). However,

Polyakova et al. reported high variability in the amplitude of the

early and late excitations in the responses of STN neurons after

local injection of a GABA antagonist. In our computational model,

cutting GPe inputs to STN neurons destabilized the characteristic
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response pattern of excitations and inhibitions in both responding

STN and GPe neurons (Figures 4C, D). A similar destabilizing

effect may occur in the experiments and may cause high variability

of the amplitudes of excitations among responding STN neurons

(Polyakova et al., 2020). Together, these findings suggest that the

GPe→STN connections are critical for the GPe-STN network to

process cortical input and stabilize baseline activity. The results

from our computational model further suggest that cutting STR

MSN inputs to single GPe neurons would diminish the inhibition

in the GPe neurons’ responses (Figure 4F) and also reduce the

amplitude of the late excitation in the evoked response of STN

neurons (Figure 4E). These results are in accordance with other

experiments by Polyakova et al. (2020) in which the injection of

muscimol into the putamen reduced the amplitude of the second

excitation in STN neurons substantially. Our results on the effect

of cutting STR MSN inputs to GPe neurons are also in line

with the experimental results of Kita et al. (2004); however, Kita

et al. injected a GABA antagonist locally into the GPe, which

also reduced GABAergic input from other GPe neurons and not

only STR MSN input. In our computational model, only STR

MSN inputs were cut, which resulted in a substantial weakening

of the inhibition in the response of GPe neurons (Figure 4F).

Furthermore, our computational results suggest that the late

excitation in the GPemay be partly due to excitatory input from the

STN and partly due to disinhibition after striatal inhibition. This is

in accordance with previous results by Kita and colleagues (Kita

et al., 2004; Kita, 2007).

The variability of the STN and GPe neurons’ baseline firing

rates contributed to the variability of single-neuron responses

to cortical stimuli in our computational model. In more detail,

the characteristic features of neuronal responses were most

pronounced among neurons with high baseline activity (see

Figures 5, 7). Unfortunately, it is difficult to compare the responses

of STN or GPe neurons with low mean firing rates to cortical

stimuli to experimental data, because such neurons were often

excluded from the analysis in experimental studies (Kita et al., 2004;

Kita and Kita, 2011; Polyakova et al., 2020).

N-networks and S-networks resulted in unimodal distributions

of single-neuron mean firing rates for STN and GPe neurons

(Figure 6). In contrast, in D-networks, baseline firing rates of GPe

neurons showed a multimodal distribution (Figure 6B). The shapes

of these distributions obtained from our computational model

reproduced experimental data for STN neurons as observed in

studies in rat brain slices qualitatively; a histogram of single-neuron

firing rates of tonically spiking STN neurons in rat brain slices can

be found in Beurrier et al. (1999). However, the mean firing rate

in that study was higher than in our model, as our model was

fitted to experimental data from anesthetized rats presented in Kita

and Kita (2011). A histogram of single-neuron mean firing rates of

GPe neurons can be found in Figure 8B of Miguelez et al. (2012).

There, a significant portion of GPe neurons did not spike (≈ 25%

in Miguelez et al., 2012), and the broad distribution of single-

neuron mean firing rates of GPe neurons suggests high variability

of single-neuron mean firing rates. In our model, GPe neurons

with a small number of incoming STN connections possessed very

low firing rates (Figure 6B). High variability of single-neuron mean

firing rates occurred due to variability in the number of incoming

STN→GPe connections, which was only realized in D-networks

for a small number of STN→GPe connections, NSTN,GPe = 3.

For the latter, individual connections were substantially stronger

than for NSTN,GPe = 30 because parameters were adjusted to fit

the STN and GPe firing rates to experimental data (Figure 5B). The

random displacement of connections in D-networks led to broader

distributions of single-neuronmean firing rates in D-networks than

in N-networks or in S-networks.

Our results suggest that cortical stimulation results in complex

spatio-temporal response patterns in the STN and GPe. These

patterns result from the propagation of signals along the cortico-

STN hyperdirect pathway and along the cortico-striato-GPe-

STN indirect pathway (Figure 1B), and the convergence of these

pathways onto the same regions in the STN and the GPe. In our

computational model, these patterns strongly depended on the

underlying structure of synaptic connections (Figure 7). Evidence

from animal models suggests that the synaptic network structure in

the BG nuclei is impaired in the dopamine-depleted state in animal

models for Parkinson’s disease (Fan et al., 2012; Miguelez et al.,

2012; Chu et al., 2015; Pamukcu et al., 2020). Modulation of evoked

responses of individual BG neurons in the dopamine-depleted state

has been reported and analyzed by Kita and Kita (2011) in a

rodentmodel for Parkinson’s disease. The authors observed that the

characteristic patterns of excitations and inhibitions were strongly

affected by dopamine depletion. Our results suggest that dopamine

depletion may also affect the spatio-temporal pattern of evoked

responses and affect the structure of parallel functional channels in

the BG.

In the present paper, we studied three types of networks: a

base case with an intact functional channel structure and two

cases in which this structure was perturbed. In the base case,

neurons projected to neurons expressing similar features. This was

realized inN-networks by connecting neurons with similar (spatial)

coordinates sX (Figure 1C1). This mimicked an intact somatotopic

organization of synaptic connections (Nambu, 2011) and precise

reciprocal loops between STN and GPe (Kita, 2007). In addition,

we considered two types of altered network structures: First, in D-

networks a shift in synaptic connectivity was induced for a fraction

of the neurons such that they would connect to neurons with

shifted (spatial) coordinates sX + d (Figure 1C2). Second, in S-

networks, neurons projected to an enlarged area in the postsynaptic

nucleus such that neurons with less similar coordinates were

also targeted (Figure 1C3). The described changes in the network

structure had a strong impact on cortically evoked spatio-temporal

responses of STN and GPe neurons. While cortical stimulation

in N-networks only triggered responses of neurons with similar

coordinates, a second neuronal population expressing different

features responded in D-networks. Interpreting these results,

stimulation or activation of a cortical region corresponding to a

certain body part or motor program would also activate neuronal

populations representing different body parts or motor programs

in D-networks. Such a perturbation of the BG structure may lead to

the inability to activate these body parts independently. In contrast,

in S-networks, cortical stimuli triggered less pronounced responses

but of a bigger neuronal population. Such an alteration of the BG

structure may correspond to less coordinated motor movements

in response to cortical activation. Evidence from animal models
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suggests that a reorganization of network connectivity emerges in

several BG related movement disorders, e.g., Parkinson’s disease

(Bronfeld and Bar-Gad, 2011). Experimental studies in the MPTP

monkey model suggest that both types of impairment, i.e.,

responses to different body parts (D-network) and broadening

of the projection region (S-network), may occur in the BG in

Parkinson’s disease. Boraud et al. (2000) reported that, under

normal conditions, arm- and leg-related GPi neurons occurred

in clusters and were linked to a single joint. In contrast, in the

MPTP monkey model for Parkinson’s disease, the overall number

of responding neurons increased, and most responding neurons

were linked to multiple joints (Boraud et al., 2000). Filion et al.

(1988) reported that in MPTP monkeys, more globus pallidus

neurons responded to the movement of a certain body part. Also,

neuronal responses were elicited by the movement of more than

one joint and by movements in different directions. Furthermore,

some neurons responded to the movement of both upper and lower

limbs on both the ipsi- and the contralateral sides. In contrast, in

healthy animals, responses were only caused by the movement of

a single joint on the contralateral side and in one direction (Filion

et al., 1988). In rats, Cho et al. (2002) analyzed the reorganization

in the lateral striatum (sensorimotor striatum) following 6-OHDA

lesion. In controls, STR neurons that responded to the same body

part were organized in clusters. However, after 6-OHDA lesion,

the cluster size was reduced, and the portion of STR neurons

that responded to more than one body part increased by a factor

of 16 (Cho et al., 2002). These findings supported a hypothesis

advanced by Mink (1996) that the BG’s primary role may be the

focused selection of the “correct” motor program and inhibition

of competing ones. Synaptic reorganization in disorders such as

Parkinson’s disease would diminish action selection and cause

motor symptoms.

Of particular interest for further analysis of the synaptic

network structure of the BG would be to measure aspects of

the synaptic connectivity in experiments. In earlier studies, the

organization of cortico-STN connections was analyzed in tracer

studies in monkeys (Monakow et al., 1978; Nambu et al., 1996).

Furthermore, in Jeon et al. (2022), neuroanatomical techniques

were used to construct 3D connectivity maps in mice and

compare them to results from 7T MRI and tractography studies in

humans. In the present study, we suggested a two-site stimulation

protocol in which a test and a priming stimulus are delivered

to two cortical stimulation sites at a certain distance and with

a certain inter-stimulus interval. Analyzing how the priming

stimulus influences the response of neurons to the test stimulus,

we found that if the priming stimulus is applied long (> 100

ms) before the test stimulus, varying the spatial distance between

cortical stimulation sites yields an approximate “channel width,”

characterizing the width of the cortical area in which stimulation

activates the considered area in the STN or GPe (Figures 9A, C).

This method may be used to analyze the spatial characteristics

of the somatotopic organization in the BG. To realize two-site

stimulation in an experiment, the response of single BG neurons

to cortical stimuli would be measured, similar to the experiments

performed by Nambu et al. (2000); Kita et al. (2004); Jaeger and

Kita (2011); Kita and Kita (2011); and Polyakova et al. (2020).

Then a priming stimulus would be administered with a time

lag 1t and at a distance 1s from the original, test stimulus.

Measuring the BG neuron’s PSTH for a long sequence of stimuli

and comparing it to the one in the absence of the priming

stimulus yields estimates of the quantities L
x
base

(1t,1s) and

L
x
re(1t,1s). Evaluating, these quantities for different 1t and 1s

yields similar data as the one shown in Figure 9 for each responding

BG neuron.

The presented two-site stimulation protocol also allowed us

to measure the displacement of synaptic connections in D-

networks. In these networks, neurons in the considered region

of the STN or GPe responded to stimulation of two distinct

cortical regions (Figures 9E–H). Our computational results suggest

that this method is most sensitive when the modulation of the

evoked response of STN neurons by an earlier cortical stimulus

rather than the modulation of their baseline activity is considered

(Figures 9B, F, J), in particular for an inter-stimulus interval of

about 30 − 40 ms. This time interval may be affected by synaptic

transmission delays and needs to be verified experimentally. In our

computational model, an approximate of the width of functional

channels was also obtained if the modulation of the baseline

activity of STN or GPe neurons by the presence of the cortical

priming stimulus was studied (Figures 9A, E, I). This approach

may also be realized by applying only one cortical stimulus

and studying variations of neuronal activity from their baseline

activity. However, the baseline activity may vary over time, whereas

evoked responses possess characteristic features. In general, two-

site stimulation may help to get a deeper understanding of the

topology of synaptic connections in the BG, the somatotopic

organization of the cortico-BG circuits, and to which extent this

structure is impaired in animal models of neurological disorders,

e.g., Parkinson’s disease.

More detailed information on the organization of synaptic

connections could inform future computational models.

Current computational models often either consider random

connectivity between nuclei, e.g., Lindahl et al. (2013); Ebert

et al. (2014); Madadi Asl et al. (2022a); Adam et al. (2022); Salehi

et al. (2023), or they incorporate parallel channels either by

considering macroscopic parallel circuits of randomly connected

subpopulations, e.g., Leblois et al. (2006); Fountas and Shanahan

(2017), or by constructing parallel channels on the scale of the

individual neurons, e.g., Terman et al. (2002); Hahn and McIntyre

(2010); Lourens et al. (2015). The latter is somewhat comparable

to the synaptic connectivity used in the present study. Our

results suggest that differences in the organization of synaptic

connections in computational models strongly impact cortically

evoked responses and likely affect other characteristics of neuronal

activity, such as synchronization or the existence of pathological

oscillations. An accurate implementation of synaptic connections

may be critical for generating clinically relevant hypotheses, e.g.,

about the response to brain stimulation.

Recently, Schmidt et al. (2020) related the shape of deep

brain stimulation-evoked potentials to the involved pathways.

While no information on somatotopic maps was revealed, the

authors suggested that the shape of deep brain stimulation-evoked

potentials may serve as a biomarker for adaptive deep brain

stimulation, or may guide parameter selection and electrodes

placement for deep brain stimulation in Parkinson’s disease
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(Schmidt et al., 2020; Dale et al., 2022). Our results may motivate

preclinical and clinical studies to use cortical as well as BG one- or

two-site stimulation to analyze the spatial arrangement of synaptic

connections between BG nuclei. Such insight may help to improve

computational models of the BG and models on high-frequency

deep brain stimulation as a treatment for medically refractory

Parkinson’s disease significantly.

To reduce complexity, we did not consider some aspects of the

STN and GPe nuclei during the derivation of our computational

model. For instance, recent experimental studies reported the

existence of multiple neuron types with distinct functionality

in the STN (Jeon et al., 2022) and the GPe (Mallet et al.,

2012; Abdi et al., 2015; Mastro et al., 2017), which may affect

network functionality such as the processing of cortical responses

and rhythm generation (Suryanarayana et al., 2019; Gast et al.,

2021). Neuron types in the GPe include prototypic neurons and

arkypallidal neurons (Mallet et al., 2012; Abdi et al., 2015). While

prototypic neurons have been found to project mainly to the

STN and down-stream nuclei, arkypallidal neurons project to the

striatum thereby providing feedback to this upstream nucleus.

Anatomical studies also reported projections of STN neurons to

the striatum (Beckstead, 1983; Kita and Kitai, 1987). Here, we

neglected upstream synaptic connections of the STN-GPe circuit

and focused on the most common neuron type in the GPe, i.e.,

prototypic neurons. There is also evidence from anatomical studies

that STN neurons form local axon collaterals suggesting recurrent

STN connections (Hammond and Yelnik, 1983; Gouty-Colomer

et al., 2018); However, recent studies performing simultaneous

multi-cell recordings in rat brain slices reported the absence of

functional intra-STN connectivity (Steiner et al., 2019). Therefore,

we did not consider synaptic connections between STN neurons in

our computationalmodel. Another simplification is the assumption

of a one-dimensional arrangement of the neurons along the sX-

axes. The STN and GPe are three-dimensional structures and

evidence from experimental studies suggests non-homogeneous

synaptic connectivity along different directions. For instance, STN

axons form band-like terminal fields in the globus pallidus that are

aligned with those of striatal axons (Hazrati and Parent, 1992). This

would likely impact spatio-temporal characteristics of cortically

evoked responses and the orientation of functional channels.

Furthermore, the somatotopic organization of STN and GPe nuclei

are more complex. For instance it includes multiple body maps

for inputs from the primary motor cortex and the supplementary

motor area, respectively (Nambu, 2011). Some experimental

evidence also suggests that within regions that represent a

certain body part neurons encoding similar motor features are

sometimes spread out across a larger area instead of clustering

together (DeLong et al., 1985). Further studies are required

to understand how these factors impact the spatio-temporal

response patterns evoked by cortical stimulation studied in the

present paper.

As explained above, the functional channels used in this study

are related to the impact, specifically spatial range and coverage

of electrical stimuli on parts of brain circuits (see Figure 2).

These functional channels are not meant to be building blocks

of a neural code as, e.g., activity sequences corresponding to

sub-second behavioral motifs (Markowitz et al., 2018). However,

disease-related changes as reflected by the width of these

functional channels may impact behaviorally relevant activity

sequences. Accordingly, functional channels may help elucidate

neuronal information processing under physiological as well as

pathological conditions.

