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Millions of people worldwide are affected by neurological disorders which disrupt the connec-
tions within the brain and between brain and body causing impairments of primary functions 
and paralysis. Such a number is likely to increase in the next years and current assistive technology 
is yet limited. A possible response to such disabilities, offered by the neuroscience community, 
is given by Brain-Machine Interfaces (BMIs) and neuroprostheses.
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The latter field of research is highly multidisciplinary, since it involves very different and dis-
perse scientific communities, making it fundamental to create connections and to join research 
efforts. Indeed, the design and development of neuroprosthetic devices span/involve different 
research topics such as: interfacing of neural systems at different levels of architectural complexity 
(from in vitro neuronal ensembles to human brain), bio-artificial interfaces for stimulation (e.g. 
micro-stimulation, DBS: Deep Brain Stimulation) and recording (e.g. EMG: Electromyography, 
EEG: Electroencephalography, LFP: Local Field Potential), innovative signal processing tools for 
coding and decoding of neural activity, biomimetic artificial Spiking Neural Networks (SNN) 
and neural network modeling. In order to develop functional communication with the nervous 
system and to create a new generation of neuroprostheses, the study of closed-loop systems is 
mandatory. It has been widely recognized that closed-loop neuroprosthetic systems achieve 
more favorable outcomes for users then equivalent open-loop devices. Improvements in task 
performance, usability, and embodiment have all been reported in systems utilizing some form 
of feedback. The bi-directional communication between living neurons and artificial devices is 
the main final goal of those studies. However, closed-loop systems are still uncommon in the 
literature, mostly due to requirement of multidisciplinary effort. Therefore, through eBook on 
closed-loop systems for next-generation neuroprostheses, we encourage an active discussion 
among neurobiologists, electrophysiologists, bioengineers, computational neuroscientists and 
neuromorphic engineers.

This eBook aims to facilitate this process by ordering the 25 contributions of this research in 
which we highlighted in three different parts: (A) Optimization of different blocks composing 
the closed-loop system, (B) Systems for neuromodulation based on DBS, EMG and SNN and 
(C) Closed-loop BMIs for rehabilitation.

Citation: Levi, T., Bonifazi, P., Massobrio, P., Chiappalone, M., eds. (2018). Closed-Loop Systems for 
Next-Generation Neuroprostheses. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-466-2
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Editorial on the Research Topic

Closed-Loop Systems for Next-Generation Neuroprostheses

Millions of people worldwide are affected by neurological disorders which disrupt the connections
within the brain and between brain and body causing impairments of primary functions and
paralysis. Such a number is likely to increase in the next years and current assistive technology
is yet limited. A possible response to such disabilities, offered by the neuroscience community, is
given by Brain-Machine Interfaces (BMIs) and neuroprosthetic research.

The latter field of research is highly multidisciplinary, since it involves very different and
disperse scientific communities, making it fundamental to create connections and to join research
efforts. Indeed, the design and development of neuroprostheses involve different research topics
such as: interfacing to nervous systems at different levels of architectural complexity (from
in vitro neuronal ensembles to human brain), bio-electronic interfaces for stimulation (e.g.,
micro-stimulation, DBS: Deep Brain Stimulation) and recording (e.g., EMG, Electromyography;
EEG, Electroencephalography; LFP, Local Field Potential), innovative signal processing tools for
coding and decoding of neural activity, biomimetic artificial Spiking Neural Networks (SNN) and
neural network modeling (Indiveri et al., 2001; Bonifazi et al., 2013). In order to develop functional
communication with the nervous system and to create a new generation of neuroprostheses,
the study of closed-loop systems is mandatory. It has been widely recognized that closed-loop
neuroprosthetic systems achieve more favorable outcomes than open-loop devices. Improvements
in task performance, usability, and embodiment have all been reported in systems utilizing some
form of feedback. The bi-directional communication between living neurons and artificial devices is
themain final goal of those studies. However, closed-loop systems not only based on visual feedback
are still uncommon, mostly due to requirement of multidisciplinary effort. Only few examples in
this direction can be cited from the literature, such as O’Doherty et al. (2011) and Capogrosso
et al. (2016). Therefore, through this research topic on closed-loop systems for next-generation
neuroprostheses, we encourage an active discussion among neurobiologists, electrophysiologists,
bioengineers, computational neuroscientists, and neuromorphic engineers.

This Editorial aims to facilitate this process by ordering the 25 contributions of this research
in which we highlighted in three different parts: (A) Optimization of different blocks composing
the closed-loop system, (B) Systems for neuromodulation based on DBS, EMG, and SNN, and (C)
Closed-loop BMIs for rehabilitation.

(A) OPTIMIZING THE DIFFERENT BLOCKS COMPOSING A

CLOSED-LOOP SYSTEM

To design closed-loop neuroprostheses, the three main blocks which require optimization are
recording, signal processing, and stimulation.

7
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To target specific structures with micro-stimulation,
localization methods should be developed. For that, Telkes
et al. focuses on multiple spectral features extracted from
microelectrode-recorded LFPs which could be used to automate
the identification of the optimal track and the SubThalamic
Nucleus (STN) localization. These results establish the initial
evidence that LFPs can be strategically fused with computational
intelligence in the operating room for STN localization and the
selection of the track for chronic Deep Brain Stimulation (DBS)
electrode implantation.

After recording electrical activities of the brain or specific
neural network, the coding part follows. For example a decoder
translates recorded neural activity into motor commands while
an encoder delivers sensory information collected from the
environment directly to the brain creating a closed-loop system.
Yang et al. define a novel decoding algorithm regardless of
the number of neurons generating the recorded signals. Gailey
et al. describe a proof of concept for online EMG-based
decoding of hand postures and Individual digit forces for
prosthetic hand control. Courellis et al. propose an algorithmic
and computational framework for identifying cortical networks
across subjects in which dynamic causal connectivity is modeled
among user-selected cortical regions of interest. Li et al. aim
to improve accuracy of signal processing by designing a better
encoding model of primary motor cortical activity during
hand movements and combining this with decoder engineering
refinements, resulting in a new unscented Kalman filter-based
decoder.

Another important element to consider in closed-loop
systems is the use of artificial SNNs to replace lost neural
networks, or to implement artificial intelligence in the signal
processing decoder. Pani et al. present a modular and efficient
FPGA design of an in silico SNN exploiting the Izhikevich
model. The proposed system is able to simulate a fully connected
network counting up to 1,440 neurons, in real-time, at a
sampling rate of 10 kHz, which is reasonable for small to
medium scale extra-cellular closed-loop experiments. Boi et al.
create a bidirectional BMI which establish a two-way direct
communication link between the brain and the external world.
As a first step toward this goal, they developed a modular
bidirectional BMI setup that uses a compact neuromorphic
processor as a decoder. On this chip, a network of SNNs is built
using its ultra-low-power mixed-signal analog/digital circuits.
Kohno et al. review different SNNs and propose qualitative
neuron models for designing more biomimetic SNN.

For BMI system, optimization of Movement Related Cortical
Potential (MRCP) recordings is important to improve control
of a neural prosthesis. MRCP, a slow cortical potential from
the scalp EEG, has been used in real-time brain-computer-
interface (BCI) systems designed for neurorehabilitation.
Karimi et al. propose a new MRCP detection method based
on constrained independent component analysis (cICA).
Xu et al. investigate single trial EEG traces during motor
imagery on healthy individuals, and provided a comprehensive
analysis of the performance of a short-latency brain switch.
The morphological investigation showed a cross-subject
consistency of a prolonged negative phase in MRCP, and

a delayed beta rebound in sensory-motor rhythms during
repetitive tasks.

(B) SYSTEMS FOR NEUROMODULATION

BASED ON DBS, EMG, AND SNN

Electrical stimulation and neuromodulation are techniques used
as therapeutic solutions for neurorehabilitation. We distinguish
here three approaches: DBS, EMG-based electrical stimulation,
and SNN for biomimetic micro-stimulations.

Rossi et al. review the proceedings of the 3rd Annual
Deep Brain Stimulation Think Tank which discussed the
most contemporary clinical, electrophysiological, imaging,
and computational work on DBS for the treatment of
neurological and neuropsychiatric disease. Recent evidence
suggests that DBS of the STN in Parkinson’s disease mediates
its clinical effects by modulating cortical oscillatory activity,
presumably via a direct cortico-subthalamic connection.
This observation might pave the way for novel closed-loop
approaches comprising a cortical sensor. Kern et al. follow the
same direction and provide preliminary evidence for detecting
a cortical fingerprint of Parkinson’s disease for closed-loop
neuromodulation.

By following a different approach, Attiah et al. perform
closed-loop experiments for reanimating paralyzed facial muscles
in a rodent model. The EMG signal of the intact side was
used to trigger Functional Electrical Stimulation (FES) on
the paralyzed side to restore symmetric whisking. The results
demonstrate a novel in vivo platform for developing control
strategies for neuromuscular facial prostheses. Time-variant
muscle responses under ES are often problematic for all
the applications of neuroprosthetic muscle control. Hayashibe
overviews the background of this topic and highlights important
points to be aware of when using ES to induce the desired muscle
activation regardless of the time-variance. He also demonstrates
how to deal with the common critical problem of ES to
move toward robust neuroprosthetic muscle control with the
evoked electromyographically controlled electrical stimulation
paradigm.

Neural prostheses based on electrical micro-stimulation
offer promising perspectives to restore lost functions following
lesions of the Central Nervous System (CNS). A challenging
perspective is to control micro-stimulation by SNN hybridized
to the living tissue. Joucla et al. design an artificial Central
Pattern Generator (CPG) based on real-time SNN to generate
alternating activity. This system is hybridized to living spinal
cord to drive electrical micro-stimulation. These results are
a first step toward hybrid artificial/biological solutions based
on electrical micro-stimulation for the restoration of lost
function in the injured CNS. Spinal cord injury can disrupt
connections between the brain respiratory network and the
respiratory muscles which can lead to partial or complete
loss of ventilatory control and require ventilatory assistance.
Zbrzeski et al. present an original bio-inspired technology
for real-time ventilation assistance, implemented in a digital
circuit. The bio-inspired controller, which is a SNN inspired by
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the medullary respiratory network, is as robust as a classical
controller while exhibiting a flexible, low-power and low-cost
hardware design.

(C) CLOSED-LOOP SYSTEMS WITH BMI

FOR REHABILITATION

In this section, we focus on closed-loop systems for rehabilitation.
BMIs may support motor impaired patients during activities of
daily living by controlling external devices such as prostheses
(assistive BMI). Wright et al. review control strategies in existing
experimental, investigational and clinical neuroprosthetic
systems in order to establish a baseline and promote a common
understanding of different feedback modalities and closed-loop
controllers.

The closed-loop control of rehabilitative technologies by
neural commands has shown a great potential to improve motor
recovery in patients suffering from paralysis. BMIs can be used
as a natural control method for such technologies. Lopez-Larraz
et al. present a proof-of-concept study to validate the feasibility
of a BMI to control an ambulatory exoskeleton by patients
with incomplete paraplegia. Ferrante et al. design a personalized
multi-channel FES controller for gait training, integrating three
novel aspects: (1) the FES strategy was based on healthy muscle
synergies in order to mimic the neural solutions adopted by
the CNS to generate locomotion; (2) the FES strategy was
personalized according to an initial locomotion assessment of
the patient and was designed to specifically activate the impaired
biomechanical functions; (3) the FES strategy was mapped
accurately on the altered gait kinematics providing a maximal
synchronization between patient’s volitional gait and stimulation
patterns.

Different studies on rehabilitation of stroke patients are
presented in this research topic. (Ibanez et al.; Ibanez et al.)
explore the feasibility of using BMIs providing low-latency
support to upper-limb reaching movements in patients with
stroke as a reliable and usable solution for motor rehabilitation
interventions with potential functional benefits.

Stroke patients with severe motor deficits cannot execute
task-oriented rehabilitation exercises with their affected upper
extremity. Advanced rehabilitation technology may support
them in performing such reach-to-grasp movements. The
challenge is, however, to provide assistance as needed, while

maintaining the participants’ commitment during the exercises.
In a feasibility study, Grimm and Gharabaghi introduce a
closed-loop neuroprosthesis for reach-to-grasp assistance
which combines adaptive multi-channel neuromuscular
stimulation with a multi-joint arm exoskeleton. Grimm et al.
also combine a hybrid BMI with neuromuscular stimulation
and antigravity assistance which augments upper limb function
and brain activity during rehabilitation exercises and may
thus provide a novel restorative framework for severely
affected stroke patients. Combining gravity-compensating
assistance with adaptive closed-loop feedback in virtual
reality provides customized rehabilitation environments
for severely affected stroke patients. Grimm et al. develop

this approach to simplify motor learning by progressively
challenging the subject in accordance with the individual
capacity for functional restoration. Bhagat et al. demonstrate
the feasibility of detecting motor intent from brain activity of
chronic stroke patients using an asynchronous EEG-based BMI.
Intent was inferred from movement related cortical potentials
(MRCPs) measured over an optimized set of EEG electrodes.
These findings provide evidence that closed-loop EEG-based
BMI for stroke patients can be designed and optimized to
successfully perform across multiple days without system
recalibration.

To conclude this part, Gharabaghi wrote a perspective article
discussing the necessary features and prerequisites of restorative
BMI for stroke rehabilitation.

AUTHOR CONTRIBUTIONS

TL, PB, PM, and MC: Prepared and discussed about this research
topic, invited authors, revised their manuscripts, and handled
their revisions.

ACKNOWLEDGMENTS

This work is supported by the generous contribution of the
European Commission ICT-FET FP7 (FET Young Explorers
scheme) BRAINBOW (www.brainbowproject.eu), granted to the
authors of this research topic. PB acknowledges financial support
from Ikerbasque (The Basque Foundation for Science) and from
the Ministerio Economia, Industria y Competitividad of Spain
(grant SAF2015-69484-792R).

REFERENCES

O’Doherty, J. E., Lebedev, M. A., Ifft, P. J., Zhuang, K. Z., Shokur, S., Bleuler, H.,

et al. (2011). Active tactile exploration using a brain-machine-brain interface.

Nature 479, 228–231. doi: 10.1038/nature10489

Bonifazi, P., Difato, F., Massobrio, P., Breschi, G. L., Pasquale, V., Levi, T.,

et al. (2013). In vitro large-scale experimental and theoretical studies for

the realization of bi-directional brain-prostheses. Front. Neural Circuits 7:40.

doi: 10.3389/fncir.2013.00040

Capogrosso, M., Milekovic, T., Borton, D., Wagner, F., Moraud, E. M., Mignardot,

J. B. et al. (2016). A brain–spine interface alleviating gait deficits after spinal

cord injury in primates. Nature 539, 284–288. doi: 10.1038/nature20118

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A.,

Etienne-Cummings, R., Delbruck, T., et al. (2001). Neuromorphic

silicon neuron circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.

00073

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Levi, Bonifazi, Massobrio and Chiappalone. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org February 2018 | Volume 12 | Article 26 | 9

https://doi.org/10.3389/fnins.2016.00312
https://doi.org/10.3389/fnins.2016.00359
https://doi.org/10.3389/fnins.2016.00425
https://doi.org/10.3389/fnins.2017.00422
https://doi.org/10.3389/fnins.2017.00126
https://doi.org/10.3389/fnins.2016.00284
https://doi.org/10.3389/fnins.2016.00518
https://doi.org/10.3389/fnins.2016.00367
https://doi.org/10.3389/fnins.2016.00122
https://doi.org/10.3389/fnins.2016.00456
www.brainbowproject.eu
https://doi.org/10.1038/nature10489
https://doi.org/10.3389/fncir.2013.00040
https://doi.org/10.1038/nature20118
https://doi.org/10.3389/fnins.2011.00073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


METHODS
published: 09 December 2016
doi: 10.3389/fnins.2016.00556

Frontiers in Neuroscience | www.frontiersin.org December 2016 | Volume 10 | Article 556 |

Edited by:

Timothée Levi,

University of Bordeaux 1, France

Reviewed by:

Alireza Mousavi,

Brunel University London, UK

Inaki Iturrate,

École Polytechnique Fédérale de

Lausanne, Switzerland

*Correspondence:

Hsin-Yi Lai

laihy@zju.edu.cn

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

Received: 10 July 2016

Accepted: 21 November 2016

Published: 09 December 2016

Citation:

Yang S-H, Chen Y-Y, Lin S-H,

Liao L-D, Lu HH-S, Wang C-F,

Chen P-C, Lo Y-C, Phan TD,

Chao H-Y, Lin H-C, Lai H-Y and

Huang W-C (2016) A Sliced Inverse

Regression (SIR) Decoding the

Forelimb Movement from Neuronal

Spikes in the Rat Motor Cortex.

Front. Neurosci. 10:556.

doi: 10.3389/fnins.2016.00556

A Sliced Inverse Regression (SIR)
Decoding the Forelimb Movement
from Neuronal Spikes in the Rat
Motor Cortex
Shih-Hung Yang 1†, You-Yin Chen 2 †, Sheng-Huang Lin 3, 4, Lun-De Liao 5, 6,

Henry Horng-Shing Lu 7, Ching-Fu Wang 2, Po-Chuan Chen 2, Yu-Chun Lo 8,

Thanh Dat Phan 1, Hsiang-Ya Chao 9, Hui-Ching Lin 10, Hsin-Yi Lai 11* and Wei-Chen Huang 12

1Department of Mechanical and Computer Aided Engineering, Feng Chia University, Taichung, Taiwan, 2Department of

Biomedical Engineering, National Yang Ming University, Taipei, Taiwan, 3 Institute of Biomedical Engineering, College of

Medicine, National Taiwan University, Taipei, Taiwan, 4Department of Neurology, Tzu Chi General Hospital, Tzu Chi University,

Hualien, Taiwan, 5 Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan

Township, Taiwan, 6 Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore,
7 Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan, 8 The Ph.D. Program for Neural Regenerative

Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, 9Department of Electrical

Engineering, National Taiwan University, Taipei, Taiwan, 10Department and Institute of Physiology, School of Medicine,

National Yang Ming University, Taipei, Taiwan, 11 Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy

for Advanced Studies, Zhejiang University, Hangzhou, China, 12Department of Materials Science and Engineering, Carnegie

Mellon University, Pittsburgh, PA, USA

Several neural decoding algorithms have successfully converted brain signals into

commands to control a computer cursor and prosthetic devices. A majority of decoding

methods, such as population vector algorithms (PVA), optimal linear estimators (OLE),

and neural networks (NN), are effective in predicting movement kinematics, including

movement direction, speed and trajectory but usually require a large number of neurons

to achieve desirable performance. This study proposed a novel decoding algorithm even

with signals obtained from a smaller numbers of neurons. We adopted sliced inverse

regression (SIR) to predict forelimb movement from single-unit activities recorded in

the rat primary motor (M1) cortex in a water-reward lever-pressing task. SIR performed

weighted principal component analysis (PCA) to achieve effective dimension reduction

for nonlinear regression. To demonstrate the decoding performance, SIR was compared

to PVA, OLE, and NN. Furthermore, PCA and sequential feature selection (SFS) which

are popular feature selection techniques were implemented for comparison of feature

selection effectiveness. Among SIR, PVA, OLE, PCA, SFS, and NN decoding methods,

the trajectories predicted by SIR (with a root mean square error, RMSE, of 8.47 ± 1.32

mm) was closer to the actual trajectories compared with those predicted by PVA (30.41

± 11.73 mm), OLE (20.17 ± 6.43 mm), PCA (19.13 ± 0.75 mm), SFS (22.75 ± 2.01

mm), and NN (16.75 ± 2.02 mm). The superiority of SIR was most obvious when the

sample size of neurons was small. We concluded that SIR sorted the input data to obtain

the effective transform matrices for movement prediction, making it a robust decoding

method for conditions with sparse neuronal information.

Keywords: sliced inverse regression (SIR), neural decoding, forelimb movement prediction, neural networks (NN),

principle component analysis (PCA)
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INTRODUCTION

In order to improve daily life activities for paralyzed patients,
the establishment of a non-muscular communication interface
between brain neurons and machines has rapidly developed over
the last two decades (Schwartz, 1993, 1994; Donoghue, 2002;
Schwartz et al., 2006; Velliste et al., 2008). With assistance from
stable generated brain-derived control signals incorporated with
prosthetic devices and motor functions, paralyzed patients now
possibly regain their ability to move a computer cursor (Kennedy
et al., 2000; Hochberg et al., 2006; Gilja et al., 2015), control an
anthropomorphic prosthetic arm (Wodlinger et al., 2015), and
drive a prosthetic device (Hochberg et al., 2012; Collinger et al.,
2013) through a brain-machine interface (BMI). One important
challenge to BMI is how to design an appropriate neural decoder
(Pohlmeyer et al., 2014). To address the challenge, previous
studies have carefully utilized training paradigms that have been
designed for a BMI decoder and controller. For brain-derived
control signals, neural decoding is an indispensable technique
that translates neuronal activities to physical states, such as the
position of a foraging rat (Brown et al., 1998), arm movement
(Ashe and Georgopoulos, 1994), movement speed (Moran and
Schwartz, 1999), hand position (Paninski et al., 2004), and joint
angular velocity (Reina et al., 2001).

A population vector algorithm (PVA), one method for
decoding motor cortical activity, assumed that a neuron’s
firing rate is related to the velocity vector of movement. PVA
categorizes each neuron’s contribution into directional and
distance information of the movement by a directional tuning
function under uniform variance conditions (Georgopoulos
et al., 1988). A previous study showed that PVA decoding could
expose the visuomotor coordinate transformations between
visual and motor information by processing masses of neuronal
activities recorded from relative brain regions (Takeda and
Funahashi, 2004; Watanabe et al., 2009). PVA presented superior
performance in predicting hand path throughout reaching tasks
(Schwartz, 1994). However, a uniformity constraint is usually
not the case for real experiments, and the equality of the
tuning function is variable because of the small amount of unit
recordings in realistic applications (Schwartz et al., 2001). To
compensate for the non-uniform preferred directions in the
population of recorded neurons, an optimal linear estimator
(OLE) was proposed to define the preferred direction of each
neuron using the center of mass of the tuning function (Salinas
and Abbott, 1994). Requiring large numbers of neurons with
a temporal solution of 10–100 ms, PVA and OLE studies
successfully predicted the kinematic parameters of a primate arm
movement (Schwartz et al., 2001; Takeda and Funahashi, 2004;
Watanabe et al., 2009).

A Bayesian decoder, a probabilistic decoding technique, could
achieve accurate offline trajectory reconstructions by combing
simple trajectory models (Yu et al., 2007). However, off-line
reconstruction may not be suitable for online prosthesis control
because the essential features of a real prosthesis are not
acquired, and the system dynamics may vary because the user
is in a closed loop. Furthermore, offline and online approaches
resulted in different parameter choices for decoding algorithms

(Cunningham et al., 2011). Therefore, the neural decoders and
the motor prosthesis must be tested online even though online
control experiments are more expensive both in terms of physical
resources and time (Gilja et al., 2011). A recursive Bayesian
decoder, i.e., a Kalman filter, was developed to decode the
neural data recorded in the monkey motor and premotor cortex
in response to goal-directed reaching movements (Shenoy and
Carmena, 2014). It yielded high decoding performance and
accurate trajectory prediction when the probability modeling
assumptions were satisfied. For online purposes, a modified
Kalman filter that transforms the acquired neural signals into a
controller input was further designed for online cursor-control
tasks and resulted in high performance in rhesus monkeys (Gilja
et al., 2012). To adapt decoders to the dynamics of a prosthetic
device and its environment, a likelihood gradient ascent and
a self-recalibrating classifier were proposed to update decoder
parameters during closed-loop BMI operation and normal use
(Dangi et al., 2013; Bishop et al., 2014). Additionally, neural
networks developed from probabilistic aspects were designed in
an online setting (Sussillo et al., 2012) and in a real-time setting
(Dethier et al., 2013).

A selection of cortical neurons, instead of all available
neurons, used in the encoding process could improve the control
performance of the neuroprosthetic system, such as robotic arms
(Wahnoun et al., 2006). However, neural coding mechanisms
evolve with time, individual experience, and the learning process
(Nicolelis, 2001), i.e., the contribution from individual neurons
may vary considerably from day to day (Carmena et al., 2003).
It has been observed that neuronal activity for monkey was not
as stable from day to day (Sadtler et al., 2014). The decoding
algorithms which require previous day’s observation of neural
activity, such as PVA and OLE, may be affected by neuron’s
stability. For this reason, the selection of cortical neurons
becomes an essential issue for the decoding processes, especially
after continuous practice and learning. Furthermore, long-term
inflammatory responses lead to a gradual decrease of recording
quality and the eventual breakdown of the electrode’s recording
ability (Polikov et al., 2005; Schwartz et al., 2006). Losing neural
signals over time will result in chronic coding failure. Thus, a
decoder that has the capability to process recorded signals from a
small number of neurons will become more important.

Sliced inverse regression (SIR) is a data-analytic tool that can
effectively perform nonlinear regression based on a small number
of inputs (Li, 1991). It divides the range of output variable into
several intervals and partitions the input data into several slices
according to the corresponding output value. Each slice consists
of data with a similar contribution to output estimation. SIR
then applies a weighted principal component analysis (PCA) to
theses slice means of data to find effective dimension reduction
directions for general and flexible setups. Each slice gains weight
according to its contribution to output estimation. With a simple
inverse regression model, SIR requires a low computational
cost and retains reliably stable subspaces to extract primary
information from noisy data with effective dimension reduction
directions. Because of the good performance in dimension
reduction and data de-noising, SIR has been widely applied to
data-intensive marketing environments (Naik et al., 2000), data
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classification (Dai et al., 2006; Wu, 2008), and medical images
(Wu and Lu, 2007; Lu, 2008; Tu et al., 2015).

It has been known that the number of recorded neurons in
rodents is less than primates in BMI applications. Owing to
the abilities of processing small number of input variables and
slicing data for inverse regression model, SIR was considered
as a neural decoding algorithm to provide realistic behavior
interpretation for brain-derived control tasks in this study. A
surrogate driving task with lever-pressing was designed for
evaluating the efficacy of the proposed decoding algorithm in
predicting motor functions of rats. The signals of lever-pressing
and the spike trains related to the intended forelimb movement
trajectories were simultaneously acquired during the task. This
study adopts SIR to predict intended forelimb movement
trajectories according to the recorded neurons from primary
motor (M1) cortex. We presented experimental validation of
the proposed decoding system using the recorded neurons to
predict forelimb movement. We demonstrated that the proposed
SIR decoding algorithm can not only extract primary features
from the small number of neurons but perform more accurate
prediction of intended forelimb movement trajectories than PVA
and OLE which usually require hundreds of neurons in primates.

MATERIALS AND METHODS

Animal Preparation
Four male Wistar rats weighing 250–300 g (BioLASCO Taiwan
Co., Ltd., Taiwan) were used in this study. All rats were
individually housed in a 12 h light-dark cycle (light from 7.00
to 19.00 h) at room temperature (22 ± 1◦C) with access to
food and water ad libitum in the experimental animal center of
National Yang Ming University. All experiments were conducted
according to standards established in the Guide for the Care and
Use of Laboratory Animals, which has been approved by the
Institutional Animal Care and Use Committee at the National
Yang Ming University.

Animal Training and Behavioral Tasks
The rats were trained to use their right forelimb to press a lever to
obtain the water reward for a week before electrode implantation,
as shown in Figure 1. The rat was placed in the lab-designed
Plexiglas testing box with a 15-cm tall lever above the floor on
the left side (Figure 1A) and a water-feeder with a flow rate of 1
ml/time on the right side as shown in Figure 1B (Lin et al., 2016).
Figure 1C shows the experimental setup where a rat was pressing
a lever for the water reward. Before achieving the successful lever-
pressing training, all rats underwent water deprivation for 8 h per
day. In this study, we have defined the criterion for the successful
training was to consecutively repeat the lever-pressing and water-
drinking for five times during daily 5-h sessions (9:00–14:00), for
4 days at the most. Once the rats learned the association, they
always kept the skilled concept (Lin et al., 2016).

Surgery and Electrophysiological Mapping
Animals were anesthetized with pentobarbital (50mg/Kg, i.p.)
and were placed on a stereotaxic apparatus (Model 900,
Kopf Instruments, Tujunga, CA, USA). A 16-channel stainless

microwire electrode array (diameter of 0.002 ft., California Fine
Wire Co., Ltd, Grover Beach, CA, USA) was inserted vertically
and was implanted into layer V of the M1 cortex (2–4mm
anterior and 2–4mm left-lateral to bregma; 1.7 mm ventral to the
cortical surface) by referring to a previous work . Here, a standard
intracortical microstimulation (ICMS) technique was conducted
to deduce maps of rat forelimb movement representations in the
M1 cortex, which could help assess the functional integrity of
M1 cortex and activate pyramidal cell fibers. ICMS delivered a 40
ms stimulus train with 0.2 ms square-wave monophasic cathodal
pulses at 350Hz to the electrodes (impedance: 200–400 k� at
1 kHz) by an isolated pulse stimulator at a rate of 1/s (Model 2100,
A-M Systems Inc., Sequim, WA, USA). Because the intensity
of the stimulating current depends on the distance between
the neuron and the stimulating electrode, the threshold current
intensity can be estimated by a strength-distance relationship as
follows:

I = kr2 + Im (1)

where k = 1292µA/mm2 for direct activation, r is the distance,
and Im = 1µA. An implantation location of the electrode
site was defined as valid when the rat forelimb was activated
by ICMS with a current intensity less than 60µA. Then, a
stainless steel screw was secured to the skull over the cerebellum
as a reference electrode. Finally, the microwire electrode array
was secured in the skull using dental acrylic (Type 1 Class 1,
Hygenic Corp., Akron, OH, USA) and was covered with a small
amount of 2% agar. For a better recovery, all rats were given
an analgesia (Buprenorphine/Buprenex, 0.05 mg/kg s.c.; Reckitt
Benckiset Healthcare Ltd, Hull, UK) every 8–12 h for 3 days
and antibiotic treatment (Ampicillin, 100mg/kg s.c. twice daily;
Bristol Myers Squibb, New York, NY, USA) for 7 days after
surgery. Following a 1-week post-surgery recovery period, all
implanted rats received the behavioral task to use their forelimb
to press a lever for water reward. The forelimb movements
in the rat were captured by a charge coupled device (CCD)
camera (DFK 21F04, Imaging Source, Bremen, Germany) and the
neuronal signals were recorded by a Multi-channel Acquisition
Processor (MAP, Plexon Inc., Dallas, TX, USA) through a 16-
channel stainless microwire electrode array implanted in the rat
M1 cortex. The detailed data recordings for forelimb movement
and neuronal signals are described in the Supplementary Note 1.

Trajectory Prediction Model
This study assumed that lever-pressing forelimb movement,
which was considered to be a stereotyped movement, was
performed at a nearly constant distance from the CCD in each
trial, i.e., the distance did not vary dramatically. The recorded
trajectory might consist of major forelimb movement and minor
whole body movement which led to the coupling mechanism of
two-dimensional forelimb movement (see Supplementary Note
1). The coupling mechanism resulted in a nonlinear relationship
between neural activity and forelimb movement, and thus caused
general linear regression to fail at forelimbmovement prediction.
SIR performs as a nonlinear regression since it can recover
the most severe nonlinearity of the data by estimating effective
dimensional reduction (e.d.r.) space (Li, 1991). Therefore, SIR

Frontiers in Neuroscience | www.frontiersin.org December 2016 | Volume 10 | Article 556 | 12

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yang et al. Neural Decoding with Sliced Inverse Regression

FIGURE 1 | Experimental setup and protocol. A perspective drawing (A) and vertical view (B) of the Plexiglas testing box. A lever is on the left side of the barrier

and a water supply is on the right side. (C) A rat is using his right forelimb to press the lever to obtain a water reward. Simultaneously, his forelimb movement trajectory

is videotaped by a camcorder approximately 25 cm away from the box, and the neuronal activities are recorded by the implanted electrode.

was adopted to predict the forelimb movement according to the
neural activity in this study.

The two-dimensional trajectory movement vectors vx and vy
in Cartesian coordinates are transformed into polar coordinates
as follows:

vr =
√

v2x + v2y (2)

vθ = tan−1 vy

vx
(3)

where vr and vθ are the magnitude and direction, respectively.
The movement response g is assumed to be given by a

deterministic function f with additive noise ε, so that

g = f (β1z, ...,βKz, ε) (4)

where g is vr or vθ , and z is firing rate data in Rp. Here, β ’s
are unknown linearly independent projection row vectors, and
K is the sufficient number of β ’s. The p-dimensional variable
z is projected onto the K-dimensional space by functional
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relationship f , where p ≥ K. The combinations of β ’s are
called the e.d.r. direction and the linear space produced by
the β ’s are called e.d.r. space. The present study assumes the
movement response g was predictable fromK projected variables.
To train the functional relationship f , a set of training data
consisting of N training samples was prepared. According to
the model assumptions, the centered inverse regression curve
E

(

z
∣

∣g
)

− E (z) is included in the linear subspace, which is
spanned by βk6zz

(

k = 1, . . . ,K
)

, where 6zz represents the
covariance matrix of z. SIR sorts and divides the whole data
z into H intervals (slices) according to the g value. Each slice
has almost equally number of observations. SIR then performs
an eigenvalue decomposition of the weighted covariance matrix
6E(z|g ) with respect to 6zz . The weighted covariance matrix

6E(z|g ) is constructed as:

6E(z|g) =

H
∑

h= 1

mh(z̄h − z̄) (z̄h − z̄)′

(N − 1)
(5)

where mh denotes the size of each slice, z̄ is the sample mean of
z, and z̄h is the sample mean of the hth slice. The e.d.r. directions
could be estimated by solving the generalized eigen-problem:

6E(z|g)βj = λj6zzβj (6)

where j = 1, . . . , p and λ1 ≥ λ2 ≥ · · · ≥ λp. Then, z was further
projected onto the e.d.r. space by the first K e.d.r. directions as
follows:

w = [β1z, ...,βKz] (7)

Then, a linear combination of w was performed to predict the
forelimb movement. Although a linear combination approach
was adopted, SIR was considered as a nonlinear regression since
there is no linearity constraint on the prediction rules. Note that
the user-specified parameters of SIR are only the number of slices
H and the number of components K. It has been known that SIR
can provide root n consistent estimates regardless of the choice
ofH. A previous study has demonstrated that the performance of
SIR is less sensitive to the selection of H when H was set 5, 10,
and 20 (Li, 1991). Furthermore, it has been found that the first
component (K = 1) is close to the e.d.r. space. Therefore, H and
K were set to 10 and one, respectively, in this study.

Time-Lags and Temporal Orders
In fact, the physical relationship between the neuronal signal
and the forelimb movement may imply time-lags in the neuronal
signal. Previous work indicates that a model that assumes that all
cells exhibit the same time-lags is computationally simple (Wu
et al., 2004). Then, the optimal time-lags could be found with an
empirical setting for further improvement of the decoding task. A
number of time-lags (0–5 time bins, at levels corresponding from
33 to 165 ms) were evaluated for trajectory prediction by SIR.

In addition to the time-lags, the temporal order of the
input is another interesting factor for the decoding issue. The
information at the nth time bin may have a relationship with

that at the (n− 1)th time bin. Hence, both current and previous
neuronal activities are important and are considered as the inputs
for prediction. Therefore, a tapped delay line model of neuronal
activities is adopted in this study where a third-order model
would consider the nth, (n− 1)th, and (n− 2)th time bins as the
input.

Performance Evaluation and Statistical
Analysis
This study computed the root mean square error (RMSE)
between true and predicted forelimbmovements frommovement
start to endpoint in order to examine the performance of
proposed decoding algorithm (Srinivasan and da Silva, 2011).
The experimental trails were randomly split 70/30% into training
and testing sets for each rat. Therefore, the performance of
the proposed decoding algorithm on the testing set could be
evaluated on each rat individually. A 10-fold cross validation was
applied to avoid capitalization on chance (Efron and Tibshirani,
1994).

For statistical analysis, the predicted performance (RMSE)
from 4 testing sets (145 trails; rat 74: 24 trials, rat 102: 18 trails,
rat 106: 78 trails and rat 129: 25 trails) were represented as the
mean ± standard error of mean (SEM). Two-way ANOVA was
calculated using effects of time-lag (bin number 0, 1, 2, 3, 4, and 5)
and temporal order (1-oder, 2-order, and 3-oder of time bins) as
the independent variables in order to determine if there were any
differences in the decoding ability based onwhich parameters was
employed. Post-hoc comparisons were conducted using a Tukey
HSD post-hoc test and the significance level was corrected to ∗P
< 0.002 using a Bonferroni correction for the comparison of
six time-lags and three temporal order. MATLAB (MathWorks,
Natick, MA, USA) was used for all statistical analyses.

RESULTS

To evaluate the decoding performance of the proposed algorithm
for trajectory prediction, the majority of decodingmethods, PVA,
OLE, and NN, were implemented for comparison. Furthermore,
two popular feature selection techniques, PCA (Wold et al.,
1987) and sequential feature selection (SFS) (Aha and Bankert,
1996), were implemented for comparison of feature selection
effectiveness. Although PCA was developed as dimension
reduction of feature space, it could be considered as a way
to select features from principle components. Then a linear
regression approach was adopted to perform regression whose
inputs were the features provided by PCA and outputs were
forelimb movements. The number of principal components was
selected according to the variance of the reconstruction error
(Valle et al., 1999). The same regression procedure was applied
to SFS. A set of time-lags (0–5 time-lags) was carried out to
observe the effect of different delays between the neuronal activity
and the forelimb movement in each method. Furthermore, a set
of experiments was conducted to evaluate the effect of various
temporal orders (1–3 temporal orders) used in each decoding
method. The experimental data were recorded from four rats
where the number of trials and number of neurons per trial for
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each rat are shown in Table 1. The average number of successful
trials was 45.9 ± 4.3, and the average number of recorded
neurons was 21.2 ± 2.6 units. The period of each trial was 0.4–
0.7 s before lever-pressing and 0.2–0.4 s after the lever-pressing.

Neuronal Signal Pattern during Behavior
Task
The task timeline in Figure 2 presents the sequential images
of the lever-pressing (Figure 2A) and the corresponding spike
trains (Figure 2B). The spike trains were acquired from
five neurons related to right forelimb movement and were
represented as the neuronal activity histogram with 33 ms time
bins. The neuronal activities distinctly increased approximately
0.4 s before lever-pressing (Figure 2B), corresponding to the
second image at 01:56.332 s (Figure 2A). The maximum value
in the histogram appears approximately 0.1 s before the lever-
pressing. The neuronal activity has a substantial reduction after
the rat completes the lever-pressing and then it re-strengthens
gradually because of the redundant movement off of the
lever.

Effects of Different Time-Lags and
Temporal Orders
Results of a particular test trial (Rat 106, 29 units, and 52th trial)
were shown in Figure 3where the trajectories were reconstructed
by six decoding methods with delay activity of four time-lags.
The actual trajectory (blue solid line) was compared with the
decoded trajectories by SIR (black dashed line), OLE (red dashed
line), PVA (green dashed line), PCA (magenta dashed line), SFS
(cyan dashed line), and NN (yellow dashed line) in Figure 3.
Furthermore, the results of one and three temporal orders were
conducted to demonstrate the advantage of SIR with the requisite
amount of input data as shown in Figures 3A,B, respectively. In
the one temporal order experiment, the trajectories reconstructed
by PVA and OLE obviously deviated from the actual trajectory
more than that reconstructed by SIR. PCA and SFS, which
perform feature selection, could achieve accurate prediction in
the previous time steps but did not predict the latter time steps
well. Similarly, a NN, which has learning ability for nonlinear
regression, could predict the trajectory well in the first few
time steps, but it did not have robust prediction performance
because of the random initialization of weights that leads to
prediction error. As the temporal order increased to three, all
methods had more accurate prediction compared to those of one
temporal order. Overall, SIR shows the best performance among
the other methods, especially when the decoding methods used
less neuronal activity information.

TABLE 1 | Experimental data characteristics.

Subject Number of trials Number of neurons per trial

Rat 74 80 18 ± 3.1

Rat 102 60 11.1 ± 1.5

Rat 106 263 32.9 ± 5.2

Rat 129 83 24.9 ± 5.4

Figure 4 presents the effects of various time-lags and temporal
orders in each method. Figure 4A shows the results of SIR where
the smallest RMSE (8.47 ± 1.32 mm) was obtained by using
four time-lags (132 ms) and one temporal order. It can be seen
that SIR with four time-lags could achieve a significantly smaller
RMSE than those with various time-lags [F(5, 54) = 4.22, ∗P
< 0.002 with Two-way ANOVA with Bonferroni correction,
N = 145]. Furthermore, the RMSE of SIR had no conspicuous
variations among the three different temporal orders. As shown
in Figure 4B, OLE achieved the smallest RMSE (17.22 ±

3.80 mm) by using four time-lags and three temporal orders.
However, there was no significant enhancement of the prediction
performance using OLE decoding with different time-lags and
temporal orders. Figure 4C shows the results of PVA where the
RMSE decreased as the number of temporal orders increases.
PVA resulted in an average RMSE of 21.76± 8.11mmwhen using
one time-lag and three temporal orders. Figures 4D,E showed
the results of PCA and SFS, respectively, where the features were
selected via these two algorithms. PCA achieved a decreasing
RMSE as the number of time-lags increased and obtained the
smallest RMSE (19.13 ± 0.75 mm) when using four time-lags
and three temporal orders. The results of SFS did not present
a decreasing RMSE as the number of time-lags increased. SFS
achieved the smallest RMSE (22.75 ± 2.01 mm) when using
five time-lags and three temporal orders. Figure 4F shows the
results of NN where the smallest RMSEs (16.75± 2.02 mm) were
achieved by using three time-lags and two temporal orders. The
RMSEs of NN did not present a regular trend as the number of
time-lags increased. The forelimb movement predictions using
OLE, PVA, PCA, SFS, and NN were not affected by either time-
lag or temporal order. No significant interaction of time-lag and
temporal order was found in the decoding methods of OLE, PVA,
PCA, SFS, and NN in comparison to SIR. These results indicated
that SIR outperformed other methods for trajectory prediction.

DISCUSSION

The main finding of this study is that a rat’s forelimb movement
could be successfully predicted and reconstructed using relatively
few motor cortical neurons. In comparison with competing
neural decoding algorithms including PVA, OLE, PCA, SFS, and
NN, SIR presented an extremely superior RMSE in distance
deviation between the reconstructed and real forelimbmovement
trajectories.

Previous studies indicated that neuronal activity discharged
before the onset of the desired movement, such as the motor
preparation period, and encoded behaviors (Chapin et al., 1999;
Churchland et al., 2006). The kinematic parameters therefore
were decoded and reconstructed with high accuracy using the
neuronal activity before the onset of the movement. Hence,
in this study, SIR and the competing algorithms decoded
the neuronal activities during the motor preparation period
for reconstruction of introduced upcoming lever-pressing. The
results showed that SIR, OLE, and PCA achieved optimal
efficiency when using the neuronal activities that led to the onset
of forelimb movement for 132 ms. PVA, SFS and NN each
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FIGURE 2 | One example of forelimb movement over time. (A) The movement video of forelimb movement. (B) The neuronal activities were recorded from five

neurons during one movement displayed as spike trains and the neuronal activity histogram (a bin size of 33 ms). The red line indicated the moment when the rat

presses down the lever with the right-forelimb. Moreover, our results showed that neuronal firing rates highly correlated with forelimb movement; >71% (41/57)

neurons exhibited specific firing changes during movement used to discriminate directional pairs.

FIGURE 3 | Reconstructed trajectories of the test trial with the use of delayed activity with four time-lags (132 ms). The actual trajectory (blue solid line)

and the trajectories predicted by SIR (black dashed line), OLE (red dashed line), PVA (green dashed line), PCA (magenta dashed line), SFS (cyan dashed line), and NN

(yellow dashed line) are shown for an example trial using (A) one- and (B) three- temporal orders. The trajectory reconstructed by SIR is more accurate than the other

methods.

achieved optimal efficiency by using the neuronal activities that
led to the onset of forelimb movement for 33, 165, and 99 ms,
respectively. In Figure 2B, the peak of the spike train occurred at

four time-lags, prior to the onset of lever-pressing. The neuronal
firing rate then declined for 0.2 s as a result of the completion
of motor command transmission. Because the rat performed an
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FIGURE 4 | RMSEs of (A) SIR, (B) OLE, (C) PVA, (D) PCA, (E) SFS, and (F) NN decoding methods plotted with various time-lags (33 ms/lag) and temporal orders.

The error bars denote standard error of the mean (Mean ± SEM). The results showed that SIR is superior to the other methods for trajectory reconstruction. SIR is

unaffected by temporal orders, and the best performance was achieved with four time-lags (132 ms). The symbol * indicates significant different means with P <

0.002 and analyzed by Bonferroni correction for multiple comparisons, N = 145. Mean ± SEM%.

unexpected forelimb swing, the neuronal firing rate increased
again approximately 0.2 s after to the onset of lever-pressing.

The performance of cortical neural decoding hinged on
the exploited information in chronically-recorded neuronal
activities. Previous studies using PVA (Schwartz, 1994) and
OLE (Salinas and Abbott, 1994) show that cortical neurons
with known motor associations were chronically sampled and
as many as possible were recorded. Because of the lack of a
precise technique to target the modulated neurons that largely
contributed to goal-directed behavior, PVA and OLE summed
the weighted vectors across all neurons, performing a neuronal
vote, to predict the kinematic parameters (Salinas and Abbott,
1994; Schwartz, 1994). A large number of electrodes and sample
neurons (usually up to hundreds) was required for reconstruction
of kinematic parameters with a high degree of accuracy (Chapin
et al., 1999;Wessberg et al., 2000; Serruya et al., 2002; Taylor et al.,
2002). However, the neuronal activity was not as stable from day
to day (Sadtler et al., 2014). PVA and OLE may be affected by
neuron’s stability since they extract movement information from
the selected cortical population.

In this study, we recorded only tens of neurons from rat
M1 where the amount of recorded neurons was insufficient for
PVA and OLE, which usually require hundreds of neurons to
provide a robust neural decoding process (Takeda and Funahashi,
2004; Wahnoun et al., 2006). Compared to PVA and OLE,
SIR can effectively achieve nonlinear regression from a small
number of inputs (Li, 1991). SIR adopted a sliced regression
framework with a sorting procedure to divide the neuronal
dataset into several slices according to the sorted output variable
value. Each slice contained neurons with a similar contribution

to the introduced lever-pressing and was then modified by
a weight. Slices containing neurons with tiny or even a null
contribution to the lever-pressing may gain zero weight and can
be removed from the decoding model. Multiplied by a proper
weight according to the weighted PCA, a slice containing a
few neurons with a high contribution presented a comparable
influence on the prediction and reconstruction of the introduced
lever-pressing to the neuronal vote from hundreds of neurons.
Hence, SIR is able to perform forelimb prediction through a
small number of neurons. On the other hand, dimensionality
reduction technique factor analysis is usually adopted to describe
population activity using low-dimensional set of factors and
highlight feature of interest in data from a large number of
recorded neurons (Sadtler et al., 2014). Although SIR could
perform dimensionality reduction through weighted PCA, it
preserved all recorded neurons and assigned weights to the slices
according to their contribution. It learned forelimb movement
prediction from whole neuronal activities regardless of neuron’s
stability across days. Thus, SIR was robust to uncertain variation
of movements and neuronal activities across days due to the
success of inverse regression and effective dimension reduction.
Furthermore, using this SIR, the size of the neural decoding
model topology was significantly reduced, burdened with data
storage and reduced computational loading, indicating that
efficiency in neural decoding in comparison to PVA and OLE
was attainable. Compared to PCA and SFS, which perform
feature selection and dimensional reduction, PCA could further
project the data onto another space, which could lead to a
better reconstruction than SFS. However, SIR outperformed PCA
and SFS because SIR clusters data into each slice according
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to the output values. NN performed better prediction than
PCA and SFS because of its nonlinearity and learning ability.
Nevertheless, NN did not result in a robust reconstruction
because of the mechanism of random initialization and the
existence of many local optima. These comparisons indicate
that the neural decoding based on SIR with one temporal order
presents a smaller RMSE in reconstructing limb movement than
those based on PVA or OLE with three temporal orders and those
based on feature selection and learning ability. It indicates that
SIR can be a more suitable solution than the commonly used
linear progression methods using the neuronal ensemble inputs
to predict and reconstruct the introduced limb movement.

CONCLUSIONS

Neural decoding models that require hundreds of input
variables, such as PVA and OLE, not only require considerable
computation but also have detrimental effects in the decoding
process because of errors in assigning neuronal spikes or non-
stationary noise, especially for non-adaptive models. Reducing
the neurons that may cause model over-fitting emerges as a
significant neural decoding issue. However, with the help of the
proposed approached based on SIR, researchers can predict and
reconstruct the limb movement of interest with high accuracy
using only tens of neurons in a single setting. Furthermore,
SIR outperformed other feature selection methods, such as PCA
and SFS because of its clustering ability. SIR further achieved
more robust performance than NN because there is no random
initialization and local optimization problems in SIR. By indexing
the contribution of multiple cortical areas with different sizes, it
has become feasible to ascertain the importance of selected areas
for the motor commands. This will provide valuable insights for
follow-up studies in the future.
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introduction: Options currently available to individuals with upper limb loss range from 
prosthetic hands that can perform many movements, but require more cognitive effort 
to control, to simpler terminal devices with limited functional abilities. We attempted to 
address this issue by designing a myoelectric control system to modulate prosthetic 
hand posture and digit force distribution.

Methods: We recorded surface electromyographic (EMG) signals from five forearm 
muscles in eight able-bodied subjects while they modulated hand posture and the 
flexion force distribution of individual fingers. We used a support vector machine (SVM) 
and a random forest regression (RFR) to map EMG signal features to hand posture and 
individual digit forces, respectively. After training, subjects performed grasping tasks and 
hand gestures while a computer program computed and displayed online feedback of 
all digit forces, in which digits were flexed, and the magnitude of contact forces. We also 
used a commercially available prosthetic hand, the i-Limb (Touch Bionics), to provide a 
practical demonstration of the proposed approach’s ability to control hand posture and 
finger forces.

results: Subjects could control hand pose and force distribution across the fingers 
during online testing. Decoding success rates ranged from 60% (index finger pointing) to 
83–99% for 2-digit grasp and resting state, respectively. Subjects could also modulate 
finger force distribution.

Discussion: This work provides a proof of concept for the application of SVM and 
RFR for online control of hand posture and finger force distribution, respectively. Our 
approach has potential applications for enabling in-hand manipulation with a prosthetic 
hand.

Keywords: myoelectric hand, neuroprosthesis, machine learning applied to neuroscience, neurorobotics, brain–
machine interface
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inTrODUcTiOn

A significant challenge faced in modern medicine is in replacing 
a lost hand for upper limb amputees. The human hand performs 
many complex functions in the activities of daily living. One 
area of challenge is in the tradeoff between functionality and 
ease of use. A prosthetic hand that performs more functions will 
generally require more cognitive effort from the user. In contrast, 
a prosthetic hand that is simpler to control generally has more 
limited functionality.

According to an epidemiology study by Dillingham and col-
leagues (1), from 1988 to 1996 about 134,000 Americans under-
went upper limb amputations from trauma and another 29,400 
Americans lost their upper limbs to dysvascular disease. Though 
there are already a number of different upper limb prostheses 
available, the rate at which individuals with upper limb loss stop 
using the prostheses is significant. A meta-analysis by Biddiss and 
Chau (2) showed abandonment rates of 26% in body-powered 
prosthesis users and 23% in electrically powered prosthesis users. 
Major reasons for these abandonment rates include heavy weight, 
lack of functionality and durability, discomfort, poor cosmetic 
appearance, and finally too much effort required to control the 
prosthesis.

One of the main remaining challenges for prosthetic hand 
developers is in allowing the user to reliably control many differ-
ent hand movements without too much cognitive effort. Body-
powered systems are reliable, but their harness system can result 
in fatigue and strain (2). Furthermore, body-powered prostheses 
are limited in their functionality. Control systems based on elec-
troencephalographic (EEG) signals can be used to control pros-
thetic hands for above-elbow amputees and paralyzed individuals 
(3, 4). However, the implementation of these systems tends to be 
challenging because EEG signals are associated with many other 
behaviors besides hand motion, such as proximal musculature 
involved in hand transport, trunk movement, and so forth. Other 
methods are being developed to extract signals from within the 
brain or peripheral nerve tissue, but such methods are invasive 
and expensive (5).

Myoelectric systems are based on electromyographic (EMG) 
activity of residual muscles following an amputation and offer 
several advantages relative to the above-described systems. 
Specifically, EMG-controlled systems are non-invasive, and 
they take advantage of signals recorded from residual muscle 
activity that is specifically involved in the task. Numerous 
systems have been developed for recording surface EMG 
signals from the upper limb and extracting features to predict 
in real-time grasp postures and/or forces, or for individuals 
with upper limb loss, predicting the user’s intended hand 
movement. Castellini et al. (6) demonstrated the use of EMG 
in predicting hand postures in healthy able-bodied individu-
als. Castellini et al. (7) further demonstrated that EMG signals 
from the residual muscles of amputees can predict five different 
imagined grasp poses to accuracies around 79–95% and grip 
force with accuracies between 7 and 17% normalized root 
mean square error (NRMSE) (7). The grasp poses included 
open hand, closed fist, 2-digit pinch, tripod (3-digit) grip, and 
index finger pointing.

In the same year, Yang et al. (8) demonstrated the use of 
EMG in the forearm to predict one of 18 possible combina-
tions of finger flexion/extension for the thumb, index, and 
middle finger. It was found that while the classification 
accuracy was quite high when training and testing on data 
collected within the same session, training on data in an 
earlier data collection session and testing on a later session 
yielded much lower classification accuracies (50–60%). 
Subsequently, Castellini and Kõiva (9) demonstrated the use 
of a myoelectric control system that allowed 12 able-bodied 
subjects to modulate individual finger forces when the hand 
lay flat on a surface with each finger placed on top of force 
sensors. Although this system is a good proof of principle 
of myoelectric control of finger forces, this type of control 
was not demonstrated in a grasping task when the subject’s 
hand is not laid flat on a surface, but rather is in a fist. In 
addition, this work does not account for wrist rotation during 
grasping tasks, although future work should focus on testing 
the robustness of our decoder across wrist postures that are 
commonly found in activities of daily living. Later work by 
Cipriani et  al. (10) examined real-time myoelectric control 
of grasp types by individuals with upper limb loss with nine 
EMG electrodes placed along either side of the residual 
forearm muscles. Predicted gestures included open hand, 
closed fist, thumbs up, index finger pointing with extended 
thumb, flexed thumb with four extended fingers, and 3-digit 
grip. Average online control classification accuracy was 79% 
for transradial amputees and 89% for able-bodied subjects. 
However, this work did not examine online control of digit 
forces.

The present work attempts to expand upon the work of 
Castellini et al. (7) by implementing online control of hand 
postures—as opposed to offline cross-validation—and 
online control of individual finger forces, which allow sub-
jects to modulate the distribution of force across the fingers 
of the prosthetic hand. The system is programed in Matlab, 
and therefore does not implement true real-time control. 
However, the delay between a change in EMG signals and 
a change in desired hand motion is only 0.3 s. For a proof-
of-concept demonstration of our approach, we used the 
commercially available i-limb hand (Touch Bionics) because 
it has a separate motor for each digit and each digit can 
exert seven different levels of grip forces, thus allowing for 
some degree of force modulation by individual digits. We 
examined several grasping tasks, including lifting the object 
using a chosen grasp type (2-digit, 3-digit, or whole-hand 
grasp), alternating between grasp types while holding the 
object, and modulating the grip force during the object hold-
ing phase. Because the i-limb hand has certain limitations 
(limited speed of motion, limited ability to exert a discrete 
set of forces per digit), we tested this system mostly by using 
a computer program to give online feedback of finger forces 
and grasp type for each loop iteration, while simultaneously 
instructing the subject to perform different hand poses. 
The system’s performance is demonstrated on able-bodied 
individuals before future testing on individuals with upper 
limb loss.
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FigUre 1 | experimental protocols. (a) For Experiment 1 (Hand 
postures), subjects were asked to shape their right hand to create six 
postures (open hand, closed fist, rest, 2-digit grasp, 3-digit grasp, and 
pointing). (B) For Experiment 2 (Digit forces), subjects were asked to change 
the distribution of finger forces of their right hand while grasping a sensorized 
object with the left hand. A computer monitor was used to display force data 
recorded from the sensorized grip device grasped with the left hand. 
Subjects were given force feedback for each digit in the form of rising bars 
(one/digit, bottom left display) as well as for all digits (total grip force, bottom 
right display). For both experiments, we recorded electromyographic activity 
through surface electrodes placed on the right forearm.
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MaTerials anD MeThODs

subjects
Eight right-handed subjects (age: 23.5  years, SD: ±3.42, five 
males, three females) participated in the study. We recruited 
subjects who identified themselves as right handed. Subjects had 
no history or record of neurological disorders and had never per-
formed tasks involving myoelectric control of an external device. 
Subjects gave informed written consent to participate in the 
experiments. The experiments were approved by the Institutional 
Review Board at Arizona State University and were in accordance 
with the Declaration of Helsinki. Each experimental session (one 
session/subject) lasted approximately 1.5–2 h.

experimental Protocols
We asked subjects to perform two sets of tasks. In the first set 
of tasks, subjects were asked to perform a series of grasping and 
finger pointing tasks (Task 1: hand postures; Figure 1A). In the 
second set of tasks, subjects were asked to vary the distribution 
of normal forces among the fingers in a closed fist (Task 2: digit 
forces). For both tasks, we recorded EMG signals from five surface 

EMG electrodes and extracted features from these signals to train 
a one-against-one support vector machine (SVM). This SVM was 
used to distinguish hand poses, and a random forest regression 
(RFR) was used to predict each of the five digit forces. Subjects 
performed both tasks in the same experimental session. Below 
we describe the procedures for both training and testing of our 
EMG decoder system.

eMg recording, signal Processing, and 
Feature extraction
We placed five surface EMG electrodes (Delsys) around the cir-
cumference of the forearm just below the elbow (Figure 1B). The 
electrodes were roughly equally spaced apart. At least one EMG 
electrode was placed over the m. extensor digitorum superficialis 
(finger extensor) on the dorsal surface of the forearm. The other 
electrodes did not target specific muscles. A reference EMG 
electrode was placed directly over the lateral epycondyle of the 
humerus. Prior to EMG electrode placement, the area was cleaned 
with rubbing alcohol pads. We did not target specific muscles 
because this approach is not always feasible when using surface 
EMG from residual muscles in individuals with upper limb loss. 
Specifically, availability of specific target muscle depends on the 
extent and state of residual muscle fibers following amputation 
which, in turn, may affect the EMG signal quality and the extent 
to which it can be used for hand posture or grasp force decoding. 
Thus, we aimed at using a muscle-independent EMG decoding 
approach to resemble a more realistic scenario of extracting 
features from non-specific forearm muscles.

Our preliminary online and offline testing showed that 
increasing the number of electrodes did not improve the hand 
pose classification accuracy. We had also performed preliminary 
offline testing on a high-resolution electrode array (90 channels) 
and found that hand pose classification was more difficult due 
to lower signal quality. Furthermore, work by Castellini et al. (7) 
showed that five electrodes placed around the circumference of 
the forearm allowed for prediction of desired hand pose in three 
amputees. This work, as well as our study, suggested that the qual-
ity of the EMG signal might be more important for hand pose and 
finger force decoding than the number of EMG channels.

All EMG signals during training and testing were analyzed 
in individual 50-ms non-overlapping time windows for the 
purpose of enabling online control. Although time windows 
longer than 50 ms may improve prediction accuracy, we chose a 
50-ms time window length based on the need to reduce control
delays due to data processing (see below). However, we note
that pilot testing revealed that longer time windows would not
have significantly improved prediction accuracy. Furthermore,
Castellini et al. (7) reported that a time window of 50 ms was
sufficiently long to make predictions of desired hand motions in 
amputees. Control was quasi real time as the processing delay
was about 0.3  s. For each EMG signal-recording interval, the
computed signal average was subtracted to center the signal
amplitude about 0. Next, all points in the time interval were
normalized to a range spanning −1 to +1 where a value of ±1
represents the EMG magnitude recorded during maximum vol-
untary contraction (MVC). MVC EMG was recorded by asking
subjects to perform six maximum isometric force contractions:
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isometric finger flexion, finger extension, wrist flexion, wrist 
extension, wrist abduction, and wrist adduction. For each EMG 
channel, the root mean square (RMS) was computed for each 
50-ms time window throughout the entire MVC trial. The
maximum RMS value computed for each channel during the
MVC recording was used as the EMG magnitude representative
of MVC for that channel. All signals collected in that channel in
subsequent recordings were centered at 0 and then divided by
the MVC magnitude.

Electromyographic signals were amplified in hardware (gain: 
1,000; Delsys Bagnoli-8 EMG System) before being digitized 
and analyzed in software. After subtraction of the mean and 
normalization of the EMG signal, 60 Hz line noise was filtered by 
passing the signal through a 60-Hz notch filter with 3-dB cutoff 
and bandwidth set to 20 Hz. Next, features were extracted from 
each filtered 50-ms time window. We explored various EMG 
signal features presented in previous work [e.g., Zecca et al. (11) 
and Khushaba et al. (12)] including mean absolute value, vari-
ance, Willison amplitudes, mean of amplitudes, auto-regressive 
coefficients, and other novel features presented by Khushaba et al. 
(12). Of these features, three were found to be most informative 
for predicting hand posture. The first chosen feature is the RMS, 
computed according to Eq. 1:

RMS =
=
∑1 2

1

2

N
x t

t t

t

( ) (1)

where the term x(t) denotes the EMG signal value at time t.
The next two features were derived by Khushaba et al. (12). 

These features were computed by the zero-order moment (same 
as RMS above), m0, the second-order moment, m2, and the fourth-
order moment, m4. These moments were computed according to 
Eqs 2–4:
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The variable T is the length of time for one time window. After 
computing the moments, the irregularity factor, IF, and the wave-
length variable, WL, were computed according to Eqs 5 and 6:
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One of the features (f) used was dependent on the zero-order 
moment or RMS, computed according to Eq. 7:

f m
N2

0= 





log (7)

The variable, N, is the number of samples within each time 
window. The third feature type was computed according to Eq. 8:

f3 = ( )log IF
WL (8)

Each type of feature was computed not only for each indi-
vidual EMG channel but also for each combination of channel 
pairs where the feature value of one channel would be subtracted 
from the feature value of the other channel, thus yielding 15 
features of each feature type. To identify non-redundant features, 
we performed linear correlation between feature pairs. As many 
features were highly correlated with each other, we did not use all 
features for hand posture and digit force prediction. Therefore, 
we chose the 15 features characterized by the weakest correlation 
with each other. For each pair of features that were highly cor-
related, we chose the feature that changed the most between grasp 
types. We found that the features that changed the most between 
grasp types also were highly correlated with each other, and were 
therefore redundant. Selecting features least correlated with each 
other yielded less redundancy, and therefore more information. 
As such, the same set of features was used in distinguishing all 
pairs of hand poses.

Force Data recording and Processing
Normal forces exerted by each digit were measured by five force/
torque (F/T) sensors (ATI Industrial Automation) mounted on 
a grip device grasped by the left hand. Four F/T sensors (Nano-
17) were mounted on the finger side of the grip device, and an
F/T sensor (Nano-25) was mounted on the thumb side. During
recording sessions, the subject grasped the force-sensing device
with one digit on each force sensor, and force data were collected
synchronously with EMG data to form a mapping between EMG
and each digit force.

eMg and Force Data Processing
Electromyographic and force data were acquired at 1  kHz by 
12-bit analog-to-digital converter boards (NIDAQ PCI-6225,
National Instruments; sampling frequency: 1  kHz). EMG data
recording was performed through Matlab (Mathworks), which
forces data recording through LabVIEW (version 8.0, National
Instruments). EMG data and force data were synchronized by a
trigger pulse sent by the LabVIEW program to the NIDAQ board 
at the start of the recording. This pulse appeared in the EMG
recording in Matlab.

Training Data collection
After recording MVC EMG, the subject was prompted to relax 
the hand for 1 min while EMG signals were recorded. RMS was 
computed for each 50-ms time window of the resting period 
and the resting threshold was computed as 1.5 times the average 
magnitude of the EMG signal in each channel. When the RMS 
of all five EMG channels was below their resting threshold, the 
computer program predicted that the hand was at rest.
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The EMG decoder predicts one of six possible hand poses. The 
hand poses are shown in Figure  1A. We chose these poses to 
capture basic grasp types [2- and 3-digit precision grasps where 
the thumb contacts the fingertips; closed fist to approximate a 
“power” grasp (13)], as well as non-prehensile hand postures 
(rest, open hand, and index finger pointing). To form a mapping 
between EMG signals and hand pose/digit forces, data were col-
lected from 12 training trials lasting 30 s each. For trials 1 and 2, 
the subject extended all fingers. About 15 s after the start of the 
recording, the subject was told to co-contract the hand muscles 
while keeping fingers extended for about 7–8 s. For trials 3 and 4, 
the subject shaped the hand into a 2-digit grasping pose where the 
thumb and index finger pressed against each other at the tips and 
the other three fingers were extended (Figure 1A). Fifteen seconds 
after the start of the recording, the subject was told to increase the 
pinch force for about 7–8 s. For trials 5 and 6, the subject did an 
index finger pointing (Figure 1A). Subsequently, the subject was 
told to increase and then decrease the muscle co-contraction. For 
trials 7 and 8, the subject did a 3-digit grasp (index finger and 
middle finger pressing against the tip of the thumb while ring 
finger and little finger were extended; Figure 1A). Fifteen seconds 
after the start of the recording, the subject was told to increase 
the pinch force.

For trials 9–12, subjects made a fist with the ipsilateral hand 
and grasped the force-sensing object with the contralateral hand 
(Figure 1B). The subject was asked to keep flexion forces approxi-
mately the same for both hands. For trial 9, the subject began by 
making a fist using a small grip force, and then the subject shifted 
most of the force onto the index finger with the ipsilateral hand 
while still maintaining a closed fist. With the contralateral hand, 
the subject exerted most or all of the pressure on the force sensors 
with the thumb and index finger to teach the RFR that most of the 
force was concentrated on the index finger and thumb. The same 
procedure was repeated for the middle finger. For trial 10, the 
process was repeated for the ring finger and little finger. For trials 
11 and 12, the subject started the trial with the ipsilateral hand in 
a relaxed fist and the contralateral hand exerting minimal force 
on all five force sensors. The subject was then prompted to ramp 
up the flexion force across all digits on both hands to a moderately 
high value, maintain the higher grip force for about 5 s, and then 
ramp the force back down.

The rationale for having subjects make a fist with the right ipsi-
lateral hand during training while grasping the force sensors with 
the contralateral hand was that this approach is more feasible for 
training individuals with unilateral (ipsilateral) upper limb loss. 
Specifically, these individuals can use the intact (contralateral) 
hand to grasp force-sensing object while sending similar motor 
commands to the ipsilateral hand to trying to match forces across 
the two limbs.

One of the goals of the system in the current study is to allow 
the user to grasp the object with the prosthetic hand by simply 
making a fist with the real hand, and then pressing the fingers 
into the palm in order to modulate the distribution of force across 
the fingers. EMG signals can change depending on the size of 
the object being grasped. Therefore, if EMG signals are recorded 
while the subject is grasping a force-sensing object of a certain 
size, then the subject may need to grasp an object of the same 

size during online control in order to generate the desired finger 
forces.

Training the Machine learning classifiers 
and regressions
Figure 2 shows a block diagram of the training portion and test-
ing portion of our system. 15 The training portion inputs data 
from the subject to form a mapping between EMG signal and 
16 hand pose, and a mapping between EMG signal and finger 
forces. The testing portion of the 17 system inputs EMG signals 
and makes online predictions of hand pose and finger forces.

To distinguish among the five hand postures, we used a one-
against-one radial basis kernel SVM. Such a system consists of 
one SVM binary classifier to distinguish each pair of hand poses. 
When one hand pose is guessed in favor of the other one, the hand 
pose receives a vote. The hand pose receiving the most votes across 
the different SVM classifiers gets selected. The hyperparameters 
were determined by offline testing on preliminary pilot data. Such 
testing would train on some data and test on the other data. The 
classification errors were computed for each set of hyperparam-
eters, and the hyperparameters yielding the lowest classification 
errors were selected. For more information on SVMs and the 
one-against-one multiclass classification methods, the reader is 
referred to Hsu and Lin (14). To distinguish each pair of poses, 
15 features were selected with the lowest correlation with each 
other. For digit force predictions, the 15 RMS features were used 
to train a RFR, which used 50 trees and all 15 features/tree. For a 
description of RFR algorithm, see Breiman (15). A separate RFR 
was trained for each digit force.

Online Myoelectric control: Finger Force 
Prediction through a computer Program
Regulation of force is difficult with the i-limb hand because (1) 
the i-limb hand commands only consist of integer values from −7 
to +7, thereby limiting the resolution of force exertion and (2) if 
force is too high, it is difficult to reduce the force on a given finger 
by a specific amount unless extensive calibration is employed to 
determine the duration of the extension command necessary to 
decrease the force by a specific amount without losing contact. 
Furthermore, (3) the wireless Bluetooth-based communication 
required to receive commands tended to be unstable in our setup. 
Therefore, most of the online testing of the quality of myoelectric 
control was performed using a custom-made computer program. 
This program printed to the screen the predicted flexion forces for 
each digit during each loop iteration (~3 loop iterations/second). 
The computer program prompted the subject either to perform 
grasping tasks or to make a fist and vary the force distribution 
among the fingers.

For simulated grasping tasks using the computer program, 
50  ms of EMG data were recorded for each loop/iteration. 
EMG signal features were extracted and input into the SVM 
classifiers for hand posture prediction, and RFRs for digit force 
prediction. Flexion and extension forces for each digit were 
printed to the screen at the end of the loop iteration. A force 
value greater or lower than 0 indicated predicted flexion or 
extension, respectively. A value equal to 0 indicated a predicted 
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resting state. If all printed digit forces were negative, then the 
predicted hand pose was open hand. If all printed digit forces 
were positive, then the predicted hand pose was closed fist. 
If only the top 2-digit forces (index finger and thumb) were 
positive, then the predicted hand pose was a 2-digit pinch grip. 
If only the index finger force was negative and all other forces 
were positive, then the predicted hand pose was an index finger 
point (which could be performed while grasping an object).

Initially, the subject was given time to familiarize with the 
computer program used to display predicted finger forces by 
learning to associate the printed forces on the screen with specific 
hand poses. If digit force control was not sufficient, then training 
would be repeated for specific hand poses that were found to be 
more difficult to predict. To test the quality of myoelectric con-
trol, commands were posted on the screen to the subject about 
what hand posture to adopt and what target force to reach during 
grasping.

The computer program would summate the normal forces of 
the digits in contact and print the total grip force in the space 
below the individual digit forces. When the subject was asked 
to grasp, a target grasping force was printed to the screen in the 
area below the predicted total grip force. We chose submaximal 
target grasping forces (ranging from 6 to 30 N for a 2-digit and 
power grasp, respectively) as these are typically associated with 
activities of daily living. An example of force feedback (printed to 
the screen once per loop iteration) is shown below:

INDEX-THUMB GRASP
Thumb: 5.62
Index finger: 4.32
Middle finger: 0.05
Ring finger: −1
Little finger: −1
9.944 N
Target Force: 6 N

Each grasp task consisted of 100 iterations, at roughly 300 ms/
loop iteration. Below is the list of commands given to the subject 
in chronological order:

Relax, Open Hand, Index-thumb grasp (target force = 6 N, 12 N), 
Open Hand, Relax

Open Hand, Three-digit grasp (target force = 10 N, 20 N), Open 
Hand, Relax

Open Hand, Power grasp (target force = 30 N, 25 N, 20 N, 15 N, 
10 N), Open Hand

Relax, Open Hand, Power grasp (target force  =  12  N), Index 
finger point (target force = 12 N), Power grasp, Index finger 
point, Power grasp, Open hand, Relax 

Open Hand, Power grasp, Index-thumb grasp, Power grasp, 
Index-thumb grasp, Power grasp, Open Hand, Relax

To factor out response time of subjects to the change in com-
mand, the program paused for 4 s whenever there was a change 
in the command given to the subject.

For the second set of exercises, subjects made a fist the entire 
time and then varied the magnitude and distribution of flexion 

force across the digits. For the first 20% of iterations, subjects began 
with a relaxed fist (minimal flexion forces) and when prompted, 
made a tight fist. Every 20 iterations, subjects transitioned from 
tight to relaxed fist, or from relaxed to tight fist. For the second 
20% of iterations, subjects were prompted to shift the force to 
the little finger. For the third 20% of iterations, subjects were 
prompted to shift the force to the ring finger. For the fourth 20% 
of iterations, subjects shifted the force to the middle finger. For 
the fifth 20% of iterations, subjects shifted the force to the index 
finger. Both sets of trials were performed five times. Subjects 
alternated between grasping task rounds and force-shifting task 
rounds, making a total of 10 rounds. We accepted all attempts at 
achieving the target force. The measure of how close the subject 
attained the target force was captured the NRMSE, which was 
computed as the square root of the difference between the target 
and predicted force divided by the target force.

Testing with the i-limb hand
For practical demonstration purposes, the myoelectric control 
system was tested on a commercially available prosthetic hand, 
the i-limb (Touch Bionics). For each loop iteration, commands 
were wirelessly sent to the i-limb hand where the integer value of 
the flexion command was proportional to the predicted flexion 
force. The subject was asked to grasp the 5-digit force-sensing 
object (one force sensor/digit) using a 5-digit grasp, 2-digit pinch 
grip, and a 3-digit tripod grip. The subject was only required to 
complete one successful trial for each grasp type. Finally, the 
subject was prompted to alternate grasp types during object hold. 
For this trial, the subject used myoelectric control to grasp the 
object with five digits. Upon command, the subject released the 
index finger to do an index finger point, and then upon com-
mand, the subject returned to the 5-digit grasp. Next, the subject 
was prompted to release 2 or 3 of the fingers and transition to a 
3-digit or 2-digit grasp without losing contact. Finally, the subject 
released the object. For all grasping tasks with the i-limb hand,
a successful trial was defined as a trial during which the subject
could hold a grasp for about 5 s without unwanted hand opening, 
and then release the grasp on verbal command.

To quantify the level of difficulty in completing simple grasp-
ing tasks with the i-limb hand, subjects were asked to rate each 
i-limb task level of difficulty on a scale from 1 to 5. On the scale,
1 = “easy,” 2 = “able to do the task,” 3 = “able to do the task, but
with effort,” 4 = “moderately hard,” and 5 = “very hard or could
not do.”

Data analysis: Predicted Finger Forces 
and Force Distributions
For trials concerned with grasping tasks, variables of interest 
included the NRMSE of the grip force across grasp types, and 
confusion matrix that relates predicted hand posture to desired 
hand posture. The error of the grip force was computed as the 
difference between the total predicted grip force and the target 
force. Total grip force was computed as the summation of 
normal forces across all digits that were supposed to be flexed. 
For hand pose predictions, the overall percent accuracy was 
computed as the percent of the loop iterations during which 

25

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 2 | electromyographic (eMg) decoding system block diagram. For training, the system takes three inputs: EMG signal, force measurements from 
each digit of the hand, and hand pose. For testing, the system uses only one input, EMG, to predict hand pose and each digit force in real time. Each rectangle in 
the diagram represents a data processing step. The circle represents the system output. Above the dashed line is the training portion of the system, which forms a 
mapping between EMG and hand pose as well as a mapping between EMG and each of the five digit forces. Below the dashed line is the portion of the system that 
inputs EMG, extracts features, and generates a prediction of hand posture and digit forces for online control.

Gailey et al. Online Decoding of Hand Postures and Forces

Frontiers in Neurology | www.frontiersin.org February 2017 | Volume 8 | Article 7 |

the predicted hand pose was correct out of the total of 500 
loop iterations. Another variable of interest is the number of 
times that an open hand is predicted when the correct hand 
pose is a grasp. Such a situation would indicate unwanted loss 
of contact.

For trials concerned with force distribution across the fingers, 
the finger forces were summated for each loop/iteration, and then 
the fraction of the total finger force contributed by each finger 
was computed. For loop iterations 101–200, the little finger was 
expected to contribute the highest fraction of total finger force 
out of all the other fingers. Similarly, for loop iterations 201–300, 
the ring finger was expected to contribute the highest fraction 
of total finger force. For loop iterations 301–400, the middle 
finger was expected to contribute the highest fraction of total 
finger force. For loop iterations 401–500, the index finger was 
expected to contribute the highest fraction of total finger force. 
Data analyses examined the extent to which the force distribution 
across fingers changed as the subject was prompted to shift the 
flexion force from one finger to the next. Force distributions were 
measured as the percent of total finger force that was contributed 
by each finger during each time epoch. Force distribution index 
was used as an additional measure of force distribution, with a 
value of −1 for all force concentrated on the little finger, a value 
of +1 for all force concentrated on the index finger and a value of 
0 for evenly distributed forces.

When force distribution changed across fingers, the myoe-
lectric control system may predict an incorrect grasp type. To 
investigate this issue, the variable of interest was the percentage 
of the time that the 5-digit (correct) hand posture was predicted.

statistical analysis
The first statistical analysis focused on performance during the 
in-hand force-shifting task. A repeated-measures analysis of 

variance (ANOVA) was performed on the force distribution 
index (range: −1 to 1) with three within-subjects factors: round 
of trials (Round; five levels), time epoch within each round (Time 
epoch; five levels), and first half versus second half of each time 
epoch (Sample; 2 levels). Subjects performed five rounds of the 
force-shifting tasks. Changes in force distribution across rounds 
indicate whether there was significant change in performance 
with practice. Changes in force distribution across time epochs 
indicate whether there was a significant change in force distribu-
tion across the fingers when subjects were prompted to change 
their force distribution from one finger to the next. The purpose 
of analyzing the factor Sample was to examine if performance 
was dependent on the length of time that subjects were asked 
to maintain a force distribution concentrated on one particular 
finger. Because each loop/iteration lasted approximately 300 ms, 
each time epoch was about 30 s long.

A second ANOVA was performed on overall hand pose pre-
diction accuracy for the grasping tasks using one within-subject 
factor (Round; five levels). Results of this analysis would indicate 
whether overall prediction accuracy improved with practice.

resUlTs

The EMG control system design presented here is for dem-
onstrating the use of machine learning techniques to decode 
five surface EMG signals from the forearm to predict desired 
hand motion. A machine learning-based mapping was created 
between EMG signal features and individual finger move-
ments, allowing online control of individual finger movements 
in a robot hand. The end goal is to allow subjects to open the 
hand, grasp an object using a chosen grasp type, and execute an 
index finger pointing for gesturing or typing. When grasping, 
subjects were told to use the EMG decoder system to modulate 
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FigUre 3 | grasping task performance (third round, one subject). The figure shows the hand pose that the subject was instructed to achieve and maintain 
(blue circles), and the hand pose that the electromyographic (EMG) decoder predicted (red crosses). Each line corresponds to a specific hand pose. The top line 
refers to an unclassified hand pose, which happened when the EMG decoder output transitioned from one hand pose to the next.
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not only the amount of grip force but also the distribution 
of grip force across the fingers. To test system performance, 
subjects were prompted to perform grasping tasks and finger 
pointing tasks with a virtual hand in an ad  hoc computer 
program where finger and thumb forces were printed to the 
computer screen at the end of each loop iteration.

grasping Task Performance
Figure 3 illustrates task performance during the third round of 
virtual grasping tasks for a representative subject. Each of the five 
grasping task rounds consisted of 500 loop iterations, and each 
grasping task within a round consisted of 100 loop iterations 
(~300  ms/loop iteration). For the first 100 loop iterations, the 
subject was prompted to open the hand, do a 2-digit grasp, and 
then open the hand again. During the next 100 loop iterations, the 
subject was prompted to repeat with a 3-digit grasp. During loop 
iterations 200–300, the subject was prompted to perform a 5-digit 
grasp. During loop iterations 300–400, the subject was prompted 
to perform a 5-digit grasp, and then transition back and forth 
between a 5-digit grasp and an index finger point. During loop 
iterations 400–500, the subject was prompted to perform a 5-digit 
grasp, and then transition back and forth twice between a 5-digit 
grasp and a 2-digit grasp. The subjects were instructed to hold 
each hand pose for a fairly long duration to assess not only sub-
jects’ ability to achieve a given hand pose but also to maintain it.

confusion Matrices
We created confusion matrices to illustrate the performance of 
the EMG decoder in predicting hand poses (Table 1). A confu-
sion matrix not only indicates the overall accuracy of hand pose 
prediction but also specifies areas of confusion in predicting hand 
pose. Each entry of the confusion matrices is the median ± SEM 
across subjects. Entries in each row of the confusion matrix rep-
resents the hand pose that the subjects were instructed to adopt. 
Entries in each column represent the percentage of time that each 

hand pose was predicted. For example, the confusion matrix for 
Round 1 shows that when the subject was prompted to open the 
hand, an open hand was only predicted about 50% of the time 
(median across subjects). For 14% of the time, a 2-digit grasp 
was predicted instead. For 1% of the time, a 3-digit grasp was 
predicted. For 2 ± 6% of the time, a closed fist was predicted. An 
unclassified hand pose was predicted 5 ± 3% of the time.

For an ideal discrimination of hand postures, a confusion 
matrix will have a value of 100% along the diagonal and a value 
of 0% off the diagonal. Non-zero percentages that are off of the 
diagonal represent areas of confusion between pairs of hand 
poses. Predictions of an unclassified hand pose occurred when 
transitioning from one classified hand pose to the next. Some 
unclassified poses included a closed fist with extension of the 
little finger, extension of the little finger and index finger, exten-
sion of the middle finger and ring finger, and flexion of only the 
thumb and middle finger. These poses occurred mostly when the 
subject was attempting an open hand, 2-digit grasp, or 3-digit 
grasp.

The confusion matrices for each round show an improvement 
in performance across rounds. However, it should be noted that 
for some subjects, the EMG decoder was retrained on one of the 
hand poses only after Round 1, thereby partially explaining the 
increase in performance from Round 1 to Round 2. From Round 
2 to Round 5 however, there was some improvement in the ability 
to perform a 3-digit grasp and an index finger point that can be 
attributable only to practice.

Analysis of variance on the overall hand pose prediction 
accuracy revealed that prediction accuracy varied significantly 
across grasping tasks (Time epoch; p < 0.05) with no main effect of 
Round (practice) or interaction between Round and Time epoch. 
Although 5- and 2-digit grasping had the highest and lowest 
prediction accuracy, we found that no significant difference was 
found between these two grip types. However, we found a main 
significant effect of experimental session (p < 0.001).
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TaBle 1 | confusion matrices, rounds 1 to 5 ± interquartile range.

Performed → Open hand 2-digit grasp 3-digit grasp Finger point closed fist rest Unclassified

Desired ↓

round 1: 63 ± 39% average success rate
Open hand 50 ± 35 14 ± 12 1 ± 1 0 ± 1 2 ± 22 0 ± 0 5 ± 9
2-digit grasp 6 ± 27 72 ± 47 4 ± 9 0 ± 0 4 ± 6 0 ± 0 3 ± 10
3-digit grasp 0 ± 2 11 ± 42 48 ± 68 0 ± 0 4 ± 8 0 ± 0 6 ± 24
Finger point 0 ± 0 0 ± 0 0 ± 0 45 ± 37 35 ± 37 0 ± 0 0 ± 13
Closed fist 0 ± 17 2 ± 3 0 ± 3 7 ± 15 77 ± 26 0 ± 2 5 ± 4
Rest 0 ± 0 3 ± 4 1 ± 1 1 ± 3 4 ± 7 88 ± 21 0 ± 4

round 2: 78 ± 36% average success rate
Open hand 81 ± 19 4 ± 7 1 ± 1 0 ± 1 2 ± 9 0 ± 0 1 ± 7
2-digit grasp 2 ± 19 86 ± 56 2 ± 3 0 ± 0 4 ± 6 0 ± 0 3 ± 9
3-digit grasp 0 ± 0 11 ± 36 57 ± 62 0 ± 0 2 ± 8 0 ± 0 4 ± 18
Finger pointing 0 ± 0 0 ± 0 0 ± 0 49 ± 50 31 ± 22 0 ± 0 0 ± 5
Closed fist 0 ± 2 0 ± 2 0 ± 1 0 ± 8 93 ± 15 0 ± 0 1 ± 43
Rest 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 3 100 ± 11 0 ± 0

round 3: 82 ± 30% average success rate
Open hand 78 ± 26 3 ± 4 1 ± 1 0 ± 1 2 ± 6 0 ± 0 2 ± 3
2-digit grasp 3 ± 19 85 ± 41 1 ± 4 0 ± 0 4 ± 4 0 ± 0 3 ± 7
3-digit grasp 0 ± 2 7 ± 24 74 ± 50 0 ± 0 2 ± 4 0 ± 0 3 ± 16
Finger pointing 0 ± 0 0 ± 0 0 ± 0 65 ± 45 20 ± 7 0 ± 1 0 ± 13
Closed fist 0 ± 1 1 ± 2 0 ± 1 1 ± 3 90 ± 8 0 ± 1 2 ± 3
Rest 0 ± 0 0 ± 1 0 ± 0 0 ± 0 1 ± 3 98 ± 11 0 ± 0

round 4: 80 ± 21% average success rate
Open hand 83 ± 28 2 ± 1 1 ± 1 0 ± 1 2 ± 3 0 ± 0 2 ± 3
2-digit grasp 6 ± 11 86 ± 34 1 ± 1 0 ± 0 3 ± 4 0 ± 0 2 ± 1
3-digit grasp 0 ± 2 11 ± 24 64 ± 32 0 ± 0 1 ± 2 0 ± 0 5 ± 22
Finger pointing 0 ± 0 0 ± 0 0 ± 0 57 ± 22 27 ± 22 0 ± 0 0 ± 0
Closed fist 0 ± 1 1 ± 2 0 ± 0 1 ± 3 93 ± 8 0 ± 0 3 ± 3
Rest 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 1 99 ± 4 0 ± 0

round 5: 83 ± 25% average success rate
Open hand 86 ± 16 4 ± 6 1 ± 1 0 ± 1 2 ± 3 0 ± 0 2 ± 2
2-digit grasp 6 ± 19 83 ± 34 2 ± 4 0 ± 0 4 ± 4 0 ± 0 3 ± 3
3-digit grasp 0 ± 0 7 ± 38 73 ± 56 0 ± 0 1 ± 8 0 ± 0 6 ± 16
Finger pointing 0 ± 0 0 ± 0 0 ± 0 60 ± 22 25 ± 20 0 ± 0 0 ± 0
Closed fist 0 ± 2 1 ± 2 0 ± 0 1 ± 3 94 ± 9 0 ± 0 1 ± 1
Rest 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 1 99 ± 16 0 ± 0

Numbers in bold represent the percent of the time that each hand pose was 5 correctly predicted.
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achieving Target Forces
During each grasp, subjects were told to reach a target force. The 
total predicted grip force across the fingers in contact was sum-
mated for each loop/iteration. The subject was prompted to attain 
the predicted total grip force to match the target force as closely 
as possible. The task was challenging because of the large varia-
tion in predicted grip force from one loop iteration to the next. 
Although the predicted grip force was computed as the average 
of the previous three loop iterations, there still was significant 
variability in force predictions across consecutive loop iterations.

Quality of grip force control was measured by the NRMSE. 
Table  2 shows the NRMSE for each round of grasping tasks. 
The first row represents Round 1 and the bottom row represents 
Round 5 after subjects have undergone practice. The first column 
is the average NRMSE computed across all grasp types ± SEM. 
The other columns show the NRMSE for specific grasp types. 
The NRMSE shows little improvement with practice, but finer 
control of grip force during the 2-digit grasp. We found a margin-
ally significant effect of number of digits when comparing force 

production with 2, 3, and 5 digits (p = 0.057), with NRMSE being 
lowest in the 2-digit case. This was most likely due to the fact that 
the 2-digit grasp only involves control of 2 of the digit flexion 
forces rather than all 5, leaving less room for variability in total 
grip force. The overall ANOVA revealed NRMSE from the 2-digit 
condition to be lower than 3- and 5-digit condition, whereas 3- 
and 5-digit conditions were not significantly different from each 
other. We found no interaction or effect of session on NRMSE.

Force Distribution across Fingers
Figure  4 shows how the force distribution across the fingers 
changes across time epochs. For the first time epoch, subjects 
were told to make a fist and periodically vary the total force every 
20 iterations. For the second time epoch, subjects were told to 
shift the grip force to the little finger. For the third time epoch, 
subjects were told to shift the force to the ring finger. For the 
fourth time epoch, subjects were told to shift the force to the 
middle finger. For the fifth time epoch, subjects were told to shift 
the force to the index finger.
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TaBle 2 | normalized root mean square error (nrMse) of grip force 
control ± seM.

experimental 
round

average 
nrMse 

(%)

nrMse 
2-digit 

(%)

nrMse 
3-digit 

(%)

nrMse 
5-digit 

(%)

Round 1 26 ± 5 24 ± 5 20 ± 3 26 ± 6
Round 2 23 ± 2 15 ± 2 26 ± 5 24 ± 2
Round 3 22 ± 2 18 ± 2 20 ± 2 23 ± 2
Round 4 22 ± 1 17 ± 2 23 ± 1 23 ± 2
Round 5 25 ± 3 18 ± 2 25 ± 3 25 ± 4

FigUre 4 | electromyographic decoder output for each finger flexion 
force (one subject). The subject was instructed to vary the force distribution 
across the fingers. The instruction given to the subject is shown on top for 
each time epoch. Time epochs are separated by vertical dashed lines. Data 
from each digit are shown on each row. The instructed digit for each task is 
denoted by a red trace. The little finger is expected to show an increased 
predicted force during loop iteration 100–200. During loop iteration 200–300, 
the ring finger is expected to show an increased predicted force. During loop 
iteration 300–400, the middle finger is expected to show an increased 
predicted force. During loop iteration 400–500, the index finger is expected 
to show an increased predicted force.
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A substantial increase in predicted ring finger force is observed 
with a drop in predicted little finger force from time epoch 2. In 
time epoch 4, subjects were told to shift the force to the middle 
finger. A drop in predicted ring finger force is shown along with 
an increase in middle finger force and often an increase in index 
finger force. In time epoch 5, subjects were told to shift the force 
to the index finger. An increase in predicted index finger force is 
observed along with a decrease in middle finger force. The upper 
left plot represents data taken across subjects from Round 1. The 
lower left plot shows force distribution across time epochs in 
Round 2 after subjects have benefited from some practice and 
after retraining was done on one of the subjects for force predic-
tions. The lower right plot represents data taken across subjects 
from Round 5 after subjects have benefited from more practice 
without any additional retraining. In Round 5, subjects are better 
at shifting more force selectively to the pinky and ring finger in 
time epochs 2 and 3. In both Rounds 1 and 5, subjects can easily 
shift force to the index finger and less on the little and ring finger.

Another way of illustrating grip force distribution across the 
fingers is the force distribution index, which is equal to −1 when 
all force across the fingers is concentrated on the pinky and equal 
to +1 when all force is concentrated on the index finger. When 
force is evenly distributed across the fingers, the force distribution 
index is 0. Force distribution index is computed as follows:

F F F F Fdist index middle ring pinky= + − −* * . * . *1 0 5 0 5 1  (9)

When the subject was told to make a fist during the first time 
epoch, we expected the force distribution index to be greater 
than 0 because naturally the index finger and middle finger each 
have a higher grip force than the little finger. Table 3 shows force 
distribution indices across time epochs (by row) and subjects (by 
column). Data from across rounds show more negative values 
when subjects were told to shift the force to the little finger, and 
greater positive values are found when subjects were told to shift 
the force to the index finger. Compared to when subjects were 
told to make a regular fist, the force distribution index was lower 
when subjects were told to shift the force to the ring or little finger, 
and higher when subjects were told to shift the force to the middle 
or index finger.

We found that subjects were able to shift force distribution 
across the fingers from one time epoch to the next (significant 
main effect of Time epoch; p  <  0.002). However, subjects did 
not improve with practice, and furthermore, we found that the 
duration of the time epoch did not affect how well subjects could 
maintain a given force distribution across fingers (no main effect 
of Round, Sample, or significant interaction; p > 0.1).

ability to Perform grasping Tasks without 
Dropping the Object
A major factor influencing whether a grasping task can be 
performed successfully with an artificial hand is whether there 
is an unwanted opening of the hand as this can cause dropping 
of the object. In the trials involving grasping tasks, an open-
ing of the hand when the hand was not supposed to be open 
rarely occurred (4.4 ± 1.4% of loop iterations), and there was 
little change in the incidence of unwanted hand openings across 

Figure 5 shows how the percent of total grip force on each 
finger varied across time epochs (horizontal axis). In time epoch 
1, subjects were told to flex all of the fingers. Naturally, more force 
will be on the index finger and middle finger as these fingers can 
produce more force than other fingers. In time epoch 2, subjects 
were told to shift the force to the little finger. It can be seen that a 
shift in the force distribution toward the little finger occurred. In 
time epoch 3, subjects were told to shift the force to the ring finger. 
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FigUre 5 | Force distribution across fingers with each time epoch. For epoch = 1, subject made regular closed fist. For epoch = 2, subject shifted force to 
the pinky. For epoch = 3, subject shifted the force to the ring finger. For epoch = 4, subject shifted the force to the middle finger. For epoch = 5, subject shifted the 
force to the index finger. Total grip force refers to the sum of the grip forces across the fingers, excluding the thumb. Error bars represent the interquartile range.
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rounds. Unwanted hand opening occurred most often for the 
index-thumb grasp, as illustrated in the confusion matrices 
(Table 1). In trials involving shifts in force distribution across 
the fingers, unwanted hand opening also occurred very rarely 
(2.7 ± 1.2% of the time).

To further assess the ability to performing grasping tasks, sub-
jects were allowed to myoelectrically control the i-limb hand. For 
these trials, subjects were instructed to do a few basic grasping 
tasks. The first task involved simply opening and closing the hand. 
The second and third tasks involved performing 2- and 3-digit 
grasps, respectively. The fourth task involved grasping with a 
5-digit grasp, transitioning to index finger pointing, transitioning 
back to a 5-digit grasp, then transitioning to a 2- or 3-digit grasp
before opening the hand. All subjects who attempted the opening 
and closing of the hand succeeded in performing these move-
ments, although some subjects did so more easily than others. All 
subjects were able to do 2- and 3-digit grasps, but often with dif-
ficulty. All but one subject were able to perform the index finger
pointing and transition from a 5- to a 3-digit grasp without losing 
contact. Subject 7 did not attempt the grasping tasks because of
insufficient time availability.

Finally, we also asked subjects to report the level of difficulty 
they experienced while performing online control of each online 
i-limb task. 1 = “easy,” 2 = “able to do the task,” 3 = “able to do the 
task, but with effort,” 4 = “moderately hard,” and 5 = “very hard or
could not do.” Table 4 shows the rating for each subject and task.
More than half of the ratings (19/35) were below 3, i.e., subjects
found the task to be easy or at least doable. Some of the ratings
(9/35) were equal or greater than 3, indicating that subjects found 
the task moderately or very hard. These tasks were usually the
finger pointing or the transition from 5- to 3-digit grasp. Although 
all subjects were able to transition from a 5- to a 3-digit grasp,
some had trouble transitioning from a 5- to a 2-digit grasp without 
accidentally opening the hand. A 2-digit grasp involves flexing of
3 fingers, which could have caused the hand pose to be confused
with the open hand pose, which involves flexing of all digits.

DiscUssiOn

This work has demonstrated a proof of principle for a system 
that decodes EMG signals from the upper limb of able-bodied 
subjects for online prediction of individual digit forces. Subjects 
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TaBle 4 | subjective rating of difficulty level of i-limb grasping task.

i-limb tasks s1 s2 s3 s4 s5 s6 s7 s8

5-digit grasp 2 2 1 2 2 1 n/a 1
2-digit grasp 3 2 3 2 1 1 n/a 1
3-digit grasp 4 3 2 2 1 1 n/a 4
Finger point 3 4 5 4 4 2 n/a 2
5→3 transition 5 3 4 3 3 1 n/a 3

TaBle 3 | Force distribution indices for each subject and averages across subjects.

s1 s2 s3 s4 s5 s6 s7 s8 average

round 1

Regular fist 0.24 0.35 0.20 0.19 0.20 0.08 0.22 0.45 0.24

Shift to pinky −0.10 0.32 −0.02 0.00 −0.22 0.54 −0.12 0.06 0.06

Shift to ring 0.10 −0.19 0.02 0.45 −0.26 0.73 0.14 0.01 0.12

Shift to middle 0.12 0.07 0.18 0.37 0.47 0.63 0.48 0.58 0.36

Shift to index 0.22 0.51 0.49 0.40 0.73 0.49 0.50 0.74 0.51

round 2

Regular fist −0.02 0.36 0.23 0.14 0.08 0.27 0.30 0.31 0.21

Shift to pinky −0.13 0.40 0.10 0.13 −0.17 0.21 −0.42 −0.17 −0.01

Shift to ring −0.02 −0.05 0.11 −0.10 −0.30 0.06 −0.04 0.15 −0.02

Shift to middle 0.39 0.20 0.17 0.19 0.61 0.52 0.38 0.58 0.38

Shift to index 0.38 0.49 0.27 0.23 0.56 0.31 0.60 0.73 0.45

round 5

Regular fist 0.21 0.38 0.12 0.16 0.11 0.27 0.19 0.35 0.22

Shift to pinky 0.15 0.39 −0.00 0.20 −0.34 0.06 −0.31 0.25 0.05

Shift to ring 0.09 0.32 −0.07 0.38 −0.27 0.24 0.05 0.00 0.09

Shift to middle 0.62 0.14 0.06 0.51 0.62 0.40 0.46 0.51 0.42

Shift to index 0.32 0.54 0.54 0.42 0.66 0.42 0.70 0.61 0.53
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were able to perform a variety of grasping tasks using an ad hoc 
computer program. The system is to eventually be used on tran-
sradial amputees for enabling them to perform grasping tasks and 
hand gesturing with myoelectric control of a prosthetic hand such 
as the i-limb hand.

Clearly, predicting individual digit forces alone is insufficient 
for online prediction of hand motion because the EMG-to-force 
mapping on a given digit changes depending on which of the 
other digits is flexed. For example, the EMG-to-force mapping for 
the middle finger is going to be different for a thumb-middle fin-
ger precision grasp versus a closed fist. By incorporating an SVM 
classifier that distinguishes between hand postures, myoelectric 
control of hand motion, and individual digit forces for everyday 
activities becomes more feasible.

As with any myoelectric control system, this system is vulner-
able to changes in the EMG signal over time. This issue is particu-
larly relevant for myoelectric control systems that predict multiple 
hand motions. As the proposed system has not been tested for 
its functionality over time periods of hours or days, future work 
will examine the sensitivity of our myoelectric control system to 
prolonged usage. Nevertheless, the impact of changes in EMG 
signals on myoelectric controllers has been extensively studied 
and the insight provided by this previous work could potentially 
be integrated with the proposed approach. Below we discuss 
previous work on myoelectric prosthesis controller algorithms 
and the contributions of the present work.

Previous Work on Myoelectric Decoders
Previous work has also explored numerous techniques for 
using EMG signals to predict desired total grasp force and hand 
postures. With regard to grasp force prediction, Gijsberts and 
colleagues (16) demonstrated the use of a supervised non-linear 
incremental learning method (Incremental Ridge Regression) 
that makes occasional updates with small batches of training data 
each time. This approach led to a reduction in normalized mean 
square error and an increase in the correlation between desired 
and predicted grip forces.

With regard to hand kinematics, Anam and Al-Jumaily (17) 
used an online sequential learning method that used small chunks 
of finger movement data collected online as additional training 
data. These additional chunks of data were used to update the 
weights of the trained model without retraining the entire model. 
The online retraining allowed for a model prediction accuracy 
to be maintained at 85% day-to-day, whereas the system without 
online retraining could not. This system could distinguish among 
10  movement classes, i.e., 5 individual finger movements and 5 
combined finger movements where more than one finger flexed 
simultaneously. Another group (18) used supervised adaptation-
based linear  discriminant analysis methods to adapt to drifts in the 
EMG signal. Offline analysis showed improvements in classifica-
tion accuracy from 75% without adaptation to 92% with adapta-
tion. For online control, the accuracy increased by 25%. The system 
distinguished between a mix of hand and wrist movements, which 
included wrist pronation/supination, wrist flexion/extension, hand 
open, 2-digit pinch grip, key grip, and no movement. Al-Timemy 
and colleagues (19) demonstrated classification of up at 15 finger 
movements with 98% accuracy using only 6 EMG channels in intact 
subjects and 90% accuracy using 11 EMG electrodes in amputees.  
Interestingly, the system showed better performance using 
Orthogonal Fuzzy Neighborhood Discriminant Analysis (OFNDA) 
for feature selection than principal component analysis (PCA). 
Unlike PCA, OFNDA takes into account maximum separation of 
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feature values between classes. PCA only takes into consideration 
maximum variability among feature values in feature space.

Continuous morphing between hand postures has been 
another attempt at making prosthetic hand movements more 
natural. Segil and Weir (20) created a mapping between the EMG 
principal component and joint angle domains for allowing real-
time control by able-bodied subjects of 15 joints of a virtual hand 
displayed on a computer screen. The authors reported accurate 
control of 13 out of 15 joints in the best-case scenario. In addition, 
EMG control and joystick control were found to be comparable 
in controlling joint motions. By using SVMs, Khushaba et al. (21) 
distinguished 10 classes of individual and combined finger move-
ments, including a hand close movement, with 90.3% accuracy 
in real-time control experiments on eight able-bodied subjects.

Finally, ultrasound imaging has also been studied as a means 
to overcome the limitations of surface EMG. Akhlaghi and col-
leagues (22) implemented a real-time control system that classifies 
hand motions by sensing mechanical deformations in forearm 
muscle compartments. Although the results were encouraging, 
the system is not feasible for eventual integration with hand 
prosthesis controllers.

contributions to Previous Work
It should be noted that the above-cited work on myoelectric 
algorithms has focused mostly on EMG-based prediction of total 
grasping force. To the best of our knowledge, the use of myoe-
lectric signals to predict individual finger forces has not been 
investigated. This is a major gap, as successful prediction of flex-
ion force of individual fingers from EMG signals could be useful 
for performing in-hand object manipulation using a prosthetic 
hand. Another gap in the literature on myoelectric controller 
algorithms is that there has been no demonstration of smooth 
transitions between grasp types without losing contact with the 
object. Although previous work has explored myoelectric control 
of smooth transitions between hand postures (20), such work did 
not address how easily such transitions between grasp types could 
be made without accidental loss of contact with the object.

In the present work, we have demonstrated proof of princi-
ple of a unique system that provides online intuitive control of 
individual finger forces. Subjects simply press their fingers into 
the palm of their hands, and the force exerted by each finger into 
the palm is approximately correlated with the flexing force com-
mand delivered to the corresponding finger of the robot hand. 
The training process involves grasping a force-sensing object only 
with the contralateral hand while pressing with approximately 
identical finger flexion forces on the ipsilateral hand. In this way, 
the system could be trained on amputees who have no ipsilateral 
hand with which to grasp the force-sensing object.

Although the RFR that predicted each finger force was trained 
only when the subject was making a fist, finger force prediction 
was transferable to other grasp types such as the 2-digit pinch 
grip. As long as the subject was given feedback of the digit 
forces, the subject was able to modulate his/her EMG signals to 
adjust the total grasping force accordingly. For grasping tasks 
performed using a computer program to display predicted finger 
forces, confusion matrices show that most of the improvement in 
performance across rounds was from Round 1 to Round 2, with 

smaller improvements shown in subsequent rounds (Table  1). 
In Round 5, our algorithm attained success rates ranging from 
60% (index finger pointing) to 94 and 99% for closed fist and 
resting state, respectively. Some of the improvement from Round 
1 to Round 2 was due to retraining on 1–2 hand poses on some 
of the subjects. Some improvement could thus be attributed to 
practice and familiarization to the task. Overall, our results show 
that subjects have voluntary control over the hand pose that the 
system outputs, although there is room for improvement in the 
system’s prediction accuracy.

Figures 4 and 5 demonstrate the feasibility of EMG control of 
not only total grip force but also grip force distribution across the 
fingers during a grasping task. By selectively pressing the fingers 
into the palm of the hand, subjects can control which fingers 
have the largest normal force at the system output. This feature 
of the system allows for more dexterous control of individual 
finger motions that is intuitive for the user. However, due to high 
noise in predictions of total grip force, NRMSE is higher than it 
could have been. Finally, we demonstrate that subjects can use 
myoelectric control to transition between grasp types without 
losing contact with the object, as shown in Figure 3.

Methodological considerations
One way of improving the system is incorporation of a Kalman 
filter for hand posture predictions. A Kalman filter can take into 
account the degree of uncertainty in each hand posture predic-
tion, and it gives higher weight to predictions with higher levels 
of certainty. A one-against-one SVM selects the hand posture 
with the most votes. Therefore, the first possible measure of 
uncertainty in the SVM is the number of votes in favor of the 
chosen hand posture relative to the number of votes in favor 
of the other hand postures. If there are two hand postures that 
both have the largest number of votes, then there is uncertainty 
in the hand pose prediction. The second possible measure of 
uncertainty is in the distance of a data point from the dividing 
hyperplane in feature space. For distinguishing each pair of hand 
poses in an SVM, there is a dividing hyperplane in feature space 
that assigns a specific hand posture to data points on one side of 
the hyperplane and another hand posture to data points on the 
other side of the hyperplane. The shorter the distance between 
a data point and the dividing hyperplane, the larger the degree 
of uncertainty, and therefore the lower the weight that would 
be given to that prediction. A third measure of uncertainty 
would be whether the prediction of hand posture is different 
from the previous few predictions. When the system has a high 
enough processing speed to make 20 predictions/second, each 
prediction can be weighed differently depending on its level of 
uncertainty.

Even though the trials performed using a computer program to 
display predicted finger forces were characterized by an unwanted 
open hand in a small percentage of the trial duration, when using 
the i-limb it only takes one unwanted hand opening of the hand 
to classify the grasping task as unsuccessful. As described above, 
there are several methods that can be implemented for preventing 
unwanted opening of a prosthetic hand during a real grasping 
task. One such method is a Kalman filter, which weighs different 
hand pose predictions depending on their level of uncertainty.
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With regard to our delay in hand posture estimation, Farrell 
and Weir (23) estimated 100–125 ms as optimal delays for fast 
and slower prehensors, respectively. The optimality of these 
delays is based on compromising between allowing for sufficient 
time for EMG decoding and maximizing the responsiveness of 
the prosthesis. Although our 300-ms delay is more than twice 
the optimal delay identified by Farrell and Weir (23), it could 
be significantly improved by at least 10-fold by using a different 
software platform (i.e., C++ instead of Matlab) to enable a larger 
number of hand pose predictions to be made per second. Using 
Kalman filters (see above) would allow for the weighing of differ-
ent hand pose predictions based on the level of certainty in each 
prediction.

Potential applications for individuals with 
Bilateral Upper limb loss
Some individuals may have both hands amputated, in which case 
they have no hand with which to grasp a force-sensing device. 
In such cases, the system can make assumptions about the finger 
flexion forces at certain time points. For example, when the ampu-
tee is asked to concentrate the force on a specific finger, the system 
can assume an arbitrarily higher flexion force for that finger and 
a minimal force on the other fingers during that time frame. 
Amputees also can be prompted to vary the total grip force of a 
grasp where in some time frames the amputee can be prompted 
to exert a minimal total grasp force, and in other time frames the 
amputee can be prompted to exert a high grasping force. For each 
time frame, the system can make an assumption about the total 
grasp force and assume how the force would be distributed across 
the fingers during a grasp such as a regular closed fist depending 
on previous data from able-bodied individuals. For each case, 
the opposing thumb force can be assumed to be approximately 
equal to the summation of the four finger forces. An advantage of 
this approach is that it requires the same effort across subjects for 
exerting specific grasping forces because the assumption made 
of the grasping force for each time frame is independent of the 
magnitude of EMG signal (because of normalization) and of the 
overall muscular strength of the subject.

cOnclUsiOn

We have demonstrated proof of principle in the use of five EMG 
electrodes for predicting hand pose and individual finger forces 
using a one-against-one SVM and RFR, respectively. The present 
system has potential for myoelectric control of dexterous hand 

prostheses. Future work should explore additional methods of 
feature selection, signal filtering, machine learning classifica-
tion, Kalman filtering, and training. New myoelectric control 
systems should be adjustable with small amounts of new train-
ing data without the need to retrain the entire system so that 
drifts in the EMG signal over time do not decrease classification 
accuracy.

eThics sTaTeMenT

Subjects gave informed written consent to participate in the 
experiments. The experiments were approved by the Institutional. 
Review Board at Arizona State University (Protocol: #1201007252) 
and were in accordance with the Declaration of Helsinki. Prior 
the experiment, participants were given time to read a consent 
form that described the experimental procedure. After reading 
the form, participants were asked if they had any questions. After 
any questions were answered, participants were asked to sign and 
date the consent form. Next, the experimenter signed and dated 
the consent form. No participants from vulnerable populations 
were used in this study.

aUThOr cOnTriBUTiOns

AG designed the prosthetic control system, designed most of the 
experimental protocol, carried out the experimental protocol, 
collected data, analyzed data, and made data plots. PA provided 
expertise in the area of myoelectric control of robotic devices, 
thereby playing a role in design of the prosthetic control system 
and experimental protocol design. MS provided expertise in 
motor control and neuroscience. He contributed to the experi-
mental design and data analysis methods. All authors contributed 
to manuscript preparation.

acKnOWleDgMenTs

The authors thank Dr. Justin Fine for assistance with statistical 
analysis.

FUnDing

Research reported in this publication was supported by the 
Eunice Kennedy Shriver National Institute of Child Health and 
Human Development of the National Institutes of Health under 
Award Number R21HD081938 and the Grainger Foundation.

reFerences

1. Dillingham TR, Pezzin LE, MacKenzie EJ. Limb amputation and limb
deficiency: epidemiology and recent trends in the United States. South Med J 
(2002) 95(8):875–83. doi:10.1097/00007611-200208000-00018 

2. Biddiss EA, Chau TT. The roles of predisposing characteristics, established
need and enabling resources on upper extremity prosthesis use and abandon-
ment. Disabil Rehabil Assist Technol (2007) 2(2):71–84. 

3. Hazrati MK, Almajidy RK, Weiss J, Oung S, Hofmann UG. Controlling a
simple hand prosthesis using brain signals. 48th Annual Conf of the German
Society for Biomedical Engineering. Hannover (2014).

4. Agashe HA, Paek AY, Zhang Y, Contreras-Vidal JL. Global cortical activity
predicts shape of hand during grasping. Front Neurosci (2015) 9(121):121.
doi:10.3389/fnins.2015.00121 

5. Thakor NV. Translating the brain-machine interface. Sci Transl Med (2013)
5(210):210ps17. doi:10.1126/scitranslmed.3007303 

6. Castellini C, Fiorilla AE, Sandini G. Multi-subject/daily life activity
EMG-based control of mechanical hands. J Neuroeng Rehabil (2009) 6:41.
doi:10.1186/1743-0003-6-41 

7. Castellini C, Gruppioni E, Davalli A, Sandini G. Fine detection of grasp force 
and posture by amputees via surface electromyography. J Physiol Paris (2009) 
103:255–62. doi:10.1016/j.jphysparis.2009.08.008 

33

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
https://doi.org/10.1097/00007611-200208000-
00018
https://doi.org/10.3389/fnins.2015.00121
https://doi.org/10.1126/scitranslmed.3007303
https://doi.org/10.1186/1743-0003-6-41
https://doi.org/10.1016/j.jphysparis.2009.08.008


Gailey et al. Online Decoding of Hand Postures and Forces

Frontiers in Neurology | www.frontiersin.org February 2017 | Volume 8 | Article 7 |

8. Yang D, Zhao J, Gu Y, Jiang L, Liu H. EMG pattern recognition and grasping 
force estimation: improvement to the myocontrol of multi-DOF prosthetic
hands. The 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems. St Louis, MO (2009). p. 516–21.

9. Castellini C, Kõiva R. Using surface electromyography to predict single finger 
forces. The Fourth IEEE RAS/EMBS International Conference on Biomedical
Robotics and Biomechatronics. Roma, Italy (2012). p. 1266–72.

10. Cipriani C, Antfolk C, Controzzi M, Lundborg G, Rosén B, Carrozza MC,
et  al. Online myoelectric control of a dexterous hand prosthesis by tran-
sradial amputees. IEEE Trans Neural Syst Rehabil Eng (2011) 19(3):260–70.
doi:10.1109/TNSRE.2011.2108667 

11. Zecca M, Micera S, Carrozza MC, Dario P. Control of multi-functional pros-
thetic hands by processing the electromyographic signal. Crit Rev Biomed Eng
(2002) 30(4–6):459–85. doi:10.1615/CritRevBiomedEng.v30.i456.80 

12. Khushaba RN, Takruri M, Miro JV, Kodagoda S. Towards limb position
invariant myoelectric pattern recognition using time-dependent spectral
features. Neural Netw (2014) 55:42–58. doi:10.1016/j.neunet.2014.03.010

13. Cutkosky MR. On grasp choice, grasp models, and the design of hands
for manufacturing tasks. IEEE Trans Robot Auto (1989) 5(3):269–79.
doi:10.1109/70.34763 

14. Hsu CW, Lin CJ. A comparison of methods for multi-class support vector
machines. Dept Computer Science and Information Engineering. National
Taiwan University.

15. Breiman L. Random forests. Mach Learn (2001) 45:5–32. doi:10.1023/
A:1017934522171 

16. Gijsberts A, Bohra R, González DS, Werner A, Nowak M, Caputo B, et al.
Stable myoelectric control of a hand prosthesis using non-linear incremen-
tal learning. Front Neurorobot (2014) 8:8. doi:10.3389/fnbot.2014.00008

17. Anam K, Al-Jumaily A. A robust myoelectric pattern recognition using
online sequential extreme learning machine for finger movement classifi-
cation. Conf Proc IEEE Eng Med Biol Soc (2015) 2015:7266–9. doi:10.1109/
EMBC.2015.7320069 

18. Vidovic M, Hwang HJ, Amsuss S, Hahne J, Farina D, Muller KR. Improving
the robustness of myoelectric pattern recognition for upper limb prostheses
by covariate shift adaptation. IEEE Trans Neural Syst Rehabil Eng (2015)
24(9):961–70. doi:10.1109/TNSRE.2015.2492619

19. Al-Timemy AH, Bugmann G, Escudero J, Outram N. Classification of finger 
movements for the dexterous hand prosthesis control with surface electro-
myography. IEEE J Biomed Health Inform (2013) 17(3):608–18. doi:10.1109/
JBHI.2013.2249590 

20. Segil JL, Weir RF. Design and validation of a morphing myoelectric hand
posture controller based on principal component analysis of human grasp-
ing. IEEE Trans Neural Syst Rehabil Eng (2013) 22(2):249–57. doi:10.1109/
TNSRE.2013.2260172 

21. Khushaba RN, Kodagoda S, Takruri M, Dissanayake G. Toward improved
control of prosthetic fingers using surface electromyogram (EMG) sig-
nals. Expert Syst Appl (2012) 39(12):10731–8. doi:10.1016/j.eswa.2012.
02.192 

22. Akhlaghi N, Baker C, Lahlou M, Zafar H. Real-time classification of hand
motions using ultrasound imaging of forearm muscles. IEEE Trans Biomed
Eng (2015) 63(8):1687–98. doi:10.1109/TBME.2015.2498124

23. Farrell TR, Weir RF. The optimal controller delay for myoelectric prosthe-
sis. IEEE Trans Neural Syst Rehabil Eng (2007) 15(1):111–8. doi:10.1109/
TNSRE.2007.891391 

Discalimer: The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer AA and handling editor declared their shared affiliation and the 
handling editor states that the process nevertheless met the standards of a fair and 
objective review.

Copyright © 2017 Gailey, Artemiadis and Santello. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

34

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
https://doi.org/10.1109/TNSRE.2011.2108667
https://doi.org/10.1615/CritRevBiomedEng.v30.
i456.80
https://doi.org/10.1016/j.neunet.2014.03.010
https://doi.org/10.1109/70.34763
https://doi.org/10.1023/A:1017934522171
https://doi.org/10.1023/A:1017934522171
https://doi.org/10.3389/fnbot.2014.00008
https://doi.org/10.1109/EMBC.2015.7320069
https://doi.org/10.1109/EMBC.2015.7320069
https://doi.org/10.1109/TNSRE.2015.2492619
https://doi.org/10.1109/JBHI.2013.2249590
https://doi.org/10.1109/JBHI.2013.2249590
https://doi.org/10.1109/TNSRE.2013.2260172
https://doi.org/10.1109/TNSRE.2013.2260172
https://doi.org/10.1016/j.eswa.2012.
02.192
https://doi.org/10.1016/j.eswa.2012.
02.192
https://doi.org/10.1109/TBME.2015.2498124
https://doi.org/10.1109/TNSRE.2007.891391
https://doi.org/10.1109/TNSRE.2007.891391
http://creativecommons.org/licenses/by/4.0/


ORIGINAL RESEARCH
published: 09 May 2016

doi: 10.3389/fnins.2016.00198

Frontiers in Neuroscience | www.frontiersin.org May 2016 | Volume 10 | Article 198 |

Edited by:

Paolo Bonifazi,

Tel Aviv University, Israel

Reviewed by:

Alessandro Stefani,

University of Rome, Italy

J. Luis Lujan,

Mayo Clinic, USA

*Correspondence:

Nuri F. Ince

nfince@uh.edu

Specialty section:

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

Received: 29 December 2015

Accepted: 21 April 2016

Published: 09 May 2016

Citation:

Telkes I, Jimenez-Shahed J,

Viswanathan A, Abosch A and

Ince NF (2016) Prediction of STN-DBS

Electrode Implantation Track in

Parkinson’s Disease by Using Local

Field Potentials.

Front. Neurosci. 10:198.

doi: 10.3389/fnins.2016.00198

Prediction of STN-DBS Electrode
Implantation Track in Parkinson’s
Disease by Using Local Field
Potentials
Ilknur Telkes 1, Joohi Jimenez-Shahed 2, Ashwin Viswanathan 3, Aviva Abosch 4 and

Nuri F. Ince 1*

1Clinical Neural Engineering Lab., Biomedical Engineering Department, University of Houston, Houston, TX, USA,
2Department of Neurology, Baylor College of Medicine, Houston, TX, USA, 3Department of Neurosurgery, Baylor College of

Medicine, Houston, TX, USA, 4Department of Neurosurgery, University of Colorado, Aurora, CO, USA

Optimal electrophysiological placement of the DBS electrode may lead to better long

term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic

neuroimaging increase the complexity of physiological mapping performed in the

operating room. Microelectrode single unit neuronal recording remains themost common

intraoperative mapping technique, but requires significant expertise and is fraught by

potential technical difficulties including robust measurement of the signal. In contrast,

local field potentials (LFPs), owing to their oscillatory and robust nature and being more

correlated with the disease symptoms, can overcome these technical issues. Therefore,

we hypothesized that multiple spectral features extracted from microelectrode-recorded

LFPs could be used to automate the identification of the optimal track and the STN

localization. In this regard, we recorded LFPs from microelectrodes in three tracks from

22 patients during DBS electrode implantation surgery at different depths and aimed

to predict the track selected by the neurosurgeon based on the interpretation of single

unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in

each track, in order to remove common activity between channels and increase their

spatial specificity. Subband power in the beta band (11–32Hz) and high frequency range

(200–450Hz) were extracted from the de-correlated LFP data and used as features. A

linear discriminant analysis (LDA) method was applied both for the localization of the

dorsal border of STN and the prediction of the optimal track. By fusing the information

from these low and high frequency bands, the dorsal border of STN was localized with a

root mean square (RMS) error of 1.22mm. The prediction accuracy for the optimal track

was 80%. Individual beta band (11–32Hz) and the range of high frequency oscillations

(200–450Hz) provided prediction accuracies of 72 and 68% respectively. The best

prediction result obtained with monopolar LFP data was 68%. These results establish

the initial evidence that LFPs can be strategically fused with computational intelligence

in the operating room for STN localization and the selection of the track for chronic DBS

electrode implantation.

Keywords: local field potentials, subthalamic nucleus, microelectrode recordings, least mean square algorithm,

LDA classification
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INTRODUCTION

Deep brain stimulation (DBS) of the subthalamic nucleus
(STN) is an effective therapy for the treatment of the motor
symptoms of Parkinson’s disease (PD) (Herzog et al., 2004;
Hariz, 2012). DBS surgery involves localization of the motor
territory of the STN, for permanent implantation of a DBS
electrode at this site. Although the exact mechanism of DBS
remains to be elucidated, STN stimulation is well-tolerated and
improves all of the cardinal symptoms of PD (Levy et al., 2002).
However, STN stimulation can result in side effects arising from
the spread of stimulation to structures surrounding the STN
(Richardson et al., 2009). Moreover, sub-optimal positioning of
DBS electrodes accounts for up to 40% of cases of inadequate
efficacy of stimulation postoperatively (Okun et al., 2005).
Thus, developing quantitative electrophysiological methods to
define the optimal site of stimulation may help optimize DBS
outcomes.

The task of the neurosurgeon is to place the DBS electrode
within the motor territory of the STN, and well within the STN
borders such that current does not spread to the surrounding
structures, thereby resulting in stimulation-limiting side effects
(Richardson et al., 2009). Although the surgical procedure
varies somewhat between medical centers, targeting of the STN
during DBS surgery generally includes preoperative stereotactic
imaging (MRI), used in conjunction with stereotactic atlases.
This step is followed by intraoperative electrophysiological
techniques consisting of the conversion of neural activity, in
the form of single-unit neuronal activity (SUA) recorded at the
microelectrode tip, into audio and visual signals. This procedure
is experience-based and depends critically on the neurosurgeon’s
and neurophysiologist’s ability to recognize entry into the STN,
based on a variety of cues.

In order to obtain a three-dimensional map of the STN and
surrounding structures, multiple microelectrode recording tracks
(typically up to five) (Benabid et al., 2009) are carried out, either
sequentially or simultaneously. Determination of the optimal
track for DBS implantation is a key component to successful
therapeutic outcome. Optimal track selection is primarily based
on microelectrode recording of single unit activity (MER/SUA),
which is used to identify cells with firing characteristics consistent
with STN neurons and response characteristics confirming the
motor sub-territory of the STN (Falkenberg et al., 2006). Despite
the common usage of MER/SUA during stereotactic surgery for
PD, limitations of this technique include difficulties interpreting
complex signal patterns to localize the anatomical borders of the
STN, highly overlapping spiking characteristics of single neurons
around the target structure, recording SUA from a very small
region, sensitivity of SUA to noise, susceptibility of SUA to small
amounts of blood or edema within the microelectrode track, and
the binary nature of SUA (unlike local field potentials; LFP), all of
which may affect the accuracy of STN localization in PD (Chen
et al., 2006; Gross et al., 2006; Novak et al., 2011). The caliber
of single-unit recordings can be easily diminished due to drift of
the recorded unit away from the electrode tip, as a consequence
of transmitted pulsations of the brain and other environmental
conditions (Sanghera and Grossman, 2004).

Interpretation of SUA recordings with computational
intelligence was proposed as a new approach to help clinical
decision making in the operating room (Wong et al., 2009).
However, such approaches are still susceptible to the challenges
of isolating single neurons in the operating room. LFPs
represent the aggregate activity of neuronal populations, and
are particularly sensitive to synchronous and oscillatory firing
patterns (Priori et al., 2004; Gross et al., 2006). Recent studies
indicate that LFPs in PD correlate with both motor and non-
motor symptoms of the disease, and their signals are more
robust than SUA (Priori et al., 2013; Thompson et al., 2014).
Importantly, LFPs are an objective and quantitative metric while
MER/SUA is more qualitative and subject to inter-practitioner
variability. Although, the functional role of LFPs during DBS
surgery is not fully established, we propose that they can be used
to contribute to target localization in PD. In the present study,
for the purpose of assisting with clinical decision making, we
aimed to develop an automated approach by processing LFPs
from multiple tracks to localize the dorsal border of STN and
predict the macroelectrode implantation track identified by the
neurosurgeon based on SUA interpretation. In the next sections
first we describe our data collection methods and then detail our
signal processing and classification techniques. We study the
role of LFP sub-bands in prediction of the location of the dorsal
border of STN. Moreover, we explore different decision criteria
fused with LFP sub-band features toward prediction of optimal
track selected by the neurosurgeons. We show experimental
results obtained from 22 patients and discuss our results and
demonstrate that LFPs can be used effectively in the operating
room for clinical decision making.

METHODS

Patients and Surgical Procedure
This is a multicenter study in which patients were recruited
in either University of Minnesota Medical Center or Baylor St.
Luke’s Medical Center. The experimental protocol was approved
by the Institutional Review Boards of the University ofMinnesota
and Baylor College of Medicine. All patients provided written
informed consent to participate in the study. Intraoperative
LFPs were recorded from 22 patients (14 men, 8 women),
who were diagnosed with idiopathic PD, and exhibited typical
motor symptoms which were tremor, rigidity, and bradykinesia.
Disease duration ranged between 1 and 20 years, with a mean
of 10.55 years (standard deviation of 4.7 years) (Table 1). All
patients discontinued short-acting Parkinson’s medications at
12 h prior to surgery, and long-acting medications at least
24 h prior to surgery. As per standard clinical protocol, target
coordinates and trajectory to the STN, were identified by
preoperative stereotactic MRI, which was fused to a stereotactic
computed tomography (CT), on a neuro-navigational platform
(StealthStation, Medtronic Corp, MN). Then, again based on
standard clinical protocol, three simultaneous tracks were
performed in each subject (Figure 1A). The superior and inferior
borders of STN, along with the optimal depth for positioning
the DBS electrode, were determined by the clinical team via
electrophysiological mapping using MER/SUA, and the DBS
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TABLE 1 | Clinical characteristics of the PD patients included in this study.

Number of patients 22

Gender (women/men) 8/14

Age (mean ± std in years) 57 ± 11

Disease duration (mean ± std in years) 10.5 ± 4.7

PHENOTYPES:

Typical 12

Tremor dominant 5

Bradykinetic/Rigid 5

OFF/ON UPDRS† scores (mean)‡ 45.60%

Number of microelectrodes recording (total) 75 in total

†
UPDRS = Unified Parkinson’s Disease Rating Scale.

‡
Pre-Operative Medication OFF-to-ON UPDRS Scores: Total Improvement.

electrode was implanted by the neurosurgeon based on these
spatial data, followed by macro stimulation to confirm electrode
location based on benefit and side effect profile—i.e., location
within motor territory of STN, but not so close to border
with adjacent internal capsule or medial lemniscus, that low-
threshold stimulation- induced side effects were detected—
followed by confirmatory intra-operative imaging modalities.
Surgeries were performed in awake patients, under the benefits
of local anesthesia. In 3 of 22 patients, microelectrode mapping
of right and left STN occurred on different surgical dates, as the
surgical procedures were staged for clinical reasons. Therefore,
these recordings were counted as separate, enabling 25 individual
STN microelectrode recordings for LFP-based optimal track
prediction.

Intra-Operative Recordings and Track
Selection
Following standard stereotactic techniques, and insertion of
three brain cannulas and microelectrodes (Abosch et al., 2002),
MER/SUA recording was carried out using a Microguide system
(AlphaOmega Inc., USA) at 12 kHz. Simultaneous LFPs were
recorded with an XLTEK-EMU128FS system (Natus, San Carlos,
California) at 2 kHz with 16 bit A/D resolution or gHIAmp
(gTec Inc., Graz, Austria), 38.4 kHz with 24 bit A/D resolution.
The LFP recordings were obtained from a 1mm wide stainless
steel contact which is 3mm (NeuroProbe, AlphaOmega Inc.,
USA) or 1mm (MicroTargetingTM, FHC Inc., USA) above the
SUA recording tip and referenced to the cannula (Figure 1B).
All microelectrodes were advanced toward the estimated target
using a NeuroDrive (AlphaOmega Inc., USA) with micrometer
resolution. In order to synchronize the SUA and LFP recordings,
the digital depth information of the NeuroDrive is transmitted
from the MicroGuide system to LFP recording system using
a TCP/IP connection. Initial recordings began 20mm above
the intended final location of the electrode tip (“target”) as
determined by direct targeting methods and proceeded until
the electrode reached 3mm below the MER-determined target,
within the substantia nigra. Electrodes were lowered in 1mm
steps until 10mm above “target,” and then in 0.5mm steps.
Duration of recordings at each depth was 15–30 s.

At each depth, the subjects sequentially rested and after a
certain depth (<10mm) executed limb movements for 10–15 s
period. The neurosurgeon used standard clinical techniques for
localizing the STN, via real-time auditory and visual analysis of
the recorded SUA. The dorsal, ventral, and posterior borders of
the STN were identified by noting increased background noise
and cell firing rate, and the STN neurons were examined for
movement-responsive receptive fields. In particular, the superior
border of STN was determined when the background activity
increased and border cells were first observed among one of
the tracks in MER-SUA. This position was used as the target
value in STN border identification. Among three tracks, the
track with the longest span of bursting cell firing and movement
responsive fields was selected for the chronic DBS electrode
implantation. This track was labeled as the “optimal track” and
used as the target variable in LFP based track number prediction.
The neurosurgeons were blinded to the LFP recordings in the
operating room and the identification of STN dorsal border
and the selection of optimal track for chronic DBS electrode
implantation was not influenced by the LFP recordings. The STN
border and the track selected by the neurosurgeon are predicted
with the LFP data using the signal processing methods detailed
below.

Signal Processing
All data were analyzed offline. Before any processing, all recorded
signals were visualized with a custom in-house developed
software and annotated to distinguish artifact and/or epochs
of resting, active, and passive movements. Based on these
annotations, resting state data were extracted into MATLAB
(Mathworks, Natick, Massachusetts) and the data recorded by
XLTEK system and gHIAmp system were downsampled to 1 and
1.2 kHz, respectively, for analysis.

A schematic diagram of our signal processing pipeline is given
in Figure 2. As an initial step the raw signals were visualized and
it was observed that tracks were difficult to distinguish, due to
a high amount of common activity masking spatially localized
activity and/or artifacts resulting from abrupt movements of the
patient and other environmental factors. In order to eliminate
the common activity among tracks, but still preserve the track-
specific neural activity, the LFP data on each track were de-
correlated using a least mean square (LMS) algorithm with
a steepest descent update. The general formula for the de-
correlation method is as follows:

Initialization: w(0) = 0.5, n= 0, 1, 2, . . .

y (n) = wT(n)x (n) (1)

e (n) = d (n) − y (n) (2)

ê (n) =

{

sign (e (n)) ∗ 20 if |e (n)|> 20
e (n) otherwise

(3)

w(n + 1) = w(n) + µê (n) x (n) (4)

where y(n) is the filter output, ê(n) is the residual which is the
de-correlated signal, d(n) is the desired signal, µ is the step size,
and w(n) is time varying filter coefficient (Hayes, 1996). In the
current method, each channel, d(n), was predicted by using a
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FIGURE 1 | Implantation of microelectrodes into STN using 3 simultaneous tracks. (A) Schematic of 3-track- microelectrode implantation into STN. The

schematic in the middle shows the 3D-structure of STN and thalamus. The anatomical structures are viewed from sagittal plane. (B) Schematic of 5-port Bengun

routinely used in STN localization in PD and penetration of multiple microelectrodes through the Bengun. Among these three tracks, optimal track is used as the DBS

electrode implantation track. The LFP recording surfaces of both AO recording microelectrode (NeuroProbe, AlphaOmega Inc., USA) and FHC microelectrode

(MicroTargetingTM, FHC, Inc., USA) are identical with a 1mm stainless steel semi-macro contact situated 3 and 1mm proximal to the micro-recording tip (electrode

offset “d”), respectively. A, anterior; M, medial; C, center; P, posterior. The fifth trajectory, not visualized in the figure, is lateral.

linear weighted combination of other two channels, x(n). LFP
activity from three tracks were recorded continuously during the
entire surgery while the microelectrodes were traveling to the
estimated target. Consequently, the signal characteristic varied
over depths. Since in each depth the signal was recorded for 15–
30 s, temporal variability exists in the signal. Therefore, the filter
coefficients, wT(n), were updated on a sample by sample basis
recursively tomake the system to adapt to depth and time varying
signal properties. At each iteration, the error, e(n), was calculated
and this residual was used as the de-correlated LFP data in future
steps for feature extraction and visualization. At 20mm above
the estimated target, all three tracks showed very similar signal
characteristics indicating that they were in the white matter.
Therefore, the initial filter coefficients were selected as the average
of two channels with equal weights with the initialization of the
filter coefficients w (n) = 0.5. By using this adaptive approach,
we aimed to eliminate the common activity across tracks and
suppress localized artifacts caused by patient movements and
environmental factors. In order to prevent the system from
being affected by high amplitude artifacts and to preserve the
robustness, the error was saturated by using a 20µV threshold
(Equation 3). This threshold was determined experimentally and
we observed that the system recovered from localized artifacts
pretty fast even if the artifact amplitude was too large.

