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Editorial on the Research Topic

Reviews in cancer imaging and image-directed interventions
This Research Topic is concerned with the application of medical imaging in the

diagnosis and treatment of cancer. It includes the use of a range of imaging modalities, such

as computed tomography (CT), magnetic resonance imaging (MRI), positron emission

tomography (PET), optical coherence tomography (OCT), molecular luminescence

spectroscopy, and their applications in detecting and characterizing tumors, as well as

guiding interventions such as biopsies and targeted therapies. The reviews in this field aim

to provide clinicians with a comprehensive understanding of the latest advances in cancer

imaging and image-directed interventions, including the use of artificial intelligence (AI)

and other emerging technologies. By keeping up with the latest research, clinicians can

improve patient outcomes and enhance the overall quality of cancer care. The editorial

article discusses 9 reviews, 7 systematic reviews, 1 mini review articles, covering organs

such as liver, brain, lung, prostate, abdominal, and oral and maxillofacial regions.

Starting with the upper most part of the human body, brain cancer is a complex disease

that can have a profound impact on individuals, and understanding its importance requires

a comprehensive understanding of its causes, symptoms, and potential treatments. Xu et al.

discusses the difficulty in diagnosing and managing glioma, and how medical imaging

techniques like MRI, PET, and spectral imaging can aid physicians in treatment. The

authors highlight the use of AI in medical imaging analysis, specifically in glioma diagnosis

and management, such as tumor segmentation and classification, prediction of genetic

markers, and treatment response and prognosis. However, the authors note that there are

still issues to be solved with AI in clinical applications, such as data management, safety,

and ethical and legal considerations. They suggest that interdisciplinary teamworks

between clinicians and researchers are necessary to solve these issues in the future. Also,

the meta-analysis in Jiang et al. evaluates the effectiveness of radiomics using non-enhanced

computed tomography (NCCT) in predicting hematoma expansion in patients with

spontaneous intracerebral hemorrhage. Ten articles comprising 1,525 subjects were

analyzed, and the radiomics model showed an Area under the curve (AUC) of 0.80.

Results revealed that the radiomics model outperformed most of the NCCT biomarkers in

predicting hematoma expansion. The study suggests that the radiomics approach has the
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potential to predict hematoma expansion and is recommended over

NCCT biomarkers. However, standardization of the radiomics

pipeline is necessary for further clinical implementation.

Continuing in the upper part of the body, particularly the oral

and maxillofacial region, Zhu et al. evaluated the accuracy of deep

learning (DL) using the convolutional neural network VGGNet

model in distinguishing benign and malignant thyroid nodules,

based on ultrasound images. A total of 11 studies were included in

the meta-analysis, and the overall estimates of sensitivity and

specificity were 0.87 and 0.85, respectively. The results suggest

that DL using the VGGNet model with ultrasound images

performed good diagnostic efficacy in distinguishing benign and

malignant thyroid nodules. Also, Wu et al. aimed to evaluate the

diagnostic value of elastosonography for detecting salivary gland

tumors and compare it to conventional ultrasound. This review

analyzed 16 studies with a total of 1,105 patients and found that

elastosonography had a pooled sensitivity of 0.73 and specificity of

0.64 for differentiating between benign and malignant tumors, with

an AUC of 0.82. The study also found that quantitative or semi-

quantitative elastosonography performed better than the qualitative

one. The authors concluded that elastosonography could be

considered a supplementary diagnostic technology to

conventional ultrasound for detecting salivary gland tumors.

Moving down to the thoracic cavity, the review article by Van

De Stadt et al. discuss the need for alternative biomarkers to predict

tumor response to EGFR tyrosine kinase inhibitor therapy in

NSCLC, highlighting the limitations of biopsies. PET studies

using EGFR TKI-based tracers have shown promise in identifying

EGFR mutational status and as a potential biomarker for tumor

response. The article discusses currently investigated EGFR-

directed PET biomarkers, their development process, and the

advances, challenges, and opportunities for EGFR PET

biomarkers to be used in routine clinical practice. Another work

(Liang et al.) analyzed 19 original studies involving 2,444 patients

and 3,012 subsolid pulmonary nodules (SSNs). They identified 18

clinical and CT features that correlated with SSN growth, including

independent risk factors such as male sex, history of lung cancer,

nodule size > 10 mm, nodule consistency, and age > 65 years. These

findings can aid in establishing risk-based follow-up management

strategies for SSN patients.

The abdominal cavity is the largest hollow space in the body,

and detecting cancer in this area is crucial due to the vital organs

located there, that are essential for proper body function. Moreover,

detecting cancer in the abdominal cavity is challenging, particularly

during its early stages. In Liang et al., radiomics-based MRI are

evaluated for predicting microvascular invasion (MVI) in

hepatocellular carcinoma (HCC) through a review of 15 studies

involving 981 patients. The results show that radiomics-based MRI

has high accuracy in predicting MVI in HCC, with a pooled

sensitivity of 0.79, specificity of 0.81, and AUC of 0.87. Though

there is heterogeneity among studies, sensitivity analysis supports

the reliability of the results. The paper highlights the development

of AI-based tools for liver cancer treatment. The use of

interventional therapy for liver cancer is presented in Ren et al..

These tools can assist clinicians in making more precise diagnoses,

treatment plans, and preventative measures for liver cancer
Frontiers in Oncology 026
patients, leading to more rational and personalized care. The

article emphasizes that AI is bringing disruptive changes to the

traditional medical model. Another systematic review article (Zhou

et al.) compare two categorization systems used to diagnose

hepatocellular carcinomas (HCCs) and determine their diagnostic

performance. The systems compared were Contrast-enhanced

ultrasound (CEUS) LI-RADS and CT/MRI LI-RADS. The study

included 43 studies, and the results showed that CEUS LR-5 and

CT/MRI LR-5 had similar diagnostic performance for HCCs, while

CEUS LR-M had a higher proportion of HCCs and a lower

proportion of non-HCC malignancies than CT/MRI LR-M. The

study also found that CEUS LR-3 had a lower risk of HCCs than

CT/MRI LR-3.

Moving to the undersurface of the right lobe of the liver, the work

by Li et al. is interested in the application of DL in the imaging

assessment of bladder cancer (BCa). DL has shown great potential in

solving medical problems, particularly in the field of medical imaging.

The authors provide an overview of current DL approaches used for

bladder segmentation and how it helps in the diagnosis, staging, and

treatment management of BCa. Also, Liu et al. discusses the

application of DL in the diagnosis of gastrointestinal subepithelial

lesions (SELs) using endoscopic ultrasonography (EUS). The study

found that AI-assisted EUS is a promising and reliable method for

distinguishing SELs, with excellent diagnostic performance, and is

superior to EUS by experts. The authors recommend conducting

more multicenter cohort and prospective studies to further develop

AI-assisted real-time diagnostic systems and validate the superiority

of AI systems. Furthermore, Liu et al. develop advanced ultrasound

examination modes for diagnosing prostate cancer (PCa), including

micro-Doppler, computerized-transrectal ultrasound, elastography,

contrast-enhanced ultrasound, and microultrasound, collectively

referred to as multiparameter ultrasound (mp-US). The

combination of two or more of these modes can provide

complementary information to multiparameter magnetic resonance

imaging (mp-MRI) for diagnosing PCa. The authors suggest that mp-

US has great potential as an imagingmethod for the diagnosis of PCa.

On the use of molecular luminescence for cancer imaging, the

work by Chen et al. discusses the limitations of current surgical

techniques for treating bone and soft tissue sarcoma and the

potential for intraoperative fluorescence imaging to assist

surgeons in determining tumor boundaries during surgery. The

review considers the use of fluorescence imaging technology in

clinical studies and assesses the potential of this technique to

improve the accuracy of surgical resection. It suggests that

intraoperative fluorescence imaging is a safe and straightforward

technique that does not add any additional time to the surgery and

has promising applications for the treatment of bone and soft tissue

sarcoma. In the same realm, the work by Yang et al. shows recent

advances in OCT modality, and its application in oncological

diagnosis and treatment. The review highlights how OCT imaging

can be used to detect and diagnose superficial and deep tumors in

different types of cancers such as skin, gastrointestinal, brain, breast,

bladder, and lung cancers, and how it can monitor tumor responses

to treatments. Furthermore, the work in Yi et al. review molecular

imaging techniques for cancer diagnosis and treatment, focusing on

small-molecule inhibitors as cancer target probes. They summarize
frontiersin.org
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the structural designs of affinity probes based on small-molecule

inhibitors and their impact on affinity and pharmacokinetics. The

authors present clinical examples and provide insights for future

research and clinical translations.

Others (Deng et al.) focused on the important role of NR4A1, a

nuclear subfamily 4 receptor, in regulating metabolism in various

cancers including melanoma, colorectal cancer, breast cancer, and

hepatocellular cancer. NR4A1 has been found to mediate glycolysis,

fatty acid synthesis, glutamine metabolism, and tumor immunity in

cancer cells. The review suggests that regulating NR4A1 with novel

ligands could be a promising approach to alter metabolism

signaling pathways in cancer therapy.

Finally, the use of machine learning in cancer diagnostics,

specifically focusing on the benefits of semi-supervised learning

(SSL) compared to supervised learning (SL) is presented in Eckardt

et al. SSL can use unlabeled samples in addition to labeled data for

information abstraction, which allows for more efficient use of

available data in cancer diagnostics. The article provides an

overview of SSL functionalities and assumptions, and surveys key

studies in image-based and non-image-based applications of SSL in

cancer care, including histopathology, radiology, radiotherapy, and

genomics. The authors highlight recent models and potential

pitfalls in SSL study design, and suggest future directions for SSL

in oncology.

We hope that this Research Topic will serve as a valuable resource

for individuals interested in the important field of Cancer Imaging

and Image-directed Interventions. It aims to present the most recent

experimental methods used to explore fundamental concepts in
Frontiers in Oncology 037
Cancer Imaging and Image-directed Interventions, as well as to

showcase the latest breakthroughs in the field. Furthermore, this

topic underlines important areas for future research while also

highlighting new clinical and therapeutic opportunities.
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Background: CEUS LI-RADS and CT/MRI LI-RADS have been used in clinical practice
for several years. However, there is a lack of evidence-based study to compare the
proportion of hepatocellular carcinomas (HCCs) in each category and the distribution of
HCCs of these two categorization systems.

Purpose: The purpose of this study was to compare the proportion of HCCs between
corresponding CEUS LI-RADS and CT/MRI LI-RADS categories and the distribution of
HCCs and non-HCC malignancies in each category.

Methods: We searched PubMed, Embase, and Cochrane Central databases from
January 2014 to December 2021. The proportion of HCCs and non-HCC malignancies
and the corresponding sensitivity, specificity, accuracy, diagnostic odds ratio (DOR), and
area under the curve (AUC) of the LR-5 and LR-M categories were determined using a
random-effect model.

Results: A total of 43 studies were included. The proportion of HCCs in CEUS LR-5 was
96%, and that in CECT/MRI LR-5 was 95% (p > 0.05). The proportion of non-HCC
malignancy in CEUS LR-M was lower than that of CT/MRI LR-M (35% vs. 58%, p = 0.01).
The sensitivity, specificity, and accuracy of CEUS LR-5 for HCCs were 73%, 92%, and
78%, respectively, and of CT/MRI LR-5 for HCCs, 69%, 92%, and 76%, respectively.

Conclusion:With the upshift of the LI-RADS category, the proportion of HCCs increased.
CEUS LR-3 has a lower risk of HCCs than CT/MRI LR-3. CEUS LR-5 and CT/MRI LR-5
have a similar diagnostic performance for HCCs. CEUS LR-M has a higher proportion of
HCCs and a lower proportion of non-HCC malignancies compared with CT/MRI LR-M.

Keywords: contrast-enhanced ultrasound, contrast-enhanced magnetic resonance imaging, Contrast-enhanced
computed tomography, hepatocellular carcinoma, Liver Imaging Reporting and Data System
Abbreviations: HCC, hepatocellular carcinoma; LI-RADS, Liver Imaging Reporting and Data System; CEUS, contrast-
enhanced ultrasonography; MRI, magnetic resonance imaging; CT, computed tomography; ACR, American College of
Radiology; PPV, positive predictive value; CCRS, composite clinical reference standard.
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HIGHLIGHTS

▪ CEUS LR-3 has a lower proportion of HCCs than CT/MRI LR-
M, while CEUS LR-M has a higher proportion of HCCs.

▪Most of HCCs are in CEUS LR-5, LR-M, and LR-4, while most
of HCCs are in CT/MRI LR-5 and LR-4.

▪ CEUS LR-M has a lower proportion of non-HCC malignancies
but a higher proportion of HCCs compared with CT/MRI
LR-M.
INTRODUCTION

Contrast-enhanced computed tomography (CT), contrast-
enhanced magnetic resonance imaging (MRI), and contrast-
enhanced ultrasound (CEUS) were recommended by
international guidelines to diagnose hepatocellular carcinomas
(HCCs) (1, 2). To standardize the terminology, techniques,
interpretation, reporting, and data collection of liver imaging,
the American College of Radiology (ACR) released CT/MRI and
the CEUS Liver Imaging Reporting and Data System (LI-RADS)
(3, 4).

The contents of LI-RADS include the application of LI-
RADS, techniques in different contrast-enhanced examinations,
categorization, and management of lesions. According to the
lesion size, major features, and ancillary features, lesions can be
classified into different categories, including LR-1 to LR-5, LR-M,
LR-TIV, and LR-NC. The clinical management for lesions of
these categories was suggested by ACR LI-RADS based on the
empirical risk of HCCs or malignancies. For example, lesions
categorized into LR-5 can go through the management of HCCs
without biopsy.

CT/MRI and CEUS LI-RADS were two independent systems
with the same strata of categorization. Among LR-1 to LR-5 and
LR-M, lesions in CEUS LI-RADS and CT/MRI LI-RADS have
similar suggested management except for LR-3. This is because
the positive predictive value (PPV) of HCCs is higher in CEUS
LR-3 than that in CT/MRI LR-3 (3–6). Thus, the
multidisciplinary discussion (MDD) was suggested additionally
in CEUS LR-3. Otherwise, CT/MRI and CEUS LI-RADS are
hypothesized to correspond to the same risk of HCCs in other
categories. Up to now, there is a lack of evidence-based study to
compare the proportion of HCCs in other categories and the
distribution of HCCs of these two categorization systems (7–9).
Moreover, whether the categories corresponding to similar
suggestions of managements in CT/MRI LI-RADS and CEUS
LI-RADS have a similar risk of HCCs is still unclear, which
implies whether the suggested management is appropriate for LI-
RADS categories also remains to be verified. In this meta-
analysis, therefore, we aim to explore the risk and distribution
of HCCs and non-HCC malignancies in each category of CEUS
and CT/MRI LI-RADS and to explore the diagnostic
performance of HCCs by LR-5 and of non-HCC malignancies
by LR-M.
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METHOD

This meta-analysis was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) Statement (10). This study was registered at the
Prospero International Prospective Register of Systematic
Reviews (CRD42020175800).

Literature Search Strategy
We searched corresponding studies from January 2014 to
December 2021 in the PubMed, Embase, and Cochrane
Central databases. The details of the strategy of searching are
provided in Supplementary Table 1. Only English articles were
included in this study. Case reports, reviews, letters, comments,
and erratum were excluded.

Inclusion and Exclusion Criteria
We included studies that met the following criteria: (1) patients
with high risk for HCC; (2) the observations undergoing
contrast-enhanced CT/MRI examination categorized according
to CT/MRI LI-RADS V2014, V2017, or V2018, or the
observations undergoing CEUS classified according to CEUS
LI-RADS V2016 or V2017; (3) the contrast agent for CEUS being
SonoVue; and (4) pathology or composite clinical reference
standard (CCRS, multiple imaging or imaging follow-up) used
as the reference standard. The exclusion criteria were as follows:
(1) studies applied to patients without high risk for HCCs,
(2) studies including duplicated data, (3) studies only including
HCCs or HCCs and non-HCC malignancies, and (4) studies
without sufficient data for inclusion in the pooled analysis.

Study Selection
After excluding duplicates, two researchers independently
reviewed the titles and abstracts of the articles. The full texts of
the relevant articles were read to determine their inclusion. In the
case of multiple studies from a center, we selected the most
recent and complete one.

Data Extraction
The following data were extracted from the included studies:
(1) the characteristics of the study, including the first author, year
of publication, nationality of patients, time of patient recruitment,
and design (prospective or retrospective); (2) the characteristics of
patients, including the number of patients, ages, and sexes; and
(3) the tests to be evaluated, reference criteria, and results. The
number of observations, HCCs, non-HCC malignancies, and
benign lesions in each LI-RADS category was extracted from
each study. If more than one data set was available in a study (e.g.,
different data from more than one viewer), the average data were
adopted. Data extraction was conducted independently by the
aforementioned two researchers, and no discrepancy was found
during the process.

Quality Assessment
The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) tool (11) was used to evaluate the research
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Quality. QUADAS-2 includes four aspects: patient selection,
index test, reference standard, flow, and timing. For each
aspect, the risk of bias was classified as high, low, or unknown.
Two researchers independently assessed the risk of bias for each
study, and any discrepancy was resolved by discussion with the
third researcher. The results of the risk of bias assessments are
shown in Supplementary Figure 1.

Statistical Analysis
Random-effect models were used to evaluate the proportion of
HCCs and non-HCC malignancies in each LI-RADS category,
and the sensitivity, specificity, accuracy, and diagnostic odds
ratio (DOR) of the LR-5 and LR-M categories, and to generate
forest plots and 95% confidence intervals (95% CIs). The Q test
and I2 statistic were used to analyze the heterogeneity of the
study, and I2 >50% was considered to indicate heterogeneity (12).
The variance of the logit-transformed percentage method was
used to compare the differences in the proportions of HCCs and
non-HCC malignancies in each category, and in the sensitivity,
specificity, accuracy, and DOR of LR-5/M. The publication bias
of the proportion of HCCs and non-HCC malignancies in each
category was not evaluated according to the guidance of
diagnostic test accuracy of systematic reviews (10). All
statistical analyses were performed by the R language (v3.6.3, R
Foundation for Statistical Computing, Vienna, Austria).
RESULTS

A total of 786 studies were initially identified. 84 studies were
then reviewed, and 59 studies were considered suitable for
inclusion in this meta-analysis. After further excluding studies
with insufficient data in the analysis, 43 studies were finally
included (Figure 1) (13–55). Detailed information of the
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included and excluded studies is shown in Supplementary
Tables 2, 3.

There were 15 studies on CEUS LI-RADS involving 6,573
patients with 7,234 lesions, including 5,387 HCCs, 624 non-HCC
malignancies, and 1,223 benign lesions. There were 30 studies on
CT/MRI LI-RADS involving 5,274 patients with 6,522 lesions,
including 4,554 HCCs, 481 non-HCC malignancies, and 1,487
benign lesions.

Proportions and Distribution of
HCCs in Each CEUS and CT/MRI
LI-RADS Category
A total of 5,387 HCCs in CEUS and 4,554 HCCs in CT/MRI can
be used for the calculation of proportions and distribution of
HCCs in each CEUS and CT/MRI LI-RADS category. There is
no HCC in the CEUS and CT/MRI LR-1. The proportion of
HCC gradually increases with the upshift of the category of both
CEUS and CT/MRI LI-RADS. The proportions of HCCs of LR-2,
3, 4, and 5 were 1%, 21%, 75%, and 96% for CEUS LI-RADS and
4%, 35%, 75%, and 95% for CT/MRI LI-RADS, respectively. The
proportion of HCCs in CEUS LR-3 is lower than that of CT/MRI
LR-3 (21% vs. 35%, p = 0.02). The proportion of HCCs in CEUS
LR-M is 56% (95% CI: 44%–69%), which is higher than that in
CT/MRI LR-M, namely, 33% (95% CI: 22%–45%) (p = 0.01). The
proportion of HCCs in each category is shown in Table 1 and
Figure 2. The forest plots of percentages of HCCs in CEUS and
CT/MRI LR-5 are provided Supplementary Figure 2.

In CEUS LI-RADS, most of the HCCs are in LR-5 (68.5%).
Most of the rest HCCs are in LR-M (15.8%) and LR-4 (10.8%). In
CT/MRI LI-RADS, most of the HCCs are also in LR-5 (66.7%).
Most of the remaining HCCs are in LR-4 (20.4%) but not LR-M
(3.7%). There are more HCCs classified into CT/MRI LR-2, 3,
and 4, compared with CEUS LR-2, 3, and 4, while there are
more HCCs classified into CEUS LR-M than CT/MRI LR-M.
FIGURE 1 | Flow diagram of the selection of studies.
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The distributions of HCCs among different categories are shown
in Figure 3 and Supplemental Table 4.

Proportions and Distribution of Non-HCC
Malignancies in Each CEUS and CT/MRI
LI-RADS Category
A total of 624 non-HCC malignancies in CEUS and 481 non-
HCC malignancies in CT/MRI can be used for the calculation of
proportions and distributions of non-HCC malignancies in each
CEUS and CT/MRI LI-RADS category. There is no non-HCC
malignancy in the CEUS and CT/MRI LR-1. The proportions of
non-HCC malignancies in CEUS and CT/MRI LR-2 to LR-5
range from 1% to 5%. The proportion of non-HCC malignancies
in CEUS LR-M is 35%, significantly lower than that of CT/MRI
LR-M (58%, p = 0.01). The proportions of non-HCC
malignancies among different categories are shown in Table 2.
The forest plots of percentages of non-HCC malignancies in
CEUS and CT/MRI are depicted in Supplementary Figure 3.

In CEUS LI-RADS, most of the non-HCCmalignancies are in
LR-M (78.7%), most of the remaining non-HCC malignancies
are in LR-5 (15.1%). In CT/MRI LR-RADS, most of the non-
HCC malignancies are in LR-M (61.7%), and most of the
remaining non-HCC malignancies are in LR-5 (18.3%) and
LR-4 (9.9%). The distributions of non-HCC malignancies
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among different categories are shown in Figure 4 and
Supplementary Table 5.

Meta-Regression for the Proportion of
HCCs in Each LI-RADS Category
We analyzed the population (Asian or non-Asian), the reference
standard (pathological or CCRS), and the version of LI-RADS
used in these studies. The meta-regression results show that the
proportion of HCCs in LR-3 for Asians is lower than that of LR-3
for non-Asians (14.3% vs. 32.3%, p = 0.02). The proportion of
HCCs in CEUS LR-M for Asian is higher than that of LR-M for
non-Asian (67.3% vs. 35.7%, p < 0.01).

The meta-regression results for CT/MRI LI-RADS show that
the proportions of HCCs in CT/MRI LR-4 and CT/MRI LR-5
using pathology as the reference standard are lower than those
using CCRS as the reference standard (for LR-4: 63.4% vs. 81.2%,
p = 0.03; for LR-5: 92.3% vs. 97%, p = 0.01). The proportions of
HCCs in CT/MRI LR-M using LI-RADS V2017 are lower than
that using V2018 (6% vs. 42.2%, p = 0.04).

Diagnostic Performance of LR-5 for HCCs
The pooled sensitivity, specificity, and accuracy of CEUS LR-5
for HCC are comparable to those of CT/MRI LR-5 (Table 3).
The DOR and the area under the summary receiver operating
A B

FIGURE 2 | Bubble chart based on pooled percentage of HCCs and non-HCC malignancies for each category of CEUS (A) and CT/MRI (B) LI-RADS. The points at
the centers of bubbles correspond to the pooled percentages of HCCs and non-HCC malignancies. The outer bubble margins correspond to 95% CIs for
percentages of HCCs (y-axis) and non-HCC malignancies (x-axis).
TABLE 1 | Proportions of HCCs in each CEUS and CT/MRI LI-RADS category.

CEUS CT/MRI

HCC (95% CI) Observations I2, % HCC (95% CI) Observations I2, % p

LR-2 1 (0–6) 134 0 4 (1–9) 297 57 0.33
LR-3 21 (13–31) 670 78 35 (29–43) 835 73 0.02
LR-4 75 (61–85) 735 88 75 (65–82) 1299 89 0.99
LR-5 96 (94–98) 3858 89 95 (93–97) 3205 83 0.46
LR-M 56 (44–69) 1361 93 33 (22–45) 490 80 0.01
LR-TIV 97 (77–100) 100 0 72 (58–83) 103 13 0.03
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characteristic (SROC) curve for CEUS LR-5 are 28.0 and 0.74,
and for CT/MRI LR-5, 23.9 and 0.75, as depicted in Figure 5.

Diagnostic Performance of LR-M for Non-
HCC Malignancies
The pooled sensitivity for non-HCC malignancies in CEUS LR-
M (83%) is higher than that of CT/MRI LR-M (65%), while the
pooled specificity for non-HCC malignancies in CT/MRI LR-M
(92%) is similar to that of CEUS LR-M (92%) (Table 4). The
DOR and the area under the SROC curve for CEUS LR-M are
36.5 and 0.87, for CT/MRI LR-M 46.6 and 0.73, respectively, as
depicted in Figure 6.

Meta-Regression for the
Diagnostic Performance
The meta-regression for CT/MRI LR-5 shows that the specificity
of the studies using pathology as the reference standard is lower
than that using CCRS (85.4% vs. 95.0%, p < 0.01).

CEUS LR-M V2017 has a higher sensitivity (85.1% vs. 78.0%, p <
0.01), lower specificity (85.8% vs. 96.0%, p < 0.01), and lower accuracy
(84.9% vs. 95.0%, p < 0.01) for the diagnosis of non-HCC
malignancies compared with that of CEUS LR-M V2016. The
sensitivity, specificity, and accuracy of CEUS LR-M for the
diagnosis of non-HCC malignancies in the studies using pathology
as the reference standard are lower compared with those using CCRS
as the reference (sensitivity: 60.0% vs. 69.0%, p = 0.01; specificity:
96.0% vs. 97.2%, p = 0.02; accuracy: 90.1% vs. 94.63%, p < 0.01).
Meta-regression for specificity shows that CT/MRI LR-M V2017 has
a higher specificity than CT/MRI LR-M V2018 (99.5% vs. 93.4%,
Frontiers in Oncology | www.frontiersin.org 512
p < 0.01) for the diagnosis of non-HCCmalignancies. CT/MRI LR-M
V 2017 has a higher accuracy than CT/MRI LR-M V2014 (96.9% vs.
93.2%, p = 0.02) and V2018 (96.9% vs. 90.1%, p < 0.01).
DISCUSSION

To our best knowledge, this work represents the first systematic
review of the comparison of the percentages and distributions of
HCCs and non-HCC malignancies between the CEUS and CT/
MRI LI-RADS. The upshift of LI-RADS categories from LR-1 to
LR-5 mirrors monotonically greater proportions of HCCs. We
found that the proportion of HCCs in CEUS LR-3 is lower than
that of CT/MRI LR-3. However, the proportions of HCCs in
CEUS LR-M are higher than those of CT/MRI LI-RADS, while
the percentage of non-HCC malignancies in CEUS LR-M is
lower than that of CT/MRI LR-M. Furthermore, CEUS LR-M
has a higher sensitivity in the diagnosis of non-HCC
malignancies than CT/MRI LR-M.

ACR LI-RADS aims at stratifying the risk of HCCs and
recommending the clinical management of each category (3,
4). The risk of HCCs in each category is the basis of clinical
management. Evidence-based studies and feedback from clinical
practice can help advise on the classification and management of
lesions. ACR published two LI-RADS systems, namely, CEUS LI-
RADS and CT/MRI LI-RADS. Although CEUS LI-RADS and
CT/MRI LI-RADS have the same categories, the two LI-RADS
systems have differences among the criteria and managements of
classifications (3, 4). Understanding whether corresponding
TABLE 2 | Proportions of non-HCC malignancies in each CEUS and CT/MRI LI-RADS category.

CEUS CT/MRI

Malignancy (95% CI) Observations I2, % Malignancy (95% CI) Observations I2, % p

LR–2 4 (1-11) 126 0 5 (3–9) 294 0 0.73
LR–3 5 (2–11) 644 52 4 (3–6) 766 0 0.70
LR–4 1 (0–6) 629 80 3 (1–4) 1266 58 0.40
LR–5 2 (1–3) 3594 82 2 (1–3) 2993 68 0.65
LR–M 35 (26–45) 1323 90 58 (43–72) 441 85 0.01
LR–TIV 3 (0-23) 100 62 22 (11–40) 102 43 0.08
March 2022 | Volume 12 | Article 87
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FIGURE 3 | Distributions of HCCs in each CEUS category (A) and CT/MRI category (B).
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categories of the two LI-RADS systems lead to distinct risk
stratification of HCCs and whether the recommended
management is appropriate for each category is of paramount
importance. However, there is no evidence-based systematic
review to address the issues mentioned above.

In this systematic review, we found that there was no
statistical significance in the proportions of HCCs of the
corresponding CEUS and CT/MRI LI-RADS categories, except
CEUS LR-3 and LR-M and the CT/MRI counterparts. On the
one hand, there is no HCC or non-HCCmalignancy in the CEUS
and CT/MRI LR-1, which is consistent with the definition of LR-1,
i.e., definite benign. On the other hand, there are 96% HCCs in
CEUS LR-5 and 95% HCCs in CT/MRI LR-5, which is also
consistent with the definition of LR-5, definite HCCs. Thus, the
lesions in CEUS LR-5 or CT/MRI LR-5 can go through clinical
management of HCC without biopsy or MDD, as suggested by
ACR. The management of CEUS LR-3, however, was different
from that of CT/MRI LR-3. The suggested management for CT/
MRI LR-3 is alternative or repeating diagnostic imaging in 3–6
months. By comparison, the suggested management for CEUS
LR-3 is alternative or repeating diagnostic imaging in ≤6 months,
with consideration for MDD. The recommended management for
CEUS LR-3 is based on retrospective studies, which demonstrate
that the percentage of CEUS LR-3 is 60%, higher than that of CT/
MRI LR-3 (56–58). In the present study, the pooled proportion of
HCCs in CEUS LR-3 is lower than that of CT/MRI LR-3 (21% vs.
35%, p = 0.02), which implies that there is still space for future
improvement of the suggested management for CEUS and CT/
MRI LR-3.

One of the main goals of LI-RADS LR-M is to avoid
misdiagnosis of hepatocellular carcinoma for cholangiocarcinoma.
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In this study, we found that the percentage of HCCs in CEUS LR-M
is higher than that of CT/MRI LR-M (56% vs. 33%). This difference
may be induced by the differences in the diagnostic criteria of LR-M
between CEUS and CT/MRI LI-RADS. Lesions with rim APHE or
early washout or marked washout are classified into CEUS LR-M.
Part of HCCs, especially the moderately and poorly differentiated
HCCs, can present imaging features of LR-M (59). Compared with
the suggested management of LR-5, MDD, alternative or repeating
imaging, biopsy, or treatment is needed additionally for LR-M.
Currently, lesions in CEUS LR-M have the same recommended
management as those in CT/MRI LR-M. Thus, part of HCCs in
CEUS LR-M, which can go through treatment, still needs an
additional examination or MDD in practice. Despite the higher
proportion of HCCs and the lower proportion of non-HCC
malignancies in CEUS LR-M, the PPV and specificity of HCCs in
CEUS LR-5 and CT/MRI LR-5 were comparable, which means that
CEUS LR-M can avoid misdiagnosis of HCCs for
cholangiocarcinoma. Still, in order to reduce the proportions of
HCCs with additional examination or MDD, a previous study
aimed at withdrawing HCCs in CEUS LR-M to LR-5 without
decreasing the positive predictive value and specificity of HCCs in
CEUS LR-5 (17).

LI-RADS LR-5 is used as the diagnostic criteria for HCCs, and
LR-M is used as the diagnostic criteria for non-HCC
malignancies in some studies (59, 60). The results of our
systematic review show that CEUS LR-5 and CT/MRI LR-5
have comparable diagnostic performance for HCCs, namely,
similar sensitivity, specificity, and accuracy. Our results are
consistent with the result of previous studies (61). For non-
HCC malignancies, however, CEUS LR-M has a different risk
and sensitivity compared with CT/MRI LR-M. At the beginning
TABLE 3 | Diagnostic performance of CEUS and CT/MRI LR-5 for HCCs.

CEUS I2,% CT/MRI I2,% p

LR-5 Sensitivity(95% CI) 73% (67–78) 87 69% (64–74) 92 0.32
Specificity(95% CI) 92% (86–95) 75 92% (88–94) 86 0.96
Accuracy(95% CI) 78% (71–84) 90 76% (72–79) 93 0.54
DOR (95% CI) 28.0 (14.2–55.3) 79 23.9 (15.8–36.3) 87.3 0.70
AUC 0.74 0.75
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FIGURE 4 | Distributions of non-HCC malignancies in each CEUS category (A) and CT/MRI category (B).
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of the application of CEUS LI-RADS, some studies focused on
the PPV of LR-M in the diagnosis of non-HCC malignancies
and found that CEUS LR-M has lower PPV than CT/MRI LR-
M. They concluded that CT/MRI LR-M has higher differential
diagnostic performance for non-HCC malignancies compared
with CEUS LR-M (20, 53). Hu et al. (62) compared the
diagnostic performance of non-HCC malignancies between
CEUS LR-M and CT/MRI LR-M and demonstrated that the
two LI-RADS systems had similar performance and sensitivity.
However, a meta-analysis from the same group found that
CEUS LR-M has a high sensitivity (84%) and specificity (90%)
Frontiers in Oncology | www.frontiersin.org 714
for non-HCC malignancies, while the CT/MRI counterpart has
a moderate sensitivity (63%) and high specificity (95%) (61). In
this study, CT/MRI LR-M has a higher percentage of non-HCC
malignancies compared with CEUS LR-M, in agreement with
previous studies (9, 63). CEUS LR-M, however, has higher
sensitivity of non-HCC malignancies compared with CT/MRI
LR-M. Thus, we conclude that both of the two LI-RADS
systems have their advantages for the differential diagnosis
of HCCs and non-HCC malignancies. Further studies are
needed to explore the diagnostic performance for non-
HCC malignancies.
TABLE 4 | Diagnostic performance of CEUS and CT/MRI LR-M for non-HCC malignancies.