In a future study, we want to address how characteristic

measures, such as the width of functional channels, can be

harnessed to calibratemultisite deep brain stimulation, for instance,

coordinated reset stimulation (Tass, 2003; Tass et al., 2012;

Adamchic et al., 2014; Wang et al., 2016, 2022; Bore et al.,

2022), random reset stimulation (Kromer and Tass, 2020; Khaledi-

Nasab et al., 2021a), and other multisite stimulation protocols

(Khaledi-Nasab et al., 2021b, 2022; Weerasinghe et al., 2021;

Kromer and Tass, 2022) for improving desynchronizing effects,

especially in the presence of reorganized somatotopic maps. In

computational studies, the desynchronization effect of coordinated

reset stimulation was more pronounced when individual stimuli

were delivered to segregated neuronal subpopulations (Popovych

and Tass, 2012; Lysyansky et al., 2013; Ebert et al., 2014; Zeitler

and Tass, 2015) suggesting that effective stimulation requires

appropriate spacing of stimulation sites, e.g., minimal distances

between the latter. This is in accordances with results from

preclinical studies on coordinated reset deep brain stimulation

in the MPTP monkey model, where weaker stimulation led to

more pronounced long-lasting effects (Tass et al., 2012), and

findings obtained in a clinical study on acoustic coordinated

reset stimulation in tinnitus patients, where larger gaps between

stimulus frequencies were correlated with better acute reduction of

tinnitus loudness and annoyance after 16 min of sound treatment

(Tass et al., 2019; Munjal et al., 2021). Future computational and

pre-clinical studies might use the functional channel width, as

introduced here, to determine optimal stimulation site spacing.
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Introduction: Intelligent recognition of electroencephalogram (EEG) signals can

remarkably improve the accuracy of epileptic seizure prediction, which is essential

for epileptic diagnosis. Extreme learning machine (ELM) has been applied to EEG

signals recognition, however, the artifacts and noises in EEG signals have a serious

e�ect on recognition e�ciency. Deep learning is capable of noise resistance,

contributing to removing the noise in raw EEG signals. But traditional deep

networks su�er from time-consuming training and slow convergence.

Methods: Therefore, a novel deep learning based ELM (denoted as DELM)

motivated by stacking generalization principle is proposed in this paper. Deep

extreme learning machine (DELM) is a hierarchical network composed of

several independent ELM modules. Augmented EEG knowledge is taken as

complementary component, which will then be mapped into next module. This

learning process is so simple and fast, meanwhile, it can excavate the implicit

knowledge in raw data to a greater extent. Additionally, the proposed method is

operated in a single-direction manner, so there is no need to perform parameters

fine-tuning, which saves the expense of time.

Results: Extensive experiments are conducted on the public Bonn EEG dataset.

The experimental results demonstrate that compared with the commonly-used

seizure prediction methods, the proposed DELM wins the best average accuracies

in 13 out of the 22 data and the best average F-measure scores in 10 out of the

22 data. And the running time of DELM is more than two times quickly than deep

learning methods.

Discussion: Therefore, DELM is superior to traditional and some state-of-

the-art machine learning methods. The proposed architecture demonstrates its

feasibility and superiority in epileptic EEG signal recognition. The proposed less

computationally intensive deep classifier enables faster seizure onset detection,

which is showing great potential on the application of real-time EEG signal

classification.

KEYWORDS

multilayer extreme learning machine, deep network, knowledge utilization, EEG, seizure

recognition

1. Introduction

Epilepsy is a common chronic neurological disease caused by sudden abnormal

discharge of neurons in human brain (Sanei and Chambers, 2013). Most epileptic

patients have no difference from common people when epileptic seizure does not appear,

but epilepsy has a serious effect on quality of human life, or even causes fatal harm
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(Iasemidis et al., 2003). Rapid and accurate diagnosis of epilepsy

is essential for the treatment of patients and the risk reduction of

potential seizures, and its relevant technique is urgently expected in

current society. Electroencephalogram (EEG) shows the electrical

activity of human brain recorded by amplifying voltage differences

between electrodes placed on the scalp or cerebral cortex. In

traditional epilepsy detection by doctors, visual marking of long

EEG recordings is a tedious and high-cost task with high

misjudgment rate, especially taking into account the subjectiveness

of experts (Wang et al., 2018).

EEG signal recognition plays an important role in the

assessment and auxiliary diagnosis of epilepsy (Ghosh-Dastidar

et al., 2007; Ahmadlou and Adeli, 2011; Ayman et al., 2023).

Careful analysis of the electroencephalograph records can provide

valuable insight and improved understanding of the mechanisms

causing epileptic disorders. Machine learning methods, such as

neural network (Subasi and Ercelebi, 2005; Kumar et al., 2010),

fuzzy system (Güler and Übeyli, 2005), support vector machine

(Panda et al., 2010; Nicolaou and Georgiou, 2012; Kumar et al.,

2014), and extreme learning machine (Liang et al., 2006b; Yuan

et al., 2011; Song and Zhang, 2013), have been extensively used

in EEG signal recognition. But some of the existing intelligent

methods perform poor in terms of classification accuracy, real-time

prediction and so on. As a novel paradigm of learningmethod, ELM

can not only learn rapidly with good generalization performance,

but also effectively overcome the inherent drawbacks of some

intelligent technologies. In recent years, ELM and its variants

(Huang et al., 2004, 2006, 2011a,b; Liang et al., 2006a; Betthauser

et al., 2017) have received increasing attention. However, its

shallow structure is deficient in extracting the significant implicit

information from the original data, which becomes the main

bottleneck restricting its development. As a popular trend in

machine learning, deep learning has confirmed that pattern

recognition can remarkably benefit from the knowledge learned

via hierarchical feature representation. Typical deep networks

include deep belief network (Hinton and Salakhutdinov, 2006;

Hinton et al., 2006; Plis et al., 2014), convolutional neural network

(Khan et al., 2017; Acharya et al., 2018; Choi et al., 2019), stack

autoencoder (Bengio et al., 2007; Vincent et al., 2010; Xu et al.,

2015), etc. There are many artifacts and noises in EEG signals,

which can seriously decrease recognition efficiency (Bengio, 2009;

Zhou and Chan, 2016; Bhattacharyya and Pachori, 2017). Deep

learning is exactly able to resist noise in recognition process and

can remove noise from EEG data (Huang et al., 2013; Deng

et al., 2016). However, conventional deep learning algorithm is

time-consuming with complicated structure and can easily lead

to overfitting in presence of limited available samples. In order to

tackle the aforementioned problems, ELM is gradually combined

with deep learning to generate a high-performance model (Tang

et al., 2014, 2015; Yu et al., 2015; Zhu et al., 2015; Duan et al., 2016;

McIntosh et al., 2020). However, most of the existing hierarchical

ELM models can hardly effectively use the knowledge learned in

previous layers.

ELM is popular for its high-speed response, real-

time prediction ability, network conciseness, and excellent

generalization performance. The thought of deep learning can be

beneficial to excavate the invisible value of input to the greatest

extent. To address the problem of lacking representational

learning, deep extreme learning machine (DELM) is proposed

to recognize EEG epileptic signals. The efficient deep classifier

is based on stacked structure, which in essence consists of

several modules whose hidden layer parameters are initialized

randomly. The proposed method forms a hierarchical structure

to aggregate some discrete and valuable information stepwisely

into knowledge for hierarchical representation. The previous

valuable information is fed into new input in the manner of

available knowledge and then transmitted to current sub-model,

which serves to implement the subsequent recognition task

better. According to stacking generalization theory, the output

of the next sub-model plus the knowledge of the previous

sub-model in DELM can indeed open the manifold structure

of the input space, which resulting an improved performance.

DELM have accomplish fast epileptic recognition and show

greater performance in EEG signal classification than traditional

ELM and some of the state-of-the-art methods, which makes it

possible to finish accurate epilepsy diagnosis in real time and

with high precision. The main contributions of this work are

as follows:

(1) DELM is a novel deep learning structure, which is the product

of the fusion of ELM and deep learning. DELM is composed

of original ELMs, accordingly, the new structure is inherently

brief, flexible to implement, and demonstrates a superior

learning performance. Additionally, the introduction of deep

representation ensures that valuable knowledge is refined and

not wasted. Learning rich representations efficiently is crucial

for achieving better generalization performance and informative

features can promote the accuracy. In our paper, the new

framework can achieve classification accuracy comparable to

that of existing deep network schemes in EEG recognition tasks,

while DELM takes the leading position in training speed.

(2) Motivated by deep learning, the proposed DELM is used to

capture useful information in multi-dimensional EEG variables.

DELM is a hierarchical framework, which incorporates a

stepwise knowledge augmentation strategy into original ELM.

It learns knowledge in an incremental way and expands it

in the manner of forward calculation. The current sub-model

can exploit knowledge from all previous sub-models and the

recognition results can be obtained in the last layer.

(3) DELM uses classic ELM as the basic building block, and each

module is the same as the original ELM structure. Supervised

learning performs throughout the whole learning process and

each sample has a tendency to approach to its own class under

the supervision.

The main differences of the proposed DELM and

traditional and deep learning methods are summarized

in Table 1. The rest of this paper is organized as follows.

Section 2 presents the details of deep extreme learning

machine proposed in our work and describes its learning

process. Section 3 introduces the experiment conducted

and compares the recognition performance of the proposed

method with that of existing conventional methods on real

EEG datasets. Finally, Section 4 concludes the findings of

the study.
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2. The proposed classifier DELM

2.1. The proposed architecture based on
deep representation

ELMwith L hidden neural units and activation function g(.) can

approximate these N samples with zero error, which is modeled as

(Huang et al., 2004):

L
∑

i=1

βig(wixj+bi) = tj, j = 1, ...,N (1)

where xi = [xi1, xi2, . . . , xin]
T ∈ Rn, ti = [ti1, ti2, . . . , tim]

T ∈

Rm, βi is the weight vector connecting the ith hidden node and

the output nodes, wi is the ith hidden node and the input nodes,

and bi represents the bias of the ith hidden node. For the sake of

convenience, the equation can be written in a compact form

Hβ = T (2)

with β = [β1, . . . ,βL]
T
m×L, T = [t1, · · · , tN]

T
m×N and

H(w1, ...,wL, b1, ..., bL, x1, ..., xN)

=









g(w1 · x1+b1) . . . g(wL · x1+bL)
... · · ·

...

g(w1 · xN+b1) · · · g(wL · xN+bL)









N×L

TABLE 1 Comparisons between the proposed DELM and traditional and

deep learning methods.

Models Running speed quickly Deep learning ability

ELM Yes No

Adaboost No No

DBN No Yes

SAE No Yes

DELM Yes Yes

where H is the hidden layer output matrix of neural network,

the ith column ofH is corresponding output of the ith hidden layer

unit with respect to inputs.

The solution of Equation 2 is equivalent to the next

optimization problem (Liang et al., 2006a):

∥

∥H(w1, ...,wL, b1, ..., bL)̂β − T
∥

∥

= min
β

∥

∥H(w1, ...,wL, b1, ..., bL)β − T
∥

∥

(3)

In most cases of practical application, the hidden layer neurons is

far less than the samples need be trained, L≪N. The output matrix

of the hidden layer is not a square matrix, and the minimum norm

least-squares solution of the above linear system can be calculated

by Equation 4 (Huang et al., 2011a):

̂β=H+T (4)

H+ denotes the Moore-Penrose generalized inverse of the output

matrix H. The theory of ELM is aimed at reaching not only the

smallest training error but also the smallest norm of output weights.

ELM is a shallow network composed of three layers

(respectively input layer, hidden layer and output layer), whose

representation capability is limited. Adequate representation of

the input is routinely desired to acquire an excellent performance

in the idea of deep learning. On account of the flexibility and

efficiency of ELMs, ELM is extended to the learning of deep

neural network (DNN) to shorten the learning time dramatically

and reduce the computational complexity without deserting their

original excellence. The proposed architecture constructed from

ELM building block is a new ELM-based stacked structure that

processes information layer by layer in order to utilize the learned

knowledge. Figure 1 depicts the architecture of the proposed

hierarchical method.

The proposed structure inherits the simplicity of the original

ELM, and then digestion and absorption of knowledge is performed

in multiple sub-model. In DELM, the initial EEG epileptic signal

is learned step by step in a forward manner. The representation

learned from the previous layer is regarded as new knowledge

and will then be taught. Upon the arrival of given input, the

FIGURE 1

The proposed hierarchical architecture.
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FIGURE 2

Stepwise knowledge learning in DELM.

corresponding linear system can be solved immediately in the

first ELM.

In a singleton ELM module, the knowledge generation process

is as follows. If HTH is nonsingular, the orthogonal projection

method can be used to calculate the generalized inverse of a matrix

(Huang et al., 2011b):

H+=

(

HTH
)−1

HT (5)

According to Equation 4 (Betthauser et al., 2017), we can get

̂β=

(

HTH
)−1

HTT (6)

For binary EEG classification applications, the decision function is:

f (x) = sign(g(x)β) (7)

g(.) maps the data from input space into the L-dimensional hidden-

layer feature space (ELM feature space). By inserting Equations 6

into Equation 7, we can obtain

f (x) = sign(g(x)
(

HTH
)−1

HTT) (8)

For multi-class EEG classification tasks, the corresponding

predicted label of sample is the index number of the output node

which has the highest output value for the given instance. fp denotes

the output function of pth node, then we have the predicted class

label of sample x:

label(x) = arg max
p∈{1,2,...,m}

fp(x) (9)

Each sub-model in a higher layer takes information transformed

from the decision output of the previous lower layers and appends

them as supplementary knowledge, enabling more relevant

representation to be handed over to the next generation. Deeper

representation is captured to build a hierarchical network until the

next additive ELM had no remarkable effect.

With deep representation in DELM, useful information is well-

explored and transmitted from the initial layer to the last layer,

bringing a more complete and precise expression of original input,

improving the knowledge utilization rate greatly and strengthening

the learning capability of ELM. Several ELMs are combined

together by means of a serial link and the response can be reused

in higher sub-model next to it. On the premise of meaningfulness

of extended ELM, the purpose of the previous submodel is to

convey the knowledge learned by previous layer. By updating the

knowledge community, the original manifold can be separated

apart in the end.

2.2. Knowledge augmentation based on
DELM

Adetailed introduction to knowledge transfer betweenmultiple

modules is provided in Figure 2. The input of n dimensional

attributes provides data for the first level to construct a traditional

ELM classifier. For N samples in a given dataset, xi is the data

of the ith dimension attribute corresponding to different samples,

and ti is the expected label, where xi = [xi1, xi2, . . . , xin]
T ∈ Rn,

ti = [ti1, ti2, . . . , tim]
T ∈ Rm.

The expected label is expressed in T while the actual output Yd

calculated by the dth level model is expressed as:

Yd =









yd11 . . . yd1N
...

. . .
...

ydm1 · · · ydmN









(10)

m represents the number of categories of samples. The matrix

form is as follows: T = [t1, · · · , tN]
T
m×N . After finishing the task

of the first ELM, the output produced by sub-model1 is Y1 ∈

Rm×N . Resemble the process in classic ELM, the output matrix

should perform a transformation here. The information acquired

by current sub-model is integrated, and the fused knowledge

community is stored for the next knowledge transmission. For the

ith instance, take the maximum value in its each column as its

class label, store the class label xn+1 ∈ R1×N and merge it with

the original input. The updated input is obtained in the second

level Submodel2: xi =
[

xi1, xi2, . . . , xin, xi(n+1)

]T
∈ Rn+1. The
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Input: The dataset S1={(xi, ti) |xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N},

where the original input matrix is

expressed as X1, the activation function is

g(.), total number of iterations is r.

Output: The output label Y.

for k = 1; k ≤ r do

Step 1:

(a) Randomly initialize input weights wi and

biases of hidden layer neurons bi;

(b) Calculate the output matrix of the hidden

layer H1;

(c) Determine the output weights analytically

according to Equation 6, ̂β1=H+
1 T;

(d) Compute the classification results: Y1=H1̂β1,

convert the actual output to label matrix A1, and

store it into a new representation matrix

X2 = [X1|A1], so the updated dataset of input:

S2={(xi, ti) |xi ∈ R n+1, ti ∈ Rm, i = 1, 2, . . . , N}.

Step 2:

Initialize the depth d = 2.

Repeat

(a) Randomly initialize input weights and biases

of hidden layer neurons;

(b) Calculate the new output matrix of the

hidden layer Hd, d refers to the d th submodel of

the current training process;

(c) The output weight of corresponding submodel

is calculated: ̂βd=H+
d
T;

(d) Compute the classification output: Yd=Hd
̂βd,

the matrix after label transformation of output

Ad, and store it into a new representation matrix

Xd+1 = [Xd|Ad], so the updated dataset of input:

Sd+1={(xi, ti) |xi ∈ R n+d , ti ∈ Rm, i = 1, 2, . . . , N}.