Due to differences in spatial correlation of low and high
frequency bands, the monopolar data were, first, decomposed
into two frequency bands which were 8–200 and 200–450Hz by
using a 2nd order Butterworth IIR filter (Figure 2). The LMS
algorithm was individually applied to these subbands with step
size of µ = 0.0002. Each track was de-correlated by using LFPs
on the other two tracks. The algorithm was applied to each depth
by transferring filter coefficients to the next depth. In this way,
filter coefficients were not required to start from 0.5 at each
new depth so that the algorithm would adapt faster and can use
both temporal and spatial information of the past. Decomposed
and de-correlated data were re-merged and spectral analysis
was performed. In this regard, a modified Welch periodogram

method with a robust statistics was used (Telkes et al., 2014).
Specifically, a fast Fourier transform (FFT) was computed with a
1024 samples long Hanning window and the window was shifted
with 50% overlap. Since some artifacts destroy or dominate
the power spectrum estimate obtained with mean operator, the
median of the spectra of all sliding windows was calculated
to eliminate localized artifacts in the spectrum. The method
was repeated for each depth and all spectra were combined to
visualize depth-varying power spectrum of LFPs on multi tracks.
Generated depth-frequency maps (DFMs) were resampled with
a 0.25mm depth resolution and linearly interpolated to obtain
equidistance depth values. The maps were smoothed using a
Gaussian kernel filter to suppress noise and to reveal beta
and high frequency band oscillations (HFOs). Then, DFMs
were normalized with the average baseline of three tracks and
transformed into log scale using the Equations (5) and (6). The
tracks were not normalized by their own baseline but by the
mean of all three tracks in order to compare the signal power
between them. The baseline used for normalization was selected
as the highest depths which assumed to be in the white matter.
Therefore, the baseline was determined as top 5 depths (20–
15mm above the estimated target) in 22 recordings. However,
in rest of the three recordings, since the analysis started from
lower than 20mm (such that 18mm) due to artifacts, the baseline
segment was kept shorter and selected as top 3 depths. The
purpose of using higher depths was to avoid from including
any thalamic activity in normalization segment. The baseline
normalization formula is noted below:

bavg =

(

b1 + b2 + b3

)

3
(5)

ndfm = 20 × log10
rdfm

bavg + 8(f )

)

(6)

where b1, b2, b3 are the baseline spectrum of each 3 track,
bavg is the average baseline power, rdfm indicates the DFM, 8(f )
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FIGURE 2 | Schematic of the work flow. LFPs recorded by 3 tracks of

microelectrodes were decomposed into low (8–200Hz) and high (200–450Hz)

frequency bands. Each track was de-correlated using LMS algorithm at each

frequency band. De-correlated signals were combined and the frequency

domain features were extracted for classification.

is a small regularization parameter which is applied for each
frequency f and ndfm is the normalized DFM.

In order to observe the depth-varying frequency content of
LFPs, DFMs of the patients were visualized. We noted that
when the electrodes reached the STN border identified by the
neurosurgeon, generally there was also an excessive activity in
the beta and HFO range. In order to identify the most beneficial
track along with the dorsal border of the STN, the sub-band
power was extracted from all tracks and normalized by using
a subject-specific average baseline. Based on the distribution

of neural activity on the tracks, the sub-band frequencies were
designated 11–32Hz for beta band and 200–450Hz for HFOs.
The distribution of power in the STN among all tracks and
the distribution of power only on the selected track inside
and outside of STN (above the dorsal border of STN) were
investigated by box and whisker plots. Student’s t-test with two-
sample was used to check if the distributions were significantly
different or not.

Classification
After sub-band power features were normalized between zero
and one with a Max-Min normalization method for inter-subject
comparison, a linear discriminant analysis (LDA) was used for
classification. The principle of LDA is to maximize the separation
of classes while keeping the within class densities small by using
linear combination of features, −→v ·

−→z (Alpaydin, 2010). The
linear discriminant function:

gi (z|vi, vi0) = vTi z + vi0

=

d
∑

j=1

vij zj + vi0 (7)

where gi (z) is the discriminant function for the input features zj
with sum of the weights vj and threshold values vi0.

Localization of the Dorsal Border of STN
In the present study, the dorsal border of STN identified by
clinical team is predicted from the depth varying LFP data by
using the decision distance of a linear classifier as shown in
Figure 3A. First an LDA classifier was trained by contrasting
the LFP sub-band features coming from inside and outside
of STN (above the dorsal border of STN). This classifier was
evaluated at each depth and the returned decision distance was
used as a measure of confidence. The depth with the highest
confidence for IN-STN decisions was marked. Then we traced
the decision distances above this depth and found the location
where the LDA classifier voted for OUT-STN. This point where
the classifier made IN vs. OUT decision transition was finally
chosen as the predicted dorsal border of STN. The difference
between prediction and the STN border identified by MER-SUA
was calculated in each patient and the root mean square (RMS)
of the prediction errors was used to quantify the performance of
the classifier. Further, statistical analysis by using Student’s t-test
and F-test was conducted in order to compare the mean and the
variance of predictions obtained by different subband features,
respectively.

Prediction of the Optimal Track
The optimal track selection among three tracks is done by
the neurosurgeons through interpreting the excessive single cell
firings within the STN. Consequently, for the prediction of the
optimal track using LFP data, an LDA classifier was trained by
contrasting the LFP subband features of selected track vs. un-
selected tracks below the dorsal border of STN. This classifier
was evaluated at all depths as in the STN border prediction
and the returned decision distance was used as a measure
of confidence. The distance returned by the linear classifier
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FIGURE 3 | Prediction of the dorsal border of STN and prediction of

optimal track. (A) Decision strategy in the prediction of dorsal border of STN.

The classifier trained by contrasting the LFP sub-band features coming from

inside and outside of STN gives a decision at each depth from top to bottom.

These decision distances were used as a measure of confidence. Depth with

the highest confidence for IN-STN decisions was marked. Then decisions were

traced back where the LDA classifier voted for OUT-STN. This point where the

classifier made IN vs. OUT decision transition was chosen as the predicted

dorsal border of STN. (B) Decision strategy in the optimal track prediction.

Classifier trained by contrasting the LFP subband features of selected track vs.

un-selected tracks below the dorsal border of STN returned decision distances

at all depths. The decision distances were used in three different scenarios: (1)

Below the SUA-based STN border, (2) below the one standard deviation from

the average of STN border, and (3) below the LFP-based STN border obtained

from prediction of dorsal border of STN. The decision distance with the

longest span was used as a decision criterion to predict the optimal track.

was used in three different scenarios for final decision making
(See Figure 3B). In the first scenario, the optimal track was
predicted below the STN border provided by the neurosurgeon
for that specific test subject based on the SUA interpretation.
This represents the setup in which we fuse SUA- and LFP-
based information. In the second scenario, no SUA information
about the STN border of the test subject was used, and the
decisions were given below the one standard deviation from the
average of STN border estimated from all training subjects. In
the third scenario, the optimal track decisions were made below
the STN border which was derived solely from the LFP data.
Specifically, here we explored whether or not the LFP could
predict the optimal track without any SUA-based interpretation.
We studied the classification performance below and above
the STN border in these three different scenarios. A schematic
diagram related to this process is given in Figure 3B. Depth-
varying LFP subband features of each track were classified
using the trained LDA and a label and related decision distance

were generated by the classifier for each depth. We classified
one of the tracks as the optimal one based on the longest
span of decision distances voting for optimal track within
the STN. Note that the longest span is a common approach
used intraoperatively by neurosurgeons for MER-SUA-based
optimal track selection. Also note that, if the track selected
by neurosurgeon in the operating room did not match with
the decision of the algorithm, the decision was counted as a
misclassification.

The prediction of optimal trajectory was investigated
using individual sub-band powers, beta and HFO, and their
combination. To explore the benefit of the LMS algorithm
over monopolar signals (raw signals), the same classification
procedure was carried out with the raw data.

Finally, in order to assess the efficiency and reproducibility of
the classification, a leave-one-subject-out method was used. In
each step, one subject was used for testing, whereas the other
subjects were used for training the LDA classifiers for STN dorsal
border and optimal track prediction. The procedure was repeated
until the whole sample was classified. In addition, this procedure
was performed separately for individual beta and HFO sub-
bands of LFP and their combinations to examine their efficacy
in classification performance.

In order to explore a relationship between classification results
and post-operative simulation parameters used for the initial
programming 6 months after the surgery were compared in
correctly classified and misclassified groups. The distribution
of stimulation amplitude was investigated by box and whisker
plots. Student’s t-test with two-sample was used to check if the
distribution of simulation amplitude, frequency, and pulse width
were significantly different or not.

RESULTS

De-Correlation of LFP Data from Multiple
Tracks
We analyzed LFP data derived from 75 MER tracks in patients
with PD who were undergoing STN DBS electrode placement.
Typical raw SUA and LFP data coming from various depths
were shown in Figure 4. The red dashed line indicates the dorsal
border of STN. The correlation between the two modalities is
clearly seen. When the electrode enters the STN, both single cell
firing and oscillatory activity increase.

In Figures 5A,B, the mean correlation matrices of raw LFP
data filtered in beta band (11–32Hz) and HFO band (200–
450Hz) were shown. The correlation matrix in the beta band
(Figure 5A) explicitly shows that the spatial correlation between
tracks is high whereas the correlation between tracks in HFO
range is small (Figure 5B). The small amount of correlation at
HFO band in raw data also shows that oscillations at higher
frequencies are more localized than the oscillations at lower
frequencies. For these reasons, the LFP data were de-correlated
with LMS separately in these frequency bands. It was found that
the correlation between tracks is reduced after the LMS-based
preprocessing step (Figure 5C) which helped more to distinguish
the tracks.
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FIGURE 4 | The plots of raw SUA and LFP signals. The graphic on the left shows the single neuron activity lasting 2 s while the graphic on the right indicates the

aggregate activity of neuron populations at the same depths with the same duration. The dorsal border of STN shown as red dashed lines is 3 mm for this

representative subject.

FIGURE 5 | Correlation matrices of raw and de-correlated data. (A) The

correlation matrix of raw data in beta band (11–32Hz). All three tracks show

high correlation. (B) The correlation matrix of raw data in HFO band

(200–450Hz). Small correlation between tracks indicate spatially more

localized HFOs. (C) The correlation matrix of subband-decorrelated data. All

three tracks demonstrate a small correlation indicating spatio-spectrally

distinguished LFPs.

Figure 6 demonstrates the effect of LMS algorithm by
comparing it to the raw LFP signals. As it can be seen
in Figures 6A–C, the raw LFP data have a high amount of
common activity across all tracks at various depths which
masks the spatially and temporally distinguishing patterns during
targeting. In Figure 6B, DFMs indicate that the high-energy
low band activity among tracks masks other oscillations. The
common activity across three tracks and the high energy low
band oscillations can be also seen in the power spectrum
shown in Figure 6C which was generated from the LFP data
below the dorsal border of STN. On the other hand, target
specific oscillations are clearly seen on de-correlated LFP data
(Figure 6D). In particular, the energy in the first track is much
higher than the other two tracks and it is easier to observe
the track differences and the estimated STN border depth for
the target localization. The DFMs of these tracks shown in
Figure 6E demonstrate that the first track contains LFPs with
higher energy in low and high frequency bands below the
dorsal border of the STN which is marked with a white dashed
line. Furthermore, the power spectrum shown in Figure 6F

demonstrates that not all three tracks show excessive beta activity.

There is an increase in the gamma band (35–55Hz) and great
enhancement in HFO range (200–400Hz) in the first track
compared to other tracks. The LMS algorithm not only reveals
the pathological beta oscillations but also the HFOs having lower
energy.

Spatio-Spectral Patterns of Multitrack LFP
In order to provide a sense of the depth-varying frequency
content of multitrack LFPs, we demonstrated representative
normalized DFMs of de-correlated LFP data of all three tracks
from four patients in Figure 7. In each map, the dorsal STN
border is marked with a white dashed line. The excessive beta
oscillations can be clearly seen in the first subject dominantly
in the center track and localized to certain depths (Figure 7A).
The power of beta oscillations in the posterior and medial track
is weak, yet it can be still observed. Furthermore, there is a strong
and track-specific HFO around 350Hz which is well aligned
with the low band activity. On the other hand, in the subject
presented in Figure 7B, beta oscillations are observed in all tracks
along with HFOs. Although the excessive LFP activity occurs
below the STN dorsal border as for the patient presented in
the Figure 7A, the excessive depth varying spectral patterns are
pretty track and region specific. The HFO in the center track
sits at 350Hz while it is located at 250Hz in the posterior
track. The lateral track shows wider but weaker oscillations.
DFMs in Figure 7C demonstrate similar LFP characteristics to
the first subject (Figure 7A) with dominant beta oscillations
and HFOs in the center track. Similarly, these oscillations are
well aligned below the dorsal border and highly stronger than
the beta oscillations in the other two tracks. Distinctly, strong
oscillations at higher depths are observed above the dorsal
border in the posterior track which might be related to thalamic
activity. Note that we observed high frequency activity localized
at higher depths above the dorsal border of STN in at least
one of the un-selected tracks in 56% of recordings. The number
of the un-selected tracks with the observed oscillations were: 8
posterior, 5 center, and 1 medial. Similar to the HFO activity
seen in Figure 7C, these oscillations were noted from 11.5 ±
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FIGURE 6 | Effect of LMS algorithm by comparing it to the raw LFP signals. (A) Raw LFP distribution. Raw LFPs were recorded from 20mm above the

estimated target down to 0mm. Distribution of raw LFPs in each depth shows no visible difference between tracks. Red dashed line indicates the dorsal border of

STN. (B) Depth frequency map (DFM) generated from raw LFPs. Neither pathological beta oscillations nor HFOs are visible in tracks. The high-energy and low band

common activity masks other oscillations. White dashed line indicates the dorsal border of STN. (C) Power spectrum of raw LFPs. It was generated from the LFP data

below the dorsal border of STN. The high correlation between tracks in low frequencies can be clearly seen. Since HFOs are masked by these low frequency

oscillations, it is not possible to distinguish them in the spectrum. (D) De-correlated LFP distribution. Effect of LMS algorithm on the raw LFPs is clearly seen. Target

specific oscillations are visible on de-correlated LFP data. The red dashed line shows the dorsal border of STN determined by MER-SUA. (E) DFM of de-correlated

LFPs in each microelectrode track. The high energy oscillations in distinct low and high frequency bands inside the STN (below the white dashed line) can be clearly

seen in the first track. (F) Power spectrum of de-correlated LFPs. Tracks do not show excessive and correlated beta activity anymore. There is an increase in the

gamma band (35–55Hz) and great enhancement in HFO range (200–400Hz) in the first track compared to other tracks.

2.6 to 5.7 ± 2.4mm (average values) above the estimated final
location of the electrode tip. The tracks having higher-depth
HFOs do not include strong beta activity. These oscillations
have a longer spatial span with lower power. It is likely that
these oscillations rise from thalamic structures (Hutchison et al.,
1998; Falkenberg et al., 2006), and given their spatial distribution
in relation to the beta band activity, they might be used as
markers for STN localization. The fourth representative subject
shown in Figure 7D introduces a different LFP characteristic
compared to others. None of the tracks are associated with strong,
long span of beta oscillations. Specified border is not aligned
with weak beta oscillations but the short lasting excessive one
in the lateral track. All tracks demonstrate spatially different
weak-to-minor HFOs. The overlap in the LFP activity between

tracks, the weak activity across tracks and thalamic oscillations
are some of the factors contributing to the challenges to the
prediction of dorsal border of STN and selection of optimal
track.

Intra-Track and Inter-Track Differences of LFP

Spectra
For the neurosurgeon selected track, the distribution of beta and
HFO subband powers above and below the dorsal border of
STN are given in Figure 8A. The analysis shows that there is a
significant difference between the power inside and outside the
STN region (above the STN dorsal border) (t = 44.72, p < 0.001;
t = 34.89, p < 0.001) in the selected track. As seen from
the box-plot in Figure 8A, the sub-band power is much higher
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FIGURE 7 | Normalized depth-frequency maps. Representative normalized DFMs of de-correlated LFP data of all three tracks from four representative patients

are shown. (A) The excessive beta oscillations can be clearly seen in the first subject dominantly in the center track and localized to certain depths. There is a strong

and track-specific HFO around 350Hz which is well aligned with the low band activity. In this subject, selected track by neurosurgeon for the DBS electrode

implantation is center track. (B) Beta oscillations are observed in all tracks along with HFOs. The HFO in the center track sits at 350Hz while it is located at 250Hz in

the posterior track. The lateral track shows wider but weaker oscillations. The selected track by neurosurgeon is lateral. (C) A similar LFP characteristics to the first

subject (shown in A) with dominant beta oscillations and HFOs in the center track can be seen. Similarly, these oscillations are well aligned below the border and

highly stronger than the beta oscillations in the other two tracks. Center track is selected for DBS electrode implantation. (D) These DFMs show different LFP

characteristic compared to others. None of the tracks shows strong, long span beta oscillations. Specified border is not aligned with beta oscillations. All three tracks

demonstrate spatially different weak-to-minor HFOs. The white dashed line indicates the dorsal STN border. In this subject, the selected track is anterior.

inside the STN.When the subband power was compared between
the optimal and other tracks (Figure 8B), the distributions were
found significant as well (t = 16.47, p < 0.001; t = 15.17,
p < 0.001). The significance is consistent at the beta band and
HFO band in both distributions. The variance of HFO power in
the un-selected tracks is higher than the variance in the selected
track. Based on our previously mentioned findings, we postulate
that thalamic activity in un-selected tracks might contribute to
increased variance of HFO power when the distribution includes
entire track.

Localization of the Dorsal Border of STN
The progression of prediction of STN dorsal border for
representative subjects and the average results estimated from the
entire patient population is shown in Figure 9. In Figures 9A,B,
decision distances returned by the classifier voting either for IN-
STN or OUT-STN are shown for two representative subjects.
The decision distance curves were obtained from the fused
beta and HFO features. Note that the predicted STN border
is shown with an arrow corresponds to the position where we
find the maximum confidence point associated with IN-STN
and trace back to the depth crossing zero. The dorsal border of

STN provided by the neurosurgeon based on SUA interpretation
is shown with a dashed vertical line. Figure 9A shows a late
prediction of the dorsal border (e = −0.75mm) while Figure 9B
indicates an early border prediction (e = +1mm). Figure 9C
demonstrates the average border decisions with the standard
deviation coming from all test subjects by using individual sub-
band powers, beta and HFO, and fused features. The overall
localization error of the dorsal border of STN was quantified
by calculating RMS of the error between target values and
LFP predictions across all subjects. The red and blue lines
show the decisions obtained with beta and HFO band features
indicating an RMS error of 1.98mm and 1.18mm, respectively.
The mean value of prediction error for beta band features was
0.83 ± 1.84mm while the mean of error for HFO band features
was−0.23± 1.18mm. The decisions obtained through the fused
beta and HFO band features had an RMS error of 1.22mm
with mean of 0.24 ± 1.22mm. In Figure 9D, the distribution of
prediction errors are shown for each studied subband and their
fusion. Student’s two sample t-test analysis indicated that the
difference between mean values of beta-based prediction error
and HFO-based prediction error was significantly different (t =
2.22, p = 0.0322) while no statistically significant difference
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FIGURE 8 | Intra-track and inter-track differences of LFP spectra. Box plots demonstrate the normalized subband power of all subjects. Panel (A) shows the IN

and OUT of STN power distribution in the selected track in beta (11–32Hz) and HFO (200–450Hz) bands. The sub-band power is much higher inside the STN. The

difference between the power inside and outside the STN region (above the STN dorsal border) is statistically significant in each specified frequency band (p < 0.001).

Panel (B) shows the IN-STN power in the selected vs. un-selected tracks. Both distributions are statistically significant in each frequency bands. ***Statistically

significant difference between distributions (α = 0.01).

FIGURE 9 | Localization of dorsal border of STN. Panels (A,B) show the decision distances returned by the classifier voting either for IN-STN or OUT-STN for two

representative subjects. Predicted STN border is shown with an arrow corresponds to the position where we find the maximum confidence point voted for IN-STN

and trace back to the depth crossing zero. The black dashed lines indicate the dorsal border of STN obtained by MER/SUA. The predicted border is 0.75mm lower

than the SUA-based border in the first subject (A) and 1mm higher in the second (B). Panel (C) demonstrates the average border decisions with the standard

deviation coming from all test subjects by using individual sub-band powers, beta (red) and HFO (blue), and fused features (green). (D) Comparison of prediction

errors. The error (RMS) of the predictions obtained with beta and HFO band features are 1.98 and 1.18mm. The RMS of the error in predictions obtained from fused

features is 1.22mm. The variance of RMS values were compared by F-test. The difference between beta-based and HFO-based prediction error is marginally

significant (p = 0.054) with α = 0.05. + indicates the outlier error value.

was found neither between beta-based prediction error and the
error of fused features (t = 1.23, p = 0.2244) nor HFO-
based prediction error and the error of fused features (t =

−1.25, p = 0.2185). When the variances of these distributions
were compared by using an F-test, the analysis showed that the
difference between beta-based and HFO-based border prediction
was only marginally significant [F(1,2) = 2.42, p = 0.054]
while there was no statistically significant difference between the

variance of individual sub-band powers (beta and HFO) and
fused power [F(1,3) = 2.26, p = 0.075; F(2,3) = 0.94, p = 0.88,
respectively].

Prediction of the Optimal Track
We studied the optimal track classification in three different
scenarios using the LFP data: (i) below the SUA-based STN
border, (ii) below one standard deviation from the average STN
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border obtained from training data, and (iii) the LFP-based
STN border. We trained the LDA classifier using individual
subband powers and their combination. Our results toward the
prediction of optimal track from LFP data is given in Table 2.
We note that the best results were obtained from the combined
subband power features and consistently in all these scenarios,
the optimal track prediction accuracy was 80% (shown in bold
type) indicating that the classifier can predict the track targeted to
the STN in 20/25 recordings. These results show that prediction
of optimal track can be performed independently from single
unit recordings. When the beta and HFO subband features
were used individually, the classification accuracy dropped to 72
and 68% respectively. When the procedure was repeated with
the raw data, the prediction rate was poor. In particular, the
classification accuracy was 64% for beta band power and 68% for
the HFO and fused features which supports the observation that
HFOs obtained in monopolar configuration are already highly
de-correlated among different tracks.

Despite the spatially localized thalamic oscillations, the
classification results obtained above the STN border were quite
poor. The prediction accuracy was found to be 40% when the
classification was computed above SUA-based or LFP-based STN
border. Decision accuracy with average STN border was even
lower at 36% by using fused sub-band power. The results indicate
that the LDA classifier trained with the LFP features above the
STN does cannot predict the optimal track with a reasonable
accuracy and was close to chance level.

The progression of classification over depths for three
representative subjects are shown in Figures 10A–C. In each plot,
the STN border location provided by the neurosurgeon based on
the SUA interpretation is also represented with a vertical dashed
line. The decision distances in both selected and un-selected
tracks returned by the classifier are close to each other down
to the dorsal border of STN. Since the spectral characteristics
of LFPs change inside the STN compared to higher depths, we
observe a sudden change between the decision distances as well.
If only one of the tracks deviates from the others and reaching
the highest confidence level, it is easily determined as the optimal
track by the classifier. If more than one track are voted for
the optimal track (below the zero line in Figure 10) with high
confidence levels, algorithm gives the optimal track decision by
computing the longest span of the selected track votes. The
progression of the classification for a misclassified subject is
given in Figure 10C. The average decisions for the optimal
track of all subjects with the associated standard deviation are
given in Figure 10D. A clear separation is observed in decision
distances between selected and un-selected tracks indicating a
high percentage of correct prediction among the subjects.

Distribution of Selected Tracks
Table 3 shows the frequency of selected tracks based on MER-
SUA interpretation and LFP processing. As per standard clinical
protocol, the initial trajectory to target STN is determined by
preoperative stereotactic imaging. Three tracks are selected by the
neurosurgeon based on the initial planning for microelectrode
recordings. The initial expectation is that the center track will
hit the STN while other tracks account for possible targeting

TABLE 2 | Prediction rates of classifier.

Power of IN STN in all tracks

LMS data Raw data

Beta 0.72 0.64

HFO 0.68 0.68

Beta & HFO 0.80 0.68

TABLE 3 | Frequency of track selection in the present study.

Comparison of SUA-based and LFP-based track selection

Anterior: 10/9

Medial: 2/1 Center: 8/10 Lateral: 5/4

Posterior: 0/1

The selection frequency based on LFPs are shown in bold type.

error. Then based on the MER-SUA recordings the optimal
track is selected among these three trajectories. Although the
image based planning aims to hit the STN with the center
track, Table 3 demonstrates that intraoperative MER-SUA-based
decisions among 25 recordings is not biased toward the center
track. We note that the selection frequency is higher in
anterior track based on MER-SUA mapping. In addition, the
posterior track is not selected at all. When the selection frequency
based on LFPs is studied, it can be seen that both MER-SUA
and LFP decisions (shown in bold) match with a high percentage
but LFP based prediction was more in favor of the center track.
Overall, our results indicate that stereotactic planning does not
perfectly correlate with intraoperative electrophysiology based
track selection and highlight the variance in track selection.

Post-Operative Programming Parameters
We explored whether there exist any difference in programming
parameters between the correctly classified and misclassified
patients. In particular we investigated the post-operative
simulation parameters such as voltage, frequency and pulse width
which were selected during the programming 6 months after
the surgery. The distribution of selected stimulation voltages are
presented in Figure 11. We note that the average stimulation
voltage used in correctly classified group is 1.72 ± 0.63V while
it is 2.12 ± 0.69V in misclassified group. Student’s two sample
t-test analysis indicates that the difference in voltages between
two groups is not statistically significant (t = −1.16, p =

0.2595). However, one of the misclassified subjects we observed
has high level beta and HFO activity in both selected and
un-selected track and this patient is stimulated with 1V. This
indicates that both tracks could be viable. When this subject is
removed from the misclassified group, we note that the mean
post-operative stimulation voltage increases to 2.4V ± −0.46
for the misclassified population. The difference in post-operative
stimulation voltages between correctly classified andmisclassified
groups without this outlier becomes marginally significant (t
= −1.92 p = 0.0685). No significant difference is found either
in the frequency (183.1 ± 5.8Hz) or in the pulse width (90 ±
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FIGURE 10 | Progression of classification in optimal track prediction. The progression of classification over depths for three representative subjects are shown

in (A–C). The black dashed lines show the STN border provided by the neurosurgeon based on the SUA interpretation. The decision distances with the highest

confidence and the longest span below the STN border indicate the optimal track. Panel (A) shows that decision distance is reaching the highest confidence level only

in selected track which is determined as the optimal track by the algorithm. Panel (B) shows that all tracks pass the zero line however, only the selected track points

the longest span of decisions. So, the selected track is determined as the optimal track by the classifier. Panel (C) demonstrates a misclassified subject. Since only

the un-selected track-2 is passing zero line and reaching the highest confidence level, it is determined as the optimal track by the algorithm. Panel (D) shows the

average optimal track decisions with the standard deviation coming from all test subjects. It shows a clear separation in decision distances between selected (red) and

un-selected tracks (blue) indicating a high percentage of correct prediction among the subjects.

26.5µs) between groups (t = −0.74, p = 0.4692 and t = 0.96,
p = 0.3477, respectively).

DISCUSSION

Significant variability exists in the axial and coronal orientation
of the STN in humans (Patel et al., 2008), and the motor
territory of the STN is small, measuring ∼4–6mm extent from
dorsal to ventral. These factors combined with brain shift
between preoperative stereotactic imaging and intraoperative
electrode brain penetration can lead to targeting errors in
the operating room. Pre- and intra-operative clinical imaging
methods alone are suboptimal for accurate placement of a
DBS electrode; they are subject to distortion, and visualization
of a clear differentiation between the STN and surrounding
structures can be difficult. In this regard, our study also indicates
a considerable amount of variance in track selection. Under
the assumption of hitting the STN through center track by
image based planning, track selection was not found to be
biased toward the center track in the intraoperative MER/SUA-
based decisions indicating that stereotactic planning does not
perfectly correlate with intraoperative electrophysiology based
track selection.

Accurate localization of STN motor territory through
intraoperative electrophysiology is a crucial step for DBS

electrode implantation (Zonenshayn et al., 2000; Gross et al.,
2006). As recently as 2013, an international survey of high-
volume DBS implanting sites revealed that 83% of centers use
microelectrode recording indicating that the most commonly
used electrophysiological mapping method remains MER-SUA
recordings (Abosch et al., 2013). However, the method has
several limitations in practice as subjective interpretation of
complex signal patterns to localize the anatomical borders
of the STN, being less stable and more “susceptible to
technical (e.g., impedance) and physiological (e.g., cerebrospinal
fluid and blood) fluctuations” (Thompson et al., 2014). As
Gross et al. indicated, the number of groups using solely
macroelectrode/DBS mapping to target the STN without any
microelectrode recording is high (Chen et al., 2006; Gross et al.,
2006; Telkes et al., 2014). Although there are advantages of
using macroelectrode/DBS technique alone in STN targeting like
carrying less amount of risk for intracranial hemorrhage since
there is no multiple trajectories and due to the blunt-tip of
the macroelectrode (Xiaowu et al., 2010), the drawbacks like
microlesion effect which might limit the clinician’s ability to
test or therapeutic effectiveness in the operating room and poor
spatial resolution should be taken into consideration (Rezai et
al., 2006; Wang et al., 2014). Although asleep, MRI-based non-
MER-guided surgery is gaining sway (Starr et al., 2014), the
possibility of clinically testing a DBS electrode prior to permanent
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FIGURE 11 | Distribution of post-operative stimulation voltages in

correctly classified and misclassified groups. Box plots show the

stimulation voltages which were used in two groups during the programming 6

months after the surgery. The box plot on the right indicates the distribution of

post-operative stimulation voltages in misclassified group by excluding the

outlier subject with 1V stimulation. The difference between stimulation voltages

in the correctly classified and misclassified group is marginally significant

(p = 0.068, α = 0.05).

implantation does not exist as yet in the context of such a
procedure.

Earlier investigations have documented that excessive beta
oscillations in certain basal ganglia structures, especially the STN,
represent a pathophysiological feature of PD (Weinberger et al.,
2006; Kane et al., 2009; Lopez-Azcarate et al., 2010; Oswal et al.,
2013). Excessive beta band (8–30Hz) activity is detected when
the electrodes enter into the STN (Levy et al., 2002; Kühn et al.,
2008; Brittain and Brown, 2014). Similarly, excessive oscillations
at very high frequency ranging from 200–400Hz are also
observed (Priori et al., 2004; Lopez-Azcarate et al., 2010; Özkurt
et al., 2011). Even though these high frequency oscillations are
considered to represent a pro-kinetic state, and appear with
dopaminergic medication and/or induced movement (Foffani
et al., 2003, 2006; Trottenberg et al., 2006), others have
demonstrated that HFOs (>200Hz) can still be observed in the
STN during the medication OFF state or at rest (Lopez-Azcarate
et al., 2010). In our study, all patients discontinued with their
short and long acting medication before the surgery and were in
OFF state. As others, we observed HFOs in the resting state and
increased band power along with entry into the STN. Existence
of excessive beta band and HFOs within the STN in PD can be
used in target localization. However, the variability and patient-
specific characteristics of spatial distribution of excessive beta
and HFOs should be taken into consideration (Chen et al., 2006;
Weinberger et al., 2006; Wang et al., 2014).

Despite a few publications using intraoperative
microelectrode LFPs for STN localization (Michmizos
et al., 2008; Holdefer et al., 2010; Wang et al., 2014), to our
knowledge, no studies exist on the functional use of LFPs
recorded from multiple microelectrodes for the selection of the
optimal trajectory targeting the STN in PD. The present study
demonstrates that using spectral features of LFP to identify the

optimal track without any decorrelation technique provide sub-
optimal results due to widely distributed neural signals and/or
artifacts masking the spatially and temporally distinguishing
patterns during targeting. Therefore, the LMS algorithm is used
as an efficient technique to decorrelate the tracks by keeping
localized activities in each. The adaptive LMS algorithm is widely
used in the biosignal processing field since early 80s for signal
enhancement due to its efficiency and low complexity (Widrow
et al., 1975; Ferrara and Widrow, 1982; Chen et al., 1990). Since
the decorrelation is being done recursively without violating
the causality constraint, where each channel is predicted by the
current samples of other data channels, the algorithm can be
easily executed on standard PC architectures in real-time. Since it
is an adaptive technique, the time and depth varying parameters
allows tracking time and depth varying LFP activity and does
not suffer from the cross talk as much as in the common average
based derivation. It should be noted that since it estimates current
signal by using a linear combination of other signals, the LMS
algorithm cannot fully eliminate the high amplitude artifacts if
they are not distributed among the tracks, which constitutes a
major drawback of the algorithm. One way of reducing the effect
of large artifacts and keep the system stable is to use an error
threshold with upper and lower boundaries. Another important
factor influencing the benefit of the algorithm is the learning
parameter µ. It should be investigated by considering signal
properties such that adaptation of the system should be neither
very slow nor very fast.

Spectral analysis showed that beta oscillations are getting
stronger as the electrodes approach the STN. Not only beta
oscillations but also strong HFOs can be observed in the STN
area well aligned with beta oscillations. This strong relation is
noted in the tracks selected by neurosurgeons in 17 recordings
out of 25. In rest of the eight recordings, HFO was either weak
or fully absent or they were noted only in one of the un-selected
tracks. The energy changes above and in the STN were used to
localize the dorsal border. The RMS error of prediction for the
dorsal border of STN is obtained from 1.18 to 1.98mm when
the different features are used. The minimum prediction error
is found with the power of HFOs (1.18mm) indicating that,
despite the unknown functional role of these high frequency
components, they can still be eligible in STN targeting. The
LFP is a continuous process and does not suffer from SUA
isolation challenge while the target variable is a SUA driven
information which is also prone to interpretation error and
isolation challenge. Considering the dorsa-ventral size of STN,
1.22mm prediction error in depth with the fused features may
represent 11% in DBS electrode 3387 or 16% in 3389 difference
which can be easily compensated with the multiple contacts of
the DBS electrode.

The features computed above the STN border provided poor
results in prediction of optimal track. We note that the optimal
track can be predicted with higher accuracy with the features
obtained below the dorsal border of STN. Analysis manifest
that 14 recordings out of 25 (56% of entire dataset) indicate
spatially distinct HFOs together with beta activity above the
dorsal border of STN (see Figures 7C,D) in at least one of
the un-selected tracks. It can be assumed that these relatively
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weak oscillations located away from the dorsal border of STN
are recorded from thalamic structures. To our knowledge, this
considerable amount of thalamic oscillations in PD are not well
studied phenomena. These findings presented here might be
used as spatial markers in STN localization and might form the
basis of further investigation into PD pathophysiology from a
spatio-spectral perspective.

It should be noted that our classification technique could
not predict the selected track in 20% of the subjects. We did
not observe a gender difference between these five misclassified
subjects. Specifically, three of them were men and two of them
were women. None of the misclassified patients were tremor
dominant. Three of these patients were typical PD and the
other two were bradykinetic/rigid. The mean age and disease
duration were 62.2 ± 13.6 and 12 ± 4.6, respectively and were
not significantly different from other correctly classified patients
(62.1 ± 8.3 and 10.1 ± 4.6, respectively). The misclassification
in the 20% of the patients occurred due to many different
factors in LFP signal including weak activity or similar activity
between tracks. During these recordings, we did not use any
sedation. Therefore, weak activity cannot be related to anesthesia.
In one patient with typical PD phenotype, the LFP signal
was weak across all tracks. We noted that the beta and HFO
activity started to develop toward the bottom border of the
planned target deeper than the other patients. We believe that
in this particular patient the weak activity across all tracks can
be described with the electrode positions. Our observations
indicate that the three tracks just started to enter the STN
and did not fully went through it. In another misclassified
case, the LFP activity was quite strong and similar in two
out of three tracks. Therefore, the classifier output was very
close for these two tracks. In the other three patients, the
HFO activity in the SUA selected track was weak compared
to LFP selected track. Studies hypothesize that maximum
beta band (13–32Hz) and gamma band (48–220Hz) power is
highly correlated with stimulation programming parameters in
DBS chronic electrode (Ince et al., 2010). When a particular
contact pair on the electrode shows strong beta and gamma
oscillations, it’s assumed that the electrode is closer to the
source so that lower stimulation would provide better symptom
improvement and less side effects. The present study supports
these results. We observed higher stimulation voltages in those
patients where the LFPs did not correlate with MER/SUA
selected tracks. Despite the lack of statistical significance, the
stimulation voltages in the 6-mo-programming of implantable
pulse generator (IPG) indicate lower values in the patient group
having stronger LFPs in beta and/or HFO bands. A study with
larger sample size would be needed to test the validity of this
observation.

CONCLUSION

The present study describes an automated approach for
electrophysiological localization of STN, using microelectrode-
recorded LFPs acquired during DBS surgery simultaneous to
MER. This work is novel, in that it is the first study to

combine different sub-band features derived from beta (11–
32Hz) and HFOs (150–450Hz) of LFPs in order to (1)
estimate the optimal track for DBS implantation, and (2)
identify the dorsal STN border, with high accuracy. This work
also contributes to knowledge about the neurophysiology of
PD by describing the spatial localization of HFOs. Because
recording LFPs simultaneous with MER/SUA does not prolong
the total duration of surgery, using this technique online in
the operating room would increase the chance of optimal
placement of the DBS macroelectrode within the motor sub-
territory of the STN, without an appreciable downside. Fused
with existingmapping techniques, automated online LFP analysis
may increase the accuracy of the DBS macroelectrode placement.
This might contribute to the efficacy of DBS by reducing the
stimulation voltage and associated side effects. Since the electrode
placement is guided by LFP activity, the current technique
could also be useful to monitor the LFP events which are
capable to fine tune the future DBS settings in a closed loop
paradigm (Ince et al., 2010; Rouse et al., 2011; Priori et al.,
2013).

Further prospective investigations regarding the clinical
outcomes using this technique of optimal track selection are
warranted.
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Quantification of dynamic causal interactions among brain regions constitutes

an important component of conducting research and developing applications in

experimental and translational neuroscience. Furthermore, cortical networks with

dynamic causal connectivity in brain-computer interface (BCI) applications offer a more

comprehensive view of brain states implicated in behavior than do individual brain

regions. However, models of cortical network dynamics are difficult to generalize across

subjects because current electroencephalography (EEG) signal analysis techniques

are limited in their ability to reliably localize sources across subjects. We propose

an algorithmic and computational framework for identifying cortical networks across

subjects in which dynamic causal connectivity is modeled among user-selected

cortical regions of interest (ROIs). We demonstrate the strength of the proposed

framework using a “reach/saccade to spatial target” cognitive task performed by 10

right-handed individuals. Modeling of causal cortical interactions was accomplished

through measurement of cortical activity using (EEG), application of independent

component clustering to identify cortical ROIs as network nodes, estimation of

cortical current density using cortically constrained low resolution electromagnetic brain

tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative

cortical activity signals from each ROI, and quantification of the dynamic causal

interaction among the identified ROIs using the Short-time direct Directed Transfer

function (SdDTF). The resulting cortical network and the computed causal dynamics

among its nodes exhibited physiologically plausible behavior, consistent with past

results reported in the literature. This physiological plausibility of the results strengthens

the framework’s applicability in reliably capturing complex brain functionality, which is

required by applications, such as diagnostics and BCI.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), causality analysis, source localization,

LORETA, independent component analysis, motor activity, spatial reach and saccade
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INTRODUCTION

Dynamic intra-cortical interactions offer a wealth of information
that can be used to develop an understanding of brain
functionality and quantify the effects of brain pathologies on
brain functionality. Traditional static functional characteristics
of individual brain regions, and dynamic interactions within
a network of brain regions (Moeller et al., 2015) offer limited
insight into brain function as they typically do not examine
the causality among these interactions. The advent of Granger-
causal analysis provided a framework to quantify the asymmetric
causal interactions between regions of the cortex through specific
frequency bands, which hold functional significance for those
regions (Barnett and Seth, 2014; Seth et al., 2015), and has
shed light on a large number of network-related disorders, such
as Alzheimer’s and Parkinson’s Disease (Pievani et al., 2014).
However, this connectivity information is not limited in use to
diagnostics, as an increasing number of brain-computer interface
(BCI) applications are utilizing connectivity features for intent
discrimination when conducting BCI-related tasks (Zhang et al.,
2012; Kabbara et al., 2016).

While a potential wealth of information is available in
intra-cortex interactions, a systematic algorithmic approach that
allows for reliable generalization of cortical network dynamics
across test subjects in a subject group is not readily available.
Many sophisticated tools exist (Linder et al., 2011; Niso
et al., 2013; Barnett and Seth, 2014), which allow for both
parametric and non-parametric estimation of dynamic causal
interactions among neural activity signals within an individual.
However, these tools exhibit various limitations, such as strict
channel-space applicability or lack of accounting of common
sources, thus, giving rise to spurious causal interactions within
the chosen cortical network (Trongnetrpunya et al., 2015).
Additional limitations exist in the source-localization algorithms
applied to reconstruct cortical-source activity from the measured
channel space data. Many popular algorithms stemming from
Independent Component Analysis (ICA) are not able to achieve
reproducible source localization outcomes across test subjects
(Bell and Sejnowski, 1995). The inability to control where these
algorithms localize the sources for decomposition on separate
subjects presents a large problem since the sources represent
nodes in a cortical network, and an ICA-based algorithm
could localize a different network for every subject in a group,
making group-level network comparisons difficult. Independent
Component (IC) ordering is a highly non-trivial task (Hyvärinen
and Oja, 2000) for which very few automated approaches
exist barring manual selection, a prohibitively tedious and time
consuming task for increasingly large datasets.

In this paper, we develop an algorithmic and computational
framework that addresses the aforementioned issues through
a multi-step, open-source pipeline of analytic tools (Delorme
et al., 2011; Iversen et al., 2014). The pipeline combines the
deconvolution power of ICA; the systematic modeling of the
geometry of gray matter, thereby creating a common source
space across subjects with the use of individually warped
boundary element models (BEMs); the selectivity afforded
by Cortical Low Resolution Electromagnetic Tomography

(cLORETA)—a source-space based, distributed source
localization algorithm; and the robustness of the Short-
time direct Directed Transfer Function (SdDTF)—a causality
measure, computed from Multivariate Autoregressive (MVAR)
model coefficients, that addresses the spurious connectivity
affecting Granger Causal methods (Korzeniewska et al.,
2003).

A similar approach to source localization and connectivity
analysis was proposed by Mullen et al. (2015) as a means
of demonstrating that the connectivity features considered in
this framework can be applied with great success in real-time
brain state identification. In order to demonstrate the power
afforded by this framework in group-level analysis, a BCI-
related task originally introduced by Park et al. (2014) was
employed, requiring subjects to reach and saccade to presented
visual targets while their cortical activity was recorded using
electroencephalography (EEG) as the neuroimaging modality.
The approach utilized for BCI-related task is a passive-
BCI approach, also described as an implicit human-computer
interaction, wherein passive EEG equipment that senses the user
is used to evaluate cognitive states of the user (Schmidt, 2000;
George and Lecuyer, 2010). While, in this case, the closed-
loop feedback elements of the task simply involve auditory
and visual confirmation of reach/saccade task completion, the
applicability of this approach to more active real-time closed-
loop feedback BCI systems is also discussed. Although the
motor activity present in the human cortex during simple
planned motor actions has been carefully documented with
respect to the activity of individual cortical regions (Johnson
et al., 1996; Filimon, 2010; Heider et al., 2010; Glover et al.,
2012), the dynamic interactions among these cortical regions
during planning and execution of the task have not been
documented as extensively. Park et al. were able to differentiate
between spatial movement of the arm and eye by employing
channel-space empirical mode decomposition, but did not
characterize connectivity between cortical regions underlying
these processes. The algorithmic approach implemented in
this paper was first described by Iversen et al. (2014), where
the method was applied to a smaller subject group. In this
paper, we introduce modifications to the original pipeline in
Iversen et al. (2014) including a new maximum-power heuristic
that captured previously undetected connectivity involving the
Supplementary Motor Area and Precuneus, regions expected
to exhibit connectivity given the motor-related BCI task,
and non-parametric statistical thresholding of the computed
causal connectivity values. Through application of our new
pipeline, described fully in the Methods section that follows,
we demonstrate in the Results section the strength and
specificity of the inference that can be made regarding the
dynamic causal interactions present among regions of the cortex
during reach/saccade planning and execution. The Discussion
section illustrates the physiological plausibility of the findings
reported in the Results section with reference to previous
findings reported in the literature. The Conclusion section
summarizes the features, the scalability, extensibility, and the
applicability of the proposed algorithmic and computational
framework.
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METHODS

Overview
Electrophysiological data were collected from human

participants conducting a BCI-monitored task, and processed

according to the methodology and computational tools outlined

in Figure 1, using MATLAB as the computational platform.

The workflow in Figure 1 was employed to extract cortical

source information from a cortical network defined for all of the
participants, and, subsequently, identify statistically significant
spectro-temporal interactions among the nodes (sources) of this
network.

Participants and Task
Ten healthy, right-handed individuals (age: 20.8 ± 2.6 years)
participated in this study. The study was approved by the

FIGURE 1 | General outline for cross-subject quantification of cortical connectivity. Initial data processing and artifact rejection is conducted in EEGLAB

(Delorme and Makeig, 2004) (A,B). ROIs are selected through IC clustering, also conducted in EEGLAB (C). Head model construction and Electric Lead Field

calculation are conducted in MoBILAB (Ojeda et al., 2014) (D). Source localization is conducted in BCILAB (Delorme et al., 2011) through an implementation of

cLORETA that iteratively estimates regularization hyperparameters (E). Connectivity estimation is conducted using SIFT, an extension of EEGLAB (Delorme et al.,

2011) (F,G). All of the above software and their internal dependencies are run in MATLAB.
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Human Subjects Institutional Review Board of the University of
California, San Diego. Written informed consent was obtained
from all subjects prior to the start of the experiment.

The task involved a time-constrained eyemovement and reach
using the subject’s dominant hand (right) from a target in the
center of a touch-screen to a laterally-offset target as depicted
in Figure 2 (Park et al., 2014). Each trial was either a control
condition (lift), where the participant moved the stylus off of the
central fixation dock after a brief target onset period (500–700
ms), or a test condition (reach/saccade), where the participant
shifted their visual focus on and reached with the stylus to a new
target that appeared in the upper right or lower left of the screen.
Trials were defined as a combination of the planning period,
0 to 500 ms after the end of the target onset window, during
which the subject planned either the reach/saccade or lift, and
subsequent execution from 500 to 1000 ms after the target onset
window, during which the subject moved their hand and reached
for the new target. Each subject completed 256 trials, 96 of
which were control condition trials, with the remaining 192 being
test condition trials. The position of the new target randomly
varied by a small angular amount (± 5 degrees) about a 30-
degree direction centered at the position of the initial target—the

center of the screen. Detailed description of the cognitive task
performed by the participants can be found in Park et al. (2014).

EEG Recording
Scalp electroencephalographic (EEG) activity was recorded
with a sampling rate of 512 Hz from 64 electrodes
positioned on the scalps of the participants in an extended
International 10–20 system configuration. The electrode
array was grounded/referenced on a standard Driven Right
Leg/Common Mode Sense (DRL/CMS) reference (Biosemi
Inc., Amsterdam, The Netherlands), and each electrode was
individually impedance-tested to ensure low impedance across
the entire electrode array (below 5 k� for each electrode). The
3D position of each electrode was digitized in order to construct
individualized head models for each participant (see Park et al.,
2014 for details on the digitization system).

Preprocessing and Artifact Rejection
Scalp electroencephalographic (EEG) channel space data
preprocessing was conducted using EEGLAB (Delorme and
Makeig, 2004) through a procedure outlined in Figure 1A. EEG
data from each of the 10 participants were band-pass filtered,

FIGURE 2 | Depiction of experimental setup from Hyvärinen and Oja (2000). Participants (Top Right) were placed in front of a touchscreen while brain activity

was monitored by 64-channel EEG. Participants held stylus over a white fixation point in the center of the screen (Top Left) and were prompted for each trial to either

lift and retouch the stylus (Control Condition) or to reach and saccade (Test Condition) to a randomly generated green target (Bottom Left). Epoch structure (Bottom

Right) was identical for control and test conditions, with planning conducted while the participants remained on the fixation point with the green target present, and

execution beginning when the fixation point was removed. Analysis window includes both planning and execution periods of reach/saccade or lift. Direction of the

reach (upper right vs. lower left) was not discriminated since our focus was on the general causal dynamics involved in reaching rather than the encoding of spatial

directionality.
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retaining frequencies from 1 to 55 Hz, and re-referenced to
the channel average since the data was recorded reference-free.
The data were epoched, extracting the time period of interest,
which encompassed both the planning phase and the execution
phase of every trial. No distinction was made between reach
directions since the emphasis for this analysis was placed on
the general process of reach/saccade planning and execution
rather than directional discrimination and, as such, both upward
and downward angled reach trials were pooled and analyzed
together. The control trials (Lift) and test trials (Reach/Saccade)
were analyzed separately, using a cortical network defined
over the same ROIs. Differences between the control and test
conditions were examined by considering differences in network
dynamics between the control and test conditions during the
planning and execution phases. Noise and artifact laden trials
and channels were identified and removed in a semi-automated
manner. The kurtosis of each channel or trial was used as the
identification metric, with channels or trials exhibiting a kurtosis
Z-score > +5 or < −5 being flagged and subsequently visually
inspected before removal.

The epoched channel space data were decomposed into sets
of maximally independent components, where independence
was achieved by minimizing mutual information between
components using Infomax ICA (Bell and Sejnowski, 1995)
(process outlined in Figure 1B). These components represented
a combination of putative effective cortical sources, muscular
artifacts, ocular artifacts, and electrical activity from the heart,
among other noise sources. Through a semi-automated
procedure, cortical sources were defined by employing
independent components that both visually, by identifying
power spectra and topographical maps with dipolar cortical
source character, and computationally, through dipole-fitted
residual variance, corresponded to dipoles (each fitted to a dipole
with low residual variance). This procedure is particularly well
suited for EEG artifact removal since the electrophysiological
activity of interest present in the cortex manifests detectably
in the form of an electrical dipole. The linear mixing of the
electric fields generated by these dipoles, and corresponding
unmixing through ICA allows for very precise retention of
cortical data and rejection of non-cortical artifacts. Using the
weight matrix computed during ICA, the retained cortical
independent components were re-projected to channel space,
creating cleaned channel space electrical signals that were further
downsampled to 128 Hz for use in subsequent processing.

ROI Selection Methods-Clustering
Cortical regions of interest (ROIs) for source localization
were determined by spatially and functionally clustering the
ICs aggregated across all datasets/participants into a common
cortical volume, as outlined in Figure 1C. The clustering feature
vector for each IC was constructed by combining information
from: the topographical scalp map of the IC, the event
related potential (ERP) associated with the IC and its power
spectrum, the spectral power content of a rolling window Fourier
Transform (FT) across the IC time-series data before ERP-type
averaging, known as the Event-Related Spectral Perturbation
(ERSP) of the IC, the associated phases from this rolling FT

window that give the Inter-Trial Coherence (ITC) of the IC,
the ERP-image constructed from concatenation of all trials for
the epoched event, and the three dimensional location of the
equivalent current dipole fitted to the IC (Makeig, 1993). These
features were selected to ensure that the IC clusters were both
spatially tight and functionally homogeneous, thus promoting
the creation of clusters from the same cortical region that
demonstrated similar spectro-temporal dynamics during the
conducted task. PCA was used to reduce both the dimensionality
of each of the above features, as well as the final feature vector
for each IC to 10 dimensions corresponding to the 10 highest-
eigenvalues, and, subsequent, K-means clustering of the ICs was
conducted withK = 14 groups, whose clustering outcome yielded
more spatially tight and functionally homogeneous clusters than
the outcomes for K = 9 and K = 16 groups. The centroid of
each cluster was computed and anatomically labeled using the
Talairach atlas (Lancaster et al., 2000).

Head Model Construction
The (BEMs) that defined the geometry of the cortical source
space for current localization were constructed using MoBILAB
(Ojeda et al., 2014), as outlined in Figure 1D. The BEM
approximation for the cortex of each participant included a
standardized head model—the MRI MNI Colin27 three-layer
BEM comprised of scalp, skull, and cortical layers. The cortical
layer, where the source localization n occurs, was discretized
into a triangular mesh containing 4825 vertices, which were
automatically aggregated into anatomical regions based on the
MNI standard gray matter atlas, used for ROI selection. A
customized head model was constructed for each of the 10
participants based on the digitized electrode positions on EEG
cap conforming to the participant’s scalp during the experiment.
Using standard electrical conductance values for the three BEM
layers (0.33 S/m Scalp, 0.022 S/m Skull, 0.33 S/m Cortex
Oostendorp et al., 2000), an electrical lead field matrix was
derived, relating the conduction of electric fields generated by
current dipoles from the cortical mesh (bottom layer) to the top
of the skin (outer layer) where the field potential is recorded by
scalp electrodes. This lead field matrix, along with the discrete
surface Laplacian of the cortex layer of the BEM, were computed
using the OpenMEEG toolbox (Gramfort et al., 2010) which was
also used later for computing the current density during source
localization.

Source Localization-Cloreta
Cortically Constrained Low Resolution Electromagnetic
Tomography (cLORETA) (Pascual-Marqui et al., 1994) was used
for source localization due to the fixed source-space it required
for current localization, allowing for cross-participant ROI
consistency. The source-space was the cortical BEM constructed
in the previous section that accounted for the conduction of
electric fields generated in the cortex and projected to the
surface of the scalp where they were detected by EEG. The
cortical constraint placed on the BEM was also necessary due
to the inability of EEG to reliably resolve electrophysiological
activity in subcortical regions of the brain. Source localization
(procedure outlined in Figure 1E) was conducted independently
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for every epoch in each dataset in order to prevent regularization
parameters and current activations from being computed
by concatenating temporally non-contiguous epochs. The
solution to the minimum-norm Lagrange multiplier problem for
cLORETA is the Tikhonov regularized pseudoinverse solution
for cortical current density expressed as follows:

J = TΦ (1)

T = (KTK + λ2HTH )
−1

KT (2)

where J is the current density on the cortex, Φ is the channel
space data, T is the optimal transformation matrix from channel
space to current density space, K is the discrete electrical lead
field matrix, and H is the 2D spatial Laplacian of the cortical
head model, introduced to spatially regularize the localized
current on the head model grid points. λ is a regularization
parameter initialized on a log-space, using generalized cross
validation (GCV), and subsequently inferred using an iterative
EM formulation derived from the Bayesian structure of the
original current localization problem (Trujillo-Barreto et al.,
2004). The cLORETA implementation in BCILAB (Delorme
et al., 2010) was used for source localization.

Since the regularization parameter λ was recomputed for
every epoch, a new transformation matrix (T) was also
computed, leading to dynamic increases and decreases of
spatial regularization in the final current solution as needed.
This prevented both over-regularization in cases where current
density ramped quickly between grid points, and under-
regularization when channel space, and therefore current density
magnitudes, were lower. A representative signal was extracted
from each ROI by computing the signal power of the current
localized at each gridpoint within a given ROI and selecting the
gridpoint that exhibited the maximum power.

Based on this max-power selection heuristic, representative
current signals were generated for the ROIs—a process which was
applied to each of the 10 subjects individually, greatly simplifying
network-level comparisons across test subjects since the nodes
of the cortical network (the ROIs) were localized in the same
location every time. This approach differs from traditional ROI
determination methods involving ICs because the latter rely
heavily on the common spatial localization of ICA outcomes,
which is not guaranteed for multiple separate runs of ICA on
different data, and, thus, may lead to inconsistencies for group
level connectivity analysis (Thompson et al., 2011).

Connectivity Analysis–Sift
Application of the maximum power heuristic on the results of
cLORETA created a single time series that represented cortical
current dynamics for each ROI selected through clustering.
These time series representing ROIs (ROI signals) were used to
construct linear (MVAR) models from which spectro-temporal
causal interactions between ROIs were computed using the
Source Information Flow Toolbox (SIFT) (procedure outlined
in Figure 1F) (Delorme et al., 2011). Specifically, for each
participant, the ROI signals were preprocessed by employing
detrending and normalization across time and ensemble. The
MVAR models were constructed by applying the Vieira-Morf

lattice algorithm to the ROI signals, using a sliding window with
a length of 550 ms and a window step size of 10 ms, leveraging
the window size to decrease the number of the estimated MVAR
coefficients (ratio of data points to parameters > 10:1)—a
necessary provision arising from the lack of regularization in
the Vieira-Morf algorithm. The optimal order for the MVAR
model was determined automatically by averaging the optimal
orders estimated by six different information criteria: Akaike
Information Criterion, corrected Akaike Information Criterion,
Hannan-Quinn Criterion, Schwarz-Bayes Criterion, Rissanen
Prediction Error, and logarithm of Akaike’s Final Prediction
Error (Rissanen, 1978; Tu and Xu, 2012). Each of these
information criteria was computed for the range of possible
model orders between 1 and 30, and the optimal model order for
each participant was automatically determined by identifying the
minimum value for each of the six generated curves, computing
the average, and rounding down to the nearest integer. The
model order for the Lift and Reach/Saccade conditions were
determined independently. After model order determination,
tests of stability and consistency were performed for each MVAR
model in order to validate the ability of the model to capture
the dynamics of the ROI signal. The autocorrelation function
and three different portmanteau tests were used to determine the
whiteness of the model residuals. The percent consistency of the
model was evaluated for every sliding window within the epoch,
indicating, as a percentage, the relative amount of correlational
structure within the data that had been captured by the model.
A stability test was conducted on every window within the epoch
the MVAR coefficient matrix was evaluated.

Pairwise causal relationships between ROIs were computed
from the validated MVAR models by employing the (SdDTF)
(Korzeniewska et al., 2008). The SdDTF connectivity η2ij

(
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)
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where Hmn (f , t) is the MVAR transfer matrix between network
nodes (ROIs) m and n, and Pmn (f , t) is the partial coherence
of the signals for nodes m and n. The SdDTF connectivity
metric is similar to conditional spectral Granger Causality,
but only reports direct causal relationship between signals,
removing spurious or indirect relationships caused by upstream
network topology, particularly common inputs. Unlike Granger
Causality, which utilizes AR model residuals to determine causal
influence, SdDTF utilizes the AR transfer functions themselves
(see Equation 3) allowing for straightforward generalization of
the metric to multivariate systems, in this case a network with
more than two cortical nodes. To control for the potentially large
and unregularized AR transfer functions, DTF normalization
is conducted across incoming and outgoing signals, and across
frequencies. This normalized term is weighted by the partial
coherence in order to incorporate the direct relationships
between source nodes, thus mitigating the phantom source
problem present in Granger causal metrics and yielding the

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 180 | 56

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Courellis et al. Group-Level Dynamic Causal Connectivity Analysis

full form of the direct Directed Transfer Function. This metric
is further developed by evaluating it over a short sliding
window across the epoch, an additional feature which serves to
promote local stationarity of the ROI source signals and observe
changes in connectivity dynamics between signals as the epoch
progresses. The SdDTF measure was computed separately across
epochs and frequencies of interest in this way, yielding a spectro-
temporal asymmetrical causal connectivity matrix of SdDTFs
with causal source nodes (FROM) defining the columns and sink
nodes (TO) defining the rows of the connectivity matrix. Note
that the diagonal elements of this matrix do not have relevant
physical meaning for the purposes of this network analysis, and
were, therefore, omitted.

A permutation-bootstrap approach was employed to
determine the statistical significance of each SdDTF value within
the asymmetric connectivity matrix (outlined in Figure 1G).
The permutations were created by randomly mixing ROI-
current density epochs from the control and test conditions
with equal representation, generating an epoch ensemble on
which connectivity analysis was conducted. The resulting ROI
connectivity matrices from each permutation were accumulated
to create a surrogate distribution. The values of each spectro-
temporal position in this distribution were, then, sorted in
ascending order, allowing for the associated p-value of the
tested connectivity value to be computed in a non-parametric
manner through its place in the ranked connectivity values at
that spectro-temporal position of the surrogate distribution.
This process was applied to both the Lift and Reach/Saccade
conditions, where the null hypothesis (H0) was the lack
of significant increase or decrease in connectivity between
the evaluated condition and the case of randomly mixed
ROIs. The alternative hypothesis (H1) was that the evaluated
condition individually exhibited connectivity structure that was
significantly different from the structure acquired by randomly
intermixing the two conditions. The p-value for each spectro-
temporal point was determined by using an averaged surrogate
distribution computed across all 10 participants. A surrogate
distribution for each of the 10 participants was computed by
conducting connectivity analysis on 300 permutations of the
original data, yielding 300 SdDTF values for each spectro-
temporal position. The average surrogate distribution was
computed by applying spectro-temporal position-wise averages
across all 10 surrogate distributions for each of the 300 values
and, subsequently, sorting in ascending order the resulting
average values at each spectro-temporal position. With 300
permutations computed for each subject, there was sufficient p-
value resolution to establish which time-frequency points passed
the α= 0.05 threshold. This threshold was automatically adjusted
since the statistical significance of each spectro-temporal point
was evaluated independently by applying the False Detection
Rate (FDR) control method as a means of accounting for the
multiple comparisons problem (Benjamini and Hochberg, 1995).

The difference between statistically significant values of
average connectivity matrices corresponding to the Lift condition
and Reach/Saccade condition was computed in order to
determine the statistically significant changes in the cortical
network between the two conditions.

RESULTS

IC Clustering Outcome
The ROIs selected for source localization based on the
cluster centroids were: bilateral (left/right) inferior occipital
(Occ), superior parietal (Par), and precentral gyrus motor
(Mot) cortices, as well as, anterior cingulate cortex (ACC),
supplementary motor area (SMA), and precuneus, whose left and
right hemisphere grid point regions were combined and treated
as a single anatomical region during source localization and ROI
collapse.

Figure 3 depicts the clustering outcome for the reach/saccade
condition, showing the dipole cluster and average scalp
projection for the eight clusters from which ROIs were
determined. The 3D dipole maps plotted on a standard MNI
MRI volume demonstrate the spatial tightness of the clusters
selected as candidates for ROIs, while the average composite
topographical maps indicate that there is consistency in both the
orientation and di-polarity of the ICs in each cluster. All of the
selected clusters feature a relatively tight positive spike in electric
potential over the cortical area where the equivalent dipoles are
placed; suggesting that the collection of dipoles within the cluster
originate from similarly oriented pyramidal cells in gray matter,
generating electrical dipoles whose resultant field produces the
positive potential present in the scalp maps. Were the IC clusters
not as spatially tight, or comprised of dipoles oriented in different
directions, the average scalp maps would have electric potential
much lower in magnitude and dispersed over a much wider area
of the brain. The spatial tightness of the dipoles and the scalp
maps suggests that a robust clustering outcome was achieved,
and the associated ROIs were reliably utilized with this data in
subsequent analysis.

The determination of ROIs from ICs is not necessarily a
one-to-one mapping. A single cluster can provide evidence for
inclusion of multiple ROIs, as is the case with cluster 5, for
example, whose dipole locations span across both hemispheres.
So, when identified with the Talairach atlas, the ROIs fall in
bilateral regions of the Occipital Cortex (Inferior gyri) that
are too far from each other to be grouped across the medial
longitudinal fissure, as was the case with all of the other midline
ROIs.

All nine ROIs selected for the cortical network are displayed
in Figure 4, with color-coded grid-points associated with each
ROI as follows: midline ROIs are colored Red (ACC, SMA,
Precuneus), and bilaterally (left and right) situated ROIs away
from the midline (Mot, Par, and Occ) are dark blue, light blue,
and yellow respectively.

MVAR Model Construction and Validation
Model order selection was conducted with an average MVAR
parameter-to-datapoint ratio of 0.096 for the Lift condition and
0.034 for the Reach/Saccade condition. The window size was
selected so that, in all cases, this ratio never exceeded 0.1, as is
recommended for a well-posed MVAR model computed via the
Vieira-Morf Lattice Algorithm. For the Lift condition, the average
model order across all subjects was 7.4 with a standard deviation
of 1.35, and for the Reach/Saccade condition, the model order
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FIGURE 3 | Clustering outcome across all test subjects for the Reach/Saccade condition. IC dipole locations in each cluster are displayed in blue on a

standard MRI volume, with the cluster centroid in red (centroid itself is not an IC, interpolated from other dipoles in cluster). The scalp maps are composites displaying

the average electric potential on the scalp arising from the equivalent IC-dipoles within each cluster. The cluster centroids provide the foundation for subsequent ROI

selection by association with the anatomical structure(s) the cluster occupies. The associated ROIs for each cluster are shown in table y. Note that for non-bilaterally

separated ROIs, the areas in the left and right hemispheres were combined due to close proximity across the medial longitudinal fissure.

average was 7.2 with a standard deviation of 1.03. Figure 5 shows
the output of the model order selection criteria pertaining to the
MVAR model order of the Lift condition for a single participant.
The top graph shows the average (across epochs and sliding
windows) value of each criterion over model orders from 1 to

30. The histograms that follow show the order distribution using
each of the criteria.

The MVAR model validation results averaged across all
subjects and both conditions are shown in Figure 6. The average
model performance was highly representative of the individual
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FIGURE 4 | Cortical boundary element head model with the nine selected ROIs marked with color. Red color indicates that the left and right hemispheres of

the ROI were merged and treated as a single ROI during source localization and signal extraction. Other colors indicate that bilateral cortices were selected across the

hemispheres. ROI abbreviations are: Mot, Precentral Gyrus; ACC, Anterior Cingulate Cortex; SMA, Supplementary Motor Area; Prec, Precuneus; Occ, Inferior

Occipital Gyrus; Par, Superior and Inferior Parietal Gyri.

FIGURE 5 | MVAR model order selection for the lift condition of a single test subject. Each of six information criteria (Schwarz-Bayes Criterion, Akaike

Information Criterion, Corrected Akaike Information Criterion, Final Prediction Error, Hannan-Quinn Information Criterion, and Rissanen Prediction Error Rissanen,

1978; Tu and Xu, 2012) were evaluated for model orders 1–30 and averaged across all condition trials. Optimal model order corresponds to the minimum of each

information criterion curve. Distributions of optimal model order for all trials are shown in histograms for each of the six information criteria used. Center lines and

shaded regions in each histogram indicate the mean and standard deviation respectively for each information criterion.
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FIGURE 6 | Model validation criteria for Lift (left) and Reach/Saccade (right) Conditions averaged across all 10 subjects. Whiteness of AR model residuals

(top row) evaluated using Autocorrelation function (ACF) and three different Portmanteau tests. None of the MVAR models passed any of the whiteness tests,

suggesting that none of the models captured adequately the modeled temporal dynamics. Percent consistency (middle row) indicates percent of correlational

structure of original data captured by the model. Percent consistency was uniformly high as its values were in the order of 90% with small standard deviations.

Stability index (bottom row) is log of largest eigenvalue of AR model. Negative index implies that largest eigenvalue is less that one, and thus, the MVAR models were

stable. Note, that all tests were conducted individually for every sliding window (43 in total) across the epoch, hence the 43 data points in each graph.

performance of each subject’s MVAR model since, in all cases,
the MVAR model was stable across the entirety of the epoch, as
indicated by the natural logarithm of the largest eigenvalue being
negative (Figure 6 Stability Panel). The percent consistency for
both Lift and Reach/Saccade conditions was above 90% and
the standard deviation in the percent consistency was <1.0%
(0.877% for Lift and 0.712% for Reach/Saccade), indicating that
the high consistency of the MVAR model with respect to the
data was maintained for the duration of the epoch (all 43 sliding
windows within each epoch). None of the computed MVAR
models passed the residual-whiteness tests at any point during
the epoch, suggesting that there was statistically significant
correlational structure exhibited by the MVAR model residuals,
and that the MVAR modeling did not succeed in capturing the
entirety of the temporal dynamics exhibited by the network
nodes during the epoch.

Spectro-Temporal Connectivity
The connectivity computed between the ROIs in the defined
cortical network is displayed in Figure 7 for the lift condition
and Figure 8 for the reach/saccade condition, with statistically
significant spectro-temporal connectivity (p < 0.05) thresholded
for each matrix respectively.

The difference between the p-value thresholded connectivity
matrices for Lift and Reach/Saccade, shown in Figures 7, 8

respectively, was computed and shown in Figure 9. Since the
lift (control) condition was subtracted from the reach/saccade
(test) condition, the warmer (brighter red) regions of the matrix

indicate that connectivity was stronger during the reach/saccade
and the cooler (brighter blue) regions indicate that connectivity
was stronger during the lift.

The majority of lift-dominant causal interactions originate
from the supplementary motor area, parietal areas and the
Precuneus. During Lift, the SMA exhibits notable outflow to
the Left Parietal Area (L Par) and the Precuneus. The SMA
drives activity in the L Par over a constant frequency range
(8–15 Hz) during both planning and execution (Figure 9A).
However, a dichotomy between planning and execution exists in
the connection form the SMA to the Precuneus, with sporadic
low-frequency connectivity (3–14 Hz) present during planning
that narrows in frequency band (8–14 Hz) and becomes more
consistent during execution (Figure 9B). From L Par, the only
significant outflow of information occurs to the Precuneus,
dominating lower frequencies (3–14 Hz) during part of the early
planning phase and the entirety of the execution phase of the lift
(Figure 9C). From R Par, information flows to the ACC across
low frequencies (3–14 Hz) during the planning phase and for
some of the execution phase, though the causal connection is
limited to a narrow frequency band (10–14 Hz) by the end of the
epoch (Figure 9D). Similar connectivity is present with the SMA,
although in the case of information flow from R Par to SMA, the
connectivity does not subside as late in the execution phase as in
the case with the ACC (Figure 9E). The R Par exhibits another
connectivity motif, providing strong causal influence on both
the Left Parietal Area and the Precuneus during the planning
phase of the lift over a low frequency band (3–10 Hz), and with
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FIGURE 7 | p-value thresholded spectro-temporal asymmetric cortical connectivity matrix for the lift condition. Network sources are tabulated at the

columns and sinks at the rows. The dynamic causal relationship between each source and sink is expressed by the corresponding SdDTF. Non-zero connectivity is

displayed only at spectro-temporal points with p < 0.05, thus only displaying statistically significant connectivity in the cortical network for the Lift condition. Note the

frequency axis is plotted on a logarithmic scale to more clearly show lower frequency band connectivity, where the majority of causal flow occurs in this network.

relatively higher power compared to its other causal influences
(Figure 9F). The Precuneus exhibits the greatest amount of
causal outflow during lift, acting as an information source for
the majority of the other ROIs in the network. The Precuneus
has relatively lower-power (lighter blue shading) influence on
both precentral gyri, during both planning and execution, with
the band of active connectivity narrowing when transitioning
from planning to execution (Figure 9G). The Precuneus sends
information with a similar spatiotemporal structure to the ACC,
but with slightly greater causal power, hence the brighter shading
of the connectivity during the planning period (Figure 9H). The
influence the Precuneus has on the SMA is stronger still (even
darker shade of blue), and now occupies the entire duration of the
epoch and maintains signal bandwidth (3–14 Hz) (Figure 9H).
The Precuneus influences both parietal areas very strongly during
lift, with R Par receiving information only during the planning
phase across a low frequency band (3–10 Hz) (Figure 9I), and L
Par receiving information across a slightly larger band (3–14 Hz)
and for both planning and execution. During execution, however,
the connectivity is limited to the higher end of that frequency
band (10–14Hz) (Figure 9J).

Within reach/saccade-dominant activity regions, which
are defined by the red spectro-temporal regions of Figure 9,
greater connectivity is present in the frontal regions of the
cortex. Specifically, both the left and right precentral gyri
exhibit stronger connectivity to the left parietal composite area
during the planning phase of the epoch across lower frequencies

(3–14 Hz), with this connectivity decreasing in power relative
to lift during the execution phase (Figure 9K). Additionally,
the anterior cingulate cortex (ACC) exhibits increased outflow
of information across lower frequencies (3–14 Hz) to both
precentral gyri again during the planning phase (Figure 9L).
The ACC also appears to feed information to the left and right
visual cortices across a narrower frequency band (8–14 Hz)
during the planning phase (Figure 9M), with the bandwidth of
information flow encompassing lower frequencies from ACC
to R Occ as the epoch progresses from planning to execution.
For the reach/saccade condition, the SMA exhibits a greater
amount of causal influence on the ACC than any other cortical
node, with a strong 14–40 Hz communication band present
during the planning phase that dips down to lower frequencies
(3–8 Hz) as the subject transitions from planning to execution
(Figure 9N). The ACC reciprocates some of this activity to the
SMA, with higher frequency (15–40 Hz) communication during
the planning phase that dies down during the execution phase
(Figure 9N). The SMA also exhibits some information outflow
to the visual cortices, with the L Occ flow subsiding by the end
of the planning period, and the R Occ flow remaining constant
in both frequency band and relative amplitude over the entire
epoch (Figure 9O). The right parietal composite area (R Par)
exhibits causal influence on the Precuneus in higher frequencies
(20–25 Hz) during the planning phase, and significantly stronger
lower frequency (3–13 Hz) influence during reach/saccade
execution in comparison to the lift execution (Figure 9F). The
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FIGURE 8 | p-value thresholded spectro-temporal asymmetric cortical connectivity matrix for the reach/saccade condition. Network sources are

tabulated at the columns and sinks at the rows. The dynamic causal relationship between each source and sink is expressed by the corresponding SdDTF in the

pertinent location in the connectivity matrix. Non-zero connectivity is displayed only at spectro-temporal points with p < 0.05, thus only displaying statistically

significant connectivity in the cortical network for the Reach/Saccade condition. Note the frequency axis is plotted on a logarithmic scale to more clearly show lower

frequency band connectivity, where the majority of causal flow occurs in this network.

last of the significant communication motif that is strong during
the reach/saccade conditions originates from the Precuneus.
The influence of Prec on L/R Occ is most prevalent during
the execution phase (Figure 9P). In both cases, however, the
precuneus predominantly drives lower frequency activity (3–14
Hz), with a significant decrease in connectivity magnitude above
14 Hz. There is also evidence of temporally localized higher
power bursts of connectivity across low frequency from the
Precuneus to the right parietal area, beginning early in the
planning period in the 14–20 Hz band and terminating at the
end of the epoch after drifting down to 8–13Hz (Figure 9I).

DISCUSSION

Neurophysiological Connectivity
A cortical network associated with the Lift and the Reach/Saccade
conditions was identified across 10 subjects, involving distinct
ROIs, and the dynamic causal interactions between pairs of ROIs
were computed for each condition. The cortical network, the
ROIs, and the dynamic causal connections between pairs of ROIs
exhibited physiological plausibility consistent with previous
results reported in the literature, although some important
differences were noted as outlined further below. The bilateral
Inferior Occipital Gyri coupled with adjacent Occipital regions,
known to form the Visual ROIs, represent primary processing
of the visual stimuli present in the reaching task (Blumberg and
Kreiman, 2010) . The various motor regions, including bilateral
Precentral Gyri (housing the Left and Right Motor Cortices)

and the bilaterally grouped Supplementary Motor Area, have
been implicated in the planning and execution of the physical
movement, e.g., in this case of the participant’s arm to reach
the presented target as well as the saccade of the eyes to focus
on the target (Johnson et al., 1996; Nachev et al., 2008; Wang
et al., 2010). Parietal activity is largely implicated by existing
literature in guiding action directed at visual targets (Blangero
et al., 2009; Filimon, 2010). The Anterior Cingulate Cortex, a
grouped ROI consisting of the Left and Right cortices merged
across the longitudinal fissure, is thought to be involved in higher
level decision making and, of particular interest in this case,
the translation of intentions to actions (Kennerley et al., 2006).
The Precuneus, also bilaterally grouped across the longitudinal
fissure, has been shown to be directly involved in both visual
and non-visual reaching tasks in both macaque monkeys and
humans, being responsible for the processing of both visual and
proprioceptive sensory information during the task (Filimon
et al., 2009).

Though entirely possible to treat the three grouped ROIs
(SMA, Prec, and ACC) as distinct, the close proximity of the
bilateral ROIs to each other within the longitudinal fissure
and the spatially-regularized source localization can lead to
significant overlap of posterior current density between the ROIs,
generating spurious causal interhemispheric coupling, which is
avoided by considering those three ROIs to be trans-hemispheric.

Inspection of the connectivity during the lift and
reach/saccade condition, shown in Figure 9, reveals that
the cortical network exhibits relatively lower strength, but
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FIGURE 9 | Difference of statistically significant values (p < 0.05) of the connectivity matrix between the Reach/Saccade and Lift condition. Warmer

colors indicate Reach/Saccade > Lift, cooler colors indicate Lift > Reach/Saccade. Note, that during Reach/Saccade, information flow is facilitated from both

precentral gyri (L/R Mot) to left parietal area (K) and ACC exhibits greater influence on precentral gyri during planning (0–0.5 s) as well as the visual cortices (L/R Occ)

during both planning and execution (L,M); during Lift, Precuneus is much more active both inflow (B,C,F) and outflow (G,H,J,P) except when communicating with the

right parietal area (I), especially during the execution phase (0.5–1.0ms) of the task. The SMA also drives activity in the visual cortices (O), as well as displaying

outflow to the ACC (N) and L Par (A) during Reach/Saccade and Lift respectively. Also during Reach/Saccade, the parietal region ipsilateral to the moving arm (R Par)

demonstrates reduced outflow to both ACC and SMA (D,E) relative to Lift. Brighter red and brighter blue show stronger Reach/Saccade and Lift connectivity

respectively.

widespread effective connectivity during the reach/saccade
condition, and more focal, higher-strength connectivity during
the lift condition. In the case of the reach/saccade condition,
the ACC exemplifies this widespread, low-power connectivity
profile, driving activity in both Left and Right Precentral Gyri
during the planning period, and driving activity in both visual
cortices for both planning and execution of the reach. The
connection from the ACC to L/R Mot (Figure 9L) suggests a
causal influence of a decision making center in the frontal cortex
onto regions directly involved in the planning and execution
of a reach and saccade, a connectivity motif that has been
observed before using other neuroimaging modalities (Asemi
et al., 2015). Furthermore, this causal influence is shown only to
exceed lift-connectivity magnitude during the planning period,
indicated by the lack of ACC to L/R Motor interaction after
0.5 s, suggesting that after the movement is planned, execution
no longer requires direct influence of the ACC onto the Motor
cortices. On the other hand, the ACC to L/R Visual connections
(Figure 9M) remain elevated for the entirety of the epoch during
the reach/saccade condition, indicating a possible involvement
of the cognitive-control and error detection functions of the
ACC (Stevens et al., 2011) in visual processing during execution.
The task-positive connections formed by the ACC exhibit higher
frequency connectivity (Figures 9 L–N), with the lower end of

these connectivity bands lying in the α (8–13 Hz) wave range,
which is expected considering the motor-relevance of the α-band
to indicate inactivation of motor regions (Brinkman et al., 2014),
and the higher end of these connectivity bands stretching into the
30–50 Hz range, consistent with the generally higher-frequency
content of cognitive cortical processes (Buzsáki and Silva, 2012).

However, this does not seem to be the case for the information
flow from the SMA to the ACC (Figure 9N), wherein a high
α/low β band connection (10–20 Hz) present during the planning
period migrates down to lower frequencies (3–8 Hz), occupying
the θ band by the end of execution. A possible explanation for
this exception stems from the suggested involvement of the SMA
in the real-time control of actions during execution, by which
it might provide feedback to the ACC regarding the accuracy
of the conducted reach (Nachev et al., 2008). The connections
from L and R Mot to L Par (Figure 9K) exhibit a connectivity
profile similar to the ACC → L/R Mot interaction, with lower-
power, reach/saccade-dominant connectivity during planning
that is absent during execution. While both the composite
parietal regions and the precentral gyri have been implicated
in visuo-spatial processing and reaching to identified targets,
the analysis indicates that their interaction is limited during the
planning phase of a reach, and is not required in order for the
reach to be executed after planning. A strong, sharply divided
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connection is also observed from the Right Composite Parietal
Region to the Precuneus (Figure 9F)—a connection which is
facilitated during lift-planning and reach/saccade-execution, and
suppressed during reach/saccade-planning (for low frequencies)
and lift-execution. The connectivity profile suggests that during
reach/saccade planning, R Par predominantly communicates
with the Precuneus through higher frequencies (14–30 Hz),
which is of great significance to the Precuneus since it normally
communicates with other nodes in the Default Mode Network
through this frequency band (Neuner et al., 2014). The transition
to lower frequency connectivity (3–14 Hz) during Reach/Saccade
execution may simply be a feature of task demands, since similar
communication was seen in Figures 9H,I,M,N,P, suggesting
a generalized tendency for visuo-spatial and motor related
cortical regions to communicate through lower frequency bands
when the reach/saccade is being executed. The reach/saccade-
dominant dynamics of the connection from the Precuneus to R
Par (Figure 9I) also exhibit characteristics similar to the other
motor regions, where the high-frequency planning connectivity
gives way to lower frequency execution connectivity. However,
during the epoch, the frequency range of the connectivity varies
periodically, dipping to lower frequencies and, subsequently,
returning to higher frequencies (Figure 9I, red profile) at the rate
of 5 Hz. This behavior suggests that the Precuneus dynamically
alters the frequencies over which it communicates with R Par in
a periodic manner. The persistence of this behavior through both
planning and execution suggests that the behavior is associated
with generalized motor-reach information processing, though
the decrease (Figure 9I, red profile) at the transition between
planning and execution at 0.5 s supports the involvement of this
periodicity in the motor task being executed by the subject.

Connectivity present in the cortical network is summarized in
Figure 10, where the Reach/Saccade condition is shown in a 3D
(BrainMovie3D) rendering of a cortical volume (Delorme et al.,
2011). The ROIs are represented by labeled spheres of varying
size and color, with the magnitude of causal information in-
flow indicated by color and the magnitude of causal information
out-flow indicated by size. Larger size spheres indicate larger
information out-flow and warmer colored spheres (brighter
red) indicate larger information in-flow. Connections between
ROIs are represented by tapered cylinders with varying color
and diameter. Cylinder tapering indicates the direction of
information flow, while cylinder width indicates flow magnitude,
and cylinder color represents the dominant frequency of
communication, with cooler colors for lower frequencies and
warmer colors for higher frequencies. Causal information flow
is integrated across all computed frequencies (2–50 Hz), and
is shown here (Figure 10) for t = 250 ms, that is, during the
planning period. The 3D rendering demonstrates the dominant
role of the Precuneus as an information source, indicated by its
large size, the higher power/frequency coupling of frontal regions
(ACC, SMA, L/R Mot), indicated by warmer colored and larger
connecting cylinders, and the higher frequency communication
present in the network during reach planning.

Framework Limitations
The above discussion of neurophysiologically relevant findings
serves to demonstrate the nature of the conclusions that

can be drawn through the application of this algorithmic
framework. Application of this method yields findings that are
both consistent with existing literature, and reveal connectivity
information in the cortex with an immense degree of detail,
allowing for the documentation of source-space spectro-
temporal information flow. There are, however, limitations with
the current approach which must be considered.

The source orientation assumptions applied to the cortical
BEM for the source space held that all cortical dipoles were
oriented normally to the surface of the BEM, a canonical
assumption that has been previously employed for BEM
construction (Fuchs et al., 2002), and is motivated by the
perpendicular orientation of cortical pyramidal cells to the
cortical surface. Applying this assumption simplifies solving the
inverse problem by reducing the number of variables to be
estimated to Ng (number of BEM grid-points) from 3 ∗ Ng , as
is the case when accounting for the x, y, and z components of
the current at each grid-point. However, this assumption greatly
restricts the form of the computed current density, and does not
allow for any data-driven flexibility with the computed dipoles.
Utilizing the position-free BEM and associated Lead Field Matrix
would allow for much greater flexibility, allowing for cortical
dipole orientation to be computed either jointly with the current
density, or after source localization using the current density, and
thus identifying orientations through observed data instead of
through a prior model.

Another potential drawback of the current source-localization
algorithm is the Laplacian regularization utilized by cLORETA.
The smoothing features of the discrete Laplacian when used as
a Tikhonov matrix cause the estimated current density to be
blurred over large regions of the cortical surface. This blurring
can cause current density from a single source to spill over into
multiple adjacent ROIs and potentially skew causal interactions
between these ROIs in a manner that is not corrected by using
the SdDTF connectivity metric. Preliminary investigations using
this data suggest that this spill-over does not have a significant
effect on causal analysis in this proposed framework, but further
investigation would be prudent to ensure that the computed
connectivity dynamics are not skewed by the choice of cLORETA
as the source localization algorithm.

The validity of the presented connectivity dynamics is
supported by the statistical analysis of the SdDTF connectivity
matrix and the validation conducted on the fitted MVARmodels.
Though a large amount of the computed connectivity was
statistically significant, the residuals of the computed MVAR
models failed the whiteness tests because not all correlational
structure of the localized current was captured by the models,
suggesting the existence of non-linear dynamics. These non-
linear dynamics are readily visible in the model prediction error
and suggest that non-linear ARmodeling is required to effectively
capture these dynamics in the MVAR coefficients. However, all
models exhibited a large Percent Consistency in the order of
90%, indicating that a very large percentage of the correlational
structure of the localized current in each node was captured
by the MVAR. The high percent consistency of the model
indicates that these nonlinearities constitute a small portion of
the localized current, and the computed MVAR models are able
to account for the vast majority of the observed dynamics.

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 180 | 64

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Courellis et al. Group-Level Dynamic Causal Connectivity Analysis

FIGURE 10 | Cortical connectivity present during the planning phase of the Reach/Saccade condition, shown in a 3D (BrainMovie3D) rendering of a

cortical volume (Delorme et al., 2011). ROIs are represented by labeled spheres of varying size and color, with the magnitude of causal information in-flow

indicated by color and the magnitude of causal information out-flow indicated by size. Connections between ROIs are represented by tapered cylinders with varying

color and diameter. Cylinder tapering indicates the direction of information flow, cylinder width indicates flow magnitude, and cylinder color represents the dominant

frequency of communication, with cooler colors for lower frequencies and warmer colors for higher frequencies. Causal information flow was integrated across all

computed frequencies (2–50 Hz), and is shown here for t = 250 ms, during the planning period. The 3D rendering demonstrates the dominant role of the Precuneus

as an information source, indicated by its large size, the higher power/frequency coupling of frontal regions (ACC, SMA, L/R Mot) indicated by warmer colored and

larger connecting cylinders, and higher frequency communication present in the network during reach planning.

Extensions to Real-Time BCI Applications
In spite of the potential limitations discussed in the previous
section, the proposed algorithmic framework has great potential
as a means for extracting connectivity features in real time
that can be used for brain state identification and BCI control.
While in its current form, the framework is designed for off-
line processing, Mullen et. al have demonstrated in Mullen et al.
(2015) that elements of this framework can be applied in a
real-time BCI setting and, with high accuracy, decode brain
states using the spectro-temporal connectivity features computed
through the use of this framework. The linear nature of the
inverse problem formulated through cLORETA allows for rapid
localization of current density in the cortex by application of

the closed-form solution given in equation 2. Furthermore, the
lattice algorithm used for MVAR coefficient estimation, while
well suited for off-line analysis where all data is available for
fitting, can be replaced by alternative estimation algorithms
which take advantage of the convexity of MVAR model-fitting
to compute robust models quickly and with relatively few
data-points. In addition, the development of online recursive
ICA (Hsu et al., 2014) allows for robust online artifact rejection,
source identification, and lends to the overall feasibility of this
approach in real-time BCI applications. There are other elements
of the pipeline, such as the data-driven identification of ROI’s
for connectivity analysis, which must be adapted to account for
the lack of all data present, or meet the computational demands
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in real-time analysis. Nevertheless, there is great potential use
for this framework in both a clinical and research settings for
real-time BCI control.

CONCLUSION

The presented algorithmic and computational framework
successfully identified a cortical network, across several subjects,
associated with a cognitive task, using EEG signals recorded
from individuals performing the task with the aid of a
BCI. It also computed statistically significant causal dynamic
connectivity profiles among the ROIs comprising the nodes
of the identified cortical network. The modular nature of the
presented framework allows for flexibility and scalability. The
algorithm computing the cortical network can easily scale up to
include a greater number of participants without compromising
the reliability or accuracy. The ease of incorporating large
amounts of data comes as a consequence of utilizing a distributed
source localization method with a BEM-defined source space.
The flexible-yet-fixed source space geometry allows for warping
head models to align with a realistic 3D representation of
each participant’s cortex by way of the digitized electrode
positions, while retaining the identity of anatomical ROIs and
their associated gray matter grid points in the head model.
Should the user deem it necessary, the modular nature of this
framework allows for substitutions of preprocessing algorithms,
source localization methods, and connectivity analysis tools
as is seen fit. As long as a source-space based localization
algorithm is utilized to maintain consistent anatomical regions
across subjects, the user is free to create a customized pipeline
that best suits their needs, and is not strictly limited to
usage of the algorithmic pipeline with the proposed software
and algorithms. The proposed analytical approach allows for
extraction of information rich connectivity features which
account for spectro-temporal connectivity dynamics during the
performance of a cognitive task. This feature extraction is
made possible by coupling the segmentation-MVAR modeling
of cortical signals with the SdDTF—a connectivity metric that is
evaluated independently for different frequencies, leading to the
asymmetric spectro-temporal connectivity dynamics displayed

in Figures 7–9. The presented framework also includes a non-
parametric statistical test to assess the statistical significance
of the extracted features—the spectro-temporal connectivity
dynamics. The physiological plausibility of the cortical network
and the causal dynamic features characterizing interaction
among the nodes of the network computed by employing this
framework strengthens the framework’s applicability in reliably
capturing complex brain functionality, which is required by
applications, such as diagnostics and BCI.
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Brain-machine interfaces (BMIs) seek to connect brains with machines or computers

directly, for application in areas such as prosthesis control. For this application, the

accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy

by designing a better encoding model of primary motor cortical activity during hand

movements and combining this with decoder engineering refinements, resulting in a

new unscented Kalman filter based decoder, UKF2, which improves upon our previous

unscented Kalman filter decoder, UKF1. The new encoding model includes novel

accelerationmagnitude, position-velocity interaction, and target-cursor-distance features

(the decoder does not require target position as input, it is decoded). We add a novel

probabilistic velocity threshold to better determine the user’s intent to move. We combine

these improvements with several other refinements suggested by others in the field. Data

from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of

hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833)

and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2

could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic

variables and past spiking, better than the encoding models of these two decoders

(UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey

controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task

completion (mean 1.56 s vs. 2.05 s) and higher Fitts’s Law bit rate (mean 0.738 bit/s

vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder

engineering refinements of the UKF2 improve decoding performance. We believe they

can be used to enhance other decoders as well.

Keywords: brain-machine interface, neural decoding, encoding model, unscented Kalman filter, brain-computer

interface, neuroprosthetic

INTRODUCTION

Brain-machine interfaces (BMIs) have the potential to improve the well-being of people with
paralysis, locked-in syndrome, and other ailments, as well as change how humans interact
with machines and each other. While there has been substantial progress (Baranauskas, 2014;
Nuyujukian et al., 2015) in the accuracy or communication bandwidth of BMI, there is still
room for improvement. In our previous work with the unscented Kalman filter based decoder
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(Li et al., 2009), which we refer to as UKF1, we proposed a non-
linear model of neural tuning which modeled the relationship
between spike counts and the position and velocity of a
cursor. Since that study, much progress has been made in
decoder engineering and motor cortical encoding models. We
have collected several novel modeling and decoder engineering
refinements, as well as incorporated work from others, to form
an improved unscented Kalman filter based decoder, which we
call UKF2.

The refinements to the encoding model can be summarized
as adding neural tuning to hand acceleration, hand position
and velocity in an interactive term, and target position and
modeling neuron autocorrelation and cross-neuron correlation
using spiking history. We include target position as a decoded
variable, i.e., the UKF2 does not require knowledge of the
true target position to operate. The refinements to decoder
engineering are the use of a combination of position and velocity
estimates to control the cursor, probabilistically thresholding
velocity to determine when the user wishes to remain still,
and using estimates of future intended movement to drive the
cursor. We do not modify the unscented Kalman filter algorithm
itself; rather, our improvements are in the design of the filter’s
observation model and post-processing of filter outputs.

Using data from two Rhesus monkeys, we compare UKF2
to UKF1, as well as the popular position-velocity Kalman filter
in terms of offline reconstructions of hand-controlled cursor
movement, encoding model predictive power, and closed-loop
neural control of cursor. We also examine the contributions
of each modeling refinement. Our results show that the UKF2
reconstructs hand-controlled cursor movement more accurately
than the position-velocity Kalman filter and the UKF1. Our
analysis suggest that the encoding model of the UKF2 encodes
neural activity better, as evidenced by better predictions of firing
rate given kinematic and past spiking information. Our analysis
of the modeling refinements indicates that spiking history
contributed themost to encoding accuracy, but hand acceleration
and target position contributed most to decoding accuracy.
Finally, experiments in which monkeys used the decoders in
closed-loop neural control of the cursor showed that, using the
UKF2, monkeys could complete a center-out task significantly
faster and with higher Fitts’s Law bit rate than using the UKF1,
and UKF2 performance was comparable to the FIT Kalman filter
(Fan et al., 2014).

Our results indicate that the enhancements of the UKF2
improved the functionality of the decoder. Some of the
enhancements, such as modeling of hand acceleration, target
position, as well as the probabilistic thresholding of velocity,
can be readily used by the Kalman filter and similar decoding
algorithms.

MATERIALS AND METHODS

Surgical Procedures
All surgical procedures were in compliance with the U.S.
National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee of Beijing Normal University.

Two adult male (6 years, 11 kg; 4 years, 8 kg) Rhesus monkeys
(Macaca mulatta) were implanted with silicon-based electrode
arrays (Utah array, Blackrock Microsystems) in the left primary
motor cortex under sterile conditions. We followed standard
Utah array implantation procedures. In each animal, a Utah
array was implanted approximately 4mm anterior to the
central sulcus, at approximately 15mm lateral from the midline
(Figure 1A), targeting arm and hand areas. Photos from the
implantation surgeries for monkey B and monkey M are shown
in Figures 1B,C, respectively.

Electrode Array
We used 96-channel Utah arrays (Blackrock Microsystems) with
1.0mm long electrode shanks (monkey B) or 1.5mm shanks
(monkey M). The arrays were arranged in a 10 × 10 grid
pattern with inter-electrode separation of 400 um. The shank
material was silicon with platinum coating on the electrode tip
and polyimide insulation (Jones et al., 1992). Electrode diameter
tapered from 80 um to a fine point (Jones et al., 1992).

Signal Acquisition and Processing
Signals were recorded from the Utah array using a Plexon
Omniplex recording system in an experiment room shielded
from electromagnetic interference. Signals were amplified (up
to 8000x), digitized (at 16 bit, 40 kHz), and processed in the
Omniplex system. A desktop personal computer (Dell Precision
T3500 with an Intel Xeon W3565 3.2GHz processor and 8 GB
RAM) received the processed signals and executed the Plexon
PlexControl software, as well as our experimental control and
decoding software.

Spikes were detected and sorted in real time using the
Omniplex hardware. The spike detection threshold and sorting
parameters were set by visual inspection by the experimenter
using Plexon’s software. Both well-isolated single units and
multiunits were used for decoding and analysis, and subsequently
referred to as units without distinction.

We aggressively spike sorted, that is, we preferred to
differentiate waveforms into a larger number of units when
the choice was not obvious. We often sorted several multiunits
per channel. Our reasoning was that if we mistakenly split the
waveforms from one neuron into two units, the model fitting
should not be biased (though noise due to variance would
increase during decoding). If we put two neurons in the same
unit, barring a specially designed decoding algorithm such as
the switching Kalman filter (Wu et al., 2004), we would lose
information. We illustrate the sorted spike waveforms from
all channels of monkey B and monkey M in Figures 1D,E,
respectively.

After spike sorting, spikes were counted in 50 ms duration,
non-overlapping bins to estimate the instantaneous firing rate
of each unit. All decoders and parameter fitting used this spike
count for input.

Experiment Control and Kinematics
Measurement
A custom brain-machine interface software suite (BMI3,
Nicolelis Lab, Duke University) performed experiment control,
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FIGURE 1 | Array implant locations and example recorded signals.

(A) Implant location. (B,C) Photos taken during surgeries. (D,E) Sample

waveforms. Each sub-panel shows waveforms from one channel, drawn as

mean ± one standard deviation.

model fitting, and real time decoding. This software suite
communicated with the Plexon software via Plexon’s C language
application program interface.

An analog 3-axis potentiometer joystick (CH-400R-P3,
Hangzhou Chuang Hong Electric Co.) was used to capture hand
motion data. Only the x and y axes were used, and the rotation

FIGURE 2 | Experimental setup and behavioral tasks. (A) The monkey sat

in a primate chair 55 cm before a computer screen and grasped a 6.5 cm tall

joystick with 4 cm maximum deflection in its right hand. (B) Center-out task.

The monkey alternatively moved the cursor to center targets and peripheral

targets, located at random angles and fixed distance from center. (C) Pursuit

task with Lissajous curve: the monkey kept the cursor within a target which

moved continuously following a Lissajous curve. (D) Pursuit task with

point-to-point trajectory: the monkey kept the cursor within a target which

moved continuously between randomly selected points on the screen.

axis was ignored in these experiments. The length of the joystick,
including handle, was 6.5 cm, and the maximum deflection of the
joystick was approximately 4 cm (Figure 2A). The joystick was
self-centered by a weak spring. This joystick was smaller than that
used in our previous work (Li et al., 2009); we observed that the
monkey primarily moved its elbow and shoulder joints to control
the joystick.

The joystick was connected to a PCI-DAS1002 analog-to-
digital recording card (Measurement Computing) mounted in
a separate desktop personal computer (Dell Precision T3500).
Custom software read the joystick measurements and sent them
to BMI3 using a gigabit Ethernet local area network.
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The position of the joystick was mapped to the position of the
cursor on the screen in a one-to-one, piecewise-linear manner,
with forward (anterior) joystick positions mapped to upper
screen locations and backward (posterior) joystick positions
mapped to lower screen locations. Joystick movements and on-
screen cursor movements had a scaling ratio of approximately
1:4. Joystick measurements were recorded at 100 Hz. To match
the 50 ms bin size of spike counts, the average of the five joystick
position measurements within each bin was used.

Behavioral Tasks
During experiments, the monkey sat in a primate chair and
a flat panel computer monitor was placed 55 cm in front of
it (Figure 2A). Prior to experiments, all monkeys were trained
on two behavioral tasks: center-out and pursuit. In the center-
out task (Figure 2B), monkeys had to move a circular cursor
(logically 0 cm diameter) into a circular target (5 cm diameter)
which alternatively appeared in the screen center and the
periphery. The peripheral locations were equidistant (8–10 cm)
from the screen center at a random angle. Hold time was set
to 500ms. In the pursuit task, monkeys had to keep the cursor
within a continuously moving target (6 cm diameter). The target
moved according to a Lissajous curve (Figure 2C) or a smoothed
point-to-point trajectory (Figure 2D). The center-out task was
used for offline and closed-loop decoding. The pursuit task was
only used for offline decoding. Details of the tasks can be found
in the Supplementary Materials.

Algorithmic Overview
Our decoding method is based on the n-th order unscented
Kalman filter decoder (Li et al., 2009), but with numerous
enhancements, some novel and some based on prior work. The
enhancements fall into two broad categories: those that modify
the neural encoding model and those that modify the control
mechanism during closed-loop neural control. Encoding model
refinements help both offline reconstructions and closed-loop
neural control, while control mechanism refinements are only
applicable to closed-loop neural control.

In the neural encoding model category are four
enhancements. (1) We use the Cartesian coordinates of
hand acceleration and a novel acceleration magnitude. (2) We
include a novel multiplicative hand position and hand velocity
interaction term in the encoding model. (3) We include the
target position and a novel target-cursor distance term in the
encoding model. (4) We include the recent spiking history (i.e.,
spike count in the previous time bin) of the entire recorded
population in the encoding model.

For the control mechanism, we have added three ideas: (1) we
use a mixture of decoded position and decoded velocity to derive
the new cursor position (Homer M. et al., 2013). (2) We use a
novel probabilistic threshold for velocity, which detects when the
user is trying to move in a more principled way than a simple
threshold on velocity. (3) We use predicted future kinematics to
drive the cursor, which is intended to improve the responsiveness
of the decoder.

These refinements are specified below and discussed in the
discussion section. Table S1 in the Supplementary Materials

provides an overview of which refinements are used during
offline reconstructions and closed-loop decoding.

State Variables and Neural Tuning Model
The filter’s state variables are the variables to be decoded, but
can also include other variables which may improve the accuracy
of the neural encoding model. In the standard position-velocity
Kalman filter, the desired position and velocity in the x and y
axis are the state variables (for a 2D task). In the UKF1, the
state has multiple taps of position and velocity. That is, at time
t (discrete index which counts bins), the UKF1’s state variables
are the position and velocity at time t, t + 1, t + 2, t + 3, t +
4, t + 5, t − 1, t − 2, t − 3, and t − 4, for a total of 10 taps.
These taps include estimates of “future” values of the kinematics
as well as “past” values, relative to the current time t. By including
future taps and past taps, the UKF1 is able to model neural tuning
at multiple time offsets simultaneously. Since the task is two-
dimensional, the number of state variables is 2 (dimensions) ×
2 (position, velocity)× 10 (taps)= 40.

In the UKF2 decoder, hand acceleration and target position
are added to the state variables. The target position is a decoded
variable and not required as input to the decoder. The number
of taps is reduced to five. The number of state variables is thus 2
(dimensions) × 4 (cursor position, velocity, acceleration; target
position)× 5 (taps)= 40.

The neural encodingmodel or tuningmodel is the observation
model of the (unscented) Kalman filter when it is used as a
decoder. It is a generative model that predicts the binned spike
count (instantaneous firing rate) given the state variables’ values.
The neural encoding model works in one direction, while the
decoder, which wraps around it, works in the other direction by
“inverting” the encoding model. To decode a variable, it must be
present as a feature in the encoding model and as a state variable
in the Kalman filter; however, not all encoding model features are
decoded by the decoder (e.g., spiking history), and not all state
variables are output by the decoder to control the cursor. The
encoding model of the position-velocity Kalman filter is:

frPVKalman
i,t ≈ c · pxt + c · pyt + c · vxt + c · vyt , (1)

where fri,t is the (mean subtracted) firing rate of unit i at time t,
every instance of c is a different coefficient fitted from training
data, pxt and pyt are the x-axis and y-axis positions at time t,
respectively, and vxt and vyt are the x-axis and y-axis velocities
at time t, respectively.

In the UKF1, the encoding model is:

frUKF1i,t ≈ position (t + 5) + velocity (t + 5) + position (t + 4)

+velocity (t + 4) + · · · + position (t − 4)

+velocity (t − 4) . (2)

For clarity, we have broken down the model to contributions
from different kinematic features:

position
(

k
)

= c · pxk + c · pyk + c
√

px2
k
+ py2

k
, (3)

velocity
(

k
)

= c · vxk + c · vyk + c
√

vx2
k
+ vy2

k
. (4)
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Again, to reduce notational clutter, every instance of c is a
different coefficient (total 60).

Combining the model of UKF1 and the above outlined
encoding model enhancements, and reducing the number of taps
to five, we obtain the encoding model of the UKF2:

frUKF2i,t ≈ position (t + 2) + velocity (t + 2) + acceleration (t + 2)

+ interaction (t + 2) + target (t + 2) + . . .

+ position (t−2) + velocity (t−2) + acceleration (t − 2)

+ interaction (t − 2) + target (t − 2) + spiking (t − 1) ,

(5)

acceleration
(

k
)

= c · axk + c · ayk + c
√

ax2
k
+ ay2

k
, (6)

interaction
(

k
)

= c ·
(

pxk · vxk
)

+ c · (pyk · vyk), (7)

target
(

k
)

= c · txk + c · tyk

+ c

√

(

txk − pxk
)2

+
(

tyk − pyk
)2
, (8)

spiking
(

k
)

= c · fractual1,k + c · fractual2,k +. . .+ c · fractualn,k ,(9)

where axt and ayt are the x-axis and y-axis hand accelerations
at time t, respectively, txt and tyt are the x-axis and y-axis
target positions at time t, respectively, n is the number of units,
and as before every instance of c is a different coefficient (total
70 + n). Note that our use of target position in the encoding
model includes a target-to-cursor distance term. The five taps
of kinematic features are followed by spiking history terms for
the entire population of n units [in spiking(t − 1)]. This spiking
history is the spike count in the previous bin for the entire
population.

Mixing Position and Velocity Outputs
Now we describe the first of the control mechanism refinements.
These refinements operate on the output of the unscented
Kalman filter. The outputs, or “decoded” variables, are the means
of the state variables of the unscented Kalman filter after it has
performed its filtering operations. These decoded variables are
processed further by the methods described below to get the final
on-screen cursor position.

Instead of using only the decoded position to control the
cursor as in UKF1, for the UKF2, both the decoded velocity and
the decoded position are used to update the cursor during closed-
loop operation. The two inputs aremixed together using amixing
coefficient (Homer M. et al., 2013):

xt = xt − 1 + cm · dt · vt + (1− cm) dt
‖vt‖

‖et‖
et , (10)

et = pt − xt−1, (11)

where xt is the vector of on-screen cursor position at time t, cm
is the mixing coefficient (0.5), dt is the delta time between time
steps (50ms), vt is the decoded velocity vector at time t [i.e.,
vt = (vxt + 2, vyt + 2), the +2 is due to use of future predictions,
described below], et is an intermediate variable representing the

difference between the decoded position and previous on-screen
cursor location, and pt is the decoded position vector at time t
[i.e., pt = (pxt + 2, pyt + 2)]. One way to interpret these equations
is that the decoded velocity magnitude acts as a gate or limit for
the amount that the decoded position can affect the cursor. We
did not use this feature in offline reconstructions and analysis.
Note this control mechanism refinement is orthogonal to the
position-velocity interaction refinement in the encoding model.

Movement Thresholding
We add a probability-based mechanism to help the user stop
the cursor during closed-loop control (only) which applies a
threshold on the decoded velocity. Since the Kalman filter
provides a covariance estimate for the velocity state variable, we
can perform a check using the decoded mean and covariance
values that allows us to place a threshold in terms of false positive
rate. Since the distribution of the state variables is assumed to be
multivariate normal, the x-axis and y-axis velocity values together
form a vector that has a two-dimensional multivariate normal
distribution. Given the mean vector (v) and covariance matrix
(Cv) of this distribution, we can compute the statistic:

X = vTC−1
v v, X ∼ X

2 (2) (12)

X has a chi-squared distribution with 2 degrees of freedom.
We can consult the cumulative distribution function of the chi-
squared distribution to test if the velocity is significantly different
from zero with a given α-value.

During decoding, the decoded velocity outputted by the UKF2
is tested using this method. If the null hypothesis is rejected,
i.e., the user is deemed to want to move the cursor, unscented
Kalman filtering proceeds as normal and the decoded position
and velocity are mixed as described in the previous section.
Otherwise, the cursor is not moved (skipping mixing of position
and velocity) and in the next iteration, instead of adding the
velocity to the position in the execution of the transition model,
we do not modify the position. Note that this procedure does
not set the velocity variable in the state to zero. If we were
to do that, accelerating from zero velocity might be difficult: if
the velocity increases from zero to a small value, but does not
pass the threshold, it is then set to zero again. By not editing
the velocity in the state, we allow it to build up over time to
exceed the probabilistic threshold. In our experience, a p-value
of around 0.3 worked well, and we used values in the range
0.1–0.5 in closed-loop experiments, varying with session. We
did not use this enhancement in offline reconstructions and
analysis.

Use of Future Predictions
During closed-loop neural control, we used filter predictions
of future intentions to drive the cursor for the UKF2. The
UKF1 included multiple taps in its state. This allowed the
filter’s observationmodel to capture tuning relationships between
kinematic variables and neural firing rates at multiple time offsets
simultaneously. A concrete example is that the x-axis velocity at
time bins t − 4, t − 3... t + 5 are all included in the function
that models the spike count at time bin t. However, for the UKF1,
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the position in the filter state corresponding to time t is used to
control the cursor when the filter is processing neural activity at
time t, i.e., there is no temporal offset.

We keep five taps of kinematic variables in the state of the
UKF2, t − 2, t − 1, t, t + 1, t + 2, where t is the time of the
bin of neural activity the filter is currently processing. We use
the estimated kinematics at the t + 2 tap to control the cursor
during closed-loop neural control of the cursor. With our bin
size of 50ms, this amounts to a temporal offset of 100ms. This
offset is in the causal direction, i.e., compatible with the notion
that neural activity encodes formovement occurring 100ms later.
For offline reconstructions and analysis, the UKF2 used the zero
offset temporal tap (t), otherwise we would introduce error due
to temporal misalignment.

Decoder Comparison
We compared the improved unscented Kalman filter based
decoder (UKF2) with the previously published unscented
Kalman filter based decoder (UKF1). The settings for UKF1 differ
from Li et al. (2009) in several ways. First, the bin size was 50ms
instead of 100ms, so as to be easily comparable to UKF2 using the
same training data. Second, in offline reconstructions the UKF1
transition model used one time tap of kinematics to estimate the
future-most tap of kinematics, whereas, in our previous work, the
UKF1 estimate was based on all (10) taps in the state. This change
improved filter stability: when all 10 taps are used, forming a
10th order autoregressive model, the fitted transition model was
more likely to cause filter instability. In closed-loop experiments,
the transition model was pre-designed around physical laws of
motion, as described in the Model Fitting section. This contrasts
to our previous work, where the transition model was always fit
to data. We made this change so that all three decoders would
use transition models based on physical laws of motion, since
transition model design is not the focus of this study.

We also compare with a Kalman filter which includes
position and velocity in its state space (position-velocity Kalman
filter). During closed-loop decoding, this Kalman filter used two
refinements developed by other researchers: modeling position as
a feedback signal (Gilja et al., 2012) and using intention estimates
to fit observation model parameters (Gilja et al., 2012; Fan et al.,
2014), which makes it equivalent to the FIT Kalman filter (Fan
et al., 2014). We do not use the re-training paradigm of the
ReFIT Kalman filter (Gilja et al., 2012), because we needed to
keep the training data for all of the tested decoders the same
to achieve a fair comparison. Moreover, adding a re-training
phase to the experiment protocol would allow more time to
practice using the Kalman filter decoder, and inject additional
variation in animal behavior. Since Fan et al. (2014) reported
that intention estimation applied to initial training data had
comparable benefits as retraining with intention estimation, we
opted to use intention estimation on initial training data in our
experimental protocol. See the Supplementary Materials for the
implementation of the two refinements.

A brief description of the Kalman and unscented Kalman
filters and a table summarizing the compared decoders can be
found in the Supplementary Materials.

Model Fitting
We fitted the encoding models of all decoders using the
same training portion of each session. This data consisted of
population binned spike counts and simultaneously recorded
cursor positions (equivalent to transformed hand positions),
velocities, accelerations, and target positions, if applicable. The
encoding models included terms which were non-linear in the
state variables, but the coefficients for them can be fitted in a
linear regression since the non-linear terms can be pre-calculated
as features. We used Tikhonov regularized linear regression
(ridge regression) to fit the coefficients of the models, with
automatic finding of the best ridge parameter. The parameter
fitting procedure is very similar to the one in Li et al. (2009),
except for the details of the ridge parameter selection scheme
(see Supplementary Materials). We used this parameter fitting
procedure to fit the coefficients of the encoding models for all
analysis.

In offline reconstructions, the transition model of all three
decoders were fitted to training data in the same way as Li
et al. (2009), except that we used the newer scheme described
in the Supplementary Materials for choosing the ridge regression
parameter. Note that this means the target position is decoded,
but otherwise does not directly affect the other variables.

In closed-loop neural control, the transition models of all
three decoders were set to be similar to the equations describing
physical laws. For the Kalman filter:

pt + 1 = pt + vt · dt, (13)

vt + 1 = cv · vt + ǫv, (14)

where pt and vt are the position and velocity vectors at time t,
respectively, cv is the coefficient representing friction (0.85), dt is
delta time between filter iterations, i.e., the bin width (50ms), and
ǫv is the random noise on the velocity (details below for fitting
procedure). The position lacks a noise term since we used the
position-as-feedback scheme. The friction term gives the cursor
a virtual mass, which makes it easier to control.

The transition model for the UKF1 is slightly different since it
has multiple taps in the state space. We set the leading tap similar
to above:

pt + 6 = pt + 5 + vt + 5 · dt+ ǫp, (15)

vt + 6 = cv · vt + 5 + ǫv. (16)

Note that position also has a random noise term. For the other
taps, values are propagated through time without change.

The UKF2 model includes acceleration, thus we change our
equation for velocity and include an equation for acceleration.
Acceleration is constant except for a decay coefficient and
random noise. Furthermore, target position is included as a
constant valuemodified by randomnoise. Target position attracts
the cursor by affecting acceleration during closed loop control.
The UKF2 transition model for the leading tap is:

pt + 3 = pt + 2 + vt + 2 · dt+ ǫp, (17)
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vt + 3 = cv · vt + 2 + at + 2 · dt+ ǫv, (18)

at + 3 = ca·at + 2 + cg(gt + 2 − pt + 2)/dt
2
+ ǫa, (19)

gt + 3 = gt + 2 + ǫg, (20)

where at and gt are the vectors of acceleration and target
position at time t, respectively, ca is the coefficient representing
acceleration decay (0.75), and cg is the gain on the attraction
effect of the target position (0.01). We add acceleration decay to
prevent an error in acceleration decoding from affecting decoded
output for an unlimited duration. For the other taps, values
are propagated through time without change. The values of the
constants were picked to be similar to typical values seen when
fitting transition models to training data in our preliminary
analysis. We did this so that the values would be similar to fitted
values, but do not change per closed-loop recording session.

The transition model noise covariance matrices, which
describe the joint distribution of the noise terms (ǫp, ǫv, ǫa, and
ǫg) were fitted under the above specified models. That is, the
above physics-based models were used to predict the variables
(using one time step as the input and having the next time step
be the desired output), and the sample covariance matrix of
the prediction residuals was used as the transition model noise
covariance matrix. Note that, for the FIT Kalman filter, we set
the positional noise’s variance and covariance entries to zero
to achieve the position-as-feedback enhancement of Gilja et al.
(2012).

Experiment Procedure
We first compared the performance of decoders in making offline
reconstructions. For this, we used portions of sessions where the
monkey controlled the cursor with its hand. We reconstructed
the cursor movements with each decoder and measured the
accuracy of the reconstructions vs. the actual cursor movements.
The data was divided into training and testing portions. We
ignored the first 30 s of data to avoid transient problems, used
the subsequent 10min for the training portion, and set aside
the remainder as the testing portion. If the session had less than
12.5min of hand control data, we used 5min of data for training
(the shortest session had 8min).

We measured accuracy of reconstructions by computing the
correlation coefficient (CC) and signal to noise ratio (SNR,
see below for equation). CC or SNR for each Cartesian axis’
position and velocity were computed separately and combined
by averaging. For SNR, the arithmetic mean in decibels was
calculated. We did not use mixing of position and velocity
(Homer M. et al., 2013) or the position-as-feedback scheme
(Gilja et al., 2012) in reconstructions, as those are designed for
closed-loop control.

We compared the encoding accuracy of the UKF2 encoding
model with the encoding model of the UKF1 and the position-
velocity linear model of the Kalman filter decoder. To do this,
we again used portions of sessions where the monkey controlled
the cursor with its hand. Since the number of parameters differs
substantially between models, a comparison of model fit may be
biased toward the more complex model. Therefore, we compared

the ability of the models to predict binned spike counts on
testing data that was not used to fit model parameters. Model
predictions on separate testing data are unbiased toward more
complexmodels, since prediction accuracy reflects generalization
accuracy.

We split the data into training and testing portions using
a two-fold cross-validation procedure. We used the training
portions to fit the parameters of the encoding models. Then
we tested the encoding models by providing kinematics data
(and past spike counts, if applicable) and then predicting spike
counts. We compared the predicted spike counts with the actual
spike counts in the testing portion and calculated accuracy using
the correlation coefficient or the signal-to-noise ratio (SNR).
We repeated this procedure, switching training and testing data,
and averaged results between the two repetitions. For model
predictions, we only used one tap of kinematics for all models,
since our previous work has already shown the advantage of using
multiple taps (Li et al., 2009) and that is not the focus of this
study.

Finally, we compared the ability of monkeys to use the
decoders, in turn, to control a cursor in closed-loop neural
control. All the decoders’ parameters were fitted on the same
initial training data (10min.), collected at the beginning of each
session when the monkey used its hand to control the cursor.
The order of use of the decoders was shuffled across sessions to
average out order effects. In each session (day), each decoder was
used for 10 min, with the first 5 min for familiarization and the
last 5 min used for accuracy calculation. During neural control
of cursor, the monkey continued to manipulate the joystick,
even though it was disconnected (i.e., brain control with hand
movements).

When analyzing the closed-loop performance data, we
calculated fraction of targets acquired, movement time, and Fitts’s
Law bit rate (Gilja et al., 2012). Shorter movement durations
meant the monkey could move and hold the cursor in the target
faster, which reflects better controllability. Since we kept target
sizes and reach distances constant, the Fitts’s Law bit rate was
monotonic with the movement time. For fraction of targets
acquired, we included acquisition of the center target as well
as peripheral targets. We only considered movements from the
center to the periphery for movement time and Fitts’s Law bit
rate. Since the monkey sometimes paused during performance of
the task due to lack ofmotivation or distraction, failure in the task
may occur due to inactivity. We observed that, when the monkey
was actively participating, the percentage of successful trials was
high (>90%). Thus, to eliminate failures due to inactivity from
the time and rate calculations, which are confounds not related to
decoder performance, we only analyzed the movement time and
Fitts’s Law bit rate of successful center to peripheral trials which
followed successful acquisition of the center target.

The SNR, in decibels, was calculated by:

SNRdB = 10 · log10

(

Vars

MSE

)

, (21)

where Vars is the variance of the desired signal, e.g., recorded
position during reconstructions or measured spike counts during
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encoding model analysis, and MSE is the mean squared error
between the desired signal and decoded value, e.g., reconstructed
kinematics or predicted spike counts. The SNR can be seen as a
normalized, inverted, and log-transformed mean squared error.
Unlike the CC, SNR does not saturate. It also detects scale and
offset errors which CC cannot. We believe it is better than the
mean squared error because it is normalized and thus more
comparable across experimental setups, does not saturate, and
naturally increases with quality.

For statistical analysis, we used two-factor analysis of variance
(decoder× session, or model× unit) with single replication, and
we focus on the decoder andmodel differences. Post-hocmultiple
comparison testing was conducted with two-tailed paired t-tests
with p-values corrected by the Holm-Bonferroni method. All
testing used a significance level of α = 0.05.

RESULTS

Offline Reconstructions
We compared the ability of the decoders to reconstruct hand-
controlled cursor trajectories. We analyzed 16 sessions from
monkey B, recorded 24–97 days post-implant, and 16 sessions
from monkey M, recorded 17–162 days post-implant. Hand-
controlled portions of these sessions ranged from 8 to 73min
in length, with mean 27.2min. For each session, reconstructions
were performed by using up to 10min to fit parameters of models
and then reconstructing the remainder of the hand-controlled
portion of the session (see Experiment Procedure). The results
are summarized in Table 1 and graphed in Figure 3.

We calculated the SNR of the trajectory reconstructions for
each decoder (Figure 3A). ANOVA found a main effect of
decoder [monkey B: F(2, 15) = 27.03, p = 1.94 × 10−7, monkey
M: F(2, 15) = 42, p = 2.01 × 10−9] and post-hoc testing showed
that all three decoders were significantly different from each other
(monkey B: all corrected p < 0.0024, monkey M: all corrected p
< 0.00007). We also quantified accuracy in terms of correlation
coefficient (CC) (Figure 3B). ANOVA found a main effect of
decoder [monkey B: F(2, 15) = 15.59, p= 2.28× 10−5, monkeyM:
F(2, 15) = 53.86, p = 1.18 × 10−10] and post-hoc testing showed
that all three decoders were significantly different from each other
(monkey B: all corrected p < 0.015, monkey M: all corrected p

< 0.00002). The UKF2 reconstructed most accurately among the
three decoders.

We pooled data from both monkeys and analyzed the
contributions of each of the different encoding model
enhancements used in the UKF2 decoder, in terms of CC
(Figure 3C, white bars). To do this, we added to the UKF1
model each of the model enhancements in turn: acceleration
(+A), position-velocity interactions (+PVI), target position
(+T), which includes the target-to-cursor distance term, and
spiking history of the population (+SH). For the pooled data,
ANOVA found a main effect of decoder [F(6, 31) = 29.32, p
< 10−10] and post-hoc comparisons showed that UKF2 was
significantly more accurate than KF (corrected p < 10−6) and
UKF1 (corrected p = 6 × 10−6) and UKF1 was significantly
more accurate than KF (corrected p = 0.000014). In terms
of feature contributions, UKF1+A was significantly more
accurate than UKF1 alone (corrected p = 0.00006). UKF1+PVI
was significantly less accurate than UKF1 alone (corrected
p = 0.0035). UKF1+T was significantly more accurate than
UKF1 alone (corrected p = 0.00092). UKF1+SH was not
significantly different from UKF1 (corrected p = 0.39). UKF2
was significantly more accurate than UKF1 augmented with PVI
(corrected p = 3 × 10−6) and SH (corrected p = 0.000014).
Significance testing results when using SNR values were similar
[main effect of decoder, F(6, 31) = 33.49, p < 10−10], except that
UKF2 was also significantly better than UKF1+A (corrected p
= 0.0019) and UKF1+T (corrected p = 0.00081). Comparing
the contribution of individual features in terms of CC, UKF1+A
was better than UKF1+PVI (corrected p = 0.000013) and
UKF1+SH (corrected p = 0.0011), and UKF1+T was better
than UKF1+PVI (corrected p = 0.00023) and UKF1+SH
(corrected p = 0.0017). These comparisons indicate acceleration
and target tuning contributed the most to reconstruction
accuracy.

It was concerning that the UKF1+PVI reconstructed less
accurately than UKF1 alone.When we examined behavioral tasks
separately, we found that for the pursuit task (both variants
combined), UKF1+PVI (0.831 ± 0.026, mean CC±SEM) was
nominally higher than UKF1 alone (0.829 ± 0.025), though
the difference was not significant (two-tailed paired t-test,
uncorrected, n = 6, p = 0.103). We think this is due to the more

TABLE 1 | Offline reconstruction accuracy.

Mean ± SEM CC, monkey B CC, monkey M CC, pooled CC, pooled, SNR (dB), SNR (dB), SNR (dB), SNR (dB), pooled,

merged units monkey B monkey M pooled merged units

UKF2 0.873 ± 0.013 0.829 ± 0.013 0.851 ± 0.010 0.836 ± 0.011 6.484 ± 0.409 5.113 ± 0.349 5.799 ± 0.292 5.295 ± 0.266

Kalman 0.850 ± 0.011 0.775 ± 0.009 0.812 ± 0.010 0.786 ± 0.010 5.423 ± 0.320 3.917 ± 0.233 4.670 ± 0.237 4.008 ± 0.200

UKF1 0.859 ± 0.011 0.806 ± 0.012 0.833 ± 0.009 0.806 ± 0.010 5.824 ± 0.349 4.568 ± 0.292 5.196 ± 0.251 4.488 ± 0.226

UKF1+A 0.868 ± 0.010 0.828 ± 0.016 0.848 ± 0.010 0.828 ± 0.010 6.019 ± 0.370 5.009 ± 0.389 5.514 ± 0.279 4.854 ± 0.249

UKF1+PVI 0.852 ± 0.012 0.799 ± 0.012 0.826 ± 0.010 0.798 ± 0.011 5.663 ± 0.352 4.437 ± 0.295 5.050 ± 0.251 4.349 ± 0.230

UKF1+T 0.871 ± 0.010 0.819 ± 0.015 0.845 ± 0.010 0.824 ± 0.011 6.193 ± 0.361 4.839 ± 0.364 5.516 ± 0.280 4.847 ± 0.253

UKF1+SH 0.865 ± 0.013 0.794 ± 0.010 0.830 ± 0.010 0.808 ± 0.010 6.160 ± 0.379 4.422 ± 0.231 5.291 ± 0.268 4.712 ± 0.228

A, acceleration; PVI, position-velocity interaction; T, target; SH, spiking history of population; Pooled, combining data from two monkeys; Merged units, undoing spike sorting by merging

units in each channel.
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FIGURE 3 | Offline reconstruction accuracy. (A) Mean ± SEM of signal-to-noise ratios. (B) Mean±SEM of correlation coefficients. (C) Reconstruction accuracy

when pooling data from two monkeys. White bars show accuracy when using spike sorting. Gray bars show accuracy when using unsorted spikes derived by

merging all sorted units on each channel. Right side bars show UKF1 augmented with each of: +A, acceleration; +PVI, position-velocity interaction; +T, target; +SH,

spiking history of population. (D) Example reconstruction of x-axis velocity from one session of monkey M.

thorough sampling of the space of possible position/velocity
combinations seen in the pursuit task data.

Accuracy for monkey M was generally poorer, and upon
examining fittedmodel parameters, we suspected that the spiking
history features were not fitted as well for monkey M. Thus, we
examined the contribution of spiking history per monkey. For
monkey B, in terms of CC, UKF1+SH was significantly more
accurate than UKF1 alone (two-tailed paired t-test, uncorrected,
n = 16, p = 0.04995), but for monkey M, UKF1+SH was
significantly less accurate than UKF1 alone (two-tailed paired t-
test, uncorrected, n = 16, p = 0.0001). The significance testing
results were the same for SNR.

As described in the methods, we spike sorted aggressively,
which resulted in a large number of multiunits. We wondered
if our aggressive spike sorting affected the observed trends.
Thus, we tried performing reconstructions using unsorted
spiking data. We merged all units on each channel, undoing
the process of spike sorting. Note that this is different from
using all threshold crossings, since waveforms which crossed
the threshold but did not match any unit’s template are

excluded. The reconstruction results from merged units are
shown by the gray bars in Figure 3C. The mean accuracy when
using merged units was significantly and substantially worse
than the mean accuracy when using sorted units under every
decoder variant (two-tailed paired t-tests, all corrected p <

0.000035). ANOVA (merged decoders x session) found a main
effect of decoder [F(6, 31) = 34,31, p < 10−10]. The trends in
accuracy among UKF2, KF, UKF1 and when enhancements are
individually added to UKF1 for merged units were similar to
the trends from sorted units (except that UKF2 was significantly
better than UKF1+T, corrected p = 0.0028), confirming that
our aggressive spike sorting did not influence the trends we
observed.

We illustrate sample reconstructions of the UKF2, position-
velocity Kalman filter, and UKF1 in Figure 3D. In this panel,
we show the 30 s of reconstructed x-axis velocity vs. time from
one center-out session of monkey M. We can see that the
UKF2 reconstruction follows the cursor velocity better at several
peaks and valleys, though there are also instances where UKF2’s
reconstruction is farthest from the true value.
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Encoding Model Predictions
We next compared the encoding model of the UKF2 with that
of UKF1 and the position-velocity Kalman filter. The purpose of
this is to better understand what motor cortical neurons encode
and to explain the improvements in decoding accuracy—it would
be unsatisfying if the source of decoding improvements were
unknown—and not as evidence for better decoding accuracy.
We analyzed the same 16 sessions from monkey B and 16
sessions from monkey M, which together had a total of 8582
single units and multiunits. These units represent a far smaller
number of distinct neurons, since electrodes usually record the
same neurons between sessions. Due to this, we also conducted
analysis on a single session from each monkey, so as to obtain
unique units for significance testing. The results are summarized
in Table 2 and graphed in Figure 4.

We first plotted the distribution of encoding model prediction
accuracy (in CC), among all units in all sessions, as a histogram
in Figure 4A. In this figure, the dashed vertical lines represent
the mean correlation values for each model. We see that
the UKF2 model predicted spike counts more accurately for
many unit instances (which include repeated observations
of the same units over different sessions), with substantially
higher mean prediction accuracy (UKF2: 0.210, p-v Kalman:
0.098, UKF1: 0.138). These values are substantially lower than
decoding accuracy values, which is not surprising given our
limited understanding of what individual neurons are doing
and the intrinsic noise in spiking. The fact that we can achieve
higher decoding accuracies despite this is because the decoding
algorithm is aggregating information from hundreds of units.

We wanted to know how each new enhancement of the UKF2
model contributed to the improvement in encoding accuracy.
In addition to the four improvements, we also tested intention

estimation (Gilja et al., 2012; Fan et al., 2014), applying it to
both training and testing data, to see if this improves encoding
accuracy for the Kalman filter’s position-velocity linear model.
We plot the resulting mean correlation coefficient and SNR in
Figure 4B. We see that adding spiking history to the UKF1
model resulted in the largest increase in accuracy. Adding the
other features resulted in smaller increases in accuracy. Intention
estimation did not improve the mean encoding accuracy of the
position-velocity linear model.

We wanted to know if these improvements were significant.
However, the prediction accuracy of different units is not
independent in this analysis since units from different sessions
may be the same neuron. Thus, we chose one session from each
monkey to perform significance testing. We chose a relatively
long center-out session for each monkey with a large number
of units sorted. We show the mean prediction accuracy for
one session from each monkey in Figure 4C. As measured by
correlation, ANOVA found a main effect on decoding method
[monkey B: F(10, 410) = 716.58, p< 10−10, monkeyM: F(10, 218) =
96.68, p < 10−10]. Post-hoc comparisons showed that the mean
prediction accuracy of the UKF2 model was significantly higher
than that of the position-velocity Kalman and UKF1 models
for both monkeys (all corrected p < 10−6). The differences in
mean prediction accuracies were all significant (all corrected
p < 10−6) between UKF1 and UKF1 augmented with each
enhancement, as well as between UKF2 and UKF1 augmented
with each enhancement. The UKF1 model also had significantly
higher (corrected p < 10−6) mean prediction accuracy than
the position-velocity linear model of the Kalman filter decoder.
Comparing the contribution of different enhancements when
added to UKF1, all pair-wise tests were significant (all corrected
p < 10−6), except UKF1+A vs. UKF1+PVI for monkey M

TABLE 2 | Encoding model prediction accuracy.

Mean ± SEM CC, pooled CC,

monkey B,

one session

CC,

monkey M,

one session

CC, monkey B,

one session,

top 10

percentile

units

CC, monkey M,

one session,

top 10

percentile

units

SNR(dB),

pooled

SNR(dB),

monkey B,

one session

SNR(dB),

monkey M,

one session

UKF2 0.210 ± 0.002 0.239 ± 0.006 0.137 ± 0.006 0.294 ± 0.024 0.245 ± 0.039 0.216 ± 0.005 0.285 ± 0.019 0.075 ± 0.017

Kalman 0.098 ± 0.001 0.101 ± 0.003 0.091 ± 0.005 0.137 ± 0.013 0.189 ± 0.031 0.020 ± 0.002 0.050 ± 0.004 0.033 ± 0.010

Kalman intention

estimation

0.087 ± 0.001 0.099 ± 0.003 0.084 ± 0.005 0.133 ± 0.013 0.169 ± 0.028 0.008 ± 0.002 0.047 ± 0.004 0.023 ± 0.008

UKF1 0.138 ± 0.001 0.148 ± 0.004 0.099 ± 0.005 0.163 ± 0.014 0.196 ± 0.032 0.070 ± 0.003 0.109 ± 0.007 0.041 ± 0.010

UKF1+A 0.145 ± 0.001 0.163 ± 0.004 0.103 ± 0.005 0.184 ± 0.015 0.198 ± 0.032 0.082 ± 0.003 0.133 ± 0.007 0.043 ± 0.010

UKF1+PVI 0.145 ± 0.001 0.157 ± 0.004 0.102 ± 0.005 0.181 ± 0.016 0.201 ± 0.033 0.081 ± 0.003 0.125 ± 0.007 0.044 ± 0.011

UKF1+T 0.156 ± 0.001 0.179 ± 0.004 0.107 ± 0.005 0.189 ± 0.015 0.199 ± 0.032 0.101 ± 0.003 0.160 ± 0.008 0.046 ± 0.010

UKF1+SH 0.206 ± 0.001 0.234 ± 0.006 0.134 ± 0.006 0.286 ± 0.023 0.241 ± 0.039 0.208 ± 0.005 0.272 ± 0.018 0.071 ± 0.016

Self history – 0.130 ± 0.005 0.063 ± 0.005 0.224 ± 0.022 0.160 ± 0.037 – 0.104 ± 0.010 0.024 ± 0.011

Others history – 0.218 ± 0.006 0.114 ± 0.005 0.232 ± 0.021 0.177 ± 0.030 – 0.225 ± 0.016 0.034 ± 0.011

Population history – 0.229 ± 0.006 0.121 ± 0.006 0.277 ± 0.023 0.214 ± 0.037 – 0.259 ± 0.018 0.054 ± 0.015

Kalman, linear encoding model of the position-velocity Kalman filter decoder; Kalman intention estimation, training and testing hand velocity data were modified using the intention

estimation scheme; A, acceleration; PVI, position-velocity interaction; T, target; SH, spiking history of population; Self history, using past spiking of neuron to predict its future spiking;

Others history, using past spiking of other neurons in population to predict future spiking; Population history, using past spiking of all neurons in population to predict future spiking. For

details, see text. Pooled: combining data from two monkeys. Top 10 percentile units: using only units with mean spike height (peak to trough) in the top 10 percentile of all units in the

session.
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FIGURE 4 | Encoding model prediction accuracy. (A) Histogram of spike count prediction accuracies measured by correlation coefficient. Dashed vertical lines

indicate means for each encoding model. (B) Mean CC and SNR of each encoding model, including UKF1 augmented with each of: +A, acceleration; +PVI,

position-velocity interaction; +T, target; +SH, spiking history of population. SEM was not calculated since data likely includes repeated observations of neurons. (C)

Mean±SEM of CC from one session of each monkey when using all sorted units. (D) Mean ± SEM of CC from one session of each monkey when using units with

mean spike height (peak to trough) in the top 10 percentile of all units in the session.

