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Molecular markers are developed to accelerate deployment of genes for desirable traits segregated in a bi-parental population of recombinant inbred lines (RILs) or doubled haplotype (DH) lines for mapping. However, it would be the most effective if such markers for multiple traits could be identified in an F2 population. In this study, single nucleotide polymorphisms (SNP) chips were used to identify major genes for heading date and awn in an F2 population without developing RILs or DH lines. The population was generated from a cross between a locally adapted spring wheat cultivar “Ningmaizi119” and a winter wheat cultivar “Tabasco” with a diverse genetic background. It was found that the dominant Vrn-D1 allele could make Ningmaizi119 flowered a few months earlier than Tabasco in the greenhouse and without vernalization. The observed effects of the allele were validated in F3 populations. It was also found that the dominant Ali-A1 allele for awnless trait in Tabasco or the recessive ali-A1 allele for awn trait in Ningmaizi119 was segregated in the F2 population. The allelic variation in the ALI-A1 gene relies not only on the DNA polymorphisms in the promoter but also on gene copy number, with one copy ali-A1 in Ningmaizi119 but two copies Ali-A1 in Tabasco based on RT-PCR results. According to wheat genome sequences, cultivar “Mattis” has two copies Ali-A1 and cultivar “Spelta” has four copies Ali-A in a chromosome that was uncharacterized (ChrUN), in addition to one copy on chromosome 5A. This study rapidly characterized the effects of the dominant Vrn-D1 allele and identified the haplotype of Ali-A1 in gene copy number in the F2 segregation population of common wheat will accelerate their deployment in cycling lines in breeding.
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 Vrn-D1, flowering genes, Ali-A1, awn, common wheat


Introduction

Wheat (Triticum aestivum L. 2n = 6x = 42, AABBDD) is the largest crop in production and acreage in China, where 10 major agroecological zones are classified on the basis of differences in growth habit types and responses of cultivars to low temperature and photoperiod (Zhuang, 2003). Zone III is the Middle and Lower Yangtze Valley Zone, where it occupies approximate 15% of total production and acreage in China and all wheat cultivars are sown in autumn and harvested in next summer (Guo et al., 2015). Wheat cultivars adapted to this Zone include 53% winter type, 36% spring type, and 11% cultivars, whose genotypes are unknown based on the vernalization genes (Zhang et al., 2008). The co-existence of spring and winter wheat cultivars make it confused with cultivar classification, resulting in calls as strong spring, semi-spring, and semi-winter type, etc. (Jin, 1997; Dong and Zheng, 2000; Zhuang, 2003). As a result, spring wheat cultivars are sometimes planted in the northern part of Zone III, resulting in frozen damage in the spring. Conversely, winter wheat cultivars are sometimes grown in the southern region of Zone III, resulting in delayed development but earlier ripe due to high temperature in the summer. Therefore, precise identification of genes that make new varieties adapted to local environments is crucially important in breeding programs.

The adaptability of wheat cultivars is largely governed by genes in three pathways, including vernalization response, photoperiod response (PPD), and earliness per se (EPS; Kato and Yamagata, 1988; Laurie et al., 1995; Snape et al., 2001). Among them, vernalization is the most effective mechanism underling wheat flowering and hence the basic adaptation of a genotype for a particular environmental condition (Flood and Halloran, 1986; Griffiths et al., 2003). Major genes responsible for the difference in vernalization requirement between the two distinct types have been cloned, including VRN-1 (Yan et al., 2003), VRN-2 (Yan et al., 2004b), VRN-3 (Yan et al., 2006), and VRN-D4 (Kippes et al., 2015) that are promoted by low temperature, as well as VRN-2 (Yan et al., 2004b) that is repressed by low temperature. When the regulatory elements are found in the promoter or intron in one of three homoeologous Vrn-A1, Vrn-B1, or Vrn-D1 genes, single nucleotide polymorphism (SNP) is also found in coding region that offers alternative mechanism for flowering time in winter wheat at the protein level. Due to an alternation of an amino acid, “Jagger” has the vrn-A1a protein for weak winter wheat or less vernalization requirement, which is dominant to the stronger winter wheat requiring more vernalization to reach a vernalization saturation point in cultivar “2174” that has the vrn-A1b protein (Li et al., 2013). Major genes responsible for the difference in photoperiod sensitivity are three homoeologous PPD genes that are isolated according to the sequence of the barley PPD-H1 gene (Turner et al., 2005; Beales et al., 2007).

“Tabasco” was a wheat cultivar released in Germany. This cultivar was introduced to Zone III, owing to the presence of a new powdery mildew resistant gene Pm48 conferring outstanding resistance against powdery mildew and ideal spike architecture (Gao et al., 2012). Tabasco should be readily easy resistance source in breeding, but it is a strong winter cultivar that is mainly adapted to areas with average January temperature between −7 and 4°C to meet the strong requirement for vernalization (Iwaki et al., 2000).

Tabasco is awnless that is a characteristic of European cultivars, whereas most cultivars in Zone III have awn. It was reported that a gene encoding a C2H2 zinc finger and ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs plays as Awn Length inhibitor 1 (ALI1) that suppresses downstream genes transcriptionally resulting in the awnless trait (DeWitt et al., 2020; Huang et al., 2020; Niu et al., 2020; Wang et al., 2020; Würschum et al., 2020). Although ALI1 was identified in these independent studies, allelic variations or sequence polymorphisms between the Ali1 allele for awnless and the ali-1 allele for awn are inconsistent in reported genetic materials or germplasm. When Tabasco with the awnless trait was introduced into another cultivar with distant genetic backgrounds, it could be difficult in selection for the homozygous allele for the awnless or awn trait in early generations.

Molecular markers can be developed to accelerate deployment of genes for the desirable traits by using two parents with contrasting phenotypes for a cross to generate a biparental population of recombinant inbred lines (RILs) or doubled haplotype (DH) lines for mapping. However, it would be the most effective if multiple traits could be mapped in an F2 population. SNP chips have provided scientists with unprecedented tools to unravel allelic variation associated with complex traits (Poland and Rife, 2012). In this study, we used SNP technology to identify markers across an entire genome for genotyping of an F2 population. The segregating population has provided a successful example of developing high-density markers in wheat without developing RILs or DH lines.



Materials and methods


Plant materials

Tabasco (pedigree: ZE-90-2666/86-Z-99-9//CPB-93-27) was provided by Dr. Andreas Jacobi. Tabasco was crossed with Ningmaizi119 (abbreviated Zi119 hereafter), which is a hard red spring wheat cultivar (pedigree: Su13577/Ningmai13//Ningmai13) and released by the Crop Variety Approval Committee of Jiangsu Province. The two parental lines were vernalized at 4°C with long day photoperiod for 6 weeks to determine their growth habit. Five hybrid seeds were produced and self-pollenated to generate a population of 212 F2 plants. The F2 population was tested in a greenhouse conditioned with 16 h for light at 25 ± 2°C, and 8 h for darkness at 20 ± 2°C during the whole life cycle, and the greenhouse is located on Stillwater campus of Oklahoma State University. In addition to natural sunlight, high-pressure sodium lamps were used to provide supplemental lighting for nights and raining days. All of the population plants were not vernalized to identify genes associated with early flowering genes without requirement of vernalization. Since the F2 population was tested, no replicate could be conducted. No experiment was conducted to test how environmental cues affect the quantitative trait loci (QTLs) found in this study. The F2 population consisted of 212 plants that could have no replicates for a specific genotype. The heading date of a plant was recorded when the first spike of the plant was emerging from the flag leaf sheath of the main stem or a primary tiller. Heading date was recorded for each plant of the population when the main stem of the plant headed up. Flowering time was recorded for each plant of the population when the spike on the main stem of the plant flowered.



Genotypes of Tabasco × Zi119 F2 population

Genomic DNA was extracted from parental lines and the 212 F2 individual plants using the method as described in Dubcovsky et al. (1994). PCR markers for genes known to regulate flowering time were used to identify polymorphism between Tabasco and Zi119.

A 55 k SNP chip was used to genotype 105 F2 plants and two parental lines at Golden Marker Biotech Co., Ltd., Beijing, China, and the number of 107 samples from this project was used to match up three plates with other projects. The 105 plants were randomly selected at seedling stages without knowing growth habit. A total of 4,657 markers was analyzed using IciMapping v4.1, and 3,459 of them were developed after excessive missing data were removed in the BIN program. The 3,459 SNP markers were assembled into 21 chromosome linkage groups forming genetic maps for the F2 population (Supplementary Table S1), based on a Chinese Spring genome sequence in the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.1.1 The 3,459 markers were integrated with the phenotypes of the 105 F2 plants to screen QTL in the BIP procedure, with 2.5 value of the threshold.



Allelic variation and gene expression of VRN-D1

Two pairs of primers were used to test polymorphisms in VRN-D1 between Tabasco and Zi119. The first primer pair were VRN-D1F (5′-GTTGTCTGCCTCATCAAATCC-3′) and VRN-D1R3 (5′-GGTCACTGGTGGTCTGTGC-3′) that were used to detect a deletion in intron one of VRN-D1, and the second primer pair were VRN-D1F (5′-GTTGTCTGCCTCATCAAATCC-3′) and VRN-D1R4 (5′-AAATGAAAAGGAACGAGAGCG-3′) that were used to detect an insertion in intron one of VRN-D1 (Fu et al., 2005). PCR amplification conditions were: 94°C for 3 min, 40 cycles of 94°C for 45 s, 58°C for 45 s, and then 72°C for 4 min, with a final extension of 72°C for 10 min. qRT-PCR was used to determine the transcriptional levels of VRN-D1 in two parental lines at seedling state without vernalization. RNA samples were collected from leaves, and total RNA was extracted using TRIzol® reagent (Invitrogen, Carlsbard, CA, United States). cDNA was synthesized from 5 μg of RNA using SuperScript™ II Reverse Transcriptase Kit (Invitrogen, Carlsbard, CA, United States). Primers for VRN-D1 transcripts were VRN1D-RT-F2 (5′-ATGCTCCCCCTGCCGCAG-3′) and VRN1D-RT-R2 (5′-GCTGCACTGCCGCATCCC-3′).



Gene expression and copy number variation of ALI1

Awn Length inhibitor 1 was isolated from gDNA using specific primers ALI1-F1 (5′-CCATGTCTGTGGGCTCTGTT-3′) and ALI-R1 (5′-GCCTATAGGACTAGCCCATATAC-3′). The amplified PCR products were directly sequenced to identify allelic variation in the sequenced region between the two parental lines. RT-ALI-F1 (GTTCGCCTGCTCCTACTGCT) RT-ALI-R1 (GTGGTTCTCGATGGCGAGCT) were used to determine the transcription levels of ALI1 using cDNA as template and actin as an endogenous control, and the same primers determine the copy number of ALI1 using gDNA as template and TaCO2 as an endogenous control for one copy gene on the entire genome (Li et al., 2013).




Results


Segregation of developmental phases in Tabasco × Zi119 F2 population

When tested under long-day and without vernalization across the experiment, Zi119 headed 50 days after planting, whereas Tabasco did not head up 150 days after planting before it was vernalized (Figure 1A). Without vernalization, Zi119 plants flowered; hence, this cultivar was designated as “spring” wheat. Without vernalization, Tabasco did not flower within 5 months; but with 6 weeks’ vernalization at 4°C and long day conditions, it flowered 120 days; hence, this cultivar was designated as “winter” wheat. Tabasco was also a strong winter wheat, compared with a weak winter wheat cultivar “Jagger” that headed 92 days without vernalization and was accelerated 30 days for heading by 3 weeks’ vernalization (Li et al., 2013). F1 plants from Tabasco × Zi119 headed 75 days after planting, indicating that those genes for spring growth habit in Zi119 were primarily dominant to those for winter growth habit in Tabasco.
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FIGURE 1
 Difference in developmental phases between Tabasco and Zi119. (A) Comparison of heading date between Tabasco and Zi19. (B) Segregation of phenotypes in populations. (C) Frequency distribution of heading date for the F2 population. (D) Frequency distribution of flowering time for the F2 population. (C,D) Arrows indicate the groups the two parent lines fell into based on their phenotypes. The AX plus eight-digit single nucleotide polymorphism (SNP) codes are markers from SNP chips.


The 212 F2 plants showed a large segregation in heading date and flowering time (Figure 1B). Without vernalization, the Tabasco × Zi119 F2 plants showed clear segregation developmental processing but did not show a clear cut-off for growth habit to distinguish between spring wheat and winter wheat. Instead, the heading date of the 127 F2 plants was continuous within 120 days after planting, whereas the heading date of the remaining 85 F2 plants was extremely late. Plant number distribution of the 212 F2 plants for heading date was shown in Figure 1C, indicating that a major gene for spring habit might be present in the population and minor genes might have modified the heading date. Plant number distribution of the 212 F2 plants showed a similar pattern in flowering time (Figure 1D), indicating that no gene was segregated for developmental phase from heading to flowering in the population.



Genotypes of the Tabasco × Zi119 F2 population using SNP chips

A total of 53,063 SNP calls were generated for 105 F2 plants, and 9,023 (17%) of these calls showed allelic variation between the parental lines. From these 9,023 polymorphic calls, 4,657 markers were developed, according to two criteria. One is that one marker had less than 8% missing data in the 105 plants in the population, and the other is that one marker had a segregation ratio of 1: 2: 1 for A: H: B alleles (Chi-Square Test, p < 0.27), with the homozygous A allele for Tabasco, the homologous B allele for Zi119, and H for the heterozygous allele. Detailed information for the length of each linkage group and genetic distances of the SNP markers on the whole genome is provided in Supplementary Table S1.

The 3,459 SNP markers that were mapped in the F2 population spanned 8,118 cM, with 0.43 cM per marker in genetic distance. The 3,459 markers were integrated with the phenotypes of the 105 F2 plants to screen QTL and identified genomic regions that had significant effects on two traits segregated in the Tabasco × Zi119 F2 population. The results suggested that the SNP chips could be used to rapidly genotype an F2 population for mapping of QTL for the important traits.



Rapid mapping of QTLs for heading date and flowering time in the Tabasco × Zi119 F2 population

A major QTL for heading date and flowering time was simultaneously mapped to chromosome 5D, where a total of 81 SNP markers was assembled a linkage group (Figure 2A). The LOD value at the peak position of the QTL heading date and flowering time was 39.1 and 38.3 respectively, explaining 78.3 and 79.2% of the total phenotypic variation. Based on the genotypes of AX110958036 at the mapped QTL locus in the 105 F2 plants, plants homozygous for the Zi119 allele headed at averaged 62.3 ± 1.8 (n = 24), which was significantly earlier than 189.9 ± 7.0 days (n = 22) for plants carrying the homozygous Tabasco allele (p = 4.66E−21). Plants that had heterozygotes averaged 110.6 ± 4.2 days (n = 59) also headed significantly earlier than plants carrying the homozygous Tabasco allele (p = 9.93E−10). In addition, the plants homozygous for the Zi119 allele headed significantly earlier than the plants that had heterozygotes (p = 1.23E−15). Collectively, the Zi119 allele was partially dominant for early heading over the Tabasco allele for late heading.

[image: Figure 2]

FIGURE 2
 Mapping of quantitative trait loci (QTLs) for heading date segregated in the Tabasco and Zi119 population. (A) A major QTL on chromosome 5D. The peak of this QTL is associated with the VRN-D1 gene. (B) A minor QTL on chromosome 2A. The peak of this QTL is not associated with the PPD-A1 gene. (C) A minor QTL on chromosome 2D. The peak of this QTL is associated with the PPD-D1 gene. The phenotypic data was for heading date (HD) or flowering time (FT). LOD value is indicated on Y axis, and genetic distance (cM) is indicated on X axis. The physical locations of the genes are indicated in pink based on the Chinese Spring genome sequence of RefSeq v1.1.


Two additional minor QTLs for heading date and flowering time were detected using the same phenotypic data from the Tabasco × Zi119 F2 population. One was on chromosome 2A with LOD value 3.4 and explained 1.8% of the total variation for heading date, and with LOD value 3.6 and explained 2.1% of the total variation for flowering time (Figure 2B). The other one was on chromosome 2D with LOD value 4.8 and explained 2.8% of the total variation for heading date, and with LOD value 3.7 and explained 2.2% of the total variation for flowering time (Figure 2C). No gene for heading date and flowering time was reported on the minor QTL locus on chromosome 2A, but it was likely that PPD-D1 could be the gene causing the minor QTL on chromosome 2D (Figure 2C). The Zi119 allele might have an allele for insensitivity to photoperiod for early heading (101.9 ± 4.6, n = 21), whereas Tabasco an allele for sensitivity to photoperiod for late heading (132.4 ± 5.0, n = 29).

To accelerate utilizing the gene at the major QTL on chromosome 5D in breeding, this QTL was validated using F3 progeny plants and the candidate gene causing the QTL was identified.



Validation of the QTLs in F3 generations

Eight F2 plants that had crossovers in the QTL region (Figure 3A) were selected to generate F3 progeny families for testing in the same greenhouse. These F3 progeny plants were not vernalized throughout the experiment. All plants in two families that had the Zi119 allele at marker AX111262507 headed very earlier, 71 days in TZ195 and 74 days in TZ190. All plants in two families (TZ163 and TZ029) that had the Tabasco allele at marker AX111262507 did not head up until 150 days after planting when the experiment was terminated. Plants in the other four families (TZ148, TZ198, TZ184, and TZ128) that had heterozygotes showed segregation in heading date. Images for three families with different genotypes of AX111262507 were taken (Figure 3B). These results validated the major QTL on chromosome 5D for heading date and flowering time. Moreover, the gene causing the major QTL on chromosome 5D was linked with AX111262507.
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FIGURE 3
 Genotypes and phenotypes of recombinant plants that have crossovers at the VRN-D1 locus. (A) Physical locations of eight crossovers that occurred at the VRN-D1 locus. “X” indicates a crossover detected between two neighboring markers. (B) Images for developmental processes in three recombinant lines in their respective F3 populations. (C) The PCR marker for InDel between the Vrn-D1 allele in Zi119 and the vrn-D1 allele in Tabasco. (D) PCR products from cDNA samples from each of five random plants carrying the Vrn-D1 allele from Zi119 (Z1–Z5) and the vrn-D1 allele from Tabasco (T1–T5).




Allelic variation in VRN-D1 associated with the major QTL

VRN-D1 on chromosome 5D (TraesCS5D02G401500) was positioned at 467,176,668 bp, which is close to the linked marker AX111262507 at 465,860,727 bp (Figure 3A); therefore, VRN-D1 naturally and reasonably became a candidate gene for the mapped QTL for heading date and flowering time. Two pairs of primers that are specific to VRN-D1 (Fu et al., 2005) were used to distinguish between the presence and absence of a 4,235-bp deletion in intron one in Tabasco and Zi119. The first primer pair, VRN-D1F and VRN-D1R3 that were designed to produce an amplification product only when the deletion was present (i.e., the spring allele or dominant Vrn-D1 allele), showed a 1,671-bp PCR product from Zi119 but not from Tabasco, demonstrating the 4,235-bp deletion was present in Zi119 but not in Tabasco (Figure 3C). The second primer pair, VRN-D1F and VRN-D1R4 that were designed to produce an amplification product only when the deletion was absent (i.e., the winter allele or dominant vrn-D1 allele), showed a 997-bp PCR product from Tabasco but not from Zi119, demonstrating the 4,235-bp insertion was present in Tabasco but not in Zi119 (Figure 3C). The amplified PCR products were directly sequenced, and the sequences showed 100% identity to the VRN-D1 InDel. Besides this InDel, no other differences were found in the VRN-D1 coding region between the two parental lines. Furthermore, Vrn-D1 was expressed in Zi119 at its seedling stage, but vrn-D1 was not expressed in Tabasco at its seedling stage (Figure 3D). The diagnostic marker for the InDel variation in VRN-D1 was used to genotype the F3 progeny families. Results showed that the plants that had homozygous and heterozygous deletion in the Vrn-D1 allele headed up earlier whereas the plants that had homozygous insertion in the vrn-D1 allele headed up later. These results supported that Zi119 carried the dominant Vrn-D1 allele that enabled the plant to head up as early as 70 days after planting and without vernalization.



The genome region associated with the presence and absence of awn

The Tabasco × Zi119 F2 population showed a clear cut-off segregation of awn and awnless spikes, fitting a 3: 1 (χ2 = 1.17, p = 0.28). The result demonstrated that the awn trait was dominant over the awnless trait in the F2 population. The integration of the phenotypes and genotypes for each of the F2 plants allowed mapping of a genomic region on chromosome 5A for this trait. Further analysis of SNP markers in the mapped genomic region identified 10 crossovers between AX109275049 and AX109911223 (Figure 4A). Fine mapping of these crossovers showed that the candidate gene should be located between AX109857944 at 692,461,596 bp and AX109911223 at 702,081,022 bp (Figure 4A). TaesCS5A02G542800 representing ALI-A1 at position 698,528,636 bp is located between the two SNP markers. TZ98 and TZ101 had homozygotes for AX109857944 and heterozygotes for AX109911223 and the two plants had no awn, indicating that the candidate gene was linked with ALI-A1. TZ19, TZ196, and TZ207 had homozygotes for AX109911223 and heterozygotes for AX109857944 and these three plants had no awn, indicating that the candidate gene was linked with ALI-A1 too. Combining the genotypic and phenotypic results from these five critical recombinant plants, ALI-A1 was a candidate gene causing the segregation of awn/awnless traits in the F2 population. Tabasco had the dominant Ali-A1 allele for awn, Zi119 had the recessive ali-A1 allele for awnless, and ALI-A1 was used for the common allele.
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FIGURE 4
 Genotypes and phenotypes of 10 recombinant plants that have crossovers at the ALI-A1 locus. (A) Physical locations of 10 crossovers that occurred at the ALI-A1 locus. Markers mapped chromosome arm 5AL that are indicated in different colors are arranged based on the sequences of Chinese Spring (CS). ALI-A1 is annotated TaesCS5A02G542800. “A” is the Tabasco allele, “B” for the Zi119 allele, and “H” for the heterozygote. “X” indicates a crossover detected between two neighboring markers. Phenotype of each recombinant plant was of awn or awnless. (B) Comparison of promoter sequences between the Tabasco allele and the Zi119 allele.




Allelic variation in ALI-A1

Sequencing results showed that the Tabasco and Zi119 ALI-A1 alleles had the same sequences in the coding region but differed in two SNPs in the 254 bp promoter region (Figure 4B). One was at position-111, where “C” in the Ali-A1 allele was replaced by “T” in the ALI-A1 allele. The other one was at position-219, where “A” in the Ali-A1 allele was deleted in the ali-A1 allele. The transcript level of ALI-A1 gene was determined and no significant difference was observed between the two alleles using RNA samples collected from leaves at the seedling stage (p = 0.666, n = 9; Figure 5A) or young spikes at heading date (p = 0.374, n = 9; Figure 5B).
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FIGURE 5
 Transcript levels and copy number of different ALI-A1 alleles. (A) Comparison of ALI-A1 transcript levels in leaves between the Tabasco allele and the Zi119 allele. (B) Comparison of ALI-A1 transcript levels in young spikes between the Tabasco allele and the Zi119 allele. (C) Comparison of ALI-A1 copy number between the Tabasco allele and the Zi119 allele. (D–H) Copy number and chromosomal locations of ALI-A1 in CS and 10 wheat genome sequences. (D) The Ali-A1 allele was found to have one copy on chromosome 5A in six cultivars including CS at position 700,824,508 bp, Landmark at position 700,026,149 bp, Jagger at position 700,709,285 bp, Lancer at position 692,663,330 bp, Mace at position 691,541,051 bp, and Norin at position 699,728,557 bp. (E–H) Ali-A1 was found to have four types Ali-A1a through Ali-A1d based on their chromosomal locations. (E) Ali-A1a in Arina is at position 695,901,606 bp on chromosome 5A. (F) Ali-A1b in Stanley is at position 140,377,555 bp and Julius at position 114,994,011 on ChrUN (unknown chromosome). (G) Ali-A1c is in Mattis with three copies, one at position 688,692,384 bp on chromosome 5A, and another two copies at positions 239,812,783 and 287,868,636 bp on ChrUN. (H) Ali-A1d is in Spelta with five copies, one at position 698,375,770 bp on chromosome 5A and another four copies at positions 192,142,499, 192,159,103, 238,409,458, and 238,413,036 bp on ChrUN.


The same primers were used to determine the copy number of genes. Relative to one copy of ali-A1 in Zi119, Ali-A1 in Tabasco was found to have two copies of Ali-A1 (Figure 5C). According to the copy number and chromosomal locations of ALI-A1 gene in CS and 10 wheat genome sequences, the Ali-A1 allele was found to have one copy on chromosome 5A in six cultivars (Figure 5D). However, the Ali-A1 allele was found to have four types, Ali-A1a through Ali-A1d. Ali-A1a has one copy on chromosome 5A (Figure 5E), Ali-A1b on has one copy ChrUN (unknown chromosome; Figure 5F), Ali-A1c has three copies, one at position on chromosome 5A and another two copies on ChrUN (Figure 5G), and Ali-A1d has five copies, one on chromosome 5A and another four copies on ChrUN (Figure 5H). It was likely that Tabasco has two copies of ALI-A1, one on chromosome 5A and the other on ChrUN, which is referred to as Ali-A1e allele.




Discussion

Zi119 is a spring wheat cultivar that has no vernalization for flowering about 50–70 days (depending on experiment seasons in the greenhouse) as presented in this study. In wheat production, however, Zi119 is planted in October and harvested in next May, spanning approximate 7 months in field in Zone III; where a winter season is clear (Zhang et al., 2008). Zi119 wheat was found to have the Vrn-D1 allele for early flowering, when this cultivar was crossed with strong winter cultivar Tabasco and the resulting F2 population was tested under constant warm temperature and long day conditions. In the field, the spring wheat cultivar is not accelerated but delayed for flowering by low temperature, whereas a winter cultivar is accelerated in the developmental transition for flowering (Li et al., 2013). The Vrn-D1 allele could make spring wheat or semi-winter cultivar to flower in a difference of a few months in the greenhouse but a few days in the field.

The Vrn1 gene was initially cloned from diploid wheat T. monococcum (Yan et al., 2003). The availability of the gene sequence allowed isolation of three homoeologous genes, VRN-A1, VRN-B1, and VRN-D1 in common wheat and identification of allelic variations in each of them. Compared with VRN-A1 that has multiple alleles (Yan et al., 2003, 2004a; Pidal et al., 2009; Golovnina et al., 2010; Li et al., 2013; Shcherban et al., 2015), VRN-B1 and VRN-D1 are observed to have fewer haplotypes. Vrn-D1 in spring wheat has a large deletion in intron one in hexaploid wheat (Fu et al., 2005). The effect intensity of the three VRN-1 genes was ranked as Vrn-A1 > Vrn-B1 > Vrn-D1, based on analyses on Triple Dirk isogenic lines (Loukoianov et al., 2005), Chinese wheat cultivars (Zhang et al., 2008), and a biparental population (Li et al., 2015). Due to the greatest effect of the Vrn-A1a allele, it has been incorporated into spring wheat cultivars in Canadian breeding programs and spring-sown wheat cultivars in China to provide frost avoidance in short-season environments or frozen damage in spring season (Iqbal et al., 2007; Zhang et al., 2008). This study provided experimental evidence for the desirable selection of Vrn-D1 on ideal heading date in wheat Zone III. The genetic corporation of Vrn-D1 with two genes on chromosome arms 2AS and 2DS could be used to make wheat cultivars with different developmental durations at joining state, heading date, and physiological maturity (Chen et al., 2009, 2010), which are adapted to gradually changed environments from southern to Northern regions in Zone III.

Awn Length inhibitor 1 (i.e., TraesCS5A02G542800) was believed to be a strong candidate for the dominant Tipped1 or B1 as an awn suppressor (DeWitt et al., 2020; Huang et al., 2020; Niu et al., 2020; Wang et al., 2020; Würschum et al., 2020). This gene was cloned by analyses of association maps and biparental populations, and polymorphisms were observed not in the ALI1 coding region but a nearby region (a 30-bp deletion at 4 kb downstream) that was predictive of regulatory elements (DeWitt et al., 2020). It could be a 25-bp deletion upstream of the Ali-1 allele that was linked with the awnless trait (Huang et al., 2020), but this deletion is also found in T. urartu, raising a doubt about the causal. It could be one of five SNPs at positions from-1,630 to-709 in the promoter region of ALI1 that is responsible for awn elongation (Wang et al., 2020). In addition, SNPs at the ALI1 locus could be a gene that has a dosage effect on awn length based on segregation for long, intermediate and short awn phenotypes two F8 recombinant inbred lines (RILs; Niu et al., 2020). Collectively, it is not yet clear how allelic variation in ALI-1 caused differences between the awnless and awn traits or between the long awn and short awn traits (Würschum et al., 2020). ALI-1 is located within a genomic region, where it is surrounded by >100 kb of insertion or deletion of transposable or repetitive elements that may hinder assembly of genome sequences, resulting in unknown chromosome. Among the 10 sequenced genomes, Ali-1 was found to have variation in gene copy number, which could result from duplication of chromosomal fragment. Determining if the observed duplication of chromosomal fragment containing Ali-1 is a causative mechanism will require further work.

The presence of the two major genes in locally adapted cultivars provides easy selection in a short cycle. Such rapid cycling lines will not require vernalization to induce flowering and will be selected for traits of interest such as awn. The elite breeding lines will be crossed to the winter wheat recurrent parent used to create the rapid cycling lines to recover the winter growth habit, thus creating adapted backcross derived lines quickly and efficiently and accelerating winter wheat breeding schemes. Detection of vernalization genes by traditional genetic methods is time consuming. Fortunately, the cloned vernalization genes have facilitated the development of gene-specific markers or functional markers (also known as perfect or diagnostic markers). The markers provide a unique opportunity to screen large collections of wheat germplasm for allelic diversity at the desirable genes.
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Maximum root length (MRL) plays an important role in the uptake of nutrients and resisting abiotic stresses. Understanding the genetic mechanism of root development is of great significance for genetic improvement of wheat. Previous studies have confirmed that parental reproductive environment (PRE) has a significant impact on growth and development of the next generation in the whole life cycle of a given plant. In this study, a recombinant inbred line population genotyped using the Wheat55K SNP array, was used to map quantitative trait loci (QTL) for wheat seedling MRL based on the harvested seeds from five different PREs. A total of 5 QTL located on chromosomes 3D and 7A were identified. Among them, QMrl.sicau-2SY-3D.2 located in a 4.0 cM interval on chromosome 3D was likely independent of PREs. QMrl.sicau-2SY-7A.2 was detected in two tests and probably influenced by PREs. The effect of QMrl.sicau-2SY-3D.2 was further validated using the tightly linked kompetitive allele specific PCR (KASP) marker, KASP-AX-111589572, in populations with different genetic backgrounds. Lines with a combination of positive alleles from QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 have significantly longer MRL. Furthermore, four genes (TraesCS3D03G0612000, TraesCS3D03G0608400, TraesCS3D03G0613600, and TraesCS3D03G0602400) mainly expressed in wheat root were predicted to be associated with root growth. Taken together, this study reports on a major QTL independent of PREs and lays a foundation for understanding the regulation mechanism of wheat MRL at the seedling stage.
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Introduction

Wheat, one of the earliest domesticated cereals, is extensively grown worldwide serving as human food and livestock feed (Shewry, 2009). Wheat yield urgently awaits to be enhanced because of the growing population and rising production costs (Godfray et al., 2010). Root system architecture (RSA) plays a pivotal role in transformation and transportation of substances and determines yield potential in wheat (Ober et al., 2021). A deep RSA helps plants to resist drought stress by absorbing water and nutrients from deep soil layers (Uga et al., 2011). The difference in nitrogen uptake capacity among various wheat genotypes was mainly caused by root length (Puccio et al., 2021). Thus, an appropriate maximum root length (MRL) can improve RSA with a great potential for yield improvement in wheat breeding.

Recently, some genes or quantitative trait loci (QTL) associated with MRL were identified in wheat (Li et al., 2021a). For instance, overexpression of TaRNAC1 increased wheat root length, biomass and drought tolerance and improved yield under water limitation (Chen et al., 2018). TaVSR1-B encoded a vacuolar sorting receptor protein and was associated with wheat root depth at the booting stage (Wang et al., 2021). The wheat SHORT ROOT LENGTH 1 as an ethylene responsive factor transcription factor, controlled root length in an auxin-dependent pathway (Zhuang et al., 2021). Dwarf genes (Rht8, Rht12, and Rht18) in wheat have been reported to affect MRL in the field (Ingvordsen et al., 2022). Moreover, 33 QTL for four wheat root traits including seven for MRL were detected using hydroponic culture and soil-filled pot methods (Zheng et al., 2019). Nine QTL for MRL were detected under normal and salt treatments in a wheat recombinant inbred line (RIL) population. However, it is worth noting that the influence of parental reproductive environment (PRE) on root development has not been mentioned or discussed in these studies on detection of QTL for root-related traits in wheat.

Growth and development of plants can be affected by PRE in addition to the environment and heredity (Martienssen and Colot, 2001; Elwell et al., 2011). PRE affected seeds size, weight, vigor and stress tolerance of the progenies, and further impacted plant growth performance including root elongation (Grant-Downton and Dickinson, 2005; Nosalewicz et al., 2016). For example, drought priming on parents could induce thermo-tolerance in the offspring of wheat (Zhang et al., 2016). The progeny of the stressed parents maintained longer roots even under low biomass distribution at drought for spring barley (Nosalewicz et al., 2016). Progenies produced from the warm PRE showed better germination rates, root elongation growth, leaf biomass, and seed production compared with those from the cold PRE in Arabidopsis (BlÖDner et al., 2007). These results indicate that PRE potentially affects root growth. Considering that PRE, which is not conducive to the development of the next generation, may bring the risk of production reduction, it is necessary to identify major QTL for MRL independent of PRE in wheat.

In this study, five hydroponic tests were conducted for detecting QTL of MRL at seedling stage using seeds harvested from five different PREs in a wheat RIL population. Two major QTL, QMrl.sicau-2SY-3D.2 (likely independent of PREs) and QMrl.sicau-2SY-7A.2 (likely influenced by PREs) were identified. The correlations between MRL and other agronomic traits were also analyzed. The effect of these two loci on MRL were further evaluated. QMrl.sicau-2SY-3D.2 was further validated in two populations with different genetic backgrounds. In addition, candidate genes for QMrl.sicau-2SY-3D.2 were predicted. These results are useful for the selection of wheat lines with different MRL based on molecular markers.



Materials and methods


Plant materials

A previously reported RIL population (2SY) consisting of 126 F7 RILs from a cross between 20828 and SY95-71 was used for QTL mapping (Liu et al., 2020b). The wheat line 20828 (G214-5/3/Chuanyu19//Lang 9247/50788) with more spikelet number per spike (SNS) (Ding et al., 2022) is highly resistant to strip rust (Ma et al., 2019; Liu et al., 2020a). SY95-71 (Eronga83/Fan 6//Fan 6) is a stable line with a well-developed root system showing longer MRL (Zheng et al., 2019) and a better plant architecture (Liu et al., 2020b,2022). Two populations derived from the cross of HTGW3/SY95-71 (HTG3SY, F3, 131 lines) (Chen et al., 2022) and S849-8/SY95-71 (SSY, F7, 214 lines) (Qu et al., 2022) were used to verify the major QTL. The aforementioned plant materials are available from Triticeae Research Institute in Sichuan Agricultural University.



Hydroponic culture and experimental design

MRL was measured at seedling stage in the greenhouse using hydroponic culture method as described by Ma et al. (2017). The greenhouse was maintained at 20 ± 4°C and 65%/85% (day/night) relative humidity with a 16 h/8 h day/night photoperiod. Seeds of 2SY population harvested from different PREs including Ya’an (103°0′E, 29°58′N) in 2017 and 2018, Chongzhou (103°38′E, 30°32′N) in 2018 and 2019, and Wenjiang (103°51′ E, 30°43′ N) in 2019 of Sichuan Province in China were selected (T1-T5, T for test) (Qu et al., 2021; Chen et al., 2022). Seeds of HTG3SY and SSY were harvested in Chongzhou and Wenjiang in 2021, respectively. The planting and field management strategy were carried out according to the local standard practices (Liu et al., 2020b).

In the investigated populations, 20 seeds with similar size were selected from each line. The seeds were soaked in 10% sodium hypochlorite for 5 min for surface disinfection, rinsed several times with sterile water, and placed in petri dishes with filter paper moistened with sterile water. After a week, three seedlings from each line with similar growth and development status were transferred in the plastic boxes (50 cm × 40 cm × 30 cm) filled with Hoagland nutrient solution and fixed using a sponge to keep the roots suspended. The nutrient solution was replaced weekly and the air pump was continuously used to supply oxygen to the seedlings. The whole experiment was completely randomized and repeated three times.



Data analyses

After four weeks cultured in nutrient solution, MRL (the length from roots base to tip of the primary root, cm/plant) of seedlings was measured directly with a ruler (Ma et al., 2017). The average data of three plants for MRL was calculated for subsequent analysis. The IBM SPSS Statistics v271 was used to analyze Pearson’s correlation and Student’s t-test (P< 0.05). The best linear unbiased prediction (BLUP) for target trait from different tests was calculated with SAS v8.0.2 Quantile-Quantile plot and boxplot were drawn with Origin Pro 2021 v9.8.3

In addition, the BLUP datasets of RSA-related traits, including dry root–shoot ratio (DRS), root area (RA), root diameter (RD), root dry weight (RDW), root forks (RF), root number (RN), root tips (RT), root volume (RV), shoot dry weight (SDW), and total root length (TRL) in 2SY population were used to analyze Pearson’s correlation (Chen et al., 2022). The BLUP datasets of yield-related traits, including tiller number (TN) (Liu et al., 2020b), plant height (PH) (Liu et al., 2020b), spike extension length (SEL) (Li et al., 2020), SNS (Ding et al., 2022), and thousand-grain weight (TGW) (Qu et al., 2021) in 2SY population were used to analyze Pearson’s correlation and for Student’s t-test in this study.



Quantitative trait loci analysis

This study adopted the previous genetic map constructed using Wheat55K SNP Array that covers a total genetic distance of 4,273.03 cM with mean marker density of 1.69 cM/marker (Liu et al., 2020b). The inclusive composite interval mapping-additive and dominance of biparental population module (BIP) in IciMapping v4.2 (Meng et al., 2015) was used to detect QTL for MRL. The running speed, PIN value, and logarithm of odds (LOD) value of threshold were set at 1.0 cM, 0.001, 3, respectively (You et al., 2021). QTL identified in more than two tests were considered to be stably expressed.

Epistatic of IciMapping v4.2 was used for epistatic QTL (eQTL) analysis with parameters setting as follows: LOD = 5.0, PIN = 0.001, and step = 1.0 cM (Ren et al., 2021). QTL were named based on the International Rules of Genetic Nomenclature (McIntosh et al., 2013), where “Mrl,” “sicau,” and “2SY” represented “Maximum root length,” “Sichuan Agricultural University” and the mapping population, respectively.



Comparison with reported quantitative trait loci and prediction of candidate genes

The sequences of flanking markers closely linked to the major QTL for MRL were retrieved from our previous study (Liu et al., 2020b). Those for each previously reported QTL linked to MRL were downloaded from T3/Wheat4 and GrainGenes 3.0.5 We further blasted them against the genome of “Chinese spring” (CS v2.1) (Zhu et al., 2021) on WheatOmics (Ma et al., 2021) to get their corresponding physical locations. Furthermore, candidate genes of the major QTL and their functional annotations and expression patterns (International Wheat Genome Sequencing Consortium [IWGSC], 2014) were obtained from the WheatOmics.



Marker development and quantitative trait loci validation

A flanking marker AX-111589572 was converted into kompetitive allele specific PCR (KASP) marker KASP-AX-111589572 (Supplementary Table 1) to validate the genetic effects of the major QTL in different genetic backgrounds. FX96™ Real-Time System was used for genotyping. The whole volume of 10 μL containing 0.75 μL template DNA, 1.4 μL mixture of primers, 2.85 μL deionized water, and 5 μL SsoFast EvaGreen mixture was used for the amplification reactions. PCR reaction procedure was set as follow: 15 min at 94°C, 40 cycles of 20 s at 94°C, and 60 s at 61–55°C (dropping 0.6°C per cycle).

We randomly selected 86 and 131 lines from HTG3SY and SSY populations, respectively. They were further divided into three groups based on the genotyping results: lines with homozygous alleles from SY95-71, those from HTGW3 or S849-8, and heterozygous ones. Student’s t test was used to evaluate the phenotypic differences between the two groups with contrary alleles in each of these two populations.




Results


Analysis of phenotypic data

SY95-71 had significantly longer MRL than 20828 in all tests except T3 (P < 0.05). The MRL of 20828 ranged from 20.33 cm to 28.60 cm, while that of SY95-71 ranged from 29.87 cm to 38.13 cm (Figure 1 and Table 1). The minimum and maximum MRL of the 2SY population were 14.00 and 59.55 cm, with mean values of 35.09, 33.17, 34.62, 34.90, and 36.75 cm in five tests, respectively (Table 1). Coefficient of variation (CV) was 15.25–26.10% for all tests. The frequency distribution was continuous and close to normal distribution in all tests, indicating that MRL was a trait of polygenic inheritance (Figure 2). In addition, significant and positive correlations for MRL were detected among five tests except TI and T4; T2 and T3 (Supplementary Table 2).
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FIGURE 1
Maximum root length (MRL) of the parent 20828, SY95-71, and partial RILs. The white bar represents the scale = 10 cm.



TABLE 1    Phenotypic variation of maximum root length (MRL) for five tests in 20828/SY95-71(2SY) population.
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FIGURE 2
Frequency distribution of maximum root length (MRL) for five tests and with BLUP dataset.




Phenotypic correlation between maximum root length and other traits

Phenotypic correlations between MRL and other RSA-related traits (DRS, RA, RD, RDW, RF, RN, RT, RV, SDW, and TRL) were calculated based on the BLUP datasets (Table 2). Pearson’s correlation coefficient ranged from 0.11 to 0.54. MRL was significantly correlated with all the other RSA-related traits except RD and RN.


TABLE 2    Correlation coefficients between maximum root length (MRL) and root system architecture (RSA)-related traits in the 20828/SY95-71(2SY) population.
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Moreover, the relationships between MRL and yield-related traits (TN, PH, SEL, SNS, and TGW) were analyzed based on the BLUP datasets (Table 3). Pearson’s correlation coefficient ranged from –0.001 to 0.28. Significant and positive correlations were detected between MRL and TN, PH, and SEL (P < 0.05). However, MRL was not significantly correlated with SNS and TGW.


TABLE 3    Correlation coefficients between maximum root length (MRL) and yield-related traits in the 20828/SY95-71(2SY) population.
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Quantitative trait loci mapping for maximum root length and epistatic analysis

Five QTL for MRL were detected and they were located on chromosomes 3D (3) and 7A (2), explaining 6.19–28.57% of phenotypic variation with LOD value ranging between 3.04 and 11.21 (Table 4). QMrl.sicau-2SY-3D.2 as a major locus can be detected in four tests and the BLUP dataset and was mapped between AX-111589572 and AX-109260274 on chromosome 3D, which may not be affected by PREs (Figure 3). It explained 12.06–28.57% of phenotypic variation with LOD value ranging from 3.32 to 11.21. QMrl.sicau-2SY-7A.2 accounted for 10.70–17.96% of phenotypic variation and was identified in T3, T5, and BLUP dataset (Figure 3). It was likely influenced by PREs. Minor QTL QMrl.sicau-2SY-3D.1, QMrl.sicau-2SY-3D.3, and QMrl.sicau-2SY-7A.1 were detected in single test and explained 6.19–17.00% of phenotypic variation. The positive alleles of all QTL were contributed by SY95-71 except QMrl.sicau-2SY-3D.3 (Table 4).


TABLE 4    Quantitative trait loci (QTL) for maximum root length (MRL) identified from five tests in the 20828/SY95-71(2SY) population.
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FIGURE 3
Genetic maps of the major quantitative trait loci (QTL).


Three pairs of eQTL were detected for MRL in T2, T4, and BLUP dataset (Figure 4 and Supplementary Table 3). Their LOD and phenotypic variation values ranged from 5.23 to 5.70 and 16.56 to 22.03%, respectively. Among them, two pairs showed negatively epistatic effect value indicating that the epistatic effect of the recombinant genotype was higher than parental genotype and the other one showed positively epistatic effect value. There was no epistatic relationship between eQTL and those detected in the BIP analysis. These results suggested that these eQTL indirectly affected phenotypes through interactions.
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FIGURE 4
Epistatic quantitative trait loci (QTL) were detected across 21 chromosomes.




Evaluation of the genetic effect for the major quantitative trait loci

Flanking markers closely linked to the two major QTL were further used to analyze their genetic effect (Figure 5). According to the genotypes of flanking markers of QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2, two groups with contrary homozygous alleles of corresponding QTL were divided in 2SY RILs, respectively (Figures 5A,B). Student’s t-test showed that MRL of the group carrying positive alleles of QMrl.sicau-2SY-3D.2 or QMrl.sicau-2SY-7A.2 were significantly longer than those carrying negative ones in five tests and BLUP dataset.
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FIGURE 5
The genetic effect of major quantitative trait loci (QTL) QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2. Genetic effects of QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 in 20828/SY95-71(2SY) population (A,B). The pyramiding effect of QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 on maximum root length (MRL) (C). ∗ and ∗∗ represent significance at the 0.05 and 0.01 level.


The interactions between QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 on increasing MRL were further analyzed in the 2SY RILs based on the BLUP dataset (Figure 5C). 2SY RILs were classified into four groups based on genotypes of the flanking markers. They were group A: lines with a combination of positive alleles from QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2; B: those from QMrl.sicau-2SY-3D.2 only; C: those from QMrl.sicau-2SY-7A.2 only; and D: those with neither QMrl.sicau-2SY-3D.2 nor QMrl.sicau-2SY-7A.2. As expected, MRL of group A significantly increased by 20.33, 9.83, and 8.23% compared to group D, C, and B, respectively. MRL of groups B and C significantly increased by 11.82 and 9.65% compared to group D. There was no significant differences between group B and C.



Validation of the major locus QMrl.sicau-2SY-3D.2 in different genetic backgrounds

The effect of the major QTL QMrl.sicau-2SY-3D.2 was further validated in different genetic backgrounds as it was likely independent of PREs and can be stably detected (Table 4). The newly developed KASP marker (KASP-AX-111589572) tightly linked to QMrl.sicau-2SY-3D.2 detected polymorphism between parent SY95-71 and HTGW3 or S849-8. Each population was divided into two groups with contrary homozygous alleles of QMrl.sicau-2SY-3D.2 (Figures 6A,B). Lines with positive alleles of QMrl.sicau-2SY-3D.2 from SY95-71 had significantly longer MRL than those with negative ones from other parents (Figures 6C,D). The differences in MRL between the two groups ranged from 17.49 to 20.33%.
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FIGURE 6
Validation of QMrl.sicau-2SY-3D.2 in two populations with different genetic backgrounds. Blue round represents lines with the allele of SY95-71 (FAM fluorescence), orange box frame represents lines with the allele of HTGW3 (A) and S849-8 (B) (HEX fluorescence). Fluorescence PCR typing part results of the Kompetitive Allele-Specific PCR (KASP) marker KASP-AX-111589572 in HTG3SY (A) and SSY (B) population. Effects of QMrl.sicau-2SY-3D.2 in two validation populations of HTG3SY (C) and SSY (D) population. ** represents significance at the 0.01 level.





Discussion


Exploration of maximum root length loci independent of parental reproductive environments

Developing a deep RSA is a vitally important strategy for well crop growth, grain yield improvement, and enhanced abiotic stress tolerance (Li et al., 2021a). For example, the gene DEEPER ROOTING 1 increased root angle, whereby roots grew deeper facilitating high yield under drought conditions in rice (Uga et al., 2013). In addition, previous studies showed that PRE can affect growth of the next generation throughout its life cycle and may be one of the underlying triggering factors for crop yield decline (BlÖDner et al., 2007; Elwell et al., 2011; Nosalewicz et al., 2016). In this study, significant differences of CV were observed in five tests with different PREs under the same experimental conditions (Table 1). We thus speculate that PREs may affect the MRL of offspring. Compared with QMrl.sicau-2SY-7A.2, QMrl.sicau-2SY-3D.2 may be a QTL independent of PREs and can be detected in most tests. The effect of PRE on MRL may be epigenetic, and changes in DNA methylation in the genome can be inherited over many generations (Kinoshita and Seki, 2014; Yang et al., 2020). The underlying epigenetic mechanisms of MRL needs to be elucidated in wheat (Kong et al., 2020). Utilization of QTL independent of PRE, like QMrl.sicau-2SY-3D.2, may maintain the development of MRL under various PREs and improve wheat yield in breeding.



Relationships between maximum root length and other traits

MRL is an indication of root development potential for wheat yield improvement (Li et al., 2021a). Similar to previous studies (Li et al., 2019; Yang et al., 2021), MRL was strongly correlated with other RSA-related traits except RD and RN in this study (Table 2). By increasing the RA, RT, RV, and TRL, the contact area between roots and soil can be increased leading to the improvement of the efficiency of nutrient absorption for plants (Ryser, 2006). Ideal root depth is beneficial to root development. Meanwhile, nutrients absorbed by the roots can also be transported to the shoots (Baslam et al., 2021). MRL was positively correlated with TN, PH and SEL in this study (Table 3), showing that improvement of MRL could promote the morphological improvement of aboveground for wheat. However, no significant correlations were detected between MRL and SNS and TGW (Table 3). Xie et al. (2017) also found that there was no correlation between MRL and TGW, which might be related to the increase of grain number per spike. Lines with longer MRL likely absorb more nutrients at vegetative growth stage compared to reproductive growth stage, possibly resulting in more TN, higher PH, and longer SEL in our present study.



Comparison of QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 to other loci

QMrl.sicau-2SY-3D.2 was physically located between AX-111589572 (361.45Mbp) and AX-109260274 (368.53Mbp) on chromosome arm 3DL (Figure 3 and Table 4). Few QTL for MRL have been reported in wheat (Supplementary Table 4), especially on chromosome 3D. For example, Qse.sau-3D (10.64–13.28 Mbp) located on chromosome arm 3DS can affect root length (Pu et al., 2018). QMrl.saw-1A, QMrl.saw-3A, and QMrl.saw-7D were detected on 1A, 3A, and 7DL, respectively (Zheng et al., 2019). QMrl-2A.2 was located between markers Xwmc632 and Xwmc582 closer to 202.86 Mbp on chromosome 2A (Kabir et al., 2015). QRl-2A and QRl-2B.1 were identified to be linked to AX-109366069 (64.41 Mbp) and AX-111606522 (12.69 Mbp), respectively (Luo et al., 2021). A QTL controlling MRL was located between AX-89595949 and AX-111067788 at 486.96–489.10 Mbp on chromosome 7B (Fan et al., 2018). Thus, QMrl.sicau-2SY-3D.2 was likely different from those reported previously.

Besides, QRL.caas-7AL was mapped between AX-109966788 and AX-94819074 (731.90–742.24 Mb) on chromosome arm 7AL (Yang et al., 2021), suggested that it might be allelic to QMrl.sicau-2SY-7A.2 (652.28–669.74 Mbp).



Genetic effect of QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2

Previous results showed that pyramiding of multiple excellent QTL can significantly improve corresponding traits (Li et al., 2020, 2021b; Ren et al., 2022). The effect of a single gene is limited, and pyramiding effect between multiple genes is not a simple accumulation due to the complex interaction mechanism (Pakeerathan et al., 2019). We further explained the relationship between QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 via pyramiding analysis (Figure 5C). The MRL of lines with a combination of positive alleles from QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 was significantly higher than others indicating that these two loci can interact to significantly enhance MRL. There is a complex genetic relationship between the two loci which yet to be further analyzed.

In addition, three pairs of eQTL for MRL were detected (Figure 4 and Supplementary Table 3). These eQTL were not repeatedly detected in different tests and epistatic effect needs to be further explored in 2SY population.



Potential genes in the interval of QMrl.sicau-2SY-3D.2

Totally, 66 high-confidence genes were annotated in the corresponding chromosomal intervals of CS v2.1 genome for QMrl.sicau-2SY-3D.2. Expression pattern analysis showed that 26 genes had higher expression level in roots than other organs (Supplementary Table 5). Among them, four genes (TraesCS3D03G0612000, TraesCS-3D03G0608400, TraesCS3D03G0613600, and TraesCS3D03G0602400) were mainly expressed in roots (Supplementary Figure 1). It’s worth noting that TraesCS3D03G0612000 is an ortholog of the Arabidopsis RACK1 gene. The Arabidopsis genome contains three RACK1 paralogs, RACK1A, RACK1B and RACK1C (Chen et al., 2006). Previous studies have shown that the primary length of the rack1a-1 mutant was slightly shorter than that of the wild type in Arabidopsis (Guo and Chen, 2008). TraesCS3D03G0602400 encodes a GDSL esterase/lipase that was involved in seed development, lipid metabolism, abiotic stress, and pathogen defense. Transgenic rapeseed plants with independent overexpression of AtGDSL1 and BnGDSL1 showed that the root length of oilseed rape was longer when the basal levels of lipase activity was higher (Ding et al., 2019). TraesCS3D03G0608400 encodes a serine/threonine-protein phosphatase. Delayed seedling establishment, longer primary roots, and higher yields were reported under normal growth conditions by overexpressing TaSnRK2.4, an serine/threonine protein kinase in wheat (Mao et al., 2009). TraesCS3D03G0613600 encodes an ATP synthase subunit. Transgenic tobacco over-expressing RMtATP6, which encodes a subunit of ATP synthase, increased root length in salt-tolerance tests (Zhang et al., 2005). Consequently, these genes are likely involved in root elongation and may be useful for fine mapping and gene cloning for QMrl.sicau-2SY-3D.2.




Conclusion

Two major QTL for MRL were detected on chromosomes 3D and 7A in this study. MRL can be significantly improved by pyramiding QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2. QMrl.sicau-2SY-3D.2 was likely independent of PREs and it was successfully validated in two populations with different genetic backgrounds. Genetic correlations between MRL and other RSA-related and yield-related traits were also evaluated. The major QTL QMrl.sicau-2SY-3D.2 and its linked KASP marker will be helpful in wheat breeding and gene cloning.
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SUPPLEMENTARY FIGURE 1
Expression pattern of TraesCS3D03G0602400, TraesCS3D03G0612000, TraesCS3D03G0613600, and TraesCS-3D03G0608400 for different parts in wheat.

SUPPLEMENTARY TABLE 1
Information of KASP makers applied in this research.


Footnotes

1     http://en.wikipedia.org/wiki/SPSS

2     https://www.sas.com

3     https://www.originlab.com/

4     https://wheat.triticeaetoolbox.org/

5     https://graingenes.org/GG3/
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Seed vigor is an important parameter of seed quality, and identification of seed vigor related genes can provide an important basis for highly efficient molecular breeding in wheat. In the present study, a doubled haploid (DH) population with 174 lines derived from a cross between Yangmai16 and Zhongmai 895 was used to evaluate 10 seed vigor related traits in Luoyang during the 2018-2019 cropping season and in Mengjin and Luoning Counties during 2019-2020 cropping season for three environments. Quantitative trait locus (QTL) mapping of 10 seed vigor related traits in the DH population resulted in the discovery/identification of 28 QTLs on chromosomes 2B, 3D, 4B, 4D, 5A, 5B, 6A, 6B, 6D, 7A and 7D, explaining 3.6-23.7% of the phenotypic variances. Among them, one QTL cluster for shoot length, root length and vigor index was mapped between AX-89421921 and Rht-D1_SNP on chromosome 4D in the physical intervals of 18.78-19.29 Mb (0.51 Mb), explaining 9.2-20.5% of the phenotypic variances. Another QTL for these traits was identified at the physical position 185.74 Mb on chromosome 5B, which was flanked by AX-111465230 and AX-109519938 and accounted for 8.0-13.3% of the phenotypic variances. Two QTLs for shoot length, shoot fresh weight and shoot dry weight were identified in the marker intervals of AX-109384026-AX-111120402 and AX-111651800-AX-94443918 on chromosomes 6A and 6B, explaining 8.2-11.7% and 3.6-10.3% of the phenotypic variance, respectively; both alleles for increasing phenotypic values were derived from Yangmai 16. We also developed the KASP markers for the QTL cluster QVI.haust-4D.1/QSL.haust-4D/QRL.haust-4D, and validated in an international panel of 135 wheat accessions. The germplasm, genes and KASP markers were developed for breeders to improve wheat varieties with seed vigor related traits.




Keywords: KASP marker, QTL cluster, QTLs, seed vigor, Triticum aestivum



1 Introduction

Seed vigor is a key parameter used to measure seed quality in wheat (Hao et al., 2006; Chen et al., 2016), and high-vigor seeds possess excellent characteristics such as fast growth, a high germination rate and strong stress resistance (Sun et al., 2007; Ventura et al., 2012). Therefore, seed vigor can significantly contribute to increasing grain yield and reducing agricultural production costs.

Numerous studies have attempted to detect seed vigor, including the standard germination test, the accelerated aging test, and the conductometry test (Xiang et al., 2020). Additionally, evaluation of volatile organic compounds is also a method for rapid identification of seed vigor (Umarani et al., 2020). Moreover, the research characters of seed vigor mainly include physiological indicators and morphological indicators, morphological indicators including vigor index, germination rate, germination energy, germination index, shoot length, root length, fresh and dry weight of the shoots and roots (Shi et al., 2020), and physiological indicators, including superoxide dismutase, catalase, peroxidase, and amylase (Han et al., 2018). Seed vigor related traits are complex quantitative traits controlled by multiple genes and are influenced by both genetic and environmental factors (Ma et al., 2004), such as soil fertility, maturity at harvest, and storage duration (He et al., 2016a; Liu et al., 2021).

With the rapid development of molecular biotechnology and sequencing technology, some QTLs for seed vigor have been identified in crops, and most of these studies have focused on rice (Hang et al., 2015; Zhang et al., 2017; Zhao et al., 2021a) and maize (Liu et al., 2018; Liu et al., 2020a; Wu et al., 2020). Eight QTLs for seed vigor have been identified by using a RIL population derived from a cross of ZS97 and MH63, among these QTLs, five QTLs (qSV-1, qSV-5b, qSV-6a, qSV-6b, and qSV-11) influenced seedling establishment, and three QTLs (qSV-5a, qSV-5c and qSV-8) influenced only germination (Xie et al., 2014). A total of 43 QTLs have been detected to control the early germination and seedling vigor traits in rice using the 167 BC1F5 selective introgression lines (Dimaano et al., 2020). Twenty-seven QTLs for germination and early seedling growth traits have been identified using 230 introgression lines in rice (Najeeb et al., 2020). Thirteen QTLs were found to control maize seed vigor on five chromosome regions under artificial aging conditions, using one inbred lines derived from a cross between X178 and I178 (Liu et al., 2018). A total of 18 QTLs for seed vigor were detected on four sweet corn germinations traits under artificial aging conditions, and a stable QTL was identified on chromosome 10 within an interval of 1.37 Mb, explaining 5.53-13.14% of the phenotypic variances (Wu et al., 2020). In wheat, QTL mapping studies of seed vigor related traits were limited, only a few studies have reported the QTLs associated with seed vigor. Thirty-seven QTLs for seedling related traits were located on 14 chromosomes, among which the QTLs on chromosomes 1D, 3B and 5D explained more than 20% of the phenotypic variances (Li et al., 2014b). In addition, about 20 QTLs for seed vigor, germination and early seedling growth were identified on chromosomes 1D, 2D, 4D, 5D and 7D under non-stress and osmotic conditions, explaining 11.6-37.3% of the phenotypic variances (Landjeva et al., 2010).

Although many QTLs for seed vigor related traits have been identified in crops, especially in rice and maize, relatively few genes associated with seed vigor have been successfully cloned. In rice, OsLOX1 plays an important signaling role in the germination process by regulating the jasmonate pathway (Wang et al., 2008). OsSAUR33 enhances seed vigor by regulating glucose metabolism during seed germination (Zhao et al., 2021b). Additionally, α-amylase gene expression is positively regulated by gibberellin in endosperm, and involved in seed vigor during seed germination (Damaris et al., 2019). In maize, LOX-1 and LOX-2 have the functions of decreasing seed vigor (Wu et al., 2020). Tamyb10-1 not only controls grain color in wheat, but also influences the germination rate and germination index (Li et al., 2014a), and further, there are studies indicating that both TaMyb10-A1 and TaMyb10-D1 were associated with pre-harvest sprouting (PHS) resistance (Zhou et al., 2017; Yang et al., 2019), and Myb10-D confers PHS resistance by regulating ABA biosynthesis to delay germination in wheat (Lang et al., 2021).

Currently, seed vigor has not been directly selected as an important breeding trait in traditional wheat breeding programs, thus, the research progress has been slow. In this study, a doubled haploid (DH) population from Yangmai 16/Zhongmai 895 was developed using the maize-wheat hybridization. The DH lines and parents were planted at the Farm of Henan University of Science and Technology in Luoyang during 2018-2019 cropping season, and in Mengjin and Luoning Counties during 2019-2020 cropping season, and genotyped with the wheat 660K SNP array for QTL mapping of seed vigor-related traits. The aims were to 1) identify QTLs for seed vigor related traits, 2) explore the QTLs cluster, 3) preliminarily identify candidate genes based on multiple sequence alignments and gene annotation, and 4) develop KASP markers of the major loci for wheat breeding.



2 Materials and methods


2.1 Plant materials

A population of 174 DH lines derived from the cross of Yangmai 16/Zhongmai 895 and parents were planted at the Farm of Henan University of Science and Technology in Luoyang in 2018-2019 (2018XN, 34°62’N, 112°45’E) cropping season, and in Mengjin (2019MJ, 34°49’N, 112°26’E) and Luoning (2019LN, 34°38’N, 111°65’E) Counties in 2019-2020 cropping season.

An international panel of 135 wheat accessions was utilized for validation of the KASP markers, including 56 domestic wheat accessions and 79 cultivars from CIMMYT, USA, Australia, Canada and other countries representing global genetic diversities. The natural population was planted in Mengjin County and the Farm of Henan University of Science and Technology in 2020-2021 cropping season.



2.2 Field experimental design

The experiments were conducted in randomized block design with three replications. The plot size was 6.0 m2, and each line was sown in two rows, 20 cm apart and 3.0 m in length. Field management followed local standard of wheat cropping practices and cultivation conditions. The lines were harvested individually at the maturity stage when the moisture content was less than 13%. After harvest, the seeds were sun-dried under natural conditions to about 11% moisture content for phenotypic analysis. The data were collected within one month after crop harvesting.



2.3 Phenotypic determination

Seeds were germinated using the paper roll method (Huang et al., 2004), and the modified procedures are described as follows.

	25 healthy wheat seeds were selected randomly, and then were sterilized with 10% sodium hypochlorite solution for 5 min, the sterilized seeds were followed by rinsing with distilled water.

	Germination paper was dampened with water at room temperature for 24 h, then two germination papers were placed completely together on the operating table.

	25 sterilized seeds were placed on the above germination papers at 3 cm from the upper edges of the germination papers with the embryo of seeds away from the upper edge of the germination papers to ensure the roots grew downwards. Moreover, the seeds were enenly distributed along the horizontal direction with 1.5 cm apart.

	The germination papers with sterilized seeds were completely covered by another germination paper, and rolled them into a cylindrical form (starting at left side of germination papers and ending on the right side).

	The germination papers with sterilized seeds, which have been rolled into a cylindrical form, were placed polyethylene bags, and then placed in an artificial climatic chamber with the seeds side up.



The temperature of the artificial climatic chamber was set to be 25°C with 16 h light/8 h dark. Ten traits were measured, including shoot length (SL), root length (RL), fresh shoot weight (FSW), fresh root weight (FRW), dry shoot weight (DSW), dry root weight (DRW), germination rate (GR), germination energy (GE), germination index (GI), and vigor index (VI). Among these traits, SL, RL, FSW and FRW were measured on 8th day, then roots and shoots were dried in an oven at 80 °C to a constant weight and then measured the DSW and DRW. SL indicated the distance from sprout tip to seed embryo, and RL indicated the distance from seed embryo to root apical.

 

 

 

 

In the equation, Gt is the number of germinated seeds per day, Dt is the number of germination days, and S is the mean length of SL in each line.



2.4 Statistical analysis of the phenotyping data

Excel 2016 (Microsoft Corp., Redmond, USA) and SPSS (Version 22.0, IBM Corp., Armonk, NY, USA) were used for various statistical measures. Graphs were drawn using Origin 2022b (Originlab, Northampton, USA).



2.5 Genetic linkage map construction and QTL mapping

The DH lines and two parents were genotyped with an Affymetrix wheat 660K SNP array, and the genetic linkage map was constructed in an earlier report (Xu, 2019; Xu et al., 2020). The QTLs for seed vigor-related traits in three environments and the mean values were identified by inclusive composite interval mapping (ICIM) using the software QTL IciMapping v4.0. The walking step was set to 1 cM, the likelihood of odd (LOD) was set at 2.5, and the P value cutoff was 0.001 (Wang, 2009). A QTL, which was detected in two or more environments, was considered as a stable locus (Fu 2020). The QTLs were named following according to Rehman Arif and Börner, 2019 and McCouch et al., 1997.

The nucleotide sequences of the markers that were tightly linked with the QTLs were used for a BLAST search against the Chinese Spring genome from the International Wheat Genome Sequencing Consortium (IWGSC) to obtain their physical positions. Candidate genes within the QTL confidence intervals were predicted based on the reference genome and functional annotation information (Zeng et al., 2020; Wang et al., 2021).



2.6 KASP primer design and genotyping

Based on the mapping results, the sequences flanking the QTL QVI.haust-4D.1/QSL.haust-4D/QRL.haust-4D was used for designing KASP primers (PolyMarker, http://polymarker.tgac.ac.uk/). The primers were synthesized by Sangon Biotech (Shanghai) Co., Ltd. (Shanghai, China).

KASP reactions were run in a 4 μl volume, which contained 2 μl diluted DNA (30 ng/μl), 2 μl KASP master mix, and 0.045 μl primer mix (100 μM/μl). A total of 164 wheat lines were genotyped on an CFX 384 Real-Time System (BIO-RAD). The fluorescence signals of each reaction were collected, and was analyzed by BioRad CFX Manager Software.




3 Results


3.1 Phenotypic variation

The phenotypic data, including 10 traits of the DH lines and parents, are summarized in Table 1. Zhongmai 895 had higher levels of GR, GE, GI and VI than Yangmai 16 in 2018XN, 2019MJ, 2019LN and the mean values (Figure 1, Table 1). For FSW, FRW, DSW and DRW, the phenotypic values of the two parents were lower than the minimum values of the DH lines in all four environments. In addition, transgressive segregation was showed in SL, RL, GR, GE, GI and VI. The frequency distributions of SL, RL, FSW, FRW, DSW, DRW, GI, and VI among F5 DH lines showed a normal distribution (Figure 2) in all four environments from 2018 to 2020, indicating a typical quantitative character with multiple genes. Correlation analysis is shown in Table 2.


Table 1 | Phenotypes of seed vigor related traits of Yangmai 16, Zhongmai 895, DH lines in three environments and the mean values.






Figure 1 | The growth of DH lines using the paper roll method.Three seeds are shown in each group, YM 16: Yangmai 16, ZM895: Zhongmai 895, Family I represent the lines of low seed vigor, Family II represent the lines of high seed vigor, Day1-Day 8 refer to days after germination.






Figure 2 | Frequency distribution for seed vigor related traits in DH population in three environments and mean values. Green, red, blue and purple represent 2018XN, 2019MJ, 2019LN and mean value, respectively. 2018XN, 2019MJ, 2019LN and mean represent data from the Farm of Henan University of Science and Technology in 2018-2019, Mengjin County in 2019-2020, Luoning County in 2019-2020, and mean values of three environments, respectively. SL, Shoot Length; RL, Root Length; FSW, Fresh Shoot Weight; FRW, Fresh Root Weight; DSW, Dry Shoot Weight; DRW, Dry Root Weight; GR, Germination Rate; GE, Germination Energy; GI, Germination Index; VI, Vigor Index.




Table 2 | Correlations among seed vigor related traits in the Yangmai 16/Zhongmai 895 DH population.





3.2 QTL analysis of seed vigor related traits


3.2.1 Shoot length and root length

Twenty-five QTLs were detected for seed vigor-related traits on chromosomes 2B, 3D, 4B, 4D, 5A, 5B, 6A, 6B, 6D, 7A, and 7D, explaining 3.6-23.7% of the phenotypic variances (Table 3, Figure 3). Among those QTLs, five QTLs for SL were detected on chromosomes 4D, 5A, 5B, 6B and 6D, respectively. QSL.haust-4D in the marker intervals AX-89421921-Rht-D1_SNP explained 21.1-23.7% of the phenotypic variances, and was detected in 2019MJ and the mean value environment, the alleles for increasing SL came from Zhongmai 895. QSL.haust-5A was detected in a single environment and it was in the marker intervals AX-94878667-AX-94562419, explaining 9.6% of the phenotypic variance. QSL.haust-5B was located in the marker intervals AX-111465230-AX-109519938, explaining 10.3% of the phenotypic variances. QSL.haust-6B and QSL.haust-6D were detected in a single environment and in the marker intervals AX-111651800-AX-94443918 and AX-108896531-AX-110367904, explaining 3.6-5.2% of the phenotypic variance, respectively. The alleles of QSL.haust-5A, QSL.haust-5B, QSL.haust-6B and QSL.haust-6D for increasing SL were all derived from Yangmai 16.


Table 3 | QTL mapping for seed vigor related traits in the Yangmai 16/Zhongmai 895 DH population.






Figure 3 | QTL mapping for seed vigor related traits in the Yangmai 16/Zhongmai 895 DH population. Markers’ names are shown on the right of vertical axis, and their genetic positions are shown in cM on the left. Green, red, blue and purple represent QTL mapped using data of 2018XN, 2019MJ, 2019LN and mean values, respectively.



Five QTLs for RL were observed on chromosomes 2B, 4D, 5B, 6A, and 7D, respectively (Table 3, Figure 3), QRL.haust-4D was mapped on chromosome 4D in two environments and flanked by markers AX-89421921 and Rht-D1_SNP, explaining 10.7% and 20.6% of the phenotypic variances, and the alleles for increasing RL were derived from Zhongmai 895. QRL.haust-2B, QRL.haust-5B, QRL.haust-6A, and QRL.haust-7D were only found in single environments in the marker intervals AX-95144846-AX-108776514, AX-111465230-AX-109519938, AX-109384026-AX-111120402, and AX-109075622-AX-111680983, respectively. The phenotypic variances explained by these QTLs were 8.9%, 10.5%, 11.7%, and 7.7%, respectively. The alleles for increasing RL were all originated from Yangmai 16.



3.2.2 Shoot fresh weight and root fresh weight

Two QTLs (QFSW.haust-6A and QFSW.haust-6B) for FSW were detected on chromosomes 6A and 6B in two environments (Table 3, Figure 3), locating in the marker intervals of AX-109384026-AX-111120402 and AX-111651800-AX-94443918, accounting for 8.2% and 10.3% of the phenotypic variances, respectively. The alleles for increasing FSW were derived from Yangmai 16.

Two QTLs (QFRW.haust-2B and QFRW.haust-4D) for FRW were mapped in the marker intervals of AX-108920782-AX-110463005 and AX-110535765-AX-109878317 on chromosomes 2B and 4D in single environments, explaining 10.3% and 8.5% of the phenotypic variance, respectively. The alleles for increasing FRW were originated from Yangmai 16.



3.2.3 Shoot dry weight and root dry weight

Three QTLs for DSW were mapped on chromosomes 2B, 6A, and 6B (Table 3, Figure 3) in 2019MJ, 2019LN and 2018XN, respectively. QDSW.haust-2B with the allele for increasing DSW from Zhongmai 895 was closely linked with AX-95237487 and AX-110943820, explaining 7.9% of the phenotypic variance. QDSW.haust-6A and QDSW.haust-6B in the marker intervals AX-109384026-AX-111120402 and AX-111651800-AX-94443918 accounted for 9.3% and 7.9% of the phenotypic variances, respectively. The alleles for increasing DSW came from Yangmai 16.

Two QTLs for DRW were detected on chromosomes 3D and 5B, respectively. QDRW.haust-3D flanked by the markers AX-108855898 and AX-109298987 explained 7.3% of the phenotypic variance, and the alleles for increasing DRW was derived from Zhongmai 895. QDRW.haust-5B was only mapped in 2019MJ. It was located in the marker interval AX-111465230-AX-109519938, accounting for 13.3% of the phenotypic variance, and the allele for increasing DRW was derived from Yangmai 16.



3.2.4 Germination index and vigor index

Only one QTL for GI (QGI.haust-4B) was detected on chromosome 4B in 2019LN (Table 3, Figure 3), which was closely linked with markers AX-95121265 and AX-110452559, explaining 9.5% of the phenotypic variance, and the allele for increasing GI was originated from Yangmai 16.

Five QTLs for VI were mapped on chromosomes 4B, 4D, 5B and 7A, respectively (Table 3, Figure 3). QVI.haust-4D.1 was mapped between markers AX-89421921 and Rht-D1_SNP in three environments, accounting for 8.7-12.9% of the phenotypic variances. The allele for increasing VI was contributed by Zhongmai 895. Three QTLs (QVI.haust-4B, QVI.haust-4D.2 and QVI.haust-5B) were detected on chromosomes 4B, 4D and 5B in the marker intervals AX-110660041-AX-94817844, AX-95211631-AX-111476974 and AX-111465230-AX-109519938 explained 14.3%, 12.0% and 8.0% of the phenotypic variances, respectively. The alleles for increasing VI were derived from Yangmai 16. QVI.haust-7A closely linked with markers AX-94386260 and AX-110962052 accounted for 8.0% of the phenotypic variance. The allele for increasing VI came from Zhongmai 895.




3.3 Effect of QTL cluster for seed vigor related traits

We detected four QTL clusters on chromosomes 4D, 5B, 6A and 6B (Table 3, Figure 4). The QTL flanked by markers AX-89421921 and Rht-D1_SNP on chromosome 4D was associated with SL, RL, and VI, accounting for 8.7-23.7% of the phenotypic variances. The alleles of the QTL for increasing SL, RL, and VI were derived from Zhongmai 895. The QTL closely linked to markers AX-111465230 and AX-109519938 on chromosome 5B was associated with SL, RL, DRW and VI, explaining 8.0-13.3% of the phenotypic variances. The alleles for increasing SL, RL, DRW and VI were originated from Yangmai 16. Another QTL for RL, FSW and DSW on chromosome 6A was flanked by markers AX-109384026 and AX-111120402, contributing 8.2-11.7% of the phenotypic variances. Its alleles for increasing RL, FSW and DSW came from Yangmai 16. The QTL tightly linked with markers AX-111651800 and AX-94443918 on chromosome 6B was associated with SL, FSW and DSW, accounting for 3.6-10.3% of the phenotypic variances. The alleles for increasing SL, FSW and DSW were derived from Yangmai 16.




Figure 4 | QTL clusters in the Yangmai 16/Zhongmai 895 DH population.





3.4 KASP marker development of QVI.haust-4D.1/QSL.haust-4D/QRL.haust-4D

For effective utilization of the major QTL in plant breeding, KASP markers closely linked to the QTL cluster QVI.haust-4D.1/QSL.haust-4D/QRL.haust-4D were developed (Table 4), and used to test the genotypes of the natural population (Figure 5).


Table 4 | The primer sequences of KASP marker for QVI.haust-4D.1/QSL.haust-4D/QRL.haust-4D.






Figure 5 | Genotype calling screenshots of the KASP marker. Orange indicates the C allele of Yangmai 16, blue indicates the A allele of Zhongmai 895, and black indicates the blank control. The same below.



Among the 135 wheat varieties, there were 111 CC (82.2%) and 24 AA (17.8%) genotypes (Figure 5), and VI, SL and RL were significantly different (P<0.01 or P<0.05) between CC group and AA group (Figure 6). Meanwhile, the CC genotype (Yangmai 16) had higher VI and SL than the AA genotype (Zhongmai 895), whereas the RL showed the opposite effect. Among the domestic varieties, there were 35 CC genotypes and 21 AA genotypes, respectively. There were 76 CC genotypes and 3 AA genotypes, respectively among 79 foreign wheat varieties.




Figure 6 | Allelic effects identified by the KASP marker in the natural population. Blue indicates the A allele of Zhongmai 895, and orange indicates the C allele of Yangmai 16. * and **, significant at P<0.05 and P<0.01, respectively.






4 Discussion

To improve sprouting ratio and seedling quality, numerous studies have mapped seed related QTLs and genes in crops such as seed longevity (2020; Rehman Arif and Börner, 2019; Rehman Arif et al., 2022), seed dormancy (2021; Rikiishi et al., 2010), pre-harvest sprouting (PHS) (Lang et al., 2021; Tai et al., 2021), these traits are closely related to seed vigor. Studies have revealed that seed aging and deterioration could induce the loss of seed vigor during storage (Mao et al., 2018), and seed dormancy is an important trait preventing PHS (Layat et al., 2021). Two PIMT genes are involved in both seed longevity and seed germination vigor in rice and Arabidopsis (Wei et al., 2015; Tang et al., 2020). These studies provided a rich and instructive backdrop for further research of seed vigor in wheat. However, we also should note that few studies have directly evaluated the QTL of wheat seed vigor, likely due to the diversity of evaluation indices and measurement methods of seed vigor, as well as the extremely large and complex genome of wheat.


4.1 QTL cluster on Chromosome 4D

A QTL hotspot region with SL, RL and VI was detected on chromosome 4D in different environments and was tightly linked with markers AX-89421921 and Rht-D1_SNP in the physical interval of 18.78-19.29 Mb (0.51 Mb) (Figure 7), and the alleles of this QTL for increasing SL, RL and VI were derived from Zhongmai 895. Studies have revealed that the D genome has many trait loci for early seedling vigor related traits (Villar et al., 1998; Bultynck et al., 2004; Margreet et al., 2005), seed longevity (Rehman Arif et al., 2012; Agacka-Mołdoch et al., 2016) and PHS resistance (Himi et al., 2011; Lang et al., 2021). For instance, the common wheat introgression lines that carry the D genome fragmentation of Ae. tauschii have been used for QTL mapping for seed vigor related traits by Landjeva et al. (2010). Twenty QTLs were mapped on chromosomes 1D, 2D, 4D, 5D and 7D, the QTLs mapped on 1D and 5D showed that they were important sites for genes affecting seed longevity related traits, and the QTLs on chromosome 4D for early seedling vigor related traits were tightly linked with markers Xgdm129 and Xgdm61. Quantitative trait loci for PHS resistance were detected on chromosome 3D in wheat (PHS-3D/Myb10-D), and it confered PHS resistance by regulating ABA biosynthesis to delay germination in wheat (Lang et al., 2021; Tai et al., 2021). A QTL-hotspot region has been mapped on the short arm of chromosome 4D (Wang, 2017). It was associated with SL, RL, and VI, and located near marker Xgwm624 in physical position 34.7 Mb. However, the physical positions/intervals were different locus between the above QTLs and the QTL cluster on chromosome 4D in this study, and we speculated that the QTL cluster on chromosome 4D in this study was a new gene for seed vigor.




Figure 7 | QTLs of the DH population on chromosome 4D.



On the other hand, QTL mapping for other traits have been reported using this DH population. A stable QTL for thousand kernel weight (QTKWyz.caas-4DS) was identified on chromosome 4D. QWsc10.caas-4DS was also mapped on chromosome 4D and the alleles increasing thousand kernel weight (TKW) and water soluble carbohydrates (WSC) were derived from Zhongmai 895 (Fu et al., 2019; Fu et al., 2020). A Fusarium head blight (FHB) resistance QTL (QFhb.yaas-4DS) and a powdery mildew resistance QTL have also been reported on chromosome 4D in this population (Hu et al., 2019; Xu et al., 2020), both of which were contributed by Yangmai 16. Yang et al. (2021) also identified a QTL for root traits on chromosome 4D with the allele for increasing root traits from Zhongmai 895 (Figure 7). The QTL intervals might play an important role in maintaining seed vigor, plant height, yield-related traits, and disease resistance.

Furthermore, we searched the genes within the locus on 4D, and three high confidence genes were identified (IWGSC RefSeq v1.0), including TraesCS4D02G040400, TraesCS4D02G040500 and TraesCS4D02G040700. TraesCS4D02G040400 reduce the plant height of wheat (Wilhelm et al., 2013; Liu et al., 2020b), but it is also associated with the levels of resistance to FHB (Lu et al., 2011; Steiner et al., 2017; Jones et al., 2018), and reduced anther extrusion (Buerstmayr and Buerstmayr, 2016).

Further, the nonmutant types of RHT-B1 or RHT-D1 genes have longer root lengths (Mohan, et al., 2021). Certainly, other genes of RHT family were found to have similar functions as well. For example, studies have proven that the Rht-B1b and Rht-D1b have effects on FHB susceptibility and reduce anther extrusion (Holzapfel et al., 2008; He et al., 2016b; Prat et al., 2016; Jones et al., 2018). Rht3 has a significant and negative affect on plant height, biomass, coleoptile length, and seedling establishment (Ellis et al., 2004; Addisu et al., 2008; Mohan et al., 2021). It is generally known that coleoptile length is governed by multiple genes and has a strong additive effect and high heritability (Rebetzke et al., 2007; Murphy et al., 2008). The Rht1/Rht2 mutations not only affect stem elongation but also negatively affect coleoptile length (Botwright et al., 2001). A slight effect of Rht loci on root length and density has shown (Manske et al., 2002). However, there were also different views which were Rht-B1b and Rht-D1b negatively affect seedling root length (Nagel et al., 2013). Moreover, allelic variation of the Rht-D1 locus had a significant correlation with coleoptile length (Khadka et al., 2021).

RHT-D1 encodes a DELLA protein, which is a key negative regulator of gibberellin signaling, functioning as a transcriptional activator in wheat (Daviere and Achard, 2013), and gibberellin is a major hormone that promotes growth, thereby promoting seed germination and seedling growth (Feng, 2015; Zuo et al, 2021). Meanwhile, Rht-D1a is significantly associated with alpha-amylase levels, and amylase content is one of the important indexes of seed vigor (Liu et al, 2021). AT1G14920 (GAI) is an orthologue of RHT-D1 in Arabidopsis that mediate GA regulation of stem elongation, promoting the germination of Arabidopsis seeds. The Arabidopsis DELLAs have been demonstrated to have similar functions in wheat and display relatively discrete (e.g., RGL2 in seed germination) gibberellic acid (GA) response regulation functions (Harberd et al., 2009); RGL2 is closely related to GAI and regulates seed germination in response to GA (Lee et al., 2002). DELLA proteins repressed the GA responses and have been proposed to act by inhibiting the activity of transcription factors (Ogawa et al., 2003; de Lucas et al., 2008). In conclusion, we speculated that the locus on chromosome 4D was the RHT-D1 for seed vigor related traits.



4.2 QTL cluster on Chromosome 5B

In this study, a QTL for SL, RL, DRW and VI was found to be tightly linked with markers AX-111465230 and AX-109519938, and the allele of this QTL for increasing SL, RL, DRW and VI was derived from Yangmai 16. In previous studies, it has been reported that one QTL hotspot region for six seed vigor related traits was identified on the long arm of chromosome 5B in the DH population derived from the cross of Hanxuan 10 and Lumai 14; it was closely linked with AX-94643729 and AX-110529646 in a physical position near 710.96 Mb (Shi et al., 2020) and differs from the 5B QTL in this study. Two QTL hotspot regions with epistatic effects were also found on chromosome 5B, which were associated with SL, RL, and VI, and tightly flanked by Xwmc616 and Xwmc740 in a physical position near 70.0 Mb (Wang, 2017). The QTL is also different from the 5B QTL in this study based on the physical positions, indicating that the 5B QTL identified in this study is likely to be a new locus for seed vigor related traits.



4.3 QTL clusters on chromosomes 6A and 6B

Two QTL hotspot regions for SL, FSW, and DSW were detected in the physical intervals of 599.03-600.46 Mb and near the 18.85 Mb on chromosomes 6AL and 6BS, respectively. The QTL hotspot region for VI and GI was associated with the marker Xwmc201 on the short arm of chromosome 6A (Wang, 2017), but it was inconsistent with the 6A QTL in this study. A QTL hotspot region for VI and GI (at physical position 9.2 Mb) was identified on chromosome 6B in a recombinant inbred line population derived from the cross of Chuan 355050/Shannong 483. It is tightly linked with markers wpt8412 and wmc487 and explains 7.41% and 9.98% of the phenotypic variances (Jiang et al., 2013), and was either not consistent with the 6B QTL in this study. Similarly, another QTL hotspot region for VI and GI was mapped on chromosome 6B and was linked with the markers AX-110928656 and AX-109883174 in the physical interval of 701.69-703.05 Mb (Shi et al., 2020), locating at a different physical position to the 6B QTL in this study. Consequently, the QTL hotspot regions for seed vigor related traits identified on chromosomes 6A and 6B are likely new loci.




5 Conclusion

In this study, 28 QTLs for seed vigor related traits were identified, accounting for 3.6%-23.7% of the phenotypic variances. Four new QTL clusters for seed vigor-related traits were mapped on chromosomes 4D, 5B, 6A, and 6B, respectively. The QTL on chromosome 4D was most likely to be RHT-D1. Meanwhile, we also developed a KASP marker for the QTL cluster QVI.haust-4D.1/QSL.haust-4D.2/QRL.haust-4D, and validated in an international panel of 135 wheat accessions. This study provided genes and molecular markers for improvement of seed vigor in wheat.
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Hull color of foxtail millet is an important indicator of certain nutritional quality parameters. An F2:6 recombinant inbred line (RIL) population developed by crossing a yellow-hulled cultivar Yugu 5 and a brown-hulled cultivar Jigu 31 was used to determine the genetic control of the hull color trait. This population segregated for yellow and brown hull colors in a ratio of 2:1, indicating that hull color is regulated by multiple genetic loci. A bulk segregant analysis-RNA sequencing (BSR-Seq) approach performed using the RNA bulks from 30 lines with brown and yellow hull colors each identified three genomic regions on chromosomes 1 (4,570,517-10,698,955 bp), 2 (40,301,380-46,168,003 bp), and 3 (44,469,860-50,532,757 bp). A new QTL for brown hull color of Jigu 31, QHC.czas1, was detected between bin markers Block43 and Block697 on chromosome 1 with the genetic linkage map constructed by re-sequencing a subset of the 147 RILs. This QTL explained a high level of phenotypic variation ranging from 28.0% to 47.0%. The corresponding genomic region of this QTL in the foxtail millet reference genome overlapped with that detected on chromosome 1 by the BSR-Seq analysis. Nineteen genes associated with biosynthesis of anthocyanin were annotated in this genomic region. Gene Si1g06530 encoding a SANT/Myb domain protein was highly expressed in developing panicles and seeds, which warrants further verification as the candidate gene for the brown color hull of Jigu 31. Moreover, several annotated genes for biosynthesis of anthocyanin were identified in the genomic regions of chromosomes 2 and 3.
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Introduction

Foxtail millet [Setaria italica (L.) P. Beauv.] has been grown as a staple food crop for several thousands of years in China. It is also planted in other parts of the world such as eastern Asia, north and south Americas, Africa, and Europe (Yang et al., 2012; Hermuth et al., 2016; Singh et al., 2017). This cereal crop is considered a new model species for functional genomics studies of C4 plants (Peng and Zhang, 2021). The unique characteristics of foxtail millet, for instance, small genome (~515 Mb), short stature and growth duration, self-pollination, and abiotic stress tolerance, have attracted extensive attentions, despite remarkable decline in its production due to the limitation of market demand (Panchal et al., 2022). Foxtail millet is known for its human-friendly nutritional properties, such as dietary fiber, antioxidants, phytochemicals and polyphenols (Muthamilarasan et al., 2016; Sharma and Niranjan, 2018; Yousaf et al., 2021).

Foxtail millet comprises a layer of husk or hull out of seeds (Sharma and Niranjan, 2018). Pigmentation occurs in this layer, making colorful appearance in hulls of millet seeds. Hull colors of foxtail millet were associated with certain nutritional qualities, such as contents of protein, lysine, and fat (He et al., 2002). The correlation between hull color and selenium content was reported (Liu et al., 2009). Hull color also was believed to have a relationship with the magnitude of bird-damage on this millet crop at the maturity stage (Xia et al., 2014). Therefore, hull color is regarded as a useful phenotypic indicator for indirect selection of quality and other agronomic traits in foxtail millet breeding.

Foxtail millet has evolved different hull colors. The majority of the 878 (77.46%) accessions of the Chinese core collections are yellow hull-colored genotype, in addition to small proportions of genotypes with red (8.27%), white (5.64%, and orange (4.20%) hull colors (Wang et al., 2016). Multiple loci regulating different hull colors have been studied using various methods. An early study localized genes for red and green hull colors on chromosomes 1 and 2, respectively, using a series of trisomic lines of foxtail millet (Gao et al., 2003). The foxtail millet anuploids are able to assign target genes on particular chromosomes. Molecular markers are promising tags of genes conferring traits of interest when linkage relationships are established. Genes governing agronomic traits can be localized on specific chromosomal regions as most gene-linked molecular markers possess unique locations on chromosomes (Diao, 2005).

The release of the genomic sequences of foxtail millet greatly facilitates dissection of genes conferring agronomic traits (Bennetzen et al., 2012; Zhang et al., 2012). The popularly used types of molecular markers shifts from sporadically distributed markers such as simple sequence repeat (SSR) to enormous single nucleotide polymorphism (SNP)-based markers throughout the genome. High-density genetic maps can be constructed with SNP markers, which increase the precision of gene localization. A quantitative trait locus (QTL), Sihc1, for green hull color was located in a 354.84 kb physical region using the SNP markers generated by a restriction site-associated DNA sequencing (RAD-seq) analysis (Wang et al., 2017). That study predicted the candidate genes for the green hull color. A genome-wide association study (GWAS) project identified several hull color-associated SNP variants on four chromosomes (Jia et al., 2013).

Cultivars Jigu 31 and Yugu 5 differ in their hull colors. This study was carried out to identify loci conferring hull color using a recombinant inbred line (RIL) population of cross Jigu 31 × Yugu 5 with the aid of SNP markers generated by bulked segregant analysis-RNA-sequencing (BSR-Seq) and genome-re-sequencing methods.



Materials and methods


Plant materials and phenotyping

An F2:6 RIL population consisting of 283 lines was developed from consecutively self-crossing progenies of the cross between Yugu 5, a yellow hull colored cultivar, and Jigu 31 with a brown hull color. This RIL population and their parents were grown in Cangzhou, Hebei province (33°13’N, 116°47’E) in summer and Sanya, Hainan province (18°35’N, 109°19’E) in winter in 2016 and 2017. All plant materials were planted in a randomized complete block design with two replicates. Each plot consisted of single row 5 m long, 74 cm spacing between rows, and about 7 cm between plants. Three panicles were randomly harvested from each line, hand-threshed, and visually observed for their hull colors. A Chi-squared (χ2) was performed with SAS version 9.3 (SAS Institute Inc., Cary, NC, USA) to examine the goodness of fit for the observed separation of yellow and brown hulled RILs from the expected separation ratio for single gene inheritance (1:1) or for multiple gene inheritance (2:1 or others) (Sandler, 2000).



BSR-seq analysis

Thirty lines with consistent brown or yellow hull colors across different experimental locations were separately selected to form the bulked samples (Bulk-Y and Bulk-B) for BSR-Seq analysis. Total RNA was extracted from leaf segments using the RNAsimple Total RNA Kit (Tiangen, Beijing, China) for constructing the RNA libraries. Raw sequencing read generated by RNA-Seq in a platform of Illumina HiSeq4000 were quality controlled using Trimmomatic v0.36 software (Bolger et al., 2014). Clean reads were aligned to the Setaria italica reference genome (http://plants.ensembl.org/Setaria_italica/Info/Annotation/#assembly) (Dobin et al., 2013). The alignment of uniquely mapped reads was masked for PCR duplications prior to SNP and InDel calling with small variant caller Strelka v2 (Kim et al., 2018). The high quality SNPs and InDels with sequencing depth >6 were used to detect the trait-associated variants through BSA with the criteria of allele frequency difference (AFD) >0.8 and P-value of the Fisher’s exact test on read count data <1e-10 (Xie et al., 2020).



Construction of genetic linkage map

A genetic linkage map was constructed by re-sequencing 147 RILs randomly selected from the population of the cross Yugu 5 × Jigu 31 (Tian et al., 2021). Briefly, genomic DNA libraries prepared from leaves of each line and their parents were sequenced on the Illumina Hi Seq2500 (Illumina, Inc., San Diego, CA, USA). The high quality reads were aligned to the S. italica reference genome via the Burrows-Wheeler aligner (Li et al., 2009). After the realignment and base recalibration with the Genome Analysis Toolkit (GATK) v3.6 (McKenna et al., 2010), the data set was subjected to SNP calling using GATK and SAMtools (Li and Durbin, 2009). SNP loci polymorphic between the parents were subjected to bin calling. A linkage map was constructed based on the recombination bins using HighMap software (Liu et al., 2014). The composite interval mapping (CIM) method in Windows QTL Cartographer 2.5 was used for QTL calling with the logarithm of odds (LOD) threshold of 3.0 (Wang et al., 2010). The percentage of the phenotypic variance explained by a QTL was indicated by the determination coefficient (R2%).



Analysis of candidate genes in the target mapping intervals

The QTL for hull color were physically mapped by aligning the sequences of the QTL-flanking markers against the reference genome of foxtail millet with Phytozome Setaria italica v2.2 (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Sitalica). Genes in the target genomic intervals were annotated and those related to anthocyanin synthesis were further analyzed for their expression by MDSi: Multi-omics Database for Setaria italica (http://foxtail-millet.biocloud.net/home) (Zhang et al., 2021).




Results


Phenotypes of hull color

Yugu 5 and Jigu 31 displayed yellow and brown hull colors, respectively, in all environments either in the higher-latitude site (Cangzhou, Hebei province) in summer seasons, or in the lower-latitude site (Sanya, Hainan province) in winter seasons in 2016 and 2017 (Figures 1A, F). It was able to categorize unambiguously hull colors of the RILs as yellow and brown regardless of environments, but there was slight difference in the color intensity among lines in each category (Figures 1C–E, H–J). Hull colors of all the progeny lines were generally consistent with slight variation in color intensity in different locations or years examined, demonstrating that environment has little effect on the hull color performance. The color of hulls was not associated with colors of hulless grains, as the later was always yellow for both Yugu 5 and Jigu 31 (Figures 1B, G). The RIL population segregated for 182 yellow and 101 brown hull colored lines, which agrees with a ratio of 2 (yellow): 1 (brown) (χ2 = 0.6047, P=0.4368) for segregation of multiple loci, rather than in a 1:1 segregation ratio for single locus.




Figure 1 | Phenotypic performances of hull and grain colors of foxtail millet cultivars Yugu 5 and Jigu 31 and the selected lines from the cross Yugu 5 × Jigu 31. (A, B), brown hull color and yellow grain color of Jigu 31; (C–E), brown hull color of selected lines; (F, G), yellow hull and grain colors of Yugu 5; (H–J), yellow hull color of selected lines.





BSR-seq-based identification of hull color-associated genomic regions

The statistical parameters generated by RNA sequencing for the yellow- and brown-hulled lines, Bulk-Y and Bulk-B, are shown in Table 1. Most reads for both samples, 93.0% for Bulk-Y and 95.5% for Bulk-B, were mapped to the foxtail millet reference genome. A total of 117,260 SNP variants were identified from the mapped reads by the Strelka software with default parameters, which were scattered on the nine foxtail millet chromosomes (Figure 2A). Among them, 956 variants between Bulk-Y and Bulk-B were potentially trait-associated (P-value <1e-10 and AFD >0.8), which were anchored on all foxtail millet chromosomes (Figure 2B). Chromosomes 1, 2, and 3 harbored the most abundant number of candidate trait-associated SNP variants of 153, 145, and 430, respectively, which appear to be the critical chromosomes associated with hull color performance. Chromosomes 4 to 9 had a smaller number of SNP variants from 18 to 65 and are unlikely associated with the hull color trait. The SNP clusters on chromosomes 1, 2, and 3 were located in 6.13 Mb (4,570,517-10,698,955 bp, 146 SNP loci) (Figure 2C), 5.87 Mb (40,301,380-46,168,003 bp, 122 SNP loci) (Figure 2D), and 6.06 Mb (44,469,860-50,532,757 bp, 362 SNP loci) (Figure 2E) genomic intervals, respectively, indicating their potential association with the hull color trait. P = 0.036


Table 1 | Statistical parameters of the BSR-Seq analysis for the yellow hulled lines (Bulk-Y) and brown-hulled lines (Bulk-B).






Figure 2 | SNPs identified by the BSR-Seq analysis based on the RILs of Yugu 5 × Jigu 31 cross with yellow and brown hull colors. (A) distribution of all SNPs generated by RNA sequencing of the two bulks for the RNA samples of the RILs yellow and brown hull colors (Bulk-Y and Bulk-B, respectively) on different foxtail millet chromosomes. (B) distribution of SNP variants between Bulk-Y and Bulk-B potentially associated with hull color produced by BSR-Seq analysis on different foxtail millet chromosomes. (C–E), SNP variants on chromosomes 1, 2, and 3. The significantly enriched genomic intervals of the candidate SNPs for hull color are marked with red boxes.





Linkage map-based identification of QTL for hull color

A genetic linkage map was previously constructed by means of re-sequencing 147 RILs from cross Yugu × Jigu 31, which spanned a map distance of 1806.77 cM (Tian et al., 2021). A QTL designated QHC-czas1.1, was detected between bin markers Block43 and Block697 in all environments (Table 2 and Figure 3). The LOD values of this QTL ranged from 10.5 to 20.3, and the phenotypic variations explained were in the range of 28.0% to 47.0%. This genetic interval corresponded a genomic region of 18.14 Mb (2,236,038-20,380,190 bp) and overlapped with the genomic region on chromosome 1 (4,570,517-10,698,955 bp) for hull color identified by the BSR-Seq analysis. Because Jigu 31 contributed to this QTL, it controls brown hull color.


Table 2 | QTL conferring brown hull color identified with the recombinant inbred line population of Yugu 5 × Jigu 31 in four field trials.






Figure 3 | Genetic linkage of QHC-czas1 on chromosome 1 conferring brown hull color of Jigu 31. CZ, Cangzhou site; SY, Sanya site.





Annotation and expression of candidate genes

Base on the results of BSR-Seq analysis, three candidate genomic regions on chromosomes 1, 2, and 3 were associated with the hull color. These genomic regions contained various number of genes related to anthocyanin synthesis, including Myc-type basic helix-loop-helix (bHLH) domain genes, SANT/Myb domain genes, WD40 repeat, helix-loop-helix DNA-binding domain superfamily and WD40/YVTN repeat-like-containing domain superfamily (Table 3). The candidate genomic region on chromosome 1 (6.13 Mb, 4,570,517-10,698,955 bp) overlapped with the physical interval (5,486,321-5,495,814 bp) of QHC-czas1.1 detected by re-sequencing of the RIL population (Table 1). This genomic region included 18 genes associated with anthocyanin synthesis out of 574 annotated genes. Gene Si1g06530 was commonly detected in the genomic regions identified by BSR-Seq and the map-based analyses.


Table 3 | Annotated genes in the genomic regions associated with hull color identified by the BSR-Seq analysis.



The SNPs that were associated with hull color on chromosome 2 were clustered in a 5.87 Mb (40,301,380-46,168,003 bp) genomic interval, which composes 886 annotated genes including 10 genes for anthocyanin synthesis. A 6.06 Mb (44,469,860-50,532,757 bp) genomic interval consisted of the SNP cluster on chromosome 3. It consisted of 651 annotated genes, including 18 genes for anthocyanin synthesis (Table 3). The genes associated with anthocyanin synthesis on these chromosomes include Myc-type basic helix-loop-helix (bHLH) domain genes (13 genes), SANT/Myb domain genes (6 genes), WD40 repeat (8 genes), and WD40/YVTN repeat-like-containing domain superfamily (one gene).

The transcriptional patterns of the genes related to anthocyanin synthesis were analyzed with a web-based database containing 29 sets of expressions for different growth stages of foxtail millet (http://foxtail-millet.biocloud.net/page/tools/expressionVisualization). Genes Si1g06530 (SANT/Myb domain) and Si1g12170 (bHLH) on chromosome 1, Si2g32330 (SANT/Myb domain), Si2g32790 (WD40 repeat), Si2g34400 (bHLH), Si2g35120 (bHLH), and Si2g36170 (WD40 repeat) on chromosome 2, and Si3g34550 (SANT/Myb domain), Si3g36330 (SANT/Myb domain), Si3g37620 (WD40 repeat), and Si3g38390 (WD40 repeat) on chromosome 3 were expressed in developing panicles and seeds at different developmental stages (Figure 4).




Figure 4 | Heatmap for the expression of the annotated genes related to anthocyanin biosynthesis in the candidate genomic regions in 29 datasets of expression in foxtail millet. The datasets were extracted from MDSi: Multi-omics Database for Setaria italica (http://foxtail-millet.biocloud.net/). Genes expressed in developing seeds and panicles are indicated by red fonts. 1, JG21_Germinated-seeds_3-days; 2, JG21_Plant_one-tip-two-leaf; 3, JG21_Leaf-top-2-3_2-days-after-heading; 4, JG21_Neck-panicle-internodes_Filling-stage; 5, JG21_Flag-leaf_filling-stage; 6, JG21_Flag-leaf-sheath_filling-stage; 7, JG21_Stem-top-second_Filling-stage; 8, JG21_Leaf-top-foruth_filling-stage; 9, JG21_Leaf-sheath-top-foruth_filling-stage; 10, JG21_Root_Filling-stage; 11, JG21_Panicle_Primary-panicle-branch-differentiation-stage; 12, JG21_Panicle_Third-panicle-branch-differentiation-stage; 13, JG21_Immature-spikelet_S2; 14, JG21_Immature-spikelet_S4; 15, JG21_Immature-seed_S1; 16, JG21_Immature-seed_S2; 17, JG21_Immature-seed_S3; 18, JG21_Immature-seed_S4; 19, JG21_Immature-seed_S5; 20, JG21_Seed_30-days-after-maturation; 21, JG21_Seed_60-days-after-maturation; 22, JG21_Leaf-veins_S3; 23, JG21_Mesophyll_S3; 24, Xiaomi_Leaf_3-weeks-plant; 25, Xiaomi_Leaf-top-second_Boot-stage; 26, Xiaomi_Panicle_2-days-after-heading; 27, Xiaomi_Panicle_Pollination-stage; 28, Xiaomi_Panicle_Filling-stage; and 29, Xiaomi_Stem_Filling-stage.






Discussion

Hull color is an obvious phenotypic trait that can be visualized easily. Segregation of yellow and brown hull colors with different color intensities in the RIL population derived from Yugu 5 × Jigu 31 indicates that multiple genetic loci are involved in controlling hull color. We identified three genomic regions on chromosomes 1, 2, and 3 for brown hull color of Jigu 31 by means of the BSR-Seq analysis. We further identified a QTL, QHC-czas1.1, on chromosome 1 in Jigu 31 using a genetic map constructed with re-sequencing of the RIL population. This QTL plays a major role in governing hull color as the phenotypic variations explained was as high as 28.0%-47.0%.

Foxtail millet accumulates pigments on husks, making seeds appear different colors (Wang et al., 2016). Jia et al. (2013) carried out a GWAS project and identified 11 SNP variants that are associated with hull color on chromosomes 1, 6, 7, and 9 of foxtail millet. Three of them were detected in genomic loci at 5,480,719, 5,467,847, and 5,476,983 bp on chromosome 1. A QTL, Sihc1, on chromosome 6 was reported to confer green hull color (Wang et al., 2017). Li et al. (2015) identified a single locus SeC-1 conferring hull color on chromosome 7 using a residue heterozygous line differing in red and black hull colors. These results also provide evidence that hull color of foxtail millet is controlled by different genetic loci.

Pigmentation in plant tissues results from anthocyanin biosynthesis, which involves structural and regulatory genes. Several classes of transcription factors, such as MYB, bHLH, and WD40, are known to regulate anthocyanin synthesis in various plant species, such as Arabidopsis thaliana L., maize (Zea mays L.), and tomato (Solanum lycopersicum L.) (Broun, 2005; Koes et al., 2005; Petroni and Tonelli, 2011). In this study, we identified a number of genes for the classes of transcription factor genes containing bHLH, SANT/Myb, and WD40 domains in the genomic regions on chromosomes 1, 2, and 3 that are associated with hull color. Some of them are highly expressed in developing panicles or seeds. In particular, Si1g06530 encoding a SANT/Myb domain protein was commonly detected by the analyses of BSR-Seq and the genetic linkage map. It is preferentially expressed in several data sets in the developmental stages of panicle differentiation, immature-spikelets and immature-seeds. This gene warrants further verification as a candidate gene regulating hull color by genomic editing and transgenic approaches.

Pigmentation also occurs in other millet tissues, such as leaf blade and sheath, pulvinus, anther, pericarp, aleurone, and grain, which involves different genetic mechanisms for regulating the accumulation of anthocyanin. The accumulation of pigmentations in different tissues may not be necessarily related. For example, the grain color of Yugu 5 and Jigu 31 is yellow despite that these cultivars differ in their hull color. Pigmentation in millet tissues is beyond as an apparent trait, it may be associated with functional properties that benefit humans. Therefore, many studies have been carried out to understand the genetic controls of pigmentation in foxtail millet. Although the genetic mechanisms underpinning biosynthesis of anthocyanin in other plant species are well characterized (Koes et al., 2005; Petroni and Tonelli, 2011), the regulatory mechanism of pigmentation in foxtail millet tissues is rarely studied until a recent report by Bai et al. (2020). That study mapped a locus PPLS1 on chromosome 7 conferring the color in pulvinus and leaf sheath in foxtail millet. PPLS1 proved to interact with a MYB transcription factor for regulating the expression of anthocyanin.

A rice gene BBH/Lsi1 on chromosome 2 regulates black-brown hull of rice by reducing silicon deposition and accumulating flavonoid (Yang et al., 2018). Sun et al. (2018) proposed a C-S-A gene model for pigmentation of rice hull. C1, a color-producing gene encoding a R2R3-MYB transcription factor, interacts with S1, encoding a bHLH protein, and activates expression of A1, encoding a dihydroflavonol reductase. As the reference genome sequence of foxtail millet is available, it may not be difficult to develop more molecular markers to finely map and cloning of the candidate genes and disclose the regulatory mechanism underlying hull color trait. The availability of genome sequences for a large number of foxtail millet cultivars and breeding lines with clear hull color performances and multi-omics approaches will facilitate this process (Jia et al., 2013; Li et al., 2022). The identification of genomic regions associated with anthocyanin biosynthesis, in particular highly expressed gene Si1g06530 in panicle, can serve as a good start for studying regulatory mechanism of hull color in foxtail millet.

In summary, we identified a major QTL for brown hull color of foxtail millet cultivar Jigu 31 on chromosome 1 using a genetic link map constructed with re-sequencing a RIL population of cross Yugu 5 × Jigu 31. Three genomic regions associated with hull color were identified on chromosome 1, 2, and 3 by BSR-Seq analysis. Forty-seven genes related for anthocyanin biosynthesis were observed in these genomic regions. Some of them were highly expressed in developing panicles and seeds of foxtail millet. Gene Si1g06530 encoding a SANT/Myb domain protein on chromosome 1 was present in the overlapped genomic region commonly detected by the genetic linkage map and BSR-Seq analyses, which can be a candidate gene for the brown hull color of Jigu 31.
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Rye 6R-derived stripe rust resistance gene Yr83 in wheat background was physically mapped to fraction length (FL) 0.87-1.00 on the long arm by non-denaturing-fluorescence in situ hybridization (ND-FISH), Oligo-FISH painting and 6R-specific PCR markers.Stripe rust resistance gene Yr83 derived from chromosome 6R of rye (Secale cereale) “Merced” has displayed high resistance to both Australian and Chinese wheat stripe rust isolates. With the aim to physically map Yr83 to a more precise region, new wheat- 6R deletion and translocation lines were produced from derived progenies of the 6R(6D) substitution line. The non-denaturing fluorescence in situ hybridization (ND-FISH) patterns of 6R were established to precisely characterize the variations of 6R in different wheat backgrounds. Comparative ND-FISH analysis localized the breakpoints of 6RL chromosomes relative to Oligo-pSc200 and Oligo-pSc119.2 rich sites in deletion lines. Molecular marker and resistance analyses confirmed that Yr83 is physically located at the fraction length (FL) 0.87-1.00 of 6RL and covers the corresponding region of 806-881 Mb in the reference genome of Lo7. Oligo-FISH painting demonstrated that the region carrying Yr83 is syntenic to the distal end of long arm of homoeologous group 7 of the Triticeae genome. The developed wheat-6R lines carrying the Yr83 gene will be useful for breeding for rust resistance.
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Introduction

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease that occurs in most global wheat-growing regions (Morgounov et al., 2012; Wang and Chen, 2017). Cultivation of resistant cultivars is economical and environmentally friendly compared to chemical control. Eighty-four stripe rust resistance genes have been identified and many are being used in wheat breeding (McIntosh et al., 2021; Klymiuk et al., 2022). However, rapid emergence of virulent Pst races has rendered many resistance genes in released cultivars ineffective, which has prompted the continuing search for more durable resistance (Kou and Wang, 2010; Schwessinger, 2017). Breeding durable disease resistant cultivars relies largely on continually discovering and introducing new resistance genes into adapted varieties, especially the genes from wild species (Ellis et al., 2014; Zhang et al., 2018).

Cultivated rye (Secale cereale L.) has been a valuable source of potentially useful genes for wheat improvement (Rabinovich, 1997; Tang et al., 2011). However, reports on stripe rust resistance genes derived from Secale species are far behind the other foliar disease resistance genes identified (Spetsov and Daskalova, 2022). The chromosome arm 1RS from ‘Petkus’ rye was introduced into many wheat cultivars grown worldwide and carries stripe rust resistance gene Yr9 (Mago et al., 2005), which is no longer effective in most locations. Several rye chromosomes were found to have novel stripe rust resistance and have been incorporated into wheat backgrounds (Wang et al., 2009; Li et al., 2016; Schneider et al., 2016; An et al., 2019). Among them, chromosome 6R has displayed a number of polymorphic variations, and the 6R derived from different origins has been found to possess multiple disease-resistance genes. Several wheat-6R introgression lines with novel disease resistance gene(s) have been developed (Friebe et al., 1996; Dundas et al., 2001; An et al., 2015; Hao et al., 2018; Li et al., 2020b; Duan et al., 2022; Ashraf et al., 2022).

Asiedu et al. (1990) developed a wheat-chromosome 6R substitution line Sub6R(6D) from triticale T-701, derived from rye “Merced”, and later Dundas et al. (2001) localized the nematode resistance gene CreR to an interstitial region in the long arm of 6R. Li et al. (2020b) found that the Sub6R(6D) were highly resistant to both stripe rust and powdery mildew pathogens, and physically located the new stripe rust resistance gene Yr83 on FL 0.73-1.00 of 6RL by FISH on wheat-rye 6R translocation and deletion lines. In this study, the physical location of Yr83 on 6RL was further narrowed down by molecular cytogenetic approaches with the information from the available whole genomic sequences of Secale genomes (Bauer et al., 2017; Li et al., 2021; Rabanus-Wallace et al., 2021).

The objectives of this study were to identify new wheat - 6R deletion and translocation lines and further physically localize Yr83 gene on the specific region by FISH and molecular markers, and assess the developed wheat-6R introgression lines for wheat breeding.



Materials and methods


Plant materials

The triticale line T-701 was originally developed by CIMMYT (Li et al., 2020b), while the wheat-S. cereale 6R(6D) substitution line (Sub6R(6D)) and deletion line T6RL22 were developed at University of Adelaide, Australia (Asiedu et al., 1990; Dundas et al., 2001; Li et al., 2020a). CS-Imperial rye 6R addition line was obtained from Dr. Bernd Friebe, Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, USA. S. cereale cv. Kustro and Weining were kindly provided by Prof. Zongxiang Tang and Huaiyu Zhang at Sichuan Agricultural University, China; Wheat cv. Mianyang 11 (MY11) and Chuanmai 42 (CM42) are maintained in our laboratory at the School of Life Science and Technology, University of Electronic Science and Technology of China.



Fluorescence in situ hybridization (FISH)

Root tips from germinated seeds were collected and treated with nitrous oxide followed by enzyme digestion, using the procedure of Han et al. (2006). Synthesized oligo-nucleotide probes Oligo-pSc200, Oligo-pSc119.2, and Oligo-pTa535 were used for identifying wheat chromosomes following the descriptions of Tang et al. (2014) and Fu et al. (2015). A new probe Oligo-248 was developed from tandem repeats database on B2DSC website (Lang et al., 2019). The tandem repeat-based oligo-nucleotide probes Oligo-k288 (Wang et al., 2019) and Oligo-D (Tang et al., 2018) for ND-FISH are listed in Table 1. After FISH using the above oligos as probes, the sequential FISH painting with bulked oligos was conducted following the description by Li and Yang (2022). Photomicrographs of FISH chromosomes were taken with an Olympus BX-53 microscope equipped with a DP-70 CCD camera. Images were processed using Photoshop 3.0 (Adobe Systems Incorporated, CA, USA).


Table 1 | The Oligo probes for chromosome identification in ND-FISH.





Molecular marker analysis

DNA was extracted from young leaves using a sodium dodecyl sulfate (SDS) protocol (Li et al., 2015). The PCR markers in rye (Qiu et al., 2016), 6R-specific markers (Li et al., 2016; Du et al., 2018), PCR-based Landmark Unique Gene (PLUG) primers (Ishikawa et al., 2009; Li et al., 2013), CINAU markers (Zhang et al., 2017), and rye Lo7 genomic region-specific markers were based on searching the website of the Triticeae Multi-omics Center (http://202.194.139.32/). All primers were synthesized by Shanghai Invitrogen Biotechnology Co. Ltd. Amplified PCR products were electrophoresed on a 1.0% agarose gel as described by Li et al. (2015). The physical locations of the molecular markers on chromosomes were based on the reference genomes of Chinese Spring wheat (IWGSC 2018) and Lo7 rye (Rabanus-Wallace et al., 2021).



Stripe rust reactions

Stripe rust reactions were observed in the field at the Sichuan Academy of Agricultural Sciences Experimental Station. Ten plants were grown per 1-m row with a 25-cm spacing between rows. Bread wheat cv. MY11 planted on both sides of each experimental row served as an inoculum spreader and susceptible control after inoculation with a mixture of races CYR32, 33 and 34. Reactions evaluated at the heading and grain-filling stages were recorded on a 0–4 infection type (IT) scale according to Bariana and McIntosh (1993).




Results


Karyotyping of 6R in Sub6R(6D) and derived lines in Sichuan wheat background

Li et al. (2020a) characterized chromosome 6R from Triticale T-701 and Sub6R(6D) by sequential multicolor FISH (mc-FISH) and genomic in situ hybridization (GISH). In the present study, ND-FISH using probe Oligo-Ku was used in place of GISH to identify the rye chromosome 6R in Sub6R(6D) (Figure 1A). ND-FISH with probes Oligo-pSc119.2 and Oligo-pSc200 was used to generate the standard karyotype of 6R. The short arm of 6R carried a strong and a weak pSc119.2 sites at telomeric and subtelomeric regions, respectively, and a strong Oligo-pSc200 site in the distal region. The 6RL arm had four Oligo-pSc119.2 and two Oligo-pSc200 signal sites, and of these the Oligo-pSc200 hybridization sites were located between the interstitial and sub-telomeric Oligo-pSc119.2 sites (Figure 1B). Li et al. (2020a) observed two strong hybridization bands on 6RL shown by GISH using rye genomic DNA as probe. Based on the comparison of the GISH banding and FISH patterns (Zhou et al., 2010), the two GISH bands on 6RL were identical to the physical positions of Oligo-pSc200 hybridization sites. A line R23 containing 6DS.6RL translocation was selected from the BC1F4 generation from Sub6R(6D) to MY11. Moreover, we developed a new ND-FISH probe Oligo-248, which gives rise to a specific hybridization site at the telomeric region of 6RL in T-701, Sub6R(6D) and line R23 (Figure 1; Figure S1). The updated ND-FISH karyotype of 6R (Figure 1G) will be helpful to characterize structural variations for chromosome 6R, especially the distal end of 6RL, in the progenies or mutant lines.




Figure 1 | ND-FISH karyotyping of chromosome 6R in different wheat backgrounds. FISH of Sub6R(6D) line was performed using rye-specific oligo probe Oligo-Ku (A), Oligo-pSc119.2+ Oligo-pSc535 + Olio-pSc200 (B), and Oligo-238 (C). Lines R323 in CM42 (D), R476 in MY11 (E), and R27 with T6DS.6RL in MY11 (F) were revealed by ND-FISH using probes Oligo-pSc119.2, Oligo-pTa535, and Olio-pSc200. The karyotype of 6R is shown using multiple probes (G), the spike morphology (H) and stripe rust reaction (I) of the above wheat-6R lines and the parents are presented. Arrows pointed the positions of centromeres of 6R.



With the aim to transfer segments of rye 6R into Sichuan wheat background, a total of 908 plants of F3 progenies between Sub6R(6D) and Sichuan wheat CM42 and MY11 were screened by ND-FISH using probes Oligo-pSc119.2 and Oligo-pSc200. Lines R323 and R476 with a pair of chromosomes 6R in CM42 and MY11 backgrounds were produced in the BC1F3 generation from Sub6R(6D) to CM42 and MY11, respectively. The ND-FISH karyotypes of the chromosomes of R323 and R476 are shown in Figures 1D, F, respectively. The telosomic chromosomes 6RS, 6RL, isochromosomes iso6RS and iso6RL were identified in the F4 progenies (Figure 2A). In addition, 25 plants (2.7%) had different wheat-6R translocations including T1DS.6RL, T2DS.6RL, T6DS.6RL, T6BS.6RL, and T6RS.6DL, indicating high frequency of breakage and re-fusion of 6R with wheat chromosomes. A homozygous T6DS.6RL translocation line R23 was developed (Figure 2). ND-FISH with the grass common centromeric repeat Oligo-CCS1 and rye-specific centromeric repeat Oligo-pAWRC1.1 probes (Figures 2B–D) suggested that line R23 contained a recombined centromere from wheat 6D and rye 6R based on different intensities of signals using the two probes. The line R476 displayed an earlier flowering time of 7-10 days and reduced plant height of 80-90 cm, with significant longer spike length compared to the parent MY11 (Figure 1H), in addition to retaining the stripe rust resistance from 6RL (Figure 1I), suggesting that “Merced” derived 6R has positive effects on agronomic traits and rust resistance in wheat background.




Figure 2 | Sequential ND-FISH of the chromosome variations of 6R (A) and line R23 with T6DS.6RL in a MY11 background (B-D). The different types of 6R variations and wheat-6R translocations are shown by ND-FISH with probes Oligo-pSc119.2 and Oligo-pTa535 (A). The centromeric probes Oligo-CCS1 (B) and Oligo-pAWRC1.1 (C), and Oligo-pSc119.2 + Oligo-pTa535 (D), were used to show that the centromere in T6DS.6RL contains both wheat and rye centromeres.





Identification of new 6R deletion and translocation lines

With the aim to further localize the Yr83 gene, a total of 1,662 M3 plants from 195 M2:3 families of the gamma-irradiated Sub6R(6D) line were screened by ND-FISH using Oligo-pSc119.2, Oligo-pTa535, and Oligo-pSc200. Approximately, 4.0% of plants contained a modified 6R, including deletion, telosomic or isotelosomic 6R, and wheat-6R translocation chromosomes. Based on the standard karyotype of 6R (Figure 1), three types of deletions in 6RL were detected based on FISH with Oligo-pSc119.2 and Oligo-pSc200. Type 6R-1 had a deletion showing the loss of the most distal Oligo-pSc119.2 site at the terminal end of 6RL with an estimated breakpoint at FL 0.87 on 6RL (Figures 3A, E). Type 6R-2 was a larger deletion of the distal end of 6RL with the breakpoint after the second Oligo-pSc200 site (Figures 3B, E), which was estimated at the breakpoint of FL 0.82, and the deleted segment was FL 0.82-1.00. Type 6R-3 was an even bigger deletion than Type 6R-2 with the breakpoint between the two Oligo-pSc200 sites (Figures 3C, E). A line T6AL.6RLdel developed from progenies of the cross Sub6R(6D)/CS ph1b mutant Schomburgk/6R deletion (Dundas et al., 2001) was also characterized by ND-FISH with Oligo-pSc200, Oligo-pTa535, and Oligo-pSc119.2 (Figure 3D). The breakpoint was located between the two Oligo-pSc200 sites on 6RL, which is similar to that in Type 6R-3 (Figure 3C) with FL 0.73 (Figure 3E).




Figure 3 | ND-FISH of wheat-rye 6R lines from irradiated progenies of Sub6R(6D) lines. The wheat-6R lines contains different types of 6RL deletions (A–D). The diagrams show the FISH patterns of the 6RL deletions by ND-FISH of Oligo-pSc119.2 (green) + Oligo-pTa535 (red) + Oligo-pSc200 (red) as probes (E).



Sequential ND-FISH using probes Oligo-k288 or Oligo-D and Oligo-Ku (Table 1), as well as Oligo-pSc119.2 and Oligo-pTa535, was used to detect the breakpoints between wheat and 6R. Probe Oligo-k288 hybridizes specifically to the A and B-genome chromosomes, while Oligo-D hybridizes specifically to D-genome chromosomes. Two reciprocal Robertsonian translocations involving 7A-6R and 7D-6R were observed in 0.06% plants, while 12 types of non-Robertsonian wheat-6R translocations were detected in 2.13% plants (Figure S2). The breakpoints at FL 0.50 of 6RS, and FL 0.50 and FL 0.73 on 6RL occurred at the highest frequencies for the non-Robertsonian translocations with wheat chromosomes.



Confirmation of the breakpoints on 6RL deletions by PCR markers

In total, 190 PLUG markers (Ishikawa et al., 2009), 321 CINAU markers (Zhang et al., 2017), and 190 markers specific for 6RL in Kustro rye (Qiu et al., 2016) were used to amplify DNA from the wheat lines MY11, Sub6R(6D), T6DS.6RL, R266, R76 and R367. The additional 16 6RL specific primers (Table 2) were designed with reference to the location of genome sequence of Lo7 6RL (Rabanus-Wallace et al., 2021). As shown in Figure 4, the breakpoints in R266 (and T6AL.6RL22) were physically located in the region between 720.56-723.16 Mb by markers Ku-6RL142 and Ku-6RL112. The breakpoint of R76 was physically located in the region between 784.09-786.82 Mb by markers Ku-6RL416 and Ku-6RL912. The breakpoint of R367 was physically located 806.17-807.21 Mb by markers Ku-6RL17 and SC-6RL072 (Figure 4). In the distal region of 6RL, markers SC-6RL082 to SC-6RL087 (Table 2) did not amplify in Sub6R(6D), but amplified in CS-Imperial 6R addition. It is likely that the present 6R may have lost the region of 882-885 Mb at terminal end of 6RL compared to Lo7 rye genome or possibly the two rye cultivars were highly divergent in the region. The association between the unique hybridization of probe Oligo-248 in ND-FISH (Figure S1) and the apparent loss of the 882-885 Mb region of 6RL needs to be further studied. The deletion in R367 was thus about 75 Mb of 6RL (806–881 Mb), corresponding to the reference genome of Lo7.


Table 2 | The 6RL-specific markers used on Sub6R(6D).






Figure 4 | Physical locations of chromosome-specific markers on Sub6R(6D), 6RL deletion lines R266, R76, and R376. The marker location (left) was determined in reference to the genome of Lo7 (Mb). “+” represents amplification, while “-” represents no amplification of 6RL specific bands. The plant materials 1-8 used (right) were CS, Weining rye, T-701, Sub6R(6D), R23, R266, R76, and R367. The chromosomes were subjected to ND-FISH using Oligo-pS119.2 (green) and Oligo-pSc200 (red).



Line Sub6R(6D) and T6DS.6RL translocation line R23 were analyzed with ND-FISH using Oligo-pSc119.2 and Oligo-pTa535 as probes, and then FISH painting with the bulk oligo probes Synt6 and Synt7 (Figure 5). FISH painting with Synt6 showed that the entire 6RS and a proximal region of 6RL had distinct signals, suggesting homoeology to the wheat group 6 chromosomes. Comparing the karyotype of 6RL by ND-FISH with probes Oligo-pSc119.2 and Oligo-pTa535, it seems that the tandem repetitive sequence localizations of the two Oligo-pSc119.2 sites were likely to be in the Synt7 regions in 6RL of Sub6R(6D) and R23. The FISH painting with probe Synt7 hybridized to the distal region of 6RL at about FL 0.82-1.00, indicating that this region is homoeologous to wheat group 7 chromosomes.




Figure 5 | ND-FISH and Oligo-FISH painting of lines Sub6R(6D) (A, B) and R23 (C, D). Probes Oligo-pSc119.2 + Oligo-pTa535 (A, C) and Synt6 + Synt7 (B, D) were used. The Synt7 hybridization sites corresponded to the distal two Oligo-pSc119.2 sites in 6RL.





Stripe rust resistance and physical location of Yr83

When inoculated with a mixture of Pst races (CYR32, CYR33, and CYR34) in the field, the wheat parents CM42 and MY11 were susceptible, while line Sub6R(6D) and T6DS.6RL line R23 were resistant. The homozygous 6RL deletion lines R266, R76 and R367 were susceptible to Pst at adult plant stage (Figure S3). The results indicated that the stripe rust resistance Yr83 in 6RL was located in FL 0.87-1.00, which corresponded to 806.26-881.00 Mb region in the rye genome of Lo7.




Discussion

Over 21,000 rye accessions are maintained in genebanks worldwide, and of these approximately 35% are landraces and wild species (FAO, 2010). Hexaploid triticale contains wheat and rye genomes, and shows relatively superior vigor and reproductive stability (Lukaszewski and Gustafson, 1987; Cheng and Murata, 2002). Studies on genome-wide diversity have revealed diversified genetic structures in rye and Triticale germplasm (Bolibok-Bragoszewska et al., 2014; Sun et al., 2022; Cao et al., 2022). Among the rye chromosomes, the S. cereale chromosome 6R has displayed rapid structural change and high levels of heterogeneity of heterochromatin blocks, which has been revealed by FISH using tandem repeat probes on different rye cultivars (Guo et al., 2019). The FISH and GISH patterns using probes pSc119.2 and pSc200 showed three different karyotypes of 6R (Figure S4). The FISH patterns of 6R in Weining rye (Li et al., 2021) and Kustro rye (Li et al., 2016) had four pSc119.2 and two pSc200 sites, which is identical to the 6R in Sub6R(6D) from Merced rye (Type 6R-I, Figure S4). Two hybridization sites of pSc119.2 and three sites of pSc200 sites were observed on the 6RL of YT2 (Han et al., 2022), which is similar to the FISH patterns of CS-Imperial 6R (Type 6R-II, Figure S4). Three pSc119.2 and two pSc200 sites on 6RL were observed in Jinzhouheimai (Wu et al., 2018), AR106BONE (Duan et al., 2022), and rye cv. Qinling (Hao et al., 2018), which is typical of 6R-III (Figure S4). In addition, our previous study on S. africanum 6Rafr displayed a completely different karyotype compared to cultivated rye 6R (Li et al., 2020a), which has three pSc119.2 sites and a lack of pSc200 hybridization (Figure S4). Probe Oligo-248 was found to specifically hybridize to the 6RL terminal region of T-701, Sub6R(6D) and the T6DS.6RL line R23 (Figure 1 and Figure S1). The same pattern was also observed on 6RL in rye AR106BONE, but not in Imperial, Kustro, or Weining rye. Therefore, both molecular and cytogenetic evidence suggests that different sources of 6RL may provide diversity for future transfer of novel genetic variation to wheat.

The 6R chromosomes from different cultivated rye genotypes contain disease resistance genes with potential for wheat improvement. The 6RL chromosomes from rye cv. Prolific (Heun and Friebe, 1990; Friebe et al., 1994), JZHM (Wang et al., 2010), German White (An et al., 2015; Han et al., 2022), and Kustro (Li et al., 2016; Du et al., 2018) have powdery mildew resistance genes. Wu et al. (2018) localized PmJZHM6RL with 12 molecular markers to FL 0.51-1.00 of 6RL. Hao et al. (2018) reported the powdery mildew gene Pm56 on 6RS from rye cv. Qinling. Han et al. (2022) located the PmYT2 gene in the sub-telomeric region of 6RL, the physical region being at the 67 Mb interval corresponding to 890.09–967.51 Mb in Weining rye and 784-836 Mb in Lo7. The breakpoint at 784 Mb of Lo7 is similar to that in R76 in this study, about FL 0.82 of 6RL (Figure 4). The allelism between the Pm gene in “Merced” rye and Pm20 (Friebe et al., 1994), PmYT2 (Han et al., 2022) and PmJZHM (Wang et al., 2010) need to be tested. With respect to the stripe rust resistance, the Imperial rye 6R added in Chinese Spring and the Kustro rye 6R derived addition line 18T142 were both susceptible to stripe rust races CYR32-34 (ZX Tang, personnel communication). Li et al. (2020a) localized Yr83 on 6RL FL 0.73-1.00 using Sub6R(6D) derived deletion lines that conferred stripe rust resistance to multiple Chinese and Australian pathotypes. The present study further localized the Yr83 gene on the FL 0.87-1.00 of 6RL, which corresponds to 806-881 Mb in 6R of Lo7. Recently, Duan et al. (2022) physically located a fragment of about 37 Mb (corresponding to 848-885 Mb of Lo7) in the telomeric region of 6RL derived from rye line AR106BONE carrying Yr6RArL with high resistance to stripe rust CYR34. The allelism between Yr83 and Yr6RArL needs to be tested. Ashraf et al. (2022) identified a new stripe rust gene YrSLU on a small translocation of T6DS.6DL.6RL.6DL from 6RL of rye SLU126, and mapped it in the terminal region of 6RL. Our previous identified S. africanum 6Rafr derived stripe rust resistance gene was located on FL 0.95-1.00 of 6RafrS (Li et al., 2020a). These 6R chromosomes from cultivated and wild rye carrying stripe rust resistances are worthwhile for further wheat-rye introgression and germplasm enhancement.

Chromosome region-specific markers and the recently complete genomic sequences of rye are valuable resources for targeting introgressed chromatin from different cultivated and wild rye accessions to wheat (Tang et al., 2011; Qiu et al., 2016; Li et al., 2016; Li et al., 2021; Rabanus-Wallace et al., 2021). The evidence supports that the present-day cultivated rye 6RL contains the translocated segments from 3R and 7R, and these chromosome re-arrangements were clearly defined by comparative molecular markers (Devos et al., 1993; Li et al., 2013; Rabanus-Wallace et al., 2021). The centromeric regions of 6R were predicted at 290-300 Mb region of Lo7 genome by the physical location of pAWRC1.1 repeats using B2DSC web site (Lang et al., 2019). Li et al. (2020a) located Yr83 on FL 0.73-1.00 of 6RL, which is the distal 27% of the 6RL arm. The present study demonstrated this breakpoint to be at 720.56-723.16 Mb. The markers revealed that the FL 0.73-1.00 of 6RL included the homoeologous groups 3 and 7 re-arranged regions (Li et al., 2020a). Our study produced a deletion line R376 with a breakpoint at about 805 Mb of Lo7 genome, which was at FL 0.87-1.00 of 6RL, and Oligo-FISH painting confirmed that the fragment of the last two Oligo-pSc119.2 sites of 6RL belonged to linkage group 7 (Figure 5). Comprehensive FISH studies on cytogenetic stocks of 6RL deletions and genomic regions of the Lo7 genome have confirmed that the fine physical map of Yr83 within FL 0.87-1.00 (806-881 Mb) was syntenic to linkage group 7. Therefore, the putative candidate genes for Yr83, and also for Yr6RArL, YtSLU, and PmYT2, might be syntenic with the functional conserved genes from the linkage group 7 of the Triticeae genomes.