(e) Set d = d + 1.

until the testing error threshold between the

two adjacent submodels is satisfied

Algorithm 1. DELM

TABLE 2 A brief introduction to the EEG dataset.

Condition Set Description

Healthy volunteer
A EEG signals obtained from healthy volunteers

with their eyes open.

B EEG signals obtained from healthy volunteers

with their eyes closed.

Epileptic volunteer

C EEG signals obtained from the hippocampal

formation of the opposite hemisphere of the

brain during seizure free intervals.

D EEG signals obtained from the epileptogenic

zone during seizure free intervals.

E EEG signals obtained during the onset of

epileptic seizure.

label T remains the same as the original one. Similarly, calculate

the actual output Y2. Y2 is transformed into knowledge again,

TABLE 3 The detailed parameters used in our experiment.

Algorithm Parameter description

SVM
c ∈

{

2−4 , 2−3 , 2−2 , 2−1 , 1, 2, 22 , 23
}

g ∈
{

2−5 , 2−4 , 2−3 , 2−2 , 2−1 , 1, 2
}

RBF spread ∈
{

2−1 , 20 , 2, 22 , 23 , 24
}

Adaboost NLearners ∈ {5, 10, 15, 20, . . . , 100, 200, 1000}

Bagging NLearners ∈ {2, 3, 4, 5}

DBN
numepochs ∈ {30, 40}

batchsize ∈ {20, 40, 80}

SAE
numepochs ∈ {20, 30, 40, 50}

batchsize ∈ {20, 40, 80}

and the significant information is stored in new input: xi =
[

xi1, xi2, . . . , xin, xi(n+1), xi(n+2)

]T
∈ Rn+2. Then, the third sub-

model leverages knowledge extracted from the output of sub-

model_1 and sub-model_2 to complete the classification of the

model. Establish three modules or more on both training and

testing sets and that can yield favorable results. The input for these

modules comprises original features and appended features from all

previous recognition prediction. So the augmented input for each

module can be formed as:

X1 = X1

X2 = [X1|A1]

X3 = [X2|A2]
...

XD = [XD−1|AD−1]

(11)

At each level, the predicted output of current sub-model is

integrated into the input as learning experiences. In the next

learning step, the new input after incorporation will be mapped

into a new ELM feature space through randommapping in current

sub-model to solve the least square problem. The new features,

including A1, A2 and so on, contains discriminative information

derived from lower modules, so it is helpful in forcing the manifold

structure apart in original EEG input. In this course of knowledge

augmentation, DELM is aimed at learning a more reasonable

decision basis from raw data in classification tasks.

2.3. Specialty of DELM pattern classifier

We are motivated by the idea of deep learning and stacking

generalization theory, and establish a hierarchical ELM-based

stacked architecture. Each sub-model has the same supervised

learning process as classic ELM and several ELMs are integrated

into a deep network. ELM in each level is an elegant original

model, which is respectively composed of input layer, hidden

layer and output layer in our paper. Under the guidance of the

corresponding expected labels, DELM can better pull each sample

to its own class cluster, hence, samples have a tendency to approach

their own field gradually after knowledge augmentation. In other

words, it makes it easier for the samples belonging to some class
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FIGURE 3

Samples from five EEG sets (A–E).

to be identified as belonging to its true class by DELM pattern

classifier. Accordingly, the output generated in previous submodel

performs knowledge transformation first, and then it is regarded

as a supplement to the input. DELM is targeted at achieving a

richer form of representation from raw data, which enables the

sequential propagation of knowledge in a forward way and provides

a method to automatically discover valuable implied patterns. With

the valuable information extracted from the instances, the whole

model is directed to study the internal information of instances, and

constantly approach the ideal output with stepwise learning.

Noise caused by electrode movement or others often appears

in the practical EEG signal, resulting in poor recognition results.

The proposed framework has the anti-noise capability of deep

network in practice in contrast to the traditional ELM algorithm,

which can stand against the noise to a certain extent. With

stepwise transformation of input EEG epileptic information, the

dimension of the input expands continuously, and the pollution

in the original data is gradually reduced or eliminated. Stepwise

knowledge is continuously strengthened, more reasonable features

are generated, and the final classification accuracy of epileptic EEG

signals is improved.

The entire network consists of several stacked independent

ELM modules. The stacked approach is one of the most effective

ensemble learning strategies. Our model trains several submodels

in a serial way, and each submodel still preserve the output of

the previous submodel for deep representation learning, which

shares the same philosophy as stacked generalization (Wolpert,

1992; Wang et al., 2017; Hang et al., 2020).

Ourmodel is aimed at reducing the loss of effective information

in the original data and greatly economizing the time required

for classification under the premise of ensuring certain accuracy.

The information is extracted, grows in refinement and richness,

and is accepted to be vital members of the knowledge community

ultimately. The sub-model that organizes the higher layer has

additional input features involving the classification output from

all previous sub-models. DELM learns reasonable and effective

features from a large number of complex raw data, and the newly

generated features are absorbed by our deep network into its own

knowledge, which can achieve satisfactory results in most cases

when faced with practical application problems.

In the previous phase, multi submodels are adopted for

knowledge augmentation and knowledge are automatically

captured through feature expansion. In the latter phase, the

original input and the generated knowledge in previous modules

are used to accomplish the modeling and the classification tasks.

The deep learning algorithm of the proposed DELM is summarized

in Algorithm 1.

2.4. Time complexity analysis

In order to exhibit the time complexity of the proposed deep

learning algorithm, we start with the classic ELM algorithm first.

The time complexity of classic ELM algorithm mainly lies in the

solution of Moore-Penrose generalized inverse of hidden output

matrix. In terms of Equation 5, O
(

N2L
)

can be required to

compute the HTH. It requires O
(

N3
)

to calculate the inverse. So

the time complexity in ELM becomes O
(

N3 + N2L+ NnL+ 1
)

.

The proposed DELM introduces the concept of deep learning,

which is composed of several building units. Obviously, the

time complexity of the entire DELM can be indicated as

O

(

D
∑

d=1

(

N3 + N2L+ NnL+ 1
)

)

, where D is the final value of
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TABLE 4 Average testing accuracy in our experiment.

SVM RBF Adaboost Bagging DBN SAE Basic ELM DELM (D = 3) DELM

A/E
0.9277 0.8745 0.9317 0.9443 0.9279 0.9123 0.8866 0.9174 0.9307

(0.0080) (0.0064) (0.0147) (0.0099) (0.1501) (0.0095) (0.0100) (0.0051) (0.0067)

B/E
0.9067 0.8678 0.8727 0.9020 0.9086 0.9039 0.8754 0.9091 0.9180

(0.0065) (0.0087) (0.0082) (0.0152) (0.0083) (0.0181) (0.0154) (0.0073) (0.0091)

C/E
0.9135 0.8641 0.9007 0.9165 0.8978 0.9098 0.8764 0.9050 0.9196

(0.0089) (0.0087) (0.0061) (0.0076) (0.0350) (0.0125) (0.0102) (0.0124) (0.0065)

D/E
0.8603 0.8311 0.8730 0.8887 0.8993 0.8545 0.8400 0.8737 0.9137

(0.0083) (0.0067) (0.0115) (0.0076) (0.0219) (0.0134) (0.0093) (0.0103) (0.0096)

AB/E
0.9377 0.9028 0.9116 0.9305 0.9286 0.9345 0.9055 0.9326 0.9415

(0.0057) (0.0020) (0.0059) (0.0117) (0.0271) (0.0101) (0.0065) (0.0058) (0.0070)

AC/E
0.9004 0.9023 0.9333 0.9341 0.9032 0.9388 0.9043 0.9301 0.9395

(0.0091) (0.0067) (0.0076) (0.0056) (0.0778) (0.0044) (0.0057) (0.0041) (0.0050)

AD/E
0.8746 0.8832 0.9106 0.9249 0.9354 0.9042 0.8796 0.9078 0.9157

(0.0086) (0.0092) (0.0099) (0.0091) (0.0126) (0.0062) (0.0077) (0.0065) (0.0073)

BC/E
0.8978 0.8972 0.9084 0.9201 0.9357 0.9102 0.9003 0.9269 0.9367

(0.0105) (0.0075) (0.0081) (0.0060) (0.0099) (0.0086) (0.0094) (0.0072) (0.0074)

BD/E
0.9220 0.8830 0.8834 0.9001 0.9210 0.9002 0.8767 0.9050 0.9111

(0.0056) (0.0068) (0.0078) (0.0067) (0.0089) (0.0089) (0.0099) (0.0079) (0.0076)

CD/E
0.9312 0.8788 0.8993 0.9151 0.9280 0.9033 0.8802 0.9085 0.9122

(0.0052) (0.0079) (0.0053) (0.0035) (0.0089) (0.0081) (0.0098) (0.0083) (0.0056)

ABC/E
0.9390 0.9254 0.9263 0.9398 0.9347 0.9370 0.9260 0.9460 0.9497

(0.0046) (0.0052) (0.0066) (0.0046) (0.0580) (0.0055) (0.0051) (0.0048) (0.0055)

ABD/E
0.9202 0.9076 0.9154 0.9284 0.9556 0.9334 0.9067 0.9277 0.9320

(0.0063) (0.0030) (0.0064) (0.0050) (0.0058) (0.0072) (0.0073) (0.0060) (0.0058)

ACD/E
0.9243 0.9102 0.9228 0.9324 0.9269 0.9285 0.9098 0.9282 0.9329

(0.0061) (0.0034) (0.0064) (0.0052) (0.0627) (0.0060) (0.0055) (0.0071) (0.0051)

BCD/E
0.9209 0.9085 0.9112 0.9176 0.9536 0.9424 0.9061 0.9277 0.9299

(0.0057) (0.0088) (0.0052) (0.0076) (0.0038) (0.0032) (0.0058) (0.0048) (0.0056)

ABCD/E
0.9390 0.9212 0.9243 0.9357 0.9224 0.9418 0.9235 0.9396 0.9442

(0.0028) (0.0044) (0.0089) (0.0060) (0.0066) (0.0069) (0.0073) (0.0046) (0.0035)

A/B/E
0.7406 0.7519 0.6392 0.6894 0.7225 0.6746 0.6919 0.7071 0.7142

(0.0134) (0.0158) (0.0223) (0.0111) (0.0422) (0.0172) (0.0086) (0.0120) (0.0107)

A/C/E
0.6975 0.6665 0.6481 0.6771 0.6829 0.6717 0.6524 0.6750 0.6797

(0.0123) (0.0169) (0.0262) (0.0132) (0.0387) (0.0194) (0.0084) (0.0104) (0.0128)

A/D/E
0.6530 0.6322 0.6457 0.6738 0.6329 0.6673 0.6436 0.6658 0.6708

(0.0107) (0.0133) (0.0259) (0.0114) (0.0319) (0.0191) (0.0104) (0.0099) (0.0116)

B/C/E
0.7052 0.6275 0.6058 0.7193 0.6839 0.6812 0.7176 0.7350 0.7371

(0.0124) (0.0148) (0.0192) (0.0115) (0.0421) (0.0215) (0.0141) (0.0103) (0.0166)

B/D/E
0.6641 0.5032 0.5838 0.7143 0.7288 0.6486 0.6717 0.6961 0.7002

(0.0124) (0.0210) (0.0073) (0.0134) (0.0231) (0.0168) (0.0107) (0.0142) (0.0107)

C/D/E
0.6278 0.5787 0.6060 0.6262 0.6263 0.6045 0.6068 0.6273 0.6306

(0.0152) (0.0077) (0.0086) (0.0102) (0.0075) (0.0100) (0.0147) (0.0097) (0.0134)

A/B/C/D/E
0.4954 0.3557 0.3994 0.4058 0.4883 0.4227 0.4585 0.4722 0.5058

(0.0048) (0.0098) (0.0116) (0.0126) (0.0239) (0.0184) (0.0087) (0.0102) (0.0127)

The best results are marked in bold.
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FIGURE 4

Average time consumed by deep networks in our experiment.

depth, L is the number of hidden layer neural network units and

N is the number of instances.

3. Experiment studies

In this section, we will demonstrate the effectiveness of our

proposed hierarchical model DELM by reporting the experiment

result from Bonn dataset. In our experimental study, DELM is

sequentially compared with somemachine learning algorithms and

popular deep learning networks such as DBN, and so on. The

final performance evaluation is performed according to the result.

In our experiment, all adopted methods were implemented using

MATLAB 2019a on a personal computer with Intel Core i5-9400

2.90 GHz CPU and 8.0G RAM.

3.1. Epileptic EEG dataset

The EEG signals used in the paper are derived fromDepartment

of Epileptology, Bonn University, Germany. The dataset has

been described in detail by Andrzejak et al. (2001). The EEG

signals were collected under various conditions with five healthy

volunteers and five epileptic patients. The details information

of five groups are summarized in Table 2, in which each group

contains 2,300 samples.

The dataset consists of five groups of data (A, B, C, D, and

E) where each containing 100 single-channel EEG segments. EEG

data were recorded using the same 128-channel amplifier system

with a sampling rate of 173.6 Hz and a 12-bit resolution. Each EEG

segment contained 4,096 sampling points and lasted 23.6 s. The five

samples in Figure 3 come from Set A, B, C, D and E respectively, as

shown below.

In our experiment, three kinds of EEG signals are employed,

namely normal (A and B), interictal (C and D), and ictal (E), to

evaluate the proposed epilepsy detection framework.

3.2. Data preparation and normalization

Firstly, the EEG signals are segmented into 178 sampling points

bymeans ofmoving windows, amongwhich there is no overlapping

of sampling windows. Therefore, 23 epochs can be obtained from

each segment. The remaining points in each segment are dismissed.

Different features extracted from the original EEG signals have

different scales after data segmentation, so it is necessary to use

normalization processing to normalize all attribute features.

3.3. Experiment setup

In our experimental organization, the processed dataset is firstly

randomly divided into two parts: training and testing set. In each

scenario, we randomly selected 80% of the data as the training

data, and the remaining 20% as the testing data. The experiment

is repeated 20 times in various scenarios and then the average

experimental results of some other schemes are also collected

as contrast. In our experiment, SVM, RBF and some ensemble

algorithms such as Adaboost are used. Meanwhile, experimental
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FIGURE 5

Changes in recognition accuracy along with stacked depth of modules in various scenarios. (A) Another individual group vs. ictal A/E, B/E, C/E, and

D/E. (B) Two other groups vs. ictal AB/E, AC/E, AD/E, BC/E, BD/E, and CD/E. (C) Three other groups vs. ictal ABC/E, ABD/E, ACD/E, and BCD/E. (D) All

other groups vs. ictal ABCD/E. (E) A/B/E, A/C/E, A/D/E, B/C/E, B/D/E, and C/D/E. (F) A/B/C/D/E.

results of well-known deep networks, such as DBN and SAE,

are also adopted as comparison in our experiment in order to

demonstrate the superiority of the proposed DELM.

To reasonably evaluate our method, the performance metrics

adopted here are Accuracy and F − measure, which are defined

as follows:

Accuracy=
TP + TN

TP + TN + FP + FN
; (12)

F −measure=
2× TP

2× TP+FN+FP
; (13)

where TP (true positive) represents the number of segments

detected as seizure correctly, FN (false negative) represents the

number of segments detected as non-seizure incorrectly, TN (true

negative) represents the number of segments detected as non-

seizure correctly, and FP (false positive) is the number of segments

detected as seizure incorrectly.

In terms of recognition accuracy, our DELM model can

achieve great classification accuracy comparable to that of

deep learning schemes. Running time is one of the key

evaluation indexes which can perform excellent performance

in DELM. The classic ELM is qualified for real-time recognition
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FIGURE 6

Di�erent parameters of depth used in our experiment.

TABLE 5 F − measure scores of the comaparative methods.