(corrected p = 0.25). For both monkeys, the linear position-
velocity model with intention estimation had lower mean
correlation than without intention estimation (corrected p ≤ 1.7
× 10−5).

We wondered whether the trends in encoding model
prediction accuracies would be the same when we only consider
units which are more likely to be single units. Thus, we looked
at units whose spike height (peak to trough) was in the top
10 percentile of units in their respective sessions. These are
the units most likely to be well-isolated single units, and the
encoding model prediction accuracies for them were higher
under all models. We plot the mean prediction accuracy for top
10 percentile spike height units in Figure 4D. ANOVA found a
main effect on decoding method [monkey B: F(10, 40) = 53.96,
p < 10−10, monkey M: F(10, 20) = 4.96, p < 10−10]. Some post-
hoc comparisons between features were no longer significant,
particularly for monkey M, since the amount of data was less

(monkey B: n= 41, monkey M: n= 21), but the trends remained
the same.

We were curious how much spiking history alone could
predict firing rates. Thus, we compared three simple encoding
models that did not use any kinematics or target position, only
firing rate history. The self history model uses one bin of firing
rate history of neuron i to predict neuron i’s instantaneous firing
rate:

fr
self history
i, t ≈ c · fractuali, t − 1, (22)

where c is a fitted coefficient. The others history model uses one
bin of the firing rate history of the entire population, except the
neuron we are trying to model:

fr
others history
i, t ≈ c · fractual1, t − 1 + · · · + c · fractuali− 1, t− 1 + c · fractuali+ 1, t− 1

+ · · · + c · fractualn, t − 1, (23)
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where cs are n-1 different fitted coefficients, and n is the size of
the population. The population historymodel uses one bin of the
entire population, including the neuron we are trying to model:

fr
population history
i, t ≈ c · fractual1, t − 1+· · ·+c · fractuali, t − 1+· · ·+c · fractualn, t − 1,

(24)
where cs are n different fitted coefficients. The mean model
prediction correlations are shown in Figures 4C,D in the right-
most bars.

When considering all units (Figure 4C), self history had the
lowest accuracy. Others history was substantially higher, and
population history was only a small amount higher than others
history. Pair-wise differences between the three models were all
significant (all corrected p ≤ 2.0 × 10−6). Notably, for monkey
B, all three models were significantly more accurate than the
position-velocity model with and without intention estimation
(all corrected p < 10−6), and the others history and population
history models were significantly more accurate than the UKF1
model (all corrected p< 10−6). For monkeyM, the others history
and population history models were significantly more accurate
than the position-velocity model with and without intention
estimation (all corrected p< 10−6) and UKF1 (p< 0.00076). The
UKF2 and UKF1+SH models were significantly more accurate
than all three history models for both monkeys (all corrected p <

10−6), which is expected since they include the history models.
When considering top 10 percentile spike height units

(Figure 4D), the trends are similar, but fewer comparisons were
significant due to less data. Population history was significantly
more accurate than the self history model for both monkeys (all
corrected p ≤ 0.0033). For monkey B, all three history models
were significantlymore accurate than the position-velocitymodel
with and without intention estimation and the UKF1 model (all
corrected p ≤ 0.0013). For monkey M, differences between the
three history models vs. the position-velocity model (with and
without intention estimation) and vs. the UKF1 model were not
significant. The UKF2 and UKF1+SH models were significantly
more accurate than all three history models for both monkeys (all
corrected p ≤ 0.00086), as expected.

To illustrate tuning to position-velocity interactions, we
depict an example single unit from monkey B with relatively
strong position-velocity interaction in Figure 5. Figure 5B shows
representative spike shapes from this single-unit. Figure 5A

consists of nine panels, where each panel shows tuning in a
different portion of the work space. For example, the lower right
panel shows velocity tuning when the cursor is near the lower
right (hand is near the right and posterior) portion of the work
space. Within each panel, the axes represent cursor velocity, with
the center of the panel representing zero velocity. Firing rate is
indicated by the shading. For example, the shading in the lower
right of a panel is the firing rate of the single unit when the hand
is moving toward the right and posterior. The visualization was
created by performing Gaussian kernel smoothing on a 7 by 7
grid (per panel). All kinematic variables were normalized to be
unit-variance and the smoothing kernel width was 3.

We can see differences in the velocity tuning at different
positions in the work space. For example, the firing rate was
higher for lower-right velocities in the lower-right position (4.26

FIGURE 5 | Position-velocity interaction in the encoding of a motor

cortical single unit. (A) Illustration of position-velocity interaction tuning.

Shading indicates firing rate. Each sub-panel depicts velocity tuning when the

cursor was in a portion of the position work space, with the sub-panel’s

position corresponding to the cursor position. Location within each sub-panel

corresponds to the 2D cursor velocity, with zero velocity in the center. See text

for details. (B) Example spike waveforms from this single unit.

Hz at the red dot) than in the upper-left position (2.55 Hz at
the red dot).This suggests a multiplicative interaction between
position and velocity. This figure illustrates why, for 349 out
of 411 (monkey B) and 153 out of 219 (monkey M) units,
UKF1+PVI predicted spiking rates better than UKF1, and why
PVI is a tuning phenomenon which next-generation neural
encoding models should probably take into account.

Closed-Loop Neural Control Experiments
We compared the ability of monkeys to complete a center-
out task using the decoders in closed-loop neural control. We
recorded 7 sessions with monkey B, 153–184 days post-implant,
and 30 sessions with monkey M, 15–70 days post-implant. Each
session was recorded on a separate day and contains one 10-
min block of each condition (UKF2, KF, UKF1), and the last 5
min of each 10-min block were analyzed for performance. We
recorded fewer sessions with monkey B because the difference
between decoders was larger, and monkey B was tasked with
other experiments. The results of closed-loop comparisons are
summarized in Table 3 and graphed in Figure 6.

We calculated the mean (across sessions) of the fraction of
targets acquired (Figure 6A), time to move to a peripheral target
(Figure 6B), and Fitts’s Law bit rate (Figure 6C) for each decoder,
as well as hand control of the cursor via joystick.

The fractions of targets acquired were not significantly
different between conditions for monkey B [ANOVA F(3, 6)
= 1.13, p = 0.36]. For monkey M, ANOVA found a main
effect on mode of control [F(3, 29) = 5.4474, p = 0.0018], and
post-hoc tests showed that fractions of targets acquired for the
decoders were not significantly different, but all decoders had
significantly lower fractions than hand control (all corrected
p < 0.034). The high variance in fraction of targets acquired
by monkey B (session MS = 0.02718, compared to control
condition MS = 0.02309, while other closed-loop control
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TABLE 3 | Comparison of decoders during closed-loop neural control of cursor.

Mean ± SEM Fraction of

targets

acquired,

monkey B

Fraction of

targets

acquired,

monkey M

Movement

time (s),

monkey B

Movement

time (s),

monkey M

Movement

time (s),

pooled

Fitts’s Law

bit rate

(bits/s),

monkey B

Fitts’s Law

bit rate

(bits/s),

monkey M

Fitts’s Law

bit rate

(bits/s),

pooled

UKF2 0.961 ± 0.016 0.906 ± 0.025 1.201 ± 0.150 1.640 ± 0.065 1.557 ± 0.065 0.980 ± 0.122 0.682 ± 0.026 0.738 ± 0.036

FIT Kalman filter 0.980 ± 0.014 0.847 ± 0.037 1.766 ± 0.217 1.722 ± 0.092 1.730 ± 0.083 0.666 ± 0.084 0.668 ± 0.032 0.668 ± 0.030

UKF1 0.850 ± 0.091 0.909 ± 0.026 2.456 ± 0.489 1.959 ± 0.103 2.053 ± 0.124 0.545 ± 0.100 0.593 ± 0.032 0.584 ± 0.031

Hand control 0.934 ± 0.062 0.987 ± 0.008 0.689 ± 0.065 1.182 ± 0.050 1.089 ± 0.053 2.248 ± 0.186 1.178 ± 0.050 1.381 ± 0.087

Pooled, combining data from two monkeys.

FIGURE 6 | Comparison of decoders during closed-loop neural control of cursor. (A) Mean ± SEM of fraction of targets acquired. “Hand” indicates

performance when monkey controlled the cursor using its hand via the joystick. (B) Mean ± SEM of movement time per peripheral target. (C) Mean ± SEM of Fitts’s

Law bit rate. (D) Example movement trajectories generated under UKF2 control. Peripheral targets and paths have been rotated so that all peripheral targets align. (E)

Trajectories under Kalman control. (F) Trajectories under UKF1 control.

metrics had control condition MS which were 4–20 times
larger than session MS) was due to poor parameter fits in
some experimental sessions leading to relatively poorer control,
which led to monkey non-participation during the evaluation

period, as the monkey had grown used to very good neural
control.

In terms of time to move to a peripheral target, for monkey B,
ANOVA found amain effect onmode of control [F(3, 6) = 9.9, p=
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0.0004]. Post-hoc tests showed that UKF2 times were significantly
shorter than UKF1 times (corrected p = 0.049), other decoder
comparisons were not significant. Hand control had significantly
shorter times than every decoder (all corrected p < 0.040). For
monkey M, ANOVA found a main effect on mode of control
[F(3, 29) = 36.8127, p = 1.87 × 10−15], and post-hoc tests showed
that UKF2 and FIT Kalman filter times were significantly shorter
than UKF1 times (corrected p= 0.0012, p= 0.020, respectively),
the UKF2 and FIT Kalman comparison was not significant. Hand
control had significantly shorter times than every decoder (all
corrected p <2× 10−6).

In terms of Fitts’s Law bit rates, for monkey B, ANOVA found
amain effect onmode of control [F(3, 6) = 90.09, p< 10−10]. Post-
hoc tests showed that UKF2 bit rates were significantly higher
than UKF1 bit rates (corrected p = 0.00061), and other decoder
comparisons were not significant. Hand control had significantly
higher bit rate than every decoder (all corrected p < 0.00057).
For monkey M, ANOVA found a main effect on mode of control
[F(3, 29) = 155.2043, p = 8.2 × 10−35]. Post-hoc tests showed
that UKF2 and FIT Kalman filter bit rates were significantly
higher than UKF1 bit rates (corrected p = 0.0030, p = 0.012,
respectively). UKF2 bit rates and FIT Kalman bit rates were not
significantly different, and hand control had significantly higher
bit rate than every decoder (all corrected p < 10−6).

When we pooled the data between the twomonkeys, the mean
movement times were significantly different among the three
decoders and hand control [ANOVA F(3, 36) = 34.94, p = 7.3 ×

10−16, post-hocUKF2 < FIT Kalman, corrected p= 0.045; UKF2
< UKF1, corrected p= 0.00024; FIT Kalman < UKF1, corrected
p = 0.013]. Mean Fitts’s law bit rates were also significantly
different among the three decoders and hand control [ANOVA
F(3, 36) = 80.19, p = 2.3 × 10−27, post-hoc UKF2 > FIT Kalman
corrected p = 0.046; UKF2 > UKF1 corrected p = 0.00006; FIT
Kalman > UKF1 corrected p = 0.0039]. The hand movement
times (all corrected p < 10−6), and bit rates (all corrected p <

10−6) were significantly better than that for every decoder. For
fraction of targets acquired, there was a main effect on mode of
control [ANOVA F(3, 36) = 3.81, p = 0.012], but post-hoc testing
did not find significant differences among the decoders. The hand
control fraction correct was better than that for the FIT Kalman
(corrected p= 0.036) and UKF1 (corrected p= 0.040).

Figures 6D–F show all center to peripheral movement
trajectories generated during UKF2 control, FIT Kalman filter
control, and UKF1 control, respectively, for one session from
monkey B. For clarity of visualization, the trajectories have been
rotated so that the peripheral target locations are aligned at the
top. Thus, all trajectories start from the lower, red circle and
end in the upper, green circle. We can see that the trajectories
generated during UKF2 control start movement in the wrong
direction and overshoot the target the least among the three
decoders. From the movement time and bit rate comparisons
and the trajectory illustrations, we can see that UKF2 allows the
monkey to perform center-out movements more quickly and
accurately than the UKF1 and comparably to the FIT Kalman
filter.

Onemay ask why the plot of trajectories for UKF1 (Figure 6F)
looks darker within the targets. This is because the decoded

cursor positions are more “jumpy” during the hold period. This
is due to the use of position as the signal to control the cursor,
and noisy neural activity causes the estimated position to jump.
We conjecture that the position-velocity mixing scheme (Homer
M. et al., 2013) and our probabilistic velocity thresholding
refinement solve this problem for the UKF2.

DISCUSSION

The UKF2 reconstructed kinematics offline more accurately than
the position-velocity Kalman filter and UKF1. Examining why
theUKF2 performed better, analysis of the encodingmodel found
that the UKF2’s encoding model made more accurate predictions
of neural activity. In closed-loop neural control experiments,
the UKF2 allowed better task performance than the UKF1, but
comparisons with the FIT Kalman filter were not significant on a
per-monkey basis, though they were significant when data from
two monkeys were combined.

The differences between monkeys were quite large. Monkey
B was more proficient at the center-out task under hand
control, with lower movement times and higher bit rate. Offline
reconstructions were generally more accurate with monkey
B. The differences between decoders in closed-loop control
were larger for monkey B. A particularly pronounced area
of disparity was encoding model predictions. Monkey B and
monkey M had similar encoding model prediction accuracy for
the Kalman filter, but quite different accuracy for the UKF1
and UKF2. For monkey B, adding spiking history to UKF1
resulted in the largest improvement, with target tuning also large.
For monkey M, improvements from these two features were
substantially smaller. The trends suggest that spiking history is
less beneficial for modeling the activity of monkey M’s units,
and even harmful for decoding accuracy, which hints at some
qualitative differences in the populations recorded from these
two monkeys. Overall, the differences between monkeys may
be due to: electrode length (B: 1.0 mm, M: 1.5 mm), age (B:
6, M: 4), amount of practice with the center-out task (B: 4
months, M: 2 months), and spike sorting performed by different
experimenters.

During the design of the UKF2 algorithm, we used pursuit
task data from another monkey, which we cannot publish here.
We froze the design of our algorithm, as much as possible,
before starting closed-loop experiments and data collection for
reconstructions. Thus, we included refinements such as PVI and
SH which were not universally beneficial.

Our results with CC and SNR are, in some cases, quite
different in absolute terms. This is understandable since they are
very different measures, with SNR including a logarithm to avoid
saturation.

All decoders we tested, including the FIT Kalman filter, had
significantly worse performance, in terms of movement time and
Fitts’s Law bit rate, than hand control via the joystick. These
differences were large, for example, hand control had 1.9 times
the bit rate of UKF2 and 2.1 times the bit rate of the FIT Kalman
filter. This indicates there is still much room for improvement in
decoding and signal acquisition methodology.
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In terms of the contributions of the different refinements, our
closed-loop results are limited in granularity; future work may
investigate the individual contributions in closed-loop, which
would greatly assist practitioners in optimizing their decoder
design.

Acceleration
Acceleration of the hand has been decoded in past studies (Ashe
and Georgopoulos, 1994; Gao et al., 2003), and force has long
been known to contribute to encoding (Evarts, 1968 and many
others). In our previous work, we considered using acceleration
as a feature in the encodingmodel, but did not detect a substantial
benefit. After UKF1’s publication, we continued to look for ways
to improve the neural encoding model using new kinematic
features. Our recent analysis included temporal smoothing
(sliding windowmoving average) of kinematics before parameter
fitting for the encoding model (see Supplementary Materials).
Doing this, the quickly-changing acceleration signal is smoothed
out, and neural encoding strength for acceleration is increased,
resulting in worthwhile decoding accuracy increases. Similar
to position and velocity, upon visualization of acceleration
tuning, we found spatial patterns consistent with the existence
of a relationship between the acceleration magnitude (in any
direction) and the firing rate of many neurons. Thus, we have
also included the magnitude of the acceleration vector as a novel
feature of the UKF2 encoding model. Even though we do not use
the acceleration in the filter state to directly control the cursor, the
acceleration interacts with the other variables in the state space
via the state transition model (movement model).

Position-Velocity Interaction
In our quest for a better encoding model, we visualized neural
tuning patterns in various ways (for example, Figure 5A). We
found that the encoding of velocity changes with the position
of the hand in a systematic way. Thus, we surmised that there is
an interaction between position and velocity tuning. Differences
in preferred directions at different limb postures have previously
been found (Caminiti et al., 1990; Sergio and Kalaska, 2003),
and gain-field encoding has been suggested for limb position
and velocity (Hwang et al., 2003). To capture this interaction,
we added a multiplicative feature to our encoding model which
is a simple multiplication of the position and velocity for each
dimension separately. This encoding model refinement was used
both in offline and closed-loop decoding. We found that by
adding this novel encoding feature, significantly more accurate
predictions of firing rate could be achieved (Figure 4C).

However, in terms of offline reconstructions, using position-
velocity interaction was actually detrimental when considering
both center-out and pursuit tasks, and slightly helpful (though
not significant, since n = 6) when considering the pursuit
task only. In the center-out task, position (with respect to
center of workspace) and velocity are either very correlated
(outward movement), very anti-correlated (inward movement),
or independent (hold), with few instances of other relationships.
This is not true for the pursuit task, which samples the possible
space of position and velocity values much more thoroughly.
We believe this difference accounts for the results we found.

For neural control of a prosthetic, where movements throughout
the space of possible position and velocity values need to be
supported, the position-velocity interaction term will likely help.

Target
Inspired by studies which included the target of reaches in the
trajectory decoding process (Shanechi et al., 2012; Shanechi M.
et al., 2013; Shanechi M. M. et al., 2013; Shanechi and Carmena,
2013), we investigated adding information about the target into
the encoding model. In preliminary analysis we found that some
neurons show significant encoding of target position, which has
been found in the past (Fu et al., 1995). Though using the
neurons we recorded to decode target position alone provides
very noisy results, the rough information that can be decoded
is still valuable. We set the target position to weakly attract
the cursor during closed-loop control. This, in effect, gives a
small assistance to the cursor decoding by using the rough
estimate of the target location. This is somewhat similar to the
mechanism that Shanechi and Carmena (2013) used, where the
target position is used in an optimal feedback controller, which
can be understood as biasing decoded movement toward the
target.

In addition to target position in Cartesian coordinates, our
preliminary analysis showed that there was significant encoding
of the distance between target position and cursor position, which
is similar to the reach distance found by Fu et al. (1995). Thus, we
included this novel feature in our encoding model as well.

Spiking History
In multiple previous studies (Paninski et al., 2004b; Truccolo
et al., 2005; Lawhern et al., 2010; Saleh et al., 2010, 2012; Truccolo
et al., 2010; Park et al., 2014; Xu et al., 2014) the past spiking
of a neuron as well as the past spiking of other neurons in the
population have been used to better model the probability of
spiking in a point process framework, sometimes leading to very
accurate models (Truccolo et al., 2010). The past neural activity
of all neurons in the population may capture correlations in
firing due to functional connectivity or common inputs. Another
advantage of this modeling approach is the ability to indirectly
capture tuning to latent neural states. One disadvantage of this
approach is the large number of additional parameters that must
be fitted, with the accompanying increase in over-fitting risk.

We wanted to include spiking history in our encoding model
to capture these benefits. However, instead of using complex
temporal features as in the point process studies, we use a
comparatively simple idea: we include only the spike counts in
the previous bin for the entire population. In preliminary analysis
we investigated using more than one previous bin and found the
benefit to be small in comparison to the additional cost in number
of parameters that needed to be fit.

During closed-loop decoding, the spike count of the previous
time bin is available, and is directly provided to the neural
encoding model as point values without uncertainty. In other
words, unlike the filter state variables in the encoding model, the
previous spike counts are not decoded; their benefit comes from
improving the fit of the encoding model. This is similar to the
role of the position state variables in the ReFIT Kalman filter.
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By including spiking history, we aim to remove more systematic
variation (e.g., from autocorrelation) from the encoding model’s
residual, making the remaining residual closer to white noise,
which better fits the theoretical assumptions of the Kalman filter
framework. However, it is still beneficial to include improved
kinematic features in the encoding model: these provide the
“conduits” through which information flows from neural activity
to kinematic variables during the operation of the unscented
Kalman filter.

Our results show that adding spiking history improved
encoding model predictions substantially. However, offline
reconstruction accuracy only improved when adding spiking
history for monkey B, with possible reasons discussed above.

Mixing Position and Velocity Outputs
In our previous work with the unscented Kalman filter, we used
the decoder’s position output to directly drive the cursor. As the
position is decoded from noisy firing rates, we observed that
the decoded position jumped around in a small area at high
frequency. One benefit of the position-as-feedback enhancement
of the ReFIT Kalman filter is that by controlling position only
through decoded velocity, this “jumpy” cursor phenomenon is
avoided.

We believe that while some neurons in the motor cortex
do encode for the current position of the limb in a feedback
or mental representation sense, there also exist neurons which
encode for the desired position in the immediate future (as
opposed a distant future time, i.e., the ultimate target of a
reach). If we do not make use of encoded desired position, we
may be losing information potentially helpful for controlling
a neuroprosthetic, particularly because UKF2’s encoding model
includes position-velocity interaction terms.

Thus, we chose to retain position as a directly decoded variable
in the state space. However, in an effort to avoid the “jumpy”
cursor of the UKF1, we adopted the method for mixing position
and velocity proposed by Homer M. et al. (2013). In this scheme,
if the decoded velocity is zero, the position decode cannot change
the cursor. This mechanism assists the user in stopping the
cursor, as well as reduces the jumpiness of the cursor. By partially
controlling the cursor using the position output, we also stabilize
the cursor, preventing velocity decode errors from accumulating,
which was a problem we discovered in preliminary experiments
when combining the position-velocity interaction enhancement
and the position-as-feedback refinement of the ReFIT Kalman
filter.

Movement Thresholding
The ability to stop and hold the cursor (or prosthetic limb) is
important for various tasks. Several studies have examined how
to stop the cursor more accurately. Golub et al. (2014) used
a refinement of the transition model which allows the user to
perform a “hockey stop,” that is, the user changes the movement
direction quickly to slow the cursor to a stop. Another approach
(Velliste et al., 2014) decoded a speed term, separately from the
Cartesian velocity coordinates. This speed term is used to scale
the position and velocity uncertainties in the transition model,
effectively acting as a gate for movements. In the mixture method

of Homer M. et al. (2013), decoded velocity also acted like a gate
for the influence of decoded position on the cursor. Another
related decoding engineering feature is the detection of idle
states—when the user is not actively using the neuroprosthetic.
Aggarwal et al. (2013) and Velliste et al. (2014) detected states
using a linear discriminant analysis classifier, separate from the
movement decoder. When an idle or hold state was detected,
the decoder output is ignored and movement was set to zero.
Recently, Sachs et al. (2016) detected posture vs. movement states
using linear discriminant analysis and used Wiener filters with
different coefficients during each.

To improve the user’s ability to stop the cursor within the
target during closed-loop control, we added our own mechanism
to detect movement intention, a probabilistic threshold for
movement which is computed using the uncertainty output of the
unscented Kalman filter. Using a probabilistic threshold means
we can set the threshold in terms of a false positive rate. This
probabilistic threshold is similar to a significance test; the null
hypothesis is that the user wants to remain still. We check if
there is enough evidence to reject the null hypothesis under
the specified false positive rate. This framework, while more
complex than a simple threshold on the decoded velocity, allows
one threshold to work under different amounts of uncertainty
in the decoded output, e.g., for both fast and imprecise (more
uncertain) movements and slower and more precise (more
certain) movements.

In this study, we set the desired false positive rate by hand.
Larger false positive rates mean the cursor is rarely stopped
through thismechanism, and holding inside a targetmay bemore
difficult if control is poor. Smaller false positive rates may make
the cursor too difficult to move. Future decoders with multiple
modes of operation may find it advantageous to use a lower false
positive rate for certain modes where unwanted movements are
dangerous or highly undesirable, e.g., when the user is asleep.
While the position and velocity mixing method (Homer M. et al.,
2013) also helps stop the cursor, it is dependent on accurate
decoding of velocity. Our probabilistic threshold complements
this method by verifying that the velocity is not non-zero due to
mere noise.

Use of Future Predictions
Motor cortex neurons encode for movements that occur up to
a few hundreds of milliseconds later (Ashe and Georgopoulos,
1994; Schwartz et al., 2004; Paninski et al., 2004a; Wu et al.,
2006; Wang et al., 2007; Wang and Principe, 2010), making
decoding of intentions at t + 100ms to t + 300 ms possible
given neural activity at time t. These “future predictions” are
merely a reflection of the built-in delays in the natural motor
system. Most previous work used the decoded kinematics for
time t as the output at time t, in effect mimicking the delay
of the natural motor system. In the UKF1, even though future
intended movements are decoded, we did not choose to use
future predictions to control the cursor.

Cunningham et al. (2011) found that reducing the bin
width during closed-loop neural control with feedback improves
performance, and Willett et al. (2013) found that using
predictions of future intentions can compensate for delays in the
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BMI system. Inspired by these studies, we wondered whether
using future predictions could improve neural control. Our
temporal offset was 100 ms in size, i.e., we use the decoded
kinematics for t + 100 at time t, which is reasonable considering
the 75–100ms average offset found in prior work (Ashe and
Georgopoulos, 1994; Paninski et al., 2004a; Schwartz et al., 2004).

One may ask why include the other taps in the filter state,
if they are not used to control the cursor. The answer is that
they help model the firing rate of neurons, which may encode
for movements in a temporally persistent manner or specifically
encode for movements in the past. Similar to adding spiking
history to the encoding model or the position-as-feedback
enhancement, the other taps do not directly affect the decoder
output, butmay improve decoder accuracy by explicitlymodeling
what would otherwise be thrown in to the catch-all error term.

Related Work
Reviews of research in decoding for BMIs can be found elsewhere
(Homer M. L. et al., 2013; Andersen et al., 2014; Baranauskas,
2014; Bensmaia and Miller, 2014; Kao et al., 2014; Li, 2014). Here
we discuss the decoders compared in the present study.

The improved unscented Kalman filter decoder proposed in
this study is a development of our previous unscented Kalman
filter decoder (Li et al., 2009). That filter, which we refer to here
as UKF1, used an encoding model with non-linear dependence
on kinematic variables which modeled tuning to the speed or
velocity magnitude of movements. The UKF1 modeled tuning
at multiple temporal offsets, using an n-th order hidden Markov
model framework where n taps of kinematics (n = 10 was
tested) are held in the state space. Encoding studies by Paninski
et al. (2004a,b), Hatsopoulos et al. (2007), Hatsopoulos and Amit
(2012) and Saleh et al. (2010) found tuning to position and
velocity trajectories, called movement fragments or pathlets. The
n-th order framework makes the encoding model of the UKF1
flexible enough to capture such tuning. Even though including
taps of position also indirectly includes velocity, explicitly
including taps of velocity reduces the amount of non-linearity
needed in the neural encoding model, which helps improve the
approximation accuracy of the UKF. On the basis of UKF1, we
expand the neural encoding model and add decoder engineering
improvements developed by ourselves and other groups to make
the UKF2.

The ReFIT Kalman filter (Gilja et al., 2012) has demonstrated
high communications bit rate by using two advances in decoder
engineering. In closed-loop experiments, we compared the UKF2
with the FIT Kalman filter (Fan et al., 2014), which is similar
to the ReFIT Kalman filter in using position-as-feedback and
intention estimation, but does not have the online re-training
component. The bin size in this study, 50 ms, was the same as
the Gilja et al. study. Our Fitts’s Law bit rate values for the FIT
Kalman filter are lower than those reported by Gilja et al. for the
ReFIT Kalman filter, likely due to a combination of factors. First,
online re-training separates the FIT and ReFIT Kalman filters. In
terms of experimental setup, Gilja et al. used video tracking of
natural reaching movements, whereas we used a joystick during
hand control of the cursor. The use of an unnatural joystick made
our task more difficult: the mean movement time during hand
control in our task was approximately double those reported

by Gilja et al. we used a joystick due to the limitations of our
experimental platform and to compare with our previous work
(Li et al., 2009). While using the same Fitts’s law bit rate measure,
our task used circular targets, which have a smaller acceptance
area for the same width compared to the square targets of Gilja
et al. We used circular targets because they are more natural
in terms of determining whether the cursor is within the target
by using a distance criterion. We also spike sorted and did not
include unsorted or “hash” threshold crossings, whereas Gilja
et al. used threshold crossing counts.

Latent Neural State
Models proposed by many previous studies have modeled latent
neural states explicitly (Brockwell et al., 2007; Kulkarni and
Paninski, 2007; Wu et al., 2009; Lawhern et al., 2010; Macke et al.,
2011; Petreska et al., 2011; Aghagolzadeh and Truccolo, 2014,
2016; Deng et al., 2015; Kao et al., 2015; Lakshmanan et al., 2015).
In Aghagolzadeh and Truccolo (2014) and Kao et al. (2015), the
latent neural state comprises the entirety of the Kalman filter
state, and kinematics are decoded from this latent neural state
after it is decoded from the spike counts. When modeling latent
states like this, some form of unsupervised learning is required
to fit the observation model of the filter. The typical approach is
Expectation-Maximization applied to linear dynamical systems
(Shumway and Stoffer, 1982).

An alternative approach is to implicitly model latent states
by adding spiking history to the observation model. By adding
spiking history, one may (partially) capture latent shared
variables if they have temporal autocorrelation. In other words,
if a unobserved common input of many neurons is changing
slowly, by using the past neural activity, which partially encodes
this hidden input, to predict the current neural activity, one is
including this hidden common input in the encoding model by
proxy.

Two engineering advantages of explicitly modeling the
latent variable using additional state variables are: (1) lower
dimensionality; (2) ability to impose prior assumptions on the
model structure, such as in the transition model or observation
model (Aghagolzadeh and Truccolo, 2016). Additionally,
investigating these latent states may yield neuroscientific
insights. However, it is not obvious this approach is always better
from a decoding point of view, since the unsupervised learning
of latent variables cannot be checked against a gold standard,
and, in practice, it is vulnerable to local optima. Some of the
autocorrelation or cross-correlation captured by spiking history
may not be due to low-dimensional latent variables, but are due
to biophysics and actual neuronal connectivity. The effect of
these phenomena may not be easily captured by low dimensional
latent states.

CONCLUSION

We have shown in offline analysis and closed-loop experiments
with two Rhesus monkeys that our encoding model features
and decoder engineering refinements improve encoding and
decoding accuracy. Some of the enhancements used in this
work, particularly the probabilistic velocity thresholding and the
inclusion of hand acceleration and target position (without the
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non-linear terms) are compatible with the standard Kalman filter,
are fairly easy to implement, and are likely to bring the largest
benefits. We hope that these enhancements will be utilized by
others, just as we have improved our decoder using innovations
published by others.
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In the last years, the idea to dynamically interface biological neurons with artificial

ones has become more and more urgent. The reason is essentially due to the design

of innovative neuroprostheses where biological cell assemblies of the brain can be

substituted by artificial ones. For closed-loop experiments with biological neuronal

networks interfaced with in silico modeled networks, several technological challenges

need to be faced, from the low-level interfacing between the living tissue and the

computational model to the implementation of the latter in a suitable form for real-time

processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple

neuronal models are required, obtaining good accuracy, real-time performance, and the

possibility to create a hybrid system without any custom hardware, just programming the

hardware to achieve the required functionality. In this paper, this possibility is explored

presenting a modular and efficient FPGA design of an in silico spiking neural network

exploiting the Izhikevich model. The proposed system, prototypically implemented on a

Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440

neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to

medium scale extra-cellular closed-loop experiments.

Keywords: FPGA, fixed-point, neural simulator, closed-loop hardware accelerator, real-time

1. INTRODUCTION

In the past decades, spiking neuronal networks (SNN) progressively acquired relevance due
to possibility to exploit them in several application scenarios. Typical artificial intelligence
applications take advantage of the learning capabilities of SNN for classifiers and autonomous
controls. Nevertheless, SNN represent a powerful instrument in neuroscience, allowing to simulate
living neuronal assemblies trying to gather from the characteristics of a fitted artificial neuronal
network clues on the properties of the living tissue (Bonifazi et al., 2013). From this perspective,
it is interesting not only the accurate evaluation of the single neuron behavior but, primarily, the
study of the emergent properties of the neuronal assembly dynamics (van Pelt et al., 2004). This
can be studied through intracellular recordings (single cell models, by voltage clamp techniques)
or extracellular recordings (in vitro cultures of neurons or cortical implants, by Micro-Electrode
Arrays MEAs). In this case, the adoption of SNN software simulators (Brette et al., 2007) is widely
accepted and the use of such tools is cumbersome only when it is required to simulate very large
networks, because of the explosion of the computational cost and, in turn, of the processing time.
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This limitation fostered the research toward the development
of hardware accelerators able to carry out such simulations in
a shorter time (Cheung et al., 2016), possibly comparable to
the time scales of a real evolving neuronal network, in order
to enable complex simulations otherwise impossible. With the
advancements of the technology, it is possible to look at such
hardware simulators as enabling tools for new neuroscience
experiments. For instance, closed-loop electrophysiological
systems are characterized by the tight interaction between the
living neuronal tissue and a controlling electronic unit able to
interact with it through sensing and stimulation (LeMasson et al.,
2002). Compared to open-loop experiments, closed-loop ones
enable the study of both the input and output side of the neuronal
assembly at the same time (Rolston et al., 2010). The largest
part of systems for closed-loop experiments aim to study this
aspect by means of an integration between a sensing interface,
simple and abstracted computational models and a stimulation
interface. Examples of interfacing with muscles for real-time
control have been already presented in the literature (Zbrzeski
et al., 2016). One aspect, paving the way to the development of
neuroprostheses, would be the direct interface of a population
of living neurons to an artificial SNN in order to evaluate the
capability of the living system to interact with the simulated
one (Bonifazi et al., 2013). This poses severe constraints on the
hardware implementation of the SNN, particularly for everything
concerning the timing, which is nomore a matter of performance
improvement over a simple PC implementation, but an aspect
connected to the feasibility of the neuroprosthetic approach.
Examples of the integration of living neurons into artificial SNN
can be already found in the literature (Nawrot et al., 2003).

The goal of this paper is to describe and validate a scalable
and modular hardware architecture to simulate the dynamics
generated by biologically-plausible synthetic neuronal assemblies
in real-time. This architecture was completely manually coded
and optimized in Verilog Hardware Description Language
(HDL) for a single Field Programmable Gate Array (FPGA) chip,
thus it can be easily adopted in any lab for small-to-medium
SNN sizes. This, along with a fixed-point implementation of the
Izhikevich (IZ) neuronal model (Izhikevich, 2003), confers to the
architecture a considerable real-time performance up to 0.1 ms,
joined to a programmable delay that can be reduced down to such
bound. The architecture is parametric in the number of neurons
that can be simulated, with limitations imposed by the hardware
only in terms of the possibility of fitting the SNN in a commercial
FPGA. The long-term goal of the so developed architecture is to
bi-directionally interface the SNN with a biological one. Three
different experimental scenarios can be envisioned:

• Use the real-time SNN on FPGA as a stimulator. The signals
generated by the SNN can be used to trigger the spontaneous
dynamics of the biological networks. Different stimulation
protocols can be imagined, for example using the onset of the
network bursts, or the frequency of the bursts. The possibility
to generate a “natural” stimulation can be used to shift the
dynamical states of the biological network;

• Connect in a bi-directional way the real-time SNN on FPGA
and a biological neuronal assembly. Although closed-loop

stimulation experiments have been already performed
(Wagenaar et al., 2005; Wallach et al., 2011), such works have
the intrinsically drawback to use “artificial stimulation,” i.e.,
stereotyped stimuli delivered by a controlled stimulator. By
means of the proposed architecture, it becomes feasible to
deliver stimuli modulated by the intrinsic dynamics.

• In the long term, the real-time SNN could be used as a tool
to replace a damaged biological network. In fact, in the last
years, researchers started to develop a new family of prostheses
applied to the central nervous system (neuroprostheses). As
an example, Berger et al. developed a hippocampal prosthesis
improving memory function in behaving rats (Berger et al.,
2011, 2012).

2. MATERIALS AND METHODS

SNNs are more realistic than the conventional neural networks
for neuroscientific simulations, taking into consideration not
only the neuronal and the synaptic state, but also the concept of
time into their operating model. Artificial neurons’ firing activity
is determined by the evolution of their membrane potential,
which follows the model equations. Not only different models
produce different firing behaviors, but within the samemodel it is
often possible to tune the parameters so that the artificial neuron
is able to reproduce different firing patterns proper of specific
cells.

The architecture is currently based on the implementation of
the IZ neuronal model (Izhikevich, 2003), which is characterized
by an excellent trade-off between computational complexity and
biological accuracy, being able to reproduce several spiking
patterns by simply tuning its parameters. The proposed version of
the architecture implements the model in fixed-point arithmetic,
in order to primarily reduce the memory requirements (known
to be a limiting factor for hardware SNN) and the latency of the
mathematical computations. The architecture is conceived to be a
customizable framework, where the neuronal model can be easily
replaced while preserving the global structure, and the same
holds for the synapses. The main features pursued in the design
phase were the low latency, with a real-time timing constraint
of 0.1 ms and a programmable delay between firing activity and
its reflection on the network activity. In turn, this means that
the output sample rate is 10 ksample/s, which is adequate for
closed-loop experimental systems.

2.1. Izhikevich Spiking Model
The simple model of spiking neurons proposed by Izhikevich
(2003) is composed of a two-dimensional system of ordinary
differential equations.

dv

dt
= 0.04v2 + 5v+ 140− u− I (1)

du

dt
= a(bv− u) (2)
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v is the membrane potential of the neuron and it is modeled
according to Equation (1), whereas Equation (2) provides the
dynamic of u that is the membrane recovery variable. The term
I, in Equation (1), is meant to take into account the contribution
of the connected nodes to the considered neuron, by means of
the sum of the synaptic currents or injected dc-currents. When a
spike is fired, meaning v has reached its threshold, the following
resetting condition is applied:

v ≥ vth ⇒

{

v = c;

u = u+ d
(3)

Both the membrane potential and the membrane recovery value
are normally measured in mV. The IZ spiking model is capable
to reproduce several different firing patterns, 20 in the original
article (e.g., chattering, fast spiking, low-threshold spiking, etc.)
but others are being studied, representing the known types of
neo-cortical and thalamic neurons, by tuning the a, b, c, and d
dimensionless parameters:

• a represents the time scale of the recovery variable u. Smaller
values result in slower recovery;

• b represents the sensitivity of the recovery variable u to
possible sub-threshold fluctuations of the membrane potential
v. Larger values indicate v and u are strongly coupled,
resulting in possible sub-threshold oscillations and low-
threshold spiking dynamics;

• c is the after-spike reset value of v;
• d determines the after-spike reset value of u.

2.2. Hardware Spiking Neural Network
In this work, a SNN hardware emulation platform, based on the
IZ spiking neuron model, was developed and tested. Figure 1
depicts an overview of the system. The entire neural network is
subdivided in units, which are the building blocks of the SNN.
Each unit produces, according to the IZ spiking neuron model,
a sub-set of spikes whose occurrence is stored in the binary spike
register, which keeps trace of the whole network spiking activity.
It is composed of one bit per neuron under emulation. The bit
corresponding to a neuron is set high when the neuron has fired a
spike. The chosen simulation paradigm is synchronous (or clock-
driven), meaning that all neurons are updated at every simulation
step, regardless of the spiking activity (Brette et al., 2007). From a
macroscopic point of view, each simulation cycle is composed as
follows:

1. The units process their subset of neurons. They receive the
content of the spike register, accounting for the whole SNN
firing activity (the architectures assumes a fully-connected
structure) and, according to the IZ model, they determine
which neurons within their subset should fire;

2. The firing activities estimated by the units are grouped
together by a dedicated concatenation logic and sent back to
the spike register;

3. The spike register is updated and represents the updated status
of the overall SNN.

Additional details, regarding what happens within the units in
each simulation step, are provided hereafter in Section 2.2.2. It is
worth to notice now that the architecture gives the possibility to
set at design time a delay for the spike propagation, exploiting a
register chain strategy. The firing activity is propagated back to
the units with a delay of several (up to ten) emulation cycles, to
mimic a physiological delay of up to 1 ms between firing and its
reflection on the network status.

Figure 1 depicts an exemplary instance of the proposed
platform, parameterized in order to emulate a network of 256
neurons only for the sake of clarity. The platform instance
integrates four units, emulating 64 IZ neurons each. According to
the signal activity of all the 256 neurons, each unit generates up to
64 spikes per simulation cycle. The four different 64-bit signals,
representing each unit’s neuronal activity, are concatenated to
create a single 256-bit signal and fed back to the spike register.

2.2.1. Units: Architectural Overview
The units are responsible for the implementation of Equations
(1) and (2) and for estimating the firing activity of the subset of
neurons assigned to each of them. Equations (1) and (2) represent
two derivatives and they have been implemented in hardware
exploiting the finite-difference method, which is a numerical
method for solving differential equations by approximating them
with finite differences, as specified hereafter:

v(k+ 1)− v(k)

h
= 0.04v(k)2 + 5v(k)+ 140− u(k)− I (4)

u(k+ 1)− u(k)

h
= a(bv(k)− u(k)) (5)

The smaller is h (i.e., the time interval between k and k + 1) the
better Equations (4) and (5), respectively, approximate Equations
(1) and (2). In the current implementation, h is fixed to 0.1 ms,
which turned out to be an excellent compromise between the
approximation quality and the overall processing time required
to update the status of the entire SNN. Furthermore, such a
delta-cycle is compatible with hybrid closed-loop experiments.

Each unit, as depicted on the right hand side of Figure 1, is
composed of a Neuron Section and of a Synapses Section, which
are, respectively, responsible for computing the overall neuronal
activity of the considered unit and for determining, for each
neuron, the synaptic current (I) that has to be subtracted in
Equation (4).

Figure 2 presents an overview of the Neuron Section of each
single unit block. Equations (4) and (5) are physically computed
by the Izhikevich block, which receives v(k) and u(k) values
from the u-v RAM block, a, b, c, and d parameters from the
parameter RAM block, and finally I from the Synapses Section.
The interactions with the u-v RAM and parameter RAM blocks,
and the synchronization with the Synapses Section are controlled
by a dedicated Finite State Machine (FSM), the neuron FSM. The
neuron FSM also masters the execution of the different phases of
the Izhikevich block itself. In terms of library IPmodule, the latter
includes only a multicycle multiplier, which is re-used for all the
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FIGURE 1 | SNN block diagram (on the left) and unit block high-level architecture (on the right). The numbers reported in the scheme are referred to an

exemplary embodiment with a fully connected network of 256 neurons.

FIGURE 2 | Unit—Overview of the Neuron Section.

multiplications in Equations (4) and (5); all the other modules
are HDL-coded. In this way, it is possible to save as much
hardware resources as possible (by re-using the same processing
element rather than instantiating several of them in parallel)
and to maintain the operating frequency high (by pipelining the
operations and, in turn, breaking down the critical path). The
Izhikevich block processes one neuron at a time; its output is
written on the out_spike_reg module, which contains the spikes
of all the neurons within the given unit. The output of theNeuron
Section is the updated unit’s contribution to the firing activity of
the SNN, to be sent to the concatenation logic.

The Synapses Section is depicted in the block diagram in
Figure 3. The figure shows how the synaptic current is computed
on the basis of the overall firing activity (i.e., the content of the
spike register). It computes the weighted sum of the contribution
of the pre-synaptic neurons, connected to the processed one by
means of the synapses. Only the synaptic weights associated to
those neurons that fired (having a 1 in the corresponding bit
of the spike register) are eventually accumulated. The synaptic
weights are provided by the weight RAM block. The contribution
of each connected neuron is computed by a set of synapses
blocks, placed in parallel to speed-up the computation since all
the incoming neuronal activity has to be scanned to determine
the synaptic weights associated to the pre-synaptic neurons
that fired and, accordingly, retrieve and accumulate them. As
an example, the Synapse section of the platform instance in
Figure 1 integrates 2 synapse blocks per unit, which means that
each synapse block calculates the contribution given by 128

FIGURE 3 | Unit—Overview of the Synapses Section.

neurons. The outputs of the of synapses blocks are summed-
up by an adder-tree module to produce I. The interactions
with the weight RAM block and the synchronization with the
Neuron Section block is controlled by a dedicated FSM, the
synapses-FSM.

2.2.2. Units: Execution Flow
The execution flow of a unit within each simulation cycle can be
described as follows:

1. According to the currently processed neuron index, the
neuron_FSM drives the AddGen block, which generates the
address Ad(k), used to correctly fetch the current v(k) and
u(k) values from the u-v RAM block, and to retrieve the IZ
parameters from the parameter RAM blocks;

2. The Izhikevich block executes all the multiplications in
Equations (4) and (5), the Synapses Section determines I. The
neuron_FSM and the synapses_FSM exchange control signals
to synchronize these two operations, in order to make sure
that the proper value I is added in Equation (4);

3. As already said, I is a weighted sum, depending on the
firing neurons. The synapses_FSM drives the weight AddGen
to correctly access the weight RAM that stores the synaptic
weights of the excitatory and inhibitory neurons. Ad(weights)
represents the addresses of the memory locations storing the
weights associated to the excitatory and inhibitory neurons
connected to the currently processed one;
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4. As soon as Equations (4) and (5) are completely computed,
the neuron_FSM enables the possibility of writing back the
updated v(k+1) and u(k+1) values on the u-v RAM block. The
neuron_FSM drives the AddGen to access the correct location
of address Ad(k+ 1);

5. The final processing stage of each single neuron requires to
evaluate whether the spike has to be fired or not. The result
is written in the correct position (determined by the currently
processed neuron index) of the out_spike_reg module.

All these steps are iterated for all the neurons within the
unit to evaluate and update the status of the SNN. The
neuron_FSM is responsible of verifying whether all the neurons
have been processed or not and to notify that the content of the
out_spike_reg module is the complete updated unit contribution
to the neuronal activity that can be sent to the concatenation logic.
Depending on the initialization data stored within u-v RAM,
parameter RAM and weight RAM blocks, the platform is thus
capable to fully emulate an arbitrary IZ-based SNN.

A fixed-point arithmetic was adopted in order to pursue a
fast execution and a compact hardware implementation. A Q3.4
format for the weights (meaning that a Q format is adopted, with
the decimal point virtually placed in order to leave 4 bits for the
fractional portion over a 7-bit word) was chosen. Such a solution
limits the dynamic ranges of the weights with minor effects, since
the low values are usually swamped by the thalamic noise term
(Thomas and Luk, 2009). A more conservative approach based
on the worst-case design, which is unrealistic in this kind of

applications, would limit the SNN weights in the [−1,1) range.

Multiple iterations with NEST have been performed in order
to define a format for the weights able to reduce the memory
requirements while preserving an acceptable accuracy. In order
to avoid intermediate overflows, the synapse accumulators use

8 bits for the input and 32 bits for the outputs, and they are
connected to a 32-bit in 32-bit out adder tree. Both of them

are implemented using DSP48 macros for Xilinx FPGAs. In
order to be able to represent the IZ parameters with enough
flexibility to accommodate typical models and novel ones, a
Q10.22 was selected for them. The internal computations rely on

pre-computed constants, full-precision adders and multi-cycle
multipliers with 32-bit in and 32-bit out.

The communication between the emulation platform and

the external environment is required, at start-up, to allow the

pre-loading of neuron parameters and synaptic weights for the

target experiment inside the system memory blocks. Moreover,

emulation results must be sent to the external environment,
respecting real-time constraints, during the whole emulation

time. Communication interface can be implemented in different

ways, exploiting the connectivity in modern FPGA boards
and the support offered by design tools and programming

environment. Two different communication methods were

tested. Firstly, the exploitation of a host general-purpose
processor, implemented as a Microblaze soft-core on the FPGA,
was evaluated. The processor reads systemmemories as part of its
memory map and communicates with the external environment
using an Ethernet connection or a serial UART connection. This
solution is easy to implement and provides comfortable coupling

of the processor with the emulator, but presents the disadvantage
to occupy resources on the reconfigurable device, which may be
exploited to emulate more neurons. A second solution is available
using FPGA families that embed hard-wired processing cores,
such as the Xilinx Zynq family, which includes chips integrating
programmable logic and an ARM dual-core processor. In this
case, an interface between the emulator, implemented on the
programmable logic, and the ARM sub-system, serving as a host
processor and providing adequate connectivity with the external
environment, was developed. A master IP that loads ad stores
data on the DDR memory connected to the ARM when needed,
exploiting a set of 4 AXI-based interfaces natively available in the
system, was mapped on the FPGA. Each of the AXI interfaces
provides a bandwidth of 64 bits/cycle and can be clocked at more
than 100 MHz, thus is sufficient to sustain output of emulation
results in real time.

However, it must be noticed that the best interface
implementation depends on the target FPGA device and on the
target use-case of the emulation infrastructure.

2.3. Platform Validation Approach
2.3.1. Architectural Performance Evaluation Metrics
The main performance evaluation metrics for the FPGA-based
hardware implementation are timing and resource utilization. In
the proposed parametric architecture, both depend on the chosen
configuration of the architectural parameters, i.e., the number
of units, the number of synapse modules inside each unit and
the precision of the weights. The main limiting factors for the
proposed implementation are the DSP modules and the RAM
modules. In particular:

• DSP48E1 modules are computing modules used to implement
add andmultiply operations,

• RAMB36E1 modules are RAM memory macros that are used
to implement memories in the architecture. Each macro has a
capacity of 32 kbits.

Obviously, the amount of DSP48E1 and RAMB36E1 needed
to implement a given configuration is dependent on the
architectural parameters. Performance will be evaluated
considering the maximum number of neurons that can be
emulated in real-time by the platform. This metric is impacted
by several factors:

• real-time constraint,
• architectural parameters,
• implementation level variables (such as working clock

frequency and FPGA resource utilization).

In order to provide an overview of the involved dependencies,
a model, described in Section 3.1.1, was developed to enable a
prospective user to estimate the achievable performance level for
different architectural configurations implemented on different
FPGA devices.

2.3.2. Accuracy Evaluation Tests
To evaluate the accuracy of the simulations performed using
the hardware SNN, a sister-pool of simulations with NEST
(Gewaltig and Diesmann, 2007) was performed. In this way,
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it was possible to compare the so generated dynamics of
the in silico (implemented in NEST) and hardware SNN, by
means of well-known statistics commonly used to analyze the
electrophysiological activity of large-scale neuronal networks
coupled to Micro-Electrode Arrays (MEAs). For this purpose, an
heterogeneous 1,024-neuron SNN with 768 excitatory neurons
and 256 inhibitory ones was simulated. Compared to the
maximum number of synthesizable neurons, which is 1,440, this
number represents the highest power of two and was chosen
in order to simplify the scripting operations required, for the
time being, to load the parameters and analyze the results.
The DC input currents are 4 pA and 2 pA for excitatory
and inhibitory neurons respectively; neurons are randomly
connected, according to the generation model in Izhikevich
(2003); inhibitory neurons have stronger synaptic connections. In
order to achieve heterogeneity (i.e., to model all exctitatory and
inhibitory neurons), excitatory cells are generated by assigning
(ai, bi) = (0.02, 0.2) and (ci, di) = (−65, 8) + (15,−6)r2i , where
ri is a random variable uniformly distributed on the interval
[0,1] and i is the neuron index; similarly, each inhibitory cell
has (a1, bi) = (0.02, 0.25) + (0.08,−0.05)r2i and (ci, di) =

(−65, 2).
To characterize the spiking activity, the mean firing rate

(MFR) of the network and the inter spike interval distribution
(ISI) of the excitatory and inhibitory neurons were evaluated.
The bursting activity was characterized by means of the mean
bursting rate (MBR), burst duration (BD), and inter-burst
interval (IBI). Bursts have been detected by using the algorithm
devised in Chiappalone et al. (2005). Detected bursts are
sequences of spikes having an ISI smaller than a reference value
(set at 100ms in our simulations), and containing at least a
minimum number of consecutive spikes (set at 4 spikes in our
simulations). Briefly, MFR and MBR are the number of detected
spikes per second and bursts per minute falling in a temporal
window equal to the duration of the simulation. The ISI and
IBI distributions are the probability density functions of time
intervals between consecutive spikes and bursts, respectively
(Dayan and Abbott, 2001). Finally, BD is the duration of the
detected bursts.

In addition to the aforementioned statistics, the spike jitter
between in silico and hardware simulations was also computed.
Practically speaking, by considering as reference the spike
timing of the NEST simulations, the temporal distance of the
correspondent spikes generated by the hardware SNN was
computed.

The evolution of the membrane potential of a single neuron
in the two simulations were also compared. Five experiments
were performed, in order to analyze the dynamics of the u
and v potentials of a modeled neuron respectively belonging to
three classes of excitatory neurons (regular spiking, intrinsically
bursting and chattering), and two classes of inhibitory neurons
(fast spiking and low-threshold spiking). The a, b, c and d
parameters belonging to each of the emulated cortical cells are
reported in Table 1; the DC input current, for all considered
experiments, is 4 pA. The behavior of the emulated potentials
with the potential evolution obtained by means of a NEST
simulation were also compared.

TABLE 1 | Parameters of emulated cortical cells.

a b c d

RS 0.02 0.2 −65 8

IB 0.02 0.2 −55 4

CH 0.02 0.2 −50 2

FS 0.1 0.2 −65 2

LTS −65 2

3. RESULTS

In this section, the results have been organized in order to discuss
at first those related to the architectural performance evaluation
and then those related to the accuracy evaluation.

3.1. Architectural Performance Evaluation
Results
As previously mentioned, the assessment of the quality of
the proposed architecture has to consider two main factors:
resource utilization and emulation performance. In the following,
a description of the timing and utilization figures that can be
obtained changing the architectural parameters is presented.
At first, the timing characteristics of the architectures modules
and their dependence on the selected architectural parameters
have to be studied, within the real-time constraints imposed
by the emulation. Then, the optimal parameter values have to
be selected, in the range actually allowed by the target FPGA
device. All the presented results were verified after synthesis and
implementation.

3.1.1. Timing Characteristics of the Architecture

Modules
The real-time constraint to be considered defines how often
the SNN output has to be evaluated. Such a metric, in
emulation/simulation, is usually referred to as delta cycle. A
delta cycle of 0.1 ms was chosen, aiming to be aligned with
an acceptable sampling frequency in the scope of acquisition
of signals from neuronal cultures with MEAs. The same time
step was also used for the differential equations discretization,
hereafter called Tsample.

As mentioned, hardware structures are reused to emulate
more neurons, in the considered interval. Emulation of one
neuron occupies the set of hardware resources in a unit for
a determined number of cycles, that will be indicated in the
following as Temu. In order to relate Temu with the real-
time constraint, actual clock period, which will be indicated
as Tclock in the following, used as synchronization reference
within the architecture, shall be considered. In synchronous
digital systems, the minimum clock period that can be chosen
by the designer is related to the propagation delay of gates
implementing combinational paths through the design. In
the design of the proposed architecture, a pipeline strategy
that allows the minimum clock period to be independent
from the architectural configuration was adopted. After the
implementation on the FPGA device, the optimal value of Tclock
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can be evaluated to be 10 ns, corresponding to a maximum
working frequency of 100MHz. It was proven that this frequency
can be substained for all the configurations that may fit in mid-
to-high end FPGA devices, confirming the scalability of the
proposed architecture.

Thus, the number of cycles available for emulation in a
sampling interval is Tsample/Tclock = 10, 000 cycles. Then, each
unit can emulate Nneu neurons in one sampling interval, where

Nneu = 10, 000/Temu (6)

Temu is a function of the number of synapse modules Nsyn and
units Nunits in the system. The number of cycles needed to
emulate one neuron is the sum of two contributions:

Temu = log2(Nsyn)+
Nneu ∗ Nunits

2 ∗ Nsyn
(7)

Equation (7) was constructed on the basis of the architectural
details of the hardware modules and its validity was verified
in HDL-level simulation and after actual implementation. The
first contribution is an offset related to the pipeline stages
in the adder tree connecting the output of the synapse
modules. The second contribution is the actual time needed
to perform all the accumulation routine that calculates the
synaptic current. In the second term the numerator represents
the total number of neurons constituting the emulated network,
the denominator takes into account that the workload related
with the accumulation is divided between the synapse modules
in the unit, each one performing two add operations per
cycle.

Combining Equations (6) and (7), Nneu can be calculated
solving a quadratic equation, on the basis of the architectural
parameters Nsyn and units Nunits. Eventually, the total number of
neurons that can be emulated is Nunits × Nneu.

Figure 4 shows how such numbers changes varying Nunits for
two different Nsyn values. The selection of the values for such
parameters is obviously bounded by the amount of resources
available on the target FPGA device, as it will be described in
more detail in the next section.

Even though the proposed architecture was not conceived
as an hardware accelerator but, rather, a real-time simulation
platform enabling closed-loop neurophysiological experiments, a
rough performance comparison against NEST can be presented.
When running on a PC platform (Ubuntu 14.04 LTS, kernel
3.13.0-96-generic, CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40
GHz, 16 GB RAM), the emulation of the SNNwith 1,440 neurons
requires 6.3 s per second of simulation, which is far from the
real-time achieved with the proposed architecture. Nevertheless,
caution should be used when considering such numbers for
a fair comparison. In fact, on one hand, the architecture is
clocked in order to provide the real-time performance at 10 kHz,
so the actual processing time is masked by the (higher) wall
time, which is 0.1 ms. The same does not hold for a PC-based
emulation, not constrained by such a wall time. On the other
end, different programming styles, programming language and

FIGURE 4 | Dependence of the maximum number of neurons under

emulation on Nunits. Results corresponding to two different numbers of

synapse modules (Nsyn) are presented.

processor architectures can lead to very different results, so the
performance of PC-based solutions could seem unfairly poor.

3.1.2. Hardware Resources Utilization
In order to select the correct architectural parameters, it is
mandatory to understand their impact on the utilization of
hardware resources in the target device.

When the architectural configuration is known, it is very
easy to estimate the number of required DSP48E1 macros. Each
unit uses 3 macros for each synapse module and 3 macros to
implement the hardware emulating the neuronal dynamic. The
amount of RAMmacros depends on the total number of neurons
to be emulated. The architecture should embed enough storage
to contain all the weights determining the contribution of each
pre-synaptic neuron to the post-synaptic ones. Such neurons are
prospectively disjointed, thus the utilization of resources roughly
has a quadratic dependence on the size of the emulated network.
Some memory resources are also needed to store neurons’
parameters and evolving values of u and v.

Considering the number of resources in commercial FPGA
devices, for typical network configurations, the limiting factor
is very often the availability of Block RAM (BRAM). This
can sometimes limit the maximum number of neurons under
emulation with respect to the possibilities offered by a given
parameterization of the unit hardware modules.

In order to provide an estimation of the architecture
configurations that may be implemented on mid-range
commercial devices, the hardware-related features of a
configuration featuring 8 units, each one embedding 16
synapse modules, realized on a XC6VLX240T Xilinx device, are
presented. Table 2 represents the device utilization summary.

This configuration occupies 94% of the BRAM resources and
53% of the DSP48 macros, and it is capable of emulating 1,440
neurons in real time.

Although power consumption analysis has been considered
as a secondary development objective in this work, it is worth
to provide some hints about the power-related features of the
proposed architecture. Obviously, the actual power dissipation
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TABLE 2 | Summary of the resource utilization.

Used Available Utilization

Registers 48,502 301,440 16%

LUTs 55,884 150,720 37%

RAMB36E1 392 416 94%

DSP48E1 408 768 53%

Target FPGA platform is a XC6VLX240T Xilinx device. The implemented architecture

features 8 units with 16 synapses, capable of emulating 1,440 neurons.

depends on the specific FPGA platform selected as target.
However, for every FPGA device considered in the developed
experiments, a significant part of the power consumption is
related to the usually called quiescent power, that is the power
dissipation of the idle FPGA, before its actual programming.
Moreover, recent all-programmable FPGA-based SoCs as Xilinx
Zynq devices, present an additional contribution to the power
consumption due to the host processing system implemented
on the chip. Finally, in general FPGA chips are mounted on
a development board including several peripherals, that add a
further contribution unrelated with the emulation. Thus, the
power consumption of the overall emulation platform is weakly
dependent on the number of emulated neurons. As an example,
in the presented experiments, a Xilinx ZC706 evaluation board
featuring a XC7Z045 FPGA chip dissipates 6.8 W in the idle state
and 8.5 W when executing emulation with a 100 MHz clock on
the FPGA.

3.2. Accuracy Evaluation Results
3.2.1. Single Neuron Membrane Potential Evolution
From the single neuron simulation, it is possible to find a
good adherence between the membrane potential evolution as
obtained with the proposed architecture and with NEST. This
is clearly visible in Figures 5, 6 respectively for low-threshold
spiking and fast spiking neurons.

3.2.2. Fully-Connected Network of N Neurons
By using the NEST simulations as reference, the
electrophysiological patterns of activity generated by the
hardware implementation of the network model were compared.
The raster plot of Figure 7A shows the spike timing of the 1024
neurons of the network. The first neurons (id: from 1 to 768)
are excitatory whereas the others inhibitory (id: from 769 to
1024). Blue circles and red crosses are representative for the two
simulation approaches (i.e., software, blue circles, and hardware
red crosses, respectively). The zoom of Figure 7A shows a good
overlap of the spike timing. In order to quantify such a jitter, the
histogram (bin width equal to 0.3 ms) of the occurrences relative
to the excitatory (Figure 7B) and inhibitory neurons (Figure 7C)
was plotted. Both the neuronal populations display significant
jitters less than 2.0 ms in 95% of the occurrences, indicating good
performances of the hardware implementation of the network
model.

In terms of number of spikes, both the software and hardware
models present the same number of spikes, as the plot of the
MFR displays (Figure 8). MFR values are 1.05 ± 0.48 spikes/s

FIGURE 5 | Low-threshold spiking neuron membrane potential

evolution: comparison between the proposed architecture and NEST.

FIGURE 6 | Fast spiking neuron membrane potential evolution:

comparison between the proposed architecture and NEST.

in the NEST implementation of the model and 1.05 ± 0.49
spikes/s in the hardware one. Finally, the ISI distributions
(Figure 8B, relative to the software, and Figure 8C, relative
to the hardware model) by splitting the contribution of the
excitatory (red line) and inhibitory (black line) populations, were
evaluated. This analysis shows a good agreement of the two
model implementations too. Qualitatively, the shape of the ISI
distributions is similar, as well as the temporal position of the
peaks of the curves (hardware: 2.54 ms vs. software: 2.50 ms).

The validation of the hardware networkmodel was carried out
by comparing the bursting dynamics (Figure 9). Figures 9A–C
compare the values of MBR, BD, and IBI of the software
and hardware network models, respectively. Although slight
differences can be appreciated, such differences are not
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FIGURE 7 | Network dynamics characterization: comparison between in silico and hardware simulations. (A) 2 s of electrophysiological activity. Blue circles

and red crosses are representative for software and hardware approaches, respectively. (B,C) histograms of the spike jitter between software and hardware

simulations evaluated for excitatory (B) and inhibitory (C) neurons of the network.

FIGURE 8 | Network dynamics characterization: comparison between in silico and hardware simulations. (A) MFR (evaluated over the whole neurons of the

network). No statistical difference can be evaluated between the two simulation approaches. (B,C) ISI distributions of the excitatory (red) and inhibitory (black)

neuronal populations evaluated in the in silico (B) and in hardware (C) simulations: the same trend can be appreciated.

statistically significant (p >0.05, Mann-Whitney, non-parametric
test). The Mann-Whitney U-test was chosen since the analysed
data do not follow a normal distribution, as revealed by
means of the Kolmogorov-Smirnov normality test applied to
them. The chosen p-value is assumed to be adequate for the
considered problem. Similar considerations can be done for the
IBI distributions (Figures 9B,C).

4. DISCUSSION

Several SNN hardware accelerators have been proposed so far
in the scientific literature (Maguire et al., 2007). They usually
try to overcome the performance limitations of purely software
simulators (Brette et al., 2007) such as NEURON (Carnevale
and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), BRIAN
(Goodman and Brette, 2009), etc., widely accepted as research
tools in the community of computational neuroscience. However,

unless an explicitly parallel processing is pursued on large
multiprocessors high performance computing platforms, such
simulators suffer the intrinsic scalability limits of the underlying
object of the simulation, becoming soon too slow for large-
scale networks of biologically plausible neuronal models (Rast
et al., 2010). In this section, a discussion about some relevant
architectures for SNN simulations in hardware is presented,
along with a comparisonwith the proposed approach. Among the
different architectures cited hereafter, those aimed to simulate a
large number of neurons have been grouped inTable 3, reporting
the main relevant data gathered from the cited sources. Without

being exhaustive, this table enables a quick overview of the
present state of the art.

Despite the purely software solutions present the

aforementioned limitations, it is obvious that they usually
pursue simplicity (in the creation and simulation of the

model), precision (typically double) and flexibility (the
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FIGURE 9 | Comparison of the bursting features of the simulated network by using the software and hardware approaches: (A) MBR, BD, IBI (B,C) IBI

distributions.

TABLE 3 | Summary of some relevant state-of-the-art architectures for SNN hardware simulation.

Work Target ♯Neurons/core ♯Cores Model ♯Synapses/neuron Time res

Schoenauer et al., 1998 ASIC ≈ 30,000 4 LIF > 30 < 1ms

Wolff et al., 1999 Multi-processor (DSP) ≈ 1,900 64 Eckhorn > 30 > 1ms

Glackin et al., 2005 FPGA ≈ 1,000 4 I&F ≈ 500 k −

Upegui et al., 2005 FPGA 30 1 custom 30 ≈ 1ms

Pearson et al., 2007 FPGA 112 10 LIF ≈ 912/112 0.5 ms

Cassidy et al., 2007 FPGA 51 1 LIF 128 320 ns

Jin et al., 2008 Multi-processor (ARM) 1,000 1 IZ 100 1ms

Thomas and Luk, 2009 FPGA 1,024 1 IZ 1,024 10µs

Ambroise et al., 2013 FPGA 117 1 IZ 117 1ms

Cheung et al., 2016 FPGA > 98,000 6 IZ 1, 000− 10, 000 1ms

For some architectures flexible enough to implement several neuronal models, only one published result is reported.

possibility to change topology, parameters, synaptic model,
neuron model, etc.). For this reason, when moving toward
the hardware simulation systems, it is obvious the success
of architectures exploiting efficient signal processing cores,
such as ParSPIKE (Wolff et al., 1999), which is based on the
Analog Devices ADSP21060 Digital Signal Processor. In fact,
Digital Signal Processors revealed better performance than high-
end mainstream processors in several biomedical and signal
processing applications, with a power consumption that could
be even two orders of magnitude lower (Pani et al., 2013, 2014)
and they are currently being used for studies in neuroprosthetics
(Pani et al., 2011, 2016).

A very successful implementation of a hardware architecture
for SNN based on general purpose (embedded) processors
is SpiNNaker (Furber et al., 2014). It is a multilevel tiled
architecture, i.e., an architecture composed, at different levels,
of a regular mesh of computing elements called tiles, mixing
the flexibility of a software implementation of the neuronal
model with the performance of a custom architecture (at
macroscale). The smallest tile is a node, i.e., a custom chip
consisting of multiple (up to 18 in the latest versions) ARM968
processors clocked at 200MHz, without embedded floating-point
units and exploiting a network-on-chip infrastructure for

the communications. These nodes are assembled in boards
comprising 48 of them, and exploiting highly customized self-
timed connections. These boards communicate each other
through custom serial links implemented on FPGA. This
architecture is being used in the human brain project (www.
humanbrainproject.eu). Despite the impressive work behind this
platform, it is neither suited for a neuroengineering lab with
limited budget nor for closed-loop applications. Furthermore,
compared to our design, each core is able to model up to a few
hundred neurons (LIF or IZ) with about one thousand input
synapses each. The time resolution scales down to 1 ms only,
which is inadequate for interfacing with the living tissue. Recent
completely asynchronous extensions of the software framework
on the SpiNNaker platform allowed performing simulations
with networks implementing sub-millisecond tasks, such as
sound localization, (Lagorce et al., 2015). However, some specific
conditions apply, as the use of even-driven LIF neurons, the
adoption of a dendritic delay core for every particular delay value
(leveraging the large number of cores available), etc.

The same holds for the NeuroFlow architecture, which for
sure represents the state of the art in the field of FPGA
architectures for SNN (Cheung et al., 2016). Compared to it,
the proposed architecture targets a real-time performance of
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0.1 ms, which can be ever reduced by changing the size of
the network or speculating on the connectivity (assumed to
be full in our tests). In particular, the time step of 0.1 ms
is one order of magnitude less then that of the NeuroFlow
architecture. Furthermore, the impressive numbers of simulated
neurons provided by NeuroFlow (up to 600,000 units) can be
reached with 6 FPGAs, with a toroidal network configuration,
limiting the number of synapses to 1,000–10,000, when the
connection probability follows a Gaussian probability of the
synaptic distance with standard deviation ranging from 32 to
512. This unfortunately makes a point comparison hard and
potentially unfair. Overall, NeuroFlow targets larger networks
than the proposed architecture, with a different aim which is
closer to that of SpiNNaker. This is reflected by the choice of
a large off-chip Dynamic Random Access Memory (DRAM)
compared to the BRAM used in our and other designs, and by
the higher flexibility in the simulation setup.

On the other end of the flexibility axis, it is possible
to find neural architectures based on application-specific
integrated circuits (ASIC). They usually range from the analog
neuromorphic chips (Hofstoetter et al., 2005), which exploit the
possibility to make the transistors work on the current flow
as the ion channels do on the ions flow, to the custom VLSI
digital neurocomputers (Van Sickle andAbdel-Aty-Zohdy, 2009).
Typically, the former are more complex to design but achieve
better performance than the latter, both in terms of silicon area
and power consumption (Joubert et al., 2012). In order to take
the best in terms of performance while preserving the flexibility of
software solutions, programmable hardware progressively gained
interest in the computational neuroscience community. If field
programmable analog arrays are still not completely convincing
in terms of performance, even though some reconfigurable
analog VLSI neuromorphic chips exist (Yu et al., 2010), on the
digital side there is a growing interest toward the use of FPGA for
these purposes (Maguire et al., 2007). FPGAs, providing the user
the possibility to reconfigure the device by full or partial reload of
the configuration bitstream, present the advantages of a custom
architectures (as for the ASIC) and a flexibility approaching that
of software implementations. Furthermore, the presence of IP
cores enables the creation of multiprocessors systems on chip
even on FPGA (Glackin et al., 2005).

In the largest part of cases, the effort toward the development
of very fast architectures had a negative impact on the biological
plausibility of the adopted neuronal model. In fact, the neuronal
models that have been presented in the scientific literature
so far are characterized by different biological plausibility and
computational complexity (Paugam-Moisy and Bohte, 2012).
Despite even the most complex Hodgkin-Huxley model was
implemented in hardware (Graas et al., 2004), not all of
them are suited for medium to large scale SNNs on digital
hardware, because they should be computationally simple and
at the same time capable of representing the wide variety of
firing patterns exhibited by the different biological neurons. For
this reason, some of the architectures use simplified custom
neuronal models (Upegui et al., 2003, 2005), much more use
integrate-and-fire (I&F) (Glackin et al., 2005) or leaky-integrate-
and-fire (LIF) (Cassidy et al., 2007; Pearson et al., 2007). A

recent interesting investigation on the limits of computer based
approaches, FPGAs and Graphics Processing Units (GPUs)
on highly complex biologically-plausible models of neurons
belonging to the cerebellar cortex was reported in Florimbi et al.
(2016). This work, in the main framework of the Human Brain
Project, remarks how such complex neuronal models require
huge hardware resources so that single-chip FPGAs cannot be an
effective platform for cell networks, even though ASICs could,
whereas GPUs can provide speedups that are still far from the
real-time bound.

The proposed architecture exploits the very efficient IZ
model (Izhikevich, 2003). Other works at the state of the
art implemented the same neuronal model. Usually, for
computational complexity reasons, the fixed-point processing is
preferred. Despite this approach obviously limits the precision
of the operations, compared to a floating-point solution, it has
been shown to be adequate for several practical applications. First
thing to notice is that several papers in the past described the
implementation of the IZ model on FPGA without embedding
it into a SNN. For instance, in Cassidy and Andreou (2008)
a hardware implementation on the neuronal model alone is
described (the model equations were changed in order to exploit
power-of-two arithmetic, leading to less precision). The absence
of the synapses is a remarkable limitation because of the quadratic
dependence from the number of neurons of the synaptic weights,
which is the main issue for scalability.

Other works, such as Rice et al. (2009), even though
introducing the synapses, present topologies such that synapses
connectivity is a minor issue. In that case, for instance, the
number of neurons in very high (about 96 × 96, as much as the
pixels of the input images) but the synapses are not as much
as the square of such a value but rather only 48 times it. In
that case, a Q4.12 format was used for the parameters, with the
weights represented in Q4.12 format. The format depends on a
trial and error procedure. SpiNNaker, for instance, uses different
scaling factors for different parameters and values, showing that
the best results can be achieved with a Q8.8 format for u, v,
c, and d, whereas the Q0.16 format was chosen for parameter
a and ab (since b alone is not used in that implementation),
limiting such parameters to be <1 (Jin et al., 2008). With such
an approach, the architecture is able to simulate up to 1000 IZ
neurons on a single fascicle in a network with a low connectivity
level (10%). Nevertheless, such a low connectivity is unrealistic:
in Thomas and Luk (2009) a connectivity with 1,000 synapses per
neuron, claimed to be a common-sense choice, is simulated. In
this case, the fixed point representation used for the weight and
the arithmetic of the adder tree is used, due to the limits imposed
by the memory limits of the chosen platform, and weights are
limited to 9 bits. Our architecture, with its 7 bits for the weights
with a Q3.4 format, follows a similar approach, considering that
on a physical platform it is acceptable to fix limits to the range of
such parameters (Thomas and Luk, 2009). Spikes accumulation is
performed at 32 bits to preserve asmuch as possible the precision.
In Ambroise et al. (2013), the authors present a similar approach,
that is capable of emulating up to 167 neurons (it is worth to
notice that these results have been achieved on a smaller device:
no data is provided on large FPGAs). Compared to the proposed
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one, such a work uses a higher number of resources due to higher
data precision and to a fairly more complex processing of the
synaptic current. It also considers a reduced sampling frequency
(1 kHz) with respect to our work. In Glackin et al. (2005), the
I&F model is implemented in fixed point with a Q8.10 precision
for the membrane voltage and 12-bit precision for the synaptic
conductance (no further details on the data size), using powers
of 2 for the scaling parameters in the model, to avoid multipliers
and dividers, with some precision loss.

In the proposed work, precision of the computation is
demonstrated by the achieved results. The architecture is capable
to obtain the same firing patterns of NEST, with a real-time
performance that reaches 0.1 ms. The slight differences cannot
be considered a limiting factor for the exploitation of the
architecture in real-time closed-loop experiments, since the
global firing patterns are respected. Even though the proposed
architecture is not highly optimized, because of the need to
ensure flexibility at this development stage, it is possible to pursue
energy/performance efficiency by means of fine application-
driven customization of the hardware architecture, that requires
adequate support by advanced design tools (Jozwiak et al., 2012,
2013). The proposed approach can evolve in such a direction for
closed-loop implantable implementations.

In perspective, the possibility to have a valid and efficient
hardware tool to simulate and generate in real-time realistic
spiking dynamics could pave the way to the design of new
devices to interface synthetic neuronal assemblies to biological
excitable tissues. Indeed, the so developed architecture could
be used to generate realistic signals (in terms of time and
spatial constants) to stimulate biological networks (open-loop
application) as well as to realize closed-loop systems in which,
in a bi-directional way, biological and hardware networks are
mutually stimulated. In such scenarios, similar to state-of-the-art

closed-loop experiments (Wagenaar et al., 2005; Wallach et al.,
2011), the availability of an embedded system implementing in
hardware (e.g., FPGA) a biologically plausible SNN would be the
only enabling technology. In fact, purely software simulations
could not be used to interface in silico neuronal models with
living beings.

In the meanwhile, the real-time performance of an FPGA
platform as the one proposed in this work, overcoming the
limitations of the software simulators, can be exploited to study
the fundamentals of the interaction between living neuronal
assemblies and synthetic ones, in closed-loop, opening to hitherto
unexplored neurophysiological experiments.
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Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication

link between the brain and the external world. A decoder translates recorded neural

activity into motor commands and an encoder delivers sensory information collected

from the environment directly to the brain creating a closed-loop system. These two

modules are typically integrated in bulky external devices. However, the clinical support

of patients with severe motor and sensory deficits requires compact, low-power, and

fully implantable systems that can decode neural signals to control external devices.

As a first step toward this goal, we developed a modular bidirectional BMI setup that

uses a compact neuromorphic processor as a decoder. On this chip we implemented

a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital

circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the

network to learn to decode neural signals recorded from the brain into motor outputs

controlling the movements of an external device. The modularity of the BMI allowed us

to tune the individual components of the setup without modifying the whole system. In

this paper, we present the features of this modular BMI and describe how we configured

the network of spiking neuron circuits to implement the decoder and to coordinate it with

the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an

anesthetized rat with an external object. We show that the chip learned the decoding task

correctly, allowing the interfaced brain to control the object’s trajectories robustly. Based

on our demonstration, we propose that neuromorphic technology is mature enough for

the development of BMI modules that are sufficiently low-power and compact, while

being highly computationally powerful and adaptive.

Keywords: bidirectional BMI, neuromorphic decoder, on-line learning, modular system, spiking neural network

1. INTRODUCTION

The possibility of controlling a prosthetic device through a direct interface with the central nervous
system represents a promising solution for restoring sensory-motor functionalities in patients with
limb amputations or peripheral and neurological deficits due to spinal cord injury, amyotrophic
lateral sclerosis, or stroke. In the last two decades, a fast-growing worldwide scientific community
has developed several brain-machine or brain-computer interfaces (respectively, BMIs or BCIs)
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toward the clinical application of these devices. Such interfaces
offer also a powerful tool for exploring the sensory-motor
mechanisms of control, adaptation, and learning that are
employed by the central nervous system. This research has been
assisted both by progress in our understanding of the underlying
neural processes that take place in the brain, and by technological
advances that have dramatically improved the quality of the
signals recorded from the brain and the possibility of managing
and processing large amount of data in real-time (Wolpaw et al.,
2000; Lebedev and Nicolelis, 2006; Wander and Rao, 2014).
Encouraging results have been recently obtained in controlling a
robotic arm by using motor neural activity in tetraplegic patients
(Hochberg et al., 2012) and by restoring cortical control of
movement in humans with quadriplegia (Bouton et al., 2016) but
these setups still have limitations that prevent their clinical use on
a large scale (Baranauskas, 2014).

The development of a BMI system aiming for large clinical
application requires crucial improvements of the hardware and
software components. The hardware components need to be (a)
fully implantable for long term use and therefore miniaturizable;
(b) able to reliably process neural signals with a limited
power budget; (c) powerful enough to implement non-trivial
computational tasks involved in a BMI system. Additionally, the
decoding algorithms need to be (d) sufficiently flexible to be
implemented with different types of hardware components, and
(e) able to dynamically adapt to changes in the neural activity
due to the interaction with the artificial device (Dangi et al., 2011;
Orsborn et al., 2014).

Neuromorphic devices comprise compact, energy-efficient,
and adaptive circuits that have been demonstrated to be optimal
for tasks that involve learning from real-world observations in
an on-line fashion (Chicca et al., 2014). They achieve this by
employing silicon emulations of biological neurons and synapses
that can be physically configured to implement algorithms
inspired by the asynchronous massively parallel computations
performed in biological neural networks. Additionally, input
to and output from neuromorphic chips is provided with
asynchronous digital pulses that encode information in their
analog timing, similarly to action potentials of biological
neurons. Because of these features, neuromorphic processing
chips are very promising candidates for implementing reliable
and energy-efficient decoding of neural activity, that could
ultimately be evolved to be portable, implantable, and directly
interfaced with neural tissue.

For this reason we directed our efforts toward the
development of a fully implantable BMI by prototyping a
neuromorphic processor chip (Qiao et al., 2015) integrated in a
bidirectional brain-machine interface, trained to decode neural
signals recorded on-line, and to provide suitable outputs useful
for controlling actuators and end effectors. In order to assess the
performance of this system, we took the following steps: first
we developed suitable spike-based decoding methods that could
be implemented by the neuromorphic processor chip, then we
configured the chip to implement these methods in real-time
and adapted the bidirectional BMI designed and tested in our
lab (Vato et al., 2012) to include in the processing chain this
neuromorphic component. Finally, we tested this neuromorphic

bidirectional BMI in a closed-loop real-time experimental setup
that involved the control of the motion of an external device
by the decoded neural signals recorded from the brain of an
anesthetized rat. Here, we describe in detail the properties of the
neuromorphic processor, and the network of spiking neurons
that was implemented by the chip to carry out the decoding task.
We present the main hardware and software modules that we
developed to interface the chip with the other components of the
BMI, and describe the experimental paradigm that we used to
test the system.

Our approach differs from those of currently-developed BMIs,
which are ad hoc ensembles of hardware and software elements
designed to perform specific tasks, and which are difficult
to replicate, generalize, or modify for use in other tasks or
different environments (Leuthardt et al., 2006). As these are
limitations that hinder collaborations between laboratories we
chose to emphasize a modular approach in designing our BMI
by developing a system that is compatible with a wide range
of different hardware and software standards, and which is
composed of a main control core module and multiple possible
recording, stimulating, decoding, and encoding modules. We
argue that the combination of this modular bidirectional BMI
setup with the use of neuromorphic hardware modules can give
a crucial contribution to the development of the next generation
of brain-machine interfaces for large-scale clinical applications.

2. MATERIALS AND METHODS

We begin by describing the general scheme of this novel
bidirectional BMI in Section 2.1 and the experimental procedure
used to test the performance of the neuromorphic decoder in
Section 2.2. In Section 2.3, we describe in details the main
modules comprising the system and finally we present the
hardware and the software implementation of the neuromorphic
chip, respectively, in Sections 2.4 and 2.5.

2.1. General Scheme of the Modular
Bidirectional BMI
We extended the Dynamic Neural Interface described in
Szymanski et al. (2011) and Vato et al. (2012, 2014) with the
inclusion of a neuromorphic decoder module. This system uses
the neural signals collected from a rat’s brain to control the
movement of an external object by means of a sensory and
motor interface. In designing it we took inspiration from earlier
studies in frogs (Bizzi et al., 1991), rats (Tresch and Bizzi, 1999),
and cats (Lemay and Grill, 2004) by emulating the functioning
of the spinal cord that combines sensory information with
brain instructions and organizes the movement of the limbs
along dynamically stable trajectories. We set up a decoding
and an encoding interface which generate a dynamic control
policy in the form of a force field and robustly drive the
movement of the controlled object. The neural signals are
recorded from the motor cortex of the anesthetized rat by
means of a recording multielectrode array. These signals are
transformed by the decoder into a force vector to be applied
to a device that can control the motion of the object. After
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receiving this external input, the device moves the object,
according to its dynamics, for a predefined amount of time. An
encoder maps each position of the object in the workspace to
a pattern of intracortical microstimulation (ICMS) delivered to
the somatosensory cortex of the rat. This is achieved by means
of a stimulating multielectrode array which provides the brain
with information about the position of the controlled object.
A calibration procedure of the interface establishes a control
policy based on an approximation of a radial force field with
the aim of driving the controlled object toward a target location
defined by the central equilibrium point of the field. In the
implementation described here we use four different patterns
of intracortical stimulation and, consequently, the workspace
is divided into four different contiguous sensory regions. The
four stimulation patterns differ from each other only in the
combination of the electrodes chosen to deliver the stimulation.
Each stimulation pattern consists of a train of 10 biphasic
pulses (100 µA, 100 µs/phase, cathodic first) delivered at 333Hz
(Butovas and Schwarz, 2007; Semprini et al., 2012). After each
stimulation, the decoder considers the first 256 ms of the evoked
motor neural signal to produce the driving force for the external

device. In Figure 1, we report the post-stimulus time course of
the time-dependent firing rate (mean ± sem over 50 trials) of
the evoked neural activity recorded from all the electrodes of the
array. The raster plots represent the time occurrences of at least
one spike recorded from all the electrodes of the multielectrode
array.

The calibration force corresponding to each region was
defined by a vector pointing from the region’s centroid to the
target (colored thick arrows depicted in Figure 8). The task
of the decoder consists in extracting from each evoked neural
response a resulting force, calculated as a weighted sum of the
four calibration forces defining the force field. In particular, the
decoder needs to extract the four coefficients corresponding to
the contribution of each of the four calibration forces to the
decoded force.

2.2. Experimental Procedure
Neural data were collected from male Long-Evans rats (300–
400 g) anesthetized for the entire duration of the experimental
sessions by means of Xylazine (5mg/kg) and a mixture of
Tiletamine and Zolazepam (30mg/kg). Two craniotomies were

FIGURE 1 | Post-stimulus time course of the time-dependent firing rate (mean ± SEM across trials) and raster plot of the recorded neural activity

evoked by four different stimulation patterns. Each short vertical line in the raster plots represents the occurrence of at least one spike recorded from all the

electrodes on the recording array in a 1 ms time bin. In the inset, we report the neural activity recorded from each electrode of the microwire array during a single trial.
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performed above the somatosensory (S1) and the motor (M1)
cortex representing the whiskers on the same hemisphere. The
stimulation microwire array (Tucker Davis Technologies—TDT)
was lowered perpendicular to the somatosensory cortex 300–
500 µm under the surface (AP −3.5mm, LM +4 mm with
respect to the most posterior medial electrode of the array). The
recording array was placed at depth 900–1100 µm below the pia
(AP −1.5 mm, LM +0.5mm with respect to the most posterior
medial electrode of the array) using a hydraulic microdrive.
These locations have been chosen for the presence of several
cortico-cortical connections between the two regions(Mao et al.,
2011). Both arrays are composed of 16 microelecrodes (2 rows
of 8 electrodes, 50 µm diameter) each one separated from the
neighboring ones by 250 and 375 µm along and across the
rows, respectively. All the experiments have been performed in
accordance with DL116/92 of the Italian legal code and approved
by the institutional review board of the University of Ferrara and
by the Italian Ministry of Health (73/2008-B).

2.3. Main Modules of the BMI System
The modular bidirectional BMI was designed around a core
unit named Managing Unit (MU) that can be connected to
satellite modules, each dedicated to specific tasks as decoding
the neural signal, controlling the movement of an external
device, and encoding the information collected from the external
environment to provide sensory feedback. The MU does not
require any information about the specific implementation

of each module, which can be a software running on
general purpose processing units, a dedicated programmable
hardware such as Field Programmable Gate Arrays (FPGA)
or a neuromorphic chip. This modularity ensures a fast
and flexible prototyping phase required during research and
development, whereby different software modules can allow
testing the algorithms to be implemented on custom low-power,
miniaturized implantable hardware.

In this implementation, we connected five different satellite
modules to the MU realizing the functionalities required by a
bidirectional BMI: Acquisition Unit, Stimulation Unit, Decoder,
Encoder and Dynamical System, as shown in Figure 2 that
have been described in details in Boi et al. (2015a). The
Dynamical System (see Boi et al., 2015b) consists of a small
mobile cart connected to a water/pellet dispenser mounted on a
vertical wall in a custom-made behavioral box for rodents and
controlled by two servomotors spanning an area of 38 × 38
cm. The cart is protected by a transparent acrylic glass sheet
with a slot that allows the rat to grab the food if the cart is
positioned in the desired position. The Dynamical System was
designed, developed, and tested in this way to be used in future
experimental sessions with behaving subjects.

The main algorithm running on the MU named mbBMI
algorithm is in charge of reading the spiking neural data coming
from the Acquisition System module and communicating them
to the decoder. Once the decoder generates an output signal,
the algorithm transforms it into motor commands usable by

FIGURE 2 | Real implementation of a modular bidirectional BMI. The Managing Unit is implemented on a ZedBoard development board that communicates via

User Datagram Protocol (UDP) with a TDT RZ2 BioAmp Processor—Tucker-Davis Technologies—(acquisition system) and a TDT RX7 Stimulator Base (stimulation

system). The ZedBoard is connected to the ROLLS neuromorphic processor (decoder) that implements a neural network that is able to learn to decode the neural

signal coming from the rat’s motor cortex. The decoder’s output is translated by the Managing Unit into a two-dimensional force which is converted into digital signals

to drive the motors installed on the 2◦ of freedom robotic device (dynamical system). The dynamical system communicates to the encoder its final state which is

transformed into a stimulation pattern that is subsequently delivered by the TDT RX7 into the somatosensory cortex of the subject and closes the loop.
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the Dynamical System. To close the loop on the brain, the
algorithm acquires the current position reached from the external
device and communicates it to the encoder that returns the next
stimulus to be communicated to the Stimulation System module.

2.3.1. Managing Unit
We implemented the Managing Unit by using the development
board ZedBoardTM equipped with a Xilinx Zynq R©-7000 All
Programmable System On Chip (SoC). The Zynq R©-7000 family
integrates a feature-rich dual-core ARM CortexTM-A9 based
processing system (PS) and 28 nm Xilinx programmable logic
(PL) in a single device. In our implementation, the PL runs
a custom module that can interface with neuromorphic chips
and implements two software modules named NeuElab and
Dynamical System Controller. The NeuElab module acquires
the pre-processed brain signals from the mbBMI algorithm and
routes them to the decoder and vice versa, via its hardware
interface (Zynq2Neuro described in Section 2.3.1).

The MU stores the temporal offset of each recorded action
potential with respect to the last delivered stimulation, as a
list of time-stamps associated with the identity (or address) of
the emitting electrode. At the end of each recording period,
spike trains are generated from the recorded spike time-
stamps according to the decoder’s requirements (Section 2.5 and
Figure 5) and then forwarded to the neuromorphic chip. TheMU
communicates with the decoder using the native neuromorphic
asynchronous communication protocol, known as Address Event
Representation (AER) protocol (Mortara, 1998), where the
information is encoded in the implicit timing between digital
pulses (or spikes) and in the identity (or address) of the neuron
that has emitted the pulse. The decoder’s output AER spikes are
acquired by the MU and forwarded to its Dynamical System
Controller part.

When acquired on the MU clocked system, the implicit
temporal information in the AER spike sequence is explicitly
paired with the address of the spike by the TimeStamp block
of the NeuElab part of the MU. NeuElab is composed of
two different FIFOs that drive the data flow from/to the
neuromorphic chip. The TX FIFO is filled with the address of
the neuron that shall receive the spike and the time relative to the
other spikes, by associating a delay time value by the TimeStamp
block. NeuElab reads the TX FIFO and sends a spike to the
neuromorphic chip at the time specified by the delay, the address
associated to the spike allows the receiving chip to rout the spike
to the corresponding neuron. The RX FIFO is filled with the
spikes from the neurons of the neuromorphic chip. The received
pairs of address and relative time-stamp are then sent to the
BMI algorithm that translates the recorded neural activity into
commands for the Dynamical System.

Besides managing the AER communication with the
neuromorphic chip, the NeuElab interface is critical for the chip’s
configuration, through digital configuration bits and a number of
tunable analog voltages or currents (biases) that set the operating
point of the analog circuits. NeuElab can be used, in principle,
for interfacing the BMI with any neuromorphic chip that uses
the AER communication protocol. In this implementation, the
output spiking activity of the neuromorphic chip is translated

into a bidimensional force applied to the Dynamical System by
means of a pair of Pulse Width Modulated (PWM) analog signals
generated by the ZedBoard that drive the external object.

2.4. Hardware Aspects of the
Neuromorphic Decoder
The decoder that transforms the recorded brain activity into
motor commands is implemented on a neuromorphic chip. In
the following, we describe the chip and the printed circuit board
(PCB) that we developed to connect the chip with the rest of the
system.

2.4.1. The ROLLS Neuromorphic Processor
The Reconfigurable On-line Learning Spiking (ROLLS)
Neuromorphic Processor is a general-purpose spiking neural
network chip (Qiao et al., 2015). Figure 3 shows the chip
micrograph. It was fabricated using a standard 6-metal 180
nm CMOS process, occupies an area of 51.4 mm2 and has
approximately 12.2 million transistors. It comprises 256 adaptive
exponential integrate-and-fire neurons implemented in a mixed
signal analog/digital circuit design.

There are 128K synapses, of which 64 K that can implement
a Hebbian plasticity rule (Brader et al., 2007; Mitra et al.,
2009) [Long-Term Plasticity (LTP) synapses] (Mostafa et al.,
2014). The rest 64 K synapses can exhibit short term depression
and short-term facilitation dynamics [Short-Term Plasticity
(STP) synapses], and have two possible programmable weights
resolution, in addition to the possibility to configure them as
either excitatory or inhibitory. These two synaptic matrices
(LTP and STP) allow arbitrary on-chip connectivity thanks
to a crossbar structure. In principle all-to-all connections are
possible through the programmable logic state of the synapses.
Additional circuits next to the neurons’ array represent the
calcium concentration at the post-synaptic side, needed to
implement the spike-based LTP weight update algorithm (Brader
et al., 2007).We refer the reader to Qiao et al. (2015) for a detailed
description of the circuits.

Both the neural network architecture and the parameters of
the neuromorphic core are fully programmable via a high-level
Python framework (Stefanini et al., 2014). The combination of
reconfigurable hardware with the Python-based configuration
framework supports the exploration of a wide range of spiking
neural network architectures, and their real-time emulation
in closed-loop setups. Here, these enabled us to configure a
hardware implementation of a spiking neural network that learns
on-line to decode patterns of recorded spike sequences.

2.4.2. The Zynq2Neuro (Z2N)
With the aim to manage, program, and interface neuromorphic
chips with the Managing Unit, we designed and developed
the Zynq2Neuro (Z2N) PCB that can host up to two
daughterboards (DTB) that mount neuromorphic chips. The
Z2N connects the neuromorphic chips to the FNC connector
of the ZedBoard, supplies power to the chips and supports the
AER communication and the chip configuration signals. Analog
biases that configure the parameters of the silicon neural and
synaptic models on the neuromorphic chip can be set either

Frontiers in Neuroscience | www.frontiersin.org December 2016 | Volume 10 | Article 563 | 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Boi et al. Neuromorphic BMI

FIGURE 3 | ROLLS Neuromorphic Processor: micrograph of a neuromorphic processor chip that allocates most of its area to non-linear synapse

circuits for memory storage and distributed massively parallel computing. The test structures in the lower left part of the chip contain extra low power neural

amplifier circuits and spike-based neural signal Analog-to-Digital conversion circuits that have not been used in this work.

by means of external digital to analog converters (DAC), or
by on-chip programmable bias generators (BG) (Delbruck and
Lichtsteiner, 2006). NeuElab, together with the Zynq2Neuro
board, can drive both systems, the Zynq2Neuro board hosts 64
DACs that can be programmed through an SPI interface and
also hosts the necessary signals for programming different types
of BGs, managed by NeuElab, hence supporting a large library
of neuromorphic chips. The Z2N board is already configured to
support future chip functionalities by means of I/O expanders
and I2C protocol. The AER addressing space can be expanded up
to 30 bits (configurable as inputs or outputs). The Z2N (Figure 4)
can support logic levels, power supply and biases from Digital
to Analog Converters of 3.3 or 1.8 V, as selected from the first
DTB. This means that the two DTBs need to host chips that
are homogeneous for the logical levels. In general, the Z2N can
support chips fabricated on the 350 nm (3.3 V) and 180 nm
process of the latest generation (1.8 V and mixed 1.8/3.3V).
To optimize the design, AER address lines, some bits of the
Bias Generator programming, I2C and I/O expander are shared
among the two DTBs. The sharing of the AER address lines
is based on the assumption that they are in tri-state when the
chip is not sending or receiving an event. This is guaranteed
by the SCX protocol (Mortara, 1998), but can be supported
also for the P2P protocol (Boahen, 2000), by adding buffers
on the DTB driven by the handshake signals (ACK) from the
ZedBoard. The correct addressing of the event to/from the chip
is guaranteed by the reserved handshake signals (REQ/ACK and
Bias LATCH) that target only one of the two chips. The Z2N
specifically targets compatibility with neuromorphic chips such
as the ROLLS (Qiao et al., 2015), but is a more general tool
for most of existing neuromorphic chips based on parallel (or

word-serial Boahen, 2004) AER protocols, on Bias Generators
externally configurable by means of SPI-like serial interfaces,
or on external voltage tuning. Some examples of supported
chips are the Dynamic Vision Sensor (Lichtsteiner et al., 2008),
the AER EAR (Chan et al., 2007), the Selective Attention
Chip (Bartolozzi and Indiveri, 2009), the spiking Winner-Take-
All chip (Chicca et al., 2014), and the Asynchronous Time-Based
Image Sensor (Posch et al., 2010).

2.5. Algorithmic Aspects of the
Neuromorphic Decoder
We approached the neuromorphic decoding task by combining
the constraints of a multi-class classification task with those
of spiking neural networks with limited resolution synaptic
weights, and with the BMI-specific requirements related to the
simultaneous contribution of all four classes to each decoded
force (see Section 2.1).

2.5.1. The Silicon Spiking Neural Network
We configured the ROLLS chip to implement a feed-forward
spiking neural network that exploits the spike-timing dependent
plasticity of the chip’s LTP synapses to learn how to extract the
pattern of four calibration forces that should result in the net
desired force, from the recorded neural activity. Each of the
output neurons of the network was trained to act as a binary
classifier by re-weighting the features of its input that were
distributed across its synapses, so as to ultimately yield, via its
activation function, a higher output spike rate for one, positive
class of input compared to the other three, negative classes.
Neurons were grouped into four ensembles, each corresponding
to one of the four stimuli. The spike counts output by the
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FIGURE 4 | Zynq2Neuro schematic: block diagram of the board allowing the use of neuromorphic chips in the bmBMI. It hosts DTBs with neuromorphic

chips and connects them to the ZedBoard through the FMC connector. Chip configuration is supported by Digital to Analog Converters or Bias Generator

programming and by IO expander for digital configuration. AER input/output communication supports P2P and SCX protocols.

four ensembles during the presentation of the recordings to the
network were directly used as the coefficients that weight the
contributions of the four component forces acting on the BMI’s
end effector.

2.5.2. Mapping the Neural Recordings to the ROLLS

Neuromorphic Processor
The spike-based learning algorithm implemented on the chip
is based on the model proposed in Brader et al. (2007). Using
this model, feed-forward neural networks can learn to classify
patterns based on their mean rates. However, in the neural data
we recorded, the principal feature that distinguishes one class
from the others is the precise timing of the recorded spikes,
aligned to the offset of the sensory micro-stimulation (Figure 1).
Therefore a transformation of the input spike sequence into an
array of firing rates is required before it reaches the output layer.
Furthermore, the number of non-redundant features in the data
needs to be sufficiently high to support robust discrimination
across all classes, but the recorded activity was very similar
across all recording channels (see Figure 1, inset). Therefore it
is likely impossible to find a single-layer feed-forward network
configuration that can classify the recordings based on features
corresponding directly to the recording channels.

To reconcile the characteristics of the data with the network
requirements we mapped uncorrelated sub-samples of the spike
sequence to different synapses of the classifier neuron, using a
mean-rate encoding. Specifically, we binned the recorded spike
trains in time bins of 1ms (Figure 5B) and associated each
bin with one input synapse of each neuron of the network
(Figure 5C). We provided a 400 ms high mean-rate (100 Hz)

Poisson spike train to the learning synapses for time bins that
contained recorded spikes, and no input to the rest of the
synapses (Figure 5C).

Under the constraint of a finite number (256) of available
synapses per neuron, there was a trade-off among the number
of recording channels, the duration of the recording patterns,
and the temporal precision desired. The first 200–300ms of each
recorded pattern included significant differences across the four
different classes (Figure 1), that would potentially be sufficient
for the classifier to discriminate between them. Based on this,
together with the observation that the distributions of spike
timings were very similar across different recording channels,
we merged the 15 recording channels into a single spike train,
and we used the first 256 ms of the recordings, thus acquiring
a temporal precision of one ms per time bin. Longer recording
duration with a two-millisecond or lower precision was found to
diminish decoding performance.

2.5.3. The Neural Network’s Task
The aim of the BMI is to best approximate the desired force
field over the duration of the experimental session, through
weighting the four force components. To achieve this aim, there
are two criteria based on which the decoder has to simultaneously
optimize its learning. Firstly, it needs to learn to classify the
patterns, i.e., to correctly output the single class to which each
presented recording truly belongs, as expressed by the “winning”
(i.e., the most firing) ensemble of output neurons. Secondly, the
decoder also needs to prevent the other three “losing” ensembles
from biasing the force field toward particular directions on
average over the trajectory of the end effector. That is, it
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FIGURE 5 | Input, training, and use of the neuromorphic decoder. (A) To train the decoder, four different stimuli were provided to the rat’s sensory cortex. Stimuli

were provided in random order, 40 times each, and the activity in the motor cortex was recorded during the session. (B) The activity in the first 256 ms after the end of

each stimulus was used with the decoder. The recording was binned in 1 ms time bins, and bins where at least one action potential was detected across any of the

recording channels were marked. (C) Each time bin was mapped to a column of 252 learning synapses on the ROLLS, whereby each synapse belonged to a different

post-synaptic neuron on the chip. Synapses corresponding to time bins in the recording that included detected spikes received a Poisson spike train with a mean rate

of 100Hz. Synapses corresponding to empty time bins received no input. In addition, the silicon neurons were stimulated by a teacher signal, as follows. The 252

post-synaptic neurons were separated in four ensembles of 63, and we associated each ensemble with one of the four stimuli provided to the rat’s sensory cortex.

During the presentation of each recording to the chip, the ensemble corresponding to the preceding cortical stimulus was stimulated by a Poisson spike train of 75 Hz

as a teacher signal, while the other three neuronal ensembles received a teacher signal of 25 Hz. After training, the ROLLS received no teacher signal, and each

recording was decoded into a force applied to the end effector, by weighting four force components by the number of spikes output by each of the four ensembles.

needs to classify the recordings under the constraint of learning
to equalize the average outputs of “losing” ensembles. Thus,
despite the similarities to a classifier, classification of individual
recordings is only partly the decoder’s task.

2.5.4. Biased Similarities and Differences between

Classes of Recordings: Addressing Them with

Heterosynaptic Competition
The decoder had to address certain additional characteristics of
the recordings to achieve its goal of approximating the desired
force field over the experiment’s course. Specifically, different
classes of recordings differed in number of recorded spikes on
average, and this difference in the input energy could be reflected
as a bias in the chip’s output and consequently in the direction
of the decoded force in each trial. Moreover, even though
spike timing was the principal difference between recordings
of different classes, some spike timings were common between
classes. This increased the difficulty in distinguishing between
different classes. That is, the different classes had a certain level of
overlap between their features, which could increase classification
errors. Additionally, this overlap was not of the same extent for
all pairs of classes, i.e., some classes were more similar to some
than to others in terms of common spike timings (Figure 1).

This asymmetry could result in additional biases in the weighting
of the force components by the decoder, thus misshaping the
resulting force field in certain parts of the working space.

To address these points, we used the “stop learning” feature of
the ROLLS chip learning circuits (see Brader et al., 2007) which
prohibits potentiation of synapses when the post-synaptic firing
rate exceeds a threshold. When a certain number of synapses
that correspond to a neuron’s positive class are potentiated,
the increased excitation from the input causes the neuron
to stop learning. This introduces heterosynaptic competition
(Royer and Paré, 2003) to the chip’s output neurons, which
serves (a) to normalize the network’s output in response to
different classes, (b) to make potentiated synapses a scarce
resource hence biasing potentiation toward non-overlapping
features, and (c) to equalize the output of “losing” ensembles. In
addition, combined with device mismatch on the neuromorphic
circuits, it biases different members of each ensemble to learn a
slightly different decision boundary. This is similar to boosting
techniques employed in machine learning and improves the
classification performance by allowing for non-linear decision
boundaries for the ensemble through the aggregation of the
multiple linear boundaries defined by the ensemble’s member
neurons.
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2.5.5. Training the Neuromorphic Decoder
To train the neuromorphic decoder, we used an experimental
session composed of 40 repetitions of each stimulation pattern
(i.e., 160 evoked recordings). During the training procedure
were randomly interleaved (Figure 5A) and presented to the
ROLLS processor the 160 training trials, according to the method
described in Section 2.5.2 (Figures 5B,C), along with a teacher
signal representing the label of the presented example, i.e., the
type of sensory microstimulation that produced the recorded
neural response. Sixty-three output neurons were assigned to
each class (Figure 5C, right). The teacher signal biased each
neuron to be tuned to one class, by causing it to fire with a rate
that maximized the probability that the neurons synapses got
potentiated when an example of that class was presented, and
depressed when an example of the other classes was presented.
The mean rate of the Poisson spike train that would act as
a teacher signal with these properties, as well as the analog
parameters of the silicon neurons and synapses of the ROLLS
processor were configured to match the characteristics of the
input data with the requirements of the learning and of the
decoding task.

2.6. Assessing the BMI’s Performance
Once the decoding and encoding interfaces were properly
calibrated, in order to test the systemwe ran the BMI by decoding
from each neural trial a bidimensional force and by encoding
each position of the controlled object through an ICMS pattern.
We used a test dataset of neural recordings acquired by 10
repetitions of each of the four stimulation patterns (i.e., 40 evoked
recordings), which were unseen by the BMI during its training.
We selected eight different equispaced and equidistant positions
as starting points in which the dynamical system was initialized
and we ran the BMI 100 times starting from each initial position
by obtaining 800 trajectories. We tested the system under two
conditions: under normal operation (encoder-ON condition),
each test recording was selected according to the dynamical
system’s current position. An alternate condition (encoder-OFF)
was used to test the bidirectionality of the BMI and the learned
coordination between the encoder and decoder modules. In the
encoder-OFF condition, each test trial was randomly selected
among all 40 test recordings.

To assess the repeatability, the speed and the optimality of
the generated trajectories we measured the number of steps
required to converge to the target and the mean within-trajectory
variance (abbreviated to wtv). In particular, each trajectory’s wtv

is defined as
√

C2
x + C2

y , where Cx and Cy is the covariance of the

distribution of the per-step displacement along the x and the y
axis, respectively. We obtained the mean wtv by averaging the
wtv computed for each set of trajectories that started from one
initial position.

3. RESULTS

3.1. Decoding Performance
To assess the decoder we used test datasets, which were
previously unseen by the decoder, as described in Section 2.6.

For each decoded pattern, the output spikes produced by each
neuronal ensemble (Figure 6A) were counted. Given a stimulus,
the average spike count of the ensemble of silicon neurons
corresponding to that stimulus was higher than the other three
(Figure 6B).

In addition, as a result of the introduction of “stop learning”
to the silicon neurons average spike counts were relatively
uniform across the other three ensembles despite the biases in
pairwise similarities between input classes (see Section 2.5.4). The
chip learned to suppress this bias, and, consequently, decoded
resultant forces for each stimulus were, as originally intended,
most similar to one of the four forces used during the calibration
phase (colored thick arrows shown in Figure 8B).

While the task of the decoder was not a pure classification
task and it was not optimized to perform as a classifier, we also
evaluated its performance in correctly classifying the recordings,
as expressed by the maximally firing ensemble of neurons. For 20
different random splits between the training and the test sets, the
classification performance on the test set ranged between 50 and
70% correct, with the chance performance level being at 25%.

3.2. BMI Performance
In order to assess the BMI performance, we performed two
different testing sessions: during the first session we set the
maximum number of steps to 100 as stopping rule for the
obtained trajectories (Figure 7). The BMImoved the object freely
according to the sequence of forces that the closed-loop set-up
applied and we placed the target as the origin of the axes. In each
trial, the controlled object was initialized at one of eight starting
positions and the BMI generated one trajectory of 100 encoding
+ decoding steps. We marked and plotted in the figure the point
that was closest to the origin of the axes considered as the target
point (Figure 7A). For each starting position we repeated the
experiment 100 times, yielding 800 points in each of the two
conditions (blue points for "Encoder ON" and red points for
“Encoder OFF”). In condition ON, when a stimulus was provided
to the sensory cortex, it was according to the current position of
the object. In condition OFF, the stimulus was selected randomly
among the four possible stimuli, thus not encoding the current
position of the object. The distributions of the two sets of points
(Figure 7B) are statistically different (independent samples t-test,
p < 0.001) showing a decrease of 99% in the distance from the
target and demonstrating that closing the loop in the proposed
BMI is crucial in order to correctly drive the dynamical system
toward a target.

In the second testing session, we simulated a real experiment
in order to generate motor commands that drive a mobile
cart from predefined initial positions toward a target position
represented by a slot in the glass that allows the rat to get
the reward (Boi et al., 2015b). In this session to distinguish
between convergent and non-convergent trajectories, we defined
the target as a circular region with radius set to 3.6 cm placed
in the center of the workspace. A trial was considered successful
as soon as the generated trajectory reached the borders of this
area.When this happened the BMI was disconnected and the cart
was automatically positioned in the center of the slot to allow the
subject to receive the reward.
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FIGURE 6 | Output of the trained decoder. (A) Raster plot of the output spikes of the trained ROLLS chip during presentation of four example test recordings each

resulting from a different type of stimulus. The length of the bars on top shows the 400 ms long presentation of the input. During presentation of the four examples, the

most active ensemble of output neurons corresponds to the true stimulus that caused the input recording. The spike count of the output each of the four neuronal

ensembles was directly used to weight each of the four components of the force field to result in the motor command, i.e., force, that acted on the controlled object.

The chip’s neurons maintained some activity till shortly after the input stopped, mainly due to excitatory current leaking between the firing neuronal electronic circuits.

(B) Average output spike count for each ensemble of neurons, for each type of stimulus that caused the decoded recording. For each stimulus, its corresponding

ensemble fires on average more than the other three, demonstrating the classification aspect of the decoder’s task. In addition, the decoder learned for each stimulus

to partially equalize the response amplitudes of the three non-corresponding ensembles, compared to the extent of the differences between input classes (cf.

Figure 1 and see Section 3.1).

FIGURE 7 | Testing of BMI performance with 100-steps stopping rule. (A) Trajectories closest points to target. Red dots indicate, for each trajectory, the closest

points to the workspace axis origin with the encoder switched OFF while blue dots represent the same points for the trajectories generated with the encoder ON. Data

were collected by running the BMI 100 times for each of the eight predefined initial positions (i.e., numbered circles) both with the encoder turned ON and OFF.

(B) Box plots of the trajectories closest points distributions with the encoder ON and OFF. Two-sample t-test, ***p < 0.001.

Figure 8A shows the mean trajectories (blue lines) and the
covariance (light blue area) generated during this experimental
session with the encoder turned ON. Two distinct behaviors are
distinguishable (see Figure S1C): if the pathway from the starting

position to the target region lies inside the same sensory regions,
we obtained an almost straight trajectory. On the other hand,
when the controlled device crosses the border of one region, the
systems oscillates along the border of the two adjacent regions.
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FIGURE 8 | Testing of BMI performance with target-region stopping rule. (A) Mean trajectories plot. Starting from each starting point depicted with a

numbered circle, the blue lines represents the mean trajectories and light blue areas represent the covariance of the trajectories along 100 trials. The workspace is

subdivided into four sensory regions, one per each stimulation, highlighted by four different colors. We defined a target region centered in the origin of the axes and

whenever the mobile cart reaches its edge the BMI considers the task accomplished. (B) Black arrows represent the decoded forces computed during the BMI test

phase. Colored thick arrows represent the four calibration forces associated to the sensory regions. Forces were grouped on the basis of the stimulus that generates

them. (C) Mean within-trajectory variance (wtv) ± SEM of all the 800 trajectories recorded both with the encoder turned ON (blue bar) and OFF (red bar). (D) Mean

number of steps to convergence ± SEM. The red bar, obtained with the encoder turned OFF, is quite close to the maximum step allowed (100 steps) while when the

encoder is active the steps number necessary to reach the target region is significantly lower. (E) Mean DT component magnitude ± SEM. Each decoded force has

been split into Directed to the target - DT (magnitude of the force that points toward the target) and Orthogonal to the target - OT one (part of the force perpendicular

to the directive component). The mean magnitude of the DT component obtained from forces generated with the encoder turned off (red bar)is much higher than

when the encoder activated (blue bar). Two sample t-test, ***p < 0.001.

This particular behavior does not represent a decoding error
but rather reflects the limitation of having only four different
stimulation patterns encoding the information about the region
in which the device is, disregarding the precise position inside
it (Tehovnik, 1996; Romo et al., 1998). The BMI converges to
the target region with a 100% success, and it does so in a very

stable and straight path because the decoded forces obtained
in response to the same stimulation pattern are very similar to
each other, both in terms of direction and magnitude. This is
demonstrated in the compass plots in Figure 8B showing that
the forces decoded from the neural activity evoked from each
stimulation pattern and used during the testing phase (i.e., black
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arrows) are almost overlapping. In order to further assess the
neuromorphic decoding capabilities we also report the forces
used to calibrate the BMImotor interface (colored thick arrows in
Figure 8B) that, especially in terms of direction, are almost equal
to most of the related forces decoded during the BMI run. In the
encoder-ON case the mean wtv and the steps needed to reach
the target region significantly decrease (respectively, 92 and 80%)
with respect to the encoder-OFF case (Figures 8C,D).

Finally, for each force produced by the decoding process, we
measured the magnitude of two components: the component of
the force that points toward the target point, named Directed
to the target—DT, and the component orthogonal to it, named
Orthogonal to the target—OT. The mean of the DT-component is
strongly positive (directed to the target) in the case of encoder-
ON and slightly negative (divergent from the target) when the
encoder is turned OFF (Figure 8E shows an increase of 69%). In
both conditions (ON and OFF), the mean OT-components are
almost null compared to themeanDT obtained with the encoder-
ON (respectively, 90 and 97% less). In the OFF condition, this
can be attributed to the randomness of the motion. In the ON
condition, combined with the increased DT force, this is an
indication of successful decoding.

Figures S1A,B show the complete set of trajectories collected
without using the target-region stopping rule, respectively, with
the encoder switched ON and OFF. Figures S1C,D shows
the set of trajectories used to build the different panels of
Figure 8.

4. DISCUSSION

In this paper, we showed the applicability of neuromorphic
hardware in a brain-machine interface system, in the first
demonstration of this kind. In particular, the decoder module
of the BMI was implemented by a spiking neural network on a
mixed-signal analog/digital neuromorphic processor, the ROLLS,
that learned to perform on-line the decoding of the neural
recordings into commands that addressed the brain-controlled
device.

The analog neuromorphic circuits of the ROLLS
neuromorphic processor emulate functions of biological
neurons and synapses by replacing biophysical properties
with analogous properties of the sub-threshold physics of
transistors. The resulting spiking neural networks operate on a
power-efficient and compact system for applications of pattern
recognition such as a BMI decoder’s task. On the other hand,
because of these underlying principles of operation, analog
neuromorphic circuits like the ones found on the ROLLS are
imprecise and variable, similar to biological neural elements, in
sharp contrast to simulations of spiking neurons and synapses
on digital neuromorphic or general-purpose processors. The
neuromorphic decoding task was further complicated by
the variability in the recorded data, and by the overlap in
spike-timings between the to-be-discriminated classes.

Further difficulty arose by the fact that the decoder’s task was
not a standard classification task, as the BMI required the decoder
to output a contribution of all potential classes of recorded
activity simultaneously, while preventing the average chip output

from being biased toward any pair of classes, even though the
pair-wise similarities between classes were biased.

Despite these particularities, the spiking network we designed
successfully learned the decoding task, enabling the BMI to
perform at similar levels of a previous non-neuromorphic version
of the bidirectional BMI. This was achieved by exploiting two
key characteristics of the ROLLS chip: variability between silicon
synapses and neurons deployed into an ensemble learning
technique that aggregated multiple weak classifiers into a
powerful one, and the heterosynaptic competition through the
“stop-learning” feature of synapses on the ROLLS chip, which
enabled the network to focus on the discriminative features of
the input, thus both improving classification performance and
reducing the reflection of biased similarities in the input onto the
output of the trained network. A key feature of the decoder is that
the spiking output of the neuromorphic chip is directly used to
compute the force controlling the end-effector. The components
of the force were weighted by the spike counts of the chip’s
output, an important step toward using neuromorphic hardware
not only as a decoder, but also as prosthetic controller.

4.1. Features of the Proposed
Neuromorphic Decoder
The set-up we propose has been designed as an initial proof
of concept prototype to evaluate the potential of neuromorphic
hardware computing in BMIs, and to determine its limitations;
within this context, this work shows that, even at this level,
integration of neuromorphic hardware in set-ups characterized
by the intricacy of a bidirectional BMI is technically possible.
Our results show that, despite the low precision, low resolution,
and noisy (but compact and low-power) analog electronic
circuits in the neuromorphic chip, the system built in this way
can recognize multi-dimensional input patterns. In particular,
the results demonstrate how this neuromorphic hardware can
be configured to produce the correct average forces over the
controlled object’s trajectory (Figure 8A), despite the fact that the
forces decoded from individual recordings could strongly deviate
from the target (Figure 8B) due to the contributions of all four
force components combined with unbalanced inputs (Figure 1).
A unique aspect of the specific neuromorphic hardware used
is represented by its ability to learn these computationally
demanding tasks, with on-chip real-time spike-based plasticity
circuits, as opposed to learning the network parameters off-line
and configuring them at run-time. The flexibility provided by the
digital event-based communication infrastructure, and the digital
registers embedded in the chip, next to the subthreshold analog
neuromorphic circuits, allow this system to be used in a variety of
tasks that require real-time decoding or classification of sensory
inputs, or real-time encoding of desired outputs. Although, the
analog circuits have time constants of the order of milliseconds
(in order to provide biological realism, and importantly, to
minimize power consumption), the real-time response properties
of the chip at network level have latencies that are extremely small
(e.g., below tens of microseconds). This allows the chip to decode
the neural activity on line in the BMI’s loop, within one time
step of the dynamical system’s operation, whose bottleneck is
determined not by the decoder, but by the inter-stimulus interval.
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The average power consumption of the chip, which has been
measured to be approximately 4 mW, is competitive with state-
of-the-art DSPs and much lower of general purpose low-power
computing units that could be used to run the pattern recognition
software. It is worth noting however, that since in the current
set-up the neuromorphic chip is interfaced to additional devices
mainly used for prototyping and debugging, the overall system
requires additional relatively high power and area.

4.2. Limitations of the System and
Proposed Future Additions
The simplicity of the single-layer feed-forward network of only
252 neurons that was employed for this particular application
demonstrates the limitations and computational power of
physical instantiations of spiking neural networks and suggests
that further development of analog neuromorphic hardware
and spike-based algorithms may yield a computationally
powerful, yet low-power consuming alternative to software and
conventional processors for a broad spectrum of tasks. With
respect to the neuromorphic BMI decoder in particular, further
work could enable two specific improvements and additions.

Firstly, the present implementation addresses the complex
temporal dynamics of the recordings with a processing step
introduced between the neural recording and the output layer of
the neural network, and performed off-chip, which transforms
the temporal dynamics of the recordings to a spatial pattern
input to the chip. While the method proposed is suitable for
the presented system, we have been investigating alternative
algorithms and spiking neural network architectures that can
potentially decode and recognize these types of spatio-temporal
patterns entirely on the chip. In this way, the chip could directly
receive the recorded spike train, and operate on it with no need
for an intermediate off-chip storage step. This would be possible
because of the ROLLS’ real-time operation, with time constants
that match those of real neurons. To this direction, Corradi
and Indiveri (2015) perform a binary classification task on
spatio-temporal recordings from the zebra finch, using reservoir
computing on the ROLLS’ silicon neurons, which demonstrates
that future development of these types of methods can permit
their application on a BMI.

On a separate but related note, here the BMI operated in
discrete time steps. This permitted us to insert the processing
step that inputs the recorded spike timings as rate-coded patterns
into the ROLLS chip, without loss the system’s continuity.
Nonetheless, this will be a crucial obstacle for the decoding
module’s integration in future continuously operating BMIs. On
the other hand, the limitation does not originate in the ROLLS
chip itself. The chip does not have an internal clock that must be
synchronized with the chosen time points. It rather recognizes
inputs in which time represents itself in the spike train’s statistics.
This implies that removing any off-chip transformation that
intermediates the input would also enable the on-line use of the
chip in continuous-time BMI set-ups.

As a further future improvement, the fact that the network
learns on line could be used to allow the decoder to adapt to
changes in the neural responses with time. Specifically, in the

current implementation, the decoder updates itself incrementally
after the presentation of each training pattern. Training inputs
are combined with a teacher signal that biases different neurons
to strengthen or weaken their connections to different features
of the input, through imposing different levels of output firing
during the presentation of different input classes. After training,
we use the chip to decode new recordings of brain activity.
The on-line learning feature is not crucial for demonstrating
the performance of the BMI in its current instantiation, but
can become useful in future chronically implanted setups, that
have to adapt to continuous slow changes in the nature of the
signals being recorded. In such a future implementation, learning
could continue during the chip’s use as a trained decoder. As the
trained silicon neurons respond with high firing rates to their
corresponding input classes, and with lower rates to the other
classes, the neurons could bias themselves to continue correctly
adapting their synapses to the input patterns in the absence
of an externally provided teacher signal. This would be made
possible after tuning the parameters of STDP synaptic dynamics
of the ROLLS to enable potentiation and depression in the ranges
of firing rate that the trained neurons output when decoding
the input.

4.3. BMI Modularity
As technological and scientific progress accelerates, it brings new
opportunities for improving the quality of life of millions of
people. The interdisciplinary field of brain-machine interfaces
largely relies on the rapid evolution in the diverse fields that are
involved (Nicolas-Alonso and Gomez-Gil, 2012). Nevertheless,
the complexity of BMI systems, the interdependence of their
components cause them to be very difficult to manage, test,
modify, and upgrade. Our work suggests a possible solution
to this issue by proposing a new modular implementation that
allows to modify or update each module without changing the
entire system.

The modularity allows to develop different parts of the BMI
in different labs and assemble the complete system by plugging
in these parts as modules. This structure makes easier and more
reliable both the implementation of the single module and its
integration in the complete system. Parallel development of
components could also accelerate the ultimate realization of a
device compact and powerful enough to be used as clinical tool
able to transfer data between the brain and external devices
wirelessly through an implanted interface (Azin et al., 2011; Fan
et al., 2011; Borton et al., 2013; Angotzi et al., 2014). In this work,
we also demonstrated that the modular architecture does not
affect BMI performances, showing results comparable with the
ones achieved in Vato et al. (2012); this result suggests that BMI
systems developed in other labs could also be re-implemented
in a modular manner. To help the interested scientist in doing
this, most of the material used in this project is freely available on
Si-Code website : http://www.sicode.eu/results/software.

5. CONCLUSIONS

The relevance of neuromorphic technology in the design of
brain-machine interfaces is demonstrated by the flourishing
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work in this domain (see Dethier et al., 2013; Barsakcioglu
et al., 2014; Hogri et al., 2015, as non-exhaustive examples).
The main features of neuromorphic implementations are low
power consumption, real-time operation, adaptability, and
compactness. Simulations show that hardware Spiking Neural
Networks can successfully decode the activity of neurons for
closed-loop cortical implants (Dethier et al., 2013) and an
ad-hoc working prototype is able to substitute a cerebellar
learning function in the rat (Hogri et al., 2015). Our work
extends this approach in proposing amodular and reconfigurable
scheme whereby the neuromorphic chip can be exploited
for implementing different algorithms and BMI functions; in
particular, we demonstrated this approach by using the chip
as neural decoder. We also explored the impact of using
a neuromorphic decoder in such a closed-loop system by
comparing its performance with the one previously developed in
our lab.

As in Vato et al. (2012), we closed the loop with the brain
by decoding the neural activity evoked by different patterns
of intracortical micro-stimulation selected by the encoder.
Even if we are not decoding from the anesthetized subjects
any volitional input, this system, establishing a bidirectional
interaction between the brain and an external device, needs
to be considered the first necessary step toward the design
of future experiments involving behaving subjects controlling
the movements of a small mobile cart connected to a
water or food dispenser (Boi et al., 2015b). The unique
characteristics of the neuromorphic decoder will allow our

modular bidirectional BMI to integrate the volitional component
of brain activity in the decoding scheme and to explore
the integration of the volitional input with the automatic
brain response in controlling the movement of the external
device.
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The ionic conductance models of neuronal cells can finely reproduce a wide variety of

complex neuronal activities. However, the complexity of these models has prompted the

development of qualitative neuron models. They are described by differential equations

with a reduced number of variables and their low-dimensional polynomials, which

retain the core mathematical structures. Such simple models form the foundation of

a bottom-up approach in computational and theoretical neuroscience. We proposed

a qualitative-modeling-based approach for designing silicon neuron circuits, in which

the mathematical structures in the polynomial-based qualitative models are reproduced

by differential equations with silicon-native expressions. This approach can realize

low-power-consuming circuits that can be configured to realize various classes of

neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for

analog and digital implementations are quickly reviewed. One of our CMOS analog silicon

neuron circuits can realize a variety of neuronal activities with a power consumption less

than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit

can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron

circuit can also realize these classes. An auto-associative memory realized on an all-to-all

connected network of these silicon neurons is also reviewed, in which the neuron class

plays important roles in its performance.

Keywords: qualitative modeling, silicon neuron, non-linear dynamics, low-power circuit, neuronal network

emulation

1. INTRODUCTION

The nervous system allows individual animals and their populations to survive in severe
environments by analyzing a huge amount of information from sensory organs and promptly
generating adequate control signals for motor organs. This complex and intelligent information
processing ability is autonomously obtained and adaptively maintained on its genetically developed
physical basis, the network of neuronal cells. The nervous system consumes a sufficiently low
power to allow for operation within the power supply limit of an animals’ body; for example, the
human brain consumes about 20W (Clarke and Sokoloff, 1999), which is a lower power than
mainstreamCPUs. Because it is a network of neuronal cells with a wide variety of complex activities,
the mechanisms of its information processing function are still poorly understood. It is attracting
increased attention from biological, medical, and engineering fields.

A silicon neuronal network is a network of silicon neurons (SNs) connected via silicon synapses
(SSs), which are electronic circuits that reproduce the electrophysiological activity of neuronal
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cells and synapses, respectively. Unlike neuro-inspired artificial
neural networks, it is an approach to neuromimetic systems
that realize intelligent, autonomous, robust, and power-efficient
information processing via an architecture comparable to the
nervous system (Arthur and Boahen, 2011; Brink et al., 2013b;
Cassidy et al., 2013; Kohno et al., 2014b; Qiao et al., 2015;
Giulioni et al., 2016). Because it is a bottom-up approach
with cell-level granularity and reproduces neuronal spiking
activities, it is also applicable to biohybrid systems including
neuroprosthetic devices that replace damaged nerve tissues
(Ambroise et al., 2013). Generally, SN circuits are required to
have the capability of reproducing complex neuronal activities,
have a low power consumption, and be compact and highly
integratable.

In fields where the reproducibility is important, such as
the biohybrid systems and high-speed simulators, SN circuits
have been designed to solve ionic conductance neuronal models
(Simoni and DeWeerth, 2006; Schemmel et al., 2010; Grassia
et al., 2011; Saïghi et al., 2011). These models describe the
dynamics of ionic currents that generate the dynamical behavior
of the membrane potential by charging and discharging the
membrane capacitance. They can precisely reproduce neuronal
activities, but their equations are described by high-dimensional
non-linear differential equations (DEs). It was demonstrated
that their circuit implementations (conductance-based SNs) can
well reproduce the neuronal activities of their target cells but
require a relatively large amount of hardware resources and
consume a relatively high power in the range of micro- to
milliwatts. The ionic conductance models share a common
structure, namely the Hodgkin–Huxley formalism, which allows
their circuit implementation to mimic a variety of neuronal
cells after fabrication by applying appropriate parameter voltages
(Grassia et al., 2011; Saïghi et al., 2011).

In fields where low power consumption and integratability
are important, SN circuits that solve integrate-and-fire (I&F)
models are widely used. These models describe the neuronal
activities with simple DEs by treating a spike as an event
and focusing on the timing of spike generation. Their analog
and digital circuit implementations (I&F-based SNs) have been
developed (Thomas and Luk, 2009; Arthur and Boahen, 2011;
Cassidy et al., 2013; Merolla et al., 2014; Mayr et al., 2015;
Qiao et al., 2015; Giulioni et al., 2016). Analog I&F-based SNs
achieve ultralow power consumption down to several nanowatts
and several hundreds of them were integrated on a chip with
thousands of SS circuits. Although their digital implementations
consume more power, they are more portable, easy-to-operate,
and highly integratable. A milestone work is the TrueNorth
chip (Merolla et al., 2014) that integrates 1 million SNs and
256 million SSs on an application-specific integrated circuit chip
and consumes less than 70 mW. Silicon neuronal networks
implemented on field-programmable gate array (FPGA) chips
achieve far less integration (about 1000 SNs) and consume
higher power, but their low cost and reconfigurability have
attracted many researchers. Sophisticated I&F-based models
such as the Izhikevich (IZH) (Izhikevich, 2004) and adaptive
exponential I&F (Brette and Gerstner, 2005) models incorporate
the viewpoint of qualitative neuronal modeling described below,

which allows them to reproduce a variety of neuronal activities.
In principle, however, they cannot reproduce some neuronal
properties related to the variability of spikes, which are reported
experimentally and indicated theoretically. For example, it was
reported that the amplitude of spikes at an axon terminal
in the hippocampus is gradedly dependent on the stimulus
intensity (Alle and Geiger, 2006), and a mathematical analysis
of neuronal models indicated that a class of neurons, Class
II in Hodgkin’s classification (Hodgkin, 1948), can generate
spikes in the same manner (Rinzel and Ermentrout, 1998). In
addition, the parameter setting of the I&F-based models requires
careful tuning; for example, we pointed out that the phase
response curve (PRC) of the IZH model in the Class II setting
is discontinuous at θ = 0, which causes a severe reduction in
the retrieval ability of an auto-associative memory in all-to-all
connected networks (Osawa and Kohno, 2015). This problem
can be solved by increasing the parameter d of the model, which
distorts the waveforms of the membrane potential by producing
a huge hyperpolarization after each spike. Another example is
that the spiking patterns of the IZH model in the intrinsic
bursting (IB) setting have different characteristics from IB cells
when a strong stimulus is applied (Nanami and Kohno, 2016).
These facts suggest the possibility that a network of I&F-based
silicon neurons may have limited ability to reproduce particular
information processing in the nervous system.