Rye chromosome 6R contained the highest number of predicted NBS-LRR genes than any other rye chromosomes (Rabanus-Wallace et al., 2021). The 6RL distal region with homology to linkage group 7 region has accumulated NLR genes (Qian et al., 2021). Several genes for rust and powdery mildew resistance genes were characterized in the NLR rich gene clusters in the telomeric regions of wheat group 7 chromosomes, such as Pm1 (Hewitt et al., 2021). Moreover, the Pm60 gene (TraesCS7A02G553800) from wild emmer wheat (Zou et al., 2018; Wu et al., 2021) was also homologous to SECCE6Rv1G0450040, a NBS gene located at 865,626,675 to 865,630,526 bp of 6RL terminal region. Further investigation will be conducted on the expression of rye specific NLR genes in Triticale, wheat-rye addition and introgression lines under stripe rust challenge (Khalil et al., 2015; Zhao et al., 2022). The development of EMS mutants for the Sub6R(6D) and T6DS.6RL lines, and the subsequent target-sequence enrichment and sequencing (TEnSeq) pipeline for Yr83 are undergoing (Zhang et al., 2020).

Substitution line Sub6R(6D) carrying Yr83 conferred stripe rust resistance in China and Australia, and also displayed high levels of resistance to cereal cyst nematode and powdery mildew at adult plant stage (Dundas et al., 2001; Li et al., 2020a). We have shown that the 6R from Sub6R(6D) in a Sichuan wheat background has improved the agronomic traits, including the increase of spike length and reduced plant height (Figure 1). The translocation lines T6DS.6RL and T6AS.6RL as well as T7A-6R and T7D-6R (Figure S2) will be used as the starting lines for small translocation segment induction. The two Robertsonian translocations T6DS.6RL and T6AS.6RL might be able to be used directly in wheat breeding if no obvious linkage drag could be observed to introgress multiple disease resistances from rye 6R for wheat improvement.
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Supplementary Figure 1 | Sequential ND-FISH of T-701 (A, D) Sub6R(6D) (B, E) and T6DS.6RL line R23 (C, F) with Oligo-pSc119.2 + Oligo-pTa535 (A, B, C) and Oligo-248 (D, E, F) respectively. The arrows point to the FISH signal of Oligo-248 in the terminal region of 6RL.

Supplementary Figure 2 | Different types of wheat-6R chromosome translocations were identified in the M3 progenies using ND-FISH. Oligo-Ku and Oligo-D (A) and Oligo-pSc119.2 + Oligo-pTa535 (B) were used to show chromosome T5DS.5DL-6RL (A, B). Different types of translocations were showed in (C), with breakpoints indicated by arrowheads (C).

Supplementary Figure 3 | The stripe rust responses of deletion lines R266, R367, and R76, translocation line R23, and substitution line Sub6R(6D). All three deletion lines were susceptible, whereas the translocation and substitution lines were highly resistant.

Supplementary Figure 4 | FISH patterns of chromosome 6R by ND-FISH with Oligo-pSc119.2 (green) + Oligo-pSc200 (red) as probes. Three different karyotypes were observed for cultivated rye, which were distinctively different from S. africanum.



References

 An, D., Ma, P., Zheng, Q., Fu, S., Li, L., Han, F., et al. (2019). Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor. Appl. Genet. 132, 257–272. doi: 10.1007/s00122-018-3214-3

 An, D., Zheng, Q., Luo, Q., Ma, P., Zhang, H., Li, L., et al. (2015). Molecular cytogenetic identification of a new wheat-rye 6R chromosome disomic addition line with powdery mildew resistance. PloS One 10, e0134534. doi: 10.1371/journal.pone.0134534

 Ashraf, R., Johansson, E., Vallenback, P., Steffenson, B. J., Bajgain, P., and Rahmatov, M. (2022). Identification of a small translocation from 6R possessing stripe rust resistance to wheat. Plant Dis. doi: 10.1094/PDIS-07-22-1666-RE

 Asiedu, R., Fisher, J. M., and Driscoll, C. J. (1990). Resistance to Heterodera avenae in the rye genome of triticale. Theor. Appl. Genet. 79, 331–336. doi: 10.1007/bf01186075

 Bariana, H. S., and McIntosh, R. A. (1993). Cytogenetic studies in wheat. XV. location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36, 476–482. doi: 10.1139/g93-065

 Bauer, E., Schmutzer, T., Barilar, I., Mascher, M., Gundlach, H., Martis, M. M., et al. (2017). Towards a whole-genome sequence for rye (Secale cereale l.). Plant J. 89, 853–869. doi: 10.1111/tpj.13436

 Bolibok-Bragoszewska, H., Targonska, M., Bolibok, L., Kilian, A., and Rakoczy-Trojanowska, M. (2014). Genome-wide characterization of genetic diversity and population structure in Secale. BMC Plant Biol. 14, 184. doi: 10.1186/1471-2229-14-184

 Cao, D., Wang, D., Li, S., Li, Y., Hao, M., and Liu, B. (2022). Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in tritical. Theor. Appl. Genet. 135, 1705–1715. doi: 10.1007/s00122-022-04064-5

 Cheng, Z., and Murata, M. (2002). Loss of chromosomes 2R and 5RS in octoploid triticale selected for agronomic traits. Genes Genet. Syst. 77, 23–29. doi: 10.1266/ggs.77.23

 Devos, K. M., Atkinson, M. D., Chinoy, C. N., Francis, H. A., Harcourt, R. L., Koebner, R. M. D., et al. (1993). Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673–680. doi: 10.1007/BF00225004

 Duan, Y., Luo, J., Yang, Z., Li, G., Tang, Z., and Fu, S. (2022). The physical location of stripe rust resistance genes on chromosome 6 of rye (Secale cereale l.) AR106BONE. Front. Plant Sci. 13, 928014. doi: 10.3389/fpls.2022.928014

 Dundas, I. S., Frappell, D. E., Crack, D. M., and Fisher, J. M. (2001). Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci. 41, 1771–1778. doi: 10.2135/cropsci2001.1771

 Du, H., Tang, Z., Duan, Q., Tang, S., and Fu, S. (2018). Using the 6RLKu minichromosome of rye (Secale cereale l.) to create wheat-rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. Int. J. Mol. Sci. 19, 3933. doi: 10.3390/ijms19123933

 Ellis, J. G., Lagudah, E. S., Spielmeyer, W., and Dodds, P. N. (2014). The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 24, 641. doi: 10.3389/fpls.2014.00641

 FAO (2010). The second report on the state of the world’s plant genetic (Rome: Resources for Food and Agriculture).

 Friebe, B., Heun, M., Tuleen, N., Zeller, F. J., and Gill, B. S. (1994). Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 34, 621–625. doi: 10.2135/cropsci1994.0011183x003400030003x

 Friebe, B., Jiang, J., Raupp, W. J., McIntosh, R. A., and Gill, B. S. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87. doi: 10.1007/BF00035277

 Fu, S., Chen, L., Wang, Y., Li, M., Yang, Z., Qiu, L., et al. (2015). Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci. Rep. 5, 10552. doi: 10.1038/srep10552

 Guo, J., Lei, Y., Zhang, H., Song, D., Liu, X., Cao, Z., et al. (2019). Frequent variations in tandem repeats pSc200 and pSc119.2 cause rapid chromosome evolution of open-pollinated rye. Mol. Breeding. 39, 133. doi: 10.1007/s11032-019-1033-0

 Han, F., Lamb, J. C., and Birchler, A. (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. U.S.A. 103, 3238–3243. doi: 10.1073/pnas.0509650103

 Han, G., Yan, H., Wang, J., Cao, L., Liu, S., Li, X., et al. (2022). Molecular cytogenetic identification of a new wheat-rye 6R addition line and physical localization of its powdery mildew resistance gene. Front. Plant Sci. 13, 889494. doi: 10.3389/fpls.2022.889494

 Hao, M., Liu, M., Luo, J., Fan, C., Yi, Y., Zhang, L., et al. (2018). Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01040

 Heun, M., and Friebe, B. (1990). Introgression of powdery mildew resistance from rye into wheat. Phytopathology 80, 242–245. doi: 10.1094/Phyto-80-242

 Hewitt, T., Müller, M. C., Molnár, I., Mascher, M., Holušová, K., Šimková, H., et al. (2021). A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from. Blumeria graminis. New Phytol. 229, 2812–2826. doi: 10.1111/nph.17075

 Ishikawa, G., Nakamura, T., Ashida, T., Saito, M., Nasuda, S., Endo, T., et al. (2009). Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor. Appl. Genet. 118, 499–514. doi: 10.1007/s00122-008-0916-y

 Khalil, H. B., Ehdaeivand, M. R., Xu, Y., Laroche, A., and Gulick, P. J. (2015). Identification and characterization of rye genes not expressed in allohexaploid triticale. BMC Genomics 16, 281. doi: 10.1186/s12864-015-1480-x

 Klymiuk, V., Chawla, H. S., Wiebe, K., Ens, J., Fatiukha, A., Govta, L., et al. (2022). Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun. Biol. 5, 826. doi: 10.1038/s42003-022-03773-3

 Kou, Y., and Wang, S. (2010). Broad-spectrum and durability: understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 13, 181–185. doi: 10.1016/j.pbi.2009.12.010

 Lang, T., Li, G., Wang, H., Yu, Z., Chen, Q., Yang, E., et al. (2019). Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 249, 663–675. doi: 10.1007/s00425-018-3033-4

 Li, J., Dundas, I., Dong, C., Li, G., Trethowan, R., Yang, Z., et al. (2020b). Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 133, 1095–1107. doi: 10.1007/s00122-020-03534-y

 Li, J., Endo, T. R., Saito, M., Ishikawa, G., Nakamura, T., and Nasuda, S. (2013). Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma 122, 555–564. doi: 10.1007/s00412-013-0428-7

 Li, M., Tang, Z., Qiu, L., Wang, Y., Tang, S., and Fu, S. (2016). Identification and physical mapping of new PCR-based markers specific for the long arm of rye (Secale cereale l.) chromosome 6. J. Genet. Genomics 43, 199–206. doi: 10.1016/j.jgg.2015.11.005

 Li, G., Tang, L., Yin, Y., Zhang, A., Yu, Z., Yang, E., et al. (2020a). Molecular dissection of Secale africanum chromosome 6Rafr in wheat enabled localization of genes for resistance to powdery mildew and stripe rust. BMC Plant Biol. 20, 134. doi: 10.1186/s12870-020-02351-1

 Li, G., and Yang, Z. (2022). Oligo-FISH paints in triticeae. Curr. Protoc. 2, e364. doi: 10.1002/cpz1.364

 Li, G., Zhang, T., Yu, Z., Wang, H., Yang, E., and Yang, Z. (2021). An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in triticeae. Plant J. 105, 978–993. doi: 10.1111/tpj.15081

 Li, G., Zhang, H., Zhou, L., Gao, D., Lei, M., Zhang, J., et al. (2015). Molecular characterization of Sec2 loci in wheat-Secale africanum derivatives demonstrates genomic divergence of Secale species. Int. J. Mol. Sci. 16, 8324–8336. doi: 10.3390/ijms16048324

 Lukaszewski, A. J., and Gustafson, J. P. (1987). Plant Breeding Reviews. In: Janick J (ed) Cytogenetics of triticale, vol 5. AVI Publishing, New York. pp 41–93. doi: 10.1002/9781118061022.ch3

 Mago, R., Miah, H., Lawrence, G. J., Wellings, C. R., Spielmeyer, W., Bariana, H. S., et al. (2005). High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 112, 41–50. doi: 10.1007/s00122-005-0098-9

 McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Xia, X., and Raupp, W. J. (2021). Catalogue of gene symbols for wheat: 2021 supplement. Annu. Wheat Newsletter. 67, 104–113.

 Morgounov, A., Tufan, H. A., Sharma, R., Akin, B., Bagci, A., Braun, H. J., et al. (2012). Global incidence of wheat rusts and powdery mildew during 1969-2010 and durability of resistance of winter wheat variety bezostaya 1. Eur. J. Plant Pathol. 132, 323–340. doi: 10.1007/s10658-011-9879-y

 Qian, L., Wang, Y., Chen, M., Liu, J., Lu, R., Zou, X., et al. (2021). Genome-wide identification and evolutionary analysis of NBS-LRR genes from Secale cereale. Front. Genet. 12. doi: 10.3389/fgene.2021.771814

 Qiu, L., Tang, Z., Li, M., and Fu, S. (2016). Development of new PCR-based markers specific for chromosome arms of rye (Secale cereale l.). Genome 59, 159–165. doi: 10.1139/gen-2015-0154

 Rabanus-Wallace, M. T., Hackauf, B., Mascher, M., Lux, T., Wicker, T., Gundlach, H., et al. (2021). Chromosome-scale genome assembly provides insights into rye biology, evolution, and agronomic potential. Nat. Genet. 53, 564–573. doi: 10.1038/s41588-021-00807-0

 Rabinovich, S. (1997). “Importance of wheat-rye translocations for breeding modern cultivars of triticum aestivum l,” in Wheat: Prospects for global improvement, vol. 6 . Ed.  H. J. Braun (Netherlands: Springer), 401–418. doi: 10.1007/978-94-011-4896-2_55

 Schneider, A., Rakszegi, M., Molnár-Láng, M., and Szakács, É (2016). Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor. Appl. Genet. 129, 1045–1059. doi: 10.1007/s00122-016-2682-6

 Schwessinger, B. (2017). Fundamental wheat stripe rust research in the 21st century. New Phytol. 213, 1625–1631. doi: 10.1111/nph.14159

 Spetsov, P., and Daskalova, N. (2022). Resistance to pathogens in wheat-rye and triticale genetic stocks. J. Plant Pathol. 104, 99–114. doi: 10.1007/s42161-021-01019-5

 Sun, Y., Shen, E., Hu, Y., Wu, D., Feng, Y., Lao, S., et al. (2022). Population genomic analysis reveals domestication of cultivated rye from weedy rye. Mol. Plant 15, 552–561. doi: 10.1016/j.molp.2021.12.015

 Tang, Z., Ross, K., Ren, Z., Yang, Z., Zhang, H., Chikmawati, T., et al. (2011). “Wealth of wild species: Role in plant genome elucidation and improvement - secale,” in Wild crop relatives: Genomic and breeding resources cereals. Ed.  C. Kole (Berlin, Germany: Springer), 367–395.

 Tang, S., Tang, Z., Qiu, L., Yang, Z., Li, G., Lang, T., et al. (2018). Developing new oligo probes to distinguish specific chromosomal segments and the a, b, d genomes of wheat (Triticum aestivum l.) using ND-FISH. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01104

 Tang, Z., Yang, Z., and Fu, S. (2014). Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55, 313–318. doi: 10.1007/s13353-014-0215-z

 Wang, M., and Chen, X. (2017). “Stripe rust resistance,” in Stripe rust, Springers Science+Business media B.V. Dordrecht, The Netherlands Eds.  X. Chen, and Z. Kang, 353–558.

 Wang, H., Yu, Z., Li, G., and Yang, Z. (2019). Diversified chromosome rearrangements detected in a wheat- Dasypyrum breviaristatum substitution line induced by gamma-ray irradiation. Plants 8, 175. doi: 10.3390/plants8060175

 Wang, C., Zheng, Q., Li, L., Niu, Y., Wang, H., Li, B., et al. (2009). Molecular cytogenetic characterization of a new T2BL.1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Dis. 93, 124–129. doi: 10.1094/PDIS-93-2-0124

 Wang, D., Zhuang, L., Sun, L., Feng, Y., Pei, Z., and Qi, Z. (2010). Allocation of a powdery mildew resistance locus to the chromosome arm 6RL of Secale cereale l. cv. ‘Jingzhouheimai’. Euphytica 176, 157–166. doi: 10.1007/s10681-010-0199-7

 Wu, N., Li, M., Sun, H., Cap, Z., Liu, P., Ding, T., et al. (2018). RNA-Seq facilitates development of chromosome-specific markers and transfer of rye chromatin to wheat. Mol. Breeding. 38, 6. doi: 10.1007/s11032-017-0762-1

 Wu, Q., Zhao, F., Chen, Y., Zhang, P., Zhang, H., Guo, G., et al. (2021). Bulked segregant CGT-seq-facilitated map-based cloning of a powdery mildew resistance gene originating from wild emmer wheat (Triticum dicoccoides). Plant Biotech. J. 19, 1288–1290. doi: 10.1111/pbi.13609

 Zhang, R., Fan, Y., Kong, L., Wang, Z., Wu, J., Xing, L., et al. (2018). Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor. Appl. Genet. 131, 2613–2620. doi: 10.1007/s00122-018-3176-5

 Zhang, X., Wei, X., Xiao, J., Yuan, C., Wu, Y., Cao, A., et al. (2017). Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Mol. Breeding. 37, 115. doi: 10.1007/s11032-017-0710-0

 Zhang, J., Zhang, P., Dodds, P., and Lagudah, E. (2020). How target-sequence enrichment and sequencing (TEnSeq) pipelines have catalyzed resistance gene cloning in the wheat-rust pathosystem. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00678

 Zhao, F., Niu, K., Tian, X., and Du, W. (2022). Triticale improvement: mining of genes related to yellow rust resistance in triticale based on transcriptome sequencing. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.883147

 Zhou, J., Yang, Z., Li, G., Liu, C., Tang, Z., Zhang, Y., et al. (2010). Diversified chromosomal distribution of the tandemly repeated sequences reveal evolutionary trends in Secale (Poaceae). Plant Syst. Evol. 287, 49–56. doi: 10.1007/s00606-010-0288-z

 Zou, S., Wang, H., Li, Y., Kong, Z., and Tang, D. (2018). The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 218, 298–309. doi: 10.1111/nph.14964



Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Li, Li, Zhang, Ma, Yang, Zhang, Dundas and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 11 October 2022

doi: 10.3389/fpls.2022.1010057

[image: image2]


Identification and fine-mapping of a major QTL (PH1.1) conferring plant height in broomcorn millet (Panicum miliaceum)


Tianpeng Liu 1,2, Xueying Liu 2, Jihong He 1, Kongjun Dong 1, Wanxiang Pan 3, Lei Zhang 1, Ruiyu Ren 1, Zhengsheng Zhang 2* and Tianyu Yang 1*


1 Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China, 2 College of Agronomy and Biotechnology, Southwest University, Chongqing, China, 3 College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China




Edited by 

Sung Don Lim, Sangji University, South Korea

Reviewed by 

Pradeep Yerramsetty, University at Buffalo, United States

Xiaojun Nie, Northwest A&F University, China

*Correspondence 

Zhengsheng Zhang
 zhangzs@swu.edu.cn 

Tianyu Yang
 yangtianyu@gsagr.ac.cn

Specialty section: 
 This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science


Received: 02 August 2022

Accepted: 14 September 2022

Published: 11 October 2022

Citation:
Liu T, Liu X, He J, Dong K, Pan W, Zhang L, Ren R, Zhang Z and Yang T (2022) Identification and fine-mapping of a major QTL (PH1.1) conferring plant height in broomcorn millet (Panicum miliaceum). Front. Plant Sci. 13:1010057. doi: 10.3389/fpls.2022.1010057



The plant height of broomcorn millet (Panicum miliaceum) is a significant agronomic trait that is closely related to its plant architecture, lodging resistance, and final yield. However, the genes underlying the regulation of plant height in broomcorn millet are rarely reported. Here, an F2 population derived from a cross between a normal variety, “Longmi12,” and a dwarf mutant, “Zhang778,” was constructed. Genetic analysis for the F2 and F2:3 populations revealed that the plant height was controlled by more than one locus. A major quantitative trait locus (QTL), PH1.1, was preliminarily identified in chromosome 1 using bulked segregant analysis sequencing (BSA-seq). PH1.1 was fine-mapped to a 109-kb genomic region with 15 genes using a high-density map. Among them, longmi011482 and longmi011489, containing nonsynonymous variations in their coding regions, and longmi011496, covering multiple insertion/deletion sequences in the promoter regions, may be possible candidate genes for PH1.1. Three diagnostic markers closely linked to PH1.1 were developed to validate the PH1.1 region in broomcorn millet germplasm. These findings laid the foundation for further understanding of the molecular mechanism of plant height regulation in broomcorn millet and are also beneficial to the breeding program for developing new varieties with optimal height.
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Introduction

Broomcorn millet (Panicum miliaceum), an allotetraploid species (2n = 4x = 36) with two subgenomes originating from Panicum capillare and Panicum repens (Hunt et al., 2014), has been reported as probably one of the earliest domesticated crops around the world (Lu et al., 2009; Li et al., 2021). Phytolith evidence suggested that the domestication of broomcorn millet in northern China could be dated to approx. 10,300 years before the present (cal yr BP) (Yang et al., 2012). Due to its desirable characteristics including a short growing season, high water use efficiency, and drought tolerance, broomcorn millet has always been an important crop in semiarid regions. The grains of broomcorn millet are rich in minerals, essential amino acids, vitamins, and fatty acid. Especially, the protein content in broomcorn millet is higher than that in rice, maize, wheat, and most other cereals (Das et al., 2019). In addition, broomcorn millet is gluten-free and has a low glycemic index, which makes it an ideal nutritious food for a healthy diet (Das et al., 2019; Zou et al., 2019). However, the yield and the annual production of broomcorn millet are quite lower than those of other cereals. Therefore, the breeding of broomcorn millet with desirable agronomical traits and high production will be of great significance.

Plant height, determined by the length of the internode and the number of nodes, is a vital agronomical trait of crops and an important factor influencing crop yield. Cereal plants with a high culm are usually susceptible to lodging, thus decreasing final yield. For the breeding programs of main cereal crops such as rice and wheat, the dwarf trait has been exploited in the first “green revolution” and led to a rapidly increasing production. Genes in hormone pathways, such as sd1, d35, and ddf1 involved in the gibberellin (GA) signaling pathway (Sasaki et al., 2002; Itoh et al., 2004; Magome et al., 2004), brd1 involved in the brassinosteroid signaling pathway (Makarevitch et al., 2012), and tdd1 involved in the auxin signaling pathway (Sazuka et al., 2009), have been reported to play roles in the morphogenesis of plant height. However, most of these genes have been identified from rice, wheat, and maize, whereas no candidate gene has been reported in broomcorn millet.

The rapid development of molecular biology and sequencing technologies provided various tools for modern crop breeding. Map-based cloning of genes involving significant agronomical traits and marker-assisted selection (MAS) have been widely applied in crops (Chen et al., 2021; Koppolu et al., 2022). Bulked segregant analysis with whole-genome resequencing (BAS-seq) is an effective approach for the identification of candidate genes and has been successfully utilized (Lee et al., 2020; Wu et al., 2022; Zhang et al., 2022). However, genetic and genomic studies of broomcorn millet were more hysteretic than those of other crops. The release of the assembled genome of broomcorn millet in 2019 made it possible to make full use of modern technologies, including BAS-seq and molecular marker development (Shi et al., 2019; Zou et al., 2019).

In the present study, the broomcorn millet dwarf mutant Zhang778 was crossed with the regular variety Longmi12 to explore the candidate quantitative trait loci (QTLs) and genes responsible for plant height trait. One major QTL, PH1.1, was identified and fine-mapped into a 109-kb interval using BSA-seq and linkage mapping analysis. Fifteen genes were located in the candidate region, and three candidate genes were the most likely candidate genes for PH1.1. Three markers linked with PH1.1 were identified through association analysis, which validated the mapping results and could be utilized as diagnostic markers of plant height for broomcorn millet breeding. Our results laid a foundation for understanding the molecular mechanism of plant height morphogenesis and contribute to breeding varieties of broomcorn millet with optimal plant architecture.



Materials and methods


Plant materials and phenotypic analysis

Longmi12 and Zhang778 were chosen as the parental lines to establish an F2 population in order to analyze the plant height trait of broomcorn millet. Longmi12 is a high-yield variety bred by the Institute of Crop Research in Gansu Academy of Agricultural Sciences, China. The height of mature Longmi12 plants is about 160–180 cm. Zhang778, bred by Zhangjiakou Academy of Agricultural Sciences, China, is a dwarf line created through ethyl methanesulfonate (EMS) mutagenesis, with a final height of about 60–70 cm. Longmi12 was crossed with Zhang778 in Huining in 2018, the F1 plants were planted also in Huining in 2019, and the F2 population with 939 individuals was planted in the summer of 2020 in Huining, Gansu Province. The progenies of each F2 individual were planted in a line to develop the F2:3 population in the summer of 2021 in Huining, Gansu Province.

The plant height of broomcorn millet was measured using a ruler with an accuracy of 0.1 cm. For each F2:3 line, the average height of all plants per line was taken as a representative value. Moreover, the internode length of adjacent nodes and the panicle length in Longmi12 and Zhang778 were measured.

The R package “SEA V2.0” (https://cran.r-project.org/web/packages/SEA/index.html) was utilized to analyze the potential inheritance models of plant height in the F2 population. The optimal inheritance model was selected following the instructions in SEA v2.0.

To verify the accuracy of QTL PH1.1, a total of 512 broomcorn millet accessions collected from all over the world were used to carry out an association analysis (Supplementary Table S1). These accessions were planted and measured in Huining in 2020 and 2021.



BSA-Seq and resequencing analysis

The DNAs of Longmi12, Zhang778, and the F2 individuals were extracted from young leaves using a modified cetyltrimethyl ammonium bromide (CTAB) method (Zhang et al., 2005). Fifty F2 individuals with height over 160 cm were collected for the “high bulk,” (HB), while 50 individuals shorter than 100 cm were collected for the “dwarf bulk” (DB). The DNA libraries of the parents and the two bulks were sequenced on an Illumina HiSeq 2000 platform. Clean reads were aligned to the reference genome assembled by Zou et al. (2019) using BWA software with default parameters (Li and Durbin, 2009). Single nucleotide polymorphisms (SNPs) and insertions–deletions (Indels) were identified using GATK software. The ΔSNP and ΔIndel index values were calculated to obtain the preliminary intervals associated with the plant height of broomcorn millet.



Marker development, linkage map construction, and fine-mapping

To narrow down the preliminary region obtained from the BSA-seq results, Indels in the candidate region were selected according to the comparative genomic resequencing data between Zhang778 and Longmi12. Indel primers were developed based on the flanking sequence of the target Indels. These primers were first used to screen the parents in order to confirm the polymorphism and then to detect the genotype of the F2 individuals.

The software JoinMap 4.0 (Van Ooijen, 2006) was applied to construct the genetic linkage map, while the Kosambi map function was utilized to convert the recombination values into genetic distances (in centimorgan). Fine-mapping analysis of the QTL and the evaluation of its effect were carried out using MapQTL 6.0 (Van Ooijen, 2009) in the F2 and F2:3 populations independently. For the input trait values, the plant height of each F2 individual and the average value of each F2:3 line were used. MapChart 2.2 (Voorrips, 2002) was applied to represent the genetic map and QTL information graphically.



Prediction of the candidate genes

The genome information and the functional annotation of the genes in the candidate region were obtained from the reference genome of broomcorn millet (Zou et al., 2019). The genome resequencing data of Zhang778 and Longmi12 were used to compare the sequence variance between the two parents. Genes with ΔSNP/ΔIndel index values equal to 1 or −1 and are harboring sequence variance in the coding regions or potential promoter regions were predicted to be candidate genes.



Regional association analysis

Association analysis of the candidate region was conducted using a total of 512 broomcorn millet accessions. DNA extraction was performed for all accessions using the CTAB method modified by Zhang et al. (2005). The Indel markers in the candidate region were utilized to obtain the corresponding genotype of these accessions. According to the method used by Liu et al. (2017), the genotypes of each Indel in all accessions were obtained with PCR amplification and polyacrylamide gels. Thereafter, the accessions were separated into different haplotypes for each locus, and comparisons of the plant height between haplotypes were conducted using the Student’s t-test. A significance threshold (p < 0.05) was used to determine the significant associations between haplotypes and plant height.




Results


Phenotypic characterization and inheritance of plant height

The plant height of cereal crops is usually determined by the elongation and/or the number of nodes. Here, the dwarf mutant Zhang778 and the normal variety Longmi12, as well as their F2 and F2:3 progenies, were planted and phenotyped in the same location across 2 years. Compared with the height of Longmi12 that ranged from 163.1 to 188.5 cm, that of mature Zhang778 plants was only about 58.3–72.1 cm (Figure 1B). The number of nodes in mature plants was the same in two accessions, suggesting that the dwarf trait in Zhang778 was caused only by the decreased length of the internodes. A comparison of the plant height and the internode length between the two parental lines is shown in Figure 1. Besides plant height, the panicle length of Zhang778 was also shorter than that of Longmi12 (Figures 1A, C).




Figure 1 | Plant height performance of Longmi12 and Zhang778. (A) Mature plants of Longmi12 and Zhang778. (B) Comparison of the height of mature Longmi12 and Zhang 778 plants across 2 years. (C) Comparison of the length of each internode from Longmi12 and Zhang778.



The plant heights of the F2 and F2:3 progenies were continuous and approximately normally distributed and showed no transgressive segregation (Supplementary Figure S1). These results suggested that there might be more than one underlying gene and that all favorable alleles were contributed by one parent. To understand the genetic architecture of plant height, we used the major gene plus polygene mixed inheritance model and analyzed the F2 population with the R package “SEA V2.0.” The results indicated that 2MG-EA (two major genes with additive effects) was the optimal model, and the heritability of the two major genes was about 88.5% (Supplementary Table S2). In addition, the height distribution ranges of the two generations were slightly different (Supplementary Figure S1), which was identical to the parental performance, suggesting that environment factors also had an effect on the final height of broomcorn millet.



Initial mapping of plant height by bulked segregant analysis

BSA-seq was carried out to rapidly identify the genomic regions of plant height. A total of 125 M and 348 M paired reads were generated from the two parents and two bulks, respectively. The average sequencing depth of the parents was 22.4×, while that of the bulks was 61.3× (Supplementary Table S3). The clean reads were aligned to the reference genome of broomcorn millet (Zou et al., 2019), which revealed that about 97% and 93% of the whole genome in the bulks and parents, respectively, were covered by more than 10× reads. A total of 734,746 SNPs and 84,609 small Indels were identified between the two parents, while 220,363 SNPs and 27,565 small Indels were identified between the two bulks (Supplementary Table S3). The ΔSNP index was calculated, and a major region located on Chr1: 1,259,618–6,443,508 was identified with a 99% confidence value (Figure 2; Supplementary Table S4). The ΔIndel index was also calculated, and an interval on Chr1, which overlapped with the ΔSNP index interval, was identified (Supplementary Figure S2; Table S4). Overall, the results of BSA-seq revealed a major candidate region of broomcorn millet plant height on Chr1 (hereafter referred to as PH1.1), with a physical distance of about 5.18 Mb.




Figure 2 | Mapping of a locus controlling plant height in broomcorn millet using the ΔSNP index with the bulked segregant analysis (BSA) strategy.





Fine-Mapping of PH1.1

To narrow down the mapping region of PH1.1, a total of 68 Indel primers were developed based on the genome resequencing data. The primers were first used to screen for polymorphism between parents. Twenty-eight co-dominant primer pairs with clear bands were then utilized to identify the genotypes of 939 F2 individuals (Supplementary Table S5) and to construct a high-density genetic map around the region of PH1.1 (Figure 3). The sequences of these primers are listed in Supplementary Table S6. QTL analysis was further carried out using the plant height phenotypes from the F2 and F2:3 populations. The results indicated that the region of PH1.1 was narrowed down between markers Indel3.506 and Indel3.719 with a phenotypic variance explanation (PVE) value of 36% and an additive effect of 16.68 cm in the F2 generation and from marker Indel3.506 to Indel3.614 with a PVE value of 45.2% and an additive effect of 14.59cm in the F2:3 generation (Figure 3; Supplementary Table S7). The corresponding physical distance between Indel3.506 and Indel3.615 was 109 kb (109,478 bp).




Figure 3 | Fine-mapping of PH1.1 by linkage analysis. The left panel shows the linkage map, in which the red segment is the fine positioning interval of PH1.1. The right panel displays the log of odds (LOD) value of each locus in the F2 and F2:3 generations.





Candidate gene prediction analysis for PH1.1

A total of 15 genes (longmi011482–longmi011496) were contained in the PH1.1 interval. Associated genes with ΔSNP or ΔIndel index value equal to 1 in the PH1.1 interval included longmi011482, longmi011483, and longmi011489, and SNP variants of longmi011482 and longmi011489 occurred in the intron and exon, respectively (Table 1;  Supplementary Table S8). Among these genes, 14 were annotated with functions (Figure 4; Table 2). The sequence alignment of the 15 genes between the parental lines revealed that two nonsynonymous SNPs (Chr1: 3,504,266 and Chr1: 3,564,638) were present in longmi011482 and longmi011489 (Figure 4). No nonsynonymous variation was detected in the coding regions of the other genes. Furthermore, longmi011482 encodes a trichome birefringence-like protein, and longmi011489 encodes the floral homeotic protein APETALA 2 (AP2). Moreover, a few SNPs or Indels were present in the potential promoter regions of longmi011484, longmi011488, longmi011489, and longmi011496 (Supplementary Table S8).


Table 1 | Identification of sites with ΔSNP/ΔIndel values equal to 1 in the PH1.1 interval.






Figure 4 | Fine-mapping interval of PH1.1 and putative candidate genes within the interval. The left bar is the physical map of the fine-mapping interval. The middle arrow diagram shows the genes in the confidence interval of PH1.1, in which green indicates the genes longmi011482, longmi011489, and longmi011496, which contained nonsynonymous variation in their coding region and multiple base insertions or deletions in the promoter region. The right section displays the variation sites of longmi011482, longmi011489, and longmi011496 between Longmi12 and Zhang778.




Table 2 | Annotated function of the genes located in the interval of PH1.1.





Association test of PH1.1 among the natural population

To verify the fine-mapped region of PH1.1, a total of 512 broomcorn millet accessions (Supplementary Table S1) with various plant heights were genotyped using the four Indel primers in the candidate region (i.e., Indel3.506, Indel3.561, Indel3.614, and Indel3.615). The association test indicated that accessions carrying Longmi12 alleles at both the Indel3.506 and Indel3.614 loci were significantly higher than accessions carrying Zhang778 alleles. In particular, 23 out of the 63 wild germplasm showed genotypes different from those of the two parents at Indel3.615. The plant heights with these genotypes were significantly lower than those of the two parents (Figure 5; Supplementary Table S1), indicating that Indel3.615 is a key marker that can distinguish different types of broomcorn millet germplasm. Furthermore, both Indel3.614 and Indel3.615 are located upstream of the longmi011496 gene (Figure 4), suggesting that longmi011496 is also a promising candidate gene. These results confirmed the candidate region of the major QTL PH1.1 and suggested that PH1.1 might be a domesticated QTL of broomcorn millet.




Figure 5 | Association test of plant height in the natural population using insertion–deletion (Indel) markers in the PH1.1 interval. (A–H) Association tests of 512 broomcorn millet accessions in 2020 and (A–D) and 2021 (E–H). *, *** represent significant differences at P < 0.05 and 0.001, respectively. NS indicates no signifcant difference.






Discussion


Effective strategy to identify and fine-map major QTLs

With the development of molecular biotechnology in recent years, identifying the QTLs/genes of agronomical traits through forward genetic methods has become a significant part of crop breeding (Song et al., 2007; Ying et al., 2018). Detecting the major QTLs for important traits will not only be helpful to understanding the underlying molecular mechanism but also be favorable to molecular marker-assisted breeding (Liu et al., 2017). Traditional mapping approaches are usually based on a genetic map, the construction of which is time-consuming and labor-intensive (You et al., 2019). High-throughput sequencing technology has enabled not only the assembly of high-quality reference genomes for most crops but also the rapid detection of sequence variations, such as SNPs and Indels. By combining bulk segregation analysis and sequencing approach, BSA-seq has been successfully applied in many crops (Lee et al., 2020; Chen et al., 2021; Wu et al., 2022; Zhang et al., 2022). However, due to the linkage disequilibrium and the incomplete coverage of the sequencing reads, the QTL regions identified using BSA-seq are usually large and need to be narrowed down further (Chen et al., 2021; Zhang et al., 2022). Therefore, the traditional mapping approach cannot be completely replaced by BSA-seq and is still needed in the fine-mapping procedure. Furthermore, the large size of the segregation population is also of significance for further fine-mapping since more recombinants could be obtained from larger populations (Xu et al., 2017). In this study, we firstly detected the PH1.1 region using BSA-seq, then constructed a genetic map to fine-map PH1.1 using nearly a thousand progenies, and PH1.1 was finally successfully narrowed into a 0.109-Mb region. The strategy used in the present study accelerated the identification of major QTLs and could be applied in the detection of other QTLs in broomcorn millet.



PH1.1 is a major domesticated QTL

The domestication of broomcorn millet from wild species to modern cultivated varieties has greatly increased the size of the panicle and boosted production. The continuous artificial selection of high yield resulted in the tall plant architecture of cultivated broomcorn millet varieties since plant height is usually positively correlated with panicle size in cereal plants (Zhang et al., 2006; Liu et al., 2013; Chen et al., 2014). Here, a major QTL, PH1.1, was identified across two environments and explained about 45% of the variation in the plant height of broomcorn millet. This result indicated that PH1.1 is a stable locus with a large contribution. Through genotyping with the three Indel markers in the PH1.1 region, broomcorn millet accessions with different alleles were significantly segregated according to plant height. In particular, Indel3.615, an insertion/deletion marker in the promoter region of the longmi011496 gene, can clearly distinguish wild broomcorn millet germplasm from the two parental lines on plant height. This association test suggested that the dwarf allele of PH1.1 existed in the wild broomcorn millet accessions, although the dwarf parent Zhang778 was obtained from EMS mutation.

The prediction of the inheritance model has been proven to be powerful in understanding the genetic architecture of quantitative traits (Wang et al., 2001). In the current study, the continuous distribution of plant height in the F2 population indicates multiple underlying genes. Two major genes were predicted to control plant height in the F2 population, with a heritability of about 88.5%. Therefore, besides PH1.1, another major gene and a few minor genes possibly regulated the plant height of the dwarf mutant Zhang778, which needed further exploration.



Possible candidate gene for PH1.1

In the confidence interval of PH1.1, five of the 15 genes showed sequence variation in the coding region or the potential promoter region. Among them, longmi011489 encodes an AP2 transcriptional factor harboring variations in both the coding and promoter regions. A few mutants of the AP2 genes have been reported as candidate genes of dwarf plants, such as ddf1 in Arabidopsis (Magome et al., 2004), ndl1 in rice (Kusnandar et al., 2022), and dil1 in maize (Jiang et al., 2012). AP2 genes have been reported to play a significant role in GA signaling pathways, which are involved in the growth and development of plants (Magome et al., 2004; Xue et al., 2022). In a previous study, Zhang778 was proven to be caused by a mutation of the genes related to GA synthesis (Zhang et al., 2020), which is consistent with the function of AP2 genes. In addition, another previous study detected 21 genes involved in the domestication of broomcorn millet, 19 of which were annotated into the AP2 gene family (Li et al., 2021). As mentioned above, PH1.1 was probably a domesticated QTL, consistent with the roles of the AP2 gene family involved in the domestication of broomcorn millet. Another candidate gene, longmi011482, encodes a trichome birefringence-like protein related to cell wall polysaccharide O-acetylation in Arabidopsis (Schultink et al., 2015) and fiber development in upland cotton (Yu and Gervers, 2019). Thus, it may participate in the development of the cell wall to affect the elongation of the broomcorn millet internode and then regulate plant height. Furthermore, longmi011496 is an unknown function gene; however, in the association analysis carried out in this study, the base insertion or deletion in its promoter region was closely related to its plant height and can significantly distinguish wild accessions based on the height of the dwarf plant, indicating that the gene may be a specific gene regulating plant height in broomcorn millet. Overall, their functions still need further verification.



Diagnostic markers of PH1.1 could be applied in MAS

Diagnostic markers are molecular markers that are significantly linked with one or more traits, which help in the early and rapid identification of a target phenotype (Chakdar et al., 2019). Diagnostic markers have been successfully employed in many traits of various plants, such as the rust resistance trait in wheat (Liu et al., 2021) and common wheat (Wu et al., 2018), the testa color in cultivated peanut (Chen et al., 2021), and the bacterial wilt trait in tomato (Abebe et al., 2020). In the present study, three Indel markers located in the PH1.1 region were validated to be closely linked with the plant height of broomcorn millet using a total of 512 accessions. As do other cereal crops, high broomcorn millet varieties usually suffer from lodging; hence, breeding new broomcorn millet varieties with optimal height will be of great importance. With the three diagnostic markers, particularly Indel3.615, the plant height of new broomcorn varieties could be distinguished at the seedling stages. Therefore, the diagnostic markers in the present study laid a foundation for the molecular breeding of broomcorn millet and could be directly applied in its MAS breeding.
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Rice is a globally cultivated crop and is primarily a staple food source for more than half of the world’s population. Various single-nucleotide polymorphism (SNP) arrays have been developed and utilized as standard genotyping methods for rice breeding research. Considering the importance of SNP arrays with more inclusive genetic information for GWAS and genomic selection, we integrated SNPs from eight different data resources: resequencing data from the Korean World Rice Collection (KRICE) of 475 accessions, 3,000 rice genome project (3 K-RGP) data, 700 K high-density rice array, Affymetrix 44 K SNP array, QTARO, Reactome, and plastid and GMO information. The collected SNPs were filtered and selected based on the breeder’s interest, covering all key traits or research areas to develop an integrated array system representing inclusive genomic polymorphisms. A total of 581,006 high-quality SNPs were synthesized with an average distance of 200 bp between adjacent SNPs, generating a 580 K Axiom Rice Genotyping Chip (580 K _ KNU chip). Further validation of this array on 4,720 genotypes revealed robust and highly efficient genotyping. This has also been demonstrated in genome-wide association studies (GWAS) and genomic selection (GS) of three traits: clum length, heading date, and panicle length. Several SNPs significantly associated with cut-off, −log10 p-value >7.0, were detected in GWAS, and the GS predictabilities for the three traits were more than 0.5, in both rrBLUP and convolutional neural network (CNN) models. The Axiom 580 K Genotyping array will provide a cost-effective genotyping platform and accelerate rice GWAS and GS studies.
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1 Introduction

Rice (Oryza sativa) is a staple food source for more than half of the global population (Wing et al., 2018). Rice production is expected to increase by 50–70% by 2050, with improved quality, reliability, and sustainability of global food demand (Zhao et al., 2011; Seck et al., 2012). However, sustainable production with fewer resources will require the efficient utilization of high-throughput and intensive systems in increasingly variable environments (Rasheed et al., 2017; Yu et al., 2022).

With advances in high-throughput sequencing technologies, -omics-based studies on rice have progressed considerably, enabling the efficient identification of a large number of single nucleotide polymorphisms (SNPs) (Wing et al., 2018; Nguyen et al., 2019). In addition to being highly prevalent, biallelic, codominant, and stable SNPs also play a significant role in phenotypic variation. SNPs are the most effective and highly informative genetic markers used to unravel functional variants underlying traits for crop improvement (Yu et al., 2022). Next-generation sequencing technologies enable accurate detection of SNPs from various genomic backgrounds. With the availability of several million SNPs, the challenge is efficient and economical genotyping of these SNPs (Rasheed et al., 2017).

High-throughput SNP genotyping is an attractive genotyping tool for identifying sequence polymorphisms (Rasheed et al., 2017; Guo et al., 2021). It is typically accomplished using SNP arrays or ‘chips’ or genotyping-by-sequencing (GBS). SNP arrays and GBS are cost-effective for genotyping thousands to millions of SNPs, whereas PCR-based genotyping requires hundreds to a few thousand SNPs, and is laborious, time-consuming, and suitable for small-scale genotyping. Although GBS has low ‘set-up’ and per-sample costs and performs SNP discovery and genotyping simultaneously, its experimental operation and data analysis are beyond the reach of average breeders (Verlouw et al., 2021). In contrast, high-throughput genotyping arrays can be used repeatedly to genotype different populations in a short period of time with straightforward data analysis (Rasheed et al., 2017).

Several genotyping platforms, including Illumina BeadXpress (Chen et al., 2011; Thomson et al., 2012), Fluidigm platform (Seo et al., 2020), Illumina Infinium (Yu et al., 2014; Thomson et al., 2017; Morales et al., 2020), and Affymetrix (Zhao et al., 2011; Singh et al., 2015; McCouch et al., 2016) have been developed and utilized in rice molecular breeding. RiceSNP50 was designed based on over 10M SNP loci from the resequencing data of 801 rice varieties (Chen et al., 2014). OsSNPnks include 50 K high-quality non-redundant SNPs (Singh et al., 2015). Because they mainly consist of SNPs within single-copy genes, SNP information has been widely applied in evolutionary and domestication-related studies of the Oryza genus. McCouch et al. constructed a high-density rice array consisting of 700 K SNPs surpassing the largest publicly available genotyping platform for any crop species (McCouch et al., 2016). Cornell_ 6 K _Array_Infinium_Rice (C6AIR) was designed and developed to be polymorphic within and between target germplasm groups and to map populations of interest (Thomson et al., 2017). Therefore, C6AIR provides a highly informative dataset to Cornell University and the IRRI, indicating the importance of data resources in designing SNP arrays. C6AIR was updated to C7AIR, covering polymorphisms between and within O. sativa, O. glaberrima, O. rufipogon, and O. nivara (Morales et al., 2020). Seo et al. developed two 96-plex indica-japonica SNP genotyping assays for particular target populations containing functional SNPs associated with agronomic traits for efficient genotyping (Seo et al., 2020). High-throughput genotyping platforms play critical roles in genetic diversity, gene mapping, germplasm resource analysis, genome-wide association study (GWAS), evolution analysis, and genomic selection (Xu et al., 2021).

However, most of these arrays included whole-genome random SNPs but were not inclusive of SNPs related to key traits or research interests. Taking advantage of the accrued rice genomic sequence data, we collected SNPs from eight different highly informative datasets and selected high-throughput SNPs across the breeder’s research interests (Figure 1) to develop a large-scale genotyping array on the Affymetrix platform. Further validation of this array using a large set of accessions for GWAS analysis and genomic selection for different traits has demonstrated its usefulness in the global rice community.




Figure 1 | Schematic of 580K _ KNU chip design. SNPs were collected from eight different datasets, including 1) Resequencing data of 475 KRICE, 2) 3K-RGP from IRRI, 3) 700K rice array from Cornell University, 4) Affymetrix 44K Rice Chip, 5) QTARO database, 6) Plant Reactome Gramene database, 7) Chloroplast and mitochondria genomic sequence and 8) GMO information.





2 Materials and methods


2.1 Sequence resources

We utilized different databases for designing the Axiom rice genotyping chip:1) Resequencing data of Korean World Rice Collection (KRICE) of 475 accessions composed of 417 cultivated and 58 wild accessions (Phitaktansakul et al., 2021), 2) Rice genome project data of 3,000 accessions (3 K-RGP) from the International Rice Research Institute (IRRI) (https://snp-seek.irri.org), 3) High-Density Rice Array (HDRA, 700K) array reported from Cornell university (McCouch et al., 2016), 4) Affymetrix 44 K Rice Chip (Affy44K) (Zhao et al., 2011), 5) QTARO database (http://qtaro.abr.affrc.go.jp/) (Yonemaru et al., 2010), 6) Plant Reactome Gramene Pathways database (https://plantreactome.gramene.org/) 7) Chloroplast (Tong et al., 2016; Cheng et al., 2019) and mitochondria (Tong et al., 2017) genomic sequences of japonica and rufipogon and 8) GMO, we used transgenic plants and genomes of various microorganisms as references for GMO marker design. The known GMO events consisted of host and insert regions; we utilized NCBI Primer-BLAST tool to get the full-length products and modified them into Axiom probes for 155 events. Besides, GMO markers were also developed from ds, tDNA, and tos17 as these insertion elements have been employed for generating large-scale mutant pools in different crops. We performed BLAST queries against rice reference genome sequences and unmapped sequences were selected for GMO marker design. Further, selected SNPs were aligned with different reference genomes including, japonica (ftp://ftp.ensemblgenomes.org/pub/plants/release-36/fasta/oryza_sativa/dna) (Kawahara et al., 2013), indica (http://rice.hzau.edu.cn/rice/download_ext/MH63RS2.LNNK00000000.fasta.gz) (Zhang et al., 2016), and O. rufipogon (https://www.ncbi.nlm.nih.gov/nuccore/NC_013816.1?report=fasta) (Fujii et al., 2010).



2.2 SNP filtering and integration

A VCF file was created from 3,475 rice accessions (3 K-RGP and KRICE), and SNP/indel sites with MAF<0.05, and missing rate> 0.1 were removed. Obtained SNPs were further enriched with Affymetrix (Affy44K), High-Density Rice Array (HDRA, 700K), and SNPs of selected genes from QTARO and Reactome databases, which resulted in a total of 7,682,442 markers. These markers were categorized into different classes viz., japonica, indica, and rufipogon specific, based on their sources (Table S1). The selected SNPs (called tag-SNPs) and the corresponding flanking sequences were submitted to Affymetrix (Axiom® BioFx Services) service for initial probe screening. The priority was given as 0, 1, and 2, with 2 being the highest priority and 0 being the lowest. We assigned priority 2 to agronomically important genes, that have known pathways, and exist exclusively in either japonica or indica. After removing the tag-SNPs with a design score (pconvert)<0.6, a total of 3,204,347 SNPs met the Affymetrix probe designing criteria (Table S1).



2.3 Selection of SNPs for array development

Among technical suitable variants, we allocated SNPs based on genetic diversity and breeder’s interest, which were divided into five divisions (Figure 2A). In the genetic diversity division, we selected 40 K high-quality SNPs from KRICE (Minimum allele frequency, MAF< 0.01, non-missing) (Phitaktansakul et al., 2021), 220,135 SNPs from the Affymetrix and Cornell chip, and SNPs specific to the indica/japonica group from the 3 K-RGP and KRICE data. We also selected chloroplasts (Tong et al., 2016; Cheng et al., 2019) and mitochondrial genomes (Tong et al., 2017) and filtered high-quality SNPs/indels (Figure 2A).




Figure 2 | Development of integrated array system. (A) SNPs collected from genomic databases were prioritized based on breeders’ interest and key research divisions. (B) Summary of distribution of SNPs selected for Axiom 580K Array.



Furthermore, in the key research division, SNPs detected from 11 different genome-wide association studies (GWAS) for candidate genes were filtered with MAF< 0.01 (Figure 2). The evaluation of these studies resulted in 400 K polymorphisms, including 300 K SNPs and 100 K indels, which are associated with different traits.

In the breeder division, the key traits and genes of rice breeder interest were chosen, including starch synthesis, blast resistance, and yield-related genes (Figure 2A). A total of 1800 genes/QTL regions from the QTARO database were used for the SNP collection. In addition, for metabolite division, a set of genes was selected from the plant reactome (https://plantreactome.gramene.org) to retrieve SNPs involved in different pathways or processes in rice (Figure 2A, Table S2).

To prioritize probe sets for polymorphisms and select the final set of SNPs for array design, we used following criteria: (1) 71mer sequence (35 bp flanking sequence of target SNP) was to score the marker; (2) A marker was “not recommended” having one or more polymorphisms within 24 bases; (3) If a marker has the same recommendation for each strand, we recommended tilling the one with the highest pconvert value; (4) A marker/strand was recommended if: pconvert > 0.6, there are no wobbles, and poly count = 0; (5) A marker/strand was not_recommended if: duplicate count > 0, or poly count > 0, or pconvert< 0.4, or wobble distance< 21, or wobble count >= 3; (4) A marker was considered not_possible on a given strand if we cannot build a probe to interrogate the SNP in that direction.

A list of 620,852 candidate SNP loci was sent to Affymetrix Bioinformatics Services (Santa Clara, CA, USA) for array design. The quality of each SNP was assessed again and designated as ‘recommended’, ‘neutral’, ‘not recommended’, and ‘not_possible’ using in silico validation with proprietary software. We retained one SNP marker every 200 bp to ensure a uniform distribution and high density of SNPs throughout the rice genome. The final 580 K Axiom Rice Genotyping Chip (580 K _ KNU chip) contained a total of 581,006 SNP markers (Figure 2B).



2.4 Plant material and phenotyping

A total of 4,720 genotypes were genotyped for initial validation of the 580 K _KNU chip. This 4,720 genotype set was composed of different genotypes, including RILs (1,821), backcross inbred lines (209), backcross lines (BC1F3, 96), F1-F7 (209), breed (1,123), landraces (252), weedy (488), Rufipogon (96), wild type (245), and mutant lines (181) (Table S3).

The traits clum or culm length (cm), heading date, and panicle length (cm) were evaluated for GWAS, and amylose content (%), panicle length (cm), number of grains/panicle, heading date, number of panicles/hill, and 100-grain weight were used in genomic selection analysis. Phenotyping was conducted at the Kongju National University, Yesan, South Korea, during the dry seasons of 2017 and 2018. Five plants were randomly selected from the middle row of the plot, and each parameter was recorded using the Standard Evaluation System (SES) (IRRI, 2002). Days to heading were defined as the time when half of the plants in each accession showed panicles. Amylose content was determined using the iodine colorimetric method at 620 nm absorbance on a UV-1800 spectrophotometer (Shimadzu Co., Kyoto, Japan). Frequency distributions of phenotypic data were tested for normality using the Shapiro–Wilk function in R environment (Royston, 1995).



2.5 Genotyping

Genomic DNA was extracted from young green leaf tissue using a Qiagen plant DNeasy kit (Qiagen, Germantown, MD, USA) and quantified using a NanoDrop spectrophotometer (Thermo Scientific, USA). The DNA quality was checked using a 1% agarose gel. Genomic DNA (200 ng) from all lines was hybridized into arrays using the Affymetrix GeneTitan system, according to the manufacturer’s instructions. SNP genotyping, quality control (QC), and SNP filtering were performed according to the Axiom Genotyping Solution Data Analysis User Guide (http://www.affymetrix.com/). Briefly, genotype calling and QC metrics were performed using Affymetrix Genotyping Console™ (GTC) v.4.2. Samples with a development quality check (DQC) value<0.83 and call rate<0.97 were excluded from further analysis. GTC results were post-processed using the SNPolisher R package (v.3.0). The Ps_Metrics function was used to generate SNP metrics, and the Ps_Classification function with the default setting classified SNPs into six categories: PolyHighResolution (SNPs had good cluster resolution and at least two examples of the minor allele), MonoHighResolution (SNPs had good SNP clustering but less than two samples had the minor allele), Off-Target Variant, CallRateBelow-Threshold (SNPs had call rates CR below the threshold, but the other properties were above the threshold), NoMinorHom (SNPs had good cluster resolution but no samples had the minor allele), and Other (more than one cluster property was below the threshold) (Gao et al., 2014b). Furthermore, SNP QC metrics, including call rate (CR, ≥97%), Fisher’s linear discriminant (FLD, ≥3.6), heterozygous strength offset (HetSO, ≥_0.1), and homozygote ratio offset (HomRO, ≥0.3) values, were applied to assess SNPs. The remaining SNPs retained for further analysis were annotated using an in-house Python script. SNP distribution and count across the rice genome were analyzed using a 100 kb sliding window with an R package.



2.6 Genome-wide association studies

High-quality SNPs obtained from the Affymetrix chip were used in a genome-wide analysis of associations. A GWAS was performed on three phenotypic traits: clum length, heading date, and panicle length. Association analyses were conducted using the Genome Association and Prediction Integrated Tool (GAPIT) (Lipka et al., 2012) and TASSEL 5.0 (Trait Analysis by Association, Evolution, and Linkage) (Bradbury et al., 2007). GWAS analysis was performed using the mixed linear model (MLM) of GAPIT (Yu et al., 2006) to predict the association between each SNP and the phenotypic data. The kinship (K) matrix represents the variance-covariance matrix between individuals. The R package qqman (https://cran.r-project.org/web/packages/qqman/index.html) was used to draw Manhattan plots. A P value of 3.16 × 10−7 was used to consider marker-trait association (MTA) as significant.



2.7 GS Models


2.7.1 Penalized Regression Model

The ridge regression best linear unbiased prediction (rr-BLUP) model was implemented using the R package rrBLUP (Endelman, 2011). The model is described as follows.

	

where y is an N × 1 vector of adjusted means for all genotypes, μ is the overall mean, Z is an N × M matrix of markers, u is a vector of marker effects as u ~ N(0, Iσ2u), and e is the residual error with e ~ N(0, Iσ2e).

GS was performed with fourfold cross-validation by including 80% of the samples in the training population and predicting the genomic estimated breeding values (GEBVs) of the remaining 20% of the samples. For the accuracy assessment, two 50 replication sets were performed, with each replicate consisting of five iterations.



2.7.2 Convolutional Neural Networks

Convolutional neural network (CNN) is a deep learning model that accommodates inputs distributed along with space patterns (Pérez-Enciso and Zingaretti, 2019). In a CNN, the input data first passes through a convolutional layer, followed by a pooling layer, dropout layer, fully connected dense layer, batch normalization layer, and finally to the output layer containing one node with the predicted trait value. During each convolutional layer, the CNN applies kernels and filters, and performs the convolution operation with a predefined width and strides, providing the same weights for all SNP marker windows. The filter moves for the same window size across the input SNP markers, and the CNN obtains a locally weighted sum (Sandhu et al., 2021). The earlyStopping function in Keras (https://keras.io/callbacks/#earlystopping) was applied to control model overfitting (Zingaretti et al., 2020). A pooling layer is added after each convolutional layer for dimensionality reduction, and the filters are invariant to small changes in the input. Finally, pooling results in a smoothed representation and merging of the kernel output of the previous convolutional layer by taking the minimum, mean, and maximum (Bellot et al., 2018).





3 Result


3.1 Alignment, SNP selection, and Axiom Array design

A detailed description of the detection, filtering, and final selection of SNPs included in the array is provided in the Methods section and Figure 1. SNPs collected from eight different datasets were selected based on the breeder’s interests and key research divisions (Figure 2).

Alignment of whole-genome resequencing of 1) 475 Korean World Rice Collection (KRICE) accessions and 2) 3,000 rice genome project (3 K-RGP) data accessions against both indica and japonica rice reference genomes were performed to identify sequence variations (SNPs and indels) (Kawahara et al., 2013; Zhang et al., 2016). The alignment resulted in the identification of over 3.1 million SNPs in KRICE, of which 40 K high-quality SNPs (MAF< 0.01 and zero missing rates), all exonic SNPs/indels and sub-species specific SNPs were selected. Furthermore, SNPs from the high-density rice array assay from 3) Cornell University, 4) Affymetrix 44 K Rice Chip, 5) QTARO database, and 6) Plant Reactome were mapped and aligned to select potential SNPs. SNPs from (7) chloroplasts (Tong et al., 2016; Cheng et al., 2019) and mitochondrial genomes (Tong et al., 2017) of japonica and rufipogon rice were filtered and 3,449 and 3,329 SNPs/indels were selected, respectively. In GMO markers, 20,895 markers were derived from binary vectors, and 2,089, 13,697, and 746 markers derived from ds, tDNA, and tos17, respectively. As described in the ‘Methods’ section, after applying different criteria to identified SNPs data, a set of 620,852 high-quality SNPs were selected. Finally, 581,006 SNPs were tiled on the 580 K _ KNU chip SNP array that includes 3,329 from rufipogon, 34,276 from indica, and 542,432 from japonica (3,449 plastid and 538,983 nuclear). Among japonica specific 538,983 SNPs/indels (500,725 SNPs and 38,258 indels) 126,076 SNPs were for agronomic traits, 162,315 for intergenic, and 94,393 for genic SNPs (Figure 2B). Among the 34,276 indica-specific SNPs/indels, 22,820 were SNPs, and the remaining 11,456 were indels. In the case of 8) GMO, 969 regions were selected from transgenic genes and vectors, and a total of 40,715 probes were selected as candidate SNPs (Figure 2B).

Regarding the distribution of 500,725 japonica-specific SNPs in different parts of the genes, 82,666 (16.51%) SNPs were present in exons, 78,963 (15.77%) in introns, 27,139 (5.42%) in the UTR, and 26,3539 (52.63%) in the intergenic region (Figure 3A). Most indels were detected within an intron of japonica (Figure 3B). In the case of 22,820 indica-specific SNPs, no intergenic SNP were detected, whereas only two indica-specific indels were observed in the intergenic region (Figure 3C, D). Of the indica-specific SNPs, 53.6% (12,234), 27.7% (6,317) and 06.0% (1,367) were distributed within introns, exons, and UTR, respectively (Figure 3C). SNPs were located along each of the 12 rice chromosomes, with an average density of 154 SNPs/100 K and a median density of 130 SNPs/100 K (Figure 4). The average gap between two adjacent SNPs was 200 bp, and gaps between more than 90% were less than 2 kb (Table S4).




Figure 3 | Genomic position of selected SNPs and indels. (A) Distribution of japonica-specific SNPs in different genomic regions. (B) Distribution of japonica-specific indels in different genomic regions. (C) Distribution of genomic regions indica-specific SNPs in different genomic regions (D) Distribution of indica-specific indels in different genomic regions.






Figure 4 | Distribution of the converted SNPs on the array in 100 Kb windows along the rice chromosomes. (A) Density of japonica-specific SNPs across chromosomes. (B) Density of japonica-specific indels across chromosomes (C) Density of indica-specific SNPs across chromosomes (D) Density of indica-specific indels across chromosomes.





3.2 Genotyping performance of 580K _ KNU chip

The performance of the 580 K _ KNU Axiom Array was evaluated by genotyping eight different sets of genotypes on an integrated Affymetrix GeneTitan® platform. All samples passed the quality assessment with a high DQC value (>0.89) and call rate (>95%), and duplicate samples showed 99% SNP reproducibility. Thus, the genotyping results of 4,720 genotypes validated the chip performance with both a high sample success rate and genotyping call. The SNP genotyping results from the 4,720 genotypes were classified into six categories based on the Affymetrix quality control metrics (Table 1; Figure 5). Based on the filtering parameters, Fisher’s linear discriminant (FLD), HetSO, HomRO, and CR ≥95% as the filtering options, approximately 79.2% (n = 18,087) of the total indica-specific array SNPs were converted. Of the 38,258 designed japonica-specific indels, 23,759 passed the bead representation and decoding quality metrics. In japonica-specific SNPs, 53.13% SNPs were categorized in the ‘PolyHighResolution’ category, whereas 15.94% SNPs were found in ‘OTV’ and 6.08% in the ‘MonoHighResolution’ category (Figure 5A). A total of 7,735 japonica-specific indels (20.2%) were classified ‘PolyHighResolution’ and 23.0% as ‘OTV’ (Figure 5B). While in the case of indica-specific SNPs, 24.8% of SNPs were found in the ‘PolyHighResolution’ category, but the highest SNPs (42.6%) were grouped fall in the ‘other’ category (Figure 5C). A similar trend was found for indica-specific indels with the highest 50.8% in ‘other’ category, followed by 22.6% of SNPs in the ‘PolyHighResolution’ (Figure 5D).


Table 1 | Classification of SNPs in the 580K SNP Chip after genotyping on 4720 accessions.






Figure 5 | Summary of SNP genotyping data in 4720 accessions using the 580K _ KNU chip. (A) Classification of japonica-specific SNPs (B) Classification of japonica-specific indels (C) Classification of indica-specific SNPs (D) Classification of indica-specific indels. NoMinorHom: No minor homozygote, MonoHighResolution: Monomorphic high-resolution, PolyHighResolution: Polymorphic high-resolution, CallRateBelowThreshold: Call rate below threshold, OTV: Off-target variant.





3.3 Genome-wide association studies and genomic selection

To evaluate the practicality of this array in GWAS, we used a set of 1,288 lines, representing a subset of the 4,720 collection that were phenotyped for clum length, heading date, and panicle length. The frequency distribution curves revealed continuous variation and displayed a normal distribution for all the traits (Figure 6). A total of 60 SNPs were detected for clum length with a threshold above 7 (−log10 p-value) having the highest −log10 p-value of 22 for a marker on chromosome 7 (chr07_ 29494004) (Figure 7A; Table S5). In contrast, 277 markers on chromosomes 6 and 7 were significantly associated with heading date with a 7< −log10 p-value (Figure 7B; Table S6). We obtained a total of 84 significant SNPs exceeding the threshold –log10 p-values of 7 for panicle length (Figure 7C; Table S7). From the GWAS results, we observed several significantly associated SNPs with three traits located on chromosomes 6, 7, and 9 based on the genome-wide significance cut-off, −log10 p-values 7 (Figure 7). For panicle length, three SNPs from Os09g0456100 (OsLP1; LONG PANICLE 1) showed significant association with −log10 p-value of 7<. In addition, significant SNPs mapped on the 2.4 Mbp region of chromosome 9 were belongs to 15 genes that include DENSE AND ERECT PANICLE1 (DEP1; Os09g0441900), lecithine cholesterol acyltransferase (Os09g0444200), Serine carboxypeptidase 42 (Os09g0462875), gibberellin receptor (Os09g0455900), alpha-amylase isozyme 3A precursor (Os09g0457400), etc were significantly associated with panicle length (Table 2). Similarly, annotation of significant SNP regions with -log10 p-values > 7 predicted a total of 42 genes on chromosomes 6 and 7 for heading date and 12 genes for clum length (Tables S8).




Figure 6 | Frequency distribution for all the traits used for the genome-wide association study. (A) Clum length, (B) Heading date, and (C) Panicle length. The histograms with purple colors are normal as expected while other colors denote difference from normal distribution. The observed and expected normal distributions fitting for data were represented with dashed and solid red lines, respectively.






Figure 7 | Manhattan plots of genome-wide association studies using the 580K _ KNU chip (A) Manhattan plot for Clum length, (B) Manhattan plot for Heading date, and (C) Manhattan plot for Panicle length.




Table 2 | List of genes identified from significantly associated SNPs for phenotypic traits.



To demonstrate the performance of the 580 K _KNU chip rice array in quantitative phenotype prediction, we utilized the rrBLUP and CNN statistical models. The predictability of genomic selection was evaluated using four-fold cross-validation, where the sample was randomly partitioned into four parts to estimate the parameters. Finally, all parts were predicted once and used ten times to estimate the parameters. A total of 80, 7 genotypes, including having bred and weedy rice and corresponding 121,208 markers from chip data, were used to evaluate the accuracy of prediction for amylose content (Table S9). Both models showed the highest predictability for amylose content, and values of predictability for all traits with rrBLUP were higher than those of CNN (Figure 8). The predictabilities of the three traits were more than 0.5 in both models. The CNN model was unable to predict the grain number per panicle; however, rrBLUP had a lower value (Figure 8).




Figure 8 | Genomic selection predictive ability (r) for different traits by using rrBLUP (A), and CNN (B) model.






4 Discussion

Rice was the first crop species to be fully sequenced (International Rice Genome Sequencing Project, 2005). Thousands of varieties have been re-sequenced (The 3,000 rice genomes project, 2014; Duitama et al., 2015), and de novo assemblies have been performed for several subspecies (Yu et al., 2002; Kawahara et al., 2013; Schatz et al., 2014). Based on accrued genomic information, QTL studies and GWAS have been good strategies for understanding the genetic basis underlying complex traits in rice (Yano et al., 2019; Wang et al., 2020; Yuan et al., 2020), and major associations have been identified as important traits for the last few decades. In current rice breeding programs, a major limitation in the genetic dissection of agronomically important traits is the tight linkage between undesirable loci and preferable loci, for example, two loci within a linkage disequilibrium (LD) block (Xiao et al., 2021). To break tightly linked loci, breeding experts either have to enlarge the population size or advance generations until the block is dissected and the marker interval is minimized. High-throughput genotyping arrays can genotype hundreds of thousands of markers over a large number of samples in a short timeframe. Owing to this technology, the breeding system enables the handling of the population required to dissect LD blocks in a relatively short time. Through association studies and linkage mapping, the rate of development of trait-linked DNA markers can be accelerated, and the breeding cycle can be dramatically reduced, even for tightly linked traits within LD blocks. In the current rice breeding program, where major associations have been detected for important traits, SNP array chips must be designed based on breeders’ interests to address challenging problems in rice breeding, along with efficient and fast genotyping.

In this study, the 580 K _KNU chip array was developed based on inclusive genomic polymorphisms targeting breeders’ interests, covering all key traits and research areas. To construct an integrated array system, in addition to the SNPs from 475 KRICE, SNPs from major rice chips that had been published previously were added after strict filtration (Figure 1). To make the 580 K _KNU chip more informative for the current rice breeding program, we selected candidate SNPs associated with important traits to reflect breeders’ interests (Figure 2). Hence, along with a dense marker interval of 200 bp, the 580 K _KNU chip consisting of 581,006 high-quality SNPs representing the genomic polymorphisms in rice is an excellent platform for genetic dissection of agronomic traits and is highly informative, especially for current research topics in rice breeding programs. The development and cultivation of GM crops have expanded over time, and microarray technology is a flexible method of detecting GMO varieties. In this study, we incorporated GMO-specific loci covering 40,715 markers that will be helpful in rice breeding for preliminary screening of GMOs contaminations. Previously such microarray-based GMO detection has been applied at a small scale in detection of GM soya, rice and maize lines (Kim et al., 2010; Turkec et al., 2016; Chen et al., 2021; Kutateladze et al., 2021).

Using the 580 K _KNU chip, we evaluated the associations between the three phenotypes and the 580 K SNP genotypes in different lines. For club length and heading date, the most significant signals were located in the candidate gene Os07g0695100 (Pseudo-Response Regulator37; OsPRR37), which was identified as being responsible for the early heading7-2 (EH7-2)/heading date2 (Hd2) QTL (Koo et al., 2013; Yan et al., 2013; Gao et al., 2014a). In the case of panicle length, the most significant signal (chr09_16415391 with −log10 p-value 21) was observed in the OsDEP1 gene (Os09g0441900) (Table 2), which controls the erect panicle (EP) architecture, which is a typical characteristic of super rice utilized in rice breeding for nearly a century owing to its high yield, lodging tolerance with strong stems, reasonable population structure, and high nitrogen use efficiency (Huang et al., 2009; Zhou et al., 2009; Xu et al., 2016; Sibo et al., 2021). The same marker chr09_16415391 (Os09g0441900) was found to be the second most significant signal (−log10 p-value 22) for clum length (Table 2). Os09g0456100 (OsLP1; LONG PANICLE 1) that encodes Remorin_C-containing proteins showed significant association with panicle length. Previously, two SNPs from the third and fifth exons of LP1 were reported to reduce panicle length (Liu et al., 2016). The clusters of significant SNPs associated with heading date were detected around Os07g0695100 covering an extensive region of 0.15 Mb, followed by a region (~1-0.89 Mb) on chromosome 6 containing Os06g0285900 (embryogenesis transmembrane protein), Os06g0285100 (OsFLA23; fasciclin domain-containing protein) Os06g0286310 (Oxidoreductase-like protein), Os06g0286400 (nitrate induced protein), Os06g0289200 (UDP-glucuronosyl/UDP-glucosyltransferase family protein), Os06g0286351 (Armadillo-type fold domain containing protein), Os06g0285400 (Serine/threonine-specific kinase-like protein), Os06g0296700 (C-type lectin conserved site domain-containing protein) which have not previously been shown to be associated with any trait in rice (Table 2). Similarly, for heading date, 34 and 13 QTLs were detected near Hd1 and Hd17, RFT1, and Hd3a genes, respectively, on chromosome 6, while 10 QTLs were detected near the OsPRR37 gene on chromosome 7 (Ebana et al., 2011; Hori et al., 2015). Therefore, identified candidate loci could be targeted for fine mapping in order to determine the exact genes/alleles underlying these GWAS signals pertaining to agronomic traits.

GBLUP is the most robust method and the most commonly used tool in rice because it provides high predictability (Xu et al., 2014; Spindel et al., 2015; Xu et al., 2021). In GS selection using the 580K_KNU chip, rrBLUP performed better than CNN, but both models showed > 0.5 prediction values (Figure 8). GS predictability is influenced by various factors, including heritability, relatedness between populations, sample size, marker density, genetic architecture, statistical model, and factors. GS accuracy in rice breeding populations has been performed for various quantitative traits varied by trait, population, and model and moderate to high predictive ability has been reported (Xu et al., 2021). Onogi et al., 2015 recorded the predictive ability of heading date (0.8), clum length (0.75), panicle length (0.6), panicle number (0.4), and grain length (0.4) in a population of 110 Asian rice cultivars using GBLUP (Onogi et al., 2015). The genotyping of 413 rice inbred lines with a 44 K chip showed the predictive abilities for florets per panicle (~0.6), flowering time (~0.63), plant height (~0.7), and protein content ~0.44 (Isidro et al., 2015), while in a panel of 363 elite breeding lines predictive abilities of 0.31, 0.34, and 0.63 for grain yield, plant height and flowering time, respectively were reported (Spindel et al., 2015). The predictive abilities for 1000 grain weight were 0.82–0.83 in 210 recombinant inbred lines and 278 hybrids (Xu et al., 2014), and 0.54 in 1495 hybrids derived from incomplete NC II design (Cui et al., 2020). The GS predictive values reported in this study were in accordance with previous reports on rice (Xu et al., 2014; Grenier et al., 2015; Spindel et al., 2015; Xu et al., 2018; Cui et al., 2020). Compared with other arrays, where several major genes have not been fully integrated, our 580 K _KNU chip system might be better suited for GS. Similarly, the gene–coding sequence–haplotype (gcHap)-based GS showed higher predictive ability than SNP-based GS because the gcHap dataset represents the diversity of 45 963 rice genes in 3010 rice accessions (Zhang et al., 2021). GS-specific SNP arrays could further improve rice breeding accuracy, intensity, and efficiency as well as reduce cost and time.

The current manuscript mainly focused on the development of an inclusive SNP array system that will help rice breeders for multiple breeding programs. Also, we have conducted validation analyses for the GWAS and genomic selection. In collaboration with DNA Link, Inc. (Korea), we provide microarray analysis services using our 580 K _KNU chip. Scientists and breeders in Korea are using it for a variety of applications, and we expect to see the results of studies on the use of our SNP array in the near future. As an accurate high-density genotyping tool, the 580 K _KNU chip is an excellent platform for GWAS, QTL mapping, evolutionary studies, genetic diversity, and genomic selection, especially genetic dissection of important traits of breeders’ interest that have not been fully identified. Hence, it will play a pivotal role in rice breeding applications.
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Fusarium (FER) and Gibberella ear rots (GER) are the two most devastating diseases of maize (Zea mays L.) which reduce yield and affect grain quality worldwide, especially by contamination with mycotoxins. Genetic improvement of host resistance to effectively tackle FER and GER diseases requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. We applied improved meta-analysis algorithms to re-analyze 224 QTL identified in 15 studies based on dense genome-wide single nucleotide polymorphisms (SNP) in order to identify meta-QTL (MQTL) and colocalized genomic loci for fumonisin (FUM) and deoxynivalenol (DON) accumulation, silk (SR) and kernel (KR) resistances of both FER and GER, kernel dry-down rate (KDD) and husk coverage (HC). A high-resolution genetic consensus map with 36,243 loci was constructed and enabled the projection of 164 of the 224 collected QTL. Candidate genes (CG) mining was performed within the most refined MQTL, and identified CG were cross-validated using publicly available transcriptomic data of maize under Fusarium graminearum infection. The meta-analysis revealed 40 MQTL, of which 29 were associated each with 2-5 FER- and/or GER-related traits. Twenty-eight of the 40 MQTL were common to both FER and GER resistances and 19 MQTL were common to silk and kernel resistances. Fourteen most refined MQTL on chromosomes 1, 2, 3, 4, 7 and 9 harbored a total of 2,272 CG. Cross-validation identified 59 of these CG as responsive to FER and/or GER diseases. MQTL ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4 harbored promising resistance genes, of which GRMZM2G011151 and GRMZM2G093092 were specific to the resistant line for both diseases and encoded “terpene synthase21 (tps21)” and “flavonoid O-methyltransferase2 (fomt2)”, respectively. Our findings revealed stable refined MQTL harboring promising candidate genes for use in breeding programs for improving FER and GER resistances with reduced mycotoxin accumulation. These candidate genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted backcross breeding strategies.




Keywords: Candidate genes, FUM and DON contaminations, Fusarium and Gibberella ear rots, genomic selection, QTL meta-analysis, type of resistance, Zea mays L.



Introduction

Maize (Zea mays L.) is the most important cereal crop in terms of grain production volume worldwide, and is set to become the first commercial crop in the coming decade (Shiferaw et al., 2011; Erenstein et al., 2022). The increase in production over the past quarter century was supported by more than 46 and 50% increase in area expansion and grain yield, respectively (Erenstein et al., 2022). Despite this remarkable progress and intensive research and development efforts deployed, maize production is still threatened by many biotic stress factors which are expected to worsen with the changing climate (Grote et al., 2021). About 38 pests and diseases were recently reported to cause 19–41% grain losses in maize on the global scale (Savary et al., 2019). Among these, Fusarium and Gibberella ear rots represent major yield- and quality-impacting maize diseases which occur across regions and countries (Eckard et al., 2011; Beukes et al., 2018; Ma et al., 2019; Perincherry et al., 2019; Machado et al., 2022).

Fusarium ear rot (FER) or “pink ear rot” is mainly caused by the Fusarium fujikuroi species complex with F. verticillioides (Sacc.) Nirenberg being the most harmful pathogen distributed across all continents with higher aggressiveness in warmer climatic regions (Boutigny et al., 2011; Tsehaye et al., 2017; Ncube et al., 2020). Meanwhile, Gibberella ear rot (GER), also known as “red ear rot” or “red fusariosis”, is one of the most important maize ear rots in cooler climate zones, which is associated with the F. graminearum species complex with F. graminearum sensu strictu Schwabe (teleomorph Gibberella zeae) as the most dominant causal agent reported in North America, Australia, China and Europe (Gromadzka et al., 2016; Beukes et al., 2018; Castañares et al., 2019; Crippin et al., 2020; Pfordt et al., 2020; Dalla Lana et al., 2021; Machado et al., 2022). With the global changing climate and local weather variability and cultivation systems, both FER and GER are also frequently found on maize ears in the same locations with varying degrees of severity (Scauflaire et al., 2011; Schjøth and Sundheim, 2013; Shala-Mayrhofer et al., 2013; Pfordt et al., 2020; Czarnecka et al., 2022). Depending on the Fusarium species, different types of harmful mycotoxins are produced, of which fumonisins (FUM) and deoxynivalenol (DON) are the most predominant for FER and GER, respectively. FER and GER significantly reduce maize production and the accumulated mycotoxins can make the grains toxic for human consumption and animal feeding (Battilani and Logrieco, 2014; Logrieco et al., 2021).

Disease management practices such as tillage, crop rotation and fungicide application have minor effects on FER and GER severity and do not significantly increase the grain yield (Andriolli et al., 2016; Scarpino et al., 2018; Pfordt et al., 2020). In addition, available mycotoxin reduction technologies are labor- and cost-prohibitive, leading to a low adoption by farmers (Logrieco et al., 2021). Effective management strategies of FER and GER diseases and associated mycotoxins should consider integrating not only improved and environmentally friendly practices, but also improving plant resistance to the pathogens.

Several studies have reported germplasms with different levels of resistance to FER and GER worldwide (Reid et al., 2001a; Reid et al., 2001b; Reid et al., 2003; Gaikpa et al., 2021; Galiano-Carneiro et al., 2021). In Europe, Gaikpa et al. (2021) evaluated two European flint landrace populations (“Kemater Landmais Gelb” and “Petkuser Ferdinand Rot”) and identified resistant lines which can be used for developing high-yielding hybrid cultivars with improved resistance to GER. In Canada, inbred lines with high resistance to FER and GER have been reported by Reid et al. (2001a; 2001b; 2003). Similarly, potential sources of resistance to FER were identified in China (Guo et al., 2020) and tropical regions including southern, western and central Africa (Tembo et al., 2022). The exploitation of existing resistance sources in breeding programs requires a clear understanding of the genetic architecture of FER- and GER-related traits, and underlying molecular mechanisms. FER and GER resistances are complex traits which were reported to be quantitatively inherited and are thus controlled by numerous quantitative trait loci (QTL) (Martin et al., 2012a; Butrón et al., 2015).

More than 300 QTL were reported for both FER and GER resistances and related traits in different mapping populations by applying both low-throughput technologies, namely single sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and random amplified polymorphic DNA (RAPD) (Ali et al., 2005; Robertson-Hoyt et al., 2006; Li et al., 2011; Martin et al., 2011; Martin et al., 2012b), and dense genome-wide high-throughput technologies such as single nucleotide polymorphisms (SNP) (Giomi et al., 2016; Han et al., 2016; Kebede et al., 2016; Han et al., 2018; Wen et al., 2020; Yuan et al., 2020a; Gaikpa et al., 2021; Galiano-Carneiro et al., 2021; Zhou et al., 2021). This impressive amount of QTL reported through diverse studies offers a possibility for the application of genomics-assisted breeding strategies to efficiently and accurately improve ear rot resistances in maize. However, due to the complex nature of the traits, the application of these loci in breeding programs remains challenging and limited. Therefore, in order to make reported QTL more useful and facilitate their successful incorporation into breeding programs, a comprehensive and in-depth analysis of these loci needs to be carried out using appropriate statistical approaches like meta-analysis. QTL meta-analysis is an efficient approach which was developed by Goffinet and Gerber (2000) and has constantly improved during the past decade (Salvi and Tuberosa, 2015). The analysis allows the compilation of QTL observed in independent studies which are projected onto a consensus map in order to verify whether they represent a common genomic region on the genetic map or whether they correspond to different loci (Venske et al., 2019). This approach enables the identification of more refined and stable “real” QTL, also referred to as meta-QTL (MQTL), which are mostly involved in the variation of the traits. Moreover, in resistance breeding, the application of meta-analysis would help to identify refined (i.e. smaller in length) genomic regions which confer multi-disease resistances in crops. Furthermore, refined MQTL facilitate the identification and validation of candidate genes that are effectively involved into the variation of the traits. QTL meta-analysis has been successfully implemented to depict genetic architecture of different traits including Fusarium head blight (FHB) resistance and abiotic stress traits in wheat (Triticum aestivum L.) (Venske et al., 2019; Soriano et al., 2021), maize streak disease and low temperature tolerance in maize (Emeraghi et al., 2021; Yu et al., 2022) and nitrogen use efficiency in rice (Oryza sativa L.) (Sandhu et al., 2021).

To date, three QTL meta-analyses based on SSR and RFLP markers have been conducted on ear rot diseases in maize (Xiang et al., 2010; Xiang et al., 2012; Mideros et al., 2014). These authors included only one GER-related study by Ali et al. (2005), while the others were on FER- and Aspergillus flavus-caused ear rots. Moreover, SSR, RFLP and RAPD are low-throughput and complicated marker technologies which are unable to precisely identify the number and locations of genes controlling the traits, thereby leading to large QTL intervals (Yu et al., 2011; Venske et al., 2019). In addition, the identified MQTL lacked precision on flanking markers and genomic positions to enable identification of promising candidate genes to be targeted in breeding programs. With this, these studies can be considered as preliminary and more informational QTL meta-analyses on ear rot diseases.

In the subsequent years after these studies, there has been a revolution concerning genotyping technologies which led to the development of high throughput technologies for SNP including maizeSNP50 and Affymetrix microarray CGMB56K (Ganal et al., 2011), maizeSNP3072 (Tian et al., 2015) and GenoBaits maize10K (Guo et al., 2019) SNP arrays, as well as genotype-by-sequencing (GBS) technology (He et al., 2014) which can assess thousands of SNP at once. This has enabled the implementation of various QTL mapping studies, resulting in the accumulation of relevant information on QTL for FER and GER resistances and related traits, which should be jointly re-analyzed and updated to inform maize breeding strategies.

This study aims to (i) re-analyze and refine quantitative trait loci (QTL) reported by independent SNP-based QTL mapping studies for FER and GER silk resistance, kernel resistance, fumonisins and deoxynivalenol accumulation, kernel dry-down rate and husk coverage by applying a meta-analysis approach for identifying refined MQTL with precise genomic positions, thus revealing colocalization of genomic regions among the traits; (ii) identify candidate genes and (iii) describe the molecular mechanisms underlying resistance/susceptibility to FER and GER by analyzing the transcriptomic profiles of two contrasting maize lines (resistant vs. susceptible). To effectively identify most refined and stable MQTL, only SNP-based QTL mapping studies were included in the meta-analysis.



Materials and methods


Search strategy

To address our research questions, a paper-wise search was performed following the procedure described by Venske et al. (2019) and the updated guideline for systematic reviews and meta-analysis by Page et al. (2021). Searches were implemented in SCOPUS web-based, Web of Science (WoS) and Google Scholar (GoS) databases. To optimize search output, we used a combination of search terms and Boolean operators as follows: “ear rot” AND QTL AND (maize OR corn). Searches were done within the title, abstract and authors’ keywords in SCOPUS and WoS, and within the title in GoS. Afterwards, the search results were firstly exported as Research Information System (RIS) and Comma-Separated Values (CSV) formats and merged to remove duplicates. Secondly, all unique publications were considered for a first screening based on the publication language, type, subject area, focus of the study, content, marker type and data availability (Table 1). Thirdly, publications that satisfied the inclusion criteria were further screened to collect relevant information about the reported QTL. For each QTL, key information was collected on: (i) traits; (ii) sources of resistance; (iii) type and size of the mapping populations; (iv) logarithm of odds (LOD) score; (v) proportion of phenotypic variance explained by the QTL as measured by R2; (vi) most closely flanking or single markers for interval mapping and single marker analysis, respectively; (vii) peak position and 95% confidence interval (CI) of the QTL (Supplementary File 1). LOD score was considered equal to 3 for single marker analysis where the exact LOD value was not reported. For studies which reported the genotypic variance explained (pG) by QTL, we estimated the corresponding phenotypic variance (PVE) as follows:

 


Table 1 | Inclusion and exclusion criteria.



where H2 is the heritability reported for the trait by the respective study. QTL with PVE<10%, 10%≤PVE<20% and PVE≥20% was considered as having minor, medium and major-effect on the trait, respectively. From the QTL mapping studies, six FER- and GER-related traits were collected and included in our meta-analysis: fumonisin accumulation (FUM), deoxynivalenol accumulation (DON), husk coverage (HC), kernel dry-down rate (KDD), kernel resistance (KR) and silk resistance (SR). FUM and DON were specific to FER and GER, respectively.



Consensus map construction

To project all the QTL collected from the diverse studies, a consensus map was constructed based on a linear programming algorithm in the LPmerge R package (Endelman and Plomion, 2014) which efficiently minimizes the error between markers’ positions on the consensus map and the individual linkage maps. Based on the sequencing technology used in the original studies, a total of eight high-quality genetic maps which harbored a large number of SNP markers were selected and included in the analysis. For chip-based SNP markers, high-resolution consensus maps were obtained from Ganal et al. (2011); Liu et al. (2015) and Wen et al. (2020) for Illumina maizeSNP50, IBM Syn10 and GenoBaits maize10K SNP arrays, respectively. For GBS technology, we included the genetic map from Kebede et al. (2016). In addition, four linkage maps used by Giomi et al. (2016); Chen et al. (2016); Maschietto et al. (2017) and Zhou et al. (2021) were also included in the analysis. In the procedure, markers were assigned to bins based on their co-segregation, and the maximum interval between bins was set to k = 1−3. Thus, one consensus map was produced for each k value. The best k and corresponding consensus map were selected based on the root-mean-squared error (RMSE) between the consensus map and the linkage maps. The lower the RMSE, the higher the resolution of the respective consensus map. Spearman rank correlation analysis was performed to evaluate the degree of preservation of marker order between the consensus map and the individual genetic maps as well as the collinearity between the consensus map and the physical map B73 RefGen_v2. The proportion of markers which were arranged in the same order with those on the corresponding chromosomes on the physical map was also estimated. All analyses were conducted using R software v4.1.0 (R Core Team, 2021).



Meta-analysis of quantitative trait loci

QTL were projected onto the consensus map previously developed to identify MQTL on each linkage group. All projected QTL had their flanking markers information on at least one of the individual maps used to generate the consensus map. Prior to the projection, the confidence interval (CI) at 95% was estimated for each QTL using the following empirical formula described for each mapping population by Darvasi and Soller (1997) and Guo et al. (2006):

 

 

 

where N is the number of lines and R2 is the phenotypic variance explained by the QTL.

Afterwards, the calculated confidence intervals, original LOD score, R2, QTL most likely position (middle point), as well as start and end positions (Supplementary File 1), were projected onto the consensus map using the Veyrieras two-step clustering procedure based on a Gaussian mixture model which parameter estimates were obtained by applying the expectation-maximization (EM) algorithm in BioMercator V4.2.3 software (Arcade et al., 2004; Veyrieras et al., 2007; Sosnowski et al., 2012). Considering the known correlations among the traits, the QTL were analyzed together as one trait referred to as DT (Chungu et al., 1996; Löffler et al., 2010a; Kebebe et al., 2015; Kebede et al., 2016). In the first step (1/2), the projected QTL were clustered on each chromosome or linkage group assuming varying numbers of MQTL or “real QTL” (k). The maximum number of MQTL (kmax) was the total number of QTL on the linkage group minus one QTL. For example, on a linkage group with 20 QTL, kmax was set to 19. The number of random starting points and convergence threshold for the EM algorithm were set to 50 and 1.e-8, respectively. MQTL model with the best k was the one showing the lowest value and the highest weight for at least three of the following parameters: Akaike Information Criterion (AIC), corrected Akaike Information Criterion (AICc and AIC3), Bayesian Information Criterion (BIC) and Average Weight of Evidence (AWE). In the second step (2/2), the k MQTL were displayed according to the chosen model (Veyrieras et al., 2007). Each MQTL was represented by at least two original QTL with overlapping confidence intervals, and shared no QTL with other MQTL on the same chromosome (Yu et al., 2022). With this, original QTL which overlapped with two or more MQTL were discarded from the analysis. The position of the MQTL was determined based on the mean of the original QTL distribution maximizing the likelihood. The phenotypic variance explained by each MQTL was calculated as the mean R2 of the original respective QTL (Yu et al., 2022). Furthermore, the meta-analysis was compared with marker-trait associations (MTA) studies by identifying the number of MTA reported for each trait, which were located within identified MQTL.



Candidate genes mining and expression analysis

From the meta-analysis, we selected the most refined MQTL which were considered for candidate genes (CG) mining and transcriptomic analysis. MQTL were selected using the criteria described by Venske et al. (2019) and Soriano et al. (2021) as follows: (1) the selected MQTL was constituted by at least two overlapping original QTL; (2) CI (95%) of the MQTL was lower than the average CI of the respective QTL; (3) MQTL was shorter than 20 Mbp in physical distance; (4) and phenotypic variance explained by the MQTL was equal or greater than 10%. Candidate genes within each of the selected MQTL were mined based on the physical positions of flanking markers by surveying the maize annotation browser of the reference genome (B73 RefGen_v3) which is available from the MaizeGDB database (Lawrence, 2007) (https://www.maizegdb.org/gbrowse/maize_v3). Physical positions of flanking markers were obtained from Unterseer et al. (2016); Kebede et al. (2016) and Liu et al. (2015). Low confidence genes and transposable elements were excluded.

To identify which of these CG were differentially expressed when challenged with F. graminearum, we conducted a transcriptional expression analysis based on RNA-Seq data for Gibberella ear rot published by Kebede et al. (2018) available from the NCBI Gene Expression Omnibus (GSE92448) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92448). The authors evaluated over two years (2004 and 2006) the transcriptomic profiles of two maize lines; CO441 (FER and GER resistant) and B37 (FER and GER susceptible) under control conditions (mock) and after inoculation with F. graminearum. Inoculation was done 11 days after controlled pollination using the kernel inoculation method (Reid et al., 2002; Kebede et al., 2018). Maize ears were collected one and two days after inoculation (DAI) and RNA was extracted in bulk per testing year from developing kernels (Kebede et al., 2018). Gene expression levels were determined based on mock vs. Fusarium comparisons by calculating transcripts per million (TPM) as follows:

 

where RPKMi is the reads per kilobase million of the ith gene/transcript, and n is the total number of genes/transcripts. RPKM was estimated for each gene based on the total exon reads (ER), mapped reads (MR, in millions) and exon length (EL, in kb) as:

 

According to Kebede et al. (2018), genes were considered as differentially expressed if the respective corrected False discovery rate (FDR) p-value was equal or lower than 0.05, fold change≥2 and TPM≥5. The differentially expressed genes identified through the transcriptomic analysis where further searched for protein evidence against the MaizeGDB (Lawrence, 2007) and the Nation Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/) to identify corresponding annotations and ontology terms.




Results


Identification and screening of relevant publications for FER- and GER-related traits

Based on the search terms indicated previously, a total of 153 papers were identified from SCOPUS (64), WoS (55) and GoS (34) as described by the preferred reporting items for systematic review and meta-analyses (PRISMA) flow diagram available in Supplementary File 2. From this, 43 unique publications were obtained with publication year ranging from 1993 to 2022 after removing duplicates (89), review articles and meta-analyses (11) and publications related to trait inheritance (1), gene expression (8) and FER resistance on seedlings (1). One paper published in Chinese was removed (Wen et al., 2021a). Five (9.3%) publications were solely focused on Aspergillus ear rot (Busboom and White, 2004; Willcox et al., 2013; Smith et al., 2019) and one publication on Diplodia ear rot (Baer et al., 2021), and were therefore excluded. This resulted into 37 papers which focused on deciphering the genetic architecture of FER- and GER-related traits in maize. Fifteen of these papers concentrated on QTL identification based on low-throughput technologies such as SSR, RFLP, and RADP markers (Pè et al., 1993; Ali et al., 2005; Martin et al., 2011; Martin et al., 2012b), and validation of QTL reported in previous studies (Martin et al., 2012c; Brauner et al., 2017). In addition, one SNP-based QTL mapping publication was excluded due to missing information on QTL genetic position, flanking markers as well as LOD score and PVE (Morales et al., 2019). Finally, 22 publications satisfied our inclusion criteria and were therefore considered for full text screening. Fifteen publications were SNP-based QTL mapping studies which were used to collect relevant information required for the QTL meta-analysis (Supplementary File 2) (Chen et al., 2016; Giomi et al., 2016; Han et al., 2016; Kebede et al., 2016; Maschietto et al., 2017; Han et al., 2018; Galić et al., 2019; Wen et al., 2020; Yuan et al., 2020a; Galiano-Carneiro et al., 2021; Giomi et al., 2021; Wen et al., 2021b; Zhou et al., 2021; Feng et al., 2022; Guo et al., 2022). Seven papers were related to genome-wide association study and used to cross-validate the meta-analysis (Butrón et al., 2019; Samayoa et al., 2019; Wu et al., 2020; Gaikpa et al., 2021; Gesteiro et al., 2021; Liu et al., 2021; da Silva et al., 2022).



Characterization of QTL reported based on high-throughput SNP technologies for FER- and GER-related traits

From the 15 SNP-based QTL mapping studies, a total of 224 QTL were reported for FER- and GER- related traits (Table 2, Supplementary File 1). QTL were identified using three types of populations such as recombinant inbred lines (RIL), double-haploid (DH) and F2 populations. Resistant parental lines used in the different studies were sourced from a wide distribution range including Argentina, Brazil, Canada, China, Europe, United States of America (USA), and the International Maize and Wheat Improvement Center (CIMMYT).


Table 2 | Characteristics of SNP-based QTL mapping studies on resistance to Fusarium (FER) and Gibberella ear rot (GER) analysed in this study.



Considering the three FER-related traits, 121 QTL were reported and distributed across all chromosomes (Figure 1A). Thirteen QTL were reported for FUM on all chromosomes except for chromosomes 2, 8 and 10, while 97 QTL were identified for KR on all chromosomes. Eleven QTL were identified for SR across chromosomes 2, 3, 5, and 6 (Figure 1A). Twelve and one QTL for FUM exhibited minor (PVE<10%) and medium (10%≤PVE<20%) effects, respectively (Figure 1B). 32 and six QTL for KR had medium and major effects (PVE≥20%), respectively. In addition, nine and one QTL for SR exerted minor and medium effects on the trait, respectively (Figure 1B).




Figure 1 | Original QTL reported from SNP-based mapping studies for Fusarium ear rot (FER) and Gibberella ear rot (GER). (A), distribution of QTL for FER across chromosomes; (B), phenotypic variance explained (PVE) by QTL for FER; (C), distribution of QTL for GER across chromosomes; (D), phenotypic variance explained by QTL for GER. DON, deoxynivalenol accumulation; FUM , fumonisin accumulation; HC, husk coverage; KDD, kernel dry-down rate; KR, kernel resistance; SR, silk resistance.



For the five GER-related traits, 103 QTL were identified across all chromosomes (Figure 1C). A total of 17 QTL were reported for DON on all chromosomes except for chromosomes 6 and 8, while 21 QTL were identified for KR on all chromosomes except chromosome 6. 53 QTL were reported for SR across all chromosomes. Six QTL were identified for HC across chromosomes 1, 4, 6, 7 and 9, while six QTL were reported for KDD on chromosomes 1, 3, 6 and 8 (Figure 1C). Seven and one QTL for DON had medium and major effects, respectively, while most QTL for KR (20 QTL) exhibited minor effects (Figure 1D). Similarly, 18 and four of the 53 QTL for SR had medium and major effects, respectively. Most QTL for HC (5 QTL) and all QTL for KDD had minor and medium effects on the traits (Figure 1D).



High-resolution consensus map generated for QTL projection

The consensus map was composed of SNP markers and generated based on eight genetic linkage maps. The map was of high resolution and presented a total of 36,243 loci with a total length of 3,132.48 cM (Table 3). The Spearman rank correlation analysis revealed strong correlations (average ρ = 0.86−0.99) between marker order on the consensus and individual genetic maps (Table 3). Each chromosome was, on average, 313.25 cM long and composed of 3,624 SNP markers. The average genetic distance between adjacent markers ranged from 0.15 to 0.28 cM depending on the chromosome (Table 3). Attempts to increase the number of loci and length of the map through the inclusion of additional genetic maps resulted in several conflict orders. A comparison of the consensus map with physical map obtained from the reference map B73 RefGen_v2, showed high collinearity with strong correlations (ρ = 0.73−0.91). On average, 72% of markers were arranged in the same order with those on the corresponding chromosomes of the physical map, indicating a high consistency between the consensus map and the physical map B73 RefGen_v2. This shows that the current consensus map generated in this study was the best harmonious combination, and was therefore used as the base for the QTL projection and meta-analysis. The consensus map is made available through Supplementary File 3.


Table 3 | Characteristics of consensus map generated from eight high quality genetic maps composed of SNP markers.





QTL colocalization and meta-QTL for the FER- and GER-related traits based on QTL mapping studies

From the total of 224 QTL, 164 QTL were projected on the consensus map (Figures 2, 3). The remaining 60 QTL could not be projected due to lack of information (markers’ names and positions) on the flanking markers in the original studies (25 QTL) or the absence of the markers on the consensus map (35 QTL) generated in this study. For both FER and GER, the projection showed that confidence intervals of QTL for different traits overlapped on several chromosomes, indicating colocalization of resistance QTL for the two diseases with two or more traits. To refine MQTL, QTL with large confidence intervals (CI 95%≥80 cM) on chromosomes 1, 6 and 10 were excluded from the meta-analysis. Likewise, QTL which overlapped two or more independent MQTL on chromosomes 2, 4, 5, 7 and 9 were also excluded from the analysis. A total of 40 MQTL were identified across all chromosomes and constituted each by 2−10 overlapping original QTL (Supplementary File 4). On average, 70−100% of CI of individual QTL contributed to the definition of each MQTL. CI of identified MQTL were 1.4−36.4-fold lower than the average CI of respective original QTL. 32 of the 40 MQTL were constituted of original QTL from 2−7 different studies and populations (Supplementary File 4). The highest number of MQTL was observed on chromosomes 1 and 3 (Figure 2), and the lowest on chromosomes 6 and 10 (Figure 3). From the 40 MQTL, seven and five MQTL were specific to FER and GER, respectively, while 28 MQTL were common to both diseases.




Figure 2 | Colocalization of QTL for Fusarium ear rot (FER) and Gibberella ear rot (GER) and identification of meta-QTL (MQTL) on chromosomes 1‒5. The line in the middle of each QTL represents its LOD score in the original work. The longer this line, the higher the LOD score of the respective QTL. DON, deoxynivalenol accumulation; FUM, fumonisin accumulation; HC, husk coverage; KDD, kernel dry-down rate; KR, kernel resistance; SR, silk resistance.






Figure 3 | Colocalization of QTL for Fusarium ear rot (FER) and Gibberella ear rot (GER) and identification of meta-QTL (MQTL) on chromosomes 6‒10. The line in the middle of each QTL represents its LOD score in the original work. The longer this line, the higher the LOD score of the respective QTL. DON, deoxynivalenol accumulation; FUM, fumonisin accumulation; HC, husk coverage; KDD, kernel dry-down rate; KR, kernel resistance; SR, silk resistance.



Four and six MQTL were found for DON and FUM, respectively, while KR and SR of FER were controlled by 30 and 6 MQTL, respectively (Supplementary File 4). Sixteen and 24 MQTL were found for KR and SR of GER, respectively, while HC and KDD were controlled by six MQTL each (Supplementary File 4). Contrary to KR and SR, no specific MQTL where identified for FUM, DON, HC and KDD. However, the analysis identified individual QTL qFER12 on chromosome 5 and qGER12 on chromosome 9 as independent specific QTL for FUM and DON, respectively. Considering both diseases, several MQTL were shared among the traits, with the exception of DON versus HC (Table 4). Four MQTL were shared between KR and SR of FER, while 15 MQTL were common to KR of FER and SR of GER (Table 4).


Table 4 | Number of meta-QTL shared among the evaluated traits.





Comparison of meta-analysis with association mapping studies

Based on the seven association mapping studies on FER and GER resistances, about 178 MTA were reported for FUM, KR of FER and SR of GER using diverse germplasm collections and breeding populations worldwide (Table 5). 170 MTA were reported for FER-related traits such as FUM (81 MTA) and KR (89 MTA). Depending on the traits, FER-related MTA were distributed across all chromosomes (Supplementary File 5). The remaining eight MTA were exclusively reported by one GER-related study (Gaikpa et al., 2021) for SR across chromosomes 2, 4, 5, 6, and 9 (Supplementary File 5). Unlike QTL, a single MTA does not have confidence interval, and was therefore considered as a specific QTL location, but not as a whole QTL. A cross-validation with the meta-analysis showed that physical positions of 33 of the reported MTA were located within 16 MQTL (Table 6). The proportion of MTA located within MQTL ranged from 7.14% on chromosome 2 to 50% on chromosome 8. No MTA reported on chromosomes 5, 6 and 10 fell within our MQTL (Table 6).


Table 5 | Characteristics of association mapping studies on resistance to Fusarium (FER) and Gibberella ear rot (GER) used in this study for validation.




Table 6 | Number of marker-trait associations (MTA) located within identified meta-QTL (MQTL).





Differentially expressed candidate genes within the most refined MQTL

From the 40 MQTL identified in this study, 14 MQTL satisfied the four criteria defined earlier, and were therefore selected as the most refined MQTL (Table 7). Selected MQTL were distributed across chromosomes 1, 2, 3, 4, 7 and 9, with 2−7 overlapping original QTL. The CI was 2.65−14.80 cM, with an average PVE of 10−29.67%. The distance between flanking markers of the respective MQTL was 0.63−15.55 Mbp. Based on the physical positions of the flanking markers, a total of 2,272 candidate genes, excluding transposable elements, were mined within the confidence intervals of the selected MQTL (Table 7, Supplementary File 6). For each MQTL, an average of 162 CG were identified with the only exception of ZmMQTL1.2, where only 10 CG were projected. The highest number of CG was observed with ZmMQTL4.3 (342 CG, Table 7).


Table 7 | Selected meta-QTL (MQTL) and corresponding candidate genes (CG).



Gene expression analysis using RNA-Seq data from Kebede et al. (2018), revealed that 59 of the CG were differentially expressed based on mock vs. Fusarium comparisons at 1−2 DAI (Supplementary File 7). Seven CG were specific to the resistant line (CO441), 36 to the susceptible line (B37) and 16 common to both lines. At 1 DAI, only genes GRMZM2G093092 and GRMZM2G423331 were differentially expressed in CO441, while 15 genes were differentially expressed in B37 (Supplementary File 7). Comparing to the respective controls (mock), all CG were upregulated in both lines, with the exception of GRMZM2G135617, GRMZM2G164340 and GRMZM2G126732, which were specifically downregulated (Fold change = −3.3 to −5.7) in B37 at 2 DAI. Expression levels of line-specific genes were 19.6−387.6 TPM in CO441 and 4.6−481.9 TPM in B37 (Supplementary File 7). For the common CG, the expression levels were 6.2−128.5 TPM in CO441 and 6.0−168.4 TPM in B37 (Figure 4). At 2 DAI, the expression of common CG GRMZM2G342033, GRMZM2G323943, GRMZM2G423331 were 1.5−2-fold higher in CO441 than B37.




Figure 4 | Expression levels in transcripts per million (TPM) of the common candidate genes in resistant (CO441) and susceptible (B37) lines under control conditions (mock) vs. F. graminearum (Fg) comparisons. Bar charts show the relative importance of the expression levels of each gene. MQTL, meta-QTL; DAI, days after inoculation.



Functional categories of 46 of the 59 differentially expressed CG were summarized in Figure 5. The remaining 13 CG, of which seven B37-specific CG, two CO441-specific CG (GRMZM2G337191 and GRMZM2G703858) and four common CG, were annotated as “uncharacterized protein” (Supplementary File 8). Annotated CO441-specific CG were GRMZM2G011151, GRMZM2G093092, GRMZM2G156785, GRMZM2G340656 and GRMZM2G472643, which were mainly involved in binding, kinase and transferase activities, signal transduction, secondary metabolism, cell wall metabolism and defense response (Figure 5, Supplementary File 8). Regarding the most important common CG (mostly expressed in CO441), GRMZM2G342033 encoded “S-norcoclaurine synthase2” which was involved in lyase activity and defense response (Supplementary File 8). In addition, GRMZM2G423331 encoded “flavonoid O-methyltransferase4 (fomt4)” which catalyzed sakuranetin (phytoalexin) biosynthesis and cell wall metabolism. Contrary to CO441-specific CG, no B37-specific CG was involved in defense response, signal transduction and secondary metabolites biosynthesis (Figure 5). Ethylene biosynthesis were catalyzed by “1-aminocyclopropane-1-carboxylate synthase2 (acs2)” encoded by GRMZM2G164405. Similarly, GRMZM2G146108 encoded “small auxin up RNA11 (saur11)” which was involved in auxin biosynthesis. However, this gene was only highly expressed at 1 DAI. In addition, GRMZM2G067402 encoded “hemoglobin1 (hb1)” which was involved in cell death under infection. Other B37-specific CG encoded many proteins which were involved in unspecific activities like ATP, ion and pyridoxal binding, oxidation-reduction process, transport and kinase activity (Figure 5, Supplementary File 8).




Figure 5 | Gene ontology terms of the differentially expressed candidate genes (CG) between resistant (CO441) and susceptible (B37) lines under Fusarium graminearum infection.






Discussion

Based on dense genome-wide SNP technology, 224 QTL, of which 121 and 103 QTL for FER- and GER-related traits, respectively, have been reported during the last two decades in maize. These loci were jointly re-analyzed and clustered into a total of 40 more refined MQTL controlling one or more traits like DON, FUM, HC, KDD, KR and SR. Contrary to meta-analyses by Xiang et al. (2010); Xiang et al. (2012) and Mideros et al. (2014) based on low-throughput markers (RFLP, SSR and RAPD), and which included only one GER-related study, the MQTL identified in this study were more refined with precision on the locations and flanking markers to facilitate their integration into breeding programs. Since the available algorithms did not allow a direct integration of association studies in the meta-analysis, we further superimposed physical positions of 178 GWAS-detected MTA with the MQTL intervals. Depending on the chromosome, about 7−50% of MTA from six independent studies fell within different MQTL (Table 6). This firstly shows the high quality of our MQTL analysis, and secondly suggests the need for new bioinformatic tools that can integrate association mapping studies in meta-analysis to better elucidate genetic basis of FER- and GER-related traits, and find interesting loci that might be included in trait introgression strategies. Furthermore, FER and GER resistance- and susceptibility-promoting genes, and underlying molecular mechanisms were also discussed within 14 most refined MQTL through a transcriptomic analysis using recently published RNA-Seq data by Kebede et al. (2018). We will include in the discussion also results from relevant papers that could not be included in the meta-analysis because they did not fulfil the basic requirements.


Co-inheritance of Fusarium and Gibberella ear rot resistances in maize

Our results revealed that the most refined MQTL ZmMQTL1.5 (243.46−259.01 Mbp) and ZmMQTL2.2 (13.3−20.58 Mbp) with PVE>10% were specific to FER and GER, respectively (Figure 2, Table 7). This confirms that Fusarium and Gibberella ear rots are two different types of maize ear rots, and breeding for resistance to these diseases can be implemented separately. In contrast, 28 of the 40 MQTL identified in this study were common to both FER and GER resistances and were distributed across all chromosomes. This impressive number of common genomic loci offers a great opportunity to breed for multiple resistance to ear rots, particularly in maize production areas prone to both FER and GER. Previous meta-analysis by Xiang et al. (2010) also revealed 15 MQTL conferring resistance to both FER and GER. In addition, Giomi et al. (2016), also reported four QTL for both FER and GER using a multi-trait multiple interval mapping in an Argentinian mapping population. Furthermore, the relationship between FER and GER has been phenotypically investigated by Löffler et al. (2010a) who found flint and dent genotypes which were resistant to both diseases. Depending on the testing years, Schaafsma et al. (2006) found moderate to strong correlations (r = 0.40−0.75) between FER and GER resistances in different sets of Canadian commercial hybrid cultivars. Butrón et al. (2015) also reported a highly significant correlation (r = 0.71) between FER and GER resistances. These authors concluded that breeding for resistance to FER would more likely affect resistance to GER and vice versa. These findings emphasize that improving multiple resistance to FER and GER is feasible and can be efficiently achieved through the integration of identified common MQTL into breeding programs.



Meta-QTL and types of ear rot resistance

For both FER and GER, the existence of specific MQTL for SR (e.g. ZmMQTL3.1 and ZmMQTL9.1) and KR (e.g. ZmMQTL1.5, ZmMQTL2.4) (Figures 2, 3, Supplementary File 4) demonstrates that silk and kernel resistances represent two major types of active resistance reactions to ear rot diseases in maize as previously reported by Reid et al. (1996a); Chungu et al. (1996); Plienegger and Lemmens (2002); Mesterházy et al. (2012) and Kebebe et al. (2015). Reinprecht et al. (2008) also demonstrated that silk and kernel resistances were two different traits to be considered when breeding for GER resistance in maize. The main difference between the two types resides in the inoculation techniques used, mimicking different pathogen entry modes (Chungu et al., 1996). Silk resistance occurs after inoculation of the silk channel, while kernel resistance occurs after inoculation in the middle of the ear. Under natural conditions, the fungus can enter the ear via the silk channel (silk resistance), and directly through wounds created by hail, insects or agricultural tools and machines (kernel resistance) (Nerbass et al., 2016; Blandino et al., 2017).

Our study identified four MQTL for both silk and kernel resistances of FER, and 15 MQTL for kernel resistance of FER and silk resistance of GER. Eleven MQTL were also found to control both silk and kernel resistances of GER (Table 4). This finding indicates the existence of genomic regions with multiple resistance which could be exploited in breeding programs aiming to improve ear rot resistance in maize. Based on SSR, RFLP and RADP markers, Ali et al. (2005) also reported one genomic region located on chromosome 1 (BC373_650-S116_1) and one on chromosome 7 (BC324_1400-umc1407) which controlled both silk and kernel GER resistances. In addition, the relationship between the two types of resistances was investigated by Chungu et al. (1996) who found positive strong phenotypic correlations (r = 0.77−0.89). Moderate correlation (r = 0.66) was reported between the two traits by Löffler et al. (2010b). Similarly, Kebebe et al. (2015) reported moderate to very strong genotypic correlations (rg = 0.60−0.99) between the two traits and demonstrated that both silk channel and kernel inoculation techniques ranked genotypes in a similar way. From the 19 MQTL, eight were identified as the most refined MQTL explaining considerable phenotypic variance (average PVE = 10−17%) with 2−7 overlapping QTL which were identified from 2−5 populations evaluated across different environments (Table 7). This firstly exhibits these MQTL as important genomic loci controlling both types of resistance, and secondly implies that the integration of these MQTL into breeding programs is likely to improve stable multiple resistances to FER and GER due to both silk channel and kernel infections. Both resistance types are important for environments where the European corn borer (Ostrinia nubilalis) regularly occurs, because the insect-driven wounding of the cob in the 2nd generation of the insect might result in strong kernel infection additionally to silk infection that mainly occurs when it rains during silking. With this, the use of insect resistant genotypes under natural conditions (and without any other wounding factors), would reduce fungal infection of the kernels even if the genotypes are not resistant to the fungi. This could lead to co-occurrence of resistance QTL for both diseases although they have genetically nothing in common. So far, co-localization of genomic regions for insect and fungal resistances has not been established for maize ear rots.



Colocalization of genomic regions controlling KR, SR and mycotoxin accumulation

DON shared two MQTL with KR of FER and/or GER (ZmMQTL1.1 and ZmMQTL1.7) and two MQTL with SR of FER and/or GER (ZmMQTL1.1 and ZmMQTL2.1) (Table 4, Supplementary File 4). Similarly, FUM shared three MQTL with KR of FER (ZmMQTL1.6, ZmMQTL3.7 and ZmMQTL6.1) and three with SR of FER and/or GER (ZmMQTL4.1, ZmMQTL6.1 and ZmMQTL7.3). This indicates the existence of common genomic regions between mycotoxin accumulation and the two types of active resistance in maize. For GER, Martin et al. (2011) using SSR markers to analyze 150 DH lines derived from UH007×UH006, also found one QTL on chromosome 2 which was common to DON accumulation and silk resistance. This was supported by the existence of a strong positive genotypic correlation (r = 0.95) between the two traits (Martin et al., 2011). In addition, Szabo et al. (2018) detected strong positive correlations between GER severity and DON contamination with correlations of r = 0.95 and r = 0.82 for F. graminearum and F. culmorum, respectively. They concluded that GER resistance is an important indicator of lower toxin contamination. Genotypes with higher GER resistance would have lower DON accumulation as indicated by Bolduan et al. (2009). Similar observations were made by Miedaner et al. (2015) who found moderate to strong correlations (r = 0.60−0.90) between DON measured by immunotests and GER severity, indicating that DON could be predicated by GER severity. For FER, Butrón et al. (2015) observed strong correlations (r = 0.97) between disease severity and FUM. Similarly, Cao et al. (2022) found strong genotypic correlation (rg = 0.85) between FUM and FER severity after kernel inoculation. Based on this, selection for FER-resistant lines would indirectly reduce fumonisins accumulation (Maschietto et al., 2017; Galić et al., 2019).

However, our analysis also revealed the existence of one specific QTL for FUM (qFER12, PVE = 8%) on chromosome 5 (Figure 2) and one for DON (qGER12, PVE = 15%) on chromosome 9 (Figure 3), which were identified as independent MQTL for these traits. This implies that it would be more relevant to consider evaluating DON and FUM as separate traits from FER and GER severity, particularly if the breeder targets those specific genomic regions. Although resistant genotypes had generally low toxin contamination, Reid et al. (1996b) and Dalla Lana et al. (2022) demonstrated that the relationship between DON and GER severity was more complex and non-linear. Genotypes with different disease severity might exhibit similar mycotoxin concentrations. In wheat, Wang et al. (2021) investigating the complex relationship between FHB and DON, found individual genotypes with low disease severity that exhibited high DON accumulation. In the USA, Dalla Lana et al. (2021) analyzed DON in maize ears over four years and showed that its accumulation was affected by multiple weather conditions. They indicated that from a total of 483 asymptomatic ears, 196 (about 41%) exhibited detectable level of 0.05 mg/kg for DON accumulation, and 46 (approximately 10%) showed 1−5 mg/kg of DON. Moreover, Mesterhazy et al. (2022) evaluated 18 commercial maize hybrids from Hungary for different ear rots including FER and GER, and observed a lack of phenotypic correlations between ear rot resistance and toxins, indicating that toxins analysis is necessary. Therefore, indirect selection for DON or FUM using disease severity would be feasible and more effective through the exploitation of identified common MQTL, however, advanced lines should be further analyzed for DON and/or FUM accumulation in a later stage of the selection cycle. Furthermore, MQTL ZmMQTL9.4 (145.46−151.40 Mbp) on chromosome 9 was common to FUM and DON. This firstly demonstrates the existence of genomic regions with resistance to multiple mycotoxin accumulation, and secondly indicates that selection for resistance to one mycotoxin using this MQTL would reduce accumulation of the other mycotoxin. The same has been reported on the basis of phenotypic data by Miedaner et al. (2015) for the co-occurrence of resistances to DON and zearalenone, another mycotoxin produced by F. graminearum.



Morphological traits and their association with FER and GER infections in maize

Several MQTL for SR and KR of both FER and GER were also detected in association with KDD (e.g. ZmMQTL1.1 and ZmMQTL6.1), and HC (ZmMQTL1.4, and ZmMQTL6.1) (Table 4, Supplementary File 4). This indicates that morphological traits such as kernel dry-down rate and husk coverage may have a passive contribution to both silk and kernel resistances in maize. Kernel dry-down rate and husk coverage represent natural barriers which reduce infection by blocking the pathogen entry into the ear or the kernel. Passive resistance due to morphological traits was also reported for FHB disease in wheat by several studies (Mesterházy, 1995; Buerstmayr and Buerstmayr, 2015; Buerstmayr et al., 2020; Ruan et al., 2020; Xu et al., 2020). Husk characteristics were reported as important traits in protecting the ears from pathogen infection (Warfield and Davis, 1996; Jiang et al., 2020). Butoto et al. (2022) found a low negative correlation (r = −0.30) between husk coverage and FER severity. In addition, moderate genotypic correlations (r = 0.39−0.61) were detected between husk coverage and Diplodia ear rot severity due to Stenocarpella maydis infection across three locations (Rossouw et al., 2002). The positivity of the correlations found by Rossouw et al. (2002) is explained by the fact that the authors evaluated the husk coverage based on a scale opposite to the previous paper. Therefore, the tighter the husk over the ear, the lower the ear rot severity.

Common genomic regions were also reported by Xiang et al. (2012) when investigating the relationships between grain moisture content and ear rot resistance in maize. Depending on the maturity stage of the kernels, Kebebe et al. (2015) found in Canada moderate to strong negative genotypic correlations between kernel dry-down rate and silk resistance (r = −0.58 to −0.90) and kernel resistance (r = −0.67 to −0.79) for GER. Thus, genotypes with fast drying kernels would have relatively lower GER severity. Substantially high selection efficiencies (0.52−0.84) were observed by Kebebe et al. (2015) when selecting for less kernel infection using kernel dry-down rate, whereas lower selection efficiencies (0.29−0.32) were found for silk channel infection. Since silk inoculation is usually earlier (5-6 days post silking) than kernel inoculation (15-21 days post silking), the infection through silk channel would have significantly progressed before the onset of kernel dry-down. This indicates that despite the existence of common genomic loci between kernel dry-down rate and FER and GER resistances, the use of kernel dry-down rate as an indirect trait to improve ear rot resistance might not be as effective as the direct selection for disease severity, especially for SR. Moreover, additional investigations are required to elucidate the interactions between kernel dry-down rate and grain yield and related traits in maize.



Resistance and susceptibility genes controlling FER and GER in maize

Based on transcriptomic data reported by Kebede et al. (2018) for GER, 59 candidate genes harbored by 14 of the MQTL identified in this study were differentially expressed in one resistant line (CO441) and one susceptible line (B37) after inoculation with F. graminearum (Supplementary File 7). This emphasizes the importance of these MQTL as targets for improving multiple resistance to ear rot diseases in maize. Thirteen of these candidate genes were annotated as “uncharacterized protein” (Supplementary File 8), and therefore require further investigations to characterize corresponding proteins to better elucidate their roles in the resistance or susceptibility to ear rot in maize. GER-specific MQTL ZmMQTL2.2 and the common MQTL ZmMQTL9.4 harbored two different defense response genes such as GRMZM2G342033 and GRMZM2G423331, respectively. Similarly, the common MQTL ZmMQTL9.2 (113.95−129.03 Mbp) harbored two defense response genes, namely GRMZM2G011151 and GRMZM2G093092 which were specific to CO441. In comparison to the susceptible line, the expression levels of GRMZM2G342033 and GRMZM2G423331 at 2 DAI in CO441 were constitutively stronger with TPM two-fold higher than that in B37.

GRMZM2G342033 encoded “S-norcoclaurine synthase2” which had about 71.3% of identity with “S-norcoclaurine synthase” previously reported as a member of the pathogenesis-related protein 10 (PR10) family (Lee and Facchini, 2010; Nida et al., 2021). The PR10 family proteins have been extensively reported for their antifungal activity (Xie et al., 2010; Wu et al., 2016), and their crucial role in resistance against GER pathogens (Mohammadi et al., 2011). Xie et al. (2010) identified another PR10 gene (ZmPR10.1) on chromosome 10 which conferred resistance to Aspergillus ear rot caused by Aspergillus flavus in maize. Similarly, in a previous transcriptional analysis, Lanubile et al. (2014) also identified GRMZM2G342033 as “S-norcoclaurine synthase-like” which was involved in resistance to FER in maize.

GRMZM2G011151 was annotated as “terpene synthase21 (tps21)” which has been previously reported by Ding et al. (2017) as a α/β-costic acid pathway candidate gene in maize. tps21 enables the biosynthesis of α/β-selinene volatiles which are in turn converted into α/β-costic acids, promoting resistance to fungal pathogen infections (Block et al., 2019). α/β-costic acids are non-volatile diterpenoids which were demonstrated to inhibit growth of several fungal species including F. graminearum, F. verticillioides, Rhizopus microsporus, Aspergillus parasiticus, and Cochliobolus heterostrophus (Ding et al., 2017). Moreover, near-isogenic lines (NILs) lacking functional copies of tps21 exhibited a high susceptibility to Fusarium species compared to functional NILs (Ding et al., 2017). Lanubile et al. (2014) also identified GRMZM2G011151 as a defense response gene to FER which was specifically differentially expressed in CO441 compared to another susceptible line (CO354).

Similar to GRMZM2G011151, GRMZM2G093092 and GRMZM2G423331 were reported as candidate defense response genes to GER (Kebede et al., 2018), which encoded the “flavonoid O-methyltransferase2 (fomt2)” and “flavonoid O-methyltransferase4 (fomt4)” proteins, respectively. FOMT2 and FOMT4 proteins catalyze the biosynthesis of sakuranetin, a well-characterized flavonoid which negatively affected the germination of fungal spores in rice (Kodama et al., 1992; Hasegawa et al., 2014). GRMZM2G423331 was also identified in a recent transcriptomic analysis by Förster et al. (2022) as a FOMT4 gene which is involved in the flavonoid pathway related to a general response to F. graminearum and F. verticillioides in maize. Recently, Maschietto et al. (2017) found that GRMZM2G093092 was uniquely expressed in CO441 compared to CO354 after infection with F. verticillioides. In addition, FOMT2 and FOMT4 enable cell-wall reinforcement and higher lignification which both inhibit fungus growth and the development of the disease. These results suggest the biosynthesis of different secondary metabolites or phytoalexins (e.g. terpenoid and flavonoid) which occurs after initial infection with FER- and GER-causing species. Moreover, Balcerzak et al. (2012) indicated that during the infection, fungus-specific genes like feruloyl esterase (FAE) are activated to enable the biosynthesis of pathogen-associated molecule patterns (PAMPs), like oligogalacturonides. These molecules firstly degrade the cell wall to facilitate the infection, and secondly are perceived as elicitors by pathogen recognition receptor kinases. This results in successive oxidation-reduction reactions leading to reaction oxygen species (ROS) production (Kebede et al., 2018; Yuan et al., 2020b) and the activation of defense response and phytoalexin-coding genes (Förster et al., 2022). Given the specificity of genes GRMZM2G011151 and GRMZM2G093092 to the resistant genotype, and the fact that they were harbored by a common MQTL (ZmMQTL9.2) to FER and GER, their incorporation into breeding programs would efficiently improve a broad-based resistance to both Fusarium and Gibberella ear rots in maize.

Furthermore, we also identified 36 candidate genes which were uniquely differentially expressed in the susceptible line, suggesting the existence of ear rot susceptibility genes in maize. The gene GRMZM2G164405 harbored by ZmMQTL2.2 encoded the “1-aminocyclopropane-1-carboxylate synthase2 (acs2)” protein which was involved in the biosynthesis of ethylene and pyridoxal phosphate binding activity. Since ZmMQTL2.2 is a GER-specific MQTL, this finding demonstrates that ethylene-signaling pathway is associated with susceptibility to GER in maize as previously indicated by Kebede et al. (2018). Similar results were reported by Chen et al. (2009) who found that ethylene-signaling increased susceptibility and premature cell death after inoculation with F. graminearum and DON in wheat and barley (Hordeum vulgare L.). However, under infection with F. verticillioides, Maschietto et al. (2017) found that the expression level of gene GRMZM2G053503 located on chromosome 8 at position 35.56 Mbp, was 1.23-fold higher in CO441 than in CO354. This gene encodes “ethylene-responsive factor-like protein 1” which is involved in resistance to FER in maize. Interestingly, GRMZM2G053503 is located within the FER-specific MQTL ZmMQTL8.2 (20.8−81.7 Mbp) which was not considered in our transcriptomic analysis. This demonstrates that the ethylene-signaling pathway plays differential roles in maize ear rot depending on the Fusarium species. In addition to GRMZM2G164405, another interesting susceptibility gene was GRMZM2G146108 located within the MQTL ZmMQTL9.4. This gene was annotated as “hemoglobin1 (hb1)” which enabled programmed cell death in the susceptible line. So far, to the best of our knowledge, GRMZM2G146108 has not been attributed to FER and/or GER susceptibility in maize, and thus merits further examination. The attenuation of the ethylene-signaling pathway could improve GER resistance in moderately to highly susceptible genotypes. This could be done through the application of RNA interference (RNAi) technology (Das and Sherif, 2020) on GRMZM2G164405 as described for “Ethylene Insensitive 2 (EIN2)” gene with FHB and DON accumulation caused by F. graminearum in wheat and barley (Chen et al., 2009). Alternatively, the susceptibility genes could be knocked out by the clustered regularly interspaced short palindromic repeats (CRISPR) technology (Campenhout et al., 2019; Wada et al., 2020). Both attempts would also biologically validate the contribution of these genes in the maize/ear rot pathosystems.



Strategies for the successful introgression of resistance genes to FER and GER into elite materials

Genetic resources from diverse geographical origins contributed to the 40 MQTL identified in this study (Table 2, Tables 5, 6). In Europe, flint and dent germplasms including the “Kemater Landmais Gelb” (KE) landrace population harbored several resistance alleles which could be introgressed into elite cultivars for enhanced ear rot resistance (Han et al., 2016; Han et al., 2018; Gaikpa et al., 2021). However, FER and GER resistances are complex polygenic traits, and our results demonstrated that more than 65% of the MQTL had minor (PVE<10%) effects on the respective traits. This indicates that the exploitation of these MQTL using marker-assisted selection (MAS) would require intensive breeding and marker efforts and might not yield a significant selection gain. Although MAS has been successfully implemented to improve traits controlled by one or a few large-effect genes in several crops (Kuchel et al., 2007; Hasan et al., 2021), its potential in improving complex traits remains limited as previously discussed in wheat and barley by Miedaner and Korzun (2012). As implication, the successful introgression of the resistance genes for stronger and durable multi-disease resistances, calls for more advanced and sophisticated genomic approaches, like genomic selection (Bhat et al., 2016; Gaikpa and Miedaner, 2019; Budhlakoti et al., 2022). For FER and GER resistances, this could be achieved through the application of the integrated genomics-assisted breeding scheme suggested by Miedaner et al. (2020). This approach is implemented in two steps, including: (i) introgression of the resistant donor (e.g. KE lines) by backcrossing to the susceptible line used as recurrent parent without marker selection, and (ii) application of genomic selection following a recurrent selection scheme for an accelerated selection for FER and/or GER resistances as well as adaptation traits (Miedaner et al., 2020). Identified MQTL can be efficiently incorporated in the genomic selection model built in the second step.




Conclusions

Understanding the genetic basis and molecular mechanisms controlling Fusarium and Gibberella ear rots is a key requirement for the development of maize varieties with improved multi-disease resistances and related traits. Based on 164 projected QTL from 15 studies, we demonstrated the existence of 40 MQTL which revealed colocalization of genomic regions governing FER and GER silk and kernel resistances, FUM and DON accumulation, kernel dry-down rate and husk coverage. Three of the most refined MQTL (ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4) for FER- and/or GER-related traits harbored promising resistance genes which were constitutively and strongly expressed in the resistant line (CO441) analyzed in the published transcriptomic study by Kebede et al. (2018). The effectiveness of the introgression of these candidate genes from identified sources of resistance into susceptible varieties through genomics-assisted backcross breeding strategies need to be explored to systematically improve ear rot resistances while reducing mycotoxins contamination in maize.
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Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.
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Introduction

Lodging largely impairs grain yield and quality, especially for high-yielding cultivars (Islam et al., 2007), which is divided into stem lodging or root lodging (Kashiwagi et al., 2005). In cereal crops, lodging is governed by genetic, field management and environmental factors (Wu and Ma, 2016). In many agricultural systems, this is a tough challenge due to the complexity of stem lodging (Berry et al., 2004). Especially the large panicles of modern varieties are more prone to lodging in the presence of wind, rain and diseases (Martinez-Vazquez, 2016). Lodging affects photosynthetic capacity of cereal crops and has an adverse effect on grain development (Shah et al., 2017; Shah et al., 2019). Besides, lodged barley is likely to be infected with diseases and pests (Berry et al., 2004; Caier̄ao, 2006).

Crop yield is affected by the source, sink and flow. Stems are the most important storage organs during assimilation translocation after anthesis (Matthias et al., 2016), and plants particularly rely on the dry matter and nitrogen fixation of stems under stress (Housley and Peterson, 1982). As a regular conduit for transporting water and nutrients from root or leaves to panicle, stem structure is the key to improve grain filling and high yield (Chen et al., 2004; Huang et al., 2016; Zhai et al., 2018). Additionally, stem is the supporting organ for proper distribution of leaves, which is beneficial to improve the efficiency of sunlight use. Changes at the horizontal location of plants in photosynthesis can lead to 27−31% reduction in the yield (Pinthus, 1974; Berry et al., 2004). After heading of barley, the flag leaf is the main photosynthetic organ (Yap and Harvey, 1972), therefore, as a bridge from flag leaf to panicle, the uppermost internode is especially crucial in the later stage for filling of grain. Selection of lodging resistant cultivars is one of several very important targets in cereal breeding program. The lodging resistance correlated with stem strength, plant height, panicle type and cell wall components (Shah et al., 2017; Khobra et al., 2019). The dwarf and semi-dwarf genes were preferentially used to lower lodging risk in barley during the Green Revolution (Hedden, 2003), but several studies have shown that plant over short affected crop yield (Islam et al., 2007), so enhancing the stem strength of plants is another viable option to avoid lodging.

Many studies have been done on barley lodging (Cui and Shen, 2011; Baker et al., 2014; Leblicq et al., 2016). Based on stalk characteristics and lodging factors, a lodging index was proposed to measure the lodging trait (Islam et al., 2007; Li et al., 2017), thus, the lodging index becomes a comprehensive trait composed of many single traits. Moreover, some studies have indicated that leaf sheaths and vascular bundles are also crucial contributing factors to lodging (Wu and Ma, 2020; Cornwall et al., 2021). Lin et al. (2005) indicated that a lower pith diameter/stem diameter ratio can improve stem strength. The lignin and cellulose content of secondary cell wall (CW) also affects the mechanical properties of stems (Jones et al., 2001; McFarlane et al., 2014).

In recent years, many studies on stem related traits in barley were reported. Such as Bellucci et al. (2017) performed genome-wide association mapping of grain yield and cell wall polymer content in winter barley. QTLs for the length of each internode (Schmalenbach and Pillen, 2009), chromosome regions containing significant associations with cellulose concentration (Houston et al., 2015), characterization of plant height (Wendt et al., 2016; Bélanger et al., 2018; Pu et al., 2021) have been reported. Kristensen et al. (2016) identified some barley lodging resistance loci. The focus of lodging in barley has been on root, plant height and spike traits, limited research was performed on the effect of stem strength, stem internode and node diameter on lodging.