Method SVM RBFN Adaboost Bagging DBN SAE DELM

A/E 0.9225 0.8560 0.9287 0.9431 0.8784 0.9050 0.9262

B/E 0.8954 0.8449 0.8637 0.9071 0.9102 0.8943 0.9103

C/E 0.9048 0.8450 0.8961 0.9215 0.9071 0.9016 0.9122

D/E 0.8481 0.8120 0.8690 0.8953 0.8985 0.8388 0.9056

AB/E 0.8975 0.8290 0.8544 0.9024 0.8811 0.8916 0.9027

AC/E 0.8200 0.8271 0.8923 0.8998 0.8091 0.8997 0.9000

AD/E 0.7727 0.8001 0.8550 0.8961 0.9037 0.8407 0.8597

BC/E 0.8177 0.8240 0.8480 0.8886 0.8916 0.8443 0.8939

BD/E 0.8716 0.7986 0.8060 0.8612 0.8799 0.8356 0.8525

CD/E 0.8892 0.7880 0.8334 0.8830 0.8886 0.8366 0.8536

ABC/E 0.8594 0.8216 0.8384 0.8875 0.8287 0.8584 0.8888

ABD/E 0.8172 0.7830 0.8142 0.8667 0.9112 0.8524 0.8473

ACD/E 0.8274 0.7897 0.8333 0.8769 0.8048 0.8415 0.8511

BCD/E 0.8203 0.7872 0.8016 0.8486 0.9054 0.8785 0.8445

ABCD/E 0.8251 0.7695 0.7884 0.8524 0.9120 0.8412 0.8447

A/B/E 0.7268 0.7573 0.5920 0.6809 0.6853 0.6677 0.7151

A/C/E 0.6774 0.6752 0.5975 0.6602 0.6366 0.6429 0.6836

A/D/E 0.5872 0.6414 0.6083 0.6578 0.6266 0.6229 0.6476

B/C/E 0.6924 0.6237 0.5518 0.7037 0.6421 0.6705 0.7405

B/D/E 0.6677 0.5121 0.5375 0.7002 0.7124 0.6257 0.7074

C/D/E 0.5800 0.5874 0.5990 0.6034 0.5484 0.5873 0.6274

A/B/C/D/E 0.4709 0.3163 0.3411 0.4013 0.4494 0.3849 0.5047

The best results are marked in bold.
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requirements and so does our hierarchical model. Extremely

fast recognition ability can still be exhibited in DELM,

meanwhile traditional deep networks are too far behind to

catch with.

Among all the competing schemes, SVM, RBF, and ensemble

algorithms were implemented by toolbox in MATLAB. And

traditional deep learning algorithms are implemented by MATLAB

which is encapsulated in the DeepLearning Toolbox. The

parameters settings are summarized in Table 3.

In each sub-model, all input weights and hidden biases are set to

the pseudo random values drawn from the uniform distribution on

the interval (−1, 1) and (0, 1). Such scheme is in accordance with

the standard methodology of ELM, which simplifies the learning

process. In each ELM, the hidden layer adopts the same number of

hidden nodes and the same activation function. Sigmoid function

is chosen as the activation function g(.) in each submodel. The

number of hidden units is usually scenario-specific and determined

by experience or by continuous attempts. We need to find a

point as balanced as possible between the number of hidden units

and time. As a result, DELM can acquire a relatively mature

knowledge system, which can well meet the accuracy requirements

of classification. The optimal amount of hidden units in all sub-

models is uniformly set to a fixed value 500. Considering the

difficulty of recognition in five class problem, the number of hidden

units is set to 800. More ELMs can be cascaded to modules, if

desired, for the purpose of adequate knowledge. So we dynamically

determine the depth of network. The stacking process will be

aborted if the difference between the current and upper level in

the experiment is <0.1. It is clear that DELM simply involves

a few parameters, which greatly reduces the cost of parameter

adjustment. To evaluate DELM comprehensively and precisely,

classification tasks in various scenarios are designed here.

3.4. Epileptic EEG signal recognition

3.4.1. Two class problem
Classification of four combinations between A and E, B and E,

C and E, and D and E are considered to distinguish normal from

seizure. Epileptic seizure segments E was selected to compare with

one of the remaining EEG sets from the dataset for classification.

Then select two or more sets in the database and conduct trials

again. The combinations are as follows: AB and E, AC and E, AD

and E, BC and E, BD and E, CD and E, ABC and E, ABD and E,

ACD and E, BCD and E, and ABCD and E.

3.4.2. Three class problem
In three class problems, the selected combinations are: A, B, E

and A, C, E and A, D, E and B, C, E and B, D, E and C, D, E.

3.4.3. Five class problem
In five class problem, each group is regarded as an independent

class for testing.

3.5. Experimental results and statistical
analysis

Table 4 shows us the accuracy in the sense of both the

mean and standard deviation in DELM and deep networks.

The results are also presented when the depth d of DELM is

3. But the result in the case is still a certain gap from the

ideal, and more ELMs are required to assure higher accuracy.

In terms of accuracy, DELM can compete with conventional

intelligent methods. It can be noted in the results that the proposed

method has certain advantages over traditional methods and is

generally comparable to traditional deep networks. We attribute

this advancement in recognition performance to the embedded

knowledge. The accuracy is greatly improved by extending the

vertical network layers and the model gradually acquires a

better command of the implication of knowledge. Table 4 also

report the accuracy of common machine learning algorithms on

our datasets.

Since DELM can inherit advantages of ELM, extremely fast

learning speed is one of its remarkable characteristics. In the aspect

of computational efficiency, the slight increase of learning time

(extremely short seconds) in DELM compared to the original

ELM is inappreciable, especially when considering the added

improvement in classification accuracy. DELM is about sacrificing

a little time and tolerating a cascade of multi modules in exchange

for final performance, so we just need to draw comparison between

our ELM-based deep network and traditional deep network. The

experimental results show that the time needed in DELM is much

less than that of the traditional deep networks after the accuracy is

guaranteed to meet the requirements. In some designed scenarios,

the speed of DELM in training and testing is approximately a dozen

times faster than traditional deep networks.

Figure 4 reports time efficiency during learning process, and the

result is average learning time of models. As observed from both

Table 4 and Figure 4, the accuracy performance is almost similar in

DELM and traditional deep methods. However, the time consumed

by the proposed classifier is the least. Taking into account both

accuracy and computational effort simultaneously, the proposed

DELM demonstrates tremendous potential in EEG classification

and may be a competitive choice.

Figure 5 shows the changes in recognition accuracy along with

current stacked depth of modules in different EEG classification

scenarios. There is no doubt that the EEG classification accuracy

increases with the addition of sub-models. The number of

submodels we use is namely the depth of DELM. Depth is denoted

by d, and the result shows the classification accuracy from d = 1

to d = 10. It is shown that the improvement in accuracy can be

relatively evident in the first three levels. Modest improvement can

still be obtained in the subsequent expansion of ELMs, but DELM

will gradually lose competitiveness in real-time tasks. Without

rapid classification performance, what we think of as our inherent

excellence in our model, several serial ELM network modules in

our model, would make no sense and our previous efforts would

not worth it. By starting from d = 1, ordinary extreme learning

machine, excellent features can be well-preserved and classification

effect is gradually improved. Performance augmentation can be

seen in these figures.
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The depth is the key aspect to knowledge augmentation in

DELM. In our experimental organization, different depths are

adopted in binary class problems, while D = 6 is uniformly

adopted in three and five class problems in order to obtain better

classification accuracy. Setting a threshold for DELM is because

excessive accumulation of layers is not productive any more. The

average depth of binary class problems is dAVG = 5.8. The selection

of depth parameters are shown in Figure 6.

Table 5 presents F − measure scores obtained by traditional

deep learning methods in different scenarios. From the perspective

of F − measure scores, DELM outperforms several deep networks

used for comparison. In other scenarios, DELM is slightly worse

than deep networks, but it still performs well and is comparable to

deep networks.

DELM enjoys extremely fast speed of ELM while providing

deeper representation of original signals. Experiments show that

our algorithm consistently outperforms several existing state-of-art

schemes in terms of accuracy and execution time.

4. Conclusion

A novel deep extreme learning machine DELM is proposed

for the recognition of EEG epileptic signals in our paper. DELM

stepwisely transmits the response to the next submodel through

fusion of knowledge derived from previous sub-models. Such

a process is beneficial to mine the valuable information of the

original EEG data, so as to better accomplish the subsequent EEG

recognition tasks. The proposed model operates in a forward way

with an increment form to strive for an increasingly efficient

performance and its computation speed is considerably fast. ELM

is introduced as the basic building block, making the whole

learning process flexible and effective. As available knowledge, the

classification results of the previous multi-module can enhance

the classification performance of the subsequent modules. Our

experimental results demonstrate that the proposed method

is a promising candidate for epileptic EEG-based recognition.

Compared with traditional methods, the proposed DELM is

motivated by deep learning and stack generalization theory,

which can obtain excellent classification results and outperform

the traditional methods. According to stacking generalization

theory, the output of the next sub-model plus the knowledge

of the previous sub-model in DELM can indeed open the

manifold structure of the input space, which resulting an improved

performance. Moreover, knowledge augmentation can effectively

extract the implied knowledge in each sub-model and obtain

increasing performance.

However, it is still not clear the reason for the improvement of

knowledge augmentation throughout the training process. In the

future work, we will spare no efforts to theoretically demonstrate

how the prediction output in each ELMmodule can be helpful with

EEG epileptic signal recognition.
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Introduction: Coordinated Reset Deep Brain Stimulation (CR DBS) is a novel

DBS approach for treating Parkinson’s disease (PD) that uses lower levels of

burst stimulation through multiple contacts of the DBS lead. Though CR DBS

has been demonstrated to have sustained therapeutic e�ects on rigidity, tremor,

bradykinesia, and akinesia following cessation of stimulation, i.e., carryover e�ect,

its e�ect on Parkinsonian gait has not beenwell studied. Impaired gait is a disabling

symptom of PD, often associated with a higher risk of falling and a reduced quality

of life. The goal of this study was to explore the carryover e�ect of subthalamic

CR DBS on Parkinsonian gait.

Methods: Three non-human primates (NHPs) were rendered Parkinsonian and

implanted with a DBS lead in the subthalamic nucleus (STN). For each animal,

STN CR DBS was delivered for several hours per day across five consecutive days.

A clinical rating scale modified for NHP use (mUPDRS) was administered every

morning to monitor the carryover e�ect of CR DBS on rigidity, tremor, akinesia,

and bradykinesia. Gait was assessed quantitatively before and after STN CR DBS.

The stride length and swing speed were calculated and compared to the baseline,

pre-stimulation condition.

Results: In all three animals, carryover improvements in rigidity, bradykinesia, and

akinesia were observed after CR DBS. Increased swing speed was observed in all

the animals; however, improvement in stride length was only observed in NHP B2.

In addition, STN CR DBS using two di�erent burst frequencies was evaluated in

NHP B2, and di�erential e�ects on the mUPDRS score and gait were observed.

Discussion: Although preliminary, our results indicate that STN CR DBS can

improve Parkinsonian gait together with other motor signs when stimulation

parameters are properly selected. This study further supports the continued

development of CR DBS as a novel therapy for PD and highlights the importance

of parameter selection in its clinical application.

KEYWORDS

Parkinson’s disease, subthalamic nucleus, coordinated reset, gait, non-human primate

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized

by tremors, akinesia, bradykinesia, rigidity, and impairment in gait and posture. Deep

brain stimulation (DBS) is an effective treatment for advanced PD; however, it has been

associated with side effects likely caused by the current spreading into unintended brain

regions (Saint-Cyr et al., 2000; Deuschl et al., 2006; van Nuenen et al., 2008; Odekerken

et al., 2013). Coordinated Reset DBS (CR DBS) is an innovative approach to DBS

that uses lower levels of burst stimulation over multiple contacts of the DBS lead and

Frontiers inNeuroinformatics 01 frontiersin.org115

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1185723
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1185723&domain=pdf&date_stamp=2023-08-24
mailto:wang3444@umn.edu
https://doi.org/10.3389/fninf.2023.1185723
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1185723/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Bosley et al. 10.3389/fninf.2023.1185723

was designed to desynchronize abnormal neuronal population

synchrony (Tass, 2003). It has been demonstrated in preclinical

and clinical studies that CR DBS in the subthalamic nucleus

(STN) can induce therapeutic improvements on rigidity, tremor,

akinesia, and bradykinesia that can be sustained even after

stimulation cessation, i.e., carryover effect (Tass et al., 2012;

Adamchic et al., 2014; Wang et al., 2016). However, the impact

of CR DBS on Parkinsonian gait has not been explored. Gait

impairment is a profoundly disabling symptom of PD, often

associated with higher risks of falling and reduced quality of life

(Gray and Hildebrand, 2000; Kelly et al., 2012). Gait disturbances

in PD include shuffling gait, decreased amplitude of motion

at the joints, reduced movement velocity, and shortened stride

length (Svehlík et al., 2009). It has been demonstrated that

Parkinsonian gait impairment is also associated with abnormal

neuronal synchronization such as exaggerated beta oscillatory

activity in the STN (Toledo et al., 2014; Anidi et al., 2018; Chen

et al., 2019; Fim Neto et al., 2022), providing a strong rationale

for applying CR DBS in order to desynchronize the neuronal

activity associated with the impaired gait. We hypothesized that

STN CR DBS will also produce carryover improvement on

Parkinsonian gait in addition to rigidity, akinesia, and bradykinesia.

In this study, we tested this hypothesis by investigating the

carryover effect of STN CR DBS on a modified version of

the Unified Parkinson’s Disease Rating Scale (mUPDRS), as

well as the stride length and swing speed during gait in the

Parkinsonian non-human primate (NHP) model of PD. Stride

length and swing speed (similar to gait speed) are two standard

gait measures (Doyle et al., 2022) that have been used in

numerous clinical studies for differentiating PD patients from

healthy controls or evaluating the effect of therapeutic treatments

on gait (Luo et al., 2015; di Biase et al., 2020; De Oliveira

et al., 2021; Gandolfi et al., 2023; Johansson et al., 2023;

Matsuno et al., 2023). In addition, we examined the relative

effect of STN CR DBS using two different burst frequencies

on Parkinsonian gait. This was motivated by computational

modeling studies (Lysyansky et al., 2013; Manos and Zeitler,

2018; Manos et al., 2018) and our previous NHP study (Wang

et al., 2022) showing that varying the CR DBS parameter

settings, e.g., intensity, frequency, dosage, and shuffling time, can

significantly alter the effect of CR DBS. A particular modeling

study showed that changing the burst frequency of the stimulation

pattern greatly impacted the desynchronizing effect of CR

stimulation (Manos and Zeitler, 2018). Taken altogether, our results

suggest that STN CR DBS may produce carryover improvement

in Parkinsonian gait when the stimulation parameters are

properly selected.

Materials and methods

Animal care complied with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals, and all

procedures were performed under a protocol approved by the

Institutional Animal Care and Use Committee of the University

of Minnesota.

Animals and surgical procedures

Three adult female rhesus monkeys (Macaca mulatta; Animal P,

6 kg; B1, 10.5 kg; B2, 8.2 kg) were used. Each animal was implanted

with a head restraint system and a scaled-down version of the DBS

lead (NuMed Inc.) targeting the STN (0.63mm diameter, 0.5mm

contact height, and 0.5mm space between contacts; total contact

number: 4 for P, 8 for B1&B2) using techniques established in

the laboratory (Wang et al., 2016, 2022). In brief, pre-operative

high-resolution CT and MRI images were merged to identify the

STN and make the surgical plan. A chamber and head restraint

post were implanted during an aseptic surgery following which

microelectrode recording and stimulation techniques were used to

map the sensorimotor region and the borders of the STN. A final

recording track was made to determine the lead placement depth

after which a DBS lead was implanted. The cable of the DBS lead

was then routed to a separate dry chamber which allows connection

to a programmable pulse generator (Animal P: Abbott; Animal

B1&B2: Boston Scientific) for the delivery of CR DBS.

Animals were rendered Parkinsonian through intracarotid and

intramuscular injections of the neurotoxin 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP). The severity of Parkinsonian

motor signs on the side of the body contralateral to the site of

DBS implantation was assessed using a version of the Unified

Parkinson’s Disease Rating Scalemodified for NHP use (mUPDRS).