In the field of qualitative neuronal modeling, the
mathematical techniques of non-linear dynamics have been
effectively applied to ionic-conductance models to produce low-
dimensional and simple polynomial equations that qualitatively
capture their dynamical properties (Rinzel and Ermentrout,
1998; Izhikevich, 2007). In contrast to the I&F approach,
they do not ignore specific phenomena including the spike
generation mechanism. The most well-known qualitative model
is the FitzHugh–Nagumo (F-N) model (FitzHugh, 1961) that
reproduces the dynamical structure in the Hodgkin–Huxley
(H-H) model (Hodgkin and Huxley, 1952). The H-H model
is described by four-variable non-linear DEs, whereas the F-N
model is two-variable and its only non-linear term is cubic. The
F-N model is Class II and can produce the graded spike response
to a pulse stimulus. The first silicon nerve membrane circuit, the
Nagumo circuit (Nagumo et al., 1962), implemented this model
using the tunnel diode. Later, several SNs have implemented the
F-N and other qualitative models using recent analog and digital
circuit technologies (Linares-Barranco et al., 1991; Cosp et al.,
2004; Weinstein and Lee, 2006).

In our previous works (Kohno and Aihara, 2005, 2007, 2008a;
Sekikawa et al., 2008; Kohno and Aihara, 2010; Li et al., 2012;
Kohno and Aihara, 2014a; Kohno et al., 2014b), we proposed
a qualitative-modeling-based design approach for SNs. In this
approach, a qualitative neuronal model that reproduces the
dynamical structure in a target neuronal model is constructed
by combining the formulae for the characteristic curves of
favorable elemental circuit blocks instead of polynomials. The
elemental circuit blocks are selected according to the required
features of the SN; for example, subthreshold metal–oxide–
semiconductor field-effect transistor (MOSFET) circuit blocks
may be used for low-power SNs. Such a model is expected
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to be implemented efficiently in comparison to the direct
implementation of polynomial-based qualitative models. In
addition, a model that supports the mathematical structures in
different classes of neurons can be designed, and one of them
is invoked by appropriately selecting the model parameters. We
developed a configurable low-power analog SN circuit (Kohno
and Aihara, 2008a,b; Sekikawa et al., 2008; Kohno and Aihara,
2010) and a configurable simple digital SN circuit (Kohno and
Aihara, 2007; Li et al., 2012, 2013). Our analog SN supports five
classes of neuronal activities, Class I and II in the Hodgkin’s
classification, regular spiking (RS), square-wave bursting, and
elliptic bursting (Wang and Rinzel, 2003) by appropriately setting
the parameter voltages, and our digital SN supports Class I and
II and Class I∗ (Tadokoro et al., 2011) neuronal activities. Basu
and Hasler (2010) developed two ultralow-power analog SNs that
consume several nanowatts (Brink et al., 2013b) on the basis of a
similar approach; one of them is dedicated to Class I and another
to Class II. We are developing an analog SN that supports both
classes and consumes a low amount of power that is comparable
to their work (Kohno and Aihara, 2014a).

Most silicon neuronal networks incorporate the SS circuits
that mimic the signal transmission in chemical synapses. Their
three important features are the synaptic efficacy, plasticity, and
summation (Destexhe et al., 1998; Song et al., 2000; Dan and
Poo, 2004). A large (small) amount of synaptic current is injected
into the postsynaptic neuronal cell if the synaptic efficacy is
high (low). The synaptic efficacy is modulated on the basis of
some factors including the neuronal spikes generated by the pre-
and postsynaptic neuronal cells (the synaptic plasticity). It is
called the spike-timing-dependent plasticity (STDP) if its rule (a
learning rule) is based on the timing of neuronal spikes in the pre-
and postsynaptic neuronal cells (Song et al., 2000; Dan and Poo,
2004). The synaptic summation allows a bursting spike input to
enhance the effect of synaptic transmission. It was shown that
this feature can play a critical role in spike timing recognition
(Gütig and Sompolinsky, 2006). Note that the information of an
input spike’s magnitude can be transmitted via the time period
of neurotransmitter release. The compactness and low-power
consumption of SS circuits are also an important issue because
the number of SSs in a silicon neuronal network is generally
larger than that of SNs. In Merolla et al. (2014), the integration
of a huge number of digital SSs was realized by limiting the
functionality of the SS to the synaptic efficacy. Their synaptic
weights have to be calculated by a off-chip system, but this is not
a limitation in engineering applications in which “ready-trained”
discriminators are required. They reported that this circuit could
realize a multiobject detection and classification system. Only the
synaptic efficacy was supported also in early FPGA-based silicon
neuronal networks (Rice et al., 2009; Thomas and Luk, 2009),
but in recent works, the synaptic summation is supported in
Ambroise et al. (2013) and all of the three features are supported
in Li et al. (2013) and Cassidy et al. (2013). The analog SS
circuit in Giulioni et al. (2016, 2015) implements the synaptic
efficacy and the plasticity. Their silicon neuronal network chip
integrates 128 leaky I&F SNs and 16384 SSs whose synaptic
efficacy is stored in a bistable memory and controlled by a
Hebbian-type STDP rule (Fusi et al., 2000). They realized an

autoassociative visual memory (Giulioni et al., 2015) and motion
detectors (Giulioni et al., 2016). The analog SS circuit in Qiao
et al. (2015) implements all of the three features of synapses.
The synaptic summation is realized by a low-power current-
mode integrator circuit called a differential-pair integrator (DPI).
To reduce the circuit size, a DPI circuit is shared by multiple
synapses by exploiting its linearity. The synaptic efficacy is
stored in a bistable memory and controlled by an STDP-based
algorithm (Brader et al., 2007). This chip integrates 256 adaptive
exponential I&F SNs with more than 128,000 SSs and was applied
to image classification tasks. Another full-featured analog SS in
Brink et al. (2013b) stores the synaptic efficacy in an analog non-
volatile memory based on a floating-gate device and supports an
asymmetrical STDP learning rule. This chip integrates 100 Class
II SNs with 30000 SSs and realized a winner-take-all network and
a rhythm generator (Brink et al., 2013a).

In this article, we briefly review our SN circuits designed
by a qualitative-modeling-based approach. The next section
summarizes the mathematical methods of qualitative neuronal
modeling that are applied to SN design. Section 3 explains our
analog and digital SNs and Section 4 concludes this review.

2. QUALITATIVE NEURONAL MODELING

In spiking neuronal cells, fast ionic currents such as the fast
sodium and rectifying potassium currents are responsible for
spike generation. Slower ionic currents such as the calcium
currents and the potassium currents that are controlled by the
intracellular calcium concentration modify the dynamics of the
spike generation system. Various types of neuronal cells are
known and each of them has its own combination of expressed
ionic channels, which leads to a variety of neuronal activities. The
mechanisms of these dynamical activities have been considerably
elucidated from the perspective of non-linear dynamics (Rinzel
and Ermentrout, 1998;Wang and Rinzel, 2003; Izhikevich, 2007).

2.1. Spike Generation Systems
It is known that many spike generation systems can be projected
onto two-variable systems without critically distorting their
dynamics. Typically, the equations of the projected system are in
the following form:

dv

dt
= fv(v, n)+ Istim, (1)

dn

dt
= fn(v, n), (2)

where v is the membrane potential and n is a variable that
abstractly represents the activity of ionic channels. A stimulus
current is represented by Istim. Figures 1A,C illustrate the phase
plane of two typical spike generation systems. The v-nullcline, a

set of points on which dv
dt

= 0, is N-shaped in both systems, which
intersects the n-nullcline at three points in (Figure 1A) and at
one point in (Figure 1C). In both cases, dv

dt
is negative (positive)

above (below) the v-nullcline, and dn
dt

is negative (positive) above
(below) the n-nullcline.
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FIGURE 1 | Illustrations of (A–C) phase planes and (D–F) bifurcation diagrams in the fast subsystem. The characteristics of neuronal activities can be

adjusted by exploiting their mechanisms explained in the main text. For example in (A), the threshold voltage can be increased while the resting membrane potential is

held constant if (T) is displaced rightward while (S) is fixed by tuning the slope of the v- or n-nullcline. The ratio of the time constants of n and v is one of the factors that

determine the shape of the stable and unstable manifolds of (T) and the limit cycle.

In Figure 1A, the leftmost intersection (equilibrium) (S) is a
stable point, the middle (T) is a saddle point, and the rightmost
(U) is an unstable point. Without any perturbation, the state
point stays at (S), which corresponds to the resting state. If an
excitatory instantaneous pulse stimulus is applied to the system,
the system state is displaced horizontally rightward because v is
the differential voltage of the membrane capacitance to which
the stimulus current is directly injected. If the displacement is
sufficiently large and the state point crosses the stable manifold
of (T), it goes back to (S) along the longer branch of the unstable
manifold of (T) by moving upward to the right and then leftward.
This temporal increase in v is the mechanism of spike generation.
Because the trajectory (the orbit of the state point) is attracted
to the unstable manifold of (T), the shape of the spikes is not
strongly dependent on the stimulus intensity. The threshold
voltage for spike generation is determined by the stable manifold
of (T) because if the state point does not cross it, the point goes
back to (S) along the shorter branch of the unstable manifold by
just moving leftward.

The v-nullcline is displaced upward by the application of an
excitatory sustained stimulus Istim. Through this transition, (S)
and (T) move toward each other, coalesce, and then disappear,
which produces a stable limit cycle from the longer branch of
the unstable manifold of (T). While the state point stays on the
limit cycle, its v coordinate repeatedly increases and decreases,
which is the mechanism of repetitive spiking. This process, the

disappearance of two equilibria and the appearance of a limit
cycle, is called a saddle-node on invariant circle bifurcation, and
the critical value of Istim is a bifurcation point. Figure 1D shows
a bifurcation diagram illustrating an overview of this transition.
The horizontal axis is for Istim (the bifurcation parameter), and
the dynamical structure of the phase plane for each value of Istim
is projected onto the 1-d space of the vertical axis, v. Here, the
limit cycle is represented by its maximum and minimum values
of v. As is illustrated in Figure 1B, just above the bifurcation
point, the limit cycle passes through a region near both of the

v- and n-nullclines. Because both dv
dt

and dn
dt

are small in this
region, the state point takes a long time to pass, which extends the
period time of the limit cycle. As Istim is closer to the bifurcation
point, this effect is stronger. It extends the period time, which
diverges to infinity when Istim reaches the bifurcation point.
This mechanism accounts for the Class I property in Hodgkin’s
classification.

If n is sufficiently faster than v, a stable limit cycle is
produced via a homoclinic-loop bifurcation before (S) and
(T) coalesce (Figure 1E). As the system is closer to the
homoclinic-loop bifurcation point, the period of the limit
cycle is extended to infinity by the extended passing time
of a region near (T). Because the limit cycle appears before
(S) disappears, the system is bistable in the range of Istim
between the homoclinic-loop and saddle-node bifurcation
points.
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In Figure 1C, the unique equilibrium (S) is stable, which
corresponds to the resting state. If the state point is displaced
beyond the rising part of the v-nullcline by an excitatory
instantaneous pulse stimulus, it starts moving rightward because
dv
dt

> 0 below the v-nullcline. It then turns to left when it crosses
the v-nullcline again. This is the mechanism of spike generation
in this type of system. The magnitude of the spike, which is
the maximum value of v on the spike’s trajectory, is determined
by its intersection with the v-nullcline, which is dependent on
the starting point to which the state point is displaced by the
stimulus. Thus, the spike shape is dependent on the stimulus
intensity, which is referred to as graded response.

When Istim is a positive sustained stimulus, the v-nullcline
is displaced upward, by which (S) is transferred upward to
the right. At a critical value of Istim, the stability of this
point is reversed via a subcritical Hopf bifurcation. In the
bifurcation diagram (Figure 1F), the appearance of a set of
stable and unstable limit cycles via another bifurcation, a fold
bifurcation, is seen at a smaller value of Istim. Once (S) loses
stability, the state point jumps to the stable limit cycle, and
the system starts to spike repetitively. Because there is no
dynamical structure that suppresses the velocity of the state
point on the stable limit cycle down close to zero, the spiking
frequency is always much higher than 0. This accounts for
the Class II property in Hodgkin’s classification. This system

also has bistability composed of the resting state and the stable
limit cycle.

2.2. System with Slow Dynamics
Slow hyperpolarizing ionic currents activated by depolarization
provide a negative feedback to the spike generation system, which
is a most basic mechanism that maintains the spiking behavior
“convergent.” These currents play a role as inhibitory stimuli to
the spike generation system that modify its dynamical structures.
In a case that their time constants are similar, they can be
projected even onto a single-variable system. It was elucidated
that a simple system composed of a two-variable spike generation
subsystem and a single-variable slow subsystem can explain the
dynamics of several classes of neuronal activities including RS
(Figure 2A), square-wave bursting (Figure 2B), elliptic bursting
(Figure 2C), and low-threshold spiking (LTS). In this section, the
dynamical structures of the first three classes are explained. Here,
a slow subsystem is merged into the spike generation system in
the previous section as follows:

dv

dt
= fv(v, n, q)+ Istim, (3)

dn

dt
= fn(v, n), (4)

FIGURE 2 | Illustrations of firing patterns and the dynamical structures that account for their mechanism. Waveforms of (A) RS, (B) square-wave bursting,

and (C) elliptic bursting. The v–q planes of a simple system that produces the firing patterns of (D,E) RS, (F) square-wave bursting, and (G) elliptic bursting.
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dq

dt
= fq(v, q). (5)

Figure 2D illustrates the q–v plane of a system with a Class I
spike generation subsystem. Because q works as an inhibitory
stimulus to the spike generation subsystem, the dynamical
structure is dependent on q in the opposite manner to Istim.
Thus, the dynamical structure drawn in this figure is similar to
a horizontal flip of the bifurcation diagram in Figure 1D. The
q-nullcline illustrates the characteristics of the slow subsystem;

above (below) it,
dq
dt

< 0 (
dq
dt

> 0). It has an intersection R
with (S), which is a stable equilibrium point and corresponds
to the resting state. In response to an appropriate step stimulus,
this system produces RS, which is repetitive spiking whose
frequency is initially high and then gradually decreases to a lower
value (Figure 2A). Because the dynamical structure of the spike
generation subsystem is displaced rightward by an excitatory
sustained stimulus (Figure 2E), the state point is released at R
at the onset of the step stimulus. It is attracted by the stable
limit cycle, which is a repetitive spiking state. The slow variable
q slowly increases because most parts of the limit cycle are above
the q-nullcline. It converges to a value at which the increase
and decrease in the portion of the limit cycle above and below
the q-nullcline balance. The spiking frequency decreases as q
increases because the spike generation subsystem is Class I, which
produces spikes with a lower frequency in response to a stimulus
closer to the bifurcation point. Some types of excitatory cells in
the neocortex produce this type of activity. In contrast, some
types of inhibitory cells generate faster spikes with a weaker
frequency adaptation (fast spiking) (Harris and Shepherd, 2015).
Such activity can be modeled by the same model with a weaker
adaptation of the spike frequency or a Class II spike generation
system.

Figure 2F illustrates the q–v plane of a system with the spike
generation subsystem in Figure 1E. The dynamical structure of
the spike generation subsystem is similar to its horizontal flip
and the q-nullcline has no intersection with any stable states. If
the state point is near (S) at some moment, it is attracted to (S).
Because (S) is below the q-nullcline, q slowly decreases, and the
state point moves leftward until (S) disappears via the saddle-
node bifurcation. The system does not generate any spikes in
this phase. The state point is then attracted to the stable limit
cycle, which is the only stable state. Because the limit cycle is
above the q-nullcline, q slowly increases, and the state point
moves rightward until the limit cycle disappears via the saddle-
loop bifurcation. Repetitive firing is produced on the limit cycle
in this phase. Then the state point is attracted to (S) again. The
system repeats the alternation between the tonic firing and silent
phases without any stimuli. This is the mechanism of square-
wave bursting (Figure 2B). This class of neuronal activities is
involved in life-supporting rhythm generation networks such as
a respiratory rhythm generator and a heartbeat rhythm generator
(Hill et al., 2001; Negro et al., 2001).

Figure 2G illustrates the q–v plane of a system with the spike
generation subsystem in Figure 1F. As in the previous case, the
state point is attracted to (S) if the state point is near to it. Because
(S) is below the q-nullcline, the state point slowly moves leftward

along (S) until it loses stability via the Hopf bifurcation. No spike
is generated in this phase. Then the state point is attracted to the
stable limit cycle. On the limit cycle, if the increase in q above
the q-nullcline exceeds the decrease below, the state point slowly
moves rightward, repetitively generating spikes. After the limit
cycle disappears by the fold bifurcation, the state point is attracted
to (S) again. The repeated alternation between these two phases
is the mechanism of elliptic bursting (Figure 2C). This class of
neuronal activities is observed in sleep spindles (Destexhe et al.,
1993), which is a characteristic spiking pattern appearing in the
thalamus during non-REM sleep.

3. SILICON NEURON CIRCUITS

The core idea of our qualitative-modeling-based approach is
to design an ideal silicon neuronal model that reproduces the
dynamical structure of a target neuronal class by combination of
“device-native” formulae (Kohno and Aihara, 2008b). For low-
power analog circuit implementation, the formulae of the V–I
characteristic curves for compact and simple low-power analog
circuit blocks can be selected. For digital circuit implementation,
polynomials with the lowest order are appropriate because the
multiplier is the circuit with the highest cost.

3.1. Low-Power Analog Silicon Neuron
We developed a low-power analog SN circuit that can realize
the Class I and II neuronal activities in Hodgkin’s classification,
RS, square-wave bursting, and elliptic bursting. The ideal model
of this circuit was designed for implementation by subthreshold
MOSFET circuits, which are typically chosen for low-power SN
circuits. Because this circuit was intended to be a proof-of-
concept for the application of our qualitative-modeling-based
approach to integrated circuits, elemental circuits were selected
by attaching importance to stability and configurability instead
of low-power consumption. The equations of the ideal model
are constructed by combining the formulae of the sigmoidal V–
I characteristic curves of differential-pair-based circuits and an
integration operation with a leak that can be implemented by the
Tau-cell circuit (van Schaik and Jin, 2003). The equations are

Cv
dv

dt
= −g(v)+ fm(v)− n− q+ Ia + Istim, (6)

dn

dt
=

fn(v)− n

τn
, (7)

dq

dt
=

fq(v)− q

τq
, (8)

where v, n, and q represent the membrane potential, the
abstracted activity of fast ionic channels, and the abstracted
activity of slow ionic channels, respectively. The first two
variables compose a fast subsystem, namely the spike generation
system, and q provides a slow negative feedback to it. Parameters
Cv, Ia, τn, and τq are the membrane capacitance, a constant
current, and the time constants of n and q, respectively. Functions
fx(v) (x = m, n, q) and g(v) are the formulae of the idealized V–I
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characteristic curves of the differential pair and transconductance
amplifier (Figures 3A,B) as follows:

fx(v) = Mx
1

1+ exp (− κ
UT

(v− δx))
, (9)

g(v) = S
1− exp (− κ

UT
(v− θv)/(1+ 1/κ))

1+ exp (− κ
UT

(v− θv)/(1+ 1/κ))
, (10)

where UT and κ are the thermal voltage (approximately 26
mV at room temperature) and the capacitive-coupling ratio

FIGURE 3 | Circuits of our low-power analog silicon neuron. (A–C) Elemental circuits and (D) block diagram. The voltage clamp amplifier placed at the top in the

block diagram is used to measure the nullclines experimentally. It is a transconductance amplifier that provides a negative feedback loop to the active terminal of Cv.

When SWv is closed, it locks v near Vc, which is an input voltage of the amplifier. If SWq and SWn are open, its output current Iv compensates the current generated

by the fm, gv, and Ia circuits. By scanning Vc in an appropriate range and measuring Iv, In, and Iq, the v-, n-, and q-nullclines are measured, respectively. The copied

outputs of those currents are available for this purpose. This circuit is exploited to find the appropriate parameter voltages that replicate the dynamical structure in the

ideal model, which are altered from their ideal values by fabrication mismatch and the transistors’ second effects. Reprinted with modification from Kohno et al.

(2014b).
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(approximately 0.7 in our environment), respectively. Parameters
Mx, δx, S, and θ are controlled by the externally applied voltages
VMx ,Vδx ,VS, andVθv in the figures. The v-nullcline of this model
is given by n = fm(v) − g(v) + Ia + Istim. Because both fm(v)
and g(v) are sigmoidal curves and the latter is shallower than
the former, it can be N-shaped by an appropriate choice of the
parameters.

As is drawn in the block diagram of the overall circuit
that solves the system equations (Figure 3D), Equation (6) is
integrated by Cv whose differential voltage corresponds to v and
Equations (7) and (8) are solved using the Tau-cell (Figure 3C)
whose ideal equation is

dIout

dt
=

Iin − Iout

CUT/Iτ
, (11)

where C is the capacitance in the circuit, and Iτ is a parameter
current by which the time constant is arranged. The solutions
of Equations (7) and (8) are given by the output current of the
Tau-cell circuits (blue boxes in the block diagram) whose input
terminals are connected to the outputs of the fx(v) circuits (x =

n, q). The output current of the lower (upper) Tau-cell, In (Iq),
represents n (q). Parameter currents Iτx (x = n, q) and Ia are
generated by integrated V–I converters that are controlled by the
externally applied voltages, Vτn, Vτq, and Va, respectively.

In this review, we focus on the square-wave bursting mode.
In this mode, the parameters of the model are selected so that
the dynamical structures of the fast subsystem resemble those
in Figure 1A. Figure 4A illustrates an example of the v–n phase
plane on which the v- and the n-nullclines are configured for this

mode. The reversed N-shape of the v-nullcline is produced by a
combination of a rising sigmoidal curve, fm(v), and a shallower
falling sigmoidal curve, −g(v). Thus, Mm is increased to make
its rising phase steeper and S is increased to make its falling
phases steeper. These factors control the deepness of its U-shaped
and reversed U-shaped regions. The threshold voltage for spike
generation depends on the former, which controls the distance
between (S) and (T). Because the magnitude of the spikes is
suppressed by the latter, the former is generally coordinated to
be deeper than the latter to obtain sufficiently high spikes in
comparison to the threshold, which can be realized by selecting
a smaller value for θv than δm. The spike height is also boosted
by increasing the time constant of n, which slightly increases the
spike period as well. The actual spike height can be estimated
by drawing the unstable manifolds of (T) whose maximum v
gives the minimum height. In Figure 4A, the spike height is
estimated to be at least 20mV. In this figure, the longer branch
of the unstable manifold of (T) is pulled back to (T) because a
relatively small value is selected for the time constant of n. In
this situation, as described in the previous section, the system
undergoes a saddle-loop bifurcation instead of a saddle-node on
invariant circle bifurcation in response to the increase in the
stimulus current (Figure 1E). Because the slow variable q is an
inhibitory stimulus current to the v–n subsystem, this bifurcation
structure appears on the v–q plane in a horizontally flipped
manner (Figure 4B).

The appropriate selection of Mq and δq places the q-nullcline
so that it separates the stable limit cycle and the stable equilibrium
(S), which reproduces the dynamical structure in the square-wave
bursting illustrated in Figure 2F. The position of the q-nullcline

FIGURE 4 | Example of a dynamical structure and the activities of our low-power analog SN model in the square-wave bursting mode. (A) An example

of the v–n phase plane of the fast subsystem when q is fixed at 60 pA. (B) Bifurcation diagram of the fast subsystem whose bifurcation parameter is q. (C,D) Activities

of the membrane potential v. Reprinted with modification from Kohno and Aihara (2010) (some parameters are modified).
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relative to the stable states of the fast subsystem is a factor that
controls the number of spikes in a burst. This dependence was
theoretically elucidated in Wang (1993) using the Hindmarsh–
Rose model, which is a qualitative square-wave bursting model.
When the slow variable’s nullcline is close to the limit cycle,
tonic spiking is generated. As it departs from the limit cycle, the
tonic spiking becomes chaotic via a period doubling bifurcation
cascade. Then regular bursting appears and the number of spikes
in a burst decreases one by one down to single-spike bursting. At
those transitions, chaotic bursting can be observed if the number
of spikes is relatively large. This transition was also observed
in an ionic-conductance model of the pancreas β cell (Chay
and Rinzel, 1985), in which the maximum conductance of a
slow current was swept as the bifurcation parameter. The same
transition appears in our circuit model when Mq is swept. This
parameter abstractly represents the activity of the slow ionic
current which corresponds to the bifurcation parameter in Chay
and Rinzel (1985). Examples of regular bursting and chaotic
bursting are shown in Figures 4C,D.

We fabricated this circuit using a Taiwan Semiconductor
Manufacturing Company (TSMC) 0.35 µmmixed-signal CMOS
process (Figure 5A). The parameter voltages were tuned
following the procedure explained in the caption for Figure 5 on
the basis of the dynamical structures in Figure 4. In Figure 5C,
a typical bursting activity observed in the circuit experiments is
shown. Its activity was always unstable and could not be stabilized
by tuning parameters. In Kohno and Aihara (2011, 2013), we
pointed out that this fluctuated behavior arises from the intrinsic
dynamical structure of square-wave bursting, i.e., the sensitivity

to the initial conditions near the saddle-loop bifurcation. By
extending the time constant of q (decreasing Iτq), we could
obtain a bursting pattern with a longer period that is similar to
the activity of autonomous bursting cells in the pre-Bötzinger
complex that generate the respiratory rhythm (Negro et al.,
2001). In this case, the bursting activity is more stable than that in
(c) because the extended time constant of q makes the trajectory
of the state point pass closer to the stable equilibrium (S) and
its sojourn time near the saddle-loop bifurcation point shorter.
In addition to square-wave bursting, we could also realize Class
I and II, RS, and elliptic bursting. For any settings, the power
consumption of this circuit including the bias-voltage generators
for the Tau-cell circuits did not exceed 72 nW.

3.2. Ultralow-Power Analog Silicon Nerve
Membrane
The power consumption of the above circuit is one order
of magnitude higher than low-power-oriented leading-edge
circuits (Basu and Hasler, 2010; Brink et al., 2013b; Qiao
et al., 2015). We developed SN circuitry to attain a lower
power consumption that is comparable to these works. A two-
variable model that supports the Class I and II neuronal activities
was designed on the basis of this circuitry to evaluate its
practicality (Kohno and Aihara, 2014a). Its ideal model is
given by

Cv
dv

dt
= fv(v)− gv(v)+ Iav − r(n)+ Istim, (12)

FIGURE 5 | (A) Photograph of the fabricated circuit. (B) The nullclines measured using the integrated voltage clamp circuit, which resemble those in Figure 4A.

Reprinted with modification from Kohno and Aihara (2011). (C,D) Square-wave bursting in the circuit. In (D), the time constant of q is extended to mimic the activity of

the pre-Bötzinger complex bursting neurons. Reprinted with modification from Kohno et al. (2014b). The appropriate parameter voltages for a fabricated circuit are

found by iteration in small modification steps. The starting values are calculated by converting the parameters in the ideal model as follows: VMx =
UT
κ ln

Mx
I0N

,

VS =
UT
κ ln

Sv
I0N

, Vδx = δx , and Vθv = θ , where I0N is the current-scaling parameter of the common-sized NMOS transistors M0 in Figures 3A,B. In accordance with

the characteristics of the V–I converters used to generate Ia, Iτn, and Iτq, the voltages Va, Vτn, and Vτq are calculated, whose detailed equations are omitted here.

Then, the modification of the parameter voltages is determined so that the shape and position of the v- and n-nullclines measured using the integrated voltage clamp

amplifier resemble those in the ideal model. In the iteration of this modification, VMx , Vδx , VS, Vθv , and Va (x = m, n) are tuned. After the phase plane structure of the

fast subsystem is arranged, Iτn is modified so that the bifurcation diagram of the fast subsystem in the circuit resembles that in the ideal model. The stable states of

the bifurcation diagram can be drawn in circuit experiments by measuring v while slowly scanning −Istim, which is equivalent to q from the fast subsystem’s viewpoint.

In this measurement, SWv and SWq are opened, and SWn is closed. Because Istim is generated by an integrated V–I converter controlled by the voltage input Vstim
and equipped with a copied output of Istim, this bifurcation diagram can be translated to the q–v plane. The parameter voltages related to the q-nullcline are selected

so that the total q-v plane resembles that of the ideal model. Finally, Vτq is tuned to obtain bursting activity with the appropriate period.
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Cn
dn

dt
= fn(v)− gn(v)+ Ian − r(n), (13)

where v and n represent the membrane potential and the
abstracted activity of fast ionic channels, respectively. Parameters
Cv and Cn are the capacitances that are determined at circuit
fabrication, Iav and Ian are parameter currents, and Istim is the
stimulus current. Functions fx(v), gx(v), and r(n) (x = v, n) are
monotonic increasing sigmoidal functions that correspond to
the idealized V–I characteristic curves of the elemental circuits
shown in Figures 6A–C. Their equations are

fx(v) =
Mx

1+ exp (− κ
UT

(v− δx))
, (14)

gx(v) = I0P

√

√

√

√

Rx20 exp (
κ
UT

θx)

1+ Rx21 exp (−
κ
UT

(v− θx))
, (15)

r(n) = I0P

√

√

√

√

exp ( κ
UT

θr)

1+ exp (− κ
UT

(v− θr))
. (16)

The parameters in these equations are explained in the caption
for Figure 6. A block diagram of a circuit that solves this model
is shown in Figure 6D. In this circuit, v and n are coded by the
voltage difference between Vdd and the voltage across capacitors
Cv and Cn, respectively. Blocks fx(v) and gx(v) (x = v, n)
correspond to the circuits in (a) and (b), respectively. For gv(v),
the transistors in the shadowed region are omitted to simplify
the circuit. The two blocks of r(n) correspond to a single circuit
of (c).

Equations (12) and (13) are transformed as follows by defining
the variable ñ ≡ r(n):

Cv
dv

dt
= fv(v)− gv(v)+ Iav − ñ+ Istim, (17)

Cn
dñ

dt
= r′(n)(fn(v)− gn(v)+ Ian − ñ). (18)

By using the two voltage clamp amplifiers, VAV and VAN, in the
block diagram, the v- and ñ-nullclines are measured and r′(n) is
evaluated (see the caption for Figure 6).

The major improvement of this circuitry from the previous
SN is a reduction in the static current consumption. In the fx(v)
circuit, M7, M8, M10, and M11 are used to extend the output
current range without increasing the tail current Is. The current
consumption of the cascode circuitry in gx(v) is equal to the
output current, whereas the transconductance amplifier in the
previous gx(v) circuit constantly consumes its maximum current.
The integration of n is performed by a capacitor instead of the
Tau-cell. The Tau-cell is an easy-to-use current-mode integrator
with a constant time constant, which supports a wide range
of input and output currents. However, it requires additional
circuits that generate Iτ , 2Iτ , and Vofst. The currents required
to drive these circuits are cut off by the direct integration of
the currents into a capacitor. In this case, the acceptable range
of the variables is limited by the range of rn(n), on which the
time constant of n is dependent. The above nullcline-drawing

function helps to find the appropriate parameter values under
these limitations; once rn(n) is specified by the time constant
requirement of n, the appropriate dynamical structure for the
target neuronal class can be constructed within the acceptable
range of the variables by tuning the other parameters utilizing
the nullcline drawing function.

By a similar parameter tuning procedure to that for the fast
subsystem in the previous SN circuit, we found the parameter
values for the Class I and II modes. Figure 7 shows the simulation
results obtained using the Spectre circuit simulator with the
TSMC 0.25 µm mixed-signal CMOS process development kit.
Capacitances Cv and Cn are implemented by metal–insulator–
metal capacitors (MIMCAPs) with capacitances of 1.5 and 2.0
pF, respectively. In the pulse stimulus responses (Figure 7A), the
height of spike is dependent on the intensity of the stimulus
(graded response) in the Class II mode (lower plot), whereas
the dependence is weak in the Class I mode (upper plot). In the
sustained stimulus response (Figures 7B,C), the spike frequency
can be reduced close to 0 by applying a sufficiently weak stimulus
in the Class I mode [(B)], whereas spike generation is terminated
before the spike frequency reaches close to 0 in the Class II mode
[(C)]. In both settings, the power consumption increases with the
spike frequency and is less than 3.2 nWwhen the spike frequency
is less than 70 Hz.

3.3. A Silicon Neuronal Network by Digital
Arithmetic Circuits
Generally, the power consumption of a dynamical digital circuit
is higher than that of the subthreshold analog circuits used
in the previous sections. However, the continuous evolution
of the fabrication process is lowering the power consumption.
In Merolla et al. (2014), a combination of ultrafine processes
and technologies such as asynchronous and near-threshold logic
realized low-power silicon neuronal networks whose power
consumption per neuron is only one order of magnitude higher
than the lowest-power analog silicon neurons. Reduced power
consumption these days is facilitating a fascination with the
scalability and stability of digital circuits.

In Li et al. (2012, 2013), we developed a silicon neuronal
network in an FPGA based on our qualitative-modeling-based
silicon neuronal model for digital arithmetic circuits (Kohno
and Aihara, 2007). Figure 8A is a block diagram of its basic unit,
the silicon neuronal network module (SNNM), which executes a
calculation related to 16 SNs including spike-timing-dependent
learning. Larger-scale networks are constructed by connecting
more than one of these modules in parallel.

The digital spiking silicon neuron (DSSN) Unit calculates the
silicon neuronal model designed with the same principle as above
so that it can be implemented with reduced hardware resources
by using the minimum number of multipliers. Its equations are
given by

dv

dt
=

φ

τ
(f (v)− n+ I0 + Istim), (19)

dn

dt
=

g(v)− n

τ
, (20)
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FIGURE 6 | Circuits of our ultralow-power analog silicon neuron. (A–C) Elemental circuits and (D) block diagram. In Equations (14)–(16), I0P is the

current-scaling parameter of common-sized PMOS transistors [M1 in (A), M1 to M3 in (B), and all of the transistors in (C)]. Parameter Mx is the drain current of M1 in

(A), which is controlled by Vb. Parameters δx (x = v, n) and θx (x = v, n, r) correspond to Vdd - Vdlt and Vdd - Vm (Vdd = 1.0 V), respectively. Parameter Rx20 is 1 (0.5)

when M6 is on (off) and M7 is off (on) in panel (B). Parameter Rx21 is 1 (2) when M8 is on (off) and M9 is off (on). These two parameters are used to shift the curve of

gx (v) horizontally. The two voltage clamp amplifiers, VAV and VAN, in (D) are for drawing the v- and ñ-nullclines and evaluating r′ (n) in Equations (17) and (18). The

output of these transconductance amplifiers is 0 when the two input voltages are the same and positive (negative) when the “+” input voltage is higher (lower) than that

of the “−” input. When they are activated and the rn (n) block is deactivated, their outputs are equal to the sums of fx (v), gx (v), and Iax (x = v, n). By scanning Vcv and

maintaining Vcn constant, the nullclines are measured. Similarly, when the rn (n) block is activated and the other blocks are deactivated, the output of VAN is equivalent

to rn (n). By scanning Vcn, the dependence of rn (n) on n is measured, from which r′ (n) can be evaluated. Reprinted with modification from Kohno and Aihara (2014a).
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FIGURE 7 | Circuit simulation results of our ultralow-power analog silicon neuron. (A) Responses to a pulse stimulus in the Class I mode (upper) and the

Class II mode (lower). (B,C) Spiking frequency and power consumption in response to a sustained stimulus. The horizontal axes represent the intensity of the stimulus.

(B) is for the Class I mode and (C) is for the Class II mode. Reprinted with modification from Kohno and Aihara (2014a).

FIGURE 8 | (A) Block diagram of our silicon neuronal network module, which solves the equations for 16 SNs. (B) Mexican-hat-type spike-timing-dependent learning

curve utilized in the Hebbian-type learning in our digital silicon neuronal network. Reprinted with modification from Li et al. (2013).

f (v) =

{

afn (v− bfn)
2 + cfn (v < 0),

afp (v− bfp)
2 + cfp (v ≥ 0),

(21)

g(v) =

{

agn (v− bgn)
2 + cgn (v < rg),

agp (v− bgp)
2 + cgp (v ≥ rg),

(22)

where v and n are variables with no unit that represent
the abstracted membrane potential and ionic current activity,
respectively. Parameters φ and τ configure the time scale of the
model’s activity. A stimulus input is represented by Istim. The
other parameters determine the shape of the nullclines on the v–n
phase plane; n = f (v)+ I0 for the v-nullcline and n = g(v) for the
n-nullcline. TheN-shaped v-nullcline is realized by the piecewise
quadratic function f (v) instead of a cubic function, which reduces
the number of multiplications between variables. Multiplication
between a constant and a variable can be implemented by small
numbers of shifters and adders if the number of active bits in
the constant’s binary expression is small. By the parameter tuning
procedure similar to our analog SNs, parameter sets that realize
the Class I and II activities were found with which this model is
solved by Euler’s method with fixed-point operations.

The Synapse Unit calculates the following silicon synapse
model by Euler’s method with fixed-point operations.

dIs

dt
=

{

α (1− Is) when v ≥ 0,
−β Is when v < 0,

(23)

where Is is the post-synaptic stimulus received by other SNs.
Parameters α and β determine the time constants of Is in the
rising and falling phases, respectively. This model was developed
on the basis of the kinetic models of chemical synapses (Destexhe
et al., 1998) so that it can transmit the analog information of the
graded responses in Class II neurons.

The Accumulator Unit calculates the sum of Is given by other
SNNMs as follows:

I
j
ss = c

∑

i

WjiI
i
s, (24)

where c is a scaling parameter,Wji is the synaptic weight from SN
i to SN j, and Iis is Is generated by the Synapse Unit for neuron i.

The sum of I
j
ext and I

j
ss is given to the SN’s stimulus input, Istim.
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The Learning Unit supports spike-time-dependent learning
with exponential-based rules. In Li et al. (2013), we implemented
the following Hebbian-type rule:

1Wji = A+ exp (
−|1tji|

τ+
)− A− exp (

−|1tji|

τ−
), (25)

where 1Wji is the modification applied to Wji, and 1tji is the
time between the two nearest spikes of neuron j and neuron
i. The time of a spike here is defined as the time when v
exceeds 0. Parameters A+ and A− configure the amplitude of the
learning curve and τ+ and τ− specify its time scale. Mexican-
hat-type learning curves can be realized by selecting appropriate
parameter values (Figure 8B).

By implementing 16 SNNMs in an FPGA chip, we constructed
an all-to-all connected silicon neuronal network composed of 256
SNs. To verify its functionality, we executed associative memory
tasks in which the four patterns shown in Figure 9A are stored. A
pattern comprises 256 (16× 16) pixels, each of which has a value
of 1 or−1. In the figure, a black (white) pixel has value of 1 (−1).
Firstly, these patterns were stored by correlation learning without
using the Learning Unit as follows:

Wij =

{ 1
4

∑4
u=1 x

u
i x

u
j when i 6= j,

0 when i = j,
(26)

where xui represents the value of the ith pixel in pattern u. In
the retrieval process, all SNs are repetitively spiking owing to

the application of an appropriate sustained stimulus Iiext for all
i. Their initial spiking phases are arranged by a short positive
external input applied before the sustained stimulus only to the
SNs that correspond to the pixel with a value of 1 in the input
pattern. The input patterns were generated by flipping the values
of randomly selected pixels in a stored pattern. Figure 9B plots
examples of observed retrieval processes, in which the time step
for numerical integration is 375 µs. In the left column, Mu, an
index that reflects the correlation between the current spiking
pattern and the uth pattern, is plotted. This value is 0 when
the spiking pattern has no relation with the uth pattern and
approaches 1 as the pattern matches to it. In the right column,
the phase synchronization index (PSI) that reflects the degree
of synchronization is plotted. It is 0 when the SNs are spiking
fully asynchronously and approaches 1 as their spike timing is
synchronized. In the upper row, 10% of the pixels in pattern
(1) are flipped and applied as inputs. In this case, M1 quickly
increases and remains near 1, which indicates the successful
retrieval of pattern (1). In the lower row, 40% of the pixels
are flipped. Then, none of the values of Mu remain close to 1,
which indicates that no pattern was retrieved. The PSI plotted
in the right column stayed near 1 when a correct pattern was
retrieved but not when no pattern was retrieved. We executed
100 retrieval processes: 10 different levels of flipped (error) pixels
from 5 to 50% in 5% increments and 10 patterns for each error
level. The red and blue plots in Figure 9C show the rate of
successful retrieval when the SNs are in the Class I and II modes,
respectively. The network could retrieve a correct pattern from a

FIGURE 9 | Auto-associative memory tasks executed in our all-to-all digital silicon neuronal networks. (A) Stored patterns. Each pattern is composed of

256 (16 × 16) pixels with a value of 1 or −1. Black (white) pixels have a value of 1 (−1). Reprinted with modification from Li et al. (2012). (B) Examples of the transition

of Mu and PSI when the input pattern has 10 and 40% flipped pixels. Reprinted with modification from Li et al. (2012). (C) Error recovery performance when the

patterns are stored by correlation learning and the SNs are in the Class I mode (red) and in the Class II mode (blue). The yellow plot is for the case where the patterns

are stored by Hebbian-type spike-timing-dependent learning and the SNs are in the Class I mode. The horizontal axis is the ratio of the flipped pixels to the total

number of pixels (the error level). The vertical axis represents the rate of successful retrieval rate. For each error level, 10 trials were executed. Reprinted with

modification from Li et al. (2013).
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larger number of errors when the SNs are in the Class II mode
than when they are in the Class I mode. This indicates that the
spiking dynamics may play important roles in auto-associative
memory tasks.

Second, the four patterns were stored by activating the
Learning Unit as follows. The stored patterns were applied to

the network in the sequence of (1), (1), (1), (1), .. (2), (2), ..
(3), (3), .. (4), (4), .. (1), (1), .., where (n) means the reversed
pattern of (n). A couple of a stored pattern and its reversed
pattern was repeated eight times in a block. This sequence
was applied until one of the values of Wij reached 1 or -1 by
the modification in Equation (26). In the retrieval process, the
Learning Unit was deactivated and input patterns with errors
were applied in the same way as above. The yellow plot in
Figure 9C shows the rate of successful retrieval when the SNs are
in the Class I mode. The error recovery performance exceeded
both results with correlation learning. In our preliminary results
with SNs in the Class II mode, this performance was further
boosted (not shown in the figure). The spiking dynamics may
also be important in auto-associative memory with spike-timing-
dependent learning rules.

4. DISCUSSION

As reviewed above, our silicon neuron circuits can realize
different classes of neuronal activities by selecting appropriate
parameter values and their characteristics can be modified by
finely tuning the parameters as shown in Figure 5D. This high
configurability is advantageous not only for bio-silico hybrid
systems but also for constructing “ field-programmable” silicon
neuronal networks in which each SN can be reconfigured
after fabrication or each SN autonomously obtains appropriate
dynamical properties on the basis of the history of stimulus
inputs as in the brain. This high configurability arises from the
fact that the activity of many neuronal classes can be explained
using common dynamical structures that are reproduced in our
models by a combination of implementation-efficient formulae.
In contrast, the circuitry is simplified by supporting only one
neuronal class in the non-I&F-based SN circuits developed by
a similar approach (Basu and Hasler, 2010; Brink et al., 2013b).
These circuits realize ultralow power consumption down to
several nanowatts at the expense of configurability. In their
SN network systems, the configurability is supplemented by
accommodating a sufficiently large SN circuit pool, in which
the appropriate SNs for a desired network are activated. Our
circuit in Section 3.2 supports both Class I and II neuronal
activities and consumes a similar power; however, it has the
drawback of high configurability. The circuit has to be configured
appropriately by tuning a number of parameter values, and
additional circuits are required for storing parameter values. The
complexity of the configuration process is solved by parameter
tuning procedures that utilize the nullcline drawing circuits
as explained in detail in Section 3.1. This procedure is still
not straightforward, but all of the students who worked on
our circuit learned to be able to finish the tuning procedure
within several tens of minutes. For a large-scale silicon neuronal

network, this procedure has to be automated. It may be done
by metaheuristic approaches similar to those utilized in Grassia
et al. (2011). The power consumption and area occupied
by additional circuits for storing parameter values may be
reduced by evolving non-volatile memory technologies such as
memristors.

In digital silicon neuronal networks, the accumulation of
synaptic inputs consumes a considerably larger amount of
hardware resources than SN circuits. Thus, the compactness of
the SN circuit is not a major issue. The advantage of our circuit
is that its model is non-I&F-based and thus can mimic the spike-
generation-related properties in neuronal activities more finely
than I&F-based circuits. One of these properties is the graded
response in Class II neurons. Because the graded response is
found in the brain, as mentioned in the introduction, there is
possibility that it plays some roles in information processing in
the brain. Our silicon neuronal networkmodel intends to provide
a platform in which a wide variety of neuronal activities including
the dynamics of spike generation is qualitatively reproduced
without a major increase in hardware resource consumption. For
this goal, our SN model is being expanded so that it can realize
more classes of neurons including RS, LTS, and IB as well as
autonomous bursting supported by our analog SN. It has four
variables (two original and two additional slow variables) but still
can be solved by one multiplication per a numerical integration
step. The details of this model is explained in Nanami and Kohno
(2016).

A goal of our analog silicon neuronal circuits is to
establish an ultralow-power general-purpose silicon neuronal
network platform that will be applicable to neuromimetic
computing when the mechanism of information processing
in the nervous system is elucidated. We expect that it has
an advantage also in the application to large-scale neuronal
network simulators (Schemmel et al., 2010; Stromatias
et al., 2013) and brain-prosthetic devices such as an artificial
hippocampus (Berger et al., 2012; Hampson et al., 2013;
Song et al., 2015), an artificial cerebellum (Hogri et al.,
2015), and an artificial prefrontal cortex (Hampson et al.,
2012) because our circuits meet their requirements of a
low power consumption and the ability to mimic various
complex neuronal activities finely. Construction of such systems
may contribute to the elucidation of the brain’s mechanisms
by the “analysis by synthesis” approach. Our digital silicon
neuronal network platform is also applicable to neuromimetic
computing and large-scale neural network simulation. It
consumes more power than analog circuits but has advantage in
scalability.
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The movement related cortical potential (MRCP), a slow cortical potential from the

scalp electroencephalogram (EEG), has been used in real-time brain-computer-interface

(BCI) systems designed for neurorehabilitation. Detecting MPCPs in real time with high

accuracy and low latency is essential in these applications. In this study, we propose a

new MRCP detection method based on constrained independent component analysis

(cICA). The method was tested for MRCP detection during executed and imagined

ankle dorsiflexion of 24 healthy participants, and compared with four commonly used

spatial filters for MRCP detection in an offline experiment. The effect of cICA and the

compared spatial filters on the morphology of the extracted MRCP was evaluated by

two indices quantifying the signal-to-noise ratio and variability of the extracted MRCP.

The performance of the filters for detection was then directly compared for accuracy and

latency. The latency obtained with cICA (−34 ± 29 ms motor execution (ME) and 28 ±

16 ms for motor imagery (MI) dataset) was significantly smaller than with all other spatial

filters. Moreover, cICA resulted in greater true positive rates (87.11 ± 11.73 for ME and

86.66 ± 6.96 for MI dataset) and lower false positive rates (20.69 ± 13.68 for ME and

19.31± 12.60 for MI dataset) compared to the other methods. These results confirm the

superiority of cICA in MRCP detection with respect to previously proposed EEG filtering

approaches.

Keywords: brain-computer interface (BCI), movement related cortical potential (MRCP), constrained independent

component analysis (cICA), electroencephalogram (EEG), spatial filters

INTRODUCTION

The movement-related cortical potential (MRCP) is a low frequency (0–5Hz) negative shift in the
electroencephalogram (EEG) signal, which has recently been used as an EEGmodality for real-time
brain computer interface (BCI) applications, particularly in neuromodulation systems (Mrachacz-
Kersting et al., 2016). The ability to detect MRCPs with high accuracy and short latency (usually
shorter than 300ms) on a single trial basis is crucial for these applications. Specifically, the high
demand on temporal precision has been shown to be fundamental in efficiently inducing plasticity
in neurorehabilitation applications (Mrachacz-Kersting et al., 2012). Improvement in accuracy and
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latency of single-trial MRCP detection is therefore a relevant
challenge. The amplitude of the MRCP is typically between 5
and 30 µV and therefore easily masked by other brain activities
(Wright et al., 2011). Moreover, low frequency motion artifacts
and the electrooculogram (EOG) have frequency bandwidths
similar to the MRCP, but with much greater magnitudes. Thus,
extracting a single trial MRCP from an EEG signal with high
accuracy and minimal latency in real-time is a challenging task.

Spatial filtering is one of the most commonly used EEG signal
processing approaches for artifact removal and improving the
detection accuracy of cortical potentials. The MRCP has a well-
defined spatial distribution, being located directly over the scalp
area of the corresponding primary motor cortex region. For
example, the MRCP accompanying an ankle dorsiflexion task
is most pronounced over the apex (Cz of 10–20 montage). The
most common spatial filters used in EEG-based BCI systems
are the Common Spatial Pattern (CSP) (Blankertz et al., 2008),
Laplacian spatial filter (LAP) (McFarland et al., 1997; Xu et al.,
2014a,b), and Independent Component Analysis (ICA) (Bell and
Sejnowski, 1995; Cardoso, 1999). CSP decomposes multi-channel
EEG signals into distinct spatial patterns by solving a generalized
eigenvalue problem. This method has been widely used to
extract motor imagery-based BCIs, particularly in sensory-motor
rhythm (SMR) (Ramoser et al., 2000; Blankertz et al., 2008) and
has also been tested preliminarily in MRCP detection (Niazi
et al., 2011). However, the performance of CSP is very sensitive
to outliers, which are inevitable in real-time BCI applications
(Blankertz et al., 2008). LAP calculates the second derivative of
the instantaneous spatial voltage distribution for each electrode
location, and thereby emphasizes the activity originating in
radial sources immediately below the electrode (McFarland et al.,
1997). LAP has been applied in MRCP detection (Xu et al.,
2014a,b). ICA-based spatial filters have been also successfully
used in a variety of EEG signal processing applications, such as
artifact reduction and source localization (Xu et al., 2004; Jiang
et al., 2015). However, there are limitations associated with the
implementation of ICA, especially for real-time applications, as
it requires manual selection of the desired components from the
estimated sources.

The constrained ICA (cICA), also known as one-unit ICA
(Zhang, 2008), is a recent approach introduced to overcome the
manual intervention limitation of ICA. cICA is a spatial filter
extended from ICA that uses a reference signal to automatically
extract only the desired source, without requiring the manual
selection procedure of traditional ICA-based methods. cICA has
recently been applied for EEG signal processing applications
(James and Gibson, 2003; Joshua and Rajapakse, 2005) and has
been shown to be successful in extracting event-related cortical
potentials (ERP), such as the P300 (Spyrou and Sanei, 2006;
Lee et al., 2013), as well as removing ocular artifacts (Huang
et al., 2011); however, cICA has not been used previously for
the detection of MRCPs. In this paper, we present for the first
time, the application of cICA for MRCP detection, including
a systematic investigation of the efficacy of cICA in single-
trial MRCP detection, and comparison of cICA performance
with the previously proposed CSP, LAP, Infomax (Bell and
Sejnowski, 1995), and JADE (Cardoso, 1999). The performance

of these filters was evaluated both with metrics based on the
morphology of the MRCP and on the detection accuracy. For
quantifying detection accuracy, the filtered EEG was classified
with the previously proposed Locality Preserved Projection (LPP)
followed by Linear Discriminator Analysis (LDA) (Xu et al.,
2014a).

MATERIALS AND METHODS

Data Acquisition
Participants
The data used in the current study are part of the dataset
previously reported in Jochumsen et al. (2015). In the following,
the experimental protocol is briefly described for clarity. The full
details of the experimental procedure can be found in Jochumsen
et al. (2015). Twenty-four healthy participants (7 female and
17 male 27 ± 4 years old) without any prior BCI experience
participated in the experiment. All procedures were approved by
the local ethics committee (N-20130081), and the participants
gave their written informed consent before the experiment.

Experimental Procedures
The participants were seated in a chair, relaxed andwith their foot
fixed to a pedal. During the experimental session, the participants
were instructed to perform ankle dorsiflexion following a visual
cue display on a computer screen that was located at a distance
of 1.5m in front of them. The cue was presented with a
custom-made program (Knud Larsen, SMI, Aalborg University)
which provides the instructions by displaying Ready, Focus, and
Task commands in 8–10 s intervals. The 24 participants were
divided into two groups. The first 12 participants (Group 1)
were asked to perform actual dorsiflexion (motor execution,
ME), while the remaining 12 participants (Group 2) were asked
to perform only motor imagery (MI) of the movement. Four
contraction types were performed: fast contraction targeted at
20% maximum voluntary contraction (MVC), fast contraction
targeted at 60%, slow contraction targeted at 20%, and slow
contraction targeted at 60% MVC. In the visual cue, a moving
cursor showed when and how fast the subject should perform
the task. For each of the four contraction types, each participant
performed approximately 50 trials of the ankle dorsiflexion task
(ME or MI). The order of contraction types was randomized
for both ME and MI sessions. The motor tasks were separated
randomly between 8 to 10 s. For the purpose of this study,
we only analyzed and report the results using the trials of fast
20% MVC, for both ME and MI tasks. For this particular task,
the instruction shown on the screen for Ready, Focus, and
Task commands lasted between 4–6, 3, and 1 s, respectively.
The subjects focused for 3 s, followed by the execution phase
0.5 s to reach 20% MVC, and the contraction was maintained
for 0.5 s, after which a rest period was given (between 4
to 6 s).

EEG Recording
A multichannel EEG electrode system (32 Channel Quick-
Cap, Neuroscan) and an EEG Amplifier (Numaps Express,
Neuroscan) were used according to the international 10–20
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system to obtain EEG signals. Ten electrodes placed at standard
10–20 positions FP1, F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4
were used to collect EEG data at a sampling rate of 500Hz. The
reference electrode was located on the right ear lobe. All analyses
presented below were performed offline.

Data Processing
Since zero-phase non-causal IIR filters have been shown to
perform well on Slow Cortical Potentials (SCPs) related to
anticipatory behavior (Garipelli et al., 2011), the EEG data in the
current paper were non-causally bandpass filtered between 0.05
to 3Hz using a zero-phase second-order Butterworth bandpass
filter prior to further processing. The choice of the filter was
consistent with prior studies that used MRCP for real-time
detection of motor intentions (Xu et al., 2014a) and similar to
the recommendations of (Garipelli et al., 2011). All data were
analyzed without rejecting segments with artifacts.

cICA for MRCP Detection
The cICA approach is briefly explained in the following.

Suppose that a N-dimensional observed sensor signal x(t) =
[x1(t), x2(t), . . . , xN(t)]

T can be expressed as:

x(t) = As(t), (1)

where s(t) = [s1(t), s2(t), . . . , sM(t)]T is a M-dimensional
mutually-independent latent source vector, and A is an unknown
non-singular mixing matrix. The objective of cICA is to find a
separating or de-mixing vector w without knowing the source
vector and mixing matrix, such that:

y(t) = wTx(t) = wTAs(t), (2)

where y(t) is the desired independent component (desired
source signal). To determine this de-mixing vector, the cICA
algorithm consists of the following steps. First, a linear whitening
transformation is applied to the time series so that each column
of z(t) has unit variance and the columns are uncorrelated, i.e.,
the covariance matrix of z(t) becomes the identity matrix:

z(t) = Vx(t), (3)

where V is a whitening matrix (Zhang, 2008). Next, according to
the negentropy maximum criterion (Hyvärinen et al., 2001), the
objective function of the next step is defined by:

J(y) ≈ γ[E{G
(

y(t)
)

} − E{G(ν)}]2, (4)

where E{} indicates expectation of the signal and y(t) = wTz(t)
is the output of the algorithm, γ is a positive constant, ν is
a Gaussian variable having zero mean and unit variance, and
G (·) can be any non-quadratic function. For traditional ICA
methods, which have several independent components at the
output, all columns of the output will be independent of each
other by maximizing (4). To obtain one specific source signal,
a priori information about the particular desired source needs to

be incorporated into the cost function. In order to achieve this
goal, the cICA problem is formulated as:

J(w) ≈ γ[E{G(wTz)} − E{G(v)}]2

Subject to : g(w) = ε(y, r)− ξ , h(w) = E{y2} − 1 = 0, (5)

where ε(y,r) is the similarity measure between the independent
component y and the reference signal r, and ξ is a the similarity
threshold. Therefore, g(ω) is the similarity constraint for the
ICA optimization criterion, and h(ω) constrains y to have unit
variance. Assuming that the desired IC is the one and only one
closest to the reference r, one can get the following inequality
relationship:

ε(w∗Tz, r) < ε(w1
Tz, r) < . . . ε(wN−1

Tz, r), (6)

where the optimum vector ω
∗

is the optimum demixing vector
corresponding to the desired IC, and wi(i = 1, . . . ,N −

1) corresponds to other unwanted ICs. The value of the
similarity threshold lies in [ε(w∗Tz, r), ε(w1

Tz, r)]. The Lagrange
multipliers method is used to solve the optimization problem of
(5) (Lu and Rajapakse, 2005, 2006; Zhang, 2008):

wt+ 1 = wt − ηR−1
z Ŵ1/Ŵ2

Ŵ1 = γ̄E{zG′
y(y)} − 1/2µE{g′y(y)} − λE{zy}

Ŵ2 = γ̄E{zG′′
y2
(y)} − 1/2µE{g′′

y2
(y)} − λ, (7)

where t represents the iteration number. Rz = E{zzT}, γ̄ =

γ · sign(E{G(y)} − E{G(v)}); and G′
y(y), g

′
y(y), G

′′
y2
(y), g′′

y2
(y), are

respectively, the first and second derivatives of G(y), g(y) with
respect to y. The optimum multipliers µ and λ are found by
iteratively updating them based on a gradient-ascent method:

µt = Max{0,µt−1 + ηg(wt−1)}

λt = λt−1 + γt−1h(wt−1) (8)

Designing the reference signal plays a crucial role in cICA. The
reference signal should be closely related to the desired source
signal in terms of shape and phase (Zhang and Zhang, 2006;
Zhang, 2008). For example, it is possible to use one of the
observed channels as a reference signal (Mi, 2014). We propose
the use of the average MRCP from Cz (for dorsiflexion) over all
trials of a training set to build a subject-specific reference signal.
Details of the training sets and construction of the reference
signal using the training sets are discussed below.

Movement Detection Analysis
“Go” epochs and “No-go” epochs were extracted from the
recorded signals according to the onset of the performed
dorsiflexion task. Go epochs were the time intervals containing
the MRCP whereas No-go epochs contained only noise. The
effect of the filters on the MRCP morphology was quantified
by two indices: the Signal to Noise Ratio (SNR) and the Go
epoch variability (ρ). Moreover, three additional indices were
calculated from the dataset of each subject to evaluate the
performance of spatial filters in MRCP detection: True Positive
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Rate (TPR), False Positive Rate (FPR), and Detection Latency
(DL). This was done using an offline evaluation framework,
as described next. Following the extraction of Go epochs and
No-go epochs, cross validation was implemented, and in each
fold of the cross-validation, two thirds of the Go epochs and
No-go epochs were randomly selected as the training set, and
the remaining third of the Go and No-go epochs formed the
testing set. Cross validation was performed whereby two thirds
of the trials from the entire data set were randomly selected as
a training set and the remaining one third as the testing set,
and this was repeated ten times. The training set was used to
generate the weights for spatial filters, and by assuming that
the characteristics of the MRCP signals did not change across
sessions, the demixing vector obtained from the training phase
was applied to the test data. This offline evaluation over a
number of folds allows a systematic evaluation of each method’s
performance by obtaining the receiver operating characteristics
(ROC) curve of each method through cross-validation.

The SNR was calculated for each subject by extracting Go
and No-go epochs, respectively, from [−2, 2] s and [2, 6] s
with respect to the task onset (the turning point of the cue, see
(Jochumsen et al., 2015)). Denoting the lth Go epoch and No-go
epoch by xlS(t) and x

l
N(t), respectively, each containingT samples,

the SNR can be expressed as:

SNR =

L
∑

l= 1

T
∑

t= 0

[

xlS(t)
]2

L
∑

l= 1

T
∑

t= 0

[

xlN(t)
]2

. (9)

The Go epoch variability ρ was defined as:

ρ =

1
LT

L
∑

l= 1

T
∑

t= 0

∣

∣

∣
xlS(t)− xS(t)

∣

∣

∣

max
[

xS(t)
]

−min
[

xS(t)
] , (10)

where xS(t) is the average of the LGo epochs. The lower the value
of ρ, the more consistent the Go epochs are. It should be noted
that the two indices are calculated for all spatial filter outputs.

TPR, FPR, and DL were calculated on Go and No-go epochs,
respectively extracted from [−3, 1] s and [2, 6] s with respect to
the task onset, for each subject. TPR and FPR for each fold of the
testing set were defined as:

TPR =
Total number of correctly detected Go epochs

Total number of Go epochs
, (11)

and

FPR =
Total number of incorrectly detected No-go epochs

Total number of No-go epochs

The Go epoch interval used to calculate the measures of detection
performance was chosen to be different from the Go-epochs

used for SNR calculation because, considering the length of the
moving window, the time interval [−2 2] s, which perfectly
covers all MRCP components, cannot be used if one would expect
negative detection latencies where detection happens before the
movement execution (t = 0). It should be noted that since the
time interval [−3, 1] covers most parts of MRCP, this choice does
not affect the TPR values.

To train Infomax and JADE, the training sets were built by
concatenating all Go epochs and all No-go epochs of the training
set. This means that all concatenated Go epochs (randomly
selected) formed the first half of the training set signals; and the
corresponding second half of the training set signals was formed
by the concatenation of randomly selected No-go epochs in each
channel. This approach was chosen as it provided a consistent
training process for each method, and furthermore, it enabled
us to perform the cross validation process. A similar approach
was used for cICA, with an additional reference signal for the
EEG signals. The reference signal for cICA was constructed using
two steps: first, a subject-specific MRCP template was generated
by averaging all Go-epochs of the Cz epochs in the training set
([−2, 2] s with respect to the task onset). Next, considering that
the training sets were concatenated Go and No-go epochs for
the other methods (Infomax and JADE), the reference signal of
cICA was built by repeating the MRCP template corresponding
to the signal epochs and using zero for the No-go epochs.
By knowing the actual occurrence time of the executed or
imagined movements, this approach could be implementable in
the training phase of an online application as well. To train CSP,
No-Go epochs and Go epochs were provided to the algorithm in
two different matrices built by placing Go epochs in the rows of
the signal matrix and each No-Go epoch in the rows of the noise
matrix. LAP is not a supervised method; therefore, no training
was required.

A LPP-LDA classifier was used for classification of the Go and
No-go epochs (Xu et al., 2014a). A sliding window with length
2 s and 50ms shift was applied to each Go and No-go epoch. A
detection occurred when n consecutive sliding windows resulted
in detection at the output of the LPP-LDA classifier. The choice
for n determines the sensitivity of the overall system. Therefore,
by varying n from 1 to 10, the average (over subjects) ROC curve
was derived through cross-validation on the testing dataset of all
subjects. TPR is defined as the ratio of the number of correctly
detected Go epochs to the total number of Go epochs in the
testing set. Similarly, FPR is defined as the ratio of the number
of false detections of No-go epochs to the total number of No-go
epochs in the testing set. The detection latency is defined as the
time difference between detection and movement onset for the
executed movements, and between detection and task onset for
the imagined movements, in each Go epoch.

Statistical Analysis
To investigate the effect of the spatial filtering method on SNR
and ρ, Friedman’s Two-way ANOVA was performed, where
the factor was Methods with five levels (LAP, CSP, Infomax,
JADE, and cICA). When a significant difference was observed,
a multiple comparison (Bonferroni) was carried out to identify
which methods were significantly different. The significance level
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FIGURE 1 | Boxplots of SNR and ρ-values for ME and MI datasets: (A) SNR values for ME dataset, (B) ρ-values for ME dataset, (C) SNR values for MI dataset, and

(D) ρ-values for MI dataset.

of all tests was set at p < 0.05. Furthermore, in order to investigate
the effect of the five methods on MRCP detection, two-way
repeated measure ANOVA was performed on the ME and MI
datasets, with fixed factor the spatial filtering algorithms (LAP,
CSP, Infomax, JADE, and cICA) and random factor the subject
(SUB, 12 levels). The main null hypothesis was that Methods
was not a significant factor on TPR, FPR, and DL. When the
null hypothesis was rejected, a multiple comparison (Tukey with
Bonferroni correction) followed.

RESULTS

The boxplot for the average values of SNR and ρ for the output
of the spatial filters over folds from the testing sets, and for all
subjects are presented in Figure 1. Direct observation indicates
that, in this offline study, Infomax is able to suppress the noise
better than other methods (highest SNR) in both the ME and MI
datasets. In contrast, cICA had the lowest SNR values compared
to other methods. However, in both the ME and MI datasets,
cICA resulted in the lowest values for ρ among all methods. For
the ME dataset, results from the Friedman’s Two-way ANOVA
showed that Methods had a significant effect on ρ and SNR (p
< 0.001). The multiple comparison tests found that the SNR was
smaller for cICA than LAP, Infomax, and JADE. Moreover, cICA,
LAP, and CSP led to significantly lower variability compared to
JADE and Infomax. For the MI dataset, the factor Methods again
had a significant effect on ρ and SNR (p < 0.001). Post-hoc
comparisons showed that SNR for cICA was significantly lower
than Infomax, and JADE; and Infomax had significantly greater
SNR values than LAP. For ρ, similar to the ME dataset, cICA,
LAP, and CSP led to significantly lower variability than JADE and
Infomax.

Figure 2 represents the algorithm used to calculate the
detection latency when 5 consecutive windows result in
detection at the output of the LPP-LDA classifier (n = 5).
The average of the ROC curves of MRCP detection over all
subjects for both ME and MI (testing) datasets is provided
in Figure 3 for all spatial filters and 10 decision thresholds
(n = 1, 2, . . . , 10). The area under the ROC curves is
provided in Table 1. For both datasets, the area under the
ROC curve of cICA has the highest value confirming that
for each n, cICA provides the best combination of TPRs and
FPRs (high TPR and low FPR). Therefore, the accuracy of
cICA is superior compared to other spatial filters. As seen
from the ROC curves, five decision windows are located
at the midpoint of the convex part of the ROC curve,
meaning that five consecutive detections could be a good
balance between TPR and FPR for all filters. Therefore, the
results presented next were calculated for five as the decision
threshold.

The detection performance is presented in Table 2 for both
ME and MI datasets. The highest TPRs and lowest FPRs and
DLs were obtained for cICA for both datasets. The detection
latency for cICA (−34 ± 29ms for ME and 28 ± 16ms for
MI dataset) was significantly smaller than for the other spatial
filters.

For the ME dataset, the ANOVA test showed that Methods
has a significant effect on TPR, FPR, and DL (p < 0.001).
Multiple comparisons found that TPR for cICA (87.11 ±

11.73) was significantly higher than with all other methods.
LAP (74.65 ± 13.13) had significantly greater TPRs than CSP
(67.14 ± 13.99) and Infomax (67.27 ± 7.69). FPR for cICA
(20.69 ± 13.68) was significantly lower than for Infomax (31.70
± 9.94) and JADE (30.44 ± 10.26); and FPR for Infomax
(31.70 ± 9.94) was significantly higher than for CSP (24.55

Frontiers in Neuroscience | www.frontiersin.org June 2017 | Volume 11 | Article 356 | 135

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Karimi et al. Constrained ICA for Movement Related

FIGURE 2 | Offline implementation of movement detection.

FIGURE 3 | Average of the ROC curves of five spatial filters across all subjects: (A) ME dataset (B) MI dataset (black circle represents the value of each ROC curve

when n = 5 in both graphs).

± 11.31) and cICA (20.69 ± 13.68). Regarding the detection
latencies, the statistical analysis showed that cICA (−34 ±

29ms) had significantly lower detection latencies compared
with all other methods. In contrast, the detection latencies
with CSP (295 ± 13ms) were significantly greater than for
Infomax (245 ± 9ms), LAP (197 ± 15ms), and cICA (−34 ±

29ms).
Results for the MI dataset were similar to those for the

ME dataset. Methods influenced significantly TPR, FPR, and
DL (p = 0.00 for TPR and DL, and p = 0.02 for FPR).
Multiple comparisons indicated that TPR from cICA (86.66

± 6.96) was significantly greater than for all other methods,
and TPR for LAP (75.06 ± 12.94) was significantly higher
than for CSP (66.87 ± 10.13) and Infomax (64.69 ± 9.42).
FPR of cICA (19.31 ± 12.60) was significantly lower than
for LAP (25.99 ± 17.04), Infomax (26.19 ± 7.78), and
JADE (26.12 ± 10.25), but not significantly different from
CSP (23.02 ± 10.56). The detection latency obtained with
cICA (28 ± 16) was significantly lower than for all other
methods.

The average TPR, FPR, and DL over the 10 folds are reported
for each subject from both datasets in Figure 4. For 11 of the
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12 subjects, cICA has the highest TPR and lowest FPR and DL
among all spatial filters.

DISCUSSION

The MRCP has recently been implemented as a control signal
in a variety of BCI applications (Xu et al., 2014a,b; Jiang
et al., 2015; Mrachacz-Kersting et al., 2016). The reliable and
efficient detection of MRCPs enables the design of accurate
and fast brain switches. Depending on the application of BCI
systems, the importance of accuracy and latency of the system
may vary. To be more specific, while large DL may not be
ideal for BCI applications developed to induce brain plasticity,
slightly lower TPR may not greatly affect the performance of
the BCI system. On the other hand, high TPR are required
for the control of exoskeletons for replacement rather than
restoration of function, and for this application, a low DL is
not so imperative. Accuracy and latency of detection of the
MRCP highly relies on the signal processing method used to
extract features from raw EEG. Spatial filters are one of the most
efficient and successful feature extraction methods in EEG signal
processing due to the spatial distribution of the signal features.
In this study, the performance of cICA, a newly introduced ICA-
based spatial filter, was compared with four other spatial filters
in an offline experiment for MRCP detection frommulti-channel
EEG recordings, during execution and imaginary dorsiflexion of
healthy subjects.

The performance of each spatial filtering algorithm in the
detection of MRCPs was initially evaluated based on clarity and
consistency of the extracted MRCP, quantified by SNR and ρ,
respectively. Moreover, TPR, FPR, and DL were investigated
through cross-validation in an offline experiment. The reported
TPRs in this study are in agreement with the previous similar

TABLE 1 | Average of the ROC curves of movement detection for ME and MI

datasets.

Spatial filter Area under the ROC curve

LAP CSP Infomax JADE cICA

ME dataset 0.81 0.79 0.73 0.75 0.90

MI dataset 0.80 0.79 0.76 0.78 0.91

studies (Xu et al., 2014a,b). However, since, in this study, it
was intended to evaluate the performance of the detector and
determine the optimum parameters for movement detection
using ROC, the values of FPR were calculated with a different
measure than previous similar studies. In the previous studies,
FPR was defined as the number of false detections per minute.
Such approach for calculating FPRs caused the values of FPRs
to be biased by the experiment protocol and inconsistent with
TPRs. In this paper, the approach used to calculate FPR values
makes the values independent of the experimental protocol, in
which parameters such as the refractory period of the MI/ME
can affect the accuracy of the definition of FPR used in previous
studies (Niazi et al., 2011, 2013): false positive per unit time. Also,
this approach is consistent with the approach used to calculate
TPRs, enabling us to obtain ROC curves for the detector. The
calculation of DL in this study is also in agreement with previous
studies. It should be noted that a non-causal filter was used in
the current study. In a real online experiment, a causal filter
should be used. In order to investigate the effect of type of the
bandpass filtering method (causal vs. non-causal), we performed
an additional analysis to compare the performance of a causal
second-order Butterworth bandpass filter with the bandwidth of
0.05–3Hz with the same non-causal filter. The average signal

of all causally and non-causally filtered Go-epochs (MRCPs)

from the Cz channel for Subject 1 are provided in Figure 5.

The observations indicate that there is a smaller amplitude in

the negative peak of MRCP when the causal filter is used.

We also compared the detection performance for causally and

non-causally filtered signals for all subjects in the ME group.
The causal filtering resulted in slightly higher FPR and lower
TPRs compared to using non-causally filtered data, and the
change was consistent in overall detection accuracy for all spatial
filters investigated (the change of the averaged TPR values
from causally to non-causally filtered signals was: 0.87, −0.19,
−3.87,−5.89,−4; and the corresponding change of the averaged
FPR values was: −7.69, 9.95, 7.46, 10.86, 13.47 for LAP, CSP,
Infomax, JADE, and cICA respectively). This consistent change
in overall detection accuracy is expected given the results shown
in the figure, as the causal filter resulted in a less pronounced
MRCP. However, causal filtering had no significant effect on
the detection latencies (the difference between the averaged DL
values for causally and non-causally filtered signals was: −0.07,
−0.03, −0.06, −0.02, 0.00 s for LAP, CSP, Infomax, JADE, and

TABLE 2 | Average TPR, FPR, and DL for movement detection for ME and MI datasets.

Spatial filter Motor execution Motor imagery

TPR FPR DL (ms) TPR FPR DL (ms)

LAP 74.65 ± 13.13 25.83 ± 16.91 197 ± 15 75.06 ± 12.94 25.99 ± 17.04 216 ± 14

CSP 67.14 ± 13.99 24.55 ± 11.31 295 ± 13 66.87 ± 10.13 23.02 ± 10.56 246 ± 15

Infomax 67.27 ± 7.69 31.70 ± 9.94 245 ± 9 64.69 ± 9.42 26.19 ± 7.78 286 ± 11

JADE 69.33 ± 8.56 30.44 ± 10.26 256 ± 16 68.68 ± 10.35 26.12 ± 10.25 250 ± 13

cICA 87.11 ± 11.73 20.69 ± 13.68 −34 ± 29 86.66 ± 6.96 19.31 ± 12.60 28 ± 16

The results are presented (mean ± standard deviation across subjects) for each spatial filter.
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FIGURE 4 | Average TPR, FRP, and DL for all subjects for both ME (left) and MI datasets (right).

FIGURE 5 | Average signal of all causally (___) and non-causally (- - - - -)

filtered Go-epochs (MRCPs) from the Cz channel for Subject 1.

cICA, respectively). Therefore, it is highly possible that the
choice of causal or non-causal filtering has a slight effect on the
overall detection accuracy, but there was no effect on DL values.
However, this needs to be verified in a subsequent dedicated
online study, which is beyond the scope of the current study with
the objective of introducing cICA for MRCP detection.

The cICA requires the choice of a threshold that weights
the relative importance of similarity with the reference signal in
the optimization (Zhang, 2008). The suitable value of threshold
depends on both the designed reference signal and the similarity
measure. An effective way to determine the threshold given
a reference signal, which was also used in this paper, is to
use a small threshold initially, and then gradually increase the
threshold (Lu and Rajapakse, 2006). For the reference signal
based on the average of the Go epochs of the Cz channel, the
value of the threshold was set to 0.9. On the other hand, as
mentioned earlier, the shape of the designed reference signal
plays an important role in the performance of cICA. Therefore,
investigation of the effect of other types of reference signals such
as the common rectangular pulse, smoothed MRCPs (Garipelli
et al., 2013), and discriminative-based reference signal (Lee et al.,
2016) will be done in the future in attempt to improve detection
performance.

With the selected parameters, the area under the ROC curve
for cICA was greater than for the other methods and cICA
outperformed all the other filters for TPR and DL. Moreover,
FPR was lower for cICA than for three of the other investigated
methods. Overall, this indicates an improved performance of
cICA with respect to previously proposed filtering methods.
Considering that the detection ofMRCP can be affected by hyper-
parameters such as the overlap of the sliding windows and the
number of detections required, further investigation will be done
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in the future to optimize the cICA algorithm based on these and
other aspects. The averaged SNR values for the tested methods
were not well associated with the detection performance. Indeed,
cICA provided high TPRs and low FPRs compared to other
methods but resulted in the lowest SNR values. One reason for
the low SNR of cICA may be the optimization criteria of the
method and the way SNR values were calculated in this study.
The reference signal for cICA requires the algorithm to optimize
the weights such that the desired signal can be obtained. As a
result, the trial-by-trial consistency of the signal was improved by
cICA.On the other hand, the results for the average ρ-values were
more consistent with those obtained for TPRs. This is one of the
findings of the current study: SNR does not necessarily correlate
very well with detection performance, and the consistency of the
Go epochs is equally (if not more) important for achieving a
high detection performance. This likely stems from the fact that
MRCP is a rather deterministic waveform, compared to other
motor imagery BCI signal modalities, such as ERD/ERS. It can
be concluded that, considering the shape of the reference signal
applied in the current study, cICA seems to allow amore accurate
modeling of the class of the Go epochs, and consequently a
more pronounced effect on the sensitivity of the detector. This is
because the choice of the reference signal can affect the ability of
the cICA in modeling each class and separability of the classes.
Therefore, cICA in the current study has limited effect on the
specificity of the detector due to the choice of reference signal.
It is possible that other types of reference signals can tune the
algorithm to focus on other aspects of performance, such as
specificity, which will be explored in future studies.

Regression analysis and template matching are also methods
that have been used to extract desired EEG features and for
EEG artifact removal (Wallstrom et al., 2004; Niazi et al., 2013;
Urigüen and Garcia-Zapirain, 2015). Regression algorithms
estimate the influence of the reference signal on the desired
signal either in the frequency or time domain. Linear regression
assumes that each EEG channel is the sum of the non-noisy
source signal and a fraction of the source artifact that is available
through a reference channel. Then, the goal of regression is to
estimate the optimal value for the factor that represents such
a fraction. Regression approaches need a reference channel to
be able to operate automatically. In comparison, cICA is more
flexible because although it uses a reference signal to extract
features of the EEG signal or artifacts, the reference signal does
not have to be a good estimation of the source(s). In fact, the
reference signal can be very general, as long as it provides some
reasonable constraint to ICA. For example, in Lee et al. (2016),
a rectangular reference signal, which was not similar to the
underlying source, was successfully implemented. In addition,

since the regressionmethods are based on the time and frequency
characteristics of the signals, they do not take into account the
spatial information of the sources. Templatematching techniques

such as matched filter, which uses a template to maximize the
SNR of the extracted signal, are also methods used for MRCP
extraction (Niazi et al., 2013). Similar to regression, suchmethods
only depend on the temporal features of the template and do
not consider the spatial distribution of different sources. Also,
matched filters are only optimal with additive Gaussian noise, so
they are sensitive to other types of noise and artifacts.

In the current manuscript, we only used data from one of
the four tasks for the purpose of introducing cICA for the first
time in MRCP detection. Subsequent studies will be performed
to investigate the generalizability of cICA when presented with
data from different types of tasks.

CONCLUSION

We have proposed a new spatial filter for MRCP detection. The
proposed cICA extracts the desired signal by utilizing additional
prior (spatial) information with respect to classic ICA, while
exploiting higher order statistical structures as the CSP does.
The results indicated that cICA did not enhance the extracted
MRCP from multi-channel EEG significantly better than several
commonly used spatial filters, including CSP, LAP, and ICA.
However, cICA significantly outperformed these spatial filters in
single-trial MRCP detection, with higher TPRs, lower FPRs, and
shorter latency, both for ME and MI tasks. These results indicate
that cICA is a promising new algorithm for detecting MRCP
from multi-channel EEG. Following the promising results of the
current study, we will conduct online experiments in a future
study, in which cICA will be compared with LAP and CSP.
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Brain-computer interfacing (BCI) has recently been applied as a rehabilitation approach

for patients with motor disorders, such as stroke. In these closed-loop applications, a

brain switch detects the motor intention from brain signals, e.g., scalp EEG, and triggers

a neuroprosthetic device, either to deliver sensory feedback or to mimic real movements,

thus re-establishing the compromised sensory-motor control loop and promoting neural

plasticity. In this context, single trial detection of motor intention with short latency is

a prerequisite. The performance of the event detection from EEG recordings is mainly

determined by three factors: the type of motor imagery (e.g., repetitive, ballistic), the

frequency band (or signal modality) used for discrimination (e.g., alpha, beta, gamma,

and MRCP, i.e., movement-related cortical potential), and the processing technique (e.g.,

time-series analysis, sub-band power estimation). In this study, we investigated single

trial EEG traces during movement imagination on healthy individuals, and provided a

comprehensive analysis of the performance of a short-latency brain switch when varying

these three factors. The morphological investigation showed a cross-subject consistency

of a prolonged negative phase in MRCP, and a delayed beta rebound in sensory-motor

rhythms during repetitive tasks. The detection performance had the greatest accuracy

when using ballistic MRCP with time-series analysis. In this case, the true positive rate

(TPR) was ∼70% for a detection latency of ∼200ms. The results presented here are of

practical relevance for designing BCI systems for motor function rehabilitation.

Keywords: brain-computer interface, motor intention detection, ballistic and repetitive task, movement-related

cortical potential, sensory-motor rhythm

INTRODUCTION

In the past decade, non-invasive brain-computer interfacing (BCI) based assistive technology has
been proposed as a novel rehabilitation tool for people suffering of motor disorders (Daly and
Wolpaw, 2008; Shih et al., 2012), such as stroke (Ramos-Murguialday et al., 2013) and spinal cord
injury (Enzinger et al., 2008). In BCI systems for neurorehabilitation, the volition of subjects is
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detected from brain signals. Such a brain switch is used
to control a neuroprosthetic device, such as an electrical
stimulator (Niazi et al., 2012; King et al., 2014) or a robotic
system (Xu et al., 2014b), to close the sensory-motor loop for
either restoring motor function or modulating neural pathways
(Shih et al., 2012).

As the first step of these closed-loop systems, accurate online
detection of motor intention is a crucial and challenging
task for non-invasive neural recordings such as scalp
electroencephalography (EEG), mainly due to its low spatial
resolution and poor signal-to-noise ratio. For neuroprosthesis
control in general, the acceptable delay between intention
and action is ∼200ms (Lauer et al., 2000). In particular, the
detection latency is crucial in inducing Hebbian associative
neural plasticity for rehabilitation purposes (Hebb, 1949). The
efficiency of plasticity induction would be extremely slow, if at
all possible, when the artificially afferent triggered by the brain
switch arrived at the cortical level either too early or too late
relative to motor intention (Mrachacz-Kersting et al., 2012).

Several signal processing approaches have been proposed for
motor intention detection from EEG (Venkatakrishnan et al.,
2014). Among these methods, two main EEG signal modalities
have been explored for the purpose of motor rehabilitation:
sensory motor rhythms (SMRs; Yuan and He, 2014) and
movement related cortical potentials (MRCPs; Xu et al., 2014a), a
type of slow cortical potential.

SMR corresponds to an increase or decrease in power at
various subbands of EEG signals recorded over the sensory
motor cortex (e.g., Cz for foot movements), prior to, during
and after movement, or movement imagination (Yuan and
He, 2014). The increase of subband power implies that the
neurons in the corresponding cortical area discharge more
synchronously than at baseline and therefore it is referred to
as event-related synchronization (ERS; Pfurtscheller and Lopes
Da Silva, 1999). Conversely, the decrease of subband power
corresponds to less synchronous neural activity, termed event-
related desynchronization (ERD; Pfurtscheller and Lopes Da
Silva, 1999). Immediately after movement imagination, an ERS
is usually observed in the beta-band (∼20Hz; Pfurtscheller and
Solis-Escalante, 2009). This is also referred to as beta-rebound.
In most SMR-based BCI studies for neurorehabilitation, the
movement imagery that the subjects were instructed to perform
was repetitive movement, such as foot tapping, with a few
exceptions (Pfurtscheller and Solis-Escalante, 2009).

MRCP is another EEG signal modality observable on the
sensory motor cortex prior to, during and after movement
or movement imagery. It is characterized by a slow negative
deflection of the near-DC component in the EEG signal before
movement or movement imagery, reaching its peak of negativity
near the onset of movement or movement imagination, and
followed by a positive rebound before the signal returns back
to its reference level (Jahanshahi and Hallett, 2003). MRCP is
characterized by a time-series change at a very narrow low
frequency content (0.05–3Hz; Jahanshahi and Hallett, 2003). In
MRCP-based BCI studies, the movement or imagined movement
is usually executed once, often as a brisk or ballistic task, as
opposed to the repetitive movement used in SMR-based studies.

More recently, a combined approach of subband SMR and time-
series MRCP has been proposed (Ibáñez et al., 2014). This fusion
approach yielded improved performance for the detection of
ballistic reaching movement (Ibáñez et al., 2014).

Due to the low signal-to-noise ratio of EEG, spatial filtering
is usually used as a pre-processing step to enhance the desired
feature. Among them, common spatial pattern (CSP) has been
very successful in processing SMRs (Ang et al., 2008; Blankertz
et al., 2008), particularly when the channels are more than 20.
When the channels are less (typically <10), the Laplacian filter
has been widely used for both signal modalities (Müller-Putz and
Kaiser, 2010; Niazi et al., 2011).

The above survey indicates that a motor imagery based
short-latency brain switch is predominantly influenced by three
factors: the type of motor task (ballistic or repetitive), the
frequency band (e.g., MRCP, alpha or beta band) of EEG,
and the corresponding processing technique (subband power
estimation or time-series analysis). In previous studies, the
effect of some of these factors was partly investigated, e.g.,
SMR in brief and sustained movement (Cassim et al., 2000;
Alegre et al., 2003) or MRCP vs. SMR in real movements
(Toro et al., 1994; Babiloni et al., 1999; Filipovic et al., 2001).
More recently, there have been studies on the analyses of the
frequency band in motor intention detection (Garipelli et al.,
2013; Ibáñez et al., 2014; López-Larraz et al., 2014). However,
to date, there has been no direct comparison of advantages
and disadvantages of all the above factors in the context
of a short-latency brain switch for rehabilitation purposes.
In this study on healthy subjects, these factors are directly
compared in their influence on the low latency detection of
movement intention, in an attempt to provide a guideline for
BCI researchers working toward closed-loop neuroprosthetic
applications.

METHODS

Subjects
Ten healthy volunteers (seven male and three female, age:
26.5± 4.6 years) participated in the study. Informed consent was
obtained from all participants, and ethical approval was provided
by the local ethics committee in accordance with the Declaration
of Helsinki.

Experimental Setup
• EEG

Nine channels of EEG were acquired with an active electrode
system (ActiCap, Brain Products, Germany) and 16-channel
EEG amplifier (g.USBamp, gTec GmbH, Austria). The electrodes
were placed in the standard 10–20 locations at Cz, Fz, F3,
F4, C3, C4, P3, P4, and Pz. The ground and reference
located on AFz and the left earlobe, respectively. Sampling
frequency was 1200Hz, with no hardware filter. During all
experiments, the impedances of all channels were monitored
regularly to ensure that they were below the recommended
values indicated by the manufacturers of the active electrode
system.
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• EMG

Surface electromyography (EMG) signals were collected from the
tibialis anterior (TA) muscle of the right foot with disposable
electrodes (Neuroline 720, Ambu). EMG was acquired by the
last channel of the g.USBamp amplifier, with separate ground
and reference electrode from the EEG channels. A monopolar
electrode was placed on the mid-belly of the right TA muscle
while the reference and ground electrodes were placed on the
bony surface of the right knee and right ankle, respectively.

Experimental Procedure
During an experimental session, the subject was comfortably
seated in a chair,∼1m from a computer screen. Participants were
instructed to look at the center of the screen and to follow the cue
presented, minimizing eye movements. During the experiment,
the cue on the screen indicated four states (Figure 1): idle,
focus, preparation, and task. Each trial started from the 5-s idle
phase, during which the subjects could adjust their position as
they wished. In the second phase, the subjects were asked to
focus on the screen without moving. This was followed by the
preparation phase, where the subjects were instructed to follow
the 3-s backwards counting presented on the screen, and to start
imagining the movement immediately when it turned to the task
phase, which lasted for 4 s. One trial ended with the next idle
phase before the next trial commenced.

Each experimental session was divided into six runs, which
consisted of three ballistic and three repetitive runs. The ballistic
and repetitive runs were identical, except in the task phase. For
ballistic runs, the subjects were instructed to imagine performing
ballistic dorsiflexions at the beginning of the 4-s task phase; in
repetitive runs, they were continuously repeating motor imagery
for the whole 4-s task phase. The subjects were instructed to
perform the repetitive task at a moderate speed, i.e., around once
per second. The TA muscle activity was monitored through the
EMG recording, and those trials with visible EMG signal were not
included in further analysis. Each run comprised approximately
20 trials of ballistic or repetitive imaginary movements. The
duration of each run was ∼6min. The order of ballistic and
repetitive runs was randomized.

EEG Processing Algorithm
MRCP and SMR Morphology Analysis
The nine channels of EEG were band-pass filtered (2nd order
Butterworth) at 0.05–3Hz for MRCP analysis, (Xu et al., 2014a)
and 4–40Hz for SMR analysis (Planelles et al., 2014). Then a large
Laplacian spatial filter centered at Cz (see Equation 1) was used

to enhance the signal-to-noise ratio of the “virtual” Cz channel,
which was then processed in subsequent steps.

virtual_Cz = Cz −
∑

i
CHi/8 (1)

Where CHi stands for the eight channels around Cz.
In subsequent data segmentation, the data from t = −3 to

t = 6 s, w.r.t. the task onset, of the filtered virtual Cz were
extracted for each trial. For both SMR and MRCP, the reference
interval, from which the baseline value was calculated, was −3
to−2 s (3 to 2 s before motor imagery onset).

1. MRCP morphology analysis

For each subject and each movement type, a statistical
comparison was performed on the characteristics of the
morphorlogy of theMRCP (see details in the Section of Statistical
Methods below).

2. SMR morphology analysis

The power spectral density (PSD) of each trial was calculated
over 1 s windows overlapped for 0.5 s using Hamming windows
(Matlab function pwelch). For each subject and each movement
type, a Bootstrap test was performed between the PSD of the SMR
at each time-frequency point and the reference PSD of the SMR
in a baseline window. The time-frequency SMR characterization
was quantified as follows (Pfurtscheller and Lopes Da Silva,
1999):

SMRf ,t% =
Af ,t − Rf

Rf
(2)

where SMRf ,t% is the relative power of the SMR at time t
and frequency f, Af ,t is the absolute power of the SMR at the
same time-frequency point, and Rf is the power of the reference
interval for the frequency f. A positive SMRf ,t% value indicates
an ERS, while a negative value of SMR indicates an ERD.

Time-Series Feature Extraction and Motor Imagery

Detection
In order to analyze the information content in EEG for
motor intention detection, six types of time-series features were
extracted with band-pass filters at MRCP (0.05–3Hz), Theta (4–
7Hz), Alpha (8–15Hz), Beta (16–30Hz), lower Gamma (31–40),
and the full frequency band (0.05–40Hz), followed by a large
Laplacian filter centered at Cz. In order to evaluate the BCI
performance, a three-fold cross-validation was used, in which
two runs of the virtualCz (either ballistic or repetitive) were taken

FIGURE 1 | Experimental procedure. Each trial began with an idle phase, followed by a 2-s focus phase and a 3-s preparation phase. In the consequential task

phase, the subject was instructed to perform ballistic or repetitive imagination of dorsiflexion.
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as the training set, while the remaining ballistic or repetitive run
was used as the testing set. For the training set, the virtual Cz was
segmented into portions of 2-s segments with 0.1-s increments.
The segments between −1 to 1 s with respect to the task onset
were labeled as “signal” portion, while all the remaining segments
were labeled as “noise” portion. The testing set was treated in a
pseudo-online way, mimicking the real online processing, where
the data arrives continuously with a 2 s-length window and a
refresh step of 0.1 s.

For the time-series feature, a manifold-learning based method
called Locality Preserving Projection (LPP; He and Niyogi, 2003),
followed by a Linear Discriminant Analysis (LDA) classifier
was trained and used for detection. LPP-LDA has previously
been implemented for MRCP detection with good performance
(Xu et al., 2014a). The procedure is described briefly here. The
“signal” and “noise” portions were first projected to a lower
dimension using LPP, which maintained the intrinsic structure
in the original manifold with high dimension (He and Niyogi,
2003). A LDA classifier was trained using the LPP projected
training data. Once the LPP-LDA classifier was trained, the
testing segments were projected by the obtained LPP projection,
and the trained LDA was used to classify the testing data into
either “signal” or “noise.” A detection of motor intention would
be registered when a number of continuous windows [referred to
window number (WN)] were classified as “signal.” One detection
would be determined either as a true or false detection according
to the detection latency (DL), i.e., the time difference between
the detection and the task cue. If the DL was between -1 and
1 s, the detection was considered a true detection, otherwise a
false detection. It should be emphasized here that the target of
this study is a short-latency brain switch. Therefore, we only
considered these detections within a few hundredsmicroseconds,
even though signals outside this range may improve the accuracy
for modalities such as Beta rebound. The true positive rate
(TPR), false positive (FP) per minute, and DL were calculated
to quantify the BCI performance. Compared with false positive
rate (or specificity) which is generally used for evaluating binary
classification (Hashimoto and Ushiba, 2013; Jochumsen et al.,
2013) FP/min is more suitable for quantifying the performance
of continuous detection in a (pseudo-) online paradigm, as was
done in Niazi et al. (2011) and Xu et al. (2014a). As any detector,
there is a trade-off between TPR and FP. Both TPR and FP are
constrained by WN, whose increment would make the detection
stricter (more difficult), leading to lower TPR and smaller FP. In
order to objectively compare the BCI performance, we chose the
WN value for which the FP was smaller than or equal to 8/min
for all comparisons. Thus, only the TPR and DL were statistically
compared.

Subband Power Estimation and Motor Imagery

Detection
The subband power was also used as a direct feature for
classification. For this purpose, the powers of the virtual Cz
channel at the six frequency bands were estimated using the
Welch periodogram with a resolution of 1Hz. As for the time-
series features, the window duration was of 2 s, with increments
of 0.1 s. “Signal” and “noise” portions were the same as for the

time-series features, and the same three-fold cross-validation
method was used to test performance.

Since the dimensions of the subband power features are small,
no dimension reduction method was used. The “signal” and
“noise” portions were directly used to train a LDA classifier,
which was used for detection of motor intention from the testing
set. All BCI performance criteria were calculated with the same
steps as in the time-domain processing, and analyzed using the
statistical methods described in the following.

Statistical Methods
A paired t-test was performed for MRCP morphology analysis.
The comparison was between the amplitude of the MRCP for the
reference interval (i.e., mean value of−3 to−2 s w.r.t. task onset)
and the magnitude of each 0.1 s-length segments of the virtual
Cz outside the reference interval. A Holm-Bonferroni correction
was performed for this multiple comparison, and the significance
level was set to 0.05.

Three-way repeated ANOVA was used to investigate the
effect of the three factors on BCI performance. The independent
variables were TPR and DL. The three main factors were
motor task (ballistic and repetitive imagination), frequency band
(MRCP, Theta, Alpha, Beta, Gamma, and full frequency bands),
and processing technique (time-series analysis and subband
power estimation). A full model ANOVA with all interaction
terms was performed first and, when significant interactions
were detected, post-hoc tests (Tukey simultaneous test with
significance level of 0.05) were performed.

RESULTS

Signal Morphology
MRCP Morphology
The MRCPs of a typical subject performing the two types of
motor imageries are shown in Figures 2A,B. For the ballistic
task (Figure 2A), theMRCP started to decrease approximately 2 s
prior to the task onset, reached the negative peak around t = 0
s, and returned to the baseline in approximately 2 s after the task
onset. In the repetitive task, the MRCP (Figure 2B) had a similar
shape to that of the ballistic case before t = 0 s but the rebound
phase was much longer in duration. Before task onset, both the
ballistic and repetitive MRCP showed significant differences to
the baseline starting from −1 s. However, the characteristics of
the two motor tasks were different for the rebound part. No
significant difference was found between the ballistic MRCP and
the baseline from the time of 1 s, indicating it already returned
back to the baseline. On the other hand, the repetitive MRCP still
showed significance as late as 4 s after the task onset.

The above difference between ballistic and repetitive tasks
was consistent across all subjects, as shown in Figure 2C. These
results indicate a strong predictive power of MRCPs in detection
of movement intention of the subjects for both types of motor
imageries.

SMR Mapping
The SMR maps for three representative subjects for the two
types of movement imageries are shown in Figure 3. For subject

Frontiers in Neuroscience | www.frontiersin.org January 2016 | Volume 9 | Article 527 | 144

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Xu et al. Factors of Influence on a Short-Latency Brain Switch

FIGURE 2 | MRCP corresponding to (A) ballistic (BAL) and (B) repetitive (REP) motor imagery from a typical subject. The dashed lines indicate the

logarithmic p-value of the paired t-test between the MRCP (either ballistic or repetitive) and its reference between −3 and −2 s., while the solid horizontal line indicates

significance level. (C): The average MRCP over the 10 subjects. The black line corresponds to ballistic imagery and the red line to the repetitive motor imagery.

FIGURE 3 | SMR mapping from three representative subjects. (A) subject A; (B) subject B; (C) subject C. BAL and REP stand for ballistic and repetitive task,

respectively. Only those points with significance in bootstrap test are presented. Red area indicates ERS, while blue area is ERD.

A, there was an evident ERD starting slightly earlier than
the task onset, between the Beta and the lower Gamma band
(above ∼20Hz) for the ballistic imagery, while it corresponded
to a larger bandwidth for repetitive imagery. There was also
an evident ERS in the Alpha and Beta bands for both tasks,
but the repetitive ERS occurred much later than the ballistic
one. However, the SMR landscape was very different for subject
B, whose ERD and ERS mainly appeared in the Alpha and
lower Gamma band, respectively. Subject C showed still other
characteristics. The ERD occurred over almost the full band for
the ballistic imagery, whereas it did not present a clear pattern in
the repetitive imagery. Moreover, for all subjects, both the ERD

and ERS occurred earlier in case of ballistic imagery with respect
to repetitive imagery. ERS appeared before imagery onset in both
ballistic and repetitive tasks of subject B, and also in the repetitive
task of subject C.

In summary, the SMR mapping differed substantially among
the subjects, thus a general average across the subjects would not
be meaningful and therefore is not reported.

BCI Performance
The BCI performance in detection of motor imagery is
summarized in Table 1. The WN is shown in Figure 4. The
ballistic MRCP with time-series analysis reached the highest TPR

Frontiers in Neuroscience | www.frontiersin.org January 2016 | Volume 9 | Article 527 | 145

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Xu et al. Factors of Influence on a Short-Latency Brain Switch

TABLE 1 | BCI performance.

Frequency band Time-series analysis Subband power estimation

BAL REP BAL REP

TPR% DL/ms TPR% DL/ms TPR% DL/ms TPR% DL/ms

MRCP 70 ± 20 267± 121 44± 13 197± 201 47±18 389±113 47± 25 239± 228

Theta 41±8 64± 151 41± 9 132± 127 47±21 369±128 43± 20 204± 230

Alpha 32±8 37± 138 28± 8 83± 180 48±18 260±218 48± 16 230± 176

Beta 32±10 106± 144 32± 9 36± 113 57±19 282±198 50± 16 142± 243

Gamma 37±8 40± 97 36± 10 37± 161 53±16 256±121 48± 16 210± 111

Full 54±18 224± 108 30± 7 185± 202 51±19 192±195 46± 11 254± 174

BAL and REP stand for ballistic and repetitive imagery, respectively. True positive rate (TPR) is the ratio between true detection and the total number of trials in the testing set. Detection

latency (DL) is the timing difference between the detection point and the task onset. The TPR and DL were chosen where false positive ≤8min−1. The positive DL indicates that the

detection happened after the task onset. The best accuracy is indicated in bold.

FIGURE 4 | Window number (WN). WN is chosen where false positive

≤ 8min−1. T-BAL and T-REP represent ballistic and repetitive task with time

serial analysis, while S-BAL and S-REP stand for these two motor task with

subband power estimation.

(70 ± 20%), followed by ballistic Beta band with subband power
estimation (57 ± 19%). SMRs with time-series analysis yielded
shorter DL (<100ms), however the corresponding detection
accuracy was extremely low (∼30%). For each frequency band
of either motor task (except the full band of the ballistic task),
the time-domain technique resulted in shorter DL than the
frequency-domain technique.

A representative segment of detecting ballistic MRCP with
time-serial analysis was shown in Figure 5. Three black stars
stand for the onsets of three consecutive tasks. For the first two,
the detector successfully identifies them, which were labeled as
Green stars. Moreover, this method demonstrated its robustness
again moderate variation which appeared after the second trial
(∼25 s). In spite of this, there is still a false detection (labeled as a
red star) when huge noise was introduced during the third trial.

Analysis of True Positive Rate
For a meaningful comparison between methods, the TPR is
reported in all cases for the same level of false positives

(≤8min−1). The Three-way ANOVA on TPR found no three-
way interaction (p = 0.074). Neither was the interaction between
motor task and processing technique (p = 0.283). However, there
was a significant interaction between motor task and frequency
band (p = 0.015), as well as between processing technique and
frequency band (p < 0.001). Therefore, we performed post-hoc
tests on the significant interactions.

Focusing on the interaction betweenmotor task and frequency
band, the post-hoc comparison revealed that the MRCP of the
ballistic task yielded the highest TPR (60 ± 22%). This was
comparable to the full band of the same task, and significantly
better than all other combinations (no significance was found
among them). In addition, for both the MRCP and the full band,
the ballistic task significantly outperformed the repetitive task.

For the other significant interaction between processing
technique and frequency band, the difference depended on each
factor. MRCP with time-series analysis provided the highest
TPR (57 ± 22%), which was significantly better than all
other frequency bands with the same processing technique. For
the other processing technique, i.e., subband power analysis,
there was no significant difference among frequency bands.
Furthermore, it was observed that, for Alpha and Beta band,
subband power analysis outperformed time-series analysis.

Analysis of Detection Delay
There was no three-factor interaction (p = 0.451), nor
two-factor interactions (p = 0.197, 0.532, 0.081). Both the
processing technique and frequency band were significantly
different (p < 0.001 and p = 0.004, respectively). The post-
hoc comparison revealed that the time-domain technique had
lower DL than the frequency-domain technique (117 ± 169 vs.
252 ± 194ms), while the MRCP resulted in longer DL than
Alpha, Beta, and Gamma band (265 ± 185 vs. 145 ± 205,
129± 193, and 125± 159ms, respectively).

Summary
Based on the above statistical analysis of TPR and DL, we
summarize the influence of the three factors here. The ballistic
task, is preferable over the repetitive task, as it yielded higher
TPR for both MRCP and full band. Even though MRCP’s DL
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FIGURE 5 | Representative detection of MRCP. The blue line is a segment

of virtual Cz from ballistic task. Black stars stand for the task onsets. Green

stars represent true detections, while the red star is a false detection.

was slightly larger than for some SMRs, MRCP was still the best
choice among all six frequency bands, given its highest TPR for
both tasks and for the time-series processing technique. Time-
series analysis outperformed subband power analysis, mainly due
to a significantly shorter DL.

In summary, this comprehensive comparison on motor
intention detection with two motor tasks (ballistic and
repetitive), six frequency bands (MRCP, Theta, Alpha, Beta,
Gamma, and full band), and two processing techniques (time-
series analysis and subband power estimation) showed that
the combination of ballistic, MRCP and time-series analysis
significantly is preferred among all the considered options.

DISCUSSION

As a crucial aspect of closed-loop rehabilitation systems, the
detection of the motor intention from scalp EEG is a central
challenge in motor imagery based BCI. In recent years, there
has been an increasing number of publications of clinical studies
using SMR-based BCI (Ramos-Murguialday et al., 2013; Ang
et al., 2014a,b; Li et al., 2014; Mukaino et al., 2014; Ono
et al., 2014). On the other hand, MRCPs have also been proven
as a promising signal type, particularly for neuromodulation
purposes due to its short detection latency (Mrachacz-Kersting
et al., 2012; Niazi et al., 2012; Xu et al., 2014b). Preliminary studies
of MRCP-based BCI applied to chronic stroke patients have also
been reported (Mrachacz-Kersting et al., 2015).

According to the Hebbian principle of associative plasticity
(Hebb, 1949), neuroplasticity would only be induced when
the motor intention and the task specific afferent feedback,
e.g., passive movement delivered by an orthosis, occur
synchronously in a cause-and-effect fashion. Therefore, an
effective neuromodulation system requires not only accurate
algorithms, but also algorithms that present short detection
latencies, ideally shorter than 300ms.

In the past decades, SMR has been the main signal modality
used for detection purposes. TPRs above 80% were reported with
Beta ERS (Müller-Putz and Kaiser, 2010;Wang et al., 2012), while
the performance of ERD was also demonstrated to be above 70%
(Planelles et al., 2014; Yang et al., 2014). However, the issue of
detection latency was largely overlooked in these studies, with
only one exception which reported a latency in the range of
seconds (Hashimoto and Ushiba, 2013). In this study, the best
TPR using SMR was 57%, for the beta band in the ballistic
task using subband power estimation. Compared with previous
studies, the performance here decreased obviously, mainly due
to the limited range of latency. In these previous studies using
SMR, detection latency was rarely reported. Its average latency
can be more than one second if we take into consideration
those detections which occur several seconds after the task onset
(Hashimoto and Ushiba, 2013). On the contrary, in the current
study, short latency detection is essential, as it is mandatory for
the purpose of plasticity induction (Mrachacz-Kersting et al.,
2012). As such, those detections occurring after 1 s were counted
as false detections rather than true ones, resulting in a latency
of several hundred milliseconds as shown in Table 1. Taking
later windows into consideration would likely improve TPR, but
would lead to a long-latency brain switch, which would be out of
the focus of this study.

On the other hand, slow cortical potentials, such as MRCP,
have been investigated for movement intention detection in
recent years (Qian et al., 2010; Bai et al., 2011; Niazi et al., 2011;
Lew et al., 2012; Bulea et al., 2013, 2014; Bhagat et al., 2014;
Xu et al., 2014a). In the current study, the average TPR and
DL was 70% and <300ms for motor imagination, consistent
with the results reported in previous studies (Niazi et al., 2011,
2012; Xu et al., 2014a,b). The relatively good performance in
TPR (>70%) is essential for the high efficiency of MRCP-
based BCI system. In particular, the detection latency of a
few hundred milliseconds was demonstrated to be crucial for
plasticity induction (Mrachacz-Kersting et al., 2012).

In this study, we demonstrated that ballistic motor imagery
task, frequency band of MRCP, and time-series analysis is the
optimal combination in terms of detection performance. Other
options investigated are sub-optimal, mainly due to a trade-off
between TPR and DL.

We also observed that repetitive SMR with subband power
estimation was significantly better in accuracy than the ballistic
one. This is in accordance with the discussion by Pfurtscheller
& Solis-Escalante that SMR in repetitive task is easier to classify
(Pfurtscheller and Solis-Escalante, 2009).

The different EEG features between the ballistic and repetitive
task may be attributed to the difference in their afferent input
(Cassim et al., 2000). As explained by Bear (Bear et al., 2007),
compared to the repetitive task which has sufficient time for the
sensory-motor loop to feedback, the ballistic movement, once
initialized, is too fast to adjust. In addition, this difference may
also be explain by the fact that there is an inhibitory process
immediate following the ballistic task (Alegre et al., 2003), while
this is not the case for the repetitive task.

The morphological difference between ballistic and repetitive
tasks may mainly contribute to the differences in the detection
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performance of the two motor tasks. The prolonged negative
phase in repetitiveMRCP (in Figure 2) makes its rebound feature
after task onset not as distinct as the ballistic one. That is why the
accuracy of repetitive MRCP with time-series analysis is much
lower than the ballistic one. On the other hand, in the case
of subband power analysis, the frequency band did not have a
significant influence on accuracy. This is likely explained due to
the observed variability in the optimal frequency bands among
individual subjects (see Figure 3).

Limitations
The above comparison was performed only on healthy subjects.
Previous findings mostly support the similarity in slow EEG
waves (e.g., MRCP) between healthy and stroke or spinal cord
injured patients (Castro et al., 2007; Mattia et al., 2009; Niazi
et al., 2011; Xu et al., 2014c), despite their non-negligibly distinct
features such as onset and amplitude (Yilmaz et al., 2014),
whereas SMRs trend to have greater difference on patients with
central neural injury (Tran et al., 2004; Gourab and Schmit,
2010; Müller-Putz et al., 2014). Other different factors such as
medication and mental status in patients could be challenging
for clinical measurements. Therefore, further investigation on the
target patient population is necessary.

In addition, the combination of several features with different
processing techniques, such as those presented in Ibáñez et al.
(2014) and López-Larraz et al. (2014), was not investigated in

the current study. This study focused exclusively on a general
comparison without subject-specific optimization, the combined
features, e.g., SMR and MRCP, would be worthy to investigate in
future work.

CONCLUSION

In this study, we performed a comprehensive comparison
of motor task, frequency band, and processing technique, to
investigate their influence on the performance of a short-latency
brain switch. The morphological investigation found cross-
subject consistency in MRCP, which supports its advantage for
a subject-independent use. The BCI detection performance was
maximized by using the ballistic imagery task, the DC bandwidth
(MRCP), and the time-series analysis.
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The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize

the most contemporary clinical, electrophysiological, imaging, and computational

work on DBS for the treatment of neurological and neuropsychiatric disease.

Significant innovations of the past year are emphasized. The Think Tank’s contributors

represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons,

neuropsychologists, psychiatrists, scientists, engineers, and members of industry.

Presentations and discussions covered a broad range of topics, including policy and

advocacy considerations for the future of DBS, connectomic approaches to DBS

targeting, developments in electrophysiology and related strides toward responsive DBS

systems, and recent developments in sensor and device technologies.
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INTRODUCTION

The Third Annual Deep Brain Stimulation (DBS) Think Tank
convened at the University of Florida’s Research and Academic
Center in Orlando, FL, on March 18-20, 2015. This report
provides a summary of the conference sessions, which addressed
the most current research, clinical, ethical and policy work
on DBS for the treatment of neurological and psychiatric
disease. DBS research and its clinical translation incur wide
ranging, complex issues that necessitate ongoing frank discourse
and exchange of ideas among the multi-disciplinary group of
neurologists, neurosurgeons, neuropsychologists, psychiatrists,
scientists, engineers, and ethicists developing and engaging
DBS in research and clinical practice. The DBS Think Tank
aims to provide an annual forum where contemporary issues,
innovations, and challenges of the research and use of DBS are
shared, discussed, and debated. Presentations and discussions
addressed policy and advocacy considerations for the continued
advancement of DBS, connectomic approaches to DBS targeting,
developments in electrophysiology and related progress in
responsive DBS systems, and recent innovation in sensor- and
stimulation-device technologies.

The field continues to advance at an impressive pace.
Our hope is that this meeting promotes awareness among
stakeholders in DBS of currently unresolved and newly emerging
issues, so as to ultimately strengthen the field and better serve
patients. As in previous years, the meeting was conducted in a
“think tank” style; speakers presented analyses of critical issues
to foster dialog in subsequent discussions. The nature of this
think tank format implies that this is not an evidence-based
overview of developments in DBS; rather, it is a report of on-
going developments that have been advancing this dynamic field
and discussion of obstacles hindering further advancement and
potential solutions. This summary includes key points of both the
presentations and the follow-up discussions.

POLICY AND ADVOCACY FOR THE
FUTURE OF DBS

Viability of a DBS Industry Roadmap and
Consortium
An industry roadmap process, organization, success factors,
and typical and expected outcomes were discussed, using the

Abbreviations: DBS, deep brain stimulation; FDA, Food and Drug

Administration; IIR, investigator-initiated research; IDE, investigational device
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semiconductor technology roadmap as a prior example of
successful effort (Spencer and Seidel, 1995; Schaller, 2001).
Industry roadmaps provide a dynamic and evolving collaborative
technology management process for determining critical needs
and drivers, identifying technology and manufacturing targets,
and assessing and modeling potential solutions to focus an
industry community. They can also provide direction toward
consensus-based resolution of needs and problems within
specific timeframes (Rathore, 2009; Cartreine et al., 2010;
Qattan et al., 2012; Finch et al., 2014). Such “road mapping”
has existed within corporations and organizations for decades.
Industry-wide roadmaps are versions of the corporate process
that can effectively be used to identify gaps in solutions
for common precompetitive challenges; suggest methods and
programs to resolve those gaps, and address lead-time issues by
indicating timeframes of opportunities for facilities, materials,
and equipment development within a supply chain community
(Garcia and Bray, 1997). Implementation can occur within
organizations in the competitive space, thereby contributing to
the growth of industry, by generating positive outcomes inclusive
of strategic and tactical partnerships throughout the industry.

DBS is being used to mitigate signs and symptoms of an
increasing range of neuropsychiatric disorders. In this way, DBS
has attained considerable success in treating a greater number
of patients, and in turn, fostered increased public awareness,
receptivity and demand for this technology.

The investment and success of DBS has fortified the
viability of key technological, commercial, and clinical
aspects of neurotechnology and are contributing to the
continued expansion, development, and success of the field
of neurotechnology in general and the use of DBS in medical
practice in particular. As a result, there is substantial energy and
investment to broaden the applications of DBS and to increase
the capability and complexity of DBS systems. The question
of whether and how the DBS industry would be best served
by a technology roadmap and/or consortium may reflect the
nature and extent of the common challenges presently impeding
technology advancement and deployment. The field is laden
with numerous issues, including increasing system complexity
(e.g., increasing interfaces and channel count, telemetry
bandwidth, recording and stimulation capability, etc.), variable
biocompatibility, packaging challenges (i.e., demands for smaller
size units with greater power efficiency and battery capacity), a
proliferation of potential brain targets and indications, and these
are reflected in—and foster—increasing regulatory requirements.
Figure 1 presents an overview of expert perceptions of the state
of maturity of DBS relative to other neurotechnologies, solicited
from participants at the think tank in an anonymous poll.

Implementation of industry-wide standards can evoke both
positive and negative effects for different stakeholders. For
example, on one hand growing mandated regulatory standards
can result in longer development times and higher development
costs. On the other hand, such standards can fortify the integrity,
efficacy, and safety of DBS technology in use, particularly now
as the applications of DBS are expanding tremendously. In
addition, the use of standards could actually lower barriers to
market entry as certain components of DBS systems become
more common commodities (e.g., the implanted pulse generator,
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FIGURE 1 | (A) A conceptual model of stages in technology development. (B) Results of survey evaluating participants’ perceptions of neurotechnology

development. Participants in the Think Tank were asked to submit examples of current or emerging neurotechnologies. A list was subsequently compiled and

participants were asked to indicate where they believed each of the items ranked in terms of the six stages shown in (B). Survey responses were averaged and the

item was subsequently placed in the category corresponding to the nearest whole number.

wireless telemetry). If regulatory processes at the Food and
Drug Administration (FDA) related to DBS systems evolve to
approve key target-agnostic DBS system blocks or components,
rather than entire systems designed for specific anatomical
targets, it could significantly increase the rate of neurotechnology
innovation. Specifically, such new regulatory processes would
support the efforts of smaller companies, with novel algorithmic,
anatomical target, and neural-interface concepts, to more quickly
deliver solutions to an increasing diversity of patient populations,
including those that are smaller and thus less economically
appealing to the existing medical-design manufacturers.
More attention is required to assess the potential viability
of industry-wide roadmaps and consortia to resolve these
issues.

Policy to Support Physician Initiated
Research and Innovation
Physician investigator-initiated research (IIR) is generally
regarded as conferring considerable advantages to DBS research
compared to industry-sponsored studies. Physicians are more
likely than industry to sponsor research focused on orphan
and small disease populations, and increasing IIR in DBS
would diversify and broaden ideas focusing upon the current
challenges—and opportunities—in the field (Rossi P. J. et al.,
2014). Moreover, as a group, physician researchers also have
a longer time horizon for assessing outcomes and adding
knowledge than most industry sponsors, which can lead to
different and uniquely valuable types of studies. However,
anecdotal evidence from physician researchers performing DBS
trials suggests that significant regulatory burdens are slowing the
pace of IIR research, and could be discouraging physicians from
participating in such efforts (Rossi P. J. et al., 2014).

A case study providing an overview of the timeline and
resources required to meet regulatory requirements for a DBS
clinical trial was presented (Kelly et al., 2014). Financial costs
for FDA-compliant data management were estimated at $100,000
USD for a 10 patient pilot study. Appropriate data management
is critically important for both enabling maximum use of
any and all information, and for protecting the privacy of
patients and the integrity of the research. However, the costs of
FDA-compliant data management substantially reduced funds
available for performing the study. Regulatory consultants and
support staff to interface with the FDA and to insure that all
necessary requirements for the investigational device exemption
(IDE) were met also contributed to overall regulatory costs,
which in the case study were∼$75,000 per year. It was noted that
such costs are prohibitive to many “stand-alone” investigators
without federal funding or institutional resource sharing.

While industry-sponsorship of a study is possible for certain
indications, such support is unlikely for research involving
orphan disease populations that represent a small market share
of potential consumers. Time costs were also significant; in the
case study presented, it took three (3) years from approval of the
NIH funding to the time that the first patient was enrolled in the
trial. Time costs to the investigator also include dedicated efforts
preparing regulatory paperwork. For example, it was estimated
that the amount of hours required to prepare documentation
for submission of an IDE was equivalent to the time required to
prepare three (3) NIH R-01 grant proposals.

Even given these barriers to physician-initiated DBS research,
it was emphasized that physicians are not seeking “less
regulation” but instead are calling for regulatory reform. In
this light, it was recommended that practices such as data
review, process auditing, and unannounced site visits would
be welcomed and could be increased, while processes related
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to documentation could be streamlined. Specifically, it was
recommended that a FDA-approved template for DBS-related
IDEs could guide investigators to more efficiently dedicate
time and resources to the components definitively required for
this type of research. In addition, it was recommended that
the right of reference (RoR) process be reformed. Currently,
RoR requires that industry partners approve studies that
use their devices; this approval is a means of protecting
commercial intellectual property and corporate assets and
providing protection from litigation. It was suggested that this
process could be reformed by indemnifying companies from
the consequences of an investigator’s FDA-approved off-label
use of corporate intellectual property. This reform would center
responsibility for the scope and conduct of research upon the
physician, rather than the industrial sponsor. In turn, this
would enable physicians’ control over clinical studies and, at
the same time, incur benefits to industry by no longer holding
industry partners accountable for reviewing (and ultimately
deciding upon) research proposals. Still, this reform may not
resolve device manufacturers’ concerns about a potential loss of
confidence in their brand should a poor outcome occur.

The DBS field is becoming increasingly competitive, with
potentially sizeable prizes, and sizeable risks. Achieving a leftward
shift in the time course for IIR will require, attention to
the benefits and burdens incurred in biomedical, ethical, and
legal domains. Toward this end, a multi-step paradigm for
comprehensively addressing critical issues and, importantly,
guide forward progress in DBS research and its clinical
translation was described and recommended. First, an overall
“6-R” stance was advocated, which encourages responsibility for:
assessment of capabilities and limitations of DBS in treatment of
particular neuropsychiatric conditions, research to evaluate DBS
effects in practice, regulation, responsivity to incurred burdens
and harms and revision of DBS technology and techniques, and
regulatory process, as necessary. Meeting these responsibilities
invokes a “6-W” set of questions that can be used to define the
parameters of use, and “6-Cs” that must be addressed in order
to establish ethical probity in use (Giordano, 2015). Details of
the “6-R, 6-W, 6-C” model for the ethical development of DBS
technology are presented in Figure 2.

While the need for continuity of care for patients involved
in experimental DBS interventions is clear from ethical and
clinical perspectives, the actual provision of such longitudinal
care has proven to be challenging in practice (Rossi P. et al.,
2014). One vexing recurrent issue is that insurance providers
occasionally decline reimbursing costs for off-label DBS, despite
granting “pre-approval” in a peer-to-peer review process with the
insurance company’s medical directors.

Given the increasing diversity of DBS approaches, cumulative
data aggregation, sharing, assimilation and synthesis will
be increasingly important to the iterative assessment and
improvement of the field. Toward these ends recommendation
was made to establish a common database for DBS research and
clinical outcomes, although the question was posed how—and
through which entity or institution—such a common database
would be established, hosted and curated (Giordano, 2012,
2014). Modification of extant systems, and development of new

information management frameworks will be required to collect
and integrate, support and sustain the wide distribution of
many types and levels of data. Such approaches should: establish
a common data format, optimize harvesting, aggregation and
synthesis, establish checking systems to assess and characterize
the type and quality of data, maximize accessibility and ensure the
source of data, and enable retraction of data that are inaccurate
or in need of revision for currency. In light of the increasing
number and internationality of IIR DBS studies, it will also be
important to address issues and questions of intellectual property
and proprietary use (Brindley and Giordano, 2014). To fortify IP,
provenance, attribution (and relative indemnities), and data use
and sharing agreements will need to be implemented to achieve a
dynamic repository that supports the range of intended uses for
these data (clinical care, training, and research).

Highlights

1. The DBS industry may be served by a roadmap and/or
consortium to address common challenges that are impeding
novel technology development and deployment at present and
in the near future.

2. Valuable investigator initiated research (IIR) could be
strengthened by regulatory reform emphasizing data
review, process auditing, and unannounced site visits while
streamlining processes related to documentation.

3. FDA-approved template(s) for DBS-related investigational
device exemptions (IDEs) could guide investigators to more
efficiently dedicate time and resources.

4. There is an urgent need to establish databases for DBS
research-related purposes.

5. Continuity of care concerns for patients involved in
investigational DBS procedures must be considered.

INNOVATIVE TECHNIQUES AND
TECHNOLOGIES IN DBS

Functional Connectivity Tools to Guide
Stimulation for Epilepsy
A critical step toward optimizing direct modulation of
refractory focal-onset epilepsy is to effectively interface depth
electrodes with complex epileptogenic brain circuits. Some novel
approaches are currently being exploited to achieve this goal.

It was recently shown that a correlation-based measure of
functional connectivity could be used to identify epileptogenic
zones from intracranial stereoencephalography (SEEG) signals
and that this information can be used to predict the outcome of
lobectomy in intractable temporal lobe epilepsy (Antony et al.,
2013). Indeed, patients with weakly connected, homogenous
networks responded less favorably to temporal lobectomy. These
findings suggest the value of such SEEG-based functional
connectivity modeling in predicting the outcomes of depth
electrode placement for epilepsy (Gonzalez-Martinez et al.,
2013).

In addition, the FDA recently approved a depth electrode
system as an adjunctive therapy for individuals with refractory
focal-onset epilepsy with two epileptogenic sources. A novel
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FIGURE 2 | Overview of the “6-R, 6-W, 6-C” model for the ethical development of DBS technology.

pre-implant depth electrode placement planning system has
been shown to enable the propagation of therapeutic current
to communicating distant epileptogenic sources. The pre-
implantation planning process consisted of several components:
(1) structural magnetic resonance imaging (MRI) and diffusion
tensor imaging (DTI) datasets; (2) computation of the induced
electric potential surrounding the electrode contacts using a finite
element method; (3) analysis of the effect of the electric field-
dependent FA (fractional anisotropy) model on depolarizing
axon bundles as identified by high-resolution DTI; and (4)
predicting distant cortical activation by strategically placing the
FA volume seeds to create a modulated circuit tractography
(MCT) map. The pre-implant MCT map was then used as a
targeting template for placing up to two depth leads intra-
operatively. This planning system was validated via subtraction
activated SPECT (SAS), which is a perfusion imaging technique
that captures stimulation induced transient changes in cerebral
blood flow. SAS was utilized post-implantation to validate in
vivo, the maximal extent of epileptogenic regions influenced by
stimulation therapy.

Functional Connectivity Tools Enable
Personalized DBS
The effect of focal brain stimulation is not limited to the region
targeted and a DBS current can propagate through anatomical
connections to influence distributed neural networks in the brain.

Emerging techniques that can help DBS practitioners visualize
these networks are likely to prove valuable for understanding and
guiding brain stimulation. One imaging technique particularly
well suited to visualizing brain networks is resting state functional
connectivity magnetic resonance imaging (fcMRI) (Fox and
Raichle, 2007). This technique has already been demonstrated
to (1) identify thalamic DBS targets based on connectivity to
brain regions implicated in tremor (Anderson et al., 2011), (2)
link invasive and non-invasive brain stimulation sites across
14 different neurological and psychiatric diseases (Fox et al.,
2014), and (3) be safely applied in patients implanted with DBS
electrodes using special low-energy MRI sequences (Kahan et al.,
2014).

Another method that has emerged with considerable promise
is patient-specific tractography-activationmodels (TAMs), which
can enable the identification and visualization of white matter
pathways activated by brain stimulation. TAMs essentially
predict action potential generation in specific pathways. They
combine anatomical imaging data, probabilistic tractography
from the brain region surrounding the implanted DBS electrode,
models of the electrical fields generated by DBS parameter
settings, and cable models of axons (Lujan et al., 2013). TAMmay
lead to improved personalized surgical targeting and stimulation
parameter selection. TAM may also facilitate identification
of new DBS targets (Downes and Pouratian, 2014), and a
deeper understanding of the mechanisms underlying both the
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therapeutic and off-target effects of DBS (Riva-Posse et al., 2014;
Sweet et al., 2014).

Harnessing advances in neuroimaging techniques may also
play a role in re-evaluating conventional thinking in the field.
For example, with probabilistic diffusion tensor tractography, the
four anatomical targets for DBS in cluster headache described
as hypothalamic in literature were shown to be localized
to the midbrain tegmentum posterior to the hypothalamus.
Importantly, tractography also revealed common tracts across
these targets, which included projections to the ipsilateral
hypothalamus, reticular formation, and cerebellum (Clelland
et al., 2014). Collectively, these results can motivate a shift from
stimulation of specific brain targets to stimulation of specific
brain networks.

Investigating Lead Placement Variability
There can be considerable variability in DBS outcomes, and some
clinical trials have failed recently because of profound variability
in response rate across the patient cohort. This is evident even
in successful clinical trials. For example, in one of the larger
DBS trials in PD the standard deviation in clinical outcome
scores was roughly equal to the effect size (Deuschl et al., 2006).
Over the past 10 years computational models have been used
to characterize potential sources of variance in the way DBS is
applied (Grill et al., 2004; Johnson and McIntyre, 2008; Dorval
et al., 2009, 2010; Santaniello et al., 2011). In general, these studies
attempted to characterize how andwhere stimulation was applied
in each patient. With regard to the latter, one critical element
for both surgical planning and population research has been co-
registration of pre-operative patient MRI to a brain atlas. This
is performed prior to surgery to permit indirect targeting of
nuclei that have poor contrast on conventional imaging, and it
is performed after surgery so that regions of activation for each
patient can be expressed in a probabilistic atlas of outcomes
(Butson et al., 2011). During this process it has been observed
that lead locations often vary within and among surgical sites.
This observation has led to questions about errors that could
be introduced during atlas registration, and has motivated an
evaluation of the accuracy of this registration process. The
most important finding from this evaluation was that the
observed variability in lead location cannot be attributed to
errors introduced during atlas registration. In fact, three different
registration algorithms yielded virtually the same results. This
information supports the suggestion that the neuromodulation
community could benefit from wider adoption and acceptance of
open source registration algorithms, several of which have been
rigorously developed and tested.

Temporal Pattern of Stimulation as a New
Dimension of Therapeutic Innovation
Although DBS is an established therapy for the treatment of
movement disorders, debate persists about the mechanisms
by which high frequency stimulation reduces symptoms. This
probably results in a failure to achieve full optimization of the
therapy with maximal benefits and minimal side effects. Thus,
an improved understanding of therapeutic mechanisms will be

important to enable further innovations in DBS technique and
technology.

The cellular effects of DBS on neurons of the central nervous
system include simultaneous inhibition of the cell body and
activation of the axon (McIntyre et al., 2004). This finding
motivated the “informational lesion” hypothesis positing that
DBS masks pathological oscillatory activity by normalizing the
activity of neurons within the stimulated nucleus. The striking
parallel between the frequency-dependent effects of DBS on
regularizing the activity of model neurons and the clinical
effects on symptoms provides strong correlational evidence for
this hypothesis (Grill et al., 2004). The informational lesion
hypothesis has been tested in several recent experiments (Zimnik
et al., 2015). The changes in representation of kinematic
information in the firing patterns of neurons of the globus
pallidus and thalamus that occurred during DBS indicate that
effective DBS produces at least a partial disruption of neural
information (Agnesi et al., 2013).

In contrast, a more recent study concluded that DBS does not
disrupt information transmission in the basal ganglia (Zimnik
et al., 2015). However, the currents used in this study were orders
of magnitude smaller than those required for positive effects on
symptoms, and therefore the effects of DBS on neuronal activity
were substantially underestimated. Using a highly innovative
paradigm to render a temporary direct connection to the
brain lead during surgical replacement of the implantable pulse
generator (IPG) enabled another test of this hypothesis (Swan
et al., 2014). Random patterns of subthalamic nucleus DBS, even
when delivered at a high average frequency (130 Hz), were not
effective in relieving bradykinesia in patients with Parkinson’s
disease. These findings reinforced the potential importance of
regularization (rather than complete disruption) of neuronal
activity for the effectiveness of DBS (Dorval et al., 2010).

The finding that the effects of DBS were dependent on the
temporal pattern of stimulation, in addition to the frequency of
stimulation, inspired the design and testing of novel temporal
patterns of DBS. Patterns were developed that treat the symptoms
of Parkinson’s disease (PD) more effectively than conventional
regularly patterned DBS (Brocker et al., 2013). or alternatively
enabled equivalent treatment of symptoms but with a substantial
reduction in the required energy. This latter innovation is
an important consideration for the size, recharge frequency,
and battery life of implanted pulse generators. Collectively, the
results demonstrated the utility of an entirely new dimension of
neural stimulation parameters—the timing between stimulation
pulses—to increase the efficacy and efficiency of stimulation.

Advancements in Lead Design
Emerging DBS device technology will enable controlling
of stimulation fields. Three novel lead designs—all with
uniquely engineered approaches to achieving this objective—
were presented. Two of the presented leads feature electrodes
segmented radially about the lead, in contrast with existing leads
that are segmented only along the long axis of the lead. The
third lead featured an extended span, and brings with it a new
kind of current control to DBS. These new leads will allow the
stimulating currents to be programmed in order to preferentially
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stimulate therapeutic targets and avoid stimulating areas prone
to side effects. The importance of tuning and directing the
stimulating field is based on the observation that electrodes
are occasionally sub-optimally placed (Okun et al., 2005) and
sometimes quite far from the intended target (Ellis et al., 2008).
All three of the lead designs are currently being evaluated
in various clinical trials (Contarino et al., 2014; Pollo et al.,
2014; Vitek and Starr, 2015). The use of directional electrodes
can improve DBS outcomes when electrodes are sub-optimally
placed. Preliminary data presented at the Think Tank indicated
that targeted stimulation with these approaches is promising,
although the long-term benefits of the “directional” leads remain
to be demonstrated, particularly in a chronic study. Figure 3
provides a detailed comparison of these new lead designs.

One lead under investigation (Medtronic-Sapiens) possesses
an advanced multiplexer unit that supports a total of 40
electrodes and a span of 7.41 mm. With 10 rows of 4 electrodes
per row, and alternating rows offset by 45◦, 8 radial electrode
directions are possible. Stimulation can be further shaped and
aimed radially by choosing various combinations of active
electrodes and splitting the current between them; however,
details are not yet public regarding how electrodes may be
combined and programmed. Additionally, recording of local field
potentials (LFPs) is possible from each of the 40 electrodes—
potentially yielding spatiotemporal information on pathologic
neuronal activity. Preliminary intraoperative testing of this
system suggests that it may be possible to utilize intraoperative
LFP recordings to assess the effect of stimulation in different
electrode combinations and current settings on pathological
subthalamic electrical activity (Bour et al., 2015). This field
shaping capability can possibly avoid stimulation of unwanted
regions and enhance engagement of target areas (Barbe et al.,
2014).

Another recently tested lead (Aleva) has a total of eight
electrodes (span, 5.5 mm): two are the traditional ring electrodes
and the remaining two rings are divided into three segments
each, allowing for directional current delivery through each
segment (Chase, 2014; Pollo et al., 2014). The electrode corners
are rounded so as to avoid “hot spots.” Clinical data suggest that
this directional lead, when tested in the acute setting in either the
subthalamic nucleus (STN) or the ventralis intermedius (VIM)
thalamus, can improve the therapeutic index, i.e., enlarge the
window between therapeutic effect and adverse effects, and also
may possibly use less current to achieve the same therapeutic
benefits (Chase, 2014; Pollo et al., 2014).

Another lead (Boston Scientific DB-2201; currently
undergoing clinical evaluation in the United States) also
possesses eight electrodes (15.5 mm span), current on each
of which can be precisely controlled, as the IPG is capable of
current steering. The aim of this design, also referred to as
Multiple Independent Current Control (MICC), is to achieve
more precise targeting of stimulation by enhancing control of
the therapeutic electric field. As the IPG associated with this
lead is a current control design, it should theoretically enable
more stable stimulation. By reducing variability in impedance
and permitting the effective use of lower pulse widths, it should
also be possible to expand the therapeutic window of effective

current amplitudes. Results of a European trial have shown
clinical outcomes comparable to existing leads, and during the
trial over 70% of programmers utilized the current steering
feature (although motivations for this use have not yet been
evaluated; Timmermann et al., 2015). The system also has
cordless recharging, and the rechargeable IPG utilizes cero
volt technology, which helps prevent substantial loss in battery
capacity following frequent and/or full discharges. Future
capabilities that could be co-deployed with this lead were
discussed, such as computer-guided distribution of current
across contacts for an optimized or informed programming.