In the study, we performed QTL mapping of 13 stem related traits after 28 days of heading using a barley DH population, including uppermost node diameter (UND), second node diameter (SND), third node diameter (TND), uppermost internode length (UIL), second internode diameter (SID), third internode diameter (TID), second internode length (SIL), third internode length (TIL), uppermost internode diameter (UID), main stem length of fracture (MSL), stem fresh weight (SW), third internode breaking force (TIBF) and lodging index (LI). The aims were to explore the relationship between stem internode traits and lodging traits, and to predict and screen out candidate genes related to stem development. The study will deepen our understanding of the genetic basis of stem, and provide new insights to boost lodging resistance breeding in barley.



Materials and methods


Plant material

A doubled haploid (DH) population with 122 lines derived from six-rowed barley Huaai11 and two-rowed barley Huadamai 6 was employed to identify QTLs (Ren et al., 2010). These accessions were evaluated over two crop seasons (2020-2021, 2021-2022) in the experimental farm of Huazhong Agricultural University, Wuhan, China (30°C 48’N, 114°C 36’E), with three replicates in a completely randomized block design. In each replicate, lines were planted in double rows with 15 cm plant spacing and 20 cm row spacing. Field cultivation management followed standard agricultural practices for barley production.



Phenotyping

The heading date of each line was recorded, after 28 days of heading, three plants with uniform growth were randomly selected from each replicate and their main stems were cut at the root to measure phenotypic data of stem related traits, and the mean value for each phenotype was used for the analysis. The main stem length (from the fracture of the stem to the apex of the panicle, MSL, cm), uppermost internode length (UIL, cm), second internode length (SIL, cm) and third internode length (TIL, cm) were measured using a straight edge, the uppermost node diameter (UND, mm), second node diameter (SND, mm), third node diameter (TND, mm), uppermost internode diameter (UID, mm), second internode diameter (SID, mm) and third internode diameter (TID, mm) were measured at the middle of them with a slide caliper. The breaking force of third internode (TIBF, N) was measured using a prostrate tester (DIK7400, Japan), and the fracture site was arranged in the center of the third internode (Supplementary Figure S1). Main stem fresh weight (SW, g) is the weight from the fracture to the apex of the panicle. Lodging index (LI) was calculated according to the equation: (Li et al., 2017)

	



Data analysis

The data was analyzed using SPSS 25 (USA). The best linear unbiased predictor (BLUP) of stem traits was forecast using the R package lme4. The broad-sense heritability (H2) was computed using: H2 =VG/(VE/N + VG), N was the number of environments (Liu et al., 2020). In this study, the BLUP was used to analyze the Pearson correlation between stem traits. The plots were drawn using R package ggplot2.



QTL analysis

A high-density genetic linkage map of this double haploid population was constructed by Ren et al. (2016), which included 1962 markers on all seven chromosomes. It spanned 1375.80 cM of the whole-genome with an average marker distance of 0.7 cM. Stem related traits QTLs detection were analyzed in QTL IciMapping v4.1 software. The mapping method ICIM-ADD in “MET” module and “BIP” module was used to perform Multi Environment and Single environment Trials analyses, respectively. The PIN was 0.001 and the step was 1.0 cM. Furthermore, QTL analysis for BLUP was performed in BIP module. In addition, to overcome the interference of row type (Rt), we used Rt as covariates. QTL analysis of covariates was performed using QTL.gCIMapping software of R (Feng et al., 2018). The LOD was set to 3.0, and the step was 1 cM.



Gene annotation for major QTLs

For the same trait, a QTL with an explained phenotypic variance (PVE) ≥10% and positioned in at least two years (including BLUP) as a stable QTL. To determine whether the QTL is novel, we compared the physical locations of loci detected here with those reported. The sequences of flanking markers were searched at the National Center for Biotechnology Information (NCBI). By searching the coding sequences, the predicted candidate genes of the main QTL in the physical interval were obtained from Barley genome assembly Morex_v2.0. The orthologs of other plants genes in the barley reference genome were identified using the Ensembl Plant Database (http://plants.ensembl.org/Hordeum_vulgare/Tools/Blast) (Mascher et al., 2017). We reviewed annotated information of the markers and identified potential candidate genes (Cantalapiedra et al., 2015).




Results


Phenotype analyses

We phenotyped 13 stem related traits 28 days after the heading in 2021 and 2022 (Table 1). Large variation of the stem traits was also found, the coefficient of variation (CV) was 8.09 -34.11%. Broad-sense heritability of these traits was 67.00-97.29%. The phenotypic differences in the stem of parents were shown in Table 1. T-tests showed significant differences (P< 0.05) in all stem related traits except TIBF and UND between parents. Huadamai 6 owned higher values for UND, SND, TND, SID, TID, UIL, SIL, TIL, MSL, SW, TIBF and LI in two years than Huaai11, while Huaai 11 had more UID than Huadamai 6. All 13 stem related traits showed normal distribution (Figure 1).


Table 1 | Phenotypic performance for the thirteen stem related traits in the DH population and their parents.






Figure 1 | Phenotype distribution of 13 stem traits in each season (2021 and 2022) and BLUP value (best linear unbiased prediction environments).





Correlations between traits

The best linear unbiased predictor (BLUP) of stem lodging traits was used for Pearson correlation analysis (Figure 2). The results showed that TIBF was negatively correlated with LI and TIL (P<0.01). UIL, SIL and MSL showed a significant correlation with UND, SND and TND (P<0.01), and the length of each internode had no correlation with TID. SID was positively correlated (P<0.5) with UIL. The diameter of each stem node was positively correlated with the stem diameter of each internode (P<0.01). SW was positively correlated with UIL, SIL, MSL, TIL, LI and TIBF. TIL and MSL had the highest correlation with lodging index (LI).




Figure 2 | Pearson correlation coefficients among 13 stem traits of BLUP. The two-tailed t-test was applied to test the significance of correlation coefficients (*p < 0.05; **p < 0.01).





QTL analysis

In total 103 QTLs were mapped on all chromosomes of barley except 1H for stem related traits using the ICIM BIP module in 2021 and 2022, including UND (10 QTLS), SND (5), TND (7), UID (9), SID (13), TID (12), UIL (6), SIL (7), TIL (4), MSL (9), SW (6), TIBF (8) and LI (7) (Supplementary Table S1 and Figure 3A). Of them, the phenotypic variance of a single QTL was between 2.23% and 80.92%, with LOD values ranging from 3.01 to 32.68, 55(53.40%) major QTLs with PVE values greater than 10% were identified for UND (2 QTLS), SND (2), TND (3), UID (5), SID (6), TID (7), UIL (3), SIL (3), TIL (4), MSL (5), SW (4), TIBF (5) and LI (6) (Supplementary Table S1). 23 stable QTLs were detected for two consecutive years (Table 2), and 14 stable QTLs had PVE of more than 10% (two years average). Moreover, we identified 17 tightly linked or pleiotropic QTLs that influenced two or more traits, such as the QTL at 662.45-671.63 Mb on chromosome 2H simultaneously affected UIL, UND, UID, SID, TID and TIBF (Supplementary Table S2). To avoid the influence of row type (Rt), we used Rt as covariates for QTL mapping, a total of 91 QTLs were mapped, including 43 novel QTLs and 4 novel stable QTLs (Supplementary Table S3 and Table 2).




Figure 3 | Chromosome distribution of QTLs associated with 13 stem related traits identified. (A) single-environment QTL analysis and (B) multi-environment trials (MET) analysis.




Table 2 | Major and stable QTLs identified for thirteen stem related traits in two years using multiple mapping method.



In a multi-environment QTL analysis, 93 MET QTLs were identified for UND (9 QTLS), SND (5), TND (8), UID (8), SID (10), TID (10), UIL (6), SIL (8), TIL (3), MSL (10), SW (5), TIBF (6) and LI (5) (Figure 3B and Supplementary Table S4). Of them, 22 (23.66%) had PVE more than 10%. Besides, we found 21 QTL loci that influenced two or more traits synchronously detected in the ICIM MET module (Supplementary Table S5).

Further, to suppress the potential effect of the environment on stem lodging traits, we used the BLUP of stem traits for QTL analysis in the ICIM BIP module. 73QTLs were identified for UND (8 QTLS), SND (6), TND (8), UID (7), SID (7), TID (7), UIL (2), SIL (7), TIL (2), MSL (8), SW (5), TIBF (4) and LI (2) (Supplementary Table S6). Of them, the LOD values ranged from 3.03 to 32.23, and PVE of 26 (35.62%) QTLs was greater than 10%.

Most QTLs detected by the three mapping methods were located on chromosomes 2H, 3H, and 7H (Figure 4A). Figure 4B is the Venn diagram of the QTL mapped in three mapping methods. 45 QTLs were mapped by all three mapping methods, and 36 QTLs were identified in the MET module and the BIP module. The number of QTL for a single trait in each year was shown in Figure 4C. Importantly, we identified 27 major and stable QTLs (QTLs of one trait repeatedly mapped in multiple mapping methods and in at least two years) or 49 stable QTLs (QTLs of one trait repeatedly mapped in at least one year and BLUP) (Table 2 and Figure 5). The PVE of 49 stably QTLs was 3.79- 43.57%, with a LOD value from 3.01 to 32.68 (Supplementary Table S7). In addition, we integrated a large number of interlocking intervals for different traits. 22 regions were found on all chromosomes involving 288 QTLs, including 1, 6, 6, 3, 2, 1 and 3 intervals for chromosomes 1H, 2H, 3H, 4H, 5H, 6H and 7H, respectively (Table 3).




Figure 4 | (A) Stacked map of QTL number of QTLs with 13 stem related traits identified on each chromosome. (B) Venn diagram of QTL detected by the three modes. (C) The number of QTL for a single trait in each year.






Figure 5 | Chromosomes location of reliable QTLs for 13 stem traits.




Table 3 | Putative pleiotropy or linkage of QTLs on linkage groups in barley and other traits reported to be associated with these regions from the literatures.





Genes located within major QTLs intervals

In total, 49 stably QTLs were detected, and 26 stable QTLs had PVE of more than 10% (Supplementary Table S7). We explored a large number of interlocking intervals for different traits (Table 3), such as the QTL at 662.45-671.63 Mb on chromosomal 2H simultaneously affected UIL, UND, UID, SID, TID and TIBF. We reviewed annotated information of the markers and identified potential candidate genes (Supplementary Table S8), based on the barley physical map (Cantalapiedra et al., 2015). 44 genes were located at 460.97-473.73 Mb interval on chromosome 2H. A total of 147 genes were located at 626.22-633.07Mb and 530.99-532.66Mb on chromosome 3H. And 244 genes were found in the interval (599.96-614.73 Mb) on chromosome 4H. QTLs located at approximately 6.81-9.87 Mb on chromosome 5H contained 101 genes. The important intervals on chromosome 7H were 81.89-83.77Mb and 297.27-382.25 Mb, containing 271 genes. We also looked for genes in several other interlocking loci, which included 360, 273, 383, 203, 160, and 794 genes selected for chromosomes 2H, 3H, 4H, 5H, 6H and 7H, respectively.




Discussion


Major and linkage QTLs for stem traits

Most of the studies on lodging focused on plant height and stem chemical composition (JSameri et al., 2009; Ren et al., 2013; Ren et al., 2014; Wehner et al., 2015; Gong et al., 2016; Wendt et al., 2016; Al-Abdallat et al., 2017; Bélanger et al., 2018; Hu et al., 2018; Pu et al., 2021), on heading date focused on the change of agronomic traits under drought stress and panicle traits in barley (Pasam et al., 2012; Long et al., 2013; Alqudah et al., 2014; Gawenda et al., 2015; Mohammadi et al., 2015; Alqudah et al., 2016; Kristensen et al., 2016; Maurer et al., 2016; Alqudah et al., 2018; Jabbari et al., 2018; Abdel-Ghani et al., 2019; Jia et al., 2019; Ward et al., 2019; Jabbari et al., 2019; Moualeu-Ngangue et al., 2020), but few studies on QTL mapping of stem diameter of internode or node were reported.

In our study, 27 stable and major QTLs were identified for stem related traits (Table 2). To notarize whether the QTLs here are new loci, we compared the physical positions with those stem related loci reported previously, and found some QTLs for stem traits were consistent with QTLs for seedling traits or grain traits mapped in previous reports (Table 3). For instance, different traits were mapped previously in the interval of 122-129 cM and 131-137 cM on chromosome 2H (Wang et al., 2017; Du et al., 2019a; Wang et al., 2019; Du et al., 2019b). Our research also showed evidence to support the possible pleiotropy of the Vrs1 gene (Wang et al., 2016). Similarly, a large number of QTLs related to plant height related traits were also detected in the 626.22-633.07 Mb of chromosome 3H. In the same DH population, QTL for three internode length (Qith3-13) and heading date (Qhd3-13), were also near this region (Ren et al., 2013; Ren et al., 2014; Hu et al., 2018). In addition, in another hotspot on chromosome 5H at 0.43-13.28 Mb, the QTL of stem related traits we mapped was consistent with previously reported traits of grain filling rate or panicle related traits (Du et al., 2019b). These results showed certain correlation between barley stem and grain yield.

As expected, TIBF loci were mostly consistent with stem diameter loci, while LI loci were mostly consistent with internode length loci. In barley breeding, the relationship between traits should be considered, dwarf barley has lower grain yield due to its smaller biomass. We found that several interlocking intervals were simultaneously located by TID, TND, SND, MSL and LI (Table 3), which may be helpful to further explore the relationship between stem strength and plant height. QTL clusters of barley was iteratively reported (Qu et al., 2008; Schmalenbach and Pillen, 2009; Liu et al., 2015; Wang et al., 2016). The genetic mechanism of this general phenomenon might be gene linkage and pleiotropic effects in the same genomic region (Peng et al., 2003; Wang et al., 2015). Nevertheless, both linkage and pleiotropy need to be verified by further studies using cloning and fine mapping of gene or QTL.



Possible genes associated with barley stem development

Many genes have been shown to be pleiotropic in barley. Such as sdw1/denso controls grain size, grain yield, the number of tillers, and plant height (Kuczyńska et al., 2014). Annotating these genes in each stable QTL interval by KEGG database, we found some of them were related to cell division and plant development (Table 4). The three genes detected in the chromosome 6H interval at 510.42-517.07 Mb might involve in the stem length of barley. GS1a gene (HORVU6Hr1G074030) plays a role in nitrogen sensing or signaling and the efficiency of photosynthetic or water use (Molina-Rueda et al., 2013). RDRP1 gene (HORVU6Hr1G074220) and RDRP2 gene (HORVU6Hr1G074180) regulate organic acid and amino acid metabolites, biogenesis and spikelet development by small RNA (Song et al., 2012; Jha et al., 2021). Another significant QTL area underlying traits of UIL, SIL, TIL, MSL, LI on chromosome 3H at 626.22-633.07 Mb was physically close to HvGA20ox3 (HORVU3Hr1G089980) that encodes enzyme involved in gibberellin (GA) biosynthesis (Wendt et al., 2016; Bélanger et al., 2018). In addition, a region related to plant height traits was also detected on chromosome 7H at 297.27-382.25 Mb, the 14-3-3D gene (HORVU7Hr1G061920) and BRI1 gene (HORVU7Hr1G068990) located in the region plays an important intermediate in GA signal transduction and involves in the signaling of BRs (Pu et al., 2021), respectively. A stable QTL was detected near HvVRT-2 (a flowering repressor regulated by vernalization and photoperiod) on chromosome 7H (81.89-83.77 Mb), the gene maintains the transition from vegetative stage to reproductive stage, thereby influencing spikelet morphology and the internode development (Kane et al., 2005; Szűcs et al., 2006).


Table 4 | Twenty-three candidate genes from the target interval.



Comparative genomics has shown that the functions of homologs are generally conserved. In addition to the partially functional identification of genes in barley, we found several potential candidate genes within the markers (Table 4), that might play a key role in stem development. HORVU2Hr1G066890, HORVU4Hr1G006310, HORVU7Hr1G108580 and HORVU7Hr1G049340 annotate pyruvate dehydrogenase E2 component (Bohne et al., 2013), might coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes. The gene SRP45 plays a role in chloroplast development in rice which is orthologs of the HORVU3Hr1G089450 (Zhang et al., 2013). HORVU2Hr1G093020 and HORVU4Hr1G006070 annotate beta-glucosidase, which is an important part of cellulase involved in various physiological processes in plants (Kawasaki et al., 2001). The GBE, a key enzyme in the catalytic regulation of α (1-6) glycosidic bond branch synthesis (Guan et al., 1995), annotated by HORVU7Hr1G111190. The gene (HORVU5Hr1G006350) that annotated as RHM (Saffer and Irish, 2018; Jiang et al., 2021), might be related to cell wall components. In addition, we identified several homologous genes associated with drought stress that might play a role in tiller and stem development. HORVU7Hr1G062120 annotates RBM25, an RNA binding protein in Arabidopsis thaliana that plays an important role in ABA-mediated alternative splicing and stress response (Cheng et al., 2017). YUCCA encodes a key auxin synthesis enzyme during drought stress of cotton (Wang et al., 2021), which is annotated by the HORVU7Hr1G067200. Another drought stress gene KCS encoded by HORVU2Hr1G094090 enhanced drought tolerance, increased the amount of chloroplast matrix, and increased stem diameter, stem coat thickness, growth rate, and lignin content in jute (Zhang et al., 2019; Tong et al., 2021). Moreover, two potential candidate genes (HORVU4Hr1G076460 and HORVU4Hr1G076250) were found next to each other on 4H, HORVU4Hr1G076460 encodes RBOH, DNA methylation of genes related to seed development affected by heat stress during grain filling (Mahalingam et al., 2021; Sakai et al., 2022). Brassinosteroid signaling kinases (BSK) encoded by HORVU4Hr1G076250 is a key family of receptor-like cytoplasmic kinases for BR signaling (Li et al., 2022), which is crucial for the development of plants, immunity and abiotic stress response, but these genes still are needed further verification in barley. Our studies showed that candidate genes may be involved in stem development and provide clues for further fine positioning.



Stem traits for barley breeding programs

In this study, we measured the breaking force of the third internode and calculated the lodging index to observe the relationship between the traits after 28 days of heading (Figure 2). The results showed that TIBF was negatively correlated with LI and TIL. Compared with the strength trait, the correlation between LI and plant height trait was highly significant. All the traits were significant and positively correlated with SW. And the diameter of each stem node was positively correlated with the stem diameter of each internode. SIL and TIL had no correlation with SID and TID, a similar phenomenon occurs in rice (Guo et al., 2021), suggesting that improving stem strength might not change plant height.

Stem strength can be affected by various factors. The leaf sheath could provide great physical support (Cornwall et al., 2021). Lodging resistance is usually related to stem diameter. Simonneau et al. (1993) showed that during drought stress stem diameters contract in response to changes in internal water status. Therefore, it can be used as a selection criterion for stress tolerance (Sallam et al., 2015). In our study, the finding is reflected in the consistency of QTL loci. Then, the study of the genetic basis of stem development may help us to fight global climate change.

Collectively, because of the importance of plant height and stem diameter in lodging resistance, stress resistance, grain yield, and photosynthate transport in barley, a stem with a suitable height and strength is usually preferred in barley breeding.




Conclusions

In this study, 27 stable and major QTLs, and 22 QTL clustered regions were identified for 13 stem related traits. We also methodically compared the genetic correspondence with other different traits at the same locus. In total, 22 genes were identified as promising candidates associated with plant development and adverse stress, which were closely related to lodging resistance, stress resistance, photosynthate transport and grain development in barley. The identification of QTL conferring stem related traits can help us to know the genetic basis of stem and ameliorate lodging resistance potential of barley, and is useful in future marker-assisted barley breeding programs.
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Flag leaf size is a crucial trait influencing plant architecture and yield potential in wheat. A recombinant inbred line (RIL) population derived from the cross of W7268 and Chuanyu 12 was employed to identify quantitative trait loci (QTL) controlling flag leaf length (FLL), flag leaf width (FLW), and flag leaf area (FLA) in six environments and the best linear unbiased estimator (BLUE) datasets. Using a 55 K SNP-based genetic map, six major and stable QTL were detected with 6.33–53.12% of explained phenotypic variation. Except for QFlw.cib-4B.3, the other five major QTL were co-located within two intervals on chromosomes 2B and 2D, namely QFll/Fla.cib-2B and QFll/Flw/Fla.cib-2D, respectively. Their interactions and effects on the corresponding traits and yield-related traits were also assessed based on flanking markers. QFll/Fla.cib-2B showed pleiotropic effects on spikelet number per spike (SNS). QFlw.cib-4B.3 and QFll/Flw/Fla.cib-2D had effects on grain number per spike (GNS) and thousand-grain weight (TGW). Comparison analysis suggested that QFll/Fla.cib-2B was likely a new locus. Two candidate genes, TraesCS2B03G0222800 and TraesCS2B03G0230000, associated with leaf development within the interval of QFll/Fla.cib-2B were identified based on expression-pattern analysis, gene annotation, ortholog analysis, and sequence variation. The major QTL and markers reported here provide valuable information for understanding the genetic mechanism underlying flag leaf size as well as breeding utilization in wheat.
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Introduction

Bread wheat (Triticum aestivum L.), one of the most widely adapted food crops, provides about a quarter of the calories consumed by humans (Curtis and Halford, 2014). The shape, size, and posture of the leaves together with ear and awn, play a decisive role in the photosynthetic capacity of plants and also regulate many important agronomic traits, such as yield and biotic and abiotic stress responses (Sourdille et al., 2002; Liu et al., 2015).

Flag leaf size, estimated by flag leaf length (FLL), width (FLW), and area (FLA), is an important control of plant structure and is correlated with yield-related traits (Wang et al., 2011; Niu et al., 2022; Zhao et al., 2022). In cereals, flag leaves are the main organ for photosynthesis and plays a crucial role in grain development, such as enhanced proteostasis, lipid remodeling, and nitrogen remobilization (Cohen et al., 2022). Therefore, breeding wheat with optimal leaf morphology has been regarded as an effective method to improve grain yield.

Previously studies attempting to uncover the genetic mechanism of flag leaf morphology in crops showed that flag leaf size was determined by quantitative trait loci (QTL) and significantly influenced by the environment (Coleman et al., 2001; Kobayashi et al., 2003). In rice, the genes that control flag leaf size have been extensively investigated and several major types of signaling pathways have been identified, including the transcription factor signaling, cell expansion pathway, microRNA regulator, and others (Zhang et al., 2009; Tian et al., 2015; Alamin et al., 2017; He et al., 2018; Zhou et al., 2020; Uzair et al., 2021; Huang et al., 2022). In rice, for example, OsCKX3 mediated the accumulation of cytokinins, the mutant osckx3 exhibited a larger flag leaf size. (Huang et al., 2022). Map-based cloning in rice identified a GATA family transcription factor was a candidate gene for SNFL1 and the mutant snfl1 exhibited a reduction in flag leaf epidermal cell length (He et al., 2018). The MIR319 gene family contains two members, Osa-MIR319a and Osa-MIR319b. Overexpression of MIR319 in rice and MiR319/TaGAMYB3 module in wheat regulate the number of longitudinal small veins in the leaf, which led to an increase in leaf blade width, and improves grain yield. (Yang et al., 2013; Wang et al., 2014; Jian et al., 2022). NRL1 encodes the cellulose synthase-like protein D4 (OsCslD4) and plays a critical role in leaf morphogenesis by regulating longitudinal veins and adaxial bulliform cells development (Hu et al., 2010).

The molecular cloning of genes related to flag leaf size in wheat falls behind rice owing to its huge genome. So far, QTL for flag leaf size have been detected on almost all wheat chromosomes based on various genetic populations and environments (Fan et al., 2015; Wu et al., 2016; Liu et al., 2018; Zhao et al., 2018; Jin et al., 2020; Ma et al., 2020; Tu et al., 2021). For example, TaFLW1, a major QTL for FLW, was fine-mapped into a 0.2-cM interval on chromosome 5A, which is tightly linked to Fhb5 (Xue et al., 2013). QFlw-6A was fine-mapped to a small interval on chromosome 6A and 10 genes were predicted in this region (Yan et al., 2020). More recently, QFlw-5B was narrowed to a 2.5 Mb region and contained 27 predicted genes (Zhao et al., 2022). To date, there is no report of map-based cloning of the gene controlling flag leaf size in wheat.

The present study was undertaken to (i) evaluate the performance of flag leaf size in a recombinant inbred line (RIL) population in multiple environments; (ii) identify QTL for flag leaf size using a wheat 55 K SNP-based genetic map and analyze their effects; (iii) assess relationships between flag leaf size and yield-related traits; (iv) predict candidate genes for major QTL.



Materials and methods


Plant materials

A RIL population (WC12, 180 F9 lines) derived from the cross of W7268 and Chuanyu 12 (CY12) by the single-seed descend method was used for gene mapping in this study. The wheat line W7268 was selected by our lab. It was characterized by desirable agronomic traits including high SNS, GNS, and flag leaf size. Thus, it has been widely used in wheat breeding programs and several elite varieties have been selected during the past decade. However, the genetic control of flag leaf size in W7268 is uncovered. CY12 is a commercial cultivar with a smaller flag leaf size. In addition, 135 wheat accessions (including 60 modern cultivars and 75 landraces) were used to genotyping. The population was constructed and the accessions were conserved by our laboratory.



Phenotyping and statistical analysis

RILs of WC12 were evaluated at two experimental sites in three growing seasons: 2018–2019 in Shuangliu (103° 52′ E, 30° 34′ N) (E1); 2018–2019 in Shifang (104°11′ E, 31° 6′ N) (E2); 2019–2020 in Shuangliu (E3); 2019–2020 in Shifang (E4); 2020–2021 in Shuangliu (E5); 2020–2021 in Shifang (E6). A completely randomized block design was used for all of the trials in each environment. Each line was planted in a one-row plot with a row length of 1.2 m, a row spacing of 0.2 m, and 11 seeds per row. Two replicates were employed in each environment. Fertilizer (N: 25%, P2O5: 10%, K2O: 10%) was applied at sowing time at a rate of 450 kg/ha. Field management and disease control were performed in accordance with conventional practices in wheat production.

After anthesis, the main tillers of ten representative plants from each line were selected for measuring flag leaf length (FLL), flag leaf width (FLW), and flag leaf area (FLA). FLL was measured as the distance from the base to the tip of the leaf; FLW was the width of the widest part of the leaf; FLA was derived from the FLL and FLW and estimated as FLL × FLW × 0.75 (Zeuli and Qualset, 1990). Also, the phenotypic values of some yield-related traits were measured. At maturity, ten representative plants were randomly selected to measure agronomic traits, including spikelet number per spike (SNS), spike compactness (SC), grain number per spike (GNS), and fertile tiller number (FTN). Spikelet number per spike (SNS) was determined by counting the number of spikelets in main spikes; SC was calculated by dividing the spike length (SL) by SNS. The main spikes of target plants were then harvested and threshed manually. GNS was then counted manually, and the thousand-grain weight (TGW) and grain yield per plant (GYP) was assessed with SC-G software (Wanshen Detection Technology Co., Ltd., Hangzhou, China).

Basic statistical analysis, frequency distribution analysis, and correlation coefficients analysis among traits were conducted on the phenotypic data using software SPSS25 (Chicago, IL, USA), R 4.1.2, and QTL IciMapping v4.2 (Meng et al., 2015). The best linear unbiased estimator (BLUE) was calculated using the R package “lme4” and used for combined QTL detection, correlation analysis, and effect analysis. Estimation of the broad-sense heritability (H2) of each trait according to the method described by Smith (Smith et al., 1998). The significance of the difference was measured by the Student’s t test (P < 0.05), Welch’s two-sample t test (P < 0.05), and Wilcoxon’s symbol rank-sum (P < 0.05) using SPSS25 and R 4.1.2, respectively.



Linkage map construction and QTL detection

A high-density genetic map containing 2,186 bin markers was constructed using the wheat 55 K SNP array according to a previous study (Liao et al., 2022). This genetic map spanned 2,398.67 cM across 21 chromosomes with an average interval of 1.10 cM/marker. There are 1,598 SNP markers on the map, of which genome A contains 428 markers, genome D contains 467 markers, and genome B contains the most markers (703). In addition, markers derived from three reported genes Ppd-B1, Rht-B1, and Ppd-D1 were integrated into the genetic map for QTL detection (Ellis et al., 2002; Guo et al., 2010; Díaz et al., 2012). They were added to the corresponding chr2B, chr4B, and chr2D genetic map by JoinMap 4.1 (Voorrips et al., 2006).

QTL analysis was conducted using the inclusive composite interval mapping (ICIM) function of QTL IciMapping v4.2 (Meng et al., 2015). Individual environmental QTL values were measured using the bi-parental populations (BIP) module with walking step = 1.00 cM, PIN = 0.001, and LOD score values ≥ 3. QTL with PVE value greater than 20% in at least one environment and could be stably detected in more than four environments (including the BLUE dataset) were considered as the major ones. QTL with common flanking markers or less than 1 cM apart were considered identical. QTL were named according to the International Rules of Genetic Nomenclature (https://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm). The “cib” represents “Chengdu Institute of Biology”.



Marker development and genotyping

To develop new markers within the mapped interval, variants between parental lines were detected using exome sequencing. Exon capture, sequencing, and analysis were performed by Bioacme Biotechnology Co., Ltd (Wuhan, China, http://www.whbioacme.com).

On the basis of the preliminary QTL mapping result, new Kompetitive Allele Specific PCR (KASP) markers were developed within the interval of major QTL. According to the exome sequencing result, the variant sites (including SNPs and InDels) between W7268 and CY12 were screened. Only SNPs with differences between W7268 and CY12 at the major QTL, by referring to the Chinese Spring (CS) reference genome IWGSC RefSeq v2.1 (http://www.wheatgenome.org), were converted into KASP markers. KASP assay reaction procedure and data analysis implemented according to the method depicted by Ji (Ji et al., 2020).



Conditional QTL analysis for FLA

Conditional QTL analysis is an excellent tool for interpreting the relationship between complex traits and components at the QTL level (Cui et al., 2011). We carried out conditional QTL analysis as described by Liu (Liu et al., 2018). QTL IciMapping v4.2 (Meng et al., 2015) was used to identify the conditional loci with conditional phenotypic values. The conditional phenotypic values (T1|T2), which means the value of Trait 1 conditional on Trait 2, were obtained using QGAStation2.0 (Chen et al., 2012). Here, ‘FLA|FLL’ and ‘FLA|FLW’ refer to the value of FLA excluding the influences of FLL and FLW, respectively. In the analysis of QTL mapping results, if a QTL was detected only in unconditional QTL analysis, the locus was considered to have a large contribution to the corresponding trait; whereas a QTL was considered to be unassociated with the corresponding trait if it was detected in both conditional and unconditional QTL analysis.



Prediction of candidate gene

Physical intervals of the major QTL detected in this study were obtained by blasting against (E-value of 1e-5) their flanking markers sequences to genome sequences of CS reference genome IWGSC RefSeq v2.1 (http://www.wheatgenome.org). The annotations and functions of genes between flanking markers were further analyzed using UniProt (https://www.uniprot.org/). The expression pattern analysis of candidate genes was performed using Gene Expression of Triticeae Multi-omics Center (http://202.194.139.32/expression/wheat.html) (Ma et al., 2021) and Wheat Expression Browser (http://www.wheat-expression.com) (Ramírez-González et al., 2018). The circle graph of expression values was drawn using the ggplot2 package in R 4.1.2. Analysis of orthologous genes in wheat and rice was carried out using the Triticeae-Gene Tribe (http://wheat.cau.edu.cn/TGT/) (Chen et al., 2020). Furthermore, to analyze the potential candidate genes, SNPs in the target regions were collected using the exome sequencing result.




Results


Phenotypic variation of flag leaf-related traits

The phenotypic means of flag leaf-related traits (including FLL, FLW and FLA) for the parents and the population were listed in Table 1, as well as basic statistics from plants grown in six environments and the BLUE datasets. Significant differences in FLL, FLW, and FLA between W7268 and CY12 were observed (Figure 1 and Table 1). W7268 had significantly higher values for FLL (except E3 and E4), FLW, and FLA than those of CY12. The flag leaf-related traits of the WC12 population ranged from 19.50 to 33.80 cm for FLL, 1.62 to 2.95 cm for FLW, and 27.80 to 73.20 cm2 for FLA, in BLUE datasets, respectively. The estimated H2 for FLL, FLW, and FLA were 0.88, 0.92, and 0.89, respectively. These results indicated that FLL, FLW, and FLA were environmentally stable and were mainly determined by genetic factors. A pattern of continuous distributions for FLL, FLW, and FLA was observed in each environment and the BLUE dataset of the WC12 population, suggesting that they were common quantitative traits and controlled by multi-genes (Figure 2). Furthermore, significant and positive correlations among FLL, FLW, and FLA were detected among six environments, with Pearson’s correlations (r) of 0.21–0.93 in the WC12 population (Supplementary Figure 1).


Table 1 | Phenotypic performance and distribution of flag leaf length (FLL), flag leaf width (FLW) and flag leaf area (FLA) in parents and WC12 lines in different environments.






Figure 1 | Morphology of the flag leaf size of W7268 and Chuanyu 12 at flowering stage from Shuangliu 2020-2021 trail.






Figure 2 | Frequency distribution of the WC12 lines for flag leaf length (FLL) (A), flag leaf width (FLW) (B), and flag leaf area (FLA) (C) in six environments and the BLUE datasets.





Correlation analysis between flag leaf-related and yield-related traits

Phenotypic correlations between FLL, FLW, and FLA were assessed using the BLUE datasets. FLL was significantly and positively correlated with FLW and FLA (P < 0.001); FLW was also significantly and positively correlated with FLA (P < 0.001) (Supplementary Table 1). The relationship between flag leaf-related traits and SNS, SC, GNS, TGW, and FTN was also assessed (Figure 3). The results showed that FLL, FLW, and FLA were significantly and positively correlated with SNS and GNS (P < 0.001), and significantly and negatively associated with SC (P < 0.001) and TGW (P < 0.001). Significant and negative correlations were detected between FLL and FTN (P < 0.05), FLW and FTN (P < 0.001), and FLA and FTN (P < 0.005).




Figure 3 | Coefficients of pairwise Pearson’s correlations between flag leaf length (A), flag leaf width (B), and flag leaf area (C) and yield-related traits in the WC12 population. *, *** and **** represent significant at P < 0.05, P < 0.005 and P < 0.001, respectively.





QTL detection for flag leaf-related traits

A total of 48 QTL for FLL, FLW, and FLA were detected in the WC12 population and located on chromosomes 1A, 2A, 5A, 7A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 2D, 4D, 5D and 7D, respectively (Supplementary Table 2). Among them, six major QTL located on chromosomes 2B, 4B, and 2D could be consistently identified in more than three environments and the BLUE dataset, and thus, they were considered to be environmentally stable (Table 2).


Table 2 | Major and stable quantitative trait loci (QTL) for flag leaf length (FLL), flag leaf width (FLW), and flag leaf area (FLA) identified across multiple environments in the WC12 population.



Two major QTL for FLL, QFll.cib-2B.2 and QFll.cib-2D, were detected. QFll.cib-2B.2 was identified in five environments and the BLUE dataset. It explained 7.31–30.87% of the phenotypic variance with the LOD values ranging from 3.70 to 13.88. QFll.cib-2D was identified in five environments and the BLUE dataset with the LOD values of 3.78–29.48, explaining 6.93–53.12% of the phenotypic variance. The positive alleles of QFll.cib-2B.2 and QFll.cib-2D were contributed by CY12 and W7268, respectively (Figure 4 and Table 2). Two minor QTL QFll.cib-1B and QFll.cib-5D.1 were detected in three environments, explaining 2.25–3.38%, and 3.73–5.09%, respectively, of phenotypic variation (Supplementary Table 2).




Figure 4 | Genetic map of major quantitative trait loci (QTL), QFll.cib-2B.2 and QFla.cib.2B.2 (A), QFlw.cib-4B.3 (B), QFll.cib-2D, QFlw.cib-2D.1, and QFla.cib.2D (C), and their effects on corresponding traits in WC12 population. W7268 and CY12 represent lines with alleles from W7268 and CY12, respectively; ***, and **** represent significant at P < 0.005, and P < 0.001, respectively.



Two major QTL and six minor QTL for FLW were detected on chromosomes 2B, 3B, 4B, 2D, 5D, and 7D. The two major QTL, QFlw.cib-4B.3 and QFlw.cib-2D.1, were identified in four environments and the BLUE datasets. QFlw.cib-4B.3 explained 16.42–20.74% of the phenotypic variance with the LOD values of 6.78–8.71. QFlw.cib-2D.1 explained 11.30–40.43% of the phenotypic variance with the LOD values of 4.61–19.91. The positive alleles of these two loci were contributed by W7268 (Figure 4 and Table 2). Minor QTL, QFlw.cib-3B.2, QFlw.cib-4B.1, QFlw.cib-7D.1, and QFlw.cib-7D.2, were detected in less than four environments, explaining 2.30–8.90%, 9.40–12.17%, 2.95–6.38%, 2.84–5.21%, respectively, of phenotypic variation. QFlw.cib-2B.1 and QFlw.cib-5D.1 were identified in four environments and the BLUE datasets, explaining 8.57–13.52% and 4.08–7.58% of the phenotypic variance, respectively (Supplementary Table 2).

Two major QTL associated with FLA were detected. QFla.cib-2B.2 was detected in four environments and the BLUE dataset with LOD values ranging from 3.51 to 11.27. It explained 6.33–25.33% of the phenotypic variance. QFla.cib-2D, detected in three environments and the BLUE dataset, had LOD values of 12.88–18.05 and accounted for 28.6–37.19% of the phenotypic variance. The positive alleles of QFla.cib-2B.2 and QFla.cib-2D were contributed by CY12 and W7268, respectively (Figure 4 and Table 2).

One minor QTL QFlw.cib-2B.1 and two major QTL, QFll.cib-2B.2and QFla.cib-2B.2, shared the same flanking marker KA12 on chromosome 2B (Figure 4A and Supplementary Table 2). Meanwhile, three QTL QFll.cib-2D, QFlw.cib-2D.1, and QFla.cib-2D were co-localized in the interval of AX-110289516–AX-111956072 (Figure 4C and Table 2). Thus, the two loci were temporarily designated as QFll/Fla.cib-2B and QFll/Flw/Fla.cib-2D.

According to the interval of QFll/Fla.cib-2B, KASP markers (KA01 to KA29) were developed and integrated into the genetic map based on the exome sequencing result of the two parents (Supplementary Table 3). Among them, four markers, KA12, KA13, KA15, and KA17, were found to be closely linked to QFll/Fla.cib-2B (Figure 4A).



Conditional QTL analysis for FLA

FLA is a complex trait composed of FLL and FLW. We performed conditional QTL analysis of FLA in the WC12 population to further evaluate the effect of FLL and FLW on FLA. The results showed that when FLA was conditional on FLL, the LOD values of QFla.cib-2B.2 and QFla.cib-2D were significantly reduced; when FLW was conditioned, the LOD values were lower than those in the unconditional analysis but remained at a high level (Supplementary Figure 2). These results indicated that FLL was primarily responsible for FLA in the WC12 population.



Effects of major QTL on corresponding traits

In the WC12 population, we identified seven major QTL (Table 2). Their effects on corresponding traits were assessed on the basis of flanking markers. As expected, lines in the WC12 population with the positive alleles at the three loci showed significantly higher values of the corresponding traits in all environments and the combined data than those with the negative alleles (except for E3 of QFll.cib-2D, E4 of QFlw.cib-2D.1, and E3 of QFla.cib-2D) (Figure 4).



Effects of major QTL on yield-related traits in the mapping population

We further evaluated the effects of major QTL on yield-related traits using the BLUE datasets. Compared with lines harboring the alleles from CY12 at QFll/Fla.cib-2B, lines with the alleles from W7268 had lower SNS (P < 0.05), but higher SC (P < 0.005). QFll/Fla.cib-2B had no significant effects on GNS, TGW, and FTN (Figure 5A). For QFlw.cib-4B.3, lines containing the alleles from W7268 had higher GNS (P < 0.001) but lower TGW (P < 0.001) than lines containing the alleles from CY12 (Figure 5B). No significant difference in SNS, SC, and FTN was observed between the two groups. For QFll/Flw/Fla.cib-2D, lines possessing the alleles from W7268 had significantly higher SNS (P < 0.001), GNS (P < 0.001), and FTN (P < 0.005) than lines containing the alleles from CY12, but had significantly lower TGW (P < 0.001) (Figure 5C).




Figure 5 | Effects of QFll/Fla.cib-2B (A), QFlw.cib-4B.3 (B), and QFll/Flw/Fla.cib-2D (C) on spikelet number per spike (SNS), spikelet compactness (SC), grain number per spike (GNS), thousand grain weight (TGW), and fertile tiller number (FTN) in WC12 population. W7268 and CY12 represent lines with alleles from W7268 and CY12, respectively; *, ***, and **** represent significant at P < 0.05, P < 0.005, and P < 0.001, respectively.





Analyses of additive effects of major QTL for FLL, FLW, and FLA

Since multiple QTL for FLL (QFll.cib-2B.2 and QFll.cib-2D), FLW (QFlw.cib-4B.3 and QFlw.cib-2D.1), and FLA (QFla.cib-2B.2 and QFla.cib-2D) could be simultaneously detected, we further analyzed their additive effects on the corresponding traits.

For FLL, lines with the combination of positive alleles of QFll.cib-2B.2 and QFll.cib-2D significantly (P < 0.001) increased FLL by 31.68% compared with those without any positive alleles. Either lines with a single positive allele from QFll.cib-2B.2 or QFll.cib-2D also significantly (P < 0.001) increased FLL by 5.98% and 11.43%, respectively, compared with those possessing no positive alleles of FLL QTL. These results indicated that the combination of QFll.cib-2B.2 and QFll.cib-2D had the largest effect, followed by QFll.cib-2D and QFll.cib-2B.2, respectively (Supplementary Figure 3).

For FLW, compared with lines without any positive alleles, lines with the combination of positive alleles of QFlw.cib-4B.3 and QFlw.cib-2D.1, lines harboring the positive allele from QFlw.cib-4B.3 and lines with the positive allele from QFlw.cib-2D.1, all significantly (P < 0.001) increased FLW by 20.87%, 8.21%, and 8.40%, respectively. These results showed that the combination of QFlw.cib-4B.3 and QFlw.cib-2D.1 had the largest effect, followed by the single allele QFlw.cib-4B.3, and QFlw.cib-2D.1, respectively (Supplementary Figure 3).

For FLA, lines with the combination of positive alleles of QFla.cib-2B.2 and QFla.cib-2D, lines possessing the positive allele from QFla.cib-2D, and lines with the positive allele from QFla.cib-2B.2, all significantly (P < 0.001) increased FLA than lines without any positive alleles by 52.14%, 20.08%, and 9.89%, respectively. These results suggested that the combination of both QFla.cib-2B.2 and QFla.cib-2D had the largest effect, followed by QFla.cib-2D and QFla.cib-2B.2, respectively (Supplementary Figure 3).



Potential candidate genes for QFll/Fla.cib-2B

According to the CS reference genome (IWGSC RefSeq v2.1), there were 56 annotated high-confidence genes in the interval of QFll/Fla.cib-2B (Supplementary Table 4). Expression pattern analysis showed that 36 (Triticeae Multi-omics Center) and 23 (Wheat Expression Browser) genes were expressed in the leaf, respectively (Supplementary Figure 4). Gene annotation and orthologous gene analyses (Supplementary Table 4), combined with previous expression pattern analysis, suggested that TraesCS2B03G0222800 and TraesCS2B03G0230000 were likely to be associated with flag leaf development and growth. Six SNPs, two located in introns and four in the coding region, were detected in TraesCS2B03G0230000 between W7268 and CY12 by sequence analysis. Among the four SNPs in the exons, there were two synonymous SNPs and two non-synonymous SNPs (Arg to Trp, and Ala to Val) (Supplementary Table 5).




Discussion


Comparison of the major QTL to those reported previously

In this study, seven major and stable QTL were identified in multiple environments, explaining 6.33–53.12% of phenotypic variations. These QTL will benefit cloning and marker-assisted selection (MAS) in wheat breeding.

We compared their physical positions to those reported in previous studies. The physical position of QFlw.cib-4B.3, located at 28.6–43.54 Mb on chromosome 4B, overlapped with the previously reported Rht-B1 (33.61–33.62 Mb on chromosome 4B). Meanwhile, one of the flanking makers of QFlw.cib-4B.3 is Rht-B1 (Supplementary Figure 5). QFll/Flw/Fla.cib-2D comprising of QFll.cib-2D, QFlw.cib-2D.1, and QFla.cib-2D were located at 36.20-59.78 Mb on chromosome 2D and overlapped to Ppd-D1 (36.20–36.21 Mb on chromosome 2D). Meanwhile, according to the genetic map, one of the flanking makers of QFll/Flw/Fla.cib-2D is Ppd-D1 (Supplementary Figure 6). In addition, it has been reported that Rht-B1 (Wen et al., 2013; Tang et al., 2018; Jobson et al., 2019) and Ppd-D1 (Liu et al., 2001) could significantly affect the length, width, and area of flag leaf in different genetic backgrounds and environments, which is consistent with this study. These results suggested that Rht-B1 and Ppd-D1 were likely the candidates of QFlw.cib-4B.3 and QFll/Flw/Fla.cib-2D, respectively.

QFll.cib-2B.2 and QFla.cib-2B.2 designated as QFll/Fla.cib-2B together with QFlw.cib-2B.1, were co-located between 62.03 Mb and 68.71 Mb on chromosome 2B. Two reported QTL, close to the interval of QFll/Fla.cib-2B, QFLL-2B and QFLA-2B (Liu et al., 2018), were co-located in 54.44–66.50 Mb on chromosome 2B (Supplementary Figure 7), showing a significant effect on FLL and FLA, respectively, but not on FLW. In addition, these two loci were not stable (only detected in two environments), and QFLA-2B was a minor QTL. In the present study, we detected QFll/Fla.cib-2B and QFlw.cib-2B.1 in five environments (including the BLUE datasets) and the locus had an effect on FLW. These results indicate that QFll/Fla.cib-2B may be different from QFLL-2B and QFLA-2B.

Because Ppd-B1 has a similar physical interval (63.36–63.37 Mb on chromosome 2B) to QFll/Fla.cib-2B, we used the functional marker of Ppd-B1 to perform the comparison. By genotyping the WC12 lines, we integrated it into the genetic map and the result showed that Ppd-B1 was genetically separate from QFll/Fla.cib-2B (Figure 4A). As a result, QFll/Fla.cib-2B is likely a novel locus.



Relationships between flag leaf size and yield-related traits and pleiotropic effects of major QTL

Optimizing flag leaf size, including length, width, and area, plays an important role in increasing grain yield (Zhao et al., 2018). In wheat, the flag leaf size was significantly correlated with yield-related traits (Cui et al., 2003; Wang et al., 2011; Fan et al., 2015; Liu et al., 2018; Zhao et al., 2022). In the present study, we also found that FLL, FLW, and FLA showed a positive correlation to SNS and GNS, and a negative correlation to SC, FTN, and TGW (Figure 3). This result suggested that larger flag leaf benefits from forming more SNS and GNS but hinders the tillering and grain weight increase.

W7268 is an elite line characterized by high SNS and GNS in the Yangzi River region of China. It has been widely used in wheat breeding programs and several varieties have been selected using W7268 as one of the parents. In the present study, we found that QFlw.cib-4B.3 and QFll/Flw/Fla.cib-2D have various pleiotropic effects on SNS and GNS, which may contribute to the higher yield of W7268. Moreover, QFll/Fla.cib-2B from CY12 also had additive effects on SNS and GNS and may be an unreported locus with potential to increase yield (Figure 5). Thus, cloning and utilization of these QTL will be valuable for grain yield improvement by optimizing flag leaf size.

To analyze the utilization of the positive alleles of the major QTL during artificial selection, we used their flanking markers to genotype 135 wheat accessions (75 of landraces and 60 of cultivars), and the results were shown in Supplementary Table 6. The number of landraces with the positive alleles of QFll/Fla.cib-2B, QFlw.cib-4B.3, QFll/Flw/Fla.cib-2D was 21, 36 and 47, or 28.0%, 46.2% and 62.7%, respectively. At the same time, the number of accessions with positive alleles in cultivars was 30, 22 and 8, or 50.0%, 36.7% and 13.3%, respectively. This result suggested that the positive alleles of QFlw.cib-4B.3, QFll/Flw/Fla.cib-2D were not preferred by breeders and their distribution was decreased, while QFll/Fla.cib-2B was enriched during selection.

Based on our results, QFlw.cib-4B.3 and QFll/Flw/Fla.cib-2D may be allelic to Rht-B1 and Ppd-D1, respectively. And the positive allele for QFlw.cib-4B.3 may be Rht-B1b and for QFll/Flw/Fla.cib-2D may be Ppd-D1b. According to previous reports (Yang et al., 2009; Guo et al., 2010; Tang et al., 2012; Wang et al., 2013; Xu et al., 2014; Bai et al., 2015; Zhang et al., 2016), the distribution of Rht-B1a and Ppd-D1a was enriched during the breeding process compared to Rht-B1b and Ppd-D1b in China, which was consistent with our study. The dwarf gene Rht-B1b could reduce the thousand-grain weight, which may be the reason why breeders did not prefer this genotype (Xu et al., 2014; Zhang et al., 2016). Ppd-D1a, insensitive to photoperiod, facilitated flowering and allowed wheat to finish filling before the onset of summer heat. (Yang et al., 2009; Guo et al., 2010; Bai et al., 2015).

As shown in Supplementary Figure 8, significant differences in GYP were identified between lines with positive and negative alleles, with one, three, and four environments for QFlw.cib-4B.3, QFll/Fla.cib-2B, and QFll/Flw/Fla.cib-2D, respectively. As expected, lines with the negative alleles of QFlw.cib-4B.3 and QFll/Flw/Fla.cib-2D showed higher GYP values, consistent with their distribution changes during the artificial selection. For QFll/Fla.cib-2B, lines with the negative allele had a higher GYP than the positive allele.

The significant effects of these flag leaf-related QTL on different traits, their distribution in different accessions, and various impacts on yield, suggested that utilization of them will help to improve grain yield by optimizing flag leaf size.



Potential candidate genes for QFll/Fla.cib-2B

In the physical interval of QFll/Fla.cib-2B in the CS genome, 36 (Triticeae Multi-omics Center) and 23 (Wheat Expression Browser) genes expressed in leaves were screened (Supplementary Figure 4 and Supplementary Table 4). According to expression-pattern analysis, gene annotation, and ortholog analysis, two candidate genes TraesCS2B03G0222800 and TraesCS2B03G0230000 were preliminarily selected to be associated with flag leaf development. Among them, TraesCS2B03G0222800 encodes a pseudo-response regulator and is an ortholog of rice Os07g0695100, which is also known as DTH7 (Days to heading 7)/Ghd7.1(Grain number, plant height, and heading date 7), a pleiotropic gene controlling tassel stage, plant height and the number of glumes per spike in rice (Yan et al., 2013). A recent study has shown that Ghd7.1 mutations resulted in reduced leaf size in rice, and allelic variance analysis has verified that Ghd7.1 is a functional candidate gene for leaf size (Tang et al., 2018). TraesCS2B03G0230000 encodes an omega-3 fatty acid desaturase, which is associated with the production of alpha-linolenic acid, a major class of fatty acids found in the membrane lipid cells of higher plants. (John et al., 1995). Plastid omega-3 desaturase activity is necessary to increase the level of alpha-linolenic acid in extra plastid lipids during leaf development (Horiguchi et al., 1998). Sequence analysis also revealed abundant sequence polymorphisms in TraesCS2B03G0230000 between W7268 and CY12 (Supplementary Table 5). Therefore, TraesCS2B03G0222800 and TraesCS2B03G0230000 may be potential candidates for map-based cloning in the future.
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Supplementary Figure 1 | Correlation coefficients for flag leaf length (FLL) (A), flag leaf width (FLW) (B), and flag leaf area (FLA) (C) of parents and the WC12 population in different environments. *** and **** represent significant at P < 0.005 and P < 0.001, respectively

Supplementary Figure 2 | Conditional quantitative trait loci (QTL) analysis among flag leaf-related traits. Flag leaf area (FLA) trait on flag leaf length (FLL) and flag leaf width (FLW) traits on chromosomes 2B (A) and 2D (B)

Supplementary Figure 3 | Additive effects of two flag leaf length (FLL)-related QTL (A), three flag leaf width (FLW)-related QTL (B), and two flag leaf area (FLA)-related QTL (C) on FLL, FLW, and FLA, respectively. + and − represent lines with and without the positive alleles of the target QTL based on the flanking markers of the corresponding QTL, respectively. **** represents significant at P < 0.001

Supplementary Figure 4 | Expression pattern of genes within the QFll/Fla.cib-2B interval. (A–D) represent leaf, grain, spike, and root by Triticeae Multi-omics Center, respectively; (E–H) represent leaves/shoots, grain, spike, and roots by Wheat Expression Browser, respectively.

Supplementary Figure 5 | QTL analysis (A), genetic map (B), and physical map (C) of QFlw.cib-4B.3

Supplementary Figure 6 | QTL analysis (A), genetic map (B), and physical map (C) of QFll/Flw/Fla.cib-2D

Supplementary Figure 7 | QTL analysis (A), genetic map (B), and physical map (C) of QFll/Fla.cib-2B

Supplementary Figure 8 | Effect analysis of QFll/Fla.cib-2B (A), QFlw.cib-4B.3 (B), and QFll/Flw/Fla.cib-2D (C) on grain yield per plant (GYP) in WC12 population. W7268 and CY12 represent lines with alleles from W7268 and CY12, respectively; *, **, ***, and **** represent significant at P < 0.05, P < 0.01, P < 0.005, and P < 0.001, respectively.
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Maize with a high kernel protein content (PC) is desirable for human food and livestock fodder. However, improvements in its PC have been hampered by a lack of desirable molecular markers. To identify quantitative trait loci (QTL) and candidate genes for kernel PC, we employed a genotyping-by-sequencing strategy to construct a high-resolution linkage map with 6,433 bin markers for 275 recombinant inbred lines (RILs) derived from a high-PC female Ji846 and low-PC male Ye3189. The total genetic distance covered by the linkage map was 2180.93 cM, and the average distance between adjacent markers was 0.32 cM, with a physical distance of approximately 0.37 Mb. Using this linkage map, 11 QTLs affecting kernel PC were identified, including qPC7 and qPC2-2, which were identified in at least two environments. For the qPC2-2 locus, a marker named IndelPC2-2 was developed with closely linked polymorphisms in both parents, and when tested in 30 high and 30 low PC inbred lines, it showed significant differences (P = 1.9E-03). To identify the candidate genes for this locus, transcriptome sequencing data and PC best linear unbiased estimates (BLUE) for 348 inbred lines were combined, and the expression levels of the four genes were correlated with PC. Among the four genes, Zm00001d002625, which encodes an S-adenosyl-L-methionine-dependent methyltransferase superfamily protein, showed significantly different expression levels between two RIL parents in the endosperm and is speculated to be a potential candidate gene for qPC2-2. This study will contribute to further research on the mechanisms underlying the regulation of maize PC, while also providing a genetic basis for marker-assisted selection in the future.
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1 Introduction

Maize (Zea mays L.) is an important food and forage crop (Yang et al., 2013) that is cultivated globally across 20.2 million ha, and, in 2020, 116.2 million tons were produced (https://www.fao.org). Maize kernels are composed of approximately 10% protein, 72% starch, and 4% fat (Peña-Rosas et al., 2014). Chickens and pigs fed approximately 60% maize diet required an average of 15.5% and 16.5% protein during their growth, respectively (http://www.chinafeeddata.org.cn). This indicates that the protein content (PC) of maize was not sufficient to cater to the protein requirements of the feed. Therefore, utilizing the natural genetic variation controlling kernel PC in maize and introducing elite genome fragments into breeding are essential to satisfying feed demands and sustainable agriculture development.

Advances in next-generation sequencing (NGS) and biotechnology platforms have been vital for plant improvements and helped plant breeders to achieve greater genetic gains (Mutalik Desai et al., 2020). NGS can be divided into two strategies: whole genome resequencing (WGR) and reduced-expression sequencing (RRS) (Scheben et al., 2017). Per sample, the cost of RRS is lower than that of WGR but WGR is not affected to the same extent by the biases that impact RRS (Davey et al., 2011). Reads from genotyping-by-sequencing (GBS), one of the most widely used RRS methods, can be amplified using restriction enzymes, ligation, and polymerase chain reaction (PCR) prior to alignment with the reference genome (Poland and Rife, 2012; He et al., 2014). This process has been improved by the barcode system, which allows for discovery using genome-wide single-nucleotide polymorphisms (SNPs) with a lower error rate and cost (Elshire et al., 2011). SNP markers can be used to standardize and scale genotyping, and are known for their flexibility and abundance in the genome (Hoskins et al., 2001; Mammadov et al., 2012). The resolution of quantitative trait locus (QTL) mapping was previously limited as early genetic maps were mainly based on low-density markers, such as simple sequence repeat (SSR) markers, random amplified polymorphic DNA, and random fragment length polymorphisms (Mathivathana et al., 2019). Enough markers were produced by the reduced representation libraries of the genome and used for highly dense and accurate genetic linkage map construction (Gonda et al., 2019). GBS has been widely used in genetic studies as an efficient tool for an increasing number of plant species, including maize (Zea mays L.), barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), rice (Oryza sativa L.), sorghum [Sorghum bicolor (L.) Moench], soybean [Glycine max (L.) Merr.], and cassava (Manihot esculenta Crantz) (Spindel et al., 2013; Glaubitz et al., 2014; Rowan et al., 2015; Zhou et al., 2016; Su et al., 2017; Wang et al., 2020).

The combination of multi-layered genetic analysis will assist in the prediction of candidate genes to study complex quantitative traits (Tang et al., 2021; Zhang et al., 2022). Seventy-four loci were found to be significantly associated with kernel oil concentration and fatty acid composition (P< 1.8 × 10−6) using expression (eQTL) mapping, linkage mapping, and co-expression analysis. Five candidate genes associated with oil metabolism (LACS, WRI1a, ACP, FAD2, and COPII) were chosen to investigate potential functional polymorphisms capable of causing phenotypic changes (Li et al., 2013). In recent years, a study that combined GWAS, linkage mapping, and eQTL analysis uncovered GRMZM2G015534 and GRMZM2G143008 as being involved in amino acid biosynthesis in maize (Deng et al., 2017). Genetic analysis of maize quality traits using multi-omics can greatly reduce the required time and labor when compared to fine mapping; however, few studies have investigated the genetic basis of PC in maize kernels using combined multi-omics.

To date, subsistent genes corresponding to maize storage proteins have been cloned, including opaque1 (o1), o2, o5, o7, floury1 (fl1), fl2, fl4, mucronate (Mc), and defective endosperm B30 (De-B30) (Schmidt et al., 1990; Coleman et al., 1997; Kim et al., 2004; Kim et al., 2006; Holding et al., 2007; Myers et al., 2011; Wang et al., 2011; Wang et al., 2012; Wang et al., 2014). Nevertheless, the application of these genes in breeding is limited because of their defective endosperms. Kernel PC in maize is controlled by multiple genes with small individual and additive effects (Dudley et al., 1977), and analysis of the genetic basis of kernel PC will help to identify more favorable alleles for maize genetic improvements in the future. Genes/loci controlling PC traits can be analyzed using QTL analysis (Miao et al., 2020; Somegowda et al., 2022). Although some QTLs were detected at adjacent chromosome locations, genetic background, environmental factors, and their interactions have also been observed to have an effect in previous studies (Zhang et al., 2008; Li et al., 2009; Yang et al., 2014). Consequently, there are contrasting reports on QTL number, genetic effects, and distribution (Yang et al., 2016). Molecular marker development and the implementation of fine gene mapping to genetically improve traits could also not be achieved due to the absence of stable markers (Lozada et al., 2018; Ren et al., 2019; Ma et al., 2020; Lozada et al., 2021; Yepuri et al., 2022).

In the present study, we have constructed a recombinant inbred line (RIL) population using 275 lines derived from two elite inbred lines Ji846 and Ye3189 for the following purposes: (1) to construct a high-density linkage map based on bin markers; (2) to map QTLs for PC in maize kernels by combing phenotypes in RILs across three environments; (3) to develop PCR-based markers for major QTLs; and (4) to predict a candidate gene for a detected QTL.



2 Materials and methods


2.1 Plant materials and phenotypic evaluations

The RIL population consisted of 275 individuals and was derived from a cross between Ji846 (female) and Ye3189 (male), which are grown in the northeast spring maize area of China and are from the Lancaster and Reid heterotic groups, respectively. Compared with Ye3189, Ji846 had higher plant and ear height, more row kernel numbers, and higher resistance to maize head smut, however, it showed had lower 100-grain weight and single ear weight. The Ji846 and Ye3189 kernel type is biased towards flint and semi-dent, respectively. Phenotypic performance was evaluated in 2018 and 2019 at Gongzhuling (124.82°N, 43.50°E) and in 2019 at Harbin (126.68°N, 45.72°E); these locations are in the spring maize-growing region of China where these lines are commonly grown. A random incomplete block design was adopted for all experiments, with one-row plots, three replicates at each location, 17 plants in each row, 25 cm plant spacing, 60 cm row spacing, and a final density of 60,000 plants/ha. During the harvest period, five self-pollinating ears were collected from the center of each plot, and the samples were taken according to the standard procedure of phenotypic identification after air-drying. The kernels in the middle of the ear were mixed equally for each replication. The maize kernel PC was determined using an MPA Fourier near-infrared reflectance spectrometer (BRUKER, Germany) with a spectrum range of 4,000–12,000 cm-1, a scanning frequency of 64, and a resolution of 8 cm-1. The performance of each plot was represented by the average values for the different traits from three replicates.



2.2 Statistical analysis of phenotypic data

The raw phenotypic data were corrected using the ‘lme’ function in the R package ‘lme4’ with BLUE and the formula: Pheno ~1 + Line + (1|Rep) + (1|Env) + (1|Line : Env), where Pheno are phenotypic data representing traits. Line, Rep, and Env indicate the phenotypic data of inbred lines, the repetition in each environment, and environment, respectively. Other factors are regarded as random effects and a line that is fixed effects. Model matrix and grouping factors are separated by ‘|’, and the ‘:’ is used to represent the interactions between factors. Estimates for the phenotypic distributions, correlations, and parts of the QTL analysis were predominately based on BLUE.

According to Knapp et al. (1985), the modified formula:   was employed to estimate the broad-sense heritability (H2) of traits across multiple environments, where   is the genotypic variance; the estimated interaction variance values for genotype × year, genotype × location, and genotype × location × year are represented by  ,  , and  , respectively; Y, L, and R refer the number of years, locations, and replications per location, respectively;   is the error variance; all variances were estimated using the ‘ASReml’ R package.



2.3 DNA isolation, sequencing, and SNP identification

Leaf tissues were collected during the tasseling vegetative stage and freeze-dried at −80°C for genomic DNA isolation and extraction using the CTAB protocol (Murray and Thompson, 1980). Deep sequence for Ji846 and Ye3189 DNA from 275 RILs was processed according to the previously published GBS method (Zhou et al., 2016), in which NlaIII (NEB) and EcoRI (NEB) were used for genomic DNA digestion with a TAA site that can be recognized by the restriction enzyme MseI. Universal primers and index primers were employed to purify PCR products using Agencourt AMPure XP (Beckman). Fragments that were 350–400 bp (including adaptors and indexes) were isolated and purified for sequencing using the Illumina HiSeq2500 (Illumina, USA) platform. The raw sequence reads of these lines are public on NCBI (Accession: PRJNA627044).

To identify SNPs in the RIL population, Burrows-Wheeler Aligner (Li and Durbin, 2009) and GATK (McKenna et al., 2010) were used for alignment and SNP identification. The SNPs of the RILs were supported by a minimum of 1 base. ANNOVAR was employed to determine the physical position of each SNP based on the B73 RefGen_V4 sequence. Variant calling errors and the ratio of SNP alleles derived from Ji846 and Ye3189 were calculated using a sliding window approach. To ensure map quality, the few base types that did not appear in the parents were considered as abnormal bases; genotypes were screened to cover at least one individual marker in all progeny to ensure the integrity of genotypes; SNPs with segregation distortion of<0.001 were filtered out using Chi-square (χ2) tests, and those on the scaffold were filtered out to obtain high-quality SNP markers for subsequent map construction.



2.4 Bin map construction of the RIL population

A window size of 15 SNPs was used to scan the genotypic data with a step size of one SNP. If 11/15 of the sites in the window came from a single parent, they were considered homozygous, if not, they were considered heterozygous. Adjacent windows with the same genotypes were merged as a single block, whereas others were considered recombination breakpoints with variant genotypes. Bins were designated based on consecutive 100-kb intervals without any breakpoints across the entire population. The R/qtl function est.map (“kosambi” method) was manipulated to calculate the genetic distance between bin makers and linkage map construction.



2.5 QTL analysis for PC phenotypes in maize kernels

Phenotypic QTL locations in each of the three environments were determined using a composite interval mapping (CIM) method with the R/qtl software package (Broman et al., 2003), and BLUE was used to conduct a joint analysis across all environments. The threshold for defining the significant QTL was a logarithm of the odds (LOD) score of 3.0 calculated using 1,000 (P< 0.05) permutations in the analysis method. The genomic region wherein the LOD peak in the range of 1.5 decreased was considered the confidence interval of the QTL. The fitqtl function in the R ‘qtl’ package was used to calculate the proportion of phenotypic variation explained by each QTL. QTLs detected in different environments with overlapping confidence intervals or peak spacing within 20 Mb were considered to be single QTLs (Frascaroli et al., 2007).



2.6 Indel marker development

Genomic DNA was isolated and extracted using the CTAB protocol (Murray and Thompson, 1980). PCR was performed in a Bio-Rad T100™Thermal Cycler, with each reaction containing 10 mmolL-1 Tris-HCl, 0. 001% gelatin, 50 mmolL-1 KCl, 2.5 mmolL-1 MgCl2, 0.15 mmolL-1 dNTP, 10% glycerol, 0.25 μmolL-1 IndelPC2-2 primer (Supplementary Table 1), 0.5 µL Taq DNA polymerase, and 20 ng DNA template. Amplification conditions were 94°C for 5 min, followed by 35 cycles at 94°C for 1 min, 60°C for 2 min, and 70°C for 2 min.

Modified polyacrylamide gel electrophoresis (4.5%) was performed using a Bio-Rad sequencing plate device (38 cm × 30 cm × 0.4 mm). TEMED and APS were added to solidify the gel. Electrophoresis was performed for approximately 1 h at 50 W with a 2.5 μL PCR product sample in 1,800 mL 1 ×TBE buffer. The gel was soaked in 10% glacial acetic acid for 30 min, washed twice with water, 0.1% AgNO3 for 30 min, washed with water quickly once, and then soaked in 1.5% NaOH until the band type was distinguished. Sixty inbred lines with the highest and lowest PC in the inbred line population were selected to verify the availability of the markers. Significant differences between groups were analyzed using the Signif function in R software, and phenotype boxplots were drawn using the boxplot function in the ggplot R package.



2.7 Prediction of candidate genes

Correlations between the normalized expression level and phenotypic identification data were assessed in the maize inbred line population, which contained 348 lines. Normalized expression level data were obtained by RNA sequencing of maize kernels 20 days after pollination (20 DAP) using 150 bp paired-end Illumina sequencing, with an average of 7.7 Gb of high-quality raw sequencing data per line (Supplementary Table 2). Inbred lines were planted in Gongzhuling and Changping in 2018 and 2019 to collect the phenotypic data. Five ears in each block were self-pollinated, and 20 immature seeds from two ears in each block in Changping in 2019 were collected at 20 DAP for RNA-seq. The correlation coefficient and P value between gene expression levels and BLUE values for the phenotypes were calculated using the Corrplot package in the R software. The filtered working gene list of the maize genome was downloaded from MaizeGDB (http://www.maizegdb.org) to identify possible candidate genes within the QTL.



2.8 qRT-PCR analysis

Zm00001d002625 expression was analyzed in inbred lines Ji846 and Ye3189. Total RNA was extracted 20 DAP from the endosperm using a FastPure® Plant Total RNA Isolation Kit (Nanjing Vazyme Biotech Co. Ltd., China). Single-stranded cDNA was synthesized using the FastKing gDNA Dispelling RT SuperMix (Tiangen Biotech Co. Ltd., China). qRT-PCR was performed in Bio-Rad iQ5, with each reaction containing 100 ng of first-stand cDNA, 0.6 μL of 10 μmmolL-1 gene-specific primers, and 10 μL of SuperReal PreMix Plus (SYBR Green) (Tiangen Biotech Co. Ltd., China). Amplification conditions were 95°C for 15 min followed by 40 cycles at 95°C for 10 s and 58°C for 30 s. Relative expression of Zm00001d002625 was calculated using the 2-ΔΔCq method (Livak and Schmittgen, 2001), and the variation in expression was estimated using three biological replicates. The maize Tubulin gene was used as an internal control to normalize the data. The primers used for real-time PCR and cDNA amplification are listed in Supplementary Table 3.



2.9 Sequence amplification of gene promoter and alignment analyses

Based on the results from QTL mapping, gene-specific primer pairs (Supplementary Table 4) were developed and used to amplify the promoter sequences of the candidate genes in Ji846 and Ye3189. PCR amplification was performed in 50 μL volumes containing 25 μL of 2×PCR buffer for KOD FX, 10 μL of 2mM dNTPs, 200 ng of genomic DNA, 1.5 μL of each forward and reverse primer (15 μmolL−1), and the suitable nuclease-free water in a T100™ Thermal Cycler (Bio-Rad Research, USA). The thermal cycling program was as follows: 95°C for 3 min, 34 cycles of 98°C for 30 s, 56°C for 30 s, and 68°C for 1 kb/min, and final extension at 68°C for 10 min. The amplified products were electrophoresed on a 1.0% agarose gel. The target bands were cut and purified using a Zymoclean™Gel DNA Recovery kit. Multiple DNA alignments were performed in DNAMAN. The transcription factor binding sites of candidate genes were predicted using a search of the PlantPAN3.0 (http://plantpan.itps.ncku.edu.tw/) database.




3 Results


3.1 Phenotype and genotype characteristics of the parental lines and RILs

The RIL population and parental lines were evaluated at Gongzhuling in 2018 and 2019, and at Harbin in 2019(Supplementary Table 5). The PC of the female inbred line Ji846 was ~27.5% higher than that of the male Ye3189 based on the BLUE values, indicating a significant difference between the two parents (P< 0.05). The PC correlation coefficients ranged from 0.54 to 0.66 among the three environments. The mean of the Ji846 × Ye3189 RIL population was close to that of the mid-parent value, and the observations were distributed normally with transgressive segregation in all environments, indicating that the alleles responsible for increasing PC reside in both parents (Figure 1). ANOVA results showed that both genetic and environmental factors had significant effects on phenotypic variation. The broad-sense heritability(h2) estimate of the kernel PC was high (81.10%), indicating that much of the phenotypic PC variation in the RIL population was genetically determined (Table 1).




Figure 1 | Frequency distribution of protein content (PC) and correlations across three environments. GZL2018, GZL2019, and HEB2018 indicate Gongzhuling in 2018, Gongzhuling in 2019, and Harbin in 2018, respectively. Red arrow: Ye3189; blue arrow: Ji846; blue arrow: mid-parent.




Table 1 | Combined analyses of variance for protein in Ji846 × Ye3189.





3.2 SNP detection in the RIL parental lines

Ji846 and Ye3189 were sequenced at 15.21× and 13.42× coverage depths, respectively. The results showed that 185,582,944 and 177,044,073 reads were mapped to the B73 RefGen_V4 genome with mapping rates of 98.09% and 98.31% for Ji846 and Ye3189, respectively. There were 11,132,691 and 10,275,040 SNPs identified and the heterozygosis rates were 41.75% and 33.51% in each population, respectively (Figure 2). A total of 18,192,527 SNPs were annotated by ANNOVAR, and approximately 87.80% were in the intergenic region, 5.25% in the introns, 1.90% in the exons, and 4.92% within 1 kb upstream or downstream of the genes (Supplementary Table 6). In total, 2,874,990 homozygous polymorphic SNPs were obtained between Ji846 and Ye3189 as aa × bb segregation patterns. Sequencing of the 275 RILs using the GBS strategy resulted in 1,447,346–3,741,336 mapping reads, with an average sequencing depth of 11.85, and mapping rates ranged from 95.83% to 98.03%. An average of 221,271 SNPs were obtained for each line, with a minimum of 105,512 and a maximum of 320,184 (Figure 3A).




Figure 2 | Genome-wide distribution of SNPs and genetic variants in the Ji846 and Ye3189 genomes. The outermost circle with scale represents the ten chromosomes. The orange histogram represents the density of SNPs that are polymorphic between Ji846 and Ye3189; the green histogram represents the density of polymorphic SNPs within the coding sequences of Ji846 and Ye3189; the blue histogram indicates the density of insertions and deletions (Indels) between Ji846 and Ye3189.






Figure 3 | Genetic linkage map construction with bin markers. (A) SNP density distribution across the ten chromosomes. (B) Graphic genotype of 275 RILs. red, Ye3189 genotype; blue, Ji846 genotype; yellow, heterozygous genotypes. (C) Mapping of 2.09 and 3.04, which control maize head smut, in the RIL population. The curves with different colors represent the QTL regions according to the confidence intervals for linkage mapping under the three environments, respectively. Red, 2007 Harbin; black, 2008 Harbin; blue, 2009 Harbin; The x-axis indicates genetic positions across the maize genome in Mb. The y-axis indicates the LOD score of the detected QTL. The red dashed lines represent the LOD threshold.





3.3 Genetic linkage map construction and QTL mapping for kernel PC

After quality control and filtering, 77,680 SNPs, accounting for 2.70% of the total SNPs between Ji846 and Ye3189, were used to construct linkage maps. The sliding-window approach was applied to construct a bin map for 275 RILs. A total of 15,611 breakpoints were detected for 275 RILs with 56.7 breakpoints per individual (Supplementary Figure 1). Subsequently, there were 6,433 bin markers generated, and a high-density genetic map was constructed with a length of 2180.93 cM (Supplementary Figures 2, 3). The average distance ranged from 0.32 cM for chromosomes 2 and 3 to 0.37 cM for chromosomes 7 and 9, and the linkage interval between adjacent bins ranged from 2.32 cM to 4.64 cM, with an average of 3.31 cM (Figure 3B; Table 2). In addition, 77.79% of the bins were<300 kb in length, with 4.15% of the bins being longer than 1 Mb (Supplementary Figure 4). To evaluate the quality of the genetic map, bin markers were mapped to the maize B73 RefGen_V4 reference genome. The markers in the 10 linkage groups aligned well with the scatter plot of the B73 reference chromosome, indicating that there was appropriate collinearity between the maize B73 reference genome and identified bin markers (Supplementary Figure 5). To validate the power of this genetic map, QTLs for maize head smut, a trait previously mapped using SSR markers from this population, were mapped using the CIM function in R/qtl. QTL mapping revealed that 11.22% of the phenotypic variation could be explained by one major QTL located in a 231.15–244.44 Mb interval on chromosome 2. This locus included one cloned gene, ZmWAK (238,607,011–238,613,457), which confers quantitative resistance to maize head smut (Figure 3C) (Zuo et al., 2015). The results of this study narrowed the range of the QTL intervals, demonstrating the high resolution and accuracy of this bin map.


Table 2 | Characteristics of the high-density genetic map derived from a cross between Ji846 and Ye3189.



QTLs for kernel PC in each environment were detected based on a linkage map. Eleven QTLs were identified, two of which were detected in multiple environments and were distributed on chromosomes 2 and 7 (Supplementary Figure 6). The confidence intervals for these 11 QTLs spanned physical distances of 1.15–14.10 Mb, with an average of 5.14 Mb. The phenotypic variation explained by each QTL ranged from 4.21% to 14.56%, with a mean of 6.82%. In addition, six QTLs for kernel PC were detected from the analysis in the three environments when combined with the BLUE values (Figure 4). The confidence intervals for these six QTLs spanned physical distances of 3.40–14.10 Mb, with an average of 6.41 Mb. The phenotypic variation explained by each QTL ranged from 4.21% to 7.76%, with a mean of 5.53% (Table 3). The qPC9 locus with a 14.56% contribution to phenotypic variation was only identified in the Gongzhuling environment in 2018, indicating that specific QTLs might be strongly expressed in a certain environment. qPC7 and qPC2-2 were identified in at least two environments as stable loci that could be used to identify candidate genes. qPC7 (Chr7:116.1-137.7 Mb) and qPC2-2 (Chr2:14.45-19.95 Mb) explained ~7.32% and ~6.01% of the phenotypic variation, respectively, and were detected in multiple environments and considered stable loci that could be used to identify candidate genes. The reported gz50 and zp27 genes, which encode 50-kDa and 27-kDa γ-zein genes, directly affected the PC of kernels and were located in qPC7, indicating the accuracy of the localization results in this study.




Figure 4 | Mapping of QTLs for protein on the ten maize chromosomes in three different environments (combined). The curves indicate the physical positions (x-axis) of the bin markers against the LOD scores (y-axis) for QTLs detected on each of the ten chromosomes. The gray dashed lines represent the LOD threshold.




Table 3 | QTLs detected for kernel protein content in the RILs.





3.4 Marker development for qPC2-2

To further verify the correlation between the qPC2-2 locus and PC trait, an insertion and deletion (Indel) marker was developed based on the variation between biparental bases. The genetic linkage analysis results implied that the strongest signal associated with the phenotype was at the qPC2-2 locus of MK1131 (Chr2:17.15 Mb) in two different environments (Figure 5A). SNPs between Ji846 and Ye3189 located in MK1131 were calculated and categorized according to their parental alleles. A total of 122 SNPs matched the Ji846 parental genotype and 129 matched the Ye3189 genotype. The phenotypic values for kernel PC in the Ji846 × Ye3189 RIL population differed significantly (P = 1.6E-03) (Figure 5B). We also developed a PCR-based marker, IndelPC2-2, with closely linked polymorphisms in both parents near MK1131 (Figure 5C), which was used to genotype 30 high and 30 low PC maize inbred lines (Figure 5D), and the phenotypes of the diverse genotypes were also significantly different (P = 1.9E-03) (Figure 5E). Therefore, IndelPC2-2 could be utilized to enhance breeding efficiency using marker-assisted selection (MAS) with the PC trait.




Figure 5 | Distribution of the phenotypes and QTLs identified on chromosomes in the different environments assessed in this study. (A) The curves indicate the physical positions (x-axis) of bin markers against the LOD scores (y-axis) for QTLs detected on qPC2-2. Different colors represent different environments. 2018GZL and 2018HEB represent Gongzhuling and Harbin in 2018, respectively; BLUE represents joint analyses. (B) Tests for differences among phenotypic values for the BLUE values of PCs associated with MK1131 in maize inbred lines. AA represents the Ji846 genotype; BB represents the Ye3189 genotype. The y-axis indicates the phenotypic values for the BLUE values of PC. (C) Indels between Ji846 and Ye3189 around the peak position (MK1131) in qPC2-2. (D) Genotyping of maize inbred lines with 30 high and 30 low PCs using marker IndelPC2-2, lane 1: marker; lane 2: genotype of Ji846; lane 3: genotype of Ye3189; lane 4-63: genotypes of 60 inbred lines. (E) Tests for differences among phenotypic BLUE values of PCs associated with the IndelPC2-2 marker in maize inbred lines with 30 high and 30 low PCs. Hap1 represents Ye3189 genotype; hap2 represents Ji846 genotype. The y-axis indicates the phenotypic values for the BLUE values for PC.





3.5 Candidate gene prediction

To rapidly identify candidate genes within the stable QTL locus qPC2-2, correlation analysis using RNA-seq was adapted in this study. gz50 and zp27 genes are reported to encode 50-kDa and 27-kDa γ-zein genes that directly affect kernel development in qPC7. Correlation analysis using RNA-seq data from 348 inbred lines showed that only the gz50 gene expression level was significantly correlated with PC (r = 0.24, P = 6.21E-06), indicating the rationality of the adopted approach (Supplementary Table 7). For qPC2-2, the same method was adapted to predict the candidate genes in the interval Chr2:16.80 Mb to 17.25 Mb around peak marker MK1131. Four of the 12 gene expression levels were significantly correlated with the kernel PC BLUE value in the maize inbred line population (r = -0.11–0.22, P< 0.05). Furthermore, the qRT-PCR validated gz50 for qPC7, and Zm00001d002616, Zm00001d002621, Zm00001d002624, and Zm00001d002625 for qPC2-2 showed significant differences in gene expression levels in the endosperms of Ji846 and Ye3189 (20 DAP). Notably, among the four genes for qPC2-2, the expression of Zm00001d002625 (closest to MK1131) of Ye3189 was approximately 3.9 times than that in Ji846, which was the highest among the candidate genes (Figure 6). We obtained the sequence of promoter region for Zm00001d002625 gene in Ji846 and Ye3189. A 1 bp variation on 1250 bp upstream of the initiation codon in the promoter region of the Zm00001d002625 gene resulted in the absent binding motif GATCT of GATA-type transcription factors in Ji846 (Supplementary Figure 7; Supplementary Tables 8, 9). According to the maize gene annotation database (maize GDB, www.maizegdb.org), there was 60% homology between Zm00001d002625 and At4G00750 in Arabidopsis thaliana, which encodes an S-adenosyl-L-methionine-dependent methyltransferase superfamily protein; except for Zm00001d002625, none of the other three genes encoded proteins with functional annotations. SAM serves as the methylation donor in transmethylation reactions, probably causing a genome-wide disruption in storage proteins in developing endosperms due to methylation changes (Yan et al., 2022). In summary, Zm00001d002625 was speculated to be a potential candidate gene associated with kernel PC in qPC2-2.




Figure 6 | Relative quantitative expression analysis of Zm00001d002625 in the endosperm (20 DAP) of Ji846 and Ye3189 using qRT-PCR. The red bars represent Ji846 (high-protein parent), and the blue bars represent Ye3189 (low-protein parent). The horizontal axis of the graph indicates the different genes, and the vertical axis indicates the relative expression levels. The data are presented as the means of three biological and technical replicates ± standard errors. * and *** indicate P< 0.05 and P< 0.001, respectively, by a t-test.






4 Discussion

Improving the PC trait in maize kernels is one of the prime objectives of most breeding programs around the world. A limited number of the genes involved in starch metabolism are also known to have major effects on the PC in maize kernels based on the analysis of well-known maize mutants (Coleman et al., 1997; Kim et al., 2006; Wang et al., 2014). The identification of QTLs related to PC will thus aid in MAS breeding and the accumulation of elite alleles in natural variations using map-based cloning strategies (Raihan et al., 2016; Yang et al., 2016).

In general, segregation distortion, heterozygosity, allele switching, excessive single-cross events, and unexpected double recombinants, such as genotyping errors, occur during the construction of an SNP-based genetic linkage map (Cartwright et al., 2007). The abundance of missing data points and sequencing errors may cause an expansion of the genetic distance between markers in a genetic map or misplaced markers in the map due to the limited sequence depth (Spindel et al., 2013; Ma et al., 2020). In this study, the average effective depth of resequencing for the parents was approximately 14.32-fold; although 7,300,643 SNPs were obtained using the filtering steps, SNPS with abnormal bases, integrity, and partial separation were filtered out using stringent criteria. This resulted in 77,680 markers and samples with high-quality scores, which ensured the construction of a genetic map with a high level of accuracy (Huang et al., 2009; Jaganathan et al., 2015; Saxena et al., 2017; Mathivathana et al., 2019). The linkage map derived from the Ji846 × Ye3189 RIL population was constructed previously using 160 SSR markers and 49 AFLP markers, which covered 3,302.8 cM of the maize genome, and the average marker interval was 15.8 cM. In contrast to PCR-based SSR markers, a recombination breakpoint between the two bin markers with an average of approximately 0.34 cM can be identified using GBS, which represents a 46-fold improvement in the resolution of recombination breakpoints. Compared to the genetic linkage map constructed with general size populations for genetic dissection in the previous study, our genetic linkage map has a relatively higher resolution (Chen et al., 2014; Zhou et al., 2016; Su et al., 2017). It is worth mentioning that this population is suitable for the genetic dissection of maize quality traits due to the diversity of the kernel characteristics between parents. However, it is worth noting that many QTLs will likely be missed if only one bi-parental population is used due to the lack of polymorphism between the two parental lines. As a consequence, more elite alleles could be identified by using inbred populations and multiple parental populations. (Wang et al., 2018).

The selection of DNA-based markers, mapping functions, methods of phenotypic data collection, and mapping population type and size are all factors that affect QTL identification and analysis and the development of linkage maps (Hyne et al., 1995; Poland and Nelson, 2011; Su et al., 2016). Compared with the QTLs detected in the bi-parent population, the qPC1, qPC2-1, and qPC3-1 loci with 4.21–5.12% contributions to phenotypic variation were consistent with previous results (Dudley et al., 2004; Zhang et al., 2008; Guo et al., 2013; Yang et al., 2014; Zhang et al., 2015). The PC2-2, qPC3-2, qPC5-1, qPC5-2, qPC7, and qPC9 loci with 5.47−14.56% contributions to phenotypic variation were also similar to those identified in previous studies (Dudley et al., 2004; Zhang et al., 2008; Cook et al., 2012; Yang et al., 2014). The consistent and stable QTLs detected in diverse genetic backgrounds can be used for QTL fine-mapping and the identification of candidate genes. The previously unreported qPC4 locus demonstrated that the QTLs had a population-specific effect (Dudley et al., 2004; Yang et al., 2014). The qPC9 locus explained the largest phenotypic variation; nevertheless, it was detected only once in a sample from Gongzhuling in 2018. QTL × environment interaction is an important property of QTLs, even for highly heritable traits, such as plant height, and these interactions are trait- and gene-specific (Li et al., 2003; Mathivathana et al., 2019). In addition, it remains unclear whether inconsistent QTL detection is due to true differential trait expression across environments (Yan et al., 2003).

In our study, qPC2-2 and qPC7 were identified as environmentally stable loci, which indicates that their QTL-by-environment interaction had a smaller effect (Li et al., 2003). The interaction of QTL quantitative traits has been well established and indicates the potential of combining favorable alleles to improve plant performance (Lefebvre and Palloix, 1996; Thabuis et al., 2004; Lu et al., 2012; Chunthawodtiporn et al., 2019). Zeins, which are the main storage proteins in endosperm maize kernels, have evolved into four classes based on their chemico-physical properties: alpha (α), beta (β), gamma (γ), and delta (δ) (Moose et al., 2004; Xu and Messing, 2009; Wang et al., 2011; Xiang et al., 2018). gz50 encodes a 50-kDa γ-zein gene that directly affects kernel PC and is located in qPC7. The expression of gz50 is strictly regulated through the identification of conserved cis-elements in the promoter and corresponding transcription factors (TFs) (Zhang et al., 2019). ZmMADS47, a MADS box-containing TF in Chr1:17,963,695–17,987,258 at the qPC1 locus, was speculated to affect the PC of kernels by binding to the CATGT motif in the promoter of α-zein and 50-kDa γ-zein (Qiao et al., 2016). The 5.98% phenotypic contribution rate of qPC2-2 was lower than that of qPC7, and previous studies indicated that even QTLs with minor effects could contain genes that cause extreme changes in corresponding phenotypes (Ishii et al., 2013; Xing et al., 2015). Maize breeding is process involving pyramiding favorable alleles, and it is known that important genes or major QTLs for agronomic traits are selected and even potentially fixed in the process of maize domestication or early breeding (Doebley et al., 1997; Wang et al., 2005; Wang et al., 2018). Thus, qPC2-2 could potentially be used as a QTL in commercial breeding. A PCR-based marker, IndelPC2-2, was also developed, which may be linked to candidate genes or as a distinct regulatory element that affects the expression of candidate genes. IndelPC2-2 can be used to enhance breeding efficiency using MAS with the PC trait.

The combination of multilayered genetic analysis will accelerate QTL mapping, gene cloning, and molecular breeding in crops. Transcriptome-wide association studies with respect to a trait and analyses of the expression levels of genes across the whole genome have been conducted to assist in the prediction of candidate genes when studying complex traits (Li et al., 2013; Deng et al., 2017; Tang et al., 2021; Zhang et al., 2022). To rapidly identify candidate genes within the stable QTL locus qPC2-2, correlation analysis using RNA-seq was adapted in the present study. Zm00001d002625 is speculated to be a potential candidate gene for qPC2-2. The alteration of one base upstream of the start codon of parents resulted in the variation of C2H2-GATA family transcription factor binding element, However, there are few studies on the effect of C2H2-GATA family transcription factor on PC of maize kernels. In addition, the promoter region of the gene may not be limited to 1250 bp before ATG of the initiation codon, and there may be the presence of distal regulation. Zm00001d002625 has 60% homology with At4G00750 in Arabidopsis thaliana, which encodes an S-adenosyl-L-methionine-dependent methyltransferase superfamily protein. Previous studies have demonstrated that the SHMT4 mutation caused a disruption in storage protein composition, probably through SAM production, resulting in genome-wide methylation changes in developing endosperms (Yan et al., 2022). Zm00001d002625 may encode an S-adenosyl-L-methionine-dependent methyltransferase superfamily protein, S-adenosyl-L-methionine synthetase, which catalyzes the conversion of methionine to SAM and serves as the methylation donor in transmethylation reactions and an intermediate in polyamine and ethylene biosynthesis (Li et al., 2011).

In conclusion, herein, we constructed a high-density maize linkage map after the large-scale development of markers using GBS of an RIL population. These results indicate that this high-density map can be used for accurate and efficient QTL mapping. Using this map, we have mapped PC in maize kernels and identified stable QTLs in multiple environments. Furthermore, we have developed an Indel marker associated with PC at the qPC2-2 locus, Zm00001d002605, which was speculated to be a potential candidate gene within the QTL. This study will contribute to further research into the mechanisms that control PC, while also providing a basis for MAS in molecular breeding to further improve high-value traits.
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Waterlogging is the primary abiotic factor that destabilizes the yield and quality of barley (Hordeum vulgare L.). However, the genetic basis of waterlogging tolerance remains poorly understood. In this study, we conducted a genome-wide association study (GWAS) by involving 106,131 single-nucleotide polymorphisms (SNPs) with a waterlogging score (WLS) of 250 barley accessions in two years. Out of 72 SNPs that were found to be associated with WLS, 34 were detected in at least two environments. We further performed the transcriptome analysis in root samples from TX9425 (waterlogging tolerant) and Franklin (waterlogging sensitive), resulting in the identification of 5,693 and 8,462 differentially expressed genes (DEGs) in these genotypes, respectively. The identified DEGs included various transcription factor (TF) genes, primarily including AP2/ERF, bZIP and MYB. By combining GWAS and RNA-seq, we identified 27 candidate genes associated with waterlogging, of which three TFs (HvDnaJ, HvMADS and HvERF1) were detected in multiple treatments. Moreover, by overexpressing barley HvERF1 in Arabidopsis, the transgenic lines were detected with enhanced waterlogging tolerance. Altogether, our results provide new insights into the genetic mechanisms of waterlogging, which have implications in the molecular breeding of waterlogging-tolerant barley varieties.
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Introduction

Waterlogging is one of the major abiotic stresses that limits crop production and affects 16% of the global land area (Setter and Waters, 2003). As a result of global climate change, extreme weather events have become more frequent and severe in crop cultivated areas (Donat et al., 2016). Waterlogging is caused by high rain, irrigation practices and/or poor soil drainage, which results in anoxic soils and severe hypoxia in crop roots (Bailey-Serres et al., 2012). Waterlogging has severely limited the production of wheat and barley in the Yangtze River Plain of China. Furthermore, winter wheat grain yield was reported to be as low as 4978.5 kg ha-1 or zero in years with extreme precipitation (Ding et al., 2020; He et al., 2020).

Barley (Hordeum vulgare L.) is the fourth cereal crop worldwide and is primarily used for animal feed, malting and brewing (Pegler et al., 2018). Compared with other crop species, barley is more sensitive to waterlogging stress. Waterlogging causes a reduction in shoot and root growth, leaf area, and biomass and eventually leads to a reduction in crop yield (Ciancio et al., 2021). Barley, as with other plants, has evolved with diverse morpho-physiological, biochemical, transcriptional and metabolic strategies to overcome waterlogging stresses, such as the formation of adventitious roots, aerenchyma in shoots, plant hormones and reactive oxygen species (ROS) detoxification (Zhang et al., 2016; Luan et al., 2018a; Gill et al., 2019). Plant waterlogging tolerance is a complex trait, and the underlying mechanisms are still poorly understood.

The selection of waterlogging-tolerant varieties is an effective strategy for increasing barley yield. However, waterlogging tolerance is a complex trait controlled by several genes (Borrego et al., 2021). In general, marker-assisted selection (MAS) is a high-efficiency and economical approach that can overcome the inefficiencies of traditional phenotyping breeding. Recently, numerous quantitative trait loci (QTL) that are involved in waterlogging tolerance in barley, including leaf chlorosis, plant survival, plant biomass reduction, chlorophyll fluorescence, root porosity, and aerenchyma development, have been identified by linkage analysis of doubled haploid (DH) (Zhou, 2011; Zhou et al., 2012; Broughton et al., 2015; Zhang et al., 2016; Zhang et al., 2017). However, QTL mapping for targeted traits is dependent on the polymorphisms between the parents and the population size (Wang et al., 2020).

A genome-wide association study (GWAS) is an effective approach to identify genomic regions associated with specific variants of complex traits, which could dissect more alleles compared with linkage analysis. Recently, GWAS has been widely used to detect important candidate genes associated with yield, quality, salt stress, and drought stress (Reig-Valiente et al., 2018; Luo et al., 2021; Hao et al., 2022; Wu et al., 2022). In barley, many functional loci associated with agronomic traits (Xu et al., 2018), salt stress tolerance (Mwando et al., 2020), drought stress tolerance (Tarawneh et al., 2020), grain quality (Jia et al., 2021) and disease resistance (Pan et al., 2022) have been identified by GWAS. Borrego et al. (2021) were the first to identify 51 significant markers associated with barley waterlogging tolerance under controlled field conditions. RNA sequencing (RNA-seq) is a valuable tool for identifying candidate genes and regulation pathways, and has been used widely in plants response to waterlogging stress (Borrego et al., 2020; Sharmin et al., 2020; Chen et al., 2021). Combined GWAS and RNA-seq have been shown to identify candidate genes and provide molecular makers for MAS more efficiently. For example, Zhao et al. (2021) detected eight candidate genes and developed KASP markers for verticillium wilt resistance in cotton by combining GWAS and RNA-seq. Jia et al. (2020) identified six candidate genes of grain drying rate in maize with GWAS, and one of the candidate genes was verified by transcriptomic data.

In this study, we first performed a GWAS analysis of waterlogging-related traits among 250 barley accessions grown across four different periods in two years. Next, we performed RNA-seq analysis to identify the genes involved in waterlogging tolerance in barley. Through the combination of GWAS and RNA-seq analysis, we identified candidate genes related to waterlogging tolerance in barley. Finally, we validated candidate genes with qRT-PCR and transgenic Arabidopsis. The results may provide helpful information to better understand the molecular mechanism of waterlogging tolerance in barley.



Materials and methods


Plant materials and phenotypic analysis

In total, 250 barley accessions including 172 genotypes from China and 78 exotic lines, from 19 countries, were used in the association mapping of waterlogging tolerance at the tillering stage (Supplementary Table 1). These accessions were composed of 148 two-rowed and 102 six-rowed barley. The plants were cultured in a cement pool containing soil and subjected to waterlogging at the tillering stage (keeping the water level above the soil surface). Seeds were sown with a randomized block design over three consecutive years (2018-2020) and three replicates were used in both waterlogging and controls. Each pool contained 250 rows, with 10 plants per row, 3 cm between plants within each row and 30 cm between rows. The waterlogging score (WLS) was assessed based on leaf chlorosis and plant survival. Durative waterlogging was kept for four weeks, and then, plants were scored from 1 (susceptible) to 5 (tolerant) (1, leaf chlorosis of plants ≥80%; 2, leaf chlorosis of plants 60-80%; 3, leaf chlorosis of plants 40-60%; 4, leaf chlorosis of plants 20-40%; 5, leaf chlorosis of plants ≤20%) (Figure 1). WLS-1 represents waterlogging for 2 weeks, WLS-2 represents waterlogging for 3 weeks, WLS-3 represents waterlogging for 3 weeks, WLS-4 represents 2 weeks after drained water.




Figure 1 |  A cement pool experiment used to screen 250 barley lines for waterlogging tolerance (A, B). (A) Waterlogging treatment. (B) Control. Barley lines with different waterlogging tolerance scores (C–G). (C) 1; (D) 2; (E) 3; (F) 4; (G) 5.





Genome-wide association scanning

Genomic DNAs were extracted from young leaves. DNA degradation and contamination were checked on 1% agarose gels, and DNA purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). DNA library construction and sequencing were performed by Novogene Bioinformatics Technology (Beijing, China). Single-nucleotide polymorphism (SNPs) annotation was performed according to the barley cultivar Morex (Mascher et al., 2017) (http://plants.ensembl.org/Hordeum_vulgare/Info/Annotation/#assembly) using the package ANNOVAR (Version: 2013-05-20) (Wang et al., 2010). To clarify the phylogenetic relationship from a genome-wide perspective, an individual-based neighbor-joining tree was constructed based on the p-distance using the software TreeBest (http://treesoft.sourceforge.net/treebest.shtml). The software MEGA6.0 (http://www.megasoftware.net/) was used for visualizing the phylogenetic trees. SNP calling was implemented in the package SAMtools (Li et al., 2009). Based on reads from each individual’s genomic location, genotype likelihoods were calculated, and the allele frequencies were calculated using Bayesian inference. After filtering with minor allele frequency (MAF) ≥ 0.05, SNP call rate≥ 0.95, and missing rate≤ 0.01, 106,131 high-quality SNPs were used in our GWAS for waterlogging-tolerant traits. The association analysis was conducted using the GEMMA (genome-wide efficient mixed-model association) (Zhou and Stephens, 2012) software package by incorporating the population analysis with the relative kinship matrix. Significant SNP markers associated with the target traits were identified according to the standard of log10 P > 4.0 (Tu et al., 2021). The candidate genes were selected within a 100 kb upstream and 100 kb downstream region delimited by each significant SNP (Tu et al., 2021).



RNA-seq and transcription analysis

Based on the waterlogging score of the 250 genotypes and previous study (Zhou, 2011), the tolerant cultivar Taixing 9425 and the sensitive cultivar Franklin were used to RNA-seq analysis under waterlogging stress. The roots of samples were collected after waterlogging treatment for 72 h, and control without waterlogging. Each treatment was processed with three biological replicates. Total RNA was extracted using the Plant RNA Purification Kit (Tiangen, Beijing, China). Twelve RNA-seq libraries (two accessions × two treatment × three biological replicates) were constructed by Novogene Bioinformatics Technology (Beijing, China) and sequenced by an Illumina HiSeq 2500 platform (Illumina Inc., San Diego, CA, USA). The data presented in the study are deposited in the NCBI SRA repository, accession number PRJNA889532. Initially, raw fastq reads were processed through custom perl scripts. Then, raw data was cleaned by removing adapter, ploy-N, and low-quality reads. In addition to the Q20, Q30 and GC content in the clean data were calculated. High-quality clean data was used in all downstream analyses. A transcript abundance estimate for each gene was calculated using FPKM value. And the DEGs were further filtered with P value ≤ 0.05 and normalized fold change (FPKM in the waterlogging group/control group) ≥ 1 (Luan et al., 2016).



Quantitative real-time RT-PCR

To confirm the reality of candidate genes screened from the analysis of GWAS and RNA-seq. 8 candidate genes were selected to further validate by quantitative (qRT-PCR). The method of qRT-PCR was described as previous report (Luan et al., 2018a). cDNA was initially synthesized using Random Primer 6 and M-MLV reverse transcriptase (Takara, Tokyo, Japan). The specific primers used for target were designed using the Primer Premier 5.0. All the primers are listed in Supplementary Table S8. The Hvactin gene was used as the internal control. A ViiA™ 7 Real-Time PCR System (Carlsbad City, CA, USA) was used for quantitative real-time PCR. Target genes’ relative expression levels were determined as 2-ΔCt. Three biological replicates and three technical repeats were performed in all the qRT-PCR experiments.



Candidate gene validation by transgenic Arabidopsis

To further verify the candidate gene, transgenic Arabidopsis overexpressing HvERF1 were generated by floral dipping. The detailed design and methods have been previously described (Luan et al., 2020). The Gateway technology (Invitrogen, USA) was used to constructed the expression vectors. Through the floral dipping method, recombinant vectors were transferred into Arabidopsis (Columbia) using the Agrobacterium tumefaciens strain GV3101 (Clough and Bent, 1998). Homozygous Arabidopsis lines containing single-site transgene insertions were identified and maintained in growth until T3 generation. Further genetic analysis was performed using the homozygous T3 generation. Five-week-old Arabidopsis plants (T3 lines) were used for waterlogging treatment. The control plants were kept in normal conditions with regular watering. After the treatment of two weeks, the phenotypic traits were observed and recorded. For the analysis of gene expression related to waterlogging, shoots were collected at different times (0d, 3d, 6d, 9d) after waterlogging treatment. The internal control was conducted using Arabidopsis actin. The list of the primes used in this experiment can be found in Supplementary Table S8.




Results


Analysis of phenotypic variation

The WLS values were measured in 250 barley genotypes at different stages, and the results are presented in Table 1 and Table S2. The plant growth was significantly impeded by waterlogging stress. The mean values of WLSs were 2.27, 2.74, 3.07 and 2.22 in 2019. The mean values were found to be higher along with increasing waterlogging duration, while the value decreased under two weeks after draining water. The variation trend of the mean was basically similar between 2019 and 2020. Under waterlogging conditions, the CVs (coefficient variations) ranged from 23.86 in 2019 WLS-4 to 42.70 in 2020 WLS-1.


Table 1 | Phenotypic variation of barley plants under waterlogging stress.



The correlation analysis among different waterlogging treatment stages is shown in Table 2. WSL-1 in 2019 and2020 showed the highest consistency across WSL-4 in two years, with a correlation coefficient r2 = 0.747 and 0.819, respectively. However, 2019 WLS-1 showed a weak correlation with 2020 WLS-2 and 2020 WLS-3 (correlation coefficients were 0.064 and -0.062, respectively). Furthermore, 2019 WLS-4 showed less correlation with 2020 WLS-2 and 2020 WLS-3 (correlation coefficients were 0.086 and -0.042, respectively). These results suggeste that waterlogging score is a highly heritable trait that may be suitable for GWAS.


Table 2 | Correlation analysis of waterlogging score at different stages.





Genome-wide association study of waterlogging stress tolerance

Based on the sequencing results, we obtained 6,536,895 SNPs distributed across 7 barley chromosomes. After quality control, 106,131 SNP loci were used for subsequent GWAS analyses (Figure S1). The population structure analysis suggested that the population could be classified into two groups (Figure S2). Subpopulation 1 primarily included 58 genotypes composed of local varieties in China, while subpopulation 2 included 192 cultivars from different countries (Figure S2; Table S1).

The genome-wide association scanning was conducted by using the GLM and MLM algorithms to identify significant SNPs associated with waterlogging stress. A total of 356 SNPs were associated with waterlogging tolerance when GLM was performed (Figure S3; Table S3). While with MLM analysis, only 72 significant SNPs were found and all these associations were common in the GLM (Figure 2; Table S4). The MLM model was more efficient in reducing false positive associations. Therefore, significant SNPs finalized based only on MLM were presented here. Among these, 34 were detected in at least two environments (two years and four development stages). As false positives were always caused by a single environment, four overlapping SNPs (chr2H-250021530, chr2H-258433925, chr4H-138201763, chr6H-26353758) in three different stages were defined as significant, which were mainly anchored in chromosomes 2, 4 and 6. Only one SNP (chr7H-478156203) in four different stages was defined in chromosome 7 (Table 3).




Figure 2 | Manhattan plots for 2019 WLS-1, 2019 Q34 WLS-2, 2019 WLS-3, 2019 WLS-4, 2020 WLS-1, 2020 WLS-2, 2020 WLS-3, 2020 WLS-4 were shown in (A–H), respectively. The x-axis shows SNP loci along the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of –log10 (P-value) value of 4.0. GWAS was performed using the MLM (Q + K) model.




Table 3 | Significant SNPs associated with waterlogging identified across two or more environments.





RNA-seq analysis of root transcripts in response to waterlogging stress

Several QTLs for waterlogging tolerance have been mapped by the DH population of TX9425 × Franklin (Li et al., 2008). In the present study, the two varieties also showed significant differences in waterlogging tolerance (Table S2). To facilitate the comparison, the roots of TX9425 and Franklin were harvested 72 h after waterlogging treatments. We subsequently performed high-throughput RNA-seq using Illumina HiSeq 2500 and obtained an average of 4.86 million reads from each sample. After removing low-mass, joint, and potentially contaminated data, 2.87–7.58 GB data were obtained from each sample, and the Q30 value ranged from 89.41% to 92.33%, indicating the high-quality sequencing data in the RNA-seq experiments (Table S5).

A principal component analysis (PCA) was conducted based on the transcriptional profiles. The control and treatment samples of two genotypes could be clearly separated by the first principal component (PC1), which accounted for 99.46 % of the total variation (Figure 3A). We identified 5,693 and 8,462 differentially expressed genes (DEGs) under waterlogging treatment (72 h) versus control in TX9425 and Franklin, respectively. We noted that 2,012 DEGs were upregulated and 3,681 DEGs were down-regulated in TX9425, while 3,314 DEGs were up-regulated and 5,148 DEGs were down-regulated in Franklin (Figures 3B–D). The gene ontology (GO) functional classification analysis was performed to categorize the DEGs. After 72 h of waterlogging, the DEGs in the two genotypes were mainly functional in binding, catalytic activity, antioxidant activity, cellular anatomical entity, response to stimulus, metabolic process, biological regulation, cellular process and localization (Figure S4; Table S6).




Figure 3 | Transcriptome analysis in roots of TX9425 and Franklin under control and waterlogging conditions. (A) Principal component analysis (PCA) of transcript changes separates the samples under control and waterlogging (72h waterlogging treatment) conditions. Horizontal and vertical coordinates respectively represent the first and second principal components, and the contribution degree of each principal component is in parentheses. (B) Number of upregulated genes (green) and downregulated genes (blue) between barley under waterlogging stress and normal conditions. (C) Heatmap clustering of the DEGs in TX9425 according to their expression abundance. (D) Heatmap clustering of the DEGs in Franklin according to their expression abundance. The different colors indicate different levels of expression abundance.





Responses of transcription factors to waterlogging

Under waterlogging stress, 273 DEGs related to TFs were identified. Of these, 168 TFs were up-regulated in TX9425 and Franklin, and 184 TFs were down-regulated in TX9425 and Franklin at 72 h. The AP2/ERF, bZIP, and MYB families represented the highest number of significantly expressed TFs at 72 h of waterlogging (Figure 4A).




Figure 4 | Differentially expressed genes (DEGs) associated with the transcription factor (TF) activity in response to barley waterlogging tolerance. (A) Twelve different TF families representing highest number of up- and down-regulated DEGs. (B) Phylogenetic tree of barley and Arabidopsis ERF VII proteins. Full-length protein sequences were analyzed using Neighbor-joining method in MEGA software. Numbers above branches indicate the bootstrapped value from 1000 replicates.



The AP2/ERF TFs, in particular ERFVII with conserved N-terminal motif [MCGGAII(A/S)], were previously reported to be associated with waterlogging tolerance in different crop plants (Hinz et al., 2010). This motif has been previously reported to play an important role in low oxygen conditions (Gibbs et al., 2011; Licausi et al., 2011). In this study, four ERFVII-type HvAP2/ERF genes, including HORVU4Hr1G077310, HORVU5Hr1G080790, HORVU1Hr1G058940 and HORVU5Hr1G062940, were found to be differentially expressed. Among these four AP2/ERF TFs, the HORVU4Hr1G077310 and HORVU5Hr1G080790 were induced at higher levels in TX9425 than in Franklin. Moreover, phylogenetic analysis revealed that HORVU4Hr1G077310 and HORVU5Hr1G062940 were more closely related to Arabidopsis ERFVII viz., HRE1 and HRE2, whereas HORVU5Hr1G080790 and HORVU1Hr1G058940 were more closely related to RAP2.3, RAP2.2, and RAP2.12 (Figure 4B). Therefore, these results suggested four TFs with important roles in regulating waterlogging tolerance in barley.



Combined analysis of GWAS and RNA-seq for screening candidate genes of waterlogging stress tolerance

We combined the GWAS and RNA-seq results to further screen waterlogging tolerance candidate genes. After screening with a region of 100 kb near putative SNPs, 166 candidate genes were found for the 72 significant SNPs (Table S4). Of the 166 candidate genes in GWAS, 27 exhibited significantly different expression levels under waterlogging stress relative to the control (Table 4). Those candidate genes were mapped on 7 chromosomes, 3 on 1H, 7 on 2H, 4 on 3H, 4 on 4H, 3 on 5H, 1 on 6H, and 5 on 7H, respectively. Of the 27 putative DEGs, 11 were up-regulated and 16 were down-regulated. Among them, 10 exhibited significantly different expressions at two or more different time points. 4 candidate genes (HORVU3Hr1G053060, HORVU3Hr1G095240, HORVU4Hr1G024430, and HORVU5Hr1G080790) were significantly induced by waterlogging stress in TX9425 and Franklin. These genes encode the following enzymes: chaperone protein DnaJ (Hv DnaJ), MADS-box transcription factor family protein (HvMADS), nuclear pore complex protein (HvNPC), and ethylene-responsive transcription factor 1 (HvERF1). Comparatively, the four candidate genes except HvNPC in the waterlogging-tolerant line (TX9425) had higher expression levels than the waterlogging-sensitive line. HvERF1 in TX9425 exhibited a 39-fold change which was the highest.


Table 4 | The differential expression of the putative genes detected in both GWAS and transcriptome sequencing.



To validate the transcriptional profiles revealed by RNA-seq, qRT-PCR analysis was performed for the eight candidate genes (Figure 5). The results showed that the RNA-seq results and qRT-PCR results were highly consistent. Therefore, we speculated that the high expression of these genes is closely related to waterlogging tolerance in barley.




Figure 5 | qRT-PCR analysis of eight candidate genes associated with the waterlogging tolerance in barley. “*” means a significant difference at the P < 0.05 level, “**” means a significant difference at the P < 0.01 level.





Overexpression of HvERF1 in Arabidopsis enhances plant waterlogging tolerance

To investigate the function of barley HvERF1 (HORVU5Hr1G080790), transgenic Arabidopsis plants overexpressing the HvERF1 gene from TX9425 were generated. Five-week-old plants of the wild type (WT) and three homozygous T3 transgenic lines were selected for waterlogging stress experiments. As shown in Figure 6, no discernible changes in morphological and developmental phenotypes appeared between the WT and transgenic lines under normal conditions, while the transgenic lines grew better than WT plants after two weeks of waterlogging (Figure 6A). Under waterlogging conditions, the plant height was reduced by 49.1% in the WT, and by 11.7%, 11.4%, and 10.3% in the transgenic lines (Figure 6B). Compared with the control, the soil and plant analyzer development (SPAD) value was lower 61.6% in the WT, and 20.5%, 31.8%, 34.2% lower in the transgenic lines (Figure 6C). The shoot fresh weights of the transgenic lines were 36.1%, 42.3%, and 44.0%, respectively, which were lower than those of the control, while they were 65.8% lower than that in the WT (Figure 6D). The shoot dry weight decreased by 51.0% in the WT, and by 18.0%, 36.5% and 31.1% in the transgenic lines (Figure 6E). In addition, the root lengths of the WT plants were further reduced compared to those of the transgenic lines during waterlogging stress (Figure 6F). Furthermore, the average survival rate of the transgenic lines after waterlogging was 81.8%, but that of the WT was only 27.6% (Figure 6G). Altogether, these data indicated that the overexpression of HvERF1 in Arabidopsis significantly enhanced waterlogging tolerance.




Figure 6 | Waterlogging tolerance assay of HvERF1 overexpression lines (Line1, Line2, Line 3) and wild-type (WT). (A) Five week-old plants were subjected to waterlogging stress for further 2 weeks. (B) Plant height. (C) Soil-plant analysis development (SPAD) value (based on chlorophyll meter reading). (D) Shoot fresh weight. (E) Shoot dry weight. (F) Root length. (G) Surival rate in the wild-type and HvERF1 transgenic lines were measured under control and waterlogging stress. Values are the means ± SD. Means were generated from three independent measurements. Data were analyzed by one-way analysis of variance followed by Duncan’s test. “**” means a significant difference at the P < 0.01 level.





Overexpression of HvERF1 induced changes in stress-related gene expression levels

To understand the molecular mechanisms of the HvERF1 responding to waterlogging stress, the transcriptional profiles of five genes related to ROS scavenging and glycolysis (AtSOD1, AtCAT1, AtPOD1, AtADH1 and AtPDC1) were analyzed by qRT-PCR in HvERF1-transgenic and WT plants (Figure 7). The expression of the stress-related genes, except AtPOD1, was not significantly different between the HvERF1-transgenic and WT plants under normal conditions. Compared with the control, the expression levels of the five genes were all increased in both the transgenic lines and WT under waterlogging stress, and the increase in the expression level was significantly greater in transgenic lines than in the WT. The expression of AtSOD1 and AtPOD1 increased rapidly after waterlogging, reaching peak levels at day 3 of treatment and then decreasing progressively after days 6 and 9 of treatment (Figure 7A, C). However, the expression of AtCAT1, AtADH1 and AtPDC1 increased slowly, reaching maximum levels at day 6, and then decreasing at day 9 (Figure 7B, D, E). These results suggested that overexpression of HvERF1 in Arabidopsis might be able to regulate the expression of genes related to antioxidants and fermentation under waterlogging stress conditions.




Figure 7 | Expression analysis of stress-responsive genes in HvERF1 overexpression lines and WT under waterlogging stresses. The relative expression levels of stress-responsive genes (AtSOD1, AtCAT1, AtPOD1, AtADH1, AtPDC1) were determined by qRT-PCR (A–E). After 3 days, 6 days, 9 days waterlogging treatments, respectively. Seedlings harvested before treatment were used as control. Relative expression levels of these five genes were normalized to the transcripts of AtActin in the same samples. The mean value and standard deviation were obtained from three independent experiments. The data represent mean ± SD of three biological repeats with three measurements per sample. Asterisks indicate significant differences between transgenic plants and WT according to Student’s t-test (** p < 0.01).






Discussion


The evaluation of waterlogging tolerance in barley

To accurately identify marker-trait associations and QTL, precise phenotyping is essential owning to the complexity of waterlogging tolerance (Zhou, 2011). Different traits have been used to detect the QTL for waterlogging tolerance in barley, such as leaf scoring system, aerenchyma formation, major agronomical traits, carotenoid content, chlorophyll content, and potential membrane maintenance (Zhou, 2011; Zhou et al., 2012; Broughton et al., 2015; Zhang et al., 2016; Zhang et al., 2017; Gill et al., 2017; Gill et al., 2019; Borrego et al., 2021). The WLS and aerenchyma formation have been demonstrated to be the most reliable screening method in barley (Zhou, 2011). However, the measurement of root aerenchyma is labor-intensive and time-consuming, and it cannot be used for high-throughput screening.

In this study, a cement pool experiment and WLS were used to screen and identify waterlogging tolerance in barley. The pool experiment is closer to actual field conditions, and the condition can be better controlled than the pot experiment (Zhou, 2011). The current results revealed a significant variation among barley genotypes under waterlogging treatment. These results suggest that the population was appropriate for use in a GWAS analysis involving barley waterlogging tolerance. Waterlogging stress led to leaf chlorosis, which has been reported in previous studies (Li et al., 2008). Some of the barley genotypes have been reported in response to waterlogging stress. For example, TX9425 from China displayed tolerance to waterlogging stress, while the cultivars Franklin (Australia) and Naso Nijo (Japan) were susceptible (Luan et al., 2018b). In this study, some landraces from the Yangtze River Basin of China were identified with higher waterlogging tolerance, including Liuhesileng and Linanliuleng, among others. These germplasm resources have not been reported before and might represent novel gene sources for waterlogging tolerance in barley.



Significant SNPs detected with GWAS and previously reported regions

Different marker types and mapping populations have been used to investigate QTLs associated with barley waterlogging tolerance in previous studies (Broughton et al., 2015; Zhang et al., 2016; Gill et al., 2017; Gill et al., 2019; Zhang et al., 2017). A meta-analysis of abiotic stress tolerance QTLs in barley was also reported. Forty-eight QTLs related to waterlogging were identified on all seven chromosomes, and most QTLs were located on chromosomes 2 H and 4 H (Zhang et al., 2016). In this study, the significant SNPs related to barley waterlogging tolerance were mainly concentrated on 2 H (18) and 7 H (15) (Table S3). Studies on barley waterlogging tolerance based on GWAS remain relatively scarce. In a study, 247 worldwide spring barley with 35,926 SNPs were used to perform GWAS analysis of barley waterlogging tolerance, and 51 significant associated markers were identified with agronomic and physiological traits. Six novel QTLs and eight candidate genes associated with waterlogging were detected (Borrego et al., 2021).

In this study, GWAS was conducted in 250 barley accessions using 106,131 SNP markers and WLS in different periods of waterlogging treatment. Seventy-two significantly associated markers were detected, and 34 SNPs were detected in at least two environments. The results revealed a complex genetic mechanism of waterlogging tolerance in barley, controlled by multiple small-effect genes. The direct comparison of our GWAS findings with other studies is difficult, as the differences in populations, reference genomes, waterlogging tolerance assessment traits, marker types, and marker densities were used in different studies.

Some associated SNPs in this study overlapped with a number of previously reported regions (Table S7). Eleven waterlogging-related QTLs detected in our study are close to the previously reported. The genomic regions (78Mb on 1H, 704 Mb on 2H, 563 Mb on 5H) were major hotspot regions, which were detected multiple times in different populations. The marker chr1H-78215494 was also associated with QHLRL.1H, QHSDW.1H, QHRDW.1H, QHRFW.1H in the Franklin/YYXT mapping population (Broughton et al., 2015), and JHI-Hv50k-2016-19217 used in GWAS (Borrego et al., 2021). The marker chr2H-704331873 was also closely positioned near the QTL GSw1.1, GSw2.1 in Franklin/Yerong, tfsur-1 in Franklin/TX9425, JHI-Hv50k-2016-109151 in nature population (Li et al., 2008; Xue et al., 2010; Borrego et al., 2021). The genomic region 563 Mb on 5H was coincident for the JHI-Hv50k-2016-322832 and JHI-Hv50k-2016-322288 in the natural population, and the QTL yfsur-2 in the DH population of Yerong × Franklin (Li et al., 2008; Borrego et al., 2021). However, compared with the previous reports, some important regions associated with waterlogging were not detected in this study, such as 98cM on 4H and 29Mb on 2H (Broughton et al., 2015; Borrego et al., 2021). Borrego et al. (2021) found that only four markers were associated with WLS traits by GWAS, and three markers (0.37 and 567 Mb on 4H, 554 Mb on 6H) of which were no co-location with the results herein. These results may be related to low-density markers and differences in populations.



Transcription factors ERFs enhance waterlogging tolerance

Many previous studies have proven that the integrated analysis of GWAS and RNA-seq is useful in detecting candidate genes of complex traits (Yuan et al., 2019; Wang et al., 2022; He et al., 2022). For example, eight candidate genes were identified for tolerance to salt stress in Alfalfa by GWAS coupled with transcriptome analysis (He et al., 2022). Eight candidate genes for forage yield in Sorghum were also identified by this method (Wang et al., 2022). In the present study, 27 DEGs were identified by GWAS and transcriptome sequencing, of which four were significantly up-regulated under waterlogging stress and were detected in different stages. The expression fold changes in HvDnaJ, HvMADS, and HvERF1 in TX9425 were more than that in Franklin (Table 4). DnaJ (also called HSP40 or J-protein) has been demonstrated in the regulation of physiological pathways, including hormone regulation and plant disease resistance (Liu et al., 2022). In plants, the MADS genes play a positive role in abiotic stresses such as salt, drought, cold, and osmotic stress (Chen et al., 2018).

TFs are known to play a vital role in both abiotic and biotic stress responses. A study reported that several TFs, including MYB, AP2/ERF, NAC, WRKY, and bHLH, were induced under waterlogging stress (Borrego et al., 2020). In the present study, the AP2/ERF families represented the highest number of DEGs in the two genotypes. ERFVIIs play an important role in adjusting to low-oxygen stress. Genes related to low-oxygen stress, such as SNORKEL, SUB 1 A, HRE1, HRE2, RAP2.2, RAP2.3, and RAP2.12 have been cloned in rice, Arabidopsis and belong to the ERFVII (Xu et al., 2006; Hinz et al., 2010; Licausi et al., 2010; Gibbs et al., 2011). In agreement with these studies, our study identified four genes, HORVU4Hr1G077310, HORVU5Hr1G080790, HORVU1Hr1G058940 and HORVU5Hr1G062940, which up-regulated and possessed conserved N-terminal motif of MCGGAII(A/S). Hence, the results revealed an essential role of AP2/ERF in waterlogging tolerance of barley.

HvERF1 (HORVU5Hr1G080790) in TX9425 showed a 39-fold change by RNA-seq. Intriguingly, HvERF1 (563 Mb, 5H) was positioned relatively close to the QTL yfsur-2 in DH population of Yerong × Franklin and the JHI-Hv50k-2016-322832, JHI-Hv50k-2016-322288 in the natural population (Table S7) (Li et al., 2008; Borrego et al., 2021). Cluster analysis also found that HvERF1 was closely related to the waterlogging tolerance genes in Arabidopsis (RAP2.3, RAP2.2 and RAP2.12). Three Arabidopsis ERFVII genes improved waterlogging tolerance by directly activating genes related to energy metabolism (Licausi et al., 2010; Licausi et al., 2011). Members of the ERF families have been shown to regulate waterlogging tolerance in wheat, wild soybean and cucumber (Xu et al., 2017; Sharmin et al., 2020; Shen et al., 2020). In this study, overexpression of HvERF1 in Arabidopsis enhanced waterlogging tolerance, protected antioxidant enzyme activities (SOD, POD, and CAT), and increased energy metabolism (ADH). The enhancement of these related indicators may be achieved by HvERF1 interacting with the downstream specific target genes. Additionally, further experiments are necessary to demonstrate the function of HvERF1.

On the whole, this study deployed GWAS and RNA-seq to mine important genes, which might be relevant to waterlogging tolerance in barley, and provided the candidate genes showing waterlogging tolerance applicable in barley molecular breeding.
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Supplementary Figure 1 | Distribution of 106,131 SNPs on the 7 chromosomes of barley. The horizontal axis shows chromosome length (Mb); the different colors depict SNP density (the number of SNPs per window).

Supplementary Figure 2 | Population structure of the 250 accessions. (A) Neighbor-joining tree of all 250 barley varieties. (B) Principal component analysis of 250 accessions based on genotype. (C) Population structure of the 250 accessions based on STRUCTURE when K = 2.

Supplementary Figure 3 | Manhattan plots resulting from the SNP-based GWAS in waterlogging treatment under different periods. Manhattan plots for 2019 WLS-1, 2019 WLS-2, 2019 WLS-3, 2019 WLS-4, 2020 WLS-1, 2020 WLS-2, 2020 WLS-3, 2020 WLS-4 were shown in (A-F), respectively. The x-axis shows SNP loci along the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of –log10 (P-value) value of 4.0. GWAS was performed using the GLM (Q + K) model.

Supplementary Figure 4 | GO functional enrichment analysis of DEGs in the roots of two barley varieties under the waterlogging and control treatments. (A) TX9425 at 72h after waterlogging refer to Control; (B) Franklin at 72h after waterlogging refer to Control.
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As the world’s population grows and food needs diversification, the demand for cereals and horticultural crops with beneficial traits increases. In order to meet a variety of demands, suitable cultivars and innovative breeding methods need to be developed. Breeding methods have changed over time following the advance of genetics. With the advent of new sequencing technology in the early 21st century, predictive breeding, such as genomic selection (GS), emerged when large-scale genomic information became available. GS shows good predictive ability for the selection of individuals with traits of interest even for quantitative traits by using various types of the whole genome-scanning markers, breaking away from the limitations of marker-assisted selection (MAS). In the current review, we briefly describe the history of breeding techniques, each breeding method, various statistical models applied to GS and methods to increase the GS efficiency. Consequently, we intend to propose and define the term digital breeding through this review article. Digital breeding is to develop a predictive breeding methods such as GS at a higher level, aiming to minimize human intervention by automatically proceeding breeding design, propagating breeding populations, and to make selections in consideration of various environments, climates, and topography during the breeding process. We also classified the phases of digital breeding based on the technologies and methods applied to each phase. This review paper will provide an understanding and a direction for the final evolution of plant breeding in the future.
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1  Introduction


By 2050, the world’s population is expected to reach 9.6 billion, which requires large agricultural production. Consequently, it will be necessary to increase agricultural production by more than 70% (Godfray, 2014). In addition to direct causes, such as population growth, the indirect causes include the appearance of rapidly developing countries leading to urbanization and modernization and their population’s diet shift towards dairy and meat products. The increased demand for animal-based diets promotes higher cereal crop consumption than a vegetarian diet due to feeding cereal crops to animals. Therefore, without changes in crop production, unequal food distribution among the world’s population will deepen (Bradshaw, 2017). Moreover, the world’s climate is changing rapidly due to global warming. The average temperature of the world rises every year and abnormal climate phenomena occur (Zandalinas et al., 2021).. High temperatures and unpredictable precipitation patterns create challenges for crop growth. Therefore, a strategy to increase agricultural production in preparation for climate change is essential. Considerable progress has been achieved in producing crops tolerant to biotic and abiotic stress. Moreover, several attempts to increase the economically beneficial traits of crops in the 20th century were successful (Crossa et al., 2017). However, despite these improvements, the recent increase in yields of major crops is not enough to meet the expectations of future agricultural production demands. In order to increase agricultural production, it is essential to develop new cultivars that are resilient to climate change and have increased yields. Moreover, economic growth in many countries increased the demand for horticultural crops. As a result, horticultural crops, particularly fruits and vegetables, which are indispensable to us, increase our interest in improving our health and quality of life. Therefore, agricultural researchers worldwide must use various breeding methods to improve varieties, increase production of all crops and horticultural crops, and develop new breeding techniques and varieties using new technologies to meet consumers’ requirements.


In the second half of the 20th century, a backcrossing breeding method was commercialized. Marker-assisted backcrossing (MABC) allows rapid introgression of key genes representing superior traits into elite cultivars or breeding lines, resulting in a cultivar containing both the transgene and the preferred alleles (Ragot et al., 1995). MAS genetically enhances useful traits in crops that are difficult to phenotype. In addition, the fixation of the transgene in commercial cultivars can proceed rapidly (Moose and Mumm, 2008). However, MAS is effective for a few quantitative trait loci (QTLs) with a significant effect on the trait but not for traits dominated by numerous QTLs with minor effects. Therefore, researchers try to solve these constraints. As a result, GS emerged as an alternative. GS estimates the value of breeding based on markers distributed throughout the genome and does not use just a few markers like traditional MAS (Meuwissen et al., 2001). While MAS completely depends on molecular markers associated with target traits, GS resembles conventional breeding methods that depend on phenotypes and the breeder’s selection ability. In conventional breeding, breeders select plant individuals based on their preferences and experience. On the contrary, MAS objectively selects plant individuals with molecular markers. In the GS procedures, the genetic or breeding population is mechanically trained based on statistical models (training population). Then, the model is applied to the breeding population for selection (breeding population or validation population). Provided that training is the process of breeders gaining experience, the application of the model may be the process of breeder’s selection. Consequently, GS can be more reasonable for breeding complex traits to which a number of minor genes are related.


Humans have bred crops to introgress useful traits and increase yields. Breeding methods have changed from domestication to traditional phenotypic selection, molecular breeding, and phenotype prediction (Razzaq et al., 2021). The recently proposed GS in plants is more difficult to predict the effect of environmental variables than animals and most of the processes are still labor-intensive. So, it is difficult to apply GS to actual breeding selection yet. In order to solve this problem, several studies have conducted GS using ML technology. Some agricultural scientists call these attempts digital breeding to distinguish them from previous GS. However, digital breeding is still in its infancy and lacks a precise definition, causing much confusion in communication among researchers. In order to solve these controversies, we would like to define a new term digital breeding. Digital breeding means that breeding design, experimental plot arrangement, growth process, and selection are all carried out automatically in the breeding process while predicting and considering various environmental variables. Digital breeding aims to automate the breeding process of plants by minimizing human intervention. Recently, biological data has been digitized and increased. In the same way, breeding technologies adopt some cutting-edge sciences such as next-generation sequencing, machine/deep learning, speed breeding, and advanced statistical models, enabling predictive breeding. This article surveys breeding technologies to date, classifies the concept, application, and research status of digital breeding, and attempts to provide clarification by borrowing the idea of the levels of driving automation. In this review article, the past, present, and future of breeding is divided into six stages according to the level of technological development. It will be helpful to understand breeding trends so far and to present the direction and achievements of breeding in the future.





2  Outline of breeding techniques




2.1  Traditional breeding techniques


Plant breeding developed through efforts to establish better-performing varieties by crossing between cultivars with the traits desired by the breeder (Acquaah, 2009). Breeders select phenotypes with desired traits, such as semi-dwarf and nutrient-efficient plants. Plant breeding aims to select, identify, and expand varieties with valuable traits desired by consumers and breeders in the next generations by targeting diversity through new variations. Therefore, breeding will fail if suitable individuals cannot be selected for the next generation. So for breeding success, breeders studied various breeding methods, considering the multiple characteristics: fertilization method, breeding ability, combination ability, breeding scale, and breeding age. In addition, the breeding method was determined through the genetic structure of the cultivars’ traits and the degree of interaction between genes (Kearsey, 1997). Breeding methods considering these factors can be classified into segregation breeding and cross-breeding (
Table 1
). Segregation breeding nurtures excellent individuals or groups while selecting outstanding individuals or lines when a genetically diverse group has already been secured. The pure line selection method and the mass selection method are representative. Cross-breeding is breeding cultivars with an excellent performance by recombining or introducing beneficial or desired genes through an artificial cross between cultivars or lines. Pedigree selection, bulk population, single-seed descent (SSD), and backcross breeding are representative methods in cross-breeding.



Table 1 | 
Comparison of breeding methods according to pollination of plants.








2.1.1  Pure line selection


In 1903, Johannsen’s research confirmed that a population mixed with self-pollinated species could be classified as a genetically pure line. Pure lines are suitable for applications that require trait uniformity because of small genetic differences and similar phenotypes (Acquaah, 2009). Furthermore, pure line selection is rapid, and genotype selection from a diverse population can continue to repeat selfing until there is no apparent segregation in subsequent generations (Poehlman and Sleper, 1995). Based on these results, selection can eliminate variation but not create variations. Thus, the variations produced in the pure line are caused by environmental factors, meaning that selection in the pure line is meaningless. In addition, pure line cultivars are virtually challenging to produce in diverse environments due to their small genetic differences. Therefore, pure lines play an important role as a material for cross-breeding or generating genetic populations.





2.1.2  Mass selection


Mass selection applies to self-pollination and cross-pollination, but the genetic results differ (Allard, 1960). The continuation of inbreeding changes the gene frequency of the population. It decreases the heterozygosity from one generation to the next. Still, there is little change in allele frequency in cross-pollination unless the allele associated with the desired trait is changed through selection (Acquaah, 2009). This method is a population improvement strategy aiming to increase the average performance of the base population by increasing the gene frequency of the desired gene and acting on existing variabilities without creating new ones (Acquaah, 2015). The general process of mass selection can be divided into two categories. One is the negative mass selection to remove plants with unwanted traits or off-types, and the other is the positive mass selection to select plants with desirable traits to maintain purity and to generate more plants with desired traits (Acquaah, 2009). These processes can be performed based entirely on the breeder’s visual judgment, either directly by selecting the desired trait or indirectly by selecting traits related to the desired trait (Gjedrem and Thodesen, 2005). Also, since the selection is based on the plant’s phenotype, it is preferable if the desired trait is highly heritable or controlled by additive genes (Brown and Caligari, 2011). Although the resulting plants are relatively homogeneous, they are genotypically broad, containing different pure lines. Since only one generation is required per cycle, this method is inexpensive, simple, and fast.