On a 4-point scale (0–3; 0 = unimpaired), the mUPDRS was used

to rate rigidity, bradykinesia, akinesia, and tremor for both the

upper and lower limbs, as well as food retrieval for the upper

limb only (maximum = 27 points). Prior to DBS testing, all

animals reached a mild to moderate Parkinsonian state (Yu et al.,

2021), demonstrating mainly rigidity, akinesia, and bradykinesia

[mUPDRS: 17.3 ± 0.5 (mean ± SD) in NHP P, 7.6 ± 0.2 in

NHP B1 and 10.4 ± 0.4 in NHP B2]. Animal B1 and B2 did not

present tremors while animal P had mild tremors. These mUPDRS

assessments were performed 12 times across 4 weeks in animal P,

10 times over 2 weeks in animal B1, and 14 times across 4 weeks in

animal B2.

At the end of the study, animals P and B2 were euthanized, and

histology was performed. For NHP P, 50µm coronal sections were

stained with cresyl violet to identify the location of the DBS lead

(Figure 1B left). For NHP B2, 40µm coronal sections were imaged

and visualized in a 3D slicer, with the sagittal view extracted to show

the DBS lead location (Figure 1B right). Histology was not available

for NHP B1, so a post-implantation CT was merged with the

pre-operative MRI to verify the location of lead (Figure 1Bmiddle).

Experiment protocol

For each animal, CR DBS was delivered for 2 (NHP B1&B2)

or 4 (NHP P) h per day for five consecutive days, followed

by a period of post-treatment observation (at least 5 days)

to characterize the carryover effects (post-CR days). The daily

stimulation duration was chosen based on the time needed in

each animal to observe therapeutic effects during CR DBS on a

separate day before the study. The shortest time needed for the
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FIGURE 1

(A) CR DBS pattern showing the definition of shu	e time and burst frequency. (B) Histology or merged MRI/CT showing the location of the DBS lead

in each animal. (Left) Coronal section from NHP P illustrating the relative location of the mark (red arrow) left by placement of the DBS lead in the

STN. (Middle) Sagittal view of the merged MRI and CT images showing the estimated location of the DBS lead in NHP B1. (Right) Sagittal view of the

DBS lead location reconstructed from the histology for NHP B2. Stimulation contacts used for CR DBS are indicated in yellow. (C) Demonstration of

the treadmill system (top) used for NHP P and the Habit Trail system (bottom) used for NHP B1 and B2 for the assessment of gait. Both systems were

enclosed using plexiglass. Modified from Doyle et al. (2022). (D) Definition of the swing and stance phases of gait and the calculation of swing speed.

TABLE 1 Parameter settings for CR DBS.

Parameters NHP

P B1 B2

Intensity (mA) 0.2 0.1 0.16

Pulse width (µs) 125 120 120

Pulses/bursts 5 6 6

Intra-burst rate (Hz) 150 150 150

Burst frequency (Hz) 21 21 21, 27

On:off pattern (cycles) 3 On: 2 Off NA NA

Shuffle time (s) 0.143 10 10

Daily stim duration (hour) 4 2 2

mUPDRS score to achieve its maximum reduction and plateau was

chosen to be the daily stimulation duration. CR DBS parameters

are demonstrated in Table 1. These parameters were determined

based on previous studies (Tass et al., 2012; Wang et al., 2016, 2022)

and the capability of the stimulators. CR DBS consisted of burst

stimulation delivered through four most ventral contacts within

the STN region (C0/C1/C2–, C3+) of the DBS lead (Figure 1A)

in a pseudorandomized order. The stimulation intensity was

determined as 1/3–1/2 of the intensity identified for the therapeutic

traditional, isochronal DBS. The ON:OFF pattern and shuffle time

used in NHP P were based on the previous studies (Tass et al., 2012;

Wang et al., 2016), and those in NHP B1 and B2 were selected

based on the device capability. A cycle is the time needed to deliver

bursts through all selected cathodes, and the shuffle time is the time

duration within which the stimulating contact order is kept the

same before this order is pseudorandomly shuffled (Figure 1A). To

assess the carryover effect of STNCRDBS on rigidity, bradykinesia,

akinesia, and tremor, mUPDRS was performed prior to CR DBS on

stimulation days and once daily in the morning on post-CR days.

In NHP B2, two CR DBS settings were evaluated using the same

experiment protocol, with burst frequency as the only different

parameter (Table 1). In addition to the standard burst frequency

(21Hz) used in previous studies (Tass et al., 2012; Wang et al.,

2016, 2022), a 27Hz burst frequency was also evaluated. The 27Hz

burst frequency was chosen based on the oscillatory activity we

observed in the local field potential signal detected in the STN that

demonstrated a 27-Hz peak frequency. As modeling studies have

suggested that CR DBS using a frequency at which the neuronal

population is synchronized will be more effective (Tass, 2003), we
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hypothesized that CR DBS with a 27-Hz burst frequency will be

more effective at improving all motor signs than that with a 21-

Hz burst frequency in this animal. These two evaluation sessions

were 10 months apart, and each session was initiated when a stable

baseline mUPDRS score mentioned above was observed.

The animal’s gait was assessed using slightly different

techniques due to a technical limitation at the time of the

experiment. NHP P was ambulated in a treadmill system enclosed

by plexiglass at a speed of 1.2 miles/hour (Figure 1C top). The

movement of the animal’s limbs was monitored using a motion

capture system (Motion Analysis Corp.). NHPs B1 and B2 were

ambulated in a gait testing apparatus (GTA) system in which

natural, volitional gait data can be collected (Doyle et al., 2022).

The GTA is an apparatus consisting of a plexiglass tunnel capped

by two end enclosures, each of which is equipped with a hopper to

deliver food or liquid reward (Figure 1C bottom). The animal’s gait

data were obtained using a pressure walkway mat (HR Walkway

4 VersaTek system, Tekscan, Inc.) in the tunnel. The GTA system

allowed the NHP to walk naturally controlling its own pace, but the

treadmill system required the NHP to walk continuously around

the treadmill speed. CR DBS testing was not initiated until stable

gait performance across days was observed. Prior to the DBS

testing, animal P received 9 weeks of training on the treadmill,

and animals B1 and B2 received 6 weeks and 4 weeks of training,

respectively, in the GTA system. For all the NHPs, gait data were

recorded before CR DBS, within 24 h after 5 days of CR DBS, and

during the carryover period. The exact times of mUPDRS and gait

assessments for each animal are shown in Figures 2A, 3A, 4A. Each

gait evaluation session took ∼20min for animal P and ∼30min

for animals B1 and B2. During the evaluation, animal P walked

on the treadmill with brief breaks every 2min, and animals B1

and B2 walked back and forward on the gait mat with brief breaks

between passes.

Data analysis

All mUPDRS scores obtained were converted to a percentage

of change compared to the baseline score (the score obtained

immediately prior to DBS on CR day 1): percentage change in

mUPDRS score = 100∗(baseline score – daily score)/baseline

score. Positive changes indicate improvement in the mUPDRS

scores. Given the potential natural fluctuation in the severity of

Parkinsonian motor signs across days, we considered any changes

smaller than 10% from the baseline score as fluctuations of the

baseline level. The score was considered returned to baseline

when the percentage change was reduced to 10%. The carryover

effects, i.e., percent changes in the mUPDRS scores from the week

immediately after 5 days of stimulation, of CR DBS using different

burst frequencies in NHP B2 were compared with each other

using the Wilcoxon test [χ2 (DoF, N)]. Using custom MATLAB

functions, the movement trajectories at the front limb and hind

limb from the motion analysis system and NHP steps collected

from the pressure mat were analyzed, and gait parameters were

then calculated. To evaluate changes in gait following CR DBS,

we assessed the change in stride length and swing speed. As

shown in Figure 1D, the distance that separated two consecutive

points of initial contact of the same paw with the ground was

referred to as the “stride length.” The amount of time that an

animal spent with its paw in the air and away from the ground

was considered “swing time.” “Swing speed” can be obtained by

dividing “stride length” by “swing time.” The carryover effect of

CR DBS on each gait parameter for the front and hind limbs on

the left side (the side contralateral to the site of DBS implantation)

was compared to the baseline using the Wilcoxon test followed

by Steel’s test with control = baseline. JMP (SAS Institute Inc.,

North Carolina, United States) was used to conduct statistical

analyses, and alpha was corrected for multiple comparisons using

the Bonferroni method.

Results

Improvement in gait reflected by increased swing speed was

observed in all three NHPs when STN CR DBS was delivered using

a burst frequency of 21Hz. Given the difference in gait assessment

methods and experiment protocols, changes in mUPDRS ratings

and gait parameters following the CR DBS are demonstrated

separately for each animal.

Animal P

Carryover improvement was observed in both the mUPDRS

scores and swing speed during treadmill walking following STN

CR DBS. Carryover improvement was observed in the mUPDRS

score including improvements in each motor subscore (Figure 2B)

compared to its baseline subscore (rigidity 3.5; food retrieval 2;

akinesia 4; bradykinesia 3.5; tremor 4). Changes in the mUPDRS

score showed gradual improvement during 5 days of STN CR

DBS, reaching an improvement of 29.4% from the baseline on

CR day 5. Following 5 days of CR DBS, the improvement in the

mUPDRS was sustained for 12 days. The improvement in rigidity

accounted for half or more of the total motor improvement. In

addition to improvement in the mUPDRS score, we observed

(Figure 2C) a 20% increase in swing speed noted at the NHP’s front

limb after stimulation on the 3rd and 5th CR days as well as on

all the post-CR days [Figure 2C top, left, Wilcoxon test χ2
(9,231)

= 108.6, p < 0.0001 followed by Steel’s test with control = BL,

p < 0.05]. Opposite changes were observed in stride length at

the same joint indicated by ∼10% of decrease in most post-CR

days [Figure 2C bottom, left, Wilcoxon test χ2
(9,231)

= 104.6, p

< 0.0001 followed by Steel’s test with control = BL, p < 0.05].

Limited changes in both parameters were observed at the hind

limb, only showing significant changes in swing speed on post-

CR days 3 and 12 [Wilcoxon test χ2
(9,231)

= 51.6, p < 0.0001

followed by Steel’s test with control = BL, p < 0.05] and in

stride length on post-CR day 9 [Wilcoxon test χ2
(9,231)

= 29.4, p

= 0.0005 followed by Steel’s test with control = BL, p < 0.05;

Figure 2C right). Although the swing speed and stride length at

the front limb did not return to the baseline level, their changes

on post-CR days 12, 15, and 18 showed a trend of returning to

the baseline.
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FIGURE 2

E�ect of CR DBS on the mUPDRS and gait parameters in NHP P. (A) Schematic of the experiment protocol indicating the times when the mUPDRS

and gait were assessed. Red panels: CR DBS, 4 h per Day. (B) Changes in the mUPDRS from baseline. The composite mUPDRS is further broken down

to reveal the changes in individual subscores. (C) Changes in the swing speed and stride length at the front limb and hind limb from baseline. The
*symbol indicates a significant di�erence from BL (*P < 0.05).

Animal B1

Similar to that observed in animal P, STN CR DBS was

associated with carryover improvements in both the mUPDRS and

swing speed in animal B1 but with a shorter duration of carryover

benefits. As shown in Figure 3B, significant improvement in the

mUPDRS (>50%) was observed starting from CR day 4, while

only limited improvement (<10%) was seen in the first 3 days

of CR DBS compared to the baseline subscores (rigidity 2.8; food

retrieval 1; akinesia 2; bradykinesia 2; tremor 0). The improvement

was observed in rigidity, food retrieval, akinesia, and bradykinesia

but not tremors as this animal did not demonstrate tremors in its

Parkinsonian state. This large improvement in the mUPDRS score

reduced significantly starting from the fourth day after 5 days of

CR DBS and returned to a level (5%) close to the baseline. During

ambulation in the habit trail system, increased swing speed at the

front limb immediately after 5 days of CR DBS [Wilcoxon test

χ2
(3,38)

= 8, p < 0.05 followed by Steel’s test with control = BL, p
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FIGURE 3

E�ect of CR DBS on the mUPDRS and gait parameters in NHP B1. (A) Schematic of the experiment protocol. Red panels: CR DBS, 2 h per Day. (B)

Changes in the mUPDRS and its subscores from baseline. (C) Changes in the swing speed and stride length at the front limb and hind limb from

baseline. The *symbol indicates a significant di�erence from BL (*P < 0.05).

< 0.05] was observed, while the swing speed at the hind limb and

stride length did not change (Figure 3C). Consistent with the trend

of change in the mUPDRS score after post-CR day 3, improvement

in swing speed was only observed immediately after 5 days of CR

DBS and diminished on post-CR day 3.

Animal B2

In this animal, carryover improvement in the mUPDRS

score was observed in both CR sessions using 21 and 27Hz

burst frequencies; however, improvement in gait parameters was

only observed after CR DBS using the 21Hz burst frequency

(Figures 4B, C). The baseline mUPDRS subscores obtained prior

to the 21Hz session were 2.425 (rigidity), 2 (food retrieval), 3

(akinesia), 3.5 (bradykinesia), and 0 (tremor), and those prior to

the 27Hz session were 3 (rigidity), 1.5 (food retrieval), 3 (akinesia),

3 (bradykinesia), and 0 (tremor). CR DBS using the 21Hz burst

frequency produced up to 25.6% of carryover improvement in

the mUPDRS score relative to the baseline (Figure 4B left). This

improvement reduced over time and dropped to a level of 10%

on post-CR day 7. During the CR session using the 27Hz

burst frequency, up to 32% of carryover improvement in the

mUPDRS score was observed (Figure 4B middle). This carryover

improvement was not reduced to a level close to 10% until post-

CR day 12, indicating longer carryover benefits compared to the

CR session using 21Hz burst frequency. In both CR sessions,

improvement was observed in all the motor subscores except for

tremors. Investigating the changes in the mUPDRS in the week

following 5 days of CR DBS, greater carryover improvement was

observed with CR DBS using 27Hz burst frequency [Figure 4B

right, Wilcoxon test χ2
(1,13)

= 4.6, p = 0.03] mostly due to the

greater improvement in rigidity (Figure 4B left and middle).

In contrast to the changes in mUPDRS, changes in gait

parameters demonstrated carryover improvement after CR DBS

using the 21Hz burst frequency but not with the 27Hz burst

frequency. During the CR session using the 21Hz burst frequency,

increases in the swing speed and stride length relative to the

baseline were observed at both the front limb and hind limb,

immediately following 5 days of CR DBS and on post-CR day 3

(Figure 4C left). Both parameters returned to the baseline level on

post-CR day 6. CR DBS using 27Hz burst frequency rather than

improving swing speed and stride length had the opposite effect

leading to longer swing times and shorter stride lengths on post-

CR day 6 (Figure 4C right). The results of the statistical analysis on

the gait parameters for NHP B2 are shown in Table 2.

Discussion

Previous studies have demonstrated the efficacy of STNCRDBS

in improving Parkinsonian motor signs including rigidity, akinesia,

bradykinesia, and tremor. This study demonstrates that STN CR

DBS might also improve Parkinsonian gait. The differential effects
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FIGURE 4

E�ect of CR DBS using di�erent burst frequencies on the mUPDRS and gait parameters in NHP B2. (A) Schematic of the experiment protocol. Red

panels: CR DBS, 2 h per Day. The cyan and purple arrows indicate the mUPDRS assessment times for the CR DBS session using the 21 and 27Hz

burst frequencies, respectively. (B) Changes in the mUPDRS from baseline for the CR DBS session using 21Hz (left) and 27Hz (middle) burst

frequencies, as well as the comparison in the mUPDRS scores from post CR day #1–7 between these two sessions (right). (C) Changes in the swing

speed and stride length at the front limb and hind limb from baseline after CR DBS using 21Hz (left) and 27Hz (right) burst frequencies. The *symbol

indicates a significant di�erence from BL (*P < 0.05).
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TABLE 2 Statistical analysis for the gait parameters for NHP B2.