Non-DBS Technology Impacting the Field:
Focused Ultrasound
In addition to addressing important improvements in DBS
system technology, the Think Tank sought to identify “non-DBS”
approaches that could impact the DBS field. In this regard, the
use of transcranial high intensity focused ultrasound (HIFU)
for treatment of movement disorders was reviewed (Dallapiazza
et al., 2014). While effective, stereotactic lesioning of the brain
for the treatment of movement disorders has been largely
abandoned with the development of DBS (Dallapiazza et al.,
2015). However, progress in transcranial MR-guided focused
ultrasound technology has renewed an interest in stereotactic
lesioning mainly because of the potential for continuous MRI-
guidance of an “incisionless” thalamotomy (Wang et al., 2015).
Three pilot studies at different institutions have demonstrated
significant improvements in hand tremor in patients with severe
essential tremor following focused ultrasound thalamotomy
(Elias et al., 2013; Wintermark et al., 2014a,b). These studies have
suggested functional improvements in activities, disabilities, and
quality of life with minimal morbidity. Furthermore, transcranial
ultrasound at low intensities can be used to manipulate deep
brain circuitry through non-invasive brain mapping prior to
lesioning. Clinical trials of HIFU for mapping neural circuitry
and treating in essential tremor and PD are currently ongoing.

Proponents of HIFU further highlight that an incision and
burr hole are not required to perform the procedure, offering
a “lower-cost, less invasive” alternative to DBS that eliminates
both the risks of penetrating the brain and the inconvenience
and costs imposed by implanted hardware (Lipsman et al., 2013).
Dissenters believe this to be an oversimplification. Unlike DBS
surgery, HIFU requires the head to be completely shaved; patients
must remain awake during the procedure and must lie flat within
the MRI scanner for a few hours while the target is localized. The
MRI environment, while offering the potential for procedural
monitoring, can be difficult to work in and some patients cannot
tolerate these image-guided procedures. In comparison, DBS
targeting scans are obtained in just a fewminutes and patients are
positioned more comfortably during surgery. Most importantly,
HIFU is an ablative and irreversible lesion, and can result in
adverse effects especially when used bilaterally.

Direct comparisons of traditional (non-HIFU) thalamotomy
and thalamic DBS have already been performed (Tasker, 1998;
Schuurman et al., 2000; Pahwa et al., 2001). Three studies,
conducted at reputable centers in the U.S., Canada, and
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FIGURE 3 | Comparison of emerging DBS electrode lead technology. BSN, Boston Scientific Neuromodulation; STJ, St. Jude Medical; MDT, Medtronic.

Reference: St. Jude DBS Brochure 2010, St. Jude DBS Product Catalog 2011, Medtronic DBS 3387/3389 Lead Kit Manual.

Europe have all reached a similar conclusion. While initial
tremor control was comparable for the two interventions,
thalamic DBS was safer than thalamotomy, causing fewer
neurological complications and reducing the need for re-
operation in the event of tremor recurrence. Indeed, one
member of the University of Virginia HIFU cohort suffered
permanent dysesthesia (Elias et al., 2013), and a follow-up
study from that group suggests that tremor control may lessen
over time as the lesion shrinks in size (Wintermark et al.,
2014a). However, it is worth noting that ET can also become
refractory to or tolerant of DBS despite increasing currents
(Favilla et al., 2012). Clearly, there is a subset of patients who will
subjectively prefer HIFU to DBS; however, it remains unknown
whether HIFU ablation is objectively better or cheaper than
DBS of the thalamus or any other target. Moreover, there
are concerns over limitations of this technology including the
need for bilateral procedures, the safety profile, and the lack of
programmability.

Highlights

1. SEEG-based functional connectivity modeling is helping to
predict outcomes of depth electrode placement for epilepsy
(Gonzalez-Martinez et al., 2013).

2. Connectivity-based approaches, both functional and
structural, suggest that targeting brain networks rather
than individual brain sites may improve and personalize DBS.

3. Modifying the temporal pattern of DBS stimulation may offer
a new dimension to the therapy.

4. Emerging DBS lead designs incorporating radially segmented
electrodes and systems incorporating current steering will
enable greater specificity in brain circuit targeting and will
improve the benefit/side effect ratio of DBS therapy.

5. Stereotactic ablation with high frequency ultrasound is a less
invasive procedure compared to DBS, but carries considerable
limitations, including irreversibility and unilaterality.

CLOSING THE LOOP WITH LOCAL FIELD
POTENTIALS

Local Field Potentials Provide Insight into
Neuropsychiatric Disorders
DBS has shown promise as a therapy for neuropsychiatric
disorders; however, advances have been hindered by relatively
poor understanding of the neural networks involved in the
pathophysiology of these conditions. To address this gap, an
ongoing study by researchers at University of California San
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Francisco is investigating the mechanisms underlying depression
and anxiety in PD patients undergoing awake DBS surgery.

This population of patients is ideal for studying the circuits
involved in these depressive and anxious symptoms because they
frequently co-occur in varying degrees of severity in Parkinson’s
disease (Gallagher and Schrag, 2012). These symptoms may be
modulated by both DBS and dopamine replacement therapies
(Tan, 2012; Storch et al., 2013). High spatial resolution recordings
of neuronal activity are performed intraoperatively within brain
structures that have been shown to be involved in emotion
regulation and cognitive control. Field potentials are recorded
from the DBS lead (containing 4 electrode contacts) implanted
in the basal ganglia (either the subthalamic nucleus or globus
pallidus) and from an additional subdural electrode (containing
28 contacts, spaced 2mm apart) placed over the prefrontal cortex.
Cortical areas targeted include the dorsolateral/medial prefrontal
cortex, the orbitofrontal cortex, and the ventrolateral prefrontal
cortex. Recordings are performed while patients rest or perform
tasks that engage networks involved in emotion regulation
and cognitive control. In addition, cortical and subcortical
stimulation are used to modulate mood. To identify correlations
between neural physiology and symptom severity, depression,
mood, and anxiety are characterized both before the surgery
using a variety of validated scales, and during the surgery using
visual analog mood scales.

Preliminary results of these experiments in the prefrontal
cortex suggest that, similar to what has been observed in the
motor cortex (Shimamoto et al., 2013; Yang et al., 2014; de
Hemptinne et al., 2015), the prefrontal cortex is dominated
by beta oscillations that can be coupled to broadband gamma
activity (Hammond et al., 2007). It was found that the magnitude
of beta rhythm and phase-amplitude coupling varies between
patients. In addition, in few patients, it was shown that
stimulation delivered to the deepest contact of the DBS lead
can induce anxiety, and this effect on mood is associated with
a decrease in beta activity and an increase in broadband gamma.
Although preliminary, these findings suggest that both the beta
oscillations and broadband gamma activity might be relevant
to psychiatric symptoms, and that the excessive synchronization
observed in cortical-basal ganglia motor networks might also
occur in cortical-basal ganglia networks involved in emotion and
cognition.

Long-Term Cortical and Subcortical Local
Field Potentials (LFPs) in Parkinson’s
Disease
While DBS is an effective treatment for movement disorders
such as PD there are several ways that it might be improved.
The current approach is to deliver constant stimulation without
adjusting the therapy or controlling for the patient’s disease
state, medication status, or side effects. A goal of advancing DBS
therapy is to implement a “closed-loop” system where electrical
signals from the patient’s brain are used in real-time as feedback
to customize stimulation delivery. Closing the loop can be used to
reduce undesired side effects of stimulation and to extend battery
life, as well as to improve stimulation effectiveness.

An important step in the development of closed-loop DBS
for PD is the characterization of brain signals associated with
the disease-relevant network. A recent on-going study aimed at
identifying pathophysiological activity related to PD implanted
five patients with novel devices capable of both stimulating
and long-term recording and storing of LFP data. In this
study, patients are implanted with a DBS electrode in the STN
capable of both stimulation and sensing/recording electrical
activity. In addition, 4-contact electrocorticography (ECoG) strip
placed over the primary motor cortex (M1), which is used for
sensing/recording only. Each patient is tested multiple times,
both on and off medication, and on and off DBS. Preliminary
results reveal that in most cases, medication is associated with
a reduction in beta (13–30 Hz) power in the STN, while
no consistent changes in beta power are recorded from M1.
While these results support the importance of beta synchrony
throughout basal ganglia-thalamo-cortical loops in PD, they also
suggest that there is variability between patients, and that a
closed loop signal may need to be optimized on a patient-by-
patient basis, and/or that a combination of control signals may
be needed.

In addition to identifying markers that are of relevance
to hallmark PD symptoms, this study also aimed to assess
adverse effects associated with dopaminergic therapy such as the
dyskinesias. In two patients experiencing marked contralateral
arm dyskinesia, a consistent and reproducible emergence of a
narrow-band ∼70 Hz increase in cortical power was observed.
There was also increased coherence in the same frequency
range between STN and M1. Similar patterns of high frequency,
narrow-band activity has been previously observed in a rodent
model of dyskinesia (Halje et al., 2012), and these may be useful
for closed loop approaches.

Long-Term Cortical and Subcortical LFPs
in Tourette’s Syndrome
Tourette Syndrome (TS) is a paroxysmal neuropsychiatric
disorder characterized by involuntary movements and/or vocal
outbursts (i.e., - tics) typically preceded by a premonitory urge
(Cheung et al., 2007; Kenney et al., 2008). DBS has been used
to treat cases of severe and intractable TS (Almeida et al.,
2015). It is estimated that ∼120 TS patients worldwide have
been treated with DBS since 1999, and almost 48 published
studies report some degree of motor tic reduction (Schrock
et al., 2015). While initial trials have been promising, the
mechanisms subserving the effectiveness of DBS in reducing TS
signs and symptoms have yet to be identified. Current models
of TS hypothesize that thalamocortical-basal ganglia dysfunction
is a key network underlying many TS symptoms. Inhibitory
input from basal ganglia structures affecting the activity of
key thalamic nuclei likely plays a role in patterns of motor
behaviors. It may be that inhibition of basal ganglia structures
leads to disinhibition of thalamic nuclei, which ultimately evokes
initiation of tics (Perlmutter and Mink, 2006). Previous research
has demonstrated potential biomarkers of tics (Maling et al.,
2012; Bour et al., 2014). Building upon this work, the validity,
reliability and relative predictive value of these biomarkers, and

Frontiers in Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 119 | 158

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Rossi et al. 3rd DBS Think Tank Proceedings

the development of an algorithm that can be used in the early
detection of tics was presented.

In the presented study, two patients with severe, medication
refractory TS were implanted with bilateral DBS devices. Depth
leads were placed in the centromedian-parafascicular nucleus of
the thalamus (CM-PF) and electrocorticography (ECOG) strips
were placed over the precentral gyrus. Experiments consisted
of separate interleaved trials in which patients were instructed
to (1) tic freely, (2) suppress tics (baseline), and (3) execute
volitional movements (shaking hands rapidly, opening and
closing hands, raising arms up, and down, talking). Data were
recorded intraoperatively and post-operatively. Intraoperative
recordings demonstrated that both significantly more low (1–10
Hz) and high (30–100 Hz) frequency CM-PF activity was present
during tics but not during volitional movements. A support
vector machine (SVM)- based detector (Temko et al., 2011;
Wissel et al., 2013) was constructed to investigate the relationship
between this activity and tics during each post-operative visit
(for a period of 6 months). Three types of tics were recorded
including simple, complex, and long complex tics. Long complex
tics were shown to be concurrent with a consistently detectable
thalamocortical signature. Short complex tics were more difficult
to detect than long complex tics, and simple tics were the most
difficult to detect. Acute trials of closed loop stimulation using
the human tic detector are currently underway.

Local Field Potentials and Depression
A confluence of information prompted exploration of the
subcallosal cingulate gyrus (SC) as a DBS target for treatment
resistant depression (TRD) (Lozano et al., 2008). Attempts
to reduce TRD with SC DBS have shown clinical benefit: a
recent study involving 10 patients showed significant response
and remission rates following SC DBS (Holtzheimer et al.,
2012). However, numerous other targets for TRD, including
the nucleus accumbens, dorsolateral prefrontal cortex, and the
lateral habenula, have been proposed and subsequently explored
in clinical studies, with many of these showing at least some
evidence of clinical benefit (Rosa and Lisanby, 2012). The
question then arises if and how these targets may be related. The
conceptualization of depression as a network disorder suggests
that neuromodulation at the purported origin as well as at
“nodes” of the network can be beneficial (Mayberg, 2009). TAMs
of patients who underwent SC DBS for depression demonstrate
significant differences between those who responded to therapy
and those who did not (Riva-Posse et al., 2014). Specifically, it
was shown that responders had greater tract coverage in critical
regions.

Recent work has focused on using this information to improve
DBS targeting. Prospective work is currently underway to utilize
DTI pre-operatively to plan lead placement. This approach has
been associated with an increase in the 6-month response rate
from 41 to 76%. An important next stage of research will be
to identify other markers that can confirm if a lead has been
placed in a location that would elicit maximal benefit. On-
going studies aimed at identifying physiological markers useful
in evaluating lead placement and predicting treatment response
were presented. These studies focused on intraoperative LFPs

from the DBS electrodes in conjunction with intraoperative
ECoG and electroencephalograhy (EEG). Previous studies have
identified changes in alpha rhythm in depression; the alpha band
frequency is increased in the left frontal lobe in depression (Saletu
et al., 2010) while alpha is decreased in the right prefrontal cortex
(PFC) (Bruder et al., 2001). Preliminary studies of intraoperative
LFPs from both ECoG and depth electrodes after stimulation at
“effective” contacts (determined by imaging) have demonstrated
decreases in the alpha and beta frequencies in the left PFC, as
well as a decrease in alpha and beta bands in the subgenual
cingulate.

Local Field Potentials and Strides Toward a
Closed-Loop DBS
DBS systems currently deployed in the clinic are “open-loop”
and do not take into account the potentially intermittent
nature of symptoms. By detect the neurophysiologic correlates
of symptoms such as tremor, we can determine not only
when stimulation may be necessary but also estimate the
intensity of stimulation needed. Stimulating only when
necessary can increase the battery life of the implanted
devices and reduce a patient’s exposure to unintended
effects.

A novel mobile, wireless platform for investigating closed-
loop DBS applications in ambulatory patients was presented
(Herron and Chizeck, 2014). The platform consisted of a
set of body-worn sensors communicating wirelessly to a
host application running on a smartphone or a personal
computer. Taking advantage of movement data including
inertial measurements, electromyography, and LFPs, these host
applications are capable of performing digital signal processing
and data fusion in order to make control decisions. These
control decisions can include enabling or disabling stimulation
or modifying individual stimulation parameters (voltage, pulse
width, frequency) in response to changes in neurological
symptoms (Herron et al., 2015). These control decisions are then
sent wirelessly to an external receiver that then relays packets
and control decisions to an implanted neurostimulator. This real-
time command link to the implanted device has enabled the
implementation of an integrated closed-loop DBS system.

This system confers several important benefits for both
research and patient care. Currently, studies are underway to
assess clinical performance of the system, and future studies
are being planned which utilize the wealth of consistent,
chronic data generated from the integrated system to
investigate neurological movement disorder, particularly
tremor.

Highlights

1. Chronic recording of FPs is permitting greater insight into
multiple neuropsychiatric disorders.

2. LFP-based research holds promise for the identification of
pathological brain signals that could serve as triggers for
responsive stimulation.

3. Closed loop systems are being tested which could use a variety
of signals in order to modulate therapy.
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INNOVATIVE TARGETS FOR NEW
INDICATIONS

Lateral Habenula as a Target for
Depression
In 2007, a non-human primate study provided the first
electrophysiological evidence that the lateral habenula (LHb)
played a role in the brain’s reward system. The study
demonstrated that reward was associated with suppression of
inhibitory input from the LHb and subsequent activation of
dopamine neurons, while the reverse was observed for non-
rewarding trials (Matsumoto and Hikosaka, 2007). That same
year, Alex Sartorius and Fritz Henn advanced the hypothesis
of over activation of the habenula in major depressive episodes
and argued that DBS of the lateral habenula could be beneficial
for TRD (Sartorius and Henn, 2007). More recent studies in
humans have corroborated the notion of LHb involvement
in the reward system (Salas et al., 2010), and, interestingly,
two case reports have since been published (2010, 2013)
showing remission of major depression under DBS of the LHb
(Sartorius et al., 2010; Kiening and Sartorius, 2013; Schneider
et al., 2013). Early results from an on-going open-label trial
of six patients undergoing habenular DBS for TRD were
presented. The hypothesis that patients who were responsive to
electroconvulsive therapy (ECT)—even if for a short duration—
could be “better” candidates for habenular DBS was proposed,
and is under investigation in the present study. As a DBS target,
the LHb poses unique challenges for electrode implantation—
among these is the proximity of the target to the third ventricle
and the resultant motion artifact observed in imaging studies
due to the pulsatile movement of the cerebro-spinal fluid (CSF).
Programming-related adverse events observed to date were
discussed. Upper extremity paresthesias occurred commonly,
although patients mostly habituated to this and the effect was
modifiable by gradually increasing the current. Oculomotor
abnormalities were also observed which limited current dosing,
and it was proposed that current steering could be useful in
limiting this side effect.

DBS of the Basolateral Nucleus of the
Amygdala for PTSD
Neuromodulation of the amygdala may prove beneficial in
disease processes where symptoms arise from the aberrant
assignment of an emotion to a specific event or context
(Langevin, 2012). In post-traumatic stress disorder (PTSD),
patients assign fear to benign situations, which may potentially
lead to avoidance behavior. Several neuroimaging studies
have demonstrated that the amygdalae of PTSD patients are
metabolically overactive during symptomatic episodes (Etkin and
Wager, 2007; Hughes and Shin, 2011). The level of activity within
the amygdala correlates with the severity of the symptoms as
measured by the clinician-administered PTSD scale (CAPS). An
important study by Koenigs and colleagues showed that Vietnam
veterans who suffered traumatic brain injury to the amygdala
never developed PTSD (Koenigs et al., 2008). These results
suggest that the amygdala plays a critical role in the production

of PTSD symptoms. Focal interference of amygdala activity
through DBSmay improve PTSD. Although its mechanism is not
fully understood, high frequency DBS is thought to functionally
inactivate a specific, gray matter target. It was previously shown
that DBS of the basolateral nucleus of the amygdala (BLn)
reduced the behavior associated with PTSD in a rodent model
(Langevin et al., 2010). A subsequent study in the same rodent
model demonstrated that BLn DBS was superior to paroxetine—
one of the drugs approved by the FDA to treat PTSD (Stidd
et al., 2013). These results led to the recent development of
a clinical trial to evaluate the feasibility and the safety of this
technique in PTSD patients (Koek et al., 2014). An overview
of the trial design was presented, as well as an overview of
the first surgical subject implanted. In addition, the targeting
technique and intra-operative microelectrode recording findings
were described. Consideration of the patient’s neuroanatomy is
critical because of the wide variation in size and shape of the
mesiotemporal structures.

DBS for Stroke
The concept of post-stroke neurostimulation does not focus on
modulation of the area damaged by ischemia, rather it is intended
to (1) augment the perilesional cortex or (2) modulate other
areas whose connectivity has been disrupted by the stroke. Direct
cortical stimulation as a means of enhancing excitability and
plasticity has been investigated (Alonso-Alonso et al., 2007), but
has failed to produce the intended benefits in clinical trials. One
possible reason for the failure of cortical stimulation was the
relationship between cortical axons and the source of stimulation
(Manola et al., 2005a,b). In rodent models, axonal arrangement
perpendicular to the cathode is predictable. However, in human
brains, axonal arrangement is less predictable, and it is possible
that axons were inhibited and excited in near equal proportions
during cortical stimulation interventions and the net effect
washed out. A novel approach to stroke therapy via DBS was
discussed; the intention was to stimulate natural fiber pathways
to the perilesional cortex in a way that mimics their native
function. Preliminary results of this design in a rodent model
were presented. Based on motor pathway fiber tracing by Dum
and Strick, a cerebellar target (lateral cerebellar nucleus) was
selected with the goal of modulating the dentatothalamocortical
pathway (Dum and Strick, 2002; Machado and Baker, 2012).
Stimulation of this target (particularly at 30 Hz) was shown to
evoke cortical excitability. A follow-up study tested the effect
of chronic 30 Hz DBS in this target on motor function in a
rodent model of stroke (Machado et al., 2013). Animals in the
stimulation group showed a significant improvement in motor
function compared with post-ischemia baseline performance as
well as in comparison with the non-stimulation group (Machado
et al., 2013). Moreover, perilesional synaptic density testing
showed that animals in the stimulation group had significantly
greater numbers of perilesional synapses. Preliminary results of
on-going studies of cytoarachitecture in these animals addressing
whether these observations reflect neurogenesis in addition
to synaptogenesis were also presented. Substantial discussion
surrounded the topic of the appropriate level of pre-clinical
evidence needed to justify early clinical translation studies.

Frontiers in Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 119 | 160

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Rossi et al. 3rd DBS Think Tank Proceedings

Highlights

1. Emerging research suggests the viability of DBS as a treatment
for new indications, including depression, PTSD, and stroke.

2. Research into novel targets for novel indications requires
hypotheses based on animal models (where possible), well-
designed clinical trials, and careful attention to potential off-
target effects, patient selection, and targeting considerations.

CONCLUSION

These proceedings represent the deliberations of the third
Annual Deep Brain Stimulation Think Tank. The group
addressed critical issues affecting the progress of the DBS field.
These issues span multiple domains, including regulatory and
ethical issues as well as study design. There are also important
barriers to advance electrophysiology and system engineering.
In discussing these challenges, participants in the Think Tank
proposed and discussed possible solutions.

Scientific, clinical, and engineering advances that could
transform the DBS field in the near future served as a primary
focus of the Think Tank. The meeting focused on recent
discoveries that may lead to transformative, not just incremental
change in DBS therapy. Participants discussed the broad range
of potential applications of the new knowledge, techniques, and
technologies presented; they also discussed ways in which these
advances could be fully exploited to rapidly advance to the next
generation of DBS therapy. The future of DBS will depend heavily
on building on these advances and on filling knowledge current
gaps.
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Recent evidence suggests that deep brain stimulation (DBS) of the subthalamic

nucleus (STN) in Parkinson’s disease (PD) mediates its clinical effects by modulating

cortical oscillatory activity, presumably via a direct cortico-subthalamic connection. This

observation might pave the way for novel closed-loop approaches comprising a cortical

sensor. Enhanced beta oscillations (13-35 Hz) have been linked to the pathophysiology

of PD and may serve as such a candidate marker to localize a cortical area reliably

modulated by DBS. However, beta-oscillations are widely distributed over the cortical

surface, necessitating an additional signal source for spotting the cortical area linked

to the pathologically synchronized cortico-subcortical motor network. In this context,

both cortico-subthalamic coherence and cortico-muscular coherence (CMC) have been

studied in PD patients. Whereas, the former requires invasive recordings, the latter allows

for non-invasive detection, but displays a rather distributed cortical synchronization

pattern in motor tasks. This distributed cortical representation may conflict with the goal

of detecting a cortical localization with robust biomarker properties which is detectable on

a single subject basis. We propose that this limitation could be overcome when recording

CMC at rest. We hypothesized that—unlike healthy subjects—PD would show CMC

at rest owing to the enhanced beta oscillations observed in PD. By performing source

space analysis of beta CMC recorded during resting-state magnetoencephalography,

we provide preliminary evidence in one patient for a cortical hot spot that is modulated

most strongly by subthalamic DBS. Such a spot would provide a prominent target region

either for direct neuromodulation or for placing a potential sensor in closed-loop DBS

approaches, a proposal that requires investigation in a larger cohort of PD patients.

Keywords: deep brain stimulation, Parkinson’s disease, beta cortico-muscular coherence, source space,

neurophysiological biomarker, cortical targeting, closed-loop stimulation

INTRODUCTION

Cortico-subcortical networks of Parkinson’s disease (PD) patients are characterized by pathological
circuit dynamics such as dysfunctional synchronization in the beta-frequency (12–35 Hz)
band (Little and Brown, 2014). Dopaminergic medication and electrical stimulation may
rebalance and clinically improve these altered interactions both locally and on a network level
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(Kühn et al., 2008; Litvak et al., 2011; Eusebio et al., 2012;
Hirschmann et al., 2013b; Weiss et al., 2015). Even in PD patients
with early motor complications, deep brain stimulation (DBS) of
the subthalamic nucleus (STN) provides better relief (alleviating
motor symptoms and improving life quality) than medication
(Schuepbach et al., 2013).

Two lines of evidence nominate the cortex as a target for
modulating the dysfunctional network dynamics in PD: In
patients, cortical beta activity precedes pathological subcortical
synchronization (Marreiros et al., 2013). Furthermore, findings
in both animal models of DBS (Gradinaru et al., 2009; Li
et al., 2012) and patients (de Hemptinne et al., 2015) suggest
that anti-dromically activated responses in the motor cortex
are involved in the beneficial effects of STN DBS. Although
previous studies of electrical cortical stimulation (CS) in PD
revealed lower efficacy compared to DBS (Cilia et al., 2007;
Moro et al., 2011; Bentivoglio et al., 2012), recent technological
developments of implantable devices for simultaneously sensing
and stimulating (Afshar et al., 2012) have refueled the interest in
CS by applying closed-loop devices (Rosin et al., 2011; Beuter
et al., 2014). Simultaneous magnetoencephalography (MEG)
and local field potential (LFP) recordings in the STN of PD
patients (using implantedDBS electrodes with externalized leads)
detected long-range functional connectivity between STN and
the ipsilateral sensorimotor and premotor cortex in the beta
frequency range, suggesting the involvement of the hyperdirect
pathway (Hirschmann et al., 2011; Litvak et al., 2011). More
recently, electroencephalography (EEG) has also been applied to
capture cortical beta-gamma phase-amplitude coupling (PAC) as
a functional marker in PD while demonstrating its modulation
by levodopa (Swann et al., 2015). However, the elevation of the
EEG PAC signal in PD patients compared to healthy controls was
not demonstrable on a single subject basis, but only at the group
level (Swann et al., 2015). We therefore still lack a non-invasive
technique that could be applied before surgery on a single subject
basis to functionally localize a cortical target area informative on
pathological beta oscillatory characteristics for either direct CS or
as a sensor for closed-loop DBS.

There is converging evidence, that enhanced cortical beta
activity is a prominent feature in the pathophysiology of PD
(Kühn et al., 2008; Eusebio et al., 2011; Airaksinen et al., 2012;
Little and Brown, 2012). Moreover, the hyperdirect pathway,
connecting the STN and the motor cortical area is believed to
mediate a DBS-related decrease of this exaggerated beta activity
in parallel to alleviation of bradykinesia-rigidity symptoms
(Kühn et al., 2006; Whitmer et al., 2012). Therefore, the most
intuitive candidate marker is expected within the beta frequency
range in order to detect a reliable cortical biomarker for
PD. Oscillatory activity in the beta range, however, is widely
distributed over the cortical surface. Additional measures are
warranted to spot the cortical area reliably modulated by DBS.
Cortico-muscular coherence (CMC) might provide such an
additional measure. During motor tasks, CMC generally displays
a spatially distributed cortical representation (Crone et al.,
1998a,b; Grosse-Wentrup et al., 2011; Hipp et al., 2011), thereby
conflicting with the goal of detecting a cortical hot spot. There is
also a large inter-subject variability of CMC in PD patients during
a motor task (Kühn, 2004; Kühn et al., 2008; Tropini et al., 2011;

Weiss et al., 2012; Selzler et al., 2013) most probably explaining
the variable findings in previous motor task related CMC studies
in PD (Airaksinen et al., 2015).

We propose that this limitation could be overcome when
performing the CMC measurement at rest. We suggest
that—unlike in healthy subjects—(I) CMC would be detectable
in the PD condition even in the absence of movement due to the
disease-specific enhanced beta oscillations. Furthermore,
we hypothesize that (II) the cortical CMC spot would
topographically converge with the cortical spot modulated
most strongly by subthalamic DBS. To provide proof-of-concept
evidence, we implemented a MEG set-up for resting-state CMC
and DBS to perform source space analysis of related cortical
activity.

EXPERIMENTAL SET-UP

Recording
The measurements were performed inside a magnetically
shielded room (Vakuumschmelze, Hanau, Germany) with a
whole-head 275-channel MEG (CTF, VSM Medtech, Port
Coquitlam, Canada) at a sampling rate of 1172Hz. Recordings
included bipolar electromyography (EMG) from the right
flexor carpi radialis muscle (grounded to elbow), bipolar
electrooculography (EOG) and electrocardiography (ECG). The
patient was seated comfortably and asked to remain motionless.
Her gaze was focused on a fixation cross at eye level. The pre-
programmed stimulation was switched off 30 min beforehand
to obtain reliable wash-out of subthalamic DBS effects (Cooper
et al., 2013; Weiss et al., 2013). We recorded 6 min (360 s)
of resting-state MEG without stimulation (rest). This baseline
measurement was followed by recordings during 10 stimulation
trials, each lasting 2 min; 1 min stimulation-on followed by 1
min stimulation-off. For data analysis, we selected the first 40
s of the stimulation-off period of each trial. This resulted in
an overall time-period of ∼360 s after artifact rejection. Time
periods immediately following DBS were compared with the
360 s of baseline measurement at rest before the stimulation
trials. This approach was chosen because: (i) methods for
suppressing the stimulation artifact in MEG recordings during
simultaneous monopolar DBS might not be sufficiently effective
for interpreting stimulation results (Devos, 2004; Silberstein
et al., 2005; Airaksinen et al., 2012). By analyzing the period
immediately after stimulation, stimulation artifacts are avoided.
(ii) Even short term stimulation has neuronal effects that
last for several seconds or minutes after stimulation (Kühn
et al., 2008; Bronte-Stewart et al., 2009; Whitmer et al.,
2012). The time period immediately following stimulation
might therefore provide information on stimulation-induced
physiological effects. (iii) By comparing this data to the resting
measurements before stimulation trials, any carry-over effects in
the data used as baseline can be excluded. Source space analysis
was performed using a T2-weighted individual MRI.

Pre-processing
Notwithstanding stimulation, the DBS hardware itself induced
relevant MEG artifacts. These were removed using temporal
signal space separation (tSSS; Taulu and Simola, 2006; Taulu
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and Hari, 2009), which was applied with a subspace correlation
limit of 0.9 (Medvedovsky et al., 2009; Airaksinen et al., 2011).
The Dynamic Imaging of Coherent Sources (DICS) beamformer
has been shown to reliably suppress metal artifacts of implanted
DBS electrode leads in the stimulation-off mode as well as with
externalized extension cables, i.e., an impulse generator (IPG)
outside the body (Litvak et al., 2010). However, it has not yet been
shown that this approach also removes the artifacts induced by an
implanted IPG during breathing or even during stimulation.

By contrast, tSSS has been shown to overcome these additional
artifacts when applied in an Electa Neuromag. Together with
the developers of tSSS, we have therefore implemented tSSS in
our CTF MEG system. The data presented here was preceded
by phantom and in vivo studies to optimize the device settings
so as to reliably suppress artifacts. When signal quality did not
allow a reliable rejection of artifacts, the algorithm refused the
artifact rejection per se. In these pre-studies, we reliably localized
movement-related activity and event-related potentials to their
anticipated cortical localization during stimulation (unpublished
data).

The patient’s magnetic resonance images (MRI) were
interpolated to a resolution of 256 × 256 × 256 voxels. Fiducial
(nasion, left, and right preauricular) and anatomical landmarks
(anterior and posterior commissure, mid-sagittal plane) were
used to align the MRI to standard space of the Montreal
Neurological Institute (MNI). Finally, the source space was
defined by a single shell segmented model and lead fields with
a resolution of 8 mm.

We applied a first order zero-phase lag finite impulse response
bandpass filter (1–40 Hz) to the MEG time series, and highpass
filters of 0.5 Hz to the ECG, 0.05 Hz to the EOG, and 2 Hz to
the EMG, respectively, to preserve relevant spectral components
in the signals. Thereafter, we applied an independent component
analysis (ICA) and correlation analysis to identify and remove eye
movement, blink, and cardiac-related artifacts. We decorrelated
each trial of the MEG sensor time series into 40 independent
components via fast independent component analysis. Both
independent components, which maximally correlated with the
ECG and EOG, were labeled artifacts and skipped during back-
projection of the independent components to sensor level.
An additional visual inspection, where we focused on the
eye movement, blink, and cardiac-related artifacts in the time
series of the components, verified the respective artifacts. The
magnetic fields of the single sensors were recomputed using
an interpolation toward average head position throughout the
recordings. All trials and conditions were divided into 5-s epochs.
Finally, z-value-transformed epoch-wise artifact rejection was
performed using a cutoff-value of 20.

Data Analysis
We applied a previously described approach (Litvak et al.,
2011) to identify the frequency band with maximal cortico-
muscular coherence (CMC) and to calculate source space CMC.
We rectified the EMG channel (Myers et al., 2003; Yao et al.,
2007) and calculated cross-spectra with all MEG sensor time
series from 2 to 40 Hz by tapering the 5-s epochs using
slepian functions (Mitra and Pesaran, 1999) and 2 Hz spectral

smoothing resulting in a frequency resolution of δf = 0.2Hz
(see Figure 1A). Source space CMC was then calculated by
using these cross-spectra and Dynamic Imaging of Coherent
Sources (DICS) beamforming (Gross et al., 2001). Pre-processing
with tSSS has previously been shown not to restrict the usage
of a subsequent beamformer analysis (Hillebrand et al., 2013).
Common spatial DICS filter of both conditions, i.e., rest and
stimulation, were calculated beforehand and used for source
space CMC calculation. Calculating a common spatial filter
for beamforming is usually applied when comparing different
conditions after beamforming to avoid biased results due to
different spatial filters of the conditions.

For the statistical comparison of the rest and stimulation
condition for both CMC and power, a non-parametric cluster-
based permutation approach was used to correct for multiple
comparisons (Maris and Oostenveld, 2007; Oostenveld et al.,
2011). We computed voxel-wise t-values between the rest and
stimulation condition and clustered voxels exceeding p < 0.001
(uncorrected). The sum of the t-value within the clustered
voxel area defined the cluster-level statistics. By randomly
permuting the data between rest and stimulation condition
for 1000 times, we obtained a reference null distribution of
the maximum cluster-level statistics. In order to correct for
multiple comparisons, the maximum cluster-level statistics that
differed from the reference null distribution with p < 0.05
(corrected) were considered significant. All data analysis was
performed offline with custom written scripts and FieldTrip
toolbox (Oostenveld et al., 2011) in MATLAB R© (R2011a, The
MathWorks R© Inc.,).

EMPIRICAL DATA

An idiopathic akinetic-rigid PD patient (female; age: 69 years;
disease duration: 12 years; UPDRS III (motor part) stimulation
on/off: 15/20) participated after giving written informed consent.
We examined the patient 5 months after DBS surgery with
bilateral electrode implantation in the STN (Medtronic 3389
leads and Activa PC R© stimulator, Minneapolis, USA). The
physiological effects of unilateral DBS (left hemisphere) were
studied using the same stimulation parameters as applied
clinically (monopolar, contact 2-G+, 1.5 V, 60 µs, 125 Hz) while
the patient was in medication-on (levodopa equivalent dose =

581mg; Deuschl et al., 2006). The study was conducted with the
patients’ informed consent and in accordance with the guidelines
approved by the local ethics committee of the University Hospital
Tuebingen.

Spectral analysis of CMC at baseline, i.e., in rest and
stimulation-off, revealed that the strongest connectivity occurred
in the beta-band (Figure 1A). Scanning all sensors showed
predominant involvement of the hemisphere contralateral to
the EMG recording (Figure 1B) with a topography suggestive
of one major source in MEG sensor space (Figure 1C). Source
space CMC analysis showed the maximum of the beta-CMC
within the motor cortex of the hemisphere contralateral
to the muscle (Figure 2A) as opposed to a distributed
pattern of cortical activation in the beta-band (Figure 2B).
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During STN-DBS, the same beta-CMC (Figure 3A) and
beta power (Figure 3B) source-cluster revealed the strongest
stimulation-induced changes, i.e., decreases of CMC and cortical
power in the beta-band.

DISCUSSION

We performed source space analysis of beta CMC recorded
during resting-stateMEG andDBS and provide proof-of-concept
evidence for a cortical hot spot that is most strongly modulated
by subthalamic DBS. Since this study is carried out in only one
subject, this proposal requires investigation in a larger cohort of
PD patients to probe the robustness of this approach, e.g., for
different disease states.

The present work suggests that a circumscribed cortical area
involved in the pathologically synchronized cortico-subcortical-
muscular motor network can be detected non-invasively in
PD on single subject level, which constitutes a mandatory
prerequisite for future closed-loop neurostimulation strategies on
the basis of a cortical sensor. Due to its high spatial resolution
of ∼2 mm (Pizzella and Romani, 1990), MEG is as an excellent
tool for non-invasive mapping prior to neurosurgical procedures.
Up to date, MEG examinations have been successfully used for
presurgical evaluation of epilepsy patients (Knowlton and Shih,
2004) and patients with tumors in eloquent areas (Rezai et al.,
1996; Orrison, 1999). Integration of the MEG information in
the stereotactic planning software has been used for electrode
placement (Agirre-Arrizubieta et al., 2014) and to aid safe
resection of tumors (Kelly, 1996; Rezai et al., 1996; Orrison,
1999). The knowledge acquired with the presented approachmay
thus be integrated in stereotactic planning for the placement
of cortical implants for direct neuromodulation or for placing
a potential sensor in closed-loop DBS approaches. We did not
intend to describe a specific extent or location of such a cortical
area, since these parameters may vary between patients. However,
in accordance with previous literature on the hyperdirect
cortico-subthalamic pathway recorded with cortico-subthalamic
coherence (Hirschmann et al., 2011), the data presented here
suggests that this cortical area covers a part of the medial motor
und premotor cortex.

The involvement of the cortical areas associated with
motor processing in Parkinson tremor is well-documented
(Timmermann et al., 2003; Hirschmann et al., 2013a). However,
source space topographic information about CMC in akinetic-
rigid PD and in the absence of movement is rather sparse.
As a conceptual novelty of this work, we captured the cortical
spot of pathological resting-state CMC in the beta band. An
implantable cortical sensor for closed-loop applications needs
to be spatially restricted from a neurosurgical point of view.
Therefore, the cortical target point would be defined as the area
which addresses both networks, i.e., the rigidity/bradykinesia
and the tremor network. The cortical area involved most
strongly in the rigidity/bradykinesia network observed here
seems to be more restricted than the tremor network reported
by Timmermann and colleagues. Since still being part of
the latter such an area would qualify as the common
hotspot.

FIGURE 1 | (A) Frequency spectrum of resting-state cortico-muscular

coherence (CMC) of all sensors. Dotted vertical lines indicate the

beta-frequency range which was analyzed. (B) Spatial distribution of CMC.

(C) Topoplot of beta-band CMC in MEG sensor space. L, left; R, right; C,

central; F, frontal; O, occipital; P, parietal; T, temporal; Z, midline.

Our concept suggests capturing a cross spectrum for every
patient to detect the individual peak frequency band of CMC
(see Figure 1A). As expected, the presented case also showed
the peak CMC in the beta-band followed by the alpha-band.
This observation is in accordance with a large body of literature
reporting relating enhanced beta oscillations both in the STN

Frontiers in Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 110 | 168

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kern et al. Toward Closed-Loop Neuromodulation in Parkinson’s Disease

FIGURE 2 | Projection of beta-band cortico-muscular coherence (A)

and of cortical beta power (B) in resting-state on transversal slices of

individual T2-weighted MRI with 60% thresholding.

and on the cortical level to the pathophysiology of PD (Kühn
et al., 2008; Eusebio et al., 2011; Airaksinen et al., 2012; Little
and Brown, 2012; Whitmer et al., 2012). Moreover, beta-band
oscillations have repeatedly been shown to mediate cortico-
muscular communication (Salenius et al., 2002; Baker, 2007;
Engel and Fries, 2010; Weiss et al., 2012; Airaksinen et al., 2015).
In contrast to beta-CMC, alpha-CMC is not consistently found
(Kilner et al., 2000; Budini et al., 2014) andmay be confounded by
coherence occuring at double tremor frequency (Timmermann
et al., 2003). Therefore, it is not surprising that we did not find
any significant source cluster for alpha-CMC in the resting state
and in the absence of tremor.

STN stimulation is known to modulate spontaneous activity
and somatosensory evoked responses over the sensorimotor
cortex (Mäkelä et al., 2007; Airaksinen et al., 2011). Furthermore,
excessive beta oscillatory activity is suppressed by STN-DBS
in PD along with symptom alleviation (Kühn et al., 2008;
Whitmer et al., 2012; Little and Brown, 2014). This correlation
of therapeutic beta activity modulation and motor symptom
alleviation is not surprising, given that oscillatory beta activity
relates to motor processing, sensorimotor control, and cortico-
peripheral interactions (Brovelli et al., 2004; Schoffelen et al.,

FIGURE 3 | (A) Stimulation modulated beta-CMC showing the difference

between the rest and the stimulation condition. (B) Stimulation modulated

cortical beta power showing the difference between the rest and the

stimulation condition. The color bar indicates the t-values according to a

non-parametric cluster-based permutation approach (p < 0.05, corrected).

2005; Baker, 2007; Chakarov et al., 2009; Engel and Fries,
2010). Cortical beta band activity may parallel the maintenance
of the sensorimotor state (status quo; Engel and Fries, 2010).
Therefore, decreased motor cortical beta power, as found in
this study, may represent a release of cognitive resources, which
restores the ability of motor self-control mediated by cortico-
basal ganglia-thalamo-cortical loops (Kringelbach et al., 2010;
McIntyre and Hahn, 2010; Little and Brown, 2012). As already
described previously (Whitmer et al., 2012; Weiss et al., 2015),
STN stimulation suppresses cortical beta band activity in motor-
related areas. Thus, the findings reported here are in line with
these previous results.

Cortico-peripheral interactions as measured by CMC in
the beta frequency band may be increased by levodopa
administration (Salenius et al., 2002). The effect of STN
stimulation was more variable showing a slight beta band CMC
increase on fine-motor integration (Weiss et al., 2012) and
variable outcomes during joint movement (Airaksinen et al.,
2015). This case study suggests that, in the resting state, this
long-distance corticomuscular synchronization is decreased by
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STN-DBS. This tallies with the anticipated dysbalanced drive
from cortex to muscle in PD (Salenius et al., 2002; Hirschmann
et al., 2013b). The concept of maintaining the status quo via
sensorimotor activity in beta band may therefore be extended
to beta band CMC as well (Baker, 2007; Engel and Fries, 2010).
Decreasing beta CMC in the resting state through STN-DBS
may thus represent a reduction of an abnormal persistence
of the status quo, i.e., of the pathological oscillatory drive to
the muscle in PD (Brown et al., 2001; Marsden et al., 2001).
It should be noted, however, that CMC in itself may have a
functional role in the motor system apart from the cortical
oscillatory activity (Baker and Baker, 2003), thus deserving
a consideration independent from cortical beta band power
modulation.

However, previous work performing resting-state MEG
recordings in PD patients with DBS has neither captured
CMC nor has it analyzed source level oscillatory activity (Cao
et al., 2015). Only movement-related beta-CMC is currently
being investigated as a physiological marker in PD patients
undergoing DBS surgery (Hirschmann et al., 2011; Airaksinen
et al., 2015). Although, these studies focused on the impact
of levodopa medication and DBS on CMC as physiological
predictors of clinical outcome, an application of this technique
for delineating a cortical hot spot for surface stimulation remains
elusive. Airaksinen and co-workers suggested that the cortical
representation of beta-CMC and the cortical area modulated by
DBS might even differ (Airaksinen et al., 2015). Based on our
findings, we suggest that the cortical representation of beta-CMC
during resting state might be more restricted.

We therefore suggest that resting-state CMC may eliminate
the large inter-individual variability inherent to movements in
PD patients in general (Kühn, 2004; Kühn et al., 2008; Tropini
et al., 2011; Selzler et al., 2013) and of the related CMC in
particular as observed by Airaksinen et al. (2015). Moreover,
we demonstrate that source reconstruction—and co-location—
of both CMC (Figure 3A) and oscillatory power (Figure 3B)
during DBS reveals the cortical convergence of pathological
synchronization within a cortical hot spot.

Using simultaneous MEG and LFP recordings, motor cortical
areas directly connecting STN and cortex, i.e., mediated via the
hyperdirect pathway, were identified in source space thereby
disentangling different sub-frequency bands within the beta-
band and attributing the upper beta-band to cortico-subcortical
interactions (Hirschmann et al., 2011). In the present study,
we did not capture cortico-subcortical coherence, which would
have necessitated externalized leads. Future studies will therefore
need to explore frequency-specific interactions between local beta
activity and rather long-range interaction with the sensorimotor
loop, i.e., for STN/cortex, muscles/cortex, and STN/muscles.
Corroborating results for a direct connection between STN
and cortex were however obtained by quantitative modeling of
axonal fiber activation (Hartmann et al., 2015) or a combination
of diffusion tensor imaging (DTI) and electrocorticographic
(ECoG) electrodes (Whitmer et al., 2012).

More recently, ECoG (de Hemptinne et al., 2015) and
EEG (Swann et al., 2015) have also been applied to capture
cortical beta-gamma phase-amplitude coupling (PAC) as a

functional marker, while demonstrating its modulation by DBS
(de Hemptinne et al., 2015) and levodopa (Swann et al., 2015);
PAC might provide an even more robust biomarker than beta
oscillations in PD patients (de Hemptinne et al., 2015; Swann
et al., 2015). Capturing PAC inMEG source space, however, poses
methodological challenges. We are therefore currently applying
EEG to compare different physiological markers in PD patients,
e.g., for determining topographic and functional differences
between PAC and beta oscillations. Future physiological studies
will moreover need to compare the interactions in medication
on/off and to capture clinical lateralization scores as well.
Medication may modulate the very same networks that are
modulated by DBS, and the observed DBS effects might even be
more pronounced in the medication off state.

This proof-of-concept is however the first to show that beta-
CMC delineates the very same cortical area as modulated by
STN-DBS, and is meant to inspire and encourage other groups
to challenge this testable hypothesis by examining their patients
with resting-state CMC as well. These future larger scale studies
will then have to address further questions, such as (1) can
resting-state CMC be detected in all PD patients, (2) is resting-
state CMC correlated with the severity of the disease, (3) does
the cortical hot spot vary between patients, and (4) do peak
frequencies vary between patients?

CONCLUSION

We argue that the particular pathophysiology, i.e., the increased
synchronization in the oscillatory beta-frequency band, in
advanced Parkinson’s disease (PD) would facilitate the non-
invasive detection of a cortical hot spot since cortico-muscular
communication is also mediated in the very same frequency
band.

We demonstrated that both clusters projected to the same
anatomically plausible area in the primary motor/ premotor
area and that these overlapping source clusters revealed the
strongest stimulation induced changes for CMC (Figure 3A) and
cortical power (Figure 3B). The decreases of CMC and cortical
power were both in the same beta-band. Only a circumscribed
area of the whole extended region with increased cortical
beta activity (Figure 2B) was significantly reduced by DBS
(Figure 3B). All these complementary and consistent findings
cannot be explained by random collocation and are therefore not
compromised by the sample size of one. However, the inherent
intersubject variability in signals will necessitate the study of
further patients to draw definite conclusions.

The novelty of this concept is grounded in the new
combination of methods rather than in a new methodology,
i.e., by combining resting-state (instead of the usual movement
related) cortico-muscular coherence (CMC) with source space
analysis of magnetencephalography recordings. Future studies
will need to reveal which cortical recording technique, MEG or
EEG, is better suited to detect the cortical hot spot before surgery.

The underlying hypotheses are (a) that resting-state CMC
would be detectable in PD (other than in healthy subjects),
(b) that resting-state CMC would avoid the known variability
of movement related CMC in PD, and (c) that pathologically
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synchronized loops would converge on the cortical level. Such a
topographic convergence within a cortical-subcortical-muscular
network would provide a prominent target region either for
direct neuromodulation or for placing a potential sensor in
closed-loop DBS approaches since DBS was recently shown
to mediate its therapeutic effects also via remote cortical
modulation.
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Facial paralysis can be a devastating condition, causing disfiguring facial droop, slurred

speech, eye dryness, scarring and blindness. This study investigated the utility of

closed-loop functional electric stimulation (FES) for reanimating paralyzed facial muscles

in a quantitative rodent model. The right buccal and marginal mandibular branches of

the rat facial nerve were transected for selective, unilateral paralysis of whisker muscles.

Microwire electrodes were implanted bilaterally into the facial musculature for FES

and electromyographic (EMG) recording. With the rats awake and head-fixed, whisker

trajectories were tracked bilaterally with optical micrometers. First, the relationship

between EMG and volitional whisker movement was quantified on the intact side of the

face. Second, the effect of FES on whisker trajectories was quantified on the paralyzed

side. Third, closed-loop experiments were performed in which the EMG signal on the

intact side triggered FES on the paralyzed side to restore symmetric whisking. The results

demonstrate a novel in vivo platform for developing control strategies for neuromuscular

facial prostheses.

Keywords: paralysis, facial nerve, functional electrical stimulation, electromyography, rodent

INTRODUCTION

Facial paralysis is a disfiguring condition affecting 127,000 individuals annually (Bleicher et al.,
1996). Beyond cosmetic disfigurement, facial paralysis can lead to permanent disability. Blindness
may occur if the cascade of corneal dryness, conjunctivitis, and ulceration develops (Otto et al.,
1986). Nasal obstruction and mouth leakage result from an inability to keep nasal passages patent
andmouth closed, respectively (May et al., 1977). Finally, dysarthria and distorted facial expressions
hinder both spoken and nonverbal communication (Coulson et al., 2004), resulting in awkward and
strained social interactions.

The ultimate goal of facial reanimation is to enable independent control of paralyzed facial
muscles. This goal has proven elusive. Development of effective treatment options is confounded
by the wide range of causes that result in a shared facial palsy phenotype, namely, trauma, infection,
neoplasm, iatrogenic insults and idiopathic etiologies (Melvin and Limb, 2008). Current treatments
palliate the condition by partially restoring muscle tone or by attempting to prevent catastrophic
consequences, like blindness. These procedures all have significant drawbacks. Sacrifice of the
hypoglossal nerve for nerve transfer results in ipsilateral tongue paralysis. Cross-facial nerve grafts
route contralateral facial branches to the paralyzed side, but this procedure places the healthy
nerves at risk (Hontanilla et al., 2013). Dynamic procedures routinely take 9–18 months to
become effective and require rigorous rehabilitation (Spector et al., 1991; Robey and Snyder, 2011).
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Spontaneous movement or emotional expression is rarely
achieved and the functional status is often compromised by
synkinesis. To improve outcomes researchers are developing
several new treatments (Hadlock and Cheney, 2008), including
the use of functional electrical stimulation (FES) to reanimate
paralyzed facial muscles (Griffin and Kim, 2011).

The effectiveness of FES in activating paralyzed facial muscles,
in particular the orbicularis oculi to restore eye blink, has been
demonstrated in rabbits and dogs (Rothstein and Berlinger, 1986;
Salerno et al., 1991; Otto, 1997; Somia et al., 2001; Sachs et al.,
2007; Jie et al., 2016). Since many facial movements including eye
blink are symmetric, a natural closed-loop FES control signal in
unilateral facial paralysis can be derived from the intact side of the
face. In particular, electromyographic (EMG) recordings from a
facial muscle contralateral to the injury can be used to trigger FES
of the homologous paralyzed muscle. A similar, bilateral, closed-
loop approach has been used to rehabilitate hand movements
after stroke (Knutson et al., 2012, 2016). In the context of facial
paralysis, this closed-loop strategy has been demonstrated in
rabbits, dogs, and humans (Zealear and Dedo, 1977; Tobey and
Sutton, 1978; Broniatowski et al., 1987, 1989, 1991; Cao et al.,
2009; McDonnall et al., 2009; Kurita et al., 2010; Frigerio and
Cavallari, 2012; Yi et al., 2013). Most of these studies focused on
restoration of eye blink and utilized largely qualitative measures
of FES performance.

In the present work, we sought to develop a new, quantitative
animal model of FES-controlled facial reanimation. Quantitative
tracking of bilateral facial movements is typically done with
video cameras and feature recognition software (Sachs et al.,
2007). But this strategy is error-prone and has low temporal
resolution. An alternative strategy is to track a more conspicuous
facial feature present on some animals: facial vibrissae (whiskers).
Rodent whiskers are controlled by muscles innervated by the
facial nerve (Berg and Kleinfeld, 2003), typically exhibit bilateral
symmetric motion (Gao et al., 2001), and can be readily tracked
with high spatiotemporal resolution (Bermejo et al., 1998). Thus,
we hypothesized that a rodent model of unilateral facial paralysis
could provide an improved assessment of FES performance
for dynamic facial reanimation. A similar approach with rats
was developed previously for the study of facial nerve function
(Heaton et al., 2008). In the present study we quantified, for
the first time, the effects of open- and closed-loop FES on
whisker motion. The results suggest this new approach could be
useful for designing improved FES control policies for a facial
prosthesis.

METHODS

All procedures were approved by the University of Pennsylvania
Institutional Animal Care and Use Committee. Four female
Sprague-Dawley rats were used for these experiments.

Training and Experimental Apparatus
Prior to surgery, all animals were habituated to the laboratory
environment and the experimental apparatus. The apparatus
(Figure 1) consisted of (1) a half-pipe with hook-and-loop
strap to restrain the rat’s body, (2) neck plates at the front

FIGURE 1 | Experimental setup. (A) Laser micrometers positioned on either

side of the face were used to monitor whisker movement. (B) Polyimide tubes

were placed on selected whiskers and micrometer sensitivity was adjusted

such that only the motion of one pair of whiskers was detected. (C) Head

restraint was achieved using magnetic implant and a repositionable rod.

(D) Microwire electrodes implanted in facial muscles were accessed via a

connector anchored to the skull.

of the pipe to restrain forward or backward head motion,
(3) a metal rod with magnet that mated with a head-
mounted magnet to further restrain the head, and (4) two
commercial laser micrometers in a V-configuration such that
they approximated both sides of the face (see details below).
The half pipe could be moved to adjust the position of the rat
relative to the micrometers. A Faraday cage, which enclosed
the entire apparatus, was assembled with copper mesh and
red translucent acrylic in order to shield recordings from
ambient electromagnetic interference and to provide an enclosed
environment that minimized the stress of the animals. Rats were
placed in the restraints each day until they were able to be calm
for at least 1 h.
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Implant
For each rat, a custom microwire array was constructed
to interface with the facial musculature. Seventeen insulated
stainless steel wires (50 µm, A-M Systems) were soldered to a
printed circuit board (PCB, 6.68 × 7.05 × 1.59mm) and routed
to a miniature connector on the board (A79042-001, Omnetics
Corp). Sixteen of the wires served as working electrodes in facial
muscles (eight on each side) and one as a reference electrode. An
uninsulated silver wire (127 µm, A-M Systems) was also soldered
to the PCB to serve as the ground. Wires were impedance tested
to ensure the integrity of the electrical connections. The PCB
was covered with an epoxy to insulate and stabilize the solder
connections and traces. The distal 2mm of the stainless steel
wires was stripped of insulation. Before surgery the implant was
cold sterilized in chlorhexidine (0.1%).

Surgical Procedure
Our development of the rodent model proceeded in two
sequential phases: (1) establish the techniques for bilateral
recording of facial EMG and whisking motion (animals 1 and
2) and (2) paralyze and implement open- and closed-loop FES
(animals 3 and 4). As such, the facial nerve transection portion of
the surgical procedure applied only to animals 3 and 4.

Each rat was anesthetized with intraperitoneal administration
of ketamine (60mg/kg) and dexmedetomidine (0.25 mg/kg).
The animal was kept on a heating pad and the respiratory
rate, palpebral reflex, and pedal pinch reflex were monitored
periodically throughout the procedure to track depth of
anesthesia. Once a surgical plane of anesthesia was reached, the
head and right side of the face posterior to the whisker pad
were shaved and cleaned with povidone-iodine. Lidocaine was
administered subcutaneously at the incision sites for further
analgesia.

The buccal and marginal mandibular branches of the facial
nerve, the only branches supplying motor input to the whisker
pad (Semba and Egger, 1986), were exposed through a single
vertical skin incision on the right side of the face. Nerve
identity was confirmed with bipolar stimulation, which elicited
movement from the whisker pad. A 3 mm section of each nerve
was transected. Functional denervation was confirmed again
with bipolar stimulation to the proximal and distal stumps. The
incision was closed with 6-0 nylon suture.

The animal was then placed in a stereotaxic frame. An incision
was made on the midline of the scalp and skin, soft tissue, and
periosteum were retracted laterally to expose the frontal and
parietal bones. Six burr holes were made on the skull bilaterally
and six screws (00-90 × 1/8′′) were inserted. The implant PCB
was positioned in the middle of the skull screws and the silver
ground wire was wrapped around the screws. To aid head
fixation, a high-strength cylindrical neodymium magnet (D34-
N52, K&J Magnetics Inc.) was placed rostral to the PCB. Dental
acrylic was then poured over the PCB, screws, and around the
magnet to secure them to the skull.

The stainless steel microwires were then inserted into the
muscles of the whisker pad in pairs. The hooked ends of
each pair of wires were placed in a 23-gauge hypodermic
needle that was used to drive them into the targeted muscle

(Carvell et al., 1991). The targets initially included both
intrinsic and extrinsic muscles of the whisker pad, which
protract and retract the whiskers, respectively (Dörfl, 1982).
However, in preliminary studies we found that actively
controlling the retractormuscles, nasolabialis andmaxillolabialis,
introduced significant complexity (see Section Discussion).
Whisker retractions can occur passively, due to the viscoelastic
properties of the facial connective tissue (Bermejo et al., 1998).
Accordingly, the intrinsic muscles were targeted preferentially.
Intramuscular placement was confirmedwith bipolar stimulation
that evoked whisker protraction. The stainless steel reference
wire was placed subcutaneously on the dorsal aspect of the
nasal bone. The midline incision was closed with 6-0 nylon
sutures.

Anesthesia was reversed with atipamezole (5 mg/kg). For 3
days postoperatively, animals were maintained on an analgesic
regimen of ketoprofen (5 mg/kg, once daily) and buprenorphine
(0.05 mg/kg, twice daily), administered subcutaneously. To
prevent infection, gentamicin sulfate drops (0.3%, once daily)
were applied around the implant.

Whisker Monitoring
After surgery, the rats were further acclimated to the
experimental apparatus via training sessions in which their
heads were held stationary by the magnetic attachment
(Figure 1). Horizontal whisker motion was monitored bilaterally
by two laser micrometers (IG-028, Keyence Corp) mounted in
front of the body restraint apparatus. The micrometers had a
measurement range of 28mm, a spatial resolution of 5 µm, and
a temporal resolution of 490 µs. One bilateral homologous pair
of whiskers was selected for monitoring. Selection was based
on (1) the ability to fully capture the whisking motion on the
micrometer array and (2) the ability to actuate the whisker on
the paralyzed side with FES. A small polyimide tube (0.36mm
diameter) was placed on the selected pair of whiskers to facilitate
its detection by the micrometer arrays (Heaton et al., 2008). The
spatial sensitivity settings of the micrometers were adjusted such
that they only detected the whisker in the tube and not the other
whiskers.

Data Acquisition and FES
The laser micrometer output and EMG signals from the
implanted microwires were simultaneously recorded at 3052
samples/s (PZ2 preamplifer, RZ2 processor, Tucker-Davis
Technologies). EMG signals were recorded differentially with
respect to the subcutaneous reference wire. Pairs of digitized
EMG channels were then subtracted to yield the bipolar EMG
signal used in offline analyses and online stimulus triggering.
Electrical stimulation delivered to the microwires consisted
of trains of charge-balanced, biphasic square pulses (IZ2H
stimulator, Tucker-Davis Technologies). Pulse amplitude, pulse
width, number of pulses, and pulse frequency were the adjustable
stimulation parameters used to achieve different whisker
motions. For closed-loop, EMG-triggered FES, the digital signal
processors of the RZ2 were programmed for real-time EMG
signal conditioning (bipolar subtraction, rectification, and 10–
1,000Hz bandpass filtering). Stimuli were then triggered when
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the conditioned signal amplitude reached an experimentally
defined threshold, determined by trial and error at the beginning
of the closed-loop sessions. A trigger lockout period starting with
the first pulse and ending 20 ms after the end of the pulse train
was imposed to prevent stimulus artifacts from triggering the
stimulator.

Data Analysis
In offline analyses, the EMG envelope was estimated by bandpass
filtering (5–100Hz passband), rectifying, and then lowpass
filtering (10Hz cutoff) the raw bipolar signal. Power spectra of
both the whisking signal and EMG envelope were computed
using Welch’s averaging method on 1-s, Hamming-windowed
data segments with 50% overlap. Time delays between local peaks
in the EMG envelope and whisking were used to assess the
lag between these signals. Pearson’s correlation coefficient was
used to assess the linear relationship between peak whisking and
EMG envelope amplitudes. For comparison of FES effects across
animals, we identified the stimulus intensity required to evoke a 2
± 0.2mm whisker protraction, where protraction amplitude was
defined as the peak positive displacement after subtracting the
baseline mean. Closed-loop stimulation effects were summarized
by stimulus-triggered average displacement of both paralyzed
and intact whiskers, with 95% confidence intervals based on
the t-distribution. The onset and duration of the post-stimulus
protraction were defined by the first and last occurrences of

positive displacement (i.e., lower confidence bound >0) in these
averages, averaged across animals.

RESULTS

We developed a rodent model for studying FES-based facial
reanimation. Optical micrometers (Figure 1A) were used to track
a pair of whiskers bilaterally (Figure 1B) in head-fixed rats
(Figure 1C). The facial musculature of the rats was implanted
with microwires to allow both EMG recording and FES of
facial muscles (Figure 1D). This system allowed us to study, at
high spatiotemporal resolution, facial movements resulting from
either volitional or artificial (i.e., FES) commands.

Whisking and EMG activity
The head-fixed rats engaged in bouts of volitional, rhythmic
whisking behavior (Figure 2A). This behavior could be produced
spontaneously but often needed prompting by delivering scents
near the nose. Rhythmic activity in the EMG of the whisker-
protracting muscles corresponded with rhythmic motion of the
tracked whisker on the intact side of the face (Figure 2A). To
quantify the EMG-whisking relationship, the envelope of the
EMG signal was computed using a zero-phase low pass filter.
The dominant frequency of whisking and of the EMG envelope
oscillation was 6 Hz in all four rats (Figure 2B). The EMG
envelope led the whisker motion by an average of 28.7, 24.9, 24.7,

FIGURE 2 | Relationship of intrinsic muscle EMG to ipsilateral whisking. (A) Example raw EMG recorded from the intrinsic muscle (top), envelope of the EMG

signal (middle), and whisker motion (bottom). Directions of whisker protraction (pro) and retraction (re) are indicated. (B) Power spectra of the measured whisker

(black) and EMG envelope (gray) signals for four rats. Note the prominent peak around 6 Hz. (C) Lag between the peaks of the EMG envelope and the corresponding

protraction peaks of the whisker displacement (mean + standard deviation). (D) Relationship between the peak protraction amplitude and the peak EMG amplitude

for the data shown in A (r = 0.75).
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and 29.2 ms in each of these animals, respectively (Figure 2C).
Thus, the timing of each of cycle of the whisker motion could
be accurately determined from the EMG. In one case, amplitude
of the whisker motion could also be inferred from the EMG.
The best observed correlation between peak whisk amplitude and
peak EMG envelope amplitude was 0.75 (Figure 2D). However,
in the other animals the whisk amplitude estimate was less
reliable, with whisk-EMG correlations of 0.35, 0.32, 0.24, likely
due to suboptimal electrode placement.

A unilateral transection of the buccal and marginal
mandibular branches of the facial nerve was performed in
two of the four rats (Figure 3A). This procedure was effective
in focally paralyzing the whisker pad. Rhythmic whisking was
completely absent on the paralyzed side (Figure 3B). Only
miscellaneous fibrillations up to 0.5mm were present in the
de-efferented whiskers. For over a month after the lesion, the
rats maintained proper weight and eating habits and exhibited
no self-injurious behavior.

FES of Intrinsic Muscles
Next, electrical stimuli were delivered to the paralyzed intrinsic
muscles to reanimate the whiskers. Trains of current-controlled
square pulses were delivered between the pair of electrodes that
produced whisker motion at lowest current amplitude. Across
four testing sessions, the current to produce a 2-mm protraction
was 43 ± 6 µA (animal 3) and 98 ± 13 µA (animal 4),
when using 0.3-ms pulse widths, 10 pulses, and 200-Hz pulse
frequencies. We characterized how variations in these stimulus
parameters changed the evoked whisker motion. Increases in
whisker displacement could be produced by increasing pulse
width (Figure 4A), number of pulses (Figure 4B), or pulse
frequency (Figure 4C). However, only pulse width affected
amplitude without also changing the shape or timing of the
motion. Increasing the number of pulses increased the amplitude
and duration of the motion (Figure 4B). For both animals the
duration, measured as time to peak amplitude, increased linearly,
with a mean slope of 2.7 ± 0.37 ms/pulse when stimulating
at 200Hz. Increasing pulse frequency increased the amplitude
and the velocity of the protraction (Figure 4C). The relationship
between pulse frequency and whisker velocity, measured as the
slope of the initial protraction for each frequency, was steeper
in one animal and more graded in the other (Figure 4D). The
results demonstrate that the amplitude and shape of the whisker
motion can be controlled by stimulus pulse trains.

Contralaterally-Triggered FES
Finally, in the unilaterally paralyzed rats, we used EMG activity
recorded on the intact side to trigger stimulation of the
paralyzed intrinsic muscles. The EMG was bandpass filtered
and thresholded in real-time to generate stimulus triggers
(Figure 5A). A train of stimulus pulses with fixed parameters
was delivered immediately after each trigger. The stimulus
parameters were chosen to achieve a whisker motion comparable
to that observed on the intact side. A typical example of the EMG-
triggered stimulation is shown in Figure 5A. The system was able
to accurately deliver stimuli during each protraction of the intact
whisker, as expected based on the preceding analyses. However,

FIGURE 3 | Facial nerve transection and paralysis. (A) Illustration of the

peripheral branches of the facial nerve distal to the stylomastoid foramen. The

two sites of transection are indicated by arrows. (B) Typical whisking behavior

recorded simultaneously on the intact (top) and paralyzed (bottom) side.

Whisker movements were recorded 10 days after transection of the buccal

and marginal mandibular branches of the facial nerve on the paralyzed side.

the overall symmetry between the intact and paralyzed whiskers
was limited by several factors, including the inability to actively
control retraction. To summarize the results, we computed the
stimulus-triggered average motion of the paralyzed and intact
whiskers in both animals (Figure 5B). The mean evoked motion
on the paralyzed side had a peak amplitude and timing that
was very similar to the mean intact-side protraction. Average
onset of the post-stimulus protraction was 27ms (paralyzed) and
24ms (intact). The duration of post-stimulus motion was 150 ms
(paralyzed) and 156 ms (intact). The average whisker motion of
both sides was triphasic, although the intact motion was more
variable being drive volitionally (Figure 5B).

DISCUSSION

In this study, we developed and tested a rodent model of closed-
loop FES-based facial reanimation in the setting of unilateral
facial paralysis. A primary strength of the model was the ability
to track the relevant facial feature (i.e., whiskers) with high
spatiotemporal resolution. The documented whisking behavior
confirmed earlier findings. Prior studies have observed 5–6Hz
whisking frequencies in head-fixed rats (Gao et al., 2001). This
is in contrast to the significantly higher, 6–12Hz whisking
frequencies seen in unrestrained rats (Hill et al., 2008). Also,
the observed 24–29ms lag between intrinsic muscle EMG
and whisker protraction is nearly equivalent to a prior report
(Berg and Kleinfeld, 2003). This lag can be attributed to the
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FIGURE 4 | Whisker motion resulting from electrical stimulation of

paralyzed intrinsic muscles. (A) Displacements produced by varying pulse

widths (10 pulses at 333-Hz; animal 3). (B) Varying number of pulses (200-Hz

frequency, 0.3-ms width; animal 4). (C) Varying pulse frequency (10 pulses,

0.3-ms width; animal 4). (D) Whisker velocity as a function of pulse frequency

(10 pulses, 0.3-ms width; animals 3 and 4). Error bars are 95% confidence

intervals on the slope of the initial protraction. Pulse amplitudes were 45 µA in

animal 3 and 85 µA in animal 4. In (A–C), time 0 is the start of the stimulus

train. Stimulus pulses are indicated by vertical lines. Positive and negative

displacements correspond to whisker protraction and retraction, respectively.

viscoelastic properties of the whisker pad. Electrical stimulation
of the intrinsic muscles has previously been shown to protract
the whiskers (Hill et al., 2008). However, here for the first
time we documented how protraction varied with stimulation
parameters. The velocity, peak amplitude, and duration of the
protraction could largely be controlled through the number of
stimulus pulses and pulse frequency. Finally, we demonstrated a
closed-loop, contralaterally-triggered FES strategy that has been
proposed for dynamic facial reanimation in humans (Cao et al.,
2008; Griffin and Kim, 2011).

A limitation of the animal model is the difficult in durable
placement of electrodes in the intrinsic muscles. These small,
sling-like muscles around the base of each whisker cannot be
directly visualized during implantation. As a result the electrode
placement, and thus the recording and stimulation effects, can
vary. This likely explains variability in the results, include the
relationship between EMG amplitude and protraction amplitude
and the relationship between whisker velocity and stimulus
pulse frequency. A second limitation, which impacted the
ability to restore symmetric whisking, is not actively controlling
retraction. Whisker retraction is controlled by the nasolabialis
and maxillolabialis muscles (Berg and Kleinfeld, 2003). However,
these muscles pull the whiskers out of the horizontal plane along
dorsal-posterior and ventral-posterior trajectories, respectively
(Hill et al., 2008). The vertical components of these motions
could not be captured by our micrometers, but could be

FIGURE 5 | Contralaterally-triggered electrical stimulation to restore

symmetric whisking. (A) Typical result during one burst of exploratory

whisking. EMG was recorded on the intact side (top). The EMG was bandpass

filtered and thresholded in real-time to produce stimulus triggers (vertical lines

under EMG). The series of stimulus trains (10 pulses/train delivered at 200 Hz

with 0.3-ms pulse width and 45-µA (animal 3) or 95-µA (animal 4) pulse

amplitude) produced whisker motion on the paralyzed side (middle) that

approximated the motion seen on the intact side (bottom). (B)

Stimulus-triggered average of whisker displacements on the paralyzed (top)

and intact (bottom) side for animals 3 and 4 compiled from all 345 and 278

stimulus trains delivered during the closed-loop experiment, respectively.

Ninety-five percent confidence intervals on the mean are shown in gray.

monitored if the setup was extended to including two
orthogonal micrometers on each side of the face (Hill et al.,
2008). Alternatively, simultaneous stimulation of both retracting
muscles can produce amostly in-plane, posteriormovement (Hill
et al., 2008). Initial experiments found it quite difficult to get the
concurrent electrode placement in all four muscles bilaterally.
Thus, we relied on the passive retraction that occurs following
active protraction (Berg and Kleinfeld, 2003).

Another potential limitation involves the FES strategy itself.
Most etiologies of unilateral facial paralysis leave facial sensation
intact, as the trigeminal nerve is not affected. Therefore,
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FES has the potential to activate sensory axons associated
with nociceptors, evoking painful percepts. However, several
lines of evidence suggest this issue does not completely
undermine the strategy. No signs of pain (flinching, blinking,
or vocalizing) were observed in our experiments. A prior study
observed that rabbits initially flinched in response to orbicularis
oculi stimulation, but signs of pain diminished over time
(Otto, 1997). There is evidence that FES paradigms including
interferential stimulation (McDonnall et al., 2009) and low-
intensity multichannel stimulation (Somia et al., 2001) render
facial muscle stimulation functional but not painful. Finally,
facial FES has been achieved in humans reporting only mild pain
(McDonnall et al., 2009; Frigerio et al., 2015).

An issue that was not studied, but should be considered,
in this model of chronic facial paralysis is the time-dependent
effects of denervation and the modulation of these effects by FES.
Denervation is associated with muscle atrophy, which in the rat
can result in a 50% loss of muscle weight after 2 weeks (Ohira,
1989). Importantly for FES, denervation also causes a transient
increase in excitability, due in part to increased sensitivity to
acetylcholine, followed after a few days by decreased excitability
due to Wallerian degeneration of the axons distal to the injury
(Sunderland, 1978). Nevertheless, prior animal studies of facial
FES have elicited functional movement (e.g., complete eyelid
closure) for several months after paralysis (Salerno et al., 1991;
Otto, 1997; Sachs et al., 2007). This may be explained in part
by demonstrations that FES can prevent and even reverse the
effects of denervation, both in facial muscles (Salerno et al.,
1991) and non-facial muscles (Eberstein and Eberstein, 1996).
Reinnervation, potentially from motor axons in surrounding,
non-denervated muscles, may also play a role (Sachs et al., 2007).
Our rodent model of facial paralysis provides another means to
explicitly study the interaction of muscle denervation and FES,
with the benefit of precise quantification of muscle activation
through whisker monitoring.

Previous research on contralaterally-triggered facial FES has
been done in larger animal models and humans over the course
of several decades (Zealear and Dedo, 1977; Tobey and Sutton,
1978; Broniatowski et al., 1987, 1989, 1991; Cao et al., 2009;

McDonnall et al., 2009; Kurita et al., 2010; Frigerio and Cavallari,
2012). However, the therapy has not advanced beyond proof of
concept. Our motivation for developing a less expensive, more
quantifiable animal model for this therapy was to move toward
clinical translation by improving performance through advanced
closed-loop controllers. In the present study, as in all previous
work, the closed-loop controller was simple: deliver hand-tuned,
fixed-parameter stimuli to the paralyzed muscle when triggered
by thresholded EMG activity of the homologous intact muscle.
Myriad strategies, including iterative learning control (Bristow
et al., 2006), adaptive feedforward control (Abbas and Triolo,
1997), and supervised learning with a distal teacher (Jordan and
Rumelhart, 1992), could be used to automatically tune a mapping
between EMG activity and stimulation parameters based on
measured facial asymmetries to yield superior performance. The
animal model developed here provides an improved platform
with which to test these advanced controllers. We believe this is a
necessary step to develop a therapy that could improve the quality
of life of thousands of patients with facial paralysis.
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Time-variant muscle responses under electrical stimulation (ES) are often problematic for

all the applications of neuroprosthetic muscle control. This situation limits the range of ES

usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation

electrode contact conditions, especially in transcutaneous ES. Surface electrodes are

still the most widely used in noninvasive applications. Electrical field variations caused by

changes in the stimulation contact condition markedly affect the resulting total muscle

activation levels. Fatigue phenomena under functional electrical stimulation (FES) are

also well known source of time-varying characteristics coming from muscle response

under ES. Therefore, it is essential to monitor the actual muscle state and assess the

expected muscle response by ES so as to improve the current ES system in favor of

adaptive muscle-response-aware FES control. To deal with this issue, we have been

studying a novel control technique using evoked electromyography (eEMG) signals to

compensate for these muscle time-variances under ES for stable neuroprosthetic muscle

control. In this perspective article, I overview the background of this topic and highlight

important points to be aware of when using ES to induce the desired muscle activation

regardless of the time-variance. I also demonstrate how to deal with the common critical

problem of ES to move toward robust neuroprosthetic muscle control with the Evoked

Electromyographically Controlled Electrical Stimulation paradigm.

Keywords: electrical stimulation, evoked electromyography, personalized stimulation, muscle activation control,

electrode effect cancelation

1. CHALLENGES IN TRANSCUTANEOUS (SURFACE)
ELECTRICAL STIMULATION -AN INTRODUCTION

Electrical stimulation of the nervous system is a technique which is frequently used in physical
therapy as it offers clinical diagnosis on neuromuscular activation, physiological investigation, and
functional control of paralyzed extremities (Merletti et al., 1992). In diagnostic applications, it is
used to ascertain the integrity of neuromuscular junctions and reflex loops, as well as the excitability
of motor neuron pools, nerves, and muscle fibers (Merletti et al., 1992; DeLuca and Erim, 1994).
In therapeutic treatments, continuous usage of electrical stimulation can help to maintain muscle
volume and enhance blood circulation following lesions of the nervous system. It can prevent
muscle atrophy due to non-use, which can readily occur in spinal cord injured patients, and also
in stroke patients during the immobilization period. In orthotic treatments, electrical stimulation
can be used to provide functional control of paralyzed muscles, which is called functional electrical
stimulation (FES).
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FES and neuroprosthetic muscle control have been used
to compensate motor functions or produce movements in
patients with complete spinal cord injury (SCI; Kobetic et al.,
1997), as well as in stroke patients with other sensory-motor
deficiencies such as drop foot syndrome (Liberson et al.,
1961). In the late 1990s, progress in microprocessor technology
provided the means for computer-controlled FES systems
(Donaldson et al., 1997; Kobetic et al., 1997; Guiraud et al.,
2006). Electrical stimulation strategies are wide-ranging, from
implanted stimulation (Triolo et al., 1996; Johnston et al.,
2003; Guiraud et al., 2006), spinal stimulation (North, 2008)
to transcutaneous surface stimulation (Mangold et al., 2005).
In real-world applications, transcutaneous surface stimulation
(TES) is the most frequently applied technique for muscle
and nerve activation despite the significant efforts made
for implantable technology developments (Keller and Kuhn,
2008), simply because TES is an easier solution in practice.
Electrodes are placed on the skin at locations where the
underlying tissue is intended to be activated. Electrical current
is injected through a pair of bipolar electrodes and generates
a potential gradient over the targeted area. This artificially
generated gradient depolarizes excitable tissue beneath the
electrodes that serve as cathodes, thus activating the underlying
muscles.

TES has already been popularly utilized for muscular massage
purpose. Portable electrical stimulators for home use are widely
commercially available. Impulses are generated by a device and
delivered through electrodes on the skin in direct proximity
to the muscles to be stimulated. TES has also been receiving
increasing attention in the last few years because of its potential
to serve as a muscle strength training tool for healthy subjects
and athletes and as a preventive tool for partially immobilized
patients (Maffiuletti et al., 2011). Strength training promotes
neural and muscular adaptations that are complementary to
the well-known effects of voluntary resistance training. These
types of TES devices for muscular massage and strength training
are technically equivalent to TES systems which are applied by
clinical specialists for therapeutic and functional purposes.

Following the wide availability of TES, many people now
have experience on testing transcutaneous surface electrodes
for stimulation in massage or training settings. If one has
experienced to use surface stimulation electrodes, he would likely
have noticed that the muscle status under TES is sometimes
suddenly changed by the electrode contact condition to the skin.
This is indeed a universal problem in all TES applications. A
slight contact condition change can markedly affect the real
muscle activation status, even if the same stimulation input
is constantly applied. This is related to the correct electrode
placement issue, which can cause reduced muscle contraction,
especially in dynamic muscle contractions (Keller and Kuhn,
2008). There have been many FES studies of TES applications,
it ranges from foot drop correction (O’Keeffe et al., 2003;
Azevedo Coste et al., 2014) to upper limb muscle control
(Chan et al., 2009). However, in these TES papers, variations
in actual muscle activation due to the electrode condition
is normally ignored in real applications, as it is hard to
deal with the time-variant muscle response issue. As many

FES researchers/users frequently encounter muscle activation
changes due to electrode effects in TES, it is not negligible
level of effect in terms of muscle activation changes. This
intra-subject variability in muscle activation under TES is due
to electrode dependency. There is also inter-subject variability
coming from the muscle strength differences between different
subjects. An able-bodied subject’s muscle response could be
more substantial than the weak muscle response in motor-
impaired subjects. This factor also limits the controllability
of muscles by ES, a problem that should be addressed via
personalized modeling for FES. In this perspective article, I
introduce a way to capturemuscle activation changes through the
concept of Evoked Electromyographically Controlled Electrical
Stimulation, which was previously developed to compensate for
muscle fatigue variations under FES. I address these issues below
by outlining the research studies that have been carried out
so far:

1. Personalized Electrical Stimulation through Evoked
Electromyography (EMG).

2. Muscle fatigue prediction and compensation in FES.
3. Muscle activation predictive control and cancelation of the

stimulation electrode effect.

2. PERSONALIZED ELECTRICAL
STIMULATION THROUGH EVOKED EMG

The challenge in implementing the present FES system arises
with the problem of how to process the high nonlinearity
and complexity of the neuro-muscular system (Durfee, 1993;
Riener, 1999). Another challenge concerns time-varying muscle
dynamics due to physiological and biochemical factors (such as
fatigue, reflexes), as these need to be compensated in order to
augment FES applications. Subject-specific modeling and time-
variance compensation are essential to improve the performance
of motor neuroprosthetics beyond the current limited use. A
use of a mathematical model can improve the development of
neuroprosthetics by optimizing their functionality for individual
patients (Riener, 1999).

To achieve a reliable stimulation pattern and compensate
muscle property changes during FES, in Ferrarin et al. (2001)
the authors suggested using model-based approaches involving
a feedforward controller to improve the control performance. In
Jezernik et al. (2004), a sliding model closed-loop control method
was proposed to control shank movement. In another work
(Ajoudani and Erfanian, 2009), classic sliding model control
and a neural network were combined to control FES to track
the desired knee joint trajectory. A Feedback Error Learning
controller for FES was developed by applying an antireset windup
scheme (Watanabe and Fukushima, 2010). In a recent work
(Freeman, 2014), iterative learning control was applied to control
joint angles via stimulation of an arbitrary set of muscles with a
Hammerstein-type muscle-activation recruitment relation.

Most closed-loop FES systems addressed in previous works
were established between the electrical stimulus and joint angle
since it is more convenient to measure and process the joint
angle than joint torque or muscle force. However, in order to
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take the immediate effect of muscle activity induced by FES
control into account, introducing biofeedback into closed-loops
should be considered for further FES development (Bruns et al.,
2013; Hayashibe et al., 2015), thus contributing to individualized
modeling and control to manage different muscle responses from
each different subject.

As muscle contraction is induced by artificial stimulation in
FES, the drawback of closed-loop control of joint motion is
that the resultant motion may not only derive from stimulation
but also from external forces (such as environmental contact
and gravity). The motion is the result of both external forces
and the muscle contractions activated by the stimulation. The
motion itself may not be directly related to the stimulation
inputs. A stimulation pattern based only on motion signals is
likely to be unsafe and unreliable in this case. In addition,
it should be kept in mind that the muscle is a very slow
actuator in terms of motion control. Error feedback by position
information thus can not be instantly compensated, contrary to
electromagnetic motor control in robotics. The muscle response
to the same stimulation input is also not very consistent
due to the physiological time-variant muscle response. Thus,
considering the usage of biosignal feedback such as EMG from
the muscle itself is a natural way for taking those potential
physiological changes into account. By taking advantage of EMG
signals, an EMG-triggered FES control system was presented
through a pattern recognition (Dutta et al., 2008). This addresses
mainly the FES start timing issue by using remained voluntary
contractions rather than adapting the stimulation pattern itself.
Then it does not handle time-variant muscle responses under
FES.

Evoked EMG (eEMG) offers a way to study the myoelectric
features of neuromuscular activation associated with electrical
stimulation. Motor units activated by electrical stimulation have
synchronous activity, with the so-called M-wave present in
the EMG signal. When processing FES-evoked EMG signals,
stimulation artifacts that appear at the onset of each stimulation
impulse, and which are much larger than Mwaves, must be
dealt with. In order to retrieve the signal of interest, i.e., M-
waves, suitable techniques such as the blanking window method
should be implemented to remove stimulation artifacts. The
eEMG signal was found to be highly correlated with FES-
induced muscular torque under various stimulation situations
(Chesler and Durfee, 1997), and a similar phenomenon was
also found in an implanted FES SCI subject (Hayashibe et al.,
2011b). Moreover, M-waves extracted from the eEMG can
be an effective detector for tracking potential muscle fatigue
(Heasman et al., 2000). A pioneer work (Erfanian et al.,
1998) proposed a predictive model of muscle force production
under an isometric percutaneous continuous FES system. After
comparing the performance of force prediction from stimulation
and from EMG, the authors suggested using measured EMG
signals instead of stimulation signals to predict muscle torque.
This study was mainly carried out to predict joint torque
as a kind of muscle force sensor in FES, and it has not
yet been really used to achieve systematic FES closed-loop
control based on evoked EMG. In our team, a new control
strategy, i.e., EMG-Feedback Predictive Control (EFPC; Zhang

et al., 2013), was proposed to adaptively control stimulation
patterns to compensate time-varying muscle state changes. This
facilitates the prediction of the muscle response and then
the system can respond to time-variant muscle state changes
toward muscle-response-aware FES control. It was further
implemented combined with a wireless portable stimulator
(Toussaint et al., 2010) to achieve real-time FES control (Li et al.,
2015).

3. MUSCLE FATIGUE PREDICTION AND
COMPENSATION IN FES

Muscle fatigue has been defined as a failure to maintain
the required or expected force from a repeatedly activated
muscle (Edwards, 1981). In voluntary contraction, a variety
of biological and motivational factors contribute to muscle
fatigue (Gandevia et al., 1995), such as reduced motor drive
by the CNS, failure of peripheral electrical transmission, and
failure of the muscular contractile mechanism. The rate of
muscle fatigue during FES is much greater than that which
occurs during natural contractions (Binder-Macleod and Snyder-
Mackler, 1993). This fast fatigue phenomenon is complex and
is not yet fully understood. Currently, it is understood as
follows: (1) the inverse size principle, according to which artificial
stimulation recruits the motor neurons from the largest to
the smallest (Hamada et al., 2004), and the larger the motor
neuron, the more fatigable the muscle fiber; (2) motor units are
activated in a synchronized manner with artificial stimulation,
which is different from asynchronous activation during natural
contraction. This situation requires a much higher stimulation
frequency in synchronous stimulation to achieve quasi-tetanic
contraction. The high stimulation frequency causes fatigue; and
(3) the constant order of recruitment, with fast fatigable motor
units activated first, then slow fatigue-resistant motor units.
Another factor related to fast fatigue with FES is that the fatigue
resistance of paralyzed muscles decreases after injury (Pelletier
and Hicks, 2011). Systematic fatigue monitoring is especially
important in paraplegic patients suffering from a lack of sensory
feedback from their paralyzed muscles, because it can be used
to adjust stimulation to prevent failure. Second, force prediction
is essential if the muscle force has to be used as feedback in
closed-loop stimulation.

Various fatigue models have been drawn up, based on
physiological and mathematical interpretation or fitting from
experimental measurements. A biomechanical model was
developed to predict the shank motion induced by FES (Riener
et al., 1996). A five-elementmusculotendonmodel was developed
to predict the force generation capacity of activated muscles,
and a fatigue recovery function based on the metabolic profile
was introduced (Mizrahi et al., 1997). In Cai et al. (2010),
a Wiener-Hammerstein model was proposed to predict FES-
induced muscle force in unfatigued and fatigued muscle, and the
model was verified by stimulating Soleus in SCI patients.

Some researchers have attempted to predict force/torque
variations with fatigue based on eEMG. An exponential function
was proposed to predict the force of FES-activated quadriceps
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muscles from eEMG Peak-to-Peak (PTP; Mizrahi et al., 1994).
PTP was suggested as a fatigue index at a constant cycling
speed in (Chen and Yu, 1997). A close correlation between the
EMG mean absolute value (MAV) and knee torque was found
under continuous stimulation in paraplegic subjects (Erfanian
et al., 1996). In their following work (Erfanian et al., 1998),
they proposed a predictive model of muscle force production
under an isometric percutaneous continuous FES system. A
metabolic model was presented to predict force decline and
recovery from EMG signals under intermittent condition (Levin
and Mizrahi, 1999). In Ziai and Menon (2011), re-training the
model was suggested to regain the high estimation quality lost
as a result of degraded estimation accuracy over time. Therefore,
the online estimation method proposed in this study is preferable
to characterize muscle contraction dynamics for real-time FES
control. However, the fatigue properties vary with different
fatigue levels and recovery processes, which complicates the
identification of the fatigue model. A fatigue model cannot work
when the desired stimulation pattern is unknown in advance.

As in Figure 1, an online model estimation method is
proposed for FES-induced torque prediction and muscle fatigue
tracking through Kalman filter update (Zhang et al., 2011a,b).
Muscle contraction dynamics modeled by a polynomial
Hammerstein model (PHM) to represent joint torque from
muscle activity based on evoked EMG, is updated systematically
through Kalman filter with forgetting factor to correspond
to the time-variant muscle contraction dynamics. This is
further extended toward robust estimation with a nonlinear
autoregressive with external input (NARX) model-based
recurrent neural network (RNN) to predict torque with evoked
EMG (Li et al., 2014b). The computational efficacy also makes it
feasible for real-time implementation (Li et al., 2014a, 2016).

On the basis of the good predictive performance of the
proposed estimation method, a new control strategy, i.e., EMG-
Feedback Predictive Control, is proposed to explicitly control
joint torque under FES (Hayashibe et al., 2011a; Zhang et al.,
2013). Both muscle excitation and contraction dynamics are
modeled by PHM. The eEMG signal is used for a dual-
purpose: to correlate stimulation with the muscle electrical
behavior in the muscle excitation process and to correlate the
muscle electrical behavior with the muscle mechanical behavior
in the muscle contraction process. Evoked EMG signal was
used to feedback actual muscle states to track desired joint
torque while considering the time-variant muscle dynamics.
The EFPC control problem was resolved as a solution of two
Nonlinear Predictive Control problems in series corresponding
to activation and stimulation controller, respectively, as shown
in Figure 1. The personalized models for excitation and
contraction processes are developed for each subject for the
model predictive controller to compute the inversed solutions.
The activation controller solves the necessary muscle activation
pattern to track the desired mechanical output reference. The
stimulation controller solves the necessary stimulation sequence
to achieve the necessary muscle activations. Once the torque
deviates from the desired trajectory due to the effects of
variations in muscle states such as fatigue, the controller
adaptively generates the appropriate stimulation pattern in a
systematic way to achieve the desired torque as long as it
does not conflict with the stimulation constraints. This control
framework provides satisfactory control accuracy and notable
robustness in terms of joint torque control in FES (Zhang
et al., 2013). This control strategy has a capacity to perform
muscle fatigue compensation benefited from evoked EMG
feedback.

FIGURE 1 | Schematic representation of Evoked Electromyographically Controlled Electrical Stimulation. Muscle activation is explicitly modeled as an

intermediate variable between the stimulation input and the mechanical torque output. Muscle activation is obtained through evoked Electromyography under FES.

Personalized modeling is performed for one block of muscular excitation process between stimulation and eEMG, and also for the other block of contraction process

between eEMG and joint torque. Through the established models, the inversed solutions of stimulation input sequence could be systematically generated with

model-predictive controllers to follow the desired mechanical output reference.
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4. MUSCLE ACTIVATION PREDICTIVE
CONTROL AND CANCELATION OF THE
STIMULATION ELECTRODE EFFECT

This section presents muscle activation closed-loop FES control
through evoked EMG. It can be regarded as a simple version of
EFPC regarding stimulation and muscle activation only.

This muscle activation control can present an advantage of
Evoked Electromyographically Controlled Electrical Stimulation.
In conventional FES, we normally specify the stimulation pattern
and there is no way to check if the muscle is really responding
as needed. As the electromagnetic motor is normally observed
through the encoder, it is advantageous tomonitor the reaction of
muscles to electrical stimulation. Since evoked EMG can always
be observable through the acquisition system, eEMG could be
used for updating the stimulus-to-eEMG model. This could
improve the modeling precision of the plant and guarantee the
accuracy of the predictive model controller.

A real-time implementation of the predictive model controller
for online control of muscle activation is as follows (Li et al.,
2015):

1. The reference muscle activation trajectory is prepared before
beginning estimation and control;

2. Trapezoidal shape pulse width stimulation at different
amplitude levels is tested while recording the eEMG to
personalize the model regarding the relationship between the
pulse width and MAV of eEMG via Kalman filter;

3. After the identification phase ends, the FES system goes
into control mode. The stimulator is driven by a predictive
controller to modulate the pulse width to track the desired
muscle activation trajectory while the stimulation-to-eEMG
model is being updated to correspond to the time-variant
properties.

In this way, muscle activation can be fully specified in
the framework of Evoked Electromyographically Controlled
Electrical Stimulation, instead of specifying the stimulation
parameters. This can be useful to compensate for time-variant
processes in FES. Figure 2 shows an example of cancelation of the
stimulation electrode effect. At the time 65 s, part of the electrode
is suddenly detached without informing it to the system, as
indicated by the circle. Muscle activation can be easily influenced
by this situation. However, as the change is observed with evoked
EMG signal from the targeted muscle (tibialis anterior), the
controller systematically modifies the stimulation input to be
increased so as to track the desired reference pattern of muscle
activation. It is pulse width control then it may not fully cancel

FIGURE 2 | Stimulation electrode effect cancelation in FES: The upper figure represents the experimental setup with typical foot drop correction

montage for the stimulation electrode to stimulate the peroneal nerve for the dorsi flexion of the ankle. EMG is measured for the tibialis anterior muscle. At

time 65 s, one electrode is detached, as indicated by the circle. The first plot shows the muscle activation obtained by evoked EMG. The second plot shows the

stimulation pulse width. Y-axes are in normalized scale. Note that the stimulation is systematically modified to compensate for the effect of the electrode detachment.

Muscle activation could thus still be maintained to minimize the effect of the stimulation field variation.
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the effect but it could minimize the effect of sudden muscle
activation changes by the detachment or the contact condition
changes of the electrode. The stimulation electrodes are with
typical montage for foot drop correction by FES.

5. CONCLUSION

Transcutaneous electrical stimulation (TES) is the technique
most frequently applied for muscle and nerve activation. It
is known that it has high sensitivity to the electrode contact
condition for electrical stimulation. To compensate the
intersubject (muscle strength) and intrasubject variability
(stimulation electrode contact change, muscle fatigue), it is
essential to monitor the real muscle responses under FES.
Evoked Electromyographically Controlled Electrical Stimulation
could be one solution to deal with this important issue. This
framework contributes to augmenting the FES system in several
aspects. First, an appropriate personalized muscle response
model under FES (stim-emg, emg-torque) could be quickly
established. Prediction of joint torque affected by muscle fatigue
could be performed based on evoked EMG. This allows us to

systematically compute and control electrical stimulation so as
to achieve the desired muscle activation even under time-variant
disturbances such as muscle fatigue and contact changes of
stimulation electrode. An example of stimulation electrode
effect cancelation was demonstrated to show the promising
performance of Evoked Electromyographically Controlled
Electrical Stimulation, which enables us to induce stable muscle
activation in TES.
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Neural prostheses based on electrical microstimulation offer promising perspectives to

restore functions following lesions of the central nervous system (CNS). They require the

identification of appropriate stimulation sites and the coordination of their activation to

achieve the restoration of functional activity. On the long term, a challenging perspective

is to control microstimulation by artificial neural networks hybridized to the living tissue.

Regarding the use of this strategy to restore locomotor activity in the spinal cord, to

date, there has been no proof of principle of such hybrid approach driving intraspinal

microstimulation (ISMS). Here, we address a first step toward this goal in the neonatal

rat spinal cord isolated ex vivo, which can display locomotor-like activity while offering

an easy access to intraspinal circuitry. Microelectrode arrays were inserted in the lumbar

region to determine appropriate stimulation sites to elicit elementary bursting patterns on

bilateral L2/L5 ventral roots. Two intraspinal sites were identified at L1 level, one on each

side of the spinal cord laterally from the midline and approximately at a median position

dorso-ventrally. An artificial CPG implemented on digital integrated circuit (FPGA) was

built to generate alternating activity and was hybridized to the living spinal cord to drive

electrical microstimulation on these two identified sites. Using this strategy, sustained

left-right and flexor-extensor alternating activity on bilateral L2/L5 ventral roots could be

generated in either whole or thoracically transected spinal cords. These results are a first

step toward hybrid artificial/biological solutions based on electrical microstimulation for

the restoration of lost function in the injured CNS.

Keywords: hybrid neural networks, neural prostheses, neuromorphic hardware, rehabilitation
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INTRODUCTION

Following spinal cord injury, neural prosthesis using electrical
stimulation of the spinal circuitry below the lesion can be
considered to restore functional locomotor capabilities (Giszter,
2008; Borton et al., 2013; Nishimura et al., 2013). These
approaches rely on the ability of intraspinal central pattern
generators (CPGs) to generate locomotor rhythms even when
isolated from descending inputs, as first assessed ex vivo (Brown,
1911; Grillner et al., 1981; Grillner and Wallén, 1985; Cazalets
et al., 1992, 1995; Kjaerulff and Kiehn, 1996), and then confirmed
in vivo in animals and humans (Dimitrijevic et al., 1998; Ichiyama
et al., 2005; Minassian et al., 2007). Based on this property, very
promising rehabilitation results have been achieved in rodents
using epidural stimulation of lumbar segments combined with
pharmacological drug applications and rehabilitation training
(Courtine et al., 2008, 2009; Musienko et al., 2009; van den
Brand et al., 2012). Such approach also allowed a paraplegic
patient to achieve assisted standing and stepping movements
with full-weight bearing (Harkema et al., 2011).

Because epidural stimulations can activate large networks
from the surface of the spinal cord including proprioceptive
fibers, a higher degree of control in the activation of the spinal
circuitry may be expected using intraspinal microstimulation
(ISMS). It has been found in cats that different stereotyped
hindlimb mouvements could be elicited by ISMS delivered
on single microelectrodes, depending on the position of
the microelectrode. Microstimulations delivered in dorsal L5-
S1 segments generally elicit hindlimb flexions, while ventral
stimulation mostly evokes hindlimb extension (Tai et al., 2003;
Lemay and Grill, 2004). More rostral stimulations delivered in
the dorsal half of L3-L5 segments also elicit ipsilateral flexion
(Barthélemy et al., 2006). Combining ISMS delivered on the
dorsal surface of L3-L7 segments with intraveneous injection of
the noradrenergic agonist clonidine could further elicit bilateral
locomotion (Barthélemy et al., 2006, 2007). Yet, producing
sustained locomotion by intraspinal ISMS solely in absence
of drugs remains unachieved. Toward this goal, tonic ISMS
delivered at 20–50Hz on microwires implanted in the lumbar
ventral horn to target motoneurons of spinalized cats could elicit
episodes of hindlimb flexion, extension, and even alternating
sequences (Saigal et al., 2004; Guevremont et al., 2006; Lau et al.,
2007).

These encouraging results open the way to the design of
autonomous neural prosthesis, where coordinated sequences of
ISMS control sustained locomotion. For this purpose, artificial
neural networks can be used to drive coordinated ISMS
sequences, a method recently used to control intramuscular
stimulations to restore locomotor behavior (Vogelstein et al.,
2008; Mazurek et al., 2012). Here we address this question
in the neonatal rat spinal cord isolated ex-vivo and interfaced
with a penetrating microelectrode array. This preparation can
indeed generate locomotor-like activity under pharmacological
activation while offering a direct access to intraspinal networks.
Here, our goal was to achieve a proof of principle that
an artificial neural network can control ISMS to drive
locomotor-like activity in this preparation. Two intraspinal

sites were identified at L1 level, the alternated stimulation
of which generated locomotor-like activity on bilateral L2/L5
ventral roots. An artificial CPG was then implemented on
FPGA to control ISMS on these two sites. This hybrid
connection could successfully be used to generate lumbar
locomotor-like rhythms in a whole and a transected spinal
cord.

METHODS

Ethics Statement
All experimental protocols conformed to recommendations of
the European Community Council Directive of November 24,
1986 (86/609/EEC) and local French legislation for care and use
of laboratory animals. They were approved by the local ethical
committee of Bordeaux under recommendation No A5012083.

Experimental Preparation and Recording
Whole spinal cord and medulla from newborn Sprague Dawley
rats at postnatal stage between P1 and P3 (Figure 1A) were
dissected in a cooled artificial CSF (aCSF) solution (pH 7.5)
gassed with carbogen (95% O2 and 5% CO2) and composed
of (in mM): 113 NaCl, 4.5 KCl, 2 CaCl22H2O, 1 MgCl26H2O,
25 NaHCO3, 1 NaH2PO4H2O, and 11 D-Glucose. Bilateral
L2 and L5 ventral roots were recorded using succion glass
electrodes. Ventral root signals were amplified with a gain of
750, band-pass filtered between 0.08Hz and 3 kHz, and then
sampled at a rate of 20 kHz using the previously developed
NeuroPXI system (Bonnet et al., 2012), which is an extended
version of the former BioMEA system (Charvet et al., 2010).
As shown in Figure 1B, this preparation exhibits locomotor-
like activity under the application of 5-HT (5µM), NMA
(10µM), and Dopamine (50µM), and is thus a good model
to explore rehabilitation strategies in vitro with an easy access
to intraspinal networks. The cords were superfused for 10min
with this cocktail to check that locomotor-like activity could
be elicited pharmacology in each preparation prior to hybrid
experiments. The drugs were rinsed for at least 60min to let
ventral root activity return to baseline before hybrid experiments
started.

Data Processing
Raw ventral root signals were processed as follows to extract
spiking activity (see also Heim et al., 2012): for each data
sample, a moving average of the signal computed over a 10-
ms window centered on this sample was first subtracted from
the raw data (DC-removing), and then the obtained value was
replaced by the average of the signal computed over a 1-ms
time window centered on this sample (smoothing). Signals
were then integrated to assess alternating patterns using polar
representations and statistics. For this purpose, the signals were
first blanked over a period ranging from 15ms before the
stimulation to 150ms after, and then integrated with a time
constant of 0.2 s (see gray traces superimposed on spiking
activity in Figure 1B) and finally smoothed with a window of
1 s. The statistical significance of the phase relationship between
bursting activity recorded on two different ventral roots was
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FIGURE 1 | Experimental paradigm. (A) Neonatal rat preparation. (B) Example of locomotor-like activity on bilateral L2 and L5 ventral roots. Integrated and

smoothed traces are superimposed in gray. (C) This rhythm can be represented as four polar plots showing the antiphase relationship (180◦ angle in the plot) between

two recordings of same level ipsi and contralateral ventral roots, as well as between two levels on the same side. In each plot, the three concentric circles indicate

significance levels of the Rayleigh test at P < 0.05, P < 0.01, and P < 0.001. (D,E) View of the experimental setup showing simultaneous ventral root recordings and a

4-shank multichannel neural probe inserted at L1 level for ISMS. (F) Schematic representation of the neural probe in the transverse plane of the lumbar spinal cord

adapted from Kiehn and Butt (2003). MNs, Motoneurons; CINs, Commissural interneurons; a, ascending; d, descending. (G) The multimed platform housing the

artificial CPG implemented in an FPGA. (H) Structure of the artificial CPG (“o” connections are inhibitory, “<” connections are excitatory). (I) Example of the activity of

all neurons of the artificial CPG. Neurons N5L and N5R were used to trigger ISMS at the time of every of their spikes.

assessed using a Rayleigh test on the delays between the peaks
of both integrated signals normalized to 360◦. Figure 1C shows
the typical polar representation of a locomotor-like activity
elicited pharmacologically, with antiphase locking between L2
and L5 ventral roots on each side and left-right L2 or L5
pairs.

Electrical Stimulation
As shown in Figures 1D–F, electrical microstimulations were
delivered on single microelectrodes of Neuronexus neural probes
made of four shanks separated by 400µm, each containing
eight 30-µm-diameter microelectrodes separated by 100µm
(probe model A4x8-5mm-100-400-703-A32). Based on earlier
studies showing the localization of rat CPGs (Cazalets et al.,
1995; Antri et al., 2011), the neural probe was inserted at the
L1 level of the spinal cord. Depending on the preparation,
between 15 and 26 sites of the probe were individually tested
for stimulation. Each stimulation consisted of a train of 10
biphasic pulses separated by 1ms. Each pulse was charge-
balanced with an initial cathodic phase of 500µs and an
amplitude of typically 150–300µA, immediately followed by a
10 times longer anodic phase of 10 times smaller amplitude.

Stimulations were monopolar with respect to a distant electrode
in the bath.

Artificial CPG
An artificial CPG neural network inspired from Hill et al.
(2001) was implemented onto a configurable digital integrated
circuit (FPGA), supported by an electronic platform designed
at IMS (Figure 1G). The implementation of this network
is fully described in Ambroise et al. (2013). In brief, the
core CPG network shown in Figure 1H consisted of two
symmetric sub-networks of four regular spiking neurons
(N1L-N4L and N1R-N4R in Figure 1H). These eight neurons
have identical biomimetic dynamics following the Izhikevich
model (Izhikevich, 2003) and are interconnected by reciprocal
inhibitory GABAA-like synapses. Synaptic efficiency was
governed by activity-dependent depression (Tabak et al., 2000).
The dynamics of each neuron was thus governed by four
parameters a, b, c, and d according to the following differential
equations:

dv

dt
=

v2

32
+ 4v+ 109.375− u+ Ibias +

Nsynapses
∑

i=1

Iisyn
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du

dt
= a(bv− u)

with the after-spike resetting condition:

if v ≥ 30mV then

{

v← c
u← u+ d

where the other parameter Ibias is a constant bias current and I
isyn

is the synaptic current received from the ith input neurons. For
each input, the synaptic current Isyn is governed by the following
equation:

dIsyn

dt
= −

Isyn

τsyn
+ (1− λsyn) ·Wsyn · δ(t − tspike),

where τsyn is the synaptic current decay time constant,
δ(t − tspike) = 1 if the input neuron produces a spike at time t
and 0 otherwise, and λsyn is the synaptic efficiency. The synaptic
efficiency was dynamic with a decay time constant τreg and
synaptic depression modeled through the following equations:

dλsyn

dt
= −

λsyn

τreg
· (1− δ(t − tspike))+ P · (1− λsyn)δ(t − tspike),

where P is a dissipation percentage parameter decreasing synaptic
efficiency after each spike.

The design was optimized to cost few digital resources on
the FPGA while running in real-time at the ms resolution
(Ambroise et al., 2013). Both sub-networks of the CPG
produced alternating rhythmic bursting activity (Figure 1I).
The resulting bursting activity was integrated for each sub-
network by a fifth spiking neuron (N5L and N5R in Figure 1H),
producing only one spike per burst, and representing the
CPG output neurons. In the current system version, each
parameter change in the neural network model requires a
new synthesis of the FPGA configuration, which is done
by the implementation of a new configuration file (bit file)
from the computer to the FPGA, a procedure taking several
seconds. Further versions will allow dynamic reconfiguration
of the FPGA, thus allowing online synaptic adaptation for
example.

Hybridization of the Artificial CPG to the
Spinal Cord
The CPG output neurons produced a rhythmic left-right
alternating activity made of 1 spike per cycle on each network
side. These output spikes were used to trigger intraspinal
electrical microstimulations on two different microelectrodes of
the neural probe, one on each side of the spinal cord.

Statistical Analysis
The statistical significance of alternating patterns of bursting
activity recorded on two ventral roots VR1 and VR2 was assessed
by a circular Rayleigh test performed on the angular values of
individual bursts. The amplitude of the Rayleigh statistics was
compared to three significance levels (P < 0.05, P < 0.01,
and P < 0.001) represented as different circles on the polar

representations in Figures 1C, 3C, 4C. The angular values on
which the test was performed were computed as follows. The
peaks of integrated signals were first detected on each ventral root
for each burst. Then, for each peak of VR2 occurring at time t2,
we considered the two neighboring peaks occurring before and
after t2 on VR1 (t1_prev ≤ t2 and t1_after ≥ t2) to compute a
local angular value using the following relation:

φ =
π

2
+ 2π

t2 − t1prev

t1after − t1prev

RESULTS

Identification of Two Intraspinal
Microstimulation Sites
An initial set of 10 preparations were used to identify the
best levels of the spinal cord to target between T11 and L5 in
order to elicit consistent responses on the L2/L5 ventral roots.
This was done using either a single glass pipette microelectrode
or a penetrating shank. We found that ISMS delivered at
the L1 level were the most reliable. We then considered
6 other preparations in which we inserted a 4 × 8 probe
transversally at the L1 level. Between 15 and 26 contacts
were scanned successfully at different current intensity levels
between 40 and 800µA. We initially tested classical symmetrical
biphasic pulses (cathodic-first with a cathodic phase of 500µs),
and found that they were less efficient than balanced but
non-symmetrical pulses where the anodic phase was twice
weaker and longer. Cathodic current intensities above 150µA
were generally required to obtain reliable responses on the
ventral roots. As shown in Figure 2, we found that ISMS at
L1 level elicited different burst responses on bilateral L2/L5
ventral roots depending on the location of the stimulation
site. ISMS delivered dorsolaterally elicited a burst on the
ipsilateral L2 ventral root (Figures 2A,B). Stimulations delivered
dorsomedially typically elicited a response on both ipsilateral
L2 and L5 ventral roots (as in Figure 2C), and occasionally
also on the contralateral L5 ventral root. Consistently across
preparations, we identified two intraspinal sites, one on each
side of the spinal cord located about 200µm laterally from
the midline and approximately at a median position dorso-
ventrally near the central canal (about 400µm from the dorsal
surface). We found that a stimulation delivered on either site
elicited a burst response simultaneously on the ipsilateral L2
and contralateral L5 motor outputs (Figures 2D,E). This result
thus opened the possibility to generate locomotor-like activity
using coordinated stimulation between these two stimulation
sites.

Generation of Alternating Patterns Using
the Artificial CPG
The eight neurons of the core network had the following identical
parameters that were found to lead to a robust alternating
activity on the output neurons of the CPG: a = 0.02, b =
0.2, c = −65, d = 8, and Ibias =8. The time constant
τsyn of the exponential decay of synaptic current was set to
100ms. For output synapses from neurons N2R and N2L, we
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FIGURE 2 | Ventral root responses to ISMS at L1 level. ISMS elicited different responses depending on the site of stimulation. (A,B) Dorsolateral stimulations

elicited a burst response mainly on the ipsilateral L2 ventral root. (C) Example of a more medial stimulation eliciting a response on ipsilateral L2 and L5 ventral roots.

(D,E) Importantly, ISMS delivered medially on either side of the central canal elicited a burst response on the diagonal L2 ipsilateral and L5 contralateral. These specific

intraspinal locations were found consistently across preparations and thus further used for the hybrid experiments. For all panels, a sequence of four stimulations is

illustrated.

used Wsyn = −1.26 and P = 0.1%; for input synapses onto
neurons N2R and N2L, we used Wsyn = −3 and P = 0.03%.
For all other inhibitory synapses, we used Wsyn = −3.8 and
P = 0.03%. The output layer neurons N5R and N5L received
excitatory AMPA-like connections respectively from N4R and
N4L, both defined by Wsyn = 30 and P = 90%. The initial
conditions were v = −20 and u= −4 for N1R, N3L, N4L,
N2R neurons, v = 0 and u = 0 for N1L, N3R, N4R, N2L,
and v = −65 and u = −13 for N5R and N5L. With these
parameters, each CPG bursting activity pattern generated one
spike on N5L and one spike on N5R, used as trigger for delivering
microstimulation to the spinal cord. The stimulation is only
triggered by the CPG output and consisted of a short train of
10 stimuli (see Methods). By changing τreg (from 4 to 12 s), the
artificial CPG alternating period could be modulated between 2
and 7 s.

Generation of Locomotor-Like Activity in a
Whole Ex-vivo Spinal Cord Using a Hybrid
Connection
In a first step, we made a hybrid connection between the artificial

CPG and a whole spinal cord. The output neuron of each

side of the artificial CPG controlled intraspinal stimulations

on one of the intraspinal stimulation site (Figure 3A). Each

spike of an artificial output neuron triggered one stimulation

on the corresponding intraspinal site. Using this strategy, clear

locomotor-like activity could be obtained on bilateral L2 and L5

ventral roots (Figures 3B,C). Once the artificial CPG was turned

on, this activity established at the first or second stimulation,

remained robust with a 1:1 correspondence to the artificially

imposed pace as long as the artificial CPG was ON, and then

vanished as soon as the CPG was turned off.
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FIGURE 3 | Hybrid experiment in the case of a whole spinal cord. (A) Schematic representation of the hybrid connection between the output neurons of the

artificial CPG and the two intraspinal stimulation sites. (B) Ventral root responses to a sequence of ISMS (150 and 200µA for the cathodic phase on the left and right

sites, respectively) driven by the artificial CPG at a cycle frequency of 6.7 s (integrated traces shown in gray), showing clear left-right and ipsilateral alternating patterns

(top: 2min, bottom 30 s). (C) Polar representation of this induced rhythm as in Figure 1C.

Generation of Locomotor-Like Activity in a
Transected Spinal Cord Ex-vivo Using a
Hybrid Connection
In a second step, we tested whether this result could also be

obtained in a lumbar spinal cord fully isolated from descending

inputs to mimic a lesion situation. We thus considered another

preparation, which was transected at the T7 level (Figure 4A).

The same type of hybrid connection was used between the

artificial CPG and the intraspinal stimulation sites. As shown

in Figures 4B,C, this strategy could also successfully elicit

locomotor-like activity on bilateral L2 and L5 ventral roots. The

locomotor pattern could be maintained for more than 7min as

long as the artificial CPG was ON. Moreover, several periods of

alternating cycle were tested in this preparation spanning the

range allowed by the artificial CPG (2.6, 3.1, 4, 5.2, and 6.7 s

between successive left and right stimulations). We found that

the spinal cord could follow the imposed rhythm in an exact

1:1 correspondence at these different frequencies for the whole

durations of the hybrid connection tested: 560 s at of 6.7 s (84

left+right stimulations), 430 s at 5.2 s (85 stimulations), 369 s at

4 s (97 stimulations), 392 s at 3.1 s (123 stimulations), and 363 s

at 2.6 s (217 stimulations). The artificial CPG was limited to

these period values and we thus could not test higher speeds

to see when the spinal cord would stop following the artificial

network. Nevertheless, the tested frequencies covered the pace

of a pharmacologically-evoked rhythm with inter-burst period

around 5 s on each ventral root (as shown in Figure 1B).

DISCUSSION

The goal of this study was to test whether ISMS controlled
by an artificial neural network could in principle be used
to restore locomotor-like activity in a transected spinal cord.
This proof of principle was achieved here in the neonatal
rat spinal cord isolated ex vivo, using the advantage that this
preparation can display locomotor rhythms while offering a
direct access to intraspinal networks. This paradigm allowed
identifying appropriate intraspinal sites for stimulation, which
were localized on either side of the central canal at L1 level.
Efficient stimulations could be obtained for current levels of the
order of 150–300µA. These current amplitudes were higher than
those generally used in previous in vivo studies to elicit limb
movements using ISMS in cats (Guevremont et al., 2006) and rats
(Shahdoost et al., 2014). One possibility could be the difference
in the frequency of the pulse train between these studies and
our paradigm. Here we used only 1ms between two successive
pulses of the same train, while in vivo ISMS typically used lower
frequency 40–50-Hz trains, likely to be more efficient. Moreover,
the level of excitability of the CPGs might be different between
our ex vivo situation at room temperature and the in vivo context
where the complete network including sensory feedbacks remain
present. Also, the activity elicited here on the ventral roots did
not result from a direct activation of the motoneurons since
a stimulation delivered on a precise site in L1 elicited activity
simultaneously on the ipsilateral L2 and the contralateral L5.
Thus, we created an indirect activation of themotoneurons, likely
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FIGURE 4 | Hybrid experiment in the case of a spinal cord transected at T7. (A) Picture of the experiments showing the transection, the 4 ventral root

recordings, and the neural probe used to deliver ISMS. (B) Ventral root responses to a sequence of ISMS (300µA for the cathodic phase on each site) driven by the

artificial CPG at a cycle frequency of 5.2 s (integrated traces shown in gray), showing clear left-right and ipsilateral alternating patterns (top: 2min, bottom 30 s). (C)

Polar representation of this induced rhythm as in Figure 1C.

by activating a group of interneurons participating in the lumbar
CPG. It is possible that higher stimulation intensities are required
to robustly activate the whole CPG rather than generating more
discrete muscle contractions. As a result and based on previous
studies (Ranck, 1975; Yeomans et al., 1986; Joucla et al., 2012),
it is likely that the currents we used typically activated neurons
within a distance of about 250–500µm from the electrode.
Nevertheless, we could verify experimentally the specificity of our
ISMS. Indeed, many electrode positions of the same probe were
tested for stimulation and, as illustrated in Figure 2, the response
to ISMS on the four ventral roots greatly depended on the site
of stimulation. In particular, there was a clear dissociation of the
response for the two stimulation sites that we identified on each
side of the central canal, which were separated by typically only
400µm and yet triggered completely different output patterns
(opposite L2-L5 diagonals). Using adjacent sites of the same
shanks distant by only 100µm from the optimal stimulation
sites did not produce consistent activation of the L2-L5 diagonal.
Actually, the fact that we were able to reproduce locomotor-like
activity patterns by coordinating ISMS on these two sites was
precisely based on this dissociation.

The localization of the two intraspinal sites was in the region
of the lumbar CPGs, which have previously been localized at
the upper lumbar region within T13 and L2 segments (Cazalets
et al., 1995; Kjaerulff and Kiehn, 1996). The ISMS positions
identified here fall in this region and are close to several
classes of projecting commissural interneurons (Kiehn and Butt,
2003). Moreover, these locations are also consistent with a high
density of neurons involved in alternating locomotor activity,
identified between L1 and L2 levels with calcium imaging (Antri

et al., 2011). Altogether this suggests that ISMS may activate
elements of the lumbar CPGs responsible for the coordination
of opposite L2 and L5 motoneuronal pools, maybe through
the direct activation of commissural interneurons. It should be
noted that each stimulation typically triggered only one burst
episode on output roots (as clearly seen in Figures 2–4). Thus,
all bursts were followers of the stimulation pulses. In particular,
no wind-up was observed since bursts disappeared as soon as the
stimulation stopped, and the frequency of the locomotor pattern
could be imposed by the frequency of the artificial CPG. For these
reasons, it is possible that each stimulation activated a group
of interneurons participating in the lumbar CPG, and that the
coordination of two stimulation sites could allow reproducing
locomotor-like activity by the coordinated activation of these
groups.

The quest for fully autonomous neural prosthesis based
on hybrid connections between the CNS and artificial neural
networks is a tremendous challenge. Here, we only performed
a first step toward this goal by making a unidirectional
(open-loop) connection between an artificial CPG and the
spinal cord circuitry. In this work, the artificial network was
initially configured with proper parameters to exhibit adequate
alternating rhythmic activity. In particular, modifying the
frequency of the rhythm required a manual reconfiguration
and re-synthesis of the network in the FPGA. Further versions
of the CPG hardware implementation will offer the possibility
to modulate its dynamics in real time. This will then open
the possibility to build bidirectional hybrid connections, where
supralesional activity can be used to control the artificial network
dynamically in order to achieve a close loop artificial connection
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over the lesion. In particular, future developments could include
paradigms where the artificial network would be dynamically
controlled and/or modulated by inputs from supraspinal and/or
intraspinal supralesional information, and possibly modulated
in real time by sensory feedbacks produced after ISMS in
preparations preserving whole hindlimbs attached to the spinal
cord.

As a further perspective, such hybrid approach will also need
to be extended in vivo in order to assess whether it can also
help recover locomotion capabilities in adult animals subject
to chronic spinal cord lesions. While this has started to be
addressed using ISMS in spinal cats (Guevremont et al., 2006;
Mazurek et al., 2012), little ISMS work has yet been obtained
in rats (Shahdoost et al., 2014). Previous lesion results in adult
rats showed that destruction of the gray matter at T13-L2 level
induce severe locomotor deficits, while more caudal lesions have
more limited influence (Magnuson et al., 2005), suggesting a
localization of neonatal lumbar CPGs consistent with those of
adult animals. Yet, whether the two stimulation sites identified
in this study remain conserved in adulthood to elicit locomotor
movements in spinal animals remain to be tested. Moreover, in
the case of chronic animalmodels of paralysis, lesionsmay induce
remodeling of intraspinal circuits on the long term (Dietz and
Müller, 2004), which may change the way networks could be
activated. However, previous studies indicate that despite such
plastic changes, lumbar CPG circuitry remain present and can be
reactivated below the lesion with training to recover functional
locomotion (Barrière et al., 2008; van den Brand et al., 2012).
An open question is whether such rehabilitation perspective can
also be obtained using active neural prosthesis solely based on
ISMS. Chronical experiments will thus be necessary to determine
if the spinal circuitry below the lesion may also be exploited
through hybrid connections with artificial neural networks to

recover locomotor functions with autonomous spinal neural
prosthesis.

CONCLUSION

In conclusion, the present study is a first demonstration of
a hybrid interconnexion between a living spinal cord and an
artificial neural network driving ISMS to restore functional
activity. These results are a first step toward intelligent neural
prostheses based on hybrid live/artificial connections for the
restoration of lost function in the injured CNS.
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Cervical spinal cord injury can disrupt connections between the brain respiratory network

and the respiratory muscles which can lead to partial or complete loss of ventilatory

control and require ventilatory assistance. Unlike current open-loop technology, a

closed-loop diaphragmatic pacing system could overcome the drawbacks of manual

titration as well as respond to changing ventilation requirements. We present an original

bio-inspired assistive technology for real-time ventilation assistance, implemented in a

digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller,

which is a spiking neural network (SNN) inspired by the medullary respiratory network, is

as robust as a classic controller while having a flexible, low-power and low-cost hardware

design. The system was simulated in MATLAB with FPGA-specific constraints and

tested with a computational model of rat breathing; the model reproduced experimentally

collected respiratory data in eupneic animals. The open-loop version of the bio-inspired

controller was implemented on the FPGA. Electrical test bench characterizations

confirmed the system functionality. Open and closed-loop paradigm simulations were

simulated to test the FPGA system real-time behavior using the rat computational

model. The closed-loop system monitors breathing and changes in respiratory demands

to drive diaphragmatic stimulation. The simulated results inform future acute animal

experiments and constitute the first step toward the development of a neuromorphic,

adaptive, compact, low-power, implantable device. The bio-inspired hardware design

optimizes the FPGA resource and time costs while harnessing the computational power

of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo

applications.

Keywords: bio-inspired controller, spiking neural network (SNN), closed-loop paradigm, ventilatory control

system, metabolic demands, spinal-cord injury (SCI), field programmable gate array (FPGA), assisted ventilation

INTRODUCTION

Approximately 282,000 Americans (∼0.1% of the US population) have traumatic
spinal cord injury (SCI), with approximately 17,000 new injuries being reported each
year (National Spinal Cord Injury Statistical Center—NSCISC, 2016). The cervical
cord is the most common site of injury (54% of all cases). An individual with
high-level cervical SCI at or above the fifth cervical level may experience partial or
complete loss of ventilatory control (Warren et al., 2014) because the motor fibers of
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the phrenic nerve, which innervates the diaphragm, originate
from the 3rd to 5th cervical level. Respiratory diseases and failure
are the leading cause of death after SCI (67.4% of these were
cases of pneumonia) (NSCISC, 2016). Ventilatory insufficiency
is often managed with positive pressure mechanical ventilation,
but such treatment is associated with significant discomfort,
diaphragmatic atrophy, atelectasis and barotrauma (DiMarco,
2005). Most mechanical ventilators act in an open-loop manner,
but some systems for partial ventilatory support offer dynamical
control of the mechanical ventilation through proportional assist
ventilation or neurally adjusted ventilatory assist (Yonis et al.,
2015). These systems aim to amplify the patient’s native intrinsic
respiratory effort. The practicality of these designs is limited
by the need for non-invasive and reliable measures of the
mechanical characteristics of the respiratory system and need for
a reliable positioning of an instrumented transtracheal catheter
to obtain reliable measure of the diaphragm electrical activity
(Navalesi and Costa, 2003; Terzi et al., 2012).

An alternative approach to mechanical ventilation uses trains
of electrical pulses to elicit contractions of the paralyzed (or
paretic) ventilatory musculature (DiMarco, 2009; Madsen, 2012;
Ho et al., 2014). In many individuals, this approach has
been used to achieve suitable ventilation, but the performance
of existing assistive ventilatory control system technology is
limited. Open-loop ventilatory control systems require iterative
manual tuning by a practitioner of parameters of a fixed
stimulation pattern. Open-loop systems do not have the ability
to adjust these parameters if manual tuning does not produce a
stimulation pattern that adequately meets metabolic demands.
Furthermore, muscle fatigue and changes in electrode response
properties can alter the degree of ventilation produced by
an open-loop stimulation, which can also result in an unmet
respiratory need. In other systems that use electrical stimulation
of paralyzedmuscles, traditional feedback controllers (e.g., Abbas
and Chizeck, 1991; Schearer et al., 2014) and adaptive approaches
(e.g., Abbas and Chizeck, 1995; Riess and Abbas, 2001; Fairchild
et al., 2010) have been able to achieve high quality control of limb
movements. For ventilatory assistance, a closed-loop adaptive
control system that uses electrical stimulation could overcome
the drawbacks of open-loop control and offer improved quality
of life to individuals with paralysis that impairs ventilation.

Neural networks in the brain modulate the drive to
the respiratory muscles to meet metabolic demands under
diverse conditions. The spatially distributed pontine–medullary
respiratory network activates the spinal motor neurons that
innervate the respiratory muscles (Richter, 1996; Smith et al.,
2009). The activity of the respiratory network is continually
adjusted by two major types of feedback: mechanical feedback
(lung volume mechanoreceptors) and chemical feedback (levels
of CO2 and O2 in the blood and brain tissue chemical
receptors). This activity can be modulated by higher brain
centers (voluntary control, posture, emotion, etc.). Therefore, the
respiratory network activity is sensitive to various stimuli to drive
breathing and non-breathing behaviors (vocalization, eating,
straining, airway protection reflexes, e.g., coughing, sneezing,
or swallowing, etc.). The respiratory network has a robust yet
highly flexible network organization that can permit multiple

state-dependent modes of operation (Smith et al., 2009). The
neural network can be computationally modeled as a network
of spiking neurons. Spiking neural network (SNN) paradigms
have gained significant attention in the past decades (Maass,
1997) and have inspired many hardware control systems used
for robot control algorithms (Arena et al., 2010; Ayers et al.,
2010; Nichols et al., 2013), classifier devices (Hsieh and Tang,
2012), new algorithms (Lagorce et al., 2015), or assistive devices
for therapy or rehabilitation (Jung et al., 2001; Vogelstein et al.,
2008; Sun et al., 2011; Ambroise et al., 2013). Some closed-loop
ventilatory control systems have been proposed (Sharshar et al.,
2003; Beck et al., 2007) but none have used a bio-inspired SNN
control system.

In this paper, we address the need for an adaptive ventilatory
control systemwith a new concept: a bio-inspired SNN controller
(Figure 1). If the native diaphragmatic drive is totally or partially
interrupted by SCI, then ventilation may not be sufficient.
A closed-loop system can provide stimulation that adapts in
response to measures of physiological variables. Our innovative
closed-loop architecture for ventilation assistance is inspired
by the pontine–medullary respiratory network to benefit from
its robustness and flexibility. The neural network controller is
implemented on an FPGA (Field Programmable Gate Array),
which is a general approach that has been used since the
early 1990s (Cox and Blanz, 1992). It is a fully reconfigurable
digital integrated circuit that has low demands on power
and computational resources. To achieve high computational
efficiency, our controller uses fixed-point computation and
implements low computational cost neuron and synapse models.
Our design is inspired by the biological circuits but it is
not intended to emulate a precise model at the network or
cellular level. Our multidisciplinary collaboration has produced
a hardware-in-the-loop real-time (HL) simulation platform that
uses a computational model of rat ventilation and a fixed-point
SNN controller model. The HL simulation was used to validate
the bio-inspired SNN controller prior to its implementation in
hardware and use in animal experiments.

We first assess the feasibility of implementing a bio-inspired
SNN controller in digital hardware. Then, we develop a design
methodology for a closed-loop ventilatory control system using
our HL computational model and its FPGA implementation. We
describe the models (both mathematical and animal) as well as
their implementation and use in a HL simulated experiment.
Finally, we provide proof-of-concept HL computational results
that illustrate ability of the system to adapt the stimulation
parameters to meet metabolic demands.

MATERIALS AND METHODS

Bio-Inspired Controller Architectures
The neural networks underlying respiratory rhythm and pattern
generation and control of ventilation have been studied
extensively. Based on these investigations a pontine–medullary
respiratory network model has been proposed for control of
ventilation (Smith et al., 2000, 2009) that includes a tonic
drive network in the pons, the retrotrapezoid nucleus/parafacial
respiratory group, and in raphe nuclei; a respiratory rhythm
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FIGURE 1 | Closed-loop injured respiratory system with the system

Computation-Enabled Adaptive Ventilatory Control System

(CENAVEX). In the context of spinal cord injury (SCI) or any disruption

between the brain and the respiratory muscles, a hardware closed-loop

system could provide a complimentary stimulation to the main respiratory

muscles (e.g., the diaphragm) for efficient ventilation. A new bio-inspired

spiking neural network (SNN) controller drives electric stimulation according to

the metabolic status and demands through various physiological feedback

signals (air flow, metabolic demand as measured by CO2 amount).

initiating and generating core in the Bötzinger and Pre-
Bötzinger regions of the medulla; and follower rostral and
caudal ventral respiratory neural network groups. In this model,
the core network generates the respiratory rhythm and shapes
inspiratory and expiratory motor patterns of the follower ventral
respiratory group neurons. The latter contain the pre-motor
neurons projecting to the phrenic motoneurons and bulbospinal
expiratory neurons for the control of respiratory muscles. The
respiratory neural populations are identified by their spiking
discharge patterns and by their possible main contribution in
ventilatory control (Richter, 1996; Nuding et al., 2009; Smith
et al., 2009; Mellen and Thoby-Brisson, 2012; Richter and Smith,
2014). Computational scientists have proposed network models
to mimic both the neural population activity patterns and specific
modulation of the respiratory network (Lindsey et al., 2012;
Molkov et al., 2014; Toporikova et al., 2015).

The bio-inspired SNN controller is based on experimental
neuroscience and computational studies of the pontine–
medullary respiratory network at a high level (i.e., the
architecture) as well as at a low level (i.e., the population
activity). We have developed two generations of architecture:
an open-loop system (solely black architecture in Figure 2A)
and a closed-loop system (both black and gray architecture in
Figure 2A). In the network, each SNN controller neuron is
inspired by the behavior of one population of the respiratory
network. The basic organization includes three sub-networks:
the FPGA core network defines the stimulation dynamics for
each breath, the FPGA tonic network controls the core network,
and the FPGA follower network converts the core network
spiking activity into a stimulation signal to the diaphragm. The
SNN controller’s core and follower neurons are used in both

FIGURE 2 | Bio-inspired Spiking Neural Network (SNN) for ventilatory

control systems. (A) The bio-inpired controller is used in open and

closed-loop paradigms (solely black architecture and black and dashed-gray

architecture, respectively). Follower Iinc neuronal activity triggers and shapes

the electrical stimulation accordingly with the core activities (in doted box). In

the closed-loop system, gray tonic neurons activities modulate the core

behavior accordingly with the sensor measures (Volume V, CO2 increase and

decrease CO2+ and CO2−). Tonic neuron EITON is used in both open and

closed-loop paradigms to modulate the EI core neuron. (B) Two modulations

of SNN connection strength (1P) rely on SNN learning rules (left and right,

respectively). Simplified spike-timing-dependent plasticity includes Long-Term

Potentiation (LTP) and Long-Term Depression (LTD).

open and closed-loop architectures. Neuron names in the SNN
refer to their discharge pattern (dec for decreasing, inc for
increasing) during a respiratory phase (E for expiration, I for
inspiration): decreasing activity pattern expiration (Edec neuron),
spiking activity during the inspiration-expiration transition (IE
neuron), decreasing activity pattern inspiration (Idec neuron),
spiking activity during the expiration-inspiration transition (EI
neuron), and increasing pattern inspiration (Iinc neuron). Other
neurons enable reproduction of specific features of the dynamics
of the biological network (e.g., additional triggering neurons
such as IdecTON and EITON implement excitatory neuron’s
dynamics). Finally, additional neurons modulate in real-time the
bio-inspired SNN controller behavior using sensor information:
VolSpk directly influences volume; C1Spk and C2Spk increase
and decrease CO2, respectively. CO2 was chosen as the primary
chemical controller for metabolic demand as end-tidal CO2

which reflects the partial pressure of arterial CO2 is measureable
in vivo and provides a very strong influence to respiratory drive.