2.1.3  Pedigree selection


Pure line selection and mass selection methods focus on genetic variation, whereas pedigree selection methods create variation through hybridization. A pedigree selection method can be used for cross-pollinating species, but it is mainly used for breeding self-pollinating species. Pedigree selection uses a pedigree with accurate records of breeders to keep the ancestors by knowing who the parents of the F2 generation are in order that F2 individuals can be identified through the descendants of subsequent generations (Poehlman and Sleper, 1995). As a result, a base population is established through parental hybridization, followed by selection and isolation, which progresses through generations until a desired degree of homozygosity is achieved (Allard, 1960). Breeders can also influence genetic diversity and variation through these selections and processes. In this method, selecting species that are easy to observe, select, and harvest is desirable. Since lines begin to form after F4, selection should be based on progenies rather than individuals.





2.1.4  Bulk population


The bulk population method improves crops by putting off artificial selection until later generations and influencing variation through natural selection at the early generation stage (Briggs and Knowles). In other words, it is a breeding method in which homozygosity of the population is increased by repeating mixed breeding and group cultivation without selection in the early generation of hybrids (F2 to F4) and then fixing the line through individual selection in later generations (F4 to F5) (Allard, 1960). The rationale for this method is that natural selection will eliminate individuals sensitive to various abiotic stresses in the production area for which traits are not desirable (Acquaah, 2015). Varieties produced by this method will have already adapted to the place of production, and the method can be applied to creating cross-pollinated inbreeding populations. Still, breeding self-pollinating species that grow in tight spaces between individuals is best. However, the approach is that the genotype of the desired trait can be lost in early generations if it is not competitive under natural selection. In contrast, the genotype of a competitive but unwanted trait under natural selection can persist into future generations (Acquaah, 2009).





2.1.5  SSD


SSD is a compromised breeding method between the bulk population and pedigree selection. This breeding method randomly selects ‘only one seed’ from each plant of the F2 population with the desired trait created by artificial hybridization of F1 to shorten the breeding time and reduce genotype loss in the segregated generation (Allard, 1960). This advances the generation of many F2 plants through multiple generations, enabling rapid cultivation and selection of lines with high homozygosity in later generations. This method is best for plants such as soybeans that can self-pollinate and be grown densely (Tigchelaar and Casali, 1976) and can be used in small spaces such as greenhouses. However, it is not suitable for traits with low heritability, polygenes, or traits associated with pleiotropic genes.





2.1.6  Backcross breeding


Backcross breeding aims to transfer one or more specific genes of interest from an ineffective breed to an excellent breeding line while preserving all other characteristics in the already excellent breeding line. It is a breeding method achieved over a relatively short time through repeated crosses and selection of superior breeding lines, i.e., recurrent parents (Acquaah, 2009). Although this method is best suited for qualitative traits (Borojevic, 1990), backcrossing may be difficult if the gene of interest is closely associated with unwanted genes, resulting in linkage drag (Allard, 1960).






2.2  Techniques in molecular breeding


Traditional breeding, with a history of nearly 100 years, liberated humanity from starvation with groundbreaking achievements. Despite these outstanding achievements, it stagnated due to a long breeding time and the limited number of crops that could be cross-bred. Amid these difficulties, a new concept emerged that applied a molecular-based selection strategy that replaced the existing phenotype-based breeding strategy. Until then, breeders visually made selections for breeding. However, after the advent of molecular breeding, it became possible to determine whether the genes of the parent generation were passed on to the next generation through gene analysis technology (Savadi et al., 2018). Next-generation sequencing (NGS) enables the discovery of molecular markers by sequencing the entire genome of a plant. Molecular breeding makes it possible to accurately select useful individuals with desired traits without being greatly affected by the environment by using molecular markers that detect the traits of each individual (Metzker, 2010). Modern molecular breeding is a powerful molecular tool based on precision breeding that can reduce the time and effort required to produce new varieties and provide new and accurate in-depth research to satisfy the increasing global population and large-scale plant breeding requirements (
Figure 1
).





Figure 1 | 
Schematic diagram of plant breeding using molecular markers.








2.2.1  QTL mapping


Molecular markers with DNA-based polymorphisms can be used for genetic improvement by allowing for the selection of useful traits (Tewodros, 2016). In general, most of the agriculturally important traits are quantitatively inherited. Their genetic variation can be attributed to the collective response of several small effects associated with the trait. Methods utilizing traditional molecular markers include finding QTL-associated markers that regulate the expression of any trait in single or multiple parental mapping populations (Semagn et al., 2015). Throughout the 1980s and 1990s, various rich molecular markers were developed, enabling QTL mapping with reasonable marker density and genome coverage (Cooper et al., 2004). In plants, QTL mapping enriches biological knowledge of genetics and genetic structures across related species, providing useful markers to understand the genetic structures of complex traits (Bernardo, 2008). Therefore, building linkage maps and finding correlations between genetic markers and phenotypic traits is fundamental (Wang et al., 2016). Relatively simple single-marker analysis and more sophisticated interval mapping (Haley and Knott, 1992), joint mapping (Kearsey and Hyne, 1994), multiple regression (Whittaker et al., 1996) and composite interval mapping (Zeng, 1994) are used in various ways to link genotypes with many different quantitative traits. In recent decades, QTL mapping studies identified various QTLs that regulate complex phenotypic traits in crops such as rice (Yano et al., 2000), maize (Yano et al., 2000), arabidopsis (El-Assal et al., 2001), and tomato (Fridman et al., 2000).





2.2.2  Linkage disequilibrium (LD) mapping


Another method of selection to identify loci involved in the inheritance of complex traits is association mapping, also called LD mapping. This methodology is more efficient than QTL mapping, as it explores diversity using existing natural populations or germplasm collections with diverse cultivars, as opposed to QTL analysis, which uses bi-parental populations constructed using contrasting parents (Gómez, 2011). Correlation between mapped genetic markers and traits can be used to detect QTLs (Ibrahim et al., 2020). This can be difficult to do unless you have a well-annotated genome, as it allows for detecting more alleles with high resolution and precise mapping of quantitative traits but requires extensive knowledge of markers within the genome.





2.2.3  Genome-wide association study (GWAS)


With the development of NGS technology, computational methods using information from the genetic analysis have been improved, and GWAS search for key genes underlying important traits, contributing to the production of genetically improved plants. The first published GWAS was a study on humans in the early 2000s. Since then, several active studies in animals and plants have been conducted (Ozaki et al., 2002). This methodology has emerged as an alternative approach to bi-parental QTL mapping in various crop species. Research on associations between molecular markers (e.g., SNPs) and desired phenotypic traits is key to identifying relevant genes. In addition, there is no need to develop new mapping populations because historical recombination events between accessions are used to find relevant genomic regions (Nakano, 2020). Once accessions are genotyped, the data can be used for many different traits, enabling quick research of different traits in various environments (Deng et al., 2021). In the case of GWAS, since the genetic variation is identified by genotyping many markers, it is important to select an optimal statistical model to detect false positives. Consequently, statistical power and computational efficiency may be indispensable for detecting truly associated markers (Wu and Zhao, 2009). In GWAS, the mixed linear model (MLM) and general linear model (GLM) are the most recommended. In addition to those, there are various models such as the compressed MLM (CMLM), enriched CMLM (ECMLM), and the settlement of MLM under progressively exclusive relationship (SUPER), which are single locus analyses similar to GLM and MLM but more advanced. There are also the multiple loci mixed linear model (MLMM) and the fixed and random model circulating probability unification (FarmCPU). Among them, GLM is one of the methods with high computational efficiency, which can lower false positives by using the population structure and principal components as fixed effects. However, if the polygenic background is not sufficiently calculated, the false positives will be high, and the family structure will not be considered in the statistical analysis (Mebratie et al., 2019). However, MLM (kinship or kinship + Q matrix + PCA) takes into account the population structure and is used to control for false positives by virtue of familial relatedness. These MLMs perform better than the GLM model alone and are widely used as an alternative to GLM (Alqudah et al., 2020). These models were improved and developed to produce better statistical results. However, MLM can be difficult to control for false positives when it involves population structures with extensive genetic diversity. In this case, CMLM and ECMLM were developed to increase statistical power further. The SUPER model increases statistical power by inducing kinship using relevant genetic markers instead of the entire markers. MLMM and FarmCPU extend the single-loci method of MLM to a multiple-loci method. FarmCPU combines the MLMM strategy into the limited kinship matrix of the SUPER model (Kusmec, 2018). Thus, it tests markers using multiple related markers as covariates in a fixed effects model and performs analysis on related covariate markers in a random effects model. FarmCPU is faster than MLMM and effectively improves problems caused by false positives (Liu et al., 2016). In addition, as new models are continuously developed, the performance and statistical power of GWAS is expected to increase over time. Also, existing models need to be improved more efficiently in line with increasing data availability.





2.2.4  MAS


Recently, the amount of molecular markers for traits of interest in plant breeding has been gradually increasing. QTL mapping to identify genetic loci quantitatively associated with traits of interest is the basis for developing molecular markers used in MA) (Ibrahim et al., 2020). MAS can be defined as the manipulation of a genomic region involved in expressing a trait of interest in a short time through the application of DNA markers. These attempts led the study of molecular breeding into a new era (Sharma, 2020). It is also applied to plant breeding to improve tolerance to biotic or abiotic stress and to improve crop yield and quality. MAS has the basic idea of using LD between markers and QTLs: using a non-random association between the marker and the QTL allele (Hospital, 2009). Identifying genes in the target trait and markers linked to QTLs is a prerequisite for these MAS (Khush, 2000). The framework of MAS in plant breeding is divided into four groups: (i) marker-assisted backcrossing, (ii) marker-assisted pyramiding, (iii) early generation marker-assisted selection, and (iv) marker-based recurrent selection. These systems characterize genetic material in early segregating generations and strongly anchor the breeding cycle (Nadeem et al., 2018). Marker-assisted backcrossing (i), first described in 1992, is a technique for the introgression of one or several major genes of a donor line into the genetic background of an elite line or recurrent line. With the help of molecular markers, it was possible to speed up the selection and genomic recovery of recurrent parents (Muranty et al., 2014), and it is widely used to eliminate undesirable traits (ex., disease susceptibility) in popular varieties (Sharma, 2020). Marker-assisted pyramiding (ii) is the process of combining multiple genes into one genotype. The most common strategy of pyramiding is to combine several resistance genes to biotic and abiotic stress, which is a strategy to prevent the decay of resistance to specific diseases or stresses. This method efficiently transfers genes into improved varieties by pyramiding the gene combinations. Early generation MAS (iii) has the advantage of selecting markers at an early generation, allowing attention to fewer important lineages in the next generation compared to the previous generation (Collard and Mackill, 2008). In plants, a technique that helps to improve quantitative traits by repeating crosses and selection is called recurrent selection. The goal of marker-based recurrent selection (iv) with such recurrent selection is to augment favorable alleles and more QTLs in the population before inbred lines extraction (Bankole et al., 2017). This method can efficiently breed complex traits because it can use minor genes/QTLs that do not significantly affect the phenotype (Abdulmalik et al., 2017). However, the limitation of MAS in plant breeding is that traits composed of many minor effect alleles cannot be efficiently selected. Besides, linkage drags occur in every breeding effort, which hampers the improvement of target traits. Consequently, predictive breeding procedures using agro-bigdata and advanced statistical models embedded in some basic machine learning algorithms are being recently used for overcoming the limits of MAS, which will be discussed in the next section.






2.3  GS


Complex quantitative traits are regulated by genome-wide minor effect alleles. Most economically useful traits, such as yield, fruit quality, and stress tolerance, are mostly complex quantitative traits (Bhat et al., 2015). There are two major marker-based breeding methods—MAS and GS—to select plants with superior traits. In MAS, crops are selected based on QTLs detected through linkage mapping (LM) or GWAS (Myles et al., 2009). MAS cannot identify genes with minor effects associated with complex traits, and if the associated markers constitute a small fraction of genetic variation, the results are worse than phenotypic selection (Xu and Crouch, 2008). Moreover, in MAS, only a few statistically significant specific markers are used, and the rest are excluded from the analysis. Therefore, in traditional MAS, the number of specific markers per trait is generally low, and the use of MAS is limited when several genes with small effects are involved in one trait (Bernardo, 2008). Therefore, MAS is optimized for qualitative traits, such as specific metabolites and disease resistance, rather than quantitative ones.


A new method called GS deals with these problems. Improvement of complex traits requires phenotypic evaluation at various locations and multi-years to confirm the correlation between environment and genotype. However, it was difficult due to the lack of cost and labor. With the development of NGS technology, sequencing costs have become cheaper, and high-resolution genome information can be easily obtained. Advances in sequencing methods have made GS possible (Gorjanc et al., 2015). All available high-performance markers in the genome can be used to select GS crops (Jannink et al., 2010). Given a marker set covering the entire genome, GS models consider all markers influencing a trait regardless of a specific threshold. Traditional MAS focuses on a small number of major genes or QTLs, whereas GS makes predictions by integrating all available markers in the genome into the model. Calculating all genetic effects prevents the loss of genetic variance occupied by minor genes or QTLs. Therefore, GS is more effective than MAS for traits regulated by multiple markers (Meuwissen et al., 2001). The most significant advantage of GS is that it can predict the phenotype information of mature individuals based on genotype data obtained from seeds or seedlings. This process eliminates the need for comprehensive phenotypic evaluation by year or environment and increases the speed of crop varietal development (Bhat et al., 2016). Previous studies showed that compared to MAS, the accuracy of genomic prediction (GP) is three times higher for maize (Zea mays L.) and two times higher for wheat (Triticum aestivum L.) (Heffner et al., 2009). Therefore, it is expected that this genome-based predictive selection has the potential to replace phenotypic selection or marker-assisted breeding.


GS combines phenotypic and genotype data of the training population to construct a model. Then, based on the learned model, the genomic estimated breeding values (GEBVs) of individuals in the breeding population are predicted (
Figure 2
). Therefore, with genotype data, GS selects individuals based on GEBVs from the validation (or breeding) population. In this case, phenotype information from the validation population is not required (Meuwissen et al., 2001). Breeding values consist of two elements. The first is the average breeding values of the parents, and the second is the variance of the progeny from the mean breeding values of both parents due to Mendelian sampling. Since GS uses a high density of markers to quantify Mendelian sampling, large-scale phenotypes of the progeny are not required. This process reduces the breeding cycle and is more efficient than comprehensive phenotyping. GS is effective for complex traits with low heritability and simple traits with high heritability. In addition, it is possible to reduce the development cost of a hybrid or breeding line (Crossa et al., 2017). The process of training models resembles that of acquiring breeding resources by breeders. Therefore, GS is closer to a conventional selection procedure. On the other hand, selection in the early stages of growth based on the trained models can be made, like MAS, combining the advantages of conventional breeding and MAS.





Figure 2 | 
Schematic diagram of genomic selection.






Although GS is a useful tool in plant breeding, there is limited information on setting up an optimized statistical model. Incorrect data imputation, unexpected responses, and environmental constraints limit the performance of GP. Although attempts were made to consider and overcome these limitations in several statistical prediction models, it is still the most challenging problem in multidimensional genomic data (Budhlakoti et al., 2020). The prediction accuracy difference between the respective models is determined according to the underlying statistical methods. Many GP models use a large set of markers to predict the phenotype, and each model makes different assumptions according to the distribution and difference of the markers (Goddard, 2009). So far, the only solution to avoid this limitation may be repeated trials with different statistical models to find an optimized scenario that can be applied to target traits. GP models are divided into parametric and non-parametric methods according to the presence of prior information and the setting of parameters (Budhlakoti et al., 2022). In parametric methods, Regularized Linear Regression (RLR) models such as least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) and ridge regression (RR) (Meuwissen et al., 2001) emerged, improving the over-parameterization problem of the existing simple linear model. Currently, best linear unbiased prediction (BLUP) and Bayesian models are mainly used according to variance assumption in GS (Meuwissen et al., 2001). Semi-parametric methods such as reproducing kernel Hilbert space (RKHS) and Nadraya-Watson estimator predict GEBVs taking into account epistatic genetic structure (Gianola et al., 2006). Furthermore, ML-based statistical models such as SVM (Long et al., 2011), artificial neural networks (ANN) (Gianola et al., 2011), and random forest (RF) (Holliday et al., 2012) have been applied to plant breeding (
Figure 3
). Various studies have tried to find optimal accuracy by applying various statistical models for each crop. However, it is difficult to define an optimal statistical method due to differences in crops, cultivars, environments, populations, and markers. Therefore, it is necessary for breeders to compare and to select appropriate statistical methods for each situation when conducting GS.





Figure 3 | 
Classification of GS statistical models.






ABLUP- Traditional pedigree- Best Linear Unbiased Predictor; GBLUP-Genomic Best Linear Unbiased Predictor; ssGBLUP-Single-step Genomic Best Linear Unbiased Predictor; RRBLUP-Ridge Regression Best Linear Unbiased Predictor; rrGBLUP- Ridge Regression Best Linear Unbiased Predictor; Bayes-Bayesian method RF-Random Forest; RR-Ridge Regression; LASSO-Least Absolute Shrinkage and Selection Operator; SVM- Support Vector Machine; RF-Random Forest; ANN-Artificial Neural Networks; MLP-Multi-Layer Perception; CNN-Convolutional Neural Networks; DBN-Deep Belief Network; RKHS- Reproducing Kernerl Hillbert Space.




2.3.1  RLR models


GS tries to avoid biased marker prediction effects by using the entire marker. Ordinary least squares (OLS) is a simple method for measuring the influence of markers. However, OLS only makes predictions within a sample and does not allow the weighting of markers. In the case of a high density of markers, the number of markers (p) exceeds the sample size (n). Therefore, it is not appropriate to obtain an estimate of the marker effect through OLS (Perez et al., 2010). In order to solve this problem, RLR models were proposed, such as RR and LASSO. The RLR model reduces the variance of regression coefficients by shrinking the regression coefficients. Through this process, only the key predictor variables are considered when making estimations in the statistical model (Szymczak et al., 2009). This process can improve prediction accuracy by reducing the mean squared error (Friedman et al., 2010).


RR estimates the regression coefficient using parameter shrinkage, giving the ℓ2-norm penalty. The ℓ2 penalty of RR tends to shrink the coefficient to zero. In particular, RR is advantageous for non-zero coefficients. In the case of k identical predictor variables, when the predictor variables are fitted alone, each coefficient is equally reduced to the size of 1/k. Moreover, RR is effective when many predictors have small effects, especially coefficients with many correlated variables. Therefore, RR cannot eliminate coefficients and cannot select only a relevant subset of predictors. Similar to RR, LASSO is advantageous for processing large amounts of data quickly and efficiently (Friedman et al., 2010). However, LASSO has a weakness when many predictors are correlated. If only one suitable predictor is selected from k identical predictor variables, the others are ignored. That is, Lasso’s ℓ1 penalized least squares criterion excludes coefficients close to zero. The most significant difference between LASSO and RR is that ridge regression only shrinks coefficients, whereas LASSO also selects variables. In addition, LASSO shrinks coefficients with the same force for all coefficients, but RR shrinks coefficients in proportion to the size of the coefficients (Ogutu, 2012). On the other hand, elastic net combines the penalties of LASSO and RR. Elastic net penalty weights LASSO and RR. When the penalty parameter is close to 0, it corresponds to RR. However, when it is close to 1, it shows a performance similar to LASSO. Elastic net solves the disadvantages of using RR or LASSO alone and shows high prediction accuracy when predictors are correlated (Tutz, 2009).





2.3.2  MLM


Estimating the value of breeding requires optimizing the estimation of the regression coefficients but also optimizing the information in the phenotypic data. There is a method that combines these two factors. There is a method of obtaining a phylogenetic effect by simultaneously modifying the phenotype and a method of estimating the breeding value using an additional genetic relationship between plants. This method is called best linear unbiased prediction (BLUP) (Goldberger, 1962). BLUP statistical method was proposed by Henderson (1975) as the coefficient matrix of mixed model equations (MME) for linear mixed models used in data analysis to estimate and predict random effects. BLUP evaluates all objects simultaneously and acts as a linear model, correcting for different effects between objects and estimating by combining objects and fixed effects. For linear models, a single genotype effect appears as an independent random variable, uncorrelated (Piepho et al., 2008). These BLUP models include pedigree-based BLUP (ABLUP), genomic best linear unbiased predictor (GBLUP), and ridge regression BLUP (rrBLUP). ABLUP is a standard method for predicting breeding values through inferable associations between individuals using relevant information based on pedigree (Crossa et al., 2010). ABLUP’s Ep is assumed to follow a normal distribution of random additive effects (Rezende et al., 2014). GBLUP is derived from ABLUP but differs in that the matrix of the marker-based matrix Eq is replaced by G (Myburg et al., 2007). GBLUP has potential advantages over ABLUP. First, the prediction of similarity computed based on pedigree is replaced by similarity feasible in GBLUP, which consists of weak assumptions. Possible similarities can also be characterized in pairs instead of based on family history in ABLUP (de los Campos et al., 2009). Unlike the previous two methods, rrBLUP changes the parameter notation in Eq. It has a similar computational method to GBLUP and assumes that the same marker effects are reduced, and the variances are equally normal. The GBLUP method is the most common approach in animals and plants. GBLUP was parameterized with the ridge regression model (Hoerl and Kennard, 1970), rrBLUP, to predict the genome. The reduction of SNPs can be determined either by normalizing rrBLUP or by the ratio of variance components in GBLUP (Heslot et al., 2012).





2.3.3  Bayesian prediction models


Bayesian analysis is named after the British mathematician Thomas Bayes. This analysis is a statistical method that combines the information in the sample with the information on the parameters in the population in advance to explain the statistical reasoning process (Gelman et al., 1995). The first step in using the model is specifying the probability distribution of the parameter of interest in advance and applying it by providing the posterior probability distribution for the parameter. These posterior distributions provide the basis for the parameters (Mila and Ngugi, 2011). In this method, single nucleotide polymorphisms (SNPs) encompass the entire genome and are used in animals and plants to estimate breeding values. Training to estimate the effect of SNPs in statistical problems allows us to estimate the effect in situations where the number of individuals is much smaller than the vast amount of SNPs (Habier et al., 2011). A key part of this analysis is the probability distribution of a parameter in the population. The Bayesian approach allows for subjective and objective data to pre-determine the distribution. Therefore, some argue that Bayesian analysis lacks objectivity (Habier et al., 2011).


Many Bayesian methods for GS have been developed. Similar sampling models have been shared, and a new concept of the Bayesian alphabet has emerged, including Bayes A and Bayes B in different analytical methods (Gianola et al., 2009). In animal and plant breeding studies, hierarchical Bayesian models such as Bayes A and Bayes B were presented (Meuwissen et al., 2001), as well as Bayesian LASSO (Legarra et al., 2011; Li and Sillanpää, 2012) and Bayesian ridge regression (BRR) (De Los Campos et al., 2013).


Direct approaches such as GBLUP first construct the relationship between SNPs and molecules and then utilize mixed model equations to determine genetic merit directly [89]. The Bayesian approach is more effective than other QTLs and genetic value prediction models, as many SNPs are preferentially merged into ineffective ones (Meuwissen et al., 2001). In addition, the Bayesian method, which assigns higher variances to subsets of SNP effects, has been shown to achieve higher prediction accuracy than GBLUP when large effect variations contribute to complex traits (Hayes et al., 2010).


Although the Bayesian model is widely used in animal and plant breeding, it has several drawbacks, including those previously described. First, SNPs treated as close to one are assigned an ineffective ratio. Second, the degree of freedom of the independent data dictionary is used for distribution. Only one degree of freedom can be added regardless of subsequent phenotypes and genotypes. In order to overcome these shortcomings, Bayes Cπ and Bayes Dπ were developed and sampled by replacing parameter π or scale parameter S with variables rather than data information (Habier et al., 2011).


Bayesian methods in this context have mechanisms to combine prior probability distributions with sample data information for later probability distributions in the natural state. Because of this, it can also be used to make better decisions in posterior probabilities.





2.3.4  Semi-parametric prediction models


Parametric models such as MLM and Bayesian models, widely used in GS, use a prior effect size distribution determined by several parameters. The parameters used in predictive models limit the amount of information the model can use. Therefore, the small number of parameters determined in the predictive model limits the flexibility of the model. On the other hand, in the semi-parametric model, there is no assumption that data follows a specific distribution, and the number of parameters is determined according to the amount of training data. The semi-parametric model can be used when there is no prior information about the data (Murphy, 2012). Predictive models can be applied differently depending on the genetic architecture of the trait. Parametric predictive models can take into account additive effects but are ineffective for epistasis due to the difficulty of predicting high interactions (Howard et al., 2014). Semi-parametric and non-parametric models have high accuracy in genetic architectures with epistasis effects.


Conversely, semi-parametric models involve epistasis effects and have been used in several plant prediction studies. Epistasis plays a vital role in explaining the occurrence of genetic variation, and considering epistasis in predictive models can obtain good predictive accuracy of plant breeding in quantitative traits (Cordell, 2002; Howard et al., 2014). Epistasis is the interaction between genes in which one locus affects the phenotype by altering the effects of another locus. Therefore, epistasis can occur between multiple loci, and various interactions must be included in the model to calculate GEBVs for GS. A large number of markers is used in GS, and the corresponding epistasis interactions increase even more. Therefore, it is difficult to predict genetic gain using a model using only a small number of specific parameters (Moore and Williams, 2009).


For this reason, several models have been devised for genetic prediction. RKHS is designed for genetic prediction in non-linear models. It makes inferences about functions without prior information in a semi-parametric method. RKHS reflects independent variables in a finite-dimensional space into infinite-dimensional Hilbert spaces. This method assumes that distances in Euclidean space can be expressed through a kernel matrix that reflects the distances between objects in Hilbert space (Rodriguez-Ramilo et al., 2014). RKHS obtains prediction results by applying ML after transforming the independent variable using a kernel function. RKHS using implicit transformations has good results for predicting non-linear patterns of data (Gianola and van Kaam, 2008).







3  Digitalizing plant breeding




3.1  Strategies to increase prediction accuracy in GS


Comparison of GS methods is evaluated by prediction accuracy. The prediction accuracy is measured by the correlation between the measured GEBVs and the actually measured phenotype data. Therefore, improvement of prediction accuracy is important for GS applications.




3.1.1  Marker density and selection


Among them is the density of the marker. Since GS estimates the effects of markers using LD between quantitative loci and markers, a high density of markers is advantageous for GS (Meuwissen et al., 2001). Even for low-density markers in GS, some efficiency can be guaranteed if the intervals of the markers are uniformly distributed (Habier et al., 2009; Spindel et al., 2015). In addition, markers are selected by additive effect sizes, and when the trait of interest is oligogenic, it has high predictability compared to markers with uniform spacing (Li et al., 2018). In GS, a method using high-density SNPs is widely used to increase accuracy. However, this method has a negative side when species have low importability or large populations (Crossa et al., 2010). Therefore, reducing marker density could be a solution to reducing the cost of GS implementation.


To take advantage of GS while lowering the marker density, highly correlated duplicate markers can be removed from the LD block. This approach reduces multicollinearity and does not interfere with the marker effect. It can also be a good alternative because it reduces the possibility of overfitting (Xu, 2013). The low density of markers reduces computational analysis time and allows for genotyping of more individuals at the same cost. Even if the number of markers is reduced, it can have high prediction accuracy, so a method to identify valid markers can be a reasonable strategy for GS in the future. Therefore, breeders should consider the appropriate marker density to fit their budget and time when conducting GS (Gorjanc et al., 2015). If it is difficult to reduce the number of markers using LD, the accuracy of GP can be improved by using GWAS-related markers. The presence of irrelevant markers in the GP process can reduce prediction accuracy. GWAS predicts the effect of markers based on the entire genome and selects markers statistically linked to the target trait. Therefore, the prediction accuracy can be significantly improved if GP is performed with markers associated with the target trait (Odilbekov et al., 2019). In addition, combining GWAS and GS is convenient because it does not use additional data and uses the same existing phenotypic and genotypic information (Odilbekov et al., 2019). In short, selecting an appropriate marker for GS is an important factor for improving prediction accuracy. Breeders should consider the range of markers prior to selection.





3.1.2  Design of training population


The accuracy of genetic predictions is also determined by the design of the training population. Well-established training populations are important in GS. The training population consists of breeding lines with phenotype data for target traits and genotype data. After training a predictive model with markers, the prediction of GEBVs in the test population is performed using the trained model (Akdemir and Isidro-Sanchez, 2019). As NGS technology advances, genotyping costs and time continue to decrease, but the progress in phenotyping is slow. High costs and wasted labor are difficulties and limitations in plant breeding. In general, increasing the size of the training population tends to improve prediction accuracy. However, breeders should choose an optimized training population that maximizes predictive accuracy while significantly reducing phenotypic costs (Lado et al., 2013). Traditional optimization methods use random sampling. Random sampling does not increase prediction accuracy because of under- or over-represented genetic information (Bustos-Korts et al., 2016). After comparing random sampling methods, the coefficient of determination (CD) and the prediction error variance (PEV) methods have been proposed. CD shows slightly better results than PEV because CD from random samples shows genetic diversity when selecting individuals (Rincent et al., 2012). Another method of optimizing the training population is to use the genetic information of the test population when establishing the training population. The use of genetic information in the test population leads to a significant increase in prediction accuracy by applying a genetic algorithm (Lorenz and Smith, 2015; Akdemir et al., 2015). The genetic link between the training and test populations increases GP accuracy (Wientjes et al., 2013) because when the genetic distance between individuals is close, they share a common ancestry, and there is less recombination between the marker and the QTLs. Furthermore, the two groups share polymorphic loci that produce genetic variations (Habier et al., 2010). In addition, if the genetic background between groups is shared, the interaction deviation between the QTLs and the genetic background is shared (Lorenz and Cohen, 2012). Therefore, breeders should consider training the population composition of unrelated individuals if they want to increase the accuracy of GP.





3.1.3  Multiple environments and heritability


Difficulties in making genetic predictions should apply to GEBVs in various environments. For accurate predictions, predictive models must consider terms that interact with various environments and environment x genotype interactions. These changed prediction models are divided into two types. The first is a non-informed model, which includes the environment as the main random effect. Also, the interaction between a genotype and environment is specified as a random effect. These prediction models report improved accuracy compared to traditional prediction models that specify only a genotype and environment as the main effects (Jarquin et al., 2014; Lopez-Cruz et al., 2015). On the other side, the informed prediction model includes measured environmental covariates in each environment. Then, informed prediction models incorporate information through variance-covariance structures using kernel-based methods. Finally, the informed prediction model calculates the interaction between each marker and environmental covariates and includes these calculations in predicting GEBVs. It is important to predict GEBVs by considering these models in various environments. Predictive models should be improved in terms of prediction results, or genetic and environmental variability should be analyzed to improve accuracy (Basnet et al., 2019). In general, traits with high heritability are determined by some genes having a major effect. Because these traits are less affected by the environment, their prediction accuracy is high. However, since numerous genes determine most of the traits humans try to breed with minor effects, it is necessary to consider the environment when selecting a predictive model (Combs and Bernardo, 2013).





3.1.4  High-throughput phenotyping (HTP)


With the development of NGS and large-scale marker information, the application of GS increases in plants. However, one of the challenges that breeders face in training GS models is inaccurate phenotypic data. The sophistication of phenotypic information is as important as genomic information. Inaccurate phenotypic data make the predictive ability of the GS model decline. In addition, the existing phenotype measurement method has disadvantages because it is labor-intensive and requires a lot of time and costs. Recently, high-throughput phenotyping (HTP) has been used for accurate phenotypic information measurements. HTP is a non-destructive, fast, and accurate phenotypic measurement method that accurately captures traits of interest (Pabuayon et al., 2019). HTP has developed rapidly in plant breeding over the past decade. HTP processes stress tolerance, yield, and growth information through automated sensing, data acquisition, and processing. These advantages of HTP include accelerating the breeding cycle while allowing rapid screening of numerous plants at various growth stages (Yadav, 2021). The HTP platforms include RGB, normalized difference vegetation index (NDVI) sensors, multispectral and hyperspectral cameras, spectrometers, and light detection and ranging (LiDAR) technology (Yadav, 2021). The HTP platforms include RGB, normalized difference vegetation index (NDVI) sensors, multispectral and hyperspectral cameras, spectrometers, and light detection and ranging (LiDAR) technology (Shabannejad et al., 2020). Many studies on GS in plants using HTP have been conducted. GS was performed utilizing HTP using NDVI in wheat. Data collected through HTP showed a 7 to 33% increase compared to the standard univariate model (Crain et al., 2018). In addition, when HTP was performed in wheat using RGB, the prediction accuracy for days to maturity increased by 3 to 4 times (Shabannejad et al., 2020). Also, in another study, the measurement of secondary traits in wheat using an unmanned aerial vehicle (UAV) remote sensing increased the genetic prediction accuracy of grain yield by an average of 146% (Sun et al., 2019). These results suggest that using HTP improves model performance while enabling accurate selection. The efficient use of HTP becomes the background for ML and DL technology. The advanced combination of genotyping and phenotyping will provide breeders with opportunities for better GS.






3.2  Application of ML for GS


ML uses statistical techniques to allow systems to learn from data without explicitly programming them. ML takes a sample and then builds a model to explore algorithms that learn from current data and make predictions on new data. ML-based methods can be effective in improving prediction accuracy compared to conventional GS (Yoosefzadeh-Najafabadi et al., 2022). The main difference between the traditional statistics model and ML is that ML is a non-parametric model that offers tremendous flexibility to adapt to complex associations between data and outputs. It is difficult to build informative and predictive models because of the expanding scale of genome data, inherent complexity, the unique characteristics of organisms, and various environmental variables. Accordingly, the use of ML continues to grow and can be a good alternative (Greener et al., 2022). It initially adapts hidden patterns of unknown structures that cannot be incorporated into parametric models (Gianola, 2013).


GS statistical methods use ML for more accurate predictions (
Table 2
). Statistical analysis of the genetic basis of quantitative traits in plants is unsuitable for complex configurations such as pleiotropic genes, gene X gene, and gene X environment interactions. It is difficult to capture all marker effects, and problems such as the ‘large p, small n’ problem, sometimes lead to over-parameterization. ML methods improve prediction accuracy through observations of repeated experiences (Gianola et al., 2006). ML can identify hidden information in large data. Therefore, it is attractive for complex genomic information, including information about gene interactions and pleiotropic genes, when performing GS. ML develops and applies data through computer algorithms and is divided into supervised and unsupervised learning. Supervised learning predicts desired trait values from input data. On the other hand, unsupervised learning checks the group and association between input variables in which output variables do not exist.



Table 2 | 
Machine learning application to GS in plants.






Most ML involves supervised learning, such as Bayes nets, rule-based learning decision trees, naive Bayes, and nearest-neighbors, and applies to GS in the form of RF, ANN, and SVM (Gonzalez-Camacho et al., 2018). RF is an attractive alternative to analyzing complex individual traits using dense genetic markers. RF has good predictive power to measure the importance of each marker. RF does not require the specification of inheritance and takes into account non-additive effects. In addition, it is fast even when dealing with many covariates and can be applied to regression and classification models (Gonzalez-Recio et al., 2010).


Another ML-based model, SVM, is advantageous for classification and regression, similar to other ML models. The difference from other ML models is that SVM is specialized in identifying subtle patterns in complex and large amounts of information data. SVM makes a decision boundary with various feature vectors to achieve predictions. SVM can flexibly handle data using kernel-based functions. Furthermore, SVM can improve the non-linear form of phenotypes and genotypes using kernel functions (Noble, 2006). ML models can be applied in many scientific fields, but it is not clear whether these methods are superior to other statistical models. Therefore, if you want to make a clear prediction in the GS process, data acquired by various methods should be accumulated, and the optimal method should be selected based on experience.


Recently, the ML method, a specific type of ANN, has been considered to increase the performance of GS. ANN takes into account patterns in data and makes predictions about complex functions as universal approximations (Gianola et al., 2011). In GS, these functions automatically identify factors such as epistasis or dominance in genomic marker information. Moreover, it does not require any assumptions about the phenotypic distribution, and applying ANN to GS enables effective estimations of the effects of complex interactions (Rosado et al., 2020)





3.3  Application of DL for GS


Although studies on GS applied with DL are still lacking, several advanced studies exist (
Table 4
). In 2018, Montesinos-López et al. (Montesinos-Lopez et al., 2018). compared DL and GBLUP models using densely connected network architecture. Their study used nine published genomic data sets (three maize and six wheat data sets). When genotype x environment interactions (G x E) were ignored, DL had good predictive accuracy in 6 of 9 data sets. However, the prediction accuracy of GBLUP was excellent in 8 of 9 data sets when the G x E interaction was taken into account. In the study conducted in 2019, genomic-based prediction performance was confirmed by comparing the Bayesian threshold genomic best linear unbiased prediction (TGBLUP) model with multi-layer perceptron (MLP) and SVM methods (Montesinos-Lopez et al., 2019). It was confirmed that SVM and MLP were the most efficient in terms of computation time. These studies suggest that DL is not a data science panacea but a worthwhile addition to the data science toolkit in plant breeding. So far, research on GS using DL confirming prediction accuracy through the comparison with existing statistical models is limited. Thus, more research is needed.


An artificial neural network (ANN), the most fundamental concept in DL, is a network structure created by mimicking the neuron connection structure of a human neural network. A structure in which three or more ANNs are superimposed is called a deep neural network (DNN), and ML using this is called DL (LeCun et al., 2015). Popular DL topologies in GS include MLP, a convolutional neural network (CNN), and a recurrent neural network (RNN) (Montesinos-Lopez et al., 2021).


In MLP, in an artificial neural network, data moves in one direction from the input node through the hidden node to the output node (
Figure 4
). It has at least one hidden layer and is usually supervised learning. This method is the simplest to train, generally performs well in a variety of applications, and is suitable for general prediction problems where it is assumed that there is no special relationship between the inputs. However, these networks are prone to overfitting during the training process, so there is a problem in that the accuracy decreases in real data (Abdollahi-Arpanahi et al., 2020).





Figure 4 | 
Multilayer perceptron structure with 3 hidden layers.






CNNs are used in visual recognition tasks involving images or video data. CNNs reduce the size of input and parameter sharing because the inputs are only partially connected to some neurons. Therefore, it is efficient because it reduces the parameters that need to be estimated. Most CNNs include three operations: convolution, non-linear transformation, and pooling (
Figure 5
). This process allows you to reduce the input size without losing relevant information. In addition, the training time can be decreased by reducing the parameters (Pook et al., 2020).





Figure 5 | 
The structure of the CNN topology.






RNNs do not always travel in one direction, as they can be fed back to previous layers via synaptic connections. At least one feedback loop exists because the signal travels in both directions. Although the training parameters are reduced by sharing parameters across multiple steps, the short-term memory or latency of the network improves the performance, so training requires a lot of computational resources (Montesinos-Lopez et al., 2021).


Although few GS programs use DL, DL is emerging as a promising tool. First, the reason is that the DL model efficiently processes the image’s raw data without any preprocessing. Second, it captures naturally genetic diversity without specifying additional terms for the predictors. This is important for non-additive effects or complex relationships and interactions that are important to capture the genetic merit of the whole. Third, topologies such as CNNs efficiently capture the LD of neighboring SNPs. Fourth, some topologies, such as CNNs, share parameters so that more parameters do not need to be estimated, reducing the number of parameters that need to be estimated. However, there are a few caveats to using DL in GS. It is more prone to overfitting than existing statistical models. Research results have reported that these problems can be solved with a Bayesian paradigm (Neal, 1996). In addition, considerable knowledge is required to implement and output the DL model because it depends on the choice of many hyper-parameters and requires a very complex adjustment process.


The possibility that DLs can provide good predictive performance in GS has been suggested by several studies (
Table 3
). However, it still shows a similar or lower level of predictive performance than the existing statistical models. More iterative and collaborative experiments are needed, and more data are needed to utilize DL in genome selection. In addition, the data should include not only the phenotype but also various types of omics data, climate data, and experience data of breeders. Then we need to design an efficient topology for the DL model (Montesinos-Lopez et al., 2021).



Table 3 | 
Deep learning application to GS in plants.










4  Conclusion


Plant breeding has steadily increased crop productivity by developing superior varieties to support a growing population. Due to recent global environmental changes such as global warming, resource depletion, outbreaks of pests and diseases, and diversification of consumer demands, the role of plant breeding attracts much attention. Traditional breeding has developed dramatically and contributed to increased crop production, yield, and improved nutrition. Traditional breeding has created modern cultivars since the 20th century and has achieved great success in productivity. However, it is insufficient to meet the demand for crop production accompanied by exponential population growth. Breeding methods based on the traditional phenotypic selection are ineffective for low heritability and multi-genic quantitative traits (biological and abiotic stress, yield, and quality) because these traits are greatly influenced by the interaction between genes and the environment. Moreover, traditional breeding methods are time-consuming, laborious, and ineffective for cost and land use. In addition, low reliability and accuracy make these breeding methods less efficient. Accordingly, a new breeding method is required to quickly and accurately breed crops with high yield, good quality, and climate resilience. Researchers successfully established biotechnology-based molecular breeding technology to overcome the limitations of traditional breeding technology. They are now putting genome breeding technology into practice, also called predictive breeding. In summary, the history of plant breeding developed from traditional to molecular breeding. Predictive breeding will be available in the near future.


Rapid development in advanced technologies such as biotechnology, genomics, and phenomics improves progress in plant breeding. Breeders in the 21st century create mutations that directly correct target genes and expand the limits of genetic resources indefinitely by transcending the category of sexual reproduction with transformation technology. Selection in a population or lineage can rapidly and accurately fix the desired genotype using genomic information.


Integrating novel digital tools will be valuable and helpful in enhancing breeding progress, particularly for difficult-to-breed, quantitative traits. Vast genetic, genomic, phenotypic, and environmental data must be integrated and handled based on digital technology to fulfill the breeding technologies. In the current article, we first defined the term digital breeding, including breeding technologies from molecular to predictive breeding. For digital-based breeding technology to be commercialized, gene and genome information related to traits for each crop must be identified. It is expected that digital breeding can make it possible to reflect complex climates, geography, quantitative traits, and multiple traits in the breeding process. In a broad sense, therefore, digital breeding is not a single but a convergence technology. It can be defined as various attempts to actively utilize advanced technologies such as big data and artificial intelligence for agricultural breeding. However, as common confusion with new concepts in the early days of establishment, each researcher may have different ideas about digital breeding depending on their research field, research experience, and breeding resources. Particularly, some researchers think that DL-based techniques in breeding can become a game changer based on the results that DL has shown in various fields so far, so only DL-based techniques may be considered digital breeding. The different perceptions of digital breeding by researchers may cause confusion in the planning and promotion of related R&D. To address the problem, we first listened to the opinions of many researchers working with various breeding technologies. Consequently, we could classify the breeding level based on the intensity of digitalization. As a solution, we suggest that if digital breeding is divided like the autonomous driving levels in automobiles, it will be possible to easily organize the differences in thinking about digital breeding. Accordingly, we divided digital breeding into six phases. Phase 0 is traditional breeding that does not use digital technology and includes cross-breeding and mutation breeding. Phase 1 refers to identifying and processing substantial marker data generated by the development of genome sequencing technology. In Phase 2, markers are developed using bioinformatics tools. It is advantageous to select markers associated with qualitative traits using GWAS. Marker selection using GWAS has been actively carried out, but it is difficult to apply it to breeding directly. On the other hand, Phase 3 shows the potential to be practically applied to breeding. In this phase, the basis for practical application to breeding was laid by calculating the GEBVs using genomic information. Research based on GS started digital breeding. Although GS research has been actively conducted on livestock, it is still lacking in plants. Predictive statistical models for GS have been used in BLUP, LASSO, Bayesian, and ML-based models have also been applied. In Phase 4, breeding mainly uses DL to predict the phenotype by considering factors that affect plants, such as the environment. Some studies have been carried out by applying DL to plants, but it is still incomplete due to accuracy and technical problems. It looks like digital breeding, in the narrow sense, refers to this phase. In Phase 5, all processes from breeding design to phenotype prediction are automatically performed using DL. It has not yet been studied and is the ultimate goal for digital breeding techniques to evolve (
Table 4
). More phases can be added if new technologies emerge in the future.



Table 4 | 
Phases of digital breeding defined in the current review.
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The heat shock transcription factors (HSFs) family is widely present in eukaryotes including plants. Recent studies have indicated that HSF is a multifunctional group of genes involved in plant growth and development, as well as response to abiotic stresses. Here we combined the bioinformatic, molecular biology way to dissect the function of Hsf, specifically HsfB4 in wheat under abiotic stresses. In this study, we identified 78 TaHSF genes in wheat (Triticum aestivum) and analyzed their phylogenetic relationship and expression regulation motifs. Next, the expression profiles of TaHSFs and AtHSFs were analyzed in different tissues as well as in response to abiotic stress. Furthermore, to explore the role of HSFB4 in abiotic stress response, we cloned TaHSFB4-2B from the wheat variety, Chinese Spring. Subcellular localization analysis showed that TaHSFB4-2B was localized in the nucleus. In addition, We observed TaHSFB4-2B was highly expressed in the root and stem, its transcription was induced under long-term heat shock, cold, and salinity stress. Additionally, overexpression of TaHSFB4-2B suppressed seed germination and growth in Arabidopsis with salinity and mannitol treatment. It also modulated the expression of stress-responsive genes, including AtHSP17.8, AtHSP17.6A, AtHSP17.6C, CAT2, and SOS1, under both normal and stress conditions. From these finding, we propose that TaHSFB4-2B act as a negative regulator of abiotic stress response in the plant.




Keywords: HSF, TaHSFB4-2B, wheat, tissue specific expression, overexpression, abiotic stress



Introduction

The abiotic stresses result in growth retardation, quality reduction, and yield loss of crop plants (Haider et al., 2022). For example, high temperature is found to significantly reduce crop yields (Schlenker and Roberts, 2009). Low temperature affects plant metabolism by directly inhibiting metabolic enzymes. Cold acclimation causes an increase in 75% of the 434 total metabolites detected in arabidopsis (Cook et al., 2004; Kaplan et al., 2004). Salinity leads to ionic toxicity, hypertonic stress, and oxidative damage (Zhu, 2002), while drought alters the growth and structure of plant roots, resulting in early flowering or growth retardation, and reduces yield (Gupta et al., 2020).

HSFs are the key regulators of heat stress response in plants. They specifically bind to highly conserved heat shock elements (HSE) to form transcriptional complexes that regulate the expression of downstream heat shock proteins (HSPs) (Lin et al., 2011). Based on the variations in the highly conserved functional domain, plant HSFs are categorized into three classes: HSFA, HSFB, and HSFC (Nover et al., 2001; Baniwal et al., 2004). HSFAs contain an AHA motif in the C-terminal activating peptide that participates in transcriptional activation (Czarnecka-Verner et al., 2004). Unlike HSFAs, HSFBs and HSFCs do not have an activation domain. As a result, they were presumed to be devoid of transcriptional activity (von Koskull-Doring et al., 2007).

In recent years, deducing the functions of HSFBs has become a research hotspot. In Arabidopsis, the HSFB subfamily is comprised of five members: AtHSFB1, AtHSFB2a, AtHSFB2b, AtHSFB3, and AtHSFB4. AtHSFB1 and AtHSFB2b are transcriptional inhibitors of heat-induced HSFs, which are involved in the positive regulation of acquired heat tolerance in the plant (Ikeda et al., 2011). AtHSFB4 primarily works in root stem cells and controls the development of cells in the surrounding layers. Arabidopsis scz, a mutant of AtHsfB4, showed an abnormal division of root peripheral cells, significantly increased root hair and shortened root length compared to wild-type (WT) plants (Mylona et al., 2002; Mylona et al., 2002; ten Hove et al., 2010; Begum et al., 2013). In rice, transgenic lines overexpressing OsHSFB4d showed enhanced disease resistance to bacterial leaf streak (BLS) and bacterial blight (BB) (Yang et al., 2020). In addition, heat, cold, and oxidative stress induced the transcription of OsHSFB4a, OsHSFB4b, and OsHSFB4d in rice (Mittal et al., 2009), indicating that the OsHSFB4 subfamily of genes is likely to be involved in heat and cold, as well as other stress responses.

In the current study, we analyzed the phylogenetic relationship among TaHSF proteins and the collinearity of TaHSF genes. The tissue-specific expression of TaHSFs and their responses to heat, cold, salinity, mannitol-induced drought stress, and exogenous ABA were investigated. Given the wide existence and diverse functions of HSFB4 genes, we cloned the closest ortholog of AtHSFB4 in wheat through homology-based cloning (http://plants.ensembl.org/index.html). The gene was designated TaHSFB4-2B based on its location on chromosome 2 of wheat subgenome B. We next analyzed the structural characteristics, subcellular localization, tissue-specific expression pattern, and expression profiles of TaHSFB4-2B under various abiotic stresses. Further, the transgenic lines overexpressing TaHSFB4-2B in arabidopsis were generated and their response to NaCl and mannitol-induced drought stress was evaluated. Taken together the findings, we concluded that TaHSFB4-2B acts as a negative regulator of heat and drought stress response in arabidopsis.



Materials and methods


Sequence and bioinformatics analysis

The amino acid sequences of HSF genes in arabidopsis (Arabidopsis thaliana), wheat (Triticum aestivum), soybean (Glycine max), tomato (Solanum lycopersicum), potato (Solanum tuberosum), rape (Brassica napus), rice (Oryza sativa), and corn (Zea mayz) were downloaded from Ensembl plants (http://plants.ensembl.org/index.html). MEGA-X (version 10.1.8) software was used for multiple sequence alignment and phylogenetic analysis was conducted using neighbor-joining method (Bootstrap test method was adopted and the replicate was set to 1000) (Tables S1, 2). Based on the information of wheat genome database, wheat HSF genes were mapped to different chromosomes, and the gene duplication events of HSF genes in wheat were visualized by TBtools (https://github.com/CJ-Chen/TBtools/releases). TaHSFB4-2B sequence was downloaded from Ensembl plants database. The TaHSFB4-2B protein domain was examined using the SMART online tool (http://smart.embl-heidelberg.de/). The TaHSFB4-2B gene structure was created using the GSDS website (http://gsds.cbi.pku.edu.cn/).



Analysis of induced abiotic stress cis-regulting elements of AtHSFs and TaHSFs

To further identify the putative induced abiotic stress cis-regulatory elements of the promoter regions of the AtHSFs and TaHSFs genes, 2-kb upstream sequences of AtHSFs and TaHSFs genes were obtained by using TBtools (https://github.com/CJ-Chen/TBtools/releases). The various putative cis-regulatory elements of these sequences were further analyzed using PlantCARE databases (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).



Expression analysis of the AtHSFs and TaHSFs gene family from RNA-Seq data

To further analyze the spatiotemporal expression patterns of AtHSF and TaHSF, the transcriptomic data were downloaded from the Wheat eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) and ExpVIP (http://www.wheat-expression.com/), respectively. According to the expression databases of arabidopsis and wheat, we analyzed AtHSF and TaHSF expression patterns in different tissues, different developmental stages and under different abiotic stresses. The expression levels of AtHSF and TaHSF genes were then drawn into heatmaps by TBtools (https://github.com/CJ-Chen/TBtools/releases).



Gene cloning and construction of transgenic plants

Total RNAs were isolated from young roots of 14-day-seedling wheat (Chinese Spring) and reversely transcribed into cDNA. Specific primers of TaHSFB4-2B were designed for its coding sequence amplication. Briefly, a 50 μL PCR reaction contained approximately 200 ng of cDNA, 25 μL of 2×PrimeSTAR HS (Premix), and 100 nM primers. The PCR programs were conducted following manufacturer’s instruction with an annealing temperature of 58°C for 30 seconds. The PCR products were purified from agarose gel, and then 35S::TaHSFB4-2B-GFP vector was transformed into Agrobacterium tumefaciens GV3101 strain, which was then used for transformation of arabidopsis (Col-0) by floral dip method. T0 transgenic lines were screened by 1/2 MS (Murashige and Skoog) medium with 50 mg/L Kan (Kanamycin) and green fluorescent protein signal was observed by fluorescence microscope. Homozygous T3 plants were obtained by successive self-crossing after screening for further research.



Protoplast isolation and transformation in wheat and arabidopsis protoplast

Wheat was cultured in the greenhouse at 25 ± 2°C with a light of 14-16 h/d for 2 weeks. Young leaves were detached from plants by a scissor and carefully sliced into 0.5-1 mm strips by sharp surgical blade. Then the sample strips were gently submerged into the 0.6 M mannitol for 10 min. After filtered, the samples were transferred into petri dish containing 50 ml enzyme buffer (1.5% cellulase R10, 0.75% macerozyme R10, 0.6 M mannitol, 10 mM MES, 10 mM CaCl2, 0.1% BSA, pH=5.7). Then the samples were penetrated under vacuum 15 Kpa for 30 min. The petri dish was fixed on a shaker at a speed of 10-20 RPM for 5 h. 30 ml W5 (150 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES, pH=5.7) were used for dilution of the protoplast and the solution were filtered by 75 um nylon membrane. Protoplast was collected by centrifuging at a speed of 100 rcf (g) for 3min. The protoplast was resuspended by 10 ml W5 and incubated on ice for 30 min. Supernatant was removed and MMG (0.4 M mannitol, 15 mM MgCl2, 4 mM MES) was used to dilute protoplast to a concentration of 2x105/ml-1x106/ml. For transfection 100ul protoplasts were transfected with 10-20ug plasmid and incubated in dark at 25°C for 12-16h and used for further analysis.

Arabidopsis were cultured in chamber with the condition of 22°C and 16h/8h light/dark cycle until 4 weeks. Then fresh leaves were processed as stated above as wheat leaves. The experiment process and solution preparation referred to Barnes et al. (2019).



TaHSFB4-2B protein subcellular location

Either 35S::TaHSFB4-2B-GFP or 35S::GFP was co-transformed with nuclear marker 35S::mCherry-IMP4 into wheat protoplast; 35S::TaHSFB4-2B-GFP was co- transformed with either free 35S::mCherry or nuclear marker 35S::mCherry-IMP4 into arabidopsis protoplast. Then, a confocal microscope was used for imaging.

In addition, 35S::TaHSFB4-2B-eGFP and nuclear localization marker 35S::mCherry-IMP4 was co-transformed into 4-week-old Nicotiana benthamiana leaves mediated by Agrobacterium tumefaciens EHA105 strain. The Agrobacterium tumefaciens with plasmid vectors was cultured in 3 mL liquid LB medium with Kan and Rifampicin (Rif) antibiotics at 28°C and 250 RPM rotation for about 16 h until OD600 = 1-2, and then 5 uL of the culture was inoculated to 10 mL of fresh liquid LB medium (50 mg/L Kan, 50 mg/L Rif, 10 mm MES, 20 μM AS), which was followed by incubation at 28°C and 250 RPM for about 16 h until OD600 = 1. The culture medium was centrifugated at 4 000 RPM for 10 min. After the supernatant was removed, the pellets were resuspended in solution with solution containing 10 mM MES, 150 μM AS, and 10mM MgCl2, and adjusted OD600 to 1. Tobacco leaves were injected with the bacterial solution, and then set aside in the dark room with room temperature for 3 h. Then the tobacco plants were cultured in the dark for 1 d and then grown normally for another 1 d. Confocal microscopy was performed with laser-scanning confocal imaging system.



Wheat materials and stress treatment

Wheat variety Chinese Spring was used in this study. Wheat seeds were selected with same size and full particles, then were disinfected them with 20% hypochlorous acid for 20 min, and rinsed with sterile water 5 times. The selected seeds were placed with the ventral groove downward in the petri dish, and covered by wet filter paper, and cultured in the incubator for 3 d in the dark. After germination, the seeds were wrapped in sponge and then cultured in the whole wheat culture medium [0.1 mM Ca(NO3)2, 0.2 mM KH2PO4, 1 mM MgSO4·7H2O, 1.5 mM KCl, 1.5 mM CaCl2, 1 μM H2BO3, 5 μM (NH4)6Mo7O2·H2O, 0.5 μM CuSO4·5H2O, 1 μM ZnSO4·7H2O, 1 μM MnSO4·H2O, 100 μM Fe(III)-EDTA, pH7.0] with a plant distance of 10 cm at 25°C, 12 h light/12 h dark for 14 days. The medium was changed once every three days. After that, the seedings were treated with high temperature (37°C) and low temperature (4°C). For mannitol-induced dehydration simulating drought or salinity stress, the seedlings were transferred into the whole wheat culture medium with 300 mM mannitol or 200 mM NaCl. Wheat leaves and roots were sampled at the time point of 0 h, 1 h, 2 h and 6 h after treatment and stored respectively at -80°C.



Stress tolerance analysis of transgenic arabidopsis

The homozygous seeds of T3 transgenic line were used for phenotypic analysis. Arabidopsis seeds were sterilized with 30% hypochlorous acid and 2‰ TritonX-100 for 10 min, and rinsed with sterile water for 5 times, then germinated in the dark at 4°C for 3 d. The germinated arabidopsis seeds were grown on 1/2 MS with additional 100 mM NaCl, 150 mM NaCl, 250 mM mannitol or 300 mM mannitol respectively, and were cultured at 22°C for 9 d (16 h light/8 h dark). Wild-type or over-expression seedlings treated by salinity or mannitol was phenotyped, and samples were harvested under stresses, and then frozen in liquid N2 for future processing.



Expression analysis by RT-qPCR

The total RNA was extracted by Trizol (Tiangen, Beijing) following the manufacturer’s instructions with minor modification. The extracted RNA was reversely transcribed into cDNA according to the instructions of reverse transcription Kit (Takara, Dalian). The cDNA was diluted to a concentration of 400 ng/μL. Gene specific primers were designed for quantitative real-time PCR analysis (LC480, Roche, USA) and Actin was selected as the internal reference (Table S3). The PCR program was performed in three biological replicates and three technical replicates for each sample. Briefly, a 20-μL PCR reaction contained approximately 100 ng of cDNA, 10 μL of SYBR solution, and 200 nM primers. The 2−ΔΔCt method was used for statistical analysis.



Statistical analysis

In this study, the statistical analysis was reported as means ± SD with significance determined by Student’s t-test or ANOVA at least three replicates. Significance levels are marked as: *P<0.05, **P<0.01, non-significant (n.s.), P>0.05. Least Significant Difference (LSD) was used to compare TaHSFB4-2B tissue specific expression in wheat, letters (‘a-d’) indicate the statistical differences between different tissues determined by LSD (P<0.05) of variance (ANOVA) method. Same letters: no significant difference, and different letters: significant difference between the two groups.




Results


Phylogenetic and collinearity analyses of TaHSF family members

We searched the Ensembl database (http://plants.ensembl.org/index.html) and found that there are 78 HSF genes in wheat, including 34 TaHSFAs, 18 TaHSFBs, and 26 TaHSFCs. To investigate their evolutionary relationships, the amino acid sequences of 78 TaHsfs were obtained, along with 31, 21, and 26 protein sequences of HSFs from widely cultivated monocotyledon maize (Zea mays) and dicotyledons Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum), respectively. Based on the phylogenetic analysis, HSF proteins from all four plants were classified into three subfamilies, viz. - HSFA-C, and the phylogenetic relationship between corresponding homologous proteins from each subfamily was more significant within monocotyledon crops or dicotyledon than between them (Figure 1A).




Figure 1 | Neighbor-joining phylogenetic tree and synteny analysis of TaHSF families. (A) Neighbor-joining phylogenetic tree of Triticum aestivum (Ta), Arabidopsis thaliana (At), Zea mays (Zm) and Solanum lycopersicum (Sl) HSF families. TaHSFB4-2A, TaHSFB4-2B, and TaHSFB4-2D were marked in red. (B) Synteny analysis of TaHSF genes. (C) Phylogenetic analysis and amino acid sequence alignment of HSFB4s in Ta, At, Zm, Sl, Oryza sativa (Os), Glycine max (Gm), Solanum tuberosum (St) and Brassica napus (Bn).



Gene collinearity analysis is an important approach to understand the evolutionary history of a genome (Lynch and Conery, 2000; Wang et al., 2012). To elucidate the evolutionary history of wheat HSF genes, the collinearity map of TaHSFs was constructed using TBtools (https://github.com/CJ-Chen/TBtools/releases) (Figure 1B). The chromosomal locations were determined by aligning them to the wheat genome database (Ensembl Plants http://plants.ensembl.org/index.html). The results indicated that the TaHSF genes were scattered on all 21 chromosomes with the majority of them located at the terminals. These TaHSFs were not distributed evenly. While eight TaHSFs were located on chromosome 5A, only one was found on each of the chromosomes 1 B, 1 D, 6 A, 6 B, and 6 D. We further analyzed gene duplication events of TaHSFs which revealed that genes belonging to TaHSFA, TaHSFB, and TaHSFC subfamilies might have undergone varying degrees of duplication. Although TaHSFA is the largest subfamily among the three TaHSF subfamilies, only three gene duplication events were observed. TaHSFB and TaHSFC subfamilies had witnessed four and seven gene duplication events, respectively. TaHSFB-5A, 5B, and 5D of the TaHSFB subfamily, as well as TaHSFC1-4, C1-5, and C1-6 were individually derived from one common ancestor gene (Figure 1B).

In wheat, the TaHSFB4 subfamily is comprised of six members scattered on chromosomes 2 and 5 of subgenomes A, B, and D with one copy on each chromosome. Gene duplication event analysis indicated the duplication events within TaHsfB4-2 (TaHsfB4-2A and TaHsfB4-2B) and TaHsfB4-5 (TaHsfB4-5A, TaHsfB4-5B, and TaHsfB4-5D) genes, respectively (Figure 1B). To further explore the evolutionary relationship of TaHSFB4-2B, a phylogenetic tree was constructed using the amino acid sequences of HSFB4s from 8 different plant species, including Dicotyledons: Arabidopsis (Arabidopsis thaliana), soybean (Glycine max), tomato (Solanum lycopersicum), potato (Solanum tuberosum), and rape (Brassica napus) and Monocotyledons: wheat (Triticum aestivum), rice (Oryza sativa), and corn (Zea mayz) (Ensembl plants database, http://plants.ensembl.org/index.html). For the construction of a phylogenetic tree, the amino acid sequences were aligned using the multiple sequence alignment tool with MEGA-X software (Figure 1C). The results showed that TaHSFB4s were clustered in the monocotyledon group, while other HSFB4s were aggregated in the dicotyledon group, suggesting that the evolution of HSFB4s in monocotyledons and dicotyledons was discrepant. These findings were consistent with the results depicted in Figure 1A.



Analysis of abiotic stress-responsive cis-elements in AtHSFs and TaHSFs promoters

To further study the function of HSFs in Arabidopsis and wheat, the 2 kb region upstream of the start codon of all AtHSFs and TaHSFs genes was analyzed using the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The following cis-elements responsive to abiotic stresses were chosen; ABA-responsive elements, drought-responsive elements, salt-responsive elements, cold-responsive elements, and heat shock elements (Figure 2). In arabidopsis, most of the AtHSFs promoters contained 1-4 abiotic stress-responsive elements, except AtHSFA8. Of these, AtHSFA1A, AtHSFA7B, AtHSFB2A, and AtHSFC1 contained most of the selected abiotic stress response elements, while AtHSFA1B, AtHSFA1E, AtHSFA6B, and AtHSFA7b contained the maximum element counts (≥10). Among these abiotic stress response elements, the ABA-responsive element was most abundantly found in many AtHSF promoters (Figure 2A).




Figure 2 | Abiotic stress cis-regulating element counts included in promoters of AtHSFs and TaHSFs. (A) The abiotic stress cis-element counts included in AtHSFs promoters. (B) The abiotic stress cis-element counts included in TaHSFs promoters.



In wheat, all TaHSF promoters contained two to five2 abiotic stress response elements. ABA-responsive elements, heat shock elements, and salt-responsive elements were presented in most of the TaHSF promoters. Of these, ABA-responsive elements and heat shock elements ranked the top two in terms of quantity of the five response elements (Figure 2B). Considering the importance of ABA as one of the major stress-responsive hormones (Mantyla et al., 1995), we speculated that both AtHSFs and TaHSFs might respond to various abiotic stresses through the pathways mediated by ABA-stress responsive elements along with other elements in plants.



Expression profiles of AtHSF and TaHSF genes

To understand the role of HSFs in plant growth, development, and stress tolerance, we obtained their expression patterns in different tissues and response to abiotic stresses from the arabidopsis and wheat transcriptome data (Figures S1, 3). The arabidopsis expression patterns in response to abiotic stresses and wheat expression patterns were based on the public data (Figures S1, 3A) (http://plants.ensembl.org/index.html). The expression profiles of TaHSFs in response to different abiotic stress treatments were investigated in our laboratory (Figure 3B). The expression levels of AtHSFs varied greatly, both in case of one gene among different tissues and different genes in the same tissue in arabidopsis, with exceptions that AtHSF6A, AtHSF6B, and AtHSFB3 showed almost no expression in all tested tissues. While AtHSFA9 was highly expressed only in dry and stage 9 seeds, AtHSFA7B was transcribed moderately in dry seeds, imbibed seeds, and roots, indicating that AtHSFs may perform distinct functions in plant growth and development (Figure S1A). We next analyzed the expression of AtHSFs genes in response to heat shock, cold, NaCl, and mannitol-induced stress. Since ABA is a stress-responsive hormone, the expression analysis of AtHSFs in response to exogenous ABA was also investigated in our study. The expression of most AtHSFs was unaltered by cold, NaCl, or mannitol-induced stress, while transcription of the remaining AtHSFs was mildly suppressed. These observations suggested that only a few AtHSFs are involved in the pathways imparting tolerance to cold, salinity, and mannitol-induced stress in arabidopsis. After heat shock treatment, the expression of AtHSFA2, AtHSFA7A, and AtHSFA7B, especially AtHSFA7B, was significantly increased. In contrast, heat shock treatment repressed the transcription of AtHSFC1 and AtHSFA1A. Further, ABA strongly induced the expression of AtHSFA6A and AtHSFA6B but reduced the expression of AtHSFA3 and AtHSFA7B (Figure S1B). These results indicated that since the expression of AtHSFs varies in response to different abiotic stresses, their function might also have diverged.




Figure 3 | Expression analysis of TaHSFs genes in different tissues and stress treatments. (A) Expression analysis of TaHSFs genes in different tissues based on public data. Bar scale: log2TPM. (B) Expression analysis of TaHSFs genes under different abiotic stress treatments, including heat stress (HS), cold stress (cold), salinity induced stress (NaCl), mannitol-induced dehydration stimulating drought stress (mannitol), and ABA stress (Mittal et al.). Bar scale: log2FC, FC: fold change compared with the mock group.



Unlike AtHSFs, the tissue-specific expression analysis of 34 TaHSFAs indicated that the genes expressed at different levels in all investigated wheat tissues. As an exception, TaHSFA3-1, -2, -3, TaHSFA2, -16, and TaHSFA5-3 expressed at very low or almost non-detectable levels. Most TaHSFCs genes are expressed at low levels in these tissues. Precisely, TaHSFBs, TaHSFB1-1, -2, -3, and TaHSFB2-6, -7, -8 were robustly expressed in root, leaf, and spike. TaHSFB1-1 and -3 were also found to be expressed in grain. Other TaHSFBs did not show expression in the examined tissues (Figure 3A). Only heat shock-induced expression of some TaHSFA and TaHSFB genes, especially TaHSFA2-10, -13, -14, -15, TaHSFA6-1, -2, and TaHSFB2, was observed whose transcription levels were upregulated. On the contrary, cold, NaCl, and mannitol-induced stress and exogenous ABA treatment did not show a strong impact on TaHSFs expression (Figure 3B).



Amino acid sequence alignment and structural analysis of TaHSFB4-2B

Among the six TaHSFB4s in wheat, including TaHSFB4-2A, TaHSFB4-2B, TaHSFB4-2D, TaHSFB4-5A, TaHSFB4-5B, and TaHSFB4-5D, TaHSFB4-2B exhibited the highest sequence homology with AtHSFB4. Therefore, TaHSFB4-2B was selected for further characterization, and the encoding gene sequence was cloned through homology-based cloning (Figure 4A). In addition, > 90% sequence homology was detected among the wheat homologs of TaHSFB4 on the ABD subgenomes, namely TaHSFB4-2A, TaHSFB4-2B, and TaHSFB4-2D. Moreover, the homology between TaHSFB4-2B and other TaHSFB4s, including TaHSFB4-5A, TaHSFB4-5B, and TaHSFB4-5D, was around 80%, indicating that the TaHSFB4 subfamily was highly conserved in wheat.




Figure 4 | Amino acid sequence alignment of HSFB4s subfamily members. (A) Multiple sequence alignment of predicted amino acid sequence of TaHSFBs and AtHSFB4. Grey represents different degrees of conservation among sequences, black indicates identical residues, white indicates conservative changes. The conserved HSF-DNA binding domain was underlined. (B) TaHSFB4-2B gene sequence structure.



The structure of TaHSFB4-2B is comprised of two exons and one intron (Figure 4B). Coding sequence (CDS) of TaHSFB4-2B contains 963 base pairs (bp), which encodes 320 amino acids. The protein structure prediction indicated that the putative protein contains an HSF-DNA binding domain at the N-terminal (Figure 4A).



Subcellular localization of TaHSFB4-2B in T. aestivum and A. thaliana protoplast and its tissue-specific expression analysis in wheat

Previous studies have shown that TaHSFB4-2B is located in the nucleus (Li-Na et al., 2018). Protein domain prediction also indicated that TaHSFB4-2B is a transcription factor with an HSF-DNA binding domain, that is putatively localized in the nucleus. To investigate the subcellular localization of TaHSFB4-2B, the cassette encoding TaHSFB4-2B-Green Fluorescent protein (GFP) fusion protein driven by the CaMV 35S promoter (35S::TaHSFB4-2B-GFP) was transformed into wheat and Arabidopsis protoplast or Nicotiana benthamiana leaves, and the fluorescence was observed using the confocal microscope. Results indicated that TaHSFB4-2B-GFP was localized in the nucleus and showed co-localization with nuclear marker mChery-IMP4 (Figures 5A, S4). In addition, TaHSFB4-2B nuclear localization was also proved by visualization of TaHSFB4-2B-GFP in transgenic Arabidopsis seedlings (Figure S3).




Figure 5 | TaHSFB4-2B subcellular localization in Triticum aestivum and Arabidopsis thaliana protoplast and TaHSFB4-2B tissue specific expression profiles. (A) TaHSFB4-2B Subcellular localization in Triticum aestivum and Arabidopsis thaliana protoplast. mCherry-IMP4 was used as nuclear marker. Row 1: Free GFP and mCherry-IMP4 were transiently expressed in Triticum aestivum protoplast; Row 2: TaHSFB4-2B-GFP and mCherry-IMP4 were transiently expressed in Triticum aestivum protoplast; Row 3: TaHSFB4-2B-GFP and free mCherry were transiently expressed in Arabidopsis thaliana protoplast; Row 4: TaHSFB4-2B-GFP and mCherry-IMP4 were transiently expressed in Arabidopsis thaliana protoplast. Green channel: GFP fluorescence signals; Red channel: mCherry fluorescence signals; Scale bar: 10 μm. (B) TaHSFB4-2B tissue specific expression profiles in wheat. The young root, mature root, young stem, mature stem, young leaf, mature leaf, young spike and grain of wheat at different growth stages were sampled the transcription levels of TaHSFB4-2B were measured by RT-qPCR. The transcription level of TaHSFB4-2B was normalized with TaACTIN. Values are Mean ± SD, n=3. a, b, c and d indicate the statistical differences between different tissues determined by LSD (P < 0.05) of variance (ANOVA) method. Same letters: no significant difference, and different letters: significant difference between the two groups.



Gene function is largely affected by its specific location of expression in the whole plant. Depending on the tissue-specific expression analysis in wheat, TaHSFB4-2B was found to be moderately expressed in wheat roots but barely expressed in the leaf, spike, and grain (Figure 3A). To further validate and determine the tissue-specific expression of TaHSFB4-2B, samples of the young root, mature root, young stem, mature stem, young leaf, mature leaf, young spike, and young seed were collected, and the transcription levels of TaHSFB4-2B were measured by real-time quantitative reverse transcription PCR (RT-qPCR). TaHSFB4-2B transcript was expressed in all the tissues with various expression levels (Figure 5B). The highest transcription level was in the mature root, followed by the mature stem, young stem, and young root, and the lowest was found in the mature leaf. This was consistent with the results of the tissue-specific analysis (Figure 3A).



Expression analysis of TaHSFB4-2B under salinity and mannitol-induced stresses in wheat roots and young leaf

Wheat seedlings exposed to NaCl and mannitol showed increased transcription of TaHSFB4-2B, while heat shock, cold, and ABA treatment exerted little effect on TaHSFB4-2B expression (Figure 3B). To verify the results, we performed RT-qPCR analysis of TaHSFB4-2B in seedlings treated with heat shock (37°C), cold (4°C), salinity stress (200 mM NaCl), and mannitol treatment (300 mM mannitol). Heat shock and cold treatment induced the transcription of TaHSFB4-2B in both the young leaf and root (Figures 6A, B). Though the expression of TaHSFB4-2B was also induced by salinity stress in both leaves and roots, the time course reaching the peak level was discrepant (Figure 6C). After mannitol-induced drought treatment, the expression of TaHSFB4-2B was down-regulated in young leaf, but up-regulated in the young root (Figure 6D). In brief, our results indicated that Heat Shock, Cold, NaCl, and mannitol treatments induced the expression of TaHSFB4-2B in young root and the young leaf of wheat, while TaHSFB4-2B transcription level was repressed in young leaf with mannitol treatment.




Figure 6 | Expression levels of TaHSFB4-2B in wheat seedlings young leaf and young root of wheat under abiotic stress. (A) Wheat seedlings growing for 14 d after germination were treated under high temperature (37°C). (B) Cold stress (4°C). (C) NaCl induced stress (200 mM NaCl). (D) mannitol-induced dehydration stimulating drought stress (300 mM mannitol). Young leaf and young root were sampled after 0, 1, 2, and 6h of each treatment and the transcription levels of TaHSFB4-2B were quantified by RT-qPCR. The transcription level of TaHSFB4-2B was normalized with TaACTIN. Values are Mean ± SD, n=3. *P < 0.05 and **P < 0.01 (Student’s t-test).





Overexpressing of TaHSFB4-2B negatively regulates the tolerance of Arabidopsis seedlings to NaCl and mannitol-induced stresses

To elucidate the biological function of TaHSFB4-2B in response to abiotic stresses, 35S::TaHSFB4-2B-GFP cascade was constructed and transformed into arabidopsis using Agrobacterium. Transgenic lines (TaHSFB4-2B-OEs) were genotyped by PCR amplification (Figure S2A) and the expression level of TaHSFB4-2B was quantified by RT-qPCR (Figure S2B). Subsequently, low (OE-1), medium (OE-3), and high (OE-5) expression lines were selected for further research. Visualization of GFP fusion protein signals under a confocal microscope verified the expression and nucleus localization of TaHSFB4-2B (Figure S3). The phenotyping results indicated that overexpression of TaHSFB4-2B had no discernible effect on plant growth and development under normal conditions (Figures 7A, G).




Figure 7 | Overexpression of TaHSFB4-2B negatively regulates NaCl, and mannitol induced stress tolerance of arabidopsis. (A–C) Seeds of WT and TaHSFB4-2B overexpression lines of arabidopsis (OE-1, OE-3 and OE-4) were sterilized and plated on 1/2 Murashige and Skoog medium (1/2 MS) plates or with 150 mM NaCl or with 200 mM mannitol and growing for 10 days. (D, E) The seed germination rates and growth under corresponding treatment were quantified. (G–J) Root phenotypes of wild type and OE-1, OE-3 and OE-4 lines were shown and root length was measured and quantified. G-N、G-S and G-B represent ungerminated seeds, inhibited-growing seedlings and normal-growing seedlings respectively. Values are Mean ± SD, n=3. *P < 0.05 and **P < 0.01 (Student’s t-test).



To explore the function of TaHSFB4-2B under salinity and mannitol-induced drought stresses, WT and TaHSFB4-2B-OE seedlings were continuously grown on 1/2 MS plates with or without NaCl (150 mM) or mannitol (200 mM) for 10 days. Then the seed germination rates were calculated and root length was measured (Figure 7). Both NaCl and mannitol treatment decreased the seed germination and root length in WT as well as TaHSFB4-2B-OE lines. Moreover, TaHSFB4-2B-OE lines were more sensitive to NaCl and mannitol exposure than WT (Figure 7). Compared to the WT, NaCl treatment reduced seed germination in TaHSFB4-2B-OE lines by 18.1 to 42.4% (Figures 7A, B, D, E); while the root was decreased by 16.2 to 19.0% in the transgenic lines (Figures 7G–I). Similar phenotypes related to seed germination and root length were observed with mannitol treatment (Figures 7A, C, F–H, J). These results indicated that both NaCl and mannitol treatment negatively affect seed germination and root length in arabidopsis, and TaHSFB4-2B-OE lines were more sensitive to both NaCl and mannitol-induced stress than WT.



Expression analysis of abiotic stress-associated genes in TaHSFB4-2B-OE Arabidopsis lines

Since overexpression of TaHSFB4-2B repressed the tolerance of arabidopsis to mannitol and NaCl-induced stresses, RT-qPCR analysis was performed to quantify the transcription levels of abiotic stress-induced genes, including AtHSP17.8, AtHSP17.6A, AtHSP17.6B, AtHSP17.6C, SOS1, and CAT2. Since TaHSFB4-2B is a heat shock factor, expression analysis of small heat shock proteins, including AtHSP17.8, AtHSP17.6A, AtHSP17.6B, and AtHSP17.6C, was also performed. The results showed that the transcription of four small HSPs was down-regulated in TaHSFB4-2B-OE lines in mock groups (CK), but up-regulated with NaCl treatment (Figures 8A, B). With mannitol treatment, only the expression of AtHSP17.6B was increased in TaHSFB4-2B-OE lines compared to WT, while the expression levels of AtHSP17.8, AtHSP17.6A, and AtHSP17.6C were unaffected (Figure 8C). Overexpression of TaHSFB4-2B induced the expression of CAT2 and SOS1 genes in arabidopsis. In contrast, expression levels of CAT2 and SOS1 were reduced when exposed to NaCl or mannitol, except SOS1 expression with mannitol treatment (Figure 8).




Figure 8 | Expression analyses of abiotic stress related genes in WT and TaHSFB4-2B-OE lines under different abiotic stress. Seeds of WT and TaHSFB4-2B over expression lines of arabidopsis (OE-1, OE-3 and OE-4) were growing and treated and use method described in Figure 7. (A) Transcription levels of AtHSP17.8, AtHSP17.6A, AtHSP17.6B, AtHSP17.6C, CAT2 and SOS1 growing under normal condition (CK), (B) NaCl treatment (100 mM NaCl), (C) mannitol treatment (200 mM mannitol) were quantified by RT-qPCR. The transcription level of TaHSFB4-2B was normalized with AtACTIN2. Values are Mean ± SD, n=3. *P < 0.05 and **P < 0.01 (Student’s t-test).






Discussion

Heat shock transcription factors (HSFAs, HSFBs, and HSFCs) are multifunctional genes engaged in plant growth and development as well as abiotic stress responses (Kotak et al., 2007; Lin et al., 2011; Scharf et al., 2012). The numbers of HSF gene family members showed a large variation with 78, 31, 21, and 26 in wheat, maize, arabidopsis and tomato, respectively. The phylogenetic relationship of corresponding homologous proteins within each subfamily was closer within monocotyledon or dicotyledon plants than between the both (Figure 1A). In different plants, HSF genes experienced extensive duplication and sequence variation during evolution, indicating that HSFs perform conserved and diverged functions in plants (Figure 1B). Analysis of abiotic stress-associated cis-elements in AtHSF and TaHSF promoters revealed the presence of one or more cis-elements responsive to ABA, NaCl, mannitol, cold, and/or heat shock. The ABA-responsive elements were present in most of the AtHSF and TaHSF promoters. Interestingly, TaHSF promoters contain heat shock and salt response elements at a higher proportion than those of AtHSFs (Figure 2). We speculate that regulation of HSFs in different plants shows certain conservation, and at the same time, variations have evolved. Therefore, the expression of HSF genes varies in different tissues or at developmental stages in both arabidopsis and wheat. The majority of both arabidopsis and wheat HSFA genes showed robust transcription in tested tissues at different stages. However, TaHSFBs and TaHSFCs exhibited very low expression in most of the conditions (Figures S1A, 3A). We infer that HSFAs function more extensively and actively compared to HSFBs and HSFCs in plant development and growth.

Phylogenetic analysis classified HSFB4s from monocotyledons and dicotyledons into different groups (Figure 1C). Sequence similarity analysis indicated that TaHSFB4s did not share significant similarity with ATHSFB4 (Figure 4A). We speculate that the biological function of these TaHSFB4s are conserved in wheat, but may differ from dicotyledons. Previous studies and our expression pattern analysis showed that AtHSFB4 and TaHSFB4s expressed extensively in different tissues (Figures S1A, 3A) (Xue et al., 2014). In this study, TaHSFB4-2B was cloned from the wheat variety Chinese Spring using a homology-based cloning method. Tissue-specific expression analysis using RT-qPCR showed that TaHSFB4-2B was expressed in the root, stem, leaf, young spike, and the young seed of wheat, and the transcription level varied in different tissues (Figure 5B). These observations highlighted that TaHSFB4-2B may function in the whole plant and at different stages throughout the wheat life cycle. TaHSFB4-2B was found to be localized in the nucleus (Figure 5A) and harbored an HSF-DNA binding domain (Figure 4A). However, TaHSFB4-2B lacks a transcriptional activation domain, therefore, we suspect that TaHSFB4-2B probably interacts with other proteins to regulate the transcription of downstream genes.

A big number of AtHSFs and TaHSFs were greatly induced by heat shock treatment. Heat shock, cold, NaCl, mannitol, and ABA treatment moderately induced the expression of AtHSFBs in arabidopsis, including AtHSFB4 (Figures S1B, 3B). Recent studies have also indicated that TaHSFs, including TaHSFB4, play a key role in enhancing tolerance to various abiotic stresses (Duan et al., 2019; Duan et al., 2019). Our results showed the upregulated transcription of TaHSFB4-2B under the above-mentioned abiotic stress treatments (except in leaf under mock drought stress), substantiating that TaHSFB4-2B is involved in abiotic stress responses (Figure 6).

Earlier, significant differences have been observed in the functions of HSFs in different plants. Overexpression of OsHSFB2b in transgenic arabidopsis reduces salt and drought tolerance, while overexpression of CarHSFB2 significantly improves heat and drought tolerance (Ma et al., 2015). Ectopic expression of wheat TaHSF3 in arabidopsis. improved heat and cold tolerance in transgenic plants (Zhang et al., 2012). In arabidopsis, AtHsfB4 was been reported in regulating root development, and had few effects in stress responses (Begum et al., 2013). In our research, we also found the AtHsfB4 expression was barely induced by stress treatment in arabidopsis (Figure S1). On the other hand, the wheat TaHsB4 expression was elevated by drought and salinity (Figure 3). Consist with this, our research indicated that the ectopic over expression of wheat TaHsfB4 showed no difference in root at normal condition (Figure 7). Then we tried to check the resistance of TaHSFB4-2B-GFP overexpression line in arabidopsis under mannitol and salinity condition. The seed germination rate of TaHSFB4-2B-OE lines was significantly reduced and the root length was shortened under NaCl and mannitol-induced stress (Figure 7). Taken together, overexpression of TaHSFB4-2B negatively regulates the salinity and mannitol-induced drought tolerance in arabidopsis.

The decreased transcription levels of CAT2 and SOS1 in TaHSFB4-2B-OE lines under salinity and mannitol-induced drought stress were consistent with the phenotypes (Figures 8B, C). HSPs are by far the most complex heat shock proteins in plants. Due to their abundance and diversity, HSPs play an important role in plant stress tolerance. Plant HSFs regulate the expression of HSPs in response to abiotic stress (Nover et al., 1996). Overexpression of Agrostis stolonifera HSP17 reduced NaCl and mannitol-induced dehydration stimulating drought tolerance in arabidopsis, suggesting that excessive AsHSP17 itself is a repressor of salt and drought stress response (Sun et al., 2016). Overexpression of AtHSP17.8 in arabidopsis and Lactuca sativa resulted in hypersensitivity to ABA and enhanced tolerance to mannitol and NaCl-induced stresses (Kim et al., 2013). In the current study, we found that in TaHSFB4-2B-OE lines, the transcription levels of AtHSP17.8, AtHSP17.6A, AtHSP17.6B, and AtHSP17.6C were significantly up-regulated under NaCl-induced salinity stress (Figure 8B). While, under mannitol-induced stress, only the expression of AtHSP17.6B was increased, transcription levels of AtHSP17.8, AtHSP17.6A, and AtHSP17.6C were unaffected (Figure 8C). These observations manifested that AtHSP17.8, AtHSP17.6A, and AtHSP17.6C participate in plant response to salinity stress, and AtHSP17.6B is involved in tolerance to both salinity and mannitol-induced stresses.

Surprisingly, the expression of AtHSP17.8, AtHSP17.6A, AtHSP17.6C, CAT2, and SOS1 in our study showed contrasting profiles between normal and stress conditions (Except for the expression of AtHSP17.8, AtHSP17.6A, and AtHSP17.6C under drought stress, which showed similar transcription level in both normal and drought stress conditions) (Figure 8). Considering the observation that TaHSFB4-2B is a transcription factor without the transcriptional activation activity, it should interact with other proteins to regulate the expression of downstream genes. It is speculated that TaHSFB4-2B combines different regulatory factors under different environmental stimuli to affect gene expression. It is interesting to further screen these regulatory factors and study the mechanism underlying gene expression regulation in the future.



Conclusion

The evolutionary analysis revealed that it is clustered in a group with monocotyledons. The results of the laser scanning confocal microscope showed that TaHSFB4-2B was located in the nucleus. Tissue-specific expression analysis indicated that the transcription level of TaHSFB4-2B was higher in roots and stems and relatively lower in leaves. Overall, our study demonstrated that the TaHSFB4-2B gene responds to high temperature, cold, salinity, and mannitol-induced drought stress. Overexpression of TaHSFB4-2B reduced the salinity and mannitol-induced drought stress tolerance in transgenic arabidopsis and affected the expression of abiotic stress-related genes. We propose that TaHSFB4-2B functions as a negative factor to abiotic stress tolerance in plants, especially to NaCl and mannitol-induced stresses. The biological function of TaHSFB4-2B in abiotic stress response and the underlying mechanism deserves detailed study.
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Supplementary Figure 1 | Expression analysis of AtHSFs genes in different tissues of different developmental stages and stress treatments based on public data. (A) Expression analysis of AtHSF genes in different tissues at different stages. Bar scale: log2TPM. (B) Expression analysis of AtHSF genes under different abiotic stress treatments, including heat shock stress (HS), cold stress (cold), NaCl induced stress (NaCl), mannitol induced stress (mannitol), and ABA stress (Mittal et al.). Bar scale: log2FC, FC: fold change compared with mock group.

Supplementary Figure 2 | Genotyping of TaHSFB4-2B overexpressing plants. (A) PCR genotyping of TaHSFB4-2B overexpressing lines with TaHSFB4-2B specific primers. (B) RT-qPCR analysis of TaHSFB4-2B transcription level in wild type and TaHSFB4-2B overexpressing lines of Arabidopsis. OE-1, OE-2, OE-3, OE-4, OE-5 indicate different transgenic lines overexpressing TaHSFB4-2B.

Supplementary Figure 3 | Fluorescence microscopic observation of root of five transgenic Arabidopsis lines. Scale: 20 μm.

Supplementary Figure 4 | TaHSFB4-2B subcellular localization in Nicotiana Benthamiana leaf. mCherry-IMP4 was used as nuclear marker. TaHSFB4-2B-GFP fusion protein driven by the CaMV35S promoter was transiently expressed in Nicotiana Benthamiana leaf. Green channel: GFP fluorescence signals. Red channel: mCherry fluorescence signals. Scale bar: 20 μm.
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Southern corn rust (SCR), caused by Puccinia polysora Underw, is a destructive disease that can severely reduce grain yield in maize (Zea mays L.). Owing to P. polysora being multi-racial, it is very important to explore more resistance genes and develop more efficient selection approaches in maize breeding programs. Here, four Doubled Haploid (DH) populations with 384 accessions originated from selected parents and their 903 testcross hybrids were used to perform genome-wide association (GWAS). Three GWAS processes included the additive model in the DH panel, additive and dominant models in the hybrid panel. As a result, five loci were detected on chromosomes 1, 7, 8, 8, and 10, with P-values ranging from 4.83×10-7 to 2.46×10-41. In all association analyses, a highly significant locus on chromosome 10 was detected, which was tight chained with the known SCR resistance gene RPPC and RPPK. Genomic prediction (GP), has been proven to be effective in plant breeding. In our study, several models were performed to explore predictive ability in hybrid populations for SCR resistance, including extended GBLUP with different genetic matrices, maker based prediction models, and mixed models with QTL as fixed factors. For GBLUP models, the prediction accuracies ranged from 0.56-0.60. Compared with traditional prediction only with additive effect, prediction ability was significantly improved by adding additive-by-additive effect (P-value< 0.05). For maker based models, the accuracy of BayesA and BayesB was 0.65, 8% higher than other models (i.e., RRBLUP, BRR, BL, BayesC). Finally, by adding QTL into the mixed linear prediction model, the accuracy can be further improved to 0.67, especially for the G_A model, the prediction performance can be increased by 11.67%. The prediction accuracy of the BayesB model can be further improved significantly by adding QTL information (P-value< 0.05). This study will provide important valuable information for understanding the genetic architecture and the application of GP for SCR in maize breeding.




Keywords: maize, southern corn rust resistance, genome-wide association study, genomic prediction, models



1 Introduction

Southern corn rust (SCR) caused by Puccinia polysora Underw, is one of the most devastating maize diseases, widely distributed in Asia, America, Africa and other major corn production areas (Sun et al., 2021). SCR was first reported by Underwood in 1897 in the USA (Underwood, 1897) and observed in most tropical and temperate maize-growing areas of the world in subsequent decades (Orian, 1954; Duan and He, 1984). The invasiveness of leaves and stems of maize resulted in yield losses of up to 50% (Rhind et al., 1952; Liu and Wang, 1999). The wide distribution, long-distance migration, multiple physiological races and fast evolution made SCR difficult to be controlled, causing great grain yield losses (Sun et al., 2021). With climate change, SCR tends to further increase and expand to higher latitudes regions (Ramirez-Cabral et al., 2017).

The breeding of SCR resistant varieties is very important for disease management, which poses challenges for breeders. In China, several main cultivated corn varieties, such as Zhengdan958, Xundan20 and Xianyu335, have been identified to be susceptible to SCR (Yuan et al., 2010). Indeed, Wang et al. (Wang et al., 2006) investigated the resistance of 178 corn varieties to SCR, and reported that only 14% of varieties were highly resistant to SCR. On the other hand, Zhou et al. (Zhou et al., 2017) identified several highly resistant germplasms, such as DH02, Zheng39, T2 and JH3372. In addition, some inbred lines such as AFR024 (Storey and Howland, 1957), Qi319 (Chen et al., 2004), CML470 (Yao et al., 2013), J2416K (Wang et al., 2020) were also found to be resistant germplasm. The discovery of these germplasms not only improved the variety resistance by breeding, but also provided the basis for gene detection.

Based on geographic distribution, more than 10 physiological races of P. polysora have been identified, including EA.1, EA.2, EA.3, and PP.3-PP.9 (Ryland and Storey, 1955; Storey and Howland, 1957; Robert, 1962; Ullstrup, 1965). Owing to the rapid development of genetics, so far, several unique, major, race-specific SCR-resistance genes have been reported. Rpp1, a fully dominant gene, was identified as a resistance gene to P. polysora races EA.1 and EA.3; Rpp2, a partially dominant gene closely linked with Rpp1, was resistant to races EA.1, EA.2, and EA.3; Rpp9, a single dominant gene on 10.01 bin, was resistant to race PP.9 (Storey and Howland, 1959; Storey and Howland, 1967). It is noteworthy that Rpp9 is closely linked, with a genetic distance of 1.5 cM, to a common rust resistance gene rp1, but its genomic location had not been confirmed (Ullstrup, 1965). In recent years, more resistance loci on chromosome 10 have been detected, including RppP25 (Liu et al., 2003), RppQ (Chen et al., 2004), RppD (Zhang et al., 2009), RppC (Yao et al., 2013), Rpp12 (Zhang, 2013), RppS (Wu et al., 2015), RppM (Wang et al., 2020), qSCR6.01 (Lu et al., 2020), RppCML496 (Lv et al., 2021), RppK (Chen et al., 2022).

Genome-wide association study (GWAS), which is based on genetic linkage disequilibrium (LD) in a panel including a large number of genotypes representing broadly natural variations, has been used as an alternative approach for exploring the molecular basis and identifying SNPs of complex quantitative traits (Yu and Buckler, 2006). In maize, GWAS has been successfully utilized to identify numerous candidate loci/genes controlling disease resistance, such as head smut (Wang et al., 2012) common rust (Kibe et al., 2020; Ren et al., 2021), rough dwarf (Zhao et al., 2021), ear rot (Guo et al., 2020), gray leaf spot (Mammadov et al., 2015), etc. For SCR, eight SNPs were identified as significant loci using GWAS with a panel of 164 maize inbred lines in previous studies (Souza Camacho et al., 2019). The results of these studies provide valuable information on understanding the mechanism of disease resistance and breeding superior varieties.

Genomic prediction (GP), also known as genomic selection (GS), is a technology to predict the performance of plants without phenotyping, and has been proven to be effective in plant breeding (Meuwissen et al., 2001; Cerrudo et al., 2018). Gowda et al. (Gowda et al., 2015) successfully modeled the resistance of lethal necrosis disease in tropical maize germplasm with ridge regression best linear unbiased prediction (RRBLUP). For common rust, GP accuracies observed in the GWAS panel and Doubled Haploid (DH) population were 0.61 and 0.51 (Ren et al., 2021). For goss’s wilt, the GP model was trained with an accuracy of 0.69 (Cooper et al., 2019). However, in maize hybrids, there are few cases of genomic prediction for disease resistance.

In this study, four DH populations with 384 accessions and their testcross hybrids with 903 accessions were used to perform GWAS and GP analyses for SCR resistance. The objectives of the current study were to (1) detect the significantly associated SNPs, and major QTL conferring SCR resistance; (2) predict SCR resistance trait with different GBLUP models; (3) test the predictive power of different marker-based models for resistance trait; and (4) estimate the GP accuracies using models with QTL information.



2 Materials and methods


2.1 Plant materials

A total of 384 DH lines belonging to four DH populations were developed from four elite inbred lines (Table 1) in BeiJing (N40°08’ E116°10’) in 2017. The founders of the four DH populations were C783 × C229, C783 × UH306, C783 × EH, C229 × UH306, respectively, and we named them as POP1-4. The quantities of DH lines in POP1-4 are 66, 107, 127, and 77, respectively. Then, we testcross each population with three testers, yielding a total of 903 hybrids (Table 1). Thus, the hybrid population is divided into 12 subgroups with quantities ranging from 40 to 119.


Table 1 | Summary of extended GBLUP models with different relationship matrices.



To test the SCR infection levels of the accessions, we planted the DH lines and hybrids in Huang-Huai-Hai summer corn planting region in China for phenotypic identification. This region is the main area where SCR occurs in China due to high temperature and rainy summer. The DHs were planted in Jinan (N37°42’ E117°27’) in 2021, Xinxiang (N35°9’ E113°47’) in 2018 and 2021; the hybrids were planted in Jinan in 2021, Jining (N35°6’ E116°31’) in 2020 and 2021, Xinxiang in 2020. We used the augmented experimental design, setting every 20 accessions as a block. Each block consisted of 19 rows and standard accessions were planted in random order. For the DHs, the standard accession was a susceptible inbred line C116A. For the hybrids, the standard accession was a susceptible commercial hybrids ZhengDan958. In the field, each accession was planted in a one-row plot for DHs and a two-row plot for hybrids at a spacing with 0.6 x 0.25 m spacing (66,000 plants per hectare).



2.2 Southern corn rust resistance score (SCRRS) collection

SCRRS for each accession was visually collected from the leaf area covered by lesions at 4 weeks after flowering (Figure 1A). A rating scale of 1 corresponds to severe infection covering > 75% of the leaf surface, 3 corresponds to moderate-to-severe infection covering 50–75% of the leaf surface, 5 corresponds to moderate infection covering 25–50% of the leaf surface, 7 corresponds to weak to moderate infection covering 10–25% of the leaf surface, and 9 corresponds to high resistance covering 0–10% of the leaf surface (Ren et al., 2021).




Figure 1 | Southern Corn Rust Resistance Score (SCRRS) and its distribution. (A) The manifestation of susceptible leaves, the SCRRS of leaves were 9, 7, 5, 3, 1 from left to right. (B) the SCRRSs in DH founders and testers. (C) The distribution of SCRRS in DH (top) and hybrid (bottom) populations.





2.3 Phenotypic data analysis

The raw phenotypic data were analyzed using the linear mixed model with an R add-on package “lme4” (Bates et al., 2014). Best linear unbiased predictors (BLUPs) were calculated for DHs and hybrids. In the model,

	

where, yij is the mean phenotypic value of the ith DH or hybrid in the jth environment;

μ is the overall mean of the trait; gi is the random effect of the ith accession; lj is the random effect of the jth environment; gi×lj is the random interaction effect between the ith accession and the jth environment; and ϵ is the random error.

Heritability was calculated using variance components estimated from the above model. The following equation was used to estimate heritability on an individual plot basis,

	

Where Vg is the genotypic variance component, Ve is the error variance, and l is the number of environments.



2.4 Genotyping and genotypic data analysis

Young leaves of all the DHs and the tester lines were sampled for DNA extraction using the CTAB method (Porebski et al., 1997). Then, genotyping was conducted using the Maize-6H-60K SNP chip (Tian et al., 2021). SNPs with minor allele frequency (MAF) > 0.05 and per locus missing rate< 0.1 were filtered out using plink 1.90 (http://www.cog-genomics.org/plink2/). The genotypes of hybrids were obtained with the cleaned SNPs (N=34,037) of DHs and testers using TASSEL V5.2 software (Bradbury et al., 2007). Pairwise measures of linkage disequilibrium (LD) were performed to analyze the squared allele‐frequency correlation coefficient (r2) between two loci using plink software. Only SNPs with a MAF > 0.05 and less than 0.1 missing data were used to estimate LD. Principal component analysis (PCA) was used to assess the level of genetic structure using TASSEL software.



2.5 Genome wide association study

Genome wide association analysis was performed with the BLUPs obtained from the combined analysis for the DHs and hybrids. A Fixed and Random Model Circulating Probability Unification (FarmCPU) method, as proposed by Liu et al. (Liu et al., 2016) was applied in GAPIT V3 software (Wang and Zhang, 2021). Two genetic models, additive and dominant, are used for the hybrids panel, and only the additive model was used for the DH panel. Under the additive model, homozygous genotypes with recessive allele combinations were coded as 0, homozygous genotypes with dominant allele combinations are coded as 2, and heterozygous genotypes were coded as 1. Under the dominant model, both types of homozygous genotypes are coded as 0 and heterozygous genotypes were coded as 1. The Bonferroni testing was used to determine the genome-wide significance thresholds (0.05/34,034 = 1.47 × 10−6), where 34,037 is the total number of SNP markers (Holm, 1979). Markers whose P-values passed the threshold were identified as candidate loci. Unlike natural material populations, such as the artificial DH population or testcross hybrid population, which had a high LD level, our candidate intervals were selected according to LD decay and LD block. Makers with a physical distance of<20 Mb and in high LD (r2 ≥ 0.8) were considered to mark the same genomic region (Mayer et al., 2020). The corresponding candidate region was described by the positions of the first and last maker, respectively.



2.6 Genomic prediction

The Genomic prediction was performed for the hybrid panel with three conditions, including 1) extended GBLUP models, 2) maker based prediction methods, and 3) prediction models with QTL calculated by GWAS as fixed effects.

For extended GBLUP models, which comprised additive (Ga), dominant (Gd) and epistatic relationship matrices. Ga and Gd matrices were calculated using the “sommer” package in R (Covarrubias-Pazaran, 2016). The epistatic matrices terms were computed using Hadamard products (i.e., cell-by-cell product denoted as “#”) of the following form: (i) additive-by-additive interactions (Ga#Ga); (ii) dominance-by-dominance interactions (Gd#Gd); and (iii) additive-by-dominance interactions (Ga#Gd), respectively (Muñoz et al., 2014). In total, six GBLUP models were used in this study (Table 1). The programs were implemented in the “BGLR” package in R (Pérez and De Los Campos, 2014). The extended GBLUP models can be described as

	Model(G_A): y=1nμ+Gaua+ϵ

	Model(G_D): y=1nμ+Gdud+ϵ

	Model(G_A_D): y=1nμ+Gaua+Gdud+ϵ

	Model(G_A_AA): y=1nμ+Gaua+Gaauaa+ϵ

	Model(G_A_AD): y=1nμ+Gaua+Gaduad+ϵ

	Model(G_A_DD): y=1nμ+Gaua+Gddudd+ϵ

	Model(G_A_D_E): y=1nμ+Gaua+Gdud+Gaauaa+Gaduad+Gddudd+ϵ



where y is the vector of phenotypic data; 1n is the n-dimensional vector of ones; μ is the overall mean; ua, ud, uaa, uad, udd are the vectors of random effects for additive, dominant, additive-by-additive, additive-by-dominance and dominance-by-dominance effects assumed to obey the normal distributions N(0,  ), N(0,  ), N(0,  ), N(0,  ) and N(0,  ), respectively; Ga, Gd, Gaa, Gad and Gdd are the genomic relationship matrices corresponding to additive, dominance, additive-by-additive, additive-by-dominance and dominance-by-dominance genotypic values, respectively.

We also performed maker based prediction models including RRBLUP (Whittaker et al., 2000), BRR (Pérez and De Los Campos, 2014), BL (Park and Casella, 2008), BayesA-C (Meuwissen et al., 2001b). The RRBLUP method is based on a restricted maximum likelihood (REML) approach to ridge regression, we performed it by R package “rrBLUP” (Endelman, 2011). Meanwhile, we also used Bayes-based methods to fit models, containing different prior densities, i.e., Gaussian (BRR), Double exponential (BL), Scaled-t (BayesA), Scaled-t mixture (BayesB), Gaussian mixture (BayesC) in BGLR package (Pérez and De Los Campos, 2014). The basic model is,

	

where y is the vector of phenotypes; 1n is the n-dimensional vector of ones; μ is the overall mean,; α is a vector of random regression coefficients of all the marker effects; Z is an genotypic matrix for markers; and ϵ is a vector of residuals. The alternative methods discussed here differ primarily in their specific prior used for α. For RRBLUP, α~N(0,  ) and   has a scaled inverse chi-square distribution. For BayesA, the unconditional distributions of the marker effects follow identical and independent univariate t distributions, each with mean zero. BayesB employs a mixture distribution that includes a point of mass at zero and a univariate scaled t distribution. The assumption of BayesC is that each marker effect is zero with probability π and follows a univariate normal distribution with probability (1 − π) having mean zero and variance  , which has a scaled inverse chi-square distribution.

To further improve the prediction ability, we added QTL into the mixed linear model as fixed factors. Two representative models were selected, namely G_A and BayesB. We added additive localization maker and dominant localization maker obtained by GWAS into the model separately or together, including G_A_qa (G_A with additive GWAS SNPs), G_A_qd (G_A with dominant GWAS SNPs), G_A_qad (G_A with additive and dominant GWAS SNPs), BayesB_qa (BayesB with additive GWAS SNPs), BayesB_qd (BayesB with dominant GWAS SNPs), BayesB_qad (BayesB with additive and dominant GWAS SNPs). When the prediction was performed with additive QTL, homozygous genotypes with recessive allele combinations were coded as 0, homozygous genotypes with dominant allele combinations were coded as 2, and heterozygous genotypes were coded as 1. When the prediction was performed with dominant QTL, both types of homozygous genotypes were coded as 0 and heterozygous genotypes were coded as 1. The models can be described as,

	Model(G_A_qa): y=XQTLaβa+Gaua+ϵ

	Model(G_A_qd): y=XQTLdβd+Gaua+ϵ

	Model(G_A_qad): y=XQTLadβad+Gaua+ϵ

	Model(BayesB_qa): y=XQTLaβa+Zαa+ϵ

	Model(BayesB_qd): y=XQTLdβd+Zαd+ϵ

	Model(BayesB_qad): y=XQTLadβad+Zαad+ϵ



where y is the vector of phenotypes; XQTLa, XQTLd, XQTLad are incidence matrices of additive localization makers, dominant localization makers and both, respectively; βa, βdand βad are vectors of fixed effects for XQTLa, XQTLd and XQTLad, respectively; Ga is the genomic relationship matrix corresponding to additive genotypic values; Z is a genotypic matrix for all markers; α is a vector of random regression coefficients of all the marker effects; and ϵ is a vector of residuals.

In this study, we used a five-fold cross validation approach to assess the ability of the tested GP models. Prediction accuracy was quantified using two methods, 1) the Pearson correlation between the input trait values and the genomic estimated breeding values (GEBVs) predicted from a given GS model evaluated in the test set, 2) the number of top 20% accessions intersections selected by GEBVs and true values derived by the total number of accessions in the test set. The process was repeated 100 times to eliminate the prediction error.



2.7 Statistical analysis

Data analysis was carried out with R software (Version 3.6.2). Microsoft Excel for Mac (Version 16.50) was used for collation of phenotypic data. Tukey’s test and Students’ t-test were performed to assess the significance of differences between values, and P < 0.05 was considered to be statistically significant.




3 Results


3.1 Phenotypic variations and heritability

We evaluated the SCRRS in 384 DH lines and 903 hybrids under three and four environments, respectively. The results indicated that there were abundant phenotypic variations within each panel (Figures 1B, C). The descriptive statistics for each population are presented in Table 2. For DH founders, C229 and UH306 showed the highest and lowest SCRRSs, which were 5.90 and 4.89 respectively. In the DH panel, the SCRRS ranged from 4.10–7.06, and POP1 showed significantly high resistance to SCR (Tukey-test, P<0.05), with the mean SCRRS was 6.02. In the hybrid panel, the scores ranged from 3.65 to 6.08, with a mean of 4.97. The most resistant subgroup was POP2/C229, with the mean SCRRS was 5.39. In particular, the DHs and hybrids were planted at different locations, so we didn’t make a comparison between the two panels. The broad-sense heritability (H2) analysis revealed that the H2 in the DH panel and the hybrid panel were 0.64 and 0.54, respectively, suggesting that the phenotypic variation in the two panels was genetically controlled.


Table 2 | Descriptive statistics, variance components, and broad-sense heritability (H2) of southern corn rust resistance.





3.2 Genotype and population structure analysis

After marker quality control (see Materials and Methods), 34,037 SNP markers for 384 DH genotypes were available for further analysis. The 903 hybrid genotypes were imputed by their parents. The molecular diversities among the DH lines and hybrids were examined by applying principal coordinate analysis (Figures 2A, B). There were 4 subgroups in the DH population, among which POP2 and POP3 were relatively close, possibly because they share a common parent C783 and another parent EH were closely related to UH306. In the hybrid panel, three subgroups were observed, including hybrids using C116A as the tester, Z58 as the tester, DH founders or J2416 as the testers. The LD was estimated for the two panels using SNPs. The LD rapidly decreased with increasing the physical distance between SNPs (Figure 2C), but the decay rate varied among the two panels. At r2 = 0.2, the mean LD decay was about 20 Mb and 5 Mb for the DH panel and the hybrid panel.




Figure 2 | Analysis of genetic structure in the DH and hybrid panels. (A) the principal component analysis for the DH panel. (B) the principal component analysis for the hybrid panel. (C) Linkage disequilibrium decay in the two populations.





3.3 Genome wide association study

Three GWAS processes were performed using the FarmCPU method, including additive GWAS in the DH panel, additive GWAS in the hybrid panel and dominant GWAS in the hybrid panel. The quantile–quantile (q–q) plot implied that the population structure and family relatedness were well controlled in the three GWAS jobs (Figures 3B, D, F). One SNP (AX-107958879) on chromosome 10 significantly associated with the SCRRC trait was identified at P< 1.47 × 10−6 in the DH panel, with effect value was -0.25 (Figure 3A and Table 3). LD analysis suggested candidate region was 1,150,363–3,990,150 bp, which overlapped the previously reported gene RPPC or RPPK (Supplementary Figure 1). For the additive GWAS in hybrids, three significant SNPs (AX-90698604, AX-108029030, AX-108089672) were detected, with -log10 (P) ranging from 6.30 to 40.61. These SNPs were distributed on chromosomes 1, 8 and 10, with the candidate regions Chr1: 181,330,348-188,255,567, Chr8: 13,140,413-18,429,572, Chr10: 2,656,837-4,990,741, respectively (Figure 3C and Table 3). The effects of them were 0.24, 0.22 and -0.54. For dominant GWAS in the hybrid panel, three SNPs (AX-107981937, AX-108109448, AX-108089672) on chromosomes 7, 8 and 10 significantly associated, with -log10 (P) were ranged 7.17-37.12, the effects were -0.16, 0.14 and -0.5 (Figure 3E and Table 3). Their candidate regions were suggested as Chr7: 13,581,102-23,774,017, Chr8: 167,766,262-168,856,337, Chr10: 2,656,837-4,990,741. The QTL on chromosome 10 obtained by the three GWAS processes were identified as the same region using LD analysis (Supplementary Figure 1).




Figure 3 | Genome-wide association study Manhattan and quantile–quantile (q–q) plots for Southern Corn Rust (SCR) resistance. (A, C, E) Manhattan plots for SCR resistance in additive GWAS in DH panel, additive and dominant GWAS in hybrid panel, respectively. the dashed line corresponds to the threshold level defined at P = 1.47 × 10−6 by a false discovery rate correction method. (B, D, F) q–q plot for SCR resistance in additive GWAS in DH panel, additive and dominant GWAS in hybrid panel, respectively.




Table 3 | The results of the genome-wide association (GWAS) analysis.





3.4 Genomic prediction with the different marker density, and training population size

The effect of marker density and training population size on the GP accuracy is shown in Figure 4. For marker density, the prediction accuracy increased as the number of markers increased. The prediction accuracy increased rapidly when the number of markers increased from 10 to 5,000. Then, the prediction accuracy increased slightly when the number of markers kept increasing. For training population size, prediction accuracy increased as the size increased, and no slowdown in the growth rate was observed.




Figure 4 | Genomic prediction study in hybrid panel with different SNP numbers (A) and training population size (B) for Southern Corn Rust (SCR) resistance.





3.5 Genomic prediction with extended GBLUP models

To meet the breeding needs of SCR-resistant hybrid selection, different GP methods were implemented to improve the prediction accuracy. Firstly, six extended GBLUP models with combinations of additive, dominant, epistatic matrices were tested (Figure 5 and Supplementary Table 1). For test set correlation, the G_A model which only used the additive matrix was found significantly better than the G_D model which used the dominant matrix, with accuracy were 0.60 and 0.57, respectively. Another less accurate model than G_A, but not significant, was the G_A_D_E model, which had a mean accuracy of 0.59. The accuracy of the G_A_AA model was higher than that of the G_A model, suggesting that the epistatic effect was beneficial to GP in this study. Other models (G_A_D, G_A_AD, G_A_DD) performed as well or slightly better than G_A, with the accuracy of 0.60, 0.61 and 0.60, respectively. For top selection accuracy, the overall accuracy was lower than that of the test set correlation. The correlation test shows a significant correlation between the two accuracy evaluation methods, with R=0.77 (P value<0.05). Interestingly, G_A is better than other models for top selection, which is different from previous reports (Muñoz et al., 2014). The accuracy of the six models ranged from 0.45 to 0.48, indicating that further improvement is needed.




Figure 5 | Genomic prediction study in hybrid panel with extend GBLUP models for Southern Corn Rust (SCR) resistance. The left is prediction accuracy for test set and the right is accuracy for top selection.





3.6 Genomic prediction with maker effect based models

Then, given that our hybrid panel had several significant resistance QTL, six maker based prediction models were performed (Figure 6 and Supplementary Table 1). The results showed that RRBLUP, BRR, BL and BayesC were at the same level with an accuracy of 0.60 for test set correlation. BayesA and BayesB were significantly better than other models with an accuracy of 0.65. The top selection accuracy showed the same trend, the accuracy of BayesA and BayesB were 0.53 and 0.52, respectively, which were significantly higher than other models. Meanwhile, a more significant correlation than extend GBLUP models was detected between the two accuracy evaluation methods (R = 0.98).




Figure 6 | Genomic prediction study in hybrid panel with maker based models for Southern Corn Rust (SCR) resistance. The left is prediction accuracy for test set and the right is accuracy for top selection.





3.7 Genomic prediction with QTL results

Two representative methods (G_A, BayesB) were selected to test the effect of adding QTL as fixation factors (Figure 7 and Supplementary Table 1). For the two models, the GP results showed that the test set correlations were significantly improved whether additive GWAS QTL, dominant GWAS QTL or both were added. The test set correlations for G_A, G_A_qa, G_A_qd, G_A_qad, BayesB, BayesB_qa, BayesB_qd, BayesB_qad were 0.60, 0.66, 0.67, 0.67, 0.65, 0.66, 0.67, 0.66. For top selection using G_A models, the addition of QTL significantly improved the accuracy, among which the G_A_qa model performed best, with an accuracy of 0.55. In contrast, the BayesB model was not significantly changed the accuracy after the QTL addition for top selection accuracy, in which BayesB_qa (0.53) was slightly improved, while BayesB_qd (0.51) and BayesB_qad (0.51) slightly decreased compared with BayesB (0.52).




Figure 7 | Genomic prediction study in hybrid panel with adding QTL as fixed factor into G_A and BayesB models for Southern Corn Rust (SCR) resistance. The left is prediction accuracy for test set and the right is accuracy for top selection.






4 Discussion

SCR is a major disease widely existing in maize, which can cause large yield loss and occur in a wider geographical range (Sun et al., 2021). Therefore, it is important to know the genetic basis of rust resistance, and develop appropriate breeding selection strategies. DH technology can shorten time and speed up the breeding process (Ren et al., 2017), so it is popular in modern maize breeding programs. Moreover, due to obtaining the homozygous population quickly, it is also widely used in genetic research (Wang et al., 2012; Shen et al., 2018). Here, we phenotyped SCR resistance in 384 DH lines and 903 testcross hybrids in multi-environment trials. The widely distribution of SCRRS in populations revealed that quantitative genes still played a particularly important role (Figure 1B). Comparing the hybrid panel consisting of 12 subgroups, we can find that the SCR resistance of hybrids crossed by C229 was significantly higher than that by Z58 and J2416 (Table 2), this is because the genetic contribution of the tester is 50% for each hybrid. This result indicated the importance of the tester in DH-based hybrid breeding, that is, an excellent tester can significantly alter the phenotypic outcome. The heritabilities of DH and hybrid populations were moderate (Table 2), suggesting that the SCR resistance was affected by the environment, so the selection of resistant varieties may need to consider regional adaptability.

Unlike the natural line based GWAS analysis, we used the population derived from four bi-parent DH and their testcross hybrid populations. In previous studies, the background of the GWAS homozygous population formed by multiple artificial populations is more controllable, which has been confirmed in the NAM population (Tian et al., 2011; Wu et al., 2016). This method is more powerful than linkage mapping analysis, however, it is also faced with the tight linkage between SNPs, which is not conducive to mapping accuracy. In our study, obvious population structure could be observed in PCA analysis of genotypes (Figures 2A, B), but no overfitting was found in GWAS by controlling genetic background (Figures 3B, D, F), revealing that these populations can be analyzed by GWAS. At the same time, we found that the LD decay rate could be improved in the hybrid panel (Figure 2C), suggesting that for the DH panel, further genetic combination by test-cross could improve the accuracy of GWAS.

It was found that although dominant Rp genes mainly functioned in SCR resistance in previous studies, there was evidence that quantitative genes also contributed to SCR resistance (Souza Camacho et al., 2019). Five significant loci were detected in our research (Figures 3A, C, E), Table 3). DH population only detected one candidate interval, and the number is less than the hybrid panel, which may be due to the larger size or the richer genetic background with the introduced testers in the hybrid populations. In the hybrid panel, three candidate loci were detected by association analysis with additive and dominant coding (Figures 3C, E and Table 3), two of them were different, which suggested that the dominant effect is also very important in the breeding of rust-resistant hybrids. In all association analyses for 2 populations, a highly significant locus was detected on chromosome 10, which tight chained with the known SCR resistance gene RppC (Deng et al., 2022) and other reported QTL, including RppQ (Chen et al., 2004), RppD (Zhang et al., 2009), RppS/RppK (Wu et al., 2015; Chen et al., 2022), RppM (Wang et al., 2020). The stability and significant effect of this loci suggested that MAS can be used to fix this region to the germplasm in the breeding process. In addition, four minor genes loci were detected in the hybrid population, and no overlap was found with the known candidate loci, indicating that further fine mapping and function research is needed. Our GWAS analysis enriched the genetic analysis of SCR resistance, demonstrating that many potential SCR resistance genes exist in different maize germplasm backgrounds.

In recent years, GP is a commonly used method to reduce costs and workload in plant and animal breeding programs, especially when combined with DH technology, breeding efficiency can be further improved (Fu et al., 2022). However, for the SCR resistant hybrid selection with GP, experience and reference are lacking. We performed GP analysis on the hybrid panel to explore the prediction accuracy under different GP models. GBLUP, as a classical model of GP, is based on the genetic relationship matrix (Crossa et al., 2017). In hybrid populations, additive, dominant and epistatic effects exist simultaneously. We performed extended GBLUP models and found that the additive-by-additive matrices could significantly improve the prediction performance (Figure 5), suggesting that the epistatic effect plays a role in maize SCR resistance. The prediction effect of the pure dominant effect matrix is relatively poor, indicating that the application value of GBLUP only using the dominant matrix is low. It is worth noting that when all matrices were put into the model, the prediction ability is poor, indicating that redundant matrices will reduce the prediction accuracy.

Since the heredity of plant resistance seems to be controlled by dominant genes, GP models based on the genetic relationship matrix may have limited predictive power. We tried maker based GP models and found that most of them had comparable predictive power to G_A, including RRBLUP, BRR, BL and BayesC (Figure 6). However, BayesA and BayesB showed a higher prediction ability of 8% beyond other models, which may be due to the difference brought by prior densities of the Bayes model. This difference provided a reference for the prediction of SCR, indicating different GP models significantly impact the prediction power.

Based on the results of GWAS and GP, we further added candidate loci resulting from association analysis into the prediction model as fixed factors (Figure 7). The prediction accuracies of the G_A and BayesB models were significantly improved, indicating that QTL information can significantly promote prediction accuracy, which is consistent with previous studies (Jiao et al., 2020). Especially for the G_A model, the prediction accuracy improved by 11.67% after all QTL information was added, which may be due to the G_A_qad model complementing the large effect of QTL on the phenotypic outcome. In breeding applications, prediction ability can be improved by adding known QTL loci to GP models. In addition, implementing GP in hybrids is more complex than in homozygous populations, and it may be more efficient to explore a combination of multiple approaches.



5 Conclusion

SCR occurs widely in maize and brings great loss to yield. Here, we developed the DH panel with 384 lines and the hybrid panel with 903 testcross hybrids. SCRRS of accessions were collected with multi-year and multi-location field testing. Using GWAS analytical pipeline, five QTL loci were detected on chromosomes 1, 7, 8, 8, and 10, with P-values ranging from 4.83×10-7 to 2.46×10-41. On the other hand, to improve the selection efficiency of resistant materials in breeding, several GP methods were performed to explore predictive ability for SCRRS in hybrids, including extended GBLUP with different genetic matrices, maker based prediction models, and mixed models with QTL as fixed factors. We found that adding additive-by-additive effect to GBLUP model, selecting BayesA or BayesB model, adding QTL into the mixed linear prediction model will improve the prediction performance. The results will provide important valuable information for understanding the genetic architecture and the application of GP for SCR in maize breeding.
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Stigma exsertion rate (SER) is an index of outcrossing ability in rice and is a key trait of male sterile lines (MSLs) in hybrid rice. In this study, it was found that the maintainer lines carrying gs3 and gs3/gw8 showed higher SER. Single-segment substitution lines (SSSLs) carrying gs3, gw5, GW7 or gw8 genes for grain shape and gene pyramiding lines were used to reveal the relationship between grain shape and SER. The results showed that the grain shape regulatory genes had pleiotropic effects on SER. The SERs were affected by grain shapes including grain length, grain width and the ratio of length to width (RLW) not only in low SER background, but also in high SER background. The coefficients of determination (R2) between grain length and SER, grain width and SER, and grain RLW and SER were 0.78, 0.72, and 0.91 respectively. The grain RLW was the most important parameter affecting SER, and a larger grain RLW was beneficial to stigma exsertion. The pyramiding line PL-gs3/GW7/gw8 showed the largest grain RLW and the highest SER, which will be a fine breeding resource. Further research showed that the grain shape regulatory genes had pleiotropic effects on stigma shape, although the R2 values between grain shape and stigma shape, and stigma shape and SER were lower. Our results demonstrate that grain shape is a factor affecting SER in rice, in part by affecting stigma shape. This finding will be helpful for breeding MSLs with high SER in hybrid rice.
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Introduction

Hybrid rice has made a great contribution to maintaining the world’s major food production and food security (Yuan, 2017). The commercialization of hybrid rice depends on large-scale hybrid seed production (Qian et al., 2016). Cultivated rice is a self-pollination crop (Virmani and Athwal, 1973). The yield of hybrid seeds mainly depends on the outcrossing ability of male sterile lines (MSLs) (Virmani et al., 1982; Guo et al., 2017). The stigma exsertion in MSLs can capture more pollens from male parents, thus improving their ability of outcrossing (Marathi and Jena, 2015). Therefore, the stigma exsertion rate (SER) is an important trait for outcrossing ability in MSLs.

In the past decades, dozens of quantitative trait loci (QTLs) responsible for the SER have been identified from rice germplasm resources (Marathi and Jena, 2015; Guo et al., 2022; Liu et al., 2022). Recently, eighteen QTLs for SER from O. sativa, O. glaberrima, and O. glumaepatula were detected in the single-segment substitution lines (SSSLs) with the Huajingxian74 (HJX74) genetic background (Tan et al., 2020; Tan et al., 2021; Tan et al., 2022a). Eleven of the QTLs were used to develop the pyramiding lines with 2- to 6-QTLs in the HJX74 genetic background. The results showed that the SER can be improved with increasing QTLs in pyramiding lines. The pyramiding lines carrying 5-6 QTLs showed as high SER as wild rice (Tan et al., 2022b). The results indicate that SER is a complex trait controlled by a series of QTLs, and the high SER trait can be reconstructed by pyramiding of the QTLs in rice. However, no QTL for SER has been cloned, so the mechanism of stigma exsertion is still unclear.

SER is the result of phenotypic balance between stigma and other parts of rice spikelet (Zhou et al., 2017; Jiang et al., 2021). The relationship between SER and grain shape has become an interesting focus for researchers. Among detected QTLs, major QTLs qES3 and qSER8 were demonstrated to act pleiotropic effects on grain length by controlling the longitudinal axis direction of grains (Bakti and Tanaka, 2019). On the other hand, it is documented that the GS3 gene not only determines grain length (Fan et al., 2006), but also acts a pleiotropic effect on stigma size (Takano-Kai et al., 2011; Zhou et al., 2017; Dang et al., 2020) and stigma exsertion (Miyata et al., 2007; Li et al., 2014; Zhou et al., 2017; Xu et al., 2019; Liu et al., 2022). Two cloned genes for grain width, GW5 and GW2, were also reported to extend their effects on SER (Zhou et al., 2017). However, it was also reported that the gs3 gene for long grain didn’t always result in stigma exsertion, some rice accessions with very low SER also possessed the gs3 gene (Zhou et al., 2017; Xu et al., 2019). These results indicate that the influence of grain shape on SER is very complex, and the relationship between grain shape and SER is still not very clear.

During the process of domestication, cultivated rice has already lost the ability of natural outcrossing (Parmar et al., 1979). Wild rice has long and large stigma and long floret opening period, which provides a biological basis for outcrossing (Marathi et al., 2015). Therefore, stigma trait may be another important factor influencing SER. Some QTLs for stigma size including stigma length and stigma width were mapped (Dang et al., 2016; Zhou et al., 2017; Dang et al., 2020). Among of the QTLs, some controlled stigma size and SER (Jiang et al., 2021), while others only controlled stigma size and didn’t influence SER (Uga et al., 2003; Yan et al., 2009; Zhou et al., 2017). In addition, it was found that glume opening angle was positively correlated with SER (Kato and Namai, 1987; Uga et al., 2003; Mahalingam et al., 2013). Therefore, the relationship between stigma shape and SER is still ambiguous.

In present study, we found that the maintainer lines with long grains showed higher SERs in rice. To reveal the relationship between grain shape and SER, SSSLs carrying grain shape regulatory genes and pyramiding lines with different gene combinations were used to analyze the relationship. We show that grain shape regulatory genes have pleiotropic effects on stigma shape and SER. The grain shape is a factor affecting SER, in part by affecting stigma shape. This finding reveals the contribution of grain shape to SER, which is helpful to rebuild the outcrossing ability of MSLs in hybrid rice.



Materials and methods


Plant materials

The maintainer line H121B carrying four substitution segments was previously developed in the HJX74 genetic background with the rf3 and rf4 genes from XieqingzaoB. The maintainer line H131B was previously bred in the HJX74 genetic background with the rf3 and rf4 genes from XieqingzaoB and the OsMADS50, gs3 and Wxt genes from SSSLs in the HJX74 genetic background (Dai et al., 2015). Seven SSSLs, W17-46-40-10-07-05, W23-07-06-05-02-02, W12-11-22-03-03-163, W02-08-08-08-01, W07-07-02-03-02, W23-19-06-07-19-03 and W09-38-60-07-18-04 carrying respectively fgr, qBLAST-11, gs3, gs3, gw5, GW7 and gw8 were selected from the HJX74-SSSL library (Wang et al., 2012; Zhang, 2021). The pyramiding lines carrying 2-4 QTLs for SER, 2QL-1, 2QL-5, 3QL-3, 3QL-10, 4QL-1 and 4QL-3, were previously constructed by pyramiding QTLs for SER from HJX74-SSSLs through maker assisted selection (MAS) (Tan et al., 2022b).



Field experiment

All plant materials were planted in the experimental station, South China Agricultural University, Guangzhou (23°07′N, 113°15′E). The materials were planted in 2015-2020, two cropping seasons per year. The first cropping season (FCS) was from late February to middle July and the second cropping season (SCS) was from late July to middle November. The seeds were sown on seedbeds and the seedlings were transplanted to the paddy field as single seedlings. Field management and controlling of diseases and insect pests followed normal agricultural practices.



Genotyping

Molecular markers were applied to detect the substitution segments from SSSLs. The length of substitution segments was measured by the method described previously (Tan et al., 2020). The target genes in substitution segments were identified using closely linked markers. The target genes were genotyped by linkage markers, functional markers, and phenotypic analysis. Genomic DNA was extracted from fresh leaf using a modified CTAB method (Murray et al., 1980). The PCR products were separated on the 6% denatured PAGE gel, and banded by the silver staining.



Phenotyping and statistical analysis

For stigma investigation, five panicles were collected from each line during the flourishing florescence. Six mature spikelets at the upper part of each panicle were selected to carefully separate pistils from glumes and then took photos under a stereomicroscope (Leica M205FA). Rice stigma was divided into two parts, brush-shaped part (BSP) and non-brush-shaped part (NBSP). The stigma length was the sum of BSP and NBSP lengths (Takano-Kai et al., 2011). The stigma width was the maximum width of BSP (Zhou et al., 2017). Stigma length and stigma width were measured by using the software of ImageJ (https://imagej.nih.gov/ij/) described by Zhou et al. (2017). The SER was investigated following the previous method (Tan et al., 2020; Tan et al., 2021; Tan et al., 2022a). Grain traits were measured by the yield traits scorer (YTS), a rice phenotypic facility (Yang et al., 2014).

For statistical analysis, percentage data was converted to the arcsine square root. The least significance range (LSR) was used for multiple range test among multiple groups (Duncan, 1955). Student’s t test was used to detect the difference between two groups. The correlation between traits was analyzed by regression correlation. MapChart2.3 (https://www.wur.nl/en/show/Mapchart.htm) and OriginPro 9.0 (https://www.originlab.com) were used to make figures.




Results


Long grain maintainer lines showed higher SER

The maintainer line H131B previously developed in the HJX74 genetic background was improved by pyramiding two target genes on the substitution segments of HJX74-SSSLs. The new maintainer line H211B carrying seven target genes on substitution segments in the HJX74 genetic background was developed (Supplementary Figure 1 and Supplementary Table 1). Phenotype investigation showed that the traits controlled by target genes have been significantly improved, while other traits had no significant difference (Supplementary Table 2). Both H131B and H211B carried the gs3 gene. Compared with HJX74, H131B and H211B showed significant differences in grain length, but no significant differences in grain width. The grain length of HJX74 was 8.36 mm, while that of H131B and H211B increased to 9.50 mm and 9.51 mm respectively (Figures 1A, B, D, E and Supplementary Table 2). Interestingly, the SERs of H131B and H211B were also significantly different from HJX74. The SER of HJX74 was 27.8%, while that of H131B and H211B increased to 43.9% and 43.4% respectively (Figures 1C, F and Supplementary Table 2). These results showed that the long grain trait controlled by gs3 increased the SERs of maintainer lines H131B and H211B.




Figure 1 | Grain shape and stigma exsertion rate (SER) in maintainer line H211B. (A), Plant type of HJX74 and H211B. Scale bar, 15 cm. (B), Grain shape in HJX74, H131B and H211B. Scale bar, 1 cm. (C), SER in HJX74 and H211B. Scale bar, 1 cm. The arrows point the exserted stigmas. Grain length (D), grain width (E), and SER (F) in HJX74, H131B and H211B. Data are shown as mean ± S.E. of two cropping seasons. Capital letters indicate significant differences at the 0.01 level.



The maintainer line H121B previously developed in the HJX74 genetic background was improved by pyramiding gs3 and gw8 genes on substitution segments of HJX74-SSSLs. The new maintainer line H212B carrying gs3and gw8 genes in the HJX74 genetic background was developed (Supplementary Figure 2 and Supplementary Table 3). Phenotype investigation showed that the traits controlled by target genes have been significantly improved, while other traits had no significant differences (Supplementary Table 4). Compared with HJX74 and H121B, H212B carrying gs3 and gw8 genes had significant differences in grain length and grain width. In grain length, HJX74 and H121B were 8.36 mm and 8.42 mm respectively, while H212B increased to 9.31 mm. In grain width, HJX74 and H121B were both 2.62 mm, while H212B reduced to 2.43 mm (Figures 2A, B, D, E and Supplementary Table 4). Interestingly, the SER of H212B was also significantly different from that of HJX74 and H121B. SERs of HJX74 and H121B were 27.8% and 27.4% respectively, while SER of H212B increased to 55.0% (Figures 2C, F and Supplementary Table 4). Compared with H131B and H211B carrying gs3 (Figure 1 and Supplementary Table 2), H212B with gs3 and gw8 had slender grain and high SER.




Figure 2 | Grain shape and stigma exsertion rate (SER) in maintainer line H212B. (A), Plant type of HJX74 and H212B. Scale bar, 15 cm. (B), Grain shape in HJX74, H121B and H212B. Scale bar, 1 cm. (C), SER in HJX74 and H212B. Scale bar, 1 cm. The arrows point the exserted stigmas. Grain length (D), grain width (E), and SER (F) in HJX74, H121B and H212B. Data are shown as mean ± S.E. of two cropping seasons. Capital letters indicate significant differences at the 0.01 level.