Wilcoxon test p-value of Steel’s test with control = BL

χ2 DoF, N p-value CR day 5 Post-CR day 3 Post-CR day 6

21Hz burst frequency

Swing speed Front limb 24.1 3, 240 <0.0001 <0.0001 0.0151 0.5383

Hind limb 34.8 3, 240 <0.0001 <0.0001 0.0054 0.9989

Stride length Front limb 49.3 3, 240 <0.0001 <0.0001 <0.0001 0.7049

Hind limb 52.1 3, 240 <0.0001 <0.0001 <0.0001 0.9983

27Hz burst frequency

Swing speed Front limb 21.5 3, 184 <0.0001 0.1202 0.1654 <0.0001

Hind limb 25.2 3, 184 <0.0001 0.0824 0.0249 <0.0001

Stride length Front limb 13.8 3, 184 0.0032 0.1044 0.1009 0.0169

Hind limb 14.3 3, 184 0.0026 0.0596 0.0564 0.0358

of CR DBS using different burst frequencies on gait parameters

observed in NHP B2 (Figure 4C) also indicate that the selection

of CR parameters, e.g., burst frequency, can significantly impact

the efficacy of CR DBS on gait. Moreover, the potential different

impact of varying the burst frequency on Parkinsonian gait and

other motor signs, i.e., one burst frequency might be more

efficient at improving gait, while the other might produce greater

improvement on other motor signs, indicating the importance

of parameters selection for treating specific PD symptoms. The

findings from our research not only support our hypothesis that CR

DBS can improve Parkinsonian gait but also can demonstrate the

importance of parameter selection for CR DBS in order to achieve

specific motor benefits.

STN CR DBS can improve Parkinsonian gait

CR stimulation was developed through computational

modeling studies performed by Peter Tass’ group (Tass, 2003; Tass

andMajtanik, 2006; Hauptmann et al., 2007; Lysyansky et al., 2011).

This stimulation approach was designed to desynchronize the

neuronal population by stimulating the neuronal subpopulations

with a small amount of current in a phase-shifted manner,

with the stimulation frequency determined as the frequency

at which neurons were synchronized. As abnormal neuronal

synchronization in the basal ganglia-thalamocortical network has

been associated with the development of PD motor symptoms

(Connolly et al., 2015; Neumann et al., 2017; Sanabria et al., 2017;

Tinkhauser et al., 2018; Lofredi et al., 2019), pilot preclinical and

clinical studies were conducted to explore the effect of CR DBS

on PD motor signs (Tass et al., 2012; Adamchic et al., 2014; Wang

et al., 2016). These studies demonstrated the acute and carryover

therapeutic effects of STN CR DBS stimulated on a wide range

of Parkinsonian motor signs, but its effect on Parkinsonian gait

was not examined. This study fills the gap by demonstrating the

potential therapeutic carryover improvement on Parkinsonian gait

of the STN CR DBS using the 21Hz burst frequency, indicated by

the improved gait speed of the front limb in all animals (Figures 2C,

3C, 4C). Stride length was also improved in NHP B2 but reduced

in NHP P after CR DBS. The reduced stride length in NHP P was

likely due to the different gait assessment approach. NHP P was

ambulated in an enclosed treadmill system with limited space.

With increased gait speed that exceeded the treadmill speed, the

animal reached the front of the treadmill which prevented further

movement, resulting in reduced stride length. On the other hand,

improvements in both the swing speed and stride length were

observed in NHP B2 when the animal was ambulating naturally in

the habit trail system although stride length was not improved in

NHP B1. This finding indicates the importance of a gait assessment

system that can quantitatively evaluate the naturalistic, volitional

gait patterns (Doyle et al., 2022).

Exploring the effect of CR DBS on Parkinsonian gait is also

a critical step toward the clinical translation of this novel DBS

approach. Long-term follow-up studies have shown that certain

aspects of gait function improve initially with traditional high-

frequency DBS but then progressively worsen resulting in more

pronounced asymmetry and dyscoordination (Krack et al., 2003;

Volkmann et al., 2004; van Nuenen et al., 2008; Ravi et al.,

2021). Although the results are preliminary, this study supports

the hypothesis that STN CR DBS can improve Parkinsonian gait

while using lower stimulation intensity than traditional DBS, in

addition to the benefits CR DBS induced in rigidity, akinesia,

bradykinesia, and tremor. Further research on more subjects to

evaluate the longer-term therapeutic effects of CR DBS will be

needed to confirm our findings. Additional studies (Conway et al.,

2021; Seger et al., 2021; Su et al., 2022; Cavallieri et al., 2023;

Pourahmad et al., 2023) to compare the effect of CR DBS on gait

with that of traditional DBS will also be required for the clinical

translation of CR DBS.

Di�erential e�ects of di�erent CR burst
frequencies on gait and other motor signs

Computational modeling studies have shown that varying CR

parameters, e.g., stimulation intensity, burst frequency, stimulation

dosage, and number of stimulation contacts, can significantly
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impact the desynchronizing effect of CR stimulation (Lysyansky

et al., 2013; Manos and Zeitler, 2018; Manos et al., 2018). Our

previous study also demonstrated significantly greater carryover

benefits associated with shuffled CR DBS compared to the non-

shuffled pattern (Wang et al., 2022). Although the results are

preliminary, this study is the first to show the differential effects

on gait and other motor signs (rigidity, bradykinesia, and akinesia)

after CR DBS using different burst frequencies, with one parameter

(burst frequency 21Hz) producing greater carryover benefits on

gait, while the other (27Hz) produced greater benefits on other

motor signs (Figure 4C). This might indicate that a specific burst

frequency is required to optimize the effect of CR DBS on

Parkinsonian gait, while a different burst frequency is required

for achieving optimal improvement on rigidity, akinesia, and

bradykinesia. As only two burst frequencies were evaluated in

animal B2, it is also possible that the optimal burst frequency

that can improve both gait and other motor signs has not been

identified. Additional explorations in the effect of CR DBS using

a wider range of burst frequencies will be needed to further

investigate the impact of burst frequency on different Parkinsonian

motor signs and even non-motor signs.

Limitations and future directions

Even though all three animals showed significant improvement

in gait speed after CR DBS, there were some limitations within this

study. The effects of STN CR DBS with different burst frequencies

were not investigated in animals P and B1. This was attributable

to the length of time necessary to examine each CR DBS setting

and the limited time for evaluating CR DBS in these two animals.

Due to the various capabilities of the device available at the time

of the experiments and the varying lengths of daily stimulation

necessary to produce a sustained therapeutic effect, animals P and

B1/B2 were subjected to different ON:OFF patterns, shuffling times,

and stimulation durations, while other CR parameters were the

same. Different gait assessment systems, i.e., treadmill and habit

trail systems, were used, which resulted in different observations

of the change in stride length. As discussed above, the assessment

of the natural gait in the habit trail system is superior to that of

the passive gait movement in the treadmill, making it critical for

future explorations into the effects of CR DBS (Doyle et al., 2022).

Another limitation of this study is that carryover assessment was

terminated when the mUPDRS score returned to the baseline and

an offline gait data analysis was performed afterward to investigate

the effect of CR DBS on gait. Therefore, we were not able to observe

the returning of gait parameters to the baseline in animal P and the

27Hz CR DBS session in animal B2. Future studies are needed to

systematically evaluate the impact of different CR parameters on

Parkinsonian gait.

Despite these limitations, this study provides valuable insight

into the effect of STN CR DBS on Parkinsonian gait and the

potential impact of varying CR parameters on gait and other

motor signs. These findings support the development of CR DBS

as a novel DBS strategy that can be customized for each patient

and further advance the translation of this novel therapy into

clinical application.
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Comparison of subthalamic 
unilateral and bilateral theta burst 
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High-frequency, conventional deep brain stimulation (DBS) of the subthalamic 
nucleus (STN) in Parkinson’s disease (PD) is usually applied bilaterally under the 
assumption of additive effects due to interhemispheric crosstalk. Theta burst 
stimulation (TBS-DBS) represents a new patterned stimulation mode with 5  Hz 
interburst and 200  Hz intraburst frequency, whose stimulation effects in a bilateral 
mode compared to unilateral are unknown. This single-center study evaluated 
acute motor effects of the most affected, contralateral body side in 17 PD patients 
with unilateral subthalamic TBS-DBS and 11 PD patients with bilateral TBS-DBS. 
Compared to therapy absence, both unilateral and bilateral TBS-DBS significantly 
improved (p  <  0.05) lateralized Movement Disorder Society-Unified Parkinson’s 
Disease Rating Scale part III (MDS-UPDRS III) scores. Bilateral TBS-DBS revealed 
only slight, but not significant additional effects in comparison to unilateral TBS-
DBS on total lateralized motor scores, but on the subitem lower limb rigidity. 
These results indicate that bilateral TBS-DBS has limited additive beneficial effects 
compared to unilateral TBS-DBS in the short term.

KEYWORDS

Parkinson’s disease, subthalamic nucleus, deep brain stimulation, theta burst, unilateral 
stimulation, bilateral stimulation

Introduction

Bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in a conventional, 
continuous, high-frequency stimulation mode is a highly effective symptomatic treatment for 
Parkinson’s disease (PD) patients improving quality of life (Deuschl et al., 2006; Schuepbach et al., 
2013). Previous studies of continuous, unilateral STN-DBS revealed insights into potential 
interaction of interhemispheric cross-talk, since unilateral STN-DBS was demonstrated to improve 
not only contralateral body side symptoms, but also ipsilateral and axial motor symptoms after 
1–2 years (Kim et al., 2009; Walker et al., 2009). Besides, quality of life was significantly improved 
by unilateral STN-DBS (Kim et al., 2009; Walker et al., 2009). Still, heterogeneous results were 
obtained when clinical results of motor scores of unilateral and bilateral STN-DBS were compared. 
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It is unknown whether these heterogeneous results might be due to 
simple methodological restraints as different observation periods or 
potential unfavorable interhemispheric subthalamic cross-talk in terms 
of counteracting effects of crossing fibers on local STN circuits 
whitewashing local DBS effects or inconvenient resonance behavior.

Recently, a new form of STN-DBS, the so-called “Theta Burst 
Stimulation” (TBS-DBS) was used in previous studies in man (Horn 
et al., 2020; Sáenz-Farret et al., 2021). This patterned DBS mode has 
been inferred from theta burst stimulation studies in animal slices, in 
vivo hippocampal stimulation in animal models and from 
non-invasive transcranial magnetic stimulation (TMS) in man (Suppa 
et al., 2016). In rats, hippocampal TBS improved deficits in learning 
and memory (Sweet et al., 2014). In humans, continuous TBS-TMS 
applied to the motor cortex induced cortical inhibition outlasting the 
TMS train (Huang et al., 2005), probably depending on N-methyl-D-
aspartate-receptor and Ca2+ channel activity (Suppa et  al., 2016) 
resulting in lasting neuroplasticity. TBS was transferred from 
non-invasive TMS to STN-DBS, since subthalamic TBS-DBS might 
entrain glutamatergic hyperdirect cortical afferents and pallidal 
glutamatergic efferents to induce neuroplastic changes. TBS-DBS 
might enhance stimulation outcomes by low stimulation energy, has 
the potential to lower the probability of stimulation side effects and 
reduce battery consumption in STN-DBS patients (Horn et al., 2020).

To date, it remains unclear whether bilateral TBS-DBS application 
in STN-DBS patients is safe, effective, and whether it has additional 
beneficial effects over unilateral application. We  hypothesize that 
bilateral application of TBS-DBS potentiates unilateral effects by 
modulation of interhemispheric pathways at different basal ganglia, 
brainstem and cortical levels through modulation of glutamatergic 
pathways (Arai et al., 2008; Nakajima et al., 2017).

In this brief report, we aim to compare the effect of unilateral and 
bilateral 200 Hz TBS-DBS on lateralized motor symptoms in 
postoperative PD patients with STN-DBS.

Methods

Participants

The study was approved by the local ethics committee (PV 5281, 
PV 6025) and conducted in agreement with the Code of Ethics of the 
World Medical Association (Declaration of Helsinki, 2018). Written 
informed consent was obtained. Inclusion criteria were: (1) diagnosis 
of bilateral idiopathic PD by motor assessments, (2) appropriate patients 
for STN-DBS along the CAPSIT protocol (Defer et al., 1999), (3) the 
implantation of a bilateral Medtronic system (Medtronic, Minneapolis), 
(4) stable postoperative condition >3 months after DBS implantation in 
the STN. Exclusion criteria were: (1) major psychiatric comorbidities, 
(2) severe dementia. All participants were tested after overnight 
withdrawal of short-acting dopaminergic medication (MED OFF).

Study design

This report synthesizes two clinical studies, which were single-
center, randomized, double-blind, interventional assessments in 
chronically operated PD patients with bilateral STN-DBS. Two data 
sets from two different studies were retrospectively combined and 

then analyzed for divergent effects on the contralateral body side by 
either unilateral or bilateral TBS-DBS application: In the first cohort 
(Horn et  al., 2020), unilateral TBS-DBS was applied in the STN 
contralateral to the most affected body side, in the second cohort 
we assessed the motor symptoms of the most affected body side while 
stimulating both STN (Table 1). For the bilateral TBS-DBS data set, 
the more affected body side was retrospectively defined by the highest 
Movement Disorder Society-Unified Parkinson’s Disease Rating Scale 
part III (MDS-UPDRS III) sum score (items 3.3–3.8, 3.15–3.18) in the 
OFF condition. If left and right lateralized MDS-UPDRS III sum 
scores were equal, the body side with the highest rigidity score of the 
upper extremity in the stimulation OFF state was chosen.

In both studies, theta burst stimulation (TBS-DBS), conventional 
DBS (cDBS) and stimulation OFF state were compared in a randomized 
double-blind fashion with an inter-trial interval of 30 min. Total 
lateralized motor sum scores as well as subitems of the MDS-UPDRS III 
were assessed. The TBS pattern consists of stimulation bursts of 0.1 s 
duration repeated at 5 Hz with a pulse width of 60 μs (Horn et al., 2020). 
This is achieved by periodical switching DBS ON and OFF for 0.1 s in the 
cyclic mode of the chronically implanted impulse generators (IPG). 
Intraburst frequency was set to 200 Hz. For the current report, only 
TBS-DBS results of the contralateral body side were analyzed. TBS-DBS 
was applied at the clinically most effective electrode contact that was 
chronically used in every-day life conditions and confirmed by a 
preceding monopolar review. TBS-DBS was applied for 30 min. Because 
of restricted cycling options in programming, only PD patients with 
Medtronic Activa PC/ RC system and 3,389 leads with 4-omnidirectional 
contacts participated in the study. The intensity of TBS-DBS was adjusted 
to efficacy and side effects threshold. Amplitude could be kept constant 
for cTBS and TBS-DBS for unilateral application whereas we needed to 
adjust the amplitude slightly for bilateral TBS-DBS along the effect and 
side effect threshold. The study was executed by two investigators: one 
blinded movement disorder experienced clinician assessed the motor 
symptoms, while the other investigator operated the programming. 
Safety and tolerability of TBS-DBS was clinically assessed by the clinicians 
during a preceding monopolar review with assessment of side effect 
thresholds (dysarthria, paresthesia’s, tetanic contraction or malaise) and 
by asking the subjects for side effects during the 30 min DBS condition.

Statistics

Statistical analysis was performed in SPSS V27.0 (IBM 
Corporation, SPSS, Inc., Chicago, IL). Descriptive statistics are 
presented as mean ± standard deviation (SD). The level of significance 
was p ≤ 0.05. A Wilcoxon signed rank test was used to compare within-
subject differences of stimulation conditions (TBS-DBS vs. stimulation 
OFF; p ≤ 0.05). The Mann–Whitney U test was used to compare 
intersubject differences of stimulation conditions of the two cohorts.

Results

Patient demographics

Two PD patient cohorts were clinically assessed with either 
unilateral or bilateral TBS-DBS application (Table 1). The first cohort 
was investigated between April 2017 and January 2018 with 17 subjects 

127

https://doi.org/10.3389/fnhum.2023.1233565
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gülke et al. 10.3389/fnhum.2023.1233565

Frontiers in Human Neuroscience 03 frontiersin.org

(five females) in the unilateral TBS-DBS study (age 64.9 ± 6.9 years, 
disease duration 14.8 ± 5.8 years, 3.2 ± 2.6 years since DBS surgery). The 
second cohort included 11 patients, which were assessed between 
February 2021 and May 2022 (three females) with bilateral TBS-DBS 
(age 64.1 ± 5.8 years, disease duration 15.4 ± 6.3 years, 6.2 ± 4.0 years since 
DBS surgery). Further patient characteristics are described in Table 1.