The bio-inspired SNN controller architecture reflects the
respiratory rhythm and pattern generation network architectures
presented by Richter and Smith (Richter, 1996; Smith et al., 2009)
while being adapted to high density and low power consumption
constraints of implanted technology. The Richter and Smith
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architectures mostly describe the same populations with little
variation, such as the core population late-I in Richter (1996) is
not explicitly represented in Smith et al. (2009). One common
description is the network formed by reciprocal inhibitory
connections between two neurons—called the primary inhibitory
oscillator. The coupled Idec and Edec neurons mimic the so-called
early-I and post-inspiration populations (or PI or post-I).

It should be noted that the SNN architecture does not possess
intrinsic pacemakers as in the biological network. The FPGA
controller uses a self-excitation connection to mimic intrinsic
rhythmogenic capability: the IdecTON neuron triggers the Idec; the
IE neuron triggers the Edec neuron; and the EITON triggers the
EI neuron. Another example is the connections between the core
and follower populations. The follower population could either
be inhibited by most of the core population (Richter, 1996) or
excited by one core population (pre-I/I in Smith et al., 2009)
but in both cases it is an excitatory follower population. In the
FPGA controller, a self-excitatory connection on the follower
Iinc neuron is implemented. This self-excitatory connection was
already presented in Richter (1996). The EI neuron triggers Iinc,
as suggested by the short activation of the pre-I population prior
to the follower activity in Richter (1996). Similarly, the Edec
neuron inhibits the follower neuron Iinc as suggested by the
inhibition of PI neuron on the follower neuron in Richter (1996).

The closed-loop architecture adds three tonic neurons to
the open-loop architecture: Volspk, C1spk, and C2spk (gray in
Figure 2A). Tonic neurons encode signals measured by sensors
into spike patterns. The tonic neuron activities can update
the strength of specific connections in the bio-inspired SNN
controller at each computation step. There is scarce information
on the network architecture and the activity of biological tonic
populations., Spike-timing-dependent plasticity (STDP) as a
Hebbian synaptic learning rule has been identified in biological
neurons (Markram et al., 1997; Bi and Poo, 1998). It has been
demonstrated in various neural circuits over a wide spectrum
of species, from insects to humans (Caporale and Dan, 2008),
and various types of STDP have been identified (Abbott and
Nelson, 2000). We chose to use simplified STDP learning rules
(Figure 2B) to modulate connections according to breathing rate
and depth as well as for injury level and metabolic demands: P(f),
P(a), and P(inj). While the open-loop controller is triggered by
an external excitatory stimulation (not shown in Figure 2A), the
closed-loop controller is triggered by the tonic neuron Volspk
activity.

The electrical drive pattern reflects the follower neuron
Iinc on-going activity. Neuroscience and computational studies
usually refer to the neuronal population activity as integrated
population activity (population spike frequency histograms) or
cycle-triggered histograms (average firing rates of the neurons
during the respiratory cycle) reported as spikes per second per
neuron (Nuding et al., 2009; Smith et al., 2009). The stimulation
ratio is the number of spikes out of 20 measured over the last 20
computation steps (i.e., 10ms). It represents the activity of each
neuron from the bio-inspired SNN. The stimulation ratio is the
proportion of maximum activation (stimulus) of the respiratory
muscle, 0–1 (in this case, 0 spikes = 0, 10 spikes = 0.5, and 20
spikes= 1, etc.).

Spiking Neural Network Model
The low complexity leaky integrate-and-fire (LIF) neuron
formalism was chosen for its minimal computational demand
while maintaining key timing properties of biological neurons.
The neuron is modeled as a leaky integrator of its total current
from all synapses Itot(t), defined in Equation (1):

τm
dvm(t)

dt
= −vm(t)+ RmItot(t) (1)

where τm is the membrane time constant, vm(t) the displacement
of neuron voltage from the resting potential, and Rm the input
resistance. The LIF neuron fires a spike when the variable vm(t)
reaches a fixed threshold. An absolute refractory period forbids
the neuron to fire a spike within a fixed period of time after each
spike.

The kineticmodel for SNN connectivity is an adaptation of the
alpha model presented by Destexhe et al. (Destexhe et al., 1994).
This kinetic model requires a single multiplier component. It
eases the implementation of various kinetics and it “accounts for
saturation and summation of multiple synaptic events, obviating
the need for event queuing” (Destexhe et al., 1994). The kinetic
model is based on a fraction of bound receptors r(t). Destexhe
et al. approximate kinetics by two expressions, described in
Equations (2) and (3):

1. During a Spike (t0 < t =< t1):

r(t − t0) = r∞ + (r(t0) − r∞) exp(−
t − t0

τr
)

with r∞ =
α

α + β
&τr =

1

α + β
(2)

2. After a Spike (t > t1):

r(t − t1) = r(t1) exp(−β(t − t1)) (3)

where r∞ is the maximum fraction of bound receptors, τr and
1/β are time constants of the two phases of r(t) (i.e., during
and after spike), and α and β are the forward and backward
rate constants for transmitter binding (i.e., how fast or slow the
kinetic model is). Unlike the Hodgkin and Huxley conductance
model (Hodgkin and Huxley, 1952), α and β in this model are
not time-dependent.

The total current from all synapses Itot(t) is the sum of
synaptic currents IS(t). Each synaptic current is taken to be
proportional to the fraction of bound receptors r(t), defined in
Equation (4):

IS (t) = ASE r(t) (4)

where ASE is the absolute synaptic strength, which can be
exhibited only by activating all bound receptors. Nichols et al.
(2013) used a similar approach to compute synaptic current to
simulate a biologically inspired SNN for robot motion control.
They used an alternative kinetic model with three interdependent
derivative equations (Tsodyks et al., 1998). Although their system
was easily implemented in software for simulation, it was not
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implemented in hardware. The Rm Itot(t) variable, equivalent
to the Total Post-synaptic Potential (TPP), is defined in
Equation (5):

RmItot(t) =
∑

i

Pi ri(t) (5)

where P is the absolute synaptic strength potential as determined
by the multiplication of ASE by Rm—the input resistance of the
neuron. The input resistance Rm is fixed in this model; ASE could
be modified by plasticity rules. Combining both variables into
one, P, avoids the use of a multiplier component. Finally, absolute
synaptic strength potential is used as the connection strength in
the bio-inspired SNN network.

To summarize, the neural network model is defined by three
processes. The “Kinetic” process updates the fraction of bound
receptors r(t) according to defined kinetic model. The “TPP”
process computes each neuron Rm Itot(t) variable. The “Vm &
Spike” process updates the Vm(t) variable, the refractory period
status, and may fire a new spike according to the defined LIF
neuron model.

FPGA Implementation (Open-Loop)
The bio-inspired SNN controller was described in Very High
Speed Integrated Circuits Hardware Description Language
(VHDL) to define how to use and connect the hardware
components available on the FPGA. The SNN controller was
implemented on a Xilinx Spartan-6 FPGA (XC6SLX150: 4 Mbit
full speed block RAM, 180 embedded multipliers, 92 k 6-input
look-up tables and 184 kb distributed memory), hosted on a
custom board, presented elsewhere (Zbrzeski et al., 2015). We
used UART communication for storage and display of real-time
variable data from the SNN.

A sequencer coordinates two computing phases of the SNN
that update and share two dynamical variables, r(t) and Vm(t)
(Figures 3A,B). Both computing phases rely on the previously
defined models, taking advantage of their simplicity and their
computational efficiency. Then, the sequencer controls a third
idle phase to refresh the variables at a defined frequency (in
order to achieve biological real-time). In this application, real-
time is defined by the controller’s ability to elicit diaphragm
contraction with on-going real-time updates of the stimulation
parameters. The stimulation frequency range is between 75Hz
(typical) and 500Hz in open-loop stimulation on a rat phrenic
nerve or diaphragm (injured or not) (Mantilla et al., 2010;
Kowalski et al., 2013). Stimulation frequency is lower for larger
animals (e.g., dog, 10–50Hz) (Walter et al., 2011). The bio-
inspired controller updates the SNN behavior and variables at
2 kHz, i.e., the computation time-step dt is 0.5ms. It does not
depend on the number of neurons and it ensures accurate control
of stimulation pattern.

The first phase is the Kinetic computing. The “Kinetic” process
is the conversion over discrete dt time-steps of the fraction of
bound receptors r(t) from themodel defined in Equations (6)–(8)
using forward Euler integration.

FIGURE 3 | Architecture of the Spiking Neural Network (SNN)

implemented on an FPGA. (A) Spatial and (B) temporal SNN

representations, with r(t) the fraction of bound receptors stored in the Kinetic

RAM, P the absolute synaptic strength potential, Rm Itot(t) the Total

Post-synaptic Potential (TPP), and Vm the displacement of neuron voltage

from the resting potential stored in the Spike RAM as well as the spiking

activity of the associated neuron. Small or bold arrows represent, respectively,

a computing process reading “R” or writing “W” in a Random-Access Memory

(RAM). The SNN sequencer (Seq.) manages two computing phases, followed

by an idle phase. The first computing phase updates each kinetic variable r(t)

associated with one pre-neuron. The second computing phase updates the

spike status for each neuron by computing Rm Itot(t) variable with the TPP

process, followed by computing Vm, the refractory period, and the spike

status with the “Vm & Spike.” The SNN connectivity is stored in mapping RAM.

1. During a spike (t0 < t= < t1)

r[t + 1] = A r[t]+ B (6)

2. After a spike (t > t1)

r[t + 1] = C r[t] (7)

where A, B, C are constants defined as.

A = dt α B = 1− dt (α + β) C = 1− (β/dt) (8)

Table 1 presents five sets of kinetic parameters associated with
one neuron. Each set consists of 4 parameters: the maximum
fraction of bound receptors (r∞), the rising exponential time
constant (τ r), and the forward (α) and backward (β) rate
constants for transmitter binding. Each kinetic parameter set
determines the values of constants (A, B, and C) that are
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TABLE 1 | Available kinetics parameter sets.

Kinetic

set #

r∞ τr (ms) α (ms−1) β (ms−1) A B C

5 0.90 1.0 900 100 0.4500 0.5000 0.9500

4 0.90 2.0 450 50 0.2250 0.7500 0.9750

3 0.92 4.0 230 20 0.1150 0.8750 0.9900

2 0.92 8.0 115 10 0.0575 0.9375 0.9950

1 0.92 15.9 58 5 0.0290 0.9685 0.9975

Each row presents a pre-defined parameter set that is available for selection when

implementing the controller. The α and β are the forward and backward rate constants for

transmitter binding. r8 is the maximum fraction of bound receptors. τ r is the time constant

of the increasing exponential characterizing the r(t) behavior during a spike. A, B, C are

the unsigned 14-bit constants used for implementation on the FPGA.

implemented using 14-bit unsigned integers to streamline real-
time computation. A 3-stage pipeline is used to update all
five kinetic parameters connected to one neuron output. One
multiplier is used per kinetic parameter. It takes 519 clock cycles
to update 512∗5 fractions of bound receptors r(t), saved in block
RAM as 0.18 unsigned vectors (i.e., rational values between 0 and
1 coded on 18 bits).

The second phase consists of computing spikes. It is the
conversion over discrete dt time-steps of the LIF model using
forward Euler integration, defined in Equation (9). After a spike,
a neuron has a minimum refractory time of one time-step during
which membrane potential is set at its resting potential (in this
case,−70mV).

vm[t + 1] = vm[t]+
dt

τm
(vrest − vm[t]+ RmItot[t])

with RmItot[t] =
∑

P r[t] (9)

The ratio dt/τm is set at 8 to use a shift operation instead of a
multiplication. The “TPP” process updates the Rm Itot[t] signal,
as illustrated in Figures 3A,B. The Rm Itot[t] signal is connected
to the “Vm & Spike” process. The implemented architecture does
not include the plasticitymechanism, but the block RAMaccesses
are already available for such a mechanism. The “TPP” and “Vm

& Spike” processes each use a 3-stage pipeline to update all
neurons. Four multipliers are used in the “TPP” process. It takes
1036 clock cycles to update 512 neurons during this second phase.

The SNN architecture can construct up to an 8-to-all 512-
neuron network. Each connection is modeled by 1 among the
5 possible kinetic connections of Table 1. The implemented
network has a low connectivity density. The implemented SNN
controller uses the open-loop architecture (Figure 2A). Table 2
presents the open-loop SNN synaptic parameters.

Hardware-in-the-Loop Real-Time
Computational Model
The bio-inspired SNN controller can provide complementary
diaphragmatic electrical stimulation to the native phrenic
stimulation. The closed-loop version of the SNN controller
adapts the stimulation (timing, amplitude) to meet the metabolic
demands by adapting the depth and frequency of breathing.

As a precursor to animal experiments, the SNN controller
was evaluated in a computational model. Figure 4A illustrates
a hardware-in-the-loop real-time (HL) computational model
using a rat computational model and a fixed-point FPGA SNN
controller model. The HL model maintains real-time processing
capability (0.5ms).

The computational model of rat ventilation is a real-time
dynamical model with the ability to simulate rat ventilation
for various breathing states. The bio-computational model
includes a native drive model, an activation model (a linear
summation of native and stimulated activation, a simplified first
approximation), a musculoskeletal model, and a metabolism
model. The model was developed to reproduce the phrenic native
drive of an injured/non-injured animal, the combined muscle
activation drive, eupneic respiratory volume, and a residual CO2

quantity in the model.
The musculoskeletal model was scaled to fit the eupneic

respiratory output of a non-injured rat. This model
was developed from a human computational model in
Simulink/SimMechanics implementing the physiologically
realistic muscle model from MSMS (Hillen and Jung, 2014).
Proportional muscle activation (0–1, proportion of spikes out
of 20) as provided by the SNN was transformed into motor
unit activation using the intramuscular functional electrical
stimulation model from Virtual Muscle (Song et al., 2008)
as implemented in MSMS which uses a single motor unit
of each type where firing frequency is specified for stimulus
intensity using a recruitment order from Singh et al. (2000)
for intramuscular stimulation. The lung volume displacement
was assumed linearly related to the diaphragm displacement,
as illustrated in Richter (1996). This approximation was
determined to be acceptable, especially when considering the
system in eupneic conditions and when focusing on the volume
shape during inspiration phase. Ventilatory compliance was
modeled as a damped spring with non-linear stiffness. The non-
linear stiffness values for the rat thorax/diaphragm were chosen
from experimental data (Young et al., 1992). Damped spring
and activation amplitude from the human musculoskeletal
model were adjusted such that the rat musculoskeletal model
produced lung volume trajectories similar to experimental
collected rat data (10 experimental data recordings, as presented
in Figure 4B). Native activation was represented as a spaced
sawtooth function and defined the pattern of the native model.

Experimental data from one male Sprague Dawley rat (n = 1,
360 g) (Siu et al., 2015) was used to determine the desired lung
volume waveforms that were then used by the control system
in the simulation studies. Data was collected with the approval
of the Institutional Animal Care and Use Committee of Florida
International University. The rat was maintained under eupneic
conditions (21% O2, 0% CO2, balance N2) through the use
of a gas mixer (GSM-3, CWE Inc.). The rat was anesthetized
via IP delivery of pentobarbital (45mg/kg) with supplemental
isoflurane (0.5–1%). A pulse oximeter monitored SpO2, while
end-tidal CO2 was monitored via a CO2 analyzer (Capstar-
100, CWE Inc.) throughout the study to monitor and assess
animal health. A pneumotachometer (8420A, Hans-Rudolph)
collected air flow, which was then processed through a hardware
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TABLE 2 | Connectivity between the tonic and core populations of the open-loop SNN controller implemented on the FPGA.

Post-I Early-I PreI/I -

EdecTON EdecOUT IdecTON IdecOUT EITON EIOUT ON

i Ki,1; Pi,1 Ki,2; Pi,2 Ki,3; Pi,3 Ki,4; Pi,4 Ki,5; Pi,5 Ki,6; Pi,6 Ki,7; Pi,7

1: EdecTON 3; +600 1; +5000 – – – – –

2: EdecOUT 1; −2200 – – 4; −250 4; +8000 4; −500 –

3: IdecTON – – 3; +40 4; +500 – – –

4: IdecOUT – 1; −1500 3; −5000 – – 4; −350 –

5: EITON – – – – 3; +40 2; +400 –

6: EIOUT – – 2; +200 – 2; +1280 – –

7: ON 4; +1280 – – – – – –

Each row corresponds to a pre-synaptic neuron i; each column corresponds to a post-synaptic neuron, j. For each pair of connected neurons, the first value indicates the kinetic

connection Ki,j between neurons i and j; the second value indicates the absolute synaptic strength potential Pi,j . Note that the ON neuron is used to automatically start the SNN

controller after its initializations when used in open-loop mode.

FIGURE 4 | Hardware-in-the-loop (HL) real-time computational model.

(A) Diagram of the HL computational model including the SNN controller

model (bold) and the rat computational model. The SNN controller model

(electrical stimulation) and the native model drives (phrenic nerve) are

combined in an activation signal (normalized) to stimulate the muscle model.

The musculoskeletal model provides the dynamic volume. The metabolism

model provides the CO2 amount in the body, considering a fixed reference

CO2 production (or metabolic demands parameter MBC). The weighted injury

factor WI can attenuate the native drive to reflect the impact of spinal cord

injury on ventilation. The native drive pattern was defined to mimic

experimental data (see B). The native model includes a dynamical respiratory

rate mechanism: it modulates the native drive pace to reach a constant CO2

amount on a breath-by-breath basis. (B) The non-injured native activation

elicits a volume (Model) that is similar to experimental rat volume (Reference).

integrator (PI-1000, CWE Inc.) to obtain breath volume. Bipolar
stainless steel barb electrodes were inserted into the diaphragm
to record electromyography. Flow, volume, end tidal CO2, and
electromyography measurements were collected at 6 kHz.

The metabolism model was created to dynamically represent
the quantity of CO2 in the computational model. Themetabolism
model describes generation of CO2 (by mass) in the body and
the exhalation of CO2 with each breath (as determined by breath
volume/rate). Baseline CO2 production (MBC0) was set for net-
zero increase in CO2 in the body during tidal breathing/eupnea.

Increases in metabolic demand are represented by increases in
CO2 production rate. The eupneic computational condition was
defined for a respiratory rate (RR) of 56 breaths per minute and
a tidal volume of 2mL. The CO2 amount is constant on a breath-
by-breath basis. If there is an increased metabolic demand while
the rat computational model RR and/or volume are not altered,
then the CO2 amount will increase on a breath-by-breath basis.

The native model output is the native drive (e.g., phrenic

drive) with a fixed amplitude, and fixed or variable respiratory

rate. In a biological rat, RR and tidal volume would increase
to keep the CO2 amount constant. A linear regression defines
the relationship between RRs and MBC parameters to provide
constant CO2 amount. It defines the dynamical RR mechanism.
Increased metabolic demand conditions of +11% and +17%
are called MBC11 and MBC17. These two increased metabolic
demands lead to a RR of 62.31 and 65.75 breaths per minute
in the non-injured rat model to maintain constant average CO2.
Also, the native model was varied to roughly mimic the effect of
an incomplete spinal cord injury on ventilation by attenuation of
the native drive through a weighted injury factor. In experimental
studies, at 1 day post-injury and in the eupneic condition, rat
tidal volumes were reported to be between 70 and 90% of
the non-injured tidal volumes (Fuller et al., 2006; Navarrete-
Opazo et al., 2015). For use in these simulations, we defined
6 pairs of injury level and metabolic demand conditions: 90%-
MBC11, 90%-MBC17, 80%-MBC11, 80%-MBC17, 75%-MBC11,
75%-MBC17.

The SNN controller provides a simulated electrical drive.

The SNN network was simulated using the computing phases,

computing algorithms and pipeline implementations, and
hardware limitations (fixed-point dynamic and accuracy),

detailed in section FPGA Implementation (Open-Loop). The

HL computational model predicts the behavior of the FPGA

implementation of the SNN controller.
Computational results for both open and closed-loop SNN

controllers are presented. The open-loop SNN controller was

simulated with parameters that represent a complete injured

rat computational model (native drive: 0%) with normal

metabolic demands (MBC0). The closed-loop SNN controller
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was simulated with parameters that represent an incomplete
injured rat computational model (native drive: 90, 80, 75%)
with normal and increased metabolic demands (MBC0, MBC11,
MBC17). The coefficient of variation (CV) of RR was computed
over the last 10 breathing cycles to assess the variation of the RR
over time. Constant RR was defined as breathing that exhibited a
coefficient of variation of RR less than 4%.

The same SNN architecture was used for all models. The
strength synaptic potentials P(inj) were set to optimize the
efficiency of the bio-inspired controller for each pair of injury
level and metabolic demand. P(a) and P(f) were set only in
open-loop configuration, and were adapted by the controller
in the closed-loop configuration. Breathing conditions are
characterized with respiratory rate using the 10 last breathing
cycles, and the related coefficient of variation.

RESULTS

Complete Injury Experiment with
Open-Loop Controller
The bio-inspired controller described in Section Materials and
Methods was used with the complete lesion model (native drive:
0%): diaphragm activation was specified as described in Section
Bio-Inspired Controller Architectures. The electrical drive
mimics the activity of the follower neuron Iinc (Figure 5A). Both
frequency and amplitude of the electrical drive are fixed in the
open-loop paradigm. The open-loop bio-inspired SNN controller
uses 7 neurons and 17 connections with low computational
power (e.g., neuron and kinetic simplified behavioral models).
Device utilization after synthesis of the SNN controller for the
open-loop system is listed in Table 3. The design operates at
124 MHz. Mixed pipeline, parallel structure and shift operations
were used to design a network with optimized hardware resource
costs.

The activity of this bio-inspired network is similar to
experimental reports (Richter, 1996), as reflected in activity
patterns of individual populations and in temporal sequencing
and coordination across the network (Figure 5A). The
coordinated pattern of observed activity is as follows: the
Idec activity increases quickly before slightly decreasing, this
is followed by a slight then a fast increase of Iinc activity; the
Iinc activity decreases abruptly when the IE activity quickly
increases; this triggers Edec activity (and IE activity goes off);
then Edec activity increases first quickly then slowly, which turns
on EI activity to briefly activate Idec activity; and the activation
sequence is repeated. The Matlab SNN computational model
was designed to emulate the high level dynamic behavior as well
as the exact data processing dynamics of the FPGA component.
The HL computational delay is the computation time-step itself;
there is no buffering effect at the network level. The MATLAB
implementation was used to develop the FPGA implementation,
which runs in real-time with sub-microsecond precision.
Dynamic behaviors and values are strictly the same between
the computational model running on Matlab and its FPGA
implementation from the network to intrinsic neuron variables
as illustrated in Figure 5B. This observation was verified for all

FIGURE 5 | Behavior of the spiking neural network (SNN) when the

system is turned ON (after dashed line). (A) Averaged spike count on the

last 20 computation steps for each SNN neuron (Idec, Iinc, IE, Edec, EI). 100%

means the neuron has spiked 20 times over the last 20 computation steps.

Results are computed using the hardware-in-the-loop (HL) real-time

computational model. SNN model uses the first architecture presented

Figure 2A with a complete injured model (native drive 0%). Activation drive

Activ. and Volume V are reported. (B) Illustration of the exact match between

FPGA measure and HL computation. Example using the displacement of

neuron voltage from the resting potential (Vm) for EI neuron.

SNN variables: membranes voltages, spike states and fractions of
bound receptors of the kinetic model (not shown).

The relationship between the accuracy of the fractions of
bound receptors and the system’s ability to drive a wide range
of stimulated respiratory rates is presented in Figure 6. We
evaluated the impact of r(t) accuracy (number of bits) on the
SNN output resolution. The HL computational tool facilitates
the identification of the most sensitive absolute synaptic strength
potentials, P(f), to the modulation of electrical drive frequency
(i.e., the node between pre-neuron IE and post-neuron Edec
neurons). The HL computational tool helps to find appropriate
tradeoffs between technology resources and application function
in a varied respiratory context. All SNN variable accuracies are
fixed except for the r(t) accuracy (kinetic model). The maximum
RR variation between bio-inspired controller with the highest
simulated r(t) accuracy (32-bit) and lower accuracies (under, at
and above 18-bit) are, respectively 4, 2, and 1 Br.min−1. Another
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TABLE 3 | Device utilization (Xilinx Spartan XC6SLX150) for the

implementation of the open-loop SNN controller on FPGA.

Resource Used Percent utilization (%)

Slice LUTs 4502 4

LUT-FF pairs 2124 36

Slice registers 3427 1

18Kb RAM/FIFO 19 7

Mults (18× 18) 9 5

Results obtained using XST synthesis software from Xilinx Inc. with standard optimization

effort on timing, under the ISE 14.7 development environment.

FIGURE 6 | Computational Respiratory rate (RR) vs. tuned open-loop

bio-inspired controller. The absolute synaptic strength potential between

pre-neuron IE and post-neuron Edec is P(f), identified in Figure 2A. Fractions

of bound receptors of the kinetic model can have an accuracy ranging from 16

bit to 32 bit. Native drive is 0 to mimic a complete injured model. Horizontal

lines identify RR at 56 and 67 Br.min−1, targeting range of rat eupneic RR.

comparison is set by targeting a range of rat eupneic RRs (e.g.,
between 56 and 67 Br.min−1). The associated range of absolute
synaptic strength potentials P with high accuracy (32 bit) is
from 300 to 700. The bio-inspired controller with r(t) accuracy
above 18-bit approximately shares the same lower range, and can
vary up to 100 with the lowest accuracy. The r(t) accuracy has
a stronger impact on the higher range, e.g., from 700 (32-bit)
to 850 (18-bit). Therefore, using low accuracy could potentially
limit the ability of the system to deliver stimulation at a high
frequency. Finally, we used 18-bit accuracy for the fractions of
bound receptors r(t) in the bio-inspired controller: it has shown
to be closely equivalent to a 32-bit structure and it minimizes
the number of multipliers (limited in this technology to a 18-bit
accuracy).

Incomplete Injury Experiment with
Closed-Loop Controller
The closed-loop architecture of bio-inspired SNN controller was
designed, developed, and modeled for HL computation. It can
dynamically synchronize its electrical drive with the native drive.

The electrical drive canmodify simulated animal breathing depth
as well as respiratory rate. Figure 7 shows the effect of activating
the bio-inspired controller in an incomplete injury model (native
drive: 90%). Breathing was not optimal prior to activation of
the bio-inspired controller; depth of breathing was lower than
in the non-injured model. The metabolism model sets a slightly
higher breathing rate in the injured than in the non-injured
model to keep equivalent minute ventilation: respiration depth
was higher in the injured model with bio-inspired controller
as compared to the non-injured model. The CV of RR reaches
a peak of approximately 5% at cycle #11. The stabilization of
the amplitude and frequency of respiration occurs in the 16th
breath cycle, about 15 s after activation of the bio-controller while
the CV of the respiratory rate parameter drops below the 4%
mark. The activation pattern after t = 15 s was consistent. The
stabilization of P(f) (sensitive to electrical stimulation frequency)
has a faster timescale of 4 cycles (t = 6 s). The absolute synaptic
strength potential, P(a), did not vary much upon activation of the
bio-inspired controller (not shown).

The closed-loop system demonstrated robust performance
when tested on 3 types of incomplete injury (native drive:
90, 80, 75%) with perturbations induced by activating the
bio-inspired controller and by alterations in the rat model
(sudden increases in metabolism of 11 and 17%). The bio-
inspired controller performed well in all cases by responding
to the perturbation. The bio-inspired controller demonstrated
adaptability by modifying the electrical drive to assist the
incomplete injured model to reach equivalent breath depth and
rate as in a non-injured model. The HL computational results
with respect to a non-injured model are presented in Figure 8

for all pairs of injury level and metabolic demand and for all
perturbations. The absolute synaptic strength potentials P(inj)
are more sensitive to the injury level than the metabolic demand
increase except for one of them (P between Volspk and IE
neurons, not shown). Data quantifying the effectiveness of the
bio-inspired controller are presented in Table 4. First, the breath
depth and rate were evaluated when the bio-controller was
turned ON (Figure 8A). Initially, with the bio-controller OFF,
the respiratory rates were all higher when the level of injury
was large: respiratory rate increased from 11 to 31% from a
non-injured model. Respiratory rate was reduced in all cases
when the bio-controller was turned ON: a 4–10% error was
measured when compared to the non-injured model but with
a 5–23% improvement when compared to incomplete injured
models with the bio-inspired controller OFF. The stabilization
of the synchronized bio-inspired controller was reached in 14
breathing cycles with high injury models (80 and 75%) vs. 17
cycles with the lowest injury model (90%). The performance
after activation of the bio-inspired controller was independent
of network parameters for each injury level: e.g., injury at 90%
has both a synchronization time and stabilization time of 17
breathing cycles.

Bio-inspired controller behavior as a function of metabolic
demand is shown in Figures 8B,C. All but one condition was
stable between 10 and 15 cycles after a metabolic perturbation.
In the particular case of 80%-MBC17, the Iinc neuron behavior is
slower than other SNNs. At cycle #100, bio-inspired controllers
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FIGURE 7 | Effect of the SNN electrical stimulation on the ventilation of

an incomplete injured rat illustrated by hardware-in-the-loop real-time

computational model in eupnea. (A) Electrical drive effect on the rat

computational breathing over time when the SNN controller was turned ON (at

t = 0 s). Volume V, Activation drive to the musculoskeletal model, and absolute

synaptic strength potential P between the IE and Edec population are

presented for incomplete injured model. Minute ventilation (Min.Vent.) is

compared between incomplete injured and non-injured models. Associated

native drives are 90% and 100%. (B) Evolution of respiratory parameters vs.

breathing cycle. The SNN controller was turned ON at cycle #1. Tidal volume

(Vt), respiratory rate (RR), minute ventilation (Min.Vent.), and coefficient of

variation of the RR parameter (over the last 10 cycles) are presented for both

incomplete injured and non-injured models.

are synchronized and lead to a difference in respiratory rate of 3–
8% when compared to non-injured models in the samemetabolic
demand condition. All results are stable at least for 300 s after
controller activation and 180 s after metabolic perturbation.

DISCUSSION

This work demonstrates the potential benefit of using bio-
inspired SNN controllers to restore impaired functions, e.g.,

FIGURE 8 | Effect of bio-inspired controller electrical stimulation on

breathing using injured model (native drive: 90, 80, 75%) vs.

non-injured model (native drive: 100%). The normalized averaged

respiratory rate (RR) is the ratio of averaged RR over the last 10 breathing

cycles between injured and non-injured models. Normalized averaged RR of

1.0 means the averaged RR is equal between injured and non-injured models.

Perturbations start at cycle #0. (A) The bio-inspired controller was turned ON

at cycle #0 using initialization parameters set for a future metabolic demand

increase of 17%. Results of the bio-inspired controller set for a future

metabolic demand increase of 11% are not shown for readability. (B)

Metabolic demand increased from eupneic to +11%, or (C) to +17% at cycle

#0. Controller was turned ON at cycle #0 in (B,C). At cycle #0, the non-injured

RR was set at the final metabolic demand non-injured RR is 56.0, 62.2, 65.7

Br.min−1 in, respectively, (A–C) results.

impaired breathing ability with incomplete spinal cord injury.
In addition, this work shows exploitation of hardware-in-the-
loop (HL) real-time computation to facilitate efficient design
and development of a closed-loop system in a multidisciplinary
research environment.
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TABLE 4 | Delay of the bio-inspired controller to adapt to various

perturbations expressed in breathing cycles.

Network vs. perturbation OFF/ON +MBC

90%–MBC11 17 cycles (1.11–0.94) 13 cycles (0.94–0.96)

90%–MBC11 17 cycles (1.11–0.95) 15 cycles (0.95–0.92)

80%–MBC11 14 cycles (1.24–1.06) 13 cycles (1.04–1.03)

80%–MBC17 14 cycles (1.24–1.04) 17 cycles (1.04–1.03)

75%–MBC11 14 cycles (1.31–1.10) 10 cycles (1.10–1.07)

75%–MBC17 14 cycles (1.31–1.08) 13 cycles (1.07–1.06)

Perturbation is either when the controller is turned ON (OFF/ON) or when the metabolic

demand increases (from eupneic to +11% or +17%) while the controller is ON. Injury

level is defined by the native drive percentage (90, 80, 75%). One spiking neural network

architecture was set with 6 slight variations of few absolute synaptic strength potentials to

optimize the efficiency of the bio-inspired controller for each pair of injury level/metabolic

demand increase. The number of breathing cycles where the coefficient of variation of the

respiratory rate was less than 4% is reported. Also, normalized averaged respiratory rate

at cycle #0 and #100 are reported between brackets.

The FPGA development of a closed-loop system benefits
from the bio-inspired architecture. This has been demonstrated
by the fact that an all-to-all connectivity pattern is not
mandatory to achieve suitable performance. This bio-inspired
controller is functional in open and closed-loop configurations
with a connection density of 30.3 and 30.7%, respectively.
The summary presented in Table 5 indicates that connection
and neuron numbers vary widely across architectures. The
biologically-based half-center or pattern generator architectures
(Jung et al., 2001; Vogelstein et al., 2008; Molkov et al.,
2014) have larger all-to-all density than those with feedforward
architecture (Arena et al., 2010; Ayers et al., 2010), which are
inspired by artificial neural network paradigms. We observe
similar connection densities (29.9 ± 7.6%) to the biologically-
based architectures when using 8-to-all connectivity. With
our architecture, up to 1660 neurons can be implemented
with the same multiplier resources and computation time-
step by increasing the Spike computing phase and decreasing
the idle phase. If hardware implementations used densities
comparable to the computational network, then increasing the
maximum number of connection per neuron to MaxC would
result in a very large network. The networks presented in
Table 5 have different ratios between the maximum numbers of
connection C per neuron N. Therefore, a better understanding
of the biological neural networks upon which we base our
controllers may be as important as our ability to increase both
neurons and MaxC resources to significantly improve closed-
loop system functionality. The bio-inspired SNN controller
functions appropriately with limited resources, as demonstrated
in both open and closed-loop paradigms with perturbations
(Figures 6–8). Table 3 reports the device utilization where
only 5 multipliers and 19 18 kb-RAM-blocks are required.
As mentioned earlier, the implemented system can extend its
number of neurons up to hundreds without requiring additional
resources. Moreover, the architecture presented in Figure 3 is
easily scalable.

This bio-inspired ventilatory controller simultaneously adapts
and coordinates the breathing rate and pattern of the electrical

drive over long timescales (breaths) with high computational
power using short timescales (spikes). The intrinsic activity of
the bio-inspired SNN controller is similar to respiratory networks
(compare Figure 5A to results reported in Richter, 1996). The
primary inhibitory oscillator is described as a coupled population
of early-I and post-inspiration (or PI or post-I) neurons; these
neurons are equivalent to the Idec and Edec neurons of the
bio-inspired controller.

Surprisingly, a 10-neuron bio-inspired SNN also exhibits
secondary behavior that is similar to that of the biological
system: the double peak activity of the EI neuron. Yet, using
a population instead of a single neuron could potentially
improve the activity of others, such as Idec neuron. Indeed,
the short duration of Idec activity affects the duration of the
EI second peak activity (longer than experimental measures).
The functionality of the spike-based bio-inspired approach has
been illustrated with various conditions. Bio-inspired controller
activities were computed over an equivalent relatively long time
(from 3 to 5min) while showing good stability (coefficient of
variation of respiratory rate remains under 5%). In addition,
SNNs are known to be robust to noise or artifacts (Navalesi
and Costa, 2003; Terzi et al., 2012). The capacity for stable
regulation and dynamic properties of the biological system
(Warren et al., 2014) are reproduced by the bio-inspired SNN
controller, as shown in Figures 7, 8. These results demonstrate
smooth synchronization with native breathing activity and
robust responses to perturbations (turning ON the bio-inspired
controller or sudden metabolic demand increase, for 3 examples
of incomplete injury). In contrast with existing ventilatory
assist systems that use electrical stimulation, the controller
does not impose a fixed breathing rate. Also, the contribution
of the electrical stimulation was appropriate and sufficient
enough to improve respiratory rate despite disruptions in
3 injury models, reproducing the original desired breathing
pattern.

One important aspect of this work is the hardware-in-the-
loop (HL) real-time computational model. The spectrum of
rehabilitation applications is wide, especially considering all
possible contexts, but few HL models have been presented:
epilepsy and Parkinson’s disease (Detorakis et al., 2015; Ehrens
et al., 2015). Experimental and clinical studies will always
ultimately be required to validate the safety and functionality
of closed-loop rehabilitation systems, but computational studies
can be utilized as intermediary steps. Regulatory agencies
are increasingly recognizing the potential contributions of
simulation studies throughout the device development and
evaluation process. One of the highest priorities for 2016 of
the Center for Devices and Radiological Health of the US
Food and Drug Administration is to develop computational
modeling technologies to support regulatory decision making.
Computational model results could be used as evidence to reduce
the size of some clinical trials.

One important asset of the HL model is that it enables
efficient investigation of controller performance under a wide
range of conditions (physiological parameters and controller
parameters). For example, we identified one of the main sensitive
nodes in the bio-inspired SNN to regulate and synchronize
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TABLE 5 | Literature review of connection densities for various spiking neural networks used in neuroscience or applicable controller research.

C (* w/inputs) N MaxC All-to-all density (%) MaxC-to-all density (%) 8-to-all density (%) C/N

Open-loop This work 17 7 3 34.6 80.9 30.3 2.4

Richter, 1996 16 6 4 44.4 66.6 33.3 2.6

Ambroise et al., 2013 12 8 2 18.7 75.0 18.7 1.5

Closed-loop This work 24 (*27) 10 4 24.0 60.0 30.0 2.4

Molkov et al., 2014 30 (*33) 13 6 17.7 38.4 28.8 2.3

Jung et al., 2001 12 (*18) 6 3 33.3 66.6 25.0 2.0

Vogelstein et al., 2008 14 (*16) 4 4 87.5 87.5 43.7 3.5

Ayers et al., 2010 31 (*44) 27 2 4.2 57.4 14.3 1.1

Arena et al., 2010 32 (*46) 20 10 8.0 16.0 20.0 1.6

Average (std) 20.8 ± 8.3 11.2 ± 7.6 4.2 ± 2.4 30.2± 25.02 60.9 ± 22.0 27.1 ± 8.8 2.1 ± 0.7

MaxC is the maximum number of connections C per neuron N in the network. All MaxC and 8-to-all densities were computed using the number of connections in the network vs.,

respectively, all-to-all neurons, MaxC-to-all and 8-to-all connections. Connections from external signals in closed-loop network were not included in the computation but are reported

in brackets.

the electrical drive with the native drive (Figures 6, 7A) prior
to any animal experiment. HL results highlight strengths and
weakness in the network architecture. Another example is
the identification of the importance of adapting Iinc absolute
synaptic strength potentials for the control of the electrical
drive pattern: the Iinc related plasticity can improve the
electrical drive behavior with sufficient resolution in real-
time. However, the proposed closed-loop architecture does not
provide high enough accuracy in this respect (Figure 7). The
HL results advocate turning the single Iinc neuron into a sub-
network, or population. The HL tool allows such development
without compromising the other closed-loop functions. A
third example is the independent implementation of active
expiratory drive. The presented bio-controller does not include
expiratory neurons identified in the literature (Richter, 1996;
Molkov et al., 2014) but it still provides significant ventilatory
assistance. Finally, the HL results call for further examination
and development of learning rules. Learning rules in this work
assist the breath depth and rate. Six similar sets of absolute
synaptic strength potentials P(inj) were set to optimize the
efficiency of the bio-inspired controller for each couple of
injury level/metabolic demand increase (Figure 8). This HL
computational study shows the need for a third learning rule
related to the customization between the patient condition
(injury level/ metabolic demand) and absolute synaptic strength
potentials using a single SNN controller architecture. This third
learning rule could be seen as equivalent to meta-plasticity in
neuroscience. Learning rules could be easily implemented on
the FPGA due to its scalable and modular structure at no
additional time cost: updating all absolute synaptic strength
potentials will be done during the kinetic phase, described
in Figure 3B. Implementation of that third rule is the next
step of this study combined with upcoming in vivo rat
experiments.

In this study, we developed a rat computational model
along with the accurate hardware implementation model to
evaluate the feasibility of a bio-inspired controller for ventilation
assistance in spinal cord injury applications. Each component

of this model could be improved to more closely match
experimental results. For example, the activation could include
results reported from investigations of mechanisms of nerve
electrical stimulation. Also, the metabolism model has a limited
sensitivity: respiratory rate CV should not be higher than 0 at
any time to represent breathing variability (Figure 8). Increasing
the sensor diversity and number of sensors could improve the
performance and versatility of the closed-loop system. Further
insight from studies investigating the primary and secondary
roles of various chemoreceptors (Ballantyne and Scheid, 2001;
Huckstepp and Dale, 2011) could drive further enhancements
to the bio-inspired system. For eventual implementation in
humans, sensors will be required to gather reliable measures
in a manner that minimizes inconvenience and limitations on
activities such as speech. To measure the variables used in
the simulation studies presented here, a small tube placed in
or near the mouth or nose could be used to sample expired
CO2; chest expansion sensors could be used to monitor volume.
Further developments of sensor technologies would greatly
facilitate clinical translation of adaptive ventilatory control
systems.

CONCLUSION

This innovative controller is inspired by neuroscienctific
investigations and computational models of the respiratory
neural network. Its SNN architecture has been designed to
be functional and resource- efficient when implemented on
an FPGA device while using neuron and kinetic models with
low demands on computational resources. The closed-loop
architecture takes advantages of the SNN structure to adapt
the ventilatory control system with potentially numerous and
varied types of feedback signals as illustrated by our custom
hardware-in-the-loop real-time platform simulations. This work
helps to design cross-disciplinary research experiments that pave
the way to the design of the next generation of ventilation control
systems.
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It has been widely recognized that closed-loop neuroprosthetic systems achieve

more favorable outcomes for users then equivalent open-loop devices. Improved

performance of tasks, better usability, and greater embodiment have all been reported

in systems utilizing some form of feedback. However, the interdisciplinary work

on neuroprosthetic systems can lead to miscommunication due to similarities in

well-established nomenclature in different fields. Here we present a review of control

strategies in existing experimental, investigational and clinical neuroprosthetic systems

in order to establish a baseline and promote a common understanding of different

feedbackmodes and closed-loop controllers. The first section provides a brief discussion

of feedback control and control theory. The second section reviews the control strategies

of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems,

and assistive neurorobotic devices. The final section examines the different approaches

to feedback in current neuroprosthetic and neurorobotic systems.

Keywords: neuroprosthetics, control theory, closed-loop, brain-machine interface, feedback

INTRODUCTION

A neuroprosthetic is a device or system that has an interface with the nervous system and
supplements or substitutes functionality in the patient’s body. For the purpose of this review
we have included neuromodulatory systems and brain computer interfaces under the general
description of neuroprosthetics, as well as rehabilitation systems such as exoskeletons. The key
identifying characteristic of the neuroprosthetic is that it has an interface with the subject’s
nervous system, as distinct from an implantable devices such as an pacemaker or an insulin
pump. Consequently there are a broad range of devices that we consider neuroprosthetics.
To date there have been a number of reviews of neuroprosthetic systems. There is significant
literature on classification algorithms and detection strategies (Schwartz, 2004; Lotte et al.,
2007; Green and Kalaska, 2011; Borton et al., 2014; Morimoto and Kawato, 2015), including
comparison and evaluation of the relative strengths of different approaches. However, there are
fewer examinations the authors are aware of that investigate the different control approaches
that have been implemented in neuroprosthetic settings. Performing such a review is made more
difficult due to the small number of studies that have compared different control approaches
within the same experiment, and the fact that many neuroprosthetic studies have by necessity been
conducted with very small sample sizes, sometimes involving a single subject. Additionally many
of the devices examined in this review are experimental or investigational, and are not yet in use in
clinical or therapeutic settings (Sun and Morrell, 2014).
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When considering these devices in the context of control
and feedback it can be helpful to place them along a number
of axes (Figure 1) to partition the large variety of systems and
approaches. The first axis we have considered is the location of
the interface with the nervous system, with the Central Nervous
System (CNS) subdivided into the brain and the spinal cord, and
then the Peripheral Nervous System (PNS), consisting of afferent
and efferent pathways. Along this axis and additional distinction
can be drawn between single channel systems that use a single
electrode as the interface to the subject’s nervous system, and
multichannel systems which utilize many parallel channels for
interface. Finally the channel can be unidirectional for simplex
communication, or bidirectional for half-duplex, or full duplex
communication.

Another axis to consider is the invasiveness of the
interface. At one end we place noninvasive interfaces such
as Electroencephlogram (EEG), Magnetic Resonance Imaging
(MRI), and Electromyography (EMG). These interfaces are
hampered by a variety of issues, including low spatial resolution
and low signal to noise ratios. The advantage they enjoy is
that they can be deployed with little risk, which has meant
they are a popular platform for neuroprosthetic development.
Next are minimally invasive interfaces such as microwire EMG
and microneurographic recordings from the PNS. With a
more invasive interface there are better quality signals, but still
minimal intervention with the subject’s body, reducing risk of
complications. These interfaces are susceptible to movement,
leading to changes in the quality of the recorded signal. The
most invasive interfaces require surgical implantation, and come
with risks associated with surgery as well as risk of damage to the
part of the nervous system. Within this category a distinction

FIGURE 1 | Neuroprosthetic Systems. An illustration of the conceptual space of neuroprosthetic devices. Devices can be classified as similar if they provide

assistance in the same Modality, have an equivalent level of Invasiveness, or interface with the user’s nervous system in the same Location.

can be drawn between the less invasive, such as cuff electrodes
around PNS sites and Electrocorticogram (ECog)—these
interfaces do not disrupt the blood brain barrier; and the more
invasive Multi Electrode Arrays (MEA) in PNS nerves, motor
or somatosensory cortex, Deep Brain Stimulators (DBS) to treat
Parkinson’s Disease with electrodes in the Globus Pallidus, Sub
Thalamic Nucleus, or the Pedunculopontine Nucleus. These
multichannel interfaces offer high resolution, but comparatively
small spatial coverage (Krook-Magnuson et al., 2015). These
electrodes come with risks that are still not fully understood.
These primarily involve the physical trauma due to the insertion
of the electrode, with effects occurring over different timescales.
Shortly after insertion there is bleeding and swelling, as well as
physical damage to neurons (Fernandez et al., 2014). Over longer
timescales the presence of the recording device compromises the
blood-brain barrier, allowing ingress of cellular and molecular
components from elsewhere in the body (Schwartz, 2004).
Additionally the long term stability of the recording site is
often compromised, due to immune and mechanical actions
on the microelectrodes (Krook-Magnuson et al., 2015). At the
furthest extent of this axis are the interfaces that reconfigure the
subject’s nervous system. Targeted Muscle Reinnervation (TMR)
surgically rewires an amputee subject’s PNS, by deinnervating
muscles that have no biomechanical role after the amputation
and redirecting the preserved nerves from the amputated limb
to the deinnervated muscles (Kuiken et al., 2009), allowing for
high quality EMG recordings as control inputs to a prosthetic.
Optogenetic techniques offer a non-electrical interface to
neurons, by using light to activate special ion-channels. This
technique enables individual neurons to be targeted, which is
extremely difficult with cortical microelectrodes, as well as the
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possibility of selectively activating a class of neurons such as
excitatory neurons instead of inhibitory (Krook-Magnuson et al.,
2015). However, optogentic approaches require the introduction
of genes that encode for light activated ion-channels (Deisseroth,
2011), and the issues associated with this may preclude this
technique in humans.

The final axis is the modality of the prosthesis. Sensory
neuroprosthetics offer input from artificial sensors, as in a
cochlear implant or bionic eye, or modulate sensory input as is
the case in neurostimulators for treating chronic pain. Systems
to treat motor impairment are frequently referred to as Brain
Machine Interfaces (BMI) or Brain Computer Interfaces (BCI)
and infer motor intent from the subject in order to control
a virtual or physical effector. Cognitive devices modulate the
activity of the CNS and include devices such as DBS stimulators
for Parkinson’s Disease, depression, and hippocampal stimulators
for memory.

NEUROPROSTHETICS

The following examples are representative, but not exhaustive,
and are placed in Figure 1 to illustrate the wide variety of devices
that can be described as having a neuroprosthetic interface.
Many of these devices are experimental demonstrations, and
not clinically approved interventions. Adjacent to the choice of
controller, there are choices about the location and method for
acquiring a suitable input signal (Grill et al., 2009; Andersen et al.,
2010), and questions about the consequences of long term use of
these and similar devices that have not yet been answered.

Peripheral nervous system interfaces are attractive as they are
less invasive than the central nervous system alternatives, while
still offering a rich source of information for neuroprosthetic
control. Inmann and Haugland (2004) used a cuff electrode
around the median nerve to record nerve activation due to
touch and that input was used to modulate the Functional
Electrical Stimulation of the subjects muscles. Horch et al. (2011)
demonstrated that human subjects who were provided with
intrafascicular electrical stimulation of the median and ulnar
nerves derived from sensors on a myoelectric prosthetic limb
were able to use the feedback to perform object recognition
tasks by digital manipulation. Tan et al. (2014) used non-
penetrating cuff electrodes on the median, ulnar and radial
nerves of human subjects to provide natural sensations of touch
while operating a myoelectric prosthetic allowing for improved
performance of manual tasks. Raspopovic et al. (2014) showed
that a bidirectional interface with the median and ulnar nerves
could be used to provide artificial sensory feedback related to
the forces exerted on a sensorized prosthetic limb, and that the
artificial sensations allowed the subject to improve their ability to
sense characteristics of the objects being manipulated. Targeted
Muscle Reinnervation generates a rich high density signal for
surface Electromyography (EMG) that enables simultaneous
operation of multiple degrees of freedom in a myoelectric
prosthetic limb (Kuiken et al., 2009). The tissue serves as a
bioamplifier for the nerve signal, allowing a large array of surface
electrodes to be deployed on the subject. The array provides a

rich signal suitable for pattern recognition, and combined with a
high performance prosthetic limb gives the subject an improved
experience. As a sensory modality prosthetic, (Dommel et al.,
2009) are testing a vision prosthesis for electrical stimulation
of the retina. Spinal cord stimulation may be able to generate
gait patterns suitable for locomotion in paralyzed patients.
Vogelstein et al. (2008) describes the design of a system that
is capable of generating primitive locomotion in anesthetized
felines. Borton et al. (2014) developed an electrochemical spinal
neuroprosthesis to reactivate the circuits in a damaged spinal
cord, allowing hindlimb movement sufficient to enable walking
in paralyzed rats.

Yanagisawa et al. (2011) used ECog electrodes placed over
the sensorimotor cortex of a stroke patient in order to control
a supernumerary robotic hand that was able to mimic the hand
posture of the subject. Berger et al. (2011) implanted microwire
electrodes in the hippocampus of rats and recorded the activity
while the animals were trained to complete a memory task.
Subsequent stimulation of the electrodes according to the trained
model improved the performance of the rats at the cognitive
task. Neuromodulators for Deep Brain Stimulation have been
used to treat the symptoms of Parkinson’s disease and depression
(Grahn et al., 2014). Multi Electrode Arrays implanted in motor
cortex have been successfully used to acquire signals for the multi
degree of freedom control of robotic limbs (Hochberg et al., 2012;
Wodlinger et al., 2015). Guggenmos et al. (2013) describe a Brain
Machine Brain Interface in rats that utilizes microwire recordings
from a premotor area to detect spiking activity leading to
stimulation of the somatosensory area. The Activity Dependant
Stimulation via the neuroprosthetic prototype enabled rats with
injury to the motor area to recover reach and grasp behavior.

This list of devices is not exhaustive, and serves only
to illustrate the different axes of Modality, Invasiveness and
Location when considering neuroprosthetic designs. For a more
thorough description of the available neuroprosthetic devices and
interface technologies, the reader is directed to the following
excellent reviews (Navarro et al., 2005; Grill et al., 2009; Micera
et al., 2010; Ortiz-Catalan et al., 2012). These reviews focus on
the interface techniques with the nervous system, and provide a
detailed discussion of the limits of current interfaces.

INTRODUCTION TO CONTROL

The design of a neuroprosthetic varies significantly between
different modalities. Because it is a multidisciplinary field often
the language used to describe the system can vary between
devices. The terms “closed-loop,” “feedback,” and “online” may
take on different meanings. Identifying and acquiring a suitable
input signal is a non-trivial task (Krook-Magnuson et al.,
2015). This makes the fabrication of a substitute system in the
case of impairment a complex endeavor. Developing a suitable
simplified model for embodiment as an open-loop system is
often a first step. But it is not always straightforward; take
motor control as example—manymodels ofmuscles exist. Highly
biophysical models (such as cross-bridge models) of muscles
become large systems of non-linear differential equations when
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describing whole muscles or limbs (Ionescu and De Keyser,
2006). Similarly modeling the individual neurons that act as part
of the Basal Ganglia, in a complex network of interconnections
across the CNS (Broccard et al., 2014), rapidly becomes an
intractable problem when developing an open-loop model for
DBS to treat Parkinson’s Disease. As a consequence the Basal
Ganglia has often been modeled internally by a neurologist
(Hosain et al., 2014), rather than explicitly within the DBS
device, with stimulation parameters adjusted by the clinician
observing the patient’s symptoms instead of in response to
a model. It is also possible that the control problem for a
given neuroprosthetic has more than a single loop that needs
to be considered, possibly due to the interaction of different
physiological systems and different timescales (Houk, 1988).
In this case control may best be achieved by a hierarchy
of controllers, or a series of adaptive controllers that can
be tuned at different stages of design (McFarland et al.,
2006).

Nervous System Control
All parts of the human body have evolved to operate by extremely
complex closed-loop control. Different subsystems, such as the
cardiovascular system or the immune system operate under
closed-loop control, with sensors and effectors operating at
micro (LeDuc et al., 2011) and macroscopic scales (Houk, 1988).
Sensory organs can be directly connected to the nervous system,
such as stretch receptors, or they can be indirectly coupled by
messenger systems such as hormone signaling. Command of
these systems can be voluntary, or have a voluntary component,
but they may also be completely automatic. Substituting or
supplementing the performance of an element of the body is
the aim of a neuroprosthetic device. Achieving this involves
the fabrication of an effector, such as a prosthetic limb, that
can replicate at least a subset of the body’s functionality. But
there is no function without control, so it is also necessary to
model, and potentially integrate with, the different control loops
within the human body. There has been some good success with
simpler systems, possibly due to the high level state abstraction
of the control within the nervous system (Holinski et al., 2013),
as in the control of the hand. By examining the joint angles
for fingers during different hand postures (grasping different
objects) using principal component analysis it has been shown
that the first 3 principal components can account for 90% of
the variability. However, the grasp posture data describes the
hand only in the final state, it does not describe the trajectory
the fingers took to achieve the position around the object.
When joint angle data was recorded continuously from subjects
performing natural hand movements, 8–9 principal components
were needed to describe 90% of the variance (Danziger, 2014).
Thus, classifying hand states, and transitioning between fixed
postures in a prosthetic is a more straightforward task than
attempting the dexterous control of individual fingers (Aggarwal
et al., 2011). Although we can treat a robotic effector as part
of the body and nervous system of the operator, all current
techniques for recording neural activity involve the projection
of the high dimensional space of hundreds to thousands of
neurons down through the recording electrode array to the much

lower dimensionality of the end point of the effector (Carmena,
2013).

Feedforward Control
Feedforward or open-loop control generates a command for the
plant that is expected to produce the correct output. However,
there is no measurement of the output from the plant, and hence
no measurement of error, so the controller has no mechanism
to modulate a command (Houk, 1988). A block diagram of
open-loop control is shown as Figure 2. Implicit within open-
loop control is the assumption of a perfectly described system
that can be used to generate a control. Leaving aside the
difficulties in creating a perfect model of any system, open-
loop approaches do not take noise or measurement error into
account.

Feedback Control
Feedback, or closed-loop control requires the inclusion of sensors
in the system under control. The feedback controller generates a
command for the plant, and the sensors measure the output of
the plant in response to the command. If a measurement, such
as the angle of a joint differs from the expected output, then the
error signal can be used by the feedback controller to modify the
generated commands. There are many mathematical approaches
that can be used to modify feedback controller output (Crago
et al., 1996).

Adaptive Control
Adaptive control can be applied to both feedforward and
feedback controllers. By using sensors to measure the input and
output of the system adaptive control strategies seek to adjust
the controller in response to perturbations in the environment
or the controlled system (Crago et al., 1996). Adaptive
controllers enable the development of a control strategy without
requiring complete knowledge of the system being controlled,
however, as a consequence adaptive controllers are rarely
optimal.

Internal Model Control
Internal Model Control (IMC) is an approach to feedback
controller design that incorporates a model of the system that

FIGURE 2 | Feedforward and Feedback Control. Feedforward or

open-loop control is shown here in the solid line. The controller generates a

command that is applied to the system, or Plant. In response to the command

the system performs an action at the Output. Closed-loop or feedback control

is achieved by the inclusion of the Sensor component, shown here as the

dashed line. The Sensor measures the Output enabling the Controller to

assess the error and adjust the next Input to the Plant.
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is being controlled (García et al., 1989). The model can be
developed based only on the relationship between the inputs and
outputs of the system, or alternatively a partial model or complete
model of the system can be utilized (LeDuc et al., 2011). At each
time step the internal model is evaluated forward to a horizon,
offering a prediction of the system behavior in response to the
controller’s input, and the control inputs are evaluated against a
cost function to find the optimum command to be executed at the
next time step (Pan et al., 2015). A block diagram illustrates IMC
as Figure 3.

Classification
A Classifier breaks a system into discrete states, and maps a
relationship between an input and a system state (Schwartz,
2004). Classifiers can be supervised or unsupervised. Supervised
systems are trained on an input-output relationship in a data
set, and attempt to generalize the relationship to new data, while
unsupervised systems attempt to partition or cluster the dataset.

Actor-Critic
The Actor-Critic architecture separates the control policy from
the evaluation of the action. The Actor component of the systems
choses a policy, which affects the state of the system. The
Critic component assesses the state of the system in accordance
with a cost function, and provides the evaluation to the Actor
(Mahmoudi and Sanchez, 2011). The goal based evaluation
differs from the error signal of other control approaches, and does
not require that the Actor has a model of the system’s behavior
(Mahmoudi et al., 2013).

CONTROL ALGORITHMS

Table 1 summarizes the Control Algorithms.
Control policies can be implemented by classification, model

independent, ormodel based approaches (Kameneva et al., 2015).

Control Policies with Independent Models
Consider the system state to be independent at each time step.

FIGURE 3 | Internal Model Control. The inclusion of a model of the Plant

allows for the Controller to incorporate some of the dynamics of the system

into the control policy.

Bang-Bang Control
Also referred to as On-Off control, in this scheme when a
threshold for a measured variable is crossed a program is
activated. Although simple this control scheme has been used
successfully to automate tasks that have previously required
human intervention, such as the delivery of cortical electrical
stimulation after ECog seizure detection (Peters et al., 2001),
or the mapping of stimulus thresholds in high electrode count
implanted neurostimulators (Wilder et al., 2009).

Finite State Machine
A State Machine is a model of a system. It can be considered
a more complex implementation of Bang-Bang control. The
measurement of a system value, combined with the modeled
system’s current state triggers an action and a state transition
(Markovic et al., 2014). If the modeled system is periodic,
such as gait during walking, then it can be possible to have
transitions due to timing (Holinski et al., 2013), in which case the
neuroprosthetic enables state transitions in response to deviants
from the periodic behavior, such as starting or stopping the gait.

Population Vector Algorithm
The biomechanics of the arm make motor control a difficult
problem. Additionally the mechanisim of control within the
motor cortex remains an open question. Is the cortical
representation in an area such as the activity recorded from
M1 encoding the lengthening or shortening of individual
muscles (Schwartz, 2004), or is it representing the kinematics of
movement (Ajemian et al., 2008)? In either case there is evidence
for a forward and inverse model representation of motor control
existing within the brain (Andersen et al., 2010; Green and
Kalaska, 2011). The Population Vector Algorithm (PVA) is a
popular method to decode neural activity recorded from cortical
MEA in the motor cortex for the control of a robotic effector, or
cursor in a 2D or 3D space. This control algorithm rests on the
observation that different neurons have directional preferences—
they have higher spike rates for movements in some directions
(Shpigelman et al., 2009). Individual neurons do not offer enough
specificity to be useful, but a large enough population of neurons,
recorded from simultaneously, can be used to determine the
intended direction and movement velocity by linear regression.
Neuroprosthetic control can then be performed by relying on a
“targeting” strategy of decoding the end point trajectory apparent
in each cell’s activity.

In Helms Tillery et al. (2003) a non-human primate’s BMI
was extracting an X, Y, and Z signal for the end effector on the
robotic arm and the other degrees of freedom of the arm were
under the control of the robotic device. In Hatsopoulos et al.
(2005) a human participant with 128 electrode array implanted
in the precentral gyrus was able to achieve 2D cursor control on
a laptop.

Initial implementations of PVA utilized cortical recordings
made while the participant watched cursor movement, or the
movement of a limb. However, although a PVA decoder created
in this way may show good performance in offline testing, the
closed-loop performance will not be better, and may be worse
(Chase et al., 2009).
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Control Policies with Dynamic Models
There are methods that rely on having a model of the
dynamic system describing the parameter the neuroprosthetic is
controlling. This might be a model of the spiking behavior of a
region of the CNS that is to be modulated by a DBS, or a model
of the kinematics of the trajectory of a cursor in a motor BMI,
or the kinematics of the gait of an exoskeleton. Models can be
linear or non-linear. Using the model, and an error signal, and
modeling feedback the next state can be predicted using a variety
of methods described below. These approaches are iterative, and
work well as part of a closed-loop as they represent the process of
the subject modifying the input control signal in response to the
feedback signal.

A simple linear state model for velocity can be represented as:

xt = Axt−1 + wt−1

yt = Cxt−1 + qt−1

where xt is the velocity as a 3 dimensional vector at time step t,
A is a matrix of parameters describing the trajectory and wt−1

is a noise term. The second equation describes the measurement
model of the neural activity, yt . C is a matrix of parameters that
relate velocity to the neural activity and qt is a noise term. This
model can be expanded with the inclusion of an additional term
to model the input of the control signal on the system state as
follows:

xt = Axt−1 + But−1 + wt−1

where ut is the control signal at time step t, and B is a matrix
of parameters describing the trajectory. The task of the following
algorithms is to predicte the state in order to generate an error,
the difference between the predicted and observed state, which
can be used to adjust the control signal.

There are a number of assumptions within the model,
including that the sensory feedback to the subject of the current
state xt is error free and instantaneous (Shanechi and Carmena,
2013). The matrix B is tightly coupled to a particular task,
making it difficult for the subject to use the control input ut to
drive the neuroprosthetic if the task order changes during use
(Matlack et al., 2014). Williams et al. (2013) points to the utility
in including both a “hold” state and a “rest” state in the design of
tasks for motor BMI decoders, and which is often not included
as part of the model state. Finally, Hogri et al. (2015) illustrate
a clear box modeling approach (LeDuc et al., 2011) where a
simplified cerebellar microcircuit is implemented as a VLSI chip
and interfaced to anesthetized rats.

Kalman Filter
The Kalman Filter (KF) is a recursive optimal estimator and
is good at extracting signal from noisy measurements. It has
been widely deployed in industrial automation and control
systems engineering for over half a century. In its original
form the state and measurement models needed to be linear.
The extended Kalman Filter (EKF) models non-linear processes
where a linearization has been performed, and implementations
such as the Unscented Kalman Filter (Li et al., 2009) can utilize
non-linear models. A number of variants have been proposed

for neuroprosthetic closed-loop control, including SmoothBatch
(Orsborn et al., 2012) and ReFIT (Gilja et al., 2012) which capture
elements of the neuroprosthetic task in themodel and updates the
decoder parameters during the operation of the system. Updating
the decoder in this manner is referred to as closed-loop decoder
adaption (CLDA). In Dangi et al. (2014) Recursive Maximum
Likelihood is used as part of CLDA to continuously adjust the KF.
This is probably useful because the recording of the neural signal
may be non-stationary due to factors (electrode drift, movement
artifacts, external noise) as well as the fact that the subject may
have changes in attention during the operation of the device,
and the learning process may change the parameters for error
and modeling (Chase et al., 2009). When examining various
parameters that can be tuned in the decoder, (Cunningham et al.,
2011) determined that bin width has a large impact on the
performance of the KF, and should be optimized. Potentially due
to the subjects ability to interact with the closed-loop system,
shorter bin widths of 25–50 ms provide improved performance
over longer bin widths.

Point Process Filters
The activity of individual neurons in the ensemble can be
modeled as point processes with each spike being an event, which
enables the filter to respond much more rapidly then methods
that rely on binned spike counts or estimates of instantaneous
firing rates (Li et al., 2009).

Reinforcement-Learning
In Actor-Critic architectures two coupled systems work together
with complimentary models of the task. The two systems adapt
using a Reinforcement Learning approach (DiGiovanna et al.,
2009). The user of the system supplies a signal indicating success
or failure to the Critic, which supplies a training signal to the
Actor to allow adaption (Mahmoudi et al., 2008). By trial and
error the Actor interacts with the environment, and the Critic’s
feedback rewards successful actions. The Actor-Critic approach
may also be well-suited to neuroprosthetic control in a real world
usage scenario where the task and associated trajectory varies
from moment to moment, and achieving the goal may be the
only reinforcement signal available (DiGiovanna et al., 2009).
Mahmoudi et al. (2008) describes a neuroprosthetic for a Sprague
Dawley rat with 32 electrodes implanted in primary motor cortex
(M1)—symmetrically, 16 electrodes per hemisphere. This was
used to control a robotic arm, which the rat used to press
levers. Meanwhile the Critic component is implemented as a
computer agent that adapts via the Reinforcement Learning
paradigm based on the rewards the rat user receives, and the
rat user is learning to modulate its neural activation modifying
the directional tuning of the units in M1. An extension to this
approach involves extracting the goal success signal directly
from the subject. By recording from the Nucleus Accumbens
in the ventral striatum of rats, an area believed to associate
sensory perception with motor tasks, (Mahmoudi and Sanchez,
2011) were able to use the rat subject’s internal representation
of goal success as the evaluative feedback signal to the Critic
component.
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PID Feedback Control
The Proportional-Integral-Derivative (PID) controller is an
extremely common and widely deployed controller in closed-
loop systems. The three terms—proportional, integral, and
derivative are calculated from the plant’s response to the input
and are summed to generate the error signal (Åström and
Wittenmark, 1990). Chaos control approaches, such as delayed
feedback control, utilize the dynamics of the system to modify
the control input. By taking advantage of the chaotic system
sensitivity to perturbation, system state can be changed with
minimal cost. In Vlachos et al. (2016) the use of delayed feedback
control enables closed loop control of a seizure model (a spiking
neural network) and the recovery of the non-seizure dynamics,
while in Slutzky et al. (2003) seizure activity induced in rat
hippocampal slice preparations was moderately controlled.

Control Policies with Classifiers
Classifiers don’t need a model of the system instead they attempt
to determine a relationship between a set of measurements and
a given state. Some classifiers can be sensitive to changes in the
data they use to determine the classes (Lotte et al., 2007), such as
Artificial Neural Networks whereas Linear Discriminant Analysis
is more robust in the face of changes to data used to train the
classifier.

Linear Discriminant Analysis
Linear discriminant analysis (LDA), and other related techniques,
are statistical methods that find the features in the measurement
of a signal that indicate the probability that it belongs to a given
class (Mika et al., 1999). The assignment to a class can be used to
trigger a neuroprosthetic intervention, such as the detection via
EEG of a motor command and the subsequent activation of an
ankle exoskeleton (Xu et al., 2014).

Artificial Neural Network
The Artificial Neural Network is a data driven approach to
classification that in contrast to LDA and other statistical
methods does not rely on the assumption of the underlying
probability distribution of the system (Zhang, 2000). ANNs are
organized in layers, with nodes or neurons connected typically in
an input, hidden and output layer structure (Figure 4). There are
numerous topologies, but among the most popular is the Multi
Layer Perceptron (MLP), a three layer feedforward network.
ANNs are trained with the presentation of input data that has
been identified as belonging to an output class, and a learning
rule is applied to adjust the weights on the connections between
the nodes, of which back propagation is the most well-known.

ANNs have been used to predict end-point gait parameters
from the EMG recorded from the neuromuscular activation of
subjects with Spina Bifida (SB; Chang et al., 2009), and to achieve
realtime dexterous control of a myoelectric prosthetic hand from
cortical recordings of rhesus monkeys (Aggarwal et al., 2008).
Echostate Neural Networks are a Recurrent Neural Network
(Sussillo et al., 2012) that have been used in non-human primates
for a motor BMI, and have been able to outperform the Kalman
Filter.

FIGURE 4 | Artificial Neural Network. An illustration of a typical ANN

topology. An input layer projects to a single hidden layer, which connects to

the output layer. Common variations include additional hidden layers and

recurrent connections.

Support Vector Machines
The Support Vector Machine (SVM) is a supervised machine
learning approach that can perform classification or regression.
The SVM identifies a hyperplane that separates classes within
the data, by non-linearly projecting data points into a higher
dimensional space (Tapson et al., 2013).

Linear Solutions to Higher Dimensional Interlayers
Linear Solutions of Higher Dimensional Interlayers (LSHDI) are
a class of networks that have some similarity in architecture to
ANNs, with an input, hidden, and output layer. They are distinct
due to themuch larger hidden layer, the random generation of the
weights on between the input and the hidden layer, and the linear
response of the output layer (Tapson et al., 2013). The Neural
Engineering Framework (NEF) builds systems out of networks
that have LSHDI characteristics (Eliasmith and Anderson, 2004).
The NEF has been used to design Spiking Neural Networks
that implements the Kalman Filter as part of a cortical motor
BMI (Dethier et al., 2011). The Synaptic Kernel Inverse Method
(SKIM) is an LSHDI network for spiking input (Tapson et al.,
2013) that can perform both classification and regression.

FEEDBACK

There can be more than one feedback loop in the neuroprosthetic
system (Broccard et al., 2014). Feedback can be the visual
observation of the robotic effector as it is in many motor BMIs,
allowing the operator to modulate their neural activity before it is
decoded. Or in the case of a DBS neuroprosthetic the feedback
signal may be acquired from recording electrodes implanted
alongside the stimulating electrodes, in which case the feedback
signal is returned directly to the device (Herron and Chizeck,
2014). Bidirectional interfaces, via the PNS or the CNS, enable
the transformed signals of sensors on the robotic effector to be
transmitted into the operators nervous system and interpreted
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as a sensory percept (Armiger et al., 2013). Feedback can also be
from sensors on the robotic effector directly to the controller,
bypassing the operator (Broccard et al., 2014; Markovic et al.,
2014). And finally, reversing the direction of information, natural
sensors can be used as a source of feedback for the controller
(Holinski et al., 2013;Mendez et al., 2013;Wright et al., 2015) and
the brain can be used as the source of the error signal (Mahmoudi
and Sanchez, 2011).

DISCUSSION

We have reviewed the control policies employed by recent
neuroprosthetic systems. For the purposes of this review
we included motor BMIs, assistive devices, neuromodulatory
systems, and other devices with an interface into a subject’s
nervous system. Many of the devices reported on in the literature
are being developed in non-human primate or other animal
models, only a subset have been tested in human subjects. There
is a frequent conflation of detection and classification approaches
with digital or Bang-Bang control within the literature.

Although closed-loop systems have been demonstrated
experimentally there remain significant limits on our ability to
describe the activity in the brain, and consequently develop
control policies to respond to that activity. Simulation of cortical
activity (Ehrens et al., 2015; Sandler et al., 2015; Vlachos
et al., 2016), the use of experimental platforms (Keren and
Marom, 2014), and the use of animal models has enabled
the development of a wide range of neuroprosthetic systems.
However, the appropriate method to transition these systems in
human subjects is not clear. Among the difficulties is the body’s
response to chronic implantation of microelectrodes (Fernandez
et al., 2014), the appropriate place to collect a signal (Krook-
Magnuson et al., 2015), and the possibility that longterm attempts
to control a cortical system may compromise some of the
desirable behavior (Keren and Marom, 2014).

Comparisons of control policies across different modalities,
interfaces and levels of invasiveness are difficult. Even within
a given neuroprosthetic category it can be difficult to perform
a comparison due to the wide variety of task designs, different
subject training regimes and varying reported metrics; (Koyama
et al., 2010; Sussillo et al., 2012) are rare exceptions. Examination
of Table 1 reveals that the motor BMI discipline appears to have
explored the widest variety of control policies, and that the use
of the Kalman Filter as part of a closed-loop system has broad
support. Improvements to the traditional Kalman Filter to allow
non-linear models of neural activity combined with its ability to

be implemented in real-time continue to make it an attractive
approach.

Closed-loop motor BMI systems have had significant success
with closed-loop decoder adaption (CLDA; Shanechi and
Carmena, 2013), supporting the use of closed-loop control.
However, the CLDA approach has identified two distinct
strategies in motor neuroprosthetics—decoding vs. learning. The
decoding approach aims to read the natural motor plan whereas
the learning approach monitors the changing neural activity as
the brain learns to operate the prosthetic. It is not known at

this stage if a similar duality of strategies will be applicable in
other modalities. The difficulty in specifying a model for use
in many of the control policies previously describes arises from
our continued uncertainty about specific action of many of the
components of the nervous system. It has been observed that
users of Cochlear Implants have improved speech recognition
performance after completing training with the device (Doucet
et al., 2006), which may argue for a learning interpretation.
An important caveat for the learning approach is that the
neuroprosthetic system must be stable as regards the interface
and transform of the input signal to the effector output, to
allow the subject the opportunity to develop the “prosthetic
motor memory” necessary for skillful operation (Carmena,
2013).

Neuroprosthetic development of closed-loop systems has
been driven in part by the concern that the risks involved
in highly invasive interfaces need to be mitigated by a strong
case for the therapeutic benefit. Patient abandonment for upper
limb prosthetics is high, with many wearers ceasing upper
limb prosthetic use within 12 months of receipt of the device.
Concerns cited by users are weight, appearance and difficulty of
use (Biddiss and Chau, 2007). Extrapolating to more invasive
systems, it may be difficult to argue the cost benefit if patient
dissatisfaction is very high. Although these devices cannot be
abandoned in the same manner as a detachable prosthetic limb,
there is some suggestive research indicating an unwillingness to
participate in experimental trials, which may suggest that the
perceived benefit of neuroprosthetic systems by the target patient
populations remains low (Illes et al., 2011). By improving control
we can offer improved functionality and increased therapeutic
benefit.
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APPENDIX: LITERATURE SEARCH
METHODOLOGY

To generate a list of papers for the review we performed a search
on Scopus using the following search criteria, restricting the
results to articles or conference proceedings:

Topic = (neuroprosthetic OR neurorobotic OR exoskeleton
OR neurostimulator OR (brain AND interface)) AND Topic =
(control OR controller AND (scheme OR algorithm OR
strategy)) AND Topic = (closed-loop OR closedloop). The
results were limited to Articles and Conference Proceedings from
1990 to 2015.

With the above search we obtained 147 papers from Scopus.
We excluded papers that were from unrelated fields, as well as
papers that described the design or fabrication of an exoskeleton
without reference to a control system, or that described a control
strategy used by an exoskeleton or rehabilitative device without
a nervous system interface. We excluded papers that discussed
computing architectures for experimental design, or detailed the
fabrication of electronics. Once duplicates and excluded papers
were removed we were left with 85 articles.

The papers were divided into five categories based on their
primary topics.

Control strategy
Papers mainly describing the design of an algorithm. Papers
comparing the performance of algorithms by a particular

neuroprosthetic. Papers describing a change to the control loop
such as the addition of feedback or the use of additional signal
processing.

Neuroprosthetic design
Papers describing a neuroprosthetic system, including
interface site, electrode fabrication, sensors, architecture and
algorithms.

Device testing
Papers that describe the performance of an experimental
neuroprosthetic. Papers that describe an experimental
neuroprosthetic in a non-human test subject. Papers that
compare the performance of a neuroprosthetic in a patient with
an existing clinical therapy.

Simulators
Papers that describe a simulation environment for development
or testing of neuroprosthetics, or papers that describe a model
of the nervous system for a neuroprosthetic device or control
algorithm to interact with.

Reviews
Papers that are reviews of neuroprostheses, algorithms or
interfaces.
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The closed-loop control of rehabilitative technologies by neural commands has shown

a great potential to improve motor recovery in patients suffering from paralysis.

Brain–machine interfaces (BMI) can be used as a natural control method for such

technologies. BMI provides a continuous association between the brain activity and

peripheral stimulation, with the potential to induce plastic changes in the nervous

system. Paraplegic patients, and especially the ones with incomplete injuries, constitute

a potential target population to be rehabilitated with brain-controlled robotic systems,

as they may improve their gait function after the reinforcement of their spared intact

neural pathways. This paper proposes a closed-loop BMI system to control an

ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation

of incomplete spinal cord injury (SCI) patients. The integrated system was validated

with three healthy subjects, and its viability in a clinical scenario was tested with four

SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the

subjects were used to decode their gait intention and to trigger the movements of the

exoskeleton. We designed a protocol with a special emphasis on safety, as patients

with poor balance were required to stand and walk. We continuously monitored their

fatigue and exertion level, and conducted usability and user-satisfaction tests after the

experiments. The results show that, for the three healthy subjects, 84.44± 14.56% of the

trials were correctly decoded. Three out of four patients performed at least one successful

BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control

strategy implemented (i.e., the exoskeleton could only move during specific periods of

time) was effective in preventing unexpectedmovements during periods in which patients

were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials

(for healthy subjects and patients, respectively) would have suffered from unexpected

activations (i.e., false positives) without the proposed control strategy. All the patients
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showed low exertion and fatigue levels during the performance of the experiments. This

paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an

ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good

prognosis for gait rehabilitation).

Keywords: spinal cord injury (SCI), brain machine interfaces (BMI), ambulatory exoskeletons, gait rehabilitation,

movement intention decoding, electroencephalography (EEG), event related desynchronization (ERD), movement

related cortical potentials (MRCP)

1. INTRODUCTION

Recovery of lower-limb function in spinal cord injury (SCI)
patients is crucial to enhance the independence and quality of
life in this population (Ditunno et al., 2008). Two-third of SCI
patients are reported as paraplegic (Wyndaele and Wyndaele,
2006), from which a considerable percentage is able to regain
certain locomotion function, especially those with low and
incomplete lesions (Nene et al., 1996; Scivoletto et al., 2014).
Technological advances, such as robotic exoskeletons, have
emerged as a valuable option to rehabilitate and restore gait in
paraplegic patients beyond traditional means such as crutches,
walkers, and orthoses. These robotic systems can range from
clinical devices to bioinspired wearable ones. Firstly, weight-
suspended robotic systems with a treadmill, such as the Lokomat
(Hocoma Medical Engineering Inc, Zurich, Switzerland) and
the Gait Trainer (GT II, Rehastim, Berlin, Germany), have
demonstrated their rehabilitative efficacy, but they are generally
expensive and cannot be used for motor substitution (Wirz et al.,
2005). Secondly, robotic walking devices with balance control,
such as the REX (REX Bionics Ltd), can be used by people
with high SCI (up to C4/5 level), as they completely substitute
their gait function, but it may be too bulky and inefficient for
those patients whomaintain certain balance control. Hence, these
systems can be more appropriate for assistive purposes only.
Thirdly, ambulatory exoskeletons, such as the ReWalk (Bionics
Research Inc) and the H2 (Technaid S.L., Spain), are designed
to assist leg movement, but they can only be used by patients
with lower-limb weakness who still can maintain balance. These
systems are of particular interest, as they can be controlled using
assist-as-needed paradigms, which may be more effective than
other approaches for rehabilitation and functional compensation
of patients with paraplegia and also for stroke sufferers (Pons and
Torricelli, 2014).

In this context, there is a growing interest toward the
development of robotic devices controlled by brain–machine
interfaces (BMI) to assist and rehabilitate gait function
(Pfurtscheller et al., 2006; Fitzsimmons et al., 2009; Alam et al.,
2014). The contingent link between neural commands and
the peripheral feedback given by means of a rehabilitation
device can promote neuroplasticity (Mrachacz-Kersting et al.,
2012). Whereas, a BMI constitutes a natural interface that
provides an easier and more intuitive control of assistive devices
(Millán et al., 2010). Non-invasive technologies such, as the
electroencephalogram (EEG), constitute a relatively cheap and
portable option to build these BMI systems (Wolpaw et al., 2002).
The use of brain-triggered rehabilitative technologies is of special

relevance for incomplete SCI patients. These individuals can
maintain some intact fibers below the injury level, and recent
studies have shown how these spared pathways can be reinforced
by the continuous association between the activation of the brain
during the intention of movement and the stimulation of the
paralyzed limbs (Jackson and Zimmermann, 2012).

The closed-loop control of walking exoskeletons using
neural commands presents two main challenges. The first
one corresponds to the development of robust and reliable
BMIs to decode neural signals associated with gait movement
intention. In contrast to upper-limb, which is generally the
focus of BMI research for motor rehabilitation/restoration of
paralyzed patients (Lebedev and Nicolelis, 2006; Millán et al.,
2010), decoding of gait has not been so deeply studied. The
recording of neural signals during walking might be affected
by motion artifacts, which could bias the decoding and lead
to misinterpretation of the neural dynamics associated with the
movement (Castermans et al., 2014), although there is evidence
showing that the influence of these artifacts can be reduced by
using carefully designed set-ups (Nathan and Contreras-Vidal,
2016). Nonetheless, recent studies with healthy subjects have
shown that EEG neural correlates can be used to decode the gait
initiation before it occurs (Jiang et al., 2015; Sburlea et al., 2015)
and to distinguish between different walking directions (Velu
and de Sa, 2013). However, pathologies like SCI entail a brain
reorganization, which may complicate the decoding of motor
information (López-Larraz et al., 2015a). Hence, it is important
to validate how BMI systems can be applied effectively in these
patients. The EEG signals of a paralyzed patient during his/her
attempt to move the legs could be decoded without any overt
movement and used to trigger the movement of an exoskeleton
or prosthesis that assists his/her walking. The current state of
the art in non-invasive BMI technology does not allow for
precise decoding of fine limb kinematics. Therefore, an accepted
approach in the literature is to have a shared control paradigm
in which the brain activity is used to trigger the movement of
a robot/prosthesis that can autonomously perform a functional
task (e.g., walk forward two steps; Millán et al., 2010; Rohm et al.,
2013).

The second challenge arises from the complexity of the set-up
required to control a device for gait assistance with neural signals.
In the recent years, pilot studies have shown how BMIs have
been used to control weight-suspended robotic and prosthetic
systems (Do et al., 2013; King et al., 2015). Furthermore, robotic
exoskeletons with balance control have also been controlled using
brain signals (Kilicarslan et al., 2013; Kwak et al., 2015). All these
studies are performed with devices that support balance, which
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minimizes fall risks, and three of them demonstrated successful
control with SCI patients (Do et al., 2013; Kilicarslan et al.,
2013; King et al., 2015). However, the control of ambulatory
exoskeletons with a BMI presents additional issues compared
to those systems with balance support. Even if it is used by
patients with a relatively good condition (e.g., legs weakness
and/or certain degree of balance control), they are required to
maintain the balance by holding on to a walker or to parallel bars,
and to focus on the intention of motion to command the BMI.
This kind of set-up would permit the development of assist-as-
needed rehabilitative interventions for such patients, which may
lead to higher motor improvements (Cai et al., 2006). Hence,
the validation of a BMI to control an ambulatory exoskeleton
requires the design of a protocol with special considerations, such
as safety, timings and control of patients’ fatigue levels during the
experiments.

This paper presents an integrated system for the closed-
loop control of an ambulatory exoskeleton with a BMI. The
exoskeleton works under an assist-as-needed control paradigm,
which can be adapted to the capabilities of each patient and
assist him/her only to the extent he/she needs. The EEG neural
correlates of movement are used to decode the intention of gait
initiation, which is used as a volitional control signal for the
exoskeleton movement. The feasibility of the proposed system
is validated with two sets of experiments. The first experiment
shows the viability of the whole set-up with three healthy subjects.
The second experiment demonstrates the viability of the system
in a realistic clinical environment, involving four incomplete
SCI patients. An experimental protocol is proposed to operate
the BMI in an ecological set-up, with an emphasis on patients’
safety. Decoding performance, exertion levels, and satisfaction
and usability scores were measured as indicators of the viability
of the system for clinical applications.

2. MATERIALS AND METHODS

2.1. Participants
Three able-bodied subjects and four SCI patients participated in
the study. Demographic data of both the healthy subjects (H)
and the patients (P) can be seen in Table 1. The SCI patients
were hospitalized at the Hospital Nacional de Parapléjicos, in
Toledo (Spain), where all the experimentation sessions took
place. The inclusion criteria for the patients were: (1) SCI with
any lesion level, ASIA C or D with gait prognosis; (2) patients
in walking rehabilitation; (3) patient’s balance allows standing
between parallel bars; (4) no orthostatic complications during
standing; (5) upper-limb strength tomanage a walker or crutches,
and to transfer from the wheelchair to a chair; (6) age between
18 and 60 years; and (7) height 1.50–1.95 m and weight up
to 90 kg. The exclusion criteria were: (1) inability to stand in
upright position for at least 15 min; (2) any surgery in the
previous 3 months; (3) spasticity higher than 3 in the Modified
Ashworth Scale (Bohannon and Smith, 1987) in any of the lower-
limb muscles; (4) previous/current lower-limb bone fracture;
(5) ulcers or sores in areas of contact with the exoskeleton
and/or electrodes; (6) previous/current history of cardiovascular

disease of any kind or exercise contraindications; (7) upper-
limb pain that limits weight bearing on crutches/walker/parallel
bars; (8) significant upper/lower extremity discrepancies; (9)
uncontrolled autonomic dysreflexia; (10) pregnancy; and (11)
cognitive impairment of any kind. The selected patients met
all inclusion and no exclusion criteria. All the subjects were
duly informed about the study, and all of them gave written
consent before the first session. The experimental procedure was
approved by the Ethics Committee of the Hospital Complex of
Toledo (Spain) (C.E.I.C. 31/02-2014).

2.2. Clinical Assessment
We evaluated the clinical condition of the SCI patients before
their enrollment in the study. Their injury severity, lower
extremity strength, and mobility were measured using a set
of clinical tests, according to the standardized ASIA clinical
exams (Marino et al., 2003). The lower extremity motor score
(LEMS) was used to measure muscle strength, with 5 key
muscles examined in each leg: hip flexors, knee extensors, ankle
dorsiflexors, long toe extensors, and ankle plantar flexors. The
grading system for the muscle strength goes from 0 to 5 (0 =

absence of muscle contraction, 5 = normal active movement
with full range of motion against full resistance). The cumulative
score for the lower extremities ranges between 0 and 50. Modified
Ashworth score was used for lower-limb spasticity measurement,
ranging from 0 (no spasticity) to 4 (affected part rigid in flexion
or extension). Only patient P4 presented a very slight spasticity
(score 1) in the right ankle, below the level established in the
exclusion criteria. Walking index for spinal cord injury (WISCI
II) was used to quantify the degree of assistance required by
the patient during normal walking and 10 Meter Walk Test (10
MWT) to assess walking speed (Ditunno and Ditunno, 2001;
van Hedel et al., 2005). WISCII II grading system ranges from 0
(patient is unable to stand and/or participate in assisted walking)
to 20 (ambulates with no devices, no braces and no physical
assistance). According to the recommendations of 10 MWT,
walking speed was calculated discarding the 2 initial and the
2 final meters, to only consider walking at a constant speed.
Distance (6 m) was divided by the time measured to obtain gait
speed (m/s). The values for each patient can be found in Table 2.
Walking tests were performed using as little assistance as possible
to ensure patient safety.

2.3. Experimental protocol
The present study was divided into two stages. The first stage
aimed at validating the technology under a well-controlled
scenario. This was done by performing experiments with healthy
subjects and evaluating if the BMI could be effectively used
to close the loop and control the ambulatory exoskeleton. The
second stage sought to demonstrate that the proposed system
and protocol could be safely used in a clinical environment.
Experiments with SCI patients were conducted, in which the key
point was to measure parameters such as exertion and fatigue
levels, as well as usability and satisfaction scales.

The experimental protocol consisted of familiarization
sessions and BMI sessions. The experiments with the healthy
subjects included the familiarization and the BMI sessions in
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TABLE 1 | Demographic information of both groups: healthy subjects and SCI patients.

Age Height Weight Injury Time since

ID (years) Sex (meters) (kilograms) level ASIA injury (months) Etiology

H1 31 Male 1.74 70 – – – –

H2 29 Male 1.77 73 – – – –

H3 29 Male 1.75 74 – – – –

P1 30 Male 1.85 90 L1 C 12 Traumatic

P2 24 Male 1.92 57 L1 C 24 Traumatic

P3 21 Male 1.80 76 T11 C 5 Traumatic

P4 49 Female 1.60 57 T12 C 11 Traumatic

TABLE 2 | Clinical scores obtained by the patients before the experiments.

ID LEMS WISCI II (Technical aid) 10 MWT (m/s)

P1 15 9 (walker and braces) 0.144

P2 20 12 (two crutches and braces) 0.287

P3 17 9 (walker and braces) 0.162

P4 28 15 (one crutch and braces) 0.081

1 day. The experiments with the SCI patients required one
familiarization session and two BMI sessions in 3 separate days.
The set-up included: the EEG equipment (only for the BMI
sessions) with the amplifiers in a backpack carried by the subject,
the exoskeleton attached to the subject’s legs, and a walking
aid to help keeping balance (Figure 1). In addition, a trolley
table was used to carry the computers that processed the EEG
signals and controlled the exoskeleton. Crutches, a walker, and
parallel bars were tested as walking aids. Crutches did not provide
enough balance control for the patients and were discarded.
The walker, which is commonly used in gait rehabilitation by
these patients, worked well with the healthy subjects. However,
during some preliminary tests with the patients, we realized
that they had difficulties to move it while walking with the
exoskeleton. Therefore, all the SCI patients performed the BMI
sessions using parallel bars, whereas the healthy subjects used
the walker. The exoskeleton joints remained blocked whenever
it was not in movement in order to partially support patients’
weight.

The familiarization sessions allowed the subjects to get
used to the protocol timings and the exoskeleton movements.
On these sessions, one experimenter triggered the movements
of the exoskeleton manually, warning the subject before
every movement. For the healthy subjects, these sessions
consisted of 5–10 min walking with the exoskeleton. For
the patients, the sessions took between 20 and 30 min, in
which 2 clinicians monitored every movement and informed
the patient about the protocol and how to interact with the
exoskeleton. If required, these sessions were repeated until
both the patient and the clinicians confirmed that the patient
was accustomed to the system, and ready for the first BMI
session.

The BMI sessions consisted of screening blocks and closed-
loop feedback blocks. Given the nature of the set-up, a cue-guided
BMI was proposed, in which the EEG signals were classified
asynchronously. Hence, the exoskeleton moved as soon as the
intention of movement was decoded, but only during specific
periods of time, avoiding sudden and unexpected movements
that may result in patients’ falls. The participants performed
3 or 4 screening blocks of 20 trials each, which were used
to calibrate the BMI decoder. During this screening phase,
the participants were standing, wearing the exoskeleton, and
holding the corresponding walking aid (i.e., the walker for the
healthy subjects, and the parallel bars for the patients). Neither
the healthy subjects nor the patients could actually move the
legs during the screening blocks (as the exoskeleton joints
were blocked). Therefore, in both cases, we consider the action
performed as a movement attempt and not as a movement
execution. The screening blocks were composed of rest and
movement attempt (MA) intervals. The rest intervals had a
random duration between 4 and 7 s. An audio cue indicated
the start of the MA interval, which lasted 3 s. The participants
were instructed to attempt to move their right leg, as if they
started walking, immediately after they heard the audio cue.
The rest of the time, they were asked to stay relaxed and
move as little as possible. During the MA interval, participants
were explicitly asked to avoid compensatory movements with
the rest of the body, especially with the hip, and to attempt
to move their right leg only. The closed-loop feedback blocks
were composed of trials with four intervals: (i) “Rest,” (ii)
“Preparation,” (iii) “Movement Attempt,” and (iv) “Movement.”
The experiments with healthy subjects included 3 blocks of 20
trials each (amounting to 60 trials), in order to acquire enough
movements to have a good estimation of the performance of
the BMI system. In the experiments with the SCI patients, there
was a variable number of trials, and they were asked to reach
a distance of 10 m (i.e., the length of the parallel bars), which
corresponds to around 20–25 gait cycles. During the “Rest” state
(5 s), the subjects were not required to perform any task, but
just to relax after the previous trial. After that, a low tone was
played, whichmarked the beginning of the “Preparation” interval
(3 s), during which they were instructed to relax and be prepared
for the upcoming cue. A high tone denoted the start of the
“Movement Attempt” interval (maximum 3 s), in which they
were asked to attempt to move their right leg in the same way
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FIGURE 1 | Snapshots of experimental sessions performed by a healthy subject (left) and a SCI patient (right). The EEG cap is connected to the amplifiers

that are carried in the backpack. These amplifiers are connected with long cables to a computer placed on the trolley table. The computer processes the EEG signals

and sends decoder outputs to the exoskeleton controller, which sends to the joints the commands to move.

they had done in the screening blocks. If the BMI detected the
intention to move at any time during these 3 s, the system started
the “Movement” interval, in which the exoskeleton controller
unblocked the joints and moved for one gait cycle: one step with
right leg and one with left leg (6 s). Otherwise, after the 3 s, a
new trial started in rest state. Supplementary Video 1 shows some
trials of subject P1 triggering the exoskeleton with his motor
intention.

For safety reasons, every trial required that the experimenter
explicitly pressed an activation button during the “Rest” or
“Preparation” intervals. If that button was pressed, the BMI
decoder started sending its outputs to the exoskeleton controller.
This would trigger the start of the gait cycle if the patient
attempted to move during the “Movement Attempt” interval. If
the button was not pressed, the exoskeleton did not move even if
the participant attempted to move his/her leg. This mechanism
was included in order to avoid starting a movement with the
patient being in an unsafe position after the previous gait cycle,
and to skip trials to regularly ask the patients about their fatigue
levels. When required, the patients could sit for a few minutes to
rest, and the trials continued when they confirmed that they were
ready.

Due to the complexity of the set-up, the therapist–patient
interaction was integral for the correct execution of the BMI
experiments. Apart from being the control signal for the
exoskeleton, the BMI was used by the therapist to guide the
patient during the executions (Pichiorri et al., 2011). A therapist
interface was designed to show the experimenter information
of the BMI decoder output and the patient’s EEG activity
in real-time. The experimenter could, for instance, ask the
patient to relax if the BMI was detecting movement commands
during periods in which the patient should rest (e.g., due to
excessive movements required to keep balance) or ask the patient
to concentrate further when the BMI was not decoding any
movement when they were required. In addition, an option to
send manual triggers was included in the therapist interface
in order to manually start exoskeleton movements, and so,
reduce frustration when the BMI repeatedly failed to decode the
movements.

2.4. EEG Acquisition
The EEG was recorded using a commercial g.Tec system (g.Tec
GmbH, Graz, Austria), with 32 channels placed at AFz, FC3,
FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2,
CP4, FP1, FP2, F7, F3, Fz, F4, F8, T7, T8, P7, P3, Pz, P4, P8,
O1, and O2 (according to the international 10/10 system). The
ground and reference electrodes were placed on FPz and on the
left earlobe, respectively. The EEG was digitized at a sampling
frequency of 256 Hz and power-line notch-filtered to remove the
50 Hz line interference. The amplifiers connected to the EEG cap
were carried in a backpack by the subject. The amplifiers were
connected via long cables to a laptop placed on the trolley table.

2.5. Exoskeleton
The exoskeleton used to assist gait was a 6 degrees of
freedom wearable lower-limb orthosis with anthropomorphic
configuration (Bortole et al., 2015). It included three joints for
each leg: hip, knee, and ankle, each of which was powered
by a DC motor coupled with a harmonic drive gear. The
exoskeleton was equipped with potentiometers and strain
gauges to measure the joint angles and the human–robot
interaction torques. Its control was conceived to work under
an assist-as-needed paradigm in order to make rehabilitation
more challenging for the patients. A predefined trajectory,
obtained from healthy subjects, was used as the desired gait
pattern. The controller updated the stiffness values in real
time according to the subject’s performance in order to assist
him/her just to the extent he/she needed (Rajasekaran et al.,
2015). The exoskeleton was connected with long cables to its
controller and to the power supply, which were on the trolley
table.

2.6. EEG-Based Movement Intention
Decoder
After recording the screening blocks and before the closed-
loop blocks, the BMI classifier was trained to distinguish
between rest and movement attempt (MA) classes. The BMI
decoder was based on the one proposed in López-Larraz et al.
(2014). The decoding of movement attempt was dependent
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on the combination of two EEG movement correlates: the
event-related desynchronization (ERD) of sensorimotor rhythms
(Pfurtscheller and Lopes da Silva, 1999) and the movement-
related cortical potentials (MRCP) (Shibasaki and Hallett, 2006).
Signals from the screening datasets were trimmed down to 7-s
trials (−4 to 3 s from the MA audio cue).

2.6.1. Artifact Removal
Before training, an automatized procedure based on z-scores was
applied to eliminate the trials containing artifacts (López-Larraz
et al., 2014). For each trial, the power in delta (1–4 Hz), theta (4–
8 Hz), alpha (8–12 Hz), and beta (12–40 Hz) frequency bands,
as well as the trial variance and the maximum amplitude were
computed. Trials that went over a threshold set at 2.5 standard
deviations of themean in any of these parameters were discarded.
Statistical methods like this are especially useful for clinical set-
ups as the one presented here, since they do not require human
supervision and can be used quickly to eliminate the artifacts
before training the BMI (Nolan et al., 2010; Maeder et al., 2012).
In principle, this method should be able to remove the most
common types of artifacts that can be found in a set-up like this.
For instance, analyzing the power in delta band and the signal
amplitude may serve to remove low-frequency motion artifacts,
whereas analyzing the power beta and signal variance could help
to get rid of trials contaminated with EMG artifacts.

For the closed-loop blocks, we considered two options: (1)
having an online system to detect EEG artifacts and stopping the
BMI every time that it detected one; or (2) considering that the
possible artifacts would not highly influence the performance of
the system. Given that we trained the BMI with clean trials, the
existence of artifacts during test should not deceitfully increase
the performance, and at most, they would decrease it. Since
we considered that this is not worse than stopping the BMI
every time that an online artifact detector detects an artifact, no
artifacting was performed during the closed-loop trials.

2.6.2. Feature Extraction and BMI Training
Features were computed from the clean trials using a 1-s long
window with a sliding step of 250 ms. Features corresponding to
the rest and MA classes were computed on the [−3,−1] s and [0,
2] s intervals, respectively (with 0 being the time when the high
tone indicating the start of the MA interval was played). On these
windows, the features were computed as follows:

• ERD features were calculated after applying a small Laplacian
filter to the frontocentral, central, and centroparietal EEG
channels. After that, a 16th order autoregressive model with
a frequency resolution of 1 Hz was used to obtain the power
values in the frequency range [7–25] Hz.

• MRCP features were calculated after subsampling the EEG
signals to 64 Hz and applying a bandpass filter, [0.1–1] Hz, to
them. Then, a common average reference (CAR) was applied
to the channels FC3, FCz, FC4, C3, C1, Cz, C2, C4, CP3, CP1,
CPz, CP2, and CP4, and their amplitudes were added to the
feature vectors.

For each time window, 1192 features were extracted. Sparse
discriminant analysis (SDA) was used to select the 30 most

discriminant non-redundant features and as a linear classifier
(Clemmensen et al., 2011; López-Larraz et al., 2014).

2.6.3. Closed-Loop BMI
During the closed-loop blocks, the EEG was processed
continuously. A sliding window was computed every 62.5 ms and
its features were extracted following the same procedure detailed
in Section 2.6.2, and the classifier trained with the screening
blocks generated a new BMI output. For each sliding window,
the BMI classifier determined if the signal corresponded to rest
or to MA classes. In order to ensure a consistent brain activation,
the BMI generated a movement trigger when five consecutive
windows of MA class were detected (Ramos-Murguialday et al.,
2013). If the BMI was active (i.e., if the experimenter pressed the
activation button during the “Rest” or “Preparation” intervals
of a trial, see Section 2.3), the movement trigger was sent to the
exoskeleton controller; otherwise, the trigger was not sent. The
controller ignored those triggers that arrived during the “Rest”
and “Preparation” intervals to avoid starting an unexpected
movement, which could make the patients fall. Therefore, on
each feedback trial, the exoskeleton moved if the experimenter
activated the BMI and the BMI generated a trigger during the
“Movement Attempt” interval. In addition, the exoskeleton
could also be moved if the experimenter sent a manual trigger
during the “Movement Attempt” interval.

2.7. Exertion and Satisfaction Assessments
In order to evaluate the feasibility of the system for clinical
applications, the patients were assessed with exertion and
satisfaction scales.

The exertion level was assessed three times on each BMI
session: before starting (i.e., when the patient was still sitting on
the wheelchair), after the screening blocks, and after the closed-
loop blocks. The Borg scale was used with values ranging from 6
(“very, very light”) to 20 (“very, very hard”) (Borg, 1970).

After the last BMI session, the patients were asked to evaluate
how satisfied they were with the system (i.e., the complete set-
up, including the exoskeleton and the EEG system) by using
a modified version of the QUEST (Quebec user evaluation of
satisfaction with assistive technology) scale (Demers et al., 2002).

3. RESULTS

3.1. Movement Attempt EEG Correlates
The features used by the BMI to decode the attempts of
movement were based on two well-studied EEG correlates: the
event-related desynchronization (ERD) of sensorimotor rhythms
and the movement-related cortical potentials (MRCP). Figure 2
shows a summary of these correlates computed using the signals
recorded in the screening blocks after removing artifactual trials
(see Section 2.6.1). For the SCI patients, the screenings from
both BMI sessions were combined. Following the methodology
proposed in López-Larraz et al. (2014), we used optimal spatial
filters (OSF) to visualize the ERD and the MRCP activities by
combining the electrodes placed over the motor cortex. Activity
recorded on electrodes FC3, FCz, FC4, C3, C1, Cz, C2, C4, CP3,
CP1, CPz, CP2, and CP4 was combined with an optimization

Frontiers in Neuroscience | www.frontiersin.org August 2016 | Volume 10 | Article 359 | 230

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


López-Larraz et al. Control of an Ambulatory Exoskeleton for Paraplegics with a BMI

FIGURE 2 | Significant ERD and MRCP for each subject in the channels obtained by applying optimized spatial filtering. For each of the 7 subjects (the 3

healthy subjects on top and the 4 patients at the bottom), the left plot shows the ERD, and the right plot shows the MRCP. For the ERD, the x-axis correspond to the

time interval [−4, 3] s, and the y-axis represent the frequency range [1–50] Hz. For the MRCPs, the x-axis correspond to the time interval [−4, 3] s, and the y-axis

represent the MRCP amplitude [−5, 5] µv.

algorithm, which computed the coefficients that maximized the
signal-to-noise ratio of both ERD and MRCPs (Graimann and
Pfurtscheller, 2006; Niazi et al., 2011).

Two out of three healthy subjects (H1 and H2) showed
strong ERD and MRCP activations, where as H3 showed weak
activations of both correlates. For the SCI patients, the ERD
patterns of P4 were similar to the ones of H1 and H2; P1 and P2
showed smoother ERD and only in the beta band; and P3 showed
no ERD at all. Regarding the MRCPs, P1 and P4 showed similar
morphology to H1 and H2, whereas P2 and P3 presented more
noisy activity.

3.2. BMI Performance
On average, 14.58% of the trials were rejected before training the
BMI decoder (15 ± 1.25% for the healthy subjects and 14.43 ±

2.62% for the patients). Figure 3 shows one representative trial
for one healthy subject (H1) and two patients (P2 and P3). For
each subject, the following information is shown: data of 3 EEG
channels (i.e., C3, Cz, and C4), the decoder output, the triggers
generated (i.e., the BMI triggers and the manual triggers), the
system states during the trial, the angle of both knees, and the
interaction torques measured by the strain gauges of both knees.
As can be seen in the left plot, a BMI trigger generated out of
the “Movement Attempt” state does not start any movement of
the exoskeleton. When it is generated in the appropriate state,
the “Movement” period starts, first with the right leg and then
followed by the left leg. In the right plot, the BMI did not
detect any movement. Instead, the experimenter sent a manual
trigger to start the “Movement” phase. The movement of the

exoskeleton seems to cause relatively large motion artifacts in the
EEG, especially in the patients (center and right plots).

Decoding results for the healthy subjects are presented in
Table 3, and for the SCI patients in Table 4. Each of the healthy
subjects performed 60 trials (3 blocks of 20 trials each). On
average, 84.44% of the trials were correctly decoded, generating
a walking movement with the exoskeleton. For the correctly
decoded trials of the three subjects, the average time between the
auditive cue and the beginning of the exoskeleton movement was
1.07± 0.63 s.

Given the complexity of the set-up and the unfamiliarity
of the patients with the technology, they were asked to attend
two BMI sessions. In the first session, which can be considered
as a BMI-familiarization session, they were carefully informed
about how the BMI system works. Then, they performed the
screening blocks and a few closed-loop trials to familiarize with
the whole system and protocol. On the second session, patients
also performed screening blocks, and subsequently, they started
with the closed-loop blocks until reaching a distance of 10 m.

Patient P1 was the only one who performed two successful
BMI sessions (i.e., reaching the 10 m distance). In the first one, he
achieved a high performance (84%), whereas in the second one,
it dropped to 55.56%. For patients P2 and P4, the first session was
prematurely interrupted, but both of them performed a successful
second session, with more than 85% of decoded trials. For patient
P3, performances were low in both sessions, especially in the
second one, in which the experimenter had to repetitively use the
manual trigger due to the lack of movement attempt commands
decoded by the BMI. Notice that the decoding performances
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FIGURE 3 | Time series of three representative trials for healthy subject S1 (left), and patients P2 (center) and P3 (right). The three first lines correspond to

three EEG channels located over the motor cortex: C3, Cz, and C4. The decoder output indicates the classifier label (Rest or MA) provided for each 1-s window in real

time. The BMI triggers were generated only when five consecutive classifier outputs corresponded to MA class, after being in Rest class (they were ignored when

generated out of the “Mov.” Attempt period–see left plot). The manual triggers correspond to the movements generated by an explicit command sent by the

experimenter (see right plot). The states of the system during a normal trial were: “Rest,” “Preparation,” “Movement Attempt,” and “Movement.” The right and left knee

angles (in a normalized scale) indicate the flexion of the knee joints of the exoskeleton. The right and left knee interaction torques (in a normalized scale) measure the

forces performed by the subjects in the strain gauges located on the knee joint of the robot. The vertical lines indicate the change of state of the system. The red,

green and blue lines correspond to the beginning of the “Preparation,” “Movement Attempt,” and “Movement” phases, respectively.

presented in Table 4 are computed as the ratio between the
number of trials that the BMI correctly decoded and the total
number of trials in which the experimenter did not activate
the exoskeleton manually. The average decoding accuracy of the
successful sessions (i.e., P1 sessions 1 and 2; P2 session 2; and P4
session 2) was 77.61± 14.72%, and their average time was 1.35±
0.71 s.

Notice that the decoding times reported in Tables 3, 4

correspond to the average time that triggering the movement
took with respect to the presentation of the audio cue that
indicated the beginning of the “Movement Attempt” interval.
Given that different types of delays have an influence on this
time (e.g., computational, cognitive, and/or physiological), we
also evaluated the average decoding time with respect to the
negative peak of the MRCPs. These peaks have been observed
to be aligned with the beginning of the muscular activity (Niazi
et al., 2011), and hence, may constitute a better indicator of when
the subjects started the attempt of movement. For the healthy
subjects, the average MRCP negativity appeared 1.02 ± 0.02 s
after the auditory cue (Figure 2, first row). Hence, the average
decoding time was 50ms after the MRCP peak. For the 3 SCI
patients who performed successful BMI sessions (i.e., P1, P2, and
P4), the MRCP negativity appeared on average 1.37± 0.20 s after
the cue. Therefore, the average decoding time for the patients was
20 ms before the occurrence of their MRCP peak.

TABLE 3 | Decoding results of healthy subjects.

Number Number of Decoding Decoding time (s)

ID of trials gait cycles accuracy (% ) mean ± std

H1 60 53 88.33 1.26 ± 0.53

H2 60 58 96.67 0.90 ± 0.60

H3 60 41 68.33 1.09 ± 0.76

Given is the number of trials performed, the number of trials in which the BMI decoded

the intention of motion (resulting in a walking movement), the decoding accuracy (i.e., the

percentage of correctly decoded trials), and the time between the auditive cue and the

exoskeleton movement.

Although the proposed protocol impeded that the exoskeleton
could start moving during “Rest” and “Preparation” time
intervals, we analyzed the offline movement triggers that were
generated by the BMI in those intervals. To that end, we
calculated the number of trials in which, at least, one movement
trigger was generated during non-movement periods. For the
healthy subjects, movement triggers were generated in 52.22 ±

16.69% of the trials during the “Preparation” interval, and in
66.67 ± 13.02% of the trials during the “Rest” interval. For
the successful sessions with the patients, movement triggers
were generated in 40.45 ± 16.98% of the trials during the
“Preparation” interval, and in 63.42 ± 14.15% of the trials
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TABLE 4 | Decoding results of SCI patients.

Session Number Number of Number of Decoding Decoding time (s)

ID number of trials gait cycles manual triggers accuracy (%)* mean ± std

P1
1 25 21 0 84.00 1.08 ± 0.61

2 40 20 4 55.56 1.59 ± 0.76

P2
1 2** 2 0 100.00 2.69 ± 0.01

2 28 24 0 85.71 1.54 ± 0.84

P3
1 16 7 2 50.00 1.68 ± 0.67

2 25 2 14 18.18 0.50 ± 0.52

P4
1 6*** 5 0 83.33 1.59 ± 0.97

2 27 23 0 85.19 1.19 ± 0.51

For each patient and session, given is the number of trials performed, the number of trials in which the BMI decoded the intention of motion (resulting in a walking movement), the

number of manual triggers sent by the experimenter, the decoding accuracy (i.e., the percentage of correctly decoded trials), and the time between the auditive cue and the exoskeleton

movement.

*The decoding accuracy was calculated as the number of decoded trials divided by the number of trials in which the experimenter did not send a manual trigger:

%Acc =
#Gait cycles

#Trials − #Manual triggers × 100.

**This session was prematurely interrupted due to technical problems with the exoskeleton.

***This session was prematurely interrupted due to temporal restrictions of the participant.

during the “Rest” interval. We performed 3 statistical tests to
compare the percentages of trials with correct triggers during
the “Movement Attempt” period (true positives) and with
erroneous triggers generated during “Rest” (false positives during
“Rest”) and “Preparation” (false positives during “Preparation”)
periods. For each measure, a single vector was generated by
concatenating the percentages of the three healthy subjects and
the four successful sessions of the patients, and paired Wilcoxon
signed rank tests were used to measure significant differences.
The number of true positives was significantly higher than the
number of false positives generated during the “Preparation”
interval (p < 0.05), although true positive was not significantly
higher than the number of false positives during the “Rest”
interval (p = 0.08). In addition, the number of false positives
during the “Rest” interval was significantly higher than the ones
generated during the “Preparation” interval (p < 0.05).

3.3. Features
As an automatic feature selection algorithm was used during
the experiments, we performed a post-hoc analysis to evaluate
the selected features for each participant. Figure 4 shows the
features selected by the SDA algorithm for the healthy subjects
and the patients. For the patients, the reported results correspond
to the second BMI session. As can be seen, more frequency
(ERD) than temporal (MRCP) features were consistently selected
in both groups. For the ERD features, pairs in the whole
channel-frequency space were selected for all the subjects.
Central and centroparietal electrodes were more consistently
selected than frontocentral ones. In addition, certain subjects
showed a higher density of features allocated in specific regions
of the channel-frequency map. For instance, for subject H1,
more features were selected in the alpha band (8–12Hz),
whereas for subject H2, there were more in beta band (15–
25 Hz). MRCP features were more scarcely chosen by the

algorithm, although in all of the participants, some of them were
selected.

3.4. Exertion and Satisfaction Assessments
Table 5 shows the values of the Borg scale given by each patient
on each session. At the beginning of the session, all the patients
reported the minimum exertion level. As described above, each
patient performed 3 or 4 screening blocks (each of which lasted
around 3 min), resting between blocks as long as they required.
After these screening blocks, all the patients reported an increase
between 3 and 5 points on their exertion level. Subsequently, they
started the closed-loop blocks, in which they walked a maximum
of 10 m with the exoskeleton. Here, exertion levels slightly
increased for 1 or 2 points in most cases. The only exceptions
were P2 in session 1 (which just performed 2 gait cycles due
to technical problems), who did not report any increase after
screening; and P3 in session 2, who increased 5 points. None of
the values of the Borg scale exceeded 17, which is considered as
the limit value for maximal exertion.

The results of the satisfaction test are presented in Table 6.
The highest score for the QUEST scale was obtained in the
questions about safety and security, and easiness of use (4.25 on
average), whereas the lowest was obtained by the question about
comfortability (2.5 on average).

3.5. Exoskeleton Adaptive Control
An important feature of the system introduced in this paper
was that, since we used an ambulatory exoskeleton, we could
introduce an assist-as-needed control paradigm, whichmay serve
to make the rehabilitation interventions more challenging (Pons
and Torricelli, 2014). Although it was not one of the main goals
of this study, we measured the degree of assistance that the
control strategy provided to healthy subjects and patients. The
gait assistance for the healthy and SCI individuals is provided
based on the adaptive control model presented in Rajasekaran
et al. (2015). The adaptive control applies an efficient stiffness to
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FIGURE 4 | Features selected by the SDA algorithm for each subject. Upper/lower panel corresponds to the features of the healthy subjects/patients. The left

part of each panel shows the ERD features that were selected as channel-frequency pairs. The right part of each panel shows the MRCP features that were selected

as channel-time pairs.

each joint, which is computed based on the interaction torques
and position error of each joint. Hence, the assistance level is
defined based on the variation in the stiffness parameter. For
healthy subjects, the stiffness values for hip, knee, and ankle
were 60 ± 4 Nm/deg, 60 ± 2 Nm/deg, and 60 ± 5Nm/deg,
respectively. For the SCI patients, the stiffness for hip, knee, and
ankle were 80± 2 Nm/deg, 82± 5 Nm/deg, and 80± 5 Nm/deg,
respectively.

4. DISCUSSION

The present study proposed a novel system BMI with an
ambulatory walking exoskeleton. Its feasibility has been shown
with experiments performed by three healthy subjects and four
spinal cord injury (SCI) patients. The BMI decoded the brain
activity related to the intention of movement and sent the
commands to the robotic system. The robot moved for two steps
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(one with the right and one with the left leg), using an assist-as-
needed strategy, which assisted the patients only to the extent
they needed. The degree of assistance was shown to be higher
for the SCI patients, which could not perform the movement
autonomously, compared to the healthy subjects, who did not
have to make a high effort to follow the exoskeleton during its
walkingmovements. This is, to the best of our knowledge, the first
study in which a walking exoskeleton with no weight or balance
support is controlled by incomplete SCI patients with a BMI.
This may serve as a proof-of-concept for future studies in which
a larger sample could allow the assessment of the rehabilitative
effects of this type of BMI-controlled ambulatory exoskeletons.

In spite of the fact that EEG-based BMI technology is still far
from being a practical control system for gait-assistive devices,
its applicability for rehabilitation within clinical environments
may be available in the next few years. In fact, its use has a
great potential for rehabilitation of incomplete SCI patients. In
these patients, there are still some pathways communicating
the brain and the limbs, which can support some degree of

TABLE 5 | Results of the Borg scale.

ID Session Pre session After screening Post session

P1
1 6 11 12

2 6 10 11

P2
1 6 11 11

2 6 9 10

P3
1 6 11 13

2 6 10 15

P4
1 6 10 11

2 6 10 11

For each patient and session, the exertion levels were measured when the patient arrived

(Pre session), after performing the screening blocks (After screening), and at the end of

the session (Post session). The values of this scale range from 6 (“very, very light”) to 20

(“very, very hard”).

functional recovery (Jackson and Zimmermann, 2012). The
persistent causal relationship between the brain activation during
the intention of movement and the stimulation of the limb (e.g.,
with an exoskeleton or electrical stimulation) has demonstrated
its viability to induce Hebbian plasticity in animal studies
(Jackson et al., 2006). Most BMI studies aiming to control
rehabilitative devices are focused on the upper-limb, and they
have demonstrated the possibility of controlling robotic systems
(Gomez-Rodriguez et al., 2011; Ramos-Murguialday et al., 2012,
2013; Bhagat et al., 2016) or functional-electrical stimulation
(FES) (Pfurtscheller et al., 2003; Rohm et al., 2013). For the
lower-limb, there are less examples in the literature of closed-
loop non-invasive brain-controlled systems. The group led by
Dr. Nenadic (University of California, USA) demonstrated the
BMI-based control of weight-suspended robotic (Do et al., 2013)
and FES (King et al., 2015) gait-assistance systems. Furthermore,
two recent studies have used brain signals to control the REX
(REX Bionics Ltd), a robotic system that provides weight and
balance support for patients with a high degree of gait disability
(Kilicarslan et al., 2013; Kwak et al., 2015). The system proposed
in this paper utilized an ambulatory exoskeleton, which does not
rely on any weight support beyond the walker or the parallel bars.
Hence, our approach targets patients with incomplete and lower
lesions, who can walk short distances with the help of crutches
or walkers, and who are the ones with best prognosis for gait
rehabilitation (Nene et al., 1996; Scivoletto et al., 2014).

During the screening blocks, the exoskeleton joints were
blocked, and hence, even the healthy subjects could just perform
the attempt of movement, and not an overt movement. The EEG
correlates of these movement attempts, namely the ERD and the
MRCPs, were used as features to train the BMI decoder for the
closed-loop blocks. The combination of both activation patterns
has been shown to be beneficial to improve the movement
intention decoding (Ibáñez et al., 2014; López-Larraz et al., 2014),
as it may prime the use of features from the signals with higher
degree of activation (e.g., P2 which showed a significant ERD,
but an MRCP with a low amplitude, see Figure 2). In a post-
hoc analysis, we observed that, in general, ERD features were

TABLE 6 | Results of each patient on the modified QUEST scale.

Question P1 P2 P3 P4 Mean

How satisfied are you with:

1. the dimensions (size, height, length width) of the device? 4 2 4 1 2.75

2. the weight of the device? 3 3 5 1 3

3. the ease in adjusting (fixing, fastening) the parts of the device? 2 4 4 2 3

4. how safe and secure the device is? 5 4 5 3 4.25

5. the durability (endurance, resistance to wear) of the device? 3 3 4 4 3.5

6. how easy is it to use the device? 5 3 5 4 4.25

7. how comfortable the device is? 3 2 4 1 2.5

8. how effective the device is to solve the problem for which you are using it? 4 4 4 3 3.75

9. What is your level of satisfaction with the device in general? 5 2 4 3 3.5

Total: 34/45 27/45 39/45 22/45 30.5/45

1, Not satisfied at all; 2, Not very satisfied; 3, More or less satisfied; 4, Quite satisfied; 5, Very satisfied.
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more consistently selected by the automatic feature selection
algorithm thanMRCP features. There is certain controversy with
regard to how these correlates can be affected by motion artifacts
during walking (Castermans et al., 2014; Nathan and Contreras-
Vidal, 2016). In fact, we observed that slow oscillations were
present in some trials during the movements of the exoskeleton,
especially in the patients (see Figure 3, center and right plots).
Anticipating this, we preferred to train the decoder using signals
recorded during the attempt of movement and not during
actual movement. To minimize artifacts in the training data,
we used an automatic artifact rejection method that eliminated
contaminated trials (e.g., by slow movement oscillations or EMG
artifacts). Moreover, we carefully instructed all the participants to
only perform the attempt of movement of their right leg, avoiding
compensatory movements with the rest of the body. However,
the attempt of movement of a paralyzed limb is a complex task,
especially for the paraplegic patients, who had to concentrate
on keeping balance at the same time. Therefore, in the protocol
we proposed, it is not possible to guarantee that they were only
attempting to move the right leg, as they may also be activating
arm or trunk muscles, which normally help them to move their
legs during their normal walking rehabilitation. This means that
the brain activations wemeasured in the patients may include not
only the attempt of movement of the leg but also compensations
of other body parts. Comparison of the brain activation patterns
between the groups of healthy subjects and patients was out of the
scope of this work. Firstly, because the number of participants
was small to perform an accurate neuroimaging study, and
secondly, because the set-up and task performed by each group
were slightly different (i.e., walker and attempt of movement of
a healthy limb for the healthy subjects; parallel bars and attempt
of movement of a paretic limb for the SCI patients). Nonetheless,
in terms of the brain activations, we observed that the subjects
who presented weaker brain activations during the attempt of
movement were the ones with poorer decoding performances: H3
and P3. Three of four patients had long-term injuries, between 11
and 24months. Curiously, these three patients were the ones with
best decoding performances, showing similar values to healthy
subjects, in contrast to P3, who had a 5-months injury but could
not control the BMI correctly.

SCI modifies the brain activity related to movement (Müller-
Putz et al., 2007; Castro et al., 2013; López-Larraz et al.,
2015a). Although there is a large body of literature showing
that movement intention can be decoded from EEG signals on
these patients (Pfurtscheller et al., 2003; López-Larraz et al.,
2012; Rohm et al., 2013; King et al., 2015), among others, this
neuroplastic process may affect the reliability of rehabilitative
and assistive BMI systems to be used by SCI patients. The
heterogeneity of incomplete lesions will probably result in
significant differences in the neural reorganization processes
followed by the patients’ brains (Freund et al., 2013). Hence,
an interesting research pursuit for the next years will be the
characterization of the brain changes following SCI, which
will set the basis to personalize the systems to improve their
applicability.

Regarding the decoding algorithms to detect the movement
intention, extensive research is being conducted toward the

optimization of signal processing and classification techniques
to increase BMI performance (Bashashati et al., 2015; López-
Larraz et al., 2015b). The procedure used in this work has been
previously used to decode movements of the upper-limb with
incomplete tetraplegic patients (López-Larraz et al., 2014), and
the accuracies that we achieved were similar to other recent
studies detecting gait initiation (Jiang et al., 2015; Sburlea et al.,
2015). Five consecutive windows with the classifier indicating
a motor attempt output were required to start the movement.
Although it implied a constant delay of 250 ms with respect
to the first output, this mechanism was used to ensure a
consistent brain activation and not just a spurious change that
may lead to false positive activations There is evidence stating
that short delays are beneficial to facilitate plasticity in the brain
(Mrachacz-Kersting et al., 2012), and recent studies have worked
on developing methodologies to anticipate movements or to
decode them with a short latency (López-Larraz et al., 2014; Xu
et al., 2014; Jiang et al., 2015; Sburlea et al., 2015). However,
these studies require a precise measurement of the time instant
when the movement starts in order to calibrate the BMI. Due
to the typology of the patients recruited for this study, we could
not have a reliable signal to identify the movement onset, even
measuring the muscle activity with electromyography. Therefore,
we considered that the delay induced by our methodology to
detect the movement intention could be acceptable to control the
exoskeleton, as a similar procedure has demonstrated its efficacy
for neurorehabilitation of stroke patients (Ramos-Murguialday
et al., 2013). In a post-hoc analysis, we compared the latency
of the decoder with respect to the MRCP peak negativity, and
observed that the difference was minimal (+50 ms for the healthy
subjects and −20 ms for the patients). MRCP negativity is,
in general, aligned to the onset of muscular activity during
voluntary movements (Niazi et al., 2011). Although it should
not be used as a robust measurement of decoding latency, this
metric allowed us to estimate how this time would be with
respect to the EMG activations. In any case, we consider that
more investigation is required to evaluate how different trade-
offs (e.g., priming temporal precision, or guaranteeing consistent
brain activation) can affect BMI performance and rehabilitative
outcomes.

A cue-guided BMI protocol was proposed so that the
participants always knew in which phase of the trial they
were. Furthermore, the shared control strategy implemented
implied that the exoskeleton movements were only enabled in
specific time periods (i.e., the “Movement Attempt” intervals),
ensuring that no unexpected movements could happen when
the patients were not ready. The BMI analyzed the brain
signals continuously, meaning that the movement triggers were
generated asynchronously at any time during the trial. If
these triggers were generated during the “Movement Attempt”
interval, then the gait cycle gets started, and otherwise, they were
ignored. The offline analysis revealed that movement triggers
were generated in a high percentage of trials during the “Rest”
(i.e., accommodation period, in which subjects could move and
rest) and “Preparation” (i.e., relaxation period preceding the
“Movement Attempt”) intervals. The movement attempts were
correctly decoded in 84.44 ± 14.56% and 77.61 ± 14.72% of
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the trials, for healthy subjects and patients, respectively. These
percentages were significantly higher than the number of trials
with movement triggers generated during “Preparation” interval
(52.22 ± 16.69% and 40.45 ± 16.98%), but not greater than the
trials with triggers generated during “Rest” interval (66.67 ±

13.02% and 63.42± 14.15%). Notice that in this latter period, the
participants sometimes moved to accommodate their position
after the previous trial. These numbers suggest that the use of
shared-control strategies designed to avoid non-desired robot
movements, like the one proposed in this paper, can facilitate
the integration of BMI technology in clinical set-ups (Rohm
et al., 2013). These take special relevance in gait rehabilitation
therapies, in which keeping the balance may cause movements
during rest periods that lead to more false positives.

The proposed approach aims at decoding the intention of
motion to generate a functional movement (i.e., a gait cycle)
with the exoskeleton. The repetitive association between the brain
activation related to the motion intention and the peripheral
feedback may reinforce the corticospinal circuits and promote
Hebbian synaptic plasticity (Jackson and Zimmermann, 2012).
An alternative and interesting approach for future would be
to develop a system that continuously controls the exoskeleton
movements instead of decoding the intention of movement and
triggering a predefined trajectory. This should be the preferred
strategy for assistive devices. Presumably, it may also improve
rehabilitative effects by a more consistent association between
paired firing of neurons, which may accelerate the neuroplastic
changes (Jackson and Zimmermann, 2012). To date, promising
results toward the continuous control of gait rehabilitations
devices with EEG have been shown in preliminary studies
with weight-suspended and self-supported systems (Do et al.,
2013; Kilicarslan et al., 2013; King et al., 2015; Kwak et al.,
2015). However, there are still several issues that need to be
improved before the effective implantation of this technology
in clinical practice, such as signal processing techniques or
artifacts management (Castermans et al., 2014; Nathan and
Contreras-Vidal, 2016). Some of these issues are of especial
relevance when using ambulatory exoskeletons, which require
extra considerations to improve safety, as the control strategy
implemented to deal with possible false positives. Furthermore,
the rehabilitative effects of each type of intervention still have
to be quantified with clinical studies. For now, the development
and improvement of novel interventions, like the one proposed
here, aim at increasing the number of possible interventions to
rehabilitate gait. Eventually, the clinicians will be in charge of
evaluating the risks and benefits to recommend the most suitable
interventions for each specific patient (e.g., BMI continuous
control of prosthesis, or BMI-triggered predefined movements,
as the one proposed in this study).

The main goals of this study were to test the BMI-exoskeleton
system and to propose a methodology that may be followed
in future studies combining BMI and ambulatory exoskeletons.
Therefore, the design of the protocol was a key point to be able
to validate the technology and the set-up with the patients. We
observed that a familiarization session with the exoskeleton was
necessary before the BMI session to allow the participants to
get used to the dynamics of the system. While for the healthy
subjects, a 5–10 min familiarization was enough, the patients

required a specific session due to their poor balance and walking
capabilities. Several issues have to be tailored for each patient
depending on his/her capabilities, like the cadence or the distance
between joints. Rehabilitative devices such as the one used in this
study have to prioritize patient’s safety. The recruited patients
were capable of standing and ambulating without the aid of a
harness, which required a complex set-up and additional safety
measures to avoid falls. In this respect, the experimenter played
an important role by controlling the system, which functioned
as a “dead-man’s” switch. This means that at the beginning of
every trial, the experimenter had to make sure that the patient’s
legs and feet position were appropriate and ask him/her if he/she
was ready for another step. This methodology tried to imitate
the procedure followed by physiotherapists for patients in the
early stages of gait rehabilitation with rigid leg orthoses. In
addition, the experimenter had to monitor the EEG signals and
the BMI output in order to verify that everything was correct
and guide the patients when they lost concentration or generated
artifacts by excessive movements. The use of BMI technology
to provide the therapist with objective information about the
patient’s performance has been stated to be very important for
the implantation of this type of systems in clinical environments
(Mattia et al., 2013; Asín Prieto et al., 2014). We consider that
the good results achieved in this study were, in part, due to the
therapist–patient interaction that was augmented—thanks to the
designed therapist interface.

The fatigue level of the patients was also continuously
monitored, and they could ask for a pause whenever they wanted
to relax for some minutes. This is, probably, the reason of the
relatively low levels of exertion shown by the patients when asked
at the end of the session. In terms of usability and satisfaction,
the patients were not so positive as we had expected, but they
provided very useful information that encourages the authors to
continue working to improve the wearability and comfort of the
system. Based on the high scores of the questions about safety
and security, we believe that the security measures implemented
in this study succeeded and they could be applied for future
studies. In general, two of the patients (P1 and P3) were rather
satisfied with the system, whereas the other two (P2 and P4)
reported that several issues could be improved, especially those
related with comfort and wearability of both the exoskeleton and
the EEG system. Nonetheless, all of them appraised the potential
of the combination of both technologies. Patients found the use
of the conductive gel for the EEG recording as one of the main
inconveniences, which is in line with other works (Rupp, 2014).
We believe that the potentiality of dry electrodes will have to
be explored for future prototypes to be used with patients in
clinical practice. Another important limitation of the system is
the difficulty to wear the exoskeleton, as at least two people had
to assist the process. This is an important factor to improve for
future designs of exoskeletons with clinical applicability. Ideally,
the patients should be able to wear the exoskeleton by themselves.
All of them reported their willingness to keep participating
in rehabilitation interventions with this technology, which is a
promising sign for the future of BMI-based gait rehabilitation.

It is important to mention that due to the nature of the
study and the typology of patients recruited, the number of trials
recorded with these patients was small. Nonetheless, the BMI
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performances are in line with similar works performed for the
upper- and lower-limbs. The main contribution of this work is to
validate the feasibility of a BMI system and protocol to control
an ambulatory exoskeleton for gait rehabilitation without weight
or balance support. However, this preliminary study does not
allow yet to draw conclusions about the rehabilitative potential of
this technology. Further experiments with a larger population of
patients and with a larger number of sessions will be required to
evaluate if the therapeutic potential of BMI for gait rehabilitation
approaches the traditional therapies. New challenges appear
when it comes to pursuing clinical trials integrating this kind
of novel technologies with patients. Adapting the systems for
different pathologies and personalization of the technology
will be of paramount importance for the use of BMI systems
in clinical practice (Rupp, 2014). In addition, standardizing
metrics to evaluate system performances and clinical outcomes
will facilitate the validation of BMIs for their implantation in
rehabilitative centers (Venkatakrishnan et al., 2014).

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: EL, FT, VR, AD, JA,
LM. Performed the experiments: EL, FT, VR, SP. Analyzed the
data: EL, FT. Drafted the manuscript: EL, FT, VR. Revised the
manuscript: EL, FT, VR, SP, AD, JA, JM, AG, LM.

ACKNOWLEDGMENTS

This research has been partially supported by SpanishMinistry of
Science project HYPER-CSD2009-00067, and DGA-FSE, grupo
T04.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2016.00359

REFERENCES

Alam, M., Chen, X., Zhang, Z., Li, Y., and He, J. (2014). A brain-machine-muscle

interface for restoring hindlimb locomotion after complete spinal transection

in rats. PLoS ONE 9:e103764. doi: 10.1371/journal.pone.0103764

Asín Prieto, G., Cano-de-la cuerda, R., López-Larraz, E., Metrot, J., Molinari,

M., and van Dokkum, L. E. H. (2014). “Emerging perspectives in stroke

rehabilitation,” in Emerging Therapies in Neurorehabilitation, eds J. L. Pons and

D. Torricelli (Berlin; Heidelberg: Springer), 3–21.

Bashashati, H., Ward, R. K., Birch, G. E., and Bashashati, A. (2015). Comparing

different classifiers in sensory motor brain computer interfaces. PLoS ONE

10:e0129435. doi: 10.1371/journal.pone.0129435

Bhagat, N. A., Venkatakrishnan, A., Abibullaev, B., Artz, E. J., Yozbatiran, N.,

Blank, A. A., et al. (2016). Design and optimization of an EEG-based brain

machine interface (BMI) to an upper-limb exoskeleton for stroke survivors.

Front. Neurosci. 10:122. doi: 10.3389/fnins.2016.00122

Bohannon, R. W., and Smith, M. B. (1987). Interrater reliability of a modified

Ashworth scale of muscle spasticity. Phys. Therapy 67, 206–207.

Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scand. J.

Rehabil. Med. 2, 92–98.

Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons,

J. L., et al. (2015). The H2 robotic exoskeleton for gait rehabilitation after

stroke: early findings from a clinical study. J. Neuroeng. Rehabil. 12:54. doi:

10.1186/s12984-015-0048-y

Cai, L. L., Fong, A. J., Otoshi, C. K., Liang, Y., Burdick, J. W., Roy, R. R., et al.

(2006). Implications of assist-as-needed robotic step training after a complete

spinal cord injury on intrinsic strategies of motor learning. J. Neurosci. 26,

10564–10568. doi: 10.1523/JNEUROSCI.2266-06.2006

Castermans, T., Duvinage, M., Cheron, G., and Dutoit, T. (2014). About

the cortical origin of the low-delta and high-gamma rhythms observed in

EEG signals during treadmill walking. Neurosci. Lett. 561, 166–170. doi:

10.1016/j.neulet.2013.12.059

Castro, A., Díaz, F., and Sumich, A. (2013). Long-term neuroplasticity in spinal

cord injury patients: a study on movement-related brain potentials. Int. J.

Psychophysiol. 87, 205–214. doi: 10.1016/j.ijpsycho.2013.01.012

Clemmensen, L., Hastie, T., Witten, D., and Ersbøll, B. (2011). Sparse discriminant

analysis. Technometrics 53, 406–413. doi: 10.1198/TECH.2011.08118

Demers, L., Monette, M., Lapierre, Y., Arnold, D. L., and Wolfson, C. (2002).

Reliability, validity, and applicability of the Quebec User Evaluation of

Satisfaction with assistive Technology (QUEST 2.0) for adults with multiple

sclerosis. Disabil. Rehabil. 24, 21–30. doi: 10.1080/09638280110066352

Ditunno, P. L., and Ditunno, J. F. (2001). Walking index for spinal cord injury

(WISCI II): scale revision. Spinal Cord 39, 654–656. doi: 10.1038/sj.sc.3101223

Ditunno, P. L., Patrick, M., Stineman, M., and Ditunno, J. F. (2008). Who wants

to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional

study. Spinal Cord 46, 500–506. doi: 10.1038/sj.sc.3102172

Do, A. H., Wang, P. T., King, C. E., Chun, S. N., and Nenadic, Z. (2013).

Brain-computer interface controlled robotic gait orthosis. J. Neuroeng. Rehabil.

10:111. doi: 10.1186/1743-0003-10-111

Fitzsimmons, N., Lebedev, M., Peikon, I., and Nicolelis, M. A. (2009). Extracting

kinematic parameters for monkey bipedal walking from cortical neuronal

ensemble activity. Front. Integr. Neurosci. 3:3. doi: 10.3389/neuro.07.003.2009

Freund, P., Weiskopf, N., Ashburner, J., Wolf, K., Sutter, R., Altmann, D. R., et al.

(2013). MRI investigation of the sensorimotor cortex and the corticospinal tract

after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol.

12, 873–881. doi: 10.1016/S1474-4422(13)70146-7

Gomez-Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A.,

and Grosse-Wentrup, M. (2011). Closing the sensorimotor loop: haptic

feedback facilitates decoding of motor imagery. J. Neural Eng. 8:036005. doi:

10.1088/1741-2560/8/3/036005

Graimann, B., and Pfurtscheller, G. (2006). Quantification and visualization

of event-related changes in oscillatory brain activity in the time-frequency

domain. Prog. Brain Res. 159, 79–97. doi: 10.1016/S0079-6123(06)59006-5

Ibáñez, J., Serrano, J. I., del Castillo, M. D., Monge-Pereira, E., Molina-

Rueda, F., Alguacil-Diego, I., et al. (2014). Detection of the onset of

upper-limb movements based on the combined analysis of changes in the

sensorimotor rhythms and slow cortical potentials. J. Neural Eng. 11:056009.

doi: 10.1088/1741-2560/11/5/056009

Jackson, A., Mavoori, J., and Fetz, E. E. (2006). Long-term motor cortex

plasticity induced by an electronic neural implant. Nature 444, 56–60. doi:

10.1038/nature05226

Jackson, A., and Zimmermann, J. B. (2012). Neural interfaces for the brain

and spinal cordrestoring motor function. Nat. Rev. Neurol. 8, 690–699. doi:

10.1038/nrneurol.2012.219

Jiang, N., Gizzi, L., Mrachacz-Kersting, N., Dremstrup, K., and Farina, D. (2015).

A brain-computer interface for single-trial detection of gait initiation from

movement related cortical potentials. Clin. Neurophysiol. 126, 154–159. doi:

10.1016/j.clinph.2014.05.003

Kilicarslan, A., Prasad, S., Grossman, R. G., and Contreras-Vidal, J. L. (2013).

“High accuracy decoding of user intentions using EEG to control a lower-body

exoskeleton,” in 35th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC) (Osaka), 5606–5609.

King, C. E., Wang, P. T., McCrimmon, C. M., Chou, C. C., Do, A. H., and Nenadic,

Z. (2015). The feasibility of a brain-computer interface functional electrical

stimulation system for the restoration of overground walking after paraplegia.

J. Neuroeng. Rehabil. 12:80. doi: 10.1186/s12984-015-0068-7

Frontiers in Neuroscience | www.frontiersin.org August 2016 | Volume 10 | Article 359 | 238

http://journal.frontiersin.org/article/10.3389/fnins.2016.00359
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


López-Larraz et al. Control of an Ambulatory Exoskeleton for Paraplegics with a BMI

Kwak, N.-S., Müller, K.-R., and Lee, S.-W. (2015). A lower limb exoskeleton control

system based on steady state visual evoked potentials. J. Neural Eng. 12:056009.

doi: 10.1088/1741-2560/12/5/056009

Lebedev, M. A., and Nicolelis, M. A. L. (2006). Brain-machine interfaces:

past, present and future. Trends Neurosci. 29, 536–546. doi:

10.1016/j.tins.2006.07.004

López-Larraz, E., Antelis, J. M., Montesano, L., Gil-Agudo, A., and Minguez, J.

(2012). “Continuous decoding of motor attempt and motor imagery from EEG

activity in spinal cord injury patients,” in 34th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC) (San Diego,

CA), 1798–1801. doi: 10.1109/EMBC.2012.6346299

López-Larraz, E., Montesano, L., Gil-Agudo, Á., and Minguez, J. (2014).

Continuous decoding of movement intention of upper limb self-initiated

analytic movements from pre-movement EEG correlates. J. Neuroeng. Rehabil.

11:153. doi: 10.1186/1743-0003-11-153

López-Larraz, E., Montesano, L., Gil-Agudo, Á., Minguez, J., and Oliviero,

A. (2015a). Evolution of EEG motor rhythms after spinal cord injury: a

longitudinal study. PLoS ONE 10:e0131759. doi: 10.1371/journal.pone.0131759

López-Larraz, E., Trincado-Alonso, F., and Montesano, L. (2015b). “Brain-

machine interfaces for motor rehabilitation: is recalibration important?,” in

14th International Conference on Rehabilitation Robotics (ICORR) (Singapore),

223–228. doi: 10.1109/ICORR.2015.7281203

Maeder, C. L., Sannelli, C., Haufe, S., and Blankertz, B. (2012). Pre-stimulus

sensorimotor rhythms influence brain-computer interface classification

performance. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 653–662. doi:

10.1109/TNSRE.2012.2205707

Marino, R. J., Barros, T., Biering-Sorensen, F., Burns, S. P., Donovan, W. H.,

Graves, D. E., et al. (2003). International standards for neurological

classification of spinal cord injury. J. Spinal Cord Med. 26(Suppl 1),

S50–S56.

Mattia, D., Pichiorri, F., Molinari, M., and Rupp, R. (2013). “Brain computer

interface for hand motor function restoration and rehabilitation,” in Towards

Practical Brain-Computer Interfaces, eds B. Z. Allison, S. Dunne, R. Leeb, J. D.

R. Millán, and A. Nijholt (Berlin; Heidelberg: Springer), 131–153.

Millán, J. D. R., Rupp, R., Müller-Putz, G. R., Murray-Smith, R., Giugliemma,

C., Tangermann, M., et al. (2010). Combining brain-computer interfaces and

assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161.

doi: 10.3389/fnins.2010.00161

Mrachacz-Kersting, N., Kristensen, S. R., Niazi, I. K., and Farina, D. (2012).

Precise temporal association between cortical potentials evoked by motor

imagination and afference induces cortical plasticity. J. Physiol. 590, 1669–1682.

doi: 10.1113/jphysiol.2011.222851

Müller-Putz, G. R., Zimmermann, D., Graimann, B., Nestinger, K., Korisek, G.,

and Pfurtscheller, G. (2007). Event-related beta EEG-changes during passive

and attempted foot movements in paraplegic patients. Brain Res. 1137, 84–91.

doi: 10.1016/j.brainres.2006.12.052

Nathan, K., and Contreras-Vidal, J. L. (2016). Negligible motion artifacts in

scalp electroencephalography (EEG) during treadmill walking. Front. Hum.

Neurosci. 9:708. doi: 10.3389/fnhum.2015.00708

Nene, A. V., Hermens, H. J., and Zilvold, G. (1996). Paraplegic locomotion: a

review. Spinal Cord 34, 507–524. doi: 10.1038/sc.1996.94

Niazi, I. K., Jiang, N., Tiberghien, O., Nielsen, J. F., Dremstrup, K., and Farina, D.

(2011). Detection of movement intention from single-trial movement-related

cortical potentials. J. Neural Eng. 8:066009. doi: 10.1088/1741-2560/8/6/066009

Nolan, H., Whelan, R., and Reilly, R. B. (2010). FASTER: fully automated statistical

thresholding for EEG artifact rejection. J. Neurosci. Methods 192, 152–162. doi:

10.1016/j.jneumeth.2010.07.015

Pfurtscheller, G., Leeb, R., Keinrath, C., Friedman, D., Neuper, C., Guger,

C., et al. (2006). Walking from thought. Brain Res. 1071, 145–152. doi:

10.1016/j.brainres.2005.11.083

Pfurtscheller, G., and Lopes da Silva, F. H. (1999). Event-related EEG/MEG

synchronization and desynchronization: basic principles. Clin. Neurophysiol.

110, 1842–1857. doi: 10.1016/S1388-2457(99)00141-8

Pfurtscheller, G., Müller, G. R., Pfurtscheller, J., Gerner, H. J., and Rupp, R. (2003).

‘Thought’ - Control of functional electrical stimulation to restore hand grasp

in a patient with tetraplegia. Neurosci. Lett. 351, 33–36. doi: 10.1016/S0304-

3940(03)00947-9

Pichiorri, F., Cincotti, F., Fallani, F. D. V., Pisotta, I., and Morone, G. (2011).

“Towards a brain computer interface-based rehabilitation : from bench to

bedside,” in Proceedings of the 5th International Brain-Computer Interface

Conference (Graz), 268–271.

Pons, J. L., and Torricelli, D. (eds.). (2014). Emerging Therapies in

Neurorehabilitation, 1st Edn. Berlin; Heidelberg: Springer-Verlag.

Rajasekaran, V., Aranda, J., and Casals, A. (2015). “Adaptive walking assistance

based on human- orthosis interaction,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Hamburg), 6190–6195. doi:

10.1109/IROS.2015.7354260

Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, O., Brasil, F. L., et al.

(2013). Brain-machine interface in chronic stroke rehabilitation: a controlled

study. Ann. Neurol. 74, 100–108. doi: 10.1002/ana.23879

Ramos-Murguialday, A., Schürholz, M., Caggiano, V., Wildgruber, M., Caria,

A., Hammer, E. M., et al. (2012). Proprioceptive feedback and brain

computer interface (BCI) based neuroprostheses. PLoS ONE 7:e47048. doi:

10.1371/journal.pone.0047048

Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G. R.,

et al. (2013). Hybrid brain-computer interfaces and hybrid neuroprostheses

for restoration of upper limb functions in individuals with high-level spinal

cord injury. Artif. Intell. Med. 59, 133–142. doi: 10.1016/j.artmed.2013.

07.004

Rupp, R. (2014). Challenges in clinical applications of brain computer

interfaces in individuals with spinal cord injury. Front. Neuroeng. 7:38. doi:

10.3389/fneng.2014.00038

Sburlea, A. I., Montesano, L., and Minguez, J. (2015). Continuous detection of

the self-initiated walking pre-movement state from EEG correlates without

session-to-session recalibration. J. Neural Eng. 12:036007. doi: 10.1088/1741-

2560/12/3/036007

Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., and Molinari, M.

(2014). Who is going to walk? A review of the factors influencing

walking recovery after spinal cord injury. Front. Hum. Neurosci. 8:141. doi:

10.3389/fnhum.2014.00141

Shibasaki, H., and Hallett, M. (2006). What is the Bereitschaftspotential? Clin.

Neurophysiol. 117, 2341–2356. doi: 10.1016/j.clinph.2006.04.025

van Hedel, H. J., Wirz, M., and Dietz, V. (2005). Assessing walking ability in

subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch.

Phys. Med. Rehabil. 86, 190–196. doi: 10.1016/j.apmr.2004.02.010

Velu, P. D., and de Sa, V. R. (2013). Single-trial classification of gait and

point movement preparation from human EEG. Front. Neurosci. 7:84. doi:

10.3389/fnins.2013.00084

Venkatakrishnan, A., Francisco, G. E., and Contreras-Vidal, J. L. (2014).

Applications of brain-machine interface systems in stroke recovery and

rehabilitation. Curr. Phys. Med. Rehabil. Rep. 2, 93–105. doi: 10.1007/s40141-

014-0051-4

Wirz, M., Zemon, D. H., Rupp, R., Scheel, A., Colombo, G., Dietz, V., et al.

(2005). Effectiveness of automated locomotor training in patients with chronic

incomplete spinal cord injury: a multicenter trial. Arch. Phys. Med. Rehabil. 86,

672–680. doi: 10.1016/j.apmr.2004.08.004

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,

T. M. (2002). Brain-computer interfaces for communication and control. Clin.

Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Wyndaele, M., andWyndaele, J. J. (2006). Incidence, prevalence and epidemiology

of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44,

523–529. doi: 10.1038/sj.sc.3101893

Xu, R., Jiang, N., Lin, C., Mrachacz-kersting, N., Dremstrup, K., and Farina,

D. (2014). Enhanced low-latency detection of motor intention from EEG for

closed-loop brain-computer interface applications. IEEE Trans. Biomed. Eng.

61, 288–296. doi: 10.1109/TBME.2013.2294203

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 López-Larraz, Trincado-Alonso, Rajasekaran, Pérez-Nombela,

del-Ama, Aranda, Minguez, Gil-Agudo and Montesano. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org August 2016 | Volume 10 | Article 359 | 239

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


ORIGINAL RESEARCH
published: 16 September 2016
doi: 10.3389/fnins.2016.00425

Frontiers in Neuroscience | www.frontiersin.org September 2016 | Volume 10 | Article 425 |

Edited by:

Paolo Massobrio,

University of Genoa, Italy

Reviewed by:

Erika G. Spaich,

Aalborg University, Denmark

Marco Knaflitz,

Polytechnic University of Turin, Italy

*Correspondence:

Simona Ferrante

simona.ferrante@polimi.it

†
Co-first authors.

Specialty section:

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

Received: 07 March 2016

Accepted: 30 August 2016

Published: 16 September 2016

Citation:

Ferrante S, Chia Bejarano N,

Ambrosini E, Nardone A, Turcato AM,

Monticone M, Ferrigno G and

Pedrocchi A (2016) A Personalized

Multi-Channel FES Controller Based

on Muscle Synergies to Support Gait

Rehabilitation after Stroke.

Front. Neurosci. 10:425.

doi: 10.3389/fnins.2016.00425

A Personalized Multi-Channel FES
Controller Based on Muscle
Synergies to Support Gait
Rehabilitation after Stroke
Simona Ferrante 1*†, Noelia Chia Bejarano 1 †, Emilia Ambrosini 1, 2, Antonio Nardone 3, 4,

Anna M. Turcato 3, 4, Marco Monticone 2, 5, Giancarlo Ferrigno 1 and Alessandra Pedrocchi 1

1Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico

di Milano, Milan, Italy, 2 Physical Medicine and Rehabilitation Unit, Scientific Institute of Lissone, Fondazione Salvatore

Maugeri (IRCCS), Lissone, Monza Brianza, Italy, 3 Posture and Movement Laboratory, Division of Physical Medicine and

Rehabilitation, Scientific Institute of Veruno, Fondazione Salvatore Maugeri (IRCCS), Veruno, Novara, Italy, 4Department of

Translational Medicine, University of Eastern Piedmont, Novara, Italy, 5Department of Public Health, Clinical and Molecular

Medicine, University of Cagliari, Cagliari, Italy

It has been largely suggested in neuroscience literature that to generate a vast

variety of movements, the Central Nervous System (CNS) recruits a reduced set

of coordinated patterns of muscle activities, defined as muscle synergies. Recent

neurophysiological studies have recommended the analysis of muscle synergies to

finely assess the patient’s impairment, to design personalized interventions based

on the specific nature of the impairment, and to evaluate the treatment outcomes.

In this scope, the aim of this study was to design a personalized multi-channel

functional electrical stimulation (FES) controller for gait training, integrating three novel

aspects: (1) the FES strategy was based on healthy muscle synergies in order to

mimic the neural solutions adopted by the CNS to generate locomotion; (2) the

FES strategy was personalized according to an initial locomotion assessment of

the patient and was designed to specifically activate the impaired biomechanical

functions; (3) the FES strategy was mapped accurately on the altered gait kinematics

providing a maximal synchronization between patient’s volitional gait and stimulation

patterns. The novel intervention was tested on two chronic stroke patients. They

underwent a 4-week intervention consisting of 30-min sessions of FES-supported

treadmill walking three times per week. The two patients were characterized by a

mild gait disability (walking speed > 0.8m/s) at baseline. However, before treatment

both patients presented only three independent muscle synergies during locomotion,

resembling two different gait abnormalities. After treatment, the number of extracted

synergies became four and they increased their resemblance with the physiological

muscle synergies, which indicated a general improvement in muscle coordination. The

originally merged synergies seemed to regain their distinct role in locomotion control.

The treatment benefits were more evident for one patient, who achieved a clinically

important change in dynamic balance (Mini-Best Test increased from 17 to 22) coupled

with a very positive perceived treatment effect (GRC = 4). The treatment had started
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the neuro-motor relearning process also on the second subject, but twelve sessions were

not enough to achieve clinically relevant improvements. This attempt to apply the novel

theories of neuroscience research in stroke rehabilitation has provided promising results,

and deserves to be further investigated in a larger clinical study.

Keywords: functional electrical stimulation, stroke rehabilitation, locomotion, treadmill, muscle synergies

INTRODUCTION

The rehabilitation of neurological patients strongly benefits of
task-oriented, immersive, repetitive exercises when the patient
experiences an enriched, augmented sensorial feedback. Indeed,
such interventions stimulate the activity-dependent plasticity
of the Central Nervous System (CNS) thus facilitating motor
relearning (Ting et al., 2015). Activity-dependent plasticity is
further enhanced when Functional Electrical Stimulation (FES)
is synchronized with task-oriented volitional exercises (Sheffler
and Chae, 2007; Chae et al., 2008; Gandolla et al., 2014, 2016;
Kafri and Laufer, 2015), such as cycling (Ferrante et al., 2008;
Ambrosini et al., 2011, 2012) and walking (Kesar et al., 2009;
Embrey et al., 2010; Sabut et al., 2010, 2011; Daly et al., 2011; Kim
et al., 2012). Indeed, the increased afferent feedback provided by
FES modulates motor cortex function and excitability to facilitate
recovery (Ridding et al., 2000; Gandolla et al., 2014, 2016).

The first FES-based gait systems were designed for the
treatment of foot drop, combining single-channel stimulation
of the peroneal nerve with a pressure sensor to detect the
initial contact of the foot with the ground (Melo et al., 2015).
Since then, multi-channel FES strategies have been proposed
and tested in stroke patients (Kesar et al., 2009; Ambrosini
et al., 2010; Embrey et al., 2010; Sabut et al., 2010, 2011; Daly
et al., 2011; Kim et al., 2012). However, in all FES-based gait
systems, only the two main gait phases (i.e., the stance and swing
phase) were detected and used to trigger the stimulation of the
different muscles involved in the movement. The stimulation
waveforms were mainly trapezoidal (Melo et al., 2015). These
waveforms use a ramp up of stimulation amplitude at a constant
pulse width to avoid sudden and jerky muscle responses both
in the agonist and antagonist muscles, and a ramp down
to avoid a sudden and unpleasant slap of the foot on the
ground. Biomimetic stimulation controllers, which modulate the
stimulation amplitude based on physiological EMG activations,
were proposed for a single-channel drop-foot stimulator and
were tested on a single patient, resulting to be more efficient than
trapezoidal profiles (O’Keeffe et al., 2003). Biomimetic multi-
channel FES systems have shown promising therapeutic benefits
when applied in stroke patients during cycling (Ferrante et al.,
2008; Ambrosini et al., 2011, 2012). However, to the authors’
knowledge, a biomimetic multi-channel FES system has not yet
been proposed and tested during gait.

To design a biomimetic FES controller, it is essential to mimic
the neural solutions adopted by the CNS to generate movements.
It has been largely suggested in neuroscience literature that in
order to generate a vast variety of movements, the CNS recruits a
reduced set of coordinated patterns of muscle activities, defined
as muscle synergies or motor modules (d’Avella et al., 2003;

d’Avella and Bizzi, 2005). Further, a study on spinalized rats
has provided experimental evidence that the CNS simplifies the
complexity and high dimensionality of neural commands and
mechanical outputs by means of a modular organization at the
neuromuscular level (Mussa-Ivaldi and Bizzi, 2000).

The concept of muscle synergy has been formalized with
a mathematical model based on factorization algorithms that
decompose the EMG signals into the product of two components.
The weighting component reveals the muscle composition of
each synergy and the relative level of activation of each muscle,
whereas the temporal component reflects the activation timing
of each synergy throughout the execution of the movement. Each
muscle synergy contributes to the mechanical output needed
to generate task-specific biomechanical functions, also called
biomechanical correlates (Lacquaniti et al., 2012). Many studies
on physiological gait have agreed in the definition of four
synergies as responsible of the main biomechanical correlates on
healthy subjects (Clark et al., 2010; Barroso et al., 2014; Routson
et al., 2014):

Synergy 1 (weight acceptance): activation of the hip and
knee extensors during early stance that is associated with weight
acceptance;

Synergy 2 (push off): activation of the ankle plantar-flexors in
late stance that is associated with forward propulsion;

Synergy 3 (foot clearance): activation of the rectus femoris
and the tibialis anterior during early stance and early swing,
which provides foot dorsi-flexion immediately after heel strike
and ground clearance of the foot, respectively;

Synergy 4 (leg deceleration): activation of the hamstrings
during late swing and early stance to decelerate the leg and propel
the body.

An additional synergy can be found when the trunk muscles
are also recorded (Ivanenko et al., 2005). Simulation studies have
confirmed the validity of the biomechanical correlates of the
muscle synergies (Neptune et al., 2009; Allen andNeptune, 2012).

Muscle synergies have been shown to be “fixed” because
they are consistent across different subjects despite variability
and noise in the neuro-musculo-skeletal system, but also
“flexible” so that they can adapt to slight changes in the
environment or be affected by pathologies and then modulated
with rehabilitation training (Santello and Lang, 2014). For
instance, during locomotion post-stroke individuals exhibit a
reduced number of synergies in their paretic side due to the
merging of motor modules that imply a non-functional muscle
co-contraction reflecting walking dysfunctions (Bowden et al.,
2010; Clark et al., 2010; Ting et al., 2015). It is likely that this
reduction is caused by a lack of independence of the corticospinal
drive to the spinal cord, which ultimately causes a poor muscle
control.
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Muscle-synergy analysis is currently considered a useful
methodology to assess sensorimotor individual deficits
(Safavynia et al., 2011). Further, it could be a potential
ground upon which novel therapies aimed at enhancing motor
relearning could be designed (Ting et al., 2015). In this scope, a
FES training based on healthy muscle synergies has been recently
proposed for a balance control task. However, the experimental
apparatus was rather complex, discouraging its translation to the
clinical practice (Galeano et al., 2014).

Our study merges the potentialities of FES-based gait
treatments with the strength of muscle-synergy training
approach. Indeed, this study was aimed at designing a
personalized, biomimetic, multi-channel stimulation controller
to support gait rehabilitation after stroke, integrating the
following novel aspects:

1) the FES strategy is based on the physiological muscle synergies
obtained during overground locomotion.

2) the FES strategy is personalized according to an initial
locomotion assessment of the patient, and is used to properly
activate impaired biomechanical correlates.

3) the FES strategy is mapped accurately on the altered gait
kinematics taking advantage of a segmentation algorithm able
to discriminate in real time between 6 gait phases (Chia
Bejarano et al., 2015b), allowing a maximal synchronization
between the subject’s volitional gait and the stimulation
patterns.

Preliminary results obtained from two chronic stroke patients
with the proposed FES gait controller will be presented in order
to show the potentiality of this novel intervention.

MATERIALS AND METHODS

The Stimulation Controller Architecture
The FES-controller architecture includes the subject that can
walk overground or on a treadmill, a PC running Linux RTAI,
which hosts the whole control system, and a current-controlled
stimulator (Rehastim R©, Hasomed GmbH) delivering biphasic
pulses to surface electrodes (Pals R©, Axelgaard Manufacturing
Co., Ltd.) placed on up to 8 muscles of the paretic leg. The
subjects wear two inertial sensors (Mtx R©, Xsens Technology),
on both shanks, which provide a real-time kinematic measure
used to accurately synchronize the stimulation to the gait cycle.
The control system comprises a graphical user interface (GUI)
implemented in QtTMsoftware and two real-time applications.
The GUI allows the therapist to customize the treatment on
the single patient, to start, pause, and stop the treatment, to
save data, and to access the stored data. The first real-time
application of the control system is the gait segmentation block
(see Figure 1), which receives the signals from the inertial sensors
and estimates the Initial Contact (IC), the End Contact (EC), and
the Mid-Swing (MS) gait events for each leg. This algorithm was
adapted from Chia Bejarano et al. (2015b), in order to be used
robustly also in a magnetically disturbed environment, and was
validated on healthy subjects using the force-sensitive resistors
as a gold standard (Chia Bejarano et al., 2015a). The algorithm
demonstrated an excellent accuracy in detecting the IC and EC
events (F1-score of 0.98 for the IC and 0.96 for the EC), and

allows the detection of the following 6 gait phases: paretic double
support, non-paretic initial swing, non-paretic terminal swing,
non-paretic double support, paretic initial swing, paretic terminal
swing (Figure 1).

The second real-time application is themulti-channel synergy-
based stimulation controller that is personalized on each patient
following the steps reported in Figure 2 and detailed below.

Healthy Muscle Synergies
The starting point of the stimulation controller is the definition of
a set of representative healthy muscle synergies. Thirteen healthy
subjects (7 men and 6 women; age: 24.8 ± 1.3 years; height:
1.73 ± 0.11m, weight: 60.8 ± 11.4 kg) volunteered to participate
in this study. They were asked to walk overground and on a
treadmill at their self-selected speed. The EMG was measured
on the following muscles of the dominant leg: gluteus maximus
(GM), rectus femoris (RF), vastus medialis (VM), hamstring
medialis (HM), hamstring lateralis (HL), gastrocnemius medialis
(MG), and tibialis anterior (TA). Kinematics data were acquired
at 50 Hz by means of 2 inertial and magnetic sensors (MTx,
Xsens) worn on both shanks (Chia Bejarano et al., 2015b).

The EMG signals were acquired at 1024Hz, band-pass
filtered (3rd-order Butterworth filter, cut-off frequencies of
40 and 400Hz), rectified, and low-pass filtered (3rd-order
Butterworth filter, cut-off frequency of 5Hz) to obtain the
EMG envelopes. Afterwards, the envelopes were segmented into
single strides using the first contacts of the ipsilateral foot with
the pavement (IC events). Then, each stride was normalized
in time by interpolating the signals into 100 points, and in
amplitude by dividing the EMG signals of each muscle by
the median maximum value obtained across strides for each
walking condition (treadmill and overground). After removing
the initial acceleration and the final deceleration phases from
each acquisition, 20 representative strides for each subject and
condition were extracted as suggested by Oliveira et al. (2014).
The non-negative matrix factorization (NMF) algorithm was
applied separately to the 20 envelopes obtained for each subject
and walking condition, in order to extract their muscle synergies
(Lee and Seung, 1999). The quality of the factorization was
measured by computing the variability accounted for (VAF) and
the number of muscle synergies was chosen as the smallest
number that allowed the reconstruction with a total VAF higher
than 90%, or that did not improve the single-muscle VAF more
than 5% when adding a new synergy (Clark et al., 2010). The
individual muscle synergies of each walking condition were
extracted using the most representative number of synergies
obtained according to the chosen VAF criterion. Then, the
weights of each individual muscle synergy were normalized to
have a unitary norm, applying the corresponding transformation
to their respective activations profiles, to maintain constant their
product. For each walking condition, the average set of muscle
synergies across subjects was calculated. To compare the healthy
muscle synergies obtained during overground and treadmill
walking, the mean and standard deviation of the following
metrics were computed: (1) the similarity, i.e., the normalized
scalar product between the weights (W) extracted in the two
walking conditions; (2) the circular cross correlation between the
activation profiles (H) extracted in the two conditions; (3) the
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FIGURE 1 | The stimulation controller architecture. In the control system block, real-time signals and non-real-time signals are indicated with solid and dashed

arrows respectively. GUI, graphical user interface; freq, frequency; PW, pulse width; A, amplitude.

FIGURE 2 | The methodology used to define the personalized biomimetic stimulation strategy. NNR, Non-Negative Matrix Reconstruction.
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lag in percentage of gait cycle in which the maximal circular
cross correlation was obtained. If the two walking conditions
were comparable in terms of muscle synergies, the healthy
synergies extracted from the overgroundwalking condition could
be used both as a reference to evaluate the overground waking
coordination of patients before and after treatment, and to
build the biomimetic stimulation strategy to be applied during
treadmill training.

Pre-treatment Assessment of the Patient’s EMG
Before starting the treatment, the patient was asked to walk
overground and the surface EMG activation signals were
measured on eight muscles of the paretic leg following the same
protocol described in the previous paragraph for healthy subjects.
Analogously, the signal processing procedure described above
was used to obtain the EMG envelopes.

NNR of the Patient’s EMG Envelopes with the Healthy

Muscle Synergies
The mean set of weights (WHEALTHY) and activation profiles
(HHEALTHY) obtained during overground walking in healthy
subjects were used to perform the two Non-Negative Matrix
Reconstructions (NNR) of the EMG envelopes obtained on the
paretic side during the patient’s pre-treatment assessment. The
NNR was applied by fixing the synergy vectors as WHEALTHY and
letting only the synergy activation coefficients H update at every
algorithm iteration, according to the following multiplicative
update rule:

H← H

(

WT
HEALTHY ·M

)

(

WT
HEALTHY ·WHEALTHY ·H

)

where M is the matrix of the EMG envelopes measured on the
8 muscles during 20 gait cycles. Each vector of WHEALTHY was
normalized to unit norm before applying NNR.

Afterwards, the NNR was applied to the EMG envelopes of
the specific patient by fixing the synergy activation coefficients
HHEALTHY and deriving the patient’s weights, using the following
update rule:

W ← W

(

M ·HT
HEALTHY

)

(

W ·HHEALTHY · H
T
HEALTHY

)

Identification of the Patient’s Impaired Muscle

Synergies
Each of the four reconstructed patient’s muscle synergies were
compared to the mean healthy synergies by computing the
following metrics:

• the similarity between the patient’s reconstructed weights and
WHEALTHY.
• the circular cross correlation computed between the patient’s

reconstructed activation profiles and HHEALTHY.

• the time lag computed as: Tlag = 1 −
∣

∣

∣

lag
100

∣

∣

∣
, where lag

is the percentage of gait cycle (lag value can vary between
−50 and 50) in which the maximal correlation between the
reconstructed activation profile and HHEALTHY was obtained.

• the activation duration was defined as:

Act = 1−

∣

∣

∣
ActHp−ActHhealthy

∣

∣

∣

100 , where ActHp and ActHhealthy

are the durations, in percentage of the gait cycle, of the
activation phases. These were computed on the patient’s
reconstructed activation profile and on the mean activation
profile of the healthy group, respectively. The activation
duration was defined based on the onset and offset values,
which were determined from the activation profile using a
threshold fixed at the minimum of each profile plus 20% of
the cycle peak-to-peak amplitude.

For all metrics a value close to 1 indicates a behavior similar to the
healthy subjects. The metrics were first computed on the group of
healthy subjects in order to obtain the normality ranges and the
specific thresholds to be used to discriminate the impairedmuscle
synergies. For each metric, a cut-off point of the mean−2·SDwas
chosen to define a threshold common to all muscle synergies. A
patient’s muscle synergy was defined as impaired when at least
one of the metrics resulted under threshold.

Definition of the Personalized Biomimetic Stimulation

Strategy
The individual muscle activations were reconstructed from the
representative physiological muscle synergies by multiplying the
mean muscle weights and the mean activation profiles of the
synergies that resulted to be impaired in the patient as follows:
EMG N×100 = Whealthy N×J ∗ HhealthyJ × 100 where N is number
of considered muscles (N = 8) and J the number of impaired
synergies (J ≤ 4).

To avoid excessive fatigue due to FES, the stimulation of
each muscle was set to zero when the profile was lower than
a threshold defined as the value of the baseline plus the 20%
of the peak-to-peak amplitude. Finally, when muscles were
characterized by very similar activation profiles, if possible,
they were grouped to be activated by a single stimulation
channel using stimulation electrodes covering both muscles.
The stimulation strategy modulated the stimulation pulse width
between 0 and a predefined maximum value of 400µs. The
stimulation frequency was common to all muscles and was set
to 20 Hz, whereas the stimulation amplitude was identified
individually for each muscle, during an initial calibration
procedure, in order to produce a visible contraction without
discomfort. To identify the stimulation amplitude a pulse width
of 400µs was used.

The control system adapted the predefined biomimetic
stimulation strategy to changes in walking speed within session.
Indeed, when a subject entered a new gait phase, the average of
its duration over the last five strides was computed. This estimate
was used to stretch or expand the corresponding part of the
stimulation profile in order to fully adapt to the subject’s gait
timing.

A Preliminary Evaluation of the FES
Treatment Effect on Two Chronic Stroke
Patients
Two patients with chronic hemiparesis due to ischemic stroke
(Table 1) were asked to undergo a 4-week intervention consisting
of 30-min sessions of FES-supported treadmill walking three

Frontiers in Neuroscience | www.frontiersin.org September 2016 | Volume 10 | Article 425 | 244

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Ferrante et al. Synergy-Based Neuroprosthesis for Stroke Rehabilitation

TABLE 1 | Patient details.

Age (years) Gender Time from stroke Hemiparetic side

S1 67 Man 11 years Left

S2 64 Man 9 months Right

times per week. Each session consisted of 5 min of warming
up without FES, 20 min of gait supported by the multi-channel
personalized FES controller, and 5 min of cooling down without
FES. The patient was asked to select his preferred walking velocity
during the warming up phase. Before and after the end of the
intervention, two clinical scales were assessed: the motor sub-
scale of the Functional Independence Measure (FIM) which
evaluates the patient’s motor disability during daily life activities
and ranges from 13 to 91 (independent), (Kidd et al., 1995) and
the Mini Best test (MBT) which evaluated the dynamic balance
and ranges from 0 to 28 (normal balance; Franchignoni et al.,
2010). To evaluate specific improvements in terms of walking
ability, the same test used to identify the patient’s impaired
muscle synergies was repeated at the end of the intervention.
Both kinematics and EMG data were collected. The mean
cadence was computed from the kinematics data. EMG envelopes
were computed and the NMF algorithm was applied to extract
the muscle synergies as previously described for healthy subjects.
At the end of the intervention, the patients were also asked to rate
the global perceived effect of the treatment using the global rating
change (GRC), which is an 11-point scale (−5 = made things
worse; 0= not changed; 5= completely recovered; Kamper et al.,
2009).

The protocol was approved by the Central Ethics Committee
of the Fondazione Salvatore Maugeri (IRCCS) and both patients
provided their written informed consent before participation.

RESULTS

Functioning of Multi-Channel
Synergy-Based Stimulation Controler
Healthy Muscle Synergies
The WHEALTHY and HHEALTHY during overground walking are
reported in Figure 3. All healthy subjects were characterized
by four muscle synergies corresponding to the four gait sub-
functions identified in literature: Weight Acceptance (WA),
Push Off (PO), Foot Clearance (FC) and Leg Deceleration
(LD). The same modular organization, both in terms of spatial
composition and temporal recruitment, was obtained during
treadmill walking. Indeed, comparing the extracted muscle
synergies in the two walking conditions and averaging across
subjects, a mean (Standard Deviation, SD) similarity of 0.89
(0.11), a circular cross correlation of 0.94 (0.06), and a time
lag of 2 (1) in percentage of the gait cycle were found. This
confirms that the two walking conditions share the same muscle
coordination and thus it is possible to define both a treadmill and
an overground treatment based on the same set of physiological
muscle synergies.

The synergies extracted from the overground walking
condition were used to perform the two NNR of the EMG

envelopes obtained on the paretic side during the patient’s pre-
treatment assessment.

NNR of the Patient’s EMG Envelopes with the Healthy

Synergies
Figure 4 shows the NNR results obtained for both patients. The
obtained VAF values were 0.85 and 0.77 for S1, and 0.90 and
0.84 for S2 when the NNR was applied fixing WHEALTHY and
HHEALTHY, respectively.

Identification of the Patient’s Impaired Muscle

Synergies
Table 2 reports for each metric and each muscle synergy, the
thresholds computed on the healthy subjects group (last column)
and the values obtained by the two patients during the pre-
treatment assessment.

The metrics confirmed what was visually observed by the
reconstructed synergies: S1 had an impaired spatial composition
in the WA synergy (similarity was under threshold for WA), a
wider activation timing of PO and LD synergies, and a delayed
recruitment of the FC synergy. Concerning S2, a low cross
correlation was found for FC and LD synergies. Thus, all four
synergies were defined as impaired for S1 and only FC and LD
were considered impaired synergies for S2.

Definition of the Personalized Stimulation Strategy
The final FES strategy obtained and used for both patients
is shown in Figure 5. The medial and lateral hamstrings and
the medial gastrocnemius and soleus showed similar activation
profiles and therefore the FES strategy coupled into one
stimulation channel both hamstrings, and the calf muscles into
another. Thus, a total of six muscle groups were stimulated.

S1 had a FES strategy based on all four healthy synergies,
whereas for S2 only the FC and LD synergies was used to obtain
the muscle stimulation profiles. When a reduced number of
synergies was used to create the stimulation strategy, a subset
of the six muscle groups was stimulated. In particular, the calf
muscles, which were not recruited by the FC and LD healthy
synergies, were not stimulated for S2.

Figure 5 also shows the different kinematic patterns of the two
patients. Indeed, both patients were characterized by a prolonged
double support, but S1 extended the paretic double support
phase (gait phase 1) whereas S2 extended the non-paretic double
support phase (gait phase 4). In both cases, the FES strategy
was able to adapt to these changes in gait pattern, mapping the
stimulation profiles accordingly.

For both patients the first (upper panels) and last (lower
panels) sessions of the intervention are shown to highlight the
differences in gait speed together with slight differences in the
kinematic pattern. In the first session of FES-supported gait,
S1 presented an impaired kinematic pattern characterized by a
double support phase of the paretic leg (phase 1) lasting the 48%
of the gait cycle and a very short paretic single support (21%
of the gait cycle). In the last treatment session, this kinematic
pattern changed: the duration of the paretic double support was
the 25% of the gait cycle and the duration of the paretic single
support was 29%. These improvements in the kinematic pattern
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FIGURE 3 | The physiological muscle synergies: muscle weights (Left panel) and temporal activation profiles (Right panel) obtained during overground

walking. Mean values and standard deviation are reported in both panels. GM, gluteus maximus; RF, rectus femoris; VM, vastus medialis; HM, hamstring medialis;

HL, hamstring lateralis; MG, gastrocnemius medialis; TA, tibialis anterior.

corresponded to a walking speed that in the last session doubled
its value with respect to the first session. Concerning S2, the
kinematics pattern in the first session was characterized by a
reduced paretic swing phase that was augmented by 52% in the
last session, achieving a final duration equal to the 38% of the gait
cycle.

The FES Treatment Effect on the Two
Chronic Stroke Patients
Both patients completed the treatment without difficulties and
reported a positive global perceived effect of the treatment (GRC
was +4 (improved a lot) and +2 (improved) for S1 and S2,
respectively). The treadmill speed used in the first and last day
of treatment increased from 0.43 to 0.83 m/s, and from 0.38 to
0.68m/s for S1 and S2, respectively.

The extracted muscle synergies before and after the treatment
during the overground walking tests are shown in Figures 6, 7
for S1 and S2, respectively. The treatment induced an increase of
the number of extracted synergies in both patients from 3 to 4
indicating a general improvement in muscle coordination. The
VAF was 0.87 before and 0.88 after treatment, and 0.90 before
and 0.93 after treatment for S1 and S2, respectively. The visual
comparison between the extracted synergies obtained before

intervention for S1 and the healthy synergies (Figure 6) suggests
that the first extracted synergy (S1-1) resembles the FC synergy
except for the GM activation, the second extracted synergy (S1-2)
mostly recruits the MG and SO muscles as it is in the PO synergy
with an anticipatory activation profile, and the third synergy
(S1-3) merges the WA and LD synergies. After treatment, four
muscle synergies were found, generally resembling the spatial
composition of the healthy muscle synergies in Figure 3. An
early recruitment of the plantar-flexors is still present in the PO
synergy.

Concerning S2 (Figure 7), before treatment the first synergy
(S2-1) can be associated to the WA synergy, the second (S2-2)
seems to be the merging of the FC and LD synergies, and the
third (S2-3) seems to be the PO synergy with a slight contribution
of the hamstring muscles. After treatment, four synergies were
obtained displaying a behavior more similar to healthy subjects;
however, an early activation of the plantar-flexors is still visible in
PO synergy.

The clinical evaluation of the two patients is reported in
Table 3. Both patients had a mild motor disability at baseline. In
both cases the improvement gained in muscle coordination was
not yet enough to be transferred into a significant difference in
general motor disability.
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FIGURE 4 | The reconstructed muscle synergies obtained for S1 (Left panels) and S2 (Right panels) using WHEALTHY (Upper panels) of HHEALTHY

(Lower panels). In both NNR results, the fixed component is shown in black and the reconstructed one in red. When the activation profiles are reconstructed, both

the single-stride profile (thinner lines) and the mean profile (thicker line) are reported.

TABLE 2 | Metrics computed on the reconstructed muscle synergies of S1

and S2 for each muscle synergy.

WA PO FC LD Thresholds

S1

Similarity 0.67 0.97 0.95 0.91 0.79

Correlation 0.95 0.89 0.77 0.92 0.90

T-Lag 0.94 0.96 0.61 0.99 0.96

Activation 0.85 0.71 0.65 0.77 0.82

S2

Similarity 0.90 0.93 0.80 0.98 0.79

Correlation 0.96 0.93 0.79 0.85 0.90

T-Lag 0.96 0.98 0.99 0.99 0.96

Activation 0.99 0.83 0.97 0.99 0.82

The last column indicates the thresholds obtained in the group of healthy subjects. The

values below the predefined threshold are highlighted in bold.

DISCUSSION

The high heterogeneity of stroke patients and the high variability
in their response to treatments demand for novel personalized
assessment methodologies able to unveil the specific impaired

sub-functions to be recovered and for novel training procedures
adapted to single subject’s disability. Most of the outcome
measures used to assess the patients’ condition are focused on
the overall motor function (such as the walking speed) and
do not have the power to discriminate specific impairments
that underlie the general functional deficit (Ting et al., 2015).
Recent neurophysiological studies recommended the analysis of
muscle synergies to finely assess the impairment of the subject,
to design rehabilitation treatments personalized on the specific
nature of the individual impairment, and to assess the eventual
treatment outcome (Clark et al., 2010; Ting et al., 2015). In
this scope, we developed a multi-channel FES controller to
support gait training based on physiological muscle synergies
and we personalized it to the individual impairment obtained
by means of a baseline assessment of gait muscle synergies.
The proposed treatment is goal-oriented, task-specific, and
challenging, since the subjects are asked to walk for 30 min
at a comfortable speed. FES patterns have been accurately
aligned in time with the gait phases of the subject so to assure
the maximal synchronization between the FES input and the
volitional activity. Thus, it should harness activity-dependent
neuro-plasticity (Lamontagne and Fung, 2004; Gandolla et al.,
2014).
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FIGURE 5 | The personalized stimulation strategy obtained for S1 (Left panels) and S2 (Right panels) in the first (Upper panels) and last (Lower panels)

sessions of the intervention. Same labels as in Figure 3.

FIGURE 6 | The extracted muscle synergies obtained for S1 before (Left panel) and after (Right panel) treatment. Same labels as in Figure 3.

In literature, FES controllers have been based on very simple
segmentation algorithms able to discriminate between the stance
and swing phases and the FES strategy has been linearly mapped
through the gait stride adopting sub-optimal time rules in order
to automatically deactivate stimulation (Daly et al., 2011). The
novelty of our proposed control system lies in the capability
to accurately map the subject’s gait timing based on the real-
time detection of six gait phases. This mapping is able to

stretch or extend the stimulation profiles according to the
actual duration of all six phases. For instance, if a patient’s gait
pattern is characterized by an extended double support phase,
the stimulation profile of the muscles supporting this phase are
extended accordingly in order to follow the correct muscle timing
and coordination involved in this phase (see Figure 5). This
choice avoids the unwanted activation of antagonist muscles in
the extended kinematic phase that could increase the instability
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FIGURE 7 | The extracted muscle synergies obtained for S2 before (Left panel) and after (Right panel) treatment. Same labels as in Figure 3.

of the gait instead of fostering the relearning process. This
novel modality to map the individual kinematics is an important
personalization factor, since the duration of each gait phase is
highly dependent on the patient’s level of impairment (Olney and
Richards, 1996).

The starting point to design the proposed biomimetic multi-
channel FES controller was the identification of the physiological
set of synergies during walking. Results obtained in healthy
subjects confirmed that a common motor-control strategy based
on four muscles synergies, was shared across walking conditions
(overground and treadmill). The identified muscle synergies
corresponded well to the four biomechanical functions proposed
in the literature (Clark et al., 2010) and confirmed the equivalence
in motor coordination between the two walking conditions
(Kautz et al., 2011). The physiological muscle synergies used to
design the stimulation strategy were extracted from a group of
healthy subjects, which were younger than the average stroke
patient; nevertheless, it has been shown that synergies are
invariant with aging (Monaco et al., 2010).

The two patients included in the pilot study were quite
independent in daily-life activities before treatment and were
characterized by a mild gait disability (gait speed higher
than 0.8m/s; Tilson et al., 2010). However, a more specific
analysis based on muscle synergies during overground gait
highlighted an altered motor coordination characterized by only
3 independently recruitedmuscle synergies for both patients. The
underlying gait abnormality was different for the two patients. S1
merged the control of the proximal extensors with the hamstrings
(i.e., theWA and LD synergies) and showed an early activation of
the plantar-flexors, which is a typical behavior of stroke patients
(Clark et al., 2010). S2 merged the FC and LD synergies and also
showed an early recruitment of the plantar-flexors presumably
connected to an increased excitability of the monosynaptic
stretch reflex (Crenna and Frigo, 1987). These two different
impairments in terms of muscle coordination produced a proper
personalized treatment that resulted in a FES strategy based
on all 4 or just 2 muscle synergies for S1 and S2, respectively.
Comparing the first and last session of treatment (Figure 5),

a different kinematic pattern is noticeable. The first patient
was able to reduce by half the duration of his paretic double
support phase. This represents a big improvement although it
was still higher than the physiological duration, which is about
10% of the gait cycle (Perry and Burnfield, 1992). Analogously,
the paretic single support increased by 38% becoming closer to
the physiological value (Perry and Burnfield, 1992). The second
subject improved the duration of his paretic swing phase. For
both subjects the improvements across treatment sessions in
gait timing were coupled with a faster speed in the training
execution.

The assessment after the end of the intervention showed
that both patients improved their muscle coordination; indeed,
four muscle synergies were extracted for both of them. The
originally merged synergies seemed to regain their distinct role
in locomotion control, even if the PO synergy maintained an
anticipated recruitment and a prolonged timing in both patients.
The benefits of the treatment were more evident for S1 and
this was confirmed by the patient’s perceived effect; indeed, S1
stated that, thanks to the treatment, he was able to achieve a
very good walking improvement (GRC = 4). The improvement
in motor coordination was also coupled with a clinically
important improvement in the dynamic balance. Indeed, the
pre-post change of the Mini Best Test overcame 4 points
(Table 3) that is the minimal clinical important difference for
patients with balance disorders (Godi et al., 2013). Concerning
S2, the treatment was able to induce a beginning of neuro-
motor relearning, but probably the 12 treatment sessions were
not enough to translate the motor-coordination progress into
relevant clinical improvements, in line with the lower benefit
perceived by the patient (GRC= 2).

The duration of the donning and setting up of the FES
controller was performed by the physiotherapists and, excluding
the first day of training, it lasted an average of 5–10 min, which
was compatible with a clinical use.

This study has two main limitations. First, the treatment
was tested only with two chronic stroke patients and the
results obtained, even if encouraging, should be considered as
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TABLE 3 | Comparison of the outcome measures before and after training.

S1 S2

T0 T1 T0 T1

Mini Best Test (0–28) 17 22 21 23

FIM motor subscale (13–91) 78 78 85 85

Cadence (strides/s) (SD) 0.98 (0.03) 1.01 (0.03) 0.81 (0.03) 0.80 (0.02)

preliminary. Second, the speed used during training was too slow.
For instance, the second subject never reached his self-selected
speed overground during training. Recent studies demonstrated
that combining a 2-channel FES with fast treadmill walking
yielded larger improvements in gait mechanics than when FES
was combined with self-selected speed treadmill walking (Kesar
et al., 2011; Awad et al., 2016). Thus, future studies using this
personalized biomimetic FES controller should consider the use
of fast speed during training.

CONCLUSION

In this study we have developed and tested a personalized multi-
channel FES controller to support gait rehabilitation after stroke.
The treatment was personalized to the specific gait abnormality of
each patient. Indeed, once the impaired biomechanical functions
were revealed by an assessment based on muscular synergies
analysis, the exercise was shaped in order to train only the muscle
coordination associated with those biomechanical functions. The
muscle-synergy analysis was also exploited to assess the effects
of treatment and confirmed to be very effective in identifying
improvements in motor coordination. The results presented in
this pilot case study were encouraging; however, they should
be confirmed by a wider statistical study (e.g., a randomized

controlled study). Additionally, the application of this multi-
channel FES controller could be extended to people with post-
acute stroke, whose lack of a well-learnt compensatory strategy
by the CNS could help improving the benefits obtained with the
proposed treatment in case of chronic patients.
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Background: The association between motor-related cortical activity and peripheral

stimulation with temporal precision has been proposed as a possible intervention

to facilitate cortico-muscular pathways and thereby improve motor rehabilitation after

stroke. Previous studies with patients have provided evidence of the possibility to

implement brain-machine interface platforms able to decode motor intentions and use

this information to trigger afferent stimulation and movement assistance. This study

tests the use a low-latency movement intention detector to drive functional electrical

stimulation assisting upper-limb reaching movements of patients with stroke.

Methods: An eight-sessions intervention on the paretic arm was tested on four chronic

stroke patients along 1 month. Patients’ intentions to initiate reaching movements were

decoded from electroencephalographic signals and used to trigger functional electrical

stimulation that in turn assisted patients to do the task. The analysis of the patients’ ability

to interact with the intervention platform, the assessment of changes in patients’ clinical

scales and of the system usability and the kinematic analysis of the reaching movements

before and after the intervention period were carried to study the potential impact of the

intervention.

Results: On average 66.3 ± 15.7% of trials (resting intervals followed by self-

initiated movements) were correctly classified with the decoder of motor intentions.

The average detection latency (with respect to the movement onsets estimated

with gyroscopes) was 112 ± 278ms. The Fügl-Meyer index upper extremity

increased 11.5 ± 5.5 points with the intervention. The stroke impact scale also

increased. In line with changes in clinical scales, kinematics of reaching movements

showed a trend toward lower compensatory mechanisms. Patients’ assessment

of the therapy reflected their acceptance of the proposed intervention protocol.
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Conclusions: According to results obtained here with a small sample of patients, Brain-

Machine Interfaces providing low-latency support to upper-limb reaching movements in

patients with stroke are a reliable and usable solution for motor rehabilitation interventions

with potential functional benefits.

Keywords: electroencephalography, motor-related cortical potentials, event-related desynchronization, functional

electrical stimulation, stroke, neurorehabilitation

INTRODUCTION

Upper-limb function recovery after a stroke is in many cases
insufficient despite intensive physical therapy. In order to actually
get meaningful functional changes in these patients, it has been
suggested that traditional physical therapies need to be paralleled
with brain modulation interventions aimed to guide plastic
changes in the brain (Belda-Lois et al., 2011).

Experimental neuromodulation paradigms using
electrophysiological acquisition and stimulation techniques
to produce long-term plastic changes at supraspinal and spinal
levels have been proposed to treat motor dysfunction in stroke
(Lefaucheur, 2006; Daly and Wolpaw, 2008). Among these,
paradigms using Brain-Machine Interfaces (BMI) linking
cortical motor-related activity with afferent information from
limbs have been used to efficiently induce cortical plastic changes
in healthy subjects (Xu et al., 2014b; Kraus et al., 2015) and in
patients (Ramos-Murguialday et al., 2013; Várkuti et al., 2013).

The electroencephalographic (EEG) activity over the
premotor and motor cortical areas presents characteristic
variations in the periods before self-initiated movements. Two
main motor related EEG patterns are known to reflect mental
states related to motor planning and execution processes: the
Bereitschaftspotential (BP; Shibasaki and Hallett, 2006) and the
Event-Related Desynchronization (ERD; Pfurtscheller and da
Silva, 1999). ERD and BP have been used in BMI experiments
aimed to improve motor neurorehabilitation (Bhagat et al., 2016;
Grimm et al., 2016; Lopez-Larraz et al., 2016). Previous studies
have used these cortical patterns to detect the onset of voluntary
movements in healthy subjects with temporal precisions of
200–500 ms with respect to the onset of muscle activations in
the limbs (Lew et al., 2014; Xu et al., 2014a). The possibility
of identifying this information of motor intentions allows
establishing a tight temporal association of movement-specific
cortical activations with proprioceptive afferent feedback from
the moved limbs for rehabilitation purposes. Based on this idea,
previous studies conditioned the cortico-muscular descending
tract to the lower-limbs in control subjects and stroke patients
by temporally associating motor intentions to perform analytical
ankle movements with electrical or mechanical stimuli (Xu
et al., 2014b). These studies showed that significant plastic
changes were visible after a single session intervention if small
latencies between the cortical activations and the peripheral
stimuli were maintained. Moreover, this intervention concept
has proven to be potentially beneficial for stroke rehabilitation
(Mrachacz-Kersting et al., 2016, 2017).

Mostly, studies of low-latency detectors of motor intentions
with the upper limb have only been carried out in offline

conditions. Moreover, no interventions so far have tested BMI
platforms decoding pre-movement BP and ERD patterns online
in patients with brain damage due to a stroke. While BP
detections online in healthy subjects doing ankle dorsiflexions
have demonstrated to be reliable for BMI approaches, BPs
in upper-limb movements (Hadsund et al., 2016; Martínez-
Expósito et al., 2017), and specially in stroke patients (Daly
et al., 2006) present particularities that make them less reliable
for BMI applications, which may limit their usability in BMIs.
Recently, it was demonstrated that an appropriate combination
of BP- and ERD-based classifiers could lead to reliable and
low-latency estimation of stroke patients’ upper-limb motor
intentions (Ibáñez et al., 2014a,b). In addition, it was shown
that the use of Functional Electrical Stimulation (FES) can assist
patients to perform functional complex (multi-joint) movements
(Resquin et al., 2016). Here it is hypothesized that, in patients
with a stroke and chronic arm motor dysfunction, the possibility
of timely matching motor intentions with FES assisting specific
motor functions opens a window for targeted neuromodulation
interventions aimed at improving function-specific motor neural
circuits. The simultaneous neuromodulation of ERD and BP
phenomena might induce changes in cortical activity related
to both motor planning and execution, unlike the existent
approaches, thus boosting neurorehabilitation. To achieve this,
it needs to be assessed the feasibility and impact of EEG-based
(ERD + BP) low-latency decoder of motor intentions triggering
FES in upper-limbs in patients along a certain period of time.

In this study, the ability of a BMI system to assist upper-
limb functional movements of stroke patients based on their
pre-movement cortical changes decoded online and on a single-
trial basis was tested for the first time. Moreover, the study
reports results of a multisession intervention (eight sessions
during 1 month) using FES to assist upper-limb reaching
movements of four chronic stroke patients when EEG-based low-
latency estimations of motor intentions are detected. The BMI
system performance, patients’ functional changes as well as their
subjective reports regarding the received intervention are used to
discuss on potential benefits of the proposed intervention.

MATERIALS AND METHODS

Patients
Four chronic stroke patients (age 54 ± 12 years, mean ±

SD; all males) with a lesion in the territory of the middle
cerebral artery and a predominance of brachial hemiparesis
were recruited for this study (see details in Table 1). Patients
met the following inclusion criteria: (i) ability to manipulate
most objects; (ii) spasticity less than or equal to two in the
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TABLE 1 | Patients’ clinical data.

Pat. Code Age Gender Stroke type Upper limb affected Years since stroke Fügl-Meyer index Stroke impact scale Rh. sessions /week

P1 54 Male Ischem. L 3 61 64 2

P2 54 Male Hemorr. R 4 83 66 2

P3 69 Male Hemorr. L 4 65 44 0

P4 40 Male Hemorr. L 5 81 73 2

Modified Ashworth Scale; (iii) ability to understand instructions
and actively participate in tasks. Patients with cognitive
decline, sensory aphasia, visual impairment, behavioral disorders,
articular rigidity, irreversible contractures and dysmetria, and
those who had been treated with botulinum toxin or baclofen
<6 months before the start of the study were excluded from the
study.

The experimental protocol for this study was approved by
the Ethical Committee of the “Universidad Rey Juan Carlos”
(Alcorcón, Spain) and warranted to be in accordance with the
Declaration of Helsinki. All patients signed a written informed
consent.

Study Protocol
All experiments were carried out in a sound- and light-attenuated
ward of a clinical university. During BMI interventions, patients
were seated on comfortable seats and with their arms resting on
a desk and movements were performed with the affected upper
limbs of the patients.

Patients participated in 10 sessions carried out in different
days during 1 month (see Figure 1). The whole intervention
with each patient consisted of eight BMI-FES sessions (two
sessions per week). Two additional sessions, right before and
after the intervention phase, were scheduled to assess patients’
functional evolution and their subjective evaluation of the
received intervention (the latter only being carried out at the end
of the whole process).

Assessment Sessions
Clinical Scales
Clinical experts performed functional tests in the first and last
sessions to analyse possible patients’ improvements.

Upper-extremity sensorimotor function was assessed using
Fügl-Meyer Assessment for Upper Extremities (FMA-UE).
The four domains evaluated included: upper-extremity motor
function (maximum score = 66), sensory function (maximum
score = 12), passive joint motion (maximum score = 24), and
joint pain (maximum score = 24). Items were scored on a 3-
point ordinal scale from 0 (cannot perform) to 2 (performs fully).
Summative scores were generated for each domain, scores ranged
between 0 and 126 (Duncan et al., 1992; Wagner et al., 2008).

The Stroke Impact Scale 16 (SIS-16) was used to assess
patients’ health status following stroke. Duncan et al. (2003)
developed the SIS-16 to assess physical function in patients with
stroke using items from the composite physical domain of the
Stroke Impact Scale (SIS) version 3.0. The SIS-16 can differentiate
lower levels of disability. The SIS-16 consists of 16 items: seven

activities of daily living items, eight mobility items, and a single
hand function item. Each item is rated in a 5-point Likert scale in
terms of the difficulty the patient has experienced in completing
each item. Summative scores are generated for each domain.
Scores range from 16 to 80 (Duncan et al., 2003).

Kinematics Analysis
To analyse kinematics, patients performed five repetitions of
the reaching task while being measured with a motion capture
platform based on the optoelectronic system Vicon Motion
(Oxford Metrics, Oxford, UK). Patients sat on a comfortable
chair close to a desk. The patient-to-desk distance was 8-10
cm and the angle of the chair was 90◦–100◦. In the starting
position the patient’s trunk rested firmly against the back of the
chair. Patients were asked to put their hands on the desk (palms
down) with shoulder at around 20◦ of abduction and elbow at
around 95◦ of flexion. A hard plastic glass (diameter = 5.5 cm,
height = 15 cm) was used as target. The glass was placed on
the desk in line with the patient’s sternum and at a distance
equal to 75% of the maximum reachable distance with the paretic
arm.

Patients were instructed to reach the glass from the starting
position using their paretic hand. All patients practiced the
reaching task before motion capture trials. Once this phase was
completed, a static calibration recording was performed. Using
this recording, it was checked that each marker was visible from
the scanning cameras and analyzed movements were registered.
In these, after the verbal instruction “Get ready...go,” patients had
to lift the arm and reach and grasp the glass at a comfortable
speed (similar to the one used in the BMI-FES interventions).
Three seconds after reaching the target patients had to move back
to the initial position. The time needed to perform the movement
was defined as the time interval between the hand movement
onset until the hand reached the glass. We analyzed the
shoulder, elbow and thorax positions when the hand reached the
glass.

Satisfaction Assessment
We evaluated patients’ perceived comfort and acceptability of
the BMI-FES platform. Five items are rated on a Likert-type
scale from 1 to 5 (strongly disagree—strongly agree): (1) “you
are satisfied with the intervention”; (2) “this intervention has
been useful in order to carry out activities of daily living”; (3)
“you would recommend this intervention to other subject in the
same situation”; (4) “The instrumentation is uncomfortable.” The
arithmetic mean across all items provides the total satisfaction
score.
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FIGURE 1 | Structure of the intervention carried out with each patient.

Intervention Sessions
BMI-FES Platform
During the intervention sessions movements of the paretic
arm were measured with solid-state gyroscopes, which allowed
easy and robust recordings of transitions between resting
and movement phases (Ibáñez et al., 2014a). Two gyroscopes
(Technaid S.L., Madrid, Spain) were placed on the distal third of
the forearm, and themiddle of the arm. Data were sampled at 100
Hz and stored in a PC running a real-time OS (QNX Software
Systems, Ottawa, Canada).

EEG signals were recorded from 31 positions (AFz, F3, F1, Fz,
F2, F4, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6,
CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, P4, PO3, PO4, and
Oz, all according to the International 10–20 system) with active
Ag/AgCl electrodes (Acticap, Brain Products GmbH, Germany).
The reference was set to the voltage of the earlobe contralateral
to the arm moved. AFz was used as ground. The signal was
amplified (gUSBamp, g.Tec GmbH, Austria) and sampled at 256
Hz. A standard PC was used to acquire and process the EEG
data using a custom-made Simulink model (TheMathworks Inc.,
NatickMA, USA). This PC sent digital signals to the real-time PC
using a USB DAQ (USB-6008, National Instruments, Austin TX,
USA).

FES was delivered at the anterior deltoids, triceps and wrist
extensors with a multichannel monopolar neurostimulator with
charge compensated pulses (UNA Systems, Belgrade, Serbia).
Traditional surface electrodes (Pals Platinum—rectangle 5 ×

5 cm) were used. The common electrode was located on the
oleocranon. Pulse width and frequency were set to 350 µs and
30 Hz, respectively. FES current was adapted in each session
with each patient to achieve comfortable stimulation levels that
elicited muscle contractions. Current values ranged between 20
and 50 mA (depending on the motor threshold of each muscle
and to the patients’ acceptance of the received stimulation).
Due to the FES configuration and to the weight of the patients’
arms, FES alone was not able to lift the arm unless it was
successfully triggered by the BMI when patients attempted to

perform the reaching task (in which case it provided assistance
to the attempted movement). The stimulator was controlled by
the PC storing gyroscopic data, which in turn received activation
commands from the computer recording the EEG activity via
a digital signal. Each time FES was activated it was done in a
sequential manner (first deltoids and 250 ms later triceps and
wrist extensors) so that the arm could first be lifted from the table
and then extended toward the target.

EEG-Based Detection of the Motor Intentions with

Low Latencies
The classifier used to detect movement intentions from EEG
was based on the one presented in Ibáñez et al. (2014a). A
logistic regression was used to detect the onset of the voluntary
movements based on the characterization of the ERD and BP
cortical patterns observed in patients (Figure 2).

Detection of the onsets of movements from gyroscopes
Locations of onsets of voluntary movements were estimated
based on the gyroscopic signals. For this, gyroscopic recordings
were low-pass filtered (Butterworth, order 3, <10Hz). For
each patient, the sensor that first showed changes during the
execution of reaching movements (between the one placed on
the forearm and the one on the arm) was used. The peak
amplitude performing the movements was estimated in each
session. A threshold amplitude for the detection of the onsets
of the movements was set to 5% of this peak amplitude. Finally,
visual correction of the detected onsets was carried out to ensure
that involuntary and residual movements were not taken into
account for training and BMI validation purposes.

Feature extraction
EEG signals recorded in the pre-intervention calibration trials
in each session were used to extract the best features for the
posterior online decoder.

For the ERD detection, band-pass filtering (Butterworth, 3th
order, 6 Hz < f1, 35 > f2) and small Laplacian filtering were
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FIGURE 2 | Movement onset decoder scheme. Left, calibration; Right, online decoding.

applied to the EEG signal. Power values in segments of 1.5 s
and in the frequency range 7–30Hz (with steps of 1 Hz) were
obtained from the frontal, fronto-central, central, centro-parietal,
and parietal channels. The Welch’s method was used to get
power estimations (Hamming windows of 1 s; 50% overlap).
The estimations in the training trials from –3 to –0.5 s (with
respect to the movement onsets) were labeled as examples of the
resting state. Estimations at the movement onsets were labeled
as examples of the movement state. The Bhattacharyya distance
was used to select the 10 best channel-frequency pairs to build the
classifier, i.e., the 10 with the largest distance between the resting
state and the movement onset estimations.

For BP, a Butterworth low-pass filter (1 Hz> fc, 1st order) was
applied to extract the low-frequency components of EEG signals.
A modified version of the large laplacian filter using as reference
the average information from eight peripheral channels in the
EEG electrode layout was used in order to minimize the weight of
individual reference channels (Ibáñez et al., 2014a). Three virtual
channels were generated by subtracting the average recordings
of channels F3, Fz, F4, C3, C4, P3, Pz, and P4 to channels C1,
Cz, and C2. These three de-referenced central channels were
considered since the late part of the BP typically presents a

lateralization in upper-limb movements (Shibasaki et al., 1980)
and the spatial distribution of motor cortical activations in stroke
patients may be altered due to their brain lesions (Serrien et al.,
2004). The average BP of the resulting channels was obtained
using the training data. The channel showing the highest
peak at the movement onset relative to the average amplitude
in the interval [−3,−2] s (with respect to the movement
onset) was selected for BP-based detection of movement
onsets.

Classifier construction
Anaïve Bayes classifier of independent features was used to detect
the ERD pattern preceding the onset of the reaching movements
by using 10 channel-frequency pairs previously selected.

Amatched filter of length 1.5 s was designed using the selected
channel for BP detection. The filter was obtained by removing the
baseline level (first 500 ms) of all 1.5 s trials in the training dataset
and then averaging the BPs.

To train the logistic regression classifier that combined
ERD- and BP-based estimations of motor intentions, training
examples of the resting condition were taken from outputs of
both classifiers (ERD and BP) between −3 s and −0.5 s, and
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estimations between ± 125ms with respect to the onsets of
movements were used to model the movement state.

Online decoding
In the online decoding phase, the logistic regression classifier
generated estimations of movement intentions every 100ms.
The decoder yielded a binary output depending on whether the
probabilistic output from the logistic regression classifier was
over or under a certain threshold, which in turn activated the
FES. The threshold was obtained from the training dataset and,
if needed, it was further adjusted based on the reports of the
patient in a few number of pre-intervention calibration trials. The
threshold was initialized following the criterion of maximizing
the percentage of good trials (GT), i.e., trials with a true positive
(TP), and with no false positives (FP). TP were movements
detected by the BMI with a detection latency within the range of
±750 ms with respect to the reference onsets estimated with the
gyroscopes. EEG-based movement intention detections during
resting phases were considered FPs. The precision of the detector
was characterized by computing the number of FP per minute
(FP/min). The percentage of GT was obtained by counting the
amount of trials with no FP and a TP. Finally, latencies of the
TP with respect to the onsets of movements were computed to
analyse the temporal accuracy of the system. The definition of all
these metrics is further elaborated in Ibáñez et al. (2014a).

To achieve a stable BMI system, outputs of the BMI were
processed by a block ensuring that consecutive FES stimuli were
separated by at least 5 s of time.

BMI-FES Intervention and FES Configuration
Once the BMI system had been calibrated, the intervention
phase of the session begun. Patients performed 60–80movements
assisted with FES triggered by the BMI. The specific amount
of trials performed in each session depended on the patients’
arousal and their willingness to continue. Patients were allowed
to rest and talk in the middle of the sessions if they needed
to. Throughout the intervention trials, patients were asked to
concentrate and have the FES activated with their movements.

Each time a trigger from the BMI was received by the PC
controlling the FES system, the stimulation pattern described in
Section BMI-FES Platform was triggered.

Validation of the BMI Performance
In order to validate the performance of the EEG-based decoder
of motor intentions during the interventions, the GT and the
detection latencies during the intervention trials were computed.
To facilitate the evaluation of the BMI system, patients were
instructed not to perform movements when FES stimulation
arrived before they have planned to start the movement. The
times at which FES stimuli were triggered were compared to the
onsets of movements according to the data from gyroscopes.

Statistical Procedures
All statistical analyses were performed using SPSS 17.0 (IBM
Corp., New York USA) and Matlab2011 (The Mathworks Inc.,
NatickMA,USA). Due to the small sample size, Shapiro-Wilk test
was applied to check normality of BMI performance and clinical

scores. Given that all analyzed samples violated the statistical
normality, Wilcoxon signed-rank test was used to compare the
clinical scales scores before and after the intervention. The
Friedman test for repeated measures was used to compare the
BMI performance scores between sessions. Only the sessions with
data from all patients were included in the analysis. A linear
least square fitting was applied to estimate the tendency of the
BMI performancemeasures along sessions, obtaining the squared
error R2 and the gradient of the linem.

All results are reported as the mean ± SD, and considered
significant if P < 0.05.

RESULTS

Patients’ ERD and BP
ERD and BP patterns were used by the BMI platform to control
FES assistance. Figure 3 shows the average (across sessions) ERD
and BP patterns of each patient taking part in the experiments.
Fieldtrip’s ft_multiplotER and ft_multiplotTFR functions were
used to obtain the patterns (Oostenveld et al., 2011). As shown
in the figure, there is a large variability between patients in terms
of the magnitude of the ERD and BP patterns and in terms of
their spatial, frequency, and temporal distributions. In all cases,
ERD and BP start before the onset of the movements. In addition,
it is observed that in all cases, the BP minimum peak is delayed
several hundreds of milliseconds with respect to the movement
onset. Neither the laterality nor the degree of change of the
ERD/BP patterns showed a correlation with the patients’ upper
limb function.

BMI Performance
Average percentages (across sessions) of GT for P1, P2, P3, and
P4 were 67.4 ± 15.5, 52.8 ± 6.7, 81.1 ± 12.1, and 66.1 ± 14.8%,
respectively (left panel in Figure 4). In the best session for each
patient (green bars in the left panel of Figure 4), GT results
were 80.9% (P1), 64.4% (P2), 91.7% (P3), and 81.2% (P4). The
average TP rate and number of FP per session (considering all
stored sessions and patients) were 71.1 ± 19.5% and 8.1 ± 4.9
FP/session, respectively. No statistically significant differences in
any measure were found between sessions for all patients [GT:
χ2
(5)

= 5.875, p = 0.320; TP: χ2
(5)

= 4.000, p = 0.549; FP: χ2
(5)

=

5.109, p= 0.403].
Results improved along sessions in three cases (see Table 2).

TP and GT showed an increasing tendency along sessions for all
patient, especially P1, P4, and less markedly in the first sessions of
P2. On the contrary, FP showed increasing tendency for P1 and
P2 and decreasing for P3 and P4 (see Table 2).

The average detection latencies (considering all sessions) were
202 ± 266 ms (P1), 130 ± 316 ms (P2), 3 ± 190 ms (P3), and
103± 254ms (P4). No pair of sessions differed statistically in the
average detection latency [χ2

(5)
= 7.587, p= 0.164].

A tendency toward smaller detection latencies could be
observed in all patients (P3, P4, and less in P1, P2) when analysing
the evolution along the different sessions (Table 2; right panel,
Figure 4).

Unsuccessful results of the BMI-FES intervention were only
observed in the sixth session with patient P2 (unreliable
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FIGURE 3 | Patients’ ERD (8–30Hz) and BP (0.05–1Hz) patterns. To optimize visualization, baseline was defined within [−3,−2] s and [−5,−3] s for BP and ERD,

respectively. Average referencing was used for BP. Small Laplacian filters were used for ERD. BP and ERD of the most reactive EEG channels are shown in rows 1

and 3.

estimations of motor intentions were generated in that case). As
a result of this unreliable BMI function, this intervention session
was interrupted since the patient reported an uncomfortable
interaction with the FES.

Figure 4 also includes information on how patients were
able to control the BMI-FES interface by performing imaginary
instead of actual movements (left panel, blue bars). This
condition was tested at the end of the experimentation to
ascertain that motor-related activity was robust enough to
trigger FES regardless of whether it was accompanied by overt
movements. In all cases, GT for motor imagery condition were
similar but lower than GT for non-imagined movements.

Changes in Functional Scales
Table 3 summarizes the observed changes in the two evaluated
functional scales (FMA-UE and SIS) after the intervention
period. The FMA-UE score increased in 11.5 points after the
intervention, with increases in all patients being observed. All
patients showed improvements in the passive range of motion
and sensation in FMA-UE scores. In addition, three patients
(P1, P2, and P4) showed increases in motor function scores.
The SIS score presented an average 10.5 points increase after the
intervention. No significant differences in any of the two scales
were observed (p = 0.114 and Z = −1.826 for SIS changes; p =

0.068 and Z = −1.461 for FMA-UE).

Analysis of the Kinematics
Table 4 reports joint positions (degrees) when the affected
hand reached the glass during the kinematics assessments. On
average, after the interventions shoulder flexion was slightly

increased (0.7◦) and shoulder abduction was reduced (5.45◦).
Additionally, elbow and thorax flexion were reduced (2.09 and
4.97◦, respectively). There were no significant differences after
the intervention in any of the joint angular rotations measured (p
= 0.465 and Z = −0.730 for shoulder and elbow flexion changes;
p = 0.273 and Z = −1.095 for shoulder abduction changes, p =
0.068 and Z = −1.826 for thorax flexion changes).

Usability Assessment
The perceived comfort and acceptability of the intervention
platform proposed here varied across patients. Three patients
(P1, P2, P3) “agreed or strongly agreed” with the intervention,
while P4 “neither agreed nor disagreed” with it. One patient (P2)
reported that the intervention was useful in order to carry out
activities of daily living (“strong agreement”), but the other three
patients reported “strong disagreement” (P3, P4) or “neither
agreement nor disagreement” (P1) in this regard. Regarding
the degree of recommendation of the received intervention; all
participants declared to “agree or strongly agree.” Finally, two
participants (P1 and P4) reported to be in “agreement or strong
agreement” with the instrumentation process carried out during
the intervention; however, the other two participants indicated to
be in “disagreement or strong disagreement.”

DISCUSSION

This study has tested for the first time the ability of a BMI system
to assist upper-limb functional movements of stroke patients
based on their pre-movement cortical changes decoded online
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Detection latencies of the BMI per session and patient.

TABLE 2 | Linear least square fitting parameters (m, slope; R2, squared

error) of the BMI performance measures along sessions.

Pat. Code TP FP GT Latency avg.

m R2 m R2 m R2 m R2

P1 5.54 0.460 1.21 0.480 4.50 0.388 −4.99 0.016

P2 1.88 0.397 0.61 0.166 1.06 0.157 −4.13 0.043

P3 0.25 0.001 −0.37 0.029 0.89 0.029 −10.09 0.125

P4 5.64 0.506 −1.66 0.434 4.80 0.564 −38.79 0.636

and on a single-trial basis. Such use of anticipatory EEG activity
allows the timely assistance of patients during the motor tasks
performed. The study aimed to evaluate the usability of the
proposed technology and its potential effects when applied in a
prolonged in time intervention. Overall, patients could reliably
control the interface by spontaneously performing movements
and low average detection latencies (<200ms) were obtained.
Moreover, measured FMA-UE changes were higher than the
minimal clinically important difference.

Most BMI interventions involving patients with a stroke
have used synchronous paradigms, that is, patients performed
movements paced by an external signal, and ERD patterns were
used to characterize the movement phases (Ang et al., 2014;
Kraus et al., 2015; Bhagat et al., 2016; Irimia et al., 2016).

This approach allows a more reliable function of BMIs (FP
can be avoided), but it can underestimate the relevance of the
temporal coupling between patients’ intentions of movements
and the perceived afferent feedback. In a series of studies
by Mrachacz-Kersting et al., the temporal association between
motor intentions and peripheral stimuli proved to be relevant
in order to efficiently guide cortical changes related to ankle
movements (Mrachacz-Kersting et al., 2012, 2016). While some
of these studies involved BMI approaches with healthy subjects,
interventions with stroke patients typically used visual cues and
fixed (patient-specific, according to BP) stimulation onsets. Such
offline BMI-like approach is an excellent solution for practical
and robust EEG-based neuromodulation interventions, but it
assumes that movements are always performed in identical
conditions with respect to the external cues, and hinders the
demands on patients for planning movements actively. Being
able to have a BMI system asynchronously providing reliable and
timely estimations of motor intentions allows higher adaptability
to inter-trial changes in movement-related cortical activities
and gives rise to using ecological rehabilitation scenarios where
patients cannot automatize the task performance according to
external guides. In this regard, the present study is an original
attempt to demonstrate the suitability of purely asynchronous
BMIs for motor neurorehabilitation after a stroke.

Importantly, although a small sample is considered here,
results are comparable (and better in some cases) to those
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TABLE 3 | Changes in FMA-UE and SIS between pre- and post-intervention assessments.

Code FMA-UE SIS

Motor function Sensation Passive joint motion Joint pain Total Total

Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post-

P1 12 26 9 10 16 16 24 24 61 76 64 74

P2 31 32 7 8 21 24 24 24 83 88 66 79

P3 24 22 10 12 7 24 24 24 65 82 44 63

P4 28 32 9 10 20 24 24 24 81 90 73 73

Avg. ± SD 72 ± 11 84 ± 6 62 ± 12 72 ± 6

Functional scales Before After

FMA-UE 72 ± 11 84 ± 6

SIS 62 ± 12 72 ± 6

TABLE 4 | Analysis of reaching movement kinematics before and after the

intervention (values represent joints’ rotations in degrees).

Joint position (degrees) Before After

Shoulder flexion 43.8 ± 17.7 44.5 ± 18.4

Shoulder abduction 62.5 ± 42.1 57.1 ± 36.6

Elbow flexion 85.1 ± 16.9 83.0 ± 20.2

Thorax flexion 12.1 ± 4.3 7.1 ± 4.1

obtained in previous similar studies with healthy subjects (Ibáñez
et al., 2014a; Xu et al., 2014b; Lin et al., 2016), and are the first
demonstration of an online low-latency BMI system tested with
patients. The average detection latencies obtained in this study
are slightly higher than those obtained in a previous study using
the same EEG-based classifier in patients with stroke (112 ± 278
vs. 35.9 ± 352.3 ms). This is probably due to the fact that the
previous study was carried out offline while this present study
used the BMI online to trigger FES. Since FES was programmed
to support patients’ movements, it likely had a priming effect
on forthcoming movements, i.e., a stimulus arriving when the
patient was about to move but with anticipation would in turn
anticipate the patients’ generation of the intended movement. In
any case, detection latencies were in general low enough in order
to expect facilitatory effects in the motor cortex (Xu et al., 2014b).

Importantly, the potential impact of motor-related artifacts in
the obtained BMI performances, although possible, is estimated
to be small. Muscle artifacts, on the one hand, lead to increases of
the cortical activity in frequencies within the beta band, which
are in the opposed direction to ERD changes learned from
the pre-movement EEG signals in the training stage. On the
other hand, post-movement low frequency components in the
EEG are typically spread along the scalp (which allows spatial
filtering techniques to cancel them) and also they typically start
with positive changes of the EEG amplitudes (Shibasaki et al.,
1980). Furthermore, results obtained with the motor imagery
condition tested in the last intervention session are comparable
(although smaller) to those obtained with actual movements,
which implies that patients with very limited motor capabilities

could have the possibility to interact with the proposed BMI-FES
platform.

Patients’ ERD and BP were marked and started around 0.5–

1 s before movements could be observed from gyroscopes. Both

patterns showed alterations compared to ERD and BP patterns

in healthy subjects in terms of spatial and temporal distributions
and in line with previous findings (Serrien et al., 2004; Daly
et al., 2006; Fang et al., 2007). ERD patterns tended to show
a higher involvement of cortical areas around the vertex (P3
and P4) or of contralesional areas (P2). Regarding the temporal
characteristics, BP in patients showed a delayed peak hundreds
milliseconds after the actual onset of the movement, in line with
previously published studies (Daly et al., 2006). This delayed peak
makes it more challenging to generate estimations of intentions
to initiate voluntary movements with temporal accuracy. In
this study, only the BP part that preceded the movements
and finished at t = 125ms was used to model the movement
intention class. However, the implications of this decision in the
hypothesis that afferent stimulation has to be triggered at the
BP peak are not clear, and therefore further research should be
carried out to describe the role of post-movement BP parts in
patients with stroke. In this study, the validity of the stimuli
timings was given not only by their comparison with the actual
movements (recorded with gyroscopes) but also by patients’
reports indicating that, in most cases, they perceived FES in time
with their attempts to perform the reaching task.

Changes in patients as a result of the intervention were
observed in terms of changes in the BMI performance across
sessions. GT in patients P1, P2, and P4 improved in the first 3–4
sessions, and remained high in P3. In addition, average detection
latencies decreased with sessions in P3, P4, and less consistently
in P2. These results indicate that patients were able to modulate
preparatory cortical activity that released the movements, and
therefore reinforces the idea that asynchronous BMI approaches
as the one here are suited to reinforce and maximize motor
planning in stroke.

Apart from changes in BMI performance, no other
neurophysiological changes are described here. Using ERD
and BP phenomena simultaneously gives raise to the hypothesis
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that the intervention might induce changes in both motor
planning and execution concurrently, contrasting the existing
approaches that singled only one of the former phenomena out.
However, despite changes in EEG due to the intervention period
were explored, no consistent results were found in terms of ERD,
BP, or power in motor cortical rhythms during rest (results not
included here). Such changes, if they exist, should be derived
from a larger sample of patients, given the high intra-patient
variability in EEG information across days (Shenoy et al., 2006).
Changes in cortical excitability derived from non-invasive brain
stimulation are not reported here either. Such changes have
been observed in other neuromodulation interventions with
muscles having large cortical representation areas, but not
with proximal muscles as the ones here stimulated. From the
authors’ perspective, the variability obtained in responses to
brain stimuli targeting proximal upper-limb muscles requires
further investigation in order to use these metrics to validate
BMI systems as the one proposed here.

Regarding functional changes, the analysis of reaching
kinematics led to small but consistent results. Reaching
movements need an adequate range of motion toward thorax
extension, shoulder flexion, and elbow extension. The altered
kinematic of reaching movements in stroke are typically
characterized by compensatory trunk and shoulder movements
(Roby-Brami et al., 2003a,b). Taken together, the positions of
joints observed after the intervention pointed to an improved
reaching movement execution, with higher shoulder flexion
(increased 0.7◦), lower elbow and thorax flexion (2.09 and 4.97◦,
respectively). In addition, patients showed a reduction of 5.45◦

in the compensatory shoulder abduction after the intervention
period. In general, a more symmetrical reaching pattern could be
observed in most cases. Additionally, FMA-UE scores obtained
immediately after the intervention were higher than the minimal
clinically important difference (MCID) established for the FMA-
UE in chronic stroke patients, which ranged from 4.25 to 7.25
points (Page et al., 2012). All participants showed improvements
in the total score in FMA-UE. Improvements were found in
passive joint motion scores, which may be related to the repeated
training of specific movements with assistance. Additionally,
motor function and sensation in FMA-UE scores improved, likely
reflecting a favorable effect of repeated motor activity using FES
to assist upper-limb reaching (Wang, 2007). These results are in
line with previous reports suggesting that combined modulation
of voluntary movement, proprioceptive sensory feedback, and
electrical stimulation can play a relevant role in improving
impaired sensory-motor integration by FES therapy (Hara, 2010).
The SIS-16 after the intervention was also increased in the
patients (10.5 points). This increment was between the MCID
range established for the SIS-16 (9.4–14.1 points; Fulk et al.,

2010). These results point to a positive effect of the intervention
in the participants’ health status.

With respect to the satisfaction assessments, according to
the patients two aspects should be improved in order to carry
out this intervention in further studies. First, it is necessary to
carry out more sessions and more arm movements to achieve
a better learning transfer. Second, the instrumentation has to
be simplified because this aspect may generate fatigue and
discomfort in the participants.

This study was carried out with a small sample of patients.
This implies that, despite consistent changes could be observed
across patients, no statistically significant changes were observed
in the clinical or functional metrics, likely due to the small
statistical power. To demonstrate the benefits of the intervention
proposed here as compared to (or in conjunction with) more
traditional therapies, future studies in line with the present
manuscript should involve larger groups of patients, with sample-
matched control groups and blind assessments to avoid observer’s
bias. Moreover, the analysis of the proposed intervention in
subacute stroke would also be relevant to test if the functional
impact is larger in patients more susceptible to neuromodulation
interventions.

CONCLUSIONS

This manuscript represents an approach to BMI-FES
interventions for the upper limb in stroke patients, exploiting the
predictive properties of EEG signals related to motor processes.
Results show a potentially beneficial effect of the BMI-FES
intervention in terms of clinical scales and kinematic analysis. In
addition, the study demonstrates the suitability of the proposed
EEG-based decoding algorithms for their use with patients.
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Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation

exercises with their affected upper extremity. Advanced rehabilitation technology may

support them in performing such reach-to-grasp movements. The challenge is, however,

to provide assistance as needed, while maintaining the participants’ commitment during

the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis

for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular

stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic

stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom

exoskeleton which was attached to the paretic arm for performing reach-to-grasp

exercises resembling activities of daily living in a virtual environment. During the exercises,

adaptive electrical stimulation was applied to seven different muscles of the upper

extremity in a performance-dependent way to enhance the task-oriented movement

trajectory. The stimulation intensity was individualized for each targeted muscle and

remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular

stimulation could be well integrated into the exoskeleton-based training, and increased

the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015),

while preserving accuracy. The highest relative stimulation intensity was required to

facilitate the grasping function. The facilitated range of motion correlated with the upper

extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive

multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual

motor capabilities of severely affected stroke patients during rehabilitation exercises and

may thus provide a customized training environment for patient-tailored support while

preserving the participants’ engagement.

Keywords: functional electrical stimulation, robot-assisted rehabilitation, feedback, virtual reality, individualized

therapy, hemiparesis, upper-limb assistance, hybrid assistance
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INTRODUCTION

The majority of stroke survivors remain dependent on others
for activities of daily living due to a dysfunctional upper
extremity (Jørgensen et al., 1999; Dobkin, 2005; Feigin et al.,
2008). However, when clinically meaningful improvements are
achieved, they correlate positively with the dose of therapy (Lohse
et al., 2014; Pollock et al., 2014). Many studies, therefore, aimed
to further increase the number of task-oriented exercises by
applying assistive robotic technologies for stroke rehabilitation;
often resulting in improved arm/hand function and muscle
strength, albeit respective trials have, as yet, provided only
low-quality evidence (Mehrholz et al., 2015). However, critical
voices attribute technology-assisted improvements such as these
to unspecific influences like increased enthusiasm for novel
interventions on the part of both patients and therapists
(Kwakkel and Meskers, 2014). In the same vein, when compared
to dose-matched conventional physiotherapy, robot-assisted
training showed no clinically relevant, additional benefits in
controlled trials (Lo et al., 2010; Klamroth-Marganska et al.,
2014).

This dilemma might be illustrated, for example, by the most
advanced commercially available training system for the upper
limb; an active robotic exoskeleton with seven actuated axes
(i.e., degrees of freedom) that provides antigravity support for
the paretic arm and enables patients with severe impairment to
perform task-oriented movements (Klamroth-Marganska et al.,
2014; Kwakkel and Meskers, 2014; Brauchle et al., 2015).
This device provided slightly more functional gain for the
participating stroke survivors, but was less effective in restoring
arm strength than conventional therapy (Klamroth-Marganska
et al., 2014), probably because it was too supportive when
providing assistance as needed during the exercises (Chase, 2014;
Brauchle et al., 2015).

In this context, neurophysiological parameters might
constitute a means of preserving patient engagement and
of avoiding under-challenge. Other studies applied surface
electromyography to infer the person’s intention to perform a
particular movement and used it as a control signal for robotic
assistance (Maciejasz et al., 2014). For severely impaired stroke
patients, however, who might benefit most from robotic therapy
(Klamroth-Marganska et al., 2014; Brauchle et al., 2015), this
physiological parameter might be inadequate due to paralysis
and/or abnormally co-activated muscles (Wright et al., 2014).
Novel robotic devices, therefore, move only when the brain is
most responsive to the feedback by the multi-joint exoskeleton
(Brauchle et al., 2015). More specifically, patients control the
rehabilitation robots with their brain signals—i.e., via motor
imagery-related oscillations of the ipsilesional cortex—within
the framework of a brain-robot interface (BRI) for stroke
rehabilitation (Brauchle et al., 2015). Although, this technique
makes it possible to successfully link three-dimensional robotic
training to the participants’ own effort, some findings also suggest
that sustained brain self-regulation for brain-controlled robotic
training is challenging and that it may even be characterized by
a significant association with the experience of frustration for
the participants (Fels et al., 2015). This potential drawback of

connecting rehabilitation exercises to physiological parameters
might possibly be overcome, if the resources available for
coping with the mental load, that occurs in conjunction with
BRI technology, are taken into consideration and when the
task difficulty is adjusted accordingly (Naros and Gharabaghi,
2015; Bauer and Gharabaghi, 2015a,b; Naros et al., 2016a). At
the same time, however, a direct comparison of the perceived
workload of BRI tasks and classical rehabilitation exercises
on the basis of voluntary muscle contraction suggested that
the experience of frustration and over-challenge was task-
independent, thus supporting the notion that the perceived
workload was influenced by the characteristics of the individual
subject (Fels et al., 2015).

Accordingly, assistance as needed has to be individually
adjusted during stroke rehabilitation and, if not used precisely,
is constantly confronted with the dangers of both under- and
over-challenge, no matter what assistive technology is applied.
However, current assisted approaches usually take an all-or-
nothing approach, e.g., by providing active robotic guidance
to complete a movement as soon as the patient failed to
reach the defined goal (Klamroth-Marganska et al., 2014); or
by triggering functional electrical stimulation (FES) for overt
muscle contraction as soon as a predefined physiological state
(recorded with EMG or EEG) is achieved (Howlett et al.,
2015).

More targeted assistance might, therefore, be necessary during
these rehabilitation exercises to maintain engagement without
compromising the patients’ motivation; i.e., providing support
as little as possible and as much as necessary. Along these
lines, we explored an alternative approach to classical assistive
technology in this feasibility study. Instead of applying standard
robot-guided rehabilitation or triggered FES, we minimized the
robotic assistance to pure antigravity support while providing
performance-dependent, neuromuscular electrical stimulation
with subthreshold modulation of individual upper limb muscles.
Notably, the robotic assistance was passive, and the electrical
stimulation was non-functional, i.e., elicited no overt movement.
We hypothesized, however, that this combined, closed-loop
approach leads to a wider range of motion than any one of these
assistive tools by itself.

METHODS

Eighteen stroke patients (female/male: 6/12; right/left
hemispheric stroke: 13/5, ischemic/hemorrhagic: 13/5; mean
age: 56 ± 9.8 [34 69] years) in the chronic phase after stroke
(78± 55.3 [8 244] months) presented with a severe and persistent
hemiparesis. The modified upper extremity Fugl-Meyer-
Assessment score (i.e., mean motor UE-FMA score without
coordination, speed, and reflexes; Naros and Gharabaghi, 2015)
of our group of patients was 15.6 ± 4.9 [9 25]. This study,
which was approved by the ethical review committee of the
local medical faculty, involved two sessions of reach-to-grasp
training with a multi-joint exoskeleton attached to the paretic
arm. Each session lasted approximately 30min. and consisted of
150 trials. The exoskeleton, virtual reality, and task design have
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been described in detail elsewhere (Grimm et al., 2016) and are
cited here.

Exoskeleton and Virtual Reality
We used a commercially available (Armeo Spring, Hocoma,
Volketswil, Switzerland) rehabilitation exoskeleton for shoulder,
elbow and wrist joints with seven axes (i.e., degrees of freedom),
providing antigravity support for the paretic arm and registration
of movement kinematics and grip force. The un-weighing
was realized via two springs incorporated into the device.
This device could be used to make individual adjustments
e.g., of gravity compensation, thereby supporting patients with
severe impairment in performing task-oriented practice within
a motivating virtual environment. We extended these features
in-house by using the real-time sensor data of the exoskeleton
to display a three-dimensional multi-joint visualization of the
user’s arm in virtual reality. This entailed capturing the angles
of all arm joints and the grip force from a shared memory
block using a file mapping communication protocol. The virtual
arm engine was programmed in a Microsoft XNATM framework.
The arm model utilized by the engine was constructed as a
meshed bone-skin combination with 54 bones (3Ds Max 2010TM,
Autodesk). The measured joint angles (accuracy 0.1◦) and grip
forces of the device were used to modify the bone-vectors of
the meshed model according to the movements of the user,
thereby providing online closed-loop feedback. The joint angles
of the exoskeleton were directly represented in virtual reality,
whereas the grip forces were augmented to feedback natural hand
function. Prior to each session, participants were instructed to
perform a natural reach-to-grasp movement during the task by
using distal (elbow) rather than proximal (shoulder) movements.
The three-dimensional visualization of the arm was then applied
during each task as an implicit online feedback of the movement
since explicit information can disrupt motor learning in stroke
patients (Boyd and Winstein, 2004; Cirstea and Levin, 2007).
Various virtual training paradigms were designed to allow for
different rehabilitation exercises resembling activities of daily
living.

Task Design
In this study, participants performed self-paced, three-
dimensional (in x-, y-, and z-direction) reach-to-grasp
movements in virtual space. Patients could interact within
the virtual space via the virtual arm representation described
above. The position of the virtual arm changed in real-time
according to the patient’s arm position tracked by the orthosis.
The grasping and releasing of the virtual ball was performed
by applying force to the grip sensor and opening the hand,
respectively. The relationship between the force applied to the
grip sensor and the virtual movement was adjusted individually
to each user.

After system setup, the exercise was presented on a screen
in front of the patient. This exercise consisted of a transfer
movement, i.e., a ball had to be grasped in virtual space and
transferred to a basket. The position of the ball and the basket
in space and in relation to each other was randomly distributed
in x- (left to right/ right to left), y- (up to down/down to up),

or z-direction (front to back/ back to front). After presenting
the objects in virtual space, the patients had to move the virtual
hand toward the presented ball. The movements were self-paced
and no distinct timing was given. After grasping the ball, three-
dimensional transfer movements toward a basket were necessary,
i.e., the ball had to be grasped, carried to a distant basket and
then released again. The timing for this transfer movement was
self-induced. The virtual hand could interact with the ball as
soon as it entered a defined range around the latter. The ball
changed its color according to the hand position (white: out of
range, green: possible to grasp, yellow: possible to transfer, red:
possible to release). After releasing the ball in the basket, the next
exercise started by presenting the next ball randomly distributed
in virtual space.

Closed-Loop Neuromuscular Stimulation
We integrated a neuromuscular electrical stimulation device
in the exoskeleton-based training environment (Rehastim, 8-
channel stimulator, Hasomed GmbH, Magdeburg, Germany),
and applied biphasic square impulses (frequency: 30Hz, pulse
width: 500µs). The stimulation intensity of this integrated
neuroprosthesis was updated in a closed-loop, real-time iteration
at 60Hz via a controller area network (CAN)/universal serial
bus (USB) port using a custom-made algorithm. This made it
possible to stimulate seven different muscles / muscle groups
relevant for reaching and grasping, while the output current was
adapted continuously for each of them: M. extensor digitorum
communis, M. flexor digitorum superficialis, M. biceps brachii,
M. triceps brachii, M. pectoralis major, M. infraspinatus/M.
teres minor (i.e., muscle group), M. deltoideus pars anterior.
In pairs of antagonist muscles/muscle groups, only one of
them was stimulated at the same time; i.e., either M. extensor
digitorum communis or M. flexor digitorum superficialis, either
M. biceps brachii or M. triceps brachii, either M. pectoralis
major or M. infraspinatus/M. teres minor. This resulted—
together with the M. deltoideus pars anterior—in up to four
simultaneously stimulated, co-activated muscles/muscle groups
(Figure 1).

According to a biomechanical movement model (Figure 2)
on the basis of the vector positions of the virtual arm, the
neuromuscular stimulation pattern and intensity was calculated
(Figure 3).

More specifically, the target vector and the estimated
movement vector of each individual muscle group were
calculated on the basis of the real-time arm position measured
by the exoskeleton, while using the cosine similarity functions
between the two vectors for weighting. This function gives
a maximum output of 1 when the target vector and the
estimated movement vector of the corresponding muscle group
are pointing in the same direction. When the vectors point
in opposite directions, the function would result in a negative
output and is then set to zero, i.e., resulting in no stimulation.
For positive outputs, i.e., when target vector and estimated
movement vector point in the same direction, the stimulation
amplitudes are calculated by multiplying the weighting of the
muscle vectors with a Boltzmann-fitting of the time course of
a ramping stimulation toward maximum stimulation strength
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FIGURE 1 | Set-up of multi-channel neuromuscular stimulation integrated into a gravity-compensating, seven-degree-of-freedom exoskeleton.

FIGURE 2 | Biomechanical movement model on the basis of the vector positions of the virtual arm. The vector vt (blue) is representing the target vector

necessary to reach the object. The vector x4t (green) is representing the movement vector of stimulating the M. biceps brachii in the elbow joint. The ellipses represent

the movement radius.

(Equation 1). This stimulation began with a 2 s delay to avoid
instability of the induced movement.

ci(t) =
(

1− 1
et

)

ci max

−→xιt
−→vt

‖−→xιt‖‖
−→vt ‖

ci ∈ R0+ : stimulation current, muscle group i
xιt : estimated movement vector, muscle group i
−→vt : estimated target vector

(1)

Each patient performed two consecutive exoskeleton-supported
training sessions—one with and one without concurrent
stimulation—in randomized order. Both the exoskeleton and
the maximum stimulation intensity (Stimmax) were individually
calibrated: The exoskeleton was adjusted to provide optimized
gravity compensation for every joint and to allow for goal-
directed movements in three-dimensional space. The gravity
compensation was provided by a spring mechanism of the
orthotic device, which was calibrated individually to balance the
weight of the patient’s paretic arm. Thereby, the exoskeleton
was adjusted to the corresponding functional anatomy of

the participant before each session. Particularly, the shoulder

position, forearm, and upper arm length were considered for the

adjustments.
For calibration of the stimulation intensity, the different

muscles/muscle groups where identified anatomically before

applying the self-sticking FES electrodes (Han-Sen GmbH,
Hamburg, Germany; 50mm diameter and 50 × 80mm).
The electrode positions were optimized by subsequent test
stimulation. Since all participants suffered from severe

upper limb impairment, prolonged supra-motor threshold
stimulation was perceived as painful and ineffective and
was therefore not applied. The Stimmax for each muscle

group was empirically determined as the output current
perceived as comfortable and approaching the motor
threshold, but remaining still subthreshold. The motor
threshold was identified by a visible joint movement. Each
muscle group was stimulated separately before the training
session to determine the individual maximum stimulation
strength.
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FIGURE 3 | Flow diagram of the autoadaptive stimulation algorithm.

Outcome Measures
The kinematic assessment included movement smoothness,
temporal efficiency, and range of motion (volume). Movement
smoothness was captured by calculating changes of movement
direction along an optimal direct path toward the targets, by
estimating the distance function between the hand-position and
the final endpoint, and by calculating the second derivative of the
function to determine the number of turning points for each task

(Cirstea et al., 2006). In order to avoid compensatory shoulder
movements the stimulation patterns for shoulder and biceps
activation were equally distributed for an inbound trajectory.
Temporal efficiency was captured as the time required to

complete each task, and as the mean and peak velocity of the
hand between the targets while calculating their distance for
x-, y-, and z-directions in virtual units (vu). The overall range
of motion (volume, vu3) was measured as the complete space
covered during the exercises. The range of sensor data from the

grip-sensor was estimated as the mean change in grip pressure.
The range of shoulder, upper arm, and forearm movement was

measured in degrees.
The maximum (Stimmax) and mean stimulation amplitude (in

mA) was calculated per channel, i.e., muscle group. In addition,

we captured the stimulation period for different stimulation
intensities, i.e., <25% Stimmax, 25–50% Stimmax, >50–75%

Stimmax, >75% Stimmax.

Statistics
Statistical analysis was performed on a Matlab 2010b Engine.
For paired data points a t-test for paired samples was
performed. The significance level was set at p = 0.0125 for
all tests after conservative Bonferroni correction. Correlation
coefficients r and respective p-values were calculated
between the overall range of motion and the UA-FMA
score.

RESULTS

The three-dimensional reach-to-grasp exercises of this study
could be completed only with the help of assistive technology.
None of the patients was able to complete grasping exercises in
unsupported conditions, i.e., they all scored 0 out of a possible
4 points in the related FMA sub-scores (“grasp cylinder,” “grasp
tennis ball”). However, neuromuscular stimulation alone was not
sufficient in our severely impaired patient group, i.e., none of the
targeted muscles was stimulated in a functionally relevant way to
allow for overt muscle contraction. The patients were, therefore,
unable to perform a reach-to-grasp movement per se, even when
neuromuscular stimulation was applied. Instead, the multi-joint
antigravity assistance was essential to facilitate the goal-oriented
grasping exercises in the 3D-virtual environment and required
commitment from the patients.
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Fifteen of the patients were able to complete all 150 trials
in each session. The amount of training had to be reduced for
three patients, two of whom completed 75 trials and the third 50
trials in each session. This resulted in a group mean of 135 trials
(±32.2808, [50 150]). The reach-to-grasp direction was randomly
distributed (x: 44.4± 12.1 vu, y: 45.1± 11.2 vu, z: 44.1± 12.6 vu).

Closed-loop neuromuscular stimulation could be integrated
well into the exoskeleton-based training; this neuroprosthesis

increased the task-related range of motion (ROM) in 16 out of 18
participants as well as themean ROMof all patients (p = 0.0004).
More distant targets in the virtual training space were achieved
in all three x-, y-, z-directions and the participants were able to
perform longer transfer movements, i.e., inter-target distances
(Table 1, Figure 4).

Moreover, the movement range of the shoulder, upper
arm, and forearm increased significantly in the neuroprosthesis

TABLE 1 | Virtual training space with and without stimulation.

Volume (vu3) Distance between x-Movements y-Movements z-Movements

targets (vu) distance (vu) distance (vu) distance (vu)

Training space in virtual units (with

and w/o stim)

4877 [548 13539] 27.8± 10.9 [1.650.4] 39.6± 18.0 [2.974.6] 28.0±12.7 [0.852.6] 18.9± 6.45 [1.632.4]

Neuroprosthesis (with stimulation) 5667 [7366 13538.8] 30.7± 12.2 [7.250.4] 44.1± 19.2 [9.574.6] 30.5±14.3 [0.852.6] 20.3± 6.5 [10.132.4]

Orthosis (w/o stimulation) 4087 [5488 9023] 24.86± 9.58 [1.639.8] 35.1± 16.7 [2.969.8] 25.4±10.9 [1.141.9] 17.5± 6.4 [1.628.6]

Significance level,

p-value(*significant)

0.0004* 0.0001* 0.0007* 0.001* 0.002*

FIGURE 4 | Comparison of paired plots for mean values of the range of motion (volume) and distances in x-, y-, and z- direction with and without

stimulation.
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condition, while the grip pressure showed a trend (Table 2,
Figure 5). The range of motion correlated with the upper
extremity Fugl-Meyer Assessment score of the patients for both
the antigravity orthosis (r = 0.62, p = 0.01) and the
neuroprosthetic condition (r = 0.58, p = 0.028).

The neuroprosthesis increased the movement velocity (3.8 vs.
3.5 vu/s, p = 0.015) with a trend toward a faster task completion
(6.9 vs. 7.2 s, p = 0.02) while preserving the smoothness of the
trajectory (9.3 vs. 9.31, p = 0.46; Figure 6).

The stimulation was applied after the self-inducedmovements
of the patients by adapting the intensity in accordance with
the output of the dynamic biomechanical arm model and the
estimated target vector for each targeted muscle group (Table 3,
Figure 7). Completion of the overall task took on average 6.9 s,
while most of the time (mean 4.8 ± 0.6 s, i.e., 82% of the time)
no or only minimal stimulation, i.e., <25% of Stimmax, was
applied. The same was true for the virtual transfer task of the ball
into the basket, which was supported by minimal stimulation,
i.e., <25% of Stimmax, in 78% of the trajectory.The highest
relative stimulation intensity was necessary to facilitate the
grasping function, i.e., the grip strength in transfer movements,
by applying stimulation intensities of >75% Stimmaxto the finger
flexion muscle for about 22% of the time. The performance-
dependent adaptation of stimulation resulted in a decrease in
both stimulation intensity (on average by 35.4%) and period
(on average by 36.77%) in the course of the session, which is
suggestive of motor learning.

DISCUSSION

The present study demonstrated the feasibility of integrating
multichannel closed-loop neuromuscular stimulation in an
exoskeleton-based training; this neuroprosthesis increased the
goal-oriented range of motion and movement velocity while
preserving accuracy in chronic stroke patients with a severe
impairment of the upper-extremity. The multi-joint exoskeleton
for the paretic arm enabled the patients to perform task-oriented
practice within a virtual environment (Housman et al., 2009),
which they were unable to perform without assistance. Notably,
unlike other studies with similarly affected stroke patients, in
which robots completed a movement that the patients had
begun (Klamroth-Marganska et al., 2014; Brauchle et al., 2015),
this hybrid technology delivered antigravity-support only, i.e.,
provided no active assistance. Thus, the patient engagement
was maximized by default in the present study, leaving no
room for slacking; the continuous visual feedback of the arm
kinematics enabled the patients to adjust their action online

during each task; an approach closely resembling natural motor
learning.

Such a closed-loop framework adheres to an operant
conditioning rationale (Bauer et al., in press), providing
contingent feedback to facilitate the targeted activity considered
to be beneficial to recovery and which might ultimately lead to
functional gain (Bauer and Gharabaghi, 2015a). One drawback
of such restorative approaches, however, is that the considerable
challenge of these exercises (Fels et al., 2015; Bauer and
Gharabaghi, 2015b) might condition the patients to explore
alternative, i.e., therapeutically undesirable strategies such as
compensatory shoulder movements (Cirstea and Levin, 2000) or
co-activation of non-targeted muscles (Gharabaghi et al., 2014b).
Moreover, particularly in patients with severe impairments,
non-successful trials may frustrate the participants, thereby
compromising their motor learning.

In this context, adaptive neuromuscular stimulation, as
applied in the present study, may support the exercises by
extending the range of motion in accordance with the actual
ability of each patient. More specifically, the range of motion
correlated with the upper extremity Fugl-Meyer Assessment
score of the patients for both the non-NMES and the NMES
condition, indicating a targeted assistance of the genuine
movement capability of each patient. Importantly, to avoid
under-challenge, stimulation was applied adjunct to voluntary
contraction and not as an alternative. Moreover, such an additive
stimulation approach has proved effective in assisting reaching
and grasping exercises in severely impaired, chronic stroke
patients for repetitive task practice (Thrasher et al., 2008;
Oujamaa et al., 2009; Mann et al., 2011). Unlike these previous
approaches, however, our stimulation paradigm was (i) multi-
channeled, i.e., targeting seven different muscles, (ii) model-
based to follow the three-dimensional movement trajectory, (iii)
performance-dependent to enhance task-oriented training, and
(iv) subthreshold to avoid slacking:

(i) Previous approaches combining functional electrical
stimulation (FES) with mechanical support for the upper
limb usually stimulated one or two muscles. Only recently,
FES of thee joints, i.e., shoulder, elbow, and wrist, was
implemented and shown to be effective in reducing upper
limb impairment following stroke (Meadmore et al., 2014).
Notably, more functional motor activities of the upper limb
could be performed following this intervention: a finding
that could not be achieved in an earlier study conducted
by the same research group using exactly the same therapy
dose (18 sessions, 60min each) with FES to two proximal
muscles only (Meadmore et al., 2012). Future studies will

TABLE 2 | Movement range of joints with and without stimulation.

Joint Shoulder (◦) Upper arm (◦) Forearm (◦) Grip (pu)

Movement in degrees (with and w/o stim) 18.2 ± 10.8 [1.7 54.4] 9.7 ± 4.9 [0.4 19.4] 8.9 ± 5.8 [0.2 29.2] 0.1 ± 0.1 [0.0 0.2]

Neuroprosthesis (with stimulation) 20.2 ± 11.9 [5.2 54.4] 11.0 ± 5.2 [2.7 19.4] 10.8 ± 9.2 [0.1 27.7] 0.1 ±0.1 [0.0 0.2]

Orthosis (w/o stimulation) 16.3 ± 9.7 [1.7 43.5] 8.4 ± 4.5 [0.4 16.1] 7.5 ± 4.9 [0.2 18.5] 0.1 ± 0.1 [0.0 0.2]

Significance level, p-value (*significant) 0.0012* 0.0002* 0.0007* 0.08 (not significant)
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FIGURE 5 | Comparison of paired plots for mean values of kinematic data (for shoulder movement, upper arm movement, forearm movement, and

grip force) with and without stimulation.

TABLE 3 | Stimulation parameters.

Muscle M. flexor digitorum M. extensor M. biceps M. triceps M. pectoralis M. infraspinatus M. deltoideus

superficialis carpi radialis brachii brachii major pars anterior

Channel 1 2 3 4 5 6 7

Calibrated maximum stimulation

intensity (mA)

9.67 [2.00 20.00] 8.8 [3 17] 11.4 [6 22] 11.7 [6 22] 8.9 [4 17] 9.8 [4 18] 8.7 [4 17]

Mean stimulation intensity (mA)

and range

3.3 [0.8 6.3] 0.7 [0.3 1.3] 2.2 [0.9 4.7] 1.1 [0.4 2.0] 1.5 [0.6 4.1] 0.9 [0.4 2.1] 1.1 [0.4 2.5]

Stimulation period % (Amplitude

[0% 25%])

48.6 [36.7 77.3] 88.4 [77.7 97.8] 69.9 [57.6 89.4] 87.6 [76.5 96.2] 71.2 [52.0 94.9] 84.2 [68.1 94.9] 79.4 [61.1 96.8]

Stimulation period % (Amplitude

[25% 50%])

12.4 [0.0 21.8] 5.8 [1.2 14.5] 12.4 [6.0 18.5] 5.6 [2.4 8.5] 11.7 [3.6 22.4] 7.4 [2.9 16.8] 8.8 [1.6 19.0]

Stimulation period % (Amplitude

[50% 75%])

16.9 [8.9 22.5] 3.5 [0.4 7.1] 9.9 [3.5 14.8] 4.0 [0.3 6.6] 10.0 [1.3 18.3] 4.5 [2.0 6.9] 5.7 [1.3 11.8]

Stimulation period % (Amplitude

[75% 100%])

22.1 [5.6 40.3] 2.4 [0.4 5.2] 7.9 [0.6 17.5] 2.9 [0.2 8.5] 7.0 [0.2 13.0] 3.9 [0.2 8.9] 6.1 [0.3 13.3]
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FIGURE 6 | Comparison of paired plots for mean values of distance to target, velocity, time per task, and smoothness of trajectories with and without

stimulation.

reveal whether a more fine-graded targeting of even more
muscles—as shown to be feasible in the present study for
stimulation-assisted task-oriented 3D exercises—leads to
further functional gains when applied repetitively within a
multi-session intervention.

(ii) Conventional FES of the upper limb, even when
physiologically triggered, follows an all-or-nothing
concept. Only few research groups have explored model-
based stimulation paradigms to precisely control FES for
goal-oriented movements of the upper limb (Hughes et al.,
2009; Meadmore et al., 2012, 2014). The most advanced
approach used iterative learning control, which applied
data from previous attempts in an effort to update the
FES control signal on the current attempt (Meadmore
et al., 2014). The reduction of error between real and
reference trajectories within a biomechanical model thereby
corresponded to improved performance over successive
attempts. In addition, the supplied FES was reduced
as performance improved to optimize motor learning
(Meadmore et al., 2014). Our approach complements this
strategy; instead of adjusting the stimulation from trial to
trial, we tuned it within each trial. Rather than aiming to

reduce the error between actual and reference trajectory
with suprathreshold FES, we applied a ramping stimulation
which, nevertheless, remained subthreshold throughout the
task-oriented attempt (see below). Instead of one (Hughes
et al., 2009), two (Meadmore et al., 2012), or three muscles
(Meadmore et al., 2014), we integrated a total of seven
muscles into our biomechanical model. By adding more
muscles a larger number of movement directions could be
addressed, thereby, covering a three-dimensional volume
with movements in x-, y-, and z-direction. Despite these
differences, the supplied multi-channel stimulation was
reduced in our feasibility study as well. This could already
be observed in the course of one session, suggesting that,
even when applied subthreshold, an online adaptation of
stimulation has immediate effects on motor learning.

(iii) The performance-dependent stimulation applied in the
present study was more subtle than in other approaches.
Since no functional muscle contraction was achieved by
the actual stimulation, performance was instead captured
by gradual modulations of self-initiated, orthosis-assisted
movements. It is therefore somewhat surprising that
this novel approach resulted in task-adapted stimulation
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FIGURE 7 | Exemplary three-dimensional movement trajectory (upper row) with the respective movement in x-direction over time for different phases

of the task (middle row). Stimulation intensities during the movement that were applied to the respective muscles (lower row).
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intensities for each of seven targeted muscles during
the task-oriented exercises, e.g., with the highest relative
stimulation intensity for facilitation of grip-strength
occurring during transfer movements. This information
about the different levels of assistance required by the
muscles for specific goal-oriented tasks might be used
in future studies to customize the exercises and training
protocols in such a way as to target specific weaknesses,
e.g., particular muscles/muscles groups in the course of a
long-term training program.

(iv) Neuromuscular stimulation alone, however, was not enough
to facilitate reach-to grasp movements in our severely
impaired patient group. Instead, multi-joint antigravity
assistance was required to facilitate the task-oriented
training in the 3D-virtual environment. Although, none
of the targeted muscles was stimulated in a functionally
relevant way to allow for overt muscle contraction,
the cumulative effect of multi-channel subthreshold
stimulation resulted in an increased range of motion and
movement velocity while preserving smoothness during
the goal-oriented exercises. This finding suggests a general
facilitation of sensorimotor networks, which might provide
a novel restorative approach in chronic stroke patients with
a severe impairment of the upper-extremity. However, it has
to be borne in mind that the applied ramping stimulation,
based on a Boltzmann-fitting algorithm during each task,
led to minimal stimulation intensity, i.e., <25% of Stimmax,
during most of the training period. Future studies need to
explore whether different adaptive stimulation paradigms
may achieve larger kinematic gains, e.g., by applying more
neuromuscular stimulation, or by utilizing transcranial
direct current stimulation to facilitate exoskeleton-based
motor leaning (Naros et al., 2016b).

However, the current approach resulted in kinematic gains while
still encouraging effort from the participants. To further generate
a challenge for motor learning, the progression of training is
necessary (Guadagnoli and Lee, 2004) and might be realized
by reducing the FES support level (Meadmore et al., 2014) or
by automated adaptation of training difficulty during robot-
assisted stroke rehabilitation (Metzger et al., 2014). Both of these
requirements are integrated into the presented neuroprosthetic
set-up and need to be examined in more detail with regard
to their respective clinical relevance in the targeted patient
population by performing intervention studies with repetitive
sessions.

The presented neuroprosthesis sparks hope for a general
capacity for even larger gains, e.g., when additional interventions

such as brain state-dependent cortical stimulation (Kraus
et al., 2016a) are applied to maximally exploit the salvaged
restorative potential. In particular, the task-related and muscle-
specific facilitation provided by this hybrid device during
reach-to-grasp exercises of severely impaired stroke patients,
may deliver the framework for concurrent cortical stimulation.
Activity-dependent transcranial magnetic stimulation, for
example, may constitute such an additional input during
robot-assisted training (Gharabaghi, 2015; Massie et al., 2015).

Associative brain state-dependent stimulation (Royter and
Gharabaghi, 2016) during brain-robot interface exercises has
the potential to unmask latent corticospinal connectivity after
stroke (Gharabaghi et al., 2014a). The application of such
state-dependent stimulation synchronized to maximum gains
of assisted range of motion may consolidate the involved
corticospinal circuits in accordance with Hebbian-like plasticity
rules. More specifically, neuroprosthetic exercises based on
brain-robot feedback may result in connectivity changes of
cortico-cortical motor networks (Vukeliæ et al., 2014; Vukelić
and Gharabaghi, 2015a,b) and lead to a re-distribution of
cortico-spinal connections (Kraus et al., 2016b). This advanced
assistive rehabilitation technology may thereby constitute a
back-door to the motor system to further improve the scope for
recovery (Bauer et al., 2015).

In summary, combining robotic assistance with adaptive
closed-loop neuromuscular stimulation provides customized
rehabilitation environments for severely impaired stroke
patients, and may increase kinematic parameters while
preserving the voluntary effort of patients, during rehabilitation
training. Whether these technological refinements also
lead to relevant functional gains requires investigation in
controlled intervention studies in comparison to dose-matched,
conventional physiotherapy.
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Vukelić, M., and Gharabaghi, A. (2015a). Oscillatory entrainment of the motor

cortical network during motor imagery is modulated by the feedback modality.

Neuroimage 111, 1–11. doi: 10.1016/j.neuroimage.2015.01.058
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Stroke patients with severe motor deficits of the upper extremity may practice

rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although

this technology enables intensive task-oriented training, it may also lead to slacking

when the assistance is too supportive. Preserving the engagement of the patients

while providing “assistance-as-needed” during the exercises, therefore remains an

ongoing challenge. We applied a commercially available seven degree-of-freedom arm

exoskeleton to provide passive gravity compensation during task-oriented training in a

virtual environment. During this 4-week pilot study, five severely affected chronic stroke

patients performed reach-to-grasp exercises resembling activities of daily living. The

subjects received virtual reality feedback from their three-dimensional movements. The

level of difficulty for the exercise was adjusted by a performance-dependent real-time

adaptation algorithm. The goal of this algorithm was the automated improvement

of the range of motion. In the course of 20 training and feedback sessions, this

unsupervised adaptive training concept led to a progressive increase of the virtual training

space (p < 0.001) in accordance with the subjects’ abilities. This learning curve was

paralleled by a concurrent improvement of real world kinematic parameters, i.e., range

of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity

(p< 0.001). Notably, these kinematic gains were paralleled by motor improvements such

as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity

Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining

gravity-compensating assistance with adaptive closed-loop feedback in virtual reality

provides customized rehabilitation environments for severely affected stroke patients.

This approach may facilitate motor learning by progressively challenging the subject in

accordance with the individual capacity for functional restoration. It might be necessary to

apply concurrent restorative interventions to translate these improvements into relevant

functional gains of severely motor impaired patients in activities of daily living.

Keywords: robot-assisted rehabilitation, robotic rehabilitation, individualized therapy, hemiparesis, motor

recovery, upper-limb assistance, reinforcement learning
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INTRODUCTION

Despite their participation in standard rehabilitation programs
(Jørgensen et al., 1999; Dobkin, 2005), restoration of arm and
hand function for activities of daily living is not achieved
in the majority of stroke patients. In the first weeks and
months after stroke, a positive relationship between the dose
of therapy and clinically meaningful improvements has been
demonstrated (Lohse et al., 2014; Pollock et al., 2014). In stroke
patients with long-standing (>6 months) upper limb paresis,
however, treatment effects were small, with no evidence of a
dose-response effect of task-specific training on the functional
capacity (Lang et al., 2016). This has implications for the use
of assistive technologies such as robot-assisted training during
stroke rehabilitation. These devices are usually applied to further
increase and standardize the amount of therapy. They have the
potential to improve arm/hand function and muscle strength,
albeit currently available clinical trials provide on the whole only
low-quality evidence (Mehrholz et al., 2015). It has, notably,
been suggested that technology-assisted improvements during
stroke rehabilitation might at least partially be due to unspecific
influences such as increased enthusiasm for novel interventions
on the part of both patients and therapists (Kwakkel and
Meskers, 2014). In particular, a comparison between robot-
assisted training and dose-matched conventional physiotherapy
in controlled trials revealed no additional, clinically relevant
benefits (Lo et al., 2010; Klamroth-Marganska et al., 2014).
This might be related to saturation effects. Alternatively,
the active robotic assistance might be too supportive when
providing “assistance-as-needed” during the exercises (Chase,
2014). More targeted assistance might therefore be necessary
during these rehabilitation exercises to maintain engagement
without compromising the patients’ motivation; i.e., by providing
only as much support as necessary and as little as possible
(Grimm and Gharabaghi, 2016). In this context, passive gravity
compensation with a multi-joint arm exoskeleton may be a viable
alternative to active robotic assistance (Housman et al., 2009;
Grimm et al., 2016a). In severely affected patients, performance-
dependent, neuromuscular electrical stimulation of individual
upper limb muscles integrated in the exoskeleton may increase
the range of motion even further (Grimm and Gharabaghi,
2016; Grimm et al., 2016b). These approaches focus on the
improvement of motor control, which is defined as the ability
to make accurate and precise goal-directed movements without
reducing movement speed (Reis et al., 2009; Shmuelof et al.,
2012), or using compensatory movements (Kitago et al., 2013,
2015). Functional gains in hemiparetic patients, however, are
often achieved by movements that aim to compensate the
diminished range of motion of the affected limb (Cirstea and
Levin, 2000; Grimm et al., 2016a). Although these compensatory
strategies might be efficient in short-term task accomplishment,
they may lead to long-term complications such as pain and
joint-contracture (Cirstea and Levin, 2007; Grimm et al., 2016a).
In this context, providing detailed information about how the
movement is carried out, i.e., the quality of the movement, is
more likely to recover natural movement patterns and avoid
compensatory movements, than to provide information about

movement outcome only (Cirstea et al., 2006; Cirstea and Levin,
2007; Grimm et al., 2016a). This feedback, however, needs to be
provided implicitly, since explicit information has been shown
to disrupt motor learning in stroke patients (Boyd and Winstein,
2004, 2006; Cirstea and Levin, 2007). Information on movement
quality has therefore been incorporated as implicit closed-loop
feedback in the virtual environment of an exoskeleton-based
rehabilitation device (Grimm et al., 2016a). Specifically, the
continuous visual feedback of the whole arm kinematics allowed
the patients to adjust their movement quality online during each
task; an approach closely resembling natural motor learning
(Grimm et al., 2016a).

Along these lines, virtual reality and interactive video gaming
have emerged as treatment approaches in stroke rehabilitation
(Laver et al., 2015). They have been used as an adjunct to
conventional care (to increase overall therapy time) or compared
with the same dose of conventional therapy. These studies have
demonstrated benefits in improving upper limb function and
activities of daily living, albeit currently available clinical trials
tend to provide only low-quality evidence (Laver et al., 2015).
Most of these studies were conducted with mildly to moderately
affected patients. In the remaining patient group with moderate
to severe upper limp impairment, the intervention effects were
more heterogeneous and affected by the impairment level, with
either no or only modest additional gains in comparison to dose-
matched conventional treatments (Housman et al., 2009; Byl
et al., 2013; Subramanian et al., 2013).

With respect to the restoration of arm and hand function
in severely affected stroke patients in particular, there is still a
lack of evidence for additional benefits from technology-assisted
interventions for activities of daily living. The only means of
providing such evidence is by sufficiently powered, randomized
and adequately controlled trials (RCT).

However, such high-quality RCT studies require considerable
resources. Pilot data acquired earlier in the course of feasibility
studies may provide the rationale and justification for later large-
scale RCT. Such studies therefore need to demonstrate significant
improvements, with functional relevance for the participating
patients. Then again, costly RCT can be avoided when innovative
interventions prove to be feasible but not effective with regard
to the treatment goal, i.e., that they do not result in functionally
relevant upper extremity improvements in severely affected
stroke patients.

One recent pilot study, for example, applied brain signals to
control an active robotic exoskeleton within the framework of a
brain-robot interface (BRI) for stroke rehabilitation. This device
provided patient control over the training device via motor
imagery-related oscillations of the ipsilesional cortex (Brauchle
et al., 2015). The study illustrated that a BRI may successfully
link three-dimensional robotic training to the participant’s
effort. Furthermore, the BRI allowed the severely impaired
stroke patients to perform task-oriented activities with a
physiologically controlled multi-joint exoskeleton. However, this
approach did not result in significant upper limb improvements
with functional relevance for the participating patients. This
training approach was potentially too challenging and may
even have frustrated the patients (Fels et al., 2015). The
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patients’ cognitive resources for coping with the mental load
of performing such a neurofeedback task must therefore be
taken into consideration (Bauer and Gharabaghi, 2015a; Naros
and Gharabaghi, 2015). Mathematical modeling on the basis
of Bayesian simulation indicates that this might be achieved
when the task difficulty is adapted in the course of the training
(Bauer and Gharabaghi, 2015b). Such an adaptation strategy
has the potential to facilitate reinforcement learning (Naros
et al., 2016b) by progressively challenging the patient (Naros
and Gharabaghi, 2015). Recent studies explored automated
adaptation of training difficulty in stroke rehabilitation of less
severely affected patients (Metzger et al., 2014; Wittmann et al.,
2015). More specifically, both robot-assisted rehabilitation of
proprioceptive hand function (Metzger et al., 2014) and inertial
sensor-based virtual reality feedback of the arm (Wittmann
et al., 2015) benefit from assessment-driven adjustments of
exercise difficulty. Furthermore, a direct comparison between
adaptive BRI training and non-adaptive training (Naros et al.,
2016b) or sham adaptation (Bauer et al., 2016a) in healthy
patients revealed the impact of reinforcement-based adaptation
for the improvement of performance. Moreover, the exercise
difficulty has been shown to influence the learning incentive
during the training; more specifically, the optimal difficulty level
could be determined empirically while disentangling the relative
contribution of neurofeedback specificity and sensitivity (Bauer
et al., 2016b).

In the present 4-week pilot study, we combined these
approaches and customized them for the requirements of
patients with severe upper extremity impairment by applying a
multi-joint exoskeleton for task-oriented arm and hand training
in an adaptive virtual environment. Notably, due to the severity
of their impairment, these patients were not able to practice the
reach-to-grasp movements without the exoskeleton. The set-up
was, however, limited to pure antigravity support, i.e., it provided
passive rather than active assistance. Furthermore, it tested the
feasibility of closed-loop online adaptation of exercise difficulty
and aimed at automated progression of task challenge.

METHODS

We recruited five stroke patients (2 female, mean age: 52 ±

9 [from 41 to 63] years) in the chronic phase after stroke
(65 ± 59 [from 8 to 156] months) who provided written,
informed consent and presented with a severe and persistent
hemiparesis (for details, see Table 1). The modified upper

extremity Fugl-Meyer-Assessment score (i.e., mean motor
UE-FMA score without coordination, speed and reflexes) of
our group of patients was 14.3 ± 5.3 [from 9 to 22.4]. This
study was approved by the ethical review committee of the local
medical faculty. It involved a 20-session training program in the
course of 4 weeks. Each session consisted of brain self-regulation
and proprioceptive feedback with a hand robot (Naros and
Gharabaghi, 2015) prior to a physiotherapy training with a multi-
joint exoskeleton attached to the impaired arm (Grimm et al.,
2016a). Each physiotherapy session consisted of 150 trials of task-
oriented reach-to-grasp exercises resembling activities of daily
living which were randomly distributed in the directions x, y and
z (a total of 50 trials in each direction). The general experimental
set-up has already been described in detail elsewhere (Grimm and
Gharabaghi, 2016; Grimm et al., 2016a,b) and is cited here when
applied in the same way.

Exoskeleton and Virtual Reality
We used a commercially available (Armeo Spring, Hocoma,
Volketswil, Switzerland) rehabilitation exoskeleton for shoulder,
elbow and wrist joints, with seven axes (i.e., degrees of
freedom) providing antigravity support for the paretic arm and
registration of movement kinematics and grip force (Figure 1,
upper row). This device allowed individual adjustments e.g.,
of gravity compensation, thereby supporting subjects with
severe impairment in performing task-oriented practice within
a motivating virtual environment.

We extended these features in-house by using the real-time
sensor data of the exoskeleton to display a three-dimensional
multi-joint visualization of the user’s arm in virtual reality
(Figure 1, lower row). This provided feedback as to the
movement quality, i.e., the absence or presence of compensatory
movements. Such a feedback is more liable to recover movement
patterns used by the subject before suffering a stroke. It can also
avoid compensatory movements rather than merely providing
information about movement execution (Cirstea and Levin,
2007). For this purpose, we used a file mapping communication
protocol to capture the angles of all arm joints and the grip
force from a shared memory block. The virtual arm engine
was programmed in a Microsoft XNATM framework. The arm
model utilized by the engine was constructed as a meshed bone-
skin combination with 54 bones (3Ds Max 2010TM, Autodesk).
The joint angles and grip forces of the device measured with
the exoskeleton were used to modify the bone-vectors of the
meshed model in accordance with the movements of the user,

TABLE 1 | Clinical information.

Age Sex Months post stroke Side of Insult Type of stroke Affected vessel UE FMA

Subject 1 63 female 78 right ischemic ACM 16.1

Subject 2 52 male 156 right ischemic ACI 22.4

Subject 3 59 female 20 left ischemic ACM 10

Subject 4 41 male 62 right ischemic ACM 9

Subject 5 48 male 8 left ischemic ACI 14

ACI, internal carotid artery; ACM, middle cerebral artery.

Frontiers in Neuroscience | www.frontiersin.org November 2016 | Volume 10 | Article 518 | 280

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Grimm et al. Closed-Loop Adaptation for Stroke Rehabilitation

FIGURE 1 | Training set-up with the exoskeleton (upper row) and the

provided visual feedback in virtual reality (lower row).

thus providing online closed-loop feedback. The joint angles
of the exoskeleton were directly represented in virtual reality,
whereas the grip forces were augmented to feedback natural
hand function. More specifically, the maximum grip pressure
measured by the force sensor resulted in a full closure of the
virtual hand to a fist independent of the subjects’ actual ability to
perform this particular movement. Prior to each session, subjects
were instructed to perform a natural reach-to-grasp movement
during the task by using distal (elbow) rather than proximal
(shoulder) movements. The three-dimensional visualization of
the arm was then applied during each task as an implicit
online feedback of the movement, since explicit information can
disrupt motor learning in stroke patients (Boyd and Winstein,
2004; Cirstea and Levin, 2007). More specifically, delivery of
explicit instructions has been shown to disrupt implicit motor
learning after stroke regardless of task (either continuous or
discrete movement tasks) or lesion location (involving either the
sensorimotor cortical areas or basal ganglia); this disruption did
not occur in healthy control subjects (Boyd and Winstein, 2006).
In the current set-up, various virtual training paradigms were

designed to allow for different rehabilitation exercises resembling
activities of daily living.