Pleiotropic effects on SER of the genes controlling grain shape in SSSLs

In order to confirm the finding that the trait of slender grain led to higher SER, four SSSLs carrying a grain shape regulatory gene, gs3, gw5, GW7 or gw8, on the substitution segments in the HJX74 genetic background were used to analyze the relationship between grain shape and SER (Figure 3A and Supplementary Table 5). The grain of HJX74 was 8.38 mm long and 2.55 mm wide. SSSL-gs3, SSSL-gw5, SSSL-GW7 and SSSL-gw8 had grain lengths of 9.77 mm, 7.79 mm, 9.29 mm and 8.79 mm, and grain widths of 2.55 mm, 2.88 mm, 2.47 mm and 2.40 mm, respectively. In the ratio of length to width (RLW) in grains, HJX74 was 3.29, while SSSL-gs3, SSSL-GW7 and SSSL-gw8 increased to 3.83, 3.77 and 3.65 respectively, and SSSL-gw5 decreased to 2.71 (Figures 3B–E and Supplementary Table 6). Correspondingly, the SER of HJX74 was 28.3%, while that of SSSL-gs3, SSSL-GW7 and SSSL-gw8 increased to 47.4%, 45.6% and 40.8% respectively, and that of SSSL-gw5 decreased to 22.8% (Figures 3E, F and Supplementary Table 6). These results showed that the genes of gs3, gw5, GW7 and gw8 had significant effects on grain shape and SER in the SSSLs, indicating that the genes controlling grain shape had significant pleiotropic effects on SER.




Figure 3 | Grain shape and SER in the SSSLs carrying a gene for grain shape. (A), Graphical genotypes of the SSSLs. The vertical bars are a graphical representation of chromosomes. The black bars represent substitution segments containing target genes for grain shape, and the white regions represent the HJX74 genetic background. (B), Appearance of the grains in HJX74 and SSSLs. Scale bar, 1 cm. Grain length (C), grain width (D), grain RLW (E), and SER (F) in HJX74 and SSSLs. Data are shown as mean ± S.E. of two cropping seasons. Capital letters indicate significant differences at the 0.01 level. SSSL, single-segment substitution line. SER, stigma exsertion rate. RLW, ratio of length to width.





Effects of the grain shape controlled by different gene combinations of gs3, gw5, GW7 and gw8 on SER in pyramiding lines

To further evaluate the effect of grain shape on SER, four SSSLs, SSSL-gs3, SSSL-gw5, SSSL-GW7 and SSSL-gw8, were used to develop a series of pyramiding lines. A total of 11 pyramiding lines were developed through MAS, including six 2-gene pyramiding lines, four 3-gene pyramiding lines, and one 4-gene pyramiding line (Supplementary Table 7).

In six 2-gene pyramiding lines, PL-gs3/gw5, PL-gs3/GW7, PL-gs3/gw8, PL-gw5/GW7, PL-gw5/gw8 and PL-GW7/gw8, grain lengths were 9.04 mm, 10.17 mm, 9.57 mm, 7.88 mm, 8.29 mm and 8.85 mm, and grain widths were 2.90 mm, 2.41 mm, 2.39 mm, 2.86 mm, 2.52 mm and 2.41 mm, respectively, which differed from 8.38 mm long and 2.55 mm wide of the HJX74 grain (Figures 4A, B and Supplementary Table 8). Compared with the grain RLW of HJX74 3.29, grain RLWs of PL-gs3/gw5, PL-gs3/GW7, PL-gs3/gw8, PL-gw5/GW7, PL-gw5/gw8 and PL-GW7/gw8 were 3.12, 4.22, 4.01, 2.75, 3.29 and 3.67 respectively. Correspondingly, SERs of PL-gs3/gw5, PL-gs3/GW7, PL-gs3/gw8, PL-gw5/GW7, PL-gw5/gw8 and PL-GW7/gw8 were 20.0%, 63.1%, 60.3%, 19.0%, 25.0% and 44.5% respectively, with 28.3% SER of HJX74 as control (Figures 4C, D and Supplementary Table 8). In five pyramiding lines with multiple genes for grain shape, PL-gs3/gw5/GW7, PL-gs3/gw5/gw8, PL-gs3/GW7/gw8, PL-gw5/GW7/gw8 and PL-gs3/gw5/GW7/gw8, grain lengths were 9.43 mm, 9.49 mm, 10.93 mm, 8.22 mm and 10.59 mm, grain widths were 2.65 mm, 2.67 mm, 2.10 mm, 2.62 mm and 2.51 mm, and grain RLWs were 3.55, 3.55, 5.21, 3.14 and 4.21, respectively. SERs of the five pyramiding lines were 34.6%, 38.5%, 74.6%, 25.0% and 59.5% respectively (Figures 4A–D and Supplementary Table 8). These results showed that larger grain RLWs led to higher SERs in the pyramiding lines. Four pyramiding lines, PL-gs3/GW7, PL-gs3/gw8, PL-gs3/GW7/gw8, and PL-gs3/gw5/GW7/gw8, had larger than 4.0 of grain RLWs and higher than 50.0% of SERs. The pyramiding line PL-gs3/GW7/gw8 showed the largest grain RLW and the highest SER.




Figure 4 | Grain shape and SER in pyramiding lines carrying genes for grain shape. Grain length (A), grain width (B), grain RLW (C), and SER (D) in HJX74 and pyramiding lines carrying genes for grain shape. Data are shown as mean ± S.E. of two cropping seasons. Capital letters indicate significant differences at the 0.01 level. SER, stigma exsertion rate. PL, pyramiding line. RLW, ratio of length to width.





Effects of grain shape on SER in high SER background

To investigate the effect of grain shape on SER at high SER level, the gs3 gene was introduced into the pyramiding lines carrying multiple SER-QTLs, 2-QTL pyramiding lines (2QLs), 3-QTL pyramiding lines (3QLs) and 4-QTL pyramiding lines (4QLs) developed previously. Three new pyramiding lines, 2QL-1/gs3, 3QL-3/gs3 and 4QL-3/gs3, were developed in the HJX74 genetic background (Supplementary Figure 3). In the same way, gs3 and gw8 genes were introduced into the pyramiding lines carrying multiple SER-QTLs, 2QLs, 3QLs and 4QLs developed previously. Three new pyramiding lines, 2QL-5/gs3/gw8, 3QL-10/gs3/gw8 and 4QL-1/gs3/gw8, were developed in the HJX74 genetic background (Supplementary Figure 4).

Compared with the pyramiding lines without gs3, the grain lengths of the pyramiding lines with gs3, 2QL-1/gs3, 3QL-3/gs3 and 4QL-3/gs3, were significantly longer, but the grain width had no significant difference. The grains of pyramiding lines with gs3 and gw8, 2QL-5/gs3/gw8, 3QL-10/gs3/gw8 and 4QL-1/gs3/gw8, were significantly longer and narrower than those without gs3 and gw8 (Figures 5A–D). In grain RLW, the pyramiding lines with gs3 and gs3/gw8 were larger than those without gs3 and gs3/gw8, while the pyramiding lines with gs3/gw8 were larger than those with only gs3 (Figures 5E, F).




Figure 5 | Grain shape and SER in pairs of pyramiding lines. Grain length (A, B), grain width (C, D), grain RLW (E, F), and SER (G, H) in pairs of pyramiding lines with and without grain shape gene gs3 and pyramiding lines with and without grain shape genes gs3 and gw8. **P ≤ 0.01, Student’s t test. SER, stigma exsertion rate. RLW, ratio of length to width.



SERs of three pairs of pyramiding lines with and without gs3 and three pairs of pyramiding lines with and without gs3 and gw8 were compared in pairs. In three pairs of pyramiding lines with and without gs3, SERs of 2QL-1, 3QL-3 and 4QL-3 were 57.0%, 64.2% and 69.0% respectively, while those of 2QL-1/gs3, 3QL-3/gs3 and 4QL-3/gs3 increased to 64.5%, 70.8% and 76.2% respectively. The SERs of pyramiding lines with gs3 were significantly higher than those of the pyramiding lines without gs3 (Figure 5G). In three pairs of pyramiding lines with and without gs3 and gw8, SERs of 2QL-5, 3QL-10 and 4QL-1 were 60.7%, 69.5% and 72.6% respectively, while those of 2QL-5/gs3/gw8, 3QL-10/gs3/gw8, 4QL-1/gs3/gw8 increased to 71.1%, 78.7% and 82.4% respectively. SERs of pyramiding lines with gs3 and gw8 were significantly higher than those of the pyramiding lines without gs3 and gw8 (Figure 5H). These results indicated that the effect of grain shape on SER occurred not only in low SER background, but also in high SER background.



Correlation between grain shape and stigma shape

To reveal the relationship between grain shape and stigma shape, stigma length and stigma width were measured in HJX74, 4 SSSLs, SSSL-gs3, SSSL-gw5, SSSL-GW7 and SSSL-gw8, and 11 pyramiding lines, PL-gs3/gw5, PL-gs3/GW7, PL-gs3/gw8, PL-gw5/GW7, PL-gw5/gw8, PL-GW7/gw8, PL-gs3/gw5/GW7, PL-gs3/gw5/gw8, PL-gs3/GW7/gw8, PL-gw5/GW7/gw8 and PL-gs3/gw5/GW7/gw8. Stigma RLWs were then calculated by the values of stigma length and stigma width in each line.

In stigma lengths, HJX74 was 1.92 mm, while 4 SSSLs were 1.77 mm to 2.27 mm, and 11 pyramiding lines were 1.81 mm to 2.41 mm (Figures 6A, B and Supplementary Table 9). In grain lengths, HJX74 was 8.38 mm, while 4 SSSLs were 7.79 mm to 9.77 mm, and 11 pyramiding lines were 7.88 mm to 10.93 mm (Figures 3C, 4A; Supplementary Tables 6, 8). Regression correlation between stigma length and grain length was a positive with the coefficient of determination (R2) of 0.58 (Figure 6E). In stigma widths, HJX74 was 0.44 mm, while 4 SSSLs were 0.36 mm to 0.46 mm, and 11 pyramiding lines were 0.37 mm to 0.46 mm (Figures 6A, C and Supplementary Table 9). In grain widths, HJX74 was 2.55 mm, while 4 SSSLs were 2.40 mm to 2.88 mm, and 11 pyramiding lines were 2.10 mm to 2.90 mm (Figures 3D, 4B; Supplementary Tables 6, 8). Regression correlation between stigma width and grain width was positive with R2 value of 0.46 (Figure 6F). In stigma RLWs, HJX74 was 4.40 mm, while 4 SSSLs were 3.83 mm to 6.35 mm, and 11 pyramiding lines were 4.39 mm to 6.26 mm (Figures 6A, D and Supplementary Table 9). In grain RLWs, HJX74 was 3.29 mm, while 4 SSSLs were 2.71 mm to 3.83 mm, and 11 pyramiding lines were 2.75 mm to 5.21 mm (Figures 3E, 4C; Supplementary Tables 6, 8). The stigma RLW was positively correlated with the grain RLW, and the R2 value was 0.53 (Figure 6G).




Figure 6 | Stigma shape and its correlations with grain shape. (A), Stigma shape of the SSSLs and PLs. Scale bar, 0.5 mm. (B-D), Stigma length (B), stigma width (C), and stigma RLW (D) in the SSSLs and PLs. Data are shown as mean ± S.E. of two cropping seasons. Capital letters indicate significant differences at the 0.01 level. (E-G), Correlations between grain length and stigma length (E), between grain width and stigma width (F), and between grain RLW and stigma RLW (G). The average value of each line in two cropping seasons is used to perform correlation analysis. R2 represents the percentage of x contribution to y phenotype variation. SSSL, single-segment substitution line. PL, pyramiding line. RLW, ratio of length to width.



Taken together, stigma shape, including stigma length, stigma width and stigma RLW, was positively correlated with grain shape. The R2 values between stigma length and grain length, stigma width and grain width, and stigma RLW and grain RLW were close to 0.5. These results demonstrate that the genes gs3, gw5, GW7 and gw8 controlling grain shape have pleiotropic effects on stigma shape, and the stigma shape is partially affected by grain shape in rice.



Correlation between grain shape and SER

Regression correlation analysis was used to detect the relationships between stigma shape and SER, and grain shape and SER in the lines containing different genotypes of grain shape in the HJX74 genetic background. In stigma shape, stigma length was positively correlated with SER (R2 = 0.43) (Figure 7A), stigma width was negatively correlated with SER (R2 = 0.28) (Figure 7B), and stigma RLW was positively correlated with SER (R2 = 0.50) (Figure 7C). In grain shape, grain length was positively correlated with SER (R2 = 0.78) (Figure 7D), grain width was negatively correlated with SER (R2 = 0.72) (Figure 7E), and grain RLW was positively correlated with SER (R2 = 0.91) (Figure 7F). These results showed that the effect of grain shape on SER was greater than that of stigma shape. In grain shape, the grain RLW had a greater effect on SER than grain length and grain width. Therefore, the grain RLW was the most important factor affecting SER.




Figure 7 | Regression correlations between stigma shape and SER, and grain shape and SER. (A-C), Correlations between stigma length and SER (A), stigma width and SER (B), and stigma RLW and SER (C). (D-F), Correlations between grain length and SER (D), grain width and SER (E), and grain RLW and SER (F). The average value of each line in two cropping seasons is used to perform statistical analysis. R2 represents the percentage of x contribution to y phenotype variation. SER, stigma exsertion rate. RLW, ratio of length to width.






Discussion


The grain shape has a partial effect on SER

In Asian cultivated rice, indica and japonica are two subspecies, in which indica tended to has slender grain and japonica mostly has a short and wide grain (Zhang et al., 2021). It is well known that the SER of indica rice is generally higher than that of japonica rice, which leads to generally obtain higher hybrid seed yield using indica MSLs than using japonica MSLs (Zhou et al., 2017; Dang et al., 2020; Jiang et al., 2021). It was found that the GS3 gene controlling grain length had a positive effect on SER (Miyata et al., 2007; Li et al., 2014; Zhou et al., 2017; Xu et al., 2019; Liu et al., 2022) and GW5 and GW2 genes controlling grain width had a negative effect on SER (Zhou et al., 2017). However, the pleiotropic effect of the genes controlling grain shape were not always obvious (Zhou et al., 2017; Xu et al., 2019). In this study, we found that although grain length and grain width had significant correlated with SER, the grain RLW had the greatest effect on SER, with R2 value as high as 0.91 (Figures 7D–F). This finding can explain the fact that the SER of japonica rice is generally lower than that of indica rice. On the other hand, dozens of QTLs responsible for the SER have been identified in rice genome, many of them are independent of grain shape (Marathi and Jena, 2015; Liu et al., 2019; Tan et al., 2020; Tan et al., 2021; Tan et al., 2022a). Therefore, SER is only partially affected by the grain shape.



Relationships of stigma shape with grain shape and SER

Stigma is a part of spikelet, located above ovary, surrounded by palea and lemma. At flowering, palea and lemma open, and the BSP of stigma may extend outside the glume. After flowering, palea and lemma are closed, and the BSP of stigma may exsert outside the glume (Khumto et al., 2018). Therefore, the stigma shape should be closely related to the grain shape and SER (Dang et al., 2016; Zhou et al., 2017). Wild rice has long and large stigma and strong outcrossing ability (Marathi et al., 2015). During the domestication process of cultivated rice, the stigma trait and natural outcrossing ability have already degenerated (Parmar et al., 1979; Marathi et al., 2015). Only few QTLs for stigma size including stigma length and stigma width were mapped. Some QTLs controlled stigma size and SER (Jiang et al., 2021), while others only controlled stigma size and didn’t influence SER (Uga et al., 2003; Yan et al., 2009; Zhou et al., 2017). In this study, we found that the genes controlling grain shape had pleiotropic effects on stigma shape. Correlation analysis showed that stigma length, stigma width and stigma RLW were weakly positively correlated with grain length, grain width and grain RLW respectively, with R2 values of about 0.50 (Figures 6E–G). Similarly, stigma length, stigma width and stigma RLW were also weakly correlated with SER, with R2 values of 0.50 or less (Figures 7A–C). These results showed that stigma shape was partly affected by grain shape, and has a partial effect on SER. The influence of grain shape on SER was partly caused by the influence on stigma shape. Recently, cellular examination and transcriptomic analyses revealed that three grain shape regulatory genes, GS3, GW8 and GS9, cooperatively regulate cell division during pistil development (Zhu et al., 2023). This may be the molecular mechanism of the pleiotropy of grain shape regulatory genes on stigma shape and SER.



The strategy for improving SER in rice

Cultivated rice lost the outcrossing ability during domestication (Parmar et al., 1979; Marathi et al., 2015). MSLs of hybrid rice need to restore the outcrossing ability to meet the needs of hybrid seed production (Taillebois et al., 2017). The stigma exsertion of rice breaks through the closure of palea and lemma, prolongs the pollination period, compensates for the asynchronous flowering time of male and female parents, and thus improves the outcrossing ability of MSLs (Rahman et al., 2017a; Zou et al., 2020). Therefore, improving SER is the key goal of MSL breeding. In recent decades, a large number of QTLs for SER have been located in rice genome, laying a foundation for improving SER (Marathi and Jena, 2015; Rahman et al., 2017b; Guo et al., 2022; Liu et al., 2022). Recently, eighteen QTLs for SER from O. sativa, O. glaberrima, and O. glumaepatula were mapped in the SSSLs of the HJX74 genetic background (Tan et al., 2020; Tan et al., 2021; Tan et al., 2022a). Eleven of the QTLs were used to develop pyramiding lines in the HJX74 genetic background. The pyramiding lines carrying 5-6 QTLs showed as high SER as wild rice. The phenotypic analysis showed that the increase of SER did not lead to the change of grain shape in most pyramiding lines. The results indicated that the high-SER trait can be reconstructed by pyramiding of the QTLs in rice (Tan et al., 2022b). In this study, we found that grain shape is another factor affecting rice SER, which affects SER by partially affecting stigma shape (Figures 6 and 7). Grain shape regulatory genes had pleiotropic effect on SER, and genes controlling long grain or narrow grain, such as gs3, GW7 and gw8, could improve SER (Figure 3). The pyramiding line PL-gs3/GW7/gw8 showed the largest grain RLW and the highest SER (Figure 4), which will be a fine breeding resource. Our results demonstrate that long grain rice is beneficial to the reconstruction of high SER trait. Therefore, the MSLs with high SER can be developed by pyramiding of the QTLs for SER and the genes controlling slender grain. Our finding implies that the breeding of MSLs with high SER is more difficult in japonica rice with short and wide grain than in indica rice with slender grain.
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Genetic dissection of yield component traits including kernel characteristics is essential for the continuous improvement in wheat yield. In the present study, one recombinant inbred line (RIL) F6 population derived from a cross between Avocet and Chilero was used to evaluate the phenotypes of kernel traits of thousand-kernel weight (TKW), kernel length (KL), and kernel width (KW) in four environments at three experimental stations during the 2018–2020 wheat growing seasons. The high-density genetic linkage map was constructed with the diversity arrays technology (DArT) markers and the inclusive composite interval mapping (ICIM) method to identify the quantitative trait loci (QTLs) for TKW, KL, and KW. A total of 48 QTLs for three traits were identified in the RIL population on the 21 chromosomes besides 2A, 4D, and 5B, accounting for 3.00%–33.85% of the phenotypic variances. Based on the physical positions of each QTL, nine stable QTL clusters were identified in the RILs, and among these QTL clusters, TaTKW-1A was tightly linked to the DArT marker interval 3950546–1213099, explaining 10.31%–33.85% of the phenotypic variances. A total of 347 high-confidence genes were identified in a 34.74-Mb physical interval. TraesCS1A02G045300 and TraesCS1A02G058400 were among the putative candidate genes associated with kernel traits, and they were expressed during grain development. Moreover, we also developed high-throughput kompetitive allele-specific PCR (KASP) markers of TaTKW-1A, validated in a natural population of 114 wheat varieties. The study provides a basis for cloning the functional genes underlying the QTL for kernel traits and a practical and accurate marker for molecular breeding.




Keywords: QTL mapping, kernel-related traits, putative candidate gene, KASP markers, Triticum aestivum L.



1 Introduction

Wheat (Triticum aestivum L.) is one of the most important cereal crops and is a major contributor to the diet of 4.5 billion people worldwide, providing approximately 20% of the daily protein and calorie requirements. Consequently, high yield has long been the primary aim in wheat breeding (Guo et al., 2016; Tao et al., 2018; Michel et al., 2019). Kernel traits are important indicators of wheat yield (Li et al., 2018; Ma et al., 2019); understanding the genes that control these traits can provide a theoretical basis and useful information for wheat breeding (Fatiukha et al., 2020; Xin et al., 2020).

With the development of high-throughput molecular biotechnology and functional genomics, research in yield-related traits is becoming more and more convenient (Saini et al., 2022). DNA sequencing technology and single-nucleotide polymorphism (SNP) markers have been widely used in constructing genetic linkage maps (Qu et al., 2022). In recent years, the successful development of wheat diversity arrays technology (DArT) has dramatically accelerated the research on wheat genetic diversity, gene mapping, and cloning (Ahmed et al., 2021). Grain yield, thousand-kernel weight (TKW), kernel length (KL), and kernel width (KW) are widely known complex quantitative traits, which are controlled by a large number of quantitative trait loci (QTLs)/genes (Simmonds et al., 2016; Wang et al., 2018; Guan et al., 2019; Xu et al., 2019) and environmental influences (Kumar et al., 2016; Kumari et al., 2018). Among such traits, TKW has a high and relatively stable heritability (Kuchel et al., 2007; Sharma et al., 2018); meanwhile, relevant research shows that TKW is influenced by KL and KW (Dholakia et al., 2008; Su et al., 2016). Currently, many genes contributing to grain yield have been identified and cloned in crops, such as TGW2 (Ruan et al., 2020), GS3 (Mao et al., 2010), GW7 (Wang et al., 2015), TaTPP-6AL1 (Zhang et al., 2017), TaTGW6 (Hanif et al., 2015), TaGS-D1 (Zhang et al., 2014), and TaGS1a (Guo et al., 2013). A high-yielding gene (OsDREB1C), which was detected in rice, is important to improve photosynthetic efficiency and nitrogen use efficiency, increasing more than 30% of the crop yield (Wei et al., 2022). A kernel length gene (VRT-A2), which was identified on chromosome 7AS between markers XP85 and XP87 with a physical interval of 128.79–128.92 Mb, is a positive regulator of brassinosteroid responses; it encodes an MIKC-type MADS-box protein and significantly increases the kernel length of wheat (Chai et al., 2022).

During the continuous discovery of novel genes, a significant amount of work has been done on gene mining, including QTL mapping, QTL clusters, and pleiotropic QTLs. Many QTLs of kernel traits have been identified on all chromosomes, explaining 0.38%–46.2% of the phenotypic variances (Okamoto et al., 2013; Tyagi et al., 2014; Cheng et al., 2017; Hu et al., 2020; Saini et al., 2022). In addition, some pleiotropic QTLs controlling kernel shape and TKW were discovered on chromosomes 2A, 2B, 2D, 4B, 5B, 5D, and 6A, contributing 3.3%–26.4% of the phenotypic variances (Dholakia et al., 2008; Sun et al., 2008; Ramya et al., 2010; Schierenbeck et al., 2021). Three QTL clusters associated with kernel size were located on chromosomes 1B, 2D, and 6D, accounting for 3.92%–27.78% of the phenotypic variances; the physical position of the QTL clusters is 566.6–583.6 Mb, 481.5–512.8 Mb, and 45.9–73.3 Mb, respectively (Qu et al., 2021). Those gene functions that were associated with kernel traits or kernel weight were mainly affected by three pathways; these pathways are involved in the regulation of cell division and expansion, including phytohormones, G-protein signaling, ubiquitination-mediated proteasomal degradation, and other unknown pathways (Ma et al., 2016; Zhang et al., 2017; Li et al., 2018).

In recent years, with the release of the wheat and closely related species genome sequence, and numerous transcriptome datasets (Duan et al., 2012; Kumar et al., 2015; Yang et al., 2022), all of these might lead to greater convenience for gene mapping, discovery of candidate genes, gene cloning, and development of markers, especially in the area of marker development, such as simple sequence repeat (SSR) markers, cleaved amplified polymorphic sequence (CAPS) markers, kompetitive allele-specific PCR (KASP) markers, and semi-thermal asymmetric reverse PCR (STARP) markers (Wu et al., 2020). The rapid evolution of molecular technology has provided powerful tools to dissect complex traits (Li et al., 2015); many molecular markers for kernel traits have been developed, especially in KASP markers, for example, KASP-AX-111112626 (tightly linked to kernel length QTL QKL.sicau-AM-3B), KASP-AX-108974756 (tightly linked to kernel width QTL QKW.sicau-AM-4B) (Zhou et al., 2021), and KASP-AX-109379070 (tightly linked to kernel length QTL QKL.sicau-2SY-1B) (Qu et al., 2021). The development of these markers has accelerated the rapid development of wheat molecular breeding.

Currently, with the completion of whole-genome sequencing and a fully annotated reference genome of Chinese Spring, and the rapid growth of transcriptomic technologies, the candidate genes can be more conveniently identified and characterized with the help of multiple technologies. The present study is yet another effort to identify the new QTLs of kernel traits and the following related aspects: (1) finding the QTLs for kernel traits, (2) exploring the stable and novel QTL clusters, (3) identifying candidate genes by multiple sequence alignments and gene annotation, and (4) developing KASP markers of the major loci for breeders in breeding programs. We believe that these results should provide useful information not only for molecular breeding but also for basic research on fine mapping and cloning of QTLs in wheat or in other cereals.



2 Materials and methods


2.1 Plant materials

The recombinant inbred line (RIL) population of 163 F6 lines was used for QTL analysis of kernel traits in this study, derived from the cross Avocet × Chilero using the single seed descent approach (Basnet et al., 2014). Chilero had significantly higher values (p < 0.05) for all investigated kernel traits than those of Avocet. The International Maize and Wheat Improvement Center (CIMMYT) developed the RIL population.

A natural population with 114 cultivars was utilized for validation of the KASP markers, including 53 wheat accessions collected within the country and 61 cultivars from other countries, such as those in Europe, USA, Mexico, and Australia. Materials were provided by the wheat germplasm innovation and molecular breeding project of Henan University of Science and Technology, China.



2.2 Field trials

For phenotyping, the RIL population and parents were grown under four environments at three experimental stations in three seasons: (1) a test field at the farm of Henan University of Science and Technology (34°C60N″, 112°C42E″), during the autumn–winter cycle of 2018–2019 (2018XN) and 2020–2021 (2020XN) cropping seasons; (2) an open field at Luoning county (34°C42″N, 111°C67″E) in the 2019–2020 (2019LN) cropping season; and (3) a test field at Mengjin county (34°C83″N, 112°C58″E) during the 2020–2021 (2020MJ) cropping season. The natural population of 114 varieties or lines was planted in the three experimental stations at Mengjin county and the farm of Henan University of Science and Technology during 2019–2021.

Each trial of both populations was arranged following a randomized block design with three replicates; the lines of the RIL population and the natural population were grown in a 6.0 m2 plot at each location, with 10 rows, 20 cm apart and 3.0 m in length for each plot. Field management followed the local agronomic practices.



2.3 Phenotypic evaluation

In each experiment, plants were chosen to be harvested after they were completely matured, in order to avoid other factors that may affect the phenotypic analyses. Meanwhile, seeds were dried before analysis. Data parameters of kernel traits were evaluated when all the kernels had approximately 11% moisture content.

The phenotypic values of two populations were determined using the same method. Three kernel traits (TKW, KL, and KW) were measured by using Wanshen SC-A automatic testing equipment, which was developed by Wanshen Science and Technology Ltd. (Hangzhou, Zhejiang, China; www.wseen.com). At least 300 kernels from each line were measured with three replicates, and the average of the three replicates was taken as the evaluation result of each line.



2.4 Phenotypic statistical analysis

For each phenotypic trait, SPSS version 22.0 software (SPSS, Chicago, USA) was used to conduct statistical analysis of phenotypic data, including the means, standard deviation (SD), range, kurtosis, skewness, and coefficient of variation. The QTL IciMapping v4.1 software was used to compute the broad-sense heritability (H2) and to calculate the best linear unbiased estimate (BLUE) of each kernel trait. The OriginPro 22b software was used to draw the histograms and correlation plot, and the linkage map was drawn using Mapchart.



2.5 Quantitative trait locus mapping and candidate gene analysis

A total of 23,526 DArTSeq markers were genotyped for both parents and the RIL population, and the QTL IciMapping v4.1 software was used to construct the genetic linkage map and identify significant QTLs (http://www.isbreeding.net) (Zeng et al., 2020). The Kosambi mapping function was used to calculate centiMorgan units (cM), and the inclusive composite interval mapping (ICIM) method was performed for QTL analysis. For all significant QTLs, the critical LOD values were set at 3.0 to increase the reliability and accuracy of QTL detection, and the walking speed parameter of each step for the genome-wide scan was set at 1.0 cM; the significance thresholds were calculated using 1,000 permutations, with genome-wide error rates of 0.10 and a type I error of 0.01. The naming of QTL followed the rule “QTL + trait + research department + chromosome”. The QTLs detected in two or more environments are considered as stable QTLs (Ruan et al., 2021).

In this study, we performed the candidate gene analysis for a highly significant and stable region on wheat chromosome 1AS (http://plants.ensembl.org/index.html). The high-confidence genes were extracted from the IWGSC reference genome and identified using IWGSC RefSeq v1.1 (https://urgi.versailles.inra.fr/) annotation for the identification of likely candidates.



2.6 KASP assay design and genotyping

Based on the mapping results, the sequences flanking the QTL TaTKW-1A were used for designing KASP primers (composed of the two forward primers and the reverse primer) (PolyMarker, http://polymarker.tgac.ac.uk/). The primers were synthesized by Sangon Biotech (Shanghai) Co., Ltd. (China).

All KASP reactions were performed in a 4-μl reaction volume, which included 2 μl of diluted DNA, 2 μl of KASP master mix, and 0.045 μl of primer mix. A total of 114 wheat varieties were genotyped on an CFX 384 Real-Time System (BIO-RAD). The fluorescence signals of each reaction well were collected and genotyping was performed using the BioRad CFX Manager Software.




3 Results


3.1 Phenotypic variation

In the four field trials conducted, the means, standard deviation (SD), range, kurtosis, skewness, and coefficient of variation for each of the phenotypes were calculated in the RIL population. The parental genotype Chilero of the mapping population consistently had significantly higher mean values (p < 0.05) for all investigated kernel traits than those of Avocet (Table 1). According to the phenotypic distribution, TKW was larger than KL and KW on the range of variation, and the scores of skewness and kurtosis were mostly less than 1.0 for all kernel traits in the four field trials, indicating that they were quantitative traits controlled by multiple genes. All kernel traits had broad-sense heritability higher than 90% (Table 1).


Table 1 | Descriptive statistics of the parental genotypes and RILs for different kernel traits in four environments.



Continuous variations and strong transgressive segregations have been shown for all three traits in the RIL population, suggesting that favorable alleles of these traits are distributed in both parents, and indicating segregation patterns of quantitative traits (Figures 1, 2). Correlations among kernel traits are significant (Figure 3).




Figure 1 | Histograms of distributions for wheat kernel traits in the Avocet/Chilero RIL population. Note: 2018XN: The farm of Henan University of Science and Technology 2018–2019, 2019LN: Luoning 2019–2020, 2020XN: The farm of Henan University of Science and Technology 2020–2021, 2020MJ: Mengjin 2020–2021. Green represents 2018XN, red represents 2019LN, blue represents 2020XN, magenta represents 2020MJ, cyan represents mean values, and orange represents BLUE.






Figure 2 | Kernel phenotypes of the parents and lines in the Avocet/Chilero RIL population.






Figure 3 | Heat map of Pearson’s correlation of fructan content by using BLUE values.





3.2 QTL identification for kernel traits

In this study, we obtained the results using the ICIM method; a total of 48 QTLs for TKW, KL, and KW were detected and mapped on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 5A, 5D, 6A, 6B, 6D, 7A, 7B, and 7D (Tables S1, S2, S3; Figures S1, S2, S3), including 12 QTLs for TKW, 18 QTLs for KL, and 18 QTLs for KW, individually explaining 3.00%–33.85% of the phenotypic variance. Among these QTLs, 9 QTLs for TKW, 12 QTLs for KL, and 13 QTLs for KW explained >10% of the phenotypic variance and were considered the major QTLs.



3.3 Identification of the stable QTL clusters

The sequences of the flanking markers of the QTLs were employed to perform BLASTN against the Chinese Spring reference genome sequence v1.1. According to the physical location of the QTLs, we identified the stable QTL clusters in the Avocet/Chilero RIL population; the detailed information is described in Table 2 and Figure 4.


Table 2 | The stable QTL clusters in the Avocet/Chilero RIL population.






Figure 4 | Locations of QTLs of the stable QTL clusters.



The results showed that there were eight stable QTL clusters in the population, and they were renamed TaTKW-1A, TaKW-3A, TaTKW-3B, TaKW-3B, TaTKW-4A, TaKW-4B, TaTKW-5A, and TaKL-6A. Among the eight stable QTL clusters, four QTL clusters have the favorable allele from Avocet, TaTKW-1A, TaKW-3A, TaTKW-4A, and TaKL-6A, and four QTL clusters have the favorable allele from Chilero, TaTKW-3B, TaKW-3B, TaKW-4B, and TaTKW-5A. TaTKW-1A was closely linked to DArT markers SNP1158610, SNP1090977, 1010408, SNP100461256, 3950546, and 1213099 in the physical interval of 14.56–49.30 Mb, explaining 10.31%–33.85% of the phenotypic variance. TaKW-3A was tightly linked to marker intervals SNP1093344–100008048 with a physical interval of 69.50–69.51 Mb, accounting for 7.76%–20.42% of the phenotypic variance.



3.4 Identification of candidate genes within the TaTKW-1A physical interval

To clarify the physical position of TaTKW-1A, the DArT marker sequence was subjected to alignment with the whole-genome database of Chinese Spring (https://wheat-urgi.versailles.inra.fr/) by using the BLAST tool. Sequence comparison revealed that TaTKW-1A was in a physical interval from 14557761 to 49301348 bp on chromosome 1A (Figure 5). A total of 347 high-confidence genes with a physical length of 34.74 Mb were identified in the DarT marker interval 3950546–1213099 (https://www.wheatgmap.org/).




Figure 5 | Possible physical segments of candidate genes on 1A chromosome. CS, Chinese Spring.





3.5 KASP marker development of TaTKW-1A

For the effective utilization of the major QTL in plant breeding, KASP markers closely linked to TaTKW-1A were developed and used to genotype 114 lines (Table 3, Figure 6).


Table 3 | The KASP molecular marker sequence of TaTKW-1A.






Figure 6 | Genotype calling screenshots of the KASP markers. Blue indicates the G allele of Chilero, orange indicates the A allele of Avocet, and black indicates the blank control, **significant at p < 0.01. The same below.



Of the 114 accessions, there were 26 GG (22.8%) genotypes and 88 AA (77.2%) genotypes (Figure 6), and TKW was significantly different (p < 0.01) between the two genotypes; in addition, AA (Avocet) genotypes were higher than GG (Chilero) genotypes. Furthermore, 15 wheat varieties have genotype GG and 38 have genotype AA in the 53 domestic wheat accessions, and 11 have genotype GG and 50 have genotype AA in the 61 foreign varieties (Figure S4).




4 Discussion


4.1 QTLs for kernel traits

Wheat has a very huge and complex genome; QTL mapping can provide important information regarding the molecular basis of determination of kernel-related traits. In past decades, more than 400 QTLs for TKW and approximately 200 QTLs for KL and KW have been reported across all 21 chromosomes, and some stable and robust QTLs were detected (Saini et al., 2022). As a whole, these QTLs were mostly distributed across the A and B genomes as compared to the D genome (Yang et al., 2020). A similar trend was observed in this study, with more QTLs on the A (24) and B (14) genomes than on the D (10) genome. Although many QTLs associated with kernel traits have been identified, its application is rarely reported in molecular marker-assisted breeding (MAS), due to the fact that many QTL locations were based on genetic distances rather than the physical distances.

TKW was a complex quantitative trait that was affected by polygenes. Studies indicated that TKW increased gradually when KL and KW increased, and TKW had a significant positive correlation with KL and KW (Gao et al., 2015; Cui et al., 2016; Chai et al., 2022). In this study, the significant correlation is found between TKW and KL, between TKW and KW, and between KL and KW, with the Pearson correlation coefficients of 0.51, 0.90, and 0.20, respectively, which was consistent with the conclusions of other studies (Liu et al., 2014; Michel et al., 2019; Qu et al., 2022).



4.2 QTL cluster analysis for TKW

TKW was a complex polygenic trait with high broad-sense heritability and was less affected by the environment (Cuthbert et al., 2008; Mcintyre et al., 2010; Gao et al., 2015), and QTLs for TKW have been reported on all 21 wheat chromosomes (Huang et al., 2006; Li et al., 2007; Sun et al., 2008; Ramya et al., 2010; Zhang et al., 2014; Shukla et al., 2015; Yu et al., 2018; Chen et al., 2020). In this study, we detected four QTL clusters for TKW, designated TaTKW-1A, TaTKW-3B, TaTKW-4A, and TaTKW-5A. Then, based on the sequence information of the markers flanking these QTLs, we found some genes within each of these QTL intervals by using the BLAST tool.

In earlier studies, many QTLs for TKW were reported on 1A (Pinto et al., 2010; Ramya et al., 2010; Williams and Sorrells, 2014; Wu et al., 2015; Cui et al., 2016; Assanga et al., 2017), 3B (Russo et al., 2014; Xu et al., 2014; Shirdelmoghanloo et al., 2016; Li et al., 2018), 4A (Zou et al., 2017; Li et al., 2020), and 5A (Liu et al., 2014; Fowler et al., 2016; Kumar et al., 2016; Assanga et al., 2017; Brinton et al., 2017). Among the four loci, TaTKW-1A colocalized with QTKW.haust-1A.1, QKW.haust-1A.2, QTKW.haust-1A.2, and QKL.haust-1A.2, with a corresponding physical position of 14557761–49301348 bp on the short arm of chromosome 1A. It overlapped with few published QTLs, such as QGw.ccsu-1A.1 (physical position: 27.27 Mb), QTkw.ncl-1A.1 (physical position: 27.27 Mb), and qTgw.nwipb-1AS (physical interval: 20.02–25.31 Mb), which was detected by Kumar et al. (2006); Ramya et al. (2010), and Liu et al. (2020a), respectively. However, these QTLs were only detected in one environment, and further studies of the locus have not been reported in the literature. TaTKW-4A colocalized with QTKW.haust-4A and QKL.haust-4A.2. The physical interval (584.41–606.37 Mb) of the loci was not identical to that previously identified (Maphosa et al., 2014; Gao et al., 2015; Chen et al., 2020; Li et al., 2020); these loci may be novel loci for TKW. Another colocated QTL, TaTKW-5A (QTKW.haust-5A.1, QTKW.haust-5A.2, and QKW.haust-5A) at 436.63–481.93 Mb, does not coincide with the physical position of other reported QTLs (Wang et al., 2009; Yuan et al., 2017; Guan et al., 2018). TaTKW-3B colocalized with QKW.haust-3B.1 and QTKW.haust-3B.1, and it was localized to the physical interval 7.29–31.66 Mb. We have undertaken a detailed analysis of the loci identified on chromosome 3B in previous studies (Huang et al., 2004; Maphosa et al., 2014; Echeverry-Solarte et al., 2015; Shi et al., 2017; Duan et al., 2020); TaTKW-3B was different from those QTLs reported on 3B, and was likely a new locus.



4.3 QTL cluster analysis for KL and KW

With respect to KL and KW, many QTLs for KL and KW were previously reported on chromosomes 3A, 3B, 4B, and 6A (Breseghello and Sorrells, 2006; Gegas et al., 2010; Cui et al., 2016; Cheng et al., 2017; Li et al., 2018; Zhai et al., 2018). In our study, we detected one QTL cluster for KL on chromosome 6A (TaKL-6A, physical interval: 61.21–65.66 Mb) and three QTLs for KW on chromosomes 3A (TaKW-3A, physical interval: 69.5–69.51 Mb), 3B (TaKW-3B, physical interval: 490.89–614.57 Mb), and 4B (TaKW-4B, physical interval: 629.7–630.13 Mb). To confirm whether we identified four loci, a comparative analysis of the physical positions of previously reported QTLs with those identified in this study was conducted. According to the physical intervals of TaKL-6A, TaKW-3A, TaKW-3B, and TaKW-4B, we speculated that the four loci were new QTLs (Cui et al., 2011; Cui et al., 2014; Li et al., 2018; Su et al., 2018; Chen et al., 2020; Duan et al., 2020; Xin et al., 2020).



4.4 Identification of putative candidate genes for TKW

In recent years, with the rapid development of sequencing technology and bioinformatics, a fully annotated reference genome of Chinese Spring was released (IWGSC RefSeq v1.1, https://urgi.versailles.inra.fr/blast_iwgsc/blast.php), providing a better approach in searching for candidate genes. Meanwhile, due to the co-linearity with grasses and the conservation of gene function among different species, many functional markers in wheat have been developed for many cloned genes of kernel traits.

In TaTKW-1A, blasting results showed a physical interval of 14.56–49.30 Mb, and a total of 347 high-confidence genes were found (Figure 5). Among these genes (Figure 7), TraesCS1A02G045300 and TraesCS1A02G058400 were the most promising candidate genes associated with kernel weight, and their orthologs were Os05g0115800 and Os05g0121600 in rice, respectively. Os05g0115800 was involved in the mitogen-activated protein kinase signaling pathway and was a mitogen-activated protein kinase phosphatase, affecting grain yield by regulating the grain number and grain size (Jiang et al., 2019). Os05g0121600 was involved in the regulation of transcription, flower development, seed development, and endosperm development, and acted as a negative regulator in starch synthesis (Seetharam et al., 2021). In this study, we speculated candidate genes for TKW on chromosomes 4A and 5A. The physical interval of TaTKW-4A was 584.41–606.37 Mb, and 406 annotated genes were presumed. TraesCS4A02G293900, TraesCS4A02G294000, and TraesCS4A02G303500 were the candidate genes for TKW, and the orthologs were Os03g0669100, At4g34460, and At3g21510, respectively. Among these genes, Os03g0669100 and At4g34460 encoded a regulator of G-protein signaling (RGB1 and AGB1) (Oliveira et al., 2022), and At3g21510 (AHPs) and its encoded protein are related to the regulation of endosperm growth (Tran et al., 2021). RGB1, AGB1, and AHPs were involved in the regulation of grain traits (Li et al., 2019; Li et al., 2021). In TaTKW-5A, the physical interval was 436.63–481.93 Mb, and there were 512 high-confidence genes. Os09g0448500 of the ortholog of TraesCS5A02G233400 was a transcriptional regulator in rice and was associated with kernel traits (Li et al., 2019; Zhou and Xue, 2020). Consequently, TraesCS4A02G293900, TraesCS4A02G294000, TraesCS4A02G303500, and TraesCS5A02G233400 were the candidate genes on 4A and 5A chromosomes in wheat (Figure 7). In TaTKW-3B, the physical interval was 7.29–31.66 Mb; a total of 418 annotated genes were found in the physical intervals, but we did not find orthologs related to TKW.




Figure 7 | Cloned genes affecting kernel traits in candidate intervals. (A) Cloned gene of TaTKW-1A. (B) Cloned gene of TaTKW-4A. (C) Cloned gene of TaTKW-5A.





4.5 The major candidate gene expression of TaTKW-1A

Previous studies have shown that the growth of maternal tissues is able to control seed size through several signaling pathways, including the ubiquitin–proteasome pathway (Huang et al., 2017; Xie et al., 2018), G-protein signaling (Liu et al., 2018; Sun et al., 2018), mitogen-activated protein kinase signaling (Guo et al., 2018; Xu et al., 2018), phytohormones (Xu et al., 2015; Zhou et al., 2017), and transcriptional regulators (Wang et al., 2015; Segami et al., 2017). In our study, we found TaTKW-1A, which has two major candidate genes, TraesCS1A02G045300 and TraesCS1A02G058400, with grain-related traits (Figure 7). We identified them in the transcriptome of wheat grain through the website https://www.ebi.ac.uk/gxa/home (Gillies et al., 2012; Li et al., 2013; Takafuji et al., 2021; Yu et al., 2021) (Figure S5). Results showed that both genes were expressed during grain development, although the expression profiles of these two genes clearly differ during grain development; both of them were expressed in the pericarp, endosperm, and seed coat (Li et al., 2013; Yu et al., 2021). Specifically, TraesCS1A02G045300 is important because it was expressed consistently from anthesis to maturity (Pfeifer et al., 2014; Pearce et al., 2015; Yu et al., 2021).



4.6 KASP marker development

With the rapid development of marker-assisted selection in wheat breeding, the molecular marker technology has received increasing attention in recent years in crops (Song et al., 2022), and numerous markers have been developed (Kang et al., 2020; Rambla et al., 2022; Shin et al., 2022). A CAPS marker, TaTPP-6AL1-CAPS, was developed to differentiate TaTPP-6AL1a and TaTPP-6AL1b, which was associated with TKW (Zhang et al., 2017). A KASP marker of the candidate gene TaFT-D1, which was associated with TKW and KW, was developed and verified in a natural population (Liu et al., 2020b). Ten SSR markers for grain weight were developed and tested in 60 genotypes; all SSR primers had a high polymorphism (Sallam et al., 2019). In particular, numerous KASP markers for kernel traits have been developed in the last 2 years: Kasp_5B_Tgw for QTgw.caas-5B was developed and validated in wheat (Zhao et al., 2021), a KASP functional marker of TaTAP46-5A associated with kernel weight in wheat was developed and identified (Zhang et al., 2021), the KASP markers for QTKW.caas-5DL (Song et al., 2022), and the KASP markers for QGl.cib-4A (Li et al., 2022). These KASP markers provide a robust tool for genetic mapping and molecular breeding in crops. In this study, in order to use the advantage haplotypes, we developed the KASP markers of TaTKW-1A, which have been validated in the natural population. The results showed that the KASP markers could be used in wheat.




5 Conclusion

In this study, 48 QTLs were found in the RIL population, explaining 3.00%–33.85% of the phenotypic variances. Nine QTL clusters for kernel traits were identified in the RILs, and among these QTL clusters, we developed and validated the KASP markers of TaTKW-1A, and two candidate genes were predicted. The KASP markers and predicted candidate genes will be valuable for fine mapping and cloning the functional genes in wheat breeding.
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Considering the male sterile line has the phenomenon of panicle enclosure, panicle elongation length (PEL) plays an important role in hybrid rice seed production. However, the molecular mechanism underlying this process is poorly understood. In this study, we investigated the PEL phenotypic values of 353 rice accessions across six environments, which shows abundant phenotypic variation. Combining the 1.3 million single-nucleotide polymorphisms, we performed a genome-wide association study on PEL. Three quantitative trait loci (QTL) qPEL4, qPEL6, and qPEL9 were identified as significantly associated with PEL, of which qPEL4 and qPEL6 were previously reported QTLs and qPEL9 was novel. One causal gene locus, PEL9, was identified and validated. The PEL of accessions carrying allele PEL9GG was significantly longer than that of those carrying allele PEL9TT. We also demonstrated that the outcrossing rate of female parents carrying allele PEL9GG increased by 14.81% compared with that of the isogenic line carrying allele PEL9TT in an F1 hybrid seed production field. The allele frequency of PEL9GG increased gradually with an increase in latitude in the Northern Hemisphere. Our results should facilitate the improvement of the PEL of the female parent of hybrid rice.




Keywords: genome-wide association study, hybrid rice seed production, male sterile line, panicle elongation length, quantitative trait loci, rice



Introduction

Rice (Oryza sativa L.) provides the staple food for more than half of the world’s population and plays a vital role in global food security. To face the increasing challenges of food security caused by the increasing global population and decreasing arable land, it is an inevitable choice to increase yield per unit area. Utilization of heterosis is one of the most effective ways to increase yield per unit area. Hybrid rice has been planted on a commercial scale in China since 1976 and accounts for more than half of the total area of rice planted each year since 1985. Hybrid rice requires the annual production of F1 hybrid seeds. In the process of hybrid rice F1 seed production, the panicle enclosure of the female sterile line is an important factor limiting the yield of hybrid F1 seed production (Shen et al., 1987; Yang et al., 2002). The male sterile lines and female parent lines have different degrees of panicle enclosure, which showed 30%–60% of the panicle to be enclosed by a flag leaf sheath and the panicle neck shortened. Generally, spraying exogenous gibberellin acid 3 (GA3) on the female sterile line at the initial heading stage in the F1 seed production field can improve the panicle enclosure. However, spraying a large amount of GA3 has the shortcomings of increasing seed production costs, polluting the environment, and increasing the occurrence of rice kernel smut (Brooks et al., 2009; Chen et al., 2016). Therefore, it is an important goal for hybrid rice breeding to genetically eliminate the panicle enclosure of cytoplasmic male-sterile (CMS) lines.

The phenomenon of panicle enclosure in CMS line was caused by sterile cytoplasm, not by the nucleus, because panicle enclosure did not exist in the maintainer line. The leaf sheath of the flag leaf in the CMS line and maintainer line has the same length (Figure 1), so the sterile cytoplasm caused the shortening the uppermost internode, which led to panicle enclosure. Only when the maintainer line with the longer panicle elongation length (PEL) is transformed into the CMS line by continuous backcrossing will there be no panicle enclosure.




Figure 1 | Display the plants, panicle, and uppermost internode of Gang 46B and Gang 46A. (A) The plant morphology of Gang 46B and Gang 46A. Scale bar, 10cm. (B) Display the panicle morphology and uppermost internode of Gang 46B and Gang 46A. Scale bar, 5 cm.



PEL is a quantitative trait controlled by multiple genes in rice (Han et al., 2005; Jing et al., 2015). At first, Rutger and Carnahan (1981) found a long panicle neck mutant in the F3 population from a cross between two japonica rice cultivars and named the mutant elongated uppermost internode (eui). Yang et al. (2001) reported that two eui genes named eui1 and eui2 were obtained from the indica rice cultivar Xieqingzao B by nuclear mutagenesis. The mutant with panicle enclosure could be obtained by natural variation, physical and chemical mutagenesis, and tissue culture; until now, 11 mutants (A864, shp1, shp2, shp3, shp4, shp5, shp6, M893, SUI-family (sui1, sui2, sui3, and sui4), esp1, and esp2) have been reported (Liu and Luo, 2006; Zhu, 2006; Guan et al., 2011; Zhu et al., 2011; Yin et al., 2013; Ma et al., 2016). Among them, SHP5 and SHP6 were detected on chromosomes 4 and 2, respectively (Zhu, 2006). esp1 was located on chromosome 11 (Zhuo, 2010). SUI2 was finely mapped within the 110 kb region of the long arm of chromosome 4 and the candidate gene predicted was LOC_Os04g39430 (Sun et al., 2020). esp2 was finely mapped within the 14 kb region of the long arm of chromosome 1 and the candidate gene predicted was LOC_Os01g02890 (Guan et al., 2011).

To our knowledge, 56 quantitative trait loci (QTLs) controlling PEL have been identified and distributed on 12 chromosomes of rice (Yamamoto et al., 2001; Hittalmani et al., 2002; Zhu, 2003; Zhu et al., 2006; Qiao et al., 2007; Xiao et al., 2008; Yang et al., 2009; Yang et al., 2011; Yin et al., 2013; Jing et al., 2015; Zhao et al., 2015; Gao et al., 2016; Dang et al., 2017). Four genes, EUI2, EUI1, SUI1, and Hox12, have been cloned to control PEL. Eui2 encodes an epoxide hydrolase, which is involved in the dehydrogenation of reactive GA. In the process of dehydrogenation, the epoxide hydrolase loses its activity, which affects the elongation of the uppermost internode (Zhu, 2003). EUI1 encodes a cytochrome P450 monooxygenase, CYP714D1. CYP714D1 catalyzes the 16a,17-epoxidation of non-13-hydroxylated GAs to reduce the biological activity of GA4 to regulate the elongation of the uppermost internode in rice (Luo et al., 2006; Zhu et al., 2006). SUI1 encodes phosphatidylserine synthase OsPSS-1. OsPSS-1 controls cell elongation especially in the uppermost internode by regulating exocytosis in rice (Zhu et al., 2011; Yin et al., 2013; Ma et al., 2016). Hox12 regulates panicle exertion by directly modulating the expression of EUI1 (Gao et al., 2016). However, these genes/QTLs are far from satisfying the need for genetic improvement in PEL. Therefore, it is necessary to identify more favorable alleles for the PEL trait to enhance the yield of hybrid seed production in rice.

In this study, we conducted a genome-wide association study (GWAS) for the PEL trait using single nucleotide polymorphism (SNP) loci from 353 rice accessions and detected three QTLs for PEL. We further validated panicle elongation length 9 (PEL9), coding for a flavonol synthase, as a causal gene for QTL qPEL9 associated with PEL by gene-based association, transgenic overexpression testing, and field F1 hybrid seed production. The elite alleles of PEL9 identified in this study will be facilitated for rice breeding to improve the PEL of the parents of hybrid rice.



Materials and methods


Plant materials and field planting

A natural population consisting of 353 rice accessions (Dang et al., 2020) from different geographical latitudes was selected (Table S1). These accessions were grown from May to October across six different environments over 3 years (2019–2021) and two locations. The two locations were Nanjing (32°07′N, 118°64′E) in Jiangsu Province and Hefei (31°86′N, 117°28′E) in Anhui Province. We named 2019 in Nanjing as environment 1 (E1), 2020 in Nanjing as environment 2 (E2), 2021 in Nanjing as environment 3 (E3), 2019 in Hefei as environment 4 (E4), 2020 in Hefei as environment 5 (E5), and 2021 in Hefei as environment 6 (E6). In each environment, we performed the field planting of 353 accessions with two replicates in a completely randomized block design. Each accession was planted with 40 plants in four rows with a spacing of 20 cm × 17 cm. All field trials followed routine agricultural management.



Phenotypic measurement

Five plants in the middle row of each accession were selected to measure the PEL of the main stem panicle. The distance between the panicle base node and the collar of the flag leaf was measured as PEL. If the panicle base node was below the collar of the flag leaf, we recorded the PEL as a negative value. If the panicle base node was above the collar of the flag leaf, we recorded the PEL as a positive value. If the former and the latter were in the same position, we recorded the PEL as zero. We used the average value of the five measurements for each plot to further analyze.



Genome-wide association study

The 1,326,094 rice SNP markers were used for the GWAS as described by Dang et al. (2020). For these SNPs, the nucleotide variation missing rates were lower than 0.25 and the minor allele frequency (MAF) was higher than 0.05. The GWAS was conducted using a compressed mixed linear model (MLM) program by GAPIT v. 2.12 (Lipka et al., 2012). The software of the qqman package in R (Turner, 2018) was used to generate the Manhattan plot and Q-Q plot. Based on the Benjamini and Hochberg (1995) correction method, we calculated the false discovery rate (FDR) for significant associations. We selected 1.0 × 10−5 as the significant threshold. We conducted the linkage disequilibrium (LD) analysis using the software Haploview 4.2 (Barrett et al., 2005) to define LD blocks surrounding significant SNPs. We constructed LD heatmaps surrounding peaks using the R package “LDheatmap” (Shin et al., 2006). According to the method described by Yang et al. (2014) and Huang et al. (2021), when more than three association loci exceed the threshold line of the P-value with a clear peak-like signal, we consider the region exists a QTL. The haplotypes comprising at least 20 investigated varieties were selected for comparative analysis.



Candidate gene analysis

We predicted candidate genes within a 200 kb genomic region based on position information from the MSU7 database (Rice Genome Browser: http://rice.plantbiology.msu.edu). The 200 kb genomic region was ±100 kb of the significant leading SNP of the QTL following the description by Lu et al. (2016). We analyzed the SNP types for each candidate gene located in the candidate region. Gene annotation and gene expression levels for the candidate genes were analyzed to further select the causal gene.



RNA extraction and quantitative real-time PCR

Total RNA was extracted from the internode directly below the young panicle at development stages 5–8 (the criterion of the corresponding development stage described by Itoh et al., 2005) using the ultrapure RNA kit (OMEGA BIO-TEK, https://www.omegabiotek.com). The uppermost internode was sampled from the three accessions with a shorter PEL and the three accessions with a longer PEL. The HiScript II Reverse Transcriptase SuperMix (Vazyme Biotech Co., Ltd., Nanjing; http://www.vazyme.com) was used to perform first-strand cDNA synthesis by reverse transcription from 1 µg of RNA. We used the 18S rRNA gene as an internal control. We used SYBR Green (Vazyme Biotech Co., Ltd., Nanjing; http://www.vazyme.com) to conduct real-time quantitative RT-PCR in a 96-well thermocycler (Roche Applied Science LightCycler 480). The cycling conditions were as follows: 1) denaturation, 95°C/5 min; 2) amplification and quantification program with a single fluorescence measurement including 40 cycles, 95°C/10 min, 60°C/30 s, and 72°C/60 s; 3) melting curve, 60°C–95°C, with a heating rate of 0.1°C/1 s and continuous fluorescence measurement; 4) cooling, 40°C. For each sample, we performed three biological replicates. The primer sequences used for qRT-PCR are listed in Table S2. We used the comparative CT method (Livak and Schmittgen, 2001) to calculate the transcript levels of gene expression.



Generation of LOC_Os09g18390 transgenic plants

The coding sequence of LOC_Os09g18390 was PCR amplified from Nipponbare (carrying the GG allele) and Nongxiang 25 (carrying the TT allele), respectively. The PCR products were cloned into the pBWA(V)HS vector. The primer sets used for PCR are listed in Table S2. The vectors LOC_Os0918390GG and LOC_Os0918390TT were introduced into Agrobacterium tumefaciens (EHA105) and transferred into Nipponbare, respectively. The vector LOC_Os0918390GG with EHA105 was also transferred to 7001S. We transformed the corresponding empty vector into Nipponbare as a control. We obtained 30 independent T1 seedlings, which were grown in a paddy field under natural conditions. We harvested the T2 seeds from T1 plants at the maturity stage and grew them in the paddy field in the next rice growing season (May to October). We detected the three allele genotypes (GG, GT, and TT) on the LOC_Os09g18390 locus at the tillering stage using the primers listed in Table S2. We measured the PEL phenotype in the LOC_Os0918390GG and LOC_Os0918390TT plants after the heading dates.



Pollen fertility observation

The mature pollen grains of varieties R1219, 7001SPEL9GG and 7001SPEL9TT were stained using a 1% I2-KI water solution. We examined them with a light microscope (Olympus BH-2) at ×100 magnification.



F1 hybrid seed production potential evaluation for the PEL9 alleles in the paddy field

To evaluate the potential of the PEL9 gene in the production of F1 hybrid rice seeds, we performed an actual F1 seed production experiment using isogenic lines 7001SPEL9TT (short PEL) and 7001SPEL9GG (long PEL) as the female parents and variety R1219 as the common male parent in the paddy fields. 7001SPEL9TT is a long day-sensitive male sterile line used in commercial F1 seed production in Eastern China, and 7001SPEL9GG is an isogenic line obtained in this study. The male and female parents were grown in a ratio of 2:8:2, i.e., four lines of R1219 plants were planted around eight lines of female plants. To ensure that the pollen of the female parents was sterile before artificial pollination at flowering time, we observed the fertility of the pollen of 7001SPEL9TT and 7001SPEL9GG under a light microscope. During pollen dispersal, artificial supplementary pollination was performed twice per day. Thirty days after artificial supplementary pollination, the seeds from the female plants were harvested individually. The potential of the PEL9 allele for hybrid rice seed production was evaluated according to the weight of rice grains harvested from male sterile plants per 1 m2 of area.




Results


Phenotypic variation of the PEL trait

In the 353 accessions, the mean value of PEL was calculated per environment, ranging from −7.62 ± 0.35 to 15.49 ± 0.24 cm, with coefficients of variation across the six environments ranging from 89.83% to 91.91% (Figure 2A). The PEL trait had no significant change among six environments, indicating that this trait was less influenced by the environment (Figure 2B). The results mentioned above indicated that a wide range of phenotypic variation existed in the natural populations studied. Compared with japonica rice, the indica rice population had lower values for the PEL trait (Figure 2C). The results of the joint analysis of variance for PEL showed that there was a significant difference among genotypes and no significant differences among environments, suggesting that the abundant phenotypic variation of PEL was mainly attributable to variation in genotypes (Table S3).




Figure 2 | The phenotypic value description of PEL among 353 rice accessions at six environments. (A) Basic statistics of PEL in six environments. (B) Phenotypic value distributions in six environments. (C) Phenotypic value distributions of PEL in the indica and japonica subgroups. The box edges represent the upper and lower quantiles. The median value in black was shown in the middle of the box. Vertical lines represent the data from the lowest quantile to the top quantile. Asterisks indicate individuals falling outside the range of the whiskers.





Identification of QTL for PEL by GWAS

We performed a GWAS between the PEL trait and SNPs (MAF >0.05) in the 353 rice accessions to investigate the possible genetic architecture of natural variation in PEL. In this population, 25 significantly associated SNP loci for PEL were detected in the 11 LD regions, which were located on chromosomes 2, 3, 4, 5, 6, 8, 9, and 11 (Table 1, Figure 3A). In addition, these 25 SNP loci were repeatedly detected in at least four environments, indicating that these association loci were stable (Table S4, Figure S1). The R2 ranged from 3.50% to 8.44% (Table 1). When more than three significant SNP loci exceeded the threshold value (1 × 10−5) within a 200-kb interval, we considered the region a QTL based on the leading SNP. Three QTLs associated with PEL, qPEL4, qPEL6, and qPEL9, were identified (Figure 3B). Among them, the QTLqPEL9 had the largest number (eight) of significant SNPs, suggesting that it is a major QTL for PEL. Next, we will focus on qPEL9 for further analysis.


Table 1 | The summary of SNPs significantly associated with PEL.






Figure 3 | QTLs identified by GWAS in rice. (A) Manhattan plots for the whole population of 353 rice accessions. Negative log10 transformed P-values are plotted on the vertical axis, and dots above the red dashed line show the significant SNPs in the QTL region. The QTLs identified are shown by the black arrows. (B) Information about the identified QTLs.





PEL9 is a causal gene for a PEL QTL

To search for candidate genes of qPEL9, the potential candidate region within 200 kb containing 100 kb upstream and 100 kb downstream of the significant leading SNP was analyzed (Figures 4A, B). In the 11.19–11.39 Mb candidate region, there were 32 candidate genes (Figure 4C). Combining with the LD block, we determined the LD block region as 11.24–11.33 Mb, which contained seven candidate genes (Tables S5, S6). Among them, five of the seven genes contained nonsynonymous SNPs (Table S5). Only the gene LOC_Os09g18390 contained one nonsynonymous SNP significantly associated with the PEL. Hereafter, gene LOC_Os09g18390 is referred to as PEL9.




Figure 4 | GWAS for PEL and identification of the causal gene PEL9 (LOC_Os09g18390). (A) The Manhattan plot of chromosome 9 for PEL. In the Manhattan plots of chromosome 9, horizontal dashed lines indicate the significance threshold (−log10P = 5.0). (B) Local Manhattan plot (top) and LD heatmap (bottom). The arrow indicates the position of the nucleotide variation in LOC_Os09g18390. The candidate region lies between the solid red lines. (C) Identification of candidate genes in the region of qPEL9. (D) Haplotypes of LOC_Os09g18390 associated with PEL in rice. (E, F) Boxplots of PEL in accessions containing the different haplotypes (E) and elite alleles (F). The box edges represent the upper and lower quantiles. The median value in black was shown in the middle of the box. Vertical lines represent the data from the lowest quantile to the top quantile. Asterisks indicate individuals falling outside the range of the whiskers. Differences between alleles were statistically analyzed using a Student’s t-test (**P <0.01). (G) Relative expression of LOC_Os09g18390 in panicle below internode at development stages 5–8 of young panicle from the three accessions (Nipponbare, Nongxiang 25, and Longdun 19) with a long PEL and the three accessions (Xiangxiandao 10hao, Wanlixian, and Minghui 63) with a short PEL, determined by qRT-PCR (**P <0.01, Student’s t-test). Data are presented as means ± s.e.; n = 3 independent biological replicates. (H) Images of panicles of transgenic plants transformed with the empty vector (VEC), the G allele, and the T allele. Scale bar, 3 cm. (I) PEL of transgenic plants. Data are presented as means ± s.e. (n = 20). PEL, panicle elongation length.



The full length of PEL9 is 2,030 bp, including two exons and one intron. Gene PEL9 encodes a 172-amino acid protein. PEL9 was classified into three haplotypes based on six SNPs in its cDNA, containing three SNPs in the intron region, two SNPs in the coding region, and one SNP in the downstream region (Figure 4D). The haplotype Hap 1 was associated with a shorter PEL, while haplotypes Hap 2 and Hap 3 were associated with a longer PEL (Figure 4E). For the two SNPs in the coding region, one SNP (11,290,715 bp) was synonymous, and one SNP (11,290,777 bp) was nonsynonymous (Table S5). The nonsynonymous SNP causes a base change from base G to base T at nt 510 bp in the coding sequence, which results in an amino acid change from serine (S) to isoleucine (I) at amino acid 164. The average PEL values of 229 accessions carrying the TT allele were 2.98 ± 3.23 cm, while those with the GG allele had a PEL of 6.51 ± 3.47 cm. There were highly significant differences between the TT allele and the GG allele at P <0.01 (Figure 4F).

We further performed quantitative RT-PCR analysis of the internode below young panicle at differentiation stages 5, 6, 7, and 8 of young panicle, sampled from three accessions (Nipponbare, Wanlixian, and Longdun 19) with longer PEL and three accessions (Xiangxiandao 10hao, Nongxiang 25, and Minghui 63) with shorter PEL, respectively. The qRT-PCR results showed that the expression level in the accessions with shorter PEL was much higher than that with longer PEL at stage 5 of young panicle, and no significant difference was found at stages 6, 7, and 8 of young panicle (Figure 4G). The accessions with longer PEL contained the allele PEL9GG, and the accessions with shorter PEL contained the allele PEL9TT. The expression of PEL9TT was the highest at stage 5 of the young panicle of the four stages investigated. However, the expression of PEL9GG did not peak in the internode below the young panicle among the four stages. These results suggested that decreased expression of PEL9GG might increase PEL.

Based on the results of GWAS, we found that no SNP loci located in the promoter region of PEL9 were associated with PEL. Further, after searching the promoter functional elements website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), we also found no SNP loci in the cis-element regulatory region. We speculated that the SNP loci in the CDS region caused the phenotypic variation between the accessions with the GG allele and those with the TT allele.

To validate the effect of the gene locus PEL9 on PEL, we expressed the cDNA sequence from the alleles PEL9GG and PEL9TT under the control of a constitutive promoter in Nipponbare, which carries the allele PEL9GG, respectively. Compared with the empty vector control, plants overexpressing the allele PEL9GG showed a longer PEL, whereas no significant difference was observed for those overexpressing the allele PEL9TT (Figures 4H, I). These results indicate that PEL9 is a causal gene for qPEL9 on chromosome 9.



Yield of the F1 hybrid seeds harvested from the male sterile line with the 7001SPEL9GG allele was significantly higher than that with the 7001SPEL9TT allele

The PEL of 7001SPEL9GG was significantly longer than that of 7001SPEL9TT (Figures 5A, B). To further evaluate the potential of the PEL9 allele in hybrid rice seed production, we performed a field experiment using two combinations, 7001SPEL9TT × R1219 and 7001SPEL9GG × R1219. The pollen of plants in 7001SPEL9GG and 7001SPEL9TT could not be stained by a 1% solution of I2-KI and was completely sterile (Figure 5C). So, F1 seeds were obtained from the plants in 7001SPEL9GG and 7001SPEL9TT, respectively. The out-crossing seed setting rate of the 7001SPEL9GG × R1219 combination was 42.27%, which is significantly (P <0.01) higher than that of the 7001SPEL9TT × R1219 combination (27.46%) (Figures 5D, E). The weight of the F1 seeds harvested from the female parents in the 1 m2 area for the combination of 7001SPEL9GG × R1219 was 238.54 g, which is significantly (P <0.05) higher than that of the combination of 7001SPEL9TT × R1219 (176.81 g) in the same area of land (Figure 5F). These results indicate that the PEL9GG allele could significantly increase the yield of F1 hybrid seeds by enhancing the out-crossing rate of the male sterile lines.




Figure 5 | Hybrid rice seed production evaluation of PEL9 gene. (A) Panicle morphology of 7001SPEL9TT and 7001SPEL9GG. Scale bar, 5 cm. (B) Comparison of the PELs of 7001SPEL9TT and 7001SPEL9GG. Data represent means ± SD (n = 35 independent plants), **P <0.01, Student’s t-test. (C) Pollen viability test. Fertile pollen grains of R1219 could be stained by 1% I2-KI, while abortive pollen grains of 7001SPEL9TT and 7001SPEL9GG could not be stained. Scale bar, 100 μm. (D) F1 panicle morphology of 7001SPEL9TT × R1219 and 7001SPEL9GG × R1219. Scale bar, 5 cm. (E) Comparison of the seed setting percentages of 7001SPEL9TT and 7001SPEL9GG after artificial supplementary pollination. Data represent means ± SD (n = 30 independent plants), **P <0.01, Student’s t-test. (F) Comparison of the yield of 30 plants per 1 m2 of 7001SPEL9TT and 7001SPEL9GG after artificial supplementary pollination. Data represent means ± SD (n = 30 independent plants), **P <0.01, Student’s t-test.





Regional distribution of PEL9 alleles

To understand the geographical differentiation of PEL9 alleles, we investigated the distribution of 353 O. sativa and 12 wild rice, including eight O. rufipogon and four O. nivara (Dang et al., 2020). In the 12 wild rice varieties, we found two alleles, PEL9GG and PEL9TT, and allele PEL9TT accounted for a larger proportion. For the 353 cultivated rice, a similar situation was observed for PEL9, in which the higher the latitude, the more significant the proportion of PEL9GG is (Figure 6). These results indicated that PEL9TT predominates at low latitudes and PEL9GG predominates at high latitudes.




Figure 6 | The gene allele frequency differences at the causal polymorphisms of PEL9 in six geographic groups. The G allele indicates the type of reference allele. The T allele indicates the type of alternative allele. Indo, Indonesia; SC, southern China; CC, central China; EC, eastern China; NEC, northeastern China. The wild rice accessions were mainly from southern China. The accessions from Indo were mainly tropical japonica subspecies. The accessions from SC and CC were mainly indica subspecies. The accessions from EC and NEC were mainly temperate japonica subspecies.



To further confirm the allele frequency distribution of PEL9, we selected 446 wild rice (Oryza rufipogon) (http://server.ncgr.ac.cn/RiceHap3/GWAS.php) and 392 O. sativa (http://ricevarmap.ncpgr.cn/two_cultivars_compare/) (Tables S7-S10). The allele frequency distribution of PEL9 in Figure S2 was similar to that in Figure 6 except tropical japonica (TRJ). This may have something to do with the source of the TRJ. The TRJ in this study were only from Indonesia, while the TRJ in the database were from many sources.




Discussion

In this study, we investigated the phenotype data of PEL in 353 rice accessions across six environments and found that there existed a wide phenotypic variance. The coefficients of variation of PEL across six environments ranged from 89.83% to 91.91% (Figure 2A). Based on the results of a joint variance analysis, we know that the variations in PEL were caused mainly by the different genotypes and were rarely affected by the interactions between genotypes and environments (Table S3). These results mentioned above provide a reliable basis for the discovery of favorable alleles for the PEL trait.

The QTL regions detected in this study were based on the LD decay distance of each chromosome and significant peak SNP loci. This greatly increased the accuracy of candidate gene regions. In this study, we detected three stable QTLs, namely qPEL4, qPEL6, and qPEL9 (Figure 3). Compared with the previously identified QTLs for PEL, two QTLs, qPEL4 and qPEL6, were located at sites overlapping with the chromosome location of previously reported QTLs. The QTL qPEL9 was found to be novel. The QTL qPEL4 overlapped with the same region (20,171,917–22,349,484 bp) as the QTL qPEN-4 reported by Hittalmani et al. (2002) and the QTL qIN1–4 reported by Yamamoto et al. (2001). The QTL qPEL6 was overlapped with the same region (8,115,201–17,152,315 bp) as the QTL qLF-6 reported by Yang et al. (2011) and the QTL qPEL6 reported by Dang et al. (2017). Compared with the previously cloned genes, no known genes were found in the QTL interval. We speculated that the reason was that the known genes were identified from mutants and the alleles from the known genes only existed in mutants and did not exist in the conventional material used in this study. Overall, the QTL qPEL9 detected in this study is newly found, which provides a useful molecular basis for genetic improvement of PEL.

PEL is a component of the uppermost internode. The uppermost internode is a component of plant height (PH). Based on that, compared with the known genes controlling PH, such as D1/RGA1 (Ashikari et al., 1999), d11 (Zhu et al., 2015), D2 (Fang et al., 2016), d18/OsGA3ox2 (Tong et al., 2014; Hu et al., 2018)—controlling the shortening of the second internode length, sd1/OsGA20ox2 (Spielmeyer et al., 2002), and d35/OsKO2 (Itoh et al., 2004)—controlling the shortening of the uppermost internode length, and d6/OSH15 (Fan et al., 2016)—controlling the shortening of two to four internode length and keeping of the uppermost internode length, we found that they were not in the same chromosome segments or in different segments of the same chromosome. These results indicated that the genetic basis of PEL was different from that of PH, which provided a theoretical basis for fine genetic improvement of PEL.

For one major QTL, qPEL9, we newly identified the potential causal gene PEL9 (Figure 4). Gene PEL9 encodes flavonol synthase (FLS)/flavanone 3-hydroxulase, which belongs to the 2-oxoglutarate-dependent dioxygenase and is a homolog of Arabidopsis thaliana FLS (AT5G08640, AtFLS1). Arabidopsis AtFLS1 functions as a negative regulator of auxin transport in vivo and exhibits pleiotropic phenotypes including shoot length (Brown et al., 2001), whereas the function of its rice homolog was unknown. Combined with the results of qRT-PCR, the high expression of allele PEL9TT inhibited the auxin transport in vivo in rice, which resulted in short panicle elongation length, whereas the low expression of allele PEL9GG promoted the auxin transport in vivo in rice, which resulted in long panicle elongation length. We have demonstrated by the overexpression test that a base T-to-G nonsynonymous mutation at nt 510 in the coding sequence of PEL9 caused the long PEL phenotype. Based on the field combination experiment, it was confirmed that the PEL9GG allele could significantly increase the yield of F1 hybrid seeds by enhancing the out-crossing rate of the sterile lines.

We also found two alleles of PEL9TT and PEL9GG in wild rice (Figure 6 and Figure S2). And the proportion of the TT allele was greater than that of the GG allele. Except for TRJ, with an increase in latitude, the proportion of the TT allele decreased while the proportion of the GG allele increased. For TRJ, the proportion of the GG allele was greater than that of the TT allele. The allele frequency distribution in TRJ was different from that in other subgroups, and the dominant allele GG was the one that controlled the long PEL. We speculated that this may be a consequence of artificial selection. No matter in which high-latitude or low-latitude-high-altitude regions, conventional japonica rice is mainly planted. The japonica rice selected with panicle enclosure would affect rice quality and yield. Meanwhile, the long PEL facilitates pollination in F1 hybrid seed production. The accessions with the allele PEL9GG can be used to increase PEL in the maintainer lines (pollen parents used for multiplying the CMS lines) of hybrid japonica rice by crossing and marker-assisted selection breeding.
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Introduction

During plant evolution, nucleotide-binding sites (NBS) and leucine-rich repeat (LRR) genes have made significant contributions to plant disease resistance. With many high-quality plant genomes sequenced, identification and comprehensive analyses of NBS-LRR genes at whole genome level are of great importance to understand and utilize them.



Methods

In this study, we identified the NBS-LRR genes of 23 representative species at whole genome level, and researches on NBS-LRR genes of four monocotyledonous grass species, Saccharum spontaneum, Saccharum officinarum, Sorghum bicolor and Miscanthus sinensis, were focused. 



Results and discussion

We found that whole genome duplication, gene expansion, and allele loss could be factors affecting the number of NBS-LRR genes in the species, and whole genome duplication is likely to be the main cause of the number of NBS-LRR genes in sugarcane. Meanwhile, we also found a progressive trend of positive selection on NBS-LRR genes. These studies further elucidated the evolutionary pattern of NBS-LRR genes in plants. Transcriptome data from multiple sugarcane diseases revealed that more differentially expressed NBS-LRR genes were derived from S. spontaneum than from S. officinarum in modern sugarcane cultivars, and the proportion was significantly higher than the expected. This finding reveals that S. spontaneum has a greater contribution to disease resistance for modern sugarcane cultivars.  In addition, we observed allelespecific expression of seven NBS-LRR genes under leaf scald, and 125 NBS-LRR genes responding to multiple diseases were identified. Finally, we built a plant NBS-LRR gene database to facilitate subsequent analysis and use of NBSLRR genes obtained here. In conclusion, this study complemented and completed the research of plant NBS-LRR genes, and discussed how NBS-LRR genes responding to sugarcane diseases, which provided a guide and genetic resources for further research and utilization of NBS-LRR genes.
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1 Introduction

Sugarcane (Saccharum spp.) is an important sugar economic crop, accounting for 76% of the world’s total sugar production (Zan et al., 2020). Sugarcane cultivation areas are mainly located in tropical and subtropical regions, where high temperature and humidity, and continuous rainy climate make sugarcane be susceptible to various diseases and cause huge economic losses. During long time interactions with pathogens, plants have evolved a well-established immune system during their long evolution to effectively resist pathogenic invasion. Plant immune system includes PAMPs triggered immunity (PTI) induced by pathogen-associated molecular patterns (PAMPs), and effector triggered immunity (ETI) triggered by pathogen effectors (Goff et al., 2002; Jones and Dangl, 2006). PTI is the first level of immune defense for plants, occurring on cell surface, where plants recognize PAMPs through pattern recognition receptors (PRRs) on the cell membrane, and subsequently trigger the immune process. ETI is the second level of defense in plant cells. When some plant pathogen effectors break through the first level of the immune system, they are recognized directly or indirectly by R proteins in plants, which activate downstream signaling pathways and trigger a plant hypersensitivity response (HR) (Martin et al., 2003; Nimchuk et al., 2003) or produce resistance factors to inhibit the spread of pathogens. In recent years, researchers have made great progress in study of plant resistance gene (R) in a variety of species, of which Nucleotide Binding Sites-Leucine Rich Repeats (NBS-LRR) is the largest group of R genes (Caplan et al., 2008). The protein encoded by NBS-LRR gene has distinct characteristics. Its central structure is a NB-ARC domain, which has the function of molecular switch, and is responsible for the binding and hydrolysis of ATP and GTP (Tameling et al., 2006). The C terminal is a leucine-rich repeat sequence, highly variable, and has the ability to recognize specific pathogens (Meyers et al., 1999). The N-terminus is a variable structure. According to the different domains at the N-terminus, the NBS-LRR gene can be divided into two subfamilies: TIR-NBS-LRR (TNL) and CC-NBS-LRR (CNL). The N-terminus of TNL genes is TIR, while CNL gene is CC (Coiled-Coil) domain (Meyers et al., 1999). In addition to their different domains, they also differ greatly in downstream signaling pathways, indicating that there may be functional differences between the two subfamilies (Tarr and Alexander, 2009). Recently, NBS-LRR gene with RPW8 domain (resistance to powdery mildew 8) is considered as a separate class, the RNL gene, which plays an important role in signaling of disease response (Xiao et al., 2001; Collier et al., 2011; Shao et al., 2016).

Previously, NBS-LRR genes have been identified in various species, including Arabidopsis thaliana (Guo et al., 2011), and Oryza sativa (Zhou et al., 2004). The results show that the number of NBS-LRR genes in plants is usually in hundreds, reflecting the fact that NBS-LRR genes have an important role in the species. However, the number and characteristics of NBS-LRR genes among species were different. What factors affect the number of NBS-LRR genes in a species? In this study, we identified NBS-LRR at genome-wide level, and performed comparative analysis in 23 representative species. We clarified that species NBS-LRR genes were not related to species genome size or the number of all genes. In addition, we found that whole genome duplication (WGD) and gene expansion affect the number of NBS-LRR genes in species. With the advancement of research, the method of analyzing NBS-LRR genes among multiple species is gradually adopted by researchers (Li et al., 2010). Grass species, Sorghum bicolor (S. bicolor), Miscanthus sinensis (M. sinensis) and sugarcane belong to the same monocotyledons (Zhang et al., 2021), and they all have high quality genomes published, which provide a basis for systematic analysis of NBS-LRR genes. In this study, we investigated the sequence characteristics, function, and evolution of conserved NBS-LRR genes in the above grass species to obtain their generality and specificity. Meanwhile, we explored the expression patterns of NBS-LRR genes in responding to diseases and revealed the contribution of S. spontaneum to disease resistance in modern sugarcane cultivars using multiple sets of transcriptomic data. These analyses and discoveries complemented the study of the NBS-LRR gene in grass species, and provided guidance and genetic resources for further in-depth studies on the disease resistance mechanism and breeding in sugarcane.



2 Methods


2.1 Identification of NBS-LRR genes in 23 plant species

Based on the results of Jansen et al. (2007) and Bremer et al. (2009), a total of 23 flowering plants including 19 species with a representative phylogenetic status in taxonomy according to interrelationships of the APG IV orders (Byng et al., 2016) and 4 sugarcane accessions were selected for the study. Among them, there were 13 dicotyledons, and 10 monocotyledons. Their protein sequences as well as genomic information were obtained from Phytozome Plants (https://phytozome-next.jgi.doe.gov/), EnsemblPlants database (http://plants.ensembl.org/species.html), Sugarcane Genome database (http://sugarcane.zhangjisenlab.cn/sgd/html/download.html), the Sugarcane Genome Hub (https://sugarcane-genome.cirad.fr/) and Figshare storage database (https://figshare.com/). Subsequently, protein sequences of the 23 species were annotated using InterProScan 5.48-83.0. Based on the annotation results, the NBS-LRR gene of the species was identified based on the inclusion of NB-ARC and LRR domains. Chloroplast genomic data of the above species were acquired from NCBI, and the species evolutionary tree was constructed using PhyloSuite (Zhang et al., 2020). All of the 63 protein-coding genes (PCGs) shared between 23 species were aligned in batches with MAFFT (v7.313) integrated into PhyloSuite using normal-alignment mode. Maximum likelihood phylogenies were inferred using IQ-TREE (Nguyen et al., 2015) under Edge-unlinked partition model for 50,000 ultrafast (Minh et al., 2013) bootstraps with GTR+F+I+G4, which was the best-fit model according to BIC criterion, as well as the Shimodaira-Hasegawa-like approximate likelihood ratio test (Guindon et al., 2010). The species genome versions, download links, assessment information and chloroplast genome accession numbers were included in 
Supplementary Table 1
.



2.2 Characterization and analysis of conserved NBS-LRR genes

The MCScanX installed in Tbtools (Wang et al., 2012) was used for rapid identification of intraspecies collinearity NBS-LRR genes with E-value of 10-5 in the four closely related monocotyledonous species, S. bicolor, M. sinensis, S. spontaneum and S. officinarum. The allelic loss of NBS-LRR gene in S. spontaneum and S.officinarum was calculated based on their genome annotations (http://sugarcane.zhangjisenlab.cn/sgd/html/download.html). Orthofinder-2.5.4 was used to identify homologous genes between the four species, which were conserved NBS-LRR genes, and the comparison software was Blast (E-value=10-3) (Emms and Kelly, 2015).



2.3 Gene composition of conserved NBS-LRR genes

To characterize the NBS-LRR genes, the GC content and CDS length of conserved NBS-LRR gene were evaluated using SeqKit (Shen et al., 2016). Moreover, the characteristics of conserved NBS-LRR gene, including intron size, exon number, and exon size, were estimated based on genome annotations using python script. The statistics of bivariate correlation analysis and analysis of variance (ANOVA) were performed by IBM SPSS Statistics 25.0.



2.4 Analysis of motifs, cis-acting and calculation of Ka/Ks ratio

Prediction of conserved motifs of the conserved NBS-LRR genes was performed using the online software MEME (https://meme-suite.org/meme/tools/meme). The top 20 motifs obtained were subjected to functional prediction analysis by Motif Comparison software (https://meme-suite.org/meme/tools/tomtom), and then graphed by ggplot2 R package. The 2000bp sequences before the CDS sequence of conserved NBS-LRR genes were extracted using the Gtf/Gff3 Sequence s Extractor installed in TBtools as the promoter sequences, and submitted to PlantCare (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/) for functional analysis of the cis-acting elements (Lescot, 2002).

Ka/Ks stands for the ratio of non-synonymous to synonymous substitutions, and the Ka/Ks of conserved NBS-LRR genes was calculated based on CDS sequences using the Simple Ka/Ks Calculator installed in TBtools between S. spontaneum and M. sinensis, S. bicolor, S. officinarum, respectively.



2.5 Transcriptomic analysis

Transcriptomic raw data were downloaded from the ENA database (https://www.ebi.ac.uk/ena/browser/home), and used to analyze the expression of the NBS-LRR gene in sugarcane. A total of 45 RNA-seq datasets were collected for four sugarcane diseases, including sugarcane smut, ratoon stunting, leaf scald, and mosaic virus (
Supplementary Table 2
). Transcriptomic data were uploaded to a local high performance computing server for analysis. Firstly, the transcriptomic sequencing data were quality-controlled using Fastp (Chen et al., 2018). Then clean reads were aligned to transcript sequences of S. spontaneum and S. officinarum using Bowtie2 (Langmead and Salzberg, 2012). Unique mapped reads were extracted, and quantified using Salmon (Patro et al., 2017). Transcripts per kilobase of exon model per million mapped reads (TPM) was used to estimate the amount of gene expression. In addition, differential expression analysis of between resistant plants and susceptible plants using read counts with the edgeR R package (Robinson et al., 2010). Genes with FDR < 0.05 and |log2(fold change)| ≥ 1 estimated by edgeR were assigned as differentially expressed. Replicate-free differential expression analysis was also performed using edgeR on samples between different time points after inoculation (Chen et al., 2008; Anders and Huber, 2010).



2.6 Build NBS-LRR gene database

To facilitate the understanding and exploration of the NBS-LRR gene by researchers, we built the NBS-LRR gene database website (http://110.41.19.157:5000/) based on the Linux platform using the Flask framework and SQLite module. A total of 5 HTML pages were built, including Home, Species data, Transcriptomic data, InterProScan, and Blast. User can access the database web page through their browser for corresponding functions.




3 Results


3.1 Identification of NBS-LRR genes in representative plant species

The two conserved structural domains, NB-ARC and LRR, were used as the basis to identify NBS-LRR genes at genome-wide level in the 23 plant representative species (
Table 1
). We found that the total number of all genes in a species is positively correlated with genome size (P < 0.0001), but the number of NBS-LRR genes were not significantly correlated with genome size and the total number of all genes, showing that the number of NBS-LRR genes was species-specific, and may be the result of species adaptation to their respective ecological environments. This is in line with the findings of Wang et al. (2022b).


Table 1 | 
NBS-LRR genes and genome information in the 23 representative plant species.




To explore the changes in NBS-LRR genes during species evolution, we used the chloroplast genomes to construct a phylogenetic tree and to count the proportion of NBS-LRR genes in species (
Figure 1A
). The number of NBS-LRR genes did not correlate with the evolutionary process of plant species. Analysis of NBS-LRR genes and their subclasses showed that the number of NBS-LRR genes was positively correlated with the number of CNL genes (P < 0.0001), but not significantly with TNL genes, which is consistent with the view of Liu et al. (2021) (
Figure 1B
). All dicotyledonous species except Sesamum indicum (S. indicum) contained TNL and CNL genes, whereas no TNL gene was found in monocotyledonous plants, which is consistent with the results of previous studies (Meyers et al., 1999; Zhou et al., 2004; Gao et al., 2011; Liu et al., 2021). In fact, TIR and CC domains were not always independent, such as an NBS-LRR gene (Tp57577_TGAC_v2_mRNA32981) of Red clover (Trifolium pratense) contained both domains according to the results in this study.




Figure 1 | 
Comparative analysis of NBS-LRR genes in the 23 representative plant species. (A) Species phylogenetic relationships and the proportion of the number of NBS-LRR genes to the number of all genes. Blue lines represented dicotyledonous plants, and green lines represented monocotyledonous plants. The red circle showed the species contains “TNL”, while the purple circle showed the species did not contain “TNL”. Percentage represents the proportion of NBS-LRR genes in the total number of genes for each species (B) Trends for the number of different types of NBS-LRR genes. Heatmap indicating correlation between different types of genes. The red ellipse means positive correlation and the flatter the ellipse, the smaller the P-value.





3.2 Characterization and phylogenetic analysis of NBS-LRR genes in grass species

After removal of alleles of the same gene, 299, 340, 244 and 478 NBS-LRR genes were identified in S. spontaneum, S. officinarum, S. bicolor and M. sinensis, with 132 (44%), 157 (46.2%), 135 (55.3%) and 232 (48.5%) CNL genes, respectively. Gene expansion or loss may lead to the differences in the number of NBS-LRR genes among species. We first explored the collinearity relationships of the NBS-LRR gene within species using MCScanX for identification of duplicated NBS-LRR genes (
Supplementary Figure 1
). After removing alleles, 18 gene pairs formed by 36 NBS-LRR genes were identified in S. spontaneum, of which 18 genes (50%) were located on Chr2 (8 genes) and Chr5 (10 genes). A total of 47 gene pairs formed by 75 genes were identified in S. officinarum, with 41 genes (54.7%) on Chr5. Both M. sinensis and S. bicolor were diploids, but a large difference in the number of NBS-LRR dulicated gene pairs between them. In M. sinensis, 51 gene pairs of NBS-LRR genes formed by 93 genes were found, with the largest number of genes on Chr9 (12 genes). Only two NBS-LRR gene pairs were found in the S. bicolor, distributed on Chr3 and Chr5, respectively. M. sinensis went through recent whole genome duplication (WGD) and chromosome rearrangement events, and its 18 basic chromosomes showed a good syntenic relationship between each other (Cheng et al., 2018), which may cause high duplicated genes identified in M. sinensis. In addition, we estimated the retention of alleles of the NBS-LRR genes within in S. spontaneum and S. officinarum, and the results showed that loss of a large number of alleles occurred in sugarcane. In the tetraploid S. spontaneum genome, only 18 NBS-LRR genes (6%) retained 4 alleles, 281 NBS-LRR genes (94%) lost 1 to 3 alleles, of which 46.6% were CNL genes and 53.4% were truncated CNL genes lacking the CC structure. In the octaploid S. officinarum genome, only 3 NBS-LRR genes (1.3%) retained 8 alleles, and 337 NBS-LRR genes (98.7%) lost 1 to 7 alleles, with CNL genes accounting for 46.3% and truncated CNL genes for 53.7%. CNL genes lost fewer alleles than truncated CNL genes (P < 0.001), indicating that CNL genes were likely more conserved in polyploid sugarcane genome evolution.

In order to better investigate the functional and evolutionary relationships of NBS-LRR genes in sugarcane, OrthoFinder was used to analyze homologous NBS-LRR genes called conserved NBS-LRR genes in four monocotyledonous grass species, including S. spontaneum, S. officinarum, S. bicolor and M. sinensis (
Table 2
). In total, 166, 121, 125 and 181 conserved NBS-LRR genes were identified in S. spontaneum, S. officinarum, S. bicolor and M. sinensis, accounting for 35.5%, 16.7%, 51.2%, and 37.9% of the number of NBS-LRR genes in the four species, and there were 75 (45.2%), 62 (51.2%), 65 (52%) and 99 (54.7%) CNL genes in the conserved NBS-LRR genes, respectively. We found that the proportion of CNL genes in the total number of NBS-LRR genes was higher in S. bicolor than in other three species, while the proportion of CNL genes in conserved NBS-LRR genes was increased compared to the proportion of CNL at the genome-wide level. The proportion of CNL genes in conserved genes was higher in S. bicolor and M. sinensis than in sugarcane.


Table 2 | 
Summary of NBS-LRR genes in the four grass species.





3.3 Gene composition and evolutionary analyses of conversed NBS-LRR genes

For investigating the structure of the NBS-LRR gene, we compared the GC content, CDS length, introns and exons of the conserved NBS-LRR gene in the four monocotyledonous plants. The average GC content of the conserved NBS-LRR gene was approximately 45% with no significant differences among the four species (
Supplementary Figure 2B
). The mean GC content of CNL genes was lower than that of truncated CNL genes in all four species (P < 0.05) (
Supplementary Figure 2C
). The CDS length of the NBS-LRR gene differed among the four species, with S. bicolor having the largest mean CDS and S. officinarum having the smallest, at 3,352.6 bp and 3,035.6 bp, respectively (P < 0.001). Except for S. bicolor, the mean CDS length of CNL genes was lower than that of truncated CNL genes in the other three monocotyledons (P < 0.001) (
Supplementary Figure 3C
).

There were also significant differences in the intron size of NBS-LRR gene among the four species (P < 0.01), among which the intron length of S. officinarum was the largest and that of S. bicolor was the smallest (
Supplementary Figure 4A
). By analyzing their exons, it was found that M. sinensis had the largest number of exons and S. officinarum had the least (P < 0.01) (
Supplementary Figure 4B
). The exon fragment length of NBS-LRR genes in sorghum was the longest and the shortest in S. spontaneum (P < 0.01) (
Supplementary Figure 4C
). The intron fragment length of CNL genes was significantly smaller than that of truncated CNL genes (P < 0.01) (
Supplementary Figure 5A
). The mean exon length of CNL genes was greater than that of truncated CNL genes except for S. spontaneum (P < 0.05) (
Supplementary Figure 5C
).

Analysis of cis-acting elements and protein motifs was useful for exploring the function of NBS-LRR genes. The functions of the predicted cis-acting elements were primarily related to light response, phytohormones response, stress response, and plant growth and metabolism. The most widely distributed top 10 cis-acting elements were mainly involved in the regulation of transcription, response to light, induction of anaerobic motility, and metabolism of gibberellin and methyl jasmonate (
Figure 2A
), while methyl jasmonate played an important role in disease resistance in plants (Pichersky and Gershenzon, 2002). In addition, we also found that NBS-LRR genes in S. bicolor contained the fewest cis-acting elements among the four grass species (P < 0.05). The most distributed top 10 protein motifs in the NBS-LRR genes of the four grass species were analyzed, and their functions were primarily related to catalyzing the reversible interconversion of 3-phosphoglycerate and dihydroxyacetone phosphate, catalytic substrate phosphorylation, transcriptional regulation, and synthesis pathways of various biological substances (
Figure 2B
). Based on protein motif, M. sinensis were clustered close to that of Saccharum genus (S. spontaneum and S. officinarum), while M. sinensis and S. bicolor were in the same clusters based on promoter elements, illustrating differences in the evolution of the conserved NBS-LRR genes between species in terms of regulatory elements and functional motifs.




Figure 2 | 
Analysis of motifs and cis-acting elements of conserved NBS-LRR genes in the four grass species. Saccharum spontaneum (S.spon); Saccharum officinarum (S.off); Sorghum bicolor (S.bicolor); Miscanthus sinensis (M. sinensis). The numbers in heatmap represent the percentages of genes containing the element/Motif of conserved NBS-LRR genes. (A) Analysis of cis-acting elements. (B) Analysis of protein motifs.




The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitution rates for conserved NBS-LRR genes among grass species showed that the Ka/Ks gene frequencies were different between species (
Figure 3A
). A total of 88 shared gene pairs were used for calculation of Ka/Ks values among comparisons between S. spontaneum and M. sinensis, S. bicolor, S. officinarum, respectively. The proportion of gene pairs with high Ka/Ks values (Ka/Ks > 0.7) was gradually increasing in S. spontaneum compared with S. bicolor, M. sinensis and S. officinarum repectively, and the Ka/Ks value of one pair of homologous gene pairs between S. spontaneum and S. officinarum was above 1.1 (Sspon.07G0017980-1A and Soff.08G0002710-1A), indicating that these NBS-LRR genes were subject to positive selection during species evolution. In addition, Ka/Ks ratios of Sspon.07G0017980-1A with Sobic.003G317300 in S. bicolor and Misin05G292700 in M. sinensis respectively were greater than 0.7. The Ka/Ks values of CNL and truncated CNL genes confirmed the above trends (
Figure 3B
), but not significant differences were observed between the two subfamilies.




Figure 3 | 
The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitution rates of conserved NBS-LRR genes between the four grass species. Saccharum spontaneum (S.spon); Saccharum officinarum (S.off); Sorghum bicolor (S.bicolor); Miscanthus sinensis (M. sinensis). (A) Distribution interval of Ka/Ks values of conserved NBS-LRR genes. The percentage indicates the proportion of homologous gene pairs in that Ka/Ks interval in the total number of homologous gene pairs. (B) Comparison of Ka/Ks values of truncated CNL genes and CNL genes. The black line in the box represents the average value of the data. CNL(t) stands for truncated CNL gene.





3.4 Transcriptomic analysis of NBS-LRR genes in sugarcane

NBS-LRR genes, as one of the most important disease resistance genes in plants, play an important role in the resistance to pathogens (DeYoung and Innes, 2006). We analyzed transcriptomic data related to sugarcane smut, ratoon stunting, leaf scald, and mosaic virus diseases. After filtering out low-quality reads, the clean reads had a Q20 over 90% and a GC content of 53.65%~ 54% (
Supplementary Table 3
), showing a high quality of the sequencing data. Considering alleles of the same genes, 131, 126 and 269 differentially expressed NBS-LRR genes were identified between resistant and susceptible plants after being challenged by pathogens of sugarcane smut, ratoon stunting, and leaf scald, respectively, and 18 differentially expressed NBS-LRR genes were identified between infected and healthy sugarcane for mosaic virus disease. After removing alleles based on genome annotations, there were 125, 121, 226, and 18 differentially expressed genes in the four diseases, respectively. Interestingly, the expression patterns among alleles of the same NBS-LRR genes were not always the same. For example, in leaf scald, the expression of the Sspon.05G0015970-2C was significantly up-regulated in susceptible plants, while the allele Sspon.05G0015970-3D was significantly up-regulated in the resistant plants (
Figure 4A
). A similar situation was observed in the NBS-LRR gene from S. officinarum. In leaf scald, Soff.05G0011330-4E was significantly up-regulated in resistant plants, while the allele Soff.05G0011330-3D in susceptible plants was significantly up-regulated (
Figure 4A
). In this study, we found that, in addition to mosaic virus disease, 6, 5 and 38 genes had alleles in the differentially expressed genes of the three diseases of sugarcane smut, ratoon stunting and leaf scald, respectively, of which only 7 genes of leaf scald had allele-specific expression.




Figure 4 | 
Transcriptomic analysis in multiple RNA-seq datasets. (A) Differential expression analysis of S. spontaneum and S. officinarum alleles. (B) Differentially expressed NBS-LRR genes in multiple diseases.




After removal of alleles, among the differentially expressed NBS-LRR genes for sugarcane smut, the number of genes from S. spontaneum and S. officinarum was 62 (49.6%) and 63 (50.4%), respectively, of which 28 genes were up-regulated from S. spontaneum and 31 genes were up-regulated from S. officinarum. Among the differentially expressed NBS-LRR genes for ratoon stunting disease, the number of genes from S. spontaneum and S. officinarum were 70 (56.9%) and 51 (43.1%), respectively, of which 36 genes were up-regulated from S. spontaneum and 22 genes were up-regulated from S. officinarum. Among the differentially expressed NBS-LRR genes for leaf scald, the number of genes from S. spontaneum and S. officinarum were 127 (55.3%) and 99 (44.7%), respectively, of which 54 genes were up-regulated from S. spontaneum and 53 genes from S. officinarum. Among the differentially expressed NBS-LRR genes for mosaic virus disease, the number of genes from S. spontaneum and S. officinarum were nine for each species, of which six were upregulated in the differentially expressed genes from S. spontaneum and four from S. officinarum. In modern sugarcane cultivars, about 10-15% of the genome is derived from S. spontaneum and 80% from S. officinarum (Zhang et al., 2018). The proportion of differentially expressed genes from S. spontaneum in sugarcane cultivars was much higher than the theoretical value (P < 0.001, based on S. spontaneum contributing to 20% genomes in sugarcane cultivars), indicating that S. spontaneum has a greater contribution to disease resistance for modern sugarcane cultivars.

We also investigated differential expressed genes for each disease at different time points after inoculation (
Supplementary Figure 6
). In sugarcane smut, three NBS-LRR genes from S. officinarum were differentially expressed at 24 hours after inoculation. In contrast, NBS-LRR genes from S. spontaneum were upregulated at 48 hours after inoculation in the resistant plants, and at 120 hours in susceptible plants. The NBS-LRR genes seems to have different patterns after pathogen challenging, and the genes from S. officinarum first responded sugarcane smut. For Ratoon stunting disease, the trend of NBS-LRR gene expression pattern from S. spontaneum and S. officinarum was the same. For Leaf scald, the number of differentially up-regulated NBS-LRR genes from S. spontaneum and S.officinarum in resistant plant continued to increase after inoculation, while in susceptible plant the number of differentially up-regulated NBS-LRR genes showed a trend of first decreasing and then increasing patterns. Comparing healthy and susceptible sugarcane challenged by mosaic virus, we found that the number of differential up-regulation of NBS-LRR genes were higher than the differential down-regulation genes from S. spontaneum, while the expression pattern was opposite for S. officinarum.

Integration of the four transcriptomic data showed that 125 NBS-LRR genes were differentially expressed in at least two diseases. Here, we screened a total of 12 genes that were significantly differentially expressed (FDR < 0.05 and |log2(fold change)| ≥ 2) in common among sugarcane smut, ratoon stunting, and leaf scald disease, two of which were differentially expressed in all four diseases, Sspon.02G0025530-2B and Soff.05G0001720-5H (
Figure 4B
). Some genes were able to respond to multiple diseases. For example, regarding ratoon stunting, and leaf scald, the expression of Sspon.06G0016970-2B in resistant plants was significantly up-regulated after inoculation. For sugarcane smut, ratoon stunting and leaf scald disease, the expression of Sspon.02G0025530-2B in susceptible plants was significantly up-regulated after inoculation. In particular, the gene Sspon.06G0016970-2B, which encodes the RGA5 disease resistance protein in rice, is tightly linked to RGA4 in an inverted tandem fashion at the Pi-CO39/Pia resistance locus, and ectopic activation of RGA4/RGA5 has been reported to confer resistance to bacterial wilt and bacterial leaf streak (Hutin et al., 2016).



3.5 Construction of NBS-LRR gene database

For researchers to quickly access information on the plant NBS-LRR genes, we constructed the NBS-LRR gene database (http://110.41.19.157:5000/) using Argon Design (
Supplementary Figure 7A
). This database consisted of two modules, data and tools. The data module was composed of species information including the genome size, ploid, number of all genes, and number of NBS-LRR genes identified (
Supplementary Figure 7B
), and transcriptomic data including results obtained in this study (
Supplementary Figure 7C
). The Tools module contained Blast and InterProScan tools, which allow users to search our database and do protein annotation using their sequences of interest (
Supplementary Figures 7D, E
). Compared with other similar databases, such as RPGdp (http://www.prgdb.org/prgdb/), DeepLRR (http://lifenglab.hzau.edu.cn/DeepLRR/index.html), and etc., our database provided comprehensive information on NBS-LRR genes in sugarcane for the first time, especially adding information on the expression of NBS-LRR genes under several sugarcane disease stresses, which facilitated users in-depth study on corresponding area.




4 Discussion


4.1 NBS-LRR genes are complex and variable in species evolutionary

Since Johal and Briggs isolated the first plant R gene, Hm1, from maize (Zea mays L) in 1992 (Johal and Briggs, 1992), researchers have identified many R genes in a variety of plants, of which more than 70% are classified in NBS-LRR class (McHale et al., 2006). Ancient origin and large number of subfamilies of plant NBS-LRR genes have certainly made it more difficult to explore the evolutionary patterns of them among species. In our study, NBS-LRR genes were identified in 23 representative plants, and their comparisons showed that the number of NBS-LRR genes was independent of species divergence and genome size, and the percentage of the number of NBS-LRR genes to the total number of genes differed between species even between the same clade and genus. WGD may be one of the major reasons affecting the number of NBS-LRR genes among species. Both WGD and large-scale duplication of chromosomal segments lead to genome duplications within a species (Zhang, 2003), resulting in expansion of alleles of the same genes in the same species. Based on the annotation results of Interproscan, 468 and 741 NBS - LRR genes were annotated in S. spontaneum, S. officinarum, respectively, where the number of alleles of other genes was 169 and 401, respectively. The large number of gene expansion were likely related to the fact that sugarcane has experienced at least two WGD events in its evolutionary history (Zhang et al., 2018). Gene duplication also affects the number of species NBS-LRR genes. After removal of alleles of the same gene, a total of 36, 75, 93 and 4 NBS-LRR genes were identified in S. spontaneum, S. officinarum, M. sinensis and S. bicolor, respectively, forming 18, 47, 51 and 2 duplicated gene pairs, which were derived from segmental duplication. We evaluated the effects of two factors on the number of NBS-LRR genes in S. spontaneum and S. officinarum. At least 36.1% and 45.9% of NBS-LRR genes in S. spontaneum and S. officinarum, respectively, were generated by the effects of WGD, while 18 (3.8%) and 47 (6.3%) of NBS-LRR genes, respectively, were generated by gene expansion. Based on this, we speculate that WGD may have a greater effect on the number of NBS-LRR genes in sugarcane compared to gene expansion (P < 0.05). In contrast to gene duplication, gene loss is another reason to change the number of genes. For instance, A. thaliana, which has undergone multiple WGD events in its evolutionary history (Blanc et al., 2003; Bowers et al., 2003), still has a genome size of ~150 MB, and the latest high-quality A. thaliana genome assembled by Wang et al. (2022a) was only about 133 Mb, implying that the vast majority of duplicated genes are not retained after a polyploidization events. In fact, gene loss was an inevitable trend of genome reconstruction after polyploidization (Lynch and Conery, 2000; Liang and Schnable, 2018). In S. spontaneum and S. officinarum, more than 94% of NBS-LRR genes lost at least one alleles. Balance of energy costs may be another reason to maintain a relative small number of NBS-LRR genes in species (Tian et al., 2003). Plants did not expand NBS-LRR genes blindly, and their number remained below 1.5% of the total number of genes in the species (
Figure 1A
). It has been reported that plants loses some of its R genes to avoid wasting costs (Brown, 2002).

The differentiation and evolution patterns of different subfamilies of NBS-LRR genes are also long-standing puzzles for researchers. TNL and CNL genes are the two major subfamilies of NBS-LRR genes. The origin time of NBS-LRR gene has been proven to be earlier than the separation of chloroplast and streptococcus (Shao et al., 2019), and (Shao et al., 2016) found that the differentiation time of TNL subfamily genes may be earlier than CNL genes. Among the 23 species we studied, TNL and CNL genes were found in the earliest differentiated angiosperms, Amborella trichopoda, Nymphaea colorata and Nymphaea versipellis. As species evolved, TNL genes only existed in dicotyledons, but not in monocotyledons. It is still unclear that why TNL genes are lost in monocotyledons. In addition, according to our study, not all dicotyledonous plants contained the TNL genes. For example, S. indicum is a dicotyledonous plant, but did not contain the TNL genes. In addition, the number of CNL genes was positively correlated with the number of NBS-LRR genes, while the number of TNL genes not. The proportion of CNL genes in S. bicolor and M. sinensis was higher than that in sugarcane. In the other three monocots except sorghum, the proportion of CNL genes in the conserved NBS-LRR gene was higher than that of the whole genome level. Moreover, the statistical analyses of allele loss in S. spontaneum and S. officinarum showed that CNL genes was more difficult to lost alleles than truncated CNL genes. The results supported that TNL and CNL genes were likely to have different evolutionary patterns.



4.2 NBS-LRR genes in modern sugarcane cultivar

In the breeding process of modern sugarcane cultivar, S. officinarum was crossed with S. spontaneum, and the offspring obtained was backcrossed with S. officinarum for several generations to obtain cultivars with high sugar and high stress resistance (Zhang et al., 2021). In this study, we analyzed multiple sets of transcriptomic data of sugarcane challenged by sugarcane diseases. It was surprising that the differentially expressed genes from S. spontaneum in modern sugarcane cultivar were more than those from S. officinarum, and the proportions of differentially expressed NBS-LRR from S. spontaneum were significantly higher than the expected. This result indicated that the NBS-LRR genes from S. spontaneum were selected in sugarcane breeding program, and confirmed its significant contribution to disease resistance of modern sugarcane cultivars although S. spontaneum contributes to less than 20% genomes of sugarcane cultivars.

Plant R genes usually target specific pathogen gene in defense against pathogens, but some R genes can mediate defense against multiple diseases. These genes were called multi-disease resistance genes (Fukuoka et al., 2014). For example, Lr34 and Lr67 genes have been shown to be resistant to a variety of pathogens in wheat including Puccinia triticina, Puccinia striiformis and Blumeria graminis (Krattinger et al., 2009; Moore et al., 2015). In this study, some NBS-LRR genes, such as Sspon.02G0025530-2B and Soff.05G0001720-5H, were also found to respond to various sugarcane diseases. The mechanisms of NBS-LRR genes responding to multiple diseases are inconsistent and complex. Studies have shown that Lr34-encoded protein is located on the cell membrane, which may affect the cell membrane structure by regulating phospholipid metabolism, and mediate abscisic acid (ABA) signaling pathway to achieve resistance to multiple diseases (Deppe et al., 2018; Krattinger et al., 2019). lr67 encodes a hexose transporter that may be related to glucose metabolism in mediating disease resistance (Milne et al., 2019). NBS-LRR genes stimulate strong ETI immune response by directly or indirectly identifying pathogen effector, resulting in an allergic reaction characterized by programmed cell death to resist the invasion of the pathogen (Jones and Dangl, 2006). We speculated that NBS-LRR genes responding to a variety of sugarcane diseases may be due to their ability to identify core effectors shared by pathogens. However, molecular mechanisms on how these genes work needed further investigation.

Allele specific expression (ASE) of NBS-LRR gene exists in sugarcane under disease stress. It was reported that ASE is a critical gene regulation, and the influence of cis-acting genetic variation is one of the main reasons for the specific expression between alleles (Gaur et al., 2013; Hill et al., 2021). ASE were ubiquitous in a variety of organisms (Knight, 2004), and studies have shown that ASE plays an important role in Zea mays (Springer and Stupar, 2007), A. thaliana (Todesco et al., 2010), and Oryza sativa (He et al., 2010). In addition, studies on human diseases have shown that ASE of genes encoding pathogenic enzymes can affect an individual ‘s susceptibility to disease(Emison et al., 2010; Finch et al., 2011; Berlivet et al., 2012; EMBRACE et al., 2012). Among the differentially expressed genes in response to leaf scald, we identified seven NBS-LRR genes with specific expression profiles, accounting for 3% of the differentially expressed genes in leaf scald, and, these NBS-LRR genes encompassed both S. spontaneum and S. officinarum sources, suggesting that ASE was also an important regulation mechanism in sugarcane disease resistance. However due to the complexity of ASE regulation mechanism and the limitation of detection technology, the research on ASE is still in its infancy, and needs further exploration.




5 Conclusion

By identification of genome-wide NBS-LRR genes in 23 representative species, and comparisons in four grass species, we found that the number of NBS-LRR genes did not correlate with their genome size, and total number of genes, and whole genome duplication may be the main factor affecting the number of NBS-LRR genes in sugarcane. In addition, our comparisons supported the previous researchers’ view that TNL and CNL had different evolutionary patterns. Transcriptomic analysis of sugarcane challenged by different diseases showed that more differentially expressed NBS-LRR genes were derived from S. spontaneum than from S. officinarum, and the proportion of differentially expressed genes from S. spontaneum was significantly higher than the expected ratio in modern sugarcane cultivars, revealing its contribution of disease resistance. Moreover, allele specific expression of NBS-LRR genes were observed in responding to pathogen infection in sugarcane. In conclusion, the comprehensive analyses of plant NBS-LRR genes provided a deeper exploration of the evolutionary patterns of NBS-LRR genes, and contributed important gene resources to sugarcane improvement on disease resistance.
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Introduction

Characterization of germplasm collections for the wheat leaf rust gene Lr34 previously defined five haplotypes in spring wheat. All resistant lines had a 3-bp TTC deletion (null) in exon 11, resulting in the absence of a phenylalanine residue in the ABC transporter, as well as a single nucleotide C (Tyrosine in Lr34+) to T (Histidine in Lr34-) transition in exon 12. A rare haplotype present in Odesskaja 13 and Koktunkulskaja 332, both of intermediate rust resistance, had the 3-bp deletion typical of Lr34+ in exon 11 but the T nucleotide of Lr34- in exon 12.



Methods

To quantify the role of each mutation in leaf rust resistance, Odesskaja 13 and Koktunkulskaja 332 were crossed to Thatcher and its near-isogenic line Thatcher-Lr34 (RL6058). Single seed descent populations were generated and evaluated for rust resistance in six different rust nurseries.



Results

The Odesskaja 13 progeny with the TTC/T haplotype were susceptible with an average severity rating of 62.3%, the null/T haplotype progeny averaged 39.7% and the null/C haplotype was highly resistant, averaging 13.3% severity. The numbers for the Koktunkulskaja 332 crosses were similar with 63.5%, 43.5% and 23.7% severity ratings, respectively. Differences between all classes in all crosses were statistically significant, indicating that both mutations are independently additive for leaf rust resistance. The three-dimensional structural models of LR34 were used to analyze the locations and putative interference of both amino acids with the transport channel. Koktunkulskaja 332 also segregated for marker csLV46 which is linked to Lr46. Rust severity in lines with Lr34+ and csLV46+ had significantly lower rust severity ratings than those without, indicating the additivity of the two loci.



Discussion

This has implications for the deployment of Lr34 in wheat cultivars and for the basic understanding of this important wheat multi-pest durable resistance gene.





Keywords: Lr34, Puccinia triticina, leaf rust, additive effects, wheat, Triticum aestivum, 3D structure



Introduction

Wheat leaf rust is one of the most common and destructive diseases of wheat (McCallum et al., 2016). It is a production problem in nearly all areas where wheat is grown around the world (Huerta-Espino et al., 2011). Control strategies include early seeding and fungicides, but for economic, environmental and sustainability reasons, efforts to counteract this disease have focused mainly on genetic resistance. Major resistance genes (R), also referred to as seedling genes or race-specific genes, tend to conform to the gene-for-gene concept of plant disease resistance where the R gene recognizes directly or indirectly the product of its avirulence (Avr) counterpart (Flor, 1955). Wheat leaf rust genes Lr1 (Cloutier et al., 2007), Lr10 (Feuillet et al., 2003), Lr13 (Hewitt et al., 2021), Lr21 (Huang et al., 2003) and Lr22a (Thind et al., 2017) are typical race-specific genes with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs known to be important for plant-pathogen recognition while the more recently cloned Lr14a encodes a membrane-bound ankyrin repeat protein (Kolodziej et al., 2021). A large number of leaf rust resistance genes are such typical race-specific R genes but race non-specific genes function differently. The latter constitute a subset of adult plant resistance (APR) genes, and confer partial resistance in a race non-specific manner characterized by a slow rusting phenotype.

APR genes become effective as the plant progresses to the adult stage. Some APR genes are race-specific and function similarly to seedling resistance genes, while others are race non-specific and are quantitative or slow rusting in nature. The slow rusting phenotype includes a longer latency period resulting in slower and less severe growth of the pathogen, hence the term partial resistance. Rust pustules are still present on wheat lines that carry these APR genes, but their size and number are reduced and their development is delayed. In hexaploid wheat, Lr34, Lr42, Lr46, Lr67 and Lr68 have been described as non-race specific APR genes (Dyck, 1987; Singh et al., 1998; Hiebert et al., 2010; Herrera-Foessel et al., 2011; Herrera-Foessel et al., 2012; Lin et al., 2022). Lr34 is one of the best and most durable resistance genes for leaf rust, and it also conditions resistance to stripe rust (Yr18), stem rust (Sr57), powdery mildew (Pm38) and other biotrophic diseases such as spot blotch (Dyck, 1987; McIntosh, 1992; Singh, 1993; Spielmeyer et al., 2005; Lillemo et al., 2008; Lillemo et al., 2013). As such, Lr34/Yr18/Pm38/Sr57, called Lr34 for short, should be classified not only as a race non-specific APR gene but more accurately as a multi-pathogen resistance gene (Krattinger et al., 2013; Ellis et al., 2014). Leaf tip necrosis (LTN) is an interesting phenotype of Lr34 (Singh, 1992) that has been used as a selection tool for Lr34 and other APR genes, although Lr34-transgenic durum wheat Stewart expressed the leaf rust Lr34 but not the leaf tip necrosis phenotype (Rinaldo et al., 2017). Lr46 (Lr46/Yr29/Pm39/Sr58/Ltn2) and Lr67 (Lr67/Yr46/Pm46/Sr55/Ltn3) have also been described as multi-pathogen resistance genes that similarly produce an LTN phenotype (Lagudah et al., 2007; Herrera-Foessel et al., 2011).

Lr34 (Krattinger et al., 2009), Lr42 (Lin et al., 2022) and Lr67 (Moore et al., 2015) have been cloned. Lr34 encodes an ATP-binding cassette (ABC) transporter of the ABCG subfamily with two transmembrane (TMD) and two cytosolic nucleotide-binding domains (Krattinger et al., 2009). Lr67 encodes a hexose transporter with an affinity for glucose; susceptible and resistant isoforms of Lr67 differ by two amino acid residues (Moore et al., 2015). These genes are not only structurally different from known R genes, but they encode proteins of different classes. Interestingly, Lr42 is a nucleotide-binding site leucine-rich repeat (NLR) gene, but it is not strictly a seedling gene because it confers broad effectiveness against all races at both seedling and adult plant stages (Lin et al., 2022).

Broad spectrum resistance, i.e., little or no race-specificity, is often observed when a gene is brought into a gene pool from a distant relative (Ellis et al., 2014). This is not the case for Lr34+ (the resistant allele), whose origin post-dates the formation of hexaploid wheat (Krattinger et al., 2011; Krattinger et al., 2013; Dakouri et al., 2014). Lr34 is located on Triticum aestivum chromosome 7D. Independent haplotyping of several hundred accessions of Aegilops tauschii (D genome ancestor) revealed that only the Lr34- haplotype H2 was present in this gene pool, indicating that the susceptible Lr34- allele was the ancestral gene and that the H1 haplotype (Lr34+) arose after the interspecific crosses between the T. turgidum and Ae. tauschii progenitors that produced T. aestivum (Krattinger et al., 2011; Krattinger et al., 2013; Dakouri et al., 2014). Lr34 has orthologs in rice and sorghum, both of which correspond to the susceptible allelic form, and is not present in maize, Brachypodium, barley and rye, where it is suggested to have been deleted (Krattinger et al., 2013). In bread wheat, homoeologs are present on chromosomes 7A and 4A but only the 4A homoeolog is putatively functional (Kang et al., 2011).

A total of five haplotypes (H1-H5) have so far been described in spring wheat (Krattinger et al., 2009; Lagudah et al., 2009; Dakouri et al., 2010; Dakouri et al., 2014) and an additional two in winter wheat (Lagudah et al., 2009; Cao et al., 2010). In spring wheat, the resistant (Lr34+) haplotype H1 is null/C for the mutation sites in exons 11/12 and the known susceptible (Lr34-) haplotypes H2-H4 are all TTC/T. The susceptible haplotypes H2, H3 and H4 differed by the presence of single nucleotide variants in intron 4 and exon 10 (Dakouri et al., 2010; Dakouri et al., 2014). In a germplasm collection of 700 accessions, 698 belonged to the main H1-H4 haplotypes but accessions Odesskaja 13 and Koktunkulskaja 332 had a rare null/T haplotype at exons 11/12, corresponding to haplotype H5 (Dakouri et al., 2010; Dakouri et al., 2014). These two accessions had an intermediate leaf rust phenotype in the field and it was not possible to categorically determine whether either or both mutations in exons 11 or 12 imparted resistance to leaf rust.

It was originally believed that only the mutation in exon 11 was needed to recover full LR34 functionality (Chauhan et al., 2015). However, it is still unclear whether both mutations contribute to the functionality. Here, recombinant inbred line (RIL) populations from Odesskaja 13/Thatcher, Odesskaja 13/Thatcher-Lr34 near-isogenic line (NIL) RL6058, Koktunkulskaja 332/Thatcher and Koktunkulskaja 332/RL6058 were developed. The severity of leaf rust infection on these lines in the field was measured in six disease nurseries over three years to determine the functionality of the LR34 proteins as encoded by the three segregating haplotypes present in these populations: null/C, null/T and TTC/T. Here we provide phenotyping data to quantify the contribution of both mutations and use protein structure modeling of LR34 to support our results.



Materials and methods


Development of plant populations

Thatcher, a cultivar nearly universally susceptible to wheat leaf rust, has been used to develop a series of NILs, each with a single introgressed leaf rust gene as first described by Dyck and Samborski (1974). RL6058 is the NIL Thatcher*6/PI58548, where PI58548 was the source for Lr34 (Dyck, 1987). Thatcher (Lr34-) has an H2 haplotype (TTC/T for IND11/SNP12), while RL6058 (Lr34+) has an H1 haplotype (null/C). We took advantage of the unique Lr34 allele of Odesskaja 13 and Koktunkulskaja 332 with the rare H5 haplotype (null/T) to develop four RIL populations (Figure 1) to demonstrate the leaf rust resistance functionality conferred by each mutation.




Figure 1 | Description of the four populations developed to determine the role of the Lr34 mutations in exons 11 and 12. Generations tested with molecular markers and phenotypically assessed in the field for severity of leaf rust infection are identified.



Crosses were made between Thatcher and Odesskaja 13, Thatcher and Koktunkulskaja 332, RL6058 and Odesskaja 13 and RL6058 and Koktunkulskaja 332. Genomic DNA was extracted from the F1s using the DNEasy kit (Qiagen, Toronto, ON, Canada) as per the manufacturer’s instructions. These F1s were screened with nine Lr34 locus-specific markers to verify heterozygosity across the locus (Figures 1 and S1A). The following nine markers were resolved: gwm1220 (Spielmeyer et al., 2005), swm10 (Bossolini et al., 2006), csLV34 (Lagudah et al., 2006), csLVMS1 (Spielmeyer et al., 2008), and caSNP4, caSNP12, caIND11, caISBP1 and cam11 (Dakouri et al., 2010). Four F1 plants, one for each cross, were selected, and selfed F2 seeds were harvested. Between 62 and 64 F2 plants were grown from each cross. In order to select only homozygous lines, these F2s were tested with the caIND11 and caSNP12 markers (Figure S1B). Marker caIND11 is co-dominant and the selection of lines homozygous for this mutation was possible using the marker. However, SNP12 (Dakouri et al., 2010) is a dominant marker; hence, it was not possible to distinguish homozygous SNP12-C from heterozygous SNP12-C/T in the RL6058 crosses. To select homozygous SNP12-C and homozygous SNP12-T F2s from the two RL6058 crosses, the region spanning exons 10 to 12 was PCR-amplified and sequenced (Figure S2). Using this combined maker information, 114 fixed F2s (26-32 per cross) were identified and further selfed through to the F6 generation by single seed descent (SSD).



Leaf rust field tests

All 114 RILs from the four crosses were grown in the field in six nurseries over three years. In 2012 (F6) and 2013 (F7), lines were grown in Winnipeg and Portage La Prairie, Manitoba, Canada, while in 2014 (F8), they were grown in Ottawa, Ontario and Morden, Manitoba, Canada. The RIL and parental lines were grown in hills or short 1m-rows spaced every 30 cm, where every five hills or rows were interspersed with the susceptible variety Morocco or a mixture of susceptible lines that served as spreader rows. Due to low seed availability in 2012 and 2013, a completely randomized experimental design with single replicates was used while two replicates were used in 2014. The entire field was inoculated with a mixture of races representative of the P. triticina population found in western Canada in the previous year (Dakouri et al., 2013), except for Ottawa in 2014, where the rating was based on natural rust infection. Rust severity ratings and reaction types were recorded using a modified Cobb scale (Peterson et al., 1948) as previously described (Dakouri et al., 2013). An analysis of variance was performed using SAS (SAS Institute Inc., Cary, NC) PROC GLIMMIX, considering replications within site-years as random and genotypes as fixed variables and using a beta distribution in the link. Ratings of the progeny from the Odesskaja 13/Thatcher and Odesskaja 13/RL6058 were combined for the analysis to allow a direct comparison of all possible genotypic classes. The same was done for the Koktunkulskaja 332 progeny. Independent comparisons between contrasting exons 11 and 12 genotypes were performed using least square mean (LSMEANS) differences (P<0.05). Comparisons between the haplotype classes null/C, TTC/T and null/T, and these classes with and without the marker for Lr46 in the Koktunkulskaja 332 progeny, were made using LSMEANS differences (P<0.05) with the Tukey-Kramer multiple range adjustment.



Leaf rust seedling tests

Seedling tests were performed on Odesskaja 13 and Koktunkulskaja 332 using ten different virulence phenotypes of Puccinia triticina (BBBD, MBDS, MGBJ, TJBJ, TDBG, MBRJ, PBDQ, THMJ, TNRJ, and TCRJ - nomenclature according to Long and Kolmer (1989)). Odesskaja 13 and Koktunkulskaja 332 were susceptible to all these races, except Koktunkulskaja 332 which was resistant to BBBD (Dakouri et al., 2013). The progeny lines from the four crosses were tested at the seedling stage as previously described (McCallum et al., 2011) to verify the rust resistance phenotype to virulence phenotype BBBD of P. triticina, as previously determined (Dakouri et al., 2013). Briefly, infection types produced on the infected lines were rated 12 days after inoculation. Interactions that produced infection types “;” (hypersensitive flecks), “1” (small uredinia with necrosis), and “2” (small- to medium-size uredinia with chlorosis) were considered resistant responses, and those that produced infection types “3” (medium-size uredinia without chlorosis or necrosis) and “4” (large uredinia without chlorosis or necrosis) were considered susceptible.



Molecular marker testing for other adult plant resistance (APR) genes

To test for the possible presence of APR genes other than Lr34, the previously reported molecular markers linked to Lr46, Lr67, Lr68 and Trp1 were assessed. Genomic DNA was extracted from single F6-derived F7 plants of all 114 lines, Odesskaja 13, Koktunkulskaja 332, RL6058 and Thatcher, as well as the following lines known to carry one or more of these APR genes: Lalbahadur (Pavon 1B), RL6077, Parula, Toropi 6.3 and Glenlea. In addition, the following markers linked to Lr67 were tested: barc98, cfd23, cfd71, gwm165, gwm192 and wmc457 (Hiebert et al., 2010; Herrera-Foessel et al., 2011) (Figure S1C). Several markers were tested as follows: gwm146, csGS, cs7BLNLRR (Herrera-Foessel et al., 2012) and psy1-1-F5/R5 (Pozniak et al., 2007) for Lr68, csLV46 (Evans Lagudah, personal communication) for Lr46, and cfa2163, gpw2243 and gpw7007 (Rosa, 2013) for Trp-1.



Structural models of LR34 proteins

RoseTTAFold (Baek et al., 2021) and AlphaFold2 (Jumper et al., 2021) were used to predict the three-dimensional (3D) structure of the LR34 isoforms corresponding to the haplotypes studied herein. The protein sequences of LR34+ (Accession ACN41354) and LR34- (Accession ACL36478) served as inputs for structural prediction. The quality of RoseTTAFold generated models were characterized using a confidence score (1 good, 0 bad), which corresponds to the average pairwise TM-score of the top ten Rosetta scoring models (Baek et al., 2021). AlphaFold2 (AF2) predicted models were also assessed using the pLDDT (predicted Local Distance Difference Test) score (Mariani et al., 2013). AF2 produces pLDDT, a per residue confidence score ranging from 1 to 100, where values >80 indicate high confidence of the residue structure in the protein regions. Therefore, the best-ranked model of LR34 with the highest overall pLDDT and confidence score (0.75) was selected for structural analysis. Molecular graphics and structural model analyses were performed using PyMOL (The PyMOL Molecular Graphics System, Version2 Schrödinger, LLC) and UCSF ChimeraX (Pettersen et al., 2021).




Results


Assessment of rust severity in the field

The five previously described Lr34 haplotypes (Dakouri et al., 2014) are summarized for reference and nomenclature purposes in Table S1. There were 26 RILs generated from the cross Thatcher/Odesskaja 13 (14 null/T and 12 TTC/T), 32 from Thatcher/Koktunkulskaja 332 (18 null/T and 14 TTC/T), 27 from RL6058/Odesskaja 13 (8 null/C and 19 null/T) and 29 from RL6058/Koktunkulskaja 332 (14 null/C and 15 null/T) (Figure 1). Typical Lr34-type rust infection symptoms for the susceptible line Thatcher and its near isogenic line RL6058 (Thatcher-Lr34) shown in Figure S3 represent the symptoms observed in the field nurseries. Rust severity evaluated in the fields was low for the null/C RILs ranging from 5 to 35%; null/T RILs had intermediate rust severity in the range of 12 to 69%; while TTC/T RILs were highly susceptible to leaf rust, displaying rust severity ranging from 45 to 81% (Figure 2, Table 1 and Supplementary Data Table S2). Comparisons of the three classes defined by the combination of the two mutations were all statistically significant (P<0.05) for both the Odesskaja 13 and the Koktunkulskaja 332 crosses (Figures 2, 3). In the crosses with Odesskaja 13, progeny with TTC/T were susceptible with an average severity of 62.3%, null/T lines averaged 39.7% severity, while null/C lines were highly resistant, averaging 13.3% severity (Figure 3A and Table 1). Similarly, in the Koktunkulskaja 332 crosses, TTC/T progeny averaged a severity rating of 63.5%, null/T progeny of 43.5% and null/C progeny of 23.7% (Figure 3B and Table 1). Individually considered, exon 11 “TTC” RILs averaged 52.5% rust severity in the Odesskaja 13 crosses and were significantly (P<0.05) more susceptible than exon 11 “null” RILs, which averaged only 32.8% (Figure 3C). Similarly, for the Koktunkulskaja 332 crosses, exon 11 “TTC” RILs averaged 44.4% rust severity and were significantly more susceptible than exon 11 “null” RILs at 24.1% (Figure 3D). For exon 12, “T” RILs in the Odesskaja 13 crosses averaged 53.4% rust severity compared to 31.8% for RILs with exon 12 “C” (Figure 3E). In the Koktunkulskaja 332 crosses, these numbers were 51.1% and 19.6% and were also significant (Figure 3F).




Figure 2 | Average leaf rust severity (%) of lines from the Odesskaja 13 crosses (A) and the Koktunkulskaja 332 crosses (B) categorized according to their Lr34 haplotypes as defined by their genotype at exons 11 and 12, namely null/C, null/T and TTC/T. Populations were tested in six environments over three years.




Table 1 | Leaf rust severity ratings (%) of the Odesskaja 13 and Koktunkulskaja 332 derived near-isogenic line populations based on their Lr34 haplotype.






Figure 3 | Leaf rust severity (%) of lines from the Odesskaja 13 crosses (A, C, E) and the Koktunkulskaja 332 crosses (B, D, F) obtained by averaging over all environments and years and classified according to their genotype at exons 11/12 (A, B), exon 11 only (C, D) and exon 12 only (E, F). Letters above the error bars indicate statistical significance (P < 0.05).





Leaf rust seedling tests

Odesskaja 13 was postulated to have no leaf rust seedling resistance genes while Koktunkulskaja 332 was resistant only to race BBBD (Dakouri et al., 2013). The progeny lines from the Koktunkulskaja 332/Thatcher and Koktunkulskaja 332/RL6058 crosses were tested for seedling resistance to BBBD to see if this seedling gene was effective against leaf rust and could contribute to the resistance phenotype measured in the rust nurseries. The segregation of resistant to susceptible in the progenies fit a single gene hypothesis with 28 resistant (“;” or fleck rating) and 31 susceptible (“4” rating). However, there was no difference between the lines that possessed the seedling resistance gene and those that did not in terms of their leaf rust severity ratings, indicating that the seedling gene present in Koktunkulskaja 332 has been overcome and is ineffective. This was expected because Koktunkulskaja 332 was susceptible to nearly all Puccinia triticina virulence phenotypes found in Canada. The progeny lines of the Odesskaja 13/Thatcher and Odesskaja 13/RL6058 crosses were also tested and found to all be susceptible to BBBD, as previously reported (Dakouri et al., 2013).



Additional adult resistance gene postulation

The potential segregation of other APR genes from either Odesskaja 13 or Koktunkulskaja 332 was investigated. Lr46, Lr68 and Trp1 were previously mapped with various degrees of precision using molecular markers. However, their isolation has not been reported to date (Hiebert et al., 2010; Herrera-Foessel et al., 2011; Rosa, 2013), while Lr67 has been isolated (Moore et al., 2015). A total of 14 molecular markers for the four additional APR genes were resolved on all 114 RILs (Figure S1C). Single marker analyses for rust severity indicated that Lr34 markers were significant in the Odesskaja 13 and Koktunkulskaja 332 crosses, and csLV46 was the only other significant marker and this was observed in five of the eight site-years for the Koktunkulskaja 332 crosses but not for the Odesskaja 13 crosses (Supplementary Data Tables S3 and S4). Marker csLV46 is linked to Lr46. Thatcher, RL6058 and Odesskaja 13 all have the ~206 bp csLV46- allele, while Koktunkulskaja 332 produced the csLV46+ Taq1-restricted cleaved amplified polymorphic sequence (CAPS). To assess the leaf rust resistance associated with the csLV46 alleles and their interactions with the Lr34 alleles, the rust severity of the progeny classes obtained from the Koktunkulskaja 332 crosses were compared. Severity averaged 19% for RILs with the H1 Lr34 haplotype (null/C) and csLV46+ alleles to 70% for lines with the H2 Lr34 haplotype (TTC/T) and csLV46- (Figure 4). In addition, gradients of severity were observed for both genes indicating an additive gene action between Lr34 and csLV46 where susceptible to resistant haplotypes were in this order: TTC/T > null/T > null/C for Lr34 and csLV46- > csLV46+ for the csLV46 marker linked to Lr46 (Figure 4).




Figure 4 | Average rust severity (%) of lines derived from crosses between Koktunkulskaja 332 and either Thatcher or its near-isogenic Lr34 line RL6058 where the lines are grouped according to their Lr34 and their csLV46 marker haplotypes. Marker csLV46 is linked to the leaf rust adult plant resistance gene Lr46. Letters above the error bars indicate statistical significance (P < 0.05).





Analysis of the predicted structural model of LR34

3D structural models of three full-length LR34 proteins representing the resistant H1 haplotype (Lr34+), the susceptible H2 haplotype (Lr34-) and the intermediate H5 haplotype were generated. Figure 5A shows a predicted model of LR34- where the structural domains are labeled and highlighted using different colors. The suggested substrate binding sites/channel is located between the transmembrane domain 1 (TMD1) and TMD2 of LR34. As shown in Figures 5A, B, the LR34- protein contains a phenylalanine residue at position 546 (PHE546) in transmembrane helix-2 (TMH-2) and a tyrosine residue at position 634 (TYR634) in TMH-4 of TMD1. The PHE546 and TYR634 residues point their side chains toward the substrate binding/translocation channel, particularly the aromatic side chain of PHE546, which appears to be pore-occluding (Figure 5B). Figure 5C shows the structural model of LR34+, with its deleted PHE546 at TMH-2 and substitution of tyrosine with histidine at position 633 (HIS634) of TMH-4. To get additional insights into the possible LR34 substrate binding sites, structural comparisons of our predicted LR34 models with the recently available experimentally-solved structures of substrate or ligand-bound ABCG/Pdr5-like ABC transporters were also performed (Figure S4).




Figure 5 | Predicted structural model of the LR34 protein. (A) Ribbon representation of the structural model of full-length LR34- generated using RoseTTAFold. The LR34- phenylalanine (PHE 546) located in transmembrane helix-2 (TMH-2), and tyrosine (TYR634) residues located in TMH-4 are displayed as red and magenta colored spheres, respectively. The two transmembrane domains (TMD1 and TMD2) and two nucleotide-binding domains (NBD1 and NBD2) are highlighted and labeled. (B) A view from the top (periplasmic) side of the LR34- model shows the arrangement of 12 transmembrane helixes in TMD1 (TMH-1 to 6) and TMD2 (TMH-7 to 12). The PHE546 and TYR634 residues at TMH-2 and TMH-4 are located close to the substrate binding sites/channel (marked by a circle). (C) Top (periplasmic) view of LR34+ with its histidine residue substitution at 633 (HIS633) in TMH-4 and deletion of PHE546 in TMH-2.






Discussion

Lr34 is a multi-pathogen resistance gene that confers slow rusting resistance in wheat. Its cloning led to several studies about its nature, origin, evolution, distribution, structural organization and functionality (Krattinger et al., 2009). The five Lr34 haplotypes (H1-H5) reported in spring wheat are defined based on mutations in intron 4 and exons 10, 11 and 12 (Dakouri et al., 2014). Resistant genotypes (Lr34+) all have the H1 haplotype, while H2, H3 and H4 haplotype germplasm is susceptible (Lr34-) (Dakouri et al., 2010; Dakouri et al., 2014). The common differences between these two phenotypic classes are the mutations in exons 11 and 12. The resistant H1 haplotype is null/C while the susceptible H2, H3 and H4 haplotypes are all TTC/T for exons 11/12 (Table S1). Because of the proximity of these two mutations, the vast majority of the accessions (698/700) previously tested were either null/C or TTC/T; hence it was not possible to partition the causal role of these two mutations using this extensive germplasm. However, the H5 haplotype is null/T, a haplotype that could be useful for addressing this question. This could not be clearly addressed by Dakouri et al. (2014) because only two accessions, both with intermediate severity ratings, possessed this haplotype. To confirm each mutation’s contribution to leaf rust resistance, populations that segregated for these different haplotypes were developed. To do so, the null/T haplotype accessions Odesskaja 13 and Koktunkulskaja 332 were crossed to Thatcher and its Lr34 NIL RL6058, and RIL populations segregating for haplotypes H1, H2 and H5 were developed. The severity of leaf rust infection in the field at two locations per year over three years was then measured. To date, accessions with the TTC/C haplotype have not been identified, and only three of the possible four classes segregated in these crosses.

Our results indicated that exons 11 and 12 mutations independently and additively contribute to leaf rust resistance. H1 haplotype (null/C) RILs were significantly more resistant than H5 haplotype (null/T) RILs which, in turn, were significantly more resistant than H2 haplotype (TTC/T) RILs (Figures 2, 3A, B). The same effect was observed in crosses with Odesskaja 13 and Koktunkulskaja 332 (Figures 3A, B), indicating that this is not specific to one genetic background. Overall, the RILs in the Odesskaja 13 crosses were slightly more resistant than their counterparts in the Koktunkulskaja 332 crosses harboring the same haplotypes (Figures 2, 3A, B); differences in their genetic backgrounds being the most likely cause, although this could not be attributed to any specific leaf rust seedling genes based on our screening with ten races. Additionally, when the effects of each mutation were analyzed separately, RILs with the “null” exon 11 allele were significantly more resistant than RILS with the “TTC” allele in both crosses (Figures 3C, D). For exon 12, RILs with the “C” allele were significantly more resistant than RILs with the “T” allele (Figures 3E, F). Marker csLV46, linked to Lr46, segregated in the Koktunkulskaja 332 crosses. Though it was not as effective as Lr34, the resistance conditioned by the Koktunkulskaja 332 putative Lr46 gene was additive to the resistance conditioned by both Lr34 exon mutations (Figure 4).

The TTC to null exon 11 mutation corresponds to the deletion of a phenylalanine residue at position 546 in the first TMD of LR34, and the T to C exon 12 mutation converts a tyrosine into a histidine at position 633, also in the first TMD (Krattinger et al., 2009). Chauhan et al. (2015) transformed barley with Lr34 constructs called M1 (null/T; equivalent to H5) and M2 (TTC/C; no known haplotype). The M1 transgenic lines displayed leaf rust resistant and LTN phenotypes. In contrast, the M2 transgenic lines were susceptible to rust and showed no LTN, suggesting that, in barley, deletion of the phenylalanine residue was sufficient to provide Lr34-based disease resistance, and that the exon 12 encoded tyrosine residue alone was insufficient for leaf rust resistance functionality. Transformation of wheat with the M1 construct also conferred partial resistance in seedling tests. This agrees with our results that support the functional association with the phenylalanine deletion. However, our results demonstrate that both mutations independently contribute to leaf rust resistance in wheat and are additive in the genetic backgrounds of Odesskaja 13 and Koktunkulskaja 332. Because neither variety possesses effective seedling resistance genes, the field severity ratings measured reflect only APR genes.

Gene stacking or pyramiding has long been an effective strategy against wheat leaf rust. Wheat germplasm with three or more seedling resistance genes had significantly lower severity than accessions with fewer genes (Dakouri et al., 2013). APR genes such as Lr34 were also reported to enhance the effectiveness of other R genes (German and Kolmer, 1992; Vanegas et al., 2008). Combining multiple APR genes is also beneficial as lines with multiple APR genes were reported to have near immunity against rusts (Singh et al., 2000). Silva et al. (2015) reported interactions between Lr68, Lr34 and Sr2 in Uruguay, where they stated that, in their environments, the positive effect of Lr68 exceeded that of Lr34. They hypothesized that the enhanced expression of Lr34 at colder temperatures might be the reason for their observations. Lillemo et al. (2008) found a non-additive interaction between Lr34 and Lr46, while Herrera-Foessel et al. (2009) reported only a marginal improvement of the gene combination. However, a recent report indicated the additive effect between the two genes (Bokore et al., 2022); the latter being consistent with our findings in the Koktunkulskaja 332 populations, where Lr34 and an APR gene postulated to be Lr46 were both effective and additive. Indeed, assuming that lines with csLV46 carry the APR gene Lr46, RILs carrying both APR genes displayed significantly lower rust infection severity than RILs with a single APR gene which, in turn, had lower infection ratings than lines with neither gene. The molecular basis for Lr46 was hypothesized to differ from that of Lr34, i.e., the former is not an ABC transporter, an observation that prompted Lagudah (2011) to recommend using the gene combination as a preventative strategy should any of the two mechanisms be overcome. While there is no evidence of either gene being ineffective, our results suggest a certain degree of additivity between the two genes, which could be explained by different modes of action. However, this is not direct evidence because many more alternative scenarios could explain the additivity.

Using the RoseTTAFold and Alphafold2, the 3D structural fold of LR34 was predicted. As suggested, the predicted 3D models of LR34 were found to contain 12 transmembrane helixes, with six in each TMD (Krattinger et al., 2011). The structural locations of the two non-synonymous mutations in LR34+ and LR34- were further analyzed to show that they are located in the transmembrane helix TMH-2 and TMH-4, respectively, in close proximity to the putative substrate binding sites/channel. The aromatic side chain of the phenylalanine (PHE546) residue in LR34- located in TMH-2 appears to create a structural obstacle in the substrate translocation channel (Figure 5). The functional significance of phenylalanine residue within transmembrane helixes of membrane transporters is well established, and its role in substrate binding, channel gating and transport activities have been reported (Kuo et al., 2003; Rojas et al., 2007; Madej and Kaback, 2013; Alegre et al., 2016; Ganz et al., 2019; Selvam et al., 2019). The second mutation, histidine (HIS634) in LR34-, replaced by tyrosine (TYR633) in LR34+, in TMH-4 of TMD1, is also located near the substrate binding sites/channel. The tyrosine residues are known to stabilize the positive charges within the membrane electric field and contribute to substrate transport function (Dougherty, 1996; Chen et al., 2000; Wu et al., 2008). Likewise, the histidine residues also serve critical roles in the TMDs of transmembrane proteins (Wiebe et al., 2001; Stewart et al., 2007; Wang et al., 2013). In particular, histidine residues are known to undergo protonation state changes in a pH-dependent manner, resulting in a conformation change in transmembrane helixes, change in pore sizes, and to influence the substrate transport activity (Todt and McGroarty, 1992; Chen et al., 2000; Harrison, 2008; Martfeld et al., 2016). Thus it is reasonable to speculate that the substitution of the tyrosine by histidine in LR34-, may result in improved stability, flexibility, and additional structure conformation changes altering substrate translocation activities. This may explain the functional differences between LR34 of H1, H2 and H5 haplotypes. Additionally, at the sequence level, both the histidine/tyrosine residues at position 633/634 are conserved among all plant LR34 orthologues (Krattinger et al., 2011), implying the functional significance of both tyrosine and histidine residues in TMH-4 of LR34.

Lr34 encodes an ABCG transporter that confers race non-specific resistance to wheat leaf rust (Krattinger et al., 2009). Arabidopsis PEN3/PDR8, another plant ABC transporter, confers non-host resistance to the barley powdery mildew fungal pathogen Blumeria graminis f. sp hordei, but fungal hyphae growth and infection were observed in pen3 mutants (Stein et al., 2006). However, these ABC transporter’s exact mode of action in the disease resistance mechanism remains largely unexplored. One of the functions of ABC transporters is the translocation of one or more substrates across membranes. For instance, in Nicotiana plumbaginifolia, NpPDR1, an ABCG protein responsible for resistance to the fungal pathogen Botrytis cinera, was shown to transport sclareol and to participate in basal plant defense (Kang et al., 2011). Similarly, in Arabidopsis, ABCG25, ABCG36 and ABCG40 are known to transport multiple substrates (Campbell et al., 2003; Kim et al., 2007; Strader and Bartel, 2009; Kuromori et al., 2010; Lu et al., 2015). The ABCG transporter encoded by Lr34 was originally hypothesized to either export metabolites that affect fungal growth or to provide resistance through a senescence-like process (Krattinger et al., 2009). More recently, abscisic acid (ABA) has been shown to be a substrate of the Lr34 encoded ABCG transporter in wheat (Krattinger et al., 2019) and also when it is expressed in barley (Bräunlich et al., 2021). Assuming that this is its only mode of action, our results suggest that both the phenylalanine deletion and the tyrosine to histidine substitution independently modify the protein sufficiently to alter the translocation of ABA. The conformation changes caused by one or the other substitution is sufficient to disrupt its function to a certain degree, and this function is disrupted to a greater extent when both mutations are present. LR34 has also been reported to be involved in phospholipid transport (Deppe et al., 2018) and phenylpropanoid accumulation (Rajagopalan et al., 2020), but these may be indirect effects of LR34-dependent ABA allocation (Banasiak and Jasinski, 2022).

Furthermore, it should be noted that the ATP transporters utilize the energy of ATP to trigger conformational changes in the TMD that consequently permits the transport of molecules across membranes (Hollenstein et al., 2007). This is referred to as the ATP-switch model (Higgins and Linton, 2004). In many cases, the substrate binding channel or sites resides between the transmembrane domains TMD1 and TMD2 (Locher, 2016; Lefevre and Boutry, 2018) but the interactions between domains, the order of the activation steps and their consequences on ABC transporter functionality remains unclear (Rees et al., 2009). Of note, a gain-of-function mutation caused by a single amino acid change was also reported for the Arabidopsis PDR9 gene, which encodes the ABC transporter ABCG37 that imparts resistance to auxinic herbicides (Ito and Gray, 2006). Despite these similarities, further structural, biochemical and functional studies are necessary to better understand the specific roles of the variant amino acid residues in ABC transporters such as LR34. Using the germplasm developed herein and knowing that ABA is a substrate of the LR34 ABCG transporter enable us to design future experiments that could shed further light on the mechanisms of resistance and susceptibility and on this phenomenon of intragenic additivity. Heterologous expression of Lr34 in barley demonstrated the conservation of the mechanism between wheat and barley while establishing that Lr34 in barley imparted resistance against leaf and stem rusts as well as powdery mildew (Risk et al., 2013). While the exact mechanism remains unknown, Risk et al. (2012) suggested that Lr34 may induce pathogenesis-related gene transcripts but it does not directly regulate them, a hypothesis that seems to have been confirmed by the transcriptomics study of Lr34 barley transgenic lines (Chauhan et al., 2015).

Here we refer to the phenylalanine deletion (null) in exon 11 and the tyrosine (T) to histidine (C) substitution in exon 12 as two gain-of-function mutations from a phenotypic perspective because they both independently contribute additively to APR resistance to leaf rust. However, knowledge of the substrate(s) of LR34- is lacking. Therefore, it remains unclear whether the LR34- function(s) is altered by the two substitutions in LR34+. In other words, is this an added function or a case of neofunctionalization? This is an interesting question that remains to be elucidated.

In conclusion, the data clearly demonstrated that the two non-synonymous mutations located in exons 11 and 12 of Lr34 were independently additive to adult plant resistance against leaf rust in wheat. This was observed in independent sets of crosses with both Odesskaja 13 and Koktunkulskaja 332 and did not appear specific to the genetic background. The germplasm developed in this study consists of H1 (null/C), H2 (TTC/T) and H5 (null/T) haplotypes which show degrees of resistance to leaf rust in the following order: H1>H5>H2. Krattinger et al. (2019) and Bräunlich et al. (2021) demonstrated that ABA was the substrate of LR34. The germplasm developed herein could be used to clarify the role of each of the two read mutations in ABA transport. If the premise is that both mutations alter the transport channel and that these structural changes affect the transport of ABA, then this can be evaluated using the germplasm developed herein. For instance, the total and relative concentration of ABA in leaves and changes in ABA fluxes in the seedlings can be measured in each haplotype. These results should also have important implications for wheat breeding because Lr34 is one of the most widely deployed and durable resistance genes, and it confers resistance against several wheat pathogens.
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Wheat coleoptile is a sheath-like structure that helps to deliver the first leaf from embryo to the soil surface. Here, a RIL population consisting of 245 lines derived from Zhou 8425B × Chinese Spring cross was genotyped by the high-density Illumina iSelect 90K assay for coleoptile length (CL) QTL mapping. Three QTL for CL were mapped on chromosomes 2BL, 4BS and 4DS. Of them, two major QTL QCL.qau-4BS and QCL.qau-4DS were detected, which could explain 9.1%–22.2% of the phenotypic variances across environments on Rht-B1 and Rht-D1 loci, respectively. Several studies have reported that Rht-B1b may reduce the length of wheat CL but no study has been carried out at molecular level. In order to verify that the Rht-B1 gene is the functional gene for the 4B QTL, an overexpression line Rht-B1b-OE and a CRISPR/SpCas9 line Rht-B1b-KO were studied. The results showed that Rht-B1b overexpression could reduce the CL, while loss-of-function of Rht-B1b would increase the CL relative to that of the null transgenic plants (TNL). To dissect the underlying regulatory mechanism of Rht-B1b on CL, comparative RNA-Seq was conducted between Rht-B1b-OE and TNL. Transcriptome profiles revealed a few key pathways involving the function of Rht-B1b in coleoptile development, including phytohormones, circadian rhythm and starch and sucrose metabolism. Our findings may facilitate wheat breeding for longer coleoptiles to improve seedling early vigor for better penetration through the soil crust in arid regions.
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Introduction

Wheat (Triticum aestivum L.) is one of the most important food crops in the world, providing large amounts of starch, rich protein and dietary fiber for humans (Asseng et al., 2020). Maintenance of high and stable wheat yields is crucial for global food security (Boyer, 2004). Drought is an important abiotic stress seriously limiting wheat production (Gupta et al., 2020). Arid and semi-arid regions account for about 60% of global crop production, and drought stress caused by frequent extreme weather events often leads to severe reduction of wheat production (Puttamadanayaka et al., 2020). To ensure the emergence rate under drought stress, deeper sowing is often adopted for better utilization of the water in soil (Zhao et al., 2022). However, a sowing depth beyond the coleoptile length (CL) will result in poor stand establishment, late emergence, and slow early leaf development (BR, 1976; Schillinger et al., 1998). Wheat coleoptiles facilitate the stem and the first leaf to break the ground, and directly determine the maximum sowing depth (Rebetzke et al., 2007a; Rebetzke et al., 2014). However, the short coleoptiles of modern semi-dwarf wheat varieties reduce emergence when sown deep (Zhao et al., 2022). Understanding the genetic basis for CL will help developing high-yield semi-dwarf varieties with longer coleoptiles and suitable for deep sowing. Previous studies have demonstrated that CL has high heritability and additive effects and is controlled by multiple genes (Rebetzke et al., 2004; Rebetzke et al., 2007b). Hence, it is feasible to increase the CL through genetic manipulation.

In the 1960s and 1970s, the wide application of dwarf genes Rht1 (Rht-B1b) and Rht2 (Rht-D1b) combined with the increased application of chemical fertilizer greatly promoted the increase of wheat yield, which was called the “Green Revolution” of wheat (Peng et al., 1999; Hedden, 2003). However, compared with the wild type Rht-B1a, the dwarf gene, while improving the resistance to colonization and harvesting index, led to increased nitrogen fertilizer requirement, decreased 1000-grain weight, lower grain protein content, drought tolerance, lower anthers exposure rate and susceptibility to scab (Tang et al., 2009; Lanning et al., 2012; Zhang et al., 2013; He et al., 2016). Genetic analysis has also predicted that Rht-B1b and Rht-D1b loci have certain shortening effects on the CL of wheat, but there has been no further evidence for this speculation (Ellis et al., 2004; Rebetzke et al., 2007b; Yu and Bai, 2010; Li et al., 2011). In contrast, other two widely used Rht genes, Rht8 and Rht24, have been proved to have no negative effect on CL, providing an opportunity to breed semi-dwarfing wheat cultivars with long coleoptiles (Würschum et al., 2017; Chai et al., 2022; Tian et al., 2022; Xiong et al., 2022).

Here, we demonstrated that Rht-B1 is the functional gene underlying a CL QTL on chromosome 4B and its dwarfing allele (Rht-B1b) reduces the CL through multiple pathways such as phytohormones, circadian rhythm and starch and sucrose metabolism. These results provide valuable information for wheat breeding of longer coleoptiles to improve the seedling early vigor and penetration through soil crust in arid regions.



Materials and methods


Plant materials and phenotyping

A total of 245 F2:10 RILs derived from the cross of Zhou 8425B × Chinese Spring were used in this study. Zhou 8425B (Pedigree: Zhou 78A/Annong 7959) and Chinese Spring are an elite facultative wheat line and Chinese landrace, respectively. Zhou 8425B contains two dwarfing alleles Rht-B1b and Rht-D1b and has a short coleoptile length (CL) of about 3.3 cm. Chinese Spring contains two wildtype alleles Rht-B1a and Rht-D1a, which contribute to a long CL of about 4.8 cm. Seeds were sampled from plants grown and harvested at Shijiazhuang of Hebei Province and Qingdao of Shandong Province during the 2020–2021 and 2021–2022 cropping seasons, respectively. Good-quality seeds without any visible damage were selected for all lines. Seeds of all parental and progeny lines were sown in cylindrical pots (100 mm high and 80 mm in diameter) at a sowing depth of 2 cm below the soil surface. The CL was determined from the scutellum to the tip of the coleoptile.



SNP genotyping and QTL analysis

For the Zhou 8425B × Chinese Spring population, the 245 RILs and their parents were genotyped with the 90K iSelect SNP array (Wang et al., 2014). Twenty-one linkage groups corresponding to the 21 chromosomes were constructed from 14,955 polymorphic markers. All linkage maps covered 2290.06 cM with marker densities of 7.04 (A), 8.60 (B) and 2.19 (D) markers per cM (Wen et al., 2017). Broad-sense heritability was estimated using IciMapping 4.1 software (https://isbreeding.caas.cn/index.htm). Quantitative trait loci (QTLs) mapping was conducted using IciMapping 4.1 software with inclusive composite interval mapping (ICIM) algorithm (Li et al., 2007). The CL of all lines and the average phenotypic values from the two environments were used for QTL detection. The mapping parameters were chosen as step=1.0 cM and PIN = 0.01. A LOD threshold of 2.5 was chosen for declaration of putative QTLs.



Plant materials for Rht-B1 functional study and RNA-Seq analysis

To study the association between Rht-B1 and the 4B QTL in the current study, an overexpression line and loss of function line of Rht-B1 were created. The complete coding sequence (CDS) of Rht-B1b (GenBank: MG681100.1) was overexpressed in a hexaploid wheat cultivar Fielder (Rht-B1b and Rht-D1a) under driving by maize ubiquitin promoter (All primers were listed in Table S1). CRISPR/SpCas9 was used to create knockout line of Rht-B1b. The sgRNA (PAM-guide sequence 5’-GGAGCCGTTCATGCTGCAG-3’) was designed to target conserved regions of Rht-B1b. The resultant construct was transformed into immature embryos by the Agrobacterium tumefaciens (Ishida et al., 2015). Sixty good-quality seeds of each transgenic null lines (TNL), Rht-B1b overexpression lines (Rht-B1b-OE) and Rht-B1b CRISPR/SpCas9 edited lines (Rht-B1b-KO) were evenly sown in ten 10 cm (top diameter) × 8.9 cm (height) plant pots with a sowing depth of 2 cm below the soil surface. Before the coleoptile broke the ground, coleoptile tips and whole coleoptiles of ten TNL and Rht-B1b-OE plants were collected and immediately put into liquid nitrogen for RNA-Seq. Each group included three biological replicates.



RNA-Seq and data analysis

Total RNA of three biological replicates was extracted using the TRIzol® reagent, and mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. The first strand cDNA was synthesized using random hexamer primer and RNase H. Subsequently, the second strand cDNA synthesis was obtained using DNA Polymerase I and RNase H. Library preparation for RNA-Seq was conducted by Novogene and sequenced on an Illumina Novaseq platform with 1 ug of total RNA (http://www.novogene.com/).

IWGSC RefSeq v2.1 and annotation v2.1 were used for the reference genome and gene model annotation (Zhu et al., 2021). Raw data were processed to obtain clean reads by removal of adapter, ploy-N and low-quality reads. Paired-end clean reads were aligned to the reference genome using Hisat2 (Kim et al., 2019). FeatureCounts was used to count the read numbers mapped to each gene (Liao et al., 2014). Differential expression analysis was performed using the DESeq2 R package (Love et al., 2014). Genes with an adjusted P-value < 0.05 found by DESeq2 were assigned as differentially expressed genes (DEG). GO and KEGG enrichment analysis of DEGs were implemented by the TBtools (Chen et al., 2020). GO terms and KEGG pathways with corrected P-value lower than 0.05 were considered as significantly enriched by the DEGs.




Results


QTL analysis of coleoptile length

The parental lines, Zhou 8425B and Chinese Spring, differed significantly (P < 0.05) for coleoptile length (CL). Based on data averaged across all environments, CL ranged from 2.5 to 6.1 cm with an average of 4.0 cm. CL showed continuous variation in RIL population and had a high heritability of 0.86 (Figure 1A). Three QTLs for CL were identified on chromosomes 2BL, 4BS and 4DS in the Zhou 8425B × Chinese Spring population (Table 1). Two major QTLs, QCL.qau-4BS and QCL.qau-4DS, were stably detected in all environments, which explained 9.1%–22.2% of the phenotypic variance across environments (Table 1). Based on the genomic position of the flanking markers, we found that QCL.qau-4BS and QCL.qau-4DS spanned the Rht-B1 and Rht-D1 loci, respectively. QCL.qau-2BL explained about 3.0%–3.1% of phenotypic variance, and thus was a minor QTL for CL.




Figure 1 | Frequency distributions of RILs for CL and effects of Rht-B1b on coleoptiles of wheat. (A) Frequency distributions of 245 recombinant inbred lines (RILs) in Zhou 8425B × Chinese Spring population for mean values of coleoptile length (CL). Arrows indicate mean values of the parental lines. Coleoptile length (B) and image of seedlings (C) of Rht-B1b overexpressing lines (OE), Rht-B1b knockout lines (KO) and transgenic null lines (TNL). Bars represent standard deviations of thirty biological replicates. Different letters on the bars indicate significant differences in given traits at P < 0.05 between different lines.




Table 1 | QTL for coleoptile length (CL) in the Zhou 8425B/Chinese Spring RIL population.





Validation of the effect of Rht-B1b on coleoptile development

Many studies have reported CL QTL on the Rht-B1 locus, indicating that Rht-B1b may reduce wheat CL (Botwright et al., 2001; Li et al., 2017). However, there has been no direct evidence for this speculation. Here, Rht-B1b overexpression and CRISPR/SpCas9 gene-editing were performed and homozygous plants were generated by self-crossing for CL evaluation. The results demonstrated that Rht-B1b overexpression could reduce the CL about 8.6%, while loss-of-function of Rht-B1b would increase the CL about 17.9% relative to that of null transgenic plants (TNL) (Figures 1B, C). Thus, Rht-B1 can be a target gene of QCL.qau-4BS.



Transcriptome analysis of Rht-B1 on coleoptile development

Although Rht-B1b is known to reduce the CL, the underlying regulatory mechanism remains unclear. To dissect the regulatory mechanism, whole coleoptiles and coleoptile tips of TNL and Rht-B1b-OE were collected for RNA-Seq analysis before the coleoptile breaks the ground. Compared with those of TNL, 142/523 and 191/1993 differentially expressed genes (DEG) were upregulated/downregulated by Rht-B1b in the transcriptome of whole coleoptile and coleoptile tips (Table S2 and S3). There were more down-regulated DEGs than up-regulated DEGs, indicating that Rht-B1b mainly represses the gene expression in coleoptiles. GO enrichment analysis of coleoptile tips revealed that Rht-B1b mainly reduces the CL via the process of “photosynthesis”, “oxidation-reduction process”, “nitrate assimilation carbohydrate metabolic process”, and “pigment biosynthetic process”. In the whole coleoptile, DEGs were enriched in the GO processes of “oxidation-reduction”, “glucan metabolism” and “cellular carbohydrate metabolism” (Table 2). In the coleoptile tips, DEGs were mainly enriched in the GO processes of “photosynthesis”, “oxidation-reduction”, “nitrate assimilation”, “carbohydrate metabolism” and “pigment biosynthetic process” (Table 2).


Table 2 | Enrichment analysis of the most significant GO processes in the transcriptome of coleoptile tips and whole coleoptiles.



Previous studies showed that hypocotyl elongation is regulated by endogenous regulators, such as phytohormones, circadian clock, sucrose, and environmental stimuli (Saibo et al., 2003; Simon et al., 2018). Interestingly, many DEGs were enriched in the KEGG pathway of plant hormone signal transduction, alpha-linolenic acid metabolism (jasmonic acid), brassinosteroid biosynthesis, carotenoid biosynthesis (abscisic acid), cysteine and methionine metabolism (ethylene), diterpenoid biosynthesis (gibberellin), tryptophan metabolism (auxin), zeatin biosynthesis (cytokinine), circadian rhythm, and starch and sucrose metabolism (Figure 2). Thus, Rht-B1b might play an important role in integrating multiple signal transduction pathways in the wheat coleoptile development.




Figure 2 | Putative key downstream genes of Rht-B1b for coleoptile development. TNL, OE, Tip and CL represents transgenic null plant, Rht-B1b-OE plant, coleoptile tip and whole coleoptile, respectively. Orange and blue colors show genes with low and high expression level, respectively.






Discussion


Adaptation of semi-dwarf modern wheat to drought conditions

Numerous studies have demonstrated a positive association between wheat CL and plant number under deep sowing (Hadjichristodoulou et al., 1977; Matsui et al., 2002). However, the two gibberellin-insensitive dwarfing genes, Rht-B1b and Rht-D1b, tend to cause shorter CL and low seedling emergence rate (Schillinger et al., 1998; Rebetzke et al., 2007b). Here, we generated Rht-B1b over-expressing and CRISPR/SpCas9 editing plants to study its influence on coleoptile development. As a result, overexpression of Rht-B1b reduced the CL, while its loss of function increased the CL. Rht-B1b encodes an N-terminal truncated DELLA protein (lack of DELLA and TVHYNP motifs), which is gibberellin-insensitive protein in wheat (Van De Velde et al., 2021). DELLA proteins encoded by the Rht-B1a gene are the downstream repressors of GA signal transduction and, GA induces the degradation of DELLA proteins via the ubiquitin/proteasome pathway (Itoh et al., 2003). Thus, Rht-B1b led to a reduction of CL compared with tall allele Rht-B1a since the GA-induced seedling growth was repressed (Alabadií et al., 2004). So far, there has been no study to validate the effect of Rht-B1b on CL, not to mention the underlying genetic pathway. To uncover the regulatory mechanism of Rht-B1b on CL, a transcriptome analysis was conducted to dissect the underlying genetic pathway.

A few studies have demonstrated that, in Arabidopsis, SCL3 and DELLA antagonize each other in modulating downstream GA responses and maintaining GA homeostasis via feedback regulation of GA biosynthetic genes (Zhang et al., 2011). SCL3 functions as a positive regulator of GA signaling, which induces the expression of GA biosynthesis genes and autoregulates its own expression via direct interaction with DELLA. In our transcriptome, 16 genes related to GA biosynthesis, three GA receptor GID1 genes and three SCL3 genes were identified as DEGs between Rht-B1b-OE and TNL, indicating that wheat SCL3 and DELLA antagonize each other in maintaining GA homeostasis and GA responses as in Arabidopsis (Figure 2, 3). In addition, DELLAs can physically interact with and block PIF3 and PIF4 activities by sequestering the transcription factors from binding to their targets, which ultimately results in the inhibition of hypocotyl elongation (De lucas et al., 2008; Feng et al., 2008). JAZ could interrupt DELLA–PIF3 interaction, allowing more PIF transcription factors to activate plant growth (Yang et al., 2012). In our transcriptome, several homologs of JAZs were down-regulated by Rht-B1b-OE (Figure 2, 3). HY5 is a key transcription factor for the regulation of seedling photomorphogenesis. COP1 negatively regulates HY5 by directly and specifically interacting with HY5 (Ang et al., 1998). BBX25 and BBX24 additively enhance COP1 and suppress HY5 functions to regulate of seedling deetiolation process in Arabidopsis (Gangappa et al., 2013). RUP1 is induced by CRYs in response to blue light, which is dependent on HY5 (Tissot and Ulm, 2020). These genes are key factors for cryptochrome blue-light signaling and their homologs in wheat were identified as DEGs, indicating that light and GAs might antagonistically regulate coleoptile in wheat (Figure 2, 3).




Figure 3 | A simplified model underpinning Rht-B1b modulating coleoptile length. Black letters in the box show non-differentially expressed genes. Red and green letters show upregulated and downregulated genes by Rht-B1b, respectively. The +u represents ubiquitylation. GA represent gibberellin. The arrows show promotion of gene expression; the lines with blunt ends show repression of gene expression; the bold lines represent direct binding. The species latin prefixes in gene names are not shown.





Breeding for longer coleoptiles with previously reported genetic loci

The response of plants to drought is dependent on multiple factors, including duration and severity of drought conditions, frequency of drought, and the growth stage when subjected to the drought stress (Jatayev et al., 2020). Although wheat can be grown in a variety of harsh environments, rising temperature and unpredictable drought exacerbate the impact of drought stress on wheat yield. If drought stress occurs when sowing, farmers tend to sow more seeds in a deeper depth to increase the seedling establishment rate. Short coleoptiles severely hider the application of deep sowing in wheat production since it influences the emergence rate of wheat seedlings, particularly in fields with thick stubble or crusted soil surface (Rebetzke et al., 2014). Most modern semi-dwarf wheat varieties harboring Rht-B1b or Rht-D1b have short coleoptiles and low yields under drought stress relative to tall plants (Li et al., 2017; Sidhu et al., 2020). Wheat CL is a typical quantitative trait controlled by multiple genes (Rebetzke et al., 2007a). Pyramiding of multiple QTLs in modern semi-dwarf wheat cultivars can efficiently increase the CL. Thus, a comprehensive screening was conducted on the genetic locus for CL by QTL mapping and genome wide association analysis (GWAS) from previous studies and assembled them on wheat chromosomes according to their physical locations (Figure 4). So far, a total of 114 QTLs for CL traits in wheat have been found from 20 studies of CL-related QTL mapping in wheat (Figure 4 and Table S4) (Rebetzke et al., 2001; Rebetzke et al., 2007b; Landjeva et al., 2008; Landjeva et al., 2010; Li et al., 2010; Yu and Bai, 2010; Li et al., 2011; Zhang et al., 2013; Nagel et al., 2014; Rebetzke et al., 2014; Zhang et al., 2014; Singh et al., 2015; Elbudony, 2017; Liu et al., 2017; Mo et al., 2018; Zhang et al., 2018; Bovill et al., 2019; Puttamadanayaka et al., 2020; Francki et al., 2021; Ren et al., 2021). About 33 GWAS loci were found to be associated with CL (Figure 4 and Table S5) (Li et al., 2017; Ma et al., 2020; Sidhu et al., 2020). These genetic loci were used for QTL-rich cluster (QRC) detection, which was defined when markers from at least two independent studies were physically located in 10 Mb range (Cao et al., 2020). The genomic positions of flanking markers were obtained from the IWGSC RefSeq V2.1 (Zhu et al., 2021). A total of 18 QTL-rich clusters (QRC) for CL were found in this study (Table 3). Of them, Rht-B1 and Rht-D1 are strong candidate genes of QRC 4B-I and 4D-I, respectively. These QRC of CL provide valuable gene resources for marker-assisted selection breeding for longer coleoptiles.




Figure 4 | Distribution of genetic loci for wheat coleoptile length (CL) on chromosomes. QTLs and GWAS loci are indicated in black and pink colors, respectively. The black and cyan bars in chromosomes indicate the positions of centromeres and QTL-rich clusters (QRC), respectively.




Table 3 | Detailed information and candidate genes for QTL-rich clusters of coleoptile length.





Breeding for longer coleoptiles with the wild allele Rht-B1a

In the 1960s and 1970s, the wide application of semi-dwarf genes Rht-B1b and Rht-D1b combined with the increased application of chemical fertilizer greatly promoted the wheat yield improvement, which was referred to as the “Green Revolution” of wheat (Hedden, 2003). However, semi-dwarf wheat with Rht-B1b/Rht-D1b alleles produce lower grain yield than taller plants with Rht-B1a/Rht-D1a under drought environment (Zhang et al., 2013; Jatayev et al., 2020). Compared with wild-type Rht-B1a, semi-dwarf allele Rht-B1b resulted in shorter coleoptile. Seeds of semi-dwarf wheat cultivars are generally sown shallower than taller wheat varieties to ensure the emergence of semi-dwarf seedlings and early vigour (Rebetzke et al., 2007a; Jatayev et al., 2020). Shallow seeding in dry fields reduces emergence for varieties with short coleoptile length (Rebetzke et al., 2001; Jatayev et al., 2020). It is likely that taller wheat cultivars with Rht-B1a/Rht-D1a have higher rate of emergence than semi-dwarf wheat genotypes under early drought environment. Thus, improving lodging resistance of tall wheat has become an important research direction. Besides of reducing the height of plants, an alternative way is to breed wheat varieties with solid-stemmed stems to enhance lodging resistance in wheat (Liang et al., 2022). Wheat with tall plant height Rht-B1a/Rht-D1a allele combined with solid-stemmed stems alleles of TdDof might have high lodging and drought tolerances, long coleoptile and produce higher yield in drought field (Jatayev et al., 2020; Nilsen et al., 2020).
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Maize is a staple food for many communities with high levels of iron deficiency anemia. Enhancing the iron concentrations and iron bioavailability of maize with traditional breeding practices, especially after cooking and processing, could help alleviate iron deficiency in many of these regions. Previous studies on a small number of maize genotypes and maize flour products indicated that degermination (germ fraction removed with processing) could improve the iron bioavailability of maize. This study expanded upon this research by evaluating the iron bioavailability, mineral concentrations, and phytate concentrations of 52 diverse maize genotypes before (whole kernels) and after degermination. Whole and degerminated maize samples were cooked, dried, and milled to produce corn flour. Iron bioavailability was evaluated with an in vitro digestion Caco2 cell bioassay. In 30 of the maize genotypes, bioavailable iron increased when degerminated, thus indicating a higher fractional iron uptake because the iron concentrations decreased by more than 70% after the germ fraction was removed. The remaining 22 genotypes showed no change or a decrease in iron bioavailability after degermination. These results confirm previous research showing that the germ fraction is a strong inhibitory component for many maize varieties. Phytate concentrations in maize flours were greatly reduced with degermination. However, the relationship between phytate concentrations and the iron bioavailability of processed maize flour is complex, acting as either inhibitor or promoter of iron uptake depending on the color of the maize kernels and processing method used to produce flour. Other factors in the maize endosperm fractions are likely involved in the effects of degermination on iron bioavailability, such as vitreous or floury endosperm compositions and the polyphenol content of the bran. This study demonstrates that iron nutrition from maize can be enhanced by selecting genotypes where the inhibitory effect of the bran color and endosperm fraction are relatively low, especially after processing via degermination.
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Introduction

Severe anemia, primarily due to dietary iron deficiency, affects a large portion of the world’s population, especially among children and women of childbearing age (15 – 49 years) (Stevens et al., 2013). Many regions of the world with a high prevalence of malnutrition rely on staple crops such as wheat, rice and maize (Poole et al., 2021). Typically prepared as flour or meal, maize is the most consumed cereal in Central America, Mexico, and parts of Africa (Ranum et al., 2014). Biofortification of iron in maize is an important strategy in alleviating iron deficiency for populations consuming high-maize diets (Bouis and Welch, 2010). The concentrations of iron in cooked maize are often lower than whole grains, pulses and other cooked vegetables, and iron concentrations in maize are largely dependent on agronomic practices and environment (Rebello et al., 2014; Hindu et al., 2018). Therefore, improving the bioavailability of iron from maize is also an important strategy to ensure more iron is delivered after processing and digestion (Bouis and Welch, 2010; Lung’aho et al., 2011; Glahn et al., 2019).

Significant variation in iron (Fe) bioavailability of maize genotypes has been reported (Oikeh et al., 2003; Lung’aho et al., 2011; Pixley et al., 2011). Using ferritin expression in Caco2 cells as a model of the human intestinal epithelial barrier, Lung’aho et al. (2011) observed a wide range of iron uptake (from 9 to 63 ng ferritin/mg cell protein). Biofortification efforts to improve maize Fe are limited but promising (Oikeh et al., 2003), and target levels for maize Fe and zinc (Zn) have been set with bioavailability taken into consideration (Bouis and Welch, 2010). Although there is a large variation in both Fe concentration and Fe bioavailability among different maize varieties, Fe is more bioavailable from maize when compared to either wheat or rice, which suggests that maize can be a valuable dietary source of iron (Lung’aho et al., 2011; Glahn et al., 2017; Glahn et al., 2019). Furthermore, both in vitro and in vivo studies have demonstrated that enhanced Fe absorption from maize can be achieved (Lung’aho et al., 2011; Tako et al., 2013). However, the genetic basis for enhanced Fe bioavailability in maize remains unknown (Tako et al., 2015).

Previous research suggests that the germ fraction of maize is the primary inhibitory component for Fe bioavailability (Glahn et al., 2019). Glahn et al. reported that degerminated maize (with the kernel’s germ fraction removed) exhibited higher Fe bioavailability than whole-kernel maize products (Glahn et al., 2019). While the germ fraction contains 27-54% of total Fe, the bioavailability of the germ fraction is low; this effect may be due to high levels of phytate, a prominent iron uptake inhibitor in plant-based foods (Hurrell and Egli, 2010). Glahn et al. also reported that degerminated maize fractions delivered more bioavailable Fe despite being significantly lower in Fe concentration than whole kernels (Glahn et al., 2019). In addition, this study suggested that higher endosperm Fe concentration may yield more bioavailable Fe even in the presence of the germ fraction. Evaluation of wet-milled fractions and degerminated supermarket products further indicated the inhibitory effect of the germ and suggested that degermination can be used to enhance Fe bioavailability from certain maize varieties (Glahn et al., 2019). Given that this previous research only evaluated six maize genotypes, the present study extends this work by evaluating a panel of over 50 maize genotypes to further investigate the role of the germ fraction on maize Fe bioavailability in different kernel types with diverse seed sizes, shapes and colors.

Dietary sources of maize prepared in different regions of the world may or may not contain the germ fraction. While there are several methods to prepare maize, the present study analyzed cooked maize flour (also called instant maize flour) as typically prepared for arepas, a white corn bread commonly consumed in Colombia and Venezuela (Ranum et al., 2014). Producing this type of maize flour normally involves degermination, cooking, steeping, milling, and drying prior to consumer use (Pineda-Gómez et al., 2012). Bioavailability analysis with cooked maize better reflects how iron is absorbed after processing (Glahn et al., 2019).

Several mechanisms could affect Fe bioavailability when maize is processed and degerminated. Phytate is considered a prominent inhibitor of Fe absorption, though correlations between phytate and Fe bioavailability are lacking (Lung’aho et al., 2011) and low-phytate maize has less desirable kernel characteristics (Glahn et al., 2019). Polyphenols, present in the bran (pericarp) of pigmented maize varieties, largely inhibit iron absorption, though some can act as potential enhancers (Hart et al., 2015). Furthermore, differences in the food matrices of flours produced from genotypes with varying bran, germ, and endosperm characteristics may impact Fe bioavailability (Moretti et al., 2006; Zhang and Xu, 2019; Zurak et al., 2020).

This study expands upon existing knowledge related to Fe bioavailability of maize kernel components. The objectives of this study were to evaluate the mineral concentrations (Fe, Zn, Ca and Mg), phytate levels and Fe bioavailability in a diverse panel of cooked whole and degerminated maize genotypes and to further evaluate mechanisms that would improve the Fe bioavailability of this important food crop.





Materials and methods




Germplasm materials and sample preparation

Grain from over 50 maize genotypes representing a wide array of phenotypes from different kernel types, improvement levels and colors were sampled for this study (Table S1; Figure S1). The self-pollinated (inbred line, including public and exPVP) or sibling-pollinated (landrace/heirloom) grain samples were from diverse maize lines grown over several nursery seasons: 2007 Juana Diaz, Puerto Rico; 2013 Columbia, Missouri; 2018 Valle de Banderas, Nayarit, Mexico, and 2019 Columbia, Missouri. Maize samples originated from genotypes grown at a single environment for each nursery season. Ears were harvested after physiological maturity (black layer formation) and dried to approximately 12% moisture before shelling manually to avoid contamination between genotypes. Harvested maize kernels was stored at 4°C at 40% relative humidity until samples were shipped for analysis.

This collection of grain samples was not from plants grown in formal experiments which account for field variability or environmental conditions, but rather were simply chosen to broadly sample maize diversity. In addition, the commercial maize variety Pioneer 3425 (received from the Center for Crops Utilization Research) was used as the reference control for the Caco2 cell culture experiments described below. This variety was selected as a reference standard because it’s commercially available and was extensively studied in previous degermination experiments (Glahn et al., 2019). A total of 52 maize genotypes were grouped together and designated as the Maize Nutrition Panel (MNP). Because environment (locations and years) plays an important role in determining the Fe concentrations of grain, the MNP can be used in future experiments that are designed to control for location and environment variation. A description of the kernel types, improvement levels and colors of the MNP are presented in Table S1.

Degerminated samples were produced by carefully splitting each kernel in half, and then removing the germ fraction of each kernel half with a scalpel as previously described by Glahn et al., 2019 (visualized in Figure S2). Kernel halves were visually assessed for endosperm composition and recorded as having either vitreous, vitreous and floury, or floury endosperms (Table S1; Figure S1).

Corn flour samples were prepared based on traditional methods for preparing pre-cooked arepa dough as described by Pineda-Gómez et al. (2012). Whole kernels were cut in half to expose the interior of the kernel in a similar manner as the degerminated grains and yielded similar cooking time across both sample types. Both degerminated and whole maize samples were rinsed in distilled water prior to cooking in 50 mL polyethene centrifuge tubes with five times as much distilled water by weight: approximately 5 g of sample in 25 mL of water. Samples were placed in a tube rack in a pot of cold distilled water on a Max Burton 6400 induction stove and heated from 22°C to 92°C at an average rate of 2.3°C/min (visualized in Figure S3). The maize was cooked at 92°C for 60 mins, then heat turned off as samples steeped in their cooking water for three hours until they returned to 25°C. Maize samples were drained, weighed, and then frozen at -80°C prior to freeze-drying (VirTis™ Research Equip., Gardiner, NY, United States). Lyophilized samples were weighed again to ensure they achieved at least 50% moisture after cooking. Maize samples that did not achieve 50% moisture after cooking were processed by hand and recooked. Cooked and dried maize samples were milled with a stainless-steel Kinematica Polymix ® analytical hammer mill (PX-MFC 90D, Bohemia, NY, United States) fitted with a 0.5mm screen. These samples represent a pre-cooked maize flour, which is used to prepare arepas and other maize-flour foods.





Mineral analysis

For mineral analysis, 0.5 g of lyophilized and milled maize sample (in duplicate) from both whole and degerminated grains were predigested in boro-silicate glass tubes with 3 mL of a concentrated ultrapure nitric acid and perchloric acid mixture (60:40 v/v) for 16 h at room temperature. Samples were then placed in a digestion block (Martin Machine) and heated incrementally over 4 h to a temperature of 120°C with refluxing. After incubating at 120°C for 2 h, 2 mL of concentrated ultrapure nitric acid was subsequently added to each sample before raising the digestion block temperature to 145°C for an additional 2 h. The temperature of the digestion block was then raised to 190°C and maintained to evaporate any remaining liquid. Digested samples were resuspended in 20 mL of ultrapure water prior to analysis using ICP-AES (inductively coupled plasma atomic emission spectrometry; Thermo iCAP 6500 Series, Thermo Scientific) with quality control standards (High Purity Standards) following every 10 samples. Yttrium purchased from High Purity Standards (10M67–1) was used as an internal standard. All samples were digested and measured with 0.50 μg/mL of Yttrium (final concentration) to ensure batch-to-batch accuracy and to correct for matrix inference during digestion. All samples were assessed for possible Fe contamination from soil with aluminum (Al) concentrations. None were found to have Al concentrations over 5 μg/g (dry weight), which is the concentration indicative of possible Fe contamination.





Phytate analysis

For phytate (phytic acid) determination, 0.5 g of each sample (in duplicate) from both whole and degerminated grains was first extracted in 10 mL of 0.66 M hydrochloric acid under constant motion for 16 h at room temperature. A 1 mL aliquot of total extract was collected using a wide bore pipet tip, and then centrifuged at 16,000 g for 10 min to pellet debris. A 0.5 mL sample of supernatant was then neutralized with 0.5 mL 0.75 M sodium hydroxide and stored at -20°C until the day of analysis. A phytate/total phosphorous kit (K-PHYT; Megazyme International, Bray, Ireland) was used to measure liberated phosphorous by phytase and alkaline phosphatase. Phosphorous was quantified by colorimetric analysis as molybdenum blue with phosphorous standards read at a wavelength of 655 nm against the absorbance of a reagent blank. Total phytate concentrations were calculated with Mega-Calc™ by subtracting free phosphate concentrations in the extracts from the total amount of phosphorous that is exclusively released after enzymatic digestion. Phytate to iron molar ratios and phytate to zinc molar ratios are calculated using the following equation (Wiesinger et al., 2022):

	

	





Caco2 cell bioassay for Fe bioavailability

An established in vitro digestion/Caco2 cell culture model of the human intestinal epithelial barrier was used to assess the iron bioavailability of both whole and degerminated maize samples after cooking (Glahn et al., 1998; Glahn, 2022).

Caco2 cells (obtained at passage 21; American Type Culture Collection, Gaithersburg, MD, USA) were seeded at a density of 50,000 cells/cm2 in 6-well collagen coated plates (Costar, Cambridge, MA, USA) at passage 28 – 38. Cells were grown for 13 days before each bioassay at 37°C in an incubator with a 5% CO2 air atmosphere (constant humidity) using Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, Grand Island, NY) supplemented with 25 mM HEPES (pH 7.2), 10% (v/v) fetal bovine serum (GIBCO) and 1% antibiotic-antimycotic solution (ZellShield®, Minerva Biolabs, Germany). The medium was changed every 2 days. Twenty-four hours prior to each bioassay, the culture medium was replaced with iron-free Minimum Essential Medium (MEM [pH 7]; GIBCO) supplemented with 10 mM PIPES (piperazine-N,N’-bis-[2-ethanesulfonic acid]), 1% antibiotic-antimycotic solution, hydrocortisone (4 mg/L), insulin (5 mg/L), selenium (5 μg/L), triiodothyronine (34 μg/L) and epidermal growth factor (20 μg/L). A fresh 1 mL aliquot of MEM (pH 7) covered the cells during each experiment.

A 0.5 g of each sample (in triplicate) of whole and degerminated grain was subjected to a simulated gastric digestion with Porcine pepsin (P6887; 800 – 2500 Units/mg protein; Sigma Aldrich Co., St. Louis, MO, USA) for 1 hour at 37°C (pH 2) and a simulated intestinal digestion with pancreatin (P1750; 4 X USP specifications; Sigma Aldrich) and bile extract (B8631; glycine and taurine conjugates of hyodeoxycholic and other bile salts) for 2 hours at 37°C (pH 7). A sterilized insert ring, fitted with a dialysis membrane, was then inserted into each 6-well plate, thereby creating a two-chamber system. To initiate the bioassay, a 1.5 mL aliquot of the intestinal digest was pipetted into the upper chamber of each well. The plate was covered and incubated at 37°C (5% CO2 air atmosphere) on the rocking shaker at 6 oscillations/min for a total of 2 hours. When the bioassay was terminated, the insert ring and digest were removed. The solution in the bottom chamber remained on the cell monolayer and an additional 1 mL of iron-free MEM (pH 7) was added to each well. The cell culture plate was then returned to the incubator (37°C; 5% CO2 air atmosphere) for an additional 22 hours, after which the cells were lysed with sterilized water and harvested for analysis.

Ferritin concentration measurements were performed according to the detailed methods described by Glahn et al. (Glahn et al., 1998; Glahn, 2022). The bioassay works according to the following principle: in response to increases in cellular iron concentrations, Caco2 cells produce more ferritin protein, therefore iron bioavailability was determined as the increase in Caco2 cell ferritin production expressed as a ratio to total Caco2 cell protein (ng ferritin per mg of total cell protein) after exposure to a digested sample. Ferritin was measured by enzyme linked immunoassay (Human Ferritin ELISA kit, FRR31-K01, Eagle Biosciences Inc., Nashua, NH, USA) and total cell protein concentrations were quantified using the Bio-Rad DC™ protein assay kit (Bio-Rad Laboratories Inc., Hercules, CA, USA).

To confirm the responsiveness of the Caco2 bioassay, each experiment was run with several quality controls. These include a blank-digest, which is only the physiologically balanced saline and the gastrointestinal enzymes. The blank-digest is used to ensure there is no iron contamination in the bioassay. Ferritin values of Caco2 cells exposed to the blank-digest averaged 2.00 ± 0.54 ng ferritin/mg cell protein (mean ± Standard Deviation; SD) over the course of five cell culture experiments. A cooked, lyophilized, and milled white kidney bean (cultivar name: Snowdon) is run with each assay as a reference standard to index the ferritin/cell protein ratios of the Caco2 cells after being exposed to a digested food matrix. The responsiveness of the Caco2 cells is monitored using a cooked, lyophilized and milled white kidney bean pasta that was processed with the addition of 2 mM ascorbic acid. The maize panel’s reference standard Pioneer 3245 was also monitored before and after degermination. The iron bioavailability of each sample was measured in triplicate.






Statistical analysis

Statistical analyses and mean separations were determined with SAS 9.4 software (SAS Institute, Cary, NC, USA) using the proc mixed command for the analysis of variance. The normality of residuals for each parameter was evaluated using the Kolmogorov-Smirnov test. Equality of variance for each parameter was determined using the Bartlett’s test. Measured parameters were found to have a normal distribution and equal variance, and were, therefore, acceptable for ANOVA without additional data transformation steps. Genotype was designated as a fixed effect and replication as a random effect followed by a Tukey-Kramer post-hoc test. Dot plots illustrating the parameters measured in each maize color type (yellow, white, or pigmented) were developed in GraphPad Prism9 (GraphPad Software, La Jolla, CA, USA). Phenotypic correlations were calculated with Pearson’s 1-tailed correlation test (GraphPad Prism9). Differences with P values ≤ 0.05 were considered statistically significant.





Results




Maize Fe concentrations and Fe bioavailability vary widely across genotypes

The 52 maize genotypes of the MNP showed a wide range in Fe concentration, Fe bioavailability in whole kernels, and Fe bioavailability in response to degermination. The Fe concentrations of whole cooked maize ranged from 10.5 to 39.5 µg/g while degerminated cooked maize ranged from 3.3 to 12.1 µg/g (Figure 1A). Previous reports have found Fe concentrations similar to these ranges (Oikeh et al., 2003; Gwirtz and Garcia-Casal, 2014; Glahn et al., 2019). The Fe bioavailability, measured as ferritin formation by Caco2 cells, ranged from 0.6 to 10.7 ng ferritin/mg cell protein in cooked whole maize and 0.6 to 12.6 ng ferritin/mg cell protein in cooked degerminated maize (Figure 1B). Ferritin values for the boiled white kidney bean control averaged 8.13 ± 0.99 ng/mg cell protein (mean ± SD), and the white kidney bean pasta with ascorbic acid control averaged 85.7 ± 13.8 ng/mg cell protein. Ferritin values for the reference standard Pioneer 3245 averaged 2.88 ± 1.15 ng/mg cell protein in whole kernels and 5.18 ± 1.46 ng/mg cell protein in degerminated kernels. A selected group of maize genotypes are highlighted in Figure 1 to illustrate how the concentrations of Fe are consistently decreased after removing the germ fraction. In contrast, the iron bioavailability response is variable among the highlighted genotypes, with some genotypes having more bioavailable iron after processing (Figure 1).




Figure 1 | Dot plots depicting iron concentrations (A) and iron bioavailability (B) of the 52 maize genotypes in the Maize Nutrition Panel before (whole) and after removing the germ fraction (degerminated). Each dot represents the mean value of three measurements from each genotype. Iron concentrations are measured as micrograms per gram of cooked, lyophilized and milled maize sample (dry weight). Iron bioavailability is measured as Caco2 cell ferritin concentrations (ng ferritin/mg total cell protein) after exposure to an in vitro digestion of cooked, lyophilized and milled maize sample. Highlighted circles indicate examples of genotypes with unique iron bioavailability traits after degermination. The circle color of pigmented maize represents the bran color pattern of each genotype.



There was no panel-wide correlation between Fe concentrations and the Fe bioavailability of either whole or degerminated maize (Table 1). However, both whole and degerminated yellow maize, as well as degerminated white maize showed positive correlations between Fe concentration and Fe bioavailability (Table 1). These results indicate that targeted biofortification of Fe into the endosperm fraction of yellow or white maize varieties could be a mechanism by which to enhance the Fe bioavailability of these grain types after processing.


Table 1 | Pearson correlations and associated P values between iron bioavailability, phytate and iron concentrations of the Maize Nutrition Panel (MNP) before and after removing the germ fraction (degerminated)1.







Most but not all genotypes showed an increase in bioavailable Fe when degerminated

For 30 genotypes, degermination resulted in increased Fe bioavailability (Table 2). However, 14 genotypes showed no significant change (Table 3) and eight had decreased Fe bioavailability after degermination (Table 4). White maize genotypes nearly all improved, yellow genotypes varied in response to degermination, and pigmented genotypes largely showed no change or a decrease in Fe bioavailability (Tables 2–4). Yellow and white maize showed similar average Fe bioavailability in whole cooked maize: 3.6 ± 2.5 ng ferritin/mg cell protein (Mean ± SD) and 3.5 ± 1.4 ng ferritin/mg cell protein, respectively. Group-wide averages of Fe concentrations were similar for yellow and white maize (Figure 1A). However, degerminated white maize had higher bioavailable Fe on average (6.7 ng ferritin/mg cell protein) than degerminated yellow maize (4.0 ng ferritin/mg cell protein), which did not show a clear group-wide improvement in bioavailability after processing (Figure 1B).


Table 2 | Description and iron concentrations of maize genotypes that had more bioavailable iron after removing the germ fraction (degerminated)1.




Table 3 | Description and iron concentrations of maize genotypes that had no change in their iron bioavailability after removing the germ fraction (degerminated)1.




Table 4 | Description and iron concentrations of maize genotypes that had less bioavailable iron after removing the germ fraction (degerminated)1.







White maize showed the largest increase in Bioavailable Fe when degerminated

All white maize genotypes except for Cherokee Flour had improved Fe bioavailability when degerminated. Bioavailable Fe ranged from 1.1 to 6.4 ng ferritin/mg cell protein in whole white maize and from 3.4 to 12.6 ng ferritin/mg cell protein when degerminated. While no whole-kernel white maize exceeded 7 ng ferritin/mg cell protein, three genotypes achieved over 12 ng ferritin/mg cell protein after degermination (Figure 1B). The bioavailable Fe of PHW17 and CML247 approximately doubled when degerminated while that of CML333 more than tripled (Figure 1B; Table 2). Only Cherokee flour, with low bioavailable Fe (1.67 ± 0.19 ng ferritin/mg cell protein) when whole, showed no change when degerminated (Table 3). There was no significant correlation between cooked Fe concentrations and the Fe bioavailability of whole white maize, however, there was a positive correlation between Fe concentrations and Fe bioavailability when degerminated (Table 1). These results suggest that the germ fraction is a strong inhibitor of iron bioavailability in white maize, and breeding for higher endosperm Fe concentrations could be an affective strategy to enhance the absorption of iron from white maize after processing.





Yellow Maize Genotypes Showed Mixed Responses to Degermination

Yellow maize showed mixed results in terms of degermination and Fe bioavailability: 11 genotypes improved, eight had no change, and five had less bioavailable Fe after degermination (Tables 2–4). Little Red Flint was among the highest in Fe bioavailability of the whole-kernel yellow genotypes (7.74 ± 0.33 ng ferritin/mg cell protein) and its Fe bioavailability increased (12.42 ± 0.94 ng ferritin/mg protein) when degerminated (Figure 1B; Table 2). In contrast, while PHG83 had the highest Fe bioavailability (10.65 ± 1.28 ng ferritin/mg cell protein) of the yellow whole-kernel genotypes, its Fe bioavailability decreased (8.41 ± 0.47 ng ferritin/mg cell protein) after processing (Figure 1B; Table 4). Bioavailable Fe ranged from 0.8 to 10.7 ng ferritin/mg cell protein in whole-kernel samples, and 1.0 to 12.4 ng/mg total protein in degerminated samples. There was a significant correlation between cooked Fe concentrations and the Fe bioavailability of yellow maize before and after degermination (Table 1). These results indicate that breeding for overall higher iron concentrations could lead to more bioavailable iron from yellow maize after processing.





Pigmented maize has less bioavailable Fe, which does not improve after degermination

When compared to white and yellow maize, pigmented genotypes generally had less bioavailable Fe including mixed-color samples (Figure 1; Tables 3, 4). These genotypes showed either no change or a decrease in bioavailable Fe after degermination except for Chapalote (brown), which increased from 2.47 ± 0.50 to 5.28 ± 0.51 ng ferritin/mg cell protein (Figure 1B; Table 2). Black pigmented genotypes Apache and Maiz Morado did not show a significant change (Table 3), while red genotype Jimmy Red and blue genotype Ohio Blue Clarage had a decrease in Fe bioavailability after processing (Table 4). There was no significant correlation between Fe concentrations and the Fe bioavailability of pigmented maize before or after degermination (Table 1).

The blue, red, purple, black, or brown bran of pigmented genotypes (Figure S1) indicate the presence of polyphenols. The types of polyphenols present in the bran of maize vary greatly between genotypes (Suriano et al., 2021). Polyphenols are largely considered inhibitors of iron absorption, however, the composition of individual polyphenols that create the different bran colors may complicate this assertion: while many types of polyphenols inhibit iron absorption, some can act as enhancers (Hart et al., 2015). Overall, the lack of Fe bioavailability in pigmented maize, both whole and degerminated, is likely due to the presence of inhibitory polyphenols such as tannins and anthocyanins in the bran of blue, red, purple, and black maize.





The relationship between phytate and the Fe bioavailability of maize is complex

Figure 2 shows the phytate concentrations and phytate:Fe molar ratios of cooked maize samples before and after degermination. The phytate concentration and the phytate:Fe molar ratio of each genotype in the MNP are listed in Table S2. Removing the germ fraction reduced the phytate concentrations by sixfold (from a panel-wide average of 7.6 ± 1.3 to 1.2 ± 0.4 mg/g) and halved the average phytate:Fe molar ratios, from 31.1 ± 7.9 to 15.5 ± 5.4 (Figure 2; Table S2). Overall, phytate and Fe concentrations were positively correlated among whole and degeminated maize genotypes in the MNP and for all color groups besides white maize (Table 5). The loss of phytate, Fe and Zn after removing the germ fraction indicates that these compounds and elements are colocalized within the germ fraction (Figures 2, 3; Tables S2-S3). However, the large reductions in phytate:Fe and phytate:Zn molar ratios after degermination reveal that Fe and Zn may have potentially localized with other compounds in addition to phytate in the bran and endosperm fraction of the maize kernel (Figures 2, 3; Table S2).




Figure 2 | Dot plots depicting phytate concentrations (A) and phytate:Fe molar ratios (B) of the 52 maize genotypes in the Maize Nutrition Panel before (whole) and after removing the germ fraction (degerminated). Each dot represents the mean value of two measurements from each genotype. Phytate concentrations are measured as milligrams per gram of cooked, lyophilized and milled maize sample (dry weight). The circle color of pigmented maize represents the bran color pattern of each genotype.




Table 5 | Pearson correlations and associated P values between iron and the concentrations of zinc and phytate in the Maize Nutrition Panel (MNP) before and after removing the germ fraction (degerminated)1.






Figure 3 | Dot plots depicting zinc concentrations (A) and phytate:Zn molar ratios (B) of the 52 maize genotypes in the Maize Nutrition Panel before (whole) and after removing the germ fraction (degerminated). Each dot represents the mean value of two measurements from each genotype. Zinc concentrations are measured as micrograms per gram of cooked, lyophilized and milled maize sample (dry weight). The circle color of pigmented maize represents the bran color pattern of each genotype.



The results in Table 1 show no correlation between Fe bioavailability and phytate concentrations or phytate:Fe molar ratios among the 52 genotypes of the MNP when prepared with either whole kernels or degerminated flour. Moreover, there was no correlation between Fe bioavailability and phytate in white and yellow maize flour prepared with whole kernels. In contrast, there was strong negative correlation between Fe bioavailability and phytate concentrations in pigmented maize flour prepared with whole kernels. However, this correlation evidently did not translate to more bioavailable Fe when compared to the white and yellow maize types. The lack of any consistent correlation between the Fe bioavailability, phytate concentrations or phytate:Fe molar ratios of genotypes in the MNP indicates that phytate concentrations of whole kernel maize flour may not be as meaningful for maize Fe bioavailability as previously suggested (Hurrell and Egli, 2010; Lung’aho et al., 2011; Glahn et al., 2019).

The relationship between Fe bioavailability and phytate becomes more dynamic when degerminated maize is prepared into a cooked flour product. Interestingly, there was a strong positive correlation between Fe bioavailability and concentrations of phytate in yellow maize after degermination (Table 1). There was also a strong positive correlation between Fe bioavailability and phytate:Fe molar ratios among the pigmented maize genotypes (Table 1). A fully intact phytate molecule (IP6) is often considered an inhibitor of dietary iron uptake, but is susceptible to heat and processing. Boiling, steeping and milling maize into flour contributes to the degradation of phytate into smaller molecules (IP5, IP4, IP3, etc.) with less inhibitory actions. Phytate degradation after processing degerminated maize flour could change the phytate-Fe interactions within endosperm, allowing for greater iron uptake during digestion (Wiesinger et al., 2022; Gupta et al., 2015).





Zinc, calcium and magnesium concentrations of the MNP

The concentrations of Zn, Ca and Mg for the 52 genotypes in the MNP - before and after degermination - are listed in Tables S3-S4. Figure 3A shows the concentrations of zinc in whole and dergerminated maize samples after cooking. Large reductions in Zn concentrations were measured in all the genotypes after degermination (Figure 3A). Phytate : Zn molar ratios were also significantly lower after removing the germ fraction, with values nearly halve of whole maize kernels (Figure 3B). Phytate : Zn molar ratios are considered a proxy for estimating zinc bioavailability from foods (Wiesinger et al, 2022). How the decrease in phytate:Zn molar ratios impact the bioavailability of Zn from processed maize remains unknown, but as demonstrated with Fe, increasing the Zn concentrations in the endosperm fraction rather than the germ fraction could be a strategy to improve the delivery of bioavailable Zn from degerminated maize flour.

The concentrations of Fe and Zn had significant positive correlations for all sample groups except for white maize and degerminated pigmented samples (Table 5). Previous research has also reported a positive correlation between Fe and Zn concentrations for some, but not all maize sample groups (Pixley et al., 2011). These data suggest that selection for higher Fe concentrations, especially in yellow maize, may inherently lead to higher Zn concentrations as well (Table 5).






Discussion

This study expanded upon previous maize Fe bioavailability research (Glahn et al., 2019) and found a wide range in Fe bioavailability across a large number of genotypes both in whole and degerminated kernels. There may be increased bioavailable Fe genotypes already available for research and improvement: degerminated white CML333 and orange Little Red Flint had twice as much bioavailable Fe than the average for their kernel color group (Figure 1). Other genotypes including yellow PHG83 may be good candidates for increased bioavailable Fe in whole kernel maize preparations. These and other genotypes in this study with higher-than-average bioavailable Fe may be candidates for the development of high-bioavailable Fe varieties. This study clearly indicates that additional diversity panels and quantitative trait locus (QTL) mapping populations should be developed and utilized to reach the achievable goal of producing more high bioavailable Fe maize varieties. Indeed, a recombinant inbred line (RIL) population of B73 x CML333 is a ready-made resource, as CML333 is one of the nested association mapping founders (McMullen et al., 2009). Because the population has already been genotyped, QTL mapping would only require phenotyping of the ~200 RILs followed by QTL analysis. Unfortunately, Little Red Flint is a landrace/heirloom variety with no current genetic resources. It would be interesting to create a population from the cross of CML333 and Little Red Flint to see if these two varieties have different mechanisms/genes leading to their higher bioavailable Fe and/or whether transgressive segregation could result in progeny higher than either of the parents. Producing this population in multiple locations over several growing seasons would also be an important step in monitoring the variability of iron bioavailability among RILs in different environments.

The amount of bioavailable Fe in some maize genotypes can match or even exceed that of crops typically considered good sources of iron, such as white beans. Two of the MNP whole-kernel samples and six of the degerminated samples matched or exceeded the iron bioavailability of a cooked white kidney bean (cv. Snowdon) considered to be high in bioavailable Fe. Ferritin values for the white kidney bean averaged 8 ng ferritin/mg cell protein. Although maize typically has lower Fe concentrations than grain legumes (Glahn et al., 2019), its chemical composition and food matrix has the potential to deliver more dietary iron due to its high bioavailability during digestion.

Increasing iron absorption from maize via genotype selection and or processing could improve the iron status of vulnerable populations in places where maize is a major part of the diet. For example, if iron absorption were doubled in maize consumed in Tanzania, where more than half of the diet is maize in some regions (Cochrane and D’Souza, 2015), the rates of iron deficiency – which affects over 40% of the women and children (National Bureau of Statistics (NBS), 2011) – could be decreased.

While previous research suggested that degermination consistently increases bioavailability (Glahn et al., 2019), the current study indicates that while Fe bioavailability from many genotypes may benefit from degermination, several show no change or even a decrease in Fe bioavailability. Most of the white and yellow maize genotypes increased in bioavailable Fe when degerminated, indicating lower concentrations of polyphenols may be beneficial in improving the absorption of iron from maize after processing. In addition, it should also be considered that degerminated maize may have less of an inhibitory effect than whole maize on other sources of Fe consumed in the same meal, such as Fe from beans or other whole grains. The approach of using a Caco2 cell bioassay is ideally suited to such studies (Glahn et al., 2017) as it is a model of the human intestinal epithelial barrier.

White maize is typically preferred for human consumption (Gwirtz and Garcia-Casal, 2014; Ranum et al., 2014). Arepas, and the cooked maize flour precursor as prepared in this study, are typically made with white corn (Pineda-Gómez et al., 2012). While there are nutritional issues with consuming white maize, such as the lack of vitamin A precursors (Ranum et al., 2014), the benefits of increased iron accessibility in degerminated white maize flour suggests that white maize a promising candidate for iron biofortification. In the present study white maize almost always increased in Fe bioavailability when degerminated and three of the four highest-bioavailable Fe samples in the MNP were degerminated white maize (Figure 1). The lack of iron inhibiting polyphenols in the bran is most likely why Fe bioavailability responds more positively to degermination in white maize than other color groups (Hart et al., 2015).

In yellow maize, differences between genotypes should be considered when determining whether degermination will improve Fe bioavailability. Yellow maize contains more carotenoids than white maize, which have been reported to enhance iron absorption even in the presence of inhibitors such as tannins and phytate (García-Casal et al., 2000; Pixley et al., 2011). However, this study shows that yellow maize had similar Fe bioavailability to white maize in whole kernels (Figure 1). Although carotenoids were not measured, the results of this study indicate there is no clear alignment between the yellow color of maize and Fe bioavailability.

Alternatively, this research demonstrates a positive relationship between Fe and Zn concentrations in yellow maize (Table 5). Biofortification of zinc in maize is an important strategy aimed at alleviating micronutrient deficiencies in the same regions where maize is a dietary staple (Gallego-Castillo et al., 2021). High kernel-zinc maize varieties are available to consumers in Latin American, and can deliver more dietary zinc when prepared into either arepas, tortillas or mazamorra (Gallego-Castillo et al., 2021). A negative correlation between Zn and Fe bioavailability in maize has been previously reported but was not consistent across all trials (Pixley et al., 2011). Zn to Fe concentration ratios were 0.9 ± 0.2 and 0.9 ± 0.3 for whole and degerminated maize samples, respectively. These values are far lower than the 5 to 1 ratio suggested as the threshold for Zn inhibition of Fe absorption (Olivares et al., 2012).

The methods by which maize is processed into food affects Fe bioavailability, as the process of degermination evaluated in this study clearly shows. Some traditional and industrial maize processing methods remove the germ fraction while others retain it. Degermination is desirable because it extends the shelf life of maize flour (Gwirtz and Garcia-Casal, 2014). Production of pre-cooked corn flours for arepas – the process used in this study – usually includes a degermination step, while nixtamalization for tortillas does not (Pineda-Gómez et al., 2012). Further common maize processing methods, such as soaking and fermentation vary in their capacity to degrade phytate, but have less of an effect on iron absorption (Hurrell and Egli, 2010; Gupta et al., 2015). Variation of Fe concentrations in different white maize preparations has been previously reported: 24 µg/g Fe in whole-grain maize flour, 9 µg/g in degermed flour, 15 µg/g nixtamalized dough, and 9 µg/g in precooked maize flour (Gwirtz and Garcia-Casal, 2014). The bioavailability of Fe across aspects of processing beyond degermination likely varies as well, with genotype playing a role in these differences. Local preferences for maize processing methods and maize color groups should be considered when developing high bioavailable Fe maize (Bouis and Welch, 2010).

The matrix of a food clearly impacts iron absorption, but these effects are not well understood (Moretti et al., 2006). Ingredients that are served with maize may either inhibit or enhance Fe bioavailability (Bouis and Welch, 2010). Ingredients that include ascorbic acid, for example, can significantly increase the amount of iron absorbed from a meal (Hurrell and Egli, 2010). Maize is frequently consumed in dishes with the common bean, which can also contain high levels of phytate and polyphenols, both of which reduce iron absorption (Petry et al., 2010; Wiesinger et al., 2020). In maize itself, there are certain fibers present that have been reported to reduce Fe and Zn bioavailability (Bouis and Welch, 2010). The characteristics of the endosperm and germ matrices likely affect the accessibility of iron in maize. The maize endosperm can be described on a range of floury to vitreous. Vitreous and floury endosperms differ in zein, amylose, starch, and lipid compositions and differ in a range of physicochemical properties (Zhang and Xu, 2019; Zurak et al., 2020). Zeins may be relevant to iron absorption because specific zein proteins (gamma and beta) are rich in cysteine (Wu et al., 2012). Cysteine and cysteine-containing peptides have been found to enhance iron absorption (Hurrell and Egli, 2010). In the present study, three of the four genotypes with the highest bioavailable Fe had among the most vitreous endosperms – exceeding ferritin values of 12 ng ferritin/mg cell protein when degerminated (Table S1). Interestingly, the maize genotype with the highest iron bioavailability (PHW17) had a mixture of vitreous and floury endosperm (Figure S1; Table S1). There were no obvious trends in whole kernels, possibly related to the more prominent effects of the germ fraction. However, this study did not quantify the vitreous:floury endosperm ratio or statistically analyze any correlations between endosperm composition and bioavailable Fe.





Conclusions

This study reveals that there are ways to improve the iron bioavailability of maize via breeding and processing. Indeed, high bioavailable Fe maize is achievable (Tako et al., 2013; Tako et al., 2015). The common practice of degermination clearly alters the iron delivery from maize, often increasing iron bioavailability, though effects vary by kernel type, endosperm characteristics and bran color. This research provides new insights into maize as an improved dietary source of Fe, demonstrating that the phenotype for high Fe bioavailability after processing is an important factor to consider when breeding for the biofortification of maize. Furthermore, processes that confer increased Fe absorption may already be available for maize. Implementing these ideas to increase the iron bioavailability of maize in food products of convenience (i.e., snacks, pasta, and baked goods) is an additional strategy to help lower the prevalence of iron deficiency anemia in regions where cereal grains make up a high proportion of a communities’ diet. Measuring the iron content and iron bioavailability of maize products from multiple growing environments over several years of experiments will be the next step in evaluating the iron benefits of maize, especially in genotypes that show a high capacity for iron bioavailability after cooking and processing.
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Rice kernel quality has vital commercial value. Grain chalkiness deteriorates rice’s appearance and palatability. However, the molecular mechanisms that govern grain chalkiness remain unclear and may be regulated by many factors. In this study, we identified a stable hereditary mutant, white belly grain 1 (wbg1), which has a white belly in its mature grains. The grain filling rate of wbg1 was lower than that of the wild type across the whole filling period, and the starch granules in the chalky part were oval or round and loosely arranged. Map-based cloning showed that wbg1 was an allelic mutant of FLO10, which encodes a mitochondrion-targeted P-type pentatricopeptide repeat protein. Amino acid sequence analysis found that two PPR motifs present in the C-terminal of WBG1 were lost in wbg1. This deletion reduced the splicing efficiency of nad1 intron 1 to approximately 50% in wbg1, thereby partially reducing the activity of complex I and affecting ATP production in wbg1 grains. Furthermore, haplotype analysis showed that WBG1 was associated with grain width between indica and japonica rice varieties. These results suggested that WBG1 influences rice grain chalkiness and grain width by regulating the splicing efficiency of nad1 intron 1. This deepens understanding of the molecular mechanisms governing rice grain quality and provides theoretical support for molecular breeding to improve rice quality.
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Introduction

Grain chalkiness describes the presence of opaque spots in the endosperm and has a vital role in determining rice quality. Rice grains with high transparency and low chalkiness are preferred by consumers, and varieties that produce this type of grain are popular with rice farmers and seed companies (Fitzgerald et al., 2009). However, rice varieties with high chalkiness grains are difficult to be popularized on a large scale, despite the high yield. Grain chalkiness not only affects the appearance and palatability of rice but also results in reduced yield after rice grain processing (Li et al., 2014; Misra et al., 2019). Therefore, clarification of the molecular mechanisms of rice chalkiness could contribute to the development of high-yield varieties with high quality to meet the market demand.

There are three types of rice grain chalkiness, dependent on where the chalkiness appears in the grain: white belly, white core, and white back (Zhou et al., 2009; Siebenmorgen et al., 2013). In the chalky part of the endosperm, starch granules are round and loosely packed, with many air gaps between starch granules, resulting in low light transmittance and a chalky appearance. In contrast to the chalky part, starch granules are polyhedral and densely packed in the transparent part (Guo et al., 2011; Li et al., 2014). Previous studies have shown that starch synthesis genes, storage protein biosynthesis regulation genes, and plastid and mitochondrion-associated genes may regulate chalkiness (Zhao et al., 2022).

In the starch synthesis pathway, the coordination and balance of various enzyme activities are an essential prerequisite for transparent grain formation. Weak or loss-of-function mutations of rice endosperm ADP-glucose pyrophosphorylase large subunit OsAGPL2 lead to various phenotypic mutations in grain type, ranging from white core to shrunken floury (Lee et al., 2007; Tuncel et al., 2014; Tang et al., 2016; Wei et al., 2017). The small subunit of ADP-glucose pyrophosphorylase qACE9 determines the size of the area of the chalky endosperm in rice (Gao et al., 2016). OsBT1 encodes an ADP-glucose transporter localized in the amyloplast envelope membrane. The osbt1 null mutant has a white core endosperm (Cakir et al., 2016; Li et al., 2017). RNA interference (RNAi)-repressed or knockout SSIIIa mutants had grains with white core endosperms (Ryoo et al., 2007; Zhang et al., 2011). Mutation of SSIIa via RNAi repression slightly increased grain chalkiness area, which resulted in a little white belly or white back. The kernels of SSIIa/SSIIIa double-repression mutant rice lines also had a chalky kernel appearance (Ryoo et al., 2007; Zhang et al., 2011). PHO1 encodes a plastidial α-glucan phosphorylase, and pho1 mutants have a white core or shrunken endosperm, which is temperature-dependent (Satoh et al., 2008). OsbZIP58, a bZIP transcription factor, was shown to directly bind to the promoters of six starch-synthesizing genes, including OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, to regulate their expression. Osbzip58 null mutants had white-bellied grains, with reduced starch accumulation in the grain belly region (Wang et al., 2013). RNAi repression or knockout of the nuclear transcription factor NF-YB1 decreased the filling rate of grains and resulted in a chalky grain phenotype (Xu et al., 2016; Bello et al., 2019). Knockout of NF-YC12 significantly reduced the accumulation of starch and increased grain chalkiness (Bello et al., 2019; Xiong et al., 2019). RSR1, an AP2/EREBP transcription factor, negatively regulates starch synthesis in the endosperm (Fu and Xue, 2010). The rsr1 mutant had altered starch granule morphology, resulting in a white core phenotype (Fu and Xue, 2010).

In seed storage protein biosynthesis, defects in post-transcriptional processing of storage proteins will lead to a complete floury endosperm phenotype (Wang et al., 2010; Fukuda et al., 2011; Tian et al., 2013; Ren et al., 2014; Fukuda et al., 2016; Wang et al., 2016). Recent studies found that some transcription factors and unfolded protein response (UPR) genes are involved in rice seed storage protein metabolism and regulation of grain chalkiness. OsbZIP50, OsBip1, OsBip2, and OsBip3 encode proteins that promote endoplasmic reticulum (ER) UPR, and rice lines that overexpress these UPR genes had various degrees of chalkiness. OsbZIP60 inhibits the expression of OsbZIP50, OsBip1, OsBip2, and OsBip3 to maintain ER homeostasis, and Osbzip60 showed high chalkiness (Yang et al., 2022b).

Defects in genes regulating plastid and mitochondrial metabolism can also lead to grain chalkiness. Mutation of the chloroplast-specific genes pyruvate orthophosphate dikinase FLO4, alanine aminotransferase LNUE1, and glyoxalase FLO15/OsGLYI7 resulted in white core endosperm phenotypes (Kang et al., 2005; You et al., 2019; Fang et al., 2022). OsGBP encodes a plastid-located granule-bound starch synthase binding protein with a carbohydrate-binding module 48 (CBM48) domain; mutation of this gene yields a white belly phenotype (Wang et al., 2020). In addition, the mutation of genes regulating plastid size and differentiation in the endosperm also results in increased grain chalkiness (Matsushima et al., 2014; Cai et al., 2018). The mitochondrion-associated pyruvate kinase OsPK3 physically forms heterodimers with two other PK isozymes, OsPK1 and OsPK4, which are involved in the regulation of grain filling; loss-of-function mutations in OsPK1, OsPK3, or OsPK4 led to chalky grains (Hu et al., 2020).

Previous studies have revealed that deficiency in mitochondrial energy supply leads to serious grain filling defects, with a floury rice grain phenotype (Hao et al., 2019; Wu et al., 2019; Yu et al., 2021). However, it remains unclear whether PPR protein and mitochondrial energy supply defects affect grain chalkiness. In this study, we addressed this question by generating a stable hereditary mutant, wbg1, which yielded a white belly phenotype. Our results confirmed that WBG1 encodes a mitochondrion-targeted P-type PPR protein and affects rice grain chalkiness by regulating the splicing efficiency of nad1 intron 1.





Materials and methods




Plant material and growth conditions

The wbg1 mutant was identified from a mutant pool created by treating the indica cultivar N22 seeds with N-methyl-N-nitrosourea (MNU). flo10 is a rice floury grain mutant that was identified in our previous study (Wu et al., 2019). Developing seeds and mature seeds were taken from the plants growing in paddy fields during the normal growing season.





Microscopy

Scanning electron microscopy (SEM) was used to observe grain phenotype. For this, mature brown grains of wild-type and wbg1 plants were transversely cut using a razor blade and sputter-coated with gold, followed by observation using a HITACHI S-3000N scanning electron microscope. For semi-thin section observation, a transverse section of developing endosperms approximately 1 mm thick was fixed in 2.5% (v/v) glutaraldehyde and 1% (w/v) paraformaldehyde. Samples were sectioned and observed as described previously (Wu et al., 2019).





Positional cloning, vector construction, and rice transformation

For WBG1 mapping, more than 120 polymorphic simple sequence repeat (SSR) and insertion–deletion (InDel) markers covering the whole rice genome were used. Molecular markers in the candidate regions were designed based on nucleotide polymorphisms identified between the indica cultivar 9311 and the japonica cultivar Nipponbare (https://ensembl.gramene.org/Oryza_indica/Location/Compara_Alignments). The WBG1 locus was narrowed to a 98.9-kb region on rice chromosome 3 using the primers listed in Supplementary Table 1. Annotations of predicted open reading frames (ORFs) were determined using genomic sequence NC_029258.1 (3639936 to 3738852) from the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/nuccore/NC_029258.1).

For genetic complementation tests, a 6.1-kb fragment containing the promoter and the full-length coding sequence of WBG1 was amplified using the primers listed in Supplementary Table 1. The fragment was cloned into the binary plasmid vector pCAMBIA1390, followed by introduction into Agrobacterium tumefaciens strain EHA105 and infection of the calli of wbg1. Positive transgenic lines were selected using the recombined vector-specific primers listed in Supplementary Table 1.





Blue native polyacrylamide gel electrophoresis and activity staining of NADH dehydrogenase

Blue native polyacrylamide gel electrophoresis (BN-PAGE) and activity staining of NADH dehydrogenase were performed as previously described (Wu et al., 2019).





RNA extraction, reverse transcriptase polymerase chain reaction, and quantitative RT-PCR analysis

RNA from grains at 9 days after fertilization (DAF) was extracted using an RNAprep Pure Plant Kit (Tiangen Co., Beijing, China) and reverse-transcribed using PrimeScript™ II Reverse Transcriptase (TaKaRa, Mountain View, CA, USA) with random hexamer primers. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses of each splicing event in nad1 introns were performed using primers as previously described (Wu et al., 2019). The rice Actin gene was used as an internal control.

qRT-PCR analyses were performed using an ABI 7500 real-time PCR system with the SYBR Premix Ex Taq™ Kit (TaKaRa). qRT-PCR to assess the splicing efficiency of nad1 intron 1 and nad1 exon1 precursors was performed using the primers listed in Supplementary Table 1. The rice Ubiquitin gene was used as an internal control.





Measurement of total starch, amylose, and ATP content

The total starch content of wild-type and wbg1 mature grains was measured using a Total Starch Assay Kit (Megazyme, Bray, Ireland). The amylose content of wild-type and wbg1 mature grain was measured using the concanavalin A (Con A)-based method, described previously (Wu et al., 2019). ATP content of wild-type and wbg1 grains at 9 DAF were measured using a luciferin–luciferase ATP assay kit following the manufacturer’s protocol (Beyotime, Jiangsu, China).





Measurement of DNA density in agarose gel electrophoresis

Each lane of the gel was plotted using ImageJ software to obtain the value curve (https://imagej.net/software/imagej/). The areas under each resultant value curve were measured in pixels using the wand (tracing) tool in ImageJ.





Haplotypes analysis of WBG1

To analyze the haplotypes of WBG1 in controlling grain width, the full-length chromosome region of WBG1 (3,914 bp, Chr3: 3690005 to 3693919) was used to BLAST in RFGB database (https://www.rmbreeding.cn/). The resources of 1,649 indica and 795 japonica cultivars and the data of grain width (GW) were all collected from the RFGB database. The statistical analysis of phenotypic differences between haplotypes was obtained by using a methodology based on the one-way ANOVA-protected Tukey’s t-tests multiple pairwise comparisons indicated in https://www.rmbreeding.cn/Index/manual#haplotype.





Statistical analysis

GraphPad Prism 8.0 (http://www.graphpad.com/) was used for the statistical analysis. Student’s t-test was used to examine the experimental data.






Results




Phenotypic characterization of the wbg1 mutant

Rice grain chalkiness leads to reductions in rice grain quality and yield. To study the mechanism governing rice grain chalkiness, we treated the indica cultivar N22 grains with MNU and screened mutants for decreased grain quality and weight. Among them, a mutant with white belly phenotype was isolated and named white belly grain 1 (wbg1) (Figure 1A). Compared with the wild type, the grain length of wbg1 was unchanged, but grain width and thickness were significantly decreased (Figure 1B). The filling rate of wbg1 grains across the whole filling period was lower than that in the wild type, and the thousand-grain weight of wbg1 mature seeds was also decreased (Figures 1C, D). Starch measurement showed that the total starch and amylose contents were reduced in the wbg1 mutant (Figures 1E, F). Although wbg1 had decreased grain quality and weight, there was no significant difference in plant height when compared with the wild type (Figures 1G, H). Together, these results indicated that the mutation in wbg1 led to a decrease in grain filling rate and a white belly phenotype in mature grains.




Figure 1 | wbg1 phenotype. (A) The outer (upper panel) and cross-section (lower panel) phenotypes of wild-type (WT) and wbg1 grains. The belly side of the wbg1 grain is indicated by the red arrowhead. (B) Grain length, width, and thickness of WT and wbg1 grains. (C) Grain filling rates of WT and wbg1. (D) Thousand-grain weights of WT and wbg1. (E) Starch content of WT and wbg1 grains. (F) Amylose content of WT and wbg1 grains. (G) Plant phenotypes of WT and wbg1 at the grain-filling stage. Scale bar = 20 cm. (H) Plant heights of WT and wbg1 at the grain filling stage. Values are presented as mean ± standard deviation (SD) (**p < 0.01; Student’s t-test). NS, not significant.







Starch granules in the belly side of wbg1 grains were loosely packed

To investigate the mechanism of white belly formation in wbg1, scanning electron microscopy was performed to examine the belly and dorsal sides of wbg1 grains. The arrangement of starch granules on the dorsal side of wbg1 grains was consistent with that of the wild type, where starch granules were polyhedral and tightly packed. However, starch granules in the belly side of wbg1 grains were mostly oval or round and loosely arranged (Figures 2A–F). Semi-thin sections were cut to assess compound starch grains in the belly side of the developing endosperm in wbg1. The results showed that these starch grains were not tightly arranged and were fragile (Figures 2G, H). These results suggested that the wbg1 mutation resulted in the loose arrangement of starch granules in the belly side of the endosperm, which led to the white belly phenotype.




Figure 2 | wbg1 endosperm morphology. (A–F) Scanning electron micrographs of transverse sections of wild-type (WT) (A–C) and wbg1 (D–F) endosperm. (A, D) Intact endosperm. “1” and “2” indicate the dorsal and belly sides of the endosperm, respectively. Scale bars, 0.5 mm. (B, E) Magnified region of the dorsal side of WT and wbg1 endosperm, respectively. Scale bars, 10 μm. (C, F) Magnified region of the belly side of WT and wbg1 endosperm, respectively. Scale bars, 10 μm. (G, H) Semi-thin sections of the belly side of WT and wbg1 endosperm, respectively. Scale bars, 10 μm.







wbg1 is a weak allelic mutant of FLO10

Of the 336 grains harvested from the heterozygous WBG1/wbg1 plant, 265 grains showed the wild-type phenotype, 71 grains showed the wbg1 phenotype, and the segregation ratio was consistent with 3:1 (χ2 = 3.02 < 3.84, p > 0.05), indicating that wbg1 phenotype is controlled by a single recessive nuclear gene. To identify the candidate gene responsible for the wbg1 phenotype, map-based cloning was carried out to isolate WBG1. An F2 mapping population was created by crossing wbg1 with the japonica rice cultivar Nipponbare. The mutation site in wbg1 was initially mapped to a 1,000-kb interval between the InDel markers I3-7 and I3-9 on chromosome 3. With the use of 1,143 individuals with the wbg1 phenotype, the WBG1 locus was narrowed down to a 98.9-kb genomic region containing 20 ORFs (Figure 3A). Sequencing analysis revealed that an 8-bp deletion was detected in the 10th ORF (Figure 3B), previously identified as FLO10 (Wu et al., 2019). The 8-bp deletion in wbg1 occurred 3,651-bp downstream of the start codon, resulting in a premature stop codon that generated a truncated protein harboring the N-terminal 1,218 amino acids.




Figure 3 | WBG1 map-based cloning and complementation tests. (A) Fine mapping of the WBG1 locus. The WBG1 locus was narrowed to a 98.9-kb region on rice chromosome 3 by using fine mapping primers listed in Supplementary Table 1. This region includes 20 predicted open reading frames (ORFs). The molecular markers and numbers of recombinants are indicated. Cen, centromere. (B) Exon/intron structure of WBG1 and the mutation site in wbg1. Green boxes indicate the two exons, and the line between the exons indicates the intron in WBG1. ATG and TGA indicate the start and stop codons, respectively. An eight-nucleotide deletion in the coding region of WBG1 results in a premature termination codon and protein truncation in wbg1. (C) Complementation of wbg1 by the introduction of a 6.1-kb fragment containing the 2.3-kb promoter and 3.8-kb full-length coding sequence of FLO10 into the wbg1 mutant. Scale bar, 0.5 mm. (D) Scanning electron microscopy (SEM) images of the belly side of grains from representative complemented lines. Scale bar, 10 μm.



To confirm whether the weak mutation in FLO10 was responsible for the wbg1 mutant phenotype, we introduced a 6.1-kb fragment containing the promoter region and the full-length coding sequence of FLO10 into the wbg1 mutant. Both the brown rice morphology and starch grain arrangement in wbg1 were restored (Figures 3C, D). Collectively, these results showed that a weak allelic mutation in FLO10 was responsible for the wbg1 white belly phenotype.





Splicing efficiency of mitochondrial nad1 intron 1 was decreased in wbg1

The flo10 mutant produces flo10 with only the N-terminal 151-amino-acid sequences and loss of all the predicted PPR motifs (Wu et al., 2019). However, the wbg1 mutant has 1218 amino acid residues with loss of the C-terminal 51 amino acid sequences containing two PPR motifs (Figure 4). In the flo10 mutant, the splicing efficiency of nad1 intron 1 was found to be substantially decreased, with a substantial accumulation of the precursor (Wu et al., 2019). To determine whether the splicing efficiency of nad1 intron 1 in wbg1 mutants was affected, we carried out RT-PCR and qRT-PCR experiments. The results of RT-PCR showed that the contents of nad1 intron 1 and mature nad1 mRNA in wbg1 decreased to approximately 50% (Figures 5A–C), which were further confirmed by qRT-PCR experiments (Figure 5D). The qRT-PCR experiments also indicated that nad1 exon 1 precursor was accumulated in the wbg1 mutant (Figure 5E). These results indicate that the two PPR motifs in the C-terminal, which are not present in wbg1, have an essential role in the WBG1 function.




Figure 4 | Schematic domain structure and amino acid sequence analysis of wbg1. (A) Schematic domain structure of WBG1, flo10, and wbg1 proteins. mTP, mitochondrion target peptide predicted by TargetP. WBG1/FLO10 comprises 1,269 amino acids with 26 predicted PPR repeats; the flo10 mutant lost all PPR motifs, while wbg1 only lost the last two PPR motifs at the C-terminal. (B) Sequences alignment of WBG1, wbg1, and flo10 proteins with predicted PPR repeat annotations. Amino acid residues present in all three sequences are indicated by dark gray shading. Light gray shading indicates the residual amino acids present in wbg1 and WBG1. The amino acid sequence at the C-terminal that is deleted in wbg1 but present in WBG1 is shaded orange. Each PPR repeat is indicated alternately by green and red lines.






Figure 5 | Splicing efficiency analysis of nad1 intron 1 in wbg1. (A) Schematic representation of the rice nad1 gene. (B) Reverse transcription polymerase chain reaction (RT-PCR) analysis of nad1 intron 1, 2, 3, and 4 splicing events in wild type (WT) and wbg1. The amplified fragments are indicated in panel (A) The rice Actin gene was used as an internal control. (C) DNA density of the amplified fragments in (B) was quantified using ImageJ software. (D, E) Quantitative RT-PCR measuring the splicing efficiency of nad1 intron 1 and nad1 exon 1 precursor. The PCRs were performed with the primer pairs indicated in panel (A) RNA was extracted from WT and wbg1 grains at 9 days after flowering (DAF). Representative results from three biological replicates are shown. Values are all mean ± standard deviation (SD).







The wbg1 mutant exhibits reduced respiratory chain complex I activity and ATP contents

nad1 (NADH dehydrogenase subunit 1) encodes the core subunit of respiratory chain complex I, and the reduced splicing efficiency of nad1 intron 1 leads to decreased nad1-translated protein content, which may affect the activity of respiratory chain complex I (Subrahmanian et al., 2016). BN-PAGE and in-gel NADH dehydrogenase activity staining were employed to investigate the changes in respiratory chain complex I activity in wbg1 mutant. Compared with that in the wild type, the activity of complex I in the wbg1 mutant was significantly reduced, but not to the extent observed in flo10 (Figure 6A). The transformation of WBG1 into the wbg1 mutant was able to restore the activity of respiratory chain complex I to wild-type levels. Given that ATP production in mitochondria is coupled with electron transfer via respiratory chain complex I in mitochondria, we measured ATP content in the developing endosperm of wbg1 and its complementary lines. The results showed that the ATP content in wbg1 was lower than that in the wild type but higher than in the flo10 mutant (Figure 6B). Transferring WBG1 into the wbg1 mutant was able to restore the ATP content in the developing endosperm to wild-type levels. Together, these results indicate that the grain chalkiness phenotype in wbg1 is caused by the reduction of mitochondrial respiratory chain complex I activity resulting from the deletion of the two PPR motifs.




Figure 6 | The deletion of two PPR motifs at the C-terminal of wbg1 reduced the activity of respiratory chain complex I in mitochondria. (A) Assembly and activity analysis of respiratory chain complex I in wild-type (WT) and flo10 and wbg1 mutants and complemented lines (Com-1 and Com-2). Left, Coomassie brilliant blue staining of mitochondrial respiratory chain complex I, separated using blue native gel. Right, in-gel staining of NADH dehydrogenase activity in respiratory chain complex (I) (B) ATP concentration in grains at 9 days after fertilization. Values are all mean ± SD from three biological replicates. a–c indicate significant differences by Student’s t-tests (p < 0.01).







WBG1 is associated with grain width

The wbg1 mutant had a significantly decreased grain width (Figure 1B), which may result from the arrested transport of assimilates from the dorsal to belly regions of the grain. To investigate the role of WBG1 in rice grain width, a genetic association analysis between WBG1 and grain width was performed in indica and japonica cultivars (https://www.rmbreeding.cn). The results showed that a total of 14 polymorphic sites were found, nine of which led to amino acid changes (Figure 7A). Based on the polymorphic sites, seven main haplotypes (referred to as Hap_1 to Hap_7) were observed in detail in both indica and japonica. A comparison of haplotype frequencies between cultivars indicated that Hap_6 and Hap_7 were common in japonica cultivars, with frequencies of 20.38% and 79.50%, respectively. Hap_1 to Hap_5 were almost exclusively found in indica cultivars with frequencies of 73.68%, 2.12%, 16.56%, 5.34%, and 0.49%, respectively (Figure 7B). Hap_6 and Hap_7, the two common haplotypes in japonica, had wider grains (3.408 and 3.243 mm, respectively), compared with Hap_1 to Hap_5 in indica, which had grain widths of 2.879, 2.724, 2.993, 2.929, and 2.933 mm, respectively (Figure 7C). Together, these data suggest that there was clear haplotype differentiation of WBG1 between indica and japonica rice varieties based on grain width.




Figure 7 | Haplotype analysis of WBG1 and haplotype association with rice grain width. (A) Polymorphic nucleotides in the WBG1 encoding region in indica and japonica cultivars. (B) Distribution of the proportion of seven haplotypes (Hap_1 to Hap_7) in indica (left) and japonica (right) cultivars. (C) Grain width statistics of the seven haplotypes. a–d indicate significant differences by Tukey’s t-tests (p < 0.01).








Discussion

Rice chalkiness is regulated by many genes, including those involved in starch synthesis and storage protein biosynthesis regulation, and plastid- and mitochondrion-associated genes (Zhao et al., 2022). PPR proteins form a large protein family in land plants and have functions in various processes, including cytoplasmic sterility, leaf and seed development, and stress responses (Li et al., 2021; Wang et al., 2021). The loss of function of some mitochondrion-associated PPR is known to lead to a substantial decline in grain filling rate and a floury endosperm (Hao et al., 2019; Wu et al., 2019; Yu et al., 2021; Yang et al., 2022a). However, the involvement of PPR proteins in the regulation of rice grain chalkiness has not been reported until now. In this study, we identified a stable hereditary mutant, wbg1, with mature grains that have a white belly phenotype (Figure 1A). The filling rate of wbg1 grains across the whole filling period was lower than that of the wild type, and the starch granules in the chalky part were loosely arranged (Figures 1C, 2F). Map-based cloning showed that wbg1 was a weak allelic mutant of FLO10 (Figure 3). The white belly observed in the wbg1 mutant is different from the floury endosperm resulting from previously identified defects in mitochondrion-associated PPR proteins. Our results indicate that mitochondrion-associated PPR proteins play an important role in the rice grain white belly phenotype.

wbg1 is a weak allele mutant of FLO10. In the wbg1 mutant, there were 8-bp deletions at the tail of WBG1, causing a premature translation and 51-amino-acid deletion at the C-terminal (Figure 3B). Different from the deletion of all 26 PPR motifs in the flo10 protein, the wbg1 only lost two PPR motifs at the C-terminal (Figure 4). Based on the recognition code of PPR motifs (Barkan et al., 2012; Yagi et al., 2013), the last two PPR motifs may recognize two RNA bases on the nad1 intron 1 precursor. Although the splicing efficiency of nad1 intron 1 in wbg1 is not as serious as that in flo10, it is reduced to approximately 50% (Figure 5). Thus, the recognition of the last two RNA bases on the nad1 intron 1 precursor by WBG1 plays an important role in nad1 intron 1 splicing.

Grain filling involves the transport of assimilates from the dorsal portion to the belly portion of grains. Comprehensive analyses, including 14C-labeled assimilate analyses, showed that sucrose moves via the symplastic pathway in the nucellar epidermis after unloading from the dorsal phloem and is taken up via the apoplastic pathway by aleurone cells into the endosperm (Oparka and Gates, 1981a; Oparka and Gates, 1981b; Yang et al., 2018). Previous studies have shown that the mutation in FLO10 leads to an abnormal aleurone layer with defective mitochondrial function, which may affect the transportation of filling assimilates into the developing endosperm, specifically leading to slow grain filling and a floury endosperm (Wu et al., 2019). In wbg1, we found that the activity of respiratory chain complex I and ATP content in the developing endosperm was reduced compared with the wild type, but not to the same extent as in the flo10 mutant (Figure 6). This indicates that mitochondrial activity depends on the level of mature nad1 mRNA, which is determined by the splicing efficiency of nad1 intron 1. Furthermore, the white belly phenotype in wbg1 was distinct from the floury phenotype in flo10 (Figure 1A), indicating that the WBG1 function may be associated with the transverse transportation of filling assimilates in the grain. The loss of the last two PPR motifs in wbg1 may lead to a reduction in the function of the aleurone layer, which contains a large number of mitochondria. This may result in further reductions in the transport efficiency of filling assimilates from the dorsal to the belly portion of the endosperm, leading to a lack of filling assimilates and resultant chalkiness in the belly. Based on these data, we propose a model for WBG1 regulation of grain chalkiness in rice (Figure 8). Further research could usefully focus on improving the efficiency of filling assimilate transport by increasing mitochondrial activity, which should decrease grain chalkiness and enable the cultivation of high-quality rice varieties to meet the market demand.




Figure 8 | A proposed working model of WBG1 in regulating rice grain chalkiness. In wild-type (WT) (left), nad1 precursors with intron1 in mitochondria can be normally spliced by WBG1 and produce a certain level of nad1 mRNA. The nad1 mRNA encoded protein forms the required amount of mitochondrial complex I, thus maintaining normal mitochondrial function and keeping the transport efficiency of filling assimilates from grain dorsal to belly. mTP, predicted mitochondrion-targeted peptide. Each gray box represents a PPR motif. The blue bold line represents nad1 exon 1, the brown bold line represents nad1 exons 2–5, and the curved line between them represents nad1 intron1. In wbg1 mutant (right), the loss of two PPR motifs at the C-terminal of wbg1 leads to a reduction in splicing efficiency of nad1 intron1, resulting in a decrease in nad1 mRNA level. Then, the activity of complex I, which is composed of nad1 encoded protein, was decreased. Therefore, the transport efficiency of filling assimilates from the dorsal to belly is reduced, resulting in white belly grain.



Previous studies have shown that increased grain width results in grain belly chalkiness (Shi et al., 2019). In this study, we showed that WBG1 regulates grain filling: a weak mutation in WBG1 decreases the grain filling rate, leading to the formation of a white belly (Figures 1A, C). An analysis of the association between WBG1 encoding region haplotypes and grain width found clear haplotype differentiation between indica and japonica rice varieties, which was associated with grain width (Figure 7). These results indicate that the WBG1 haplotype may have an important role in grain width differentiation between indica and japonica rice, and WBG1 may have a function in the coordination of rice grain filling rate and grain width.
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Estimating genetic gains is vital to optimize breeding programs for increased efficiency. Genetic gains should translate into productivity gains if returns to investments in breeding and impact are to be realized. The objective of this study was to estimate genetic gain for grain yield and key agronomic traits in pre-commercial and commercial maize varieties from public and private breeding programs tested in (i) national performance trials (NPT), (ii) era trial and, (iii) compare the trends with the national average. The study used (i) historical NPT data on 419 improved maize varieties evaluated in 23 trials at 6-8 locations each between 2008 and 2020, and (ii) data from an era trial of 54 maize hybrids released between 1999 and 2020. The NPT data was first analyzed using a mixed model and resulting estimate for each entry was regressed onto its first year of testing. Analysis was done over all entries, only entries from National Agricultural Research Organization (NARO), International Maize and Wheat Improvement Center (CIMMYT), or private seed companies. Estimated genetic gain was 2.25% or 81 kg ha-1 year-1 from the NPT analysis. A comparison of genetic trends by source indicated that CIMMYT entries had a gain of 1.98% year-1 or 106 kg ha-1 year-1. In contrast, NARO and private sector maize entries recorded genetic gains of 1.30% year-1 (59 kg ha-1 year-1) and 1.71% year-1 (79 kg ha-1 year-1), respectively. Varieties from NARO and private sector showed comparable mean yields of 4.56 t ha-1 and 4.62 t ha-1, respectively, while hybrids from CIMMYT had a mean of 5.37 t ha-1. Era analysis indicated significant genetic gain of 1.69% year-1 or 55 kg ha-1 year-1, while a significant national productivity gain of 1.48% year-1 (37 kg ha-1 year-1) was obtained. The study, thus, demonstrated the importance of public-private partnerships in development and delivery of new genetics to farmers in Uganda.
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1 Introduction

Maize (Zea mays L.) is an important staple food crop in sub-Sahara Africa (SSA), providing food security and income to more than 208 million households. It occupies the largest land area of all staples, with more than 35 million hectares (M ha) harvested annually (FAOSTAT, 2018). In Uganda, maize is an important staple crop serving the dual roles of food and feed. It is also a key crop that plays a crucial role in the national economy in providing employment along its value chain, household income, and revenue from significant exports to the East African region. It is estimated that approximately 3.6 million households (mainly smallholders) grow maize on more than 1.9 M ha (about 20% of the total crop area) (Uganda Bureau of Statistics (UBOS), 2022). Over the past 15 years, maize production and productivity have almost doubled, with gains arising mainly from increased adoption of improved varieties, expansion in the area, emerging commercial farmers, increased access to improved seed, and favorable regional grain trade policies. Current maize yield productivity in Uganda is estimated to be 2.5 t ha-1 with a total production of 4.6 million tonnes (Uganda Bureau of Statistics (UBOS), 2022). This increase in maize production and productivity has been realized despite the emergence of threats such as fall armyworm since 2016 (Otim et al., 2018) and maize lethal necrosis since 2012 (Mahuku et al., 2015; Prasanna et al., 2022a), limited fertilizer use, poorly structured grain markets, volatility in grain prices, limited farmer access to extension services, and quality inputs (Kilimo Trust, 2018). Breeding efforts to address the major biotic and abiotic stresses are ongoing in collaborative efforts between national agricultural research and extension systems (NARES), Consultative Group on International Agricultural Research (CGIAR) centers, and the private sector.

The fundamental change in maize breeding in sub-Saharan Africa occurred in the early 2000s with a particular focus on delivering stress-tolerant maize varieties to mitigate the impacts of climate change, especially frequent droughts and complex diseases (Pratt et al., 2004; Bäzinger et al., 2006; Kyetere et al., 2019; Prasanna et al., 2021). The orientation of breeding towards climate adaptation and resilience in the last decade has contributed to the successful development and release of multiple-stress tolerant maize varieties, with significant yield advantages over the market-dominant but obsolete varieties (Setimela et al., 2017; Simtowe et al., 2019; Prasanna et al., 2020). The breeding programs have been supported by increased investment in phenotyping capacity and extensive germplasm testing networks which have resulted in genetic gains in the region (Cairns et al., 2013; Masuka et al., 2017a; Masuka et al., 2017b; Cairns and Prasanna, 2018; Prasanna et al., 2021). The combined efforts of national, public and private sector maize breeding in Uganda have resulted in the release of 84 improved maize varieties between 2007 and 2020. The distribution of these variety releases by source is 41% from the private sector, 39% by CGIAR and 20% from the National Agricultural Research Organization (NARO) maize breeding programs. It is worth noting that CGIAR centers submit hybrids into NPTs through both the private sector and national programs. Promising hybrids nominated from breeding pipelines intended for commercial release are by law submitted to pre-commercial testing in National Performance Trials (NPTs) according to the established guidelines, ensuring DUS (Distinctness, Uniformity, Stability) and VCU (Value for Cultivation and Use). In Uganda, the National Seed Certification Services delegated the mandate of conducting NPTs to NARO, following established standards and protocols.

The seed industry is an important vehicle for delivering improved genetics and, plays an important role in the growth and evolution of the maize sector. The maize seed sector in Uganda is characterized by the co-existence of both the formal and informal systems, with the formal sector contributing less than 50% of the national seed requirements (Mabaya et al., 2021). The seed sector is instrumental in making the seed of the new and improved varieties available to the farmers, and has thus enabled increased yield and productivity. Despite increased maize production and productivity in Uganda, no studies have been conducted so far to quantify the genetic gains made over the years. Estimating genetic gains provides an opportunity to monitor the progress being made by the breeding programs in delivering better genetics to the farmers. In addition, genetic gain estimates help to monitor breeding efficiency and identify areas of improvement and investment for accelerated genetic gains. Era or legacy studies, whereby varieties released in different years are evaluated in the same trials, provide the most unbiased estimates of genetic gain because they avoid differences in agronomic management or climate variability, which can potentially confound the genetic trend (Rutkoski, 2019a; Rutkoski, 2019b). The breeder’s equation is often used to predict what gains may be achieved using estimates of parameters. However, it is important to estimate realized genetic gains from actual field trials, retrospectively (Prasanna et al., 2022). Therefore, the objective of this study was to assess the realized and historical rate of genetic gains per year in maize grain yield and key agronomic traits in pre-commercial and commercial varieties between 2008 and 2020 in Uganda. The genetic trends were dissected and profiled to quantify varietal selection and nomination into NPTs from NARO’s maize breeding program, CIMMYT, and private sector sources. We performed a multi-year analysis of historical, pre-commercial and commercial maize varieties to achieve these objectives. The historical study was compared with the replicated era studies conducted in 2015 and the country’s maize production trends between 1961 to 2020.




2 Materials and methods



2.1 NPT dataset

We used the data from maize NPTs conducted by NARO from 2008 through 2020. The trials were planted at eight locations, namely Abii, Bulengeni, Bulindi, Ikulwe, Masaka, Namulonge, Ngetta, and Serere, across the major maize-growing environments between 2008 and 2020 (Table 1). The NPTs were conducted in one or two seasons (seasons A and B) across the years. The number of entries in each trial ranged from 12 to 66, and the entries were allocated to sets one, two or three (1, 2, 3) based on the stage of submission to the NPT (Table 2). The experiments were laid out in an α-lattice design with two or three replications. Experiments were planted in two-row plots, in 5m long rows with 25cm interplant distance and 75 cm between rows, with a final plant density of approximately 53,333 plants ha−1. Agronomic management of the trials was carried out as recommended at each location. There was a total of 23-year by season by set combinations, referred to as trials. Each trial was conducted in four to seven locations (Table 2). An experiment was considered a year/season/test/location combination, resulting into 212 experiments (Table 2; Supplementary Table A). There were 419 entries of which 74 entries were from NARO’s mid-altitude maize breeding program, 211 from CIMMYT, 122 from private seed companies, and 12 commercial check entries in the analyzed trials (Supplementary Table B). Some commercial checks varied in the trials across the years but most were common in trials across years and provided connectivity to allow genetic gain estimates.


Table 1 | Agro-metreological characteristics of the trial sites in Uganda.




Table 2 | Summary of the 23 maize National Performance Trials (NPTs) datasets in Uganda used for genetic gain estimation.





2.3.1 Trait measurements

The entries were evaluated for grain yield and multiple agronomic traits (Table 2). All plants were hand-harvested, and grain weight was measured. Shelled grain weight was used to estimate grain yield corrected to 12.5% moisture content. Days to anthesis (AD) and silking were recorded when 50% of the plants had shed pollen, and 50% had silks, respectively. The anthesis–silking interval (ASI) was calculated as the difference between days to silking and days to anthesis. Plant height (PH) was measured in cm from the ground to the first tassel branch. Ear height (EH) was measured in cm as the distance from the ground to the insertion of the top ear. Ears per plant (EPP) was calculated as the number of ears harvested per plot divided by the number of plants per plot. Grain texture (GT) was recorded on a 1-5 scale where 1= more flint and 5 = very dent.





2.2 Era trials

The Era trial consisted of 54 maize varieties that were first available for testing in regional and on-farm trials from 1999 to 2017 (Table 3). The entries in this trial were 12 from NARO, 13 from CIMMYT, and 29 from the private sector. Of these, 39 varieties were released and are commercially produced. Of the 35 hybrid varieties released by the private sector, six were 100% CIMMYT/IITA-derived, 19 were combination hybrids derived using CGIAR’s elite maize lines and proprietary inbreds as parents, and 10 were completely based on germplasm from proprietary private sector. First-year testing in 1999 was represented by one entry, while 11 entries represented in 2015. The trial was conducted at six locations in the second (B) season of 2015. Each environment had two replications and each plot consisted of two 5-m long rows with 25-cm interplant distance and 75 cm between rows as above. Trial management, agronomic trait recording, measurement of grain weight, grain moisture, and estimation of grain yield were conducted as described for the NPT above.


Table 3 | List of entries in the Era trial conducted at six locations in Uganda in 2015.






2.3 Uganda national maize average:

We obtained estimates of maize grain yield in Uganda from 1961 to 2020 from FAO statistics (https://www.fao.org/faostat/en/#data/QCL, verified March 10th, 2022). The data was categorized as follows: 1961 – 2020, 1999 – 2020 and 2008 – 2020 for analysis.




2.4 Statistical analysis



2.4.1 NPT trial

An analysis of variance (ANOVA) was performed within each experiment using the model:



where yij is the mean phenotypic value of the trait within an experiment, gi is the random effect of the ith genotype with  , rj is the random effect of the jth replication with  , and eij is the residual error with  . Entry mean broad sense heritability (H2) within an experiment with r replications was calculated as



ANOVA was performed within each trial using the model:



Where yijk is the phenotype of the ith genotype in the jth location, in the kth replication. µ is the overall mean; gi is the random effect of the ith genotype with  ; lj is the random effect of the jth location with  ; r(l)jk is a random effect of the kth replication nested in the jth location with  ; glij is the interaction of the ith genotype and jth location with  ; and ϵijk is the error with  . Entry mean heritability was calculated as:



where l is the number of locations for that trial and r the number of replications. Only data from experiments with H2 > 0.20 were used in the subsequent analysis.

Genetic gain in the NPT was estimated by regressing the estimated genetic value of each entry on the first year the entry was tested (FYT) in 2008 to 2020 data set. The FYT was the base year the entry was entered into the NPT. An experiment is a year/season/test/location combination, and an experiment is nested in a trial. We modeled the genotype x experiment interaction which encompasses genotype x location interaction. We declared a genetic gain to be significant if the probability of the slope was less than 0.05 and it was accompanied by an R2 value greater than 0.05. The genetic value of an entry was estimated using the mixed model:



where yijklm is the phenotypic value for genotype i tested in control group j, trial k, experiment l, and rep m. µ is the overall mean; gi is the fixed effect of the ith genotype, cj is the fixed effect of the jth control group were the checks, where j=1 for the control population consisting of the two checks and j=2 for the tested group; tk is a random effect for the kth trial with  ; x(t)kl is a random effect for the lth experiment nested in the kth trial with  ; gtikis the random effect of the interaction of the ith genotype and kth trial with  ; gx(t)ikl is the random effect of the interaction of the ith genotype and lth experiment nested in the kth trial with  ; r(x)lm is a random effect of the mth replication nested in the lth experiment with  ; and ϵijklm is the residual error with  . Correlation analysis of control means and entry means was carried to assess the efficiency of using controls to substitute for experiment effect.

The model in equation 5 was run separately for all entries: only entries from private sources, only entries from CIMMYT sources, and only entries from NARO. The same controls were used in each analysis. The Best Linear Unbiased Estimator (BLUE) for each entry from equation 5 was then regressed onto the FYT value for that entry. Data from the checks were excluded from the regression analysis. The regression was done separately for each source of entries. The slope of this regression was used as the estimate of genetic gain. The percent genetic gain per FYT was calculated as the (slope/u) *100, where u is the intercept in equation 5. For GY, the analysis was run across trials, and separately for trials with mean GY > 3.3 t/ha (high), and for trials with mean GY< 3.3 t/ha (low). We assessed the significance of the source of the NPT entries using the model shown in equation 5 by adding a term for the nth source (sn) as a fixed effect and changing gi to be the effect of the ith genotype nested in the nth source, g(s)in.




2.4.2 Era trial

Broad-sense heritability was calculated over all environments, as shown in equation 4 above.

The first-year testing (FYT) effect was assessed in two ways. First, we analyzed variance using FYT as a covariate using the model:



where yijkl is the phenotypic value for genotype j, from FYT i, tested in environment k, and rep l. µ is the overall mean; fiis the fixed effect of the ith FYT, gj is the fixed effect of the jth genotype, vk is the random effect of the kth environment with  ; gvjkis the random effect of the interaction of the jth genotype and kth environment with  ; r(v)kl is a random effect of the lth replication nested in the kth environment with  ; and ϵijkl is the residual error with  . The model was run once with fi to test its significance and then once without fi to obtain BLUEs for each entry. These BLUEs were then regressed onto their FYT values to estimate the effect of increasing FYT. A genetic gain was declared significant if the FYT covariate test had a probability of P< 0.05, and the slope was significant at P< 0.05.




2.4.3 Uganda national average maize yield, 1961 - 2020

Analysis of the was done across all 60 years of average maize yield estimates, for 22 years (1999–2020) to reflect the range of years of entries in the Era trial, and for 13 years (2008–2020) to reflect the range of years for entries in the NPT. The national average maize yield was regressed over the baseline years.






3 Results



3.1 National performance trials

There was considerable variation among the experiment means and heritability for the traits examined in this study (Table 3). GY, AD, PH and EH showed moderate heritability (0.40–0.59), while EPP and ASI had low heritability (<0.32) within experiments. Only GT could be considered highly heritable with an average heritability of 0.67. Entry mean heritability estimated over all experiments within a trial (year/test/season combination) was greater than heritability within experiments. Heritability within a trial showed similar trends of high, moderate, and low heritability for traits as within experiment estimates (Table 4).


Table 4 | List of traits assessed, and a summary of the average trait values and entry mean heritability within an experiment.



We obtained BLUEs using a model that used the checks as a fixed effect to adjust for the effect of experiments. Correlation analysis of the entry means with control/check means within experiments and within trials indicated that control means were a suitable surrogate for experiment effect for most traits with correlations greater than 0.70 for 5 of the 7 traits (Table 5). The control means were poorly correlated to the mean of all entries for AD and ASI.


Table 5 | Correlation of entry means with control (check) means by NPT experiment, trial, and year.





3.1.1 Grain yield

There was a significant difference (P< 0.05) in genetic gain for hybrid yields from all sources entered into the NPT (Table 6). Evidence of significant genetic gain for increasing GY over all experiments was noted in all entries and among entries from each of the three sources (Table 6; Figure 1). When analysis was done by source, entries from CIMMYT showed the higher GY mean (5.37 t/ha) and genetic gain estimate (1.98% year-1 or 106 kg ha-1 year-1). Entries from NARO and private sector sources had lower mean GY of 4.56 t ha-1 and 4.62 t ha-1, respectively. Entries from NARO had the lowest estimated genetic gain (1.30% year-1 or 59 kg ha-1 year-1).


Table 6 | Results from regression of the Best Linear Unbiased Estimators (BLUEs) for grain yield and other agronomic traits of entries in the National Performance Trials (NPTs) by source onto their first year of testing (FYT).






Figure 1 | Regression of grain yield (GY) on to the First Year of Testing (FYT) using data from the Ugandan NPT trials. (A) all entries, (B) entries from private sector, (C) entries from CIMMYT sources, and (D) entries from NARO.



We also analyzed across the different sources of germplasm for high GY experiments (mean GY >3.3 t ha-1) and low GY experiments (mean GY< 3.3 t ha-1). The overall genetic gains in the high mean GY experiments were lower compared to that estimated across all environments. The genetic gain estimates for high mean GY experiments varied by source relative to estimates from all experiments with some increasing and others reducing (Table 6). The estimated genetic gain for the NARO and private sector entries were greater in the high GY experiments than in overall experiments. The genetic gains for CIMMYT hybrids were found to be lower in the high yielding environments (72 kg ha-1 year-1) compared to 106 kg ha-1 year-1 across all environments. The genetic gains were lower in the low GY experiments for the different germplasm sources (Table 6). Only the slope from CIMMYT analysis was significant and indicated that the GY had decreased over time (-94 kg ha-1 year-1) in lower mean GY experiments.




3.1.2 Other agronomic traits

There was significant (P< 0.05) genetic gain for decreasing days to anthesis when analyzed over all entry sources or within just the CIMMYT and commercial entries (Table 6). The gain was highest for entries from the private sources, with a decrease of AD of -0.79% year-1. This regression produced the greatest r2 value (0.235) of any trait/source combination. Reduced days to anthesis was observed in all the entries though the change could not always be declared significant. Entries from NARO had a lower AD mean compared with CIMMYT entries, which had the highest AD mean among all sources. There was evidence of increasing PH in the entries in the NPT though the only significant gain was for the NARO entries, where the increase was 1.58 cm year-1, or a gain of 0.89% year-1 (Table 6). The CIMMYT and NARO entries were generally shorter than the entries from the private sector. Similar to PH, the only significant increase for EH was among the NARO entries, where EH increased by 0.80 cm year-1 at a rate of 0.93% year-1 (Table 6). EH was significantly greater in the private sector entries than in the CIMMYT or NARO entries. Significant (P< 0.05) genetic gain for EPP was noted among the CIMMYT and NARO entries, where the decrease was -1.05% and -0.72% year-1, respectively (Table 6). Changes in EPP were negligible for the private sector entries. There were no significant differences for EPP among the sources of entries. Significant genetic gain was noted for GT among the CIMMYT and NARO entries (Table 5). GT decreased among the CIMMYT entries at -2.84% year-1, while it increased among the NARO entries at a rate of 2.60% year-1. The CIMMYT entries had the higher average GT value.





3.2 Era trial

Broad-sense heritability ranged from 0.50 to 0.96 for the key traits (Table 7). Mean GY was 3.3 t ha-1 and heritability was 0.79. Genetic gain in the era trial was assessed by testing the significance of FYT as a covariate and by a regression analysis similar to that of the NPT trials. The test had 54 entries with FYT values ranging from 1999 to 2017 (Table 2).


Table 7 | Means from each environment for all traits assessed in the era trial, along with heritability overall traits.



The analysis of GY was performed over all the six environments, the four highest yielding environments (GY > 3.3 t ha-1) and the two lowest yielding sites (Table 7). Significant genetic gain for GY was obtained in all three analyses. The largest estimated genetic gain was found in the high yielding environments at a rate of 61 kg ha-1 year-1, though this gain was the lowest on a percentage basis (1.52% year-1) (Table 8). The genetic gain estimate was lowest in the low yielding environments (43 kg ha-1 year-1) although this gain was greatest on a percentage basis (2.52% year-1). The annual gains (43 to 61 kg ha-1 year-1) in the era trial were lower than those estimated in the NPT trial (59 to 81 kg ha-1 year-1) (Table 6).


Table 8 | Results from ANOVA and regression analyses of the era trial conducted at six locations in 2015.






3.3 Uganda national data

All three regressions of grain yield onto year were significant (P<0.0001), accounting for more than 72% of the variation (Table 9; Figure 2). The greatest gain per year was in the 1999-2020 period at 62 kg ha-1 year -1 (2.85% per year).




Figure 2 | Annual grain yield of maize in Uganda using data from FAO (https://www.fao.org/faostat/en/#data/QCL).




Table 9 | Regression of estimated national average maize grain yields in Uganda, onto a baseline year over three periods.







4 Discussion

This study estimated genetic gains in public and private maize breeding programs using data from the national performance trials and the era trials, besides the trends in Ugandan national average maize yields. Each of these datasets had its limitations; the NPT had an unbalanced dataset where the checks were used as surrogates to estimate and adjust for experimental effect. The use of controls was effective for most of the traits. The advantage of the NPT over the era trial was that there were many entries within FYT category. The era trial was balanced with all entries tested in all the six environments but had fewer entries per FYT group as compared to the NPT. The entries in the NPT are for varietal release to commercialization from the most elite end-products of selections from breeding pipelines. Selection of hybrids for entry into the NPTs was made from advanced yield trials of diverse breeding pipelines. Neither the NPT nor the era trial could be considered as an evaluation of genetic gain in a specific breeding pipeline. Nevertheless, analysis of NPT and era trials can shed light on the effectiveness of breeding programs in delivering genetic gains to the farmers. Several studies have estimated genetic trends in maize and other crops using variety trials (Mackay et al., 2011; Barrero Farfan et al., 2013; Laidig et al., 2014) rather than era trials which are more expensive to conduct.

In this study, the overall genetic gain estimated from NPT was 81 kg ha-1 year-1. This genetic gain estimate was lower than the 109 kg ha-1 yr-1 reported for CIMMYT’s maize hybrid breeding pipeline (Masuka et al., 2017a) but comparable to the 79 kg ha-1 yr-1 for CIMMYT’s OPV breeding pipeline (Masuka et al., 2017b) in Eastern and Southern Africa (ESA). These genetic gains are attributed to the use of higher yielding and stress-tolerant parental inbred lines in ESA. Recent reports indicated that there is improvement in the grain yield performance (1.4% year-1 or 39 kg ha-1 yr-1) of the inbred lines that are used to develop new products that are allocated and released for commercial production (Worku et al., 2020). This genetic improvement is reflected in the recent analysis of genetic trends in CIMMYT’s breeding pipeline in ESA of up to 138 kg ha-1 yr-1 (Prasanna et al., 2022b). In other studies, genetic gains of 40 kg ha-1 year-1 have been reported in West Africa (Badu-Apraku et al., 2015). Edmeades (2013) reported genetic gains of 39 to 80 kg ha-1 year-1 in sub-Sahara Africa under well-watered conditions but just 18 kg ha-1 year-1 under drought stress. In other regions, genetic gains of 65 to 75 kg ha-1 year-1 in the USA (Duvick, 2005), and 74 and 131 kg ha-1 year-1 in China (Ci et al., 2011; Ma et al., 2015), were reported.

The estimated genetic gains under high yielding environments were similar between the NPT (1.55%) and the era trials (1.52%). This shows that either of these datasets can be used to obtain reliable estimates of genetic gain, but NPTs offer a cheaper option for the estimates. The high overall genetic gain (2.25%) in NPTs obtained from all collaborators indicates that a combined effort of public-private partnerships is critical in delivering improved genetics to the farmers. The results showed that CIMMYT hybrids were significantly higher yielding than the NARO and private sector entries in the NPTs. This highlights the need for continuous improvement in breeding, for integrating new tools and methods to drive rates of genetic gain with sustainable funding for the public sector. We also noted significantly lower rates of genetic gain in the low GY experiments.

In broad terms, currently grown maize varieties in Uganda have higher GY, have an earlier anthesis date, and are taller than those cultivated in the past, as these traits showed the same trend in each source of NPT entries and in the era trials (Tables 6–8). The traits with the strongest evidence of genetic gains were GY, AD and GT. All five traits had an average within-trial heritability greater than 0.40 in the NPT, with GY, AD, and GT having average heritability greater than 0.60. All breeders seem to select more intensely for GY and AD. Grain yield and AD as a proxy for early maturity are important farmer-preferred traits (Worku et al., 2020).

The genetic trends indicated that grain texture significantly decreased over time in the CIMMYT entries tending to be more flint-type, but we observed a significant increase in the grain texture of the NARO entries, towards selection for dent type. The trends for PH and EH were interesting because while PH increased in all sources, EH was unchanged in the CIMMYT and private sector sources but increased in the NARO entries. Increasing PH over time probably indicates selection for more vigorous plant types. With product profile-based breeding and foreseen mechanized operations among emerging commercial farmers, there is a need to breed and select for shorter and more modern plant types for increased plant population density and higher harvest index.

Maize productivity in Uganda increased for the three truncated periods analyzed (1961 – 2020, 1999 – 2020 and 2008 – 2020). This significant upward trend of the national average maize yields in Uganda could be partly due to improved genetics and production practices. The highest national maize productivity was achieved between 1999 and 2020, consistent with a systematic and sustained maize breeding program that resulted in the release of the first suite of improved stress-tolerant hybrids in 1999. The first formal release of maize varieties in Uganda was in 1960 followed by another release of Kawanda Composite A in 1971. These varieties were grown for a long time until the late 1980s when they succumbed to the maize streak virus (MSV) during the outbreak of the disease in 1987. These two open-pollinated varieties (OPVs) were lost due to a combination of lack of maintenance breeding and civil strife between 1980 and 1986. The varieties developed later took into account breeding for host plant resistance for MSV and other major foliar diseases like Turcicum leaf blight (caused by Exserohilum turcicum (Pass.) K. J. Leonard & Suggs) and gray leaf spot (caused by Cercospora zeae-maydis Tehon & E. Y. Daniels). This genetic improvement program of maize in Uganda, supported initially by USAID and later by the Rockefeller Foundation, partly explains the highest national productivity gains (62 kg ha-1 year-1) starting from 1999. The other major contributing factor was the advent of the private seed sector that took over from government managed seed industry in the mid-1990s.

Analysis of the national productivity trends showed lower genetic gains in the increase of the mean yield (37 kg ha-1 year-1) for 2008 – 2020, compared to 59 to 106 kg ha-1 year-1 (Table 6) for the same period of NPT. This indicates that improved genetics is most likely contributing to the increased maize yield in Uganda but farmers may not be reaping the entire benefit of improved stress-tolerant varieties due to multiple reasons. These include: 1) not quickly adopting the improved varieties; 2) using low yield environments for maize production; and 3) use of poor agronomic practices which limit the expression of the improved genetics. Given the success of breeding for improved yield and stress tolerance, these issues need to be addressed to reduce the yield gaps. Poor varietal turnover is common in East Africa and remains a major bottleneck in improving crop yields (Abate et al., 2017; Atlin et al., 2017; Lee, 2020; Chivasa et al., 2022). Varietal turnover appears to be better in Uganda compared to other East African countries; the area-weighted average age of maize varieties in Uganda is about 7.7 years compared to an average age of 10.2 years across ESA (Chivasa et al., 2022). Improved agronomic practices including timely planting, fertilizer application, and weed management have the potential to further improve maize productivity in Uganda, together with improved genetics.




5 Conclusions

This study estimated the genetic gains for grain yield and some key agronomic traits in pre-commercial and commercial maize varieties from different breeding programs (NARO, CIMMYT and private sector) using datasets from the NPTs (2008 – 2020) and the era trials on varieties released between 1999 – 2020 in Uganda. The results revealed significant annual genetic gains for grain yield and agronomic traits over the years. The study indicates that breeding for the target maize-growing environments in Uganda has been successful, with significant contribution to maize improvement from the private sector, CIMMYT and NARO supported through increased collaboration and expanded testing networks. The rates of gains estimated from the national maize yield average were lower than those obtained from other estimates but these would be higher if farmers use appropriate crop management practices, including the use of fertilizers, which is still very low in Uganda (less than 6 kg/ha on average) (Rware et al., 2020). The sustained increase in maize production in the country could be attributed to a combination of various factors but primarily the infusion of improved stress-tolerant maize varieties and replacement of obsolete varieties due to increasing investment by the private sector, coupled with production by both small-scale and emerging large-scale farmers (Chivasa et al., 2022). Farmers in Uganda have switched to mainly growing hybrids that yield better than OPVs, most of which have been withdrawn and discontinued (Chivasa et al., 2022).

The finding from this study demonstrated continuous improvement in terms of realized genetic gains and productivity gains under research and on-farm conditions, respectively. To achieve larger genetic gains there is a need to modernize the breeding programs by incorporating use of molecular markers and doubled haploid technologies, faster recycling of elite lines, and switch to product profile-based breeding with optimized breeding schemes to improve selection efficiency. In the last three years, NARO’s breeding program has been assessed, and improvement plans and investment cases have been identified under the CGIAR Excellence in Breeding (EiB) platform and Accelerating Genetic Gains for Maize and Wheat Improvement (AGG) Project. These new breeding strategies now inform the product-profile based variety development and replacement. Gaps in seed systems still need to be addressed to effectively deliver improved stress-resilient varieties to the smallholder farmers for greater impact.
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Identifying genomic regions for root traits in bread wheat can help breeders develop climate-resilient and high-yielding wheat varieties with desirable root traits. This study used the recombinant inbred line (RIL) population of Synthetic W7984 × Opata M85 to identify quantitative trait loci (QTL) for different root traits such as rooting depth (RD), root dry mass (RM), total root length (RL), root diameter (Rdia) and root surface areas (RSA1 for coarse roots and RSA2 for fine roots) under controlled conditions in a semi-hydroponic system. We detected 14 QTL for eight root traits on nine wheat chromosomes; we discovered three QTL each for RD and RSA1, two QTL each for RM and RSA2, and one QTL each for RL, Rdia, specific root length and nodal root number per plant. The detected QTL were concentrated on chromosome groups 5, 6 and 7. The QTL for shallow RD (Q.rd.uwa.7BL: Xbarc50) and high RM (Q.rm.uwa.6AS: Xgwm334) were validated in two independent F2 populations of Synthetic W7984 × Chara and Opata M85 × Cascade, respectively. Genotypes containing negative alleles for Q.rd.uwa.7BL had 52% shallower RD than other Synthetic W7984 × Chara population lines. Genotypes with the positive alleles for Q.rm.uwa.6AS had 31.58% higher RM than other Opata M85 × Cascade population lines. Further, we identified 21 putative candidate genes for RD (Q.rd.uwa.7BL) and 13 for RM (Q.rm.uwa.6AS); TraesCS6A01G020400, TraesCS6A01G024400 and TraesCS6A01G021000 identified from Q.rm.uwa.6AS, and TraesCS7B01G404000, TraesCS7B01G254900 and TraesCS7B01G446200 identified from Q.rd.uwa.7BL encoded important proteins for root traits. We found germin-like protein encoding genes in both Q.rd.uwa.7BL and Q.rm.uwa.6AS regions. These genes may play an important role in RM and RD improvement. The identified QTL, especially the validated QTL and putative candidate genes are valuable genetic resources for future root trait improvement in wheat.




Keywords: QTL, markers, candidate genes, phenotyping, recombinant inbred lines, genomic region





Introduction

Wheat is the most important cereal crop exported in developing countries as a primary source of protein (20%) and calories (21%) (Singh, 2019; Vishwakarma et al., 2022). Climate change is stimulating multiple abiotic stresses affecting crop nutrient acquisition, grain yield and quality (Asif et al., 2019; Kumar et al., 2022), and thus threatening global crop productivity (Calleja-Cabrera et al., 2020). However, crop production needs to be at least double by 2050 to feed the future world population (Woo et al., 2021) including the current wheat production (775.6 million tons) (Alexandratos and Bruinsma, 2012; Singh, 2019; Halder et al., 2022).

Roots are pivotal for supplying water and nutrient to crops (Lynch, 2007) and for anchorage (Fitter, 2002), and thus directly affect grain yield (Lynch, 2007). However, due to the heterogeneous nature of soil environments—variations in soil texture, pH, water and nutrient (Li et al., 2021), root traits change according to environmental variations to capture edaphic resources (Grossman and Rice, 2012; Rogers and Benfey, 2015). For example, under well-watered and low moisture conditions, the shallow root system of durum wheat contributed more to yield than the deep root system while under water-limited conditions, deeper roots contributed to higher grain yields (El Hassouni et al., 2018). Furthermore, root traits vary genetically (Scheiner, 1993) and are highly heritable (Fitz Gerald et al., 2006). Therefore, genetic research on different root traits is essential for improving climate resilience and yield potential in crops (Zheng et al., 2019). Quantitative trait loci (QTL) identification is a popular approach for investigating genetic variation in quantitative traits (i.e., root traits) in many cereal crops including wheat. QTL identification requires molecular linkage maps coupled with precise phenotyping (Collard et al., 2006; Shukla et al., 2014; Soriano and Alvaro, 2019). However, obtaining reliable root data for identifying root trait associated QTL from a large number of genotypes grown in soil is challenging due to invasive nature of soil, labor intensity and is time-consuming approach (Atkinson et al., 2015; Ren et al., 2017; Chen et al., 2018). To overcome this limitation, hydroponic (Horn et al., 2016; Ren et al., 2017) and semi-hydroponic (Halder et al., 2021) systems have been used to study wheat root system, and are equally useful for QTL studies (Ren et al., 2017).

QTL studies have revealed the contribution of root trait QTL to grain yield, stress tolerance, and nutrient uptake at different growth stages in wheat (Cai et al., 2008; Bennett et al., 2012; Bai et al., 2013; Ayalew et al., 2017; Ren et al., 2017; Khalid et al., 2018; Alahmad et al., 2019; Salarpour et al., 2020), indicating the value of QTL identification in marker-assisted breeding (MAS) for root traits. For example, rooting depth (RD) and grain yield spike–1 were co-localized with the flanking marker D_GA8KES401CIKOJ–160-BS00067285_51 on chromosome 7D (Salarpour et al., 2020). Root trait QTL of wheat seedlings correlated with QTL at maturity (Bai et al., 2013; Atkinson et al., 2015). In a doubled haploid (DH) of Rialto × Savannah, a grain yield QTL was co-located with different root traits including RD and total root length (RL) of wheat seedling on chromosome 7D (Atkinson et al., 2015). Co-localized QTL for thousand grain weight and root traits, including RL, root surface area (RSA), and root dry mass (RM) were found on chromosomes 4D, 5A and 6A (Bai et al., 2013). Therefore, genetic studies of root traits at the seedling stage might play important role in wheat yield improvement. Under normal and drought conditions, Ayalew et al. (2017) reported a stable QTL for RM on chromosome 5AL of recombinant inbred lines (RILs) of Synthetic W7984 × Opata M85. Under 35°C heat stress, a QTL for RD was found on chromosome 4D in the same population (Lu et al., 2022). Ren et al. (2017) found three significant QTL for RM on chromosomes 2A, 2D and 3B under controlled conditions and two QTL each on chromosome 4B under both low N and phosphorus (P) conditions; they also reported two QTL for RD each on chromosome 2B under both P- and N- limited conditions. A QTL for RM, qRNAX.7A.3, showed salt stress tolerance in the F2 of WTSD91 × WN-64 (Hussain et al., 2017). As wheat is a polyploid with a large genome, many QTL for root traits in wheat remain unexplored. Additionally, only a few QTL for root traits have been validated including RD (Qrls.uwa.1AS and Qrls.uwa.3AL) on chromosome 3A (Ayalew et al., 2017), RL (QTrl.saw-2D.2) on chromosome 2D (Zheng et al., 2019), RM on chromosome 6B (AX-109558906–AX-110028322) and chromosome 7B (AX-95025477–AX-95121748) (Meng-jiao et al., 2020).

The availability of the wheat reference genome has improved the identification of traits controlling candidate genes in QTL regions of specific chromosome and the preciseness and usefulness of QTL mapping for MAS breeding (Appels et al., 2018). In the last decade, several candidate/putative candidate genes of wheat root traits have been reported in the identified QTL regions (Wu et al., 2017; Soriano and Alvaro, 2019; Zheng et al., 2019; Li et al., 2020; Yang et al., 2021b; Griffiths et al., 2022; Li et al., 2022). For example, Wu et al. (2017) identified five putative candidate genes from QTL for root diameter (Rdia) on chromosomes 1BL, 2BL, 3BL, 3DL and 7DS under P stress conditions. TraesCS2D02G594400 and TraesCS2D02G594700 candidate genes were reported for RL QTL on chromosome 2D under controlled conditions (Zheng et al., 2019). However, none of the genes were functionally validated.

The genetics of wheat root traits are complex (Griffiths et al., 2022) due to the large genome (17 Gb) and polyploidy nature of bread wheat (Borrill et al., 2019). Therefore, genetic studies that identify QTL and associated genes of multiple root traits will help to understand the molecular mechanism of wheat root systems (Zheng et al., 2019), ultimately helping to develop climate-resilient, high-yielding wheat genotypes. Therefore, this research aimed to identify QTL for different root traits from RILs developed from Synthetic W79804 and Opata M85, validate key QTL in two populations with different genetic backgrounds and identify candidate genes within the flanking markers of the validated QTL.





Materials and methods




Plant materials

A population of 103 RILs developed from a cross between highly polymorphic parents Synthetic W7984 (T. turgidum cv. Altar 84/Aegilops tauschii Coss. line WPI 219) and Mexican spring wheat (Opata M85) accessed through the International Triticeae Mapping Initiative (Salem et al., 2007; Sorrells et al., 2011) was used for the genetic mapping study. In addition, F2 populations of Synthetic W7984 × Chara and Opata M85 × Cascade with different genetic backgrounds to RILs were developed to validate the phenotypic effect of two identified QTL for RD and RM, respectively.





Experimental design and evaluation of root traits in RILs

Synthetic W7984, Opata M85, and the 103 RILs were grown in a semi-hydroponic system (Chen et al., 2011b) for 42 days in a randomized block design with four replicates for each genotype. The experimental conditions and trait measurements were the same as described by Halder et al. (2021). All plants were assessed at tiller onset [Zadoks 2.4; (Zadoks et al., 1974)], i.e. 42 days after transplanting. Briefly, the experiment was conducted in a temperature controlled (10–24°C) glasshouse at The University of Western Australia (UWA), Perth, from mid-June to late-August 2019. Wheat seedlings (4–5 cm long roots) grown in washed river sand were transplanted into bins for a semi-hydroponic system containing 35 L nutrient solution.

At harvest, the maximum depth of a plant root (RD) was measured with a ruler from its crown, and the number of nodal roots per plant (NNR) was counted manually. After capturing photographs of the root system using a portable photographing system, the root system were separated from the shoot. Root sections (≤ 20 cm) were scanned at 400 dpi using a desktop scanner (Epson Perfection V800/850) to determine other root traits—RL (sum of all root length types), Rdia, RSA and root diameter length (RDCL) of fine roots (root diameter< 0.25 mm) and coarse roots (root diameter > 0.25 mm)—were measured using WinRHIZO Pro software (v2009, Regent Instruments Inc., Montreal, QC, Canada). Specific root length (SRL) was calculated as the RL per unit of RM, and root length intensity (RLI) was the RL per unit of RD. Root growth rate is the RD per day. RM is the weight of the whole root system after air-forced oven drying (65°C for 72 h). Further, using the phenotypic data, broad-sense heritability (H2) of the root traits was calculated as:

H2 =  , where   is genotypic variance (mean sum of squares of a trait) and   is environmental variance (residual mean sum of square) from the analysis of variance, and n is replication number per genotype (4) (Wu et al., 2013; Ben Sadok et al., 2015).





QTL mapping

Molecular marker data and the linkage map of the Synthetic W7984 × Opata 85 RIL mapping population were accessed from the GrainGenes database (https://wheat.pw.usda.gov/cgi-bin/GG3/report.cgi?class=mapdata&name=Wheat%2C%20Synthetic%20x%20Opata%2C%20BARC). The linkage map comprised 1,476 simple-sequence repeats (SSR) and restriction fragment length polymorphism (RFLP) markers distributed across 21 linkage groups. Among the available markers, 1,018 with known chromosomal locations were used for QTL mapping of the target root traits. The genetic map spanned a length of about 500 cM with an average marker density of 1 cM after filtering the 20% missing values from the dataset.

The composite interval mapping method in Windows QTL Cartographer V2.5_011 was used to identify root traits QTL; the logarithm of odds (LOD) threshold value was set to ≥ 2.5 based on 500 and 1,000 permutations at the 5% significance level. LOD > 2.5 indicate the presence of significant QTL in a particular genomic region for an individual trait. The square of the partial correlation coefficient (R2) estimates the phenotypic variance of a single QTL (Balakrishnan et al., 2020). The sequences of the SSR and RFLP flanking markers (left-and right-hand sides closest to the QTL regions) were identified from GrainGenes database (https://wheat.pw.usda.gov/cgi-bin/GG3/browse.cgi?class=marker; accessed on 05 October 2022) and/or NCBI database (https://www.ncbi.nlm.nih.gov/; 05 October 2022), respectively. Further the sequences were blasted in JBrowse (https://urgi.versailles.inra.fr/blast/?dbgroup=wheat_iwgsc_refseq_v1_chromosomes&program=blastn) with the wheat reference genome RefSeq v1.0 to identify the physical position of the markers. The graphical representation of the QTL was drawn using MapChart 2.32 software.





Marker validation using validation populations

One-third of an individual seed (excluding the embryo) was used to extract the genomic DNA of Synthetic W7984, Opata M85, Chara, Cascade, and the F2 of Synthetic W7984 × Chara and Opata M85 × Cascade. The remaining seed with embryo was preserved in the cold room for seed germination to validate the phenotypic effect of the targeted QTL. The one-third seed part was crushed manually using a small hammer, and then crushed further with a SPEX® SamplePrep 2010 GenoGrinder at 1,400 rpm for 2 minutes for DNA extractions following the cetyl trimethyl ammonium bromide (CTAB) method. The extracted DNA was suspended in 0.1× TE buffer (pH 8.0) for storage. DNA concentrations were measured by NanoDrop (NanoDrop-1000 spectrophotometer) and Qubit 2.0 fluorometer using the Qubit dsDNA BR (Broad-Range) Assay Kit. The primers (forward and reverse) for SSR marker Xbarc50 were obtained from Sigma-Aldrich (Sigma-Aldrich Pty Ltd., NSW, Australia). DNA primers of Xgwm334 (forward (5´) dyed with fluorescent PET) were obtained from Alpha ADN (225 Bridge CP 4023, Montreal, Quebec H3C 0J7, Canada: http://www.alphaadn.com/contact.html).

An EmeraldAmp®MAX HS PCR Master Mix reaction mixture (15 µL) containing 20 ng template DNA of Synthetic W7984 and Synthetic W7984 × Chara populations, 0.2 µM of each forward and reverse primers was amplified in a thermocycler (Eppendorf Mastercycler EP Gradient S) to validate the Q.rd.uwa.7BL with a flanking marker Xbarc50. The annealing temperature of the marker (53°C) was found in GrainGenes (https://wheat.pw.usda.gov/cgi-bin/GG3/report.cgi?class=marker&name=&id=86860). The PCR conditions were 98°C for 1 min, 35 cycles of denaturation at 98°C for 10 sec, annealing at 53°C for 30 sec, elongation at 72°C for 1 min kb–1 and final extension (Taq polymerase) at 72°C for 5 min. The PCR products were run on a 2.5% agarose gel electrophoresis using GelRed™ (1:10 ratio) at 120 V for 1 h 20 min. The experiment was conducted at the genetics and molecular genetics laboratories at the UWA School of Agriculture and Environment.

A DNA fragment analysis was undertaken using the Applied Biosystems Genetic Analyzer at Biodiversity Conservation Centre, Kings Park, WA, to validate Q.rm.uwa.6AS with a flanking marker Xgwm334. The annealing temperature of the marker was determined by a gradient PCR using RT-PCR. The master mix (1rxn) for gradient PCR was 5 µL SYBR Green, 1.5 µL of each forward and reverse primer and 2 µL template DNA of Opata M85 and Cascade. Using PCR conditions at 98°C for 2 min, 40 cycles denaturation at 98°C for 10 sec, a range of annealing at 52–67°C for 45 sec, elongation at 72°C for 30 sec kb–1 and final extension at 72°C for 5 min, the best annealing temperature for the marker was set at 58°C. Singleplex PCR of template DNAs (20 ng) from the Opata M85 × Cascade populations and both parents was done in the wheat genetics laboratory at UWA. The master mix (1×) for a singleplex PCR was 3.52 µL PCR grade water, 2 µL 5× buffer, 0.8 µL MgCl2 (25mM), 0.08 µL Taq polymerase (0.04 u µL-1), 0.8 µL of each fluorescent forward primer, and reverse primer, and 2 µL of template DNA (≥ 2 ng µL-1). Singleplex PCR conditions were 94°C for 5 min, 40 cycles denaturation at 94°C for 30 sec, annealing at 58°C for 1min, elongation at 72°C for 45 sec kb–1, final extension at 72°C for 7 min and hold at 10°C. A multiplex PCR was done using 1 µL PCR product mixed with 9 µL highly deionized (Hi-Di) formamide with LIZ Size Standard for fragment analysis in an ABI sequencer.

Further, 1 µL PCR product was mixed with 9 µL Hi-Di with LIZ Size Standard for fragment analysis using capillary electrophoresis in an Applied Biosystems 3500 series Genetic Analyzer at Biodiversity Conservation Centre, Kings Park, WA. The DNA fragment size were identified by analyzing the electrogram from SeqPartitioner, Geneious plugin.

Homozygous (AA from Synthetic W7984 or Opata M85, and BB from Cascade or Chara alleles) individuals were identified by comparing differences in band size in the agarose gel and the DNA fragment size of their respective parents. Selected individuals were grown in a semi-hydroponic system in a controlled environment (day/night 24°C, 14°C) as described above. The average RD and RM of the genotypes of two allelic combinations (AA and BB) were compared using a student’s t-test at 0.05% significance level.





Statistical analysis

Phenotypic data were analyzed using GenStat statistical software 19th edition, with the frequency analysis done in SPSS Version 28.0.0 (142) (https://www.ibm.com/support/pages/node/6525830).





Potential candidate gene identification

Potential high confidence candidate genes for root traits were identified in the two QTL considered for validation. The physical position of the flanking markers of the QTL was found in the GrainGenes wheat database (https://wheat.pw.usda.gov/cgi-bin/GG3/browse.cgi?class=marker), and blasted in the JBrowse (http://www.wheatgenome.org/Tools-and-Resources/Sequences, accessed on 01 June 2022) wheat genome browser with RefSeq v1.0 to identify the candidate genes on the QTL region.

Further, the gene functions were identified in the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 website (https://wheaturgi.versailles.inra.fr/Seq-Repository/Annotation, accessed on 20 June 2022) (Appels et al., 2018). Genes involved in root growth and development from other studies were considered putative candidate genes. The biological functions of the individual genes were obtained from Uniprot (https://www.uniprot.org/?-id+2fYRW1ChXSa+-fun+Pagelibinfo+-info+TREMBL). WheatExp revealed expression of the candidate genes on root tissues in other wheat cultivars (Pearce et al., 2015) (http://www.wheat-expression.com/; accessed on 01 December 2022). Gene expression levels for the candidate genes in different wheat tissues, including roots were downloaded from WheatExp. Further, gene expression in root tissue was filtered, with the highest expression level considered for this study.






Results




Phenotypic evaluation

Root traits of the Synthetic W7984 × Opata M85 RILs and their parents varied considerably (Table 1). Opata M85 had higher RL, RD, RM, root surface area of fine roots (root diameter < 0.25 mm, cm2; RSA2), and total length of coarse roots (root diameter < 0.25 mm, cm; RDCL2) than Synthetic W7984, while Synthetic W7984 had higher root surface area of fine roots (root diameter > 0.25 mm, cm2; RSA1), SRL, and total length of coarse roots (root diameter > 0.25 mm, cm; RDCL1) than Opata M85 (Table 1). For the RILs, RL, RD, RM, Rdia, RSA1, RSA2, and SRL ranged from 173.10–12,783 cm, 8.00–158 cm, 0.03–0.44 g, 0.21–0.66 mm, 10.07–216.20 cm2, 1.16–55.17 cm2, and 2,150–74,013 cm g–1, respectively (Table 1). Transgressive segregation with approximately normal distribution for various root traits (RL, RD, RM, Rdia, RSA1, RSA2, and SRL) between the RILs and the parents was detected (Figure 1). H2 was high (84.5–92.1%) for all root traits except RLI (data not shown).




Figure 1 | Distribution of (A) total root length (cm), (B) rooting depth (cm), (C) root dry mass (g), (D) root diameter (mm), (E) root surface area of fine roots (root diameter< 0.25 mm, cm2), (F) root surface area of coarse roots (root diameter > 0.25 mm, cm2), and (G) specific root length (cm g-1) of 103 recombinant inbred lines and their parents, Synthetic W7984 and Opata 85. The green and red arrows indicate the phenotypic performance of Synthetic W7984 and Opata M85, respectively.




Table 1 | Variations in root traits of recombinant inbred lines (RILs) and their parents, Synthetic W7984 and Opata M85.







QTL mapping

The permutation tests identified 14 and nine QTL for eight root traits, with LOD scores ≥ 2.5 in CIM at 500 and 1,000 permutations, respectively. However, considering that root system architecture is complex and governed by many genes of small effect (Sharma et al., 2011), the study considered the QTL identified at 500 permutations. Most of the QTL were distributed on chromosome groups 5, 6 and 7, except 5B and 7D chromosomes. The QTL for RSA1 were found on chromosome 2A and 3B (Table 2). Opata M85 contributed alleles to all the QTL for RL, RM, RSA1 and NNR and a QTL for RD (Q.rd.uwa.5DL), and Synthetic W7984 contributed all other alleles.


Table 2 | QTL for eight root traits in recombinant inbred lines (RILs) of Synthetic W7984 × Opata M85 identified by composite interval mapping (CIM) at the logarithm of odds (LOD) threshold ≥ 2.5.



Seven of the QTL on chromosome groups 5, 6 and 7 explained more than 10% phenotypic variance (R2). Three QTL for RD (R2 = 11.03–16.52%; LOD 3.14–4.14) were identified and distributed on the long arms of chromosomes 5A, 5D and 7B (Figure 2). Synthetic W7984 contributed alleles to Q.rd.uwa.5AL and Q.rd.uwa.7BL, and Opata M85 contributed alleles to Q.rd.uwa.5DL. Among the 11 QTL, Q.rd.uwa.5DL had the highest LOD (4.14) and R2 (16.52) values. For the two QTL for RM (both contributed by Opata M85), one was distributed on the long arm of chromosome 7A (R2 = 12.86%; LOD = 2.87) and the other on the short arm of chromosome 6A (R2 = 9.49%; LOD = 2.80) (Figure 2C); the LOD and R2 were same for both 500 and 1,000 permutations. QTL for RL and NNR occurred on the long arm of chromosome 5A. Two QTL for RSA2 were detected on chromosomes 5DL (Figure 2B) and 6BS, and QTL for SRL was identified on chromosome 6DS.




Figure 2 | Mapping of important QTL for root traits in wheat in the Synthetic W7984 and Opata 85 RIL population (A) total root length (RL, cm), rooting depth (RD, cm), and nodal roots per plant (NNR) (B) rooting depth and root surface area of fine roots (root diameter < 0.25 mm, RSA2, cm2), (C) root dry mass (RM), and (D) rooting depth of recombinant inbred lines of Synthetic W7984 × Opata 85. Bars and caps indicate the QTL with LOD > 2.5. Red markers are flanking markers of different colours in individual chromosomes that represent the tightly linked marker of the respective QTL.



Co-location of Q.rd.uwa.5DL and Q.rsa2.5DL were identified at 120.50 cM (Figure 2B). The flanking marker interval was 112.2–126.7 cM for Q.rd.uwa.5DL and 112.2–134.1 cM for Q.rsa2.5DL.





QTL validation

Xbarc50, the closely linked marker of Q.rd.uwa.7BL, showed polymorphism between Synthetic W7984 and Chara in agarose gel electrophoresis. Xgwm334, the closely linked marker of Q.rm.uwa.6AS, showed polymorphism between Opata M85 and Cascade in DNA fragment analysis. The fragment size of the parents (Table 3) was used to score the randomly selected F2 populations of the two validation population lines—19 lines for Synthetic W7984 × Chara, and 13 lines for Opata M85 × Cascade. The Synthetic W7984 × Chara hybrids (F2) were divided into two groups (only homozygous lines). The group containing the negative allele from Synthetic W7984 (Q.rd.uwa.7BL) had a significantly (P < 0.01) shorter (52%) RD than Chara (Table 4). Similarly, in the Opata M85 × Cascade hybrids, the group containing the positive allele from Opata M85 (Q.rm.uwa.6AS) had a significantly (P < 0.01) higher (31.58%) RM than Cascade (Table 4).


Table 3 | Fragment size of two SSR markers, with polymorphism among parental lines (Synthetic W7984, Opata M85, Chara, and Cascade) of the validation population, related to QTL for rooting depth (RD) and root dry mass (RM).




Table 4 | Validation of quantitative trait loci (QTL) for rooting depth (RD) and root dry mass (RM) identified from Synthetic W7984 × Opata M85 recombinant inbred line (RIL) population in F2 populations of Synthetic W7984 × Chara and Opata M85 × Cascade.







Candidate gene identification

The 329.79–700.63 Mb mapping interval of Q.rd.uwa.7BL contained 2,323 genes, with the functions of 215 genes associated with the wheat root system (Halder et al., 2022) (Supplementary Table S1). Twenty-one genes were putative candidate genes for root traits and abiotic and biotic stress tolerance in wheat, reported earlier in other crops and Arabidopsis (Table 5). The 8.00–22.02 Mb mapping interval of Q.rm.uwa.6AS contained 387 genes, with the functions of 34 genes reported in the wheat root system (Halder et al., 2022) (Supplementary Table S1) and 13 were putative candidate genes for root traits and abiotic and biotic stress tolerance in wheat (Table 5). The in-silico expression study identified, high expression levels of the candidate genes in wheat cultivars ‘Chinese Spring,’ ‘Nulliterea Chinese Spring,’ ‘Azhurnaya,’ and ‘N1DT1A’ (Supplementary Table S2). Among the putative candidate genes from both QTL, TraesCS7B01G374800, had the highest expression level (log2 of transcripts per million: 360.65) in the roots of ‘Chinese Spring’. In the roots of ‘Azhurnaya,’ TraesCS7B01G404000, TraesCS7B01G368400, and TraesCS6A01G026500 had high-expression levels.


Table 5 | Genes located within the two quantitative trait loci (QTL) and the encoded proteins related to root traits and abiotic stress tolerance in crops and Arabidopsis.








Discussion

A semi-hydroponic phenotyping system was used for phenotyping a RIL mapping population of Synthetic W7984 × Opata M85 and to identify QTL for different root traits in wheat. A total of 14 QTL for eight root traits were detected on nine wheat chromosomes, with two important QTL validated in two independent F2 populations. The QTL identified were concentrated in wheat chromosome groups 5, 6 and 7. Several putative genes located in the QTL region were identified for the molecular breeding of root traits.




Phenotypic analysis of root traits

The semi-hydroponic system used in this study offered an excellent opportunity to acquire reliable root trait data with high accuracy and repeatability (Chen et al., 2020). In our recent study, root trait variability of 184 bread wheat genotypes originating from 37 countries was characterized in the same semi-hydroponic phenotyping system (Chen et al., 2020), followed by validation of genotypes with contrasting root systems in soil-filled rhizoboxes (Figueroa-Bustos et al., 2018). The consistent ranking of genotypes for some important root traits in the semi-hydroponic system and soil conditions indicates the reliability of the phenotyping study for root studies, as confirmed in other crop species, such as narrow-leafed lupin (Chen et al., 2011a; Chen et al., 2014), barley (Wang et al., 2021), and soybean (Liu et al., 2021; Salim et al., 2022). The wheat lines used in this study will be examined further under the field conditions. Significant phenotypic variation for all measured root traits in the biparental population indicates the successful identification of the polygenic trait (Table 1). Further, the continuous distribution of different root traits such as RL, RD, RM, Rdia, RSA1, RSA2 and SRL (Figure 1) indicates that the genetic architecture of individual trait has many genes responsible for the variation. Similarly, high broad-sense heritability (> 80%) for all root traits except RLI (data not shown) indicates the potential for selecting these traits in future wheat breeding. Earlier studies demonstrated significant phenotypic variation in root traits under drought stress (Ayalew et al., 2017), heat stress (Lu et al., 2022), and waterlogging stress (Yu and Chen, 2013) of the same population suggesting that the population in the current study is suitable for genetic mapping of root traits.

Understanding root trait variation is essential for manipulating the traits according to the soil and environmental conditions to improve stress tolerance and yield in wheat. For example, a large wheat root system (in terms of RL and RM) was beneficial for higher grain yield, capturing water and nutrient from sandy soil under well-watered conditions (Palta and Watt, 2009; Palta et al., 2011). However, large root systems reduced yield at terminal drought due to lower (59%) water use efficiency than shallow root systems (Figueroa-Bustos et al., 2020). RM is another important root trait positively correlated with grain yield under drought stress (Ehdaie et al., 2012). SRL (ratio of RL and RM) is an indicator of utilization in nutrient uptake. Wheat genotypes with large SRL and more fine roots take up nutrient and water from the subsoil and contribute to high yield (Chen et al., 2020). Similarly, Rdia significantly correlates with wheat yield and P acquisition (Atta et al., 2013; Nahar et al., 2022).





QTL for root traits in wheat

Several studies have reported the genetics of RL (Ibrahim et al., 2012; Atkinson et al., 2015; Danakumara et al., 2021; Yang et al., 2021a; Li et al., 2022), RD (Liu et al., 2013; Xu et al., 2013; Ayalew et al., 2017; Ren et al., 2017; Salarpour et al., 2020; Danakumara et al., 2021) and RM (Yu and Chen, 2013; Acuna et al., 2014; Meng-jiao et al., 2020; Danakumara et al., 2021) under different environmental conditions. In our study, we discovered 11 QTL on wheat chromosome groups 5, 6 and 7 responsible for root traits contributed by the two parents, Synthetic W7984 and Opata M85. Both parents could contribute favorable alleles for root traits (Bhoite et al., 2018) (Table 2).

Identification of putative QTL alone is insufficient for trait improvement using MAS. Therefore, validating QTL—testing the allelic effect in populations other than the original population—is essential to eliminate statistical error (Langridge et al., 2001). In this study, we validated two flanking markers for RD and RM QTL in populations different than the original population used for QTL identification.

Mapping QTL can also identify the relationship between the traits through the co-localization of QTL (Colombo et al., 2022) which is important for plant performance improvement. Q.rd.uwa.7BL (Xgwm611–Xbarc20) for RD had a LOD of 4.00 and phenotypic variation of 13.14% (Table 2; Figure 2D) for both 500 and 1,000 permutations. Q.rd.uwa.7BL were co-located with previously identified QTL including qMRL.CK-7B (Xbarc257.2–Xgwm46) under controlled conditions. Q.rd.uwa.7BL also co-located with qMRL.LP-7B and qMRL-7B1 (Xbarc1181–Xbarc1116) under low P (Ren et al., 2017) and well-watered conditions (Ren et al., 2012), respectively. Two other QTL under well-watered conditions—qLR-7B (Wms400–Wms573) (Ehdaie et al., 2016) and Q.RL-7BL (AX-94528392) (Danakumara et al., 2021) were co-located with Q.rd.uwa.7BL. Two drought-stress specific QTL for RD found from the RILs derived in Synthetic W7984 and Opata M85 (Ayalew et al., 2017) were co-located with Q.rd.uwa.7BL, suggesting that Q.rd.uwa.7BL may contribute to drought stress tolerance. Importantly, Q.rd.uwa.7BL was co-located with grain yield QTL (Xm43p78.14–Xm86p65.0) (Quarrie et al., 2005), kernel number per spike QTL, QKNPS-DH-7B-2.1 (Xbarc276.1–Xwmc396), and thousand-grain weight QTL, QTKW-DH-7B (Xgwm333–Xwmc10) (Zhang et al., 2016) on chromosome 7B. These co-location evidence strongly suggest that Q.rd.uwa.7BL contributes to improving RD and wheat yield. However, for the first time Q.rd.uwa.7BL was successfully validated for RD in other populations with different genetic backgrounds. The QTL may also contribute to biotic stress tolerance: Xgwm344, a closely linked marker of Q.rd.uwa.7BL previously validated for leaf rust resistance in wheat (Zhang et al., 2020). Comparing of Q.rd.uwa.7BL with other previously reported co-located QTL revealed that Q.rd.uwa.7BL is physically located in a larger interval (329.79–700.63 Mb) than the above-mentioned QTL, except qLR-7B (Figure 3).




Figure 3 | Quantitative trait loci (QTL) identified in this study and previous studies (Ibrahim et al., 2012; Ren et al., 2012; Liu et al., 2013; Xu et al., 2013; Atkinson et al., 2015; Ehdaie et al., 2016; Ayalew et al., 2017; Ren et al., 2017; Soriano and Alvaro, 2019; Li et al., 2020; Meng-jiao et al., 2020; Danakumara et al., 2021; Yang et al., 2021a) on chromosomes 5A, 5D, 6A, 6B, 6D, 7A and 7B. Previously discovered QTL for root traits and grain yield were depicted. The QTL identified in this study were labelled in red colour, and the previously studied QTL were represented by other colours (blue, yellow, green, green-cyan, magenta and blue-magenta). Blue circles represent the genomic regions of the validated QTL (Q.rm.uwa.6AS and Q.rd.uwa.7BL) positions from this study and their overlapping with other QTL from previous studies. Table 2 is referred to the detailed QTL identified in this study on different chromosomes; GY, grain yield; SA, surface area; RL, total root length; Rdia, root diameter; RV, root volume; NNR, number of nodal roots per plant; RSA2 root surface area of fine roots (root diameter < 0.25 mm); SRL, specific root length; RM, root dry mass; and RD, rooting depth.



A number of QTL for RD have been reported on chromosome 7B (Figure 3) (Ren et al., 2012; Liu et al., 2013; Xu et al., 2013; Ehdaie et al., 2016; Ren et al., 2017; Ayalew et al., 2018; Li et al., 2020; Danakumara et al., 2021) under different stress conditions, suggesting that chromosome 7B harbors important genes for RD to improve stress tolerance in wheat. However, none of the QTL has been validated in other populations. In this study, Q.rd.uwa.7BL with a peak marker of Xbarc50 was used to screen the validation population. Synthetic W7984 contributed to Q.rd.uwa.7BL for shallow RD; therefore, Xbarc50 was validated in Synthetic W7984 × Chara hybrids (F2). A significant reduction in RD in the validation population confirmed the reliability of the marker performance. However, the marker could be further tested in other genotypes for application in wheat breeding. Previous studies have reported the significance of shallow RD in high yield of wheat. Under well-watered conditions, genotypes with shallow RD in durum wheat (Bellario and Jabal2), contributed to high yield. Under irrigated conditions, the shallow-rooted genotypes contributed to 20–40% higher yield than deep-rooted genotypes (El Hassouni et al., 2018). The short root length gene, TaSRL1 (on chromosome 4A: 3.37 Mb) improved thousand grain weight as a pleiotropic effect (Zhuang et al., 2021). Importantly, it was revealed in an earlier study that despite taking up 20% less water under drought conditions, Synthetic W7984 (donor parent of Q.rd.uwa.7BL in our study) had higher grain numbers per spike than Opata M85 (Onyemaobi et al., 2018). Therefore, the validated marker for shallow RD from this study could be used to improve the grain yield and stress tolerance in wheat.

Q.rm.uwa.6AS (Xbcd21–Xcmwg652) identified in this study, was co-located with a previously identified grain yield QTL, QGY.cgb-6A (Xgwm334–WMC297) under both well-watered and water-stressed conditions (Liu et al., 2013) indicating its potential for drought tolerance and grain yield improvement. A meta-QTL for RM, Root_MQTL_67 (Soriano and Alvaro, 2019), overlapped with Q.rm.uwa.6AS (Xgwm334), but was not validated. In this study, Opata M85 contributed positive alleles to Q.rm.uwa.6AS for increased RM. Testing the allelic performance of Xgwm334, in Opata M85 × Cascade hybrids (F2), Opata M85 had significantly higher RM than Cascade confirming the functionality of the identified QTL. Therefore, using of Q.rm.uwa.6AS in future MAS or other advanced genetic approaches may help improve RM, yield, and stress tolerance in wheat. The QTL could be tested in wider populations for wheat breeding. On the other hand, Q.rm.uwa.7AL for RM identified in this study was co-located with previously identified QTrl.D84-7A (Xbarc275) for RL under both well-watered and drought-stress conditions in a back cross population of Devon × Syn084 (Ibrahim et al., 2012). Another grain yield QTL (Xpsp3094.1–Xm68p78.6) on chromosome 7A was co-located with Q.rm.uwa.7AL (Quarrie et al., 2005). As no similar QTL for root traits on chromosome 6AS and 7AL were reported, Q.rm.uwa.6AS and Q.rm.uwa.7AL were novel discoveries in this study. Validation of Q.rm.uwa.7AL is recommended in the future.

In this study, QTL for RD (Q.rd.uwa.5DL) and QTL for RSA2 (Q.rsa2.5DL) overlapped and shared the same marker, Xmwg900 (Figure 2B). These QTL also overlapped with a previously reported QTL for root volume (Ibrahim et al., 2012). Furthermore, the marker interval was found within a recently identified QTL (IWB61072–IWB49479) for grain yield (Li et al., 2018) suggesting the importance of Q.rd.uwa.5DL and Q.rsa2.5DL over other root traits and grain yield. However, there was no overlapping evidence for Q.rl.uwa.5AL, Q.rd.uwa.5AL, Q.rdia.uwa.6AL, Q.rm.uwa.7AL, or Q.srl.uwa.6DS discovered in this study with any previous root trait QTL (Figure 3) which suggesting that they are novel QTL for controlling root traits.





Putative candidate genes on chromosomes 6A and 7B

We identified 2,323 genes in the Q.rd.uwa.7BL regions and 387 genes in the Q.rm.uwa.6AS regions. Proteins encoded by 215 genes of Q.rd.uwa.7BL and 34 genes of Q.rm.uwa.6AS were associated with the wheat root traits (Supplementary Table S1). In a recent review article, Halder et al. (2022) listed the number of proteins associated with the wheat root system. However, among the identified genes, proteins encoded by 21 and 13 genes in Q.rd.uwa.7BL (329.79–700.63 Mb) and in Q.rm.uwa.6AS (8.00–22.02 Mb), respectively, had roles in controlling root traits in different crops such as rice, barley, maize and soybean, and Arabidopsis (Table 5).

Phytohormones such as cytokinin play important role in root development (Aloni et al., 2006), with histidine-containing phosphotransfer (HK) and glutaredoxin proteins regulating cytokinin signaling. Transgenic plants with reduced cytokinin had greater root growth and more lateral roots than those plants with high cytokinin (Nishimura et al., 2004). HK proteins regulate phosphorylation to control the root growth of Arabidopsis (Hutchison and Kieber, 2007) and barley (under limited/resupply of P) (Ma et al., 2021). We found TraesCS6A01G020400 encoded HK proteins which located very close (0.23 Mb) to the validated marker, Xgwm334, and TraesCS7B01G404000 encoded glutaredoxin protein which located on the QTL for shallow RD. In Arabidopsis, a genotypes AtGRXS3/4/5/8 with silenced glutaredoxin proteins had large primary roots (Patterson et al., 2016) indicating the negative role of glutaredoxin protein in RD. Glutaredoxin also play important role in stress tolerance through redox state of cell, redox dependent pathway regulation, and also improve nutrient uptake. In rice root, glutaredoxin improved arsenic (Verma et al., 2020) and salinity (Verma et al., 2021) stress tolerance. In Arabidopsis root, glutaredoxin improved nitrogen uptake and ammonium stress tolerance (Patterson et al., 2016).

Another protein, 3-ketoacyl-CoA synthase (KCS) condenses very-long-chain fatty acids essential for cuticular waxes and suberin production in roots (Lee et al., 2009; Kim et al., 2021). Suberin is critical role in drought and salinity stress tolerance in root (de Silva et al., 2021). For example, reduced suberin restricted root growth in Arabidopsis (Lee et al., 2009). A KCS6 barley mutant with reduced cuticular waxes had reduced seminal root length but increased lateral root length (Weidenbach et al., 2015). Therefore, future exploration of the KCS encoding genes (TraesCS6A01G024400 and TraesCS7B01G254900) identified in this study could be useful for improving stress tolerance in wheat through improved RM, and RD improvement. TraesCS6A01G026500, identified in our study, encoded lysine-specific demethylase (LSD). LSD belongs to histone demethylase (amine oxidase superfamily) which contributes to root elongation and abiotic stress tolerance through histone modification (Sun et al., 2019; Liu et al., 2022). In maize, the LSD encoding hub gene [Zm00001d002266: genes with top 10% correlation within a module (Liu et al., 2019)], controlled seminal root length under drought and controlled conditions (Guo et al., 2020). Transgenic Arabidopsis with overexpressed LSD encoding Glyma.17G022500 improved salinity stress tolerance (Sun et al., 2019).

Few candidate genes for RD and RM encode proteins with similar functions indicating their importance for future wheat breeding. Germin-like protein (GLP) was first identified in germinating wheat grains (Bernier and Berna, 2001). However, the role of GLP genes in wheat root trait control is unclear, except for an association between GLP and cell wall modification for improved aluminum stress tolerance in wheat (Delisle et al., 2001; Houde and Diallo, 2008). GLP genes Gs1 and Gs2 are highly expressed in barley roots and expressed salinity stress tolerance (Hurkman et al., 1991). GLP contributed to multiple stress (e.g. as drought, heat, cold, and oxidative stress) tolerance in Arabidopsis and rice (Li et al., 2016). Therefore, it would be interesting to explore the genes encoding GLP for RD and RM (Table 5). We also found six candidate genes encoding mitochondrial transcription termination factor (mTERF) in Q.rm.uwa.6AS, and thaumatin-like protein encoding genes—TraesCS6A01G021000 in Q.rm.uwa.6AS and TraesCS7B01 G446200 and TraesCS7B01G25590 in Q.rd.uwa.7BL. mTERF and thaumatin-like protein expressed in roots of different crops and Arabidopsis and play important role in abiotic and biotic stress tolerance. For example, mTERF encoding genes shot1 and mterf6-5 in an Arabidopsis mutant expressed heat tolerance (Kim et al., 2012) and salt tolerance (Robles et al., 2018), respectively. Thaumatin-like protein highly expressed in roots in barley (Iqbal et al., 2020) and Arabidopsis, and contributed to abiotic (e.g. drought and salt) and biotic (e.g. fungus) stress tolerance in Arabidopsis (Misra et al., 2016; de Jesús-Pires et al., 2020). In-silico studies of the putative candidate genes suggested that the genes expressed at different levels (0.02–360.65) in root tissues of different wheat cultivars. Important genes, TraesCS7B01G404000, TraesCS7B01G254900 and TraesCS7B01G446200, from Q.rd.uwa.7BL showed high (124.32) to low (0.89) gene expression while important genes from Q.rm.uwa.6AS, TraesCS6A01G024400, TraesCS6A01G021000 and TraesCS6A01G020400 showed low (0.20–0.11) gene expression in roots of previously studied wheat cultivars (Supplementary Table S2). However, the study conditions and the studied root traits of the previous studies may cause variation in gene expression, which could be confirmed by future gene expression approaches. Moreover, after further functional validation, the identified putative candidate genes may be useful for wheat breeding programs for root improvement.






Conclusion

Eleven QTL were identified on chromosomes 5A, 5D, 6A, 6B, 6D, 7A and 7B for seven root traits in bread wheat suggesting that wheat chromosome groups 5, 6 and 7 harbor major QTL/genes for root traits. Q.rd.uwa.7BL co-located with previously identified grain yield and biotic and abiotic stress tolerance markers. Q.rm.uwa.6AS, is a novel QTL for RM. Validation studies confirmed the functionality of Q.rd.uwa.7BL and Q.rm.uwa.6AS in two independent F2 populations. The putative candidate genes located in the validated QTL encode important proteins for root traits in other crops. Further gene validation is required to confirm their role in wheat breeding. The identified and validated QTL/markers and putative candidate genes in this study provide a genetic foundation for marker-assisted breeding of root traits in bread wheat.
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The Canada Western Red Spring wheat (Triticum aestivum L.) cultivars AAC Concord, AAC Prevail, CDC Hughes, Lillian, Glenlea, and elite line BW961 express a spectrum of resistance to leaf rust caused by Puccinia triticina Eriks. This study aimed to identify and map the leaf rust resistance of the cultivars using three doubled haploid populations, AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG). The populations were evaluated for seedling resistance in the greenhouse and adult plant disease response in the field at Morden, MB for 3 years and genotyped with the 90K wheat Infinium iSelect SNP array. Genetic maps were constructed to perform QTL analysis on the seedling and field leaf rust data. A total of three field leaf rust resistance QTL segregated in the PB population, five in the HC, and six in the LG population. In the PB population, BW961 contributed two QTL on chromosomes 2DS and 7DS, and AAC Prevail contributed a QTL on 4AL consistent across trials. Of the five QTL in HC, AAC Concord contributed two QTL on 4AL and 7AL consistent across trials and a QTL on 3DL.1 that provided seedling resistance only. CDC Hughes contributed two QTL on 1DS and 3DL.2. Lillian contributed four QTL significant in at least two of the three trials on 2BS, 4AL, 5AL, and 7AL, and Glenlea two QTL on 4BL and 7BL. The 1DS QTL from CDC Hughes, the 2DS from BW961, the 4AL from the AAC Prevail, AAC Concord, and Lillian, and the 7AL from AAC Concord and Lillian conferred seedling leaf rust resistance. The QTL on 4AL corresponded with Lr30 and was the same across cultivars AAC Prevail, AAC Concord, and Lillian, whereas the 7AL corresponding with LrCen was coincident between AAC Concord and Lillian. The 7DS and 2DS QTL in BW961 corresponded with Lr34 and Lr2a, respectively, and the 1DS QTL in CDC Hughes with Lr21. The QTL identified on 5AL could represent a novel gene. The results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding.
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Introduction

Wheat (Triticum aestivum L.) leaf rust, caused by the obligate biotrophic pathogen Puccinia triticina Eriks. (Pt), is one of the most destructive and prevalent diseases of wheat worldwide (Kolmer, 2005). Wheat leaf rust disease has been an annual problem since the early days of wheat cultivation in Canada and other countries (Kolmer, 2005; McCallum et al., 2007; McCallum et al., 2016a). The use of fungicides and breeding to combine genetic resistance is the most common method to prevent and control wheat leaf rust (Hafeez et al., 2021). Genetic resistance is the most preferred and effective method to combat Pt and reduce yield loss. In Canada, for the last several years, leaf rust has been effectively controlled by growing highly resistant cultivars. Wheat farmers could continue to economically benefit from growing disease-resistant cultivars with an increase in farm income through yield protection and a reduction in farm expenditure because of the absence or reduced application of fungicides. However, the efficacy of some resistance genes, such as Lr21, has decreased over time, and other genes could be overcome by evolving races resulting from the mutation and selection of virulent pathogen genotypes, suggesting the need for the continuous search and deployment of new and effective genes.

For the past many decades, several leaf rust-resistant wheat cultivars have been developed and deployed in different countries around the world. The identification of Lr genes effective in the adapted wheat germplasm and wild relatives to introgress into new cultivars has been a major breeding objective of many wheat programs. Two classes of Lr genes have been known to condition the resistance to leaf rust in wheat—(1) the R genes also referred to as “major gene resistance,” “gene-for-gene resistance,” “race specific resistance,” “qualitative resistance,” and “seedling or all-stage resistance” and (2) “adult plant resistance,” “quantitative resistance,” “slow rusting,” or “durable resistance” genes (Kolmer, 1997; Ellis et al., 2014; Singh et al., 2016).

While R genes are pathogen race-specific and express throughout the stages of the plant growth, the expression of the adult plant resistance (APR) genes is usually confined to adult plants. The R genes confer complete resistance compared with some adult plant resistance genes, which confer partial and more durable protection against the disease, while other adult plant resistance genes are also race-specific. In general, cultivars with only adult plant resistance are susceptible to infections as seedlings but become more resistant as the plant grows. Leaf rust resistance genes designated Lr1 to Lr81 and several quantitative trait loci (QTL) associated with the resistance have been described (Pinto da Silva et al., 2018; McIntosh et al., 2020; Kumar et al., 2021; Kumar et al., 2022; Xu et al., 2022). Pinto da Silva et al. (2018) reported 249 leaf rust resistance QTL identified in 70 biparental mapping populations and 79 different lines, 35 meta-QTL, and about 200 marker-trait associations (MTAs) identified on the 21 wheat chromosomes. However, most designated genes are no longer used in breeding as they are not effective against the recent Pt races.

Breeding durable resistance in wheat cultivars depends on the continuous introgression of new genes into adapted cultivars (Kolmer, 1997; Campbell et al., 2012). Pyramiding of multiple genes is an effective approach utilized in resistance breeding. For example, inheritance studies conducted using CIMMYT wheat germplasm by Singh et al. (2000) indicated that combinations of three to five small- to intermediate-effect genes could result in a high level of resistance. Several other studies also affirm stacking genes could enhance the level of resistance, subsequently increasing the longevity of cultivars in the field (Kolmer, 1997; Singh et al., 2016; Mundt, 2018; Rimbaud et al., 2018; Hafeez et al., 2021; Bokore et al., 2022). Additionally, growing cultivars strategically pyramided with resistance genes could help in restricting the chance of evolving virulent races.

Molecular characterization of wheat germplasm is useful to identify new genes, track previously reported genes, develop markers suitable for marker-assisted breeding, and identify parental lines that could be used to develop new cultivars. The objective of this study was to identify and map leaf rust resistance in the Canadian spring wheat cultivars AAC Prevail, AAC Concord, CDC Hughes, Glenlea, Lillian, and elite line BW961 using three doubled haploid populations derived from these lines.





Materials and methods




Plant materials

Three doubled haploid (DH) populations developed from the CWRS wheat crosses AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG) using the wheat–maize–pollen method (Humphreys and Knox, 2015) at AAFC-Swift Current, SK, were studied. Table 1 describes population size, location, and year of leaf rust evaluation and a number of lines genotyped with the 90K wheat Infinium iSelect single nucleotide polymorphism (SNP) array. Derived from the cross 99B60-EJ2G/Somerset, AAC Prevail (Figure 1) was granted breeders’ right in 2017, and it was rated resistant to leaf rust at the time of its registration (Kumar et al., 2017). Lillian, a line derived from a cross BW621*3/90B07-AU2B (Figure 1), is a solid stem cultivar registered in 2003 with a resistant response to prevalent races of leaf rust at the time of its release (DePauw et al., 2005). AAC Concord, released in 2017 and selected from the cross Lillian/Journey//9505-LP03A (Figure 1), was resistant to leaf rust when it was registered (https://inspection.canada.ca/english/plaveg/pbrpov/cropreport/whe/app00009998e.shtml). Licensed in 1972, Glenlea was also resistant to all prevalent races of leaf rust at the time of its release (Evans et al., 1972). With a moderate resistance to leaf rust during its registration, CDC Hughes, provisionally protected in 2016 and granted rights in 2019, was developed from the cross Unity/BW864 (https://inspection.canada.ca/english/plaveg/pbrpov/cropreport/whe/app00010339e.shtml). Having moderate leaf rust resistance, BW961 is a breeding line selected from Alsen/Waskada, but it was not registered as a cultivar (https://inspection.canada.ca/english/plaveg/pbrpov/cropreport/whe/app00009618e.shtml).


Table 1 | Description of the doubled haploid wheat populations AAC Prevail/BW961, CDC Hughes/AAC Concord, and Lillian/Glenlea used in the leaf rust resistance study, the number of lines genotyped and phenotyped near Morden (MD), Manitoba, and the year-of-field evaluation.






Figure 1 | A dendrogram displaying Pasqua descendants Lillian, AAC Concord, and AAC Prevail. The asterisk sign “*” followed by numbers indicates how many times a recurrent parent was crossed with a line. RL4352-1 is a rust-resistant selection from cv. Columbus (Basnet et al., 2015). Pasqua descendants (red font).







Leaf rust evaluation




Seedling plant infection

The seedling infection type response analysis on the parents and progenies of the PB, HC, and LG populations was conducted in the greenhouse at Morden Research and Development Centre, AAFC, MB, using Pt isolates 12-3 MBDS, 128-1 MBRJ, 74-2 MGBJ, 06-1-1 TDBG, 77-2 TJBJ, and 21-84-1TCTS. The isolates have unique numerical identifiers, and the letter codes are according to the North American system of nomenclature described by Long and Kolmer (1989). The seedlings were inoculated by urediniospores of single purified Pt isolates at the two-leaf growth stage, as previously described by McCallum et al. (2020). Infected plants were rated to determine the infection type (IT) 12 to 14 days post-inoculation (McCallum et al., 2020). Wheat lines that produced infection types “;” (hypersensitive flecks), “1” (small uredinia with necrosis), “2” (small- to medium-sized uredinia with chlorosis), and “X” or mesothetic (a range of reaction types from “;” to “3−”) were considered resistant, and those that produced infection types “3” (medium-sized uredinia without chlorosis or necrosis) and “4” (large uredinia without chlorosis or necrosis) were considered susceptible against the Pt races evaluated (Stakman et al., 1962). Pustules that were slightly larger than typical for the infection were designated with a “+,” and those slightly smaller were designated with “−,” whereas those much smaller than the typical infection type were designated with “=.” For QTL analysis, the seedling infection types were converted in a similar manner to a 1 to 9 scale as previously described (Zhang et al., 2011; Zhang et al., 2014). The ITs were converted as follows: “0” = 0, “1−”=1, “1” = 2, “1+”=3, “2−”=4, “2” = 5, “2+”=6, “X”=7, “3−”=8, “3” = 9, and “3+”=10 and “4” = 10.





Adult plant infection

Trials to evaluate the adult plant leaf rust responses of the populations were conducted in the field rust nurseries near Morden, MB. The populations of PB and HC were evaluated for 3 years from 2019 to 2021, and the LG population in 2019, 2021, and 2022. The populations, parents, and checks were planted in single 1-m rows in a randomized complete block design with two replications. To ensure uniform infestation, susceptible spreader rows were planted around plots, and the spreader rows were inoculated with a mixture of Canadian leaf rust races collected during the previous growing season (McCallum et al., 2016b; Bokore et al., 2020; McCallum et al., 2021). The urediniospores of multi-race mixtures were suspended in light mineral oil (Soltrol, Chevron Phillips Chemical Company) and sprayed on the leaves of the spreader rows at early tillering. This enables the urediniospores to develop on the spreader rows and be windblown to the test lines, providing a uniform rust infection across the field.

Leaf rust severity was rated as the proportion (%) of the leaf area infected using a modified Cobb Scale (Peterson et al., 1948) and infection response as resistant (R), resistant to moderately resistant (RMR), moderately resistant (MR), mesothetic (X), moderately resistant to moderately susceptible (MRMS), moderately susceptible (MS), moderately susceptible to susceptible (MSS), and susceptible (S). The infection response was converted to numerical values for data analysis as R = 1, RMR = 2, MR = 3, X = 4, MRMS = 5, MS = 6, MSS = 7, and S = 8. Pearson correlation analysis on the disease severity of adult plants was performed using SAS 9.4 software.






Molecular analysis

The DNA of the DH lines and parents of the PB, HC, and LG populations was extracted from young leaves using the DNeasy 96 Plant Kit (QIAGEN Science, MD, USA). The PB population was genotyped with 5,151 SNP markers chosen for wheat breeding from the 90K Infinium ISelect marker panel, as previously described by Bokore et al. (2021). The HC and LG populations and parental lines were genotyped using the 90K Infinium iSelect SNP bead array (Illumina Inc., San Diego, CA, USA). The SNP raw data of each population were processed in GenomeStudio v2.0 software (Illumina). The linkage maps of the populations were built using the regression model in JoinMap 5 software, Kyazma, Wageningen, The Netherlands (Van Ooijen, 2018). The QTL analysis was performed on the seedling and adult plant leaf rust phenotypic data using the MapQTL 6 software, Kyazma, Wageningen, The Netherlands (Van Ooijen, 2009). The analysis of both seedling and adult plant phenotypic data along with the chromosomal locations of the QTL enabled the assignment of most QTL to known leaf rust genes. The multiple QTL mapping (MQM) methods were adopted to confirm QTL regions first detected by the simple interval mapping approach. Cofactor markers used in the MQM analysis were selected by automatic cofactor selection or manually by adjusting the selection of markers.






Results




Parental line seedling plant response

The PB population parent AAC Prevail evaluated with Pt races 12-3 MBDS, 128-1 MBRJ, 74-2 MGBJ, 06-1-1 TDBG, and 77-2 TJBJ displayed resistant IT of “;1=“ against all the races. The second PB population parent, BW961, displayed resistant IT of “0” against races 12-3 MBDS, 128-1 MBRJ, and 74-2 MGBJ and intermediate IT of 2 to 3 against 06-1-1 TDBG and 77-2 TJBJ. The first HC parent, CDC Hughes, was rated with an IT of “;1=“ for the races 12-3 MBDS, 128-1 MBRJ, 06-1-1 TDBG, and 77-2 TJBJ and an IT of “;” against 74-2 MGBJ. The second HC population parent, AAC Concord, was rated with an IT of “0” for the races 12-3 MBDS, 128-1 MBRJ, 74-2 MGBJ, an IT of “;” for 06-1-1 TDBG, and an IT of “;1” for 77-2 TJBJ. The LG parent Lillian was rated with an IT of “;1” against the races 12-3 MBDS, 74-2 MGBJ, and 77-2 TJBJ, with an IT of a mixture of “2+” and “X” against 128-1 MBRJ, an IT of “;” with the race 06-1-1 TDBG, and an IT of “2” with 21-84-1 TCTS. The other LG population parent, Glenlea, had intermediate IT of “2” to “3” for race 128-1 MBRJ, susceptible with an IT of “3” for 12-3 MBDS and 74-2 MGBJ, had an IT of “3+” for 06-1-1 TDBG and 21-84-1 TCTS, and was highly susceptible with an IT of “4” for 74-2 MGBJ.





Field adult plant response

A wide range of percent disease severity and infection response (R to S) was observed among the DH lines of the populations (Supplemental Table S1). The frequency distribution of the leaf rust severity among lines of the populations is presented in Figure 2. Across all the trials and environments, the susceptible check Thatcher ranged in leaf rust severity from 58.8% in 2021, with dry and hot weather too, to as high as 90.0% severity in 2019. The first PB population parent, AAC Prevail, showed 13.3% leaf rust severity in 2019, 7.5% in 2020, and 46.9% in 2021 with MR to MRMS infection response compared with the second parent BW961, which displayed 25.8% leaf rust severity in 2019, 13.1% in 2020, and 28.1% in 2021 with MRMS to MS infection response. The HC parent, AAC Concord, showed 0.8% to 13.8% disease severity with RMR to MR response compared with the other parent, CDC Hughes, which had high severity ranging from 47.5% to 72.5% and MRMS to S response across environments. The LG parent, Lillian, displayed high resistance with 2% to 13.8% disease severity and R-MRMS infection response, whereas the other parent, Glenlea, showed 31.3% to 38.8% disease severity with MRMS to S infection response across environments. Pearson correlation coefficients (Table 2) between the different environments for the leaf rust severity of the three populations ranged from intermediate to high with a range of 0.67 to 0.82 for the PB population, 0.62 to 0.84 for the HC, and 0.51 to 0.75 for the LG population.




Figure 2 | Frequency distribution of leaf rust severity for lines derived from spring wheat crosses AAC Prevail/BW961, CDC Hughes/AAC Concord, and Lillian/Glenlea. Cultivar or line name abbreviations: L, Lillian; G, Glenlea; P, AAC Prevail; B, BW961; C, AAC Concord; H, CDC Hughes; T, Thatcher.




Table 2 | Pearson correlation coefficients (r) between leaf rust severity for different environments in three populations.







Genetic linkage map

The SNP genotype and genetic map of the three populations are given in Supplemental Table S2. The genetic map of the PB population consisted of 5,151 breeding SNP array markers previously reported by Bokore et al. (2021). From the 5,151 breeding SNP array used in genotyping the population, 963 SNP markers showed polymorphism between parents and were used to construct a genetic map of the population. The 963 markers covered a total length of 2,898.8 cM with 32 linkage groups across all the hexaploid wheat genomes except chromosome 4D. The 90K SNP genotyping of the HC population produced a total of 9,881 valuable SNP markers used to map the population. Out of the 9,881 markers, 9,648 polymorphic markers were mapped to 27 linkage groups, and 4,080 (42.3%) of the markers were mapped to chromosome group A, 4,714 (48.9%) to chromosome group B, and 854 (8.9%) to group D. The total length of all the linkage groups was 2,920.1 cM with a density of 0.5 markers/cM. For the LG population, 7,293 valuable markers were mapped to 39 linkage groups covering 4,994.7 cM of the wheat genome, with 2,839 (38.9%) markers being assigned to chromosome group A, 3,617 (49.6%) markers to chromosome group B, and 837 (11.3%) markers assigned to group D.





QTL detected using seedling plant response data

The seedling data revealed two significant QTL that were similarly effective on adult plants in the field in the PB population (Tables 3, 4). The resistance allele for the first QTL was inherited from BW961 on chromosome 2DS, and it was detected with Pt races 12-3 MBDS, 128-1 MBRJ, and 74-2 MGBJ. The second QTL was inherited from AAC Prevail and detected on chromosome 4AL with races 74-2 MGBJ, 06-1-1 TDBG, and 77-2 TJBJ. The QTL on 4AL explained phenotypic variation in the seedling reaction ranging from 10.6% to 18.5% across the Pt races, and the 2DS QTL explained 31.8% to 44.9% of the variation across the Pt races.


Table 3 | Leaf rust resistance QTL identified in the AAC Prevail (P)/BW961 (B), CDC Hughes (H)/AC Concord (C), and Lillian (L)/Glenlea (G) doubled haploid populations evaluated for seedling plant leaf rust infection response to isolates 12-3 MBDS, 128-1 MBRJ, 74-2 MGBJ, 77-2 TJBJ, 06-1-1 TDBG, 21-21-1 TNBJ, and adult plant disease response in nurseries located in Morden (MD), Manitoba in 2019, 2020, and 2021.




Table 4 | Summary of QTL that were identified in the AAC Prevail/BW961, CDC Hughes/AAC Concord, and Lillian/Glenlea populations and their likely correspondence with cataloged Lr genes.



For the HC population, four QTL located on chromosomes 1DS, 3DL.1, 4AL, and 7AL were revealed with the seedling data. The 1DS QTL was detected with races 12-3 MBDS, 128-1 MBRJ, 74-2 MGBJ, 06-1-1 TDBG, and 77-2 TJBJ but was not effective against 21-84-1 TCTS. The QTL explained a phenotypic variation of 11.0% to 38.8%. The QTL on 3DL.1 was derived from AAC Concord and was effective against 12-3 MBDS, 128-1 MBRJ, and 74-2 MGBJ. The 4AL QTL, inherited from AAC Concord, was effective against Pt races 12-3 MBDS, 06-1-1 TDBG, 21-21-1 TNBJ, and 77-2 TJBJ, explaining 12.7% to 68.9% of the phenotypic variation. The 7AL QTL associated only with race 06-1-1 TDBG was inherited from AAC Concord and explained 13.3% of the phenotypic variation in the seedling infection.

For the LG population, a seedling QTL was located on 4AL inherited through the Lillian parent effective against Pt isolates 12-3 MBDS, 06-1-1 TDBG, 74-2 MGBJ, 77-2 TJBJ, and 21-84-1 TCTS, with the explained variation in the phenotype ranging from 56.2% to 95.7% but not effective against 128-1 MBRJ. This corresponded with a field QTL on 4AL from Lillian in this population. There was also a seedling QTL associated only with 06-1-1 TDBG isolate resistance on 7AL in Lillian that corresponded with the field QTL on 7AL.





QTL detected using field adult plant response data

The adult plant leaf rust data of the PB population revealed three significant QTL (Tables 3, 4). QTL on chromosome 4AL (designated as QLr.spa-4A) with the logarithm of odd (LOD) values 2.1–9.5 and resistance alleles from AAC Prevail, and on chromosome 2DS (QLr.spa-2D) with LOD values 2.1–4.7 and on 7DS (QLr.spa-7D) with LOD values 5.3–8.9 contributed by BW961 were associated with a significant reduction in leaf rust severity and infection response in the population. The QLr.sparc-4A was significant at all three test environments, with an explained phenotypic variation for disease severity and infection response ranging from 5.8% to 17.6%. The QLr.spa-2D was significant for disease severity in all environments and infection response in one environment, with the variation explained ranging between 4.2% and 9.1%. A third QTL, QLr.spa-7D, was significant in all three tests associated with disease severity and infection response and explained 10.3% to 16.5% of the phenotypic variation.

In the HC population, four QTL were detected with the field leaf rust data (Tables 3, 4). Two of the QTL located on chromosomes 1DS (QLr.spa-1D) with LOD values 2.2–8.5 and 3DL.2 (QLr.spa-3D) with LOD values 2.5–4.4 were derived from CDC Hughes. The other two QTL on 4A (QLr.spa-4A) with LOD values 6.7–10.9 and 7AL (QLr.spa-7A) with LOD values 1.2–4.1 were derived from AAC Concord. The QLr.spa-1D was significant in two out of three environments, with the explained variation in disease severity and infection response ranging from 5.2% to 18.7%. QLr.spa-3D was expressed in all three tests and explained 5.3% to 10.1% of the variation. The QLr.spa-4A was significant in two out of three environments associated with disease severity and infection response and explained a phenotypic variation of 15.1% to 23.5% in the disease traits. The QLr.spa-7A was significant in all environments and explained 2.8% to 9.5% of the phenotypic variation.

For the LG population, the field phenotypic data revealed six QTL (Tables 3, 4) associated with leaf rust resistance. The resistance alleles for four of the QTL located on chromosomes 2BS (QLr.spa-2B), 4AL (QLr.spa-4A), 5AL (QLr.spa-5A), and 7AL (QLr.spa-7A) were inherited from Lillian. The remaining two were derived from Glenlea detected on 4BL (QLr.spa-4B) and 7BL (QLr.spa-7B). All the QTL derived from Lillian were significant across all environments with a few exceptions, and the explained phenotypic variation ranged between 3.6% and 16.5% across traits. The QLr.spa-4B was significant across all the years, and QLr.spa-7B was significant in two out of three environments. The explained variation in the leaf rust phenotype for all the Glenlea-derived QTL ranged between 8.3% and 21.7%.






Discussion




QTL in the AAC Prevail/BW961 population

The Morden 2021 trials were affected by dry weather, as reflected in the intermediate correlation values of the leaf rust data with other years (Table 2). However, this intermediate value of the correlation indicates the consistency in the expression of the leaf rust resistance genes/QTL across variable environments. The susceptibility of AAC Prevail over BW961 in the year 2021, which was characterized by dry weather as opposed to the two wetter years 2019 and 2020, could be attributed to the interactions between the resistance genes and the environment. Despite the detection of only three QTL in the PB population, the skewness of the disease severity distribution with a preponderance of resistant lines exhibited in the populations shows the effectiveness of various combinations of these resistance genes.

AAC Prevail only donated a single QTL for resistance, QLr.spa-4A, in the PB population, compared with two from BW961. QLr.spa-4A was coincident and mapped to very similar locations in the other crosses with this gene inherited from AAC Prevail, AAC Concord, and Lillian. Since the effect of this gene was consistent in its expression in different genetic backgrounds and multiple environments, QLr.spa-4A is valuable in developing new leaf rust-resistant cultivars. Comparing the physical position of markers associated with the QTL in three populations, Tdurum_contig32577_286 placed at 569.2 Mb, wsnp_Ex_c2266_4247520 at 522 Mb, and BobWhite_c48455_818 at 536.6 Mb in the IWGSC RefSeq v2.1 Chinese Spring (CS) reference sequence (Zhu et al., 2021) suggested they are associated with the same QTL region. The identity QLr.spa-4A is not known, but Lr30, which is found in the Canadian wheat cultivar Pasqua (Dyck, 1993), is located on 4AL. All the cultivars AAC Prevail, AAC Concord, and Lillian are descendants of Pasqua (Figure 1), and they most likely inherited Lr30 from Pasqua. In seedling tests of five Canadian P. triticina isolates, all those avirulent to Lr30 were also avirulent to Lillian. Additionally, when a wider number of diverse Canadian isolates virulent to Lr30 were tested they were also virulent to Lillian. This gene was also effective at the seedling stage to Lr30 avirulent isolates but not to the single Lr30 virulent isolate used in 128-1 MBRJ. The similarity in the effectiveness, chromosomal location, reaction to a wide range of P. triticina isolates, and pedigree information suggests that QLr.spa-4A and Lr30 are most likely the same.

The leaf rust resistance of BW961 was attributed to QTL located on 2DS (QLr.spa-2D) and QLr.spa-7D (Lr34). The QLr.spa-2D conditioned a nearly immune “0” response to the 12-3 MBDS, 128-1 MBRJ, and 74-2 MGBJ isolates but a 2 or 3 response to the 06-1-1 TDBG and 77-2 TJBJ isolates, typical of Lr2a. Comparing the map position of QLr.spa-2D with Lr2a, the QLr.spa-2D closest marker, RAC875_c65419_229, was reported for its association with Lr2a in the Canadian wheat cultivar Superb (Lewarne, 2021). Also, Excalibur_c1944_1017, a marker flanking QLr.spa-2D, and RAC875_c65419_229 flanking both QLr.spa-2D and Lr2a, are physically positioned at 63.7 Mb in the Wheat Chinese Spring IWGSC RefSeq v2.1 genome assembly (Zhu et al., 2021). Lr2a is a common gene in the Canadian wheat germplasm (McCallum et al., 2016a). The wide presence of Lr2a in the Canadian wheat cultivars, its chromosomal location, and the results of the Pt race analysis suggest the QLr.spa-2D in BW961 could be Lr2a. BobWhite_c40479_283, the marker associated with the QLr.spa-7D QTL in BW961 with the current study, was reported by Bokore et al. (2020) for its association with the Lr34 gene in cultivar Lillian. Based on markers linked with the QTL, pedigree information, field response, and the lack of any associated seedling resistance gene, the BW961-derived adult plant resistance gene QLr.spa-7D is the same as Lr34.





QTL in the CDC Hughes/AAC Concord population

Compared with the rest of the cultivars studied here, CDC Hughes had relatively high disease severity rated from 47.5% to 72.5% across the three environments, which contrasts with the moderate resistance reported during its registration. Two QTL, the first at 1DS (QLr.spa-1D) conditioning seedling-type resistance and the second at 3DL (QLr.spa-3D.2) conditioning adult-type resistance, were responsible for the resistance in CDC Hughes. The QLr.spa-1D corresponded with the Lr21 gene, which is common in Canadian wheat cultivars (McCallum et al., 2016a). In a hexaploid wheat consensus map involving 14 Canadian wheat genetic populations (Bokore et al., 2020), markers associated with the 1DS QTL in CDC Hughes RAC875_c48669_292 and BS00093336_51 are within 2.74–3.28 cM map distance from markers BobWhite_c4303_524 and RAC875_c2070_566 linked with the Lr21 gene in the wheat cultivar Vesper (Bokore et al., 2020). Puccinia triticina virulence against Lr21 was observed in 2011 for the first time in Canada (McCallum et al., 2017) and in 2010 in the USA (Kolmer and Anderson, 2011), with the virulence levels fluctuating from year to year (McCallum et al., 2021) and Lr21 contributing various levels of protection. Likewise, the 1DS gene in CDC Hughes explained 5.1% to 18.7% of the phenotypic variation in the leaf rust field response across the Morden 2020 and 2021 environments with non-significant expression in 2019. The QLr.spa-1D also corresponded with seedling resistance to the Lr21 avirulent isolates 12-3 MBDS, 128-1 MBRJ, 74-2 MGBJ, 06-1-1 TDBG, and 77-2 TJBJ but did not have an effect on the Lr21 virulent isolate 21-84-1 TCTS. The gene located on 3DL.2 (QLr.spa-3D.2) in CDC Hughes conditions adult plant resistance as opposed to the QLr.spa-3D.1 in the AAC Concord that expressed seedling-type resistance but was not effective on adult plants. QLr.spa-3D.2 could be a novel gene as there was no Lr gene cataloged on the chromosome arm.

AAC Concord contributed QTL QLr.spa-3D.1, QLr.spa-4A, and QLr.spa-7A. The QLr.spa-4A was in common with AAC Prevail, AAC Concord, and Lillian and is thought to be Lr30 as described above. The QLr.spa-7A in AAC Concord was also in common with Lillian. This resistance gene is thought to be LrCen, a resistance gene commonly found in Canadian wheat cultivars that is only effective against a small number of P. triticina races (McCallum and Hiebert, 2012). It has a characteristic mesothetic or X infection type. This gene was effective against 06-1-1 TDBG, producing a mesothetic "X" infection type, and a seedling QTL corresponding to this isolate mapped to the same location as the field QTL. Located in a similar genomic region, the QLr.spa-7AL in Lillian associated with Excalibur_c3476_691 placed at 744.5 Mb and BS00020236_51 at 737 Mb in IWGSC RefSeq v2.1 (Zhu et al., 2021) and in AAC Concord associated with RAC875_c90330_82 at 727.4 Mb and BS00068033_51 at 727.6 Mb, indicating the same locus. The QLr.spa-7AL in AAC Concord might be inherited from Lillian, as AAC Concord was selected from the cross of Lillian with two other lines (Figure 1).

The QLr.spa-3D.1 was located on the long arm of the chromosome. Among designated Lr genes, the seedling gene Lr24 derived from Agropyron elongatum (3DL/3Ag translocation) is similarly located on 3DL and tightly linked with the stem rust resistance gene Sr24 (McIntosh et al., 1977; Schachermayr et al., 1995; Dedryver et al., 1996). The QLr.spa-3D.1 QTL source parent, AAC Concord, is not genetically related to A. elongatum, indicating the QTL is different from Lr24 (Crop Information Engine and Research Assistant (CIERA)) (Figure 1). Lr24 and Lr16 in combination with additional adult plant resistance genes have been reported to give high resistance in Canada and the USA early in the 2000s (Oelke and Kolmer, 2004). In contrast, QLr.spa-3D.1 expressed seedling resistance but not effective field resistance, indicating its insignificance in resistance breeding.





QLT in the Lillian/Glenlea population

The Glenlea QTL QLr.spa-4B and QLr.spa-7B are different from genes previously reported in the cultivar (Dyck et al., 1985; McCallum et al., 2012). The Lr genes Dyck et al. (1985) reported in Glenlea Lr1, LrT2=Lr34, and an allele of, or a gene closely linked to, Lr13 were not detected in the current study. Lr1 is ineffective in the field, and all isolates used were virulent on Lr1, so it was not detected, though it would have segregated in this population. Lr34 is carried by both Glenlea (Dyck et al., 1985) and Lillian and is therefore fixed in this population (Randhawa et al., 2013; Bokore et al., 2020). QLr.spa-4B, located on the long arm of 4B, is associated with peak marker IAAV2725 located at 644.4 Mb in the Chinese spring wheat physical map. Two designated genes Lr12 and Lr49 have been reported on the 4B long chromosome arm. Another Canadian wheat cultivar, AAC Domain, has been hypothesized to have the adult plant gene Lr12 (Liu and Kolmer, 1997); however, virulent Pt races exist for this gene in Canada (McCallum et al., 2021). The adult plant resistance gene Lr49 could correspond with QLr.spa-4B based on the relative position of markers associated with genes on both the physical map and consensus map (Bokore et al., 2020). The Lr49 flanking markers Xbarc163 located at 607.1 Mb and Xwmc349 at 639.9 Mb (Bansal et al., 2008) and Excalibur_c47209_87 at 603.1 Mb and IACX938 at 610.3 Mb (Nsabiyera et al., 2019) are 4.5–37.3 Mb from the QLr.spa-4B marker IAAV2725 in the physical map and 6.3–23.2 cM from IAAV2725 on the consensus map (Bokore et al., 2020). The presence of Lr49 in Canadian wheat germplasm is unknown, but the close proximity of markers flanking the gene and QLr.spa-4B suggests both represent the same gene or two genes located in a similar genomic region.

Comparing the genetic map of different mapping populations and the physical positions of the QTL-associated SNP markers, the Glenlea-derived 7BL QTL is located in the same genomic region with a QTL, QLr.spa-7B.2, identified in three Canadian cultivars, namely AC Cadillac, Vesper, and Red Fife (Bokore et al., 2020). Additionally, markers associated with the Glenlea 7BL QTL and QLr.spa-7B.2 in AC Cadillac, Vesper, and Red Fife are closely located in the hexaploid wheat consensus map (Wang et al., 2014). Resistance genes on 7BL (Mcintosh et al., 2014) include Lr14a (seedling gene) and Lr68 (adult plant gene), but these were not detected in Glenlea previously. Given that the LG cross is fixed for the presence of Lr34, additional QTL in this cross may be detected because of their interaction with Lr34, which is known to enhance the effects of other resistance genes. The seedling resistance phenotype of the 4AL (Lr30) QTL was more resistant in this cross than in the other two crosses, likely because Lr34 enhanced the effect of this resistance gene at the seedling stage.

The cultivar Lillian has remained effectively resistant against leaf rust since the time of its release owing to the resistance conditioned by genes located on 2BS, 5AL, and 7AL identified in the current study, 4AL identified in this and a previous study (Bokore et al., 2020), and Lr34 (Randhawa et al., 2013; Bokore et al., 2020). The 2BS QTL cannot be Lr16, similarly located on the short chromosome arm, because the Pt races used for the seedling test were avirulent on Lr16, but all the lines without the 4AL gene were found to be susceptible to most races, and no seedling QTL was found at this location. In contrast, the 2BS QTL could correspond with the adult plant gene Lr13, which is common in Canadian wheat germplasm. For example, markers linked with Lr13 in Carberry Excalibur_c45094_602 and Excalibur_rep_c106124_239 are located at 103.5 Mb physical position like the Lillian 2BS markers IAAV1101 and BS00022966_51.

The Lillian adult plant QTL on 5AL (QLr.spa-5A) likely is the same as the QTL inherited by Carberry in Carberry/AC Cadillac and Carberry/Thatcher populations (Bokore et al., 2020; Bokore et al., 2022). QLr.spa-5A, in Lillian and Carberry, was associated with markers that are located adjacent to each other in the IWGSC V2.1 (Zhu et al., 2021). Accordingly, the Carberry QLr.spa-5A-associated marker Kukri_rep_c104877_2166 positions at 480.8 Mb (Bokore et al., 2022) and BobWhite_c1387_798 at 528.8 Mb (Bokore et al., 2020), and the Lillian QLr.spa-5A marker wsnp_Ex_c39592_46849607 positions at 477.1 Mb, BS00010698_51 at 537.5 Mb, and wsnp_Ku_c12211_19780409 at 550.0 Mb. Also, these markers shared the same 5AL chromosomal region (55–75 cM) in the hexaploid consensus map (Wang et al., 2014). The QLr.spa-5A gene was not segregating in the crosses of Vesper with Lillian or Carberry (Bokore et al., 2020), suggesting Vesper similarly has the same gene as Lillian and Carberry, indicating the wide presence of the gene in Canadian wheat breeding lines. Also, the QLr.spa-5A gene/QTL could be considered new as there was no designated gene reported on chromosome arm 5AL (Mcintosh et al., 2014; Kumar et al., 2022).

Out of six cultivars studied here, Glenlea and Lillian are the only cultivars that have been analyzed for their leaf rust resistance previously (Dyck et al., 1985; Bokore et al., 2020). Interestingly, Glenlea is an old wheat line registered in 1972 (Evans et al., 1972), but it maintained an intermediate level of resistance against leaf rust for a long time. The Glenlea resistance is a combined effect of genes identified in the current study in the cultivar, QLr.spa-4B and QLr.spa-7B, and previously reported genes Lr34, Lr1, and LrT2 (Dyck et al., 1985, McCallum et al., 2012). Lillian is resistant to the leaf rust that has been maintained since its release in 2003 (DePauw et al., 2005), but only four significant genes could be identified from the cultivar, with the QTL on 2BS (likely Lr13), 4AL (Lr30) and 5AL segregating in the LG population, and the 4AL (Lr30) and 7DS (Lr34) in the Vesper/Lillian population (Bokore et al., 2020).

Besides Glenlea and Lillian, we identified several resistance genes in AAC Concord on 3DL, 4AL (Lr30), and 7AL (LrCen), AAC Prevail on 4AL (Lr30), CDC Hughes on 1DS (Lr21) and 3DL, and BW961 on 2DS (Lr2a) and 7DS (Lr34). With the exception of the 4AL QTL from Lillian, AAC Prevail, and AAC Concord and the 7AL from Lillian and AAC Concord, the QTL identified in the current study were confined to single cultivars. In conclusion, the results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding. Kompetitive allele-specific PCR (KASP) markers linked with the genes identified have been developed for use in marker-assisted breeding.
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Supplementary Table 1 | Number of lines (N), mean, range, and standard deviation (STDEV.) of leaf rust severity and infection responses for three doubled haploid wheat populations evaluated at Morden, MB in different years. aLRS = leaf rust severity in percent; LRIR = leaf rust infection response. bCV = coefficient of variation.

Supplementary Table 2 | Genotype data of the three mapping populations (excel sheet attached).
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Introduction

Oat (Avena sativa L.) is an important cereal crop grown worldwide for grain and forage, owing to its high adaptability to diverse environments. However, the genetic and genomics research of oat is lagging behind that of other staple cereal crops. 



Methods

In this study, a collection of 288 oat lines originating worldwide was evaluated using 2,213 single nucleotide polymorphism (SNP) markers obtained from an oat iSelect 6K-beadchip array to study its genetic diversity, population structure, and linkage disequilibrium (LD) as well as the genotype–phenotype association for hullessness and lemma color.



Results

The average gene diversity and polymorphic information content (PIC) were 0.324 and 0.262, respectively. The first three principal components (PCs) accounted for 30.33% of the genetic variation, indicating that the population structure of this panel of oat lines was stronger than that reported in most previous studies. In addition, accessions could be classified into two subpopulations using a Bayesian clustering approach, and the clustering pattern of accessions was closely associated with their region of origin. Additionally, evaluation of LD decay using 2,143 mapped markers revealed that the intrachromosomal whole-genome LD decayed rapidly to a critical r2 value of 0.156 for marker pairs separated by a genetic distance of 1.41 cM. Genome-wide association study (GWAS) detected six significant associations with the hullessness trait. Four of these six markers were located on the Mrg21 linkage group between 194.0 and 205.7 cM, while the other two significant markers mapped to Mrg05 and Mrg09. Three significant SNPs, showing strong association with lemma color, were located on linkage groups Mrg17, Mrg18, and Mrg20.



Discussion

Our results discerned relevant patterns of genetic diversity, population structure, and LD among members of a worldwide collection of oat landraces and cultivars proposed to be ‘typical’ of the Qinghai-Tibetan Plateau. These results have important implications for further studies on association mapping and practical breeding in high-altitude oat.
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1 Introduction

Oat (Avena sativa L., 2n = 6x = 42) is an important cereal crop originating from the Mediterranean region (Montilla-Bascón et al., 2013), and an allohexaploid comprising three distinct subgenomes (A, C, and D) that arose through cycles of interspecific hybridization and polyploidization (Yan et al., 2016a). Oat is well-adapted to a cool climate (Hoffman, 1995), and is grown mostly in temperate regions of the world under a wide range of environmental conditions for food, feed, and forage. To date, oat has received considerable attention owing to its high nutritional value and the ability to reduce blood cholesterol levels and mediate the risk of cardiovascular disease (Anderson et al., 2009; Othman et al., 2011).

Compared with other staple cereal crops such as rice, maize, and wheat, the breeding, genomics, and population structure analyses of oat have been lagging, primarily owing to its large, repeat-rich, and polyploid genome and low investment (Tinker et al., 2009; Yan et al., 2016b). Advances in molecular marker exploitation technology have enhanced genome-wide marker discovery in oat. Valuable studies have been carried out on oat genetic diversity, population structure, quantitative trait locus (QTL) identification, and genotype–phenotype association using various molecular markers, including amplified length fragment polymorphism (ALFP) (Achleitner et al., 2008), random amplified polymorphic DNA (RAPD) (Ruwali et al., 2013), simple sequence repeat (SSR) (Montilla-Bascón et al., 2013), diversity arrays technology (DArT) (Tinker et al., 2009; He and Bjørnstad, 2012), and single nucleotide polymorphisms (SNPs) (Winkler et al., 2016; Cömertpay et al., 2018; Yan et al., 2020). A dense consensus map of oat with 12,000 markers based on 12 biparental populations was recently constructed (Chaffin et al., 2016) and supplemented by high-density SNPs discovered through genotyping-by-sequencing (GBS) (Huang et al., 2014; Bekele et al., 2020). The availability of dense markers opens new opportunities for association mapping, molecular breeding, genetic diversity analysis, genome sequencing, and map-based cloning in oat (Chaffin et al., 2016). Moreover, great progress has been recently made in oat genome sequencing and assembly. Four chromosome-scale genome assemblies of diploid, tetraploid, and hexaploid oat have recently been reported (Maughan et al., 2019; Li et al., 2021; Peng et al., 2022; https://wheat.pw.usda.gov/GG3/graingenes_downloads/oat-ot3098-pepsico). These reference genomes will accelerate the studies on oat evolution and gene identification.

Studies show that population structure in oat is not as strong as that in other crops (Winkler et al., 2016; Peng et al., 2022). No one factor, such as geographical origin or morphological traits (such as hulled or hulless grains, lemma color, and panicle type), significantly affect population stratification patterns (Montilla-Bascón et al., 2013; Esvelt Klos et al., 2016).

With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has emerged as a powerful routine strategy to identify genes or regions affecting complex traits in crop species (e.g., Huang et al., 2010, for rice agronomic traits; Wang et al., 2012, for resistance to head smut in maize; Alqudah et al., 2014, for photoperiod response in barley) over the last decade. In oat, GWAS has been performed to study agronomic traits (Winkler et al., 2016; Tumino et al., 2017), quality traits (Newell et al., 2012; Asoro et al., 2013; Carlson et al., 2019), and biotic or abiotic stress tolerance (Tumino et al., 2016). Six significant associations for lodging and two for plant height were detected by Tumino et al. (2017) in a European oat collection using the 6K SNP array. Three independent markers were significantly associated with β-glucan concentration, and one showed sequence homology to genes in rice (Newell et al., 2012). All of these studies indicated that GWAS was an effective method for QTL detection in oat.

The objectives of the present study were to (1) assess the genetic diversity of an oat collection originating from globally diverse regions; (2) characterize the population structure of the oat germplasm; (3) evaluate the extent of pairwise linkage disequilibrium (LD); and (4) perform GWAS for studying morphological traits. The results of this study would be useful for a deeper understanding and better management of the different kinds of oat genetic resources. This study provides valuable genetic markers for oat breeding programs, and represents a successful example for further association studies in oat.



2 Materials and methods



2.1 Plant material

A collection of 288 oat landraces and cultivars was used in this study. Out of 288 oat accessions, 257 accessions (199 landraces and 58 cultivars), originating from 34 countries, were obtained from the USDA National Small Grain Collection (NSGC) (Figure S1 and Table S1). In addition, 29 commercial oat cultivars and two mutagenized genotypes were collected from the oat-producing provinces of northern China (Inner Mongolia, Hebei, Qinghai, Gansu, and Jilin). Further details of the improvement status, country of origin, growth habit, hull type (hulled or hulless), and lemma color of these accessions are provided in Table S1. The ‘country of origin’ information was used to assign each accession to a region of origin as defined by the United Nations Statistics Division.



2.2 Genotypes

Genomic DNA of each accession was extracted from bulked leaf samples of 2-week-old seedlings using the Plant Genomic DNA Kit (Qiagen Inc., USA). The concentration and quality of each DNA sample were assessed by agarose gel electrophoresis and with a nanophotometer (NanoDrop 2000C, Thermo Scientific, USA). A total of 4,852 SNP markers were assayed using the oat iSelect 6K-beadchip array (Illumina, San Diego, CA, USA) at the USDA-ARS Genotyping Laboratory at Fargo, ND, USA, as described by Tinker et al. (2014). SNP genotype calls were made and adjusted in GenomeStudio v2011.1 (Illumina, San Diego, CA, USA). The SNP filtering process was performed according to the requirements of the bioinformatics analysis. The following were eliminated: multiallelic and monomorphic SNPs; SNPs with poor genotype calls resulting from weak signal or ambiguous clustering; and SNPs with relative minor allele frequency (MAF) ≤ 0.05 and missing data > 0.1. The position information of SNPs used in the present study was obtained from the consensus map of oat (version 3.1; Chaffin et al., 2016). The consensus map contains 21 linkage groups, scaled by genetic distance (cM). Linkage groups that are the consensus of the underlying component maps are designated by Merge (Mrg) and are reffered as Mrg01 to Mrg33.



2.3 Morphological trait data and phenotypic analysis

Morphological trait data, including hullessness and lemma color, were downloaded from the Germplasm Resources Information Network (GRIN; https://npgsweb.ars-grin.gov/gringlobal/search) on November 20, 2020, and the traits were affirmed by field planting in the summer of 2020. Oat accessions were planted in April at Diyao Village, Huangzhong County, Qinghai Province (N 36°29′03.63″, E 101°31′09.91″). Each accession was sowed two rows at a sowing density of 20 grains per row. Rows were seperated from each other by 20 cm. At maturity period, the hullessness trait of oat accessions was recorded. If the caryopsis of an oat accession is tightly surrounded by thick, lignin-rich hull after handy threshing, the accession is reffered to as hulled oat and recorded as “Hulled”; whereas if the hull of oat accession is papery and free-threshing, the accession is reffered to as hulless oat and recorded as “Hulless”. At milk-ripe stage, the lemma color of oat accessions is observed and the color is recorded as “Amber/White”, “Black”, “Grey”, “Red”, “Yellow”.



2.4 Genetic diversity, population structure, and LD analyses

Statistics including genetic diversity and polymorphic information content (PIC) were calculated for each locus using the PowerMarker v3.25 software (Liu and Muse, 2005). To estimate the population structure, three methodologies were compared. Model-based structure analysis was performed using STRUCTURE (Pritchard et al., 2000) with the number of ancestral populations (K) ranging from 2 to 10, and the number of subgroups was identified. Principal component analysis (PCA) was carried out using the GCTA software (Yang et al., 2011), and the percentage of genotypic variation explained by the first three PCs is shown in section 3.2 to enable comparison with the data obtained in previous oat studies. In addition, a neighbor-joining tree was constructed using MEGA6 (Tamura et al., 2013) with 1,000 bootstrap replicates.

Pairwise LD was estimated using squared allele frequency correlation (r2) based on loci that have been mapped on the consensus map. The r2 values were calculated using the LDcorSV package of R (Mangin et al., 2012). The genome-wide and chromosomal LD decay data were plotted against the genetic distance (cM), and the LOESS curve was fitted using R.



2.5 GWAS

To evaluate genotype–phenotype associations, GWAS was performed using a mixed linear model (MLM) implemented in TASSEL v5 (Bradbury et al., 2007), with default settings. The PCA matrix and kinship information (K matrix), generated using GCTA and TASSEL v5, respectively, were incorporated in the MLM as covariates. Quantile-quantile (Q-Q) plots and Manhattan plots were generated using the qqman package of R. According with the SNP annotations provided by Tinker et al. (2014), genes orthologous to those carrying the trait-associated SNPs are detected. The design sequence of significant associated SNP are aligned to the new reference genome assembly of hulless common oat (Peng et al., 2022) and the position of trait-associated SNPs in the common oat physical map are determined. The physical chromosomes are nominated as A1-A7, B1-B7, D1- D7.




3 Results



3.1 Genetic diversity

A total of 3,313 polymorphic SNPs were obtained using the 6K Illumina platform. After filtering, 2,213 SNPs with no more than 10% missing calls and at least 5% MAF were retained, of which 2,143 SNPs were mapped on to the consensus map across all 21 linkage groups, covering a total genetic distance of 2688.3 cM with an average spacing of 1.25 cM between two SNPs. The number of SNPs within and among linkage groups varied from 42 (on linkage group Mrg19) to 211 (Mrg01) (Table 1). These markers showed an average genetic diversity of 0.324, with a mode ranging from 0.096 to 0.50. The PIC value varied from 0.091 to 0.375 (average PIC = 0.262). Mean genetic diversity and PIC values, calculated for each of the 21 chromosomes, were found to be similar within the chromosomes (Table 1). The average PIC of oat landraces was 0.260, and that of oat cultivars was 0.259. There was no significant difference between landrace and cultivar of oat.


Table 1 | SNP marker distribution and coverage, gene diversity, and polymorphic information content (PIC) across all linkage groups in 288 oat accessions.





3.2 Population structure

Population structure in the oat germplasm was investigated using the model-based method implemented in the STRUCTURE software, which assigns each individual a membership coefficient for each cluster. Following the method of Evanno et al. (2005), the optimal number of populations (K) was estimated using the results exported from STRUCTURE. The maximum delta K (ΔK) value was inferred to be two, suggesting that K=2 was the most likely value for the oat collection, with K = 3 being the second best(Figure S2). Accessions with the probability of membership to either population greater than 0.7 were assigned to that specific population, and those with membership probability less than 0.7 were considered admixtures. According to these criteria, 239 of 288 accessions (82.99%) were assigned to one of the two populations (POP1 and POP2), while the remaining 49 accessions (17.01%) were retained in the admixed group (Admixed) (Figure 1A, Table 2). Among the 288 accessions, 56 hulled accessions (48 landraces and 8 cultivars) were assigned to POP1. The landraces in POP1 mainly originated from Western Asia (27), Southern Europe (10), and Southern Asia (6). POP2 consisted of 130 hulled landraces, 45 hulled cultivars, and 8 hulless cultivars. The landraces in POP2 were mainly from Eastern Asia (24), Eastern Europe (49), Southern Europe, (32) and Southern America (11). The cultivars in POP2 were principally from Eastern Asia (29), Northern America (10), and Eastern Europe (8). Among the 31 cultivars collected from North China, 20 including 8 hulless lines were classified into POP2, while the remaining 9 cultivars were considered admixed. Using K = 3, the population POP2 was further divided into two subpopulations; however, the majority of POP2 accessions, especially cultivars, fell into the admixed group (Figure 1B, Table 2).




Figure 1 | Population structure of 288 oat (Avena sativa. L) accessions. (A, B) Population structure estimated using STRUCTURE and illustrated as bar plots (K = 2 and 3). Each accession is shown as a thin vertical segment, and the color indicates the proportion of each population. Each subgroup is represented by an individual color.




Table 2 | Grouping of 288 oat accessions based on STRUCTURE analysis at K = 2 and K = 3.



Next, we analyzed the correlation of the membership coefficients of accessions with their region of origin, improvement status, year of receipt, and lemma color. The correlation coefficient was highest between membership coefficients and origin regions (0.50, P < 0.001), and this correlation in landraces was up to 0.55 (P < 0.001) (Table S2). We also analyzed the distribution of landraces in the two populations (Figure 2, Table 2). All landraces from Eastern Asia, the overwhelming majority of landraces from Eastern Europe (49 of 50), and a large part of landraces from Southern Europe (32 of 42) and Southern America (11 of 14) were assigned to POP2. Landraces from Western Asia were divided into the two populations (27, POP1; 11, POP2). Most of the landraces from Southern Asia (6 of 8) and a minority of accessions from Southern Europe (10 of 42) were assigned to POP1. Overall, the landrace accessions in POP1 were distributed in lower latitude regions compared with those in POP2 (Figure 2).




Figure 2 | Geographical distribution of oat landraces at K = 2. The locations of oat landraces, with population membership coefficient ≥ 0.7, are indicated by different colors.



PCA was also used to infer the population structure of the oat germplasm. The first three principal components (PC1–PC3) together accounted for 30.33% of the genetic marker variation (PC1, 16.26%; PC2, 8.05%; PC3, 6.02%). Two two-dimensional (2-D) scatter plots of the 288 oat genotypes (Figure 3) exhibited a similar population stratification to that of STRUCTURE. PC1 clearly separated POP1 from POP2, and some accessions, identified as admixed in STRUCTURE, were placed in intermediate positions in the PCA plot (Figure 3).




Figure 3 | Scatterplots showing the results of principal component analysis (PCA) conducted based on the SNP marker data of oat lines labeled according the different subgroups identified by STRUCTURE (membership coefficient ≥ 0.7). (A, B) Population stratification of oat lines according to the first component PC1 vs. PC2 (A), and PC1 vs. PC3 (B). Admixed individuals are indicated with ×.



The stratification of the oat germplasm was further determined by the neighbor-joining (NJ) method implemented in the program MEGA 6.0 (Figure 4), and the accessions were divided into three clusters. Consistent with the results of STRUCTURE, most oat accessions from Eastern Asia, Eastern Europe, and Southern America grouped into Cluster 2 (Supplementary Table S3). Unlike the STRUCTURE results, most oat lines from Western Asia grouped into Cluster 1 (Table S3). Generally, the stratification of accessions was associated with their geographical origin.




Figure 4 | Neighbor-joining phylogenetic tree of 288 oat accessions based on 2,213 SNPs. Each accession is denoted as a vertical line in three colored subclades corresponding to the three clusters.



The PIC of POP1 (0.2621) was greater than that of POP2 (0.2348), indicating that POP1 was genetically more diverse than POP2. Highly significant (P < 0.001) genetic variance resided among the two populations (17.34%). The estimated fixation index (Fst = 0.1379) was also highly significant (P < 0.001). According to the degree of population genetic variance corresponding to Fst values (Hartl et al., 1997), there was moderate genetic variance between the two populations.



3.3 LD analysis

The 2,143 mapped SNPs were used to explore the LD level in the present oat panel. The r2 values revealed a high degree of association among many unlinked and loosely linked markers within all chromosomes (Figure S3). A critical value of r2 beyond which LD is likely to be caused by genetic linkage was calculated by resampling unlinked markers, and was fixed at 0.156 (Breseghello and Sorrells, 2006). The r2 values for intrachromosomal locus pairs ranged from 0 to 1, with an average of 0.085. Of these r2 values, 15.36% exceeded 0.156 and averaged to 0.365. The genome-wide and intrachromosomal LD decayed rapidly with genetic distance (Figure S4). The point at which the LOESS curve and the line r2 = 0.156 intersected was considered the average LD decay distance. Based on the criteria, the average genome-wide LD decay distance was 1.41 cM, and the intrachromosomal LD decayed between 0.02 and 14.99 cM (Figure S4, Table S4). The different chromosomes showed different LD levels, indicating that they had been subjected to variable intensities of natural and artificial systematic selection.



3.4 Genome-wide association

GWAS was performed using 2,143 mapped SNPs. This number of markers was used to establish the threshold of statistical significance of association at p ≤ 2.33 × 10-5, calculated by applying the Bonferroni correction with an experiment-wise α = 0.05. At p < 2.33 × 10-5, nine SNP markers showed significant association with the grain hull type and lemma color of oat accessions, and explained 8.28–22.39% of the phenotypic variation in these traits (Table 3; Table S5).


Table 3 | Hullessness- and lemma color-associated SNPs and their positions in the oat consensus genetic map.



The strongest evidence of association with the hullessness trait was observed on linkage group Mrg21, specifically based on two markers, GMI_GBS_84661 and GMI_ES01_c8241_504, both located at 194 cM, with the minimum p-value less than 1.0 × 10-10 (Figures 5A, 6A). Strong associations for this trait were also found on linkage group Mrg21 (GMI_GBS_67251 and GMI_ES22_c7478_431, comapping at 205.7 cM, p < 1.0 × 10-5). Two additional markers, one mapped on Mrg05 (GMI_ES02_lrc13788_346, p < 1.0 × 10-5) and the other on Mrg09 (GMI_ES17_c10594_472, p < 1.0 × 10-6), were also significantly associated with hullessness (Figure 5A, 6A).




Figure 5 | Genome-wide association study (GWAS) of the hullessness and lemma color traits in the oat collection using 2,143 SNP markers. (A) Hullessness; (B) lemma color. The red line represents the threshold calculated according to the false discovery rate (FDR). Markers above the red line in (A, B) were significantly associated with the respective trait.






Figure 6 | Quantile-quantile (Q-Q) plots of the GWAS data of hullessness and lemma color using a mixed model, with the PCA matrix and kinship information as covariates. (A) Hullessness; (B) lemma color.



Three significant markers were identified for lemma color. Among these, GMI_ES15_c2369_181 (Mrg20, 14.7 cM) showed the most significant effect on lemma color (p < 1.0 × 10-10) (Figures 5B, 6B). The other two markers significantly associated with lemma color were GMI_DS_oPt-18257_376 (Mrg17, 53.8 cM) and GMI_GBS_13773 (Mrg18, 56 cM) (Figures 5B, 6B).




4 Discussion



4.1 Patterns of genetic diversity and population structure

Oat has not only been grown as a grain or forage crop but it has also received significant attention as a whole-grain food owing to its health benefits for humans (Newell et al., 2011). Approximately 80,000 oat cultivars and over 20,000 wild oat accessions have been preserved in gene banks, and are considered as a pool of potentially useful genes (Lipman et al., 2005). Genetic diversity and population structure studies of the oat germplasm provide important information for their genetic conservation and breeding (Montilla-Bascón et al., 2013). The large number of available molecular markers and the high-density consensus map make it easier and more efficient for researchers to explore genetic diversity, population structure, and phenotype-associated QTLs in a sample of the oat germplasm.

In the present study, 2,213 high-quality polymorphic SNPs were identified among 288 oat accessions using the 6K SNP array. The reduction of genetic diversity in cereal crops, such as wheat and maize, during domestication and modern breeding has been a longstanding concern (Eyre-Walker et al., 1998; Cavanagh et al., 2013; Beissinger et al., 2016). However, in some instances, the loss of diversity was not observed from landraces to breeding accessions. Reif et al. (2005) reported that wheat genetic diversity narrowed down from 1950 to 1989 but was enhanced from 1990 to 1997. A similar increase in the average genetic diversity was detected in oat cultivars released between 1930 and 1950 (Fu et al., 2003). Oat landraces and cultivars used in this study showed similar genetic diversity, and a decreasing trend of genetic diversity was not observed from landraces to cultivars. One plausible explanation for this observation is that oat has a relatively short modern breeding history compared with other main cereal crops, and therefore has not experienced intense artificial selection (Yan et al., 2020). Another main reason for the result is that breeders used varied and geographically diverse oat resources during breeding programs. This extensive hybridization not only increased oat yields but also, simultaneously, broadened the genetic background of the cultivars (Fu et al., 2003; Yan et al., 2020). Oat accessions from different regions exhibited varied genetic diversity. Previous studies revealed that the genetic diversity of oat lines originating in Europe was lower than that of lines originating in Northern and Southern America (Fu et al., 2005; Achleitner et al., 2008); our results showed a similar trend (Table S6). The superior genetic diversity of oat lines from America was closely related to oat domestication, spread, and breeding history. The oat accessions of America were originally brought from Europe by humans. Later, germplasm exchange of oat took place frequently, and more exotic varieties (other species or ecotypes, even wild resources) originating from worldwide locations were used in breeding programs (Rodgers et al., 1983). The introgression of exogenous genes greatly increased the genetic diversity of American oat accessions.

Strong population structure has been reported within the germplasm of other crops. For example, Muñoz-Amatriaín et al. (2014) separated barley accessions into distinct subgroups, based on the row number (2 vs. 6), growth habit (spring vs. winter), hull type (hulled vs. hulless), improvement status (wild, landrace, and cultivar), and geographical origin. Oat also has four recognizable characteristics, including hulled, hulless, spring, and winter. Unfortunately, most previous studies reported the oat population structure as weak, and could not use any morphological trait to divide the oat accessions into distinct subpopulations (Montilla-Bascón et al., 2013; Esvelt Klos et al., 2016; Winkler et al., 2016). PCA revealed that the first three PCs accounted for 23.8% of the genetic variation in a 635-member CORE panel of elite oat germplasm (Esvelt Klos et al., 2016), and the first five PCs explained 25.8% of the variation in an 805-member global panel of oat lines (Yan et al., 2020). In these studies, the subgroups revealed by PCA or model-based K-means clustering overlapped and diffused. By contrast, in the USDA collection of 759 oat landraces and historic cultivars, PC1–3 together explained 38.8% of the marker variation, and the majority of oat lines clustered into three subgroups. The population structure pattern was strongly associated with the lemma color and geographical origin of oat lines (Winkler et al., 2016). In the present study, PC1–3 accounted for 30.33% of the genetic variation, supporting a relatively distinct population structure. The majority of 288 oat accessions were divided into two subpopulations. The distribution of the two subpopulations in the 2-D scatter plots was nonoverlapping, and the relationship among oat lines within each subpopulation was relatively tight (Figure 3). The strong association of population structure with geographical origin was especially prominent among landraces (Figure 2), echoing the findings of Fu et al. (2005) and Winkler et al. (2016). Such a distribution pattern could probably be explained by the domestication and spread of oat around the world. It is widely accepted that oat originated in the Mediterranean region, with Turkey as its center of genetic diversity (Loskutov, 2008). Oat was then brought to Europe and Asia (Newton et al., 2011). Subsequently, cultivated oat accessions were introduced into America by the Spanish and British explorers (Rodgers et al., 1983). In the present study, POP1 mainly consisted of landraces from Western Asia (Turkey) and its circumjacent regions (Southern Asia and Southern Europe), while other landraces in POP2 were from regions farther away from Western Asia (Eastern Asia, Eastern Europe, and South America), which is concerning. The other point of concern is that at K = 2, six of the fourteen hulless oat lines from China were identified as admixtures, while the other eight hulless lines clustered into POP2 together with the hulled landraces and cultivars from China, even though their values of membership probability were not high. At K = 6, all 14 hulless lines were identified as admixtures (data not shown). In our study, all the hulless oat lines were cultivars. Pedigree information suggests that most Chinese hulless cultivars have been selected from crosses between hulless and hulled accessions (Ren and Yang, 2018; Yan et al., 2020). Therefore, the population differentiation between Chinese hulless oat cultivars and Chinese hulled oat accessions was dramatically weakened, and hulless cultivars showed a high level of admixture or proximity to common oats (Yan et al., 2020).



4.2 GWAS for hullessness and lemma color

During genome-wide association analysis, it is necessary to determine the density and coverage of markers according to the extent of LD that affects the power and resolution of GWAS in a given population. In the current study, the LD decay results (genome-wide average LD = ~1.4 cM) suggested that at least one marker per 1.4 cM would be necessary to perform effective GWAS in the oat population, similar to previous studies (genome-wide average LD = ~1.5 cM) (Newell et al., 2011; Yan et al., 2020). Given that the total length of the oat consensus map estimated by Chaffin et al. (2016) is 2,843 cM, the number of markers required for the oat population used in this study was approximately 2,000. Therefore, we performed GWAS using 2,143 polymorphic SNPs, which surpassed the minimum number of SNPs required and were sufficient.

Cultivated oats are generally classified as hulled and hulless types, depending on their grain phenotype. The hull of a hulled oat variety is thick, lignin-rich, and hard-to-remove, whereas that of a hulless accession is papery-thin and free-threshing (Yan et al., 2020). Previous studies demonstrated that the hulless trait in oat is controlled by a single, incompletely dominant gene (N1) interacting with modifying genes (Boland and Lawes, 1973). The N1 locus was mapped by De Koeyer et al. (2004) to linkage group TM_5 (Terra × Marion), which was homologous to KO_24_26_34 and was later afirmedto be located at approximately 200 cM on Mrg21 in the consensus map (Chaffin et al., 2016). Ubert et al. (2017) mapped the N1 locus in two recombinant inbred line (RIL) populations (UFRGS 01B7114-1-3 × UFRGS 006013-1 and URS Taura × UFRGS 017004-2), and found that the SNP markers associated with the hulless trait were located on the linkage group Mrg21 near marker GMI_ES14_c19259_657 at 212 cM. The GWAS strategy was also employed to study the hulless trait of oat. Tumino et al. (2016) found a robust association between the hulless trait at the 178.3 cM position on Mrg21. Another GWAS performed by Yan et al. (2020) found that the most significant markers affecting the hulless trait were located on Mrg21 at 205.3, 212.1, and 195.7 cM. The positions of associated markers in the two GWAS were discrete. This could be due to the small number of hulless oat lines in the mapping population used by Tumino et al. (2016), which limited the power of GWAS. In the present study, six significant SNPs were found to be associated with the hulless trait of oat. Four of the six associated SNPs were located at 194.0 and 205.7 cM on Mrg21, suggesting a major QTL between these genetic map positions (Table 3, Figure 6A). These SNPs were located close to the N1 locus detected in the two RIL populations by Ubert et al. (2017), and to the associated SNPs found by Yan et al. (2020). Recently, Peng et al. (2022) generated a high-quality reference genome assembly of hulless common oat (AACCDD genome), and performed GWAS to identify the genomic loci contributing to the hulless trait. A strong peak associated with the trait was detected at the end of chromosome 4D, and colocalized with the N1 locus. We mapped six SNPs associated with the hulless trait in common oat (Table 4). Four of the six SNPs (GMI_GBS_84661, GMI_ES01_c8241_504, GMI_GBS_67251 and GMI_ES22_c7478_431) mapped to the end of chromosome 4D, and two of these four SNPs (GMI_GBS_67251 and GMI_ES22_c7478_431) were located in the candidate region of the N1 locus (Peng et al., 2022). These results provide further evidence suggesting that the major locus N1 controls the hulless trait in oat. The formation of hulless grain is also observed in other crops, such as barley (Hordeum vulgare. L) (Taketa et al., 2008). Lemma and palea are attached firmly to the grain in hulled barley, while they can be easily separated from the grain in hulless barley. Most studies concluded that the hulled grain trait is governed by a single locus (NUD) in barley, and hulless barley varieties carry a loss-of-function nud allele. However, additional loci significantly associated with hullessness have recently been identified in barley through GWAS (Milner et al., 2019; Wabila et al., 2019). In the present study, two additional markers (GMI_ES02_lrc13788_346 and GMI_ES17_c10594_472), identified on Mrg05 and Mrg09 for the first time, were also found to be significantly associated with the hulless trait. Thus, our results suggest that the hulless trait of oat is regulated not only by the N1 locus but also by other genes, as speculated previously (De Koeyer et al., 2004).


Table 4 | Annotated genes located near significant SNP markers in a recently released genome assembly of common oat.



The gene A.satnudSFS4D01G000045, annotated as a receptor-like kinase, was suggested to be a promising candidate for the gene controlling the hulled/hulless trait in oat (Peng et al., 2022). In accordance with the SNP annotations provided by Tinker et al. (2014), genes orthologous to those carrying the hullessness trait-associated SNPs are listed in Table 4. Notably, the candidate gene A.satnudSFS4D01G000045 was not present among these ortholgous genes (Table 4). However, we found that the gene containing the marker GMI_GBS_67251 at the N1 locus likely encodes 4-coumarate: CoA ligase 4 (4CL4) protein. The 4CL4 protein participates in phenylpropanoid metabolism by mediating the activation of a number of hydroxycinnamates for the biosynthesis of monolignols and other phenolic secondary metabolites (Gui et al., 2011). The rice homolog of 4CL4 (IRAL1/4CL4) is also involved in lignin biosynthesis, and mutation of 4CL4 reduces the lignin content of roots and leaves (Liu et al., 2020). Ubert et al. (2017) speculated that the reduced lignification of lemma in hulless oat maybe related to genes that regulate lignin composition and biosynthesis. Therefore, we conjecture that 4CL4 might be another candidate gene controlling the hulled/hulless trait in oat, although more evidence is needed to verify this speculation. The annotated gene of GMI_ES22_c7478_431, which was also located in the N1 locus region, was predicted to encode the PHD finger protein ING2, which participates in the growth regulation biological process. Oat possesses a large, repeat-rich polypoid genome that has undergone extensive rearrangement. Once a better quality genome sequence of hexaploid oat becomes available, additional candidate genesmust be discovered and annotated.

The most significant SNP affecting lemma color (GMI_ES15_c2369_181) in the present study was mapped to Mrg20 (14.7 cM); this SNP was also identified by Tumino et al. (2016) and Winkler et al. (2016) using GWAS. The SNP marker was mapped to chromosome 7D in common oat (Table 4), and the gene containing the marker shared similarity with the gene encoding the splicing factor U2af large subunit B-like protein. Two other significant markers, GMI_DS_oPt-18257_376 and GMI_GBS_13773, were reported for the first time in this study. Both these markers were located on chromosome 6C in close proximity to each other. It is possible that this region on chromosome 6C governs lemma color in oat. Lemma color is a complex and difficult-to-interpret trait. Previous investigation of the inheritance of black and gray colored lemma in a specific hybrid population of oat revealed that black lemma color is controlled by more than two loci (Hoffman, 1999). Studies conducted to date on lemma color suggest that the expression of this trait is affected by environmental factors and epistatic effects.

GWAS in our study found several SNPs associated with hullessness and lemma color in the common oat and the results provide the basis to explore the molecular mechanism of the traits in the further research. The present stuty serves as a typical example to explore genetic basis in other quality and quantity traits using GWAS strategy in common oat.
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Fusarium head blight (FHB) has rapidly become a major challenge to successful wheat production and competitive end-use quality in western Canada. Continuous effort is required to develop germplasm with improved FHB resistance and understand how to incorporate the material into crossing schemes for marker-assisted selection and genomic selection. The aim of this study was to map quantitative trait loci (QTL) responsible for the expression of FHB resistance in two adapted cultivars and to evaluate their co-localization with plant height, days to maturity, days to heading, and awnedness. A large doubled haploid population of 775 lines developed from cultivars Carberry and AC Cadillac was assessed for FHB incidence and severity in nurseries near Portage la Prairie, Brandon, and Morden in different years, and for plant height, awnedness, days to heading, and days to maturity near Swift Current. An initial linkage map using a subset of 261 lines was constructed using 634 polymorphic DArT and SSR markers. QTL analysis revealed five resistance QTL on chromosomes 2A, 3B (two loci), 4B, and 5A. A second genetic map with increased marker density was constructed using the Infinium iSelect 90k SNP wheat array in addition to the previous DArT and SSR markers, which revealed two additional QTL on 6A and 6D. The complete population was genotyped, and a total of 6,806 Infinium iSelect 90k SNP polymorphic markers were used to identify 17 putative resistance QTL on 14 different chromosomes. As with the smaller population size and fewer markers, large-effect QTL were detected on 3B, 4B, and 5A that were consistently expressed across environments. FHB resistance QTL were co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D. A major QTL for awnedness was identified as being associated with FHB resistance on chromosome 5A. Nine small-effect QTL were not associated with any of the agronomic traits, whereas 13 QTL that were associated with agronomic traits did not co-localize with any of the FHB traits. There is an opportunity to select for improved FHB resistance within adapted cultivars by using markers associated with complementary QTL.
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Introduction

The southern regions of the Prairie Provinces of Saskatchewan, Alberta, and Manitoba are the largest spring wheat growing areas, producing about 98% of all Canadian spring wheat (2017 Canadian Wheat Crop in Review). The focus of the wheat breeding programs in most of these regions is Fusarium head blight (FHB) disease, to which wheat is particularly susceptible. The infection by FHB leads to reduced grain yield via kernel weight and size, poor milling and baking quality, and reduced germination ability. Furthermore, Fusarium graminearum, the causal agent of FHB, produces the mycotoxin deoxynivalenol (DON), greatly threatening food and feed safety (Buerstmayr et al., 2002; Bai and Shaner, 2004).

Developing and growing genetically resistant varieties is the most effective approach for managing the disease. Since about 1997, wheat breeding programs in Canada have been engaged in the search for FHB resistance and the development of new cultivars resistant to the disease. New varieties that contribute to a reduction in disease infection through improved resistance are critical to the control strategy in commercial production systems. In addition, improved kernel quality from reduced Fusarium damaged kernels (FDK) and low DON accumulation are critical to the successful marketing and end-use of the grain. Although there is much breeding effort underway and several adapted cultivars with improved resistance levels have been developed (DePauw et al., 2011; Cuthbert et al., 2017), to date, FHB resistance is not complete compared to resistance for other diseases such as leaf or stem rust because breeding for FHB resistance is complex.

Resistance to FHB is a quantitative trait with low to moderate heritability. The disease is governed by many minor effects of QTL that are subjected to strong QTL-by-environment interactions. FHB resistance was also reported to be associated with several agronomic and morphological traits, which makes the breeding effort more challenging. Various mapping studies investigated the association of FHB resistance with plant height and commonly reported negative correlations (Hilton et al., 1999; Buerstmayr et al., 2000; Somers et al., 2003; Srinivasachary et al., 2009; Lu et al., 2013). The co-incidence of QTL for FHB resistance and plant height was reported to have a genetic basis like tight linkage or pleiotropy rather than being the result of an escape mechanism (Schmolke et al., 2005; Draeger et al., 2007; Srinivasachary et al., 2008a; Srinivasachary et al., 2008b; Giancaspro et al., 2016). Days to heading were also reported to be negatively correlated with FHB resistance, with late heading being more resistant and attributed to a disease escape event (Emrich et al., 2008). Spike traits such as the presence and size of awns have been shown to be also associated with FHB resistance (Gervais et al., 2003; Tamburic-Ilincic et al., 2007; Srinivasachary et al., 2008a). Understanding the relationship between FHB resistance and these phenological and morphological traits is crucial for the development of resistant cultivars. Breeding programs can be seriously hampered if FHB resistance is linked to undesirable traits; therefore, simultaneous evaluation and selection are required while breeding for FHB resistance.

With the advent of next-generation sequencing technology, a high quantity of single-nucleotide polymorphism (SNP) markers have been developed and utilized to generate high-resolution genetic maps to locate QTL more precisely on known chromosome regions. The Illumina iSelect 90K wheat chip (Wang et al., 2014), which corresponds to a high-density SNP genotyping array with about 90,000 gene-associated SNPs, was developed as a powerful tool to characterize genetic variation in wheat and to provide a high-resolution dissection of complex traits such as FHB resistance. High-density linkage maps based on 90K iSelect markers are expected to improve the resolution of FHB resistance QTL analysis and enable the identification of markers desirable for marker-assisted selection (MAS) and backcrossing (Sari et al., 2018).

Various FHB resistance sources, mainly from Asia, Europe, and South America (Rudd et al., 2001), have been the focus of numerous genetic studies and have been used for QTL identification by most breeding programs worldwide (Buerstmayr et al., 2009). The Chinese spring wheat Sumai3 was widely used as a resistance source for its remarkably high resistance to fungal spread (Waldron et al., 1999; Anderson et al., 2001; Cuthbert et al., 2006). Resistance breeding efforts around the world depend heavily on Sumai3 and its derivatives, mainly as sources of the most commonly known Fhb1 along with other genes such as Fhb2 and Fhb5 (Brar et al., 2019). Sumai3 derivatives have been used not only as donors of “active” resistance factors represented by FHB resistance loci but also as a source of “passive” resistance factors. For example, in the works by Lionetti et al. (2015) and Giancaspro et al. (2018), biochemical traits linked to cell-wall structure have been successfully transferred from a Sumai3-derived resistance line to susceptible durum cultivars, leading to the attainment of tolerant genotypes showing increased levels of FHB resistance measured as reduced severity, incidence, and lower accumulation of kernel DON levels. The moderately resistant cultivar Frontana from Brazil has been another widely studied wheat variety as a useful source of resistance to FHB disease (Singh et al., 1995; Steiner et al., 2004; Szabó-Hevér et al., 2012; Szabó-Hevér et al., 2014). Frontana showed the ability in in vitro experiments to degrade and tolerate high DON levels (Miller and Arnison, 1986; Wang and Miller, 1988). Szabó-Hevér et al. (2012) mapped QTL for resistance to FHB incidence in Frontana on chromosomes 2B, 3A, 4B, 5A, and 6B. In another study involving Frontana as a resistance source, Szabó-Hevér et al. (2014) identified QTL linked to FHB incidence, severity, FDK, and DON resistance on chromosomes 1B, 2D, 3B, 5A, 5B, and 6B. The QTL associated with DON accumulation alone was reported on chromosomes 3A, 4B, 7A, and 7B.

The Canadian spring wheat breeding programs have been making several crosses between adapted germplasm and sources of FHB resistance to transfer the resistance genes into the adapted background. The Canada Western Red Spring Wheat (CWRS) Carberry (DePauw et al., 2011) derives from the cross Alsen/Superb, where Alsen has Sumai3 in its pedigree. Superb has Frontana in its pedigree (CIERA: Yates et al., 2018). AC Cadillac, which derives from the cross BW90*3/BW553 (DePauw et al., 1998), also has Frontana in its background. Carberry shows moderate resistance, whereas AC Cadillac shows intermediate- to moderately susceptible reactions to FHB. In the present study, we used a doubled haploid population derived from the cross between an FHB moderately resistant cultivar, Carberry, and a moderately susceptible cultivar AC Cadillac to identify and localize QTL responsible for the expression of resistance to FHB and to investigate their association with plant height, maturity, days to heading, and awnedness.





Materials and methods




Plant material

A population of 811 doubled haploid (DH) lines was produced from a cross of Carberry/AC Cadillac using the maize pollen method described by Humphreys and Knox (2015). From the 811 lines, 261 were selected for height, maturity, straw strength, leaf and stem rust resistance similar to Carberry. The selected lines were evaluated for FHB incidence, severity, days to heading, days to maturity, awnedness, and plant height. Subsequently, the entire set of DH lines was evaluated to expand the population to 811 lines. Hereafter, the 261 set of lines will be referred to as the 261 set and the 811 set of lines as the 811 set.





Disease assessment

FHB incidence and severity were assessed on 261 DH lines of the Carberry/AC Cadillac population, parents, and checks at an Agriculture and Agri-Food Canada (AAFC) FHB nursery near Portage la Prairie (PLP), Manitoba, in 2010, 2011, and 2013. AC Cadillac was not included in the 2010 PLP FHB nursery. Each DH line was planted in a single 1-m-long row using a six-row cassette Row XL, Wintersteiger planter. The rows were spaced 30 cm apart. Borders of 0.5 m were left between each set of six rows. The left row of each set of six rows was planted to either a control genotype or a rust disease spreader. The other five rows were planted with experimental lines.

The FHB inoculum used for the field inoculation to initiate disease at PLP originated from a mixture of four aggressive F. graminearum isolates M9-07-1 (3-ADON), M7-07-1 (3-ADON), M1-07-1 (15-ADON), and M3-07-2 (15-ADON) described by Gilbert and Woods (2006). The FHB corn-spawn inoculum was produced as described by Bokore et al. (2017). Briefly, sterile corn seed was inoculated in a laminar flow hood with these four isolate cultures. Following the incubation period, the corn kernel inoculum was dried. The dried corn was then packed in mesh bags and stored in a cold room at about 0 °C for its use in the experiment. These F. graminearum isolate-colonized corn grains were broadcasted between the rows at a rate of 20 g/m2 at the end of the tillering stage, which was approximately 2 to 3 weeks prior to flowering (Zadoks stage 58). To promote FHB symptom development, an overhead low-pressure mist irrigation system was programmed to apply about 12 mm of water three times a week to maintain a humid environment in the plots. FHB symptoms were scored between 22 and 25 days after the majority of the lines had completed anthesis, and a differential response to FHB was expressed in the controls.

The 811 DH lines of the Carberry/AC Cadillac population, along with parents and checks, were evaluated for FHB incidence and severity at AAFC’s FHB nurseries near Morden (MDN), MB, in 2015, 2016, and 2017, and Brandon (BDN), MB, in 2016 and 2017. At both locations, the lines were planted in a single 1-m-long row using a six-row cassette Row XL, Wintersteiger planter. The rows were spaced 30 cm apart, with borders of 0.5 m between each set of six rows. The DH lines in the experiments were unreplicated, while the parents and checks, including Sumai3, FHB37, and CDC Teal, were repeated ten times. F. graminearum corn kernel inoculum was prepared by modifying the protocol of Gilbert and Woods (2006). The inoculum was prepared using steam table pans (10 cm) using four F. graminearum isolates (M9-07-1 (3-ADON), M7-07-1 (3-ADON), M1-07-1 (15-ADON), and M3-07-2 (15-ADON). Each isolate was inoculated in individual pans containing sterile corn and incubated for 1 month. After the corn dried, it was stored in plastic tubs at 4°C until use. At Morden, the inoculum was dispersed at a rate of 8 g per row, two times at weekly intervals, starting when the earliest lines were at the four- to five-leaf stage. The inoculum application was followed by irrigation three times a week (Monday, Wednesday, and Friday) using Cadman Irrigation Travelers with Briggs booms. At BDN, the inoculum was also broadcasted twice. The first application was 6 weeks after planting, followed by another application 2 weeks after the first application. Overhead irrigation was applied three times a week after the inoculation to promote the development of the disease and the spread of F. graminearum spores from the inoculated corn.

At 21 days post-anthesis, the two components of resistance, FHB incidence (initial infection) and FHB severity (fungal spread), were visually scored using a scale of 0% to 100% (Stack and McMullen, 1998). FHB incidence was the percentage of infected spikes over total spikes per row, while FHB severity was the averaged estimated percentage of infected spikelets per head for all spikes in the row. FHB index was calculated using the following formula: FHB index = (percent disease incidence × percent disease severity)/100.





Agronomic and morphological assessment

Plant height (PH), days to heading (DTH), and days to maturity (MAT) were recorded in an irrigated seed increase nursery near Swift Current, SK, on the 261 and 811 sets of the population, parental lines, and checks. Plant height was measured in 2010 and 2011 (two locations) on the 261 set, and in 2012, 2013 (two locations), and 2014 on the 811 lines from the soil surface to the tip of spikes, excluding the awns. Similarly, DTH was recorded in 2011 (two locations) on the 261 set and in 2013 (two locations) and 2014 on the 811 set when 50% of the heads emerged from the boot. Days to maturity were recorded in 2011 on the 261 set and in 2012, 2013 (two locations), and 2014 on the 811 set when 80% or more of the plots had yellow heads and achieved physiological maturity (30% to 35% moisture on a wet weight basis). The awn phenotype in the 811 set was scored as Carberry type for the presence of long awns (score = 1) or AC Cadillac type for tipped awns (score = 0) in an irrigated increase nursery near Swift Current during the 2012 growing season.





Molecular genotyping and high-density genetic map construction

The procedure for the DNA extraction and PCR analysis on the 261 set of lines was previously described by Singh et al. (2016). Briefly, the genomic DNA of the lines and parents used for simple sequence repeat (SSR) marker genotyping was extracted from 3-cm segments of primary leaves using the wheat and barley DNA extraction in 96-well plate protocol (http://maswheat.ucdavis.edu/PDF/DNA0003.pdf) with some modifications. For Diversity Array Technology (DArT) analysis, genomic DNA of the lines and parents was extracted according to a protocol published by Triticarte (http://www.triticarte.com.au/pdf/DArT_DNA_isolation.pdf) with some modifications as described by Singh et al. (2013). The DArT® marker analysis was done by Triticarte Pty. Ltd. Yarralumla, ACT, Australia (www.triticarte.com.au).

A total of 58 SSR and 578 DArT markers were polymorphic between the two parents and used in generating a genetic linkage map of the 261 set of lines. The JoinMap® 4.0 software was used to develop the linkage map using the regression mapping option and groupings (Van Ooijen, 2006). Centimorgan (cM) values were calculated according to the Haldane mapping function. The validity of the linkage groups was confirmed with known chromosomal locations of markers determined through the GrainGenes website (http://wheat.pw.usda.gov/GG2/index.shtml). Additionally, in order to cross-reference markers associated with resistance QTL identified from the two sets using the DArT/SSR map and the high-density SNP map, we generated a genetic map incorporating together the SNP, DArT, and SSR markers.

For the 811 set, the genomic DNA of the parents and DH lines was extracted from young leaves with the DNeasy 96 Plant DNA Extraction Kit (QIAGEN Science, MD, USA). Genotyping was done with the 90K iSelect SNP Genotyping Assay (Illumina Inc., San Diego, CA, USA). Genotypes were called with the automatic clustering algorithm in Genome Studio V2011.1, followed by manual adjustment to recover polymorphic markers that were not correctly called by the algorithm. In addition to SNP markers, selected microsatellite markers Xbarc147, Xbarc75, Xgwm389, Xgwm533, and Umn10 (Cuthbert et al., 2006; Liu et al., 2008; Buerstmayr et al., 2009) previously associated with or in the genomic region of the FHB gene Fhb1, as well as an STS marker Xsts3B-142 near Fhb1 (Cuthbert et al., 2006), were also used to genotype the population. From the 811 set, only 775 lines were used to generate the genetic map using JoinMap®5.





QTL analysis

QTL analysis was performed with IciMapping Version 4 (Meng et al., 2015) using the 261-set DArT/SSR map and FHB data from PLP. The IciMapping software option Inclusive Composite Interval Mapping with additive effect (ICIM-ADD) was used to identify molecular markers significantly associated with FHB resistance and agronomic traits. ICIM is based on the stepwise regression of simultaneous consideration of all marker information (Li et al., 2007; Li et al., 2008). A logarithm of odds (LOD) threshold of 2.5 cM was specified from a 1,000 permutation test to declare significant QTL. Additionally, using the DArT/SSR map and a high-density SNP map on the FHB data of the 261 set from PLP, MDN, and BDN, a multiple QTL mapping (MQM) of the MapQTL software was used to determine QTL. The aim of the analysis was to cross-reference markers associated with FHB resistance QTL identified with a DArT/SSR map and SNP markers. Furthermore, to investigate the effect of the 4B Rht-B1 reduced height gene on the FHB reaction, we pooled 336 lines that carried molecular variant for Carberry Rht-B1 type on chromosome 4B, and we performed QTL analysis using FHB data collected from MDN in 2015, 2016, and 2017 and BDN in 2016 and 2017.

For the 775 DH set, QTL analysis was performed using the MapQTL6® software (Van Ooijen, 2009). A nonparametric Kruskal–Wallis (KW) test was employed to detect an association between markers and traits individually. Interval mapping (IM) analysis was then performed to select markers significantly associated with the trait to constitute an initial set of co-factors. A backward elimination procedure was applied to the initial set of co-factors. Automatic co-factor marker detection declaring significant markers at p < 0.02 as well as manual co-factor selection were performed, and the selected co-factor markers were used in MQM (Jansen and Stam, 1994). Genome-wide thresholds of the LOD scores for significant (p < 0.05) QTL were determined by 1,000 permutations within MapQTL®, and the significance of the detected QTL was confirmed. The Basic Local Alignment Search Tool (BLAST) against the genome sequence of Chinese Spring wheat on the IWGSC RefSeq v1.0 was used to compare the physical positions of selected QTL.





Statistical analysis

To determine the broad-sense heritability (H) of the FHB traits, analysis of variance (ANOVA) was performed using a mixed model approach in the Statistical Analysis System (SAS) software version 9.3 (SAS Institute Inc., Cary, NC, USA). During the analysis, the DH lines were considered a fixed variable, whereas test locations and years were considered random variables. The broad sense heritability was calculated from the variance components. Spearman’s correlation coefficients between FHB traits recorded at the different locations were estimated using PROC CORR in SAS. We also estimated the correlation coefficients between FHB traits obtained from the different locations and the adjusted mean value from multiple locations of plant height, days to heading, and maturity.