Clinical assessment of Parkinson’s disease 
motor symptoms

The two PD patient groups of the two studies were quite similar in 
terms of their clinical characteristics. The activated DBS electrode 

contact level counting from 1 (most ventral contact) to 4 (most dorsal 
contact) was 2.8 ± 0.4 for the unilateral DBS cohort and 2.8 ± 0.6 for the 
bilateral DBS cohort (Table 1). Stimulation amplitude for the unilateral 
TBS-DBS was 2.8 ± 0.5 V and 2.8 ± 0.8 mA for bilateral TBS-DBS. Both 
unilateral and bilateral cDBS and TBS-DBS improved the clinical 
condition of the subjects in comparison to DBS absence (Table 2). The 
Mann–Whitney U test showed no significant differences in lateralized 
MDS-UPDRS III sum scores between the two cohorts for stimulation 
OFF condition (U = 89.00, Z = −0.213, p  = 0.853), cDBS condition 
(U = 79.00, Z = −0.686, p = 0.517) and TBS-DBS condition (U = 85.00, 
Z = −0.402, p = 0.711). We therefore judged the comparison of the uni- 
and bilateral DBS effects in those two similar cohorts as reasonable.

TABLE 1 Patient characteristics and stimulation parameters of the randomized, double-blind assessment of motor performances after 30  min 
stimulation.

ID Sex Age Years 
with 

disease

Years 
with 
DBS

cDBS 130  Hz TBS 200  Hz Contacts activated

Left 
Electrode

Right 
electrode

Left 
electrode

Right 
electrode

Left 
electrode

Right 
electrode

Amplitude 
[V/mA]

Amplitude 
[V/mA]

Amplitude 
[V/mA]

Amplitude 
[V/mA]

01 Female 56 4 2.8 – 3.0 – 3.0 – 10

02 Female 76 15 4.4 – 3.5 – 3.5 – 9/10

03 Female 64 23 4.6 3.3 – 3.3 – 2 –

04 Male 72 13 0 (4) – 2.0 – 2.0 –

05 Male 53 14 5.5 – 3.2 – 3.2 – 10

06 Male 56 17 7.3 – 2.0 – 2.0 – 10

07 Male 71 9 3.2 2.4 – 2.4 – 2 –

08 Male 74 21 3.3 2.5 – 2.5 – 2 –

09 Male 73 20 0 (10) – 2.8 – 2.8 – 10

10 Male 66 17 2.5 3.1 – 3.1 – 2 –

11 Male 66 11 1.9 – 3.1 – 3.1 – 9

12 Male 63 9 2.6 3.0 – 3.0 – 1 –

13 Female 66 21 9.2 – – – 6

14 Male 64 6 3.8 – 2.5 – 2.5 – 10

15 Male 58 11 0 (9) – 2.5 – 2.5 – 10

16 Male 58 18 3.5 – 2.6 – 2.6 – 10

17 Female 67 22 0 (6) 3.5 – 3.5 – 1 –

22 Male 56 8 1 1.0 – 1.1 – 2 –

23 Female 67 18 0 (4) – 2.6 – 3.0 – 9

24 Male 70 18 7 2.3 – 2.6 – 3 –

25 Male 61 12 4 – 3.0 – 3.4 – 10

26 Male 73 9 5 – 2.0 – 2.3 – 10

27 Male 61 15 8 1.9 – 2.2 – 1 –

28 Female 56 13 6 3.0 – 3.5 – 2 –

29 Female 69 22 8 2.7 – 3.0 – 1 –

30 Male 61 13 12 – 2.7 – 3.0 – 10

31 Male 62 12 4 – 3.8 – 4.3 – 10

32 Male 69 30 13 – 1.9 – 2.2 – 10

Only the parameters of the more affected body side are listed. For all stimulation modes, pulse width was set to 60 μs. In brackets is given the time with DBS since surgery in months.
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The lateralized MDS-UPDRS III sum score of the more affected 
body side significantly improved from 15.8 ± 4.9 (STIM OFF) to 
10.6 ± 4.6 with unilateral, contralateral cDBS (n = 17, Z = −3.32, 
p < 0.001) as well as with unilateral, contralateral TBS-DBS to 12.8 ± 5.0 
(n = 17, Z = −2.38, p = 0.017). Wilcoxon signed rank test revealed a 
significant difference of relative changes of unilateral cDBS 
(31.56 ± 28.96%) compared to unilateral TBS-DBS (15.98 ± 39.80%; 
p = 0.011). Bilateral cDBS also significantly improved the lateralized 
MDS-UPDRS III sum score of the more affected body side from 
16.7 ± 3.7 (OFF) to 11.8 ± 5.02 (n = 11, Z = −2.68, p = 0.007) as well as 
bilateral TBS-DBS, which improved to 12.4 ± 5.4 (n = 11, Z = −2.14, 
p = 0.032). Wilcoxon signed rank test revealed a non-significant 
difference of relative changes of bilateral cDBS (29.87 ± 25.77%) 
compared to bilateral TBS-DBS (26.14 ± 26.37%; p = 0.541). Although 
there was a slight tendency of more efficient improvement of the 
relative changes of lateralized MDS-UPDRS III by bilateral TBS-DBS 
(26.1 ± 26.4%) compared to unilateral TBS-DBS (16.0 ± 39.8%), the 
difference was not significant (U = 74.50, Z = −0.895, p = 0.378).

Relative changes of lateralized MDS-UPDRS III revealed a 
31.56 ± 28.96% improvement by unilateral cDBS and a 29.87 ± 25.77% 
improvement by bilateral cDBS. The Mann–Whitney U test showed 
non-significant differences in lateralized MDS-UPDRS III sum scores 
between the 2 cohorts for cDBS stimulation (U = 83.50, Z = −0.461, 
p = 0.643). In a second step, we investigated subitems of the lateralized 
MDS-UPDRS III. There was a statistically significant difference in the 
improvement of lower limb rigidity when comparing unilateral 
(1.3 ± 0.7) with bilateral (0.4 ± 0.5) TBS-DBS (U = 44.00, Z = −2.655, 
p = 0.012), and a close to significance level difference of toe tapping 

between unilateral (1.1 ± 0.9) and bilateral (1.7 ± 0.6) TBS-DBS 
(U = 56.50, Z = 0.000, p = 0.055). Other lateralized MDS-UPDRS 
subitems were not significantly different between unilateral and 
bilateral TBS-DBS.

Discussion

In this single-center analysis, we  showed that short-term 
application of bilateral TBS-DBS was safe and efficient. Bilateral 
TBS-DBS revealed slight, but not significant, additional beneficial 
effects on the total lateralized motor sum scores compared to unilateral 
TBS-DBS, and a significantly better improvement of the specific 
MDS-UPDRS III subitem rigidity of the lower limb. Of note, there was 
no increased rate of adverse events or constraint symptom 
improvement with bilateral TBS-DBS compared to unilateral 
TBS-DBS.

Further results of bilateral TBS-DBS in humans are scarce. Sáenz-
Farret et al. demonstrated TBS-DBS to improve slightly gait in a minor 
subgroup of STN-DBS patients with refractory axial symptoms 
(Sáenz-Farret et  al., 2021). Our short-term results also revealed a 
particular benefit of bilateral TBS-DBS on the subitem rigidity of the 
lower limbs. Still, long-term effects of TBS-DBS on axial symptoms 
and gait need to be  assessed. On the one hand, PD symptom 
responsiveness is time-dependent with axial symptoms responding 
after hours (Herrington et al., 2016) whereas in our experiment, lower 
limb symptoms were assessed only with inter-trial intervals of 30 min. 
On the other hand, we suppose TBS-DBS to develop its full clinical 

TABLE 2 Results of the calculated lateralized MDS-UPDRS III sum scores, lower extremity (LE) rigidity and toe tapping scores of the three different 
conditions compared are shown.

Cohort Condition Item Percentile

N Min Max M SD MD 25 75

Unilateral OFF Sum Score 17 7 23 15.76 4.92 17 12 19.5

Rigidity LE 17 0 3 1.71 0.92 2 1.5 2

Toe Tapping 17 0 4 1.35 1.32 1 0 2.5

cDBS Sum Score 17 2 16 10.59 4.57 11 7 15

Rigidity LE 17 0 2 1.06 0.82 1 0 1

Toe Tapping 17 0 2 0.82 0.72 1 0 1

TBS Sum Score 17 4 20 12.76 5.02 14 9 17

Rigidity LE 17 0 2 1.29 0.69 1 1 2

Toe Tapping 17 0 3 1.12 0.86 1 0.5 2

Bilateral OFF Sum Score 11 13 25 16.73 3.72 17 13 18

Rigidity LE 11 0 2 1.09 0.83 1 0 2

Toe Tapping 11 1 3 1.91 0.70 2 1 2

cDBS Sum Score 11 5 20 11.82 5.02 12 6 16

Rigidity LE 11 0 2 0.55 0.68 0 0 1

Toe Tapping 11 0 2 1.45 0.68 2 1 2

TBS Sum Score 11 7 24 12.45 5.36 12 7 16

Rigidity LE 11 0 1 0.45 0.52 0 0 1

Toe Tapping 11 1 3 1.73 0.65 2 1 2

N, number; Min, Minimum; Max, Maximum; M, Mean; MD, Median; SD, Standard Deviation; 25th and 75th percentiles are given. OFF, stimulation OFF; cDBS, conventional DBS; TBS, Theta 
Burst Stimulation.
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efficacy after longer application due to potential neuroplastic effects 
of intermittent stimulation (Horn et  al., 2020) as it has been 
demonstrated for non-invasive theta burst transcranial magnetic 
stimulation in humans (Huang et  al., 2007; Suppa et  al., 2016). 
We  hypothesize therefore that bilateral TBS-DBS might be  also 
beneficial for axial symptoms. However, long-term effects need to 
be assessed with chronic TBS-DBS in PD patients.

From previous clinical and neurophysiological studies of 
conventional STN-DBS in PD, there were different, interhemispheric 
findings. Clinically, there was evidence of synonymous, contra- and 
ipsilateral 15–28% motor improvement after 3–18 months with 
unilateral STN-DBS surgery (Kumar et al., 1999; Slowinski et al., 
2007; Walker et al., 2009) and axial improvement of 19–39% (Kumar 
et al., 1999; Germano et al., 2004; Chung et al., 2006; Slowinski et al., 
2007; Castrioto et  al., 2011). Electrophysiological evidence for 
interhemispheric, concordant basal ganglia crosstalk was provided by 
perioperative DBS electrode local field potential (LFP) recordings. 
The STN of one hemisphere was involved in the preparation of both 
ipsilateral and contralateral hand movements in PD patients 
(Paradiso et  al., 2003). Intraoperative, unilateral, high-frequency 
electrical STN stimulation induced and suppressed tremor in both 
forearms in a frequency-dependent manner, accompanied by 
bilateral, subthalamic, oscillatory local field potential changes (Liu 
et al., 2002). Unilateral STN-DBS suppressed contralateral STN beta 
LFPs (Hasegawa et al., 2020). In the animal model, neural subthalamic 
single unit firing rates were decreased bilaterally after unilateral 
STN-DBS in dopamine-depleted rats, indicating cross-talk between 
bilateral STN neurons (Shi et al., 2006). Those bilateral STN-DBS 
effects might be  mediated by anatomical, interhemispheric 
projections at different levels. There are bilateral basal ganglia 
connections through interhemispheric pallidothalamic and 
pallidotegmental projections (Hazrati and Parent, 1991), bilateral, 
reciprocal STN connections to the brainstem pedunculopontine 
nucleus (Hammond et  al., 1983) and bilateral cortico-striatal 
pathways (Wilson, 1986). Thus conventional, bilateral conventional 
STN-DBS might be  more advantageous than unilateral 
STN-DBS. There was evidence of greater motor improvement of one 
body side with bilateral than with unilateral stimulation of the 
contralateral STN (Kumar et al., 1999; Samii et al., 2007). Levodopa 
dosages were decreased to a smaller extent by 15–19% after unilateral 
compared to bilateral STN-DBS (Germano et al., 2004; Chung et al., 
2006). A two-year long-term observation of initially highly 
asymmetric PD patients revealed a 42% worsening of ipsilateral PD 
symptoms in the postoperative course with the need to re-increase 
levodopa and finally to consider all patients for second-side surgery 
(Kim et al., 2009). In our short-term observation, we observed only 
minor additive effects on lower limb rigidity of bilateral TBS-DBS 
compared to unilateral TBS-DBS.

There are several limitations of this study. First, the sample sizes 
of the two cohorts were relatively small, but comparable to other DBS 
studies using patterned stimulation (Adamchic et al., 2014; Akbar 
et  al., 2016; Horn et  al., 2020; Sáenz-Farret et  al., 2021). Second, 
we assessed intersubject differences in two different cohorts and no 
intrasubject unilateral TBS. The clinical characteristics of the two 
cohorts, however, were fairly similar and not significantly different so 
that we still consider the comparison of TBS-DBS modes in the two 
cohorts reasonable. Besides, the inter-trial waiting period of 30 min 
might be too short to exclude DBS outlasting effects. However in 

previous experiments with unilateral TBS-DBS trains, there were no 
clinical stimulation-outlasting effects after 30 min (Horn et al., 2020), 
so that we assume this time period to be adequate. Another limitation 
in the use of TBS-DBS is the lack of knowledge of what amplitude size 
needs to be applied. Adjustment along the TEED might be one way, 
but might be of limited value in complex DBS patterns.

In summary, we demonstrated that short-term bilateral TBS-DBS 
with intraburst frequency of 200 Hz and interburst frequency of 5 Hz 
is safe and effective. In short-term observations, bilateral TBS-DBS is 
approximately at least equally effective on lateralized motor scores 
compared to unilateral TBS-DBS, with potentially additive beneficial 
effects on lower limb function as rigidity.
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Case report: An N-of-1 study
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improve post-stroke aphasia with
increased inter-regional
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Over one-third of stroke survivors develop aphasia, and language dysfunction

persists for the remainder of their lives. Brain language network changes in

patients with aphasia. Recently, it has been reported that phase synchrony within

a low beta-band (14–19Hz) frequency between Broca’s area and the homotopic

region of the right hemisphere is positively correlated with language function

in patients with subacute post-stroke aphasia, suggesting that synchrony is

important for language recovery. Here, we employed amplitude-modulated

transcranial alternating current stimulation (AM-tACS) to enhance synchrony

within the low beta band frequency between Broca’s area and the right

homotopic area, and to improve language function in a case of chronic post-

stroke aphasia. According to an N-of-1 study design, the patient underwent

short-term intervention with a one-time intervention of 15 Hz-AM-tACS with

Broca’s and the right homotopic areas (real condition), sham stimulation (sham

condition), and 15 Hz-AM-tACS with Broca’s and the left parietal areas (control

condition) and long-term interventionwith shamand real conditions (10 sessions

in total, each). In the short-term intervention, the reaction time and accuracy

rate of the naming task improved after real condition, not after sham and control

conditions. The synchrony between the stimulated areas evaluated by coherence

largely increased after the real condition. In the long-term intervention, naming

ability, verbal fluency and overall language function improved, with the increase

in the synchrony, and those improvementswere sustained formore than amonth
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after real condition. This suggests that AM-tACS on Broca’s area and the right

homotopic areas may be a promising therapeutic approach for patients with

poststroke aphasia.