Task Design
In this study, subjects performed a reach-to-grasp movement
toward a ball which changed its position in virtual space
after each trial, thus necessitating three-dimensional transfer
movements. The ball had to be grasped, carried to a distant
basket and then released without the necessity for a final wrist
movement. As soon as it entered a defined range around the ball,
the virtual hand could react with the former. The ball changed
its color according to the hand position (white: out of range,
green: possible to grasp, yellow: possible to transfer, red: possible
to release). The grasping and releasing of the virtual ball was
performed by applying force to the grip sensor and opening the
hand, respectively. The respective thresholds of the grip sensor
were adjusted to the individual strength of the user.

Closed-Loop Adaptation of Task Difficulty
Modification of task difficulty was achieved by adjusting the
virtual training space, i.e., the distance between the ball and the
basket, in the course of one session, and from session to session.
More specifically, during the device calibration, an individual
base point was estimated for every subject at the beginning of
the training and remained stable throughout the sessions. This
base point was projected in the middle of the sagittal body axis
in front of the subject, serving as a reference for symmetrical
transfer movements in x (right-left), y (up-down) and z (front-
back) direction. The basket and ball were randomly distributed
in the virtual space, allowing for 6 movement directions (right,
left, up, down, forward, backward). The distances reached during
each task were recorded throughout the training and gradually
enlarged by the training algorithm. The starting distance between
ball and basket was set at 5 virtual units in x, y or z direction (vu),
corresponding to 7 cm. Upon successful completion of the task,
which was not limited in time, the next task was immediately
presented. Whenever the task was successfully accomplished
twice, an auto-adaptive algorithm progressively enlarged this
distance. In this case, the distance between the objects was
enlarged by 7 cm in the corresponding direction. The reached
distances were stored at the end of each session and provided the
starting distances for the next training day. If the task could not
be accomplished, i.e., if one object (ball or basket) could not be
reached, the distance was reduced again. To allow for enough
time to complete the movement, a timeout of 2 s was given.
Following this period, the object moved slowly toward the virtual
hand at a velocity of 0.5 vu/s until it could be reached. The new,
reduced distance was stored for the next task. Similarly, the grip
force required for initiating the augmented closing and opening
of the fingers of the virtual model was also progressively increased
whenever the respective threshold was achieved three times in
a row, and decreased when the necessary force could not be
applied. These performance-dependent adjustments enabled the
subjects to complete the tasks at their respective capability levels.
The subjects were instructed to perform the tasks as quickly
and as accurately as possible. To maintain their motivation, they
received additional feedback via a point score system: the larger
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the accomplished distance and the faster the performance, the
higher the score per trial. In addition, the total score and the five
highest trial scores were displayed to the subjects at the end of
each session (Figure 2).

Outcome Measures
The training space of the exoskeleton (real space) and the virtual
space correspond linearly with an arbitrary point O (0/0/0)
localized in the center of the shoulder joint. All quantitative
data are transformed to SI-Units. Since no direct conversion is
available, raw sensor data are displayed for the grip force. The
kinematic assessment included accuracy, temporal efficiency and
range of motion (volume). Movement accuracy was captured by
calculating changes of movement direction along an optimal path
toward the targets, by estimating the distance function between
the hand-position and the final endpoint, and by calculating
the second derivative of the function to acquire the number
of turning points for each task (Cirstea et al., 2006). Temporal
efficiency was captured as the time required to complete each
task, and as the mean and peak velocity of the hand between
the targets while calculating their distance for x-, y-, and z-
directions in virtual units (vu). The range ofmotion (volume) was
measured according to the orthosis and displayed in degrees. The
range of sensor-data from the grip-sensor was estimated as the

mean change in grip pressure. Furthermore, the raw movement
data of all joints (shoulder, upper-arm, elbow and wrist) was
acquired in degrees. Movements were allowed in 3D space, i.e.,
moving simultaneously in x-, y-, and z-direction, as illustrated
in Figure 2. However, the outcome measure “mean distance”
refers to an arithmetic mean, since the targets were aligned in
one axis (x, y, or z) for each task. The average distance covered
in the corresponding direction thus reflected the increase of the
inter-target distance. Providing the distance in 3D space would
have provided (particularly in the first sessions) false positive
values due to large inaccuracies duringmovement execution. As a
cumulative parameter of the performance evolution in 3D space
we computed the total training volume, which grew along with
the subjects’ abilities. This volume was estimated on the basis of
the performed movement in 3D space (not on the basis of the
inter-target distance).

Statistics
Statistical analysis was performed on a Matlab (2010b) Engine.
The kinematic data (volume, distance, grip pressure and joint
movement) was tested for linear distribution using the Lilliefors-
test (2-sided goodness-of-fit test). The non-parametric Kruskal-
Wallis was used for group comparisons of the UE-FMA score
between pre- and post-training. To estimate the evolution of

FIGURE 2 | Upper row: exemplary kinematic data of movement in the x-direction (patient 5, first training session) with the evolution of the task

distance in the course of the trials, i.e., at the beginning of the session (A) and in the middle of the session (B). Lower row: evolution of achieved distances in

x-, y- and z-direction in the course of one training session (same as above). The trials shown above are marked with (A) and (B).
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parameters during training, a robust multilinear regression
model was fitted. Since the Lilliefors-test revealed normality of
the data, a robust multilinear regression analysis was applied to
minimize the impact of outliers (Holland and Welsch, 1977).
The fitting function was based on an iteratively reweighted least
squares algorithm. The weight of each iteration was calculated by
applying a bi-squared function to the residuals of the previous
iteration. The slope b of coefficient estimates and the ratio of the
standard error of coefficient estimates (t) are presented for every
fitting function. The significance level was set to p = 0.05 for all
tests.

RESULTS

All subjects were able to perform the reach-to-grasp exercises in
virtual space due to gravity compensation and alteration of the
grip force of the exoskeleton.

In the course of 20 sessions, the auto-adaptive algorithm led to
a progressive increase of the training space in accordance with the
subjects’ abilities (Figure 3: individual subjects, Figure 4: group
data normalized to baseline, Figure 5: group data normalized
to maximum). The results are presented in Table 2. The gain
was particularly high in the first 2–3 sessions, and reached a
plateau in the last 3–4 sessions. The mean distance, and the
distances for the y-direction and the z-direction in virtual space

all showed a significant increase throughout all sessions. The
trend in the x-direction (p = 0.057) for all sessions reached
significance when considering the evolution before the saturation
effect, i.e., sessions 1–18.

This learning curve was paralleled by an improvement of
kinematic parameters (Figure 5, Table 2): The mean training
volume increased over the time course of training (pre:
18054 cm3 ± 26053 cm3; post: 35572 cm3 ± 15069 cm3), reaching
a robust average increase of at least 100% of the starting volume
from the 6th session on. This improvement was paralleled by
a temporary (i.e., sessions 7–18) increase of volume variability,
indicating the potential for relevantly larger gains in some of the
subjects.

This gain in range of motion was not at the expense of other
kinematic parameters. By contrast, both the inaccuracy (number
of turning points) and movement speed- related parameters such
as peak velocity and time per task also improved. The peak
velocity revealed a robust average increase of at least 50% of
the starting speed from the 10th session on. The variability also
increased steadily, suggesting that subjects have different specific
slopes of increased speed.

Notably, these kinematic gains were also paralleled by
significant motor improvements for grip force and elbow
movement. The degree of elbowmovement increased throughout
all sessions by an average of 50% from the 11th to the 16th
session, before reaching a saturation level later on. The average

FIGURE 3 | Evolution of mean arithmetic distance of all directions together and distances for x-, y- and z-directions in the course of the training for

each patient. Each point represents the mean across 50 trials in each direction for each subject. The color indicates the different patients. One session was

performed per day. The solid lines indicate the linear regressions in the course of training.
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FIGURE 4 | The figure shows the across subject evolution of the distance traveled in the x, y, and z directions. The median distance is estimated across

subjects, where the distance is the average distance covered in the corresponding direction across trials per session per subject. The data is normalized to the

baseline session. Represented are the median group values (dots), the 95% confidence interval and the linear regression (solid line). The subplots shows the evolution

of the (A) arithmetic mean distance, (B) the distance in the x- direction, (C) the distance in the y-direction and (D) the distance in the z-direction.

grip force also increased relevantly, but showed the largest
variability of all the parameters (Figure 6: individual subjects,
Figure 7: group data normalized to baseline, Figure 8: group data
normalized to maximum). Shoulder movement and upper-arm
movement showed an improvement but missed significance; the
wrist movement did not change in the course of the training. The
UE-FMA score changed significantly (p= 0.026) from 14.3± 5.4
[from 9 to 22] before to 16.9 ± 6.1 [from 10 to 26] after the
intervention.

DISCUSSION

This pilot study demonstrates the feasibility of progressively
increasing the range of motion of chronic stroke patients with
a severe impairment of the upper extremity in the course of 20

training sessions. A multi-joint exoskeleton for the paretic arm
allowed the subjects to perform task-oriented practice within
a virtual environment (Housman et al., 2009). Notably, unlike
other studies with similarly affected stroke patients, where active
robots completed a movement when started once (Klamroth-
Marganska et al., 2014; Brauchle et al., 2015), this assistive
technology delivered antigravity-support only and provided no
guidance. Patient engagement was maximized by default in the
present study, leaving no room for slacking; the continuous visual
feedback of the arm kinematics enabled the patients to adjust
their action online during each task; an approach that closely
resembles natural motor learning.

Such a closed-loop framework follows an operant
conditioning rationale. It provides contingent feedback to
facilitate the targeted activity which is considered to be
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FIGURE 5 | The figure shows the across subject evolution of the distance traveled in the x, y, and z directions. The mean distance is estimated across

subjects, where the distance is the average distance covered in the corresponding direction across trials per session per subject. The data is normalized to the

maximum performance achieved in each parameter. The subplots shows the evolution of the (A) arithmetic mean distance, (B) the distance in the x- direction, (C) the

distance in the y-direction and (D) the distance in the z-direction.

TABLE 2 | Parameter progression over training.

Mean pre Mean post Linear regression

b t p

Mean arithmetic distance in cm 24.0±12.6 31.2± 20.9 0.058 6.4 <0.001

Distance x-direction in cm 33.6±26.1 49.6± 22.1 0.05 5.1 <0.001

Distance y-direction in cm 21.7±10.0 39.5± 11.8 0.049 5.9 <0.001

Distance z-direction in cm 16.7±6.4 26.8± 6.9 0.042 7.7 <0.001

Volume in cm3 18054±26053 35572± 15069 0.089 4.4 0.008

Inaccuracy in number of errors 13.5±9.4 9.5± 5.7 0.004 0.9 0.01

Peak velocity in cm/s 6.9±2.7 8.9± 2.6 0.4 6.8 <0.001

Time per task in s 14.9±5.8 7.4± 3.0 s 0.005 1.5 0.01

Elbow movement in ◦ 8.9±3.3 13.7± 5.5 0.021 3.0 0.001

Grip force in pu 0.031±0.01 0.069± 0.03 0.0023 3.1 0.001

UE-FMA 14.3±5.4 16.9± 6.1 − − −

beneficial for recovery, and might ultimately lead to functional
gains (Gharabaghi et al., 2014c,d; Bauer and Gharabaghi,
2015a). These restorative approaches may, however, pose a
considerable challenge for the patients (Bauer and Gharabaghi,
2015b; Fels et al., 2015) who might explore alternative,

i.e., therapeutically undesirable, strategies (Gharabaghi
et al., 2014b). Moreover, particularly in patients with severe
impairments, non-successful trials may cause frustration,
thereby limiting motor learning. In this context, closed-loop
adaptation of exercise difficulty, as practiced in the present
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FIGURE 6 | Evolution of the kinematic parameters volume, peak velocity, elbow movement and mean grip force in the course of the training for each

patient. Each point represents the mean across 150 trials for each patient. The color indicates the different patients. One session was performed per day. The solid

lines indicate the linear regressions in the course of training.

study, may help to avoid frustration by tailoring the range
of motion in accordance with the actual ability of each
patient.

Previous adaptation approaches provided different types of
assistance (Colombo et al., 2012), applied a lead-lag performance
model for robotic assistance (Chemuturi et al., 2013), or adjusted
the robot/patient’s interaction forces (Vergaro et al., 2010). The
adaptation approach implemented in this study was differed
conceptually from the previous algorithms in that it modulated
the virtual task difficulty, not the degree of assistance. This
passive gravity compensation remained stable throughout the
exercises. Nonetheless, the patients were challenged continuously
in our study since the difficulty level increased progressively
as soon as task accomplishment was repeated successfully. This
performance-dependent online adjustment of task challenge
facilitated reinforcement learning and resulted in a progressive
increase of the virtual training space with a concurrent
improvement of real world range of motion and other kinematic
parameters such as accuracy and movement velocity. Notably,

these gains followed unsupervised training algorithms and
were paralleled by motor improvements such as increased
elbow movement, grip force and upper extremity Fugl-Meyer-
Assessment score. Whether or not these motor improvements
were caused by the specific performance-dependent training
algorithm applied here cannot be concluded from the present
data, since a control group, i.e., dose-matched training without
online adaptation of task difficulty, was not included in this
study. Furthermore, this set-up did not assess whether its
effects would be limited to chronic and severely affected stroke
survivors. The dataset was also small and the heterogeneity of
subjects, injuries or time from stroke might influence the gains
observed.

However, these limitations do not compromise the major
finding of this study, namely the feasibility of progressively
increasing the assisted range of motion of severely impaired
stroke patients by applying closed-loop virtual reality feedback
for unsupervised motor learning. As in all previous studies
in chronic stroke patients with severe motor impairments
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FIGURE 7 | Evolution of the kinematic parameters volume, peak velocity, elbow movement and mean grip force in the course of the training for the

group. Data is normalized to the first day. Represented are the median group values (dots), the 95% confidence interval and the linear regression (solid line).

of the upper extremity (e.g., Lang et al., 2016), the clinical
improvement within 20 training sessions was, in any case, too
modest to lead to relevant functional gains of the patients in
their activities of daily living. A sufficiently powered, randomized
and adequately controlled but costly trial is, therefore, currently
not justified on the basis of this specific approach and the
dose of practice applied here. However, the implemented set-
up may prove suitable as the basis and training framework
for other concurrently applied restorative interventions (see
below).

Different, mutually non-exclusive reasons might be
responsible for the current limited functional gain: Since
the dose of stroke rehabilitation therapy has been shown to
correlate positively with clinically meaningful improvements
(Lohse et al., 2014; Pollock et al., 2014), the approximately
3000 movement attempts, i.e., exercise trials, performed
in the course of 20 sessions during this 4-week study
might have been insufficient to induce functionally more
relevant improvements. On the other hand, even higher
doses of motor therapy (i.e., 6400 or 9600 repetitions in
the course of 8 weeks and 32 sessions, 4 days/week) in

chronic stroke patients with long-standing (>6 months)
upper limb paresis, did not result in a larger functional
improvements than in patients who received a therapy dose
(3200 repetitions) similar to the one applied here (Lang et al.,
2016).

However, the trajectories of kinematic and clinical parameters
in the course of the training of the present study suggest
that a plateau level of improvement, i.e., a ceiling effect, has
not been achieved yet and that further practice sessions, i.e.,
a longer intervention period, would result in larger gains.
Moreover, the huge performance variability of the patients
in some sessions, e.g., between 100 and 1000% increased
ranges of motion, suggests a general capacity for even larger
improvements for at least some of the patients. These windows of
opportunity might, however, necessitate additional interventions
to maximally exploit and consolidate the salvaged restorative
potential.

Brain stimulation may facilitate such additive effects for
assisted reach-to-grasp exercises: Bilateral transcranial direct
current stimulation, for example, has led to improved motor
performance of healthy patients beyond the natural learning
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FIGURE 8 | Evolution of the kinematic parameters volume, peak velocity, elbow movement and mean grip force in the course of the training for the

group. The data is normalized to the maximum performance achieved in each parameter.

curve when applied prior to training with the very same
multi-joint arm exoskeleton as applied in the present work
(Naros et al., 2016a). Brain state-dependent transcranial
magnetic stimulation has, moreover, been demonstrated to
induce robust increases of corticospinal excitability (Kraus
et al., 2016b; Royter and Gharabaghi, 2016) and may thereby
amplify use-dependent plasticity when applied in conjunction
with assistive rehabilitation devices (Gharabaghi, 2015;
Massie et al., 2015). Concurrent state-dependent transcranial
magnetic stimulation may thereby unmask latent corticospinal
connectivity after stroke (Gharabaghi et al., 2014a) which
can be detected and monitored with refined motor mapping
techniques (Kraus and Gharabaghi, 2015, 2016; Mathew
et al., 2016). Applying phase-dependent stimulation (Raco
et al., 2016) synchronized to maximum gains of assisted
range of motion, may furthermore consolidate the involved
corticospinal circuits in accordance with Hebbian-like plasticity
rules.

The scope for recovery may also be improved when
using advanced assistive rehabilitation technology based
on brain-robot interfaces, since these devices were found

to constitute a back-door to the motor system (Gomez-
Rodriguez et al., 2011; Bauer et al., 2015). Exercises
based on brain-robot feedback of motor-imagery related
sensorimotor beta-band desynchronization may result in
connectivity changes of cortico-cortical motor networks
(Vukelić et al., 2014; Vukelić and Gharabaghi, 2015a,b),
lead to a re-distribution of cortico-spinal connections
(Kraus et al., 2016a) and to behavioral gains (Naros et al.,
2016b). Combining these tools with an adaptive virtual
environment similar to that applied in this study may thus
maximize the impact of both approaches on sensorimotor
function.

In summary, combining gravity-compensation with auto-
adaptive closed-loop feedback in virtual reality provides
customized rehabilitation environments for severely affected
patients and may facilitate unsupervised motor learning by
balancing the patient’s challenge in accordance with the
individual capacity for functional restoration; a proposal that
requires investigation in a larger cohort of stroke patients in
comparison to sham adaptive and non-adaptive feedback as well
as to dose-matched, conventional physiotherapy.
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Vukelić, M., Bauer, R., Naros, G., Naros, I., Braun, C., and Gharabaghi,

A. (2014). Lateralized alpha-band cortical networks regulate volitional

modulation of beta-band sensorimotor oscillations. NeuroImage 87, 147–153.

doi: 10.1016/j.neuroimage.2013.10.003
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Brain-machine interface-controlled (BMI) neurofeedback training aims to modulate

cortical physiology and is applied during neurorehabilitation to increase the

responsiveness of the brain to subsequent physiotherapy. In a parallel line of research,

robotic exoskeletons are used in goal-oriented rehabilitation exercises for patients

with severe motor impairment to extend their range of motion (ROM) and the intensity

of training. Furthermore, neuromuscular electrical stimulation (NMES) is applied in

neurologically impaired patients to restore muscle strength by closing the sensorimotor

loop. In this proof-of-principle study, we explored an integrated approach for providing

assistance as needed to amplify the task-related ROM and the movement-related

brain modulation during rehabilitation exercises of severely impaired patients. For

this purpose, we combined these three approaches (BMI, NMES, and exoskeleton)

in an integrated neuroprosthesis and studied the feasibility of this device in seven

severely affected chronic stroke patients who performed wrist flexion and extension

exercises while receiving feedback via a virtual environment. They were assisted by a

gravity-compensating, seven degree-of-freedom exoskeleton which was attached to

the paretic arm. NMES was applied to the wrist extensor and flexor muscles during

the exercises and was controlled by a hybrid BMI based on both sensorimotor cortical

desynchronization (ERD) and electromyography (EMG) activity. The stimulation intensity

was individualized for each targeted muscle and remained subthreshold, i.e., induced

no overt support. The hybrid BMI controlled the stimulation significantly better than the

offline analyzed ERD (p = 0.028) or EMG (p = 0.021) modality alone. Neuromuscular

stimulation could be well integrated into the exoskeleton-based training and amplified

both the task-related ROM (p = 0.009) and the movement-related brain modulation

(p = 0.019). Combining a hybrid BMI with neuromuscular stimulation and antigravity

assistance augments upper limb function and brain activity during rehabilitation exercises

and may thus provide a novel restorative framework for severely affected stroke patients.

Keywords: functional electrical stimulation, robot-assisted rehabilitation, brain-robot interface, brain-machine

interface, brain-computer interface, functional restoration, motor recovery, upper-limb assistance
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INTRODUCTION

Standard of care leaves the majority of stroke survivors with
a dysfunctional upper extremity and, consequently, with a
long-term dependency on others for activities of daily living
(Jørgensen et al., 1999; Dobkin, 2005; Feigin et al., 2008).
Attempts to improve recovery in this patient group are numerous
and embrace advanced rehabilitation technology for motor re-
learning such as brain-interface based neurofeedback training
(Ang et al., 2015; Morone et al., 2015; Pichiorri et al., 2015),
robot-assisted rehabilitation devices (Lo et al., 2010; Klamroth-
Marganska et al., 2014) and activity-dependent neuromuscular
stimulation techniques (Thrasher et al., 2008; Oujamaa et al.,
2009; Mann et al., 2011). Recent approaches combine these
different methods in a bid to maximize the overall benefits
(Meadmore et al., 2014; Brauchle et al., 2015; Hortal et al.,
2015; Grimm and Gharabaghi, 2016). However, there is still a
critical need in the rehabilitation community to provide options
for stroke patients with chronic impairments. In this context,
movement-related desynchronization (ERD) in the contralateral
sensorimotor cortex has been shown to be compromised in stroke
patients compared to healthy controls; notably, the more severe
the patient’s motor impairment, the less beta-band ERD (Rossiter
et al., 2014). Accordingly, increasing this oscillatory modulation
range again would provide a therapeutic target for a restorative
training approach.

In the present proof-of-principle study, we explored an
integrated approach for providing assistance as needed to
amplify the task-related range of motion (ROM) and the
movement-related brain modulation during rehabilitation
exercises of severely impaired patients; we have, therefore,
combined different rehabilitation tools: brain-controlled
neurofeedback training, an upper limb multi-joint exoskeleton,
and activity-dependent neuromuscular electrical stimulation
(NMES). These different components served the following
goals: The brain-controlled neurofeedback training based on
motor imagery has recently been shown to increase task-related
oscillatory modulation, specifically in the beta-frequency band,
in correlation with corticospinal excitability (Kraus et al., 2016a)
and motor learning (Naros et al., 2016a). Moreover, previous
findings indicated that NMES amplifies both cortical ERD
(Müller et al., 2003) and excitability when combined with motor
imagery (Reynolds et al., 2015) or volitional effort (Stein et al.,
2013). More specifically, during NMES movement a prominent
ERD was found similar to that observed after active or passive
movements suggesting that the sensorimotor processing during
NMES involves some of the processes which are also involved
in voluntary hand movements (Müller et al., 2003). Finally,
multi-joint gravity compensation of the upper extremity has
recently been shown to increase the movement range of severely
affected stroke patients (Grimm et al., 2016), particularly when
combined with NMES (Grimm and Gharabaghi, 2016).

However, the presented multifaceted device differs from
previous approaches in several ways: the brain-controlled
neurofeedback was not provided by an active robotic exoskeleton
(Brauchle et al., 2015) but by NMES combined with a passive
un-weighting exoskeleton (Meadmore et al., 2012; Hortal

et al., 2015); in addition, NMES was not applied to proximal
(Meadmore et al., 2012; Hortal et al., 2015) but to distal
muscles (Meadmore et al., 2014), and was not controlled by
kinematic information (Meadmore et al., 2012, 2014), but by
physiological signals (Brauchle et al., 2015; Hortal et al., 2015)
while applying a hybrid brain-machine interface (BMI) based
on both sensorimotor cortical desynchronization (ERD) and
electromyography (EMG) activity. Moreover, NMES induced no
overt support (Meadmore et al., 2014; Hortal et al., 2015) but
remained subthreshold (Grimm and Gharabaghi, 2016).

These modifications aimed to address limitations of current
rehabilitation technologies, which usually take an all-or-nothing
approach, e.g., by providing active robotic guidance to complete
a movement as soon as the patient fails to reach the defined
goal (Klamroth-Marganska et al., 2014); or by triggering NMES
for overt muscle contraction, also referred to as functional
electrical stimulation (FES), as soon as a predefined physiological
state (recorded with either EMG or EEG) is achieved (Howlett
et al., 2015). This all-or-nothing approach offers an important
experience for patients who have not been able to move their
hand or arm for years. From a motor learning perspective,
however, it might be more successful to provide such rewarding
feedback, e.g., robot-assisted movement of the paretic hand, only
when a certain level of effort is made by the participant and
gradually increased in the course of the training (Naros and
Gharabaghi, 2015; Naros et al., 2016a). More targeted assistance
might, therefore, be necessary during the rehabilitation exercises
to maintain engagement without compromising the patients’
motivation; i.e., by providing support—as little as possible and
as much as necessary.

We, therefore, hypothesized that the adjustments
implemented in our integrated approach provide assistance
as needed to amplify the task-related ROM and the movement-
related brain modulation during rehabilitation exercises of
severely affected stroke patients without compromising their
engagement.

METHODS

Patients were selected for this study when they were in the
chronic phase after stroke (>6 months) presenting with a
severe and persistent hemiparesis [modified upper extremity
Fugl-Meyer-Assessment score (mUE-FMA) < 25]. Seven stroke
patients (mean age: 59 ± 9.3 [41 89] years; 66.43 ± 16.6
[34 80] months post stroke; 14.3 ± 4.7 [9 23] mUE-FMA;
male: female, 6:1; ischemic (middle cerebral artery): hemorrhagic
stroke, 3:4; right: left hemisphere, 6:1). The mUE-FMA (without
coordination, speed, and reflexes) was used to ensure that our
results were comparable to earlier studies (Brauchle et al., 2015;
Naros and Gharabaghi, 2015). This study, which was approved
in accordance with the guidelines of the ethics committee of
the local medical faculty, involved two sessions of wrist training
with a multi-joint exoskeleton attached to the paretic arm.
Each session consisted of approximately 30–40 movement trials
with alternating wrist extension and flexion. Each movement
period (extension or flexion) lasted for 5 s and was preceded
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by a 5 s rest period. This study is part of a larger research
program on assisted reach-to-grasp movements in severely
affected stroke patients. Within this framework, recent studies
have revealed the importance of anti-gravity support with a
multi-joint exoskeleton. We therefore applied this exoskeleton-
based setup in this study as well to facilitate the transfer of
the present findings into the overall research program. The
exoskeleton and virtual reality have been described in detail
elsewhere (Grimm and Gharabaghi, 2016; Grimm et al., 2016)
and are cited here where applicable.

Exoskeleton and Virtual Reality
We used a commercially available (Armeo Spring, Hocoma,
Volketswil, Switzerland) rehabilitation exoskeleton for shoulder,
elbow and wrist joints with seven axes (i.e., degrees of freedom)
to provide antigravity support for the paretic arm and to
register movement kinematics and grip force. Unweighing was
realized via two springs that were incorporated into the device.
This device could be used to make individual adjustments
of, for example, the gravity compensation, thereby supporting
patients with severe impairment in performing task-oriented
practice within a motivating virtual environment. We extended
these features in-house by using the real-time sensor data
of the exoskeleton to display a three-dimensional multi-joint
visualization of the user’s arm in virtual reality. This entailed the
use of a file mapping communication protocol to capture the
angles of all arm joints and the grip force from a shared memory
block. The virtual arm engine was programmed in a Microsoft
XNATM framework. The arm model utilized by the engine was
constructed as a meshed bone-skin combination with 54 bones
(3Ds Max 2010TM, Autodesk). Using the measured joint angles
and grip forces of the device, the bone-vectors of the meshed
model were modified according to the movements of the user
to provide online closed-loop feedback. The joint angles of the
exoskeleton were directly represented in virtual reality, whereas
the grip forces were augmented (i.e., amplified in virtual reality

on the screen) to feedback natural hand function. This allowed
visualizing finger movements on the screen, even though this
information was not used for the study. However, the three-
dimensional visualization of the fingers and wrist was applied
during each task as an implicit online feedback of the movement.
Prior to each session, participants were instructed to perform a
natural wrist movement during the tasks aiming at maximum
extension and flexion, respectively. The ROM of wrist movement
was calculated as the sum of maximum extension and flexion and
computed as the mean of each session.

Neuromuscular Electrical Stimulation
We integrated a NMES (De Marchis et al., 2016) device
(Rehastim, 8- channel stimulator, Hasomed GmbH, Magdeburg,
Germany) into the exoskeleton-based training environment with
two bipolar, self-adhesive electrodes (diameter: 40 mm), and
applied biphasic square impulses (frequency: 30Hz, pulse width:
500µs). The stimulation of this integrated neuroprosthesis
(Figure 1) was updated in a closed-loop, real-time iteration
at 60Hz via a Controller Area Network/Universal Serial Bus
(CAN/USB) port using a custom-made algorithm. Whenever the
BMI classifier output was positive (see below), NMES was applied
for 3 s to the M. extensor carpi ulnaris during wrist extension or
to the M. flexor carpi radialis during flexion movement.

Each patient performed two exoskeleton-supported training
sessions—one with and one without BMI-controlled NMES.
Both the exoskeleton and the maximum stimulation intensity
(Stimmax) were individually calibrated. The exoskeleton was
adjusted to provide optimized gravity compensation for every
joint and to allow for unrestricted wrist movements in three-
dimensional space. The Stimmax for each muscle group was
empirically determined as the output current approaching the
motor threshold but that was still perceived as comfortable. Since
all participants suffered from severe upper limb impairment,
prolonged supra-motor threshold stimulation was perceived as
painful and was therefore not applied. The stimulation intensity

FIGURE 1 | Integrated neuroprosthesis with feedback via a virtual environment. Assistance is provided by a gravity-compensating, seven degree-of-freedom

exoskeleton attached to the paretic arm. Neuromuscular electrical stimulation is applied to the wrist extensor and flexor muscles during the exercises and is controlled

by a hybrid brain-machine interface based on both sensorimotor cortical desynchronization and electromyography activity.
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was thus set in accordance with each patient’s comfort level and
just below motor-threshold, i.e., no visible joint movement, and
resulted in a mean of 10.5 mA (±4.4 mA) and 9.5 mA (±4.4 mA)
for the wrist flexor and extensor, respectively.

Data Acquisition
Electroencephalographic (EEG) signals were recorded
with BrainAmp DC amplifiers and an antialiasing filter
(BrainProducts, Munich, Germany) from 32 Ag/AgCl scalp
electrodes (sampling rate: 1000Hz) in accordance with the
international 10–20 system (FP1, FP2, F3, Fz, F4, FC5, FC3, FC1,
FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, P3, POz, P4, POz, O1, O2; reference:
FCz, ground: AFz). Electrode impedances were maintained
below 10 k�. Since it often exceeds the frequency range of
the physiological signals, ambient noise may compromise the
recordings. To avoid an aliasing error due to undersampling of
this noise, we, therefore, made every effort to remove all potential
sources of electrical noise from the experimental environment,
i.e., the high-frequency noise was deliberately avoided during
the experiment and verified offline. Thanks to this approach, we
observed no high-frequency noise in our recordings (Gharabaghi
et al., 2014a; Vukelić et al., 2014; Bauer et al., 2015; Naros and
Gharabaghi, 2015; Vukelić and Gharabaghi, 2015a,b).

Since EMG contaminations via compensatory movements are
known to compromise EEG-based BMI training (Gharabaghi
et al., 2014b), experienced examiners, who were trained to
recognize these artifacts, instructed the patient to minimize
them. As in previous studies with healthy subjects (Vukelić
et al., 2014) and severely affected stroke patients (Naros and
Gharabaghi, 2015), the patient was also instructed to avoid
blinking, chewing, and any head and body movements other
than the wrist movements. Together with visual inspection and
feedback by the examiner, this approach proved to be a feasible
method of preventing alternative BMI control. In addition, the
EEG data was reanalyzed offline by visual inspection to remove
all artifacted trials due to movement artifacts or current drifting;
this resulted in a mean of 4.5± 3.8 excluded trials.

Data Analysis
Band pass (2–150Hz) and notch filtering (50Hz) were applied
to the EEG raw signal. After epoching the filtered data into
trials, visual artifact rejection was performed. This yielded an
average of 26 ± 4 and 31 ± 3 (mean ± SD) trials in the non-
NMES and NMES sessions, respectively. The power spectrum
was normalized to the mean spectral distribution of the 5 s pre-
movement rest period of the session. Mean movement-related
spectral perturbation (ERSP) of the feedback electrodes were
calculated for each session using the EEGLAB-Toolbox (Delorme
and Makeig, 2004).

Surface electromyography (EMG) of the M. extensor carpi
ulnaris and M. flexor carpi radialis were recorded with a band-
pass filter of 0.1–1000Hz and a sampling rate of 1000Hz. The first
task was used to set an individual EMG-threshold (area under
the curve, AUC), to calibrate the EMG-classifier. Discrimination
between movement and rest was performed by analyzing the
activity of the measured EMG-channels. To this end, the EMG

data of these channels was bipolarized and a Butterworth high-
pass filter with an order of n= 2 and a cutoff at 1Hz was applied.
The waveform length WL (ti) =

∑ti
t=ti−w+1 |x (t + 1) − x (t)|

was calculated for each bipolarized EMG channel within a sliding
window of w = 200 ms length. The sliding window was moved
over the data in steps of 40ms and corresponded to the waveform
length of both channels. The waveform length feature of EMG
has already been used to successfully decode different movements
from EMG activity (Tenore et al., 2009). To correct for a delayed
response of the subject to the cues, we calculated the cross-
correlation of a vector W = WL(t_i) containing the waveform
length feature with a vector P = P(t_i) which encodes the trial
phase, where P(t_i) = 1 if t_i is part of the movement phase
(otherwise 0). We used the latency of the maximum of the cross-
correlation sequence as an offset to improve the assignment
of the waveform length to the movement or rest class (MWL

or RWL, respectively). We identified the threshold T for the
discrimination between the two distributions MWL and RWL

with a Receiver Operating Characteristic (ROC) analysis. The
criterion for threshold selection was set such that the false-
positive rate was lower than 5% to ensure high specificity (≥0.95)
of the classifier.

Brain-Machine Interface (BMI)
The BMI environment was designed to stimulate the patient’s
wrist during the movement (recorded by EMG) as soon as
movement-related event-related desynchronization (ERD) in the
β-band was detected in the ipsilesional hemisphere (Walter et al.,
2012; Gharabaghi et al., 2014a). NMES stimulation was not
triggered unless both the EMG and EEG classifier gave a positive
output (Figure 2). We hypothesized that this hybrid approach
improves the stability of classification (Leeb et al., 2011) and
expected that the effects on ROM and ERD are bigger when using
BMI+NMES than the exoskeleton alone.

During the NMES session, the same EMG filtering and
feature extraction strategy as described above was employed.
After bipolarization and filtering, the samples of each data packet

FIGURE 2 | Flow chart of the closed-loop hybrid brain-machine

interface environment. Neuromuscular electrical stimulation is applied only

when both the EEG- and the EMG-classifier provide a positive output, i.e.,

when the task-specific effort of the participant is detected.
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from these channels were joined together to form a 200 ms-
long queue. The waveform length was computed, summed up for
both channels and compared to the threshold T for movement
detection. If it exceeded T, the EMG classifier gave a positive
output.

The EEG algorithm was based on the spectral power values
between 16 and 22Hz for three selected channels (FC4, C4, and
CP4). We applied the same frequency-range and setup as in our
previous BMI studies (Gharabaghi et al., 2014a; Vukelić et al.,
2014; Bauer et al., 2015; Naros andGharabaghi, 2015; Vukelić and
Gharabaghi, 2015a,b). The spectral power was calculated using
an autoregressive model order of 16 (McFarland and Wolpaw,
2008). This was fitted to the last 500 ms of the signal and updated
every 40 ms. Classifier output was positive when 5 consecutive
40 ms epochs (i.e., 200 ms) were classified as ERD-positive. An
epoch was not regarded as ERD-positive until the output of the
classifier exceeded a threshold θ (Walter et al., 2012; Gharabaghi
et al., 2014a; Naros and Gharabaghi, 2015; Naros et al., 2016a).
The online signal processing was performed with the standard
algorithm of the BCI2000 software (Mellinger et al., 2007). With
a bin width of 2Hz and targeted bin centers of 17, 19, and 21Hz,
the resulting frequency band was 16–22Hz and corresponded to
a wave length of between 45 and 62 ms. Choosing a data window
of 500ms enabled us to capture several cycles of these frequencies
for reliable power analysis. This approach has already proved to
be reliable in studies with the very same BMI setup (Walter et al.,
2012; Gharabaghi et al., 2014a; Vukelić et al., 2014; Bauer et al.,
2015; Naros and Gharabaghi, 2015; Vukelić and Gharabaghi,
2015a,b).

The sensitivity and specificity of the classifier of a linear
discriminant analysis were indicated by the true-positive rate
(TPR) and the true-negative rate (TNR), respectively; the
false-positive rate (FPR) equaled 1-TNR. TPR and TNR were
calculated by

TPR =
pNmove

Nmove
(1)

TNR =
nNrest

Nrest
(2)

with N as the total number of sample blocks in either the rest
or move period, and pN and nN as the positively and negatively
classified sample blocks, respectively.

The classification accuracy (CA) of a BMI system was defined
by

CA =
TPR+ TNR

2
(3)

and estimated for the different classifier modalities, i.e., EEG,
EMG, and hybrid EEG/EMG. In addition, the correct response
rate (CRR) was calculated as the ratio between the number of
actions (i.e., BMI controlled NMES assistance) and the number
of trials.

Statistics
Statistical analysis was performed on a Matlab 2010b Engine.
Data was tested for normal distribution using the Lilliefors-test

(2-sided goodness-of-fit test). For normally distributed data, a
dependent t-test for paired samples was performed; otherwise a
Wilcoxon’s signed ranks test was used. The significance level was
set at p= 0.05 for all tests.

RESULTS

Subthreshold NMES could be well integrated into the
exoskeleton-based training; the effects on ROM and ERD
were bigger when using BMI+NMES than the exoskeleton
alone. More specifically, this combined approach increased
the task-related ROM of the wrist from 18 ± 6◦ to 26 ± 8◦

(p= 0.009, Figure 3).
The patients showed ERD both in the non-supported and

the NMES-supported tasks. The ERD maximum for the decoded
channels and frequencies was −2.47 and −2.83 dB in the
non-supported and NMES-supported tasks, respectively. The
intervention modulated the movement-related brain activity by
amplifying the desynchronization (Figure 4) in the feedback
frequency band (16–22Hz) as well as by inducing significant (p
= 0.019) additional broadband ERD throughout the task period
in the low beta (14–16Hz), delta (2–5Hz), and gamma band
(45–47Hz) (Figure 5).

The hybrid BMI, i.e., combining the classification output of
the EEG and the EMG classifier, was used during the task for
online control. By achieving a mean classification accuracy of
66 ± 9.6% compared to 55 ± 6.4% (offline analysis with the
EEG-classifier only) and 55 ± 4.6% (offline analysis with the
EMG-classifier only, Figure 6), the hybrid BMI controlled the
stimulation significantly better than either the EEG (p = 0.028)
or the EMG (p = 0.021) modality. This gain was achieved by
increasing the specificity of the classification, i.e., by significantly

FIGURE 3 | Change of the task-related range of motion of the wrist.

Subthreshold neuromuscular electrical stimulation increases the range of

motion on the group level.
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FIGURE 4 | Event-related desynchronization in dB. Cortical activity and

standard deviation in the feedback frequency band (16–22Hz) as the average

at CF4, C4 CP4 for the different conditions on the group level.

reducing the false positive rates to 22 ± 7.1% with the hybrid
approach as compared to 37 ± 6.3% with the EMG (p = 0.037)
and 53 ± 5.1% with the EEG modality (p = 0.007). On average,
the device was triggered in 24 out of 31 trials, i.e., achieving a CRR
of 77%.

This improved accuracy with the hybrid approach was also
reached for the offline analysis of the non-NMES sessions (when
no BMI or classification took place) by achieving 63 ± 6.9%
compared to 56 ± 5.9% (EEG-classifier) and 55 ± 4.6% (EMG-
classifier, Figure 6); the hybrid BMI classified significantly better
than either the EEG (p= 0.031) or the EMG (p= 0.038)modality,
notably, without a potential bias by the actual application of this
classifier and the BMI-NMES during the task.

DISCUSSION

This proof-of-principle study has demonstrated the feasibility of
an integrated neuroprosthesis combining a hybrid BMI—based
on both cortical and muscle activity—with an exoskeleton and
NMES for neurofeedback training via a virtual environment;
this neuroprosthesis increased the ROM of wrist movement in
chronic stroke patients with a severe impairment of the upper-
extremity. Unlike other studies with similarly affected stroke
patients, in which robots completed a movement initiated by
the patients (Klamroth-Marganska et al., 2014; Brauchle et al.,
2015), the technology applied here provided antigravity-support
only (Housman et al., 2009), i.e., rendered no active assistance,
thereby exploiting patient engagement and avoiding under-
challenge during neurorehabilitation. However, future studies
need to disentangle the contributions and mechanisms of BMI,
NMES, and exoskeleton practice separately. Moreover, future
intervention studies need to apply multiple sessions to explore
whether cumulative increases of ROM and ERD can be achieved
with this approach.

In this context, brain-controlled neurofeedback training aims
to modulate cortical physiology and is applied to increase
the responsiveness of the brain to subsequent physiotherapy
(Pichiorri et al., 2015). When used in conjunction with
commercially available robotic rehabilitation technology, these
devices are also referred to as brain-robot interfaces (BRI; Bauer
et al., 2015; Fels et al., 2015; Kraus et al., 2016a; Naros et al.,
2016a). Such brain-robot interfaces can be applied for both
restorative and assistive purposes. Even though both methods
employ similar technology, restorative interfaces differ in concept
substantially from brain-controlled assistive devices, which aim
to compensate for lost function (Hochberg et al., 2012; Collinger
et al., 2013). While the latter approach intends to maximize
speed and classification accuracy for high-dimensional control
(Spüler et al., 2014, 2016), the former aims to facilitate self-
regulation of brain activity, which is considered beneficial for
recovery and might ultimately lead to persistent functional
gains (Naros and Gharabaghi, 2015). Such a restorative goal
necessitates methodological specifications, e.g., in the areas of
constrained feature space, regularized feature weights, cognitive
load, feedback modality, and threshold adaptation to facilitate
reinforcement learning of brain self-regulation and corticospinal
connectivity (Bauer et al., 2016a,b; Bauer and Gharabaghi, under
review). Proprioceptive feedback, for example, has been shown
to enhance brain self-regulation of beta-band oscillations in
comparison to visual feedback only (Vukelić and Gharabaghi,
2015a); these self-regulated beta-oscillations, in turn, correlated
with the increase in corticospinal excitability following BRI
training (Kraus et al., 2016a).

These specifications are, however, often not taken
into consideration when brain signals are applied during
rehabilitation practice, e.g., to control robotic devices or NMES.
Instead, classification algorithms are applied to maximize
accuracy in an unconstrained feature space, e.g., with support
vector machines computing optimal features of an extended
oscillatory frequency band, thereby resembling the approach
usually chosen for assistive brain-interfaces (Hortal et al.,
2015). Following the requirements of restorative neurofeedback
training, e.g., providing feedback to beta-band ERD may,
however, result in relatively low classification accuracy—as also
observed in the present study—and frustrate the participants
(Bauer and Gharabaghi, 2015a; Fels et al., 2015). This is
particularly true of the severely affected patient group since
movement-related beta-ERD in the ipsilesional primary cortex
is compromised in stroke patients in comparison to healthy
controls, i.e., the more severe the patient’s motor impairment,
the less beta-ERD (Rossiter et al., 2014).

In this context, we recently argued (Naros and Gharabaghi,
2015) that the fact that beta oscillations are less optimal for
classification purposes—e.g., for differentiating movement-
related brain states in many stroke patients—does not
compromise but rather qualifies this physiological marker
as a therapeutic target. We referred to an analogy to the concept
of constraint-induced movement therapy in stroke patients,
where the affected rather than the healthy body side is trained to
facilitate restoration instead of compensation of motor function
(Naros and Gharabaghi, 2015); and proposed that restorative
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FIGURE 5 | Event-related spectral perturbation in dB. Time-frequency plot of cortical activity as the average at CF4, C4 CP4 for the different conditions on the

group level. The intervention modulated the movement-related brain activity by prolonged desynchronization in the feedback frequency band (16–22Hz) indicated with

dotted lines as well as by inducing additional broadband ERD throughout the task period in the low beta, delta, and gamma band.

neurofeedback training should follow the therapeutic goal
of restoring the sensorimotor loop via improved beta-band
modulation rather than aiming to train the brain state that
enables the patient to control the exercising device best. The
latter is a strategy that is implicitly followed when selecting
individual frequency bands with best classification properties,
i.e., that best separate the rest and the task condition (Hortal
et al., 2015; Pichiorri et al., 2015).

Under these circumstances, complementary strategies such as
continuous threshold adaptation (Bauer and Gharabaghi, 2015a;
Naros and Gharabaghi, 2015; Bauer et al., 2016a) or hybrid

classifiers that consider both brain signals and electromyography
(EMG) activity (Leeb et al., 2011) are necessary to improve
patient control over the training devices. The latter approach
proved to be effective in the present feasibility study by increasing
the classification accuracy from 55 to 66% with the hybrid BMI,
compared to the EEG- or EMG-classifier, and resulting in 77%
task-related neuroprosthetic support. Notably, this improvement
was achieved by increasing the specificity of the feedback, i.e., by
decreasing the false positive rate, which is particularly relevant for
reinforcement learning with brain-interface based neurofeedback
(Bauer and Gharabaghi, 2015a), since the considerable challenge
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FIGURE 6 | Performance of the hybrid classifier. Classification accuracy

based on EEG, EMG, and EEG/EMG on the group level. The red cross

indicates an outlier.

of these exercises (Bauer and Gharabaghi, 2015b; Fels et al.,
2015) might condition the patients to explore alternative, i.e.,
therapeutically undesirable, strategies (Gharabaghi et al., 2014b).
Moreover, this hybrid approach enabled patients to achieve
BMI controlled NMES assistance in more than 70% of the
tasks, a level which is regarded as necessary for achieving
a sense of self-efficacy during motor learning with assistive
technology (Metzger et al., 2014). Notably, EMG signals alone
were insufficient for classification in this study and might in
general be inadequate as a control signal in the targeted patient
group due to paralysis and/or abnormally co-activated muscles
(Wright et al., 2014), a condition especially relevant in the
severely impaired stroke patients who might benefit most from
assistive rehabilitation technology.

Furthermore, the presented closed-loop framework facilitated
the beta-band ERD, thereby adhering to the operant conditioning
rationale, i.e., reinforcing the targeted activity considered to
be beneficial for recovery and which might ultimately lead
to functional gain (Bauer and Gharabaghi, 2015b; Naros and
Gharabaghi, 2015; Naros et al., 2016b). However, whether
this effect was achieved directly via the subthreshold NMES
or mediated by the increased ROM in the NMES condition
remains to be clarified. The spectral changes beyond the feedback
frequency band suggest the former since the stronger wrist
movement in the neuroprosthetic condition as compared to the
orthotic condition is unlikely to result in broadband modulation
of cortical activity in itself. Future studies, however, need to
test this hypothesis by comparing different movement extensions
with the same intervention, i.e., either neuroprosthetic or
orthotic support. Importantly, recent findings indicated that
NMES amplifies both ERD and cortical excitability when
combined with motor imagery (Reynolds et al., 2015) or
volitional effort (Stein et al., 2013). The facilitated ERD

might, therefore, provide the substrate for future gains
following repetitive application since the task-related ERD
during brain-robot training have been shown to correlate with
the cortico-spinal excitability after the intervention (Kraus et al.,
2016a).

In recent approaches for stroke rehabilitation, patients
controlled the rehabilitation robots with their brain signals,
i.e., via motor imagery-related oscillations of the ipsilesional
cortex, thereby successfully linking three-dimensional robotic
training for reach-to-grasp movements to the participant’s
effort (Brauchle et al., 2015). The findings suggest, however,
that sustained brain self-regulation for brain-controlled robotic
training might be challenging (Brauchle et al., 2015) and may
even be characterized by a significant association with the
experience of frustration for the participants (Fels et al., 2015).
To avoid this over-challenge, the brain-control assistance should
probably be applied with more precision. In the same vein,
complementary approaches applied NMES concurrently with
antigravity support with a multi-joint exoskeleton (Meadmore
et al., 2012; Hortal et al., 2015), thereby directly addressing the
strength of specific muscle groups. However, these approaches
stimulated proximal muscles of the upper limb, while the
activation of wrist and hand muscle might be particularly
important for functionally relevant improvements (Meadmore
et al., 2014). The brain-controlled NMES in the present study
has therefore been focused on wrist movement while continuous
antigravity support via a passive multi-joint exoskeleton was
provided to the rest of the upper limb.

In the context of neurorehabilitation, NMES is usually applied
at supra-motor threshold intensity (referred to as FES) to train
either arm or leg function; advanced approaches applied this
stimulation to the upper extremity in conjunction with brain-
interface technology for spinal cord injury patients (Pfurtscheller
et al., 2003; Kreilinger et al., 2013; Rohm et al., 2013; Vučković
et al., 2015) and stroke survivors (Ethier et al., 2015; Hortal et al.,
2015).

In this context, the present study was the first to apply BMI-
controlled subthreshold NMES to support the wrist exercises
by extending the ROM in accordance with the actual ability of
each patient. Importantly, to avoid under-challenge, stimulation
was applied adjunct to voluntary contraction and not as an
alternative. An additive stimulation approach such as this was
shown to be effective for repetitive task practice of upper limb
exercises in severely impaired, chronic stroke patients (Thrasher
et al., 2008; Oujamaa et al., 2009; Mann et al., 2011). However,
our neuromodulation paradigm remained subthreshold during
the task, whereas the aforementioned NMES studies of the
upper limb, even if physiologically triggered, followed an all-
or-nothing concept with supra-threshold stimulation. Our state-
dependent stimulation, which was controlled by the hybrid BMI,
was, therefore, more subtle than in these earlier approaches.
Due to the fact that functional muscle contraction was not
realized by the stimulation itself, the increased performance
was attained by modulations of self-initiated, orthosis-assisted
movements. This outcome indicates an overall facilitation of
sensorimotor networks by the subthreshold NMES and could
constitute a novel restorative strategy in chronic stroke patients
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suffering from severe impairment of the upper extremity.
Further research should investigate whether greater kinematic
gains can be attained with other stimulation paradigms, such
as the application of increased neuromuscular stimulation
or concurrent transcranial current stimulation to facilitate
exoskeleton-based motor leaning (Naros et al., 2016b). Our
approach, however, led to kinematic gains while still encouraging
our patients to participate. Progression of training is required
to provide a further challenge for motor learning (Guadagnoli
and Lee, 2004). This could be achieved either by means of a
decrease in the NMES support level (Meadmore et al., 2014)
or by automatic adaption of the level of training during robot-
assisted stroke rehabilitation (Metzger et al., 2014). Bothmethods
could in future be integrated into this neuroprosthetic set-up
without difficulty and, by performing repetitive sessions within
intervention studies, their respective clinical relevance in the
targeted patient population should be examined more closely.

The neuroprosthesis introduced here holds the promise
of bringing even more gains, e.g., via the simultaneous
application of further interventions such as brain state-
dependent cortical stimulation (Kraus et al., 2016b; Royter
and Gharabaghi, 2016) to make full use of the salvaged
restorative potential. Particularly, during exercises with severely
impaired stroke patients, the task-related and muscle-specific
facilitation that this device generates could provide the
framework for concurrent cortical stimulation. For example,
activity-dependent transcranial magnetic stimulation during
robot-assisted training could provide such an additional input
(Gharabaghi, 2015; Massie et al., 2015) Post-stroke latent
corticospinal connectivity may be unmasked during brain-
robot interface exercises by associative brain state-dependent
stimulation (Gharabaghi et al., 2014a). As per Hebbian-like
plasticity rules, such state-dependent stimulation synchronized
to maximum gains of assisted ROM could consolidate the
corticospinal circuits involved. More specifically, brain-robot
feedback-based neuroprosthetic exercises may cause connectivity
changes in cortico-cortical motor networks (Vukelić et al., 2014;
Vukelić and Gharabaghi, 2015a) and result in a redistribution
of cortico-spinal connections (Kraus et al., 2016a). Therefore,
advanced assistive rehabilitation technology such as the one
presented here could offer a backdoor to the motor system and

provide better prospects of recovery (Bauer et al., 2015). When

patients do not gain volitional control of this technology with
beta-modulation via a standard EEG-based approach despite the
strategies mentioned above (Naros and Gharabaghi, 2015)—e.g.,
due to an extended cortical lesion and distorted physiology—
epidural recordings of field potentials may nonetheless facilitate
the detection and neurofeedback training of this physiological
target (Gharabaghi et al., 2014b). Such an approach closer to
the neural signal source may also induce clinical gains after a
shorter therapy time than is usually applied with the standard
EEG technique (Gharabaghi et al., 2014c) and may even serve
as a bi-directional interface for concurrent brain stimulation
(Gharabaghi et al., 2014d).

In conclusion, during rehabilitation exercises, the
combination of a BMI with neuromuscular stimulation and
antigravity assistance has cumulative effects on both ROM
and cortical modulation and, as such, may constitute a novel
restorative framework for severely affected stroke patients while
retaining their voluntary effort. Whether, such technological
refinements also result in relevant functional gains will need to
be investigated by comparing them in controlled intervention
studies with dose-matched, conventional physiotherapy.
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This study demonstrates the feasibility of detecting motor intent from brain activity of

chronic stroke patients using an asynchronous electroencephalography (EEG)-based

brain machine interface (BMI). Intent was inferred from movement related cortical

potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent

detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide

movement and to encourage active user participation by providing instantaneous sensory

feedback. Several BMI design features were optimized to increase system performance

in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive

time window was used for extracting features during BMI calibration; (2) training data

from two consecutive days were pooled for BMI calibration to increase robustness to

handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by

residual electromyography (EMG) activity from the impaired arm, to reduce the number of

false positives. This patient-specific BMI calibration approach can accommodate a broad

spectrum of stroke patients with diverse motor capabilities. Following BMI optimization

on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of

the study, showed consistent BMI performance with overall mean true positive rate

(TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive

rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day

5; however for two subjects who had residual motor function and could benefit from

the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent

was detected −367 ± 328 ms before movement onset during closed-loop operation.

These findings provide evidence that closed-loop EEG-based BMI for stroke patients

can be designed and optimized to perform well across multiple days without system

recalibration.

Keywords: brain machine interface (BMI), movement related cortical potentials (MRCPs), motor intent detection,

robotic exoskeleton, stroke rehabilitation
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1. INTRODUCTION

Functional restoration of arm and hand movements is a major
goal of post-stroke rehabilitation therapy (Langhorne et al., 2009;
Basteris et al., 2014). There exists evidence to suggest that robot-
assisted therapy improves upper-limb functional assessment
scores (Kwakkel et al., 2008; Klamroth-Marganska et al., 2014)
and strength (Milot et al., 2013), by inducing activity-dependent
cortical plasticity (Hogan et al., 2006; O’Malley et al., 2006;
O’Dell et al., 2009). Yet, these improvements fail to reach relevant
additional benefits over dose-matched conventional therapy
(Kwakkel et al., 2008; Lo et al., 2010; Mehrholz et al., 2012;
Klamroth-Marganska et al., 2014) or transfer into functional
ability for performing daily living activities (Basteris et al.,
2014). It has been suggested, that the slight benefits of robot-
assisted therapy might be due to unspecific influences such as
increased enthusiasm for novel interventions on the part of both
patients and therapists (Kwakkel and Meskers, 2014). Notably,
robotic training was less effective at restoring arm strength than
conventional therapy in the study by Klamroth-Marganska et al.
(2014), possibly because the device was too supportive when
providing “assistance-as-needed” during the training (Chase,
2014; Brauchle et al., 2015).

Current robot-assisted therapies provide high intensity and
repetitive training, but are inadequate in ensuring patient
engagement, motivation, and reward, which are important
factors for inducing cortical plasticity (Hogan et al., 2006; Basteris
et al., 2014; Goodman et al., 2014). Therefore, recent research
in robotic therapy has focused on detecting and responding to
patient’s motor intent, to ensure active participation of the patient
during the therapy (Krebs et al., 2003; Blank et al., 2013, 2014;
Hu et al., 2013). Typically, motor intent is detected via force
(Kahn et al., 2006; Loureiro and Harwin, 2007; Gupta et al.,
2008), or electromyography (EMG) activity (Krebs et al., 2003;
Hu et al., 2009; Tong et al., 2010; Ho et al., 2011; Lenzi et al., 2012;
Vaca Benitez et al., 2013) from the impaired limb’s movement
and the robot’s motion is triggered once the intent is detected.
However, these methods are only appropriate for patients who
are able to produce some voluntary movement or high enough
levels of muscle activity. For more severely impaired patients
and to ensure patient engagement, motor intent can also be
detected using noninvasive scalp electroencephalography (EEG;
Wang et al., 2009; Gomez-Rodriguez et al., 2011; Frisoli et al.,
2012; Venkatakrishnan et al., 2014), which is the focus of our
work.

Advances in non-invasive scalp EEG have made it possible
to analyze neural activity and provide feedback to the patient
in real-time via a brain machine interface (BMI) through virtual
and physical environments (Farina et al., 2013; Nakagome et al.,
2015). Such neurofeedback can facilitate cortical plasticity and
motor learning to enhance motor recovery and the resulting BMI
paradigm is termed as restorative BMI (Soekadar et al., 2014).
In this context, EEG-based restorative BMIs are easy to set up,
pose no risks as compared to invasive techniques, and can be
readily deployed in a clinical setting for providing rehabilitation
therapy in both acute and chronic states. Hence, in recent years,
several studies have proposed a neurorehabilitation regimen

that augments existing robot-assisted therapy with closed-loop
EEG-based BMI (Daly et al., 2008; Gomez-Rodriguez et al.,
2011; Ramos-murguialday et al., 2014; Xu et al., 2014b; Ang
et al., 2015) or magnetoencephalography (MEG)-based BMI
(Buch et al., 2008). The BMI-Robot system usually deploys
a robot or exoskeleton to command or guide the patient’s
movement whenever it detects the patient’s voluntary motor
intent. However, due to high trial-to-trial variability and poor
signal-to-noise ratio (SNR) of EEG signals, detection of intent
from single-trials is a daunting task (Bai et al., 2011) and
poses a serious challenge to the clinical viability of EEG-based
neurorehabilitation therapies. Therefore, the goal of the current
study was to develop an asynchronous BMI that can detect
voluntary motor intent from chronic stroke patients using EEG
and command an upper-limb powered exoskeleton to provide
assistance and sensory feedback. The exoskeleton used was
the MAHI Exo-II (French et al., 2014), an upper-extremity
exoskeleton that guided movements once intent was detected.
The main focus of this feasibility study was to design and
optimize an EEG-based BMI for intent detection in stroke
patients, and hence we did not expect any functional changes
during this short-term study.

Generally for EEG-based intent detection, either power
modulations in different frequency bands (e.g., µ-rhythms,
8–12Hz) or time domain amplitude fluctuations (e.g., slow
movement related cortical potentials (MRCP) in delta band,
0.1–4Hz) can be used. Sensorimotor (SMR) or µ-rhythms are
characterized by decrease in power (desynchronization) over the
contralateral sensorimotor cortex during planning and execution
of imagined as well as real limb movements (Buch et al.,
2008; Daly et al., 2008; Bai et al., 2011; Gomez-Rodriguez
et al., 2011; Muralidharan et al., 2011b; Ramos-murguialday
et al., 2014; Ang et al., 2015). In contrast, MRCPs or slow
cortical potentials (SCPs) are negatively increasing potentials
that occur -1.5 seconds(s) to -2 s before movement onset and
reach negative peak at the onset of either self-initiated or
predictably-cued movements (Cui and MacKinnon, 2009). The
initial negative slope of MRCP preceding self-paced movement
is often called Bereitschaftspotential (BP) or Readiness Potential
(RP), whereas a similar slow negative potential observed before
an imperative stimuli to externally cued movement is termed
as Contingent Negative Variation (CNV) (Shibasaki and Hallett,
2006). MRCPs have been used previously to detect intention
for self-paced reaching movements (Lew et al., 2012), imagined
or attempted ankle dorsiflexion (Xu et al., 2014a,b), sitting
and standing transitions (Bulea et al., 2014) and even for
discriminating movement direction (Lew et al., 2014). BMIs
that detect intent by simultaneously combining information
from different types of input signals: MRCPs, µ-rhythms, and
β-rhythms (Fatourechi et al., 2008; Ibáñez et al., 2014), as
well as brain-neural computer interface systems which use
eye movements measured via electrooculography (EOG) for
interrupting unintended motion and enhance safety of an EEG-
based hand exoskeleton (Witkowski et al., 2014; Soekadar et al.,
2015), have also been developed.

Detecting intent from MRCPs is desirable for two reasons: (i)
the magnitude and slope of MRCPs modulate with movement
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characteristics such as force, speed, task complexity, etc., thus
providing a versatile motor control signal for capturing patient
motor intent (Cui and MacKinnon, 2009; Jochumsen et al.,
2013); (ii) the changes in the peak amplitude and latency of
MRCPs, could potentially serve as neural indicators of cortical
reorganization following motor learning and hence can further
help in evaluating the efficacy of BMI-based neurorehabilitation
(Yilmaz et al., 2015). Previous studies based on MRCPs have
mainly dealt with healthy subjects (Bulea et al., 2014; Xu
et al., 2014a,b) and/or in the case of stroke patients, have been
conducted offline (Lew et al., 2012; Ibáñez et al., 2014). The brain
activity of stroke patients varies to a large extent from that of
a healthy intact brain, resulting in significantly differing EEG
features for identical tasks (Leamy et al., 2014). Moreover, results
obtained with healthy subjects rarely translate to stroke patients,
and hence, it is essential to validate the closed-loop performance
of MRCP-based BMI in patients with stroke. Therefore, to
address this gap in the literature as well as to benefit from the
aforementioned MRCP properties, we selected MRCPs for intent
detection in this study.

In Section 2, our experimental procedure and methods
for BMI calibration as well as for BMI control in real-time
are presented. Section 3 presents the results from offline
calibration and closed-loop performance using EEG-based BMI.
The implications of this study are discussed in Section 4 and the
conclusions are presented in Section 5. This study is registered on
ClinicalTrials.gov (Identifier: NCT01948739).

2. MATERIALS AND METHODS

Four subjects (3 male) with chronic stroke participated in this
study, which involved five experimental sessions (or days) per
participant. The first 3 days were reserved for BMI calibration,
followed by 2 days for testing closed-loop BMI control. Below
we provide details for each of the components within this study.
Preliminary findings in one stroke and three healthy subjects
were reported in Bhagat et al. (2014).

2.1. Subjects
This study was carried out in accordance with the
recommendations of the Institutional Review Boards of
University of Houston, Rice University, University of Texas
Health Science Center, and Methodist Hospital with written
informed consent from all subjects. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.
The inclusion criteria were: (1) age: 18–75 years; (2) chronic
stroke (≥ 6 months post-stroke); (3) upper limb hemiparesis
associated with stroke, with Manual Muscle Testing (MMT)
score ranging from 2 to 4 in the elbow and wrist flexors; (4) no
joint contracture or severe spasticity in the affected upper limb;
(5) sufficient sitting balance to participate with robotic activities;
(6) no hemineglect that would preclude participation in the
study protocol; (7) no history of chemodenervation or nerve
block for spasticity or pain relief to the affected limb in the past
4 months and no planned alteration in upper-extremity therapy
or medication for muscle tone during the course of the study;
and (8) no condition (e.g., severe arthritis, central pain) that

would interfere with the administration of motor function tests.
The exclusion criteria identified were: (1) orthopedic conditions
of either upper extremity that would affect performance on the
study; (2) untreated depression that may affect motivation to
participate in the study; and (3) pregnancy.

2.1.1. Post-Experiment Assessments
For this study, baseline clinical scores were not measured, since
we did not expect them to change during the short intervention
of this study. Instead, clinical and functional assessments were
performed post-experiment to determine the subject’s physical
and cognitive impairment levels as a result of stroke. Muscle
spasticity and motor impairment were evaluated using the
Modified Ashworth Scale (MAS, range 0–4, 4 being maximum
spasticity) and Fugl-Meyer Arm Assessment (FMA, range 0–
66, 66 being normal function). MAS scores for only elbow
portion of the test, i.e., flexor and extensor muscles of the
affected hand are reported here, since these muscle groups
were predominantly used for operating the exoskeleton. To
test for cognitive impairments, the Folstein’s Mini-Mental State
Exam (MMSE, range 0–30, ≥ 27 implies normal cognition) was
conducted. In addition, the NIH Stroke Scale (NIHSS, range 0–
42, 42 meaning severe stroke impairments) was evaluated. Lastly,
grip strength was measured using a hand-held dynamometer.
Table 1 provides demographic details and subjects’ performance
on standard clinical and functional assessment tests that were
conducted after completion of study. All subjects recruited were
right-handed prior to onset of stroke, although S4 had used his
left-hand for writing. S4 had Moyamoya disease and had suffered
two strokes, ischemic followed by hemorrhagic, which occurred
within a span of 1 month.

T1-weighted Magnetic Resonance Images (MRI) were
obtained at the Houston Methodist Research Institute MRI
core using a 3T Ingenia (Philips) full body MRI scanner
for the purpose of conducting source imaging. A MRI scan
protocol with the following acquisition parameters was used:
number of acquisitions = 1; acquisition matrix = 252 × 227;
TR = 8ms; field of view = 250 × 200; duration = 5min,
30 s; slice thickness = 2mm; flip angle = 8◦; reconstructed
in-plane resolution = 0.78mm. Scan parameters were adjusted
if necessary to account for the anatomy of the subject (such as
changing the field of view or number of slices depending on the
need for anatomical coverage). MRI images were acquired for
all subjects, except for subject S3 who declined the MRI scan
because of claustrophobia.

2.2. Experimental Setup
2.2.1. Electroencephalography (EEG)
Scalp EEG was recorded using a 64-channel, active-electrode
system (actiCAP system, Brain Products GmbH, Gilching,
Germany). The EEG amplifier was configured for sampling
frequency = 500Hz, resolution = 16-bit, dynamic range =

±3.2768mV, and bandwidth = 0−1000Hz. The EEG electrodes
were positioned according to the International 10–20 system
(Klem et al., 1999). The ground and reference electrodes were
attached to the subject’s ears, one on the unimpaired side
(ground) and other on the impaired side (reference).
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TABLE 1 | Subject demographics and clinical assessment scores.

Subject Gender Age Time since Stroke Lesion Paretic MAS (Elbow) FMA MMSE NIHSS GS

(years) stroke (years) type location arm flexor extensor (%)

S1 Male 58 5 Ischemic Right frontal,

parietal,

occipital

Left 0 3 10 23 4 0

S2 Male 40 14 Hemorrhagic Left parietal Right 2 1+ 20 29 2 6

S3 Female 68 7 Ischemic n/a Left 3 1 23 26 2 4

S4 Male 28 10 Ischemic +

Hemorrhagic

Right frontal,

parietal

Left 2 1 31 28 1 11

MAS, Modified Ashworth Scale (range 0–4, 4 indicating maximum spasticity). Only elbow portion of the scores for flexor and extensor muscles of the affected hand are reported here.

FMA, Fugl-Meyer Arm score (range 0–66, higher scores representing better arm function).

MMSE, Mini Mental State Exam (range 0–30, higher scores representing normal cognition).

NIHSS, NIH Stroke Scale (range 0–42, higher score imply severe motor impairments).

GS, Grip strength for affected hand reported as percentage of the unaffected hand score.

n/a, Data not available, since subject declined the MRI scan because of claustrophobia.

Four peripheral active electrodes FT9-10, TP9-10 were instead
used to record EMG activity from the impaired hand. For this, the
active electrodes were replaced with shielded passive electrodes
using a splitter box (EIB-64A, Brain Products). Then a pair of
shielded electrodes 5 cm apart (bipolar configuration) was placed
on each of the biceps and triceps muscles. The EMG ground
electrode was attached to the skin at the olecranon process of
the unimpaired elbow joint and combined with the EEG ground
at the splitter box. The amplifier range for these 4 channels
was scaled to ± 327.68mV using recording software from Brain
Products. Thus, EEG and EMG signals were synchronized.

2.2.2. Exoskeleton
The MAHI Exo-II has four actuated degrees of freedom (DOF),
but the current study only focused on controlling a single DOF
elbow joint and hence, the wrist and forearm actuators were
held in a fixed position using set-point proportional-derivative
control. The exoskeleton allowed adjusting the range of elbow
movement for each subject within 0–60◦. The exoskeleton’s elbow
movement was mapped to a solid green ball on the screen
using a graphical user interface (GUI), for providing visual
feedback. A detailed description of the exoskeleton is reported
elsewhere (French et al., 2014). It was operated in two training
modes for BMI calibration: user-triggered and user-driven. In
the user-triggered mode, the user initiated the movement by
pushing against a slight resistive force, and then the robot
guided the user in performing the movement. In the user-
driven mode, the user initiated and performed the movement
without any guidance from the exoskeleton. Further, in the
user-driven mode, the exoskeleton was back-drivable with low
friction and inertia and only passively recorded the motion
kinematics. As compared with the user-triggered mode, the user-
driven mode required greater physical effort from the subject
during the task. Consequently, subjects with excessive muscle
weakness were unable to complete the task in the user-driven
mode and hence for such subjects, we used the user-triggered
mode only.

The exoskeleton’s controller recorded elbow position and
velocity by sampling high-resolution encoders at 1000Hz.

The exoskeleton also synchronized data capture with the
EEG/EMG system by generating 5V TTL trigger pulses. Within
each trial, triggers were generated when the targets were
shown (target-onset), when the subject initiated movement
(movement-onset) and when a target was hit (target-reached).
Movement-onset was determined during data acquisition
whenever the joint velocity exceeded a predetermined threshold
value. This threshold was determined on day 1 for each subject
by having them move the exoskeleton for five practice trials, at a
comfortable speed in user-driven mode. The threshold was then
taken as 5% of the average peak velocity obtained from practice
trials. For subjects that could not use the user-driven mode, the
velocity threshold was heuristically adjusted until the subjects
were able to comfortably initiate the exoskeleton’s movement in
the user-triggered mode. Figure 1A depicts the EEG-based BMI
to the MAHI Exo-II exoskeleton.

2.2.3. BMI Calibration Task
For calibrating the BMI, subjects attempted self-initiated elbow
flexion or extension to move the exoskeleton from the center
position toward either an upper or lower target, respectively
(Bhagat et al., 2014). The subjects were instructed to first
consciously think about their preparation for the impending
movement and when ready, move the exoskeleton toward the
target as fast as they could. The movements were self-paced with
inter-trial fixation for 4–6 s. Trials were presented in blocks of
20 and up to 8 blocks of calibration trials were recorded per
day. The calibration routine was repeated on the subsequent day
to account for the day-to-day EEG variability when training the
BMI. Identical task design was followed for both user-driven and
user-triggered modes. The data collection process was tailored
depending on the subject’s motor ability as shown in Figure 2.
For subjects S2 and S4 that were able to use both calibration
modes, we recorded 8 blocks/day (i.e., 4 consecutive blocks for
each mode). On day 2, for these subjects, the order for user-
driven and user-triggered modes was swapped from that of day
1. Subjects S1 and S3 could not use the user-driven mode due to
excessive motor impairment and hence for them, we decided to
use only the user-triggered mode for calibrating the BMI. For all
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FIGURE 1 | (A) Schematic of the asynchronous EEG-based BMI. Motor

intents detected from EEG activity of a chronic upper-limb impaired stroke

patient, are gated by EMG from impaired hand to trigger robot guided

movement using MAHI Exo-II (currently elbow flexion/extension only). (B)

Timeline for each trial during closed-loop BMI control task. Exoskeleton’s

motion (forearm extension) and corresponding visual feedback displayed on

the graphical user interface (GUI) at significant events on the timeline are

shown. Exoskeleton or home (H) position and target (T) position are also

indicated. (C) Raster plot displays time-series of selected EEG (MRCP)

channels and their spatial average used to detect motor intent, EMG from

biceps and triceps muscles, and exoskeleton’s kinematics (elbow position,

velocity), during closed-loop BMI control. Alternating attempted trials (shaded)

from target-onset to target-reached and fixation intervals are shown. Markers

indicate BMI predictions (unfilled triangles) and successful intent detection with

EMG-gated BMI (filled triangles). Trial #2 shows examples of spurious BMI-only

intents i.e., false positives that were successfully rejected by EMG-gate and a

missed subject attempt i.e., false negative (marked by arrow) which the BMI

failed to detect. Note also the incorrect BMI-predicted motor intent during

fixation interval preceding Trial #2, which was rejected by EMG-gate.

FIGURE 2 | Data collection procedure. The parenthesis, next to the

user-driven (UD) and user-triggered (UT) training modes, represent the number

of blocks of 20 trials that were completed on each day.

subjects, on day 3, we trained a BMI classifier for each calibration
mode using data from previous days and additionally fine-tuned
the classifier’s parameters, which were thereafter kept fixed for
closed-loop BMI control.

2.2.4. Closed-Loop BMI Control Task
Once calibrated, the BMI’s performance was tested in real-
time during days 4 and 5. During closed-loop BMI control, the
subject’s goal was to use the BMI and initiate flexion or extension
movement of the exoskeleton in order to reach the target. In
contrast to a calibration trial, where the subjects were free to
choose one of the two targets, during BMI control the target was
under computer control and alternated between the two spatial
positions on the screen (top or down). S1 and S3 had trained with
user-triggered mode only and hence for them, we tested the same
BMI classifier on both days. For S2 and S4, however, on day 4
we tested the BMI classifier that was calibrated using user-driven
mode and on day 5 we tested the classifier trained using user-
triggered mode. Regardless of the BMI classifier used, the BMI
only triggered the movement of the exoskeleton in both modes.
Hence the subjects, which were unknown to the classifier used,
attempted the task in the same way.

Figures 1A,B show the closed-loop BMI implementation as
well as the timeline for a typical trial during online testing. As
shown in Figure 1B, the robot’s current position was shown to
the subjects by a solid green ball (home), whereas the fixation
and target positions were shown using black and green crosses,
respectively. Each trial was preceded by 4–6 s of fixation and
lasted for up to 15 s during which the subjects could attempt to
start exoskeleton movement using the BMI. During this span, the
robot remained stationary and actively resisted any force exerted
by the subject. Once the BMI detected intent, the system validated
the BMI’s decision by comparing it with the EMG activity from
biceps and triceps of the impaired limb (Mattia et al., 2013).
If EMG activity was detected in either of these muscles within
1 s following the BMI’s decision, the algorithm triggered the
exoskeleton to execute a pre-recorded motion sequence in order
to reach the target. However, if EMG activity was absent following
the BMI’s decision, then the algorithm rejected the BMI’s decision
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and did not trigger the exoskeleton’s movement. The EMG-gated
BMI strategy was deployed for reducing the false positives of the
BMI classifier. In case the subject was unable to complete the task
within the 15 s allotted, a “Timed-out” message was displayed on
the screen briefly, followed by the fixation for the next trial. A
raster plot of the physiological and kinematics signals along with
markers for time points when the BMI had detected intent are
shown in Figure 1C.

To help evaluate misclassification or false positives, a few
randomly selected trials within a block were presented as
“catch” trials or rare events. During a catch trial, the subjects
were instructed to not think/attempt to move the robot (i.e.,
a planned No-go) for the entire 15 s interval. To distinguish
a catch trial from a regular trial, the target was shown as
a large red ball. If the EMG-gated BMI did detect intent
during the catch trial it triggered the robot to move and its
decision was recorded as a false positive. Each block contained
from 1-5 catch trials and their order was randomized. The
unbalanced ratio of catch trials (rare events) to regular trials
was selected in order to allow subjects to practice BMI control
of the exoskeleton and be able to learn to use the BMI for
performing the movement. A balanced distribution of trials, was
however maintained during offline cross-validation to get an
initial estimate of classifier’s performance, as described in Section
2.3.3.

On average, an entire block (i.e., 20 trials) was completed in
6.55 ± 0.64 minutes. The number of blocks completed during
closed-loop BMI control varied across subjects due to subject
fatigue and availability.

2.3. BMI Decoder Calibration
2.3.1. Signal Processing
Offline data analysis was performed using MATLAB’s Signal
Processing and Statistics toolboxes (MATLAB, 2012), EEGLAB
(Delorme and Makeig, 2004), and R Programming Language’s
Signal and R.matlab packages (Signal Developers, 2013;
Bengtsson, 2014; R Core Team, 2014). To detect MRCPs using
features extracted from EEG signals, a classifier was trained as
described below and as shown in Figure 3.

EEG data recorded on days 1 and 2 were appended and filtered
in the low frequency delta band (0.1–1 Hz) (Lew et al., 2012). The
filters were applied in succession, i.e., initially EEG signals were
high-pass filtered (causal, 4th order Butterworth, −3 dB cutoff
freq. = 0.1Hz), then re-referenced using Large Laplacian spatial
filter (McFarland et al., 1997) and finally low-pass filtered (causal,
4th order Butterworth, −3 db cutoff freq. = 1Hz). Although
Butterworth (IIR) filters introduce non-linear phase distortion
and sometimes can be unstable, they are recommended over
FIR filters when computational efficiency, sharp cutoffs and high
throughput causal systems are required (Widmann et al., 2015).
Also, by using a causal filter offline, we ensured that the phase
distorted EEG signals used to train the classifier, would be similar
to those which the classifier will encounter during real-time.

The filtered signals were downsampled to 20Hz and
segmented into epochs extending from [−2.5 s 1 s] with respect
to target-onset and movement-onset triggers. Epochs aligned to
movement-onset corresponded to the subject’s preparation for

FIGURE 3 | Flowchart for offline EEG processing and classifier design.

A binary Support Vector Machine (SVM) classifier with Radial Basis Function

(RBF) kernel was trained and evaluated using a simulated real-time

cross-validation scheme that generated classifier prediction on test samples

using a 50ms sliding window. The classifier and optimal window length (wlO)

that obtained in maximum area under the receiver operating characteristics

(ROC) curve, were later used for closed-loop BMI implementation (see Section

2.4).

movement, during which MRCPs are known to be generated
(Shibasaki and Hallett, 2006; Cui and MacKinnon, 2009; Lew
et al., 2012). Hence, these epochs (or trials) were labeled as
belonging to “Go” class. Similarly, epochs aligned to target-onset
were labeled as “No-go” class, since the subjects were at rest
and fixating during this interval. All Go epochs were visually
inspected for corruption by eye blinks or movement artifacts and
the corrupted epochs were removed. For eachGo epoch removed,
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the corresponding No-go epoch was also removed, to maintain
equal class distribution. Thus, 154 ± 10 epochs per class were
retained across subjects.

Next, the Go epochs were baseline corrected, by subtracting
from each epoch its mean amplitude over [−2.5 s −2.25 s]
interval prior to movement-onset and then time averaged,
to obtain a grand-averaged waveform for each EEG channel.
Baseline correction was used only during the computation of
grand-averages to aid in the visualization of MRCPs and was
not applied during classifier design, since it did not affect
the classifier’s accuracy. Previous studies show that MRCPs
are observed in grand-averaged Go epochs of EEG channels
over the primary motor cortex, pre-motor and supplementary
motor areas (Shibasaki and Hallett, 2006; Lew et al., 2012). In
addition, for stroke patients theMRCPs are distributed bilaterally
over both cortices as compared to dominant contralateral
distributions observed in healthy subjects (Yilmaz et al., 2015).
Therefore, we visually inspected the grand-averages for channels
over sensorimotor cortex and selected only those channels for
whichMRCPs were identified. From these channels, we manually
selected a subset of channels that achieved best classification
accuracy. While automated channel selection may be preferred
over themanual approach taken here, a previous study found that
the classifier performed equally well for both approaches (Lew
et al., 2012).

Further, for each trial, the EEG epochs (Vk(t)) from above
selected MRCP channels (= M) were merged using a spatial
average that is given by, X(t) = 1

M

∑M
k=1 Vk(t). Spatial Averaging

or mean filtering is a standard image processing technique
for smoothing and reducing noise in images by reducing the
intensity variations in neighboring pixels (Fisher et al., 2003).
We applied spatial averaging for smoothing the single-trial
variations of MRCP channels and thus computed a global MRCP
representation for motor intent. Trials for which the spatial
averaged MRCP peaked earlier than −1.5 s before movement-
onset were most likely corrupted by artifacts and such trials were
removed from the training set.

2.3.2. Optimal Window for Segmenting Go and No-go

Epochs
In order to extract EEG features, we segmented the Go and
No-go epochs using two equal length windows. To specify a
window we determined two parameters: the location of its
leading edge (i.e., onset time) and its length (i.e., looking back
into the past starting from onset time). Previous studies have used
fixed location windows with pre-decided length. For example,
in Lew et al. (2012) a fixed window from [−0.75 s −0.25 s]
was used for segmenting the Go epochs, across all subjects.
As shown in Section 3.2, this technique may result in poor
classifier performance due to trial-to-trial variability of MRCPs.
To overcome this drawback, we propose an adaptive window
technique where the window location and its length for each
subject is optimized to best capture the negative slope of MRCPs
and compensate for its trial-to-trial variability. For this, in each
trial, the location of the Go window was kept variable and made
to coincide with the time when the spatially averaged MRCP
reached its negative peak. Since we expected the MRCPs to be

absent during fixation interval, the location of the No-go window
was arbitrarily fixed at−0.5 s before target-onset.

Subsequently, the length of the Go and No-go windows
were iteratively increased from 0.5 s to 1 s in steps of 50ms.
In each iteration, the classifier’s performance was evaluated by
computing the area under its receiver operating characteristics
(ROC). Finally, the shortest window length that achieved the
maximum area under the ROC curve was selected as the optimal
window length (wlO). The window length optimization loop was
also applied to the conventional fixed window technique and its
performance was compared with the adaptive window technique.

2.3.3. Feature Extraction and Classifier Design
After segmenting the Go and No-go epochs, four time domain
features were computed from the segmented epochs, namely
slope, negative peak amplitude, area, and Mahalanobis distance.
Thus, for N trials, we have N Go and No-go epochs each,
resulting in a 2N × 4 feature matrix. The Mahalanobis distance
(d) for each windowed epoch is calculated as its distance from the
cluster of all windowed epochs belonging to the Go class. Thus,

d = [(x− µ)⊤6−1(x− µ)]−
1
2

where x is a vector of signal amplitude for each Go or No-
go epoch, µ and 6 are the mean and covariance matrix for
the cluster of all Go samples (Duda et al., 2012). It is reasoned
that during classification, a target or unlabeled epoch containing
MRCP will be similar in shape to the known or labeled Go epochs
and hence will have a smaller Mahalanobis distance (ideally 0).
To minimize computation time during closed-loop BMI control,
µ and 6 were saved during calibration and re-used later in
real-time.

A binary Support Vector Machine (SVM) classifier was
trained to discriminate between the Go and No-go epochs. The
SVM classifier was implemented using LIBSVM library (Chang
and Lin, 2011). The library’s C-Support Vector Classification
(C-SVC) formulation with Radial Basis Function (RBF) kernel

defined as K(xi, xj) = e−γ‖xi−xj‖
2

, γ > 0 was used. The
regularization and kernel parameters (C, γ ) were optimized
using the grid search technique for different combinations of
C ǫ {10,100,1000} and γ ǫ {0.2, 0.5, 0.8, 1}. LIBSVM extends
traditional SVM implementation and provides a probability
estimate, i.e., P(y = Go | x), given a sample vector x (Chang and
Lin, 2011). To classify a test sample as Go, it is required that P(y =
Go | x) ≥ τ , where τ is the detection threshold (ideally τ = 0.5).

Stratified 10-fold cross-validation was used to evaluate the
classifier’s offline performance. During cross-validation, to test
the classifier on an unseen trial, we used a sliding window that
was shifted every 50ms from [−2.5 s 1 s] with respect to either
movement-onset or target-onset. The sliding window’s length
was set equal to the Go window length during that iteration of
the optimization loop. This cross-validation scheme more closely
resembled real-time BMI control by preserving the chronological
order of the data and provides a more conservative estimate of
accuracy than a conventional cross-validation scheme (Lew et al.,
2012; Niazi et al., 2013).
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As the sliding window shifted through a trial, if three
consecutive windows were predicted as Go, then that trial was
classified as Go. In this case, the average probability over the three
consecutive Go decisions was assigned to that trial. Alternately,
if the decision was No-go then the average probability over all
No-go decisions within the trial, was assigned to that trial. By
grouping the assigned probability estimate on all test trials from
the 10 folds, the classifier’s ROC curve was computed (Fawcett,
2006). The ROC curve was computed for each window length
iteration and the shortest window length that resulted in the
maximum area under ROC curve was chosen as optimal window
length (wlO). After deciding wlO, the classifier with the highest
accuracy amongst the 10 cross-validation folds for that wlO, was
selected for closed-loop BMI implementation.

To test whether our classifier performed better than chance,
we shuffled the class labels for 1000 times and for each
permutation we calculated the mean classification accuracy after
repeating the 10-fold cross validation. If the classifier performed
better on the original training set than 95% of randomized
samples, i.e., if empirical p−value < 0.05, then the difference in
themean classification accuracy was considered significant (Ojala
and Garriga, 2009).

2.4. Closed-loop BMI Implementation
For closed-loop BMI control, a custom MATLAB graphical user
interface was developed that streamed EEG and EMG signals in
real-time using Brain Products’s streaming library. After filtering
and downsampling to 20Hz, the spatial average of selected
MRCP channels was computed. A sliding window of length equal
to wlO generated the classifier’s prediction every 50ms. If the
prediction’s probability estimate exceeded the decision threshold
(τc) for Nc number of consecutive windows, only then the BMI
made a Go decision. The parameters τc and Nc were empirically
tuned on day 3 for each subject and for each calibration mode
and subsequently were kept fixed on days 4 and 5.

Furthermore, to implement the EMG-gated BMI strategy,
EMG signals (biceps and triceps) from the impaired hand were
band-pass filtered (30–200 Hz, 8th order, Butterworth) and
their root mean square (RMS) amplitude over a 300ms interval
was computed. The RMS amplitude was compared to pre-set
thresholds for the biceps and triceps in order to detect EMG
activity. As soon as the BMI predicted motor intent, a one
second timer was started. If EMG activity was detected before
the timer overflowed, then the BMI’s decision was accepted
and the exoskeleton performed the movement. Otherwise, the
BMI’s decision was rejected. EMG activity from either biceps
or triceps can be used for gating both movements, i.e., initiate
exoskeleton’s movement, irrespective of whether the desired
motion was flexion or extension.

2.5. Performance Evaluation
True Positive Rate (TPR) and False Positive Rate (FPR) were
used to evaluate the BMI’s performance on days 4 and 5. TPR
was defined as the fraction of attempted trials for which the
motor intent was correctly detected, within each block. FPR was
defined as the fraction of catch trials for which the motor intent
was incorrectly detected, within each block. Two-sidedWilcoxon

Rank Sum test was used to determine if the BMI’s performance
significantly differed between days 4 and 5. As subjects S2 and
S4 attempted the task in the same way during closed-loop BMI
control, regardless of whether the BMI was calibrated using
user-driven or user-triggered mode, we compared the BMI’s
performance in their case as well.

In addition, based on the time required by the BMI
to detect intent within a 15 s trial, we estimated the
number of motor intents the BMI could detect per minute
(min). This metric, referred simply as Intents per min =

60× (Time(s) to detect intent)−1, measures the responsiveness
of the BMI to the subject’s motor intention. Also, we calculated
the coefficient of variation (CoV) for Intents per min, to measure
how dispersed their distribution was within a block. CoV was
defined as the ratio of standard deviation to mean values of
intents per min for a block. Furthermore, we computed the
latency between motor intent detection by the BMI and the
physical onset of subject’s movement during closed-loop control.
Physical movement onset was determined from the kinematic
data, i.e., when the joint velocity exceeded a pre-set threshold.

We also asked the subjects to provide feedback on the accuracy
of the BMI during closed-loop using a 5-point Likert scale.
After each trial, the participants were asked: “How accurate
was the BMI’s decision in this trial?”. In response, the subjects
provided a rated score from 1-5 where: 1-completely inaccurate,
2-moderately inaccurate, 3-not sure, 4-moderately accurate, 5-
completely accurate.

Finally, to help elucidate the neural networks involved in the
generation of intent in stroke patients we localized the neural
signals generated in the time interval leading to the detection of
motor intent during closed-loop BMI control. Cortical sources
of MRCP were estimated for each subject on a trial by trial
basis for days 4 and 5. The average source activation for each
block and the grand-average across blocks for each day was then
computed. For details on source analysis and its outcomes, refer
to Supplementary Materials.

3. RESULTS

3.1. MRCPs in Stroke Subjects
Figure 4 depicts the MRCPs for subject S4. This subject was
able to use both BMI calibration modes and the left and
right columns correspond to the user-driven and user-triggered
modes, respectively. Figures 4C,D show grand-averaged traces
with 95% confidence bounds for all channels shown in
Figures 4A,B. Note that the negative peak of MRCP lags by
∼0.5 s with respect to movement-onset due to the non-linear
phase distortion of IIR filters used for preprocessing EEG. As seen
in Figures 4C,D, channels FCz, FC1, Cz, C1-C3, CPz, CP1-CP3
illustrate strong MRCPs whereas the remaining channels FC2-
FC4, C4 and CP4 do not show any discernible MRCPs. Table 2
lists MRCP channels identified for all subjects. MRCP channels
that were later used by the BMI classifier for detection of motor
intent are marked by red circles in Figures 4A,B and shown in
bold-face in Table 2. In addition, Figures 4E,F show raster plots
of color-coded single-trial EEG epochs (only for Go epochs),
for the selected MRCP channels and their spatial average. The
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FIGURE 4 | Movement related cortical potentials (MRCPs) observed for subject S4 in user-driven (A,C,E) and user-triggered (B,D,F) modes. (A,B) show

a subset of EEG channels over the fronto-central, central and centro-parietal lobes, which were investigated for presence of MRCPs. Shaded gray circles represent

channels for which MRCPs were observed from grand-averages in (C,D) and red circles highlight channels that were subsequently used for training the motor intent

classifier. Shaded blue and black circles represent reference and ground electrodes respectively, which were attached to the subject’s ears. (C,D) show baseline

corrected grand-averages ± 95% confidence intervals using thick and thin black lines, respectively. In the figures, the peak of MRCP is lagging (∼0.5 s) the time of

movement-onset (MO) due to the non-linear phase distortion of IIR filters. (E,F) display raster plots of single-trial EEG amplitudes, without baseline correction, for

channels used to train the classifier (columns 1–4) and their spatial average (column 5). The trials were sorted in increasing order of latency, which is defined as the

time interval starting from 0.5 s up to the negative peak of spatial average. In column 5, trials for which the peak negativity of spatial average occurred earlier than

−1.5 s (vertical black line) with respect to movement-onset, were rejected when training the classifier since these trials are most likely corrupted by artifacts.

raster plots were created using EEGLAB’s erpimage() function
(Delorme and Makeig, 2004). As compared to 1-D grand-
averages, ERP-image plots provide a 2-D representation (epoch
times × epoch amplitudes) of single-trial MRCPs and help in
visualizing their inter-trial variability. The ERP-images were first
sorted and then vertically smoothed using a moving average filter
of length = 2 trials. The sorting order was determined from the
time instant at which the spatially averaged MRCP reached a
negative peak, within the interval [-2 s 0.5 s]. Epochs for which
the negative peak occurred closer to 0.5 s after movement-onset,
where ranked higher than other epochs, whereas epochs with
negative peak occurring earlier than −1.5 s were rejected during
classifier training. Table 2 shows the initial number of trials (per
class) as well as the number of trials that satisfied this criterion.
Amongst trials that satisfied our criteria, we found approximately
equal distribution of trials between days 1 and 2. This is also
indicated by the number within parenthesis in Table 2.

3.2. Comparison of Fixed and Adaptive
Window Techniques
Figure 5 compares the fixed and adaptive window techniques
using a sample dataset (subject S4, user-triggered mode). For
comparison outcomes in other subjects, refer to Supplementary
Materials. In Figure 5A, a few single-trial spatial-averagedMRCP
epochs from calibration data recorded for subject S4 (user-
triggered mode) are shown. In the left column, a fixed window
is shown that was shifted by 0.5 s after movement-onset to
compensate for the filtering delays. As seen in this figure, the fixed
window approach often fails to capture the negative MRCP slope
in all trials and instead segments a mixture of rising and falling
signal trends. Alternatively, as seen in Figure 5A (right column),
the adaptive window approach consistently captures the negative
slope of MRCP for each trial. Figure 5B shows the 4-D feature
space using 2-D scatter plots (top and bottom), for both the fixed
and adaptive windows.
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TABLE 2 | Optimized parameters for offline calibration and closed-loop testing of BMI control.

Offline calibration parameters Closed-loop testing parametersSubject Calibration

Mode
MRCP channels* Initial no.

of trials,

per class†

No. of trials

used,

per class‡

wlO

(s)

Nc τc EMG threshold (mV)

Biceps Triceps

S1 UT FC1, Cz, C4, CPz, CP2-CP4 134 101 (62) 0.9 2 0.425 8.5 7

S2
UD FCz, Cz, C3, CPz,

CP1, CP2, CP3, CP4

154 107 (56) 0.95 3 0.738 12 9

UT FCz, FC1, Cz, C2, CP3 160 116 (56) 0.85 5 0.72 7.5 6.4

S3 UT FCz, FC1, FC2, Cz,C2,

C4, CP4

157 105 (57) 0.9 3 0.724 44 11.5

S4

UD FCz, FC1, Cz, C1-C3, CPz,

CP1, CP2, CP3

160 131 (60) 0.65 6 0.735 25 25

UT FCz, FC1, Cz, C1, C2, C3,

CPz, CP1, CP2, CP3

160 140 (70) 0.95 5 0.723 31 21

UD, user-driven mode; UT, user-triggered mode. Optimal window length (wlO) is reported here for only the adaptive window approach. τc and Nc are the decision thresholds for

classifier’s probability estimate and number of consecutive windows, respectively.

*Channel with bold-faced labels were later used for training the classifier.
†
Initial no. of trials = Total calibration trials recorded − trials rejected by visual inspection.
‡
Number of trials eventually used for training the classifier, after rejecting trials which did not meet our criteria (see Section 2.3.1 for details). Additionally, the parenthesis indicates number

of trials belonging only to day 1, which were short-listed for classifier training.

Figure 5C shows the ROC curves for the classifier
performance when using fixed and adaptive window techniques,
whereas Figure 5D shows the optimal window length (wlO)
selected for each technique. In addition, Figure 5E compares the
10-fold cross-validation accuracies that were obtained during
calibration (offline), for each subject and calibration mode. Here
accuracy refers to the percentage of correct predictions from
the total predictions. Using one-sided Wilcoxon Rank Sum
test, the classification accuracy for adaptive window was found
to be significantly better than for fixed window for subjects
S3 (p < 0.05) and S4 (p < 0.01). The median and maximum
classification accuracy across all subjects was higher for adaptive
window over fixed window. Higher classification accuracy is
important because the classifier with the highest cross-validation
fold accuracy amongst the 10 folds, was selected for closed-loop
BMI implementation. Besides accuracy, the adaptive window
approach also achieved larger area under the ROC curve in a
majority of the cases, except for subject S2 in user-driven mode,
as can be seen from Figures 5C,D and Supplementary Figures
S-4–S-7. Interestingly, all classifiers were significantly better than
random chance (49.6 ± 2.2%), irrespective of whether fixed
or adaptive windows were used. Since the adaptive window
performed better than the fixed window, we selected the classifier
trained using adaptive window for closed-loop BMI control.
Table 2 lists the adaptive window lengths that were optimized for
each subject, as well as the closed-loop BMI parameters which
were fine-tuned on day 3.

3.3. Closed-loop BMI Performance
Figure 6 shows the median and interquartile range for block wise
TPR and FPR that were obtained on days 4 and 5. Additionally,

Table S-3 (Supplementary Materials) presents the mean ± SD
values for the different metrics that were considered in this study
to evaluate the closed-loop BMI performance. When considering
each subject’s performance individually, all subjects except S1,
showed significant difference in TPR between both days. For S2,
the difference was negative i.e., BMI performed very well on day
4 (user-driven mode) with maximum TPR = 100% and 0 false
positives and on day 5 (user-triggered mode), however the TPR
significantly decreased (p < 0.05) as well as the FPR marginally
increased. On the other hand, for S4, the results were quite the
opposite. In S4’s case, the TPR on day 5 was significantly better
(p < 0.01) than day 4 and there were only a few false positives on
day 5.

To further understand how the BMI’s performance evolved
within each session and across both sessions, we estimated the
number of intents per minute. In Figure 7, the block wise intents
permin for days 4 and 5 are shown.Within each block, the intents
per min were calculated for only those trials for which the BMI
correctly detected intent. Underneath each boxplot for intents
per min, we plot the block wise coefficient of variation (CoV).
The overall distribution of intents per min and its CoV for each
day is shown by accumulating the values obtained for that day.

In general, the number of intents detected per min by the BMI
largely fluctuated across blocks. However, for S2 (day 4), using
regression analysis we found that the median values for intents
per min significantly increased across blocks. Since, within a
session the BMI was kept fixed, this suggests that within a
single session, with repeated practice S2 had learned to effectively
control the BMI. Moreover, the increase in intents per min also
corroborates well with our previous result when we found that
for S2 on day 4, the BMI performed almost perfectly. A similar
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FIGURE 5 | Approach for deciding optimal window length (wlO) and calibrating motor intent classifier for a sample dataset (S4, user-triggered mode).

(A) shows examples of single-trial spatial averaged MRCP epochs in gray superimposed with blue and red regions which represent fixed and adaptive windows

defined for extracting classification features. The fixed window is predefined with respect to movement-onset (MO), whereas the adaptive window is defined for each

trial with respect to negative MRCP peak. Further, for adaptive window, trials when the MRCP peaked earlier than −1.5 s were rejected from the training set (marked

by X, otherwise by X). The duration of fixed and adaptive windows shown in (A), correspond to wlO marked in (D) by blue and red “o”, respectively. (B) Scatter plots

showing the distribution of features extracted using optimal fixed and adaptive windows from Go and No-go trials. (C) Receiver operating characteristic (ROC) curves

indicating classifier’s performance in terms of True Positive Rate (TPR) and False Positive Rate (FPR) for different window lengths shown in (D). Thin blue and red lines

demonstrate performance curves for different fixed and adaptive window lengths, whereas bold lines indicate optimal performance curves that were obtained for each

windowing technique. Random chance performance is shown by dotted black line. (D) shows the criteria for selecting wlO based on maximum area under the ROC

curve achieved. (E) Boxplots showing offline cross-validation accuracy for fixed and adaptive windows for all subjects and calibration modes. Statistically significant

differences determined using Wilcoxon Rank Sum test are marked. The dotted black line represent the chance level accuracy, averaged across all subjects and

conditions. UD, user-driven mode; UT, user-triggered mode.

trend was also found for S1 on day 4, which tended towards
significance (p = 0.055). Overall on both days, the median
number of intents detected per min hovered around 7-12. The
CoV estimates remained fairly uniform for S1 (day 4) and S2
(days 4 and 5). However, for S4 we found that on each day,
the CoV significantly decreased as the subject practiced with
more blocks. This suggests that with more block repetitions,
the variance in BMI’s performance decreased and it was able to
consistently detect the subject’s intent. The subjects’ rating of the
BMI performance averaged 3.15 ± 1.68 over the two days of
closed-loop testing, indicating the subjects felt the BMI system
responded on average to their intent (Table S-3, Supplementary
Materials).

4. DISCUSSION

In this study we designed and optimized an asynchronous
EEG-based BMI to perform goal-oriented movements using

an upper extremity powered exoskeleton (MAHI Exo-II). The
feasibility of the BMI system was validated in four chronic
stroke patients over two days. The proposed BMI can be
calibrated using either the user-driven or user-triggered modes
of the exoskeleton, to accommodate patients with varying levels
of motor impairment. Further, the BMI’s false positive rate
was substantially reduced by incorporating an EMG-gate as
a ground truth for the subject’s motor intentions. The BMI
paradigm was designed to be asynchronous such that the
subjects were free to attempt the trial any time after the
target appeared (in fact, an instruction stimulus informed the
subjects that they could start the volitional trial any time
they wished) and before the trial timed out, while the BMI
was continuously analyzing the ongoing brain activity (Leeb
et al., 2007). This approach differs from a synchronous BMI,
wherein the EEG is analyzed in predefined time intervals and the
participants are instructed to imagine their movement following
a auditory cue presented by the system (Brauchle et al., 2015).
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FIGURE 6 | Box plots show true positive rate (TPR) and false positive

rate (FPR) for closed-loop BMI performance on days 4 and 5. TPR and

FPR were calculated on attempted trials (15–19 trials/block, overall 1063 trials)

and catch trials (1–5 trials/block, overall 157 trials), respectively. The median

values for BMI performance are shown in red. In each sub-plot, the last

column shows the overall BMI performance achieved across all subjects.

Subjects S1 and S3 using user-triggered (UT) mode on both days are grouped

together. Similarly, S2 and S4 using user-driven (UD) on day 4 and

user-triggered (UT) on day 5 are grouped together.

While both asynchronous and synchronous are feasible for
the current application, the former approach provides more
flexibility by allowing the user to control the timing of the
exoskeleton’s movement or otherwise remain idle (Leeb et al.,
2007).

The overall performance across all subjects, combined over
both days was TPR = 64.86 ± 18.35% and FPR = 27.62 ±

36.37%. Also, the mean TPR on day 5 (67.08 ± 14.55%) was
consistent with the mean TPR for day 4 (62.71 ± 21.43%).
Although the mean FPR including all subjects was 27.74 ±

37.46 on day 4 and 27.5 ± 35.64 on day 5, when considered
individually, S2 and S4 had very low FPR (< 10%). As seen
from Table 1, subjects S1 and S3 are older and more severely
impaired (mean age = 63 years, mean FMA score = 16.5), as
compared to S2 and S4 (mean age = 34 years, mean FMA
score = 25.5). Moreover, due to excessive motor impairment,
S1 and S3 were unable to use the user-driven mode and their
EMG signals were weak and unreliable. These factors could have
contributed to excessive FPR in these subjects. However, for S1,
while there was no change in the median TPR and FPR on
both days, the variability in TPR reduced considerably on day
5. This was also true for S3, where in fact the TPR on day 5
significantly (p < 0.05) improved over day 4. This suggests that
these subjects were adapting well to the BMI paradigm, despite
their severe motor impairment and possibly age-related cognitive
decline.

In Table 3, we compare our results with previous offline and
online BMI studies that have tested EEG-based intent detection,
specifically with stroke patients. While a majority of the online
BMI studies have focused on sensorimotor rhythms (SMR) for
detecting intent, we observed comparable performance using
MRCPs. Interestingly, using MRCPs alone we were able to
achieve offline true positive rates (82 ± 16%) matching that of
an hybrid (SMR+MRCP) BMI (82± 10%) which was proposed
in Ibáñez et al. (2014).

In addition to online intent detection accuracy, the latency
for intent detection is also a significant factor in determining
the clinical viability of BMI-based neurorehabilitation therapy.
Ideally, the intent for movement should be detected well in
advance to allow a casual and seamless transfer from motor
intention to movement execution via the exoskeleton (Grosse-
Wentrup et al., 2011; Niazi et al., 2013). Moreover, the
concomitant activation of the motor cortex during movement
planning and the afferent sensory feedback provided by the
exoskeleton is necessary for inducing neural plasticity as per
Hebbian theory (Grosse-Wentrup et al., 2011; Muralidharan
et al., 2011a).

Therefore, it is encouraging that the proposed BMI was
able to detect intent before actual movement onset in nearly
all subjects (Table S-3, Supplementary Materials). The overall
detection latency across both days was -367± 328ms prior to the
subjects’ physical movement onset. These results are comparable
to the latencies reported in previous studies with stroke and
healthy subjects: -620 ± 250ms (Bai et al., 2011), -460 ± 85ms
(Lew et al., 2012), -152 ± 238ms (Niazi et al., 2013), -317 ±

73ms (Jochumsen et al., 2013), etc. and support the feasibility of
detecting motor intent in patients with stroke using MRCPs.

The EMG-gated BMI approach, presented in this study, acts
like a logical AND between the BMI and EMG predictions and
hence its performance represents a lower bound on the TPR and
FPR of the EMG-only condition, i.e., the TPR/FPR for EMG-only
condition will be at least as much as EMG-gated BMI or higher.
To confirm this, for subjects S2 and S4 who had residual motor
function and could benefit from EMG-gating, an offline analysis
was performed to compute the TPR and FPR when considering
an EMG-only controller. The results were for S2, on day 4, TPR
= 91 ± 10%; FPR = 4 ± 11% and on day 5, TPR = 88 ± 9%;
FPR= 33± 44%. For S4, on day 4, TPR= 80± 9%; FPR= 17±
19% and on day 5, TPR = 89 ± 6%; FPR = 6 ± 17%. The higher
FPR obtained in the EMG-only condition for S2 (days 4 and
5) and S4 (day 4) occurs because it uses simple thresholding as
compared to the conservative classification approach applied by
EMG-gated BMI (see Table S-3, Supplementary Materials). The
trade-off however, is that the TPR of the EMG-gated BMI is also
reduced. Thus, as compared to using an EMG-only controller, the
EMG-gated BMI approach improves the specificity of intention
detection at the cost of reduced sensitivity.

It is interesting to note that some evidence of operant
conditioning of neural activity may have occurred in S2
wherein a linear increase in number of motor intents was
detected across sessions (Figure 7). The combination of visual
and proprioceptive feedback associated with robot-assisted arm
movement could have promoted increased volitional control of
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FIGURE 7 | Number of motor intents detected per min (or Intents per min) and its coefficient of variation (CoV) are computed for each block of 20

trials that tested the closed-loop BMI control and are shown here for days 4 and 5 by the left and right columns, respectively. The subject names and

calibration modes are shown in the top left corner for each row. Each row consists of a box plot displaying number of intents per min and a plot showing their CoV for

each block. Additionally, within each plot the overall intents per min and CoV that were computed by combining performance of all blocks for that day is shown.

Outliers are represented by “◦”; however few outliers outside the axes range are not shown. The dotted lines show statistically significant trends in the median values

for intents per min and individual values of CoV across all blocks for that day, along with their slopes. UD, user-driven mode; UT, user-triggered mode.

movement-related cortical activity in the patient. While seen
only in one patient in our initial feasibility study, this finding is
particularly interesting as it provides additional support to the
hypothesis that BMI-assisted robotic rehabilitation therapies can
trigger neural plasticity, similar to the findings of (Naros and
Gharabaghi, 2015). In our future clinical trial, we plan to further
study and leverage the effect of such operant conditioning to
enhance effectiveness of each training session.

Previous studies have found thatMRCPs occur bilaterally over
the scalp during motor preparation, and gradually become more
lateralized before and during the movement execution (Platz
et al., 2000; Shibasaki and Hallett, 2006). Thus, in our application,
bilateral activation for detection of motor intent was expected.
Furthermore, due to the maladaptive higher involvement of
the unaffected hemisphere during motor preparation of paretic
hand, ipsilateral over-activation (i.e., higher negative amplitudes)
and a contralateral lower activation can be observed (Yilmaz
et al., 2015). This was also observed in the current study in

Figures 4A,B for subject S4, who was impaired in the left-hand.
Therefore, we used brain activity over both hemispheres for
implementing the BMI. This approach differs from conventional
restorative BMIs that rely completely on ipsilesional brain activity
(Soekadar et al., 2014). However, the afferent sensory feedback
provided by exoskeleton movement is provided to the affected
arm, thus encouraging patients to actively participate in the
therapy and thereby achieve better functional recovery (Daly and
Wolpaw, 2008; Venkatakrishnan et al., 2014).

4.1. Trial-to-Trial Variability of MRCPs
In the literature, different signal processing andmachine learning
techniques have been proposed to improve SNR of EEG signals
and reduce variability of MRCPs for single-trial intent detection.
In Garipelli et al. (2013), the authors propose an optimal
spectral filter with pass-band [0.1–1 Hz] and a combination
of common average reference and smoothening spatial filters
for preprocessing EEG signals, followed by Linear Discriminant
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TABLE 3 | Review of EEG-based motor intent detection studies in stroke patients.

References Studies No. stroke subjects Method Accuracy mean

(SD)%

Offline Muralidharan et al., 2011b Muralidharan et al., 2011 4 SMR TPRmax = 70

FPR = 22 (9)

Antelis et al., 2012 Antelis et al., 2012 4 SMR 71 (10)

Lew et al., 2012 Lew et al., 2012 2a MRCP TPRmax = 79 (12)

FPR = 10

Niazi et al., 2013 Niazi et al., 2013 5a MRCP TPR = 60 (11)

FPR/min = 4 (4)

Ibáñez et al., 2014 Ibáñez et al., 2014 6a SMR + MRCP TPR = 82 (10)

FPR/min = 1.5 (1)

– Current study

[offline]

4 MRCP TPRc = 82 (16)

FPRc = 44 (18)

Online Buch et al., 2008 Buch et al., 2008 8 SMR, [MEG] 73 (18),

[median]

Daly et al., 2008 Daly et al., 2008 3 SMR 82-98

Ang et al., 2011 Ang et al., 2011 11 SMR 82 (−)b

Gomez-Rodriguez et al., 2011 Rodriguez et al., 2011 2a SMR 84

[AUC]

– Current study

[online]

4 MRCP TPR = 65 (18)

FPR = 28 (36)

SMR, Sensorimotor or µ-rhythms; MRCP, Movement related cortical potentials; AUC, performance reported as area under the ROC curve.
aStudy included both healthy and stroke participants. Here we mention only the number of stroke participants. If available, we report only the BMI accuracy that was obtained with

stroke patients.
bStudy reported both online and offline accuracies. Here we only consider online accuracy.
c Overall TPR and FPR computed offline during BMI Calibration. Note that EMG gating was not used when computing offline accuracy.

Analysis (LDA). Alternately, a high dimensional time-embedded
feature matrix, which at each time point incorporates MRCP
samples from up to 50 ms in the past, followed by dimensionality
reduction and classification using Gaussian Mixture Models, has
been proposed in Bulea et al. (2014). Yet another approach,
combines high dimensional spatio-temporal ERP features and
subsequently classifies into target vs. non-target using either
regularized-LDA or multiple Logistic Regressors (Blankertz et al.,
2011; Marathe et al., 2014). Interestingly, in all the above studies
for extracting features for training the classifier, a fixed window
was used. In this study, we addressed this issue by proposing an
adaptive window technique for extracting MRCP features during
classifier training.

Single-trial EEG variability has been traditionally attributed
to changes in background neural activity and other non-neural
artifacts (Blankertz et al., 2011; Garipelli et al., 2013). However,
it is possible that the temporal and amplitude variability in EEG
reflects changes in task performance, neural adaptation/learning
and endogenous changes in global brain state due to fluctuations
in sustained attention, fatigue, etc. (Goldman et al., 2009;
Marathe et al., 2014). Studies examining the relation between
MRCPs and movement speeds have found that for faster
movements, the onset of MRCP (or BP) was delayed and it
peaked sooner than for slowermovements (Shibasaki andHallett,
2006; Gu et al., 2009). These findings suggest that single-trial
variability of MRCPs could also be influenced by the subject’s
volition to select the movement speed and direction for a trial.
In addition, changes in fatigue and attention can introduce

variability in EEG, especially if the same task is repeated over
several trials. Although a detailed analysis of this conjecture is
outside the scope of this paper, it led to the design of the adaptive
window technique, for minimizing the effect of MRCP variability
on the classifier’s performance.

4.2. Study Limitations
One potential limitation of the current study is the effect of
artifacts on the classifier’s performance. In this study however, we
use low frequency, narrow delta band (0.1–1 Hz) EEG activity
before movement onset, which according to previous studies
(Lew et al., 2012; Bulea et al., 2014), is unlikely to be contaminated
by motion or muscular artifacts. Also, it has been found that
ocular artifacts mainly affect the frontal EEG channels (Lew et al.,
2012), which we did not use for detecting intent. Moreover,
we used only the central EEG electrodes over the sensorimotor
cortex, which are less likely to be corrupted by any muscular or
ocular artifacts, if any. In addition, during offline calibration, we
visually rejected noisy epochs from the training set to minimize
their effects. Therefore, it is likely the effect of artifacts, if any, on
the classifier’s performance was negligible. It is also important to
note that the manual selection of channels for analyzing MRCP
used in this study will not scale for a larger number of patients.
Therefore, in future work we plan to further investigate methods
to automate channel selection personalized to each patient.

As seen in Figure 5E, the higher variations in the cross-
validation accuracy of adaptive approach could have resulted
from overfitting, since it uses smaller number of training samples
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(117± 16) per subject, which were retained using our criteria (see
Section 2.3.1); whereas for the fixed window approach we used
all training samples (154 ± 10) per subject. To overcome this
limitation, larger number of training samples will be recorded
and techniques for preventing overfitting of cross-validation
data (Ng, 1997), will be considered in future. The proposed
BMI performed well for less affected patients that could, in
addition, benefit from EMG-gating. However, for more severely
affected patients, other solutions than the one presented here
may be required and should be explored further. Closed-loop
control of BMI systems also has the potential to actively engage
learning and adaptation and therefore change cortical activity
(Orsborn and Carmena, 2013). The present feasibility study did
not investigate this possibility. This question would be better
addressed in a longitudinal study with a larger cohort of stroke
patients.

5. CONCLUSIONS

This study demonstrates the feasibility of using movement
related cortical potentials (MRCPs) recorded via EEG, to design
a closed-loop BMI system for detecting motor intent of chronic
stroke patients over multiple days and without recalibrating
the BMI. Using the adaptive window approach proposed
here together with calibration data from multiple days, we
demonstrated closed-loop BMI performance, in spite of inter-
trial variability and poor SNR of MRCPs. Our methods were
validated in four stroke patients with varying severity of motor
impairments, who were able to use the EEG-based BMI in
real-time to control an upper-limb exoskeleton (MAHI-Exo II).
We are currently testing our BMI approach in a clinical trial

involving a larger population of chronic stroke patients to assess
the potential benefits of using a personalized closed-loop BMI
system for robot-based upper-limb rehabilitation.
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Brain-machine interfaces (BMI) may support motor impaired patients during activities

of daily living by controlling external devices such as prostheses (assistive BMI).

Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of

lost motor function via neurofeedback training (restorative BMI). Using assistive BMI

in a rehabilitation context does not automatically turn them into restorative devices.

This perspective article suggests key features of restorative BMI and provides the

supporting evidence: In summary, BMI may be referred to as restorative tools when

demonstrating subsequently (i) operant learning and progressive evolution of specific

brain states/dynamics, (ii) correlated modulations of functional networks related to the

therapeutic goal, (iii) subsequent improvement in a specific task, and (iv) an explicit

correlation between the modulated brain dynamics and the achieved behavioral gains.

Such findings would provide the rationale for translating BMI-based interventions into

clinical settings for reinforcement learning and motor rehabilitation following stroke.

Keywords: assistive technology, neurorehabilitation, stroke, rehabilitation robotics, brain-computer interface,

brain-robot interface

In stroke patients with severe and persistent motor deficits, restitution of useful function is very
limited. Despite intensive rehabilitation programs, these patients are often left with a dysfunctional
upper extremity and, consequently, with a long-term dependency on others for activities of daily
living (Jørgensen et al., 1999; Dobkin, 2004; Feigin et al., 2008). There are many technology-
driven efforts to improve recovery in this patient group on the basis of motor re-learning.
Brain-machine interfaces (BMI), for example, have been applied lately to bridge the impaired
connection in the sensorimotor loop. Unlike classical BMIs that assist motor impaired patients, for
example by controlling external devices such as prostheses, their restorative counterparts provide
brain-state dependent proprioceptive feedback by way of orthotic devices attached to the hand
or arm of the patient to facilitate rehabilitation training toward functional restoration. Such
supported movements facilitate the detection of motor intention even in the absence of actual
movements (Gomez-Rodriguez et al., 2011; Brauchle et al., 2015). When used in conjunction
with commercially available robotic rehabilitation technology (Bauer et al., 2015; Brauchle et al.,
2015; Vukelić and Gharabaghi, 2015a), these devices are also known as brain-robot interfaces
(BRI). Patient control over these robotic training devices is usually mediated by motor imagery-
related sensorimotor oscillations of the ipsilesional cortical electroencephalogram (EEG) or
electrocorticogram (Gharabaghi et al., 2014b). However, the translation from assistive toward
restorative BMI cannot be realized simply by applying the identical method in altered environments
for different goals. We, therefore, propose a conceptual framework for restorative BMI distinct
from their assistive predecessors, summarize the most recent supporting evidence (Kraus et al.,
2016a; Naros et al., 2016), and project future developments and perspectives in this field. We
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exemplify this concept for the area of movement recovery
after stroke. The underlying assumption is that learning
to modulate sensorimotor beta-oscillations might facilitate
post-stroke functional restoration. Current evidence for this
assumption is circumstantial: (i) Movement-related beta-
oscillations are compromised in stroke patients and correlate
with the impairment level (Rossiter et al., 2014). (ii) Volitional
modulation of sensorimotor beta-oscillations can be learned
via BMI and correlates with corticospinal excitability increases
(Kraus et al., 2016a) and motor learning (Naros et al., 2016) in
healthy subjects. However, there is currently only one pilot study
available in literature that has addressed this concept of “learning
beta-band self-regulation” for post-stroke rehabilitation (Naros
and Gharabaghi, 2015). This perspective article intends to
outline in detail the rationale for this approach and to initiate a
discussion on necessary features and prerequisites of restorative
BMI for stroke rehabilitation.

FROM ASSISTANCE TO RESTORATION

Despite the application of novel techniques such as BMI training
combined with physiotherapy (for an overview, see Naros and
Gharabaghi, 2015), there is still a lack of relevant functional
improvement of the hand and finger function in the patient
group with persistent deficits of the upper limb. This has attracted
interest in the specificity and mechanisms of BMI therapy, since
the underlying neurophysiology of this intervention (Kraus et al.,
2016a), together with appropriate strategies to optimize learning
and motor gains (Naros et al., 2016) have not yet been fully
explored.

The BMI approach in rehabilitation comes into play once
standard physical practice is no longer possible in the targeted
patient group. Consequently, the lost motor function following
stroke limits the re-learning of movements (Doyon and Benali,
2005; Halsband and Lange, 2006; Naros et al., 2016). In such
cases, motor imagery (MI) might constitute an alternative for
physical practice (Halsband and Lange, 2006; Boe et al., 2014)
since it activates the sensorimotor system without any overt
movement (Gao et al., 2011; Szameitat et al., 2012; Vukelić
and Gharabaghi, 2015a; Naros et al., 2016). This volitional
modulation of oscillatory activity during MI can be supported
by providing BMI feedback about the user’s current brain state
to facilitate operant learning of oscillatory patterns considered
beneficial to recovery (Vukelić and Gharabaghi, 2015a; Naros
et al., 2016). The concept of restorative BMI training, therefore,
is based on the premise that associative learning facilitates self-
regulation of such MI-related brain activity by connecting the
neural correlates of movement intention and the contingent
feedback. Notably, for behavioral gains, this approach requires
not only operant learning of brain self-regulation but also the
progression of the trained brain dynamics (see also paragraph
on Adaptive BMI feedback). More specifically, movement-
related desynchronization (ERD) in the contralateral, ipsilesional
sensorimotor cortex is compromised in stroke patients compared
to healthy controls, i.e., the more severe the patient’s motor
impairment, the less ERD (Rossiter et al., 2014). Accordingly,

a restorative training approach would need to increase this
oscillatory modulation range again.

However, most BMI studies do not demonstrate such a
progressive modulation range, i.e., the improved skill of brain
self-regulation in the course of the training, even when behavioral
gains are reported after the intervention (for an overview, see
Naros et al., 2016). This suggests that the reported BMI use
had general priming effects on subsequent physiotherapy rather
than genuine effects, i.e., intervention specific motor gains (for
an overview, see Naros et al., 2016). The demonstration of
direct brain-function and/or brain-behavior relationships would,
however, be a requirement for the concept of restorative BMI,
which is based on the assumption that operant conditioning
of the targeted brain state and dynamics facilitates task-
specific motor gains (Naros and Gharabaghi, 2015). Unlike
previous ambivalent findings during BMI motor rehabilitation,
neurofeedback-induced operant conditioning of the targeted
brain states was indeed successfully achieved in the cognitive
domain and led to task-specific functional gains (Zoefel et al.,
2011). This ambiguity between the findings in the cognitive
and the motor domain might be related to the methodological
limitations of earlier BMI approaches in the motor domain. This
applies in particular to the cortical frequency-band trained by
ERD in previous studies, i.e., alpha- instead of beta-oscillations,
the feedback strategy and/or the application or lack of additional
brain stimulation (Naros and Gharabaghi, 2015; Naros et al.,
2016).

ADAPTIVE BMI FEEDBACK

Classical BMI approaches maximize the classification accuracy
of the device to optimally detect task-related MI (Thomas et al.,
2013; Thompson et al., 2013; Spüler et al., 2014; Bauer and
Gharabaghi, 2015a). This approach has been applied in most
previous studies with stroke patients without resulting in a gain
of the skill for BMI control as one might have expected in a
continuous learning experience (for an overview, see Naros and
Gharabaghi, 2015). On the basis of learning principles, a certain
degree of challenge for the participant, therefore, seems to be
required to reinforce continuous effort and progression of brain
self-regulation (Bauer and Gharabaghi, 2015a). In this context,
mathematical simulations (Bauer and Gharabaghi, 2015b) and
empirical data (Naros and Gharabaghi, 2015; Naros et al., 2016)
suggest that dynamic threshold adaptation of the oscillatory
desynchronization level that has to be achieved to control the
BMI in the course of the training, i.e., adjusting the difficulty
level of the neurofeedback task on the basis of the performance,
is a more appropriate method for achieving BMI reinforcement
learning than a fixed threshold at maximum classification
accuracy, i.e., an unchanged oscillatory desynchronization level
that has to be achieved to control the BMI (Theodoridis and
Koutroumbas, 2009).

Along these lines, a recent study with healthy subjects over a
3-day training period was the first to demonstrate that dynamic
threshold adaptation is instrumental in facilitating learning of
movement-related brain self-regulation. By contrast, subjects
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who trained with a classical BMI concept, i.e., without threshold
adaptation, failed to progressively modulate the targeted brain
activity (Naros et al., 2016). This matched the concept that BMI
paradigms which focus on the maximization of classification
accuracy optimize the metabolic cost (Jackson and Fetz, 2011;
Naros et al., 2016). Restorative BMIs should, therefore, be
designed in such a manner as to provide incentives not only
for achieving but also for enhancing the targeted brain activity,
e.g., progressing the level of ERD (Carmena, 2013; Naros and
Gharabaghi, 2015; Naros et al., 2016). Although, BMI tasks are
potentially linked to the experience of frustration (Fels et al.,
2015), a less demanding task structure of reaching the brain state
only once so as to be rewarded with feedback did not result in
improved brain self-regulation (Naros et al., 2016). By contrast,
the more demanding task of providing or withholding feedback
contingent to the targeted brain self-regulation was essential for
achieving sustained ERD (Naros et al., 2016). More specifically,
when comparing different BMI training conditions in a parallel-
group design [(i) adaptive classifier thresholding and contingent
feedback, (ii) adaptive classifier thresholding and non-contingent
feedback (iii) non-adaptive classifier thresholding and contingent
feedback, (iv) non-adaptive classifier thresholding and non-
contingent feedback], contingent neurofeedback and adaptive
classifier thresholding were critical for learning brain self-
regulation which, in turn, led to behavioral gains after the
intervention. Contingent feedback to successful brain self-
regulation meant that as soon as the predefined ERD level was
achieved the participants were rewarded by the robotic opening
of the hand. However, if the targeted brain state could not
be sustained, the robotic movement ceased again but could
be resumed within the same trial if the predefined brain state
was attained again (Naros et al., 2016). Furthermore, adaptive
classifier thresholding throughout the intervention was realized
by adjustments of the task difficulty before each training session
in the course of a multi-session program. These adjustments were
made in accordance with the BMI performance in the preceding
session based on an algorithm that has been shown to support
reinforcement learning of self-regulated beta-oscillations (Naros
and Gharabaghi, 2015).

In this context, future studies may evaluate the impact of
different task thresholds, i.e., targeted ERD levels, on the learning
incentive, thereby empirically determining the optimal difficulty
level for brain self-regulation and disentangling the relative
contribution of neurofeedback specificity and sensitivity (Bauer
et al., 2016a). Moreover, future approaches may investigate
alternative approaches to balancing the mental effort involved,
for example by adjusting the task demands on the basis of
self-ratings by the participants (Bauer et al., 2016b).

BRAIN-FUNCTION INTERACTION

While the progression of sensorimotor self-regulation is
a necessary requirement for restorative BMI, such local
modulation would not be sufficient by itself. Such an intervention
would necessitate more global network effects as well to bring
about behavioral gains. But how would BMI feedback training

translate self-regulated modulation of local oscillations into
changes of distant functional networks? In other words, how is
such a brain-function interaction physiologically mediated?

Imaging studies based on multi-channel
electroencephalography revealed that sensorimotor brain
self-regulation and BMI feedback entrained an extended cortical
motor network that includes frontal and parietal brain areas
(Vukelić et al., 2014; Vukelić and Gharabaghi, 2015a) with
distributed, but spatially selective frequency-specific effects on
cortico-cortical connectivity that last beyond the intervention
period (Vukelić and Gharabaghi, 2015b). This motor network
modulation is critically linked to the proprioceptive feedback
provided by the BMI (Vukelić and Gharabaghi, 2015a). Notably,
those subjects who were particularly capable of performing
sensorimotor brain self-regulation could be predicted by a
distributed alpha-band resting state network measured before
the intervention (Bauer et al., 2015). Similarly, the resting
state functional connectivity of the motor cortex seems to
be related to motor learning (Mottaz et al., 2015) and to the
prediction of functional improvement after stroke (Nicolo et al.,
2015). Moreover, functional coupling of coherent theta-band
oscillations during the BMI task correlated with the skill of
sensorimotor modulation, thus indicating a motor learning-
related network (Vukelić and Gharabaghi, 2015a). These
findings match well with the neurophysiological concepts that
link these various frequency domains to working memory and
sensorimotor integration (Fell et al., 2011; Cruikshank et al.,
2012), sensory processing and multi-modal integration (Palva
and Palva, 2007; Weisz et al., 2014), and the retrieval of stored
motor schemata and bottom-up integration of sensory and
motor information (Caplan et al., 2003; Cruikshank et al., 2012;
Vukelić and Gharabaghi, 2015a).

With regard to the intended behavioral improvements, the
modulation of corticospinal connectivity by BMI feedback
may represent the even more important functional network
effect. Neurofeedback interventions have already been shown
to increase the effective corticospinal connectivity, i.e., the
sensorimotor excitability evaluated by transcranial magnetic
stimulation (TMS) and motor evoked potentials (MEP)
(Pichiorri et al., 2011; Shindo et al., 2011; Mokienko et al.,
2013). However, until very recently, these measurements did
not provide a specific link between the modulated brain activity
and the changed connectivity to the periphery. Methodological
improvements with refined TMS maps (Kraus and Gharabaghi,
2015, 2016) closed this gap by demonstrating robust changes
of corticospinal connectivity for the BMI-trained muscle, but
not for the control muscle. The largest MEP gains were found
in those cortical areas that were most strongly modulated by
the intervention (Kraus et al., 2016a). Furthermore, this target
selectivity and topographic specificity were paralleled by a
functional correlation between the modulated brain activity and
the increased connectivity to the periphery, i.e., the largest MEP
gains were observed in the subjects with the biggest modulation
range (Kraus et al., 2016a).

Future studies are required to evaluate whether these
functional network changes of corticocortical and corticospinal
connectivity during the intervention and in the following resting
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state persist during behavioral tasks after the intervention,
and to what extent they influence the respective performance.
Furthermore, different feedback modalities, such as functional
electrical stimulation and/or closed-loop TMS (Gharabaghi et al.,
2014a; Raco et al., 2016; Royter and Gharabaghi, 2016), may
be explored in conjunction with BMI technology to compare
their differential impact on network modulations with that one
of proprioceptive feedback provided by the robotic orthoses
in earlier studies. It will be particularly important to explore
these brain-function interactions for the whole upper extremity
so as to translate them to activities of daily living. This might
also entail studying the impact of brain-machine interfaces
connected to multi-joint exoskeletons (Grimm and Gharabaghi,
2016; Grimm et al., 2016a,b) for three-dimensional reach-to-
grasp movements (Brauchle et al., 2015) on the corticospinal
excitability of different muscle groups, including synergetic and
antagonistic interactions.

BRAIN-BEHAVIOR INTERACTION

Unlike in the cognitive domain (Zoefel et al., 2011), a brain-
behavior interaction in the motor domain, i.e., a direct link
between the brain state/dynamics modulated by BMI feedback
and subsequent improvements in an actual motor task, was
not demonstrated until very recently. In addition to the factors
mentioned in earlier paragraphs, the targeted brain state might
be one of the major reasons for this lack; this has already
been outlined in detail elsewhere and resonates here (Naros
et al., 2016): Despite the eligibility of beta-ERD as a control
signal in brain interfaces (Bai et al., 2008) the majority of
BMI studies up to now preferred to use alpha-ERD (Naros
and Gharabaghi, 2015). This was due to the fact that, in
stroke patients, alpha-ERD was more effective than beta-ERD in
classifying brain states related to movement (Gomez-Rodriguez
et al., 2011). Although, these two frequency bands are modulated
by motor execution and MI in much the same way (Van Wijk
et al., 2012; Kilavik et al., 2013; Brinkman et al., 2014), it is
becoming clearer that they perform different tasks. The function
of alpha-ERD is to gate the inhibition of regions which are
irrelevant for the task (Pineda, 2005; Mazaheri and Jensen,
2010; Sabate et al., 2011), whereas beta-ERD is responsible
for mediating sensorimotor cortex disinhibition (Siegel et al.,
2012; Kilavik et al., 2013) and muscular proprioceptive feedback
(Salmelin et al., 1995; Mima et al., 2000; Riddle and Baker,
2006; Kristeva et al., 2007; Aumann and Prut, 2014). On the
basis of these differences in function, we postulated that, of
the two frequency bands, beta-oscillations constitute the better
therapeutic option for BMI therapy in patients suffering from
motor impairment following stroke (Brauchle et al., 2015; Naros
and Gharabaghi, 2015). This approach thus allowed the first
demonstration of a frequency-specific correlation between the
modulation of cortical physiology with MI-based BMI training
and later motor performance (Naros et al., 2016). Such a
correlation was, however, not observed between alpha-activity
and motor performance. Promoting the ability to voluntarily
control beta-oscillations on the basis of proprioceptive feedback

might, therefore, facilitate the communication between the
motor cortex and muscles in the same frequency band (Brown,
2007; Darvishi et al., under review), thereby resulting in
improved motor control in behavioral tasks (Naros et al.,
2016).

The next step will be to draw a direct comparison between the
operant conditioning of different frequency bands, for example
between alpha- and beta-band ERD, to ascertain which particular
oscillatory pattern is responsible for this improvement. Further
interventions may also be required to gain maximal exploitation
and consolidation of the patients’ remaining ability for motor
learning and brain self-regulation. One such additional input
during robot-assisted training may be activity-dependent brain
stimulation (Gharabaghi, 2015; Massie et al., 2015). During BMI
training, for example, concurrent state-dependent transcranial
magnetic stimulation is capable of unmasking latent corticospinal
connectivity following stroke (Gharabaghi et al., 2014a). On
the basis of Hebbian-like plasticity, state-dependent stimulation
synchronized to maximum ERD may serve to stabilize the
corticospinal circuits involved (Kraus et al., 2016b).

Future studies will explore whether the behavioral gains
resulting from beta-ERD modification also lend themselves to
other motor tasks. This would be instrumental in transforming
such an approach into a clinical application. Some patients
may, however, be unable to gain volitional control of this
technique using beta-modulation in a standard EEG-based
setting on account of an extended cortical lesion and/or distorted
physiology. In such instances, the detection and neurofeedback
training may be accomplished by epidural recordings of field
potentials (Gharabaghi et al., 2014b). This alternative approach,
which is nearer to the neural signal source, may not only
require a shorter period of therapy to induce clinical gains than
is customary using the standard EEG technique (Gharabaghi
et al., 2014c), but may also act as a bi-directional interface for
concurrent brain stimulation (Gharabaghi et al., 2014d).

In summary, BMIs may be referred to as restorative tools
when demonstrating subsequently (i) operant learning and
progressive evolution of specific brain states/dynamics, (ii)
correlated modulations of functional networks related to the
therapeutic goal, (iii) subsequent improvement in a specific task,
and (iv) an explicit correlation between the modulated brain
dynamics and the achieved behavioral gains. Such findings would
provide the rationale for translating BMI-based interventions
into clinical settings for reinforcement learning and motor
rehabilitation following stroke.
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