Results




Trait variation in the 261 set of lines

Figure 1 presents the frequency distribution of FHB traits (A) incidence, (B) severity, and (C) index of PLP. Similar FHB pressures were observed in 2010 and 2011, whereas higher disease symptoms were observed in 2013 than in 2010 and 2011. There was highly significant variation among the lines for all the FHB traits (Table 1). The frequency distributions of the different FHB parameters were continuous in all three environments. Transgressive segregates, more resistant or susceptible than parents, were also observed. The presence of transgressive segregant lines indicates that both parental lines have additively contributed to the resistance. AC Cadillac and Carberry displayed different reactions to FHB infection, with the difference between the means of their FHB traits being significant at PLP in 2011 but not in 2013. The lack of significance in 2013 could be associated with the interaction between the disease and the environment. Overall, the more resistant parent, Carberry, was less infected than the moderately susceptible parent, AC Cadillac. A comparison between the two parents was not possible at PLP in 2010, as Carberry was missing from the trial.




Figure 1 | Frequency distribution of 261 Carberry (C)/AC Cadillac (AC) DH lines grown at Portage La Prairie (PLP) in 2010, 2011, and 2013 for (A) FHB incidence (INC), (B) FHB severity (SEV), and (C) FHB index (IND). The placement of the parents along the distribution is denoted by arrows. No data were available for AC Cadillac in 2010.




Table 1 | Analysis of variance of line means, heritability (H), means of parents and population, minimum and maximum values of Fusarium head blight, plant height, and days to heading traits for the 261 sets of lines of the Carberry/AC Cadillac population.



There were statistically significant variations among the 261 set of lines for plant height, days to heading, and maturity (Table 1). Plant height ranged from 72 to 102 cm at Swift Current in 2010, 68 to 102 cm at Swift Current location 1 in 2011, and from 71 to 108 cm at location 2 in 2011. Across the years, the mean plant height of Carberry was 21.2 cm shorter than AC Cadillac and headed out 2.1 days earlier than AC Cadillac. Days to heading ranged from 46 to 58 days at location 1 in 2011 and 52 to 61 days at location 2 in 2011. The maturity date of the population ranged from 95 to 100 days in 2011. On average, AC Cadillac reached maturity 1.5 days earlier than Carberry. There were significant statistical differences between the two parents for plant height, days to heading, and maturity in 2010 and 2011 in all the locations.





Trait variation on the 811 set of lines

Lines with higher FHB incidence, severity, and index than both parents were observed across environments. Overall, the highest disease development was observed in the MDN 2015 environment, whereas the lowest disease development was observed at BDN in 2017 (Table 2). Significant differences were observed between AC Cadillac and Carberry for the FHB incidence at MDN in 2015, the FHB severity at MDN in 2016 and 2017 and BDN in 2017, and for the FHB index at MDN in 2015 and 2016 (Table 2). Significant variation was also observed among the population lines for all the FHB traits. The frequency distribution of the 811 DH lines was continuous for all the FHB traits in all the environments (Figures 2A–F). The population was skewed for FHB incidence at MDN, with a preponderance of lines in the susceptible end of the distribution, as demonstrated in Figure 2A. At BDN, a preponderance of susceptible lines was observed in 2016 and of resistant lines in 2017. For the MDN 2016 and 2017 and BDN 2017 FHB severity, the distribution of the population was skewed with a preponderance of resistant lines, whereas at MDN in 2015, the population was skewed toward susceptibility. However, the distribution in the BDN 2016 environment was close to normal. Except for MDN 2015, the population distribution for the FHB index was skewed toward the resistant end, as shown in Figures 2D, E.


Table 2 | Analysis of variance of line means, heritability (H), means of parents and population, minimum and maximum values of Fusarium head blight, plant height, days to heading, and maturity traits for the 811 Carberry × AC Cadillac DH lines.






Figure 2 | Frequency distribution of 811 Carberry (C)/AC Cadillac (AC) DH lines grown at Morden (MDN) in 2015, 2016, and 2017 and Brandon (BDN) in 2016 and 2017 for FHB incidence (INC) in (A, B), severity (SEV) in (C, D), and FHB index (IND) in (E, F). The placement of the parents along the distribution is denoted by arrows.



The plant height of the population ranged from 66 to 120 cm at Swift Current in 2012, 74 to 138 cm in 2013 at Swift Current location 1, 64 to 132 cm in 2013 at Swift Current location 2, and 66 to 134 cm at Swift Current in 2014. Days to heading ranged from 51 to 66 days at location 1 in 2013, 49 to 63 days at location 2 in 2013, and 57 to 71 days at Swift Current in 2014. The maturity date ranged from 77 to 103 days in 2012, 93 to 103 days at location 1 in 2013, 96 to 107 days at location 2 in 2013, and 80 to 103 days at Swift Current in 2014. Over all the years, Carberry was 22.8 cm shorter than AC Cadillac, and it headed 1.5 days earlier than AC Cadillac.





Trait correlations

The results of the correlation analysis are presented in Table 3 for the 261 set and Table 4 for the 811. Overall, associations among FHB traits averaged over locations were weak to moderate but were significant. In both sets, the FHB traits showed negative and highly significant weak to moderate correlations with PH, such that shorter plants tended to show higher FHB symptoms. Negative and weak correlations were also observed between the FHB traits and DTH for the 811 set, whereas the 261 set showed a negative association only in 2013, but otherwise were positively correlated with FHB traits in 2010 and 2011 or the correlation was not significant. The correlation of FHB traits with maturity showed significance only in 2013 and was negative and low for the 261 set. Negative and highly significant low-to-moderate associations between FHB traits and maturity were revealed for the 811 set.


Table 3 | Spearman’s correlation coefficients between Fusarium head blight traits measured over environments, plant height, days to heading, and maturity on the 261 Carberry × AC Cadillac DH lines.




Table 4 | Spearman’s correlation coefficients between Fusarium head blight traits measured over environments, plant height, days to heading, and maturity on the 811 Carberry × AC Cadillac DH lines.







Linkage map construction

For the 261 set, the linkage map with 21 linkage groups was constructed using 634 polymorphic DArT and SSR markers. The linkage groups formed were anchored to the 21 wheat chromosomes for an approximate map length of 2,101.6 cM. For the expanded population, 775 lines were used to generate the genetic map with 29 linkage groups using a total of 6,806 SNP markers, and the total genetic distance covered by the linkage map was 4,527.5 cM. An alternative to this high-density SNP map was developed using a combination of 7,370 DArT, SSR, and SNP markers and 775 DH set, covering a total map length of 6,488.4 cM in the wheat genome.





FHB QTL identified in the 261 set of lines

Using the DArT/SSR genetic map, ICIM QTL analysis on the 261 DH lines evaluated at PLP identified four QTL associated with FHB resistance on chromosomes 2A (designated as Qfhb.spa-2A), 3B (Qfhb.spa-3B.1), 4B (Qfhb.spa-4B), and 5A (Qfhb.spa-5A.1) (Table 5A). Carberry contributed resistance alleles at Qfhb.spa-2A, Qfhb.spa-3B.1, and Qfhb.spa-5A.1, whereas AC Cadillac contributed the resistance allele for Qfhb.spa-4B. The QTL Qfhb.spa-3B.1, Qfhb.spa-4B, and Qfhb.spa-5A.1 were associated with both FHB incidence and severity in two out of three environments, but Qfhb.spa-2A was associated only with FHB incidence in the PLP 2013 environment. The significant QTL LOD scores ranged from 4.1 to 14.1; the highest LOD score was associated with the Qfhb.spa-4B for FHB severity at PLP in 2010. Qfhb.spa-4B also explained the greatest amount of phenotypic variation associated with the same FHB trait. Qfhb.spa-3B.1 was effective against FHB incidence in 2010 and FHB incidence and severity in 2013. Qfhb.spa-4B and Qfhb.spa-5A.1 were expressed in 2010 and 2011 by reducing the FHB incidence and severity, but both did not show significant expression in 2013.


Table 5 | Summary of Fusarium head blight (FHB) QTL detected from the 261 sets of the Carberry × AC Cadillac population using DArT/SSR map and SNP map, the number of test environments, phenological and morphological traits associated with FHB QTL, markers associated with the highest LOD values, and FHB resistance allele contributing parent of evaluated at PLP in 2010, 2011, and 2013; Morden (MDN) in 2015, 2016, and 2017; and Brandon (BDN) in 2016 and 2017.



The second QTL analysis was an MQM analysis using the DArT/SSR genetic map and FHB data of the 261 DH set evaluated at MDN and BDN, which similarly detected Qfhb.spa-2A, Qfhb.spa-3B.1, Qfhb.spa-4B, and Qfhb.spa-5A.1, with an additional QTL detected on chromosome 3A (Qfhb.spa-3A.1) (Table 5B). The Qfhb.spa-3B.1, Qfhb.spa-4B, and Qfhb.spa-5A.1 were detected in multiple environments, whereas the QTL on Qfhb.spa-2A and Qfhb.spa-3A.1 were detected in single environments. Contributed by AC Cadillac, Qfhb.spa-3A.1 explained a phenotypic variation of up to 5.9% in the FHB traits, which was detected in the MDN 2015 environment. The third QTL analysis, which used the high-density SNP map and the MQM option of the MapQTL on the 261 DH set and FHB data of PLP, revealed genomic regions that were associated with FHB resistance on chromosomes 2A (Qfhb.spa-2A), 3B (two loci, Qfhb.spa-3B.1 and Qfhb.spa-3B.2), 4B (Qfhb.spa-4B), and 5A (Qfhb.spa-5A.1), similar to the other genetic maps (Table 5C). The analysis by MQM using the SNP map on the 261 set for the MDN and BDN environments revealed Qfhb.spa-3A.1, Qfhb.spa-3B.1, Qfhb.spa-4B, and Qfhb.spa-5A.1, with an additional QTL on chromosome 5A, Qfhb.spa-5A.2 (Table 5D). The resistance alleles at Qfhb.spa-2A, Qfhb.spa-3B.1, Qfhb.spa-3B.2, and Qfhb.spa-5A.1 were derived from Carberry, whereas the resistance alleles at Qfhb.spa-3A.1, Qfhb.spa-4B, and Qfhb.spa-5A.2 were derived from AC Cadillac.

The Qfhb.spa-3B.1 was revealed in all the MDN and BDN environments and in two out of three PLP environments. Qfhb.spa-3B.1 was more consistently expressed than Qfhb.spa-3B.2, which was detected only in the PLP 2010 environment (Table 5C). Qfhb.spa-3B.1 explains 8.7% to 11.7% of the variation in FHB incidence, 11.7% to 20.2% in FHB severity, and 8.6% to 19.5% in the FHB index, with the explained variation in the FHB trait reaching 20.2%. The Qfhb.spa-3B.2 gave the highest explained phenotypic variation in the FHB severity of 7%. The Qfhb.spa-5A.1 was expressed fairly consistently among the environments and accounted for the highest PVE in FHB incidence of up to 33.8% at PLP in 2011. The Qfhb.spa-5A.2 explained a phenotypic variation of 9.2% in the FHB incidence. The other consistent QTL, Qfhb.spa-4B, explained up to 17.9% of the phenotypic variation that was observed at PLP in 2010. The QTL Qfhb.spa-2A and Qfhb.spa-3A.1 were environment-sensitive and had a minor effect on reducing the FHB disease. Both QTL were detected in only one environment. Whereas Qfhb.spa-2A was associated with FHB incidence and index at PLP in the 2013 environment, Qfhb.spa-3A.1 was associated with resistance to FHB incidence, severity, and index at MDN in 2015.

QTL analysis using the SNP/DArT/SSR integrated map on the 261 set identified nine genomic regions responsible for FHB resistance on chromosomes 2A (Qfhb.spa-2A), 3A (Qfhb.spa-3A.1, Qfhb.spa-3A.2), 3B (Qfhb.spa-3B.1, Qfhb.spa-3B.2), 4B (Qfhb.spa-4B), 5A (Qfhb.spa-5A.1), 6A (Qfhb.spa-6A), and 6D (Qfhb.spa-6D) (Table 6). Resistance alleles on the chromosomes 2A, 3A, 3B, 5A, and 6D QTL were contributed by Carberry, while those on the 3A, 4B, and 6A QTL were contributed by AC Cadillac. QTL on chromosomes 4B and 5A were effective in five test environments and explained the highest phenotypic variation of 34.4% in PLP 2011 for the QTL on 5A to reduce FHB incidence and 19.2% in PLP 2010 for the QTL on 4B to reduce FHB severity. QTL on chromosomes 2A, 6A, and 6D were only expressed in one environment: PLP 2013 for the 2A QTL, MDN 2017 for the 6A QTL, and PLP 2010 for the 6D QTL. Chromosome 3B carried two FHB resistance loci: a major-effect locus Qfhb.spa-3B.1 observed in six environments and explaining the highest PVE of 20.9% to reduce FHB severity in MDN 2016, and a minor-effect locus Qfhb.spa-3B.2 only observed in PLP 2010 and explaining the highest PVE of 6.5% to reduce FHB severity. The markers associated with the QTL on 2A, 3A, 3B, 4B, 5A, and 6A chromosomes identified with the integrated map coincide with or are mapped nearby the markers identified using the DArT/SSR map and the high-density SNP map.


Table 6 | Summary of Fusarium head blight (FHB) QTL detected from the 261 sets of the population using the SNP/DArT/SSR map, number of test environments (Portage la Prairie (PLP) in 2010, 2011, and 2013; Morden (MDN) in 2015, 2016, and 2017; and Brandon (BDN) in 2016 and 2017) and other traits associated with FHB QTL, markers associated with the highest LOD values, and FHB resistance allele contributing parent.







FHB QTL identified in the 775 DH set

The analysis by MQM on the 775 DH set revealed 17 significant QTL for FHB resistance located on 14 wheat chromosomes (Table 7). Table 8 gives a list of putative genes annotated using the Chinese Spring reference near the FHB QTL identified in this study. QTL that accounted for phenotypic variations greater than 10% were considered major-effect loci, and such loci were identified on chromosomes 3B (Qfhb.spa-3B.1), 4B (Qfhb.spa-4B), and 5A (Qfhb.spa-5A.1). QTL that explained less than 10% of the phenotypic variations were considered minor-effect loci, and they were located on chromosomes 1A (Qfhb.spa-1A), 1B (Qfhb.spa-1B), 2A (Qfhb.spa-2A), 2B (Qfhb.spa-2B), 3A (Qfhb.spa-3A.1 and Qfhb.spa-3A.2), 4A (Qfhb.spa-4A), 4B (Qfhb.spa-4B), 5A (Qfhb.spa-5A.2, Qfhb.spa-5A.3), 6A (Qfhb.spa-6A), 6B (Qfhb.spa-6B), 7A (Qfhb.spa-7A), 7B (Qfhb.spa-7B), and 7D (Qfhb.spa-7D). Carberry was the source of resistance alleles for the major-effect loci Qfhb.spa-3B.1 and Qfhb.spa-5A.1, as well as the minor-effect loci Qfhb.spa-1A, Qfhb.spa-2A, Qfhb.spa-3A.2, and Qfhb.spa-7D. AC Cadillac contributed resistance alleles for a major effect locus at Qfhb.spa-4B and minor-effect loci Qfhb.spa-1B, Qfhb.spa-2B, Qfhb.spa-3A.1, Qfhb.spa-4A, Qfhb.spa-5A.2, Qfhb.spa-5A.3, Qfhb.spa-6A, Qfhb.spa-6B, Qfhb.spa-7A, and Qfhb.spa-7B. The QTL Qfhb.spa-3B.1 greatly reduced FHB severity with an expressed PVE of 10.2% in the MDN 2015 environment, 15.6% in the MDN 2016 environment, and 11.4% in the BDN 2017 environment. The effect of the QTL on the FHB index reached 13.1% of the explained variation in the trait at MDN in 2016. Qfhb.spa-4B accounted for 10.5% to 21.2% of the variation explained in the FHB incidence, severity, and index across MDN and BDN environments. QTL mapping, which was performed using 336 lines carrying the reduced height gene Rht-B1 extracted from the 775 DH set, failed to detect the Qfhb.spa-4B that was detected using the unpartitioned population. The third major QTL, Qfhb.spa-5A.1, had an effect mainly against the FHB index (PVE = 11.4%) and FHB severity (PVE = 13.1%) in MDN 2015 and the index (PVE = 11.3%) in BDN 2017. Despite having minor effects, QTL such as Qfhb.spa-2B and Qfhb.spa-3A.1 influenced all three FHB components and were fairly consistent over the environments (Table 7). In contrast, QTL such as Qfhb.spa-1A, Qfhb.spa-1B, Qfhb.spa-2A, Qfhb.spa-3A.2, Qfhb.spa-6A, Qfhb.spa-6B, Qfhb.spa-7A, Qfhb.spa-7B, and Qfhb.spa-7D are expressed only in single environments.


Table 7 | Summary of Fusarium head blight (FHB) QTL identified in the 775 sets of lines of the Carberry/AC Cadillac population, number of test environments, phenological and morphological traits co-located with FHB QTL, markers associated with the highest LOD values, and FHB resistance allele contributing parent.




Table 8 | List of annotated genes close to markers associated with Fusarium head blight resistance quantitative trait loci (QTL) detected in the Carberry/AC Cadillac population.







QTL for phenological and morphological traits not co-located with FHB

The QTL for the phenological and morphological traits including plant height, days to heading, and days to maturity that were not associated with the FHB resistance are summarized in Table 9. QTL for plant height not co-located with FHB were detected in different environments on chromosomes 3A (Qph.spa-3A), 5A (Qph.spa-5A), 6D (Qph.spa-6D), and 7D (Qph.spa-7D). Carberry conditioned alleles for reduced height at Qph.spa-3A and Qph.spa-5A, whereas AC Cadillac conditioned alleles for reduced height at Qph.spa-6D and Qph.spa-7D. This reduced-height QTL is expressed in specific environments. QTL for days to heading and not co-located with FHB QTL were detected on chromosomes 1A (Qdth.spa-1A), 4B (Qdth.spa-4B), 4D (Qdth.spa-4D), 5A (Qdth.spa-5A), and 7D (Qdth.spa-7D) (Table 9). Carberry contributed alleles for early heading on chromosomes 1A, 4D, and 5A, whereas AC Cadillac contributed alleles for early heading on 4B and 7D. QTL on chromosomes 4B, 5A, and 7D was consistently revealed when the QTL mapping was carried out using the DArT/SSR map, the high-density SNP map, and the map comprising all the markers. Four QTL for days to maturity and not co-localized with FHB were detected on chromosomes 2B (Qmat.spa-2B), 3A (Qmat.spa-3A), 4D (Qmat.spa-4D), and 6B (Qmat.spa-6B) using different genetic maps and population sets (Table 9). Alleles for early maturity were contributed by Carberry on 2B, 3A, and 4D, whereas AC Cadillac was the source of alleles for early maturity on 6B.


Table 9 | Summary of phenological and morphological QTL that were not associated with FHB QTL detected in the 261 and 775 sets of the population, markers associated with the highest LOD values, and QTL contributing parent.







Co-location of FHB QTL with phenological and morphological trait QTL

QTL coincident for FHB resistance and different phenological and morphological traits are given in Tables 5–7. The most prominent QTL for reduced plant height on chromosome 4B overlapped with FHB resistance, days to heading, and days to maturity. Plant height loci also overlapped with FHB resistance QTL on chromosomes 6D and 7D, where the reduced height loci were contributed by AC Cadillac and the FHB resistance loci by Carberry. Early heading loci were mapped on chromosomes 4B, 4A, and 5A2, overlapping with FHB resistance loci. While the FHB resistance loci were contributed by AC Cadillac, the early heading loci were contributed by Carberry. For early maturity, loci overlapped with FHB resistance on chromosomes 3A1, 4B, and 7D. FHB resistance on 3A1 and 4B was contributed by AC Cadillac, while the early maturity was contributed by Carberry. On chromosome 7D, the early maturity locus was contributed by AC Cadillac, while FHB resistance was contributed by Carberry.

A major QTL explaining 92% of the phenotypic variation was identified on chromosome 5A controlling the presence of awns, with the allele for the presence of awns contributed by Carberry associated with Qfhb.spa-5A.1 (Table 7).






Discussion

The frequency distribution patterns of the Carberry/AC Cadillac progeny lines for disease incidence, severity, and the FHB index in response to the FHB infections in different environments suggest the quantitative nature of the resistance, in which several minor-effect genes are involved. The identification of the FHB resistance QTL on only five chromosomes with the different genetic maps generated on the 261 set of lines compared with the detection of QTL on 14 chromosomes when the high-density map developed using the 775 DH set of lines was used indicates the power of using larger populations and genetic maps with higher marker density to disclose new chromosome loci controlling the expression of the traits of interest. The power of using a large population and high-density map was also exhibited in the detection of the majority of the QTL with minor effects, as they were only detected using the larger set, suggesting that the expansion of the population size allowed the identification of additional resistance loci with minor effects (Charmet, 2000).

The inconsistent QTL expression that was observed across environments in the present study is irrespective of the population size. For example, the QTL Qfhb.spa-3B.1, Qfhb.spa-4B, and Qfhb.spa-5A1 were stable across environments as compared with Qdth.spa-1A, Qfhb.spa-1B, Qfhb.spa-6B, Qfhb.spa-6D, and Qfhb.spa-7D, which were identified in a single environment. The genotype-by-environment interaction had an influence on the expression of the different QTL, which is consistent with the low-to-moderate correlations over environments and heritability of FHB traits. It is well-known and reported that breeding for FHB resistance is complex due to the large effect of the environment, complex inheritance, and significant genotype-by-environment interaction (Buerstmayr et al., 2012; Steiner et al., 2017). Buerstmayr et al. (2009) stressed the importance of increasing the number of environments for FHB evaluation to determine and estimate the stability of a QTL. Our study demonstrated the effect of population size, number of environments, and map density on the power of QTL detection through the evaluation of the small set across eight environments using the three different genetic maps. This small set revealed environment-specific QTL such as Qfhb.spa-3A.1. When we analyzed FHB data collected from additional environments, additional QTL with minor effects, such as Qfhb.spa-6D, were detected when the initial DArT/SSR genetic map was complemented with SNP markers, confirming the findings reported by Charmet (2000) and Buerstmayr et al. (2009).

The Carberry-derived QTL, Qfhb.spa-3B.1, is stable, as it was detected in both sets of the population in all the tested environments with the exception of PLP 2013. The Qfhb.spa-3B.1 genomic region was located in the same interval as Fhb1, previously reported by Cuthbert et al. (2006). The variation observed in the response of the Qfhb.spa-3B.1 to the FHB infection across environments indicates the expression of this QTL is significantly influenced by environmental variations. The greater effect of Qfhb.spa-3B.1 on disease severity compared with its effect on the disease incidence indicates the QTL is useful in preventing the spread and further invasion of the wheat spikes with fungal spores. Fhb1 is the largest-effect resistance QTL in wheat, and its effectiveness in providing resistance to disease severity is frequently reported (Waldron et al., 1999; Anderson et al., 2001; Buerstmayr et al., 2002; Buerstmayr et al., 2003; Cuthbert et al., 2006). Our results provide evidence for consistent transmission and expression of the Fhb1 locus through Carberry as a descendant of Alsen, which is derived from the three-way cross ND674//ND2710/ND688, where the line ND2710 is derived from a cross involving Sumai3 (Bokore et al., 2017).

The present study also showed that the Qfhb.spa-3B.1 was not associated with plant height, which is in agreement with other studies (Buerstmayr et al., 2009; Giancaspro et al., 2016; Prat et al., 2017). The nonassociation of Qfhb.spa-3B.1 QTL with plant height indicates the gene could be introgressed into other lines without affecting plant height. The semi-dwarf and early maturing variety Carberry was the source of the resistance allele for the Qfhb.spa-3B.1, making the selection of short plants possible. The reasons why Carberry was more resistant than late and tall cultivars such as AAC Cadillac could be because Carberry has major-effect QTL that are not associated with days to heading or plant height, such as Qfhb.spa-3B.1 (Fhb1) and Qfhb.spa-5A.1, along with other QTL/genes such as Qfhb.spa-2A.2 and Qfhb.spa-7D. Because of this, Carberry and its derivatives have been used in several crosses to enhance FHB resistance in the Canadian Spring wheat-adapted germplasm. Recently, Prat et al., 2017 successfully validated the introgression of Fhb1 from hexaploid wheat into durum wheat, which resulted in improved FHB resistance. The authors reported that the negative effect of the semi-dwarfing Rht-B1 locus on FHB resistance was largely compensated in lines carrying Fhb1.

The Qfhb.spa-4B has been identified in both the 261 and 775 DH set but showed variable expression on FHB infection, as indicated by the amount of phenotypic variance explained. Qfhb.spa-4B attributed to AC Cadillac coincides with the reduced-height QTL corresponding to the Rht-B1 gene, where the Carberry allele conditioned the short plant height type. The presence of the Rht-B1 gene in Carberry was previously reported by Pandey et al. (2015). Numerous studies have reported increased susceptibility to the FHB disease in short genotypes having the Rht1 gene (Paillard et al., 2004; Steiner et al., 2004, Schmolke et al., 2008; Srinivasachary et al., 2008a, Szabó-Hevér et al., 2014). Miedaner and Voss (2008) studied the effect of dwarfing genes on FHB resistance in two sets of near-isogenic wheat lines, and they found that Rht genes, including Rht-B1d, increased FHB ratings significantly. This is further supported by our current research, in which no QTL for FHB resistance on 4B was identified when we grouped lines carrying the Rht-B1 gene and performed QTL analysis on the two pools. Although resistance might be attributed to disease escape in the tall genotypes, Nicholson et al. (2016) suggested the direct role of plant height hormone gibberellic acid in the resistance of wheat to FHB, supporting the involvement in physiological resistance rather than morphological resistance. This pleiotropic effect of an FHB resistance gene and a plant height gene may exist in some genotypes. In addition, a close linkage between loci conferring FHB resistance and plant height may exist, as suggested by Srinivasachary et al. (2009) and Sari et al. (2018). The low-to-moderate correlations between FHB traits and height were suggestive of an association between height and FHB level, but other factors could also be involved.

The high correlation observed between plant height and FHB incidence compared to the correlation between plant height and FHB severity in the present study suggests that the taller plants escaped the first infection due to the reduced dispersal of ground inoculum to the spike, which agrees with other studies (Mesterhazy, 1995; Hilton et al., 1999). Several studies reported that resistance to FHB severity is less affected by plant height than resistance to FHB incidence (Steiner et al., 2004; Srinivasachary et al., 2008a; Srinivasachary et al., 2008b; Srinivasachary et al., 2009; Lu et al., 2011). Yan et al. (2011) demonstrated that the negative effect of most semi-dwarf alleles, including Rht-B1, on FHB incidence resistance disappeared when semi-dwarf lines that were isogenic for height were physically raised so that their spikes were the same height as those of their taller counterparts. The semi-dwarf gene Rht‐B1b is associated with reduced anther extrusion, leading to an increased FHB incidence (He et al., 2016), and anther extrusion is related to susceptibility (Lu et al., 2013; Buerstmayr and Buerstmayr, 2015; He et al., 2016). Similarly, Lu et al. (2013) reported that FHB severity was negatively correlated with both anther extrusion and plant height in a recombinant inbred line population evaluated in two countries, Norway and China. In a study conducted in Austria, Buerstmayr and Buerstmayr (2016) found that recombinant inbred lines with a low proportion of retained anthers after flowering and tall plants were much less prone to disease, suggesting anther retention is highly associated with FHB susceptibility. Thus, anther extrusion could be used as an indirect selection criterion in resistance breeding.

The Qfhb.spa-5A.1 from Carberry must be a different gene than Qfhb.spa-5A.2 and Qfhb.spa-5A.3 because the source of the latter two QTL is AC Cadillac. The distinctness between the QTL is supported by the results of a BLAST search in the Chinese spring IWGSC RefSeq v1.0 that placed Qfhb.spa-5A.1 at 41.3 Mbp away from the Qfhb.spa-5A.2 and 139 Mbp from Qfhb.spa-5A.3 QTL. Additionally, detecting three QTL associated with FHB resistance on chromosome 5A is not unusual. The literature notes numerous FHB QTL on 5A from several germplasms. The QTL on chromosome 5A derived from Sumai3 (Qfhs.ifa-5A) (Buerstmayr et al., 2002, 2003) is among the frequently studied FHB resistance QTL and is validated either individually or in combination with other QTL (Chen et al., 2006; Chrpova et al., 2011; Bokore et al., 2017; Kang et al., 2011; McCartney et al., 2007; von der Ohe et al., 2010; Salameh et al., 2011; Suzuki et al., 2012; Tamburic-Ilincic, 2012). Qfhs.ifa-5A has recently been fine-mapped and separated into a major QTL that maps across the centromere (Qfhs.ifa-5Ac) and a minor QTL positioned in the distal half of 5AS (Qfhs.ifa-5AS) (Steiner et al., 2019). Fhb5 is another well-documented QTL for FHB resistance on chromosome 5A derived from the Chinese wheat landrace Wangshuibai (Xue et al., 2011). The position of Fhb5 has been further revised to a 0.09-cM interval very close to the centromere that partially overlaps the previously described Qfhs.ifa-5Ac by Steiner et al. (2019), suggesting a common resistance gene for the two FHB QTL. Carberry’s pedigree includes Sumai3, and it appears, based on the location of Qfhb.spa.5A.1 being similar to Qfhs.ifa-5A and Fhb5, that the genomic region controlling FHB resistance from Sumai3 on chromosome 5A has been transmitted to Carberry.

The consistent expression of the Qfhb.spa-5A.1 in both the 261 and 775 DH set with, at times, a strong phenotypic expression with the variance explained ranging up to 16.3% makes it an appealing locus for breeding. Marker Xgwm595 was identified to be associated with Qfhb.spa_5A.1 in the 261 set, while in the 775 DH set, Qfhb.spa_5A.1 mapped between SNP markers BobWhite_c8266_227 and BS00022864_51. In the Wheat Chinese Spring RefSeq. V1.0 genome assembly, Xgwm595 was about 18 Mbp distant from BobWhite_c8266_227, whereas it was 20 Mbp from BS00022864_51. Xgwm595 was reported to be associated with the FHB resistance QTL located on chromosome 5AL in a Renan × Recital winter wheat population (Gervais et al., 2003). The co-location of the Qfhb.spa-5A.1 with the QTL for awnedness in Carberry may suggest the usefulness of the trait as a morphological marker in breeding for FHB resistance. The 5A Carberry’s FHB resistance and awnedness QTL marker, BobWhite_c8266_227, has been reported by MacKay et al. (2014) as a highly diagnostic marker for the morphological trait “awn presence/absence” of the B1 gene for awnedness, indicating the presence of this gene in Carberry. The B1 gene has been used as a physical marker, located distal to the major genes controlling vernalization requirement (VRN-A1) and the spelled head type (Q) on 5AL (Kato et al., 1998). The Q locus has the role of conditioning the threshing habit, and it pleiotropically affects many other important traits such as plant height, spike shape, ear compactness, and glume shape (Faris and Gill, 2002; Simons et al., 2006). He et al. (2016) identified QTL for FDK resistance, tenacity of glumes, and anther extrusion at the Q locus. In our population, it is possible that part of the increased FHB resistance may be due to morphological traits such as awnedness, which agrees with the results reported by Gervais et al. (2003). The linkage between FHB resistance and the B1 gene for awnedness was first reported by Snijders (1990), who stated that the presence of awns and FHB resistance are genetically linked, suggesting awned progenies of a resistant awned parent should be selected to indirectly select for partial resistance to FHB.

That AC Cadillac’s FHB resistance at Qfhb.spa-5A.2 co-located with the days to heading QTL, where the delayed days to heading allele were contributed by AC Cadillac, indicated the possibility of a disease escape attributed to lateness rather than physiological resistance at this QTL. The possibility of passive resistance resulting from disease escape attributed to delayed heading has been reported in several studies (Miedaner et al., 2006; Klahr et al., 2007; Wilde et al., 2007). The other AC Cadillac QTL on chromosome 5A, Qfhb.spa-5A.3, was not associated with days to heading or plant height, suggesting a real allele for FHB resistance was in action. The failure of this QTL to be detected in the 261 set confirms once again the power of increasing population size on the detection of QTL with minor effects.

Despite its minor effect, the Qfhb.spa-2B QTL was consistent across environments for the 775 DH set. A literature review by Buerstmayr et al. (2009) indicated that other studies revealed QTL for FHB resistance on chromosome 2B in several mapping populations, supporting the idea that the QTL effect is real. Chromosome 2B was also reported to harbor several QTL for morphological and developmental traits. The locus Xfbb121-2B mapped on chromosome 2B was reported to be associated with photoperiod response and heading time in the cross Courtot with Chinese Spring (Sourdille et al., 2000). Gervais et al. (2003) reported an overlap of FHB resistance QTL with plant height QTL and flowering date QTL on chromosome 2B in the winter wheat cross Renan by Récital. Furthermore, Gilsinger et al. (2005) reported a QTL for resistance to FHB that shared a position with a narrow flowering opening time on chromosome 2B. The association of a reduced FHB infection with a late heading that was observed in the 775 DH set indicates these two traits are negatively correlated. Studies have shown that the repulsion relationship between days to heading QTL and FHB QTL is likely due to close linkage rather than pleiotropy (Nduulu et al., 2007; Massman et al., 2011). Nevertheless, it may not be difficult to select early heading lines, considering the moderate-to-low correlation coefficients and as evidenced by Carberry being earlier to head than AC Cadillac.

In the 775 DH set, MQM detected two QTL conferring resistance to FHB on chromosome 3A, Qfhb.spa-3A.1 derived from AC Cadillac and Qfhb.spa-3A.2 from Carberry. The first QTL, Qfhb.spa-3A.1, could be considered stable as it is expressed across most environments and associated with resistance to FHB incidence, severity, and index. In contrast, the second QTL, Qfhb.spa-3A.2, could be considered unstable as it only appeared in a single environment associated with FHB severity. Although the relationship with the QTL identified in the current study remains to be unclear, chromosome 3A has been reported to carry FHB resistance in different wheat genotypes of Chinese, South American, and European genetic backgrounds (Gervais et al., 2003; Buerstmayr et al., 2009). The overlap of Qfhb.spa-3A.1 with the heading date and maturity similar to the 4B QTL could indicate that days to heading and maturity contributed to passive resistance as a form of disease escape or that linkages may exist between genes for FHB resistance and days to heading and maturity or, alternatively, from pleiotropic effects among genes. However, weak-to-moderate correlations of days to heading and maturity with FHB resistance suggest that factors other than just days to heading and maturity affect resistance. Despite its inconsistency across environments, Carberry’s QTL Qfhb.spa-3A.2 was independent of any morphological or developmental traits, making it suitable for use in MAS of FHB resistance gene stacking.

The co-location of FHB resistance with days to heading QTL identified on chromosome 4A and maturity QTL on chromosome 7D suggests that in addition to the phenotypic screening for FHB resistance, careful evaluation for morphological and developmental traits must be undertaken. With morphological and developmental traits that have an influence on modulating FHB reaction directly or through linkage with FHB resistance per se, it is very important to break the linkages and select alternate morphological and developmental loci that are independent of resistance that complement pleiotropic resistance loci. For example, if the AC Cadillac’s Qfhb.spa-5A.2 locus identified in the present study is pleiotropic for late maturity and physiological FHB resistance, other loci will need to be selected for early maturity that are unrelated to resistance if earliness is a desirable trait. Consequently, it is important to stratify breeding lines for days to heading and plant height when evaluating them for FHB resistance.

Most of the other minor FHB QTL on 1A, 1B, 2A, 6A, 6B, 7A, and 7B can be assigned to known QTL clusters based on shared markers or map position comparison (Buerstmayr et al., 2009; Liu et al., 2009; Lu et al., 2013). The absence of association of these minor QTL with any of the agro-morphological or developmental traits studied suggests these QTL can be stacked without being affected by any of the agro-morphological traits studied. These QTL should be confirmed through testing in more environments prior to being utilized in marker-assisted selection. In contrast, we identified QTL for days to maturity on each of chromosomes 2B, 4D, and 6B and plant height on chromosome 7D that were not associated with FHB resistance. These loci could be deployed in combination with FHB resistance loci associated with negative effects as a balance to other traits’ effects and achieve new wheat cultivars with an improved level of FHB resistance, desirable plant height, early heading, and maturity.

Several genes annotated using the Chinese Spring wheat genome reference shared common genomic regions with the FHB QTL identified in the current study (Table 8). However, the functionality of the majority of these annotated genes is not known. For example, the function of three putative genes, TraesCSU02G207600, TraesCSU02G044100, and TraesCS3B02G014900, located in the Qfhb.spa-3B.1 region, was not characterized, suggesting further study to understand the relationship of these genes with the Qfhb.spa-3B.1. In the Qfhb.spa-4B region, an NADH dehydrogenase iron–sulfur protein 1 gene, TraesCS4B02G047900, was located. According to Xu et al. (2019), the NADH protein family could decrease DON biosynthesis of F. asiaticum by inhibiting glycolysis and the tricarboxylic acid cycle in wheat. A cyclin-dependent kinase (CDK) inhibitor gene, TraesCS5A02G506500, was located in the Qfhb.spa-5A.1 region. In a study by Hamdoun et al. (2016), the CDK inhibitor played a regulatory defense role against bacterial infection in a model plant, Arabidopsis (Arabidopsis thaliana). Similarly, Cao et al. (2016) reported that CDK could regulate the expression of various genes important for growth, differentiation, and pathogenesis in F. graminearum. In rice, the cyclin-dependent protein kinase inhibitor is differentially expressed in response to powdery mildew disease (Marone et al., 2013). A cytochrome c-type biogenesis protein, TraesCS5A02G495300, was found in the Qfhb.spa-5A.2 region. Cytochrome c-type biogenesis protein has been reported to protect black rot disease caused by phytopathogenic Xanthomonas campestris pv. campestris from cruciferous crops (Chen et al., 2017); however, the effect of the gene on FHB requires further research. Two proteins, diacylglycerol kinase and alpha-galactosidase, were located near the FHB QTL Qfhb.spa-6A. The role of diacylglycerol kinase (DGK) in biotic stress resistance, including FHB has been reported in different studies (Ding et al., 2011; Kage et al., 2017). In conclusion, the main purpose of our study was to identify and map QTL conferring resistance to FHB and investigate the relationship between the identified FHB QTL and morphological and developmental traits. A smaller set of the Carberry/AC Cadillac DH population comprising 261 lines was initially developed that was selected for reduced height and maturity and used to map FHB QTL using DArT and SSR markers. With the advent of next-generation sequencing technology, a larger number of SNP markers became available. The original population of 811 lines was subsequently phenotyped, and 775 lines were genotyped with the Illumina iSelect 90K wheat chip to generate a map with a total of 6,806 SNP markers. QTL mapping benefited from the high-density SNP map with the identification of QTL at higher precision and resolution. Despite the inherently variable environment for field evaluation of FHB reaction, stable QTL that varied in the consistency of phenotypic contribution were identified over the environments. The level of resolution provided by the larger mapping population allowed the detection of additional QTL with a minor effect. We detected a large effect of the FHB resistance QTL on chromosomes 3B, 4B, and 5A in both sets of the population, along with many other minor effect loci. FHB resistance QTL was co-localized with plant height QTL on chromosomes 4B, 6D, and 7D; days to heading on 2B, 3A, 4A, 4B, and 5A; and maturity on 3A, 4B, and 7D, with some of the associations found to be undesirable in trait improvement. However, the development of FHB-resistant cultivars is achievable with desirable plant height, days to heading, or maturity by selecting desirable morphological and developmental traits based on the loci that are not associated with FHB resistance identified in our study. The SNP markers associated with the QTL identified can be converted to KASP markers and used for MAS to improve FHB resistance through gene stacking.
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The agricultural traits that constitute basic plant breeding information are usually quantitative or complex in nature. This quantitative and complex combination of traits complicates the process of selection in breeding. This study examined the potential of genome-wide association studies (GWAS) and genomewide selection (GS) for breeding ten agricultural traits by using genome-wide SNPs. As a first step, a trait-associated candidate marker was identified by GWAS using a genetically diverse 567 Korean (K)-wheat core collection. The accessions were genotyped using an Axiom® 35K wheat DNA chip, and ten agricultural traits were determined (awn color, awn length, culm color, culm length, ear color, ear length, days to heading, days to maturity, leaf length, and leaf width). It is essential to sustain global wheat production by utilizing accessions in wheat breeding. Among the traits associated with awn color and ear color that showed a high positive correlation, a SNP located on chr1B was significantly associated with both traits. Next, GS evaluated the prediction accuracy using six predictive models (G-BLUP, LASSO, BayseA, reproducing kernel Hilbert space, support vector machine (SVM), and random forest) and various training populations (TPs). With the exception of the SVM, all statistical models demonstrated a prediction accuracy of 0.4 or better. For the optimization of the TP, the number of TPs was randomly selected (10%, 30%, 50% and 70%) or divided into three subgroups (CC-sub 1, CC-sub 2 and CC-sub 3) based on the subpopulation structure. Based on subgroup-based TPs, better prediction accuracy was found for awn color, culm color, culm length, ear color, ear length, and leaf width. A variety of Korean wheat cultivars were used for validation to evaluate the prediction ability of populations. Seven out of ten cultivars showed phenotype-consistent results based on genomics-evaluated breeding values (GEBVs) calculated by the reproducing kernel Hilbert space (RKHS) predictive model. Our research provides a basis for improving complex traits in wheat breeding programs through genomics assisted breeding. The results of our research can be used as a basis for improving wheat breeding programs by using genomics-assisted breeding.
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1 Introduction

Common wheat (Triticum aestivum L.) is a major staple food crop widely cultivated in many parts of the world. Genetic improvements are urgently required in wheat in order to achieve better quality, higher yields, better adaptation to diverse environments, tolerance to biotic stresses and to meet the needs of a growing population as well as the effects of global climate change (Atlin et al., 2017). It is essential to sustain global wheat production by utilizing accessions in wheat breeding. It is, therefore, fundamental to sustaining global wheat production. The establishment of a core collection or a mini core collection (mini CC) representing the entire genetic diversity of wheat and its relatives in order to find accessions with desirable traits to engineer new varieties, is useful for breeding purposes (Frankel, 1984; van Hintum et al., 2000; Worland, 2001; Zhang et al., 2011; Kumar et al., 2020). In particular, there is a tremendous lack of genome-wide genotypic information due to the wheat genome’s characteristics. There is a large genome in wheat with a size of approximately 16 Gb and has been assembled into 14.5 Gb (Arumuganathan and Earle, 1991; IWGSC et al., 2018). It is an allohexaploid with three homoeologous genomes (2n = 6x = 42, genome formula AABBDD) originating from three ancestral parental species(Sorrells et al., 2003; Gill et al., 2004). The large size and polyploidy-related complexity of wheat collections made genomic analyses difficult to detect the genome-wide molecular diversity of each accession and to determine the population structure of wheat collections (IWGSC et al., 2018).

In spite of this, advances in next-generation sequencing technology are providing a variety of resources for wheat breeding, including high-quality genomic data (IWGSC et al., 2018). A number of high-throughput single nucleotide polymorphisms (SNPs) arrays have been developed and utilized in wheat, including 9K (Cavanagh et al., 2013), 50K (Rasheed and Xia, 2019), 820K (Winfield et al., 2016), 660K (Sun et al., 2020), and 35K (Allen et al., 2017). Detailed information about different arrays has been discussed in previous papers(Bassi et al., 2016; Sun et al., 2020). These SNP arrays were used for genomic-wide association studies (GWAS) and genomic selection (GS) in the United States elite wheat breeding genotype, the International Maize and Wheat Improvement Center (CIMMYT) spring wheat breeding program, and European winter, and spring wheat(Wang et al., 2014; Jin et al., 2016; Winfield et al., 2016; Cui et al., 2017; Rasheed and Xia, 2019; Yang et al., 2019). Marker-associated selection (MAS) is conducted using the SNP data obtained through genotyping-by-sequencing and SNP arrays(Hayashi et al., 2004; Uauy, 2017; Li et al., 2018). It is possible through GWAS to identify individuals associated with a target trait by finding specific markers associated with that trait (Visscher et al., 2017; Uffelmann et al., 2021). GWAS was successfully used for quantitative trait loci (QTL) mapping of wheat properties, such as stress resilience, disease resistance, flowering time and grain yield, using various molecular marker systems (Crossa et al., 2007; Bentley et al., 2014; Bhatta et al., 2018). Although many agricultural traits have been studied extensively and their markers identified, other traits, such as the awn traits that could be used to improve wheat grain yields, have rarely been studied (Goddard, 2009; Sukumaran et al., 2018; Sheoran et al., 2019; Krishnappa et al., 2021).

GS is a new MAS form that offers efficiency gains over phenotypic selection or conventional MAS. A MAS is an indirect selection process in which individuals are selected according to a trait of interest(Fernando and Grossman, 1989). However, MAS is only practical when a given trait is governed by a single gene or a small number of genes, whereas such an approach would be difficult or irrelevant for quantitative traits (i.e., traits governed by tens or hundreds of minor genes)(Bernardo, 2008). In terms of short and long-term responses, GS was reported to obtain more considerable gains from selection than MAS based on only a few significant markers. As part of the GS process, a training population (TP) of relevant individuals is developed, which is a population that consists of individual genotypes and phenotypes. Based on this information, it is possible to develop a model that uses phenotypes as responses and genotypes as predictors, based on the effects of dense markers distributed across the genome on the net genetic merit of an individual. An estimated individual effect of each marker is estimated, and the additive sum of all the markers effects is used to calculate each individual’s genomic-estimated breeding value (GEBV)(Meuwissen et al., 2001). Further, genomic selection has the potential to increase gain per unit of cost due to recent advances in genotyping that enable thousands of marker data points to be generated more economically and rapidly than was previously possible (Lorenz et al., 2012). At the same time, phenotyping remains time and labor-intensive. GS was extensively studied in animal breeding to accelerate the rate of gain for quantitative traits, and it is becoming more widely adopted in plant breeding. The accuracy of GS prediction is determined by the correlation between GEBV and trait phenotype(Wolc et al., 2011). In wheat, GS was assessed for breeding important quantitative traits such as grain yield, quality traits such as flour yield, flour protein, solvent retention capacity for sucrose, lactic acid, water absorption, sodium carbonate, and softness equivalent, as well as resistance to Fusarium head blight (FHB) and stem rust (Heffner et al., 2011a; Heffner et al., 2011b; Rutkoski et al., 2015; Arruda et al., 2016; Guzman et al., 2016).

The purpose of this study is to conduct two genomics-assisted breeding approaches (GWAS, GS) with the K-wheat core collection (CC) with genetic diversity for ten agricultural traits. In the first step, a mini core collection (miniCC) was constructed based on SNP markers across the Kwheat genome. We then used the miniCC to identify trait-associated markers using the fixed and random model circulating probability unification (FarmCPU). The third step involved evaluating the prediction accuracy with the CC using various compartmentalized training sets and statistical models. This study will serve as a foundation for the development of improved wheat varieties that are more efficient than conventional breeding methods.




2 Materials and methods



2.1 Plant materials

The K-wheat core collection (CC) reported in previous studies was used as a training population for this study (Min et al., 2021). The CC consists of accessions collected worldwide and stored in National Agrobiodiversity Center (http://genebank.rda.go.kr/). Based on 37 simple-sequence repeat (SSR) markers, this CC includes 567 accessions from 49 countries. (Figure 1; Supplementary 1).




Figure 1 | 567 accessions of K-wheat core collection used in this study and country of origin.






2.2 Genotyping and built of K-wheat mini-core collection

Since the CC was established based only on 37 SSRs (Balfourier et al., 2007), it cannot scan the entire genome of wheat. Therefore, the CC genotype was further determined with the Axiom® 35k breeders SNP array (Affymetrix, CA, USA) (Allen et al., 2017) to screen the entire genome and re-analyze subpopulation structure. Genotyping was performed on an Affymetrix GeneTitan system following Affymetrix’s manual (Axiom® 2.0 Assay Manual Workflow User Guide Rev3). SNP callings were performed using modified versions of Affymetrix Power Tools (APT) and SNPolisher™(Affymetrix, CA, USA) to account for the wheat genome’s specificity. Genotype scoring was performed in Affymetrix Genotyping Console using recommended QC metrics (0.82 DQC, 97 QC call rate) (Przewieslik-Allen et al., 2021). Among 35,143 SNPs, SNPs with a minor allele frequency (MAF) of 5% or less were removed.

Genocore (Jeong et al., 2017) and CoreHunter (Thachuk et al., 2009) programs were used to select the K-wheat mini CC based on the whole genome SNPs. Genocore selected subsets using -d 0.001 and -cv 200 parameters. Core Hunter selected subsets using default options.




2.3 Population structure analysis

STRUCTURE 3.4.0 software (Pritchard et al., 2010) was used to analyze population structure. There were 50,000 burn-in iterations, followed by 100,000 Markov Chain Monte Carlo (MCMC) iterations after a burn-in of each run. The hypothetical number of subpopulations (k) was preset from 2 to 9. STRUCTURE HARVESTER (Earl, 2012) was used to identify the best k. SNPs were considered for phylogenetic analysis using the SNPhylo pipeline to generate phylogenetic trees by the maximum likelihood method (Lee et al., 2014). Multivariate analysis was performed using the principal component analysis (PCA) of the three components of Tassel v.5.2.5 (Bradbury et al., 2007). The PCA was constructed based on individual eigenvectors. PCA plots were classified according to subgroups of the population structure analysis.




2.4 Phenotype and statistical analysis

Agricultural traits of 567 accessions were measured at the National Institute of Crop Science research field (35° 49’ 48.235”N, 127° 2’ 27.183”E). Ten agricultural traits were measured from 2018 to 2019, and the accumulated data was quantified for each trait. Agricultural traits were: awn color (AC), awn length (AL), culm color (CCL), culm length (CL), ear color (EC), ear length (EL), leaf length (LL), leaf width (LW), days to heading (HD), and days to maturity (MD).

The bar plot depicts the phenotypic data distribution for all ten traits. Correlation analyses between phenotypes were performed using Pearson correlation coefficients of mini-tab 16.2.4 software (Minitab, 2021). The phenotype data used for association analysis was calculated by best linear unbiased prediction (BLUP) using the phenotype package of the R program (Piepho et al., 2008).




2.5 Association analysis

Association analysis was performed using the FarmCPU method in the Genome Association and Prediction Integrated Tool (GAPIT) R package (Lipka et al., 2012). A false discovery rate (FDR) threshold adjusted -log10 P > 3 was used to state significant marker-trait associations. Significant SNPs were annotated using Variant Effect Predictor of Ensembl-plants.

In order to find each trait-associated candidate gene, a gene region of up- and down-stream of 500 kb flanking sequences was secured in a significant SNP. For the flanking sequences of significant SNPs, the Basic Local Alignment Search Tool (BLASTx) analysis was performed using the National Center for Biotechnology Information’s (NCBI) nr protein database (confined to Viridiplantae) as a subject (https://www.ncbi.nlm.nih.gov/genbank/).




2.6 Prediction model for genomic selection

The prediction ability of Bayes A, ridge regression (equivalent to G-BLUP), least absolute shrinkage and selection operator (LASSO), random forest regression (RF), support vector machine (SVM), and reproducing kernel Hilbert space (RKHS) models widely used in various crops were evaluated and comparatively analyzed. All models are embedded in the R package Breed Wheat Genomic Selection Pipeline (BWGS) (Charmet et al., 2020). Bayes A uses a scaled-t prior distribution of marker effects (Neal, 2012), and genomic best linear unbiased prediction (GBLUP) uses a marker-based relationship matrix (Endelman, 2011). LASSO is a penalized regression method. RF uses a regression model on tree nodes based on bootstrapping data and assumes that interactions between markers can be captured (Breiman, 2001). RKHS is based on genetic distance and kernel function to control the distribution of marker effects and is effective in detecting non-additive effects (Pérez and de Los Campos, 2014). For all those models, ten-fold cross-validation was used to test the credibility of GEBV values.

In order to confirm the prediction ability according to the TP, the accessions included in the CC were divided into randomly selected subgroups or subgroups based on genetic backgrounds. First, the randomly selected subgroups were repeated ten times by selecting as many individuals as 10% (56 accessions), 30% (170 accessions), 50% (284 accessions), 70% (397 accessions), and 100% (567 accessions) of the CC. In order to see the differences according to the genetic backgrounds, three subgroups divided based on the results of the population structure analysis were used as training populations.




2.7 Validation of prediction models

Thirty-five Korean wheat cultivars were used to verify the estimated prediction accuracy. The genotype data of the breeding population was obtained with an Axiom® 35k breeders SNP array. The phenotype data were measured by the NICS (35° 49’ 48.235”N, 127° 2’ 27.183”E) from 2018 to 2019. The prediction ability was verified through correlation analysis between the GEBV and the measured values of the breeding population. The bwgs.predict, the function of the R package BWGS, was used for verification.





3 Results



3.1 Construction of a K-wheat mini-core collection

SNP genotyping for 576 accessions included in the CC constructed using SSR markers was performed using the Axiom® 35k breeders SNP array (Affymetrix, CA, USA) to construct the K-wheat mini CC and to re-analyze subpopulation structures. Since the original CC was constructed based on 37 SSR markers, the ability to scan the entire genome would be weak. Instead, the mini CC may enhance the power of predictive breeding because the 35k SNP array may efficiently cover the whole genome of bread wheat. Since SNP calling was not made in nine out of 576 accessions, the SNP data of 567 accessions was used for downstream analyses. A total of 35,153 SNPs were obtained through a 35K wheat DNA array. Across all the wheat chromosomes, an average of approximately 1,597 SNPs were identified in each chromosome. In terms of SNP distribution by chromosome, the 4D chromosome had the smallest number (828), and the 2D chromosome had the largest number (2,156). When filtering based on the MAF of 0.05, 27,598 SNPs were determined. Even after filtering, the 4D chromosome had the smallest number of SNPs, and the 2D chromosome had the largest (Figure 2). 4D chromosome had smallest number because it has the lowest number of genes and probes.




Figure 2 | (A) SNP distribution by chromosome. (B) SNP distribution by subgenomes.



Two software packages, Core Hunter and Genocore, were used to establish the mini CC, resulting in 113 and 216 accessions, respectively. Among them, 82 accessions were selected by both programs. Therefore, the mini CC consisting of 247 accessions was finally determined (Supplementary Table 1).




3.2 Genetic diversity and population structure

Population structure and phylogeny tree analysis were performed to investigate the genetic diversity of the CC with SNPs. The number of subgroups in the CC was determined by model-based structure analysis with model parameters k from 2 to 9 (Supplementary Figure 1). The maximum likelihood values of the CC showed a typical curvilinear response to increasing k, such that k = 3 was defined to provide the optimal structure for further analysis (Supplementary Figure 1A). CC-sub 1 comprised 125 accessions with the genetic diversity index of 0.405 based on the fixation index (Fst). CC-sub 2 comprised 269 accessions with the genetic diversity index of 0.397, and CC-sub 3 comprised 173 accessions with the genetic diversity index of 0.41. A phylogeny tree was built using the common SNPs markers of CC to better detail the kinship among the accessions. The phylogeny tree of the CC showed two main clusters with a robust separation between them (Supplementary Figure 1B). Within each cluster, accessions were mainly grouped in agreement with the groups obtained previously by the population structure analysis. However, the three subgroups were mixed without forming a cluster when the PCA analysis results were divided by the population structure (Supplementary Figure 1C).

For the mini CC, Evanno test showed 6 clusters with K=6. (Figure 3A). However, there was no significant difference in the value in one cluster among the six clusters. Therefore, they were not differentiated into distinct groups and were divided into five groups. Mini CC-sub 1 comprised 104 accessions with the genetic diversity of 0.411 based on the fixation index (Fst). Mini CC-sub 2 consisted of seven accessions with the genetic diversity index of 0.389, and mini CC-sub 3 comprised 82 accessions with the genetic diversity index of 0.371. Mini CC-sub 4 consisted of 49 accessions with the genetic diversity index of 0.399, and mini CC-sub 5 consisted of five accessions with the genetic diversity index of 0.383. The phylogeny tree of the mini CC showed three main clusters with a robust separation from each other (Figure 3B). Within each cluster, accessions were mainly grouped in agreement with the groups obtained previously by the population structure analysis. The PCA analysis clearly distinguished three subgroups (mini-subs 1, 3, and 4) (Figure 3C).




Figure 3 | Population structure analysis of K-wheat mini-core collection using SNP markers. (A) Results of Evanno test and population structure of the mini-core collection. (B) Principal component analysis (PCA) of a mini-core collection based on SNP markers. Based on the subpopulation structures, the red, yellow, green, blue, and purple dots represent mini-sub 1, mini-sub 2, mini-sub 3, mini-sub 4, and mini-sub 5, respectively. (C) Molecular phylogenetic analysis by Maximum Likelihood method using the mini-core collection. Phylogenetic analysis was inferred by the Maximum Likelihood method based on the Tamura-Nei model. Phylogeny tree analyses were conducted by MEGA7 (Kumar et al., 2016). Based on the subpopulation structures, the red, yellow, green, blue, and purple lines indicate mini-sub 1, 2, 3, 4, and 5, respectively.






3.3 Correlation analysis of phenotype

The frequency distribution of ten agricultural phenotypic data of 567 accessions included in the CCL is shown in Figure 4A. As a result of correlation analysis between each trait by Pearson correlation coefficient analysis (Figure 4B), a significant and strong positive correlation (0.913) was found between EC and AC. There was also a significant strong positive correlation (0.8854) between HD and MD. In addition, weak positive correlations between many traits were observed. For the LW example, a weak negative correlation was observed with the AC, AL, CCL, CL, and EC traits (-0.1 ~ -0.039).




Figure 4 | Correlation analysis and frequency distribution of the phenotypes in the K-wheat core collection. AC, awn color; AL, awn length; CCL, culm color; CL, culm length; EC, ear color; EL, ear length; LL, leaf length; LW, leaf width; HD, days to heading; MD, days to maturity. (A) It means the distribution of phenotypes of all accessions. (B) Shows the correlation of each phenotype. All correlation analyzes are expressed as Pearson's correlation coefficient.






3.4 Marker-trait association analysis

Marker-trait association (MTA) of ten traits was conducted using FarmCPU models (Figure 5). The SNPs with FDR adjusted -log10(P) > 3 were designated as significant. Significant SNPs detected for each trait using the FarmCPU model are detailed in Table 1. A total of 18 significant SNPs were identified for eight traits. For the AC trait, one significantly associated SNPs were distributed in chr1B. For the AL trait, two significant SNPs were identified in chr4D and chr2D, and four significant SNPs were identified in four chromosomes for the CCL trait. Two significant SNPs were identified for the CL trait in chr1B and chr2D. For the EC trait, two significant SNPs were detected in chr1B and chr2D. For the HD trait, one significant SNP was detected in chr3D, and six SNPs were detected in six chromosomes for the MD trait. SNP AX-94454667, located in chr1B, was identified in both AC and EC traits. The differences in the phenotypes of individuals according to the alleles of the identified significant SNP markers were confirmed. In the case of AC, the average phenotypic value of accessions with the A allele was 2.27, ranging from yellow to yellow-brown, whereas the average phenotypic value of accessions with the C allele was 4.47, ranging from brown to reddish-brown. In the MTA results of AL, the mean phenotypic value of accessions with the T allele of SNP AX-94613491 was 5.9 cm, while that of accessions with the C allele was 3.1 cm. Based on the relationships between the phenotypic values and alleles listed above, one can select a wheat plant with about 2.8 cm of awn length. It could have an A allele in the designated locus. Likewise, the mean phenotypic value of accessions with the A allele of SNP AX-94937575 was 5.43 cm, while that of accessions with the G allele was 4.9 cm. Accessions with the T allele of SNP AX-94613491 and the A allele of AX-94937575 had an average length of 6.41 cm. Accessions with the T allele of SNP AX-94613491 and the G allele of AX-94937575 had an average length of 5.7 cm. Accessions with the C allele of SNP AX-94613491 and the A allele of AX-94937575 had an average length of 3.02 cm. Accessions with the C allele of SNP AX-94613491 and the G allele of AX-94937575 had an average length of 3.55 cm. Therefore, the allele of SNP AX-94613491 is more likely to be related to length than SNP AX-94937575. In the MTA results of CL, the mean length of accessions with the A allele of SNP AX-94638909 was 90 cm, whereas the mean length of accessions with the G allele was 61 cm. In the MTA results of ear color, the average phenotypic value of accessions with the A allele was 1.79, ranging from yellow-white to yellow. In contrast, the average phenotypic value of accessions with the C allele was 4.5, ranging from brown to reddish-brown. In the MTA results of days to heading, accessions with the A allele of SNP AX-94881841 had an average of 19 days, and those with the G allele had an average of 21. The information can be utilized for developing selection markers for wheat breeding programs.




Figure 5 | Q-Q plots and Manhattan plots of genome-wide association study (GWAS) for ten agronomic traits of the K-wheat mini-core collection. The x-axis represents the wheat chromosomes, and the y-axis indicates statistical significance according to -log10 (p-value). AC, awn color; AL, awn length; CCL, culm color; CL, culm length; EC, ear color; LW, leaf width; HD, days to heading; MD, days to maturity.




Table 1 | Significant SNPs identified for 8 agricultural traits of mini-core collection.






3.5 Identification of putative candidate genes

Candidate genes were identified for the significant SNPs associated with eight traits (Table 1). SNP AX-94454667 was associated with the AC trait and the EC trait was marked with cytochrome P450. One significant SNP of unknown function was additionally identified in the ear color trait. In the significant SNP of the culm color trait, the potassium channel kat2 gene was annotated, and in the culm length, the amp gene and glb3 gene were annotated. As for the leaf width, the NAC domain-containing protein involved in growth and development was identified. For significant SNPs related to the days to maturity trait, the pp1 gene and the tet gene were annotated. All the genes were somehow related to traits, which will be discussed further in the next section.




3.6 Heritability of ten agricultural trait

The narrow-sense heritabilities (H2) of ten agricultural traits used for genomic selection are shown in Table 2. The heritability of the traits measured in the CCL ranged from 0.004 to 0.8. The highest heritability estimates were for HD (0.8), while the heritabilities of EC and CL were low (less than 0.1).


Table 2 | Variance components and heritability of 10 agronomic traits in 567 core collection.






3.7 Prediction accuracy comparison

To compare the prediction accuracy of each model, we compared six models commonly used in the GS procedure (Figure 6). The entire CC was used as an initial TP to calculate the prediction accuracy. The SVM model showed the lowest prediction accuracy for all traits, and RF confirmed the best prediction accuracy for all traits. For the culm color trait, the prediction accuracy of less than 0.4 was determined. The prediction accuracy of 0.4 or more was determined for the other nine traits except for the SVM model.




Figure 6 | Comparison of prediction accuracy according to different predictive models. The y-axis is the prediction accuracy, and the x-axis is each model. The entire K-wheat core collection was used as a training population. AC, awn color; AL, awn length; CCL, culm color; CL, culm length; EC, ear color; LW, leaf width; HD, days to heading; MD, days to maturity.



In order to compare the prediction accuracy according to the composition of the TPs, eight TP sets were constructed (Figure 7). It was divided into five TP types (RD10, RD30, RD50, RD70, RD100) by randomly selected accessions based on the proportions of the entire CC and three TP types (CC-sub1, CC-sub2, CC-sub3) according to the subpopulation structure divided by the genetic background. When the TP was randomly selected from all traits, prediction accuracies increased as the size increased. However, in the subgroup based on the population structure, CC-sub2 had the largest number of accessions (269), but it did not always show the best prediction accuracy. The AC, CCL, and EC traits had the highest prediction accuracy in CC-sub 3. In particular, the prediction accuracy of CC-sub 2 was 0.87 for the AC, and the accuracy of CC-sub 3 was 0.89 for the EC. For the AC, EC, HD, and MD traits, the prediction accuracy was above 0.6 using any TP. The AL, LL, and EL traits had similar patterns of prediction accuracy in most TPs.




Figure 7 | Comparison of prediction accuracy according to compartmentalized training populations. The y-axis is the prediction accuracy, and the x-axis is each training population. The predictive model used for this analyses is RF. AC, awn color; AL, awn length; CCL, culm color; CL, culm length; EC, ear color; LW, leaf width; HD, days to heading; MD, days to maturity.






3.8 Validation of breeding populations

A further validation was conducted to confirm the predictive ability of the TP of the CC. Thirty-five Korean wheat cultivars with HD data were used as a validation population (VP). The prediction ability was determined by correlating GEBVs with phenotypic data, which is an actual observed value. For the TP for verification, the case where the whole CC was used as a TP and three subgroups based on the subpopulation structure were used. The prediction ability of CC-sub 3 was the highest. A comparison between the models confirmed the prediction ability of 0.49, 0.52, and 0.47 in GBLUP, RKHS, and RF, respectively (Figure 8). As a result of using 4 TPs, CC-sub 3 TP had the highest prediction ability. Next, when the CC was used as the TP, the prediction ability of 0.4 was confirmed for the GBLUP and Bayes models.




Figure 8 | Prediction ability of validation population for days to heading. The predictive ability of six predictive models was verified using four TPs. The X-axis means the prediction model, and the y-axis means the predictive ability confirmed through the comparison between GEBV and BLUP. The black line indicates CC, the red dotted line indicates CC-sub1, the green dotted line indicates CC-sub2, and the blue dotted line indicates CC-sub3.



The GEBV of the RKHS model to CC-sub 3, with the highest prediction accuracy, and BLUP of the actual phenotype were compared (Table 3). The 20 cultivars shown in Table 3 were selected based on GEBVs. Of the ten individuals presumed to have early HD based on the GS procedure, seven individuals were identified as having an early HD per actual phenotypic data. Seven of the ten individuals presumed to have late HD were identified as having a late HD in the actual phenotype. The validation process indicated that the GS was very efficient in selecting desired individuals for breeding with the HD trait


Table 3 | Comparison of BLUP and GEBV in breeding population.







4 Discussion

Wheat is a major crop, and various varieties are grown in many countries. Breeding requires the development of varieties with characteristics that breeders value as necessary, such as increased grain yield, adaptation to climate change, and disease resistance. The first step in developing these breeds is to secure diverse individuals. Wheat diversity panels, such as core collections, were developed to understand populations’ genetics and structure. A variety of phenotypic variations offered by those panels could be used as breeding resources to develop markers or be directly applied for conventional selective breeding. Recently, various populations with phenotypic variations have been used for predictive breeding with advanced statistical models and computational resources to deal with big genomic data.

According to the Balfourier et al. (Balfourier et al., 2007), a core collection of global bread wheat was built using 38 SSR markers from 3,942 accessions collected from 73 countries. The National Institute of Agrobiological Sciences (NIAS), Japan wheat core collection was created using GBS-based SNPs, but this was limited to varieties in Japan (Takeya et al., 2013). In the current study, 567 core collections generated using 37 SSR markers from the previous studies were reconstructed by genotyping with the Axiom® 35k breeders SNP array (Affymetrix, CA, USA) for the SNPs to cover the entire wheat chromosomes, building the K-wheat mini CC with 247 accessions. A CC corresponds to about 30% of the total, and a mini CC to about 12% of the total. When the CC and the mini CC were divided by geographic origins, it was confirmed that they were composed of a certain percentage (Supplementary Table 2). Accessions originating from the African continent accounted for about 5% of the CC and mini CC, and accessions from Asia accounted for about 37–39%. Accessions from Europe accounted for 16–18%, South America for 17–19%, and North America for 8–12%.

To obtain useful information about the genetic diversity and population structure of the CC and mini CC, we divided them into three and six subgroups based on the population structure analysis (Supplementary Figure 1; Figure 3). The PCA and phylogeny trees of the mini CC were clustered similarly to the subpopulations identified in the population structure analysis. Accessions originating from Korea tended to cluster in Asian countries, including Japan, America, and the majority. Accessions from China tended to be clustered into individual groups. Accessions from Europe tended to be clustered into subgroups. Even in similar regions, there are differences among varieties according to breeding programs for improvement. Therefore, the exchange and utilization of diverse accessions worldwide effectively expanded the genetic basis of wheat breeding (Yang et al., 2020). It is costly and time-consuming to describe agricultural traits or quality characteristics with large-scale wheat accessions due to duplications in terms of their genetic backgrounds. This occurs because some traits or characteristics are present in more than one wheat accession, making the process of describing each one individually produce considerable redundancy in terms of the data collected. In addition, it is difficult to accurately compare the traits of different accessions when their genetic backgrounds are similar. The miniCC was constructed based on SNP markers across Korean wheat. Genetic diversity revealed six subgroups and one admixture group (k=6), which is less than the K-wheat core collection (k=7). The miniCC does not appear to have covered the genetic background of the accessions in the same manner as the K-wheat core collection. As a result, the traits of the accessions in the miniCC may require further investigation in comparison to those of the accessions in the core collection of K-wheat. However, miniCCs with decent genetic diversity can facilitate the identification of trait-related markers or individuals through GWAS since A mini core collection (miniCC) is a smaller, more manageable collection of plant genetic resources that are representative of a larger collection.

We obtained phenotypic data of ten agronomically important traits. First, association analysis using the FarmCPU model was conducted, resulting in 19 SNPs significantly associated with those traits. Significant SNPs associated with traits were selected based on -log 10 P > 3. The Bonferroni correction and FDR correction to avoid false positive or false negative results are very strict. Therefore, it is difficult to select complex traits and quantitative traits based on the existing P-value threshold of 5 × 10-8.However, candidate SNPs estimated to be significant in our study require additional validation (Gao et al., 2016). A high positive correlation of 0.913 was shown for the awn color and ear color traits, and in the GWAS results, one significant SNP located on chromosome 1B was shared. SNP AX-94454667, shared by the awn color and ear color traits, was annotated as cytochrome P450, which plays an important role in the biosynthesis of flavonoids and anthocyanins, colored compounds of flavonoids (Tanaka and Brugliera, 2013). Culm length is annotated with the amp gene, a disease resistance-related gene that plays an important role in the immune system, and the glb gene, which is involved in growth development and stress response by participating in plant oxygen supply. In days to maturity, the pp1 gene (Máthé et al., 2019) and tet gene (Reimann et al., 2017) involved in plant development, environment, and stress signaling pathways were identified. Significant SNP identified in leaf width was annotated with the NAC gene family, one of the strongest transcription factor families involved in various processes such as development, aging, and response to environmental stress (Olsen et al., 2005). The significant SNPs associated with days to heading were annotated as the agc gene involved in response to environmental stress and immunoregulation (Máthé et al., 2019). In most traits, gene families involved in plant hormones, growth development, and stress response were annotated.

Significant differences in phenotypes according to alleles of SNPs were confirmed. Accessions with the A allele of SNP AX-94454667 had yellow-white to yellow in awn color and ear color. It was confirmed that accessions with the C allele ranged from brown to reddish-brown in both traits. In days to heading, it was confirmed that accessions with the A allele of SNP AX-94881841 were about nine days earlier. The awn length confirmed that the subjects with the T allele of SNP AX-94613491 were 2 cm longer on average. We identified significant SNPs associated with eight previously unknown agronomic traits. However, further studies are needed to validate the markers detected in this study using other populations and environments.

Several researchers have reported genomic selection studies in wheat, but most have used advanced or preliminary breeding lines as a TP (Zhang et al., 2022). However, it was reported that GS successfully used the CC in other crops, such as pepper (Hong et al., 2020). In genomic selection, prediction accuracy is affected by various factors, such as assumptions of prediction methods, markers, and training populations. Therefore, we investigated various genomic prediction methods through 10-fold cross-validation. Although there were differences between traits depending on the predictive model, RF showed consistently good prediction accuracy across all traits. The average culm length prediction accuracy was lower than that of other traits, indicating that the genetic structure of the locus is different from other traits. In particular, awn color-ear color and days to heading-days to maturity, which are highly correlated characteristics, showed similar patterns of prediction accuracy. It is consistent with the results of previous studies showing similar patterns among highly correlated traits (Hong et al., 2020). Reports show that heritability is one factor that significantly influences GS (Desta and Ortiz, 2014). However, our study did not show a correlation between prediction accuracy and heritability. HD (0.81) showed a high prediction accuracy but also had a prediction accuracy of 0.6 or higher for most other traits with low heritability. Therefore, this study did not identify a reliable correlation between prediction accuracy and heritability.

Next, the prediction accuracy according to TPs was investigated. It is known that prediction accuracy increases with a large number of training populations. However, it was reported that the genetic diversity of the training population affects prediction accuracy (Edwards et al., 2019). Therefore, when using as diverse training populations, we evaluated the prediction accuracy of clustered accessions according to the population structure. In all traits, it was confirmed that the prediction accuracy increased as the size increased. However, subgroups based on population structure, irrespective of their number, showed different prediction accuracies for all traits. Also, traits that showed a high positive correlation between phenotypes showed a similar pattern in prediction accuracy according to the training population.

Finally, verification was conducted to determine whether the CC’s GS model applied to the validation population. Validation was performed only for the days to heading trait. As a result of applying the validation population consisting of 35 breeding lines to six models, it was possible to confirm the prediction ability of 0.4 or more in the CC-sub 3 training population. Based on the results from previous studies that a prediction accuracy greater than 0.3 would be sufficient to apply genomic selection (Heffner et al., 2011b), our study showed the potential for genomic selection in wheat breeding. The results can potentially provide new molecular marker information associated with those traits based on allelic differences with opposite phenotypes. The maker information obtained from this study should be validated for other breeding populations.





Data availability statement

The data presented in the study are deposited in the European Nucleotide Archive repository, accession number PRJEB60428 https://www.ebi.ac.uk/ena/browser/view/PRJEB60428.





Author contributions

Conceptualization, YK and CK; methodology, YK, KM, JK, and C.K.; software, YK; validation, YK, CC, and CK; formal analysis, YK; investigation, KM, JK, and CC: resources, JK, KM,and CC; data curation, YK; writing—original draft preparation, YK; writing—review and editing, YK and CK; visualization, YK; project administration, CK. All authors contributed to the article and approved the submitted version.





Funding

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Digital Breeding Transformation Technology Project, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (322076-03-1-HD020).





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1112297/full#supplementary-material




References

 Allen, A. M., Winfield, M. O., Burridge, A. J., Downie, R. C., Benbow, H. R., Barker, G. L., et al. (2017). Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol. J. 15 (3), 390–401. doi: 10.1111/pbi.12635

 Arruda, M., Lipka, A., Brown, P., Krill, A., Thurber, C., Brown-Guedira, G., et al. (2016). Comparing genomic selection and marker-assisted selection for fusarium head blight resistance in wheat (Triticum aestivum l.). Mol. Breed. 36 (7), 1–11. doi: 10.1007/s11032-016-0508-5

 Arumuganathan, K., and Earle, E. (1991). Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9 (3), 208–218. doi: 10.1007/BF02672069

 Atlin, G. N., Cairns, J. E., and Das, B. (2017). Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Secur. 12, 31–37. doi: 10.1016/j.gfs.2017.01.008

 Balfourier, F., Roussel, V., Strelchenko, P., Exbrayat-Vinson, F., Sourdille, P., Boutet, G., et al. (2007). A worldwide bread wheat core collection arrayed in a 384-well plate. Theor. Appl. Genet. 114 (7), 1265–1275. doi: 10.1007/s00122-007-0517-1

 Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R., and Crossa, J. (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 242, 23–36. doi: 10.1016/j.plantsci.2015.08.021

 Bentley, A. R., Scutari, M., Gosman, N., Faure, S., Bedford, F., Howell, P., et al. (2014). Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor. Appl. Genet. 127 (12), 2619–2633. doi: 10.1007/s00122-014-2403-y

 Bernardo, R. (2008). Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 48 (5), 1649–1664. doi: 10.2135/cropsci2008.03.0131

 Bhatta, M., Morgounov, A., Belamkar, V., and Baenziger, P. S. (2018). Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. Int. J. Mol. Sci. 19 (10), 3011. doi: 10.3390/ijms19103011

 Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23 (19), 2633–2635. doi: 10.1093/bioinformatics/btm308

 Breiman, L. (2001). Random forests. Mach. Learn. 45 (1), 5–32. doi: 10.1023/A:1010933404324

 Cavanagh, C. R., Chao, S., Wang, S., Huang, B. E., Stephen, S., Kiani, S., et al. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. 110 (20), 8057–8062. doi: 10.1073/pnas.1217133110

 Charmet, G., Tran, L.-G., Auzanneau, J., Rincent, R., and Bouchet, S. (2020). BWGS: AR package for genomic selection and its application to a wheat breeding programme. PloS One 15 (4), e0222733. doi: 10.1371/journal.pone.0222733

 Crossa, J., Burgueno, J., Dreisigacker, S., Vargas, M., Herrera-Foessel, S. A., Lillemo, M., et al. (2007). Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177 (3), 1889–1913. doi: 10.1534/genetics.107.078659

 Cui, F., Zhang, N., Fan, X.-l., Zhang, W., Zhao, C.-h., Yang, L.-j., et al. (2017). Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 7 (1), 1–12. doi: 10.1038/s41598-017-04028-6

 Desta, Z. A., and Ortiz, R. (2014). Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19 (9), 592–601. doi: 10.1016/j.tplants.2014.05.006

 Earl, D. A. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the evanno method. Conserv. Genet. Resour. 4 (2), 359–361. doi: 10.1007/s12686-011-9548-7

 Edwards, S. M., Buntjer, J. B., Jackson, R., Bentley, A. R., Lage, J., Byrne, E., et al. (2019). The effects of training population design on genomic prediction accuracy in wheat. Theor. Appl. Genet. 132 (7), 1943–1952. doi: 10.1007/s00122-019-03327-y

 Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with r package rrBLUP. Plant Genome 4 (3). doi: 10.3835/plantgenome2011.08.0024

 Fernando, R., and Grossman, M. (1989). Marker assisted selection using best linear unbiased prediction. Genet. Selection Evol. 21 (4), 467–477. doi: 10.1186/1297-9686-21-4-467

 Frankel, (1984). Genetic perspectives of germplasm conservation. Genetic manipulation: impact on man and society 61, 3, 161–170.

 Gao, L., Turner, M. K., Chao, S., Kolmer, J., and Anderson, J. A. (2016). Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PloS One 11 (2), e0148671. doi: 10.1371/journal.pone.0148671

 Gill, B. S., Appels, R., Botha-Oberholster, A.-M., Buell, C. R., Bennetzen, J. L., Chalhoub, B., et al. (2004). A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168 (2), 1087–1096. doi: 10.1534/genetics.104.034769

 Goddard, M. (2009). Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136 (2), 245–257. doi: 10.1007/s10709-008-9308-0

 Guzman, C., Peña, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., et al. (2016). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Appl. Trans. Genomics 11, 3–8. doi: 10.1016/j.atg.2016.10.004

 Hayashi, K., Hashimoto, N., Daigen, M., and Ashikawa, I. (2004). Development of PCR-based SNP markers for rice blast resistance genes at the piz locus. Theor. Appl. Genet. 108 (7), 1212–1220. doi: 10.1007/s00122-003-1553-0

 Heffner, E. L., Jannink, J. L., Iwata, H., Souza, E., and Sorrells, M. E. (2011a). Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci. 51 (6), 2597–2606. doi: 10.2135/cropsci2011.05.0253

 Heffner, E. L., Jannink, J. L., and Sorrells, M. E. (2011b). Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4 (1). doi: 10.3835/plantgenome2010.12.0029

 Hong, J.-P., Ro, N., Lee, H.-Y., Kim, G. W., Kwon, J.-K., Yamamoto, E., et al. (2020). Genomic selection for prediction of fruit-related traits in pepper (Capsicum spp.). Front. Plant Sci. 11, 570871. doi: 10.3389/fpls.2020.570871

 IWGSC, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., Rogers, J., et al. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361 (6403), eaar7191. doi: 10.1126/science.aar7191

 Jeong, S., Kim, J.-Y., Jeong, S.-C., Kang, S.-T., Moon, J.-K., and Kim, N. (2017). GenoCore: a simple and fast algorithm for core subset selection from large genotype datasets. PloS One 12 (7), e0181420. doi: 10.1371/journal.pone.0181420

 Jin, H., Wen, W., Liu, J., Zhai, S., Zhang, Y., Yan, J., et al. (2016). Genome-wide QTL mapping for wheat processing quality parameters in a gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front. Plant Sci. 7, 1032. doi: 10.3389/fpls.2016.01032

 Krishnappa, G., Savadi, S., Tyagi, B. S., Singh, S. K., Mamrutha, H. M., Kumar, S., et al. (2021). Integrated genomic selection for rapid improvement of crops. Genomics 113 (3), 1070–1086. doi: 10.1016/j.ygeno.2021.02.007

 Kumar, A., Kumar, S., Singh, K. B., Prasad, M., and Thakur, J. K. (2020). Designing a mini-core collection effectively representing 3004 diverse rice accessions. Plant Commun. 1 (5), 100049. doi: 10.1016/j.xplc.2020.100049

 Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870–1874. doi: 10.1093/molbev/msw054

 Lee, T.-H., Guo, H., Wang, X., Kim, C., and Paterson, A. H. (2014). SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15 (1), 1–6. doi: 10.1186/1471-2164-15-162

 Li, H., Rasheed, A., Hickey, L. T., and He, Z. (2018). Fast-forwarding genetic gain. Trends Plant Sci. 23 (3), 184–186. doi: 10.1016/j.tplants.2018.01.007

 Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., et al. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics 28 (18), 2397–2399. doi: 10.1093/bioinformatics/bts444

 Lorenz, A., Smith, K., and Jannink, J. L. (2012). Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci. 52 (4), 1609–1621. doi: 10.2135/cropsci2011.09.0503

 Máthé, C., Garda, T., and Freytag, C. (2019). The role of serine-threonine protein phosphatase pp2a in plant oxidative stress signaling–facts and hypotheses. Int. J. Mol. Sci. 20 (12), 3028.

 Meuwissen, T. H., Hayes, B. J., and Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. genetics 157 (4), 1819–1829. doi: 10.1093/genetics/157.4.1819

 Min, K. D., Kang, Y. N., Kim, C. S., Choi, C. H., and Kim, J. Y. (2021). Whole genome association mapping of plant height in winter wheat. Korean J. Breed. Sci. 53 (3). doi: 10.9787/KJBS.2021.53.3.277

 Minitab, L. (2021) Minitab. Available at: https://www.minitab.com.

 Neal, R. M. (2012). Bayesian Learning for neural networks (Springer Science & Business Media). 3–26.

 Olsen, A. N., Ernst, H. A., Leggio, L. L., and Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10 (2), 79–87. doi: 10.1016/j.tplants.2004.12.010

 Pérez, P., and de Los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics 198 (2), 483–495. doi: 10.1534/genetics.114.164442

 Piepho, H., Möhring, J., Melchinger, A., and Büchse, A. (2008). BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161 (1), 209–228. doi: 10.1007/s10681-007-9449-8

 Pritchard, J. K., Wen, X., and Falush, D. (2010). Documentation for structure software: Version 2.3. University of Chicago, Chicago, IL, 1–37

 Przewieslik-Allen, A. M., Wilkinson, P. A., Burridge, A. J., Winfield, M. O., Dai, X., Beaumont, M., et al. (2021). The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nat. Plants 7 (2), 172–183. doi: 10.1038/s41477-020-00845-2

 Rasheed, A., and Xia, X. (2019). From markers to genome-based breeding in wheat. Theor. Appl. Genet. 132 (3), 767–784. doi: 10.1007/s00122-019-03286-4

 Reimann, R., Kost, B., and Dettmer, J. (2017). Tetraspanins in plants. Front. Plant Sci. 8, 545. doi: 10.3389/fpls.2017.00545

 Rutkoski, J., Singh, R., Huerta-Espino, J., Bhavani, S., Poland, J., Jannink, J., et al. (2015). Efficient use of historical data for genomic selection: a case study of stem rust resistance in wheat. Plant Genome 8 (1). doi: 10.3835/plantgenome2014.09.0046

 Sheoran, S., Jaiswal, S., Kumar, D., Raghav, N., Sharma, R., Pawar, S., et al. (2019). Uncovering genomic regions associated with 36 agro-morphological traits in Indian spring wheat using GWAS. Front. Plant Sci. 10, 527. doi: 10.3389/fpls.2019.00527

 Sorrells, M. E., La Rota, M., Bermudez-Kandianis, C. E., Greene, R. A., Kantety, R., Munkvold, J. D., et al. (2003). Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13 (8), 1818–1827. doi: 10.1101/gr.1113003

 Sukumaran, S., Reynolds, M. P., and Sansaloni, C. (2018). Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front. Plant Sci. 9, 81. doi: 10.3389/fpls.2018.00081

 Sun, C., Dong, Z., Zhao, L., Ren, Y., Zhang, N., and Chen, F. (2020). The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 18 (6), 1354–1360. doi: 10.1111/pbi.13361

 Takeya, M., Yamasaki, F., Hattori, S., Kaga, A., and Tomooka, N. (2013). Systems for making NIAS core collections, single-seed-derived germplasm, and plant photo images available to the research community. Genet. Resour. Crop Evol. 60 (7), 1945–1951. doi: 10.1007/s10722-013-0005-1

 Tanaka, Y., and Brugliera, F. (2013). Flower colour and cytochromes P450. Philos. Trans. R. Soc. B: Biol. Sci. 368 (1612), 20120432. doi: 10.1098/rstb.2012.0432

 Thachuk, C., Crossa, J., Franco, J., Dreisigacker, S., Warburton, M., and Davenport, G. F. (2009). Core hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinf. 10 (1), 243. doi: 10.1186/1471-2105-10-243

 Uauy, C. (2017). Wheat genomics comes of age. Curr. Opin. Plant Biol. 36, 142–148. doi: 10.1016/j.pbi.2017.01.007

 Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R., et al. (2021). Genome-wide association studies. Nat. Rev. Methods Primers 1 (1), 1–21. doi: 10.1038/s43586-021-00056-9

 van Hintum, T. J., Brown, A., and Spillane, C. (2000). Core collections of plant genetic resources (Bioversity International). 6–22.

 Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., et al. (2017). 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101 (1), 5–22. doi: 10.1016/j.ajhg.2017.06.005

 Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., et al. (2014). Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12 (6), 787–796. doi: 10.1111/pbi.12183

 Winfield, M. O., Allen, A. M., Burridge, A. J., Barker, G. L., Benbow, H. R., Wilkinson, P. A., et al. (2016). High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14 (5), 1195–1206. doi: 10.1111/pbi.12485

 Wolc, A., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., Preisinger, R., et al. (2011). Persistence of accuracy of genomic estimated breeding values over generations in layer chickens. Genet. Selection Evol. 43 (1), 1–8. doi: 10.1186/1297-9686-43-23

 Worland, T. (2001). “Genetic basis of worldwide wheat varietal improvement,” in The world wheat book: a history of wheat breeding, 59–100.

 Yang, X., Pan, Y., Singh, P. K., He, X., Ren, Y., Zhao, L., et al. (2019). Investigation and genome-wide association study for fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol. 19 (1), 1–14. doi: 10.1186/s12870-019-1758-2

 Yang, X., Tan, B., Liu, H., Zhu, W., Xu, L., Wang, Y., et al. (2020). Genetic diversity and population structure of Asian and European common wheat accessions based on genotyping-by-sequencing. Front. Genet. 11, 1157. doi: 10.3389/fgene.2020.580782

 Zhang, J., Gill, H. S., Brar, N. K., Halder, J., Ali, S., Liu, X., et al. (2022). Genomic prediction of fusarium head blight resistance in early stages using advanced breeding lines in hard winter wheat. Crop J 10(6), 1695–1704. doi: 10.1016/j.cj.2022.03.010

 Zhang, H., Zhang, D., Wang, M., Sun, J., Qi, Y., Li, J., et al. (2011). A core collection and mini core collection of oryza sativa l. in China. Theor. Appl. Genet. 122 (1), 49–61. doi: 10.1007/s00122-010-1421-7




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2023 Kang, Choi, Kim, Min and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




[image: image]


OPS/images/fpls.2022.1050891/table5.jpg


OPS/images/fpls.2022.1050891/table6.jpg


OPS/images/fpls.2022.1050891/table7.jpg


OPS/images/fpls.2022.1063988/crossmark.jpg


OPS/images/fpls.2022.1050891/table1.jpg


OPS/images/fpls.2022.1050891/table2.jpg


OPS/images/fpls.2022.1050891/table3.jpg


OPS/images/fpls.2022.1050891/table4.jpg


OPS/images/fpls.2022.1050891/M5.jpg


OPS/images/fpls.2022.1050891/M6.jpg


OPS/images/fpls.2023.1136549/fpls-14-1136549-g003.jpg


OPS/images/fpls.2023.1136549/fpls-14-1136549-g002.jpg


OPS/images/fpls.2023.1136549/fpls-14-1136549-g001.jpg


OPS/images/fpls.2023.1136549/crossmark.jpg


OPS/images/fpls.2023.1072233/table3.jpg


OPS/images/fpls.2023.1072233/table2.jpg


OPS/images/fpls.2023.1072233/table1.jpg


OPS/images/fpls.2023.1072233/fpls-14-1072233-g007.jpg


OPS/images/fpls.2022.1063988/table2.jpg


OPS/images/fpls.2022.1063988/table3.jpg


OPS/images/fpls.2022.1063988/table4.jpg


OPS/images/fpls.2022.1063988/fpls-13-1063988-g004.jpg


OPS/images/fpls.2022.1063988/fpls-13-1063988-g005.jpg


OPS/images/fpls.2022.1063988/M1.jpg


OPS/images/fpls.2022.1063988/table1.jpg


OPS/images/fpls.2022.1063988/fpls-13-1063988-g001.jpg


OPS/images/fpls.2022.1063988/fpls-13-1063988-g002.jpg


OPS/images/fpls.2022.1063988/fpls-13-1063988-g003.jpg


OPS/images/fpls.2022.1036177/table1.jpg


OPS/images/fpls.2022.1036177/table2.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g006.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g007.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g008.jpg


OPS/images/fpls.2022.1036177/M1.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g002.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g003.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g004.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g005.jpg


OPS/images/fpls.2022.1050891/M4.jpg


OPS/images/fpls.2022.1050891/fpls-13-1050891-g005.jpg


OPS/images/fpls.2022.1050891/M1.jpg


OPS/images/fpls.2022.1050891/M2.jpg


OPS/images/fpls.2022.1050891/M3.jpg


OPS/images/fpls.2022.1050891/fpls-13-1050891-g001.jpg


OPS/images/fpls.2022.1050891/fpls-13-1050891-g002.jpg


OPS/images/fpls.2022.1050891/fpls-13-1050891-g003.jpg


OPS/images/fpls.2022.1050891/fpls-13-1050891-g004.jpg


OPS/images/fpls.2022.1050891/crossmark.jpg


OPS/images/fpls-13-999414/fpls-13-999414-t004.jpg


OPS/images/fpls.2022.994973/crossmark.jpg


OPS/images/fpls.2022.994973/fpls-13-994973-g001.jpg


OPS/images/fpls-13-999414/fpls-13-999414-g006.jpg


OPS/images/fpls-13-999414/fpls-13-999414-t001.jpg


OPS/images/fpls-13-999414/fpls-13-999414-t002.jpg


OPS/images/fpls-13-999414/fpls-13-999414-t003.jpg


OPS/images/fpls-13-999414/fpls-13-999414-g003.jpg


OPS/images/fpls-13-999414/fpls-13-999414-g004.jpg


OPS/images/fpls-13-999414/fpls-13-999414-g005.jpg


OPS/xhtml/Nav.xhtml


Contents



		Cover


		Genetics and molecular breeding in cereal crops

		Rapid identification and deployment of major genes for flowering time and awn traits in common wheat

		Introduction


		Materials and methods

		Plant materials


		Genotypes of Tabasco × Zi119 F2 population


		Allelic variation and gene expression of VRN-D1


		Gene expression and copy number variation of ALI1







		Results

		Segregation of developmental phases in Tabasco × Zi119 F2 population


		Genotypes of the Tabasco × Zi119 F2 population using SNP chips


		Rapid mapping of QTLs for heading date and flowering time in the Tabasco × Zi119 F2 population


		Validation of the QTLs in F3 generations


		Allelic variation in VRN-D1 associated with the major QTL


		The genome region associated with the presence and absence of awn


		Allelic variation in ALI-A1







		Discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Publisher’s note


		Supplementary Material


		Footnotes


		References







		Identification and validation of a locus for wheat maximum root length independent of parental reproductive environment

		Introduction


		Materials and methods

		Plant materials


		Hydroponic culture and experimental design


		Data analyses


		Quantitative trait loci analysis


		Comparison with reported quantitative trait loci and prediction of candidate genes


		Marker development and quantitative trait loci validation







		Results

		Analysis of phenotypic data


		Phenotypic correlation between maximum root length and other traits


		Quantitative trait loci mapping for maximum root length and epistatic analysis


		Evaluation of the genetic effect for the major quantitative trait loci


		Validation of the major locus QMrl.sicau-2SY-3D.2 in different genetic backgrounds







		Discussion

		Exploration of maximum root length loci independent of parental reproductive environments


		Relationships between maximum root length and other traits


		Comparison of QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 to other loci


		Genetic effect of QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2


		Potential genes in the interval of QMrl.sicau-2SY-3D.2







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Publisher’s note


		Supplementary Material


		Footnotes


		References







		QTL mapping and KASP marker development for seed vigor related traits in common wheat

		1 Introduction


		2 Materials and methods

		2.1 Plant materials


		2.2 Field experimental design


		2.3 Phenotypic determination


		2.4 Statistical analysis of the phenotyping data


		2.5 Genetic linkage map construction and QTL mapping


		2.6 KASP primer design and genotyping







		3 Results

		3.1 Phenotypic variation


		3.2 QTL analysis of seed vigor related traits

		3.2.1 Shoot length and root length


		3.2.2 Shoot fresh weight and root fresh weight


		3.2.3 Shoot dry weight and root dry weight


		3.2.4 Germination index and vigor index







		3.3 Effect of QTL cluster for seed vigor related traits


		3.4 KASP marker development of QVI.haust-4D.1/QSL.haust-4D/QRL.haust-4D







		4 Discussion

		4.1 QTL cluster on Chromosome 4D


		4.2 QTL cluster on Chromosome 5B


		4.3 QTL clusters on chromosomes 6A and 6B







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		References







		Genetic characterization of hull color using BSR-Seq and genome re-sequencing approaches in foxtail millet

		Introduction


		Materials and methods

		Plant materials and phenotyping


		BSR-seq analysis


		Construction of genetic linkage map


		Analysis of candidate genes in the target mapping intervals







		Results

		Phenotypes of hull color


		BSR-seq-based identification of hull color-associated genomic regions


		Linkage map-based identification of QTL for hull color


		Annotation and expression of candidate genes







		Discussion


		Data availability statement


		Authors contributions


		Funding


		Conflict of interest


		References







		Molecular and cytogenetic dissection of stripe rust resistance gene Yr83 from rye 6R and generation of resistant germplasm in wheat breeding

		Introduction


		Materials and methods

		Plant materials


		Fluorescence in situ hybridization (FISH)


		Molecular marker analysis


		Stripe rust reactions







		Results

		Karyotyping of 6R in Sub6R(6D) and derived lines in Sichuan wheat background


		Identification of new 6R deletion and translocation lines


		Confirmation of the breakpoints on 6RL deletions by PCR markers


		Stripe rust resistance and physical location of Yr83







		Discussion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Identification and fine-mapping of a major QTL (PH1.1) conferring plant height in broomcorn millet (Panicum miliaceum)

		Introduction


		Materials and methods

		Plant materials and phenotypic analysis


		BSA-Seq and resequencing analysis


		Marker development, linkage map construction, and fine-mapping


		Prediction of the candidate genes


		Regional association analysis







		Results

		Phenotypic characterization and inheritance of plant height


		Initial mapping of plant height by bulked segregant analysis


		Fine-Mapping of PH1.1


		Candidate gene prediction analysis for PH1.1


		Association test of PH1.1 among the natural population







		Discussion

		Effective strategy to identify and fine-map major QTLs


		PH1.1 is a major domesticated QTL


		Possible candidate gene for PH1.1


		Diagnostic markers of PH1.1 could be applied in MAS







		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Development of an inclusive 580K SNP array and its application for genomic selection and genome-wide association studies in rice

		1 Introduction


		2 Materials and methods

		2.1 Sequence resources


		2.2 SNP filtering and integration


		2.3 Selection of SNPs for array development


		2.4 Plant material and phenotyping


		2.5 Genotyping


		2.6 Genome-wide association studies


		2.7 GS Models

		2.7.1 Penalized Regression Model


		2.7.2 Convolutional Neural Networks












		3 Result

		3.1 Alignment, SNP selection, and Axiom Array design


		3.2 Genotyping performance of 580K _ KNU chip


		3.3 Genome-wide association studies and genomic selection







		4 Discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize

		Introduction


		Materials and methods

		Search strategy


		Consensus map construction


		Meta-analysis of quantitative trait loci


		Candidate genes mining and expression analysis







		Results

		Identification and screening of relevant publications for FER- and GER-related traits


		Characterization of QTL reported based on high-throughput SNP technologies for FER- and GER-related traits


		High-resolution consensus map generated for QTL projection


		QTL colocalization and meta-QTL for the FER- and GER-related traits based on QTL mapping studies


		Comparison of meta-analysis with association mapping studies


		Differentially expressed candidate genes within the most refined MQTL







		Discussion

		Co-inheritance of Fusarium and Gibberella ear rot resistances in maize


		Meta-QTL and types of ear rot resistance


		Colocalization of genomic regions controlling KR, SR and mycotoxin accumulation


		Morphological traits and their association with FER and GER infections in maize


		Resistance and susceptibility genes controlling FER and GER in maize


		Strategies for the successful introgression of resistance genes to FER and GER into elite materials







		Conclusions


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Identification of QTL underlying the main stem related traits in a doubled haploid barley population

		Introduction


		Materials and methods

		Plant material


		Phenotyping


		Data analysis


		QTL analysis


		Gene annotation for major QTLs







		Results

		Phenotype analyses


		Correlations between traits


		QTL analysis


		Genes located within major QTLs intervals







		Discussion

		Major and linkage QTLs for stem traits


		Possible genes associated with barley stem development


		Stem traits for barley breeding programs







		Conclusions


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Genetic dissection of quantitative trait loci for flag leaf size in bread wheat (Triticum aestivum L.)

		Introduction


		Materials and methods

		Plant materials


		Phenotyping and statistical analysis


		Linkage map construction and QTL detection


		Marker development and genotyping


		Conditional QTL analysis for FLA


		Prediction of candidate gene







		Results

		Phenotypic variation of flag leaf-related traits


		Correlation analysis between flag leaf-related and yield-related traits


		QTL detection for flag leaf-related traits


		Conditional QTL analysis for FLA


		Effects of major QTL on corresponding traits


		Effects of major QTL on yield-related traits in the mapping population


		Analyses of additive effects of major QTL for FLL, FLW, and FLA


		Potential candidate genes for QFll/Fla.cib-2B







		Discussion

		Comparison of the major QTL to those reported previously


		Relationships between flag leaf size and yield-related traits and pleiotropic effects of major QTL


		Potential candidate genes for QFll/Fla.cib-2B







		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines

		1 Introduction


		2 Materials and methods

		2.1 Plant materials and phenotypic evaluations


		2.2 Statistical analysis of phenotypic data


		2.3 DNA isolation, sequencing, and SNP identification


		2.4 Bin map construction of the RIL population


		2.5 QTL analysis for PC phenotypes in maize kernels


		2.6 Indel marker development


		2.7 Prediction of candidate genes


		2.8 qRT-PCR analysis


		2.9 Sequence amplification of gene promoter and alignment analyses







		3 Results

		3.1 Phenotype and genotype characteristics of the parental lines and RILs


		3.2 SNP detection in the RIL parental lines


		3.3 Genetic linkage map construction and QTL mapping for kernel PC


		3.4 Marker development for qPC2-2


		3.5 Candidate gene prediction







		4 Discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Genome-wide association scan and transcriptome analysis reveal candidate genes for waterlogging tolerance in cultivated barley

		Introduction


		Materials and methods

		Plant materials and phenotypic analysis


		Genome-wide association scanning


		RNA-seq and transcription analysis


		Quantitative real-time RT-PCR


		Candidate gene validation by transgenic Arabidopsis







		Results

		Analysis of phenotypic variation


		Genome-wide association study of waterlogging stress tolerance


		RNA-seq analysis of root transcripts in response to waterlogging stress


		Responses of transcription factors to waterlogging


		Combined analysis of GWAS and RNA-seq for screening candidate genes of waterlogging stress tolerance


		Overexpression of HvERF1 in Arabidopsis enhances plant waterlogging tolerance


		Overexpression of HvERF1 induced changes in stress-related gene expression levels







		Discussion

		The evaluation of waterlogging tolerance in barley


		Significant SNPs detected with GWAS and previously reported regions


		Transcription factors ERFs enhance waterlogging tolerance







		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Digitalizing breeding in plants: A new trend of next-generation breeding based on genomic prediction

		1. Introduction.


		2. Outline of breeding techniques.

		2.1. Traditional breeding techniques.

		2.1.1. Pure line selection.


		2.1.2. Mass selection.


		2.1.3. Pedigree selection.


		2.1.4. Bulk population.


		2.1.5. SSD.


		2.1.6. Backcross breeding.







		2.2. Techniques in molecular breeding.

		2.2.1. QTL mapping.


		2.2.2. Linkage disequilibrium (LD) mapping.


		2.2.3. Genome-wide association study (GWAS).


		2.2.4. MAS.







		2.3. GS.

		2.3.1. RLR models.


		2.3.2. MLM.


		2.3.3. Bayesian prediction models.


		2.3.4. Semi-parametric prediction models.












		3. Digitalizing plant breeding.

		3.1. Strategies to increase prediction accuracy in GS.

		3.1.1. Marker density and selection.


		3.1.2. Design of training population.


		3.1.3. Multiple environments and heritability.


		3.1.4. High-throughput phenotyping (HTP).







		3.2. Application of ML for GS.


		3.3. Application of DL for GS.







		4. Conclusion.


		Author contributions


		Funding


		Conflict of interest


		References







		Phylogenetic and expression analyses of HSF gene families in wheat (Triticum aestivum L.) and characterization of TaHSFB4-2B under abiotic stress

		Introduction


		Materials and methods

		Sequence and bioinformatics analysis


		Analysis of induced abiotic stress cis-regulting elements of AtHSFs and TaHSFs


		Expression analysis of the AtHSFs and TaHSFs gene family from RNA-Seq data


		Gene cloning and construction of transgenic plants


		Protoplast isolation and transformation in wheat and arabidopsis protoplast


		TaHSFB4-2B protein subcellular location


		Wheat materials and stress treatment


		Stress tolerance analysis of transgenic arabidopsis


		Expression analysis by RT-qPCR


		Statistical analysis







		Results

		Phylogenetic and collinearity analyses of TaHSF family members


		Analysis of abiotic stress-responsive cis-elements in AtHSFs and TaHSFs promoters


		Expression profiles of AtHSF and TaHSF genes


		Amino acid sequence alignment and structural analysis of TaHSFB4-2B


		Subcellular localization of TaHSFB4-2B in T. aestivum and A. thaliana protoplast and its tissue-specific expression analysis in wheat


		Expression analysis of TaHSFB4-2B under salinity and mannitol-induced stresses in wheat roots and young leaf


		Overexpressing of TaHSFB4-2B negatively regulates the tolerance of Arabidopsis seedlings to NaCl and mannitol-induced stresses


		Expression analysis of abiotic stress-associated genes in TaHSFB4-2B-OE Arabidopsis lines







		Discussion


		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Genome-wide association and genomic prediction for resistance to southern corn rust in DH and testcross populations

		1 Introduction


		2 Materials and methods

		2.1 Plant materials


		2.2 Southern corn rust resistance score (SCRRS) collection


		2.3 Phenotypic data analysis


		2.4 Genotyping and genotypic data analysis


		2.5 Genome wide association study


		2.6 Genomic prediction


		2.7 Statistical analysis







		3 Results

		3.1 Phenotypic variations and heritability


		3.2 Genotype and population structure analysis


		3.3 Genome wide association study


		3.4 Genomic prediction with the different marker density, and training population size


		3.5 Genomic prediction with extended GBLUP models


		3.6 Genomic prediction with maker effect based models


		3.7 Genomic prediction with QTL results







		4 Discussion


		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Grain shape is a factor affecting the stigma exsertion rate in rice

		Introduction


		Materials and methods

		Plant materials


		Field experiment


		Genotyping


		Phenotyping and statistical analysis







		Results

		Long grain maintainer lines showed higher SER


		Pleiotropic effects on SER of the genes controlling grain shape in SSSLs


		Effects of the grain shape controlled by different gene combinations of gs3, gw5, GW7 and gw8 on SER in pyramiding lines


		Effects of grain shape on SER in high SER background


		Correlation between grain shape and stigma shape


		Correlation between grain shape and SER







		Discussion

		The grain shape has a partial effect on SER


		Relationships of stigma shape with grain shape and SER


		The strategy for improving SER in rice







		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		QTL cluster analysis and marker development for kernel traits based on DArT markers in spring bread wheat (Triticum aestivum L.)

		1 Introduction


		2 Materials and methods

		2.1 Plant materials


		2.2 Field trials


		2.3 Phenotypic evaluation


		2.4 Phenotypic statistical analysis


		2.5 Quantitative trait locus mapping and candidate gene analysis


		2.6 KASP assay design and genotyping







		3 Results

		3.1 Phenotypic variation


		3.2 QTL identification for kernel traits


		3.3 Identification of the stable QTL clusters


		3.4 Identification of candidate genes within the TaTKW-1A physical interval


		3.5 KASP marker development of TaTKW-1A







		4 Discussion

		4.1 QTLs for kernel traits


		4.2 QTL cluster analysis for TKW


		4.3 QTL cluster analysis for KL and KW


		4.4 Identification of putative candidate genes for TKW


		4.5 The major candidate gene expression of TaTKW-1A


		4.6 KASP marker development







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		References







		A new allele PEL9GG identified by genome-wide association study increases panicle elongation length in rice (Oryza sativa L.)

		Introduction


		Materials and methods

		Plant materials and field planting


		Phenotypic measurement


		Genome-wide association study


		Candidate gene analysis


		RNA extraction and quantitative real-time PCR


		Generation of LOC_Os09g18390 transgenic plants


		Pollen fertility observation


		F1 hybrid seed production potential evaluation for the PEL9 alleles in the paddy field







		Results

		Phenotypic variation of the PEL trait


		Identification of QTL for PEL by GWAS


		PEL9 is a causal gene for a PEL QTL


		Yield of the F1 hybrid seeds harvested from the male sterile line with the 7001SPEL9GG allele was significantly higher than that with the 7001SPEL9TT allele


		Regional distribution of PEL9 alleles







		Discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Genome-wide analysis of NBS-LRR genes revealed contribution of disease resistance from Saccharum spontaneum to modern sugarcane cultivar

		Introduction


		Methods


		Results and discussion


		1 Introduction


		2 Methods

		2.1 Identification of NBS-LRR genes in 23 plant species


		2.2 Characterization and analysis of conserved NBS-LRR genes


		2.3 Gene composition of conserved NBS-LRR genes


		2.4 Analysis of motifs, cis-acting and calculation of Ka/Ks ratio


		2.5 Transcriptomic analysis


		2.6 Build NBS-LRR gene database







		3 Results

		3.1 Identification of NBS-LRR genes in representative plant species


		3.2 Characterization and phylogenetic analysis of NBS-LRR genes in grass species


		3.3 Gene composition and evolutionary analyses of conversed NBS-LRR genes


		3.4 Transcriptomic analysis of NBS-LRR genes in sugarcane


		3.5 Construction of NBS-LRR gene database







		4 Discussion

		4.1 NBS-LRR genes are complex and variable in species evolutionary


		4.2 NBS-LRR genes in modern sugarcane cultivar







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Variations in exons 11 and 12 of the multi-pest resistance wheat gene Lr34 are independently additive for leaf rust resistance

		Introduction


		Methods


		Results


		Discussion


		Introduction


		Materials and methods

		Development of plant populations


		Leaf rust field tests


		Leaf rust seedling tests


		Molecular marker testing for other adult plant resistance (APR) genes


		Structural models of LR34 proteins







		Results

		Assessment of rust severity in the field


		Leaf rust seedling tests


		Additional adult resistance gene postulation


		Analysis of the predicted structural model of LR34







		Discussion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Impact of “Green Revolution” gene Rht-B1b on coleoptile length of wheat

		Introduction


		Materials and methods

		Plant materials and phenotyping


		SNP genotyping and QTL analysis


		Plant materials for Rht-B1 functional study and RNA-Seq analysis


		RNA-Seq and data analysis







		Results

		QTL analysis of coleoptile length


		Validation of the effect of Rht-B1b on coleoptile development


		Transcriptome analysis of Rht-B1 on coleoptile development







		Discussion

		Adaptation of semi-dwarf modern wheat to drought conditions


		Breeding for longer coleoptiles with previously reported genetic loci


		Breeding for longer coleoptiles with the wild allele Rht-B1a







		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Iron bioavailability of maize (Zea mays L.) after removing the germ fraction

		Introduction


		Materials and methods

		Germplasm materials and sample preparation


		Mineral analysis


		Phytate analysis


		Caco2 cell bioassay for Fe bioavailability







		Statistical analysis


		Results

		Maize Fe concentrations and Fe bioavailability vary widely across genotypes


		Most but not all genotypes showed an increase in bioavailable Fe when degerminated


		White maize showed the largest increase in Bioavailable Fe when degerminated


		Yellow Maize Genotypes Showed Mixed Responses to Degermination


		Pigmented maize has less bioavailable Fe, which does not improve after degermination


		The relationship between phytate and the Fe bioavailability of maize is complex


		Zinc, calcium and magnesium concentrations of the MNP







		Discussion


		Conclusions


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		A mitochondrion-associated PPR protein, WBG1, regulates grain chalkiness in rice

		Introduction


		Materials and methods

		Plant material and growth conditions


		Microscopy


		Positional cloning, vector construction, and rice transformation


		Blue native polyacrylamide gel electrophoresis and activity staining of NADH dehydrogenase


		RNA extraction, reverse transcriptase polymerase chain reaction, and quantitative RT-PCR analysis


		Measurement of total starch, amylose, and ATP content


		Measurement of DNA density in agarose gel electrophoresis


		Haplotypes analysis of WBG1


		Statistical analysis







		Results

		Phenotypic characterization of the wbg1 mutant


		Starch granules in the belly side of wbg1 grains were loosely packed


		wbg1 is a weak allelic mutant of FLO10


		Splicing efficiency of mitochondrial nad1 intron 1 was decreased in wbg1


		The wbg1 mutant exhibits reduced respiratory chain complex I activity and ATP contents


		WBG1 is associated with grain width







		Discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Genetic trends for yield and key agronomic traits in pre-commercial and commercial maize varieties between 2008 and 2020 in Uganda

		1 Introduction


		2 Materials and methods

		2.1 NPT dataset

		2.3.1 Trait measurements







		2.2 Era trials


		2.3 Uganda national maize average:


		2.4 Statistical analysis

		2.4.1 NPT trial


		2.4.2 Era trial


		2.4.3 Uganda national average maize yield, 1961 - 2020












		3 Results

		3.1 National performance trials

		3.1.1 Grain yield


		3.1.2 Other agronomic traits







		3.2 Era trial


		3.3 Uganda national data







		4 Discussion


		5 Conclusions


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Chromosome groups 5, 6 and 7 harbor major quantitative trait loci controlling root traits in bread wheat (Triticum aestivum L.)

		Introduction


		Materials and methods

		Plant materials


		Experimental design and evaluation of root traits in RILs


		QTL mapping


		Marker validation using validation populations


		Statistical analysis


		Potential candidate gene identification







		Results

		Phenotypic evaluation


		QTL mapping


		QTL validation


		Candidate gene identification







		Discussion

		Phenotypic analysis of root traits


		QTL for root traits in wheat


		Putative candidate genes on chromosomes 6A and 7B







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		Genetic mapping of leaf rust (Puccinia triticina Eriks) resistance genes in six Canadian spring wheat cultivars

		Introduction


		Materials and methods

		Plant materials


		Leaf rust evaluation

		Seedling plant infection


		Adult plant infection







		Molecular analysis







		Results

		Parental line seedling plant response


		Field adult plant response


		Genetic linkage map


		QTL detected using seedling plant response data


		QTL detected using field adult plant response data







		Discussion

		QTL in the AAC Prevail/BW961 population


		QTL in the CDC Hughes/AAC Concord population


		QLT in the Lillian/Glenlea population







		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References







		Population structure analysis and genome-wide association study of a hexaploid oat landrace and cultivar collection

		Introduction


		Methods


		Results


		Discussion


		1 Introduction


		2 Materials and methods

		2.1 Plant material


		2.2 Genotypes


		2.3 Morphological trait data and phenotypic analysis


		2.4 Genetic diversity, population structure, and LD analyses


		2.5 GWAS







		3 Results

		3.1 Genetic diversity


		3.2 Population structure


		3.3 LD analysis


		3.4 Genome-wide association







		4 Discussion

		4.1 Patterns of genetic diversity and population structure


		4.2 GWAS for hullessness and lemma color







		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Supplementary material


		References







		High-density genetic mapping of Fusarium head blight resistance and agronomic traits in spring wheat

		Introduction


		Materials and methods

		Plant material


		Disease assessment


		Agronomic and morphological assessment


		Molecular genotyping and high-density genetic map construction


		QTL analysis


		Statistical analysis







		Results

		Trait variation in the 261 set of lines


		Trait variation on the 811 set of lines


		Trait correlations


		Linkage map construction


		FHB QTL identified in the 261 set of lines


		FHB QTL identified in the 775 DH set


		QTL for phenological and morphological traits not co-located with FHB


		Co-location of FHB QTL with phenological and morphological trait QTL







		Discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		References







		Optimizing genomic selection of agricultural traits using K-wheat core collection

		1 Introduction


		2 Materials and methods

		2.1 Plant materials


		2.2 Genotyping and built of K-wheat mini-core collection


		2.3 Population structure analysis


		2.4 Phenotype and statistical analysis


		2.5 Association analysis


		2.6 Prediction model for genomic selection


		2.7 Validation of prediction models







		3 Results

		3.1 Construction of a K-wheat mini-core collection


		3.2 Genetic diversity and population structure


		3.3 Correlation analysis of phenotype


		3.4 Marker-trait association analysis


		3.5 Identification of putative candidate genes


		3.6 Heritability of ten agricultural trait


		3.7 Prediction accuracy comparison


		3.8 Validation of breeding populations







		4 Discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Supplementary material


		References


















OPS/images/fpls-13-992811/fpls-13-992811-g003.jpg


OPS/images/fpls-13-992811/fpls-13-992811-g004.jpg


OPS/images/fpls-13-992811/fpls-13-992811-g001.jpg


OPS/images/fpls-13-992811/fpls-13-992811-g002.jpg


OPS/images/fpls-13-999414/fpls-13-999414-g001.jpg


OPS/images/fpls-13-999414/fpls-13-999414-g002.jpg


OPS/images/fpls-13-992811/fpls-13-992811-g005.jpg


OPS/images/fpls-13-999414/cross.jpg


OPS/images/fpls-13-992811/crossmark.jpg


OPS/images/fpls.2022.1035784/fpls-13-1035784-g004.jpg


OPS/images/fpls.2022.1035784/fpls-13-1035784-g005.jpg


OPS/images/fpls.2022.1035784/table1.jpg


OPS/images/fpls.2022.1035784/table2.jpg


OPS/images/fpls.2022.1035784/crossmark.jpg


OPS/images/fpls.2022.1035784/fpls-13-1035784-g001.jpg


OPS/images/fpls.2022.1035784/fpls-13-1035784-g002.jpg


OPS/images/fpls.2022.1035784/fpls-13-1035784-g003.jpg


OPS/images/fpls.2022.1019496/table2.jpg


OPS/images/fpls.2022.1019496/table3.jpg


OPS/images/back-cover.jpg


OPS/images/fpls.2022.1010057/table2.jpg


OPS/images/fpls.2022.1036177/crossmark.jpg


OPS/images/fpls.2022.1036177/fpls-13-1036177-g001.jpg


OPS/images/fpls.2022.1010057/fpls-13-1010057-g003.jpg


OPS/images/fpls.2022.1010057/fpls-13-1010057-g004.jpg


OPS/images/fpls.2022.1010057/fpls-13-1010057-g005.jpg


OPS/images/fpls.2022.1010057/table1.jpg


OPS/images/fpls.2022.1010057/crossmark.jpg


OPS/images/fpls.2022.1010057/fpls-13-1010057-g001.jpg


OPS/images/fpls.2022.1010057/fpls-13-1010057-g002.jpg


OPS/images/fpls.2022.994973/im3.jpg


OPS/images/fpls.2022.994973/im4.jpg


OPS/images/fpls.2022.994973/fpls-13-994973-g006.jpg


OPS/images/fpls.2022.994973/fpls-13-994973-g007.jpg


OPS/images/fpls.2022.994973/im1.jpg


OPS/images/fpls.2022.994973/im2.jpg


OPS/images/fpls.2022.994973/fpls-13-994973-g002.jpg


OPS/images/fpls.2022.994973/fpls-13-994973-g003.jpg


OPS/images/fpls.2022.994973/fpls-13-994973-g004.jpg


OPS/images/fpls.2022.994973/fpls-13-994973-g005.jpg


OPS/images/fpls.2022.1019496/table1.jpg


OPS/images/fpls.2022.1019496/fpls-13-1019496-g001.jpg


OPS/images/fpls.2022.1019496/fpls-13-1019496-g002.jpg


OPS/images/fpls.2022.1019496/fpls-13-1019496-g003.jpg


OPS/images/fpls.2022.1019496/fpls-13-1019496-g004.jpg


OPS/images/fpls.2022.994973/table2.jpg


OPS/images/fpls.2022.994973/table3.jpg


OPS/images/fpls.2022.994973/table4.jpg


OPS/images/fpls.2022.1019496/crossmark.jpg


OPS/images/fpls.2022.994973/table1.jpg


OPS/images/fpls.2023.1131751/fpls-14-1131751-g005.jpg


OPS/images/fpls.2023.1131751/fpls-14-1131751-g004.jpg


OPS/images/fpls.2023.1131751/fpls-14-1131751-g003.jpg


OPS/images/fpls.2023.1131751/fpls-14-1131751-g002.jpg


OPS/images/fpls.2023.1131751/fpls-14-1131751-g001.jpg


OPS/images/fpls.2023.1131751/crossmark.jpg


OPS/images/fpls.2023.1130768/table4.jpg


OPS/images/fpls.2023.1131751/table2.jpg


OPS/images/fpls.2023.1131751/table1.jpg


OPS/images/fpls.2023.1131751/fpls-14-1131751-g006.jpg


OPS/images/fpls.2023.1091567/fpls-14-1091567-g003.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g004.jpg


OPS/images/fpls.2023.1091567/fpls-14-1091567-g002.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g003.jpg


OPS/images/fpls.2023.1091567/fpls-14-1091567-g001.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g002.jpg


OPS/images/fpls.2023.1091567/crossmark.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g001.jpg


OPS/images/fpls.2023.1136549/table1.jpg


OPS/images/fpls.2023.1112297/crossmark.jpg


OPS/images/fpls.2023.1136549/fpls-14-1136549-g006.jpg


OPS/images/fpls.2023.1134132/table9.jpg


OPS/images/fpls.2023.1136549/fpls-14-1136549-g005.jpg


OPS/images/fpls.2023.1134132/table8.jpg


OPS/images/fpls.2023.1136549/fpls-14-1136549-g004.jpg


OPS/images/fpls.2023.1134132/table7.jpg


OPS/images/fpls.2023.1134132/table6.jpg


OPS/images/fpls.2023.1091567/table1.jpg


OPS/images/fpls.2023.1091567/fpls-14-1091567-g004.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g005.jpg


OPS/images/fpls.2023.1134132/table3.jpg


OPS/images/fpls.2023.1134132/table2.jpg


OPS/images/fpls.2023.1134132/table1.jpg


OPS/images/fpls.2023.1134132/fpls-14-1134132-g002.jpg


OPS/images/fpls.2023.1134132/fpls-14-1134132-g001.jpg


OPS/images/fpls.2023.1134132/crossmark.jpg


OPS/images/fpls.2023.1131751/table4.jpg


OPS/images/fpls.2023.1131751/table3.jpg


OPS/images/fpls.2023.1134132/table5.jpg


OPS/images/fpls.2023.1134132/table4.jpg


OPS/images/fpls.2022.1045854/crossmark.jpg


OPS/images/fpls.2023.1114760/fpls-14-1114760-g003.jpg


OPS/images/fpls.2022.1047899/table2.jpg


OPS/images/fpls.2023.1114760/fpls-14-1114760-g002.jpg


OPS/images/fpls.2022.1047899/table1.jpg


OPS/images/fpls.2023.1114760/fpls-14-1114760-g001.jpg


OPS/images/fpls.2022.1047899/fpls-13-1047899-g005.jpg


OPS/images/fpls.2023.1114760/crossmark.jpg


OPS/images/fpls.2022.1047899/fpls-13-1047899-g004.jpg


OPS/images/fpls.2023.1147019/table3.jpg


OPS/images/fpls.2022.1047899/fpls-13-1047899-g003.jpg


OPS/images/fpls.2023.1147019/table2.jpg


OPS/images/fpls.2022.1047899/fpls-13-1047899-g002.jpg


OPS/images/fpls.2023.1147019/table1.jpg


OPS/images/fpls.2022.1047899/fpls-13-1047899-g001.jpg


OPS/images/fpls.2023.1147019/fpls-14-1147019-g004.jpg


OPS/images/fpls.2022.1047899/crossmark.jpg


OPS/images/fpls.2023.1147019/fpls-14-1147019-g003.jpg


OPS/images/fpls.2023.1147019/fpls-14-1147019-g002.jpg


OPS/images/fpls.2022.1045854/fpls-13-1045854-g001.jpg


OPS/images/fpls.2023.1147019/crossmark.jpg


OPS/images/fpls.2022.1061490/table1.jpg


OPS/images/fpls.2022.1061490/fpls-13-1061490-g005.jpg


OPS/images/fpls.2022.1061490/fpls-13-1061490-g004.jpg


OPS/images/fpls.2022.1061490/fpls-13-1061490-g003.jpg


OPS/images/fpls.2023.1112297/table3.jpg


OPS/images/fpls.2022.1061490/fpls-13-1061490-g002.jpg


OPS/images/fpls.2023.1112297/table2.jpg


OPS/images/fpls.2022.1061490/fpls-13-1061490-g001.jpg


OPS/images/fpls.2023.1112297/table1.jpg


OPS/images/fpls.2022.1061490/crossmark.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g008.jpg


OPS/images/fpls.2023.1091567/table2.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g007.jpg


OPS/images/cover.jpg


OPS/images/fpls.2023.1112297/fpls-14-1112297-g006.jpg


OPS/images/fpls.2023.1147019/fpls-14-1147019-g001.jpg


OPS/images/fpls.2022.1048939/fpls-13-1048939-g005.jpg


OPS/images/fpls.2022.1048939/fpls-13-1048939-g004.jpg


OPS/images/fpls.2023.1020667/im1.jpg


OPS/images/fpls.2022.1048939/fpls-13-1048939-g003.jpg


OPS/images/fpls.2023.1020667/fpls-14-1020667-g002.jpg


OPS/images/fpls.2022.1048939/fpls-13-1048939-g002.jpg


OPS/images/fpls.2023.1020667/fpls-14-1020667-g001.jpg


OPS/images/fpls.2022.1048939/fpls-13-1048939-g001.jpg


OPS/images/fpls.2023.1020667/crossmark.jpg


OPS/images/fpls.2022.1048939/crossmark.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g008.jpg


OPS/images/fpls.2022.1045854/table3.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g007.jpg


OPS/images/fpls.2022.1045854/table2.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g006.jpg


OPS/images/fpls.2022.1045854/table1.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g005.jpg


OPS/images/fpls.2022.1045854/im6.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g004.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g003.jpg


OPS/images/fpls.2022.1045854/im5.jpg


OPS/images/fpls.2022.1045854/im4.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g002.jpg


OPS/images/fpls.2022.1045854/im3.jpg


OPS/images/fpls.2023.1136849/fpls-14-1136849-g001.jpg


OPS/images/fpls.2022.1045854/im2.jpg


OPS/images/fpls.2023.1136849/crossmark.jpg


OPS/images/fpls.2022.1045854/im1.jpg


OPS/images/fpls.2023.1114760/table5.jpg


OPS/images/fpls.2022.1045854/fpls-13-1045854-g006.jpg


OPS/images/fpls.2023.1114760/table4.jpg


OPS/images/fpls.2022.1045854/fpls-13-1045854-g005.jpg


OPS/images/fpls.2023.1114760/table3.jpg


OPS/images/fpls.2022.1045854/fpls-13-1045854-g004.jpg


OPS/images/fpls.2023.1114760/table2.jpg


OPS/images/fpls.2022.1045854/fpls-13-1045854-g003.jpg


OPS/images/fpls.2023.1114760/table1.jpg


OPS/images/fpls.2022.1045854/fpls-13-1045854-g002.jpg


OPS/images/fpls.2023.1114760/M2.jpg


OPS/images/fpls.2023.1114760/M1.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g003.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g002.jpg


OPS/images/fpls.2023.1020667/M3.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g001.jpg


OPS/images/fpls.2023.1020667/M2.jpg


OPS/images/fpls.2022.1047400/crossmark.jpg


OPS/images/fpls.2023.1020667/M1.jpg


OPS/images/fpls.2023.1092584/table4.jpg


OPS/images/fpls.2023.1020667/im9.jpg


OPS/images/fpls.2023.1092584/table3.jpg


OPS/images/fpls.2023.1020667/im8.jpg


OPS/images/fpls.2023.1092584/table2.jpg


OPS/images/fpls.2023.1020667/im7.jpg


OPS/images/fpls.2023.1092584/table1.jpg


OPS/images/fpls.2023.1020667/im6.jpg


OPS/images/fpls.2023.1092584/fpls-14-1092584-g005.jpg


OPS/images/fpls.2023.1020667/im5.jpg


OPS/images/fpls.2023.1092584/fpls-14-1092584-g004.jpg


OPS/images/fpls.2023.1020667/im4.jpg


OPS/images/fpls.2023.1020667/im3.jpg


OPS/images/fpls.2023.1092584/fpls-14-1092584-g003.jpg


OPS/images/fpls.2023.1092584/fpls-14-1092584-g002.jpg


OPS/images/fpls.2023.1020667/im2.jpg


OPS/images/fpls.2023.1092584/fpls-14-1092584-g001.jpg


OPS/images/fpls.2023.1020667/im18.jpg


OPS/images/fpls.2023.1092584/crossmark.jpg


OPS/images/fpls.2023.1020667/im17.jpg


OPS/images/fpls.2022.1048939/table4.jpg


OPS/images/fpls.2023.1020667/im16.jpg


OPS/images/fpls.2022.1048939/table3.jpg


OPS/images/fpls.2023.1020667/im15.jpg


OPS/images/fpls.2022.1048939/table2.jpg


OPS/images/fpls.2023.1020667/im14.jpg


OPS/images/fpls.2022.1048939/table1.jpg


OPS/images/fpls.2023.1020667/im13.jpg


OPS/images/fpls.2022.1048939/fpls-13-1048939-g007.jpg


OPS/images/fpls.2023.1020667/im12.jpg


OPS/images/fpls.2022.1048939/fpls-13-1048939-g006.jpg


OPS/images/fpls.2023.1020667/im11.jpg


OPS/images/fpls.2023.1020667/im10.jpg


OPS/images/fpls.2023.1109116/im7.jpg


OPS/images/fpls.2023.1109116/im6.jpg


OPS/images/fpls.2023.1092992/table1.jpg


OPS/images/fpls.2023.1109116/im5.jpg


OPS/images/fpls.2023.1092992/im3.jpg


OPS/images/fpls.2023.1109116/im4.jpg


OPS/images/fpls.2023.1092992/im2.jpg


OPS/images/fpls.2023.1109116/im3.jpg


OPS/images/fpls.2023.1092992/im1.jpg


OPS/images/fpls.2023.1109116/im2.jpg


OPS/images/fpls.2023.1092992/fpls-14-1092992-g003.jpg


OPS/images/fpls.2023.1109116/im1.jpg


OPS/images/fpls.2023.1092992/fpls-14-1092992-g002.jpg


OPS/images/fpls.2023.1109116/fpls-14-1109116-g007.jpg


OPS/images/fpls.2023.1092992/fpls-14-1092992-g001.jpg


OPS/images/fpls.2023.1109116/fpls-14-1109116-g006.jpg


OPS/images/fpls.2023.1092992/crossmark.jpg


OPS/images/fpls.2023.1109116/fpls-14-1109116-g005.jpg


OPS/images/fpls.2023.1020667/table9.jpg


OPS/images/fpls.2023.1020667/table8.jpg


OPS/images/fpls.2023.1092992/table2.jpg


OPS/images/fpls.2023.1109116/fpls-14-1109116-g004.jpg


OPS/images/fpls.2023.1109116/fpls-14-1109116-g003.jpg


OPS/images/fpls.2023.1020667/table7.jpg


OPS/images/fpls.2023.1109116/fpls-14-1109116-g002.jpg


OPS/images/fpls.2023.1020667/table6.jpg


OPS/images/fpls.2023.1109116/fpls-14-1109116-g001.jpg


OPS/images/fpls.2023.1020667/table5.jpg


OPS/images/fpls.2023.1109116/crossmark.jpg


OPS/images/fpls.2023.1020667/table4.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g008.jpg


OPS/images/fpls.2023.1020667/table3.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g007.jpg


OPS/images/fpls.2023.1020667/table2.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g006.jpg


OPS/images/fpls.2023.1020667/table1.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g005.jpg


OPS/images/fpls.2023.1020667/M6.jpg


OPS/images/fpls.2022.1047400/fpls-13-1047400-g004.jpg


OPS/images/fpls.2023.1020667/M5.jpg


OPS/images/fpls.2023.1020667/M4.jpg


OPS/images/fpls.2023.1072233/fpls-14-1072233-g004.jpg


OPS/images/fpls.2023.1072233/fpls-14-1072233-g003.jpg


OPS/images/fpls.2023.1072233/fpls-14-1072233-g002.jpg


OPS/images/fpls.2023.1072233/fpls-14-1072233-g001.jpg


OPS/images/fpls.2023.1072233/crossmark.jpg


OPS/images/fpls.2023.1087285/fpls-14-1087285-g007.jpg


OPS/images/fpls.2023.1087285/fpls-14-1087285-g006.jpg


OPS/images/fpls.2023.1087285/fpls-14-1087285-g005.jpg


OPS/images/fpls.2023.1087285/fpls-14-1087285-g004.jpg


OPS/images/fpls.2023.1072233/fpls-14-1072233-g006.jpg


OPS/images/fpls.2023.1072233/fpls-14-1072233-g005.jpg


OPS/images/fpls.2023.1087285/fpls-14-1087285-g002.jpg


OPS/images/fpls.2023.1087285/fpls-14-1087285-g001.jpg


OPS/images/fpls.2023.1130768/table3.jpg


OPS/images/fpls.2023.1087285/crossmark.jpg


OPS/images/fpls.2023.1130768/table2.jpg


OPS/images/fpls.2023.1109116/table3.jpg


OPS/images/fpls.2023.1130768/table1.jpg


OPS/images/fpls.2023.1109116/table2.jpg


OPS/images/fpls.2023.1130768/fpls-14-1130768-g002.jpg


OPS/images/fpls.2023.1109116/table1.jpg


OPS/images/fpls.2023.1130768/fpls-14-1130768-g001.jpg


OPS/images/fpls.2023.1109116/M3.jpg


OPS/images/fpls.2023.1130768/crossmark.jpg


OPS/images/fpls.2023.1109116/M2.jpg


OPS/images/fpls.2023.1092992/table5.jpg


OPS/images/fpls.2023.1109116/M1.jpg


OPS/images/fpls.2023.1092992/table4.jpg


OPS/images/fpls.2023.1109116/im8.jpg


OPS/images/fpls.2023.1092992/table3.jpg


OPS/images/fpls.2023.1087285/fpls-14-1087285-g003.jpg