KEYWORDS

transcranial alternating current stimulation, amplitude modulation, aphasia, stroke,

coherence

1 Introduction

More than one-third of stroke survivors experience aphasia

with a poor prognosis. Furthermore, 30%−43% of them show

persistent severe symptoms for more than 1 year after stroke onset

(Bakheit et al., 2007). Their impairments include comprehension

and expression of speech, reading, and writing (Brady et al., 2016),

which can decrease social activities and cause them to become

isolated and depressed, reducing their quality of life (Doogan

et al., 2018). Speech and language therapy (SLT) has been widely

implemented and recommended for treating aphasia for over half

a century (Chapey, 2008). However, SLT shows moderate effects,

even when administered at high intensity, depending on individual

symptoms (Brady et al., 2016; Breitenstein et al., 2017). A novel

strategy has been sought to achieve a greater therapeutic effect

in aphasia.

Previous neuroimaging studies have shown that the right

hemisphere facilitates language recovery, possibly by releasing

interhemispheric inhibition from the damaged left hemisphere

during recovery from post-stroke aphasia (Hamilton et al., 2011).

Recently, it was reported that phase synchrony within the low

beta-band (14–19Hz) frequency between Broca’s area and the

homotopic region of the right hemisphere is positively correlated

with language function in subacute post-stroke aphasia (Kawano

et al., 2021). We hypothesized that enhancing synchrony within

the low beta-band frequency between Broca’s area and the

homotopic region of the right hemisphere could improve the

language neural network and language function in post-stroke

aphasia. Transcranial alternating current stimulation (tACS) is a

noninvasive brain stimulation (NIBS) method that uses sinusoidal

alternating electric currents to affect cortical oscillatory neuronal

activity. tACS synchronizes brain oscillations, induces long-term

synaptic plasticity, and promotes functional recovery in patients

with neurological diseases (Fröhlich and McCormick, 2010; Ozen

et al., 2010; Reato et al., 2010; Ali et al., 2013; Koganemaru et al.,

2018, 2019, 2020; Negahbani et al., 2018; Nojima et al., 2023; Shima

et al., 2023a,b).

Recently, amplitude-modulated tACS (AM-tACS) was

developed (Witkowski et al., 2016; Negahbani et al., 2018). It

has two components of stimulation waveforms: high-frequency

(>100Hz) sinusoidal carrier frequency and low-frequency (e.g.,

10–15Hz) amplitude modulation as the envelope. Low-frequency

amplitude modulation has been reported to modulate neuronal

oscillations as well as low-frequency tACS (Chander et al., 2016;

Witkowski et al., 2016; Minami and Amano, 2017; Esmaeilpour

et al., 2021). Furthermore, the amplitude modulation phase almost

coincides between the two stimulated regions when using the two

electrodes, suggesting that it would help enhance inter-regional

TABLE 1 Clinical course of the case.

Months Clinical findings

0 Admission to the hospital for acute onset of difficulty in

walking followed by aphasia and right hemiparesis

• Magnetic resonance imaging (MRI) revealed acute

cerebral infarction at the territory of the left middle

cerebral artery

1.5 Transferred to the rehabilitation hospital

3 Discharged from the hospital

• Aphasia remained

• Right hemiparesis recovered

87 Participated in the study

brain synchrony. While the use of beta band tACS has been

limited due to phosphene induction, AM-tACS does not induce

phosphenes, according to previous reports (Chander et al., 2016;

Minami and Amano, 2017). Therefore, we used AM-tACS to

enhance the synchrony between Broca’s area and the homotopic

region of the right hemisphere. We systematically compared the

short- and long-term effects in a patient with chronic post-stroke

aphasia according to an N-of-1 study design.

2 Case description

2.1 Patient characteristics

A 76-year-old man with nonfluent aphasia due to left cerebral

infarction was referred to Kyoto University Hospital. At the age

of 69 years, he was admitted to the hospital with acute onset of

nonfluent aphasia with right mild hemiparesis. Head magnetic

resonance imaging (MRI) revealed left cerebral infarction in the

territory of left middle cerebral artery, including the left operculum

(Table 1). His medical history included myocardial infarction and

diabetes mellitus.

2.2 Therapeutic intervention

We conducted three types of interventions to examine the

effect of AM-tACS according to an N-of-1 study design: (1)

AM-tACS with 120Hz frequency of sinusoidal carrier waves

with 15Hz of sinusoidal amplitude modulation, a peak-to-

peak amplitude of 3mA (−1.5–1.5mA) and trough amplitudes

of ± 0.3mA (Figure 1A) on the Broca’s area [centering the

5×5 cm2 electrode on F7 according to the international 10–

20 electroencephalography (EEG) system] and on the homotopic
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region of the right hemisphere (centering the 5×5 cm2 electrode

on F8; real condition), (2) sham AM-tACS with only 10 cycles

of 15Hz amplitude modulation of AM-tACS given on the same

regions with the real condition (sham condition), and (3) AM-

tACS with the Broca’s area and the left parietal area using the same

stimulation parameter with the real condition (control condition)

by using Nurostym tES (Neuro Device Group S.A., Warsaw,

Poland; Figure 1B). The stimulation sites were confirmed using a

neuronavigation system with the patient’s head MRI (Brainsight

Brainbox Ltd., Cardiff, UK). For the short-term intervention, one-

time sessions of sham, real, and control conditions were performed.

Each stimulation was applied for 20min and combined with a 20-

min language training session including a naming task, different

from that used in the evaluation. The interval between sessions was

over 1 h, and the control condition was performed 1 day after the

real and sham conditions because of patient fatigue (Figure 1C). For

the long-term intervention, we performed 10 sessions of sham and

real conditions (one session per day, 2 days per week for 5 weeks)

with the interval of 1 month (Figure 1D).

3 Assessments

3.1 Clinical measurements

During the short-term intervention, clinical evaluations were

performed before and immediately after one session of each

condition (pre- and post-intervention, respectively). During the

long-term intervention, they were performed before, within 1 week

after, and 1 month after the total 10 sessions of each condition

(pre, post0, and post1, respectively). The assessment of language

function included the reaction time and accuracy rate of a naming

task in a short-term intervention. The patient was asked to name as

immediately the 12 line drawings extracted from the Snodgrass and

Nishimoto pictures (Snodgrass and Vanderwart, 1980; Nishimoto

et al., 2005) shown on a 27-inch monitor in front of him as

possible. The sets of line drawings were different in each condition

to prevent learning effects, while they were selected with almost the

same degree of familiarity and number of morae. In the long-term

intervention, we evaluated the reaction time and accuracy rate of

the naming task, verbal fluency, aphasia quotient of the Western

Aphasia Battery (WAB) (Kertesz, 1982). The aphasia quotient is

a composite score indicated by the percentile, which provides an

overall measure of aphasia severity, in which lower scores denote

more severe aphasia (the maximal score is 100) and visual analog

scale (VAS) for the patient’s subjective assessment of the general

language function (score was determined by the distance on the

10 cm line; “0” indicated the worst condition and “10” indicated

the best condition). The naming task comprised 24 line drawings

extracted from Snodgrass and Nishimoto’s pictures. The reaction

time was measured by the time interval from the onset time of the

drawing on the monitor to the time for him to name it by using

the video-recording (60 fps). In the verbal fluency task, the patient

was asked to name as many items that begin with a certain letter

of the Japanese syllabary characters, “Hiragana” [the sound of “Ka

(k∧)” and “A (∧)” in the sham and real conditions, respectively]

and as various items of a given semantic category (“vegetables” and

“vehicles” in the sham and real conditions, respectively) as possible.

The number of named items was scored for each character and

category. All the clinical evaluations were double-blinded.

3.2 Electroencephalography recording

We recorded EEG signals and measured the coherence within

the stimulated areas to evaluate interhemispheric synchrony in

the language network. The patients were seated comfortably in an

armchair. The EEG signals were recorded using 64 electrodes by

eegoTM sports (ANT Neuro, Hengelo, Netherlands) during 3-min

resting with eyes open. EEG signals were amplified using an Eego

sports amplifier. Electrodes M1 and M2 were selected as references

(Kawano et al., 2021). The impedance of all the electrodes was <15

kΩ . The data were recorded and saved at a sampling rate of 2 kHz.

3.3 Data analysis

3.3.1 Preprocessing
We removed artifacts of the blink, electrooculographic

activities, and muscle activities from the EEG signals using

independent component analysis (ICA) (Hyvärinen and Oja, 2000)

with the EEGLABMATLAB toolbox including the artifact subspace

reconstruction method, which detects the time windows of signals

with significant artifacts (Pedroni et al., 2019), and “ICLabel,” which

automatically distinguishes independent components (ICs) as brain

or non-brain sources according to a large number of crowd-sourced

IC labels (Pion-Tonachini et al., 2019).

3.3.2 Coherence between Broca’s area and the
right homotopic area

We then calculated the power spectral density of the EEG using

a fast Fourier transform (FFT). We applied the FFT to 1,000ms

segments with a 50ms time shift. The evaluated frequency range

was 5–40Hz. For the coherence analysis, using FFT, we computed

the cross- and auto-spectra in the frequency domain of the EEG

signals within a frequency range of 14–16Hz in Broca’s area (F7)

and the right homotopic area, including AF8, F6, FC6, F8, and

FT8, which were stimulated by AM-tACS. Coherence is defined

as cross-spectra normalized by auto-spectra. It is expressed by the

following equation (1), where f xx(j), f yy(j), and |f xy(j)| denote the

auto-spectra and cross-spectra at frequency j (Mima et al., 2001).
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To stabilize the variance, we applied an arc hyperbolic

tangent transformation to the coherence according to the

following equation (2):
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The average of the arc hyperbolic tangents transforming the

coherences of F7 with AF8, F6, FC6, F8, and FT8 was calculated

as an index of synchrony.
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FIGURE 1

Experimental setup. The stimulator output signal during AM-tACS is illustrated with amplitude of a carrier signal (120Hz) modulated at 15Hz of a

signal envelop (A). The electrodes (5 × 5cm) were placed on F7 and F8 in the sham and real conditions, and on F7 and P5 in the control condition

(B). The order of the interventions is illustrated in the short-term and long-term interventions (C, D).

4 Results

No adverse or unanticipated events developed during

the short- or long-term interventions. The patient did not

experience sensations like phosphenes, cutaneous irritation,

or pain.

4.1 Short-term intervention

For the naming task, the reaction time was shortened

(Figure 2A), and the accuracy rate improved after the real

condition (Figure 2B). The recorded EEG signals in each

condition were shown in the Figure 2C. The synchrony between

Broca’s area and the right homotopic area largely increased

after the real but not after the sham and control conditions

(Figures 2D, E).

4.2 Long-term intervention

We found improvements in language functions evaluated using

naming (Figure 3A), verbal fluency tasks (Figures 3B, C), and the

aphasia quotient of the WAB (Figure 3D) after the real condition,

but not after the sham condition. The VAS scores also improved

after real condition (Figure 3E). The recorded EEG signals in each

condition were shown in the Figure 3F. All clinical improvements

were sustained for a month after the real condition. In addition, we

found that synchrony increased and sustained for a month after the

real condition (Figures 3G, H).

5 Discussion

The present case demonstrates the potential therapeutic effect

of 15Hz AM-tACS on Broca’s area and the homotopic region of the

right hemisphere combined with SLT. The short-term evaluation

showed that it was effective in improving naming ability along with

enhancing synchrony between the stimulated areas. In contrast,

sham- or AM-tACS on Broca’s area and the left parietal area did

not improve them. The long-term intervention showed sustained

improvements in general language function evaluated using WAB,

naming ability, verbal fluency, and subjective assessment of

language function, along with increased synchrony between Broca’s

area and the homotopic region of the right hemisphere.

Although right hemisphere recruitment may be insufficient for

overall language recovery, it may facilitate recovery by releasing
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FIGURE 2

Results of the short-term intervention. The reaction time (A), the accuracy rate (B) in the naming task, the recorded EEG data (C), the topomaps of

the arc hyperboric tangent of the coherence (D) and the synchrony (E) are shown before (pre) and after each intervention (post). The EEG channel

location (62 channels excluding M1 and M2) is illustrated above the topomaps. The red colored channel is F7 and the yellow colored channels are

AF8, F6, F8, FC6, and FT8 from top to bottom, and left to right (D). The synchrony between the Broca’s and the right homotopic areas is indicated by

the average of the arc hyperbolic tangents transformation applied to the coherences between F7 and AF8, F7-F6, F7-FC6, F7-F8, and F7-FT8 (E).
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FIGURE 3

Results of the long-term intervention. The reaction time in the naming task (A), the number of words in the verbal fluency task (B, C), the aphasia

quotient (D), VAS (E), the recorded EEG data (F), the topomaps of the arc hyperboric tangent of the coherence (G) and the synchrony between the

Broca’s and the right homotopic areas indicated by the averaged arc hyperbolic tangents transformation applied to the coherences between F7 and

AF8, F7-F6, F7-FC6, F7–F8, and F7–FT8 (H) are shown before (pre), within a week after (post0), and 1 month after the intervention (post1). The EEG

channel location is illustrated above the topomaps in the same way as in Figure 2 (G).
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interhemispheric inhibition from the damaged left hemisphere

(Hamilton et al., 2011). As for oscillatory brain activity, the

overall connectivity of Broca’s area at beta oscillation frequencies

correlates with future clinical improvement in patients with aphasia

(Nicolo et al., 2015). During a sentence completion task, increased

power in the right hemisphere was observed within a low beta-

band frequency compared with that in the left hemisphere in

patients with chronic post-stroke aphasia (Lima et al., 2023).

Synchrony within a low beta-band frequency between Broca’s area

and the homotopic region of the right hemisphere was decreased

compared with that in healthy controls. It was positively correlated

with language function in patients with subacute post-stroke

aphasia (Kawano et al., 2021). These studies suggest that language

function migrates to the non-language-dominant hemisphere in

the recovery of language function and that the functional migration

associated with language ability may be indicated, especially by

low-beta interhemispheric oscillatory synchronization. Therefore,

15Hz AM-tACS enabling phase-synchronized stimulation on the

two given regions enhanced the synchrony within a low beta-

band frequency between Broca’s area and the homotopic region of

the right hemisphere, suggesting that increased interhemispheric

connectivity led to improved language function in this case.

Further, 15Hz AM-tACS on Broca’s area and the left parietal

area did not induce these effects, suggesting that enhancement of

synchrony between Broca’s area and the right homotopic region is

important for language recovery.

Interhemispheric homotopic functional connectivity

significantly decreases after stroke, and this decrease is

strongly associated with behavioral impairment in post-stroke

patients, including aphasia (Siegel et al., 2016). Furthermore,

the longitudinal normalization of decreased interhemispheric

functional connectivity is associated with clinical recovery (Carrera

and Tononi, 2014). Therefore, enhanced interhemispheric

synchrony associated with specific functions may be a potential

therapeutic target for AM-tACS.

Our findings suggest that the combination of AM-tACS

and SLT is appropriate. Combined with repetitive rehabilitation

programs, NIBS can enhance functional recovery by inducing

associative plasticity (Koganemaru et al., 2015). Although some

studies on tDCS combined with SLT have shown language recovery

in aphasia (Kang et al., 2011; You et al., 2011), the effects have been

inconsistent. Thus, NIBS that targets specific functional networks

would be more appropriate for inducing therapeutic effects.

In this case, the long-term intervention of repetitive sessions

of SLT alone (sham condition) induced a partial improvement in

language function within a week after the end of the intervention

along with decreased inter-hemispheric synchrony. Further, these

clinical improvements were not sustained for more than a

month. This finding coincides with a previous report showing

a limited effect of intensive SLT on chronic post-stroke aphasia

(Breitenstein et al., 2017). In contrast, combining AM-tACS with

SLT induced sustained improvement in language function for more

than a month after the end of the intervention with increased

inter-hemispheric synchrony. Thus, combining AM-tACSwith SLT

may induce long-lasting associative plasticity in the functional

network required for sustained language recovery.

This case report provides a novel finding that a low-beta band

frequency AM-tACS on Broca’s area and the right homotopic

area to enhance interhemispheric synchrony may be a promising

rehabilitative approach to induce long-lasting improvement in

language function in post-stroke aphasia. A further study with a

larger number of patients would be necessary.

6 Patient perspective

The patient stated that he felt the improvement in fluency

of words during daily conversation with others after the long-

term intervention with real condition and hoped that the present

findings may contribute to the development of new strategies for

the treatment of aphasia.
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