CEUS I2,% CT/MRI I2,% p

LR-M Sensitivity (95% CI) 83% (73–90) 53 65% (56–73) 78 0.01
Specificity (95% CI) 92% (86–95) 75 92% (88–94) 86 0.96
Accuracy (95% CI) 78% (70–84) 90 76% (72–79) 93 0.54
DOR (95% CI) 36.5 (16.6–80.0) 96 46.6 (24.9–88.2) 86 0.64
AUC 0.87 0.73
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FIGURE 6 | sROC plots of CEUS LR-M (A) and of CT/MRI LR-M (B) for the diagnosis of non-HCC malignancies.
A B

FIGURE 5 | sROC plots of CEUS LR-5 (A) and of CT/MRI LR-5 (B) for the diagnosis of HCCs.
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This study has several limitations. First, we aimed to compare
the risk of HCCs for CEUS LI-RADS classifications and the CT/
MRI counterparts. However, few paired studies are available for
this review. Second, the heterogeneity of the distribution and
diagnostic performance of HCCs cannot be well explained by the
meta-regression analysis. Last, the effects of tumor size on the
classification by LI-RADS were not explored.

Inconclusion, theproportionsofHCCs increasewith theupshift
of LI-RADS categories from LR-1 to LR-5. CEUS LR-3 has a lower
proportion of HCCs than CT/MRI LR-3, while CEUS LR-M has a
higher proportion ofHCCs. CEUS LR-Mhas a lower proportion of
non-HCCmalignancies than CT/MRI LR-M. CEUS LR-5 and CT/
MRI LR-5 show comparable diagnostic performances of HCC,
while CEUS LR-M has a higher sensitivity of non-HCC
malignancies compared with CT/MRI LR-M.
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Methods for diagnosing prostate cancer (PCa) are developing in the direction of imaging.
Advanced ultrasound examination modes include micro-Doppler, computerized-
transrectal ultrasound, elastography, contrast-enhanced ultrasound and
microultrasound. When two or more of these modes are used in PCa diagnosis, the
combined technique is called multiparameter ultrasound (mp-US). Mp-US provides
complementary information to multiparameter magnetic resonance imaging (mp-MRI)
for diagnosing PCa. At present, no study has attempted to combine the characteristics of
different ultrasound modes with advanced classification systems similar to the PIRADS
system in mpMRI for the diagnosis of PCa. As an imaging method, mp-US has great
potential in the diagnosis of PCa.
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HIGHLIGHTS

1. This article is a review of the application and development of various ultrasound techniques in
the diagnosis of PCa.

2. Multiparameter ultrasound is a new combined mode of several ultrasound techniques, which is
similar to multiparameter magnetic resonance imaging and it can significantly improve the
diagnosis rate of PCa.

3. A complete ultrasound examination scoring system will have important clinical application
value in improving PCa diagnosis and follow-up.
INTRODUCTION

Prostate cancer (PCa) is the most common genitourinary system tumor in middle-aged and elderly
men, and it is common in most Northern and Western countries. With the “Westernization” of
lifestyles, the rapid aging of the population and the development of metabolic syndrome, the
incidence and mortality of prostate cancer in our country have gradually increased in recent years
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(1, 2). The onset of PCa is insidious and lacks typical clinical
manifestations. Most patients are already in the middle and late
stages when they are diagnosed. Therefore, the early clinical
diagnosis and treatment of PCa are of great significance in
improving the survival rate of patients and their quality of life.

At present, early diagnostic tests of PCamainly include on digital
rectal examination (DRE), serum prostate specific antigen (PSA)
measurement and conventional transrectal ultrasound (TRUS) (3).
DRE is limited to palpation of the posterior area of the prostate,
which can cause physical discomfort, rectal bleeding and even
syncope. The level of PSA can indicate the risk of prostate cancer,
but its sensitivity (SE) is high and specificity (SP) is low. The PSA of
prostate cancer patients can even be in the normal range. Acute
prostatitis and benign prostatic hypertrophy can also lead to an
increase in PSA levels.Twelve-core systematic TRUS-guided biopsy
for patients with serum PSA levels> 4.0 ng/mL is currently the gold
standard for diagnosing PCa. Its SE is low, however, and the
detection rate is only 27%-40.3% (4, 5). Additionally, the false
negative rate of systemic prostate biopsy ranges from 17% to 21% (6,
7). Increasing the number of core biopsies can increase the detection
rate of PCa and help better evaluate GS score (8, 9). The main
disadvantage of systematic biopsy is that it is invasive, and can cause
various complications such as prostatitis, hematuria, hematochezia,
urinary retention and hematospermia (10). Additionally, it cannot
detect small, low-risk, and clinically atypical cancers. Thus, it can
lead to misdiagnosis, missed diagnosis, too many false negatives,
and excessive puncture.

Therefore, an increasing number of researchers are dedicated to
exploring imaging technologies with high SE, SP, and
noninvasiveness. PCa imaging research focuses on two platforms:
magnetic resonance imaging (MRI) and ultrasound (US).
Multiparameter MRI (mp-MRI) is currently an important
imaging method for PCa detection and localization and guidance
of needle biopsy. The more commonly used sequences are T2-
weighted imaging (T2WI), diffusion weighted imaging (DWI),
dynamic contrast-enhanced MRI (DCE-MRI) and three-
dimensional MR spectral imaging (11). However, MRI is not
appropriate for claustrophobic patients, patients with pacemaker
implantation and patients with metal pelvic implants. US is highly
cost-effective and has wide applicability and strong practicability.
Advanced US modalities include micro-Doppler, computerized-
transrectal ultrasound, elastography, contrast-enhanced ultrasound
and microultrasound. When different modes are used in
combination, it is called multiparametric ultrasound (mp-US).
This is a novel US examination mode similar to mpMRI, that can
significantly improve the diagnosis rate of prostate cancer. This
article introduces the basic principles and performance of different
ultrasound-based modes and reports the clinical effects of
combining them in mp-US.
GREYSCALE TRUS

Currently, conventional TRUS is commonly used for prostate
cancer detection, guided systematic biopsy, and guided
radiotherapy particle placement (12). Because prostate cancer
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tissue and normal prostate tissue have similar backscatter signals
and heterogeneity in the prostate transition zone, traditional
TRUS has limitations in detecting PCa. Moreover, the higher
frequency of the transrectal transducer can cause attenuation
artifacts in the examination, especially when there are more
calcifications in the prostate tissue. Approximately 60% of PCa
lesions are hypoechoic on TRUS (13), and approximately 35–
39% are isoechoic (14). Some nonmalignant diseases of the
prostate, such as prostate inflammation and benign prostatic
hyperplasia, can also appear hypoechoic on ultrasound images,
leading to false positive test results.

The SE of TRUS in diagnosing PCa is between 8% and 88%,
and the SP is between 42.5% and 99% (15–17). Taverna et al.
observed that the PCa detection rate of 13-core TRUS-guided
biopsy was 29% in 100 patients (18). A study by Klein et al.
showed that TRUS has poor SP for early PCa, with a false
negative rate for pathological results of systematic biopsy guided
by TRUS of up to 30% (19). Hwang et al. noted that increasing
the number of transrectal ultrasound-guided prostate punctures
and the number of needles can increase the detection rate of PCa
but would also increase the incidence of puncture complications
(20). Therefore, targeted biopsy methods have arisen as the
newest direction of research, as it can reduce the number of
puncture needles and increase the detection rate of PCa. A study
showed that the SP of TRUS-guided targeted biopsy in detecting
PCa is better than that of mpMRI (41% vs. 96%) (21).

According to the European Urology Association (EAU)
guidelines, standard grayscale TRUS remains the standard
technique for biopsy guidance (22). The current US imaging
system mostly uses nonlinear imaging. Its main advantage is the
high contrast resolution of the tissue and low clutter in the
inspection. The current trend in prostate ultrasound diagnosis is
to increase the frequency of the probe and use broadband single-
crystal piezoelectric elements to provide higher contrast and
spatial resolution. In recent years, transrectal three-dimensional
ultrasound (3D-TRUS) has been developed to provide more
information for the diagnosis of PCa. Long et al. found that the
accuracy and repeatability of needle biopsy guided by real-time
three-dimensional ultrasound are better than those of two-
dimensional ultrasound (23). Zhao et al. (24) and Guo et al.
(25) showed that 3D-TRUS can help identify targeted puncture
sites and increase the positive rate of PCa examination.

As a new high-resolution imaging method to guide prostate
biopsy, microultrasound has received extensive clinical attention.
Compared with mpMRI, microultrasound has potential
advantages, such as relatively low cost and ease of operation.
Several studies have reported the use of microultrasound in
diagnosing PCa. In a meta-analysis of 769 patients, Zhang
et al. found that microultrasound had a pooled SE, SP,
diagnostic odds ratio (DOR), and area under curve (AUC) of
0.91, 0.49, 10, and 0.82, respectively (26). In 104 patients with
suspected PCa, Lughezzani et al. found that the sensitivity and
detection rate of microultrasound for the detection of csPCa were
94% and 54%, respectively (27). This study suggests that
microUS can be used as an auxiliary diagnostic tool for MRI in
diagnosis csPCa. PCa is a lower proportion of MRI-diagnosed
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PI-RADS 3 lesions, but prostate biopsy is still required. In a study
of 111 patients, Pier Paolo Avolio et al. found that microUS
detected 100% of csPCa in patients with a PI-RADS 3 lesion at
mpMRI, while reducing the detection rate of ncsPCa to 23.8%
(28). Sountoulides et al. (29) found that microultrasound-guided
prostate biopsy has a PCa diagnosis rate equivalent to that of
mpMRI-guided prostate biopsy. Laura Wiemer et al. found that
the positive predictive value of micro-ultrasound for diagnosing
csPCa was significantly higher than that of mpMRI in 159
patients (30). Microultrasound can be used as an inexpensive
and convenient alternative to mpMRI in diagnosing PCa. Based
on the findings of other studies, microultrasound can
satisfactorily diagnose clinically significant prostate cancer
(csPCa). The high SE of microultrasound in the diagnosis of
PCa can further improve MRI/US-targeted biopsy and avoid
unnecessary system biopsy. The diagnostic value of
microultrasound still needs to be more comprehensively
analyzed with more clinical data.

The latest EAU guideline (2022) recommend to perform, if
possible, transperineal instead transrectal approach. In 200
patients with persistently elevated PSA, Pietro Pepe et al. found
that transperineal MRI/TRUS cognitive targeted biopsy had a
higher detection rate of csPCa in the anterior zone of prostate
compared with transrectal MRI/TRUS fusion targeted biopsy
(93.3 vs. 25%) (31). The transperineal approach provides
relatively easy access to the anterior region, thus it reduces the
patient’s risk of sepsis (32). In a study of 3000 patients with
suspected PCa, Pietro Pepe et al. found that the detection rate of
PCa by transperineal prostate biopsy was 38.3%, and 40.2% of the
patients underwent biopsy without sepsis, only urinary tract
infection and urinary retention (33). There are several studies
focusing on fusion targeted biopsy and cognitive targeted biopsy,
which one is more suitable for the detection of csPCa. In a study
of 200 patients with persistently elevated PSA, Pietro Pepe et al.
found that the sensitivity, specificity, positive predictive value,
negative predictive value, and diagnostic accuracy of transperineal
cognitive targeted biopsy in detection rate of csPCa were slightly
higher than those of transrectal fusion targeted biopsy (97.2% vs.
66.7%, 78.2% vs. 71.8%, 59% vs. 42.1%, 97.2% vs. 87.5%, 68.9% vs.
57.5%, respectively.) (31). However, several studies have
presented higher accuracy of MRI/TRUS fusion targeted biopsy
compared with cognitive targeted biopsy, because the latter is
operator-dependent (5, 34). In the past few years, mpMRI/TRUS
fusion-targeted biopsy has improved the diagnostic accuracy of
csPCa, especially in patients with repeat biopsies (35). More
researches are still needed to present their respective advantages
in diagnosing csPCa.
COMPUTER-ASSISTED DIAGNOSTIC
SYSTEM

In artificial neural network analysis/computerized-transrectal
ultrasound (ANNA/C-TRUS), the doctor performs routine
grayscale TRUS examinations on the patient before radical
prostatectomy (RP). The images are sent to the ANNA/C-
Frontiers in Oncology | www.frontiersin.org 320
TRUS server through an internet platform. The C-TRUS
system uses the ANNA algorithm to analyze the ultrasound
images, then colors suspicious areas and returns them to the user
terminal. This system is a convenient method for clinicians to
performed guided, targeted tumor biopsy (36).

Among 132 patients with elevated PSA or abnormal DRE, 66
cases of cancer were found through C-TRUS targeted biopsy
(37). Another study compared the tumor localization of the C-
TRUS system before surgery and the pathological results after RP
in 28 patients and found that the SE, SP, negative predictive value
(NPV), positive predictive value (PPV) and total accuracy of the
ANNA/C-TRUS system in detecting cancer were 83.1%, 63.9%,
68.4%, 80.1% and 76.2%, respectively (38). Moreover, the
ANNA/C-TRUS sys tem can be t t e r pred ic t tumor
differentiation than random systemic biopsy. In 164
preoperative patients undergoing RP, the SE of ANNA/C-
TRUS in predicting the RP Gleason classification of the index
lesions was 85% (39).When performing traditional TRUS, the
additional use of C-TRUS can assist in the detection and biopsy
of cancerous lesions. The combination of C-TRUS and MR can
increase the detection rate for high-risk PCa patients (40). The
use of ANNA/C-TRUS can improve the accuracy of PCa
diagnosis, but a larger multicenter study is still needed to
assess its clinical value.

Histoscanning (HS) is an ultrasound-based tissue
characterization technology that can be used for PCa detection
and localization. TRUS is used to first perform a full scan of the
prostate to obtain three-dimensional grayscale data. Then the
examiner uses HS software to color-code suspicious area and
determine the tumor volume. This technique has shown
encouraging results in the detection of csPCa.

In a study of 32 preoperative patients with RP, the SE, SP,
PPV, and NPV of HS in detecting PCa were 93.5%, 79.5%,
67.35%, and 96.5%, respectively (41). HS can assist in diagnosing
patients through prostate biopsy diagnosis. It has a higher
detection rate for cancer lesions with a volume of ≥0.50 mL
(42) and a diameter of ≥0.1cm (43). In 43 patients, the cancer
detection rate of transrectal ultrasound biopsy with a standard
12-core system guided by prostate tissue scanning targeting
(PHS-TT) was 46.5%, and the length of the PHS-TT cores was
significantly higher than that of the systematic cores (55.4% vs.
37.5%, p <0.05) (44). PHS-TT can be used as an effective tool for
the clinical guidance of prostate biopsy in real time.

In a study of 14 preoperative prostate HS in patients with RP,
there was a significant correlation between tumor diameter and
final pathology (r=0.95, p<0.001) (45). Simmons et al. observed a
good correlation between tumor volume and final pathology
(r=0.7) in a study of 27 patients, and the SE and SP of PHS in
localizing of lesions ≥ 0.2 mL within a sextant were 90% and 72%,
respectively (46). However, some studies arrived at different
conclusions. A study of 148 PCa patients indicated that there
was no significant correlation between the tumor volume
measured by PHS and obtained in the final pathology (r =
-0.0083, p = 0.9) (47). Javed S et al. also showed that the
tumor volume measured by PHS was not correlated with the
pathological volume after RP (r = -0.096) (48).
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HS-targeted biopsy of the prostate is gradually being applied
in clinical practice, but it still cannot replace the important role
of systematic biopsy in detecting PCa. Compared with those of
TRUS-guided prostate biopsy and transperineal template
prostate biopsy (TTB), the overall cancer detection rates of
PHS-targeted biopsy and TRUS-guided systemic biopsy are
38.1% and 62.5%, respectively (48). The total cancer detection
rates of PHS-targeted biopsy and standard TTB were 13.4% and
54.4%, respectively (48). The SE and SP of PHS in the posterior
gland were 100% and 13%, respectively, and those in the anterior
gland were 6% and 82%, respectively (48). Therefore, it is
currently not recommended to use HS to reliably identify and
characterize PCa. The potential of PHS in assisting in the
detection of PCa is considerable, and a larger patient
population is still needed to further verify its clinical value.
COLOR DOPPLER/POWER DOPPLER

Several studies have reported the added value of Doppler
technology over grayscale ultrasound (GSU) (9, 49, 50). Color
Doppler ultrasound (CDU) and power Doppler ultrasound
(PDU) can be used to detect invisible lesions on the GSU by
revealing abnormal blood vessels in the tissue. CDU describes the
speed and direction of blood flow by detecting the frequency
changes when the signal is reflected by red blood cells (51). If the
lesion is located in the peripheral zone of the prostate with
nodular or clustered hypoechogencity, CDU manifests an
intralesional vascular hyperplasia. Then, the lesion is likely to
be malignant. Conventional CDU can improve the PCa detection
rate (51).

PDU is another method of displaying blood flow in color, but
it is more sensitive to perfusion than CDU. However, PDU
cannot describe the direction of blood flow. PDU can detect low-
velocity blood flow in blood vessels with an inner diameter as
small as 1 mm. Okihara et al. used PDU to examine 107 men
with high serum PSA levels. The results showed that the SE, SP,
PPV and NPV of PDU in detecting of lesions were 98%, 78%,
59% and 99%, respectively (52). Sauvain et al. found that the SE
and SP of PDU in detecting low-risk PCa in 243 patients were
45% and 74%, respectively (53). Eisenberg et al. compared GSU
and PDU with 620 RP postoperative specimens and reported
that adding PDU to GSU increased the SP from 47% to 74%,
although the SE was reduced from 58% to 47% (15).

Both CDU and PDU can help identify vascular tissue, and the
latter is more sensitive, but neither is sufficient to detect early
PCa. Tumor growth and progression within the prostate are
usually accompanied by angiogenesis, which may significantly
increase the microvessel density (MVD) in the lesions. An
increase in MVD is associated with a higher tumor grade and
a worse prognosis (51). The limited resolution of Doppler
ultrasound can detect blood vessels in the millimeter range,
while the angiogenesis of malignant tumors can generate blood
vessels as small as 10-50 microns in diameter (51). Therefore, the
Doppler technique may be effective only in detecting increased
blood flow in large vessels that are found in larger, advanced,
Frontiers in Oncology | www.frontiersin.org 421
high Gleason-grade tumors. Another potential disadvantage of
Doppler and other blood flow-based ultrasound techniques is
that the left-side lying position often used by patients may result
in an asymmetrical distribution of blood flow in the prostate
tissue. Harper et al. found that CDU and PDU showed a
significant difference in blood flow in tissues (P<0.002) that are
beneficial to the left side of the prostate instead of the right
side (54).
ELASTOGRAPHY

Ultrasound elastography (UE) can reveal stiff lesions that are not
visible on traditional TRUS (17, 55). The main methods for the
UE diagnosis of PCa include transrectal real-time tissue
elastography (TRTE) and shear-wave elastography (SWE). The
index for evaluation with TRTE is the ratio of the stress on the
material to the structural deformation caused by the stress, and
the index for evaluation with SWE is expressed as the shear wave
velocity and Young’s modulus.

Transrectal Real-Time Tissue
Elastography
In TRTE, the rectal probe cyclically compresses the suspicious
prostate tissue and monitors the degree of elastic strain. The
speckle comparison caused by each cycle of compression and
decompression will generate a color-coded map, which is then
overlaid on the grayscale image of the prostate. Note that the
tissue deformation is homogeneous over the imaging plane, and
the region of interest (ROI) should cover the entire gland and
surrounding tissues to obtain a qualified and reproducible
elastogram. Finally, the operator compares the tissue strain
ratios of the two ROIs, with one considered “normal” and one
considered “abnormal”, on the elastogram. On the elastic chart of
the TRTE examination, low strain is highlighted by color coding
in blue, and the corresponding high strain soft tissue is coded in
red. Blue hypoechoic lesions of the prostate are suspected of
malignancy. Normally, the stiffness of the glands in the prostate
increases with age. PCa tissue is harder than normal prostate
tissue due to increased cellular density, microvascularization and
stromal reaction combined with collagen deposition in the
surrounding prostate parenchyma (56). Thus, the organization
of PCa tumors often involves partial or no obvious compression
during TRTE inspection. The detection rate of prostate anterior
parenchyma is lower than that in the posterior areas, and that of
the base of the prostate is also lower than that of the apical
regions in TRTE examination (55, 56).

Most studies on prostate elastography have used TRTE. A
meta-analysis of 6 studies by Salomon G et al. showed that for
TRTE targeted biopsy for PCa detection, the SE and SP per
patient were 62% and 79%, respectively, and the SE and SP per
core were 34% and 93%, respectively (57). Zhang B et al.
compared TRTE with histopathological results after RP in a
meta-analysis of 508 patients, and the pooled SE and SP of TRTE
in diagnosing PCa were 0.72 and 0.76, respectively (58).
Miyanaga et al. analyzed 29 patients with PCa before RP. The
June 2022 | Volume 12 | Article 905087
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results showed that the SE of TRTE, GSU, and DRE in
diagnosing PCa were 93%, 59%, and 55%, respectively (59).

Aigner et al. reported that in 94 patients, the SE, SP, PPV, and
NPV of TRTE targeted biopsy were 74.0%, 60.0%, 39.0%, and
93.0%, respectively. Furthermore, TRTE-targeted biopsy was
better than systemic biopsy, and the detection rate of PCa was
4.7 times higher (60). A comparative study of TRTE targeted
guided needle biopsy and systemic biopsy by Brock et al. showed
that TRTE had a higher positive rate for prostate needle biopsy
than TRUS, but TRTE targeted guided needle biopsy was still
unable to replace systemic needle biopsy (55). Therefore, we
believe that TRTE-guided targeted biopsy can complement
traditional systematic biopsy.

A study of 33 patients showed that the PCa detection rate
of TRTE is basically equivalent to that of MRI. The SE and NPV
of TRTE were 84.6% and 86.7%, respectively, while those of
mpMRI were 84.6% and 83.3%, respectively (61). Pelzer et al.
found that the SE and SP of TRTE in diagnosing PCa in 46
patients were 44.1–58.9% and 83.0–74.8%, respectively, while
those of MRI were 36.7–43.1% and 85.9–79.8%, respectively (62).
TRTE has advantages in the apical and middle parts of the
prostate, while MRI has advantages in the gland base and TZ.
The combination of the two detection methods can increase the
total PCa detection rate (62). A study involving 41 patients
showed that lesions on ventral prostate sectors were easier to
detect by MRI, while TRTE more easily detected lesions in dorsal
and apical sectors. The combination of MRI-TRTE significantly
increased the area under the mpMRI curve from 0.65 to 0.75
(63). Brock et al. found that the SE and SP of the combined MRI/
TRTE in detecting PCa were 77.8% and 77.3%, respectively (64).

Among the limitations of TRTE are that it performs a
semiquantitative analysis of tissue elasticity; it cannot provide
uniform compression for the whole gland; it has a low detection
rate for small and low-grade prostates (65); and insufficient
image acquisition and low reproducibility of the operation
when the probe slips off the prostate, as shown for 32% of
patients (66). Real-time balloon inflatable elastography (RBIE)
has been adopted by clinics as a new technology for
supplementing TRTE. It uses a pistol syringe connected to the
balloon on the rectal probe to apply force to the prostate through
inflation and deflation instead of manual compression. RBIE can
more sensitively detect tumors with higher Gleason scores and
hard-to-reach tumors in the prostate area. RBIE provides stable
elastic motion images and improves the ability of TRTE to detect
prostate cancer (67).

Shear–Wave Elastography
In recent years, SWE has been primarily used for the diagnosis of
thyroid, breast and liver diseases. SWE evaluates the hardness of
the tissue by measuring the propagation speed of a shear wave
delivered to the tissue. It is a quantitative technique that
standardizes the detection of prostate cancer. The SWE
measurements have excellent in-observer repeatability (ICC =
0.876) (68). However, SWE is plane-dependent, and the hardness
of the sagittal image of the prostate is higher than that of the axial
image (69); the shear waves attenuate significantly in larger
Frontiers in Oncology | www.frontiersin.org 522
glands; and for larger prostates, it is difficult to perform SWE
without prepressurization.

What distinguishes SWE from TRTE is that the former avoids
putting pressure on the rectal wall. The color rendering mode of
SWE is opposite that of TRTE; low strain is highlighted in red,
and soft tissues are shown in blue. Red hypoechoic areas are
suspicious of malignant lesions. In young men without prostate
hyperplasia, the area around and in the center of the prostate is
uniformly displayed in blue, and the stiffness value ranges from
15 to 25 kPa. As prostate hyperplasia develops, the central area of
the prostate becomes an uneven red with stiffness values ranging
from 30 to 180 kPa, while the surrounding area still maintains a
more uniform blue color (70). While attempting not to compress
the prostate during SWE examination, the prostate is scanned
from base to apex to obtain the original elastic image containing
each plane. Then, the operator calculates the elasticity measure
(mean, min and max) of each ROI, as well as the ratio between
the quantitative box (Q-box) placed in the suspicious prostate
area and the adjacent normal surrounding area.

SWE is a commonly used ultrasound imaging method for
PCa diagnosis in the clinic and shows good diagnostic value. In a
prospective study of 53 patients, a Young’s modulus value of 37
kPa was used as the cutoff value between benign and malignant
prostate tissues. The SE, SP, PPV and NPV of SWE in detecting
PCa were 96.2%, 96.2%, 69.4% and 99.6%, respectively (71). The
meta-analysis results of Sang et al. showed that the pooled SE and
SP of SWE in diagnosing PCa were 0.844 and 0.860, respectively
(72). Boehm K et al. used 50 kPa as the Young’s modulus
threshold for benign and malignant prostate tissues, and the
SE and SP of SWE in detecting PCa were 80.9% and 69.1%,
respectively (70). At present, the results of some studies using
SWE show that the critical value for distinguishing benign and
malignant lesions is in the range of 35 to 43.9 kPa (71, 73, 74).

The increase in PCa tissue stiffness is related to the GS (75)
and disease severity (76). The average Young’s modulus of
prostate cores with a Gleason score of 7 (163 ± 63 kPa) was
higher than that of prostate cores with a Gleason score of 6 (95 ±
28.5 kPa; P = 0.007) (77). Woo et al. reported that Young’s
modulus was significantly correlated with the Gleason score (r =
0.343, P = 0.002) (r = 0.898, P <0.0001) (73, 78, 79). Similarly,
there is a correlation between the strain index (SD) and the
Gleason score. The mean elastic strain index SD (3.26~1.77) of
malignant focal lesions was found to be significantly higher than
that of benign focal lesions (2.16~1.52; P<0.008), and the strain
index was moderately linearly correlated with the Gleason score
(r=0.441; P=0.013) (55). This finding may be attributed to the
higher cell density and stiffness associated with higher grades of
prostate cancer.

Rui et al. reported a new 11-point scoring system based on
SWE and other clinical parameters (TRUS, DRE, and free PSA/
total PSA ratio), and the results showed that when scoring based
on SWE and clinical parameters, the AUC of the system (0.911)
was higher than that of SWE alone (0.842) or of clinical
parameters (0.868) alone (80). Recently, research has been
conducted on the efficacy of 3D SWE in detecting prostate
cancer. When the critical value of tissue elasticity of 41 kPa
June 2022 | Volume 12 | Article 905087
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was combined with the PI-RADS score, the SE, SP, PPV and
NPV of cancer detection were 70%, 98%, 91% and 92%,
respectively (79). In the future, 3D SWE may have the
potential to improve the detection of major prostate cancer.

Acoustic Radiation Force Pulse Imaging
Acoustic radiation force pulse imaging (ARFI), another mode of
UE, shows promise in the diagnosis and treatment of PCa. In
ARFI, a short-term high-intensity focused ultrasound beam is
transmitted to the prostate tissue to displace it. Zhai et al.
successfully distinguished benign hyperplastic nodules,
calcifications and cancerous lesions in the prostate using ARFI
imaging (81). Wang et al. noted that a high-intensity ultrasound
pulse can separate prostate cancer tissue from normal tissue, a
potential noninvasive prostate cancer resection technique that
and has therapeutic value (82).
CONTRAST−ENHANCED ULTRASOUND

A large number of microvessels are generated inside PCa tumors,
which provide the necessary nutrients for tumor proliferation,
metastasis and invasion. The density of microvessels in a PCa
tumor is significantly higher than that of normal prostate tissue.
In contrast-enhanced ultrasound (CEUS), an intravenous
injection of ultrasound contrast agent (UCA) with a diameter
close to red blood cells is made to observe the blood perfusion of
the lesion and adjacent tissues in real time. CEUS can detect
blood flow signals in microvessels with a diameter of 1–10 mm
(83). The main component of the UCA is microbubbles (MBs),
the incidence of allergic reactions is much lower than that of
iodine contrast agents (84), and there is no nephrotoxicity. After
intravenous injection of the UCA, one ROI is delineated in the
suspicious area, and another is drawn in the enhanced normal
parenchyma as a reference. The signal intensity change of the
contrast agent in the prostate ROI area is plotted over time,
which is called the time intensity curve (TIC). PCa tissue shows
higher peak enhancement, and a shorter rise time and peak time
than normal parenchyma (85).

In a prospective study of 65 patients with elevated PSA, Zhao
et al. found that the SE and SP of CEUS in diagnosing PCa were
79.3% and 86.1%, respectively (86). In a meta-analysis of 16
studies with a total of 2624 patients, Li et al. found that the SE,
SP, and DOR of CEUS imaging in detecting prostate cancer were
0.70, 0.74 and 9.09, respectively (87). Sedelaar et al. performed
three-dimensional contrast-enhanced Doppler ultrasound (3D
CE-PDU) on 7 patients with PCa confirmed by biopsy and found
that the MVD on the “enhanced” side was 1.93 times that on the
“unenhanced” side (88). Using 3D CE-PDU, 86% of cancer foci
were found in 70 patients with PCa who planned to undergo RP
(89). 3D CE-PDU has the ability to visualize lesions with
high MVD.

CEUS-guided prostate targeted biopsy is widely used in
clinical PCa detection. In a study of 1,776 men, Mitterberger
et al. found that the PCa detection rate of CEUS–targeted biopsy
was significantly higher than that of systematic biopsy (10.8% vs.
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5.1%) (90). In a study involving 690 patients, Strazdina et al.
found that CEUS–guided targeted biopsy had good SE in the
detection of PCa with high Gleason scores (6 or higher) (91).
Some studies have shown that targeted needle biopsy guided by
CE-TRUS can not only improve the diagnostic SE of PCa but
also increase the positive rate of needle biopsy (92–94). However,
several studies have instead shown that there is no significant
difference in the detection rate of PCa between the CEUS guided
targeted puncture method and the systematic puncture method
(95). CEUS is a promising tool for detecting PCa, but it still
cannot completely replace systematic biopsy under
existing circumstances.

Compared with other ultrasound modes, CEUS shows good
diagnostic value in the diagnosis of PCa. Among 115 men with a
serum PSA level greater than 4.0 ng/ml, a study showed that the
SE, SP and accuracy of CEUS in diagnosing PCa were 65%, 83%
and 73%, respectively, which were higher than those of TRUS
and PDU (96). However, Taverna et al. reported that CEUS did
not significantly increase the detection rate of PCa over PDU or
GSU (18). Some recent studies used CEUS in combination with
other ultrasound modes to detect PCa. Halpern et al. and
Matsumoto et al. found that the total SE of CEUS and GSU in
the diagnosis of PCa in 12 and 50 prostate cancer patients was
42% and 40%, respectively (97, 98). The combination of multiple
ultrasound modes can significantly improve the ability to detect
PCa clinically.

Contrast-enhanced ultrasound diffusion imaging (CUDI) is a
very promising new technique for prostate cancer imaging
developed in recent years. It analyzes the time evolution of the
UCA concentration in the neovasculature of cancer foci to
generate quantitative maps of perfusion parameters to better
characterize microvascular structure. Jung et al. measured
ultrasound contrast perfusion quantitative parameters in 20
PCa patients, including the early irrigation rate (EIR), mean
transit time (MTT) and rise time (RT). The results showed that
the SE, SP, NPV and PPV of PCa were 88%, 100%, 60% and 90%,
respectively (99). This preliminary study shows that the
quantitative analysis of CEUS perfusion parameters can help
visualize the microvascular blood circulation and preoperative
location of prostate cancer. In a study of 82 patients, Francesco
M. Drudi et al. found that the sensitivity of mpMRI and
quantitative analysis of contrast-enhanced ultrasound (CEUS)
for detecting PCa were 91.3% and 40%, respectively, and the
specificity were 66.7% and 97.2%, respectively (100). CUDI has
also been studied in three dimensions. In a study using 3D CUDI
to detect the PCa tumors in 43 patients, perfusion parameters
were significantly different between benign and malignant
tissues, including correlation (r) and wash-in time (WIT). The
SE and SP of r in detecting PCa were 94% and 50%, and those of
WIT were 53% and 81% (101).

Ultrasound molecular imaging is a new direction in the field
of the early diagnosis of tumors. Due to the size limitation of
MBs, CEUS is limited to the vasculature where MBs accumulate
in the tumor. Only particles with a diameter of less than 700 nm
can penetrate the tumor blood vessel wall and enter the tumor
interstitium (102). Prostate-specific membrane antigen (PSMA)
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is a type II glycoprotein that is mainly distributed in prostate
epithelial cells. It is highly expressed in prostate intraepithelial
neoplasia, hormone-dependent or hormone-independent
prostate cancer, and metastatic cancer (103) but expressed at
low levels in normal prostate epithelial cells. This feature makes
it one of the most important biomarkers in the diagnosis and
treatment of PCa. Therefore, some studies focused on the
construction of targeted nanobubbles (NBs) with a diameter of
less than 700 nm to achieve specific ultrasound-enhanced
imaging of prostate cancer cells (102–104). At present, PSMA-
targeting, indocyanine green (ICG)-loaded nanobubbles (NBs)
(102) and PSMA single-chain variable fragment (scFv)–loaded
NBs have been reported (104). These new targeted NBs have
been proven to be excellent US contrast agents that extend the
signal enhancement time and have stronger penetrating ability
and higher specificity (105, 106). If the NBs are loaded with
drugs, targeted therapy of PCa can also be achieved.
MRI/US FUSION IMAGING

When a lesion is detected on MRI, MRI/US fusion can be helpful
(Figure 1). A number of studies have demonstrated that MRI/US
fusion technology-guided biopsy improves the detection rate of
PCa. Brock et al. found that using MRI/TRUS fusion targeted
biopsy in 121 men, the SE and SP in the detection of PCa were
77.8% and 77.3%, respectively, and the detection rate per core for
combined targeted biopsy (14.7%) was higher than the detection
rate per core of system biopsy (6.5%, p <0.001) (107). In a
retrospective study of 135 patients, MRI combined with 3D
TRUS targeted needle biopsy was performed before RP, and the
SE of the detection of prostate index tumors was 95% (108).
Siddiqui MM et al. compared 1003 patients with MRI/US
combined with prostate targeted biopsy and standard biopsy. The
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results showed that the accuracy of targeted biopsy was 30% higher
than that of standard biopsy in diagnosing high-risk cancers (109).
Tewes S et al. reported the SE, SP, and NPV of MRI/TRUS
combined-guided targeted biopsy in detecting prostate lesions
with PI-RADS scores ≥ 4 were 85%, 82% and 92%, respectively
(110). US and MRI have advantages in the diagnosis of PCa, and
when combined, the detection of PCa is obviously improved.
MPUS

Transrectal multimodal ultrasound refers to a combination of
GSU, CDU, PDU, TRTE, and CEUS. GSU shows the anatomical
location of the prostate lesion (Figure 2A). Doppler ultrasound
shows the blood flow in the larger hyperplastic vessels in the
lesion (Figure 2B). Elastography shows the hardness of the
lesion tissue to infer properties about its nature (Figure 2C).
CEUS shows new microvessels in the lesion (Figure 2D).
Clinically, the combination of different ultrasound modes can
improve the detection rate of PCa. At present, there are few
studies on the combination of ultrasound modes.

Nelson et al. used GSU, PDU, and TRTE for the targeted biopsy
of prostate lesions in 137 patients. The results showed that in 106
positive sextant sites, the positive rates of GSU, CDU, TRTE, and
combined ultrasound modes were 16%, 29%, 25%, and 46%,
respectively, indicating that combined ultrasound methods with
different modes can improve the detection rate of PCa (17). Xie et al.
conducted transrectal GSU, PDU and their combination with a
third mode (DCE-US) to detect PCa in 150 patients. The results
showed that the sensitivities of the combined mode (GSU+PDU),
GSU, PDU and DCE-US, were 73%, 51%, 48%, and 63%,
respectively (111). In a retrospective study involving 133 men
with elevated serum levels of PSA (≥1. 25 ng/mL), the PCa
detection rate of CEUS and TRTE combined targeted biopsy was
FIGURE 1 | Diagnosis of PCa using mpUS—case 1. A 68-year-old patient has a total serum PSA of 10.4ng/ml. The T2-weighted sequence of MRI (A, arrow)
shows a slightly low signal shadow in the peripheral zone of the prostate, suggesting PCa in the diagnosis. The lesion showed a slightly hypoechoic area on the B-
mode (B, arrow), and it’s not clearly demarcated from the seminal vesicle gland. CDU shows an abnormally increased blood flow in the lesion (C, arrow). TRTE
shows that the slightly hypoechoic area of the prostate’s peripheral zone is highly stiff (D, arrow). CEUS shows early high enhancement within the lesion (E, arrow).
TRUS-guided systematic biopsy confirmed that the peripheral zone of the prostate was a Gleason 4 + 4 PCa.
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59.4% (112). Brock et al. performed TRTE and CEUS examinations
on 100 patients before RP. Compared with pathological biopsy, the
examinations showed a SE and SP in detecting PCa by TRTE of 49%
and 74%, respectively. Compared with the combination of TRTE
and CEUS, the false positive value of TRTE alone was reduced from
34.9% to 10.3%, and the PPV of cancer detection was increased
from 65% to 90% (64). Among 153 prostate nodules, the SE,
accuracy and NPV of the combination of TRTE and CEUS in
diagnosing PCa were 92.1%, 86.2%, and 84.6%, respectively.
Multiple ultrasound imaging modes combined with targeted-
guided prostate biopsy can not only increase the detection rate of
malignant lesions but also reduce the number of tissue punctures.

Mp-US and mp-MRI provide complementary information in
the diagnosis of PCa. Zhang et al. performed mp-US and mp-MRI
examinations on 88 patients. The results showed that the SE, NPV,
accuracy, and AUC in detecting PCa with mp-US were higher than
that mp-MRI (97.4% vs. 94.7%, 96.9% vs. 92.3%, 87.2% vs. 76.9%,
0.874 vs. 0.774, respectively) (113). In 167 patients with primary
prostate biopsy, Pat F. Fulgham et al. found that mpUS-targeted
biopsy was superior to mpMRI/TRUS fusion-targeted biopsy in
terms of the positive rate of PCa and the ability to detect low-
malignancy PCa (114). Mp-US has higher diagnostic performance
than mp-MRI in diagnosing local PCa.
CONCLUSION

Due to the poor prognosis of metastatic PCa, early detection of PCa
is the most effective strategy to reducemorbidity andmortality. MRI
experts from the European Society of Urogenital Radiology (ESUR)
developed the PI-RADS scoring system for prostate mpMRI and
used Likert-type scales to score the corresponding lesions. At
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present, mpMRI is still used as the main imaging method for
diagnosing PCa in clinical practice, and no multiparameter
ultrasound image scoring system has been developed. Ultrasound
is also very important in the imaging diagnosis of PCa, due to its low
cost, ease of use, real-time functionality, lack of radiation, and the
continuing development of more advanced ultrasound techniques.
Polymeric NBs targeting PSMA as a new UCA can increase the
diagnostic potential of CEUS and may become a popular research
topic for targeted ultrasoundmolecular imaging of PCa. In addition,
NBs can be used as drug carriers for PCa-targeted therapy.
Ultrasound molecular imaging has become an emerging research
field in tumor imaging diagnosis. Our future work will focus on
accumulating more patient data, integrating the diagnostic
characteristics of PCa under different ultrasound modes, and
constructing a complete ultrasound examination scoring system
through optimized algorithms. The development of this advanced
mpUS scoring system will have important clinical application value
in improving PCa diagnosis and follow-up.
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FIGURE 2 | Diagnosis of PCa using mpUS—case 2. A 76-year-old patient has a total PSA of 14.3ng/ml. Multiparameter US starts from conventional transrectal
ultrasound, and the lesion is a hypoechoic nodule at the junction of the inner and outer glands in the prostate’s left lobe (A, arrow). The lesion appears on the CDU
as a rich blood flow of the arterial spectrum (B, arrow). The operator uses the endocavitary transducer to alternately compress and decompress the lesion, which
appears mostly blue on the TRTE (C, arrow). Hypoechoic nodule appears on CEUS as hypervascular nodule with enhanced “fast forward and fast exit” (D, arrow).
Histopathology shows that the prostate lesions were clinically significant with a Gleason 4 + 3 PCa.
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GLOSSARY

PCa Prostate cancer
DRE Digital rectal examination
PSA Prostate specific antigen
TRUS Transrectal ultrasound
SE Sensitivity
SP Specificity
MRI Magnetic resonance imaging
US Ultrasound
mp-MRI Multiparameter MRI
T2WI T2- weighted imaging
DWI Diffusion weighted imaging
DCE-MRI Dynamic contrast-enhanced MRI
mp-US multiparametric ultrasound
EAU European Urology Association
3D-TUS Transrectal three-dimensional ultrasound
DOR Diagnostic odds ratio
AUC Area under curve
csPCa Clinically significant prostate cancer
ANNA/C-
TRUS

Artificial neural network analysis/computerized-transrectal
ultrasound

RP Radical prostatectomy
NPV Negative predictive value
PPV Positive predictive value
HS Histoscanning
PHS-TT Prostate tissue scanning targeting
TTB Transperineal template prostate biopsy
GSU Grayscale ultrasound
CDU Color Doppler ultrasound
PDU Power Doppler ultrasound
MVD Microvessel density
UE Ultrasound elastography
TRTE Transrectal real-time tissue elastography
SWE Shear-wave elastography
ROI Region of interest
RBIE Real-time balloon inflatable elastography
SD Strain index
ARFI Acoustic radiation force pulse imaging
CEUS Contrast-enhanced ultrasound
UCA Ultrasound contrast agent
MBs Microbubbles
TIC Time intensity curve
3DCE-PDU Three-dimensional contrast-enhanced Doppler ultrasound
CUDI Contrast-enhanced ultrasound diffusion imaging
EIR Early irrigation rate
MTT Mean transit time
RT Rise time
WIT Wash-in time
PSMA Prostate-specific membrane antigen
NBs Nanobubbles
ICG Indocyanine green
scFv Single-chain variable fragment
ESUR European Society of Urogenital Radiology
Frontiers in Onco
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R0 surgical resection is the preferred treatment for bone and soft tissue sarcoma.
However, there is still a lack of precise technology that can visualize bone and soft
tissue sarcoma during surgery to assist the surgeon in judging the tumor surgical
boundary. Fluorescence imaging technology has been used in the diagnosis of cancer.
It is a simple and essentially safe technique that takes no additional time during the
operation. Intraoperative fluorescence imaging has potential application prospects in
assisting the surgeons in judging the tumor boundary and improving the accuracy of
surgical resection. This review mainly starts with clinical studies, animal experimentation,
and newly designed probes of intraoperative fluorescence imaging of bone and soft tissue
sarcoma, to appraise the application prospects of fluorescence imaging technology in
bone and soft tissue sarcoma.

Keywords: fluorescence imaging, bone sarcoma, soft tissue sarcoma, fluorescent probes, cancer imaging
INTRODUCTION

Traditionally, surgeons mainly use preoperative CT(computed tomography) and MRI(magnetic
resonance imaging) to assess the tumor boundary within the surgeons’ naked eyes to select the scope
of resection during the surgery (1). CT and MRI cannot be used in real-time and have limited tumor
specificity (2). Assessments of the resection boundary based on the surgeons’ naked eyes are
inaccurate and rely on surgeons’ experience. The intraoperative frozen section reduces surgical
efficiency because of the unavoidable extension of the surgery period (3). It is urgent to find an
auxiliary examination during the operation to judge the boundary between the tumor tissue and the
normal tissue, which can improve the accuracy of the operation together with assistance in finding
the tumor satellite foci (4).

The essence of intraoperative tumor fluorescence imaging is to allow fluorescent dyes to
accumulate in tumor tissue during the operation so that the surgeons can find the boundary of
the tumor. Fluorescent probes have different principles, such as EPR effects (enhanced permeability
and retention) and antigen-antibody reactions. To date, fluorescence imaging has exhibited
Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging; SPECT, single photon emission computed
tomography; TBR, tumor-to-background ratio; ICG, indocyanine green; NIR, near-infrared; IHC, immunohistochemistry;
VEGF, vascular endothelial growth factor; EGFR, epidermal growth factor receptor; VEGFR, vascular endothelial growth
factor receptor; 5-ALA, 5-aminolevulinic acid; FR-a, folate receptor-a; insulin-like growth factor, IGF; EPR, enhanced
permeability and retention; CME, clathrin-mediated endocytosis; glutathione, GSH.
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promising advantages in various tumors, such as brain tumors
(5), breast cancer (6), and gastric cancer (7).

In recent years, intraoperative fluorescence imaging of bone
and soft tissue sarcoma has been explored in clinical studies,
animal experimentation, and these studies have led to the
development of new probes.
PRINCIPLE OF FLUORESCENCE IMAGING

Non-Specific Fluorescent Probes
Based on the principle of fluorescent probes, we divide the
current fluorescent probes into four types and summarize
them in Figure 1.

Most non-specific probes rely on a passive targeting strategy,
which preferentially accumulates molecules in tumors. The passive
targeting strategy attributes to the tumor microenvironment such as
accumulation of acidity, anoxic habitat, and necrotic tissue (8). It is
not specific so that burns, wounded, and other tissues can also retain
more fluorescent dye than surrounding tissues.

The principle fluorescent component of tetracycline is achelate
formed upon combination with calcium ions ontrabecular bone
(9). OWEN et al. (10) studied the fluorescence of tetracycline
medicines in bone cancers and normal bone in 1961. Normal bone
tissue has strong fluorescence, while necrotic bone has no or low
fluorescence. Tetracycline is nowadays used only infrequently for
intraoperative imaging of bone and soft tissue sarcoma, not only
because tetracycline drugs are toxic and have a high rate of adverse
reactions, but also because the wavelength of tetracycline
Frontiers in Oncology | www.frontiersin.org 232
excitation light is 450-490nm, which is in the visible light range.
This wavelength overlaps with normal tissues and is heavily
absorbed in tissues such as hemoglobin and myoglobin (11).

Compared with fluorescent probes for fluorescence imaging in
the visible region, the research direction in recent years has focused
more on fluorescent probes with excitation wavelength in the near-
infrared region NIR-1 (700-900nm). Near-infrared fluorescence
with a wavelength of 700-900nm is rarely absorbed in tissues (12).

For example, the most commonly used and clinically approved
fluorescent probe is indocyanine green (ICG). ICG has absorption
and fluorescence spectra in the near-infrared (NIR) region. The
excitation wavelength is 780nm, and it emits fluorescence in the
range of 700-850nm. The red light is visible to the naked eye, but
most of the light is not (13). Most researchers believe that the
accumulation of ICG within solid tumors attributes to the EPR
(enhanced permeability and retention) effect (14). Due to the
presence of defective endothelial cells and wide fenestrations (600
to 800 nm) in nascent blood vessels, small molecules such as ICG
are injected systemically and passively accumulate in tumors (15).
However, Pandit et al. (16) pointed out that in addition to the EPR
effect, transcytosis is the principle of molecular accumulation in
tumors. It is the same as the research on ICG in Colorectal Cancer.
Cancer cells have a high endocytic rate (17). ICG was preferentially
taken up by cancer cells via clathrin-mediated endocytosis (CME)
(18). Indocyanine green is a safe, basically non-toxic drug, which
rarely reacts with other drugs (19). However, Indocyanine green
accumulates in bone tumors, inflammation, and bone deformities.

Many factors can influence the EPR effect, including tumor
type, size, and vascular mediators. As a result, the intensity of the
ICG signal is unpredictable (20). If the patient has a fracture or
FIGURE 1 | (A) Non-Specific Fluorescent Probes (ICG): the fluorescent dye remains in areas where the vasculature is highly disordered. (B) Activatable
Fluorescence Probes: the dye fluorescence only when the group breaks down under tumor circumstances. (C) Specific fluorescent Probes: the fluorescent dye
combines antibodies bind to biomarkers. (D) Multimodality Fluorescence Imaging Probes: the fluorescent dye used for both NIR imaging and SPECT/CT, MRI.
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ischemia at the surgical site during surgery, it will cause false-
positive results and affect the judgment. According to research,
encapsulation of ICG improves its targeting abilities and
circulation time (21, 22).

Activatable Fluorescence Probes
Some scientists have also designed activatable fluorescent probes
that emit fluorescence only in tumor tissues. This probe contains a
chemical group, which can be broken down via some enzymes in
the tumor and microenvironment, therefore this probe is activated.

Many activatable fluorescent probes have applications in other
types of tumors, and could theoretically be used for intraoperative
imaging of bone and soft tissue tumors. The activatable fluorescent
probes for the tumor microenvironment are mainly activated by
extracellular enzymes specifically emitted in the tumor
microenvironment. In addition to cathepsin-activated fluorescent
probes that have been used in soft tissue sarcoma animal
experimentation, there are also fluorescent probes activated by
matrix metalloproteinases (23). The activatable fluorescent probes
for tumor cells consist of two parts. One is the activation of
intracellular enzymes, such as b-galactosidase bioactivation (24)
and glutathione (GSH) bioactivation (25). And the other one is the
activation of fluorescence by the tumor cell hypoxia environment
(26). Besides, the pH of the tumor microenvironment is generally
between 6.7-7.1, the pH of tumor cells is between 5.9-6.2, and the
pH of advanced tumor cells can even reach 5.0-5.5, which is an
acidic environment compared with normal tissues. Some probes are
sensitive to pH, and their fluorescence is activated in an acidic
environment allowing fluorescence imaging of tumors and tumor
microenvironments (27).

Activatable fluorescence probes reduce the fluorescence
intensity of normal tissues and further increase the tumor-to-
background ratio (TBR). But at the same time, the chemical
synthesis of probes is complicated, and there is still a lack of
further research on the adverse reactions of these probes.

Specific Fluorescent Probes
Unlike ICG with the EPR effect, specific probes do not rely on the
tumor microenvironment but instead rely on a targeting moiety
conjugated to a contrast agent with a high binding affinity. These
probes have higher targeting properties than indocyanine green (28).

The original design method is to combine monoclonal
antibodies with fluorescent dyes to create fluorescent probes.
Previously, monoclonal antibodies were used as targeted drugs to
treat tumors. For example, Bevacizumab is a monoclonal
antibody that binds to vascular endothelial growth factor-A
(VEGF-A)which is highly expressed in tumor cells (29) and
plays a direct role in vascular endothelial production (30).
Combine bevacizumab with the fluorescent dye IRDye800CW
to synthesize a fluorescent probe that can specifically bind to
tumors. Scientists designed Panitumumab-800CW (31) and
Cetuximab-800CW (32) based on the principle of similars.
Panitumumab is a monoclonal IgG2 antibody that binds to the
Epidermal Growth Factor Receptor (EGFR) with high specificity
(33). EGFR is highly expressed in bone and soft tissue sarcoma
and is involved in osteolytic metastases of bone tumors.
Cetuximab is also an anti-EGFR monoclonal antibody.
Frontiers in Oncology | www.frontiersin.org 333
In recent years, with the development of chemical synthesis
technology, moieties for active targeting have become available,
such as nanoparticle scaffolds, peptides, ligands, and aptamers.
Compared with antibodies, the moieties have similar binding
characteristics but show better tumor penetration and more
rapid clearance from non-targeted tissues (34). For example,
ABY-029 is an EGFR-targeted affibody molecule labeled with
IRDye 800CW (35). While performing intraoperative tumor
fluorescence imaging, ABY-029 can be injected on the same
day. Besides, compared with bevacizumab, panitumumab, and
cetuximab, ABY-029 retains high EGFR specificity (36) with low
immunogenicity and low toxicity (37).

Specific fluorescent probes are based on active targeting, their
synthesis is complicated. Tumors are heterogeneous, so we can’t
find a tumor marker expressed in each tumor tissue. The
majority of specific probes are still in the pre-clinical stage. It
requires more feasibility and toxicity studies, particularly for
small molecule probes before clinical trials.

Multimodality Fluorescence
Imaging Probes
SPECT/CT, MRI, and NIR combined multimodal imaging
technology have gained significant popularity. Scientists have
designed fluorescent probes with SPECT/CT, MRI sensitive groups,
and fluorescent dyes (38) (Figure 2). The contrast of preoperative
SPECT/CT, MRI tumor imaging is improved by preoperative
injection of multimodality fluorescent probes. The fluorescent sign
of the tumor can also be collected during the operation. This
combination of imaging and fluorescence imaging can significantly
increase the detection rate of tumors and obtainmore accurate tumor
boundaries. This probe is used for preoperative tumor imaging,
surgical planning, and intraoperative tumor fluorescence imaging.

Schematically, this kind of probe has much potential. For
example, if we expand our scope to treatment, scientists have
designed probes that combine Photodynamic therapy with
fluorescence imaging (39, 40).

All imaging techniques have their limitations, e.g., MRI has
problems with relatively low sensibility, and optical imaging has
issues with low spatial resolution and small penetration depth
(41). Multiple imaging techniques aid in early diagnosis and
treatment planning. However, it is worth exploring whether it is
necessary to enhance preoperative MRI and SPECT/CT tumor
signal intensity in clinical practice (42).

In recent years, some researchers have focused on fluorescent
probes in the NIR-2 range (1000-1700nm) and have produced
several fluorescent probes for tumor imaging in the NIR-2 range
(43). According to some researchers, fluorescence with a wavelength
of 1000-1700nm, can reduce scattering when passing through the
skin and is less affected by normal tissue autofluorescence.
Compared with NIR-1 imaging, it can penetrate deeper tissues (44).
PRE-CLINICAL RESEARCH

Non-Specific Fluorescent Probes
Presently the widely used non-specific fluorescent probe in
tumor surgery is indocyanine green. Overall, these cases in the
July 2022 | Volume 12 | Article 879697
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past five years support that bone and tissue sarcoma can
fluoresce after injection, and the tumor boundary is consistent
with the pathological section control.

For example, Fourman (2018) (45) injected osteosarcoma
cells into the left hind limb of BALB/c Mice. Researchers used
pathological sections to confirm that the fluorescent part of the
hind limb was a bone sarcoma. Mice with fluorescent lung tissue
developed lung metastases from osteosarcoma. Interestingly, the
researchers discovered that the higher the fluorescence intensity
of the primary bone tumor, the greater the possibility of lung
metastases. This finding suggests that we can early predict the
probability of lung metastases in osteosarcoma patients through
intraoperative bone tumor fluorescence intensity.

Another example of what is meant byMahjoub (46), is that they
injected ICG into 11 osteosarcoma mice 12 hours before surgery
for fluorescence-guided osteosarcoma surgery. The recurrence rate
of mice with osteosarcoma resection guided by ICG was much
lower than that of mice with conventional resection.

In addition to indocyanine green, non-specific fluorescent
probes such as Alizarin Red and Tetracycline had been expected
to have great potential for intraoperative imaging of bone and soft
tissue sarcoma. However, the fluorescence excitation wavelengths
are 465nm and 490nm, which are both in the visible light range, and
the fluorescence area overlaps with normal tissues. There have been
few related studies in recent years.

Activatable Fluorescence Probes
According to the different characteristics of tumor cells and tumor
microenvironments from normal tissues, scientists have designed
activatable optical probes. In 2016, Bartholf Dewitt S (47) used the
cathepsin-activated fluorescent probe LUM015 in dogs with soft
tissue sarcoma for intraoperative fluorescence imaging. According to
previous studies, cathepsin is overexpressed in soft tissue sarcoma
and other tumors while rarely expressed in normal tissues. All the
dogs’ soft tissue sarcoma fluorescence when imaging. The
pathologist took 33 parts of the excised tissue for biopsy, all of
which were tumor tissues. The cathepsin-activated fluorescent probe
is further exemplified in studies by Prince et al. (48). The researchers
compare the TBR and effect of prosense750EX (another cathepsin-
Frontiers in Oncology | www.frontiersin.org 434
activated fluorescent probe) with multiple fluorescent probes for
fluorescence imaging of soft tissue sarcoma. Prosense750EX, like the
other probes in the study, can identify tumor beds with a diameter of
less than 1mm intraoperatively. Therefore, the Prosense750EX can
be used as a probe for fluorescence imaging.

Specific Fluorescent Probes
Some specific probes have been designed, and animal
experimentation has proved their specificity and sensitivity.
Most specific probes are created by combining fluorescent dyes
with antibodies or ligands that precisely bind to tumor cells
(Table 1).

Based on this probe design idea, our team designed a specific
fluorescent probe CS2-N-E9R for Ewing ’s sarcoma-
specific fusion protein EWS-FLI1 (E/F) in 2021 (49). Our
specific probe can make Ewing’s sarcoma fluorescence imaging
in cell experimentation and animal experimentation. Besides, it
does not show fluorescence for E/F-negative osteosarcoma cells.

For example, Li et al. (50) combined the non-antibody
binding protein of CD105 with fluorescein isothiocyanate
(FITC) to obtain a fluorescent probe targeting osteosarcoma.
This fluorescent probe causes the osteosarcoma cells, dissected
osteosarcoma tissues, and osteosarcoma in mice to emit
fluorescence, proving that it can label osteosarcoma.

Another example of what is designed by Zhou (51) is CH1055-
PEG-PT and CH1055-PEG-Affibody. These probes combined
Small molecule protein binding to 143b osteosarcoma cells with
Fluorescent dyes in the NIR-2 region. Both of these probes can
image fluorescence in osteosarcoma. The surgeons used
fluorescence guidance for tumor resection. Pathology specialists
sectioned the tumor and adjacent tissues and stained them for
microscopic examination after the surgery. The results revealed
that the fluorescence intensity of the tumor was higher than that
of adjacent tissues. The researcher suggests that, compared with
CT, the fluorescent probe can image tumors smaller than 1 cm in
diameter and has a clear fluorescence boundary.

This technology is further exemplified in animal
experimentation using indocyanine green and ABY-029
combined fluorescence imaging in soft tissue sarcoma surgery.
A B

C

FIGURE 2 | The chemical structure of fluorescence, magnetic, and SPECT nanoparticles that can compose multimodality probes. (A) A fluorescent dye: Cy5.5
carboxylic acid. (B) A magnetic nanoparticle as molecular imaging agent: gadodiamide. (C) A SPECT-CT tumor imaging agent: technetium Methylenediphosphonate
(99mTc-MDT).
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Sardar et al. (52) discovered that fluorescence imaging with ICG
and ABY-029 is superior to ICG or ABY-029 alone. Among
them, ABY-029 is more concentrated in the high-cell living tissue
area, while ICG is more concentrated in the low-cell area. The
article did not explore the reasons further. A possible explanation
for these results may be related to the difference in imaging
principles between the two probes. ICG accumulates more in
new blood vessels, whereas ABY-029 binds to cancer cells
specifically. It suggests that combining two fluorescent probes
with different localization areas and fluorescence imaging
principles could improve the specificity and sensitivity of
fluorescence imaging in bone and soft tissue tumor surgery.

Xu’s experimentation study explored the feasibility of specific
fluorescent probes used for intraoperative imaging after radiotherapy
and chemotherapy (36). Xu designed a mouse model of soft tissue
sarcoma after chemotherapy and radiotherapy and injected ABY-
029 intraoperative fluorescence imaging into the mice 4-8 hours
before surgery. It might be possible to estimate whether most
patients with soft tissue sarcoma undergoing preoperative
radiotherapy and chemotherapy can use ABY-029 Intraoperative
fluorescence imaging. The results confirmed the feasibility of
fluorescence imaging of soft tissue sarcoma in mice after
radiotherapy and chemotherapy. This outcome is contrary to that
of Nicoli et al. (53) who found indocyanine green could not
fluorescently label osteosarcoma after radiotherapy. This result
demonstrates the superiority of specific fluorescent probes
compared to fluorescence imaging in indocyanine green.

Another research compared several fluorescent probes on soft
tissue sarcoma mice (48). The researchers compare the
intraoperative tissue fluorescence range with HE stained sections,
and immunohistochemistry(IHC) to quantitatively compare TBR.
Compared to DC101(binding to VEGFR-2) TBR 3.7,
IntegriSense750(A small-molecule probe binding to integrin avb3)
TBR 7.0, and ProSense750EX (activated by locally expressed
cathepsin)TBR 5.8, the TBR of cetuximab-IRDye800CW was 16.8,
which was significantly higher than other fluorescent probes.

In addition to the fluorescent probes that have been assessed on
bone and soft tissue sarcoma, many newly designed fluorescent
probes may have the potential to be used in intraoperative imaging
Frontiers in Oncology | www.frontiersin.org 535
of bone and soft tissue sarcoma. Mahalingam et al. (54) designed
the Centyrin-Based Near-Infrared Probe, a fluorescent probe that
images EGFR-positive tumors. Reviews show that osteosarcoma
and soft tissue sarcoma can overexpress EGFR (55). In the future,
we can build mouse models and conduct further animal
experimentation to explore whether this probe is used for bone
and soft tissue tumor imaging.

For a ligand or antibody that specifically binds to bone and
soft tissue sarcoma, the ideal is to find a target not expressed in
other tissues and expressed in all bone and soft tissue sarcoma,
especially tissue cells surrounding the tumor. There are many
studies on tumor-specific markers of bone and soft tissue tumor
cells. CxCR4 (Cys-X-Cys receptor 4), PDGFR-b(Platelet-derived
growth factor receptor-b), TEM1 (Tumor Endothelial Marker 1),
VEGFR-1, EGFR, VEGFR-2, IGF-1R, IGF-2R, CD40, et al. are
high specific tumor markers (56–58). Scientists use these tumor-
specific markers to create antibodies or ligands and combine
antibodies and ligands with fluorescent dyes to make specific
fluorescent probes. According to animal experiments in the past
five years, ligands and small-molecule peptides spread faster than
antibodies and are more likely to accumulate in tumor tissue.
There are numerous fluorescent dyes on the market currently,
most of them are classified as rhodamines, oxazines, fluoresceins,
cyanines, and carbopyronines in structure (59). The commonly
used near-infrared fluorescent dyes such as IRDye800CW still
have high development prospects.

In the case of specific fluorescent probes, future research could
focus on developing new probes specifically binding to bone and
soft tissue sarcoma, determining whether existing fluorescent probes
can be used for bone and soft tissue sarcoma, and evaluating the
advantages, disadvantages, and effectiveness of the probes.

Multimodality Fluorescence
Imaging Probes
Probes for multimodal visualization in MRI, SPECT/CT, and
Near-Infrared Optical Imaging have gotten attention in the past
five years. These probes have the potential for preoperative
tumor imaging, surgical planning, and intraoperative tumor
fluorescence imaging.
TABLE 1 | Specific fluorescent probes for bone and soft tissue tumor imaging.

Target Probe Type of tumor Name Observation from
postinjection

Year author

CD105 Non-antibody-binding
proteins

Osteosarcoma A novel peptide
targets CD105

1h 2018 Xiaolong Li (50)

EGFR Affibody molecule Synovial sarcoma ABY-029 4h 2021 Hira Shahzad
Sardar (52)

Antibody Fibrosarcoma Cetuximab
-IRDye800CW

9d 2018 Andrew C.
Prince BSc (48)

EWS-FLI1 Peptide Ewing sarcoma CS2‐N‐E9R 6h 2021 Yu Wang (49)
integrin avb3 Small molecule Fibrosarcoma IntegriSense750 9d 2018 Andrew C.

Prince BSc (48)
Small molecule Osteosarcoma 68Ga-CHS2 4h 2018 Yao Sun (73)

osteocalcin property receptor Peptide the lung metastases of osteosarcoma CH1055-PEG
-Affibody

12-36h 2020 Hui Zhou (51)

Peptide Osteosarcoma CH1055-PEG-PT 12-36h 2020 Hui Zhou (51)
VEGFR2 Antibody Fibrosarcoma DC101

-IRDye800CW
7d 2018 Andrew C.

Prince BSc (48)
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It is exemplified in the animal experimentation undertaken by
Xu with 99mTc-Gd@OVA-Cy nanoprobe (60). Researchers
performed preoperative NIR fluorescence imaging, MRI, and
SPECT/CT of osteosarcoma with nanoprobe. After 15 minutes of
intravenous injection of the fluorescent probe, the images of all
three modes showed enhanced signals of osteosarcoma. In MRI,
SPECT/CT, and NIR imaging, researchers can observe a clear
boundary of osteosarcoma, and the tumor boundary is consistent
with the results of HE staining sections. Surprisingly, the
researchers also found that the fluorescent probe can show
lymph drainage and sentinel lymph nodes. Therefore Xu
considered that this probe might be used for osteosarcoma to
improve lymph node resection and preoperative planning.

Scientists designed many fluorescent probes for multimodal
imaging in the past five years. But there are few animal
experiments on whether these fluorescent probes can be applied
to bone and soft tissue sarcoma. Lee et al. (61) designed an Nd3
+-UCNPs nanoprobe specifically binding to CD44. The
nanoprobe is injected into the hepatocellular carcinoma of
patients, used for preoperative MRI detection and intraoperative
NIR tumor imaging. Related literature shows that bone and soft
tissue sarcoma can express CD44 (62). Therefore, this multimodal
probe may be significant in intraoperative and preoperative tumor
imaging for CD44-positive bone and soft tissue sarcoma.

Researchers also focus on probes for multimodal visualization
in SPECT/CT and intraoperative near-infrared optical imaging.
A notable example is the folate-ECG-ROX targeted folate
receptor in the tumor (63). Another example designed by
Manca is the ICG-99mTc probe, which facilitates visualization
of lymph drainage and assesses the sentinel lymph node (64).

Clinical Trials
Reports about intraoperative fluorescence imaging of bone and
soft tissue sarcoma are limited (Table 2). In 2019, Samkoe et al.
(65) reported a case of using ABY-029 intraoperative fluorescence
imaging for soft tissue sarcoma. The intraoperative fluorescence
intensity ratio of soft tissue sarcoma to normal tissue/background
is 2.0/3.4, which is sufficient to distinguish tumor from normal
tissue by fluorescence during operation. The tumor was stained
with hematoxylin-eosin staining and IHC postoperatively, and the
fluorescent tissue was confirmed to be soft tissue sarcoma, and the
fluorescence signal was highly associated with the expression
of EGFR.

In a similar case in the UK, 11 patients with bone and soft tissue
sarcoma were admitted for ICG intraoperative fluorescence imaging
(53). ICG was injected intravenously 16-24 hours before the
operation, and the Stryker Spy Phi near-infrared device collected
the fluorescence signal during the operation. Surgeons believe that
in three of the 11 cases, they removed more tissue during the
operation due to fluorescence. Nine of the 11 instances revealed
tumor fluorescence during surgery. Two instances exhibited no
fluorescence during surgery, one was grade 1 myxofibrosarcoma,
and the other was osteosarcoma with more than 90% necrosis after
chemotherapy. The failure could be because ICG fluorescence
imaging is better suited to tumors with a higher degree of
malignancy, no treatment, and fewer necrotic areas.
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This technology is further demonstrated in studies using
Bevacizumab-IRDye800cw fluorescence imaging in 15 patients
with soft tissue sarcoma during surgery (66). Researchers found
fluorescence in soft tissue sarcoma during and after the operation in
all 15 cases and no adverse reactions. Furthermore, the researcher
discovered that the necrotic area of soft tissue sarcoma treated by
neoadjuvant chemotherapy had no fluorescence. Auspiciously, we
noticed in clinical practice that the necrotic area is more inside the
tumor and has few effects on the fluorescence of the tumor border.

Furthermore, bone and soft tissue tumor metastasis are frequent.
Fluorescence imaging can detect tumor metastasis in bone and soft
tissue. These clinical trials reveal the need for fluorescence imaging
amongmetastases. Patients subjected toI CG injection were assessed
after24hours (notoverlappingwith theoptimal time for ICGtoshow
bone and soft tissue sarcoma). Among 44 patients with soft tissue
sarcoma lung metastases, 40 lung metastases showed fluorescence
during Video-assisted thoracoscopic surgery(VATS). Among 40
cases of osteosarcoma lung metastases, 36 cases had fluorescence.
The depth of all lung metastases without fluorescence imaging was
more than 2 cm. According to Predina, fluorescence imaging during
ICG surgery is better for detecting tumor metastasis with a depth
smaller than 2 cm and a diameter greater than 5 mm (67).

Scheichel (68) performed a clinical trial using 5-aminolevulinic
acid (5-ALA) intraoperative fluorescence imaging in fifty patients
with bone and soft tissue infiltrating meningiomas. All bone
fluorescence shows tumor invasion into bone tissue. Three
patients showed additional fluorescence in the periosteum and
temporal muscles, and histopathological examination confirmed
tumor infiltration (68).

Predina and colleagues studied a patient with osteosarcoma
lung metastases undergoing surgery and showed that fluorescence
imaging with OTL38 enabled the detection of Lung metastases.
According to previous studies, FR-a is overexpressed in 80% of
primary osteosarcoma. The lung metastases had strong
fluorescence after intravenous injection of 0.025mg/kg OTL38.
However, the researchers did not specify whether fluorescence was
observed in the primary osteosarcoma (69).
Future Perspectives
At present, intraoperative fluorescence imaging does not use
quantitative norms to determine whether it is tumor tissue.
There is no standard for how high the fluorescence contrast
should be to indicate a tumor in intraoperative fluorescence
imaging technology. To determine the standard, it is important
to conduct clinical trials including large sample size and compare
with pathological results. Futhermore, a technique combining
biophysics-inspired modeling and artificial intelligence (AI) was
envisioned to monitor intraoperative changes in NIR intensities
over time in different tissue and provide clinically significant
lesion identification (70). In addition, mixed reality(MR)
techniques that combine fluorescence imaging with CT have
been used in liver resection (71). We can embed an augmented
reality (AR)-based navigation system in the fluorescence imaging
devices (72), and evaluate the usefulness of the system in the
experimental study.
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The manufacture and use of fluorescent probes for
intraoperative fluorescence imaging of bone and soft tissue
sarcoma have a potential future. Non-specific probes may
additionally fluoresce in non-tumor areas, which can cause
surgeons to misjudge. The main direction of new fluorescent
probes will be specific fluorescent probes with high specificity to
label tumors. With the further investigation of the mechanism of
bone and soft tissue sarcoma, scientists will discover more
specific tumor-expressed molecules. We can accordingly design
specific fluorescent probes with high specificity and sensitivity.

Simultaneously, we noticed that tumors are heterogeneous, and
it is difficult for a probe to image all tumors of the same type.
Experiments are currently underway to combine two fluorescent
probes with different principles to increase accuracy and lower the
negative rate. In the future, we can design fluorescent probes with
multiple responses to tumors and the microenvironment to further
reduce the false-negative rate offluorescence during tumor surgery.
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Background: Establishing risk-based follow-up management strategies is crucial to the
surveillance of subsolid pulmonary nodules (SSNs). However, the risk factors for SSN
growth are not currently clear. This study aimed to perform a systematic review and meta-
analysis to identify clinical and CT features correlated with SSN growth.

Methods: Relevant studies were retrieved from Web of Science, PubMed, Cochrane
Library, and EMBASE. The correlations of clinical and CT features with SSN growth were
pooled using a random-effects model or fixed-effects model depending on heterogeneity,
which was examined by the Q test and I2 test. Pooled odds ratio (OR) or pooled
standardized mean differences (SMD) based on univariate analyses were calculated to
assess the correlation of clinical and CT features with SSN growth. Pooled ORs based on
multivariate analyses were calculated to find out independent risk factors to SSN growth.
Subgroup meta-analysis was performed based on nodule consistency (pure ground-
glass nodule (pGGN) and part-solid nodule (PSN). Publication bias was examined using
funnel plots.

Results: Nineteen original studies were included, consisting of 2444 patients and 3012
SSNs. The median/mean follow-up duration of these studies ranged from 24.2 months to
112 months. Significant correlations were observed between SSN growth and eighteen
features. Male sex, history of lung cancer, nodule size > 10 mm, nodule consistency, and
age > 65 years were identified as independent risk factors for SSN growth based on
multivariate analyses results. Eight features, including male sex, smoking history, nodule
size > 10 mm, larger nodule size, air bronchogram, higher mean CT attenuation, well-
defined border, and lobulated margin were detected to be significantly correlated with
pGGNs growth. Smoking history showed no significant correlation with pGGN growth
based on the multivariate analysis results.
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Conclusions: Eighteen clinical and CT features were identified to be correlated with SSN
growth, among which male sex, history of lung cancer, nodule size > 10 mm, nodule
consistency and age > 65 years were independent risk factors while history of lung cancer
was not correlated with pGGN growth. These factors should be considered when making
risk-based follow-up plans for SSN patients.
Keywords: subsolid nodule, clinical features, CT features, interval growth, meta-analysis
INTRODUCTION

Subsolid pulmonary nodules (SSNs) refer to both part-solid
nodules (PSNs) and pure ground-glass nodules (pGGNs) (1),
and they are defined as nodules that contain components higher
than normal lung tissue but less opaque than consolidated
bronchovascular margins (2). The widespread availability
of high-resolution computed tomography (CT) and the
promotion of low-dose chest CT (LDCT) screening programs
have increased the detection rate of SSN. Especially because of
the COVID-19 epidemic, people are actively undergoing CT
scans, so the probability of finding SSNs in the lungs has
greatly increased.

The majority (60%-90%) of persistent SSNs have a more
indolent clinical course than solid nodules during 5 to 10 years of
observation (3–6), and these nodules often represent precursors
of invasive adenocarcinoma. A prospective study suggested that
SSN growth often indicated a higher risk of invasive
adenocarcinoma (7). For pGGNs, the transition to mixed
GGNs (solid component within the ground-glass nodule by
thin-section CT at a lung window setting) indicates more rapid
growth (8). Moreover, it was reported in two studies that 2% and
13% of SSNs showed growth after 5 years of stability (6, 9). The
complex growth characteristics and potential malignant
properties of SSNs lead to challenges in clinical management.
The current guidelines for SSNs take nodule growth as the basis
to adjust the follow-up plan and recommend definitive therapy
(10). Although there is no consensus on the duration and
frequency of SSN follow-up in the guidelines, the 2017
Fleischner Society guidelines, the American College of Chest
Physicians guideline (ACCP) and the National Comprehensive
Cancer Network (NCCN) all recommend further evaluation
and/or consideration of resection if solid component(s) or
growth develops in SSNs (11, 12). Considering the risk of a
missed diagnosis of lung cancer and worse prognosis, many
patients with persistent SSN(s) may switch to more frequent CT
surveillance or definitive treatment. This leads to more
overexamination and overtreatment in clinical practice. If we
can predict whether a nodule will grow, we can adopt different
follow-up schemes for different patients to ease their anxiety and
solve these problems.

CT surveillance is the sole effective approach for evaluating
SSN growth at present. Although studies have revealed that long-
term surveillance of SSN(s) with LDCT is a safe strategy,
repeated CT scans over several years have nonnegligible
consequences, such as anxiety, radiation exposure, false-
positive results and unnecessary costs (13). Therefore, risk-
241
based follow-up management for these patients is greatly
desired. Several studies have shown that nodule size and
history of lung cancer are important risk factors for SSN
growth (14, 15). Other studies have shown that lobular
margins and a bubble-like appearance are correlated with the
growth of SSN (16). Due to the lack of large-sample data
comparisons and analyses of clinical and CT features of SSN
growth, we retrieved relevant studies up to December 2021 and
carried out a meta-analysis, which aimed to clarify the risk
factors correlated with SSN growth and provide information
for establishing risk-based follow-up strategy for SSN(s) patients.
METHODS

This meta-analysis was carried out in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines (17, 18). The primary procedures are
outlined in the following sections.

Literature Search
We performed a systematic literature search of Web of Science,
PubMed, Cochrane Library and EMBASE up to December 31,
2021. The search terms “non-solid nodule”, “part-solid nodule”,
“subsolid nodule” and their synonyms combined with “growth” or
“follow-up” were used without language restriction, and medical
subject headings (MeSH) were applied if available. The reference
lists of the retrieved articles and review articles were manually
searched for other relevant studies. Two authors (L.Z. and
M.W.L.) independently performed the search and reviewed all
identified publications for inclusion using predetermined criteria.

Inclusion Criteria
Studies were included when they met the following criteria: (a)
studies published in English or Chinese; (b) the cases included in
the studies were of SSNs; (c) clinical or CT features were
analyzed in the studies; and (d) nodule growth was defined as
the whole nodule growing by > 2 mm in diameter, the emergence
of a solid component in a pGGN or the solid area growing by >
2 mm in diameter in a PSN. Reports of lectures, conference
papers, and reviews were excluded.

Data Extraction and Quality Assessment
For each eligible study, two authors independently extracted the
following data: (a) general information of the studies, (b) mean
value and standard deviation of numerical clinical and CT
features included in univariate analysis, (c) number of negative
July 2022 | Volume 12 | Article 929174
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and positive cases for categorical clinical and CT features
included in univariate analysis, and (d) odds ratio (OR) value
with 95% confidence interval of clinical and CT features in
multiple logistic regression model. The Newcastle–Ottawa
Scale (NOS) was used to assess the methodological quality of
the included studies (19).

Data Analysis
In the univariate analyses, pooled ORs and pooled standardized
mean differences (SMDs) were used to detect the strength of each
correlation between binary and continuous features and SSN
growth, respectively. To facilitate the analyses, we converted
ordered categorical variables in some studies into binary
variables. Then, we used Pearson’s chi-square test or Fisher’s
exact test to detect if there was a significant difference in the
fourfold table for each study and pooled the corresponding ORs.
We also estimated the means and standard deviations based on the
corresponding medians, ranges and sample sizes for continuous
variables whose means and standard deviations were absent (20).
Then, we used Student’s t test to detect if there was a significant
difference for each study and pooled the corresponding SMDs. In
the multivariate analyses, pooled adjusted ORs obtained from
multiple logistic regressionmodels were used to assess the strength
of each correlation of a CT or clinical feature with nodule growth.
P-values < 0.05 was considered statistically significant. Statistical
heterogeneity was determined using the Q test and I2 test (21). If
P < 0.1 or I2 > 50%, the random-effects model (DerSimonian–
Laird model) was used. Otherwise, the fixed-effects model
(Mantel–Haenszel model/inverse variance model) was used.
Subgroup meta-analysis was performed based on nodule
consistency (pGGN and PSN). Publication bias was evaluated by
Begg’s funnel plot. P-values ≥ 0.05 was considered to indicate that
no publication bias existed (22). Statistical analyses were
performed with R version 4.0.5 and the Meta package.
Frontiers in Oncology | www.frontiersin.org 342
RESULTS

Study Selection
Figure 1 provides an overview of the literature search and study
selection process. Nineteen original studies (5, 6, 8, 9, 14–16, 23–
34) were retrieved from 827 potential publications that assessed
the relationship between SSN growth and CT or clinical features.

Study Characteristics and
Quality Assessment
All included studies were case–control studies. The group with
nodule growth was the case group, and the group without nodule
growth was the control group. Among the 19 included studies, 2
analyzed SSNs after 5 years of stability, 2 analyzed SSNs after 3
years of stability, and the remaining analyzed SSNs at baseline. The
characteristics of the included studies are shown in Table 1. In
total, 2444 patients with 3012 SSNs were included. The frequency
of SSN growth ranged from 2.13% to 51.61% on a per-nodule basis.

According to the NOS, 14 studies (74%) were high quality
(more than five stars), and the other 5 (26%) were low quality
(Supplementary Appendix, Part 1, Table S1).

Categorization of Clinical and CT Features
Eighty-six descriptions were used to describe CT or clinical
features in the 19 studies. One CT feature (emergence of a
solid component) was removed because it is one of the criteria
for SSN growth. After merging and subsuming similar
descriptions that referred to the same CT findings as a single
CT characteristic, 74 features remained. Among them, 11
features were investigated in both one single study for
multivariate analysis and more than one study for univariate
analysis, 47 features were only investigated in one single study,
and 16 features were only investigated in more than one study.
Finally, 27 clinical and CT features were included in the meta-
FIGURE 1 | Flow chart shows summary of the literature review process.
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TABLE 1 | Study characteristics.

First
author

Year Country/
Region

Data
period

Follow-up
duration
(months)

Total
number
(patients/
nodules)

Nodule
consistency

Number of
nodules
(pGGN/
PSN)

Analyzed by
nodule

consistentcy

Number of
CT Detec-
tor Rows

CT Scan
DOSE

Slice
thickness

(mm)

Definition
of nodule
growth†

Haruhisa
Matsuguma
et al. (15)

2013 Japan Jan
2000 -
Jun
2008

29 (1-136) 174/174 SSN 98/76 Yes 4, 64 Standard-
dose

1 or 0.5 a, b, c

Takashi
Eguchi et al.
(24)

2014 Japan Sep
1998 -
Sep
2013

57 (24.1-
113.6)

124/124 pGGN 124/0 No NA Low-dose
or
standard-
dose

1.25 a, b

Shotaro
Takahashi
et al. (16)

2012 Japan Apr
1999 -
Jun
2010

66 ± 25 111/150 pGGN 150/0 No 4, 64 Standard-
dose

2 a

Hyun Woo
Lee et al. (9)

2019 South
Korea

Jan
2003 -
Dec
2017

136 (120-
179)

160/208 SSN 162/46 No 16, 256 Low-dose 1 or 2 a

Jaeyoung
Cho et al.
(28)

2016 South
Korea

May
2003 -
Jun
2015

77.5 (38.1-
117.1)

218/453 SSN 438/15 No 64, 256 NA 1 to 3 a, b, c

Yuki Sato
et al. (31)

2017 Japan Apr
2008 -
Dec
2014

44 (24.1-
87.0)

187/187 SSN 134/53 No NA NA 0.625 to 2 a, b, c

Boksoon
Chang et al.
(14)

2013 South
Korea

Jun
1997 -
Sep
2006

59 (25-
140)

89/122 pGGN 122/0 No 64 Low-dose 1 or 5 a

Jong Hyuk
Lee et al.
(29)

2016 South
Korea

May
2005 -
Feb
2013

days:849
(90-2900)

213/213 SSN 136/77 Yes 16, 64 Low-dose
or
standard-
dose

≤ 1.25 a, b, c

Masaya
Tamura
et al. (26)

2014 Japan Oct
2008 -
Oct
2012

26.1 ± 4.6 53/63 pGGN 63/0 No NA NA 2 a, b

Miyako
Hiramatsu
et al. (23)

2008 Japan 1999-
2006

days: 1048
(177-3269)

125/125 SSN 95/30 No NA Standard-
dose

1.25 or 2 a, b, c

So Hyeon
Bak et al.
(27)

2016 South
Korea

Jan
2004 -
Jan
2014

24.2 ±
16.9 (2.2-

64.9)

49/54 pGGN 54/0 No 64 Standard-
dose

2 to 2.5 a, b

Zhe Shi
et al. (34)

2019 China Jan
2011 -
Dec
2012

52 (32-69) 59/101 pGGN 101/0 No 64 Standard-
dose

1 a, b

Xianqun Xu
et al. (33)

2017 China Jan
2010 -
May
2016

NA 69/69 SSN NA No 16 Standard-
dose

1 a

Yoshihisa
Kobayashi
et al. (25)

2014 Japan Jan
1999 -
Feb
2013

NA 67/120 SSN NA No NA NA NA a

Sei Won
Lee et al. (8)

2013 South
Korea

Apr
2004 -
Jul 2011

48 (24-99) 114/175 SSN 143/32 No 64, 256 Standard-
dose

3 or 1 a

Wu Fang
et al. (30)

2016 China Jun
2008 -

NA 100/108 pGGN 108/0 No 256 Standard-
dose

1.5 a, b

(Continued)
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analysis, and 58 clinical and CT features which investigated in
only one study were extracted from their original studies (5, 8, 9,
16, 23, 24, 27, 28, 32–36) and summarized in Supplementary
Appendix (Part 1, Table S2). Among the 27 features included in
the meta-analysis, age was analyzed in three ways: as a
continuous variable, a binary variables with a threshold of 65
years, and a binary variables with a threshold of 60 years; nodule
size was analyzed in two ways: as a continuous variable, and a
binary variable with a threshold of 10 mm. The process of
categorizing the clinical and CT features is shown in
Supplementary Appendix (Part 1, Table S3).

Features Correlated With SSN Growth
Twenty-seven clinical and CT features were included in the
meta-analysis. Eighteen features, including male sex, history of
lung cancer, smoking history, nodule size > 10 mm, larger nodule
size, older age, nodule consistency, bubble-like appearance, air
bronchogram, spiculated margin, higher mean CT attenuation,
well-defined border, lesion below major fissure, larger volume,
larger solid component, lobulated margin, higher STD CT
attenuation and higher max CT attenuation, were detected to
be significantly correlated with SSN growth, while 9 features,
including multiple nodules, longer follow-up duration, age > 60
years, age > 65 years, emphysema, nodule shape, peripheral
distribution, pleural/fissure retraction and larger mass, showed
no significant correlation with SSN growth. Among the 27 CT
and clinical features, 13 features, including male sex, number of
nodules, history of lung cancer, smoking history, nodule >
10 mm, nodule size, age (years), follow-up duration, nodule
consistency, bubble-like appearance, air bronchogram,
spiculated margin and mean CT attenuation, were investigated
in five or more studies. The pooled OR/SMD of these features are
summarized in Table 2 and forest plots are shown in
Supplementary Appendix (Part 1, Figure S1).

Independent Risk Factors for SSN Growth
Pooled ORs of six features, including sex, history of lung cancer,
smoking history, nodule size > 10 mm, nodule consistency and
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age > 65 years, were calculated based on the multivariate analysis
results. Forest plots of these six features are shown in Figure 2.
Sex, history of lung cancer, nodule size > 10 mm, nodule
consistency and age > 65 years were proven to be independent
risk factors for SSN growth. Male patients showed a 2.351-fold
higher probability of SSN growth (pooled OR 2.351, 95% CI
1.370-4.032, P = 0.002). Patients with a history of lung cancer
had a 3.030-fold higher probability of SSN growth (pooled OR
3.030, 95% CI 1.933-4.749, P < 0.001). Patients with a nodule size
> 10 mm had a 4.236-fold higher probability of SSN growth
(pooled OR 4.236, 95% CI 1.488-12.059, P = 0.002). PSNs
(nodule consistency) had a 2.951-fold higher probability of
SSN growth (pooled OR 2.951, 95% CI 1.821-4.782, P < 0.001).
Patients aged > 65 years had a 2.260-fold higher probability of
SSN growth (pooled OR 2.260, 95% CI 1.308-3.903, P = 0.003).
Smoking history showed no significant correlation with SSN
growth based on the multivariate analysis results (pooled OR
1.941, 95% CI 0.935-4.029, P = 0.075).

Subgroup Analyses on
Nodule Consistency
The nodule consistency of the 19 original studies we included
was pGGN in 7 studies and SSN in 12 studies. Among the 12
studies taking SSN as research objects, 2 studies analyzed the
correlation between features and nodule growth by nodule
consistency. In total, 9 studies analyzed the correlation
between features and pGGN growth, and 2 studies analyzed
the correlation between features and PSN. The number of studies
on PSN is too few to perform a meta-analysis. Therefore, we just
performed the meta-analysis on pGGN including a total of 16
features based on univariate analysis and 1 feature based on
multivariate analysis.

Eight features, including male sex, smoking history, nodule
size > 10 mm, larger nodule size, air bronchogram, higher mean
CT attenuation, well-defined border, and lobulated margin were
detected to be significantly correlated with pGGN growth (P =
0.03, 0.003, 0.047, 0.009, 0.001, 0.005, 0.044 and 0.001,
respectively), while 8 features, including multiple nodules,
TABLE 1 | Continued

First
author

Year Country/
Region

Data
period

Follow-up
duration
(months)

Total
number
(patients/
nodules)

Nodule
consistency

Number of
nodules
(pGGN/
PSN)

Analyzed by
nodule

consistentcy

Number of
CT Detec-
tor Rows

CT Scan
DOSE

Slice
thickness

(mm)

Definition
of nodule
growth†

Apr
2015

En-Kuei
Tang et al.
(5)

2019 Taiwan Jan
2002 -
Aug
2016

42.84 ±
35.16

128/128 SSN 93/35 No 16, 64,
256

NA 1 to 2.5 a, b, c

Bixiong
Wang et al.
(32)

2017 China Feb
2009-
2016

37 (24-81) 169/203 SSN 189/14 No 40 Standard-
dose

5 and 1 a

Jong Hyuk
Lee et al. (6)

2020 Korea Jan
2002 -

Dec2018

112 (84-
208)

235/235 SSN 212/24 No 16, 64 Standard-
dose

≤1.5 a, b, c
July
 2022 | Vo
lume 12 | Art
† a, the whole nodule grew by ≥ 2 mm in diameter; b, emergence of a new solid component; c, the solid area grew by > 2 mm in diameter in part-solid nodules. pGGN, pure ground-glass
nodule; PSN, part-solid nodule; SSN, subsolid nodule.
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history of lung cancer, age, longer follow-up duration, bubble-
like appearance, nodule shape, volume and larger mass, showed
no significant correlation with pGGN growth (P = 0.675, 0.366,
0.071, 0.796, 0.234, 0.130, 0.176 and 0.410, respectively) based on
univariate analysis (Table 3; Supplementary Appendix, Part 1,
Figure S2). Smoking history showed no significant correlation
with pGGN growth based on the multivariate analysis results
(P = 0.071, Figure 3).

Publication Bias
The funnel plots did not show significant publication bias for the
CT and clinical features analyzed based on both the univariate
analysis results and multivariate analysis results (P > 0.05).
(Supplementary Appendix, Part 1, Figure S3 and Figure S4)
DISCUSSION

In this systematic review and meta-analysis, 18 clinical and CT
features were found to be significantly correlated with SSN
growth, and 5 features including male sex, history of lung
cancer, nodule size > 10 mm, nodule consistency and age > 65
years were identified to be independent risk factors for SSN
growth. Eight features, including male sex, smoking history,
nodule size > 10 mm, larger nodule size, air bronchogram,
higher mean CT attenuation, well-defined border, and
lobulated margin were associated with pGGN growth. Among
Frontiers in Oncology | www.frontiersin.org 645
the features associated with SSN growth, 11 features, including
sex, history of lung cancer, smoking history, nodule size (>
10 mm), nodule size (mm), age (years), nodule consistency,
bubble-like appearance, air bronchogram, spiculated margin and
mean CT attenuation, were investigated in 5 or more studies,
while the other 7 features were only investigated in 2 to 4 studies.
Among the features associated with pGGN growth, 5 features
including male sex, number of nodules, smoking history, nodule
size (mm) and follow-up duration, were investigated in 5 studies
or more studies, while the other 11 features were only
investigated in 2 to 4 studies. The real clinical significance of
the features investigated in less than 5 studies needs to be further
studied due to the small number of studies included.

Studies have proven that PSNs are more aggressive than
pGGNs (37, 38). In this meta-analysis, PSNs had a 2.95-fold
higher probability of SSN growth than pGGNs, which is consistent
with the previous studies. When we analyzed the characteristics of
pGGN, we found that history of lung cancer, age, bubble like
appearance, and volume, which are significantly correlated SSN
growth, are not associated with pGGN growth. Although the
including studies for these four features are very limited (only 2
to 4 studies), the results may imply that the features correlated
with the growth of the pGGN and the PSN are different. Therefore,
to predict the growth of SSN based on risk features, it should be
identified whether the nodule is PSN or pGGN at first.

A history of lung cancer showed high correlation with SSN
growth, and it forecasted a 3.498-fold higher probability of SSN
TABLE 2 | Clinical and CT features included in the meta-analysis in SSN.

Features Studies (patients/nodules) Test of Correlation Test of Heterogeneity

Pooled OR or SMD 95% CI P Value I2 (%) P Value

Sex (Male) 16 (1846/2400) † 1.469 1.066-2.026 0.019 42.50 0.037
No. of nodules (Multiple) 16 (1877/2439) † 0.976 0.768-1.241 0.843 0.00 0.693
History of lung cancer (Yes) 12 (1501/1980) † 1.738 1.098-2.750 0.018 54.70 0.012
Smoking history (Yes) 12 (1424/1878) † 1.692 1.137-2.520 0.010 39.40 0.078
Nodule size (> 10 mm) 12 (1466/1978) † 6.386 3.514-11.605 < 0.001 65.60 0.001
Nodule size, mm 10 (1107/1517) 0.678 0.310-1.046 < 0.001 83.40 < 0.001
Age, years 8 (958/1355) 0.305 0.089-0.521 0.006 42.20 0.097
Follow-up duration, months 8 (784/936) 0.077 -0.613-0.767 0.827 94.20 < 0.001
Nodule consistency (PSN) 8 (1167/1597) † 3.682 2.655-5.107 < 0.001 22.80 0.248
Bubble like appearance (Yes) 6 (792/1216) 3.938 1.214-12.772 0.022 72.20 0.003
Air bronchogram (Yes) 5 (824/1154) 4.858 2.593-9.101 < 0.001 20.30 0.285
Spiculated margin (Yes) 5 (824/1154) 10.786 1.006-115.624 0.049 63.70 0.041
Mean of CT attenuation, HU 5 (405/465) 1.952 0.780-3.125 0.001 95.40 < 0.001
Age (> 60 years) 4 (299/385) † 1.578 0.969-2.570 0.067 37.30 0.188
Well-defined border (Yes) 4 (353/443) 0.544 0.301-0.983 0.044 0.00 0.652
Age (> 65 years) 3 (354/425) 1.738 0.792-3.812 0.168 62.70 0.068
Emphysema (Yes) 3 (506/593) 0.607 0.207-1.774 0.361 40.90 0.184
Lesion location (Below major fissure) 3 (374/455) 0.448 0.242-0.832 0.011 0.00 0.761
Nodule shape (Round) 3 (264/321) 0.559 0.263-1.187 0.130 42.70 0.175
Volume, mm3 3 (177/224) 0.988 0.041-1.936 0.041 88.90 < 0.001
Solid part size, mm 2 (288/336) 0.429 0.164-0.695 0.002 0.00 0.575
Lobulated margin (Yes) 2 (200/272) 15.081 3.050-74.575 0.001 0.00 0.650
Peripheral distribution (Yes) 2 (324/357) 3.342 0.432-25.874 0.248 0.00 0.904
Pleural/fissure retraction (Yes) 2 (453/688) 1.963 0.244-15.785 0.526 0.00 0.824
STD of CT attenuation, HU 2 (128/170) 1.067 0.693-1.440 < 0.001 0.00 0.957
Max of CT attenuation, HU 2 (128/170) 1.299 0.574-2.024 < 0.001 72.00 0.059
Mass, mg 2 (108/155) 0.715 -0.986-2.417 0.410 94.50 < 0.001
July 2022 |
 Volume 12 | Ar
†Total number of patients in Yoshihisa Kobayashi’s study, and Bixiong Wang’s study were not reported; PSN, part solid nodule; OR, odds ratio; SMD, standardized mean difference; CI,
confidence interval.
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growth. However, history of lung cancer was not associated with
pGGN growth. Multiple studies suggest that lung cancer history is
associated with SSN growth (15, 23, 28, 39), but a few studies
found that lung cancer history was not associated with pGGN
growth (24, 29). A prospective multicenter study concluded that
history of lung cancer was not a factor for SSN growth, and 85.1%
of nodules included in the study were pGGNs (7). The relationship
between the history of lung cancer and the growth of pGGN and
PSN needs further study. Shewale et al. (40) retrospectively
reviewed 210 patients with GGNs and a history of lung cancer
and demonstrated that patients with a lung adenocarcinoma
history had a 6.85-fold higher likelihood for SSN growth than
patients with other lung cancer subtypes. As we know, among
non-small cell lung cancer, adenocarcinoma is a histological
subtype prone to epidermal growth factor receptor (EGFR)
mutation, and previous studies have shown that the growth of
SSN(s) is closely related to gene mutation status. EGFR mutations
have been found to be a promoter of GGN growth in both mice
and humans (41, 42). This may be one of the reasons why SSNs are
Frontiers in Oncology | www.frontiersin.org 746
more likely to grow in patients with lung cancer, especially those
with adenocarcinoma. The correlation between other tumor types
and SSN growth needs to be elucidated.

Among the 5 independent risk factors for SSN growth, a
nodule size > 10 mm showed the highest correlation with SSN
growth, leading to a 4.236-fold higher probability of SSN growth
than nodules ≤ 10 mm in size. Nodule size is an important factor
in both SSN follow-up guidelines and pulmonary nodule
malignancy prediction models. In the Fleischner society, ACCP
and NCCN guidelines, the management of SSN(s) differs based on
nodule size (11, 12, 43). Nodule size is also a risk factor used in the
Mayo model, PanCan model and Vancouver model to estimate
the malignancy risk of pulmonary nodules (11, 44). Several studies
also use volume to describe the size of nodules. Han et al. (45)
found that in lung cancer screening, semiautomatic volume
measurements showed higher accuracy than diameter
measurements. In this meta-analysis, three original studies were
included, and a significant correlation between volume and nodule
growth was found (pooled SMD 0.988, 95% CI 0.041-1.936, P =
0.041). However, considering the difficulties in identifying the SSN
boundary for computer-aided measurements, using diameter to
describe the size of the SSN is still a better choice.

In this meta-analysis, we also found another interesting result.
The follow-up duration showed no significant correlation with either
SSN growth or pGGN growth (P = 0.827 and 0.796 respectively).
Kobayashi et al. (4) found the tendency to grow was clear within the
first 3 years for SSNs. Lee et al. (6) followed SSNs that had been
stable for initial 5 years and found that only 5 (2.1%) of nodules
grew. The frequency of SSNs increasing in size after prolonged
stability is quite small, which is consistent to our results. Based on
the above, we speculate that the frequency of CT examination can be
reduced for SSN followed up for more than 5 years.

Studies have reported that approximately 37%-70% of
SSNs detected on CT screening are transient and resolve
spontaneously or with antibiotic therapy within 3 months of
the initial examination (46–48). Features associated with
transient SSNs include younger age, male sex, peripheral
eosinophilia, multiplicity, ill-defined margins, nonspiculated
margins, and large solid components (47, 49). Some features,
such as ill-defined margins, male sex and large solid components
coincide with the features of SSNs growth which may lead to the
determination of a transient nodule as a growing nodule.
Therefore, we suggest that the prediction of SSN growth
should be performed at least 3 months after the initial
examination. SSN growth prediction is important not only to
make follow-up plan but also to optimize surgical timing. Based
on the included studies, we found that only 49.23% stable SSNs
were invasive adenocarcinoma (IAC) while 81.01% growth SSNs
were IAC, and growth SSNs showed a 4.32-fold higher
probability of invasive adenocarcinoma than stable SSNs
(Supplementary Appendix, Part 2). These results suggest that
surgical resection after the growth of SSNs may be more
appropriate than upon detection, which needs further study.

Our study had several limitations. First, the study subjects in
the included studies were not completely homogenous. Among
the 19 included studies, 2 analyzed SSNs after 5 years of stability,
FIGURE 2 | Forest plots showed that male sex, history of lung cancer,
nodule size > 10 mm, PSN and age > 65 years were independent risk factors
for SSN growth. Smoking history showed no significant correlation with SSN
growth. OR, odds ratio; CI, confidence interval; PSN, part-solid nodule.
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2 analyzed SSNs after 3 years of stability, and the remaining
analyzed SSNs at baseline. Fortunately, no significant differences
in the included features were detected in publication bias tests.
Second, most of the features had no multivariate analysis results
in the original studies, and their specific role in SSN growth
needs to be further studied. Third, compared with a large
number of clinical and CT features, the number of studies
included is so small that the meta-analysis of some features
may lack credibility. Fourth, the number of studies on PSN is too
few to perform a meta-analysis. Nevertheless, to the best of our
knowledge, our meta-analysis is the only study to investigate the
correlation of clinical and CT features with SSN growth, and this
analysis included all available literature.

In conclusion, in this meta-analysis, eighteen clinical and CT
features were detected to be significantly correlated with SSN
growth, and 5 features including male sex, history of lung cancer,
nodule size > 10 mm, nodule consistency and age > 65 years were
identified to be independent risk factors for SSN growth. For
pGGN, history of lung cancer, older age, bubble-like appearance,
and larger volume were not risk factors for growth, although
Frontiers in Oncology | www.frontiersin.org 847
these factors were associated with SSN growth. A risk-based SSN
follow-up strategy should consider these factors and nodule
consistency, and separate strategies should be planned for each
single nodule in patients with multiple SSNs.
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TABLE 3 | Clinical and CT features included in the meta-analysis based on univariate analyses in pGGN.

Features Studies (patients/nodules) Test of Correlation Test of Heterogeneity

Pooled OR or SMD 95% CI P Value I2 (%) P Value

Sex (Male) 6 (534/658) 1.615 1.049-2.488 0.030 0.00% 0.614
Number of nodules (Multiple) 7 (634/766) 1.092 0.724-1.648 0.675 0.00% 0.474
History of lung cancer (Yes) 4 (386/435) 1.634 0.564-4.738 0.366 74.90% 0.008
Smoking history (Yes) 5 (423/508) 2.143 1.292-3.554 0.003 0.00% 0.508
Nodule size (> 10 mm) 4 (351/433) 4.975 1.024-24.164 0.047 81.80% 0.001
Nodule size, mm 6 (532/659) 0.847 0.209-1.485 0.009 89.20% 0.000
Age, years 4 (383/497) 0.217 -0.019-0.452 0.071 0.00% 0.905
Follow-up duration, months 6 (496/600) 0.095 -0.623-0.812 0.796 91.60% 0.000
Bubble like appearance (Yes) 3 (300/380) 3.005 0.491-18.379 0.234 80.20% 0.006
Air bronchogram (Yes) 2 (211/258) 4.374 1.764-10.845 0.001 0.00% 0.492
Mean of CT attenuation, HU 4 (336/396) 2.228 0.659-3.798 0.005 96.50% 0.000
Well-defined border (Yes) 4 (353/443) 0.544 0.301-0.983 0.044 0.00% 0.652
Nodule shape (Round) 3 (264/321) 0.559 0.263-1.187 0.130 42.70% 0.175
Volume, mm3 2 (108/155) 1.149 -0.517-2.815 0.176 93.90% 0.000
Lobulated margin (Yes) 2 (200/272) 15.081 3.050-74.575 0.001 0.00% 0.650
Mass, mg 2 (108/155) 0.715 -0.986-2.417 0.410 94.50% 0.000
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pGGN, pure ground glass nodule; OR, odds ratio; SMD, standardized mean difference; CI, confidence interval.
FIGURE 3 | Forest plots showed no significant correlation between smoking history and pGGN growth based on multivariate analysis. OR, odds ratio; CI,
confidence interval; pGGN, pure ground glass nodule.
icle 929174

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liang et al. Features Correlated with SSN Growth
FUNDING

This work was supported by National Natural Science
Foundation of China (81701692); and Beijing Municipal
Natural Science Foundation (7184238).
Frontiers in Oncology | www.frontiersin.org 948
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2022.929174/
full#supplementary-material
REFERENCES

1. Godoy MCB, Naidich DP. Subsolid Pulmonary Nodules and the Spectrum of
Peripheral Adenocarcinomas of the Lung: Recommended Interim Guidelines
for Assessment and Management. Radiology (2009) 253(3):606–22.
doi: 10.1148/radiol.2533090179

2. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J.
Fleischner Society: Glossary of Terms for Thoracic Imaging. Radiology (2008)
246(3):697–722. doi: 10.1148/radiol.2462070712

3. Hasegawa M, Sone S, Takashima S, Li F, Yang ZG, Maruyama Y, et al. Growth
Rate of Small Lung Cancers Detected on Mass Ct Screening. Br J Radiol
(2000) 73(876):1252–9. doi: 10.1259/bjr.73.876.11205667

4. Kobayashi Y, Fukui T, Ito S, Usami N, Hatooka S, Yatabe Y, et al. How Long
Should Small Lung Lesions of Ground-Glass Opacity Be Followed? J Thorac
Oncol (2013) 8(3):309–14. doi: 10.1097/JTO.0b013e31827e2435

5. Tang EK, Chen CS, Wu CC, Wu MT, Yang TL, Liang HL, et al. Natural
History of Persistent Pulmonary Subsolid Nodules: Long-Term Observation
of Different Interval Growth. Heart Lung Circ (2019) 28(11):1747–54.
doi: 10.1016/j.hlc.2018.08.015

6. Lee JH, Lim WH, Hong JH, Nam JG, Hwang EJ, Kim H, et al. Growth and
Clinical Impact of 6-Mm or Larger Subsolid Nodules After 5 Years of Stability
at Chest Ct. Radiology (2020) 295(2):448–55. doi: 10.1148/radiol.2020191921

7. Kakinuma R, Noguchi M, Ashizawa K, Kuriyama K, Maeshima AM, Koizumi
N, et al. Natural History of Pulmonary Subsolid Nodules: A Prospective
Multicenter Study. J Thorac Oncol (2016) 11(7):1012–28. doi: 10.1016/j.jtho.
2016.04.006

8. Lee SW, Leem CS, Kim TJ, Lee KW, Chung JH, Jheon S, et al. The Long-Term
Course of Ground-Glass Opacities Detected on Thin-Section Computed
Tomography. Respir Med (2013) 107(6):904–10. doi: 10.1016/j.rmed.
2013.02.014

9. Lee HW, Jin KN, Lee JK, Kim DK, Chung HS, Heo EY, et al. Long-Term
Follow-Up of Ground-Glass Nodules After 5 Years of Stability. J Thorac Oncol
(2019) 14(8):1370–7. doi: 10.1016/j.jtho.2019.05.005

10. Loverdos K, Fotiadis A, Kontogianni C, Iliopoulou M, Gaga M. Lung Nodules:
A Comprehensive Review on Current Approach and Management. Ann
Thorac Med (2019) 14(4):226–38. doi: 10.4103/atm.ATM_110_19

11. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, et al.
Guidelines for Management of Incidental Pulmonary Nodules Detected on Ct
Images: From the Fleischner Society 2017. Radiology (2017) 284(1):228–43.
doi: 10.1148/radiol.2017161659

12. Gould MK, Donington J, Lynch WR, Mazzone PJ, Midthun DE, Naidich DP,
et al. Evaluation of Individuals With Pulmonary Nodules: When Is It Lung
Cancer? Diagnosis and Management of Lung Cancer, 3rd Ed: American
College of Chest Physicians Evidence-Based Clinical Practice Guidelines.
Chest (2013) 143(5 Suppl):e93S–e120S. doi: 10.1378/chest.12-2351

13. Silva M, Prokop M, Jacobs C, Capretti G, Sverzellati N, Ciompi F, et al. Long-
Term Active Surveillance of Screening Detected Subsolid Nodules Is a Safe
Strategy to Reduce Overtreatment. J Thorac Oncol (2018) 13(10):1454–63.
doi: 10.1016/j.jtho.2018.06.013

14. Chang B, Hwang JH, Choi YH, Chung MP, Kim H, Kwon OJ, et al. Natural
History of Pure Ground-Glass Opacity Lung Nodules Detected by Low-Dose
Ct Scan. Chest (2013) 143(1):172–8. doi: 10.1378/chest.11-2501

15. Matsuguma H, Mori K, Nakahara R, Suzuki H, Kasai T, Kamiyama Y, et al.
Characteristics of Subsolid Pulmonary Nodules Showing Growth During
Follow-Up With Ct Scanning. Chest (2013) 143(2):436–43. doi: 10.1378/
chest.11-3306

16. Takahashi S, Tanaka N, Okimoto T, Tanaka T, Ueda K, Matsumoto T, et al.
Long Term Follow-Up for Small Pure Ground-Glass Nodules: Implications of
Determining an Optimum Follow-Up Period and High-Resolution Ct
Findings to Predict the Growth of Nodules. Jpn J Radiol (2012) 30(3):206–
17. doi: 10.1007/s11604-011-0033-8

17. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C,
et al. The Prisma Extension Statement for Reporting of Systematic Reviews
Incorporating Network Meta-Analyses of Health Care Interventions:
Checklist and Explanations. Ann Internal Med (2015) 162(11):777–84.
doi: 10.7326/M14-2385

18. MoherD, Shamseer L, ClarkeM,GhersiD, LiberatiA,PetticrewM, et al. Preferred
Reporting Items for Systematic Review and Meta-Analysis Protocols (Prisma-P)
2015 Statement. Systematic Rev (2015) 4:1. doi: 10.1186/2046-4053-4-1

19. Wells GA, Shea B, O’Connell D, Peterson J, Welch V. The Newcastle–Ottawa
Scale (Nos) for Assessing the Quality of Nonrandomized Studies in Meta-
Analysis (2014) (2014). Available at: http://www.ohrica/programs/clinical_
epidemiology/oxfordasp.

20. Hozo SP, Djulbegovic B, Hozo I. Estimating the Mean and Variance From the
Median, Range, and the Size of a Sample. BMC Med Res Methodol (2005) 5(1
Supplement):13. doi: 10.1186/1471-2288-5-13

21. Higgins JP, Thompson SG. Quantifying Heterogeneity in a Meta-Analysis.
Stat Med (2002) 21(11):1539–58. doi: 10.1002/sim.1186

22. Lau J, Ioannidis JPA, Terrin N, Schmid CH, Olkin I. The Case of the
Misleading Funnel Plot. BMJ (online) (2006) 333(7568):597–600.
doi: 10.1136/bmj.333.7568.597

23. Hiramatsu M, Inagaki T, Inagaki T, Matsui Y, Satoh Y, Okumura S, et al.
Pulmonary Ground-Glass Opacity (Ggo) Lesions-Large Size and a History of
Lung Cancer Are Risk Factors for Growth. J Thorac Oncol (2008) 3(11):1245–
50. doi: 10.1097/JTO.0b013e318189f526

24. Eguchi T, Kondo R, Kawakami S, Matsushita M, Yoshizawa A, Hara D, et al.
Computed Tomography Attenuation Predicts the Growth of Pure Ground-
Glass Nodules. Lung Cancer (Amsterdam Netherlands) (2014) 84(3):242–7.
doi: 10.1016/j.lungcan.2014.03.009

25. Kobayashi Y, Sakao Y, Deshpande GA, Fukui T, Mizuno T, Kuroda H, et al.
The Association Between Baseline Clinical-Radiological Characteristics and
Growth of Pulmonary Nodules With Ground-Glass Opacity. Lung Cancer
(2014) 83(1):61–6. doi: 10.1016/j.lungcan.2013.10.017

26. Tamura M, Shimizu Y, Yamamoto T, Yoshikawa J, Hashizume Y. 15-
Predictive Value of One-Dimensional Mean Computed Tomography Value
of Ground-Glass Opacity on High-Resolution Images for the Possibility of
Future Change. J Thorac Oncol (2014) 9(4):469–72. doi: 10.1097/JTO.
0000000000000117

27. Bak SH, Lee HY, Kim JH, Um SW, Kwon OJ, Han J, et al. Quantitative Ct
Scanning Analysis of Pure Ground-Glass Opacity Nodules Predicts Further Ct
Scanning Change. Chest (2016) 149(1):180–91. doi: 10.1378/chest.15-0034

28. Cho J, Kim ES, Kim SJ, Lee YJ, Park JS, Cho YJ, et al. Long-Term Follow-Up of
Small Pulmonary Ground-Glass Nodules Stable for 3 Years: Implications of
the Proper Follow-Up Period and Risk Factors for Subsequent Growth. J
Thorac Oncol (2016) 11(9):1453–9. doi: 10.1016/j.jtho.2016.05.026

29. Lee JH, Park CM, Lee SM, Kim H, McAdams HP, Goo JM. Persistent
Pulmonary Subsolid Nodules With Solid Portions of 5 Mm or Smaller:
Their Natural Course and Predictors of Interval Growth. Eur Radiol (2016)
26(6):1529–37. doi: 10.1007/s00330-015-4017-4

30. Wu F, Cai ZL, Tian SP, Jin X, Jing R, Yang YQ, et al. Value of Baseline Clinical
and Ct Characteristics for Predicting the Progression of Persistent Pure
Ground-Glass Nodule 10 Mm or Less in Diameter. Zhongguo Yi Xue Ke
Xue Yuan Xue Bao Acta Acad Med Sinicae (2016) 38(4):371–7. doi: 10.3881/
j.issn.1000-503X.2016.04.001

31. Sato Y, Fujimoto D, Morimoto T, Uehara K, Nagata K, Sakanoue I, et al. 9-
Natural History and Clinical Characteristics of Multiple Pulmonary Nodules
With Ground Glass Opacity. Respirology (2017) 22(8):1615–21. doi: 10.1111/
resp.13089
July 2022 | Volume 12 | Article 929174

https://www.frontiersin.org/articles/10.3389/fonc.2022.929174/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.929174/full#supplementary-material
https://doi.org/10.1148/radiol.2533090179
https://doi.org/10.1148/radiol.2462070712
https://doi.org/10.1259/bjr.73.876.11205667
https://doi.org/10.1097/JTO.0b013e31827e2435
https://doi.org/10.1016/j.hlc.2018.08.015
https://doi.org/10.1148/radiol.2020191921
https://doi.org/10.1016/j.jtho.2016.04.006
https://doi.org/10.1016/j.jtho.2016.04.006
https://doi.org/10.1016/j.rmed.2013.02.014
https://doi.org/10.1016/j.rmed.2013.02.014
https://doi.org/10.1016/j.jtho.2019.05.005
https://doi.org/10.4103/atm.ATM_110_19
https://doi.org/10.1148/radiol.2017161659
https://doi.org/10.1378/chest.12-2351
https://doi.org/10.1016/j.jtho.2018.06.013
https://doi.org/10.1378/chest.11-2501
https://doi.org/10.1378/chest.11-3306
https://doi.org/10.1378/chest.11-3306
https://doi.org/10.1007/s11604-011-0033-8
https://doi.org/10.7326/M14-2385
https://doi.org/10.1186/2046-4053-4-1
http://www.ohrica/programs/clinical_epidemiology/oxfordasp
http://www.ohrica/programs/clinical_epidemiology/oxfordasp
https://doi.org/10.1186/1471-2288-5-13
https://doi.org/10.1002/sim.1186
https://doi.org/10.1136/bmj.333.7568.597
https://doi.org/10.1097/JTO.0b013e318189f526
https://doi.org/10.1016/j.lungcan.2014.03.009
https://doi.org/10.1016/j.lungcan.2013.10.017
https://doi.org/10.1097/JTO.0000000000000117
https://doi.org/10.1097/JTO.0000000000000117
https://doi.org/10.1378/chest.15-0034
https://doi.org/10.1016/j.jtho.2016.05.026
https://doi.org/10.1007/s00330-015-4017-4
https://doi.org/10.3881/j.issn.1000-503X.2016.04.001
https://doi.org/10.3881/j.issn.1000-503X.2016.04.001
https://doi.org/10.1111/resp.13089
https://doi.org/10.1111/resp.13089
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liang et al. Features Correlated with SSN Growth
32. Wang B, You X, Sun X. The Associations Among Radiological Characteristics,
Growth, and Pathological Results of Pulmonary Subsolid Nodules. Biomed Res
(2017) 28(15):6829–33.

33. Xu X, Wu K, Zhao Y, Mei L. Stage I Lung Adenocarcinoma: The Value of
Quantitative Ct in Differentiating Pathological Subtypes and Predicting
Growth of Subsolid Nodules. Med (Baltimore) (2017) 96(16):e6595.
doi: 10.1097/MD.0000000000006595

34. Shi Z, Deng J, She Y, Zhang L, Ren Y, Sun W, et al. Quantitative Features Can
Predict Further Growth of Persistent Pure Ground-Glass Nodule. Quant
Imaging Med Surg (2019) 9(2):283–91. doi: 10.21037/qims.2019.01.04

35. Sato Y, Fujimoto D, Morimoto T, Uehara K, Nagata K, Sakanoue I, et al.
Natural History and Clinical Characteristics of Multiple Pulmonary Nodules
With Ground Glass Opacity. Respirology (2017) 22(8):1615–21. doi: 10.1111/
resp.13089

36. Tamura M, Shimizu Y, Yamamoto T, Yoshikawa J, Hashizume Y. Predictive
Value of One-Dimensional Mean Computed Tomography Value of Ground-
Glass Opacity on High-Resolution Images for the Possibility of Future
Change. J Thorac Oncol (2014) 9(4):469–72. doi: 10.1097/JTO.
0000000000000117

37. Oda S, Awai K, Murao K, Ozawa A, Utsunomiya D, Yanaga Y, et al. Volume-
Doubling Time of Pulmonary Nodules With Ground Glass Opacity at
Multidetector Ct: Assessment With Computer-Aided Three-Dimensional
Volumetry. Acad Radiol (2011) 18(1):63–9. doi: 10.1016/j.acra.2010.08.022

38. Song YS, Park CM, Park SJ, Lee SM, Jeon YK, Goo JM. Volume and Mass
Doubling Times of Persistent Pulmonary Subsolid Nodules Detected in
Patients Without Known Malignancy. Radiology (2014) 273(1):276–84.
doi: 10.1148/radiol.14132324

39. de Margerie-Mellon C, Ngo LH, Gill RR, Monteiro Filho AC, Heidinger BH,
Onken A, et al. The Growth Rate of Subsolid Lung Adenocarcinoma Nodules
at Chest Ct. Radiology (2020) 297(1):189–98. doi: 10.1148/radiol.2020192322

40. Shewale JB, Nelson DB, Rice DC, Sepesi B, Hofstetter WL, Mehran RJ, et al.
Natural History of Ground-Glass Lesions Among Patients With Previous
Lung Cancer. Ann Thorac Surg (2018) 105(6):1671–7. doi: 10.1016/
j.athoracsur.2018.01.031

41. Aoki T, Hanamiya M, Uramoto H, Hisaoka M, Yamashita Y, Korogi Y.
Adenocarcinomas With Predominant Ground-Glass Opacity: Correlation of
Morphology and Molecular Biomarkers. Radiology (2012) 264(2):590–6.
doi: 10.1148/radiol.12111337

42. Kobayashi Y, Mitsudomi T, Sakao Y, Yatabe Y. Genetic Features of
Pulmonary Adenocarcinoma Presenting With Ground-Glass Nodules: The
Differences Between Nodules With and Without Growth. Ann Oncol (2015)
26(1):156–61. doi: 10.1093/annonc/mdu505
Frontiers in Oncology | www.frontiersin.org 1049
43. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al.
Nccn Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. J Natl
Compr Canc Netw (2021) 19(3):254–66. doi: 10.6004/jnccn.2021.0013

44. Al-Ameri A, Malhotra P, Thygesen H, Plant PK, Vaidyanathan S, Karthik S,
et al. Risk of Malignancy in Pulmonary Nodules: A Validation Study of Four
Prediction Models. Lung Cancer (2015) 89(1):27–30. doi: 10.1016/j.lungcan.
2015.03.018

45. Han D, Heuvelmans MA, Oudkerk M. Volume Versus Diameter Assessment
of Small Pulmonary Nodules in Ct Lung Cancer Screening. Transl Lung
Cancer Res (2017) 6(1):52–61. doi: 10.21037/tlcr.2017.01.05

46. Oh JY, Kwon SY, Yoon HI, Lee SM, Yim JJ, Lee JH, et al. Clinical Significance
of a Solitary Ground-Glass Opacity (Ggo) Lesion of the Lung Detected by
Chest Ct. Lung Cancer (2007) 55(1):67–73. doi: 10.1016/j.lungcan.2006.09.009

47. Lee SM, Park CM, Goo JM, Lee CH, Lee HJ, Kim KG, et al. Transient Part-
Solid Nodules Detected at Screening Thin-Section Ct for Lung Cancer:
Comparison With Persistent Part-Solid Nodules. Radiology (2010) 255
(1):242–51. doi: 10.1148/radiol.09090547

48. Felix L, Serra-Tosio G, Lantuejoul S, Timsit JF, Moro-Sibilot D, Brambilla C,
et al. Ct Characteristics of Resolving Ground-Glass Opacities in a Lung Cancer
Screening Programme. Eur J Radiol (2011) 77(3):410–6. doi: 10.1016/j.ejrad.
2009.09.008

49. Choi WS, Park CM, Song YS, Lee SM, Wi JY, Goo JM. Transient Subsolid
Nodules in Patients With Extrapulmonary Malignancies: Their Frequency
and Differential Features. Acta Radiol (2015) 56(4):428–37. doi: 10.1177/
0284185114528325

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liang, Liu, Li and Zhang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
July 2022 | Volume 12 | Article 929174

https://doi.org/10.1097/MD.0000000000006595
https://doi.org/10.21037/qims.2019.01.04
https://doi.org/10.1111/resp.13089
https://doi.org/10.1111/resp.13089
https://doi.org/10.1097/JTO.0000000000000117
https://doi.org/10.1097/JTO.0000000000000117
https://doi.org/10.1016/j.acra.2010.08.022
https://doi.org/10.1148/radiol.14132324
https://doi.org/10.1148/radiol.2020192322
https://doi.org/10.1016/j.athoracsur.2018.01.031
https://doi.org/10.1016/j.athoracsur.2018.01.031
https://doi.org/10.1148/radiol.12111337
https://doi.org/10.1093/annonc/mdu505
https://doi.org/10.6004/jnccn.2021.0013
https://doi.org/10.1016/j.lungcan.2015.03.018
https://doi.org/10.1016/j.lungcan.2015.03.018
https://doi.org/10.21037/tlcr.2017.01.05
https://doi.org/10.1016/j.lungcan.2006.09.009
https://doi.org/10.1148/radiol.09090547
https://doi.org/10.1016/j.ejrad.2009.09.008
https://doi.org/10.1016/j.ejrad.2009.09.008
https://doi.org/10.1177/0284185114528325
https://doi.org/10.1177/0284185114528325
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Humberto Rocha,
University of Coimbra, Portugal

REVIEWED BY

Niccolò Marini,
HES-SO Valais-Wallis, Switzerland
Alireza Sadeghian,
Toronto Metropolitan University,
Canada
Wenbin Chen,
Southern Medical University, China

*CORRESPONDENCE

Jan-Niklas Eckardt
jan-niklas.eckardt@uniklinikum-
dresden.de

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 03 June 2022
ACCEPTED 24 June 2022

PUBLISHED 14 July 2022

CITATION

Eckardt J-N, Bornhäuser M, Wendt K
and Middeke JM (2022) Semi-
supervised learning in cancer
diagnostics.
Front. Oncol. 12:960984.
doi: 10.3389/fonc.2022.960984

COPYRIGHT

Copyright © 2022 Eckardt, Bornhäuser,
Wendt and Middeke. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 14 July 2022

DOI 10.3389/fonc.2022.960984
Semi-supervised learning in
cancer diagnostics

Jan-Niklas Eckardt1,2*, Martin Bornhäuser1,3,4, Karsten Wendt2,5

and Jan Moritz Middeke1,2

1Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany,
2Else Kröner Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany,
3German Consortium for Translational Cancer Research, Heidelberg, Germany, 4National Center for
Tumor Disease (NCT), Dresden, Germany, 5Institute of Software and Multimedia Technology,
Technical University Dresden, Dresden, Germany
In cancer diagnostics, a considerable amount of data is acquired during routine

work-up. Recently, machine learning has been used to build classifiers that are

tasked with cancer detection and aid in clinical decision-making. Most of these

classifiers are based on supervised learning (SL) that needs time- and cost-

intensive manual labeling of samples by medical experts for model training.

Semi-supervised learning (SSL), however, works with only a fraction of labeled

data by including unlabeled samples for information abstraction and thus can

utilize the vast discrepancy between available labeled data and overall available

data in cancer diagnostics. In this review, we provide a comprehensive

overview of essential functionalities and assumptions of SSL and survey key

studies with regard to cancer care differentiating between image-based and

non-image-based applications. We highlight current state-of-the-art models

in histopathology, radiology and radiotherapy, as well as genomics. Further, we

discuss potential pitfalls in SSL study design such as discrepancies in data

distributions and comparison to baseline SL models, and point out future

directions for SSL in oncology. We believe well-designed SSL models to

strongly contribute to computer-guided diagnostics in malignant disease by

overcoming current hinderances in the form of sparse labeled and abundant

unlabeled data.

KEYWORDS

semi-supervised learning, cancer, diagnostics, artificial intelligence, machine learning
Introduction

In the daily routine of cancer diagnostics, an abundance of medical data in the form

of images, health records and genetic assays are gathered. Potentially, these data can serve

as training input for supervised machine learning classifiers, however, the availability of

large-scale labeled datasets represents a substantial bottleneck that limits the

advancement of supervised learning (SL) techniques for diagnostic purposes. As the
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currently most popular technique in ML-guided diagnostics, SL

requires data with high-quality labels to train a classifier that is

subsequently tested on previously unseen data and evaluated

based on its hit-rate to accurately predict labels in a test set that

is withheld from training. The major obstacle in this setting is

the disparity between overall available data and available data

with labels. The latter is the essential prerequisite for supervised

learning, however, obtaining a sufficiently large set of labeled

data is time- and cost-intensive, especially in highly specialized

domains as cancer diagnostics. The discrepancy between an

increasing number of cancer patients in an aging society and

the receding physician workforce as well as the correspondingly

ever-growing workload of radiologists, pathologists and

oncologists poses a further constraint on the labeling process

as their experience and knowledge is needed to provide high-

quality labels. Still, time and resources for the generation of such

large-scale labeled data sets is often missing (1, 2). Therefore,

strategies are needed that leverage the overall amount of

available data while imposing manageable needs for labeling.

Conceptually, Semi-Supervised Learning (SSL) can be

positioned at midway between Unsupervised Learning (UL),

where no labels are provided and algorithms deconstruct

patterns from unlabeled data e. g. for cluster analysis, and SL,

where a classifier is trained on labeled data to correctly map

labels to unseen data from the same distribution (3). Hence, SSL

offers the opportunity to leverage the vast amounts of unlabeled

medical data that are acquired in clinical routine to boost

classification performance in a diagnostic setting without the

need for fully-labeled extensive data sets. Nevertheless, there are

critical assumptions for SSL to function properly and models

have to be conceptualized and developed with diligence in order

to actually provide a performance boost compared to SL models.

In this review, we aim to provide medical professionals with

an outline of key concepts of SSL and how to apply it to medical

data with a focus on oncology. First, we introduce main

functionalities of SSL and delineate it from SL and UL.

Subsequently, we provide an overview of SSL techniques

applied to cancer diagnostics and care differentiating between

image-based and non-image-based use-cases. Finally, we discuss

pitfalls in SSL research design for medical applications and

provide an outlook on future prospects.
What is semi-supervised learning?

The key concept to delineate SL, SSL and UL is the labeling

process as well as whether at all and if so, how labeled data is

being processed. Labeling refers to the process of attaching

meaningful information for classification to raw data. One way

to do this is to have experts, e. g. medical doctors, evaluate the

raw data, e. g. medical images (4). For example, whole-slide

images (WSI) of tumor tissue can be labeled by pathologists or

chest CAT scans for potentially malignant lesions can be labeled
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by radiologists. Alternatively in SSL, a limited number of labels

can be used to self-train an algorithm iteratively to attach labels

to unlabeled raw data and subsequently train a classifier on these

self-labeled data (5). Conceptually, these labeled data provide the

basis for training SL algorithms (training stage) that are

subsequently supposed to apply previously learned patterns to

unseen data and assign correct labels (testing stage, Figure 1A)

(6). UL on the other hand does not use any labeled data at all. In

UL, unlabeled data is sorted according to inherent patterns that

delineate different clusters (7), e. g. UL can identify patient

clusters with co-occurring genetic variants (Figure 1B). SSL uses

both labeled and unlabeled data in the sense that labeled data are

used to train a classifier for a given use-case and the addition of

unlabeled data is intended to leverage information gain and thus

boost classification performance (Figure 1C) (8). It is therefore

advantageous when a large dataset is available for which only a

limited number of labels can be obtained, i. e. due to time or cost

constraints as is usually the case for medical data.

While the addition of unlabeled data can be advantageous, it

can also cause issues with model performance leading to

stagnation or even degradation if crucial assumptions of SSL

design are not met (9). For SSL models to work robustly, it is

necessary that the unlabeled data should contain information

that is relevant for label prediction. Therefore, it is crucial that

both labeled and unlabeled data follow the same distribution

(10). For example, if a classifier is trained on labeled

histopathological images of colorectal cancer, the unlabeled

data should ideally encompass the same tumor entity, same

staining procedure and same magnification. Hence, the

algorithm can infer that two samples that are close to each

other at the input level (according to their features) should also

be close to each other at the output level, i. e. should receive the

same labels (smoothness assumption) (8). If these high-

dimensional data points at the input level are mapped to a

lower dimension in Euclidean space, they are usually clustered

along low-dimensional structures, so-called manifolds. Data

points that lie on the same manifold should therefore be of the

same class (8). If both previous assumptions – inputs with

similar feature vectors will be close to each other in an n-

dimensional feature space and be located on the same

manifold if mapped to a lower dimensional space - are true,

the decision boundary for a classifier should then lie in an area

with low density, i. e. where data points are separate and of

different classes (8). Thus, the inclusion of unlabeled data (as

long as it is from the same distribution as labeled data) can

improve the designation of the decision boundary and therefore

boost classification performance (Figure 2).

As is the case for most machine learning applications, there

is no ‘one-size fits all’ approach and different methods and

algorithms have to be evaluated for any given use-case. What

further complicates model selection in SSL is a non-standardized

taxonomy of methodologies which makes it harder to reproduce

techniques proposed in the literature. Van Engelen et al. (3)
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recently proposed a taxonomy based on the distinction of

inductive or transductive methods. The former encompass

methods such as clustering with subsequent label assignment,

pseudo-labeling or self- and co-training, i. e. methods that assign

labels to unseen data and thus can potentially generalize, and the
Frontiers in Oncology 03
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latter include graph-based methods that transfer information

along connections of dataset-specific graphs only including data

points in a given sample which then cannot be generalized to

other data outside the specific sample (3). As for medical

applications, the development of robust generalizable
A

B

C

FIGURE 1

Inputs and Outputs of supervised, unsupervised and semi-supervised learning. In supervised learning (A) all data is labeled. Labels are used to
train a classifier to map learned labels to previously unseen data. Unsupervised learning (B) does not use labels. Data is being clustered into
groups based on inherent patterns. Semi-supervised learning (C) uses both labeled and unlabeled data. Labels are used to train a classifier which
is augmented by unlabeled data of the same distribution to derive additional information in order to boost performance.
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A

B

C

FIGURE 2

How does unlabeled data boost classification performance? Consider a number of features n at the input level which corresponds to an n-
dimensional feature space. In such an n-dimensional coordinate system, every input is located according to its feature vector given by its n
features and can thus be sorted by similarities and differences in relation to other inputs which is represented by proximity or distance points in
the feature space. For clarity reasons, we only consider two features (x, y) in a two-dimensional feature space. When labeled data is sparse
(A), as is often the case in medical data sets, the decision boundary of a classifier is less constraint. This may lead to inaccuracies and poor
generalization on external data. If many labels are given, the decision boundary is more constraint and thus a more accurate classifier is given
that can potentially generalize better. However, manual labeling of such large data sets is often time- and cost-ineffective. Unlabeled data is
often available in abundance (C) and can be used to constrain the decision boundary of a classifier in a way as large labeled data sets could do,
however, without the need for excessive labeling. The decision boundary then lies in an area with low density. Nevertheless, as can be derived
from (B) and (C), the performance gap between supervised and semi-supervised learning shrinks as the amount of labeled data grows if no
further unlabeled samples are provided.
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algorithms is desirable for utilization in clinical practice and

hence most applied techniques in cancer diagnostics should be

developed as inductive methods.
Studies on semi-supervised learning
in cancer diagnostics

Research efforts in applying SSL for diagnostics and care in

oncology can broadly be divided data-wise by usage of images or

non-image data for model development. Naturally, image-based

use-cases most frequently stem from the fields of histopathology,

radiology and radiotherapy, while non-image-based applications

most frequently include genetic data.
Image-based semi-supervised learning
for cancer detection

Histopathology
In histopathology as a use-case, classification tasks using

computer vision have to be divided into patch- or image-level

diagnosis, i. e. whether areas with suspected malignancies should

be distinguished from normal surrounding tissue or whether the

sample as a whole should be labeled ‘malignant’ if any sign of

neoplastic tissue is present. Importantly for model building,

patch-level classification requires image segmentation a priori to

classification, i. e. different areas of the sample have to be

discriminated according to e. g. shapes, patterns and colors.

Using a multi-center dataset of > 13.000 colorectal cancer WSI,

Yu et al. (11) developed a mean teacher model to detect

malignant patches that achieves a comparable area under the

curve (AUC) compared to a multi-pathologist benchmark. They

report a substantial improvement of SSL over SL when only a

limited number of labels is available also validating their model

on lung cancer and lymph node samples, but add that with a

fully labeled set (with well above 10.000 labels) no difference

between SSL and SL was detected. Similarly, Shaw et al. (12)

deploy a student-teacher chain model where an iterative process

of training a student model that subsequently becomes the

teacher model for the following student and so on allows to

uti l ize only 0.5% labeled data to detect colorectal

adenocarcinoma from WSI. Wenger et al. (13) utilized

consistency regularization and self-ensembling in order to

detect and grade bladder cancer samples and report a 19%

higher accuracy over baseline SL using only 3% labeled data.

Jaiswal et al. (14) compared pre-trained models in detecting

neoplastic infiltration of lymph node WSI and reported a high

risk of overfitting after short training epochs which was tackled

using ensemble learning. Addressing the challenge of variation

within classes and similarities between classes, Su et al. (15)

propose association cycle consistency loss and maximal
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conditional association to optimize the loss function reporting

improved performance over learning by association on breast

cancer histopathological images. Comparing SL and SSL, Al

Azzam et al. (16) report similar accuracies for SSL when using

only half the number of labels needed for SL in breast cancer

prediction from fine needle aspirates. To grade breast cancer

samples, Das et al. (17) employ a Generative Adversarial

Network (GAN) where the discriminator uses an unsupervised

model that is stacked over a supervised model with shared

parameters to utilize both labeled and unlabeled samples. An

Auxiliary Classifier GAN that divides lung cancer samples into

malignant and benign patches which allows for subsequent

pixel-based PD-L1 scoring is reported by Kapil et al. (18) for

non-small cell lung cancer tissue needle aspirates. Both Marini

et al. (19) and Li et al. (20) address the challenge of Gleason

scoring prostate cancer samples. The former use a teacher-

student approach with different combinations of a pseudo-

labeling teacher training a student model utilizing both SSL

and semi-weakly supervised learning that are compared to a

student-only baseline (19). The latter use a pixel-based approach

on prostate WSI with expectation maximization by a fully

convolutional encoder-decoder net incorporating both

internally annotated and external weakly annotated image data

compared to a model trained on a fully labeled dataset alone

(20). Both report performance improvements for the SSL

methods using additional un- or weakly-labeled data. Lastly, to

detect melanoma, Masood et al. (21) train deep belief networks

in parallel to support vector machines that are supposed to

counteract misclassified data with adjusted weights and finally

compare their model to several SL-based models and report

superior performance for their SSL-based approach. Table 1

provides an overview of recent studies that use SSL

in histopathology.

Radiology and radiotherapy
The detection of lung nodules in computer-assisted

tomography (CAT) scans is a common theme in SSL-based

research in radiology. Khosravan et al. (22) use a multi-tasking

CNN to concomitantly learn nodule segmentation and false

positive nodule reduction on chest CAT scans incorporating SSL

to accommodate for unlabeled data in the segmentation process

and report high accuracies compared to baseline. Xie et al. (23)

address the task of differentiating between benign and malignant

nodules using a semi-supervised adversarial model with an

autoencoder unsupervised reconstruction net, learnable

transition layers, and a supervised classification net and report

high accuracies on a benchmark dataset for lung nodule

classification. Using a similarity metric function to iteratively

include unlabeled samples via SSL, Shi et al. (24) use a transfer

learning approach with a pre-trained network that differentiates

between nodules and nodule-like tissue to identify lung nodules

and report high accuracies in their initial dataset, but
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acknowledge performance drops in an independent validation

set. For breast cancer detection in mammogram images, both

Sun et al. (25) and Azary et al. (26) use a co-training approach.

In the former study, a three-step method of adjusting weights,

selecting features and co-training-based labeling is proposed and

a 7.4% performance gain for the combination of labeled and

unlabeled data compared to labeled data only is reported (25).

The latter study incorporates SSL in pixel-based tumor

segmentation and proposes co-training with support vector

machines and Bayesian classifiers (26). Using breast

ultrasound images for tumor detection in a joint dataset of

many weakly and few strongly annotated images, Shin et al. (27)

propose a self-training method and report similar accuracies for

only ten strongly annotated images joined by a large number of

weakly annotated ones compared to 800 strongly annotated

images only. Wodzinski et al. (28) aim to identify target volumes

for postoperative tumor bed irradiation in breast cancer using a

semi-supervised volume penalty via a multi-level encoder

decoder architecture and report a decrease in target

registration error and tumor volume ratio. For brain tumor

detection, Ge et al. (29), Chen et al. (30), and Meier et al. (31)

investigate brain magnetic resonance imaging (MRI) scans. Ge

et al. (29) utilize a graph-based approach to create pseudo-labels

and accommodate for moderate-sized data sets by generating

additional images with GANs. They use their model for glioma

grading and IDH-mutation status prediction (29). In a step-wise

approach, Chen et al. (30) deploy a student-teacher-based model

and extract hierarchical features using an adversarial network to

detect lesions in brain MRI scans that correspond to either

multiple sclerosis, ischemic stroke or tumor tissue. In a pre- and
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postoperative comparative setting, Meier et al. (31) investigate

residual tumor tissue in brain MRI scans of ten high-grade

glioma patients with semi-supervised decision forest and report

improved performance and computation time compared to

conventional segmentation methods. Lastly, Turk et al. (32)

address thyroid cancer detection in ultrasound texture data

with linked clinical scoring systems as additional features

using an autoencoder-based model and report a high

sensitivity despite their imbalanced dataset by using synthetic

minority oversampling. Table 2 provides an overview of studies

using SSL in radiology or radiotherapy.
Non-image-based semi-supervised
learning for cancer management

While the aforementioned image-based studies primarily

focus on detection of cancer, research efforts of SSL in

oncology that do not use images predominantly address the

task of estimating survival, predicting relapse and identifying

genetic subtypes. Examining gene expression data from patients

with breast, lung, gastric and liver cancer, Chai et al. (33) use a

semi-supervised self-paced learning framework with Cox

proportional hazard and accelerated failure time models to

classify cancer patients and predict censored data thereby

reporting improved separation of survival curves for their

model compared to baseline supervised models. Also using

gene expression data but in the context of colorectal and

breast cancer, Shi et al. (34) predict recurrence via low density

separation. They report increasing accuracies for SSL over
TABLE 1 Overview of Studies on Semi-Supervised Learning in Histopathology.

Authors and
Reference

Entity Objective Technique Publicly
Available Code

Yu et al. (11) colorectal and lung cancer as
well as lymph nodes

detecting malignant patches
in WSI

mean teacher yes

Shaw et al. (12) colorectal cancer detecting malignant patches
in WSI

student-teacher-chain no

Wenger et al. (13) bladder cancer detection and grading consistency regularization and self-ensembling no

Jaiswal et al. (14) metastasized tumors detecting metastases in
lymph node WSI

pseudo-labeling no

Su et al. (15) breast cancer detecting malignant
samples in WSI

combination of association cycle consistency loss and
maximal conditional association loss

no

Das et al. (17) breast cancer grading samples stacked semi-supervised GAN no

Al Azzam et al.
(16)

breast cancer cancer detection from
nuclei morphologies

comparison of 9 SL and SSL classifiers no

Kapil et al. (18) lung cancer PD-L1 scoring auxiliary classifier GAN and pixel-based quantification no

Marini et al. (19) prostate cancer Gleason scoring teacher-student chain and pseudo-labeling yes

Li et al. (20) prostate cancer Gleason scoring expectation maximization-based fully convolutional
encoder-decoder network

no

Masood et al. (21) melanoma detecting malignant
samples

Co-training of Deep Belief Network and advised SVM no
GAN, generative adversarial networks; SL, supervised learning; SLL, semi-supervised learning; SVM, support vector machines; WSI, whole-slide-images.
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baseline SL classifiers with increasing numbers of unlabeled data.

Addressing the same task in the same tumor entities, Park et al.

(35) resort to a semi-supervised graph regularization algorithm

to identify functionally similar gene pairs and thereby predict

recurrence in breast and colorectal cancer gene expression data

including labeled and unlabeled nodes. Hassanzadeh et al. (36)

designed an ensemble model based on decision trees and

boosting to predict survival for patients harboring kidney,

ovarian, or pancreatic cancer for whom only incomplete

clinical data was available and report improved accuracy for

SSL compared to SL baselines. Cristovao et al. (37) compared SL

and SSL in subtyping breast cancer using multi-omic data,

however, did not find any performance improvements when

comparing SSL to baseline logistic regression. Also investigating

multi-omics data, Ma et al. (38) developed affinity fusion

networks to cluster patients based on their specific omics

profile into lung, kidney, uterus or adrenal gland cancer

groups. The authors report a high predictive accuracy with

training on less than one percent of labeled data. Sherafat

et al. (39) developed a positive-unlabeled learning model using

auto machine learning to predict tumor-rejection mediation

neoepitopes from exome sequencing data in ovarian cancer.

The authors report improved performance over model-based

classifiers for somatic variant calling and peptide identification.

Both Camargo et al. (40) and Livieris et al. (41) propose novel

active learning models that are tested on either data of acute
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myeloid leukemia, E. coli, and plant leaves, or breast and lung

cancer, respectively. In both studies, the authors report higher

accuracies for their respective models, root distance boundary

sampling (40) and improved CST voting (41), compared to both

SSL and SL classifiers. Table 3 summarizes non-image-based

applications of SSL with relevance to cancer detection

and management.
Discussion

SSL represents a viable approach to the dilemma of big data

in cancer medicine, especially in the context of image data which

is usually acquired in abundance during clinical routine work-

ups, but adequate labeling by medical experts is often time

consuming and thus cost-ineffective. The main goal of SSL in

this context is to achieve classification performances that surpass

those of SL alone when labeled data is limited and at the same

time abundant unlabeled data is available. Crucially, SSL models

have to satisfy the above-mentioned assumptions: i) both labeled

and unlabeled data have to be drawn from the same distribution,

ii) similarity of data on the input level results in similarity of data

at the output level (smoothness), iii) hence data points on the

same low-dimensional structures (manifolds) receive the same

labels and thus, iv) the decision boundary runs through an area

of low density, i.e. where data points are separated and of
TABLE 2 Overview of Studies on Semi-Supervised Learning in Radiology and Radiotherapy.

Authors and
Reference

Entity Objective Technique Publicly
Available
Code

Khosravan et al.
(22)

lung cancer detecting malignant nodules in chest CAT
scans

SSL-based multi-task network no

Xie et al. (23) lung cancer detecting malignant nodules in chest CAT
scans

semi-supervised adversarial autoencoders, learnable
transition layers, and supervised classification

no

Shi et al. (24) lung cancer detecting malignant nodules in chest CAT
scans

transfer learning and semi-supervised feature matching no

Sun et al. (25) breast cancer detecting breast cancer in mammogram
images

co-training no

Azary et al. (26) breast cancer detecting breast cancer in mammogram
images

co-training no

Shin et al. (27) breast cancer detecting breast cancer in ultrasound
images

joint weakly- and strongly-supervised framework and
self-training

yes

Wodzinski et al.
(28)

breast cancer identifying target volumes for radiotherapy semi-supervised multilevel encoder-decoder yes

Ge et al. (29) brain tumor glioma grading and IDH-mutation
prediction in MRI scans

GAN-augmented networks in a graph-based
framework

no

Chen et al. (30) brain tumor, multiple
sclerosis, ischemic stroke

detecting pathological samples in MRI scans student-teacher chain combined with adversarial
learning

yes

Meier et al. (31) brain tumor detecting residual tumor tissue in
postoperative brain MRI

semi-supervised decision forest no

Turk et al. (32) thyroid cancer detecting thyroid cancer from ultrasound
textures and clinical scoring systems

autoencoders and synthetic minority oversampling no
CAT, computer-assisted tomography; GAN, generative adversarial networks; MRI, magnetic resonance imaging.
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different classes. Divergence from these key assumptions can not

only lead to performance stagnation, but also degradation as

unlabeled data is handled as noise that blurs information

abstraction of the classifier (42). Importantly, this is what

delineates SSL from transfer learning, where a classifier is first

trained on one use-case and subsequently transferred to another

similar use-case where it is supposed to perform a similar task

(43), e. g. a classifier trained by identifying alteration A in

immunohistochemistry on WSI in a supervised setting could

potentially be transferred to also identify alteration B if staining

is similar. Therefore, the most important question before

conducting SSL experiments is whether labeled and unlabeled

data are actually from the same distribution and if so whether an

inclusion of the unlabeled samples might lead to a performance

gain over baseline SL.

Several of the above-mentioned studies reported substantial

performance gains for SSL as long as the model was short on

labeled data, however, when the amount of labeled data was

increased or only labeled data was used the gap between SSL and

SL performance shrunk. However, the frequent lack of a

comparison between baseline SL and SSL classifiers further

complicates the evaluation of such studies and only few

studies do report baseline comparisons (11, 13, 19, 22, 33, 37)

and still even fewer report equal tuning of hyperparameters (11,

19) for SSL and SL classifiers to make results comparable. When

it comes to model design, it is essential to note that different

algorithms may perform differently with regard to different tasks

(9). While this sounds obvious, it is still the case that often only

the use of a single algorithm is reported which either may be due

to a lack of comparative testing or due to publication bias as only

the successful algorithm is selected for a given manuscript.

However, to evaluate suitable model designs for different tasks,

we advocate for a full report on tested algorithms ideally

including a comparison between different SSL model set-ups,
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their SL baseline, adequate hyperparameter tuning for both SSL

and SL, and the models’ individual performance in comparison.

Further, varying the amount of labeled and unlabeled data for

both training and testing sets seems warranted to find the

equilibrium of optimal performance for different tasks in

future studies of SSL in oncology. The lack of reproducibility

in research on artificial intelligence in general (44) is also likely

to be a future issue in biomedical use-cases of SSL as

unfortunately only a minority of studies provide publicly

accessible code to support their results (11, 19, 27, 28, 30, 38,

40). As is evident from previous studies on SSL in oncology, use

cases mainly include tumor entities with high prevalence such as

breast (15–17, 25–28, 33–35, 37, 41), lung (18, 22, 23, 33, 34, 38,

41), and colorectal cancer (11, 12, 34, 35) where single centers

can amass sufficiently sized data sets to conduct SSL

experiments. This is also reflected in the overwhelming

absence of studies on SSL in hematology with only one single

study (40) including any hematological neoplasm at all.

Therefore, data-sharing is crucial in order to expand use-cases

to rare tumor entities. Slight differences between centers in how

training data is handled – e.g. differences in imaging devices used

and thus consecutive differences in image format, shape,

contrast, resolution and brightness – may also influence

individual models. A model trained solely on single center

image data may therefore significantly drop in performance if

it is introduced to data of another source. Hence, pooling

heterogenous data of different sources for initial model

training is useful in order to obtain classifiers that can be

widely generalized beyond in-house use for single institutions.

Not only may the crowd-sourcing of research in biomedical SSL

vastly enlarge the pool of unlabeled (and possibly labeled) data,

but it may also help identify and modify promising models for

multi-center prospective validation. The latter is another key

shortcoming of previous studies that were often confined to
TABLE 3 Overview of Studies on Semi-Supervised Learning using non-image-based data.

Authors and
Reference

Entity Objective Technique Publicly Avail-
able Code

Chai et al. (33) breast, lung, gastric and liver
cancer

predicting survival self-paced learning with Cox proportional hazard and
accelerated failure time models

no

Shi et al. (34) colorectal and breast cancer predicting relapse low density separation no

Park et al. (35) colorectal and breast cancer predicting relapse graph-based regularization no

Hassanzadeh et al.
(36)

kidney, ovarian and
pancreatic cancer

predicting survival ensemble learning with robust boost and decision trees no

Cristovao et al. (37) breast cancer subtyping, model comparison comparison of different SL and SSL algorithms no

Ma et al. (38) lung, kidney, uterus and
adrenal gland cancer

predicting primary tumor site Affinity Network Fusion yes

Sherafat et al. (39) ovarian cancer predicting tumor-rejection
mediating neoepitopes

Positive-unlabeled Learning using Auto-ML no

Camargo et al. (40) acute myeloid leukemia, E.
coli, plant leaves

model comparison root distance boundary sampling yes

Livieris et al. (41) breast and lung cancer model comparison self- and co-training with ensemble learning no
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single centers and retrospective evaluation. Thus, publicly

available code, data-sharing for both labeled and unlabeled

data and prospective collaborative research efforts will be key

to evaluate models for future clinical applicability. Shared data

and models may then also enable the evaluation of a variety of

tumor entities in the same diagnostic modality, i. e. differential

diagnosis of tumor entities in histopathological WSI.

This, however, leads to a frequent problem of artificial

intelligence in general that is even more pronounced in the

sensitive context of oncology where diagnostic accuracy is

essential to provide high quality care to patients with life-

threatening diseases: explainability of ML models. ML and

especially deep learning has often been referred to as a ‘black

box’ (45) and the path of decision making within a model is hard

to interpret. While this is already a key issue in SL, SSL adds to

the confusion as information is also derived from unlabeled

samples. The apparent lack of interpretability when it comes to

clinical validation of model outputs stresses the urgent need to

incorporate mechanisms of explainability into SSL models that

make outputs or even intermediate steps such as label

assignment on unlabeled samples traceable for clinical experts.

The virtual lack thereof in previous studies signals a discrepancy

between what is technologically possible and what is clinically

acceptable for routine use as ‘black box’models will likely have it

harder to be included in routine clinical workflows due to a lack

of acceptance in diagnostic specialties and ethical concerns in

cancer management (46). Still, given large unlabeled data sets

that often are routinely acquired in cancer diagnostics combined

with the trend of a shrinking physician workforce that is

occupied with complex tasks that have to be performed in

increasingly shorter periods of time (1), SSL provides a low-

cost and potentially high-benefit solution to develop clinically

meaningful ML models for diagnostic tasks in oncology.
Conclusion

While SSL provides a possible solution to the vast

discrepancy between available labeled and unlabeled data in

cancer diagnostics, it should not be considered a silver bullet in

the development of accurate classifiers for cancer detection.

Adequate selection of labeled and unlabeled data of the same

distribution as well as comparisons to baseline SL, among others,
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are crucial to build robust SSL models. While previous research

efforts of SSL in oncology have mainly comprised retrospective

single-center studies, future research is warranted in multi-

center prospective model evaluation to design robust and

explainable classifiers for implementation in the clinical

routine of cancer diagnostics.
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Optical coherence tomography (OCT) is a non-invasive imaging technique

which has become the “gold standard” for diagnosis in the field of

ophthalmology. However, in contrast to the eye, nontransparent tissues

exhibit a high degree of optical scattering and absorption, resulting in a

limited OCT imaging depth. And the progress made in the past decade in

OCT technology have made it possible to image nontransparent tissues with

high spatial resolution at large (up to 2mm) imaging depth. On the one hand,

OCT can be used in a rapid, noninvasive way to detect diseased tissues, organs,

blood vessels or glands. On the other hand, it can also identify the optical

characteristics of suspicious parts in the early stage of the disease, which is of

great significance for the early diagnosis of tumor diseases. Furthermore, OCT

imaging has been explored for imaging tumor cells and their dynamics, and for

the monitoring of tumor responses to treatments. This review summarizes the

recent advances in the OCT area, which application in oncological diagnosis

and treatment in different types: (1) superficial tumors:OCT could detect

microscopic information on the skin’s surface at high resolution and has

been demonstrated to help diagnose common skin cancers; (2)

gastrointestinal tumors: OCT can be integrated into small probes and

catheters to image the structure of the stomach wall, enabling the diagnosis

and differentiation of gastrointestinal tumors and inflammation; (3) deep

tumors: with the rapid development of OCT imaging technology, it has

shown great potential in the diagnosis of deep tumors such in brain tumors,

breast cancer, bladder cancer, and lung cancer.

KEYWORDS

optical coherence tomography, cancer imaging, oncological diseases, imaging
technique, tumor diagnoses
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Introduction

OCT is a noninvasive optical imaging technique, that can

capture high-resolution and three-dimensional (3D) images on

biological tissues with label-free. Huang et al., in 1991 (1), first

proposed a concept of OCT. Through the weak coherent light

interferometer theory, images of biological tissues with excellent

axial resolution (<10 mm) can be obtained in real-time utilizing

near-infrared (NIR) light waves reflected by microstructures within

the tissue (2). Based on the above advantages, OCT is widely used in

a variety of biomedical fields, including ophthalmology, dentistry,

dermatology, oncological and cardiovascular, among others.

In biomedical fields, optical imaging technology is

extensively used such as Laser scanning confocal imaging

(LSCI), Two-Photon imaging, Fluorescence imaging (FI), Laser

speckle imaging (LSI), Laser doppler imaging (LDI) and OCT,

etc. Although LSCI and two-photon imaging techniques could

provide high spatial resolution images of biological tissues,

imaging under aqueous or oily objectives requires contact with

tissues, while the relatively small imaging view field and low

penetration depth make them impractical for clinical application

(3, 4). In terms of LSI, it is also difficult to perform depth-

resolved in vivo 3D imaging due to depth limitation, even though

it can offer high-resolution, non-contact imaging (5). A

millimeter- resolution LDI can only monitor microcirculatory

vessels (6). FI involves the use offluorescent materials as imaging

labels (7), which may cause adverse effects like allergies. In

contract, OCT offers a non-invasive method for imaging tumor

tissue at multiple scales, with high contrast and resolution in

vivo, as well as displaying high endogenous contrast in biological

tissues (8). Moreover, OCT allows for deep penetration of tissue

up to 2 mm and can rapidly produce 3D images with high

temporal resolution (9, 10).

After the development of OCT, it was widely used in ocular

imaging for glaucoma (11–13), macular degeneration (14–16),

retinal vein obstruction (17–19), diabetic retinal microaneurysm

(20, 21), uveitis (22–24), etc. The advances in OCT imaging

applications for ophthalmology were detailed in relevant reviews

in 2018 (25), 2019 (22), 2020 (26), and 2022 (27). OCT has also

contributed to the fields other than ophthalmology due to its

miniaturization and integration with catheters and endoscopes

(Figure 1). Hence, an overview of OCT imaging technology will be

given in this article, along with its recent developments in

oncological diseases: (1) superficial tumors: OCT could detect

microscopic information on the skin’s surface at high resolution

and has been demonstrated to help diagnose common skin

cancers; (2) gastrointestinal tumors: OCT can be integrated into

small probes and catheters to image the structure of the stomach

wall, enabling the diagnosis and differentiation of gastrointestinal

tumors and inflammation; (3) deep tumors: with the rapid

development of OCT imaging technology, it has shown great

potential in the diagnosis of deep tumors such in brain tumors,
Frontiers in Oncology 02
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breast cancer, bladder cancer and lung cancer. In addition, the

possible future development direction of OCT is prospected.
Development of the OCT

Low coherence interference of light is the basis for OCT,

which is similar to ultrasound imaging in principle. Based on the

Michelson interferometer, the OCT imaging equipment

architecture obtains tissue reflection signals with depth

resolution characteristics by detecting an interference signal

formed between the reflected light of the reference lens and

the backscattered light of the sample objective. By changing the

relative position of the reference mirror, the intensity of the

backscattered light of tissue can be detected at different depths.

In the axial direction, echo sequences with different depths form

an intensity distribution (A-scan). Multi-points A-Scan

reconstruction results in a two-dimensional (2D) cross-

sectional image of the tissue, called B-Scan. And then the 3D

structure of the tissue can be obtained by reconstructing the B-

Scan at different locations (28, 29).

OCT imaging technology has gone through three generations,

namely time-domain OCT (TD-OCT), spectral-domain OCT

(SD-OCT), and swept OCT (SS-OCT), with the advancement of

laser and computer technology and the optimization of imaging

algorithms (Figure 2). The first-generation OCT system based on

time-domain detection relied on time delay measurement of the

reflected signal from tissue relative to the reflected signal from the

reference mirror. The optical signal reflected from the target tissue

superimposes and interferes with the optical signal reflected by the

reference mirror, resulting in the formation of the OCT. This

procedure requires mechanically shifting the reference mirror,

thereby changing the depth of the tissue being scanned (31, 32).

However, with the advancement of technology and technology

and for different needs, TD-OCT has emerged many variants,

such as line-field confocal OCT (LC-OCT) (33, 34), full-field OCT

(FF-OCT) (35), polarization-sensitive OCT (PS-OCT) (36), etc.,

to achieve more efficient and wide applications in the clinic.

Unlike TD-OCT, the reference mirror of the reference arm is

fixed in the second-generation SD-OCT structure. The

interference of the optical signal can be achieved by varying

the frequency of the light source, and the data acquisition rate

can be raised by 45-100 times (37). Simultaneously, SD-OCT can

measure the spatial and structural information on all echo delays

(axial pixels) by evaluating the interference spectrum between

the light signal from the rest-reference mirror and the light

signal reflected from biological tissue (38).

Though SD-OCT and SS-OCT use Fourier domain

techniques, spectrometers and high-speed line scan cameras

are utilized to measure the interferometer spectra of the SD-

OCT. On the other hand, SS-OCT detects OCT signals with

sweep light sources and photodetectors. Moreover, the SS-OCT
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has a high-speed scan rate and a tunable scanning laser, resulting

longer wavelengths than traditional spectral-domain OCT (20,

39). Therefore, the third-generation SS-OCT has faster scan

speeds, higher scan densities, less deeply dependent signal-to-
Frontiers in Oncology 03
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noise ratios, and higher resolutions. These properties enable

them to reduce the impact of motion artifacts and better

visualize tissues such as blood vessels while imaging larger

areas, improving the quality of OCT in vivo imaging, and
FIGURE 1

Application of OCT in the field of oncology.
B

C

A

FIGURE 2

Structural diagrams of three generations of OCT systems. (A) TD-OCT; (B) SD-OCT; (C) SS-OCT (30). Copyright 2022, www.opticsjournal.net.
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expanding its usage in biomedical research. Toward Pi Company

has recently developed an SS-OCT system with 400,000 cycles

per second that can rapidly reach an imaging depth of 6 mm.

Simultaneously, the scanning length of a single image reaches 24

mm, and the axial resolution reaches as high as 3.8 mm. The

images shine in the commercial field of ophthalmic OCT

because of its excellent imaging parameters in both local and

foreign markets (40).

Optical coherence tomography angiography (OCTA) is a

kind of vascular imaging technology, belonging to the SS-OCT,

which can visualize and quantify the morphological information

of blood vessels by detecting the red blood cell (RBC) movement

of the intravascular dynamic scattering signal (41). It has become

the “gold standard” in the field of ophthalmic diagnostics.

Currently, applications in the field of oncology are also

widely studied.
Application of OCT in oncology

Cancer is a leading cause of death worldwide and most

patients are in the middle and advanced stages of treatment due

to the subtle onset of early cancer and the inconspicuous

symptoms. Traditional medical imaging methods focus on

morphological tumor diagnosis, however, association of the

imaging characteristics with early cancer is not apparent.

Therefore, achieving multi-angle, all-round imaging and

diagnosis of early cancer occurrence and progression from

structural and functional levels, and providing timely radical

treatment, is a significant component in the long-term survival

of cancer patients. OCT has become a novel approach to early

cancer diagnosis due to its rapid development.
Application of OCT in superficial tumors

The skin is not only the largest and most accessible organ of

the human body, but it also has relatively clear layered

structures. Therefore, the microstructural information of the

skin surface can be easily visualized using the OCT of near-

infrared light. OCT not only generates micron-level images of

living skin with a depth of 2 mm, but also is convenient, real-

time, dynamic, great repeatable, and inexpensive. Hence, it is

widely used in the diagnosis of superficial tumors. It was first

used in 1997 to diagnose skin lesions as an additional tool for

diagnosing and monitoring skin lesions (42). The high-

resolution OCT detects the epidermis, dermis, appendages,

and blood vessels of the skin, as well as evaluates the response

to treatment of some diseases. OCT has already been

demonstrated to help diagnose common skin cancers.

OCT is considered to be an advantageous diagnostic method

for non-melanoma skin cancer, offering potential for diagnosis

in the early stages of the disease. Non-melanoma skin cancers
Frontiers in Oncology 04
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are generally classified as basal cell carcinoma (BCC) and

squamous cell carcinoma (SCC) (43).

In 2021, an international consensus statement on Basal cell

carcinoma (BCC) OCT, including BCC term sets for different

subtypes was proposed. The publication of this statement helps

implement OCT imaging of basal cell carcinoma in clinical and

research settings (44). Adan et al. used the established diagnostic

value of OCT features in 99 patients to determine whether OCT

features could accurately distinguish BCC from non-BCC and

BCC subtypes. The results showed that a limited number of OCT

features were able to distinguish superficial BCC from non-

superficial BCC and non-BCC lesions. The diagnostic method

was able to detect 97.8% of BCC lesions, 84.3% of superficial

BCC lesions and 98.8% of non-superficial BCC lesions (45). The

LC-OCT technique, which combines reflex confocal microscopy

with OCT technology, explains the basal cell carcinoma

characteristics under LC-OCT examination and offers a

theoretical basis for the diagnosis, classification, and treatment

of later basal cell carcinoma (33, 34).

Cutaneous squamous cell carcinoma (SCC) is another

common non-melanoma skin cancer that, unlike BCC, has the

potential to metastasize. Early recognition and treatment are

critical to reducing this risk, and actinic keratosis (AK) is

considered a precursor lesion in SCC (46). Zhou et al., used an

SD-OCT to image AK lesions of varying degrees in mice, which

showed that the irregular wavy dermal-epidermal junction (DEJ)

and persistent thickening of the epidermis are useful diagnostic

parameters for AK. It demonstrates the great potential of OCT

for non-invasive diagnosis of precancerous lesions (47). Cinotti

et al. imaged 158 patients preoperatively using LC-OCT devices

and performed histological examinations postoperatively.

Conclusions show that LC-OCT is a new non-invasive

imaging technique that can identify the main features of AK

and SCC, which can help clinicians detect cellular and structural

changes in keratinocyte skin tumors in real-time (48). Ho et al.

based on a convolutional neural network (CNN) developed a

mouse skin SCC classification model that integrates a FF-OCT

device. This model provides a rapid, non-invasive, and accurate

SCC classification, achieving 87.12% and 90.10% classification

accuracy at the image level and tomography image level,

respectively (35).

Conventional OCT is considered to be less sensitive for

detecting early-stage melanoma, but it has the highest sensitivity

compared to other techniques such as confocal microscopy,

ultrasonography, and multispectral imaging. The imaging

results of high-definition OCT (HD-OCT) and speckle

variance OCT (SV-OCT) for melanoma are more positive

than conventional OCT. However, due to the limited data

available, more reports are needed to draw conclusions about

their effects (49).

OCT technology offer changes in tumor microvascular before

and after treatment to assess tumor microvascular response to

nano therapy. This creates the theoretical and technical base for
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developing new tumor-specific diagnostic and treatment

approaches (50). Welzel et al. observed blood vessels in skin and

malignant melanoma using Dynamic optical coherence

tomography (D-OCT) D-OCT and proposed that increased

blood vessel density and irregular vascular patterns were more

common in melanoma and more common in higher-stage

melanoma (51). OCT can visually exhibit microscopic

characteristics within tissues and distinguish lymph node tissue

and surrounding adipose tissue, revealing changes in nodular

microstructure during metastatic tumor invasion (Figure 3). Si

et al. generated “flow-gated” spectral OCT images using a dual-

band signal processing algorithm that demonstrates lymphatic
Frontiers in Oncology 05
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drainage pathways for melanoma blood vessels and peritumoral

tissue at micron-scale resolution (Figure 4) (52). Table 1

summarizes the imaging capabilities of OCT in superficial

tumors of the skin.

The introduction of non-invasive, efficient, and cost-effective

screening tools will enhance the early detection of oral cancer

and hence, the patient’s lifespan. A Local Residual Adaptation

Network (LRAN) model based on deep learning technology was

developed for qualitative and quantitative analysis of oral cancer

OCT image datasets with high accuracy and sensitivity (58).

Furthermore, a 3D technique of SD-OCT was developed for

evaluating the structural changes in oral epithelial cells, which
FIGURE 3

(A) Schematic of subcutaneous tumor-bearing nude mice dorsal window imaging; (B) Subcutaneous tumors of nude mice with tumors enlarge
the skin window chamber images; (C) The zoom-in skin window chamber image in the healthy nude mice; (D) The corresponding enface
microvascular image in vivo is shown in (C); (E) Representative tissue cross sectional structural image (gray) and blood flow image (red border);
(F) The zoom-in skin window chamber image in the subcutaneous tumor-bearing nude mice; (G) The corresponding enface microvascular
image in vivo is shown in (F) (50); Copyright 2021, Wiley. (H) Normal vascular OCT images; (I) OCT images of angiogram and lymphangiography.
The dotted line indicates the position of the cross-section image in A-B. (J, K) normal angiography and lymphangiography OCT en-face images.
The red arrow indicates a large blood vessel, and the yellow arrow indicates the lymphatic vessel. (L) Melanoma vascular OCT image. (M) OCT
images of melanoma angiography and lymphangiography. The dotted line indicates the position of the cross-section image in (E–F).
(N, O) Melanoma angiography and lymphangiography OCT en-face image (52). Copyright 2020, American chemistry society.
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improved the time efficiency and quality of diagnosing epithelial

lesions (59). Automatic image processing algorithms in OCT

images can differentiate between heterotypic oral potentially

malignant lesions (OPML) and malignant lesions, resulting in
Frontiers in Oncology 06
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high sensitivity. Evidence is provided by using reliable and low-

cost OCT instruments as point-of-care devices in resource-

constrained settings and potential clinical applications in oral

cancer screening and surveillance (53).
B

C

D

A

FIGURE 4

(A-C) ANN-SVM based image analysis pipeline (53); Copyright 2021, MDPI. (D) The overview of LRAN (58) Copyright 2022, Springer.
TABLE 1 The imaging capabilities of OCT in superficial tumors.

Cancer Authors Main Findings

Cutaneous
melanoma

Von Knorring et al. (2022) (54); Schuh
et al. (2022) (55)

OCT can distinguish benign and malignant pigmented cutaneous tumors

Cutaneous basal
cell carcinoma

Gust et al. (2022) (56); Suppa M et al.
(2021) (33); Verzì et al. (2021) (57)

LC-OCT can describe the characteristics of basal cell carcinoma at the bedside for differential diagnosis
of basal cell carcinoma and for typing of basal cell carcinoma and assessment of response to treatment of
BCC.

Squamous cell
carcinoma of
the skin

Ho et al. (2021) (35) FF-OCT can provide fast, non-invasive, and accurate SCC classification with high accuracy.

Oral cancer Yuan et al. (2022) (58); Trebing et al.
(2021) (59); Ilhan et al. (2020) (60); Chen
et al. (2020) (61)

OCT can assess structural changes in oral epithelial cells, distinguish oral cancer from precancerous
lesion tissue, and conduct noninvasive screening, detection, evaluation of differentiation, and staging oral
dysplasia and early cancer.
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Application of OCT in gastrointestinal
tumors

OCT has shown significant potential in cavity organ tumors

using techniques, such as endoscopy, catheterization, and

laparoscopy. OCT imaging can distinguish between the four

layers of the stomach wall structure, namely the glandular

epithelium, mucosal muscle layer, submucosal layer, and

muscle layer, where the submucosal layer is visible to the

blood vessels. Jansen et al. used prospective research to

investigate 26 patients with esophageal cancer. Calculate the

contrast of plaques in an M-mode scan to distinguish between

blood flow areas and resting tissues. This study is the first to

confirm the OCT imaging of gastric tissue and blood flow

detection in vivo during surgery in esophageal cancer patients,

reducing the occurrence of anastomotic leakage after operation

and improving surgical outcomes for patients (62).

OCT imaging of the esophageal and gastrointestinal parietal

structures can detect various digestive tract diseases because
Frontiers in Oncology 07
66
tumors and normal tissues exhibit different light scattering

patterns on OCT images. Lee et al. used volumetric OCTA

imaging and corresponding histological diagnosis of 52 dysplasia

patients who received Barrett’s esophagus (BE) monitoring or

endoscopic eradication of dysplasia, which can differentiate

between low-grade dysplasia, low-grade dysplasia (LGD), and

high-grade dysplasia (HGD) with the ability to visualize LGD/

HGD-associated microvascular features with high accuracy (63)

(Figure 5). Rodriguez et al. reviewed 14 studies, including

endoluminal laser microscopy and OCT imaging of Barrett’s

esophagus, and found that endoscopic imaging of Barrett’s

esophagus with OCT and laser intraluminal microscopy could

perform targeted biopsies and improve the probability of early

detection of esophageal tumors (64).

OCT’s ability to image the layers of the gastrointestinal wall

can be used to diagnose cross-wall inflammation in Crohn’s

disease (CD) and differentiate it from ulcerative colitis (UC).

Shen et al. used colonoscopic OCT to express the lamellar

structures of colon wall disintegration. They discovered that
FIGURE 5

(A) Schematic diagram of a commercial OCT; (B) Gastric tube perfusion areas and (C) ROI region OCT grayscale image, cross-sectional OCT
image showing vessels shadow (62); Copyright 2018, MDPI. OCTA vascular imaging of (D-F) non-dysplasia and (G-I) dysplasia BE (63).
Nanoparticles targeting the hypoxic tumor microenvironment. Copyright 2017, ELSEVIER.
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the destruction of colon wall layers on OCT is a reliable indicator

of CD transmural inflammation (65).

OCT has a critical role in achieving qualitative real-time

analysis and targeted biopsy. Ding et al. used OCT images to

differentiate dysplasia and cancer from normal colonic tissue

(66). For the first time, Hariri et al. used endoscopic OCT and

laser-induced fluorescence (LIF) OCT-LIF to demonstrate

repetitive, minimally invasive, cross-sectional colon imaging in

mice, observing the development of adenoma with atypical

hyperplasia of the colonic mucosal epithelium, mucosal

thickening. The mucosal/submucosal barrier can be uplifted

and disrupted by mucosal cancer tissue (67). Harpel et al. used

OCT to track the onset and development of colorectal cancer in

mice. They discovered that OCT could be used to allow for the

monitoring of morphological changes in the distal colon due to

tumor development and the presence of lymphoid aggregates. In

addition, the role of inflammation on tumor development and

the immune system can be elucidated. So, they could be used as

novel therapeutic agents to prevent disease progression and

increase the efficacy of anti-cancer agents. OCT can also be

useful for initiating early therapy and assessing the benefit of

combination therapy targeting inflammation (68).

Overall, OCT imaging is useful in the early differential

detection of gastrointestinal tumors. The intraluminal optical

tomography scanner (62, 69)could become a helpful reference

for rapid, low-cost, non-invasive light biopsy, early differential

diagnosis, and treatment of gastrointestinal cancers (Table 2).
Application of OCT in deep tumors

Many research groups (71) have developed new OCT

technologies to perform extensive studies in deep tumors with

the rapid growth of lasers and computers.

OCT enables fast, wide-field, and label-free imaging of the

living brain. In 2019, Katta et al. (72) used OCT to coagulate blood

vessels and performed laser ablation of brain tumors (Figure 6).

Yecies et al. published a new in vivo imaging approach using

speckle-modulating OCT (SM-OCT) for label-free in vivo nerve

and tumor edge identification in the same year. SM-OCT was

used to show the white matter bundle and cortical layer structure
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in the brains of live mice. They identified the edges of glioblast

tumors in situ in a mouse brain at an imaging of 10 mm (10).

Rapid and accurate evaluation of the intraoperative margin

is vital for minimizing the resection rate in breast cancer. Using

OCT images, Singla et al. used an active reverse-learning pre-

trained inception-v3 CNN to distinguish between healthy and

cancerous breast tissue. The method is highly sensitive, specific,

and accurate (73). Likewise, Mojahed concluded that using

CNN-based algorithms, it is possible to accurately identify

malignant spots in OCT images (74).

Kansal et al. also developed a high-resolution automated

full-field polarization-sensitive optical coherence tomography

(FF-PS-OCT) system that was utilized to visualize 12 breast

tissue samples, including four healthy tissues and eight

malignant (cancerous) tissues. They used 106 OCT pictures to

extract various phase features. This system can detect breast

cancer models with up to 90.90% sensitivity and 85.0%

specificity (75). Yang et al. analyzed the resection of normal

breast tissue, breast cancer tissue, benign breast lesions, and

axillary lymph nodes using FF-OCT and dynamic cell imaging

(DCI). The findings reveal that FF-OCT and DCI have high

accuracy in diagnosing breast cancer and have good diagnostic

potential in breast surgery (76). Many research organizations

have developed deep learning technology to improve qualitative

leaps in image recognition and diagnostic characterization. More

recently, Chen et al. created a computer-aided diagnosis (CADx)

method that designs a contrastive texture learning strategy, with

a sensitivity of 91.17% ± 4.99% for OCT image plaques. The

specificity was 93.96% ± 4.72%, providing better interpretability

based on texture features, which could lead to immediate clinical

treatment (77).

Bladder cancer patients may benefit from OCT in addition

to endoscopy for staging and grading. A prospective multicenter

phase II trial revealed that OCT-assisted cystoscopy is a real-

time, noninvasive, and maneuverable facility that increases the

accuracy of bladder cancer staging and tumor invasion

prediction (78). Xu et al. used intracellular motion (IM) as a

dynamic contrast agent to track the distribution of urinary celiac

cells. This contrast could provide a novel mechanism for OCT to

accurately depict urothelial cancer cells’ the depth and kind of

invasion to stage bladder cancer (79). Wurster et al. offered a
TABLE 2 The imaging capabilities of OCT in gastrointestinal tumors.

Cancer Authors Main Findings

Esophageal
adenocarcinoma

Rodriguez et al.
(2019) (64); Lee et al.
(2017) (63)

OCTA can distinguish between LGD and HGD while showing LGD/HGD-related microvascular features with high accuracy.
Endoscopic imaging using OCT and laser intraluminal microscopy allows for targeted biopsy to improve the probability of
early detection of esophageal tumors.

Colon cancer Kendall et al. (2022)
(70)

OCT can show the “texture” of tissue well and is an excellent way to assess the mucosal thickness and the number of layers for
quick identification and classification of tissues.

Gastric cancer Jansen et al. (2018)
(62)

OCT can perform real-time visual blood flow detection imaging in a surgical setting to evaluate the efficacy of surgery or drugs
by using Vivo microcirculatory perfusion destined data.
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piezoelectric fiber-optic scanner-based forward-imaging

endoscope for OCTA. The ins t rument combines

morphological tissue comparison with qualitative dynamic

blood flow information to improve the early diagnosis of

diseases like bladder cancer (80).

For the time being, OCT is primarily used as a bronchoscopic

auxiliary tool to display the microstructure of each layer of the
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bronchial wall and achieve a similar histopathological diagnosis

without tissue biopsy, which helps to reduce the invasive

examination and improve the early diagnosis rate of lung

cancer, which is critical for the diagnosis and treatment of lung

cancer (81). According to Shostak et al., ultra-high resolution

images provide essential microstructural information that

effectively distinguishes lymph nodes from adjacent airway walls
FIGURE 6

(A) Pretreatment of cerebral surface vascular construction (red) and tumor area (green) in mice. (B) Renders an image in 3D with an attenuation
rate threshold mask superimposed on the OCT intensity (blue). (C) Maximum intensity projection after coagulation. (D) Maximum intensity
projection after ablation. (E) After overlapping the tumor margins (blue) before ablation, stain the corresponding area with the post-ablation b-
scan (gray) (F) H&E stained of the corresponding region (72); Copyright 2019, Theranostics. (G) FF-OCT image of normal and (H) cancerous
hepatic cell. (I-K) Boxplot of selected features for the Mean, Kurtosis, and FracDim. mean and kurtosis are not sensitive in distinguishing
between normal and cancerous hepatocytes, the mean and kurtosis are not sensitive in distinguishing between normal and cancerous
hepatocytes, when the liver becomes cancerous, the value of the fractal parameter increases (88). Copyright 2020, Wiley.
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through the characteristics of these microstructures and reveals

lymphoid follicles, adipose tissue, pigment-laden histiocytes, and

blood vessels information based on needle-based OCT-guided

lymph node sampling for lung cancer staging (82).

Hohert et al. used a combination of OCT and autofluorescence

imaging (OCT-AFI) to improve diagnostic rates for areas of the

lungs not accessible by more extensive imaging methods (83).

Furthermore, OCT can aid in determining the tumor’s depth of

invasion (84). In malignant lung disease, discriminate between

normal and malignant sections of the central airway, lung

parenchyma, lymph nodes, and pleura by visualizing illness-

related anatomical partitions of the lungs in real-time (85). The

results of an in vitro scan of 64 specimens of lung nodules suggest

that PS-OCT may be able to distinguish between tumors and

fibrosis and can be used to guide intraoperative tissue sampling in

vivo or to assess sufficiency for rapid biopsy in vitro (36). Nandy

et al. came to a similar conclusion (86).

Presently, the use of OCT in liver cancer is under-reported.

In 2015, Zhu et al. performed rapid and high-resolution

tomography of human liver specimens using an FF-OCT

scanner (87). Nuclear atypia and thicker fibrous bands of

hepatocellular carcinoma can be observed on en-face

tomography images of FF-OCT. They proposed the support

vector machine (SVM) for classifying normal liver tissue and

cancerous liver tissue using en-face tomography images. They

used the label-free human liver tomography stack to extract

seven quantitative parameters, including mean, variance,

skewness, kurtosis, energy, entropy, and fractal dimension

(FD). The value of FD grows as the liver becomes cancerous,

signifying that a divided-dimensional classifier can be utilized

for label-free quantitative tumor detection (88).

These encouraging research results suggest that OCT

technology will become an important imaging method for
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deep tumor clinical applications. Table 3 summarizes the

imaging capabilities of OCT in the deep tumor.
Conclusions and perspectives

As a mature imaging method being used in new fields, OCT

has its unique advantages. Firstly, OCT can provide non-invasive,

high-quality detailed images. Through optical, electrical and

image processing, OCT can provide micrometer-resolution

images of tissues, as well as high-resolution 3D imaging, which

can be used for early diagnosis and treatment of diseases. The high

soft tissue contrast that OCT can provide facilitates detailed

analysis of soft tissue anatomy, which is of great significance for

early diagnosis of cancer. In addition, OCT can be integrated into

small probes and catheters, making it suitable for entering internal

organs for cancer imaging and diagnosis. Due to the limited

penetration depth and visual field of OCT itself, it is difficult for an

oncologist to diagnose from an image of small area tissue. Besides,

the imaging depth is limited in evaluating intraoperative tumor

margins, usually within 2mm, which greatly limits its application

in surgery. Moreover, it is difficult to fix the probe or imaging

module well when imaging with small probes and catheters, so it is

difficult to obtain clear images. Therefore, the first step in the

future development of OCT is to improve the imaging depth, and

combining artificial intelligence algorithms and a variety of

imaging methods, so that it can perform imaging at a relatively

large depth and field of view. Secondly, under the advantages of

ultra-high sampling speed and high resolution of OCT itself, the

multi-frame synthesis technology is used to improve the stability

of sampling. Finally, OCT will integrate with other disciplines and

technologies in the future, such as artificial intelligence, medical

image analysis, intelligent machinery manufacturing, safe and
TABLE 3 The imaging capabilities of OCT in deep tumors.

Cancer Authors Main Findings

Brain cancer NyúlTóth et al. (2021) (89); Hartmann
et al. (2020) (90); Yecies et al. (2019) (10);
Tsai et al. (2018) (91)

OCT can not only identify and quantify cerebrovascular morphology and degree of relaxation in vivo but
also conduct long-term monitoring of cerebrovascular dynamics in dilated. It can also show hidden brain
microanatomy to identify brain tumor margins, improving intraoperative safety.

Breast cancer Mojahed et al. (2020) (74); Kansal et al.
(2020) (75); Yang et al. (2020) (76)

FF-OCT has good diagnostic potential in breast surgery and enables real-time assessment of intraoperative
margins.

Bladder cancer Sung et al. (2021) (78); Xu et al. (2021)
(79)

OCT can show the depth and type of invasion of urothelial cancer cells, accurately grading and staging
bladder cancer. Assist in intraoperative decision-making through real-time disease staging for more
accurate diagnosis, resection, and reduced recurrence rates.

Cervical
cancer

Chen et al. (2022) (77); Ren et al. (2021)
(92); Placzek et al. (2020) (93); Ma et al.
(2019) (94); Zeng et al. (2018) (95)

OCT can identify cervical morphological features and lesions noninvasively in real-time.

Lung cancer Ding et al. (2021) (81) Endobronchial OCT (EB-OCT) combined with machine learning algorithms can identify malignant lung
nodules at a low cost.

Hepatocellular
carcinoma

Zhu et al. (2020) (88) FF-OCT can quantitatively detect hepatocellular carcinoma without markers.
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environmentally friendly newmaterial processes, et. It can be used

not only in early disease diagnosis and facilitating scientific

research to provide a more objective and precise imaging

measurement basis, but also for the routine detection of diseases

to provide safer, faster, and inexpensive technology solutions.
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Glioma is one of the most fatal primary brain tumors, and it is well-known for its difficulty in
diagnosis and management. Medical imaging techniques such as magnetic resonance
imaging (MRI), positron emission tomography (PET), and spectral imaging can efficiently
aid physicians in diagnosing, treating, and evaluating patients with gliomas. With the
increasing clinical records and digital images, the application of artificial intelligence (AI)
based on medical imaging has reduced the burden on physicians treating gliomas even
further. This review will classify AI technologies and procedures used in medical imaging
analysis. Additionally, we will discuss the applications of AI in glioma, including tumor
segmentation and classification, prediction of genetic markers, and prediction of
treatment response and prognosis, using MRI, PET, and spectral imaging. Despite the
benefits of AI in clinical applications, several issues such as data management,
incomprehension, safety, clinical efficacy evaluation, and ethical or legal considerations,
remain to be solved. In the future, doctors and researchers should collaborate to solve
these issues, with a particular emphasis on interdisciplinary teamwork.

Keywords: artificial intelligence, medical imaging, neural tumors, glioma, radiomics, machine learning,
deep learning
INTRODUCTION

Glioma is the most common histological type of primary central nervous system cancer, accounting
for 81% of all malignant brain tumors (1). Astrocytomas, oligodendrogliomas, oligoastrocytomas,
and ependymomas are all types of gliomas. TheWorld Health Organization (WHO) defines gliomas
into four categories; the first two grades and the last two grades are further classified as low-grade
glioma (LGG) and high-grade glioma (HGG). The poor 5-year overall survival (OS) rate for WHO
grade IV glioma patients are 6.8% (2, 3). Glioblastoma (GBM) is the most aggressive kind of grade
IV astrocytoma, accounting for 45% of gliomas and the 5-year OS rate of GBM patients is 5%.
Treatment for gliomas generally comprises surgical excision, radiation, and temozolomide
chemotherapy. Previous randomized clinical studies indicated that the addition of tumor-treating
fields to routine treatment increased life expectancy by 4 months (4, 5).
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Glioma diagnosis and treatment mostly involve imaging,
segmentation and localization, grading, pathology, gene
acquisition, and post-treatment recurrence monitoring (6, 7).
Tumor treatment and decision-making are difficult due to the
heterogeneity of tumors. Therefore, the rise of artificial
intelligence (AI) has significantly alleviated doctors’ loads
(8, 9). AI enables physicians to examine therapeutically
important material that is buried inside massive volumes of
data (10). Precision medicine is based on artificial intelligence, a
relatively new technique to diagnose and treat a disease that
considers various factors such as genetics, environment, and
lifestyle. Magnetic resonance imaging (MRI), positron emission
tomography (PET), and spectral imaging of the brain all contain
a wealth of structural and functional information that can be
analyzed by AI algorithms for glioma patient management and
decision-making (11). However, neurologists should be aware of
its limitations, since the use of algorithms raises concerns
regarding transparency, privacy, data encryption, and licensing
(12). Additionally, doctors and scientists must bridge gaps in one
another’s subject expertise (13).

The purpose of this review is to (1) provide an overview of AI
technology and its applications in medical imaging analysis; (2)
summarize the application and performance of AI-based on
MRI, PET, and spectral images in glioma; and (3) discuss
future challenges and directions for AI applications in the field
of neural tumors.
Abbreviations: WHO, World Health Organization; LGG, low-grade glioma;
HGG, high-grade glioma; OS, overall survival; GBM, glioblastoma; AI, artificial
intelligence; MRI, magnetic resonance imaging; PET, positron emission
tomography; ML, machine learning; SVM, support vector machine; LR, logistic
regression; RF, random forest; DL, deep learning; ANN, artificial neural network;
CNN, convolutional neural network; DNN, deep neural network; RNN, recurrent
neural network; DA, deep auto-encoder; DBN, deep belief network; DBM, deep
Boltzmann machine; GAN, generative adversarial network; VAE, variation auto-
encoder; VGG, Visual Geometry Group; TL, transfer learning; CT, computed
tomography; ROI, region-of-interest; AUC, area under the receiver operating
characteristic curve; DSC, dice similarity coefficient; T1, T1-weighted; FLAIR,
fluid-attenuated inversion recovery; T2, T2-weighted; DWI, diffusion weighted
imaging; DTI, diffusion tensor imaging; DKI, diffusional kurtosis imaging; PWI,
perfusion weighted imaging; ASL, arterial spin labeling; DCE, dynamic contrast-
enhanced; MRS, magnetic resonance spectroscopy; BraTS, Brain Tumor
Segmentation; T1c, T1-weighted contrast-enhanced; XGBoost, eXtreme
Gradient Boosting; IDH, isocitrate dehydrogenase; MGMT, methylation of O6-
Methylguanine-DNA methyltransferase; EGFR, epidermal growth factor receptor;
TERT, telomerase reverse transcriptase promoter; CDKN, cyclin-dependent
kinase inhibitor; ATRX, alpha thalassemia/mental retardation syndrome X-
linked; TP53, tumor protein 53; LASSO, least absolute shrinkage and selection
operator; MPRAGE, Magnetization Prepared Rapid Gradient Echo; RTKII,
receptor tyrosine kinase II; VEGF, vascular endothelial growth factor; PsP,
pseudoprogression; TTP, true tumor progression; TCIA, imaging archive; IVIM,
intravoxel incoherent motion; 18F-FDG, [18F]-fluorodeoxyglucose; 11C-MET,
[11C]-methyl-L-methionine; 18F-FET, [18F]-fluoro-ethyl-tyrosine; 18F-FDOPA,
[18F]-fluoro-L-phenylalanine; AA-PET, amino acid PET; RANO, response
assessment in neuro-oncology; TBR, tumor-brain ratio; TTP, time-to-peak;
PCNSL, primary central nervous system lymphoma; LOOCV, leave-one-out
cross-validation; IS, infrared spectroscopy; RS, Raman spectroscopy; FS,
fluorescence spectroscopy; HI, hyperspectral imaging; MRSI, agnetic resonance
spectroscopy imaging.
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1 ARTIFICIAL INTELLIGENCE

AI broadly refers to the capacity of computers to emulate
intelligent tasks, such as explicit rule-based systems and
computer algorithms that do not require hard-coded rules
(14). It was first proposed by an American computer scientist
John McCarthy in 1956 (15). Subsequently, machine learning
(ML), which falls under the umbrella of AI, has emerged and
been applied in various fields. In the past decade, deep learning
(DL), a new model of ML, has shown great potential for
applications in a broader range of domains, leading to the
third AI boom (16, 17) (Figure 1).

1.1 Machine Learning
ML is a subfield of AI that integrates algorithms and statistical
models trained on sample data, allowing computers to learn from
previously-stored “training” data without explicit ly
programming to anticipate new data points (18). ML can be
classified as supervised, unsupervised, semi-supervised, and
reinforcement learning. To forecast a regression or
classification, supervised learning algorithms must be trained
on a labeled dataset (19). The most often used supervised
approaches include support vector machine (SVM), linear and
logistic regression (LR), random forest (RF), decision trees, and
Bayesian networks (20). Unsupervised learning algorithms can
discover patterns by grouping unlabeled datasets or reducing
data. Gaussian mixture modeling, affinity propagation, mean
shift, K-mean clustering, and hierarchical clustering are all
frequently used techniques. Semi-supervised learning is a
technique that combines labeled and unlabeled data. It is a
hybrid of supervised and unsupervised learning. Reinforcement
learning is a machine learning-enhanced decision-making
technique that develops algorithms for a specific task and
learns from future errors and successes to reinforce learning (21).

Since the 1980s, ML has been used to create accurate
predictions and classifications based on input data in different
disciplines, including military research, life science, and clinical
practice. This substantially contributed to the advancement of
several fields and allowed AI development to again reach its
pinnacle after the 1950s (22). However, the construction of every
ML model requires intricate feature engineering, resulting in a
convoluted workflow. Besides, the accuracy of ML is not
satisfactory. Thus, the breadth and extent of ML applications
are restricted, leading to the creation of DL (16, 23).

1.2 Deep Learning
Since the 2010s, the advent of DL has fundamentally altered the
traditional model, in response to the past two AI booms (16). DL
is a subset of ML that derives its technology from the artificial
neural network (ANN) (24). In comparison to ML approaches,
DL algorithms can identify underlying patterns in data without
the requirement to extract individual features. The layer-by-layer
updating of DL weights aids in the training of DL systems, while
the ML weights are updated concurrently. The primary DL-
based networks include a convolutional neural network (CNN),
deep neural network (DNN), recurrent neural network (RNN),
deep auto-encoder (DA), deep belief network (DBN), and deep
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Boltzmann machine (DBM). Apart from these, generative
adversarial network (GAN) and variation auto-encoder (VAE)
are two recent approaches for generative and unsupervised
learning (25). CNN performs exceptionally well in picture
identification; convolutional and pool layers extract obvious
information, while fully connected layers conduct final
classification. For comparison, CNN’s approach encompasses
all current ImageNet Classification Challenge winners, with a
category mistake rate of 3.6% to date. The development of deep
learning models has increased the number of layer designs and
the number of model architectures, loss functions, and
optimizers available for network construction. Due to the
unlimited range of potential computational networks, a
significant number of designs have been suggested (for
example, AlexNet, ZeNet, Visual Geometry Group (VGG) Net,
GoogLeNet, ResNet, DenseNet, Super Resolution CNN, and U-
net, among others). Transfer learning (TL) is a subset of DL, and
because the weights generated from these networks trained on
ImageNet can be applied to different tasks, such as medical
pictures, this AI can significantly cut training time (26).

In conclusion, constructing DL models is more time-efficient,
simpler, and can achieve greater performance compared to ML.
Moreover, DL is readily adaptable to various domains and
applications due to TL. Although the DL establishment
procedure is straightforward, it requires huge data sets and
expensive hardware equipment, therefore ML remains a viable
option for smaller data sets (27). Additionally, on a task-specific
basis, a tailored image-naive architecture may outperform a DL
architecture (16).
Frontiers in Oncology | www.frontiersin.org 375
2 AI IN MEDICAL IMAGING

Over the past few decades, medical imaging techniques including
computed tomography (CT), MRI, PET, and ultrasound have
been used for early detection, diagnosis, and treatment of
diseases (28). In clinical settings, the majority of medical image
interpretation has been performed by human specialists such as
radiologists and physicians (27). Due to the varying levels of
expertise among physicians and the possible exhaustion of
human specialists, clinical application of medical imaging has
not yielded flawless outcomes. The situation has been improved
by the use of AI (29). Following the progression of AI
development, ML was initially applied to analyze medical
imaging. However, developing ML models necessitates those
medical specialists to give well-described regularities or
patterns inherent in data, which is a challenge for non-experts
in computer science to apply ML to investigate their studies (30).
Consequently, DL has been developed and widely used in
medical imaging in recent years. Instead of manually extracting
features, DL can autonomously find meaningful and useful
features in datasets allowing nonexperts in AI to effectively use
DL for their research. Besides, with sufficient training data, DL
models can achieve greater accuracy (31).

As different forms of AI techniques continue to be applied to
medical imaging, radiomics has arisen. Radiomics is the
application of computer image processing to transform region-
of-interest (ROI) image data into mineable high-dimensional
feature data. AI models are constructed based on the extracted
feature data to make disease-related diagnoses and predictions
FIGURE 1 | Artificial intelligence methods and timeline. Machine learning is a form of artificial intelligence that could be classified as supervised learning, unsupervisd
learning, semisupervised learning, and reinforcement learning. Deep learning is a form of machine learning. AI: artificial intelligence; ML: machine learning; DL: deep
learning.
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(32). This AI-assisted technology is of great interest to doctors
and is widely used in clinical research. Radiomics can elicit
measurable objective data that has previously been unavailable
and establish its relationship to underlying biological
processes (33). Radiomics may be mainly classified into two
types: feature-based and deep learning-based radiomics (34). The
workflow for feature-based radiomics consists primarily of
picture preprocessing, tumor segmentation, feature extraction,
and feature selection, followed by the establishment and
evaluation of a mathematical model (35). By utilizing various
network topologies, deep learning-based radiomics procedures
discover and detect classification-related patterns in picture data
(36). The feature structure is then merged to form higher-level
abstraction features. Finally, the retrieved features can be
evaluated further by the network or subjected to a model-
building process that is used in feature-based radiomics
(Figure 2). To assess the AI technique, the model may be
tested either internally (through cross-validation or
bootstrapping) or externally (by supervised learning). After
training and testing the model, it is desirable to apply it to a
third dataset, referred known as the external validation dataset.
External validation datasets serve as the gold standard for
assessing the performance, robustness, and dependability of AI
models. Statistical metrics like as accuracy, area under the
receiver operating characteristic curve (AUC), sensitivity,
specificity, positive/negative predictive values, and dice
Frontiers in Oncology | www.frontiersin.org 476
similarity coefficient (DSC) or dice score can be used to
evaluate the effectiveness of AI systems (37).
3 APPLICATIONS OF AI-BASED ON
MEDICAL IMAGING IN GLIOMA

Neuroimaging techniques, such as contrast-enhanced CT, MRI,
PET, and spectral imaging, have been widely applied for the
detection, treatment, and prognostic prediction of glioma.
However, the numerous amounts of data generated by these
techniques and the heterogeneity of tumors are miserable for
physicians. AI-based medical imaging could help to release
physicians from these large amounts of data by integrating the
similarity of these figures and providing directions. This section
will mainly demonstrate the strengths and shortages of the
application of AI-based MRI, PET, and spectral imaging
in glioma.

3.1 Magnetic Resonance Imaging
MRI reflects the tumor pathophysiological environment at the
voxel level by utilizing geometric, histogram, and texture analysis
methods for quantification and prediction of image-based
biomarkers via radiomics. Compared to biopsy, MRI is a non-
invasive method, which could provide relatively comprehensive
information on tumors. Whereas MRI can help to get rid of
FIGURE 2 | The workflow of radiomics. Radiomics may be divided into two categories: feature-based radiomics and deep learning-based radiomics. The workflow
for feature-based radiomics begins with image preprocessing, tumor segmentation, feature extraction, and feature selection, and concludes with the construction
and assessment of a mathematical model. In deep learning-based radiomics, different network architectures are used to find the most relevant features from the
input data. Finally, the retrieved features can be processed further by the network for analysis and classification, or they can leave the network and used to generate
models in a manner similar to the feature-based radiomics technique by employing different classifiers. ML, machine learning; DL, deep learning.
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ionizing radiation and interference from bone artifacts when
compared to contrast-enhanced CT. Besides, multiple sequences
such as T1-weighted (T1) and T2-weighted (T2) MRI can be
applied, which means more information can be obtained through
MRI. Among these sequences, T1 images often depict the glioma
boundaries, and fluid-attenuated inversion recovery (FLAIR)
and T2 images more clearly depict the tumor core (38). The
integrity of the blood-brain barrier (BBB) is disrupted in almost
all high-grade gliomas, which means that the gadolinium-based
contrast agents (GBCA) injected from the vein can successfully
enter the extravascular extracellular space of the brain,
manifesting as contrast-enhancing hyperintense regions on T1
sequences (39). Along with the T1 and T2 sequences, several
other sequences have also been used to comprehensively evaluate
the state of glioma (40). In detail, diffusion-weighted imaging
(DWI), diffusion tensor imaging (DTI), and diffusional kurtosis
imaging (DKI) can indicate changes in cell density, membrane
permeability, and tissue microstructure; perfusion-weighted
imaging (PWI) can detect changes in the microcirculation and
cell proliferation (41); magnetic resonance spectroscopy (MRS)
can reveal the metabolic status of malignancies directly, which is
most closely connected to gene expression regulation, suggesting
the combination of these two methods (42). Herein, we will
discuss the application of AI-based MRI in glioma from the
following four aspects: tumor segmentation and classification,
molecular marker prediction, molecular marker prediction, and
tumor cell analysis (Supplementary Table 1).
3.1.1 Tumor Segmentation and Classification
Glioma is classified into four subtypes: enhanced area, non-
enhanced region, necrosis area, and edema area. Several
algorithms have been used to segment glioma. Among them,
the outstanding performance of CNN has been well known in
glioma segmentation, with an accuracy greater than 80-90%.
Fu et al. (43) evaluated their multipath denseNet architecture
based on 3D CNNs using the Brain Tumor Segmentation
(BraTS) 2019 dataset and obtained a DSC of 0.922. Along with
the CNN model mentioned above, other AI methodologies have
also been applied in glioma segmentation. Another study
combined Superpixel fuzzy clustering with the lattice
Boltzmann technique can reach a disc of 0.93 (BraTS 2017)
(44), demonstrating that the approach is resistant to noise,
initialization, and strength inhomogeneity. Besides, Amin et al.
(45) proposed a technique merging Local Binary Pattern and
Gabor Wavelet Transform features, and generated dices of 0.96
(BraTS 2013), 0.98 (BraTS 2015), and 0.95 (local dataset). In
summary, segmentation of glioma is a time-consuming and
subjective task through the current manual ways. Through AI-
based MRI, these shortages can be largely overcome, and
subsequently, radiomics can be performed. Despite this, the
large heterogeneity of HGG and the low proliferative state of
LGG still bring a huge challenge to this task (71, 72). Besides, the
various outcomes in the same datasets caused by different ML
methodologies are a major concern for the application of ML in
clinical. For instance, the results generated by a two-stage
cascaded U-Net (73) and an RDAU-Net (74) using the BraTS
Frontiers in Oncology | www.frontiersin.org 577
2019 training dataset which comprises 259 cases of HGG and 76
cases of LGG are various.

Additionally, the value of MRI in the grading and
categorization of glioma has also been assessed according to its
pathophysiology, molecular composition, and transcriptional
activity. DL-based MRI, particularly CNN, performed well in a
study of glioma classification and grading. For instance, Quon
et al. created a modified ResNeXt-50-32x4d architecture to detect
and classify gliomas into distinct pathological sub-types using T2
images (46), and this model demonstrated an AUC of 99% for
tumor detection and 92% for glioma classification. In 2020,
Basha et al. proposed a novel Harris Hawks optimization
algorithm for evolving CNN architecture and investigated the
classification and grading of brain tumors using two datasets; the
former contains 8.000 brain tumors with four grades and 8.000
healthy MRI images, while the latter contains 4.908 MRI images
with glioma, pituitary, and meningioma; the accuracy was
greater than 95% in all experiments. Luo and colleagues (47)
examined the utility of high-throughput network characteristics
derived from the 3D U-net for histological and molecular
subtype prediction in three cohorts of 655 glioma patients
using conventional MRI. For histological diagnosis and
molecular subtyping, the novel picture signature-based
radiomics model achieved accuracies of 89.8% and 86.1% in
the cross-validation cohort and 83.9% and 80.4% in the
independent testing cohort. Overall, these studies indicated the
high accuracy generated by DL in the grading of glioma.

Besides DL, other AI technologies also performed well in
glioma classification. For example, Le et al. (48) identified
transcriptome subgroups in GBM patients using conventional
MRI in two cohorts of 120 patients. Model generation was
performed using an eXtreme Gradient Boosting (XGBoost)
machine classifier, and the model was constructed using 13
radiomics features selected from 704 handcrafted radiomics
features achieved 70.9%, 73.3%, 88.4%, and 88.4% accuracy in
predicting classical, mesenchymal, neural, and proneural
subtypes, respectively. Lu and co-workers (49) achieved an
accuracy of 81.8% after fivefold cross-validation using an SVM
classifier based on radiomics features from multimodal MRI in
456 glioma patients for the classification of five molecular
subtypes; this accuracy was increased to 89.2% when combined
with histological diagnosis and MR radiomics.

In general, many AI systems can accurately detect and grade
gliomas using picture data. However, because various studies use
different data and defining criteria, it’s impossible to compare
them, and it’s unclear which algorithm is the most effective.

3.1.2 Molecular Marker Prediction
WHO included molecular and histological characteristics in the
classification of brain cancers for the first time in 2016, and in
2021, WHO made significant revisions to the categorization of
tumors, emphasizing the importance of molecular detection (75).
The updated WHO 2016 classification of central nervous system
malignancies stresses the prognostic significance of molecular
characteristics such as the isocitrate dehydrogenase (IDH)
genotype or the 1p/19q chromosomal arm heterozygous
deletion (3). 2021 WHO classification approves methylome
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classifiers for a variety of CNS tumor types and subtypes and
promoter methy la t ion of O6-Methy lguanine-DNA
methyltransferase (MGMT) is related to an improved response
to temozolomide therapy and a longer OS. Numerous studies
have also demonstrated the predictive abilities of certain
molecules. For example, research suggests that grade II or III
IDH wild-type astrocytomas may harbor chromosomal +7/-10,
epidermal growth factor receptor (EGFR) amplification, and/or
telomerase reverse transcriptase promoter (TERT) alterations,
with the same prognosis as GBMs (76). The detection of
homozygous cyclin-dependent kinase inhibitor (CDKN) 2A/B
deletion is critical for properly diagnosing and prognosing
patients with diffuse astrocytomas caused by IDH mutations.
In diffuse astrocytomas, IDH mutations are related to alpha
thalassemia/intellectual disability syndrome X-linked (ATRX)
and tumor protein 53 (TP53) functional loss mutations (77).
ATRX mutations are mutually exclusive with co-deletion of 1p/
19q and are associated with oligodendrocytes (78). TERT and
ATRX are telomere maintenance proteins (79, 80).

Recent years have seen a surge in interest in radiogenomics.
Radiogenomics needs the establishment of correlations between
quantitative or qualitative imaging aspects and genomic data
derived from tissue analysis and other clinical data in order to
enable the development of imaging alternatives to genetic testing
(81, 82). Radiomics can help to distinguish IDH-mutant co-
deleted 1p/19q tumors (oligodendrogliomas) from IDH-mutant
non-co-deleted 1p/19q tumors (astrocytomas). Researchers
reported that the combination of a near-complete or complete
hyperintense signal on a T2 sequence and a hypointense signal
on a FLAIR (except a potential hyperintense peripheral rim)
possesses a 100% predictive value of IDH-mutant astrocytomas,
which was termed as T2-FLAIR mismatch (83). Researchers
further verified the specificity of this mismatch for anaplastic
astrocytomas and diffuse through a retrospective study
containing patients with diffuse oligodendroglioma (IDH-
mutant 1p/19q co-deleted), diffuse astrocytoma (IDH-mutant),
anaplastic oligodendroglioma (IDH-mutant 1p/19q co-deleted),
anaplastic astrocytoma (IDH-mutant), and IDH-WT
(Glioblastoma-like) (84). It was revealed that the T2-FLAIR
mismatch is present in four of five anaplastic astrocytoma
tumors, 34 of 70 diffuse astrocytoma tumors, and 0 of 79 other
three types of tumors, confirming the 100% specificity
differentiating astrocytomas from other LGGs, which has been
further verified in other two studies (85, 86). In addition to the
T2-FLAIR mismatch, researchers created a model consisting of
T1, T2-weighted FLAIR, and an apparent diffusion coefficient
(ADC), and reported that the model can differentiate MGMT
methylated tumors from non-methylated tumors with an AUC
of 0.925 and 0,902 in the training and validation cohort,
respectively. This indicated the efficiency of MRI in the
prediction of molecular markers. Employing AI-based MRI can
help clinicians to clear changes in molecular markers easily (87,
88). In general, the majority of research employed MRI to predict
glioma gene mutations with DL (particularly CNN), RF, least
absolute shrinkage and selection operator (LASSO), and SVM
technologies to obtain strong predictive performance with an
Frontiers in Oncology | www.frontiersin.org 678
accuracy of greater than 80 - 90%. For example, Choi et al. (57)
predicted the IDH genotype with an accuracy of 92.8% and
91.7% in the validation and test sets, respectively, using an RNN
application based on dynamic susceptibility contrast MRP from
463 patients with gliomas. The H3- -K27M mutation status
prediction model based on CNN features and the SVM
classifier was tested by Liu et al. in a group of 55 patients with
preoperative T1-magnetization prepared rapid gradient echo
(MPRAGE) images MRI, and the results indicated an accuracy
of 95% upon fivefold cross-validation (60). For the prediction of
deletion of Chromosomal Arms 1p/19q, Akkus and co-workers
(62) used a multi-scale CNN based on T1c and T2 pictures from
159 LGGs. Using TL and previously trained 3D-dense-UNets on
T2 images, Yogananda and colleagues (58) were able to
accurately predict the MGMT promoter methylation status in
247 individuals. Similarly, several studies used CNN and/or RF
models to predict molecular markers (such as TERT (61), 7/10
aneuploidies, CDKN2 family mutations (66), receptor tyrosine
kinase II (RTKII) (67), and tumor proliferation marker (Ki-67)
(63) in glioma patients’ MRI and reached a high degree of
accuracy. Additionally, LASSO regression and/or SVM models
based on MRI correctly predicted additional molecular
indicators such as ATRX mutation (59), TP53 status (64), and
vascular endothelial growth factor (VEGF) expression (65).

3.1.3 Response Assessment and Prognosis
Prediction
AI has been used in MR imaging sequences to assess response
and predict survival in gliomas, excluding the prediction of
molecular markers. A significant challenge following
chemoradiotherapy is the presence of radiation-induced side
effects such as pseudoprogression (PsP), a late benign
therapeutic effect that mimics true tumor progression (TTP) at
the tumor site or resection margin, which occurs in
approximately one-third of GBMs and is usually stable without
further treatment (89). Clinicians face significant hurdles because
of this discrepancy between PsP and TTP.

SVM has been successfully used to measure response and
predict survival in gliomas. Li and co-workers (51) demonstrated
a 92% accuracy in differentiating between PsP and TTP after
tenfold cross-validation using an SVM classifier based on deep
convolutional generative adversarial networks and AlexNet
radiomics feature learning from DTI. Conventional MRI data
from two institutions, comprising 105 GBMs, was utilized by
Ismail and colleagues (52) to distinguish between PsP and TTP.
An SVM classifier was utilized to evaluate the test cohort after
extracting 30 shape features, and the training and test cohorts
had accuracy rates of 91.5% and 90.2%, respectively.

Moreover, some studies have reported the accuracy of AI in
predicting glioma prognosis. The cancer imaging archive (TCIA)
and local test cohorts were used by Pan et al. to predict the OS
using ML techniques with C-indexes of 0.70 and 0.76,
respectively, for multiparameter MRI of 152 GBMs (53). When
radiomic characteristics were paired with preoperative clinical
risk factors (C-index = 0.76 in the TCIA and test cohort), the
impact of OS prediction was substantially enhanced. Sanghani
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and colleagues (56) found that an SVM classifier based on
textural characteristics, tumor shape, and volumetric data from
conventional MRI was able to accurately predict OS in two- and
three-class survival groups following a 5-fold cross-validation.
Similarly, Chang and colleagues (55) predicted OS with good
accuracy using an RF MRI feature selector and a kernel SVM or
neural network classifier. Furthermore, another study
demonstrated significant accuracy in identifying survival-
relevant high-risk subregions in MRIs from GBMs using the
K-means clustering methodology (54).

In summary, ML algorithms are more than 80% accurate in
predicting glioma outcomes via imaging. One way to improve
the efficiency of AI-based MRI in Response assessment and
prognosis prediction is to overcome the limitations of MRI.
The major disadvantage is that the treatment-related changes can
affect MRI results, regardless of the time of evaluation. In this
situation, some entities such as radiation necrosis (RN),
pseudoprogression (PSP), and pseudoresponse can be
introduced (90). Notably, oedema and necrosis caused by
postoperative reaction and radio- or chemotherapy could be
misinterpreted as disease progression due to the increase in T2/
FLAIR signal (91). Therefore, it is suggested to introduce a
reliable imaging technique to increase the accuracy of MRI.

3.1.4 Tumor Cell Analysis
Non-enhanced aggressive tumors are difficult to detect with MR
enhancement but can be aided by assessing a variety of
biophysical characteristics. Hu and colleagues (68) trained a TL
model using dynamic susceptibility contrast MR imaging and
DTI data from 18 GBMs from a single clinical institution and on
82 image-recorded biopsy samples. With a Pearson correlation
value of 0.88 and a mean absolute error of 5.66 percent, the
tumor cell density could be predicted. In another study, images
from High-Resolution Magic Angle Spinning Nuclear MRS of
glioma and control samples were analyzed using an RF model
with AUCs of 85.6% and 87.1% to differentiate tumor cells and
benign samples from controls and malignant samples (69).
Similarly, Fathi Kazerooni and colleagues (70) differentiated
subregions of brain gliomas in Fifty-one tissue specimens from
10 patients using conventional MRI, DWI, DTI, intravoxel
incoherent motion (IVIM), and dynamic susceptibility contrast
MRI. An SVM classifier was used to generate models, and a
model based on 15 MRI-based parameters had an AUC of
greater than 0.90 for identifying the three subregions (active
tumor, infiltrative edema, and normal tissue).

Tumor cell analysis enables the direction of postoperative
targeted therapy and the assessment of tumor margins
intraoperatively. At the moment, artificial intelligence is still in
its infancy. Due to financing and data issues, there are still very
few relevant studies available now. Future studies can be
conducted to improve the use of AI and the verification of
cell analysis.

In general, AI has been extensively applied in glioma MRI,
including tumor segmentation and classification, molecular
marker prediction, and tumor cell analysis. With the rapid
advancement of AI, deep learning in image analysis
demonstrates both its advantages and limits. AI will eventually
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assist in the integration of data from disparate sources (clinical
examination, other medical imaging, and pathology) to guide
therapy and prognosis.

3.2 Positron Emission Tomography
As described above, the application of AI-based MRI shows
excellent outcomes in glioma. However, MRI may not always be
able to answer three essential questions: evaluation of the initial
characterization of the brain lesion, monitoring of therapies to
clear changes induced by recurrence/progression and treatment,
and evaluation of treatment efficacy (92). Furthermore, one of
the main advantages of PET is that the radiotracers used for PET
are in most cases independent of disruption of the blood-brain
barrier (BBB) as opposed to MRI, which is especially useful in
LDH (92, 93). Overall, PET provides insights into glioma that
exceed MRI and that can be applied for noninvasive grading,
differential diagnosis, mapping the extent of tumor involvement,
designing surgery and radiotherapy methods , and
prognostic prediction.

PET mainly uses [18F]-fluorodeoxyglucose (18F-FDG) and
radioactively labeled amino acids as radioactive tracers.
Compared with 18F-FDG, the radioactive labeled amino acid,
such as [11C]-methyl-L-methionine (11C-MET), [18F]-fluoro-
ethyl-tyrosine (18F-FET), 3,4-dihydroxy-6-[18F]-fluoro-L-
phenylalanine (18F-FDOPA) show higher contrast in tumor
tissues and normal brain tissues (94). Further, the amino acid
PET (AA-PET) can provide additional information on the
metabolic characteristics of glioma. These two advantages
make the United Cooperative produce guidelines encouraging
the use of AA-PET for tumor diagnosis and treatment (95, 96),
and the response assessment in neuro-oncology (RANO) group
made evidence-based recommendations for the use of PET
imaging in the planning and monitoring of radiation therapy
for glioma patients (97–99). While the tumor-brain ratio (TBR)
is currently the gold standard for estimating neoplastic uptake
relative to healthy brain tissue in the majority of centers, tracer
uptake dynamics, such as slope and time-to-peak, have been
shown to increase diagnostic accuracy (100). Dynamic factors
were found to be linked with tumor grade, tumor progression,
molecular indicators such as IDH gene alterations, and
separating patients with actual and false tumor progression in
patients with gliomas (3, 101, 102). The following is a summary
of recent AI-based PET studies on glioma diagnosis, treatment,
and prognosis (Table 1).

3.2.1 Applications for Diagnosis
Glioma misdiagnosis as another lesion can have a significant
impact on patient survival, and although MRI is frequently
utilized for the first screening, radiological separation of
glioma, primary central nervous system lymphoma (PCNSL),
and multiple sclerosis remain challenging. PET is an alternative
form of imaging that has been used to assess central nervous
system disorders (117). As a result, an increasing number of
studies have used AI-based PET to aid in the detection and
diagnosis of glioma. For example, 18F-FET-PET imaging may
differentiate between multiple sclerosis and WHO grade II-IV
glioma with a 91% accuracy by using an SVM classifier,
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TABLE 1 | Summary of major studies on AI-assisted PET in Glioma.

Purpose Ref. Design
ofstudy

Database Sample size Performingalgorithm Modality Feature Outcomes (%)

Accuracy Sensitivity/
Specificity

Detection and
segmentation

Blanc-
Durand
et al,
2018
(134)

Retrospective Internal 37 glioma patients 18F-FET PET CNN Feature 3D U-net
CNN

Detection:
100;
Segmentation:
DSC: 82.31

Detection:
100/100;
Segmentation:
88/99

Classification Kebir et
al, 2021
(135)

Retrospective Internal 7 multiple sclerosis
and 34 glioma
patients

18F-FET PET TBR SVM 91; AUC:94 89/100

Classification Kong et
al, 2019
(136)

Retrospective Internal 24 lymphoma
patients and 53
GBMs

18F-FDG PET SUV
map

Decision
tree

90.9-97.4;
AUC:97.1-
99.8

90.6-98.1/
87.5-100

Classification
(3-group
molecular
subtypes)

Matsui et
al, 2020
(137)

Retrospective Internal 217 LGGs
49/58/100 (IDH-
wildtype diffuse
astrocytoma/IDH-
mutant difuse
astrocytoma/
oligodendroglioma)

MRI, PET, and CT Image and
clinical features

residual
network

96.6/68.7
(training/
testing)

NA

Discrimination
between PsP
and TTP

Lohmann
et al,
2020
(138)

Retrospective Internal 34 glioma patients 18F-FET-PET First-order
statistics, shape,
and texture,
Laplacian-of-
Gaussian filtered,
wavelet-
transformed
features

RF Training/
testing:
86/70;
AUC:74/74

82/90
(training);
100/40
(testing)

Discrimination
between PsP
and TTP

Kebir et
al, 2020
(139)

Retrospective Internal 44 glioma patients 18F-FET-PET TBR and time-
to-peak

Linear
discriminant
analysis

AUC:93 100/80

Discrimination
between PsP
and TTP

Imani et
al, 2014
(140)

Retrospective Internal 12 grade 2 and 3
gliomas

18F-FDG PET and
MRS

Maximal SUV
and multiple 2D
maps of choline,
creatine

SVM 92 80/100

Discrimination
between PsP
and TTP

Kebir et
al, 2017
(141)

Retrospective Internal 14 HGGs 18F-FET-PET Textural and
conventional
features

Clustering
based
classifier

Positive
predictive
value: 90

90/75

OS prediction Papp et
al, 2018
(142)

Retrospective Internal 70 patients with a
treatment naive
glioma

11C-MET PET General and
higher-order
textural features,
in vivo, ex vivo,
and clinical
patient
information

K-nearest
neighbor
classifier

90; AUC: 91 88/95

IDH mutation
prediction

Li et all,
2019
(143)

Retrospective Internal 127 consecutive
gliomas

18F-FDG PET Clinical
characteristics
and the radiomic
signature

SVM and
multivariate
LR

Training/
testing:
79.8/83.7;
AUC: 91.1/90

78.9/80.4
(training);
92.3/80
(validation)

IDH status
prediction

Tatekawa
et al,
2021
(144)

Retrospective Internal 62 treatment-naive
glioma patients

Multiparametric MRI
and 18F-FDOPA PET

Voxel-wise
feature

Two-level
clustering
and SVM

76; AUC:81 NA

Classification
(HGG and
LGG) and IDH
status
prediction

Kebir et
al, 2019
(145)

Retrospective Internal 39 gliomas 11C-MET PET/MRI TBR SVM
classifier
with a linear
kernel

Classification:
AUC:62;
Prediction:
AUC:79

NA

MGMT status
prediction

Qian et
al, 2020
(146)

Prospective Internal 86 GBMs 18F-FDOPA PET Shape, tumor
intensity
and tumor
texture features

RF 80 100/33
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according to a study by Kebir et al. (104) In an attempt to identify
PCNSL from GBM, Kong et al. (105) used 107 radiomic
characteristics from 18F-FDG PET in 77 individuals (24 with
lymphoma and 53 with GBM). The decision tree approach
algorithm demonstrated great diagnostic performance,
according to this study’s findings (accuracy 90.9%-97.4%, AUC
97.1%-99.8%). LGG may be classified into three molecular
subtypes based on the WHO’s 2016 categorization of central
nervous system malignancies. The mainstay of care for patients
with LGG is surgical excision of the tumor followed by
postoperative chemoradiotherapy. Their effectiveness, however,
is dependent on the tumor’s molecular subtype. Matsui et al.
(106) utilized residual networks to predict LGG molecular
subtypes using multimodal data from a glioma database,
including MRI, PET, and CT, and achieved an overall accuracy
of 68.7% for the test dataset.

The above evidence has exhibited the strength of PET in the
diagnosis of glioma. However, about 5% of HGG do not show
amino-acid tracer uptake (118, 119) and some non-neoplastic
lesions, such as vascular malformations, hematomas,
inflammatory lesions, and ischemic lesions, can also exhibit
unspecific amino-acid uptake (120, 121). Besides, although
static 18F-FDG PET has been used for the differentiation of
LGG and HGG, overlap can be seen, which may interfere with
the judgement (122). Also, static 18F-FDG PET has only a
specificity of 56-85% and a sensitivity of 71-80% for the
differentiation between LGG and HGG, suggesting the
employment of dynamic 18F-FDG PET which can improve the
accuracy (95, 123). Therefore, although the application of PET
enhances the interpretation of lesions determined by MRI,
histological diagnosis and the molecular signature cannot
be neglected.

3.2.2 Applications for Treatment
Segmentation is a frequently performed operation in medical
imaging; automated segmentation significantly reduces the time
required for human segmentation. Segmentation objectives such
as radiotherapy plans that define the total or biological tumor
volume, and surgical plans that quantify the three-dimensional
volume of enhancing tumor and surrounding edema are
necessary for accurate assessment and monitoring of tumor
response and have also demonstrated some independent
Frontiers in Oncology | www.frontiersin.org 981
prognostic value. A 3D U-Net CNN was employed in 37
glioma patients to detect and segment gliomas using 18F-FET
PET with 100% detection accuracy and 82.31% DSC
(segmentation) (103).

Although PsP is most frequently noticed within the first 12
weeks following the cessation of radiation and chemotherapy
(124), it can develop later (125). Detecting PsP in GBMs
continues to be an important clinical problem in radiology
since it is necessary to avoid continuing ineffective therapy and
discontinuation of beneficial treatment. Kebir et al. (108)
developed a model for identifying PsP using 18F-FET PET
scans from 44 glioma patients and a linear discriminant
analysis model with an AUC of 0.93 was utilized. Lohmann
et al. (107) used a model for discriminating PsP from TTP by
analyzing 18F-FET PET scans from 34 glioma patients. The
patient group was separated into a training and a test cohort. The
final model used an RF classifier and attained accuracies of 86%
and 70% in the training and test data, respectively. In another
study, an SVM classifier was developed on twelve post-therapy
patients who underwent 18F-FDG PET and MRS to identify
brain glioma progression. The classifier’s sensitivity and
specificity for detecting glioma progression were 80% and
100%, respectively, with an accuracy of 0.92 (109).

3.2.3 Applications for Prognosis
PET imaging using radiolabeled amino acid tracers such as 11C-
MET and 18F-DOPA is regarded as a potential diagnostic tool
for tumor characterization and longitudinal therapy monitoring
due to its excellent sensitivity and specificity. Papp et al. (111)
assessed the possibility for survival prediction using 11C-MET
PET radiomics and clinical patient information in 70 patients
with a treatment-naive glioblastoma. The final model
incorporated in vivo, ex vivo, and clinical patient data and had
an AUC of 0.90. Similarly, another study (114) showed a good
AUC for IDH status prediction using an SVM classifier while
assessing 11C-MET PET scans from glioma patients. Based on
18F-DOPA PET images, RF and SVMmodels correctly predicted
MGMT status (115) and tumor proliferation marker (Ki-67)
(116). Additionally, several studies employ a combination of
multimodal imaging and machine learning methods to predict
tumor genetic markers. For example, Tatekawa et al. (113)
performed a radiomics analysis based on multiparametric MRI
TABLE 1 | Continued

Purpose Ref. Design
ofstudy

Database Sample size Performingalgorithm Modality Feature Outcomes (%)

Accuracy Sensitivity/
Specificity

Ki-67
prediction

Kong et
al, 2019
(147)

Retrospective Internal 123 glioma
patients
82/41 (training/
testing)

18F-FDG PET Shape and size,
first-order,
texture, wavelet,
and alternative
filtered features

SVM Training/
validation:
81.7/73.2;
AUC:88/76

95.6/64.9
(training);
92/43.8
(validation)
July 202
2 | Volume 12 |
AI, artificial intelligence; PET, positron emission tomography; Internal, subjects were recruited from insitutional and/or public through media channels; 18F-FET, [18F]-fluoro-ethyl-tyrosine;
CNN, convolutional neural network; DSC, dice similarity coefficient; TBR, tumor-brain ratio; SVM, support vector machine; AUC, area under the receiver operating characteristic curve;
18F-FDG, [18F]-fluorodeoxyglucose; SUV, standardized uptake value; IDH, isocitrate dehydrogenase; MRI, magnetic resonance imaging; CT, computed tomography; NA, not available;
PsP, pseudoprogression; TTP, true tumor progression; RF, random forest; 2D, two-dimensional; HGG, high-grade glioma; OS, overall survival; 11C-MET, [11C]-methyl-L-methionine; LR,
logistic regression; 18F-FDOPA, [18F]-fluoro-L-phenylalanine; LGG, low-grade glioma; MGMT, methylation of O6-Methylguanine-DNA methyltransferase; GBM, glioblastoma.
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and 18F-DOPA PET images for the prediction of the IDH status
in 62 treatment-naïve glioma patients, a SVMmodel achieved an
AUC of 81% after leave-one-out cross-validation (LOOCV).

Taken together, feature-based PET radiomics has shown
promise in the field of neuro-oncology, allowing for the
evaluation of more data at a reasonable cost. However, the
majority of existing research is retrospective in nature, with
insufficient sample sizes and no available database. ML is a
technique for fitting statistical models, and its outcomes are
sample size-dependent.

3.3 Spectral Imaging
Glioma is defined by its proclivity for metastasis and
heterogeneity. Due to the lack of specificity of early clinical
signs, the majority of glioma patients are frequently overlooked,
resulting in patients missing the best treatment window.
Histopathology has evolved into the gold standard for
classification and diagnosis, whereas molecular pathology has
gained increasing attention in the diagnosis and classification of
glioma. With the advancement of molecular biology and
molecular pathology in 2016, the WHO categorization of
recombinant central nervous system malignancies is beneficial
for early detection and accurate therapy (3). Spectral imaging is a
potential tool for assisting in the histopathological study of
cancer samples that contain molecular information. Imaging
can be employed for real-time intraoperative evaluation,
allowing for earlier detection and more precise intraoperative
resection, which is critical for patient survival (126).
3.3.1 Infrared spectroscopy
Infrared spectroscopy (IS) is a non-invasive and quick measuring
technique used to characterize biological samples and their
constituents qualitatively and quantitatively by quantitative
detection of molecule internal vibration patterns (127, 128).
Several studies have coupled human serum IS with ML
methods to identify glioma (129–131). Hands et al. (131)
extracted 130 features from Fourier-transform IS pictures of
blood samples from 433 individuals with or without glioma. The
final SVM classifier model has a sensitivity and specificity of
91.5% and 83.0%, respectively, for detecting glioma. In this test,
SVM and RF outperformed other classifiers. Another model was
constructed using partial least squares discriminant analysis and
synthetic minority over-sampling to classify GBM multiforme
and lymphoma from 765 serum samples. The result has a
sensitivity of 90.1% and a specificity of 86.3%, respectively (132).

Furthermore, the combination of IS with a microscope
enables the spatial distribution of proteins, lipids, nucleic acids,
and other compounds in tissue samples to be examined. Peng
et al. (133) used Fourier transform infrared microscopy to study
9360 spectra from the tissue of 77 glioma patients. This study
employed artificial neural networks to categorize gliomas (HGG
and LGG) with higher than 98% accuracy, specificity, and
sensitivity. For estimating the secondary structure of proteins,
Surowka et al. (134) employed infrared micro-spectroscopy
spectral range. ANNs were employed to generate the models,
and the accuracy was improved to less than 5%.
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3.3.2 Raman Spectroscopy
RS is a label-free method that generates spectra by detecting and
measuring Raman scattering using narrow-band laser excitation
and sensitive spectrometers. For stereotactic brain tumor biopsy,
in vivo tumor infi ltration detection, intra-operative
histopathology diagnosis, and molecular categorization, it gives
quantitative biochemical information regarding the molecular
composition (135–138).

For the creation of a model to grade glioma, Zhou et al. (139)
employed label-free visible resonance RS spectra from 125
histologically normal human brain tissues and glioma tissues.
The SVM model was able to discriminate normal, LGGs, and
HGGs 75.1% of the time. Besides, Pekmezci and coworkers (140)
used RS spectral data to differentiate the phenotypes of T-cells
and monocytes following incubation with a medium conditioned
by GBM stem cells with a variety of genetic backgrounds in three
human GBM cell lines. The linear discriminant analysis model
was generated using 67% of the dataset (training set) and then
verified against 33% of the dataset (test set). The SVM produced
sensitivities and specificities of greater than 70% and 67% in the
validation and independent test sets, respectively.

3.3.3 Fluorescence Spectroscopy
FS offers a comprehensive array of detection tools and
procedures for high-grade gliomas that accumulate the
endogenous biomarker protoporphyrin IX following exogenous
treatment of 5-aminolevulproic acid, boosting tumor tissue
fluorescence and directing surgical intervention (141, 142). In
ten glioma patients, Valdés and colleagues (143) assessed the
possibility of combined FS and reflectance spectroscopy in vivo
optical data for diagnostic performance during surgery. The
SVM model attained an accuracy of 94%. Leclerc et al. (144)
used spectral characteristics analysis based on FS to identify
healthy tissue from margin tissue in 50 samples from ten
patients. A completely automated clustering technique
obtained a diagnostic accuracy of 77% in predicting healthy
tissues from margin tissues.

3.3.4 Hyperspectral Imaging
HI measures the diffuse reflectance of tissue surfaces to generate
spectral characteristics that contain both spatial and spectral
information (145). Recently, HI has been utilized to identify and
diagnose illnesses characterized by alterations in cellular
biochemical pathways (146). Urbanos et al. (147) classified
tumor tissue in a set of 12 HGGs using thirteen in-vivo
hyperspectral photos (healthy tissue, tumor, venous blood
vessel, arterial blood vessel, and dura mater). Overall
accuracies for the three models (RF, SVM, and CNN) ranged
from 60% to 95% depending on the training settings. Similarly,
Manni and coworkers (148) classified tumor tissue (tumor,
healthy tissue, and blood vessels) in 16 tumor patients using 26
in-vivo hyperspectral pictures. The hybrid 3D-2D CNN models
achieved an overall accuracy of 80%. Ortega et al. (149)
employed 527 high-resolution pictures to detect GBM in non-
tumor brains and GBM samples from 13 individuals. The CNN
models had an average sensitivity and specificity of 88% and
77%, respectively.
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In conclusion, these investigations demonstrate that spectral
image-based AI is beneficial for diagnosing and applying glioma
tissue samples intraoperatively. Due to spectrum imaging’s
unpopularity, there are few studies and their sample sizes are
modest. As a potential intraoperative quick diagnostic method,
more research may be directed toward developing applicable
AI software.

3.3.5 Magnetic Resonance Spectroscopy Imaging
MRSI is a non-invasive technique for evaluating the spatial
distribution of metabolic changes in the brain (150, 151). It
can provide information on neuron integrity, neurotransmitter
levels, and specific biological information like as cell membrane
turnover, cell density, and cell proliferation, complementing the
structural pictures of conventional MRI. The measured brain
MRSI includes complicated signals corresponding to several
overlapping peaks of various metabolites, baselines from
various macromolecules and lipids, as well as noise and
distortion (152). By measuring the concentration levels of
specific metabolites, in vivo and in vitro MRSI studies (153,
154) of the brain can indicate tumor kind, grade, or invasion and
distinguish tumor growth from post-radiation necrosis.

In one work, the SVM classifier and the minimum redundancy
maximum relevance algorithm were used to predict glioma grade
based on twenty-six metabolic characteristics from the
preoperative MRSI. This model attained AUCs of 0.825% in the
training set and 0.820% in the validation set (50). In another study,
the dictionary pair learning approach was designed to evaluate
glioma based on 150 spectra; its overall accuracy was 0.9778 (155).
For glioma treatment response, in a research of 29 control mice
and 34 TMZ-treated mice, the performance of an SVM classifier
with a linear kernel over the number of sources picked for the
MRS image data was able to identify between treated and
untreated mice with GBM with an accuracy of over 80% (156).
4 LIMITATIONS AND FUTURE
CONSIDERATIONS

Simultaneous advancements in image processing technology
(MRI, PET, and spectral imaging) and AI, particularly in
machine learning and deep learning, have enabled these data-
rich patterns to provide diagnostic and guidance information for
glioma patients in a non-destructive manner. The majority of
these technologies have demonstrated a moderate to a high
degree of accuracy. However, some constraints must be solved
before these novel predictive analytics algorithms can become
widely used in glioma diagnosis and therapy.

Initially, the use of AI in glioma is still in its infancy, with the
majority of research being retrospective with limited sample size.
It is difficult to validate the safety and reliability of these models
in clinical practice. The present medical scientific environment
requires data sharing, data management, data standards, and
interoperability. Additionally, as machine learning continues to
change the area of healthcare, it has posed a variety of
challenging ethical problems. If misdiagnosis happens in the
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use of AI, issues of moral and legal accountability must be
addressed (157). Another difficulty is the “black box” aspect of
AI technology, which leaves developers and consumers in the
dark about how a computer generates its results and lacks
interpretability and transparency (158). Radiomics is an AI-
assisted technique that will confront the same challenge in the
diagnosis and treatment of glioma, which may restrict clinical
application (159). However, there are several directions to
modify this problem. Applications of radiomics in glioma
belong to more deterministic domains. The AI-calculated
result assigns the images a relevant annotation (such as a
certain gene mutation, the prognosis of the disease is good or
bad). Using other patient samples, medical specialists can
objectively validate the tags assigned to the images (17, 160),
which could reduce the impact of the “black box”. Besides, a new
generation of AI which has better reliability, interpretability,
accountability, and transparency than black-box AI is worth
investing in to overcome the “black box” dilemma. For example,
Jia et al. created visualizing surrogate decision trees of
convolutional neural networks with python (161).

Notable also is the fact that the research described above
consists of analyses of a single type of data, a technique known
as single-omics analysis (radiomics). However, single-omics data
analysis has limits, and it is not apparent which data types should
be used to reflect clinical characteristics. A qualified physician
should evaluate not only the type of tumor when diagnosing and
treating patients, but also the pathology, genes, medical imaging of
the tumor, and clinical aspects of the patients. Along with
radiomics, genomics, transcriptomics, and high-throughput
proteomics are all examples of “omics” techniques that provide
data for the examination of molecular constituents. In a general
sense, the multi-omics analysis consists of three components: input
data, technique, and output data (162). Multiple omics analysis is
crucial in neuro-oncology research with limited sample sizes.While
the multi-omics analysis may analyze several types of data in
parallel for humans, human-dependent multi-omics analysis is
not repeatable or interpretable. This challenge can be tackled by
integratingmachine learning techniques (163) such as multi-modal
learning, multi-task learning, representational learning, semi-
supervised learning, and automated feature acquisition. Recently,
radiomics and radiogenomics (81, 82, 164) have received
considerable interest, as have various studies that analyze both
radiographic and histological pictures (165). The multi-omics
analysis enables us to acquire a more complete knowledge of the
illness to improve clinical applications such as determining therapy
efficacy, predicting prognosis, and identifying the optimal
treatment (Figure 3).

In general, AI will show its superiority and larger-scale
research will be carried out. Clinicians need to increase
interaction with engineers to complement knowledge gaps in
both fields. In the future, multidisciplinary collaboration remains
a crucial aspect. Researchers will be able to combine multi-omics
data to discover drugs and assess treatment effects, predict
prognosis, and discover the best treatment for each patient.
Finally, while AI has played a huge role in the medical field, AI
still can’t replace doctors.
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5 CONCLUSION

This review retrospectively summarizes some sample studies on
the applications of AI in the diagnosis and treatment of glioma
using MRI, PET, and spectral imaging. AI is advancing at a
breakneck pace and is emerging as a viable tool for medical
picture analysis. However, we should be mindful that the
implementation of AI in clinical practice is not without flaws.
While we are continually working to improve the accuracy of AI,
we should not rely excessively on it, as it cannot replace
the clinician.
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Application of artificial
intelligence in the diagnosis
of subepithelial lesions using
endoscopic ultrasonography:
a systematic review and
meta-analysis

Xin-Yuan Liu, Wen Song, Tao Mao, Qi Zhang, Cuiping Zhang
and Xiao-Yu Li*

Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
Endoscopic ultrasonography (EUS) is the most common method for diagnosing

gastrointestinal subepithelial lesions (SELs); however, it usually requires

histopathological confirmation using invasive methods. Artificial intelligence

(AI) algorithms have made significant progress in medical imaging diagnosis.

The purpose of our research was to explore the application of AI in the diagnosