Background and aims: Studies have demonstrated that the short-term use of metformin benefits liver function among patients with type 2 diabetes mellitus (T2DM). However, few studies have reported on the effects of long-term metformin treatment on liver function or liver histology. This study investigated the correlation between metformin use and the incidence of nonalcoholic fatty liver disease (NAFLD) among patients with T2DM.
Methods: This population-based study investigated the risk of NAFLD among patients with T2DM who received metformin treatment between 2001-2018. Metformin users and metformin nonusers were enrolled and matched to compare the risk of NAFLD.
Results: After 3 years, the patients who received <300 cDDD of metformin and those with metformin use intensity of <10 and 10–25 DDD/month had odds ratios (ORs) of 1.11 (95% confidence interval [CI] = 1.06–1.16), 1.08 (95% CI = 1.02–1.13), and 1.18 (95% CI = 1.11–1.26) for NAFLD, respectively. Moreover, metformin users who scored high on the Diabetes Complications and Severity Index (DCSI) were at high risk of NAFLD. Patients with comorbid hyperlipidemia, hyperuricemia, obesity, and hepatitis C were also at high risk of NAFLD.
Conclusion: Patients with T2DM who received metformin of <300 cDDD or used metformin at an intensity of <10 and 10–25 DDD/month were at a high risk of developing NAFLD. The results of this study also indicated that patients with T2DM receiving metformin and with high scores on the DCSI were at a high risk of developing NAFLD.
Purpose: Dipeptidyl peptidase-4 inhibitors (DPP-4I), key regulators of the actions of incretin hormones, exert anti-hyperglycemic effects in type 2 diabetes mellitus (T2DM) patients. A major unanswered question concerns the potential ability of DPP-4I to improve intrahepatic lipid (IHL) content in nonalcoholic fatty liver disease (NAFLD) patients. The aim of this study was to evaluate the effects of sitagliptin on IHL in NAFLD patients.
Methods: A prospective, 24-week, single-center, open-label, comparative study enrolled 68 Chinese NAFLD patients with T2DM. Subjects were randomly divided into 4 groups: control group who did not take medicine (14 patients); sitagliptin group who received sitagliptin treatment (100mg per day) (17 patients); metformin group who received metformin (500mg three times per day) (17 patients); and sitagliptin plus metformin group who received sitagliptin (100mg per day) and metformin (500 mg three times per day) (20 patients). IHL, physical examination (waist circumstances, WC; body mass index, BMI), glucose-lipid metabolism (fasting plasma glucose, FPG; hemoglobin A1c, Hb1A1c; triglycerides; cholesterol; alanine aminotransferase, ALT; aspartate aminotransferase, AST) were measured at baseline and at 24 weeks.
Results: 1) WC and BMI were decreased significantly in all groups except control group (all P<0.05). 2) There was no statistically significant difference in IHL among the sitagliptin, metformin, and sitagliptin plus metformin groups before and after treatment(all P>0.05). Only the metformin group showed a statistically significant difference in IHL before and after treatment(P<0.05). 3) Sitagliptin treatment led to a significant decrease in FBG and HbA1c when compared with the control group (all P<0.01). Additionally, HhA1c was significant decreased in the sitagliptin group when compared with the metformin group (P< 0.05). 4) HbA1c and FBG were decreased by 0.8% and 0.7 mmol/l respectively and the percentage of patients with HbA1c less than 7% was 65% with sitagliptin treatment.
Conclusion: Sitagliptin improves abnormalities in glucose metabolism, but not reduces the IHL in T2DM with NAFLD, indicating that sitagliptin might be a therapeutic option for treatment of NAFLD indirectly while not directly on IHL. Clinical Trial Registration: https://clinicaltrials.gov/, identifier CTR# NCT05480007.
Objective: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter-2 (SGLT-2) inhibitors reduce glycaemia and weight and improve insulin resistance (IR) via different mechanisms. We aim to evaluate and compare the ability of GLP-1 RAs and SGLT-2 inhibitors to ameliorate the IR of nonalcoholic fatty liver disease (NAFLD) patients.
Data Synthesis: Three electronic databases (Medline, Embase, PubMed) were searched from inception until March 2021. We selected randomized controlled trials comparing GLP-1 RAs and SGLT-2 inhibitors with control in adult NAFLD patients with or without T2DM. Network meta-analyses were performed using fixed and random effect models, and the mean difference (MD) with corresponding 95% confidence intervals (CI) were determined. The within-study risk of bias was assessed with the Cochrane collaborative risk assessment tool RoB.
Results: 25 studies with 1595 patients were included in this network meta-analysis. Among them, there were 448 patients, in 6 studies, who were not comorbid with T2DM. Following a mean treatment duration of 28.86 weeks, compared with the control group, GLP-1 RAs decreased the HOMA-IR (MD [95%CI]; -1.573[-2.523 to -0.495]), visceral fat (-0.637[-0.992 to -0.284]), weight (-2.394[-4.625 to -0.164]), fasting blood sugar (-0.662[-1.377 to -0.021]) and triglyceride (- 0.610[-1.056 to -0.188]). On the basis of existing studies, SGLT-2 inhibitors showed no statistically significant improvement in the above indicators. Compared with SGLT-2 inhibitors, GLP-1 RAs decreased visceral fat (-0.560[-0.961 to -0.131]) and triglyceride (-0.607[-1.095 to -0.117]) significantly.
Conclusions: GLP-1 RAs effectively improve IR in NAFLD, whereas SGLT-2 inhibitors show no apparent effect.
Systematic Review Registration: PROSPERO https://www.crd.york.ac.uk/PROSPERO/, CRD42021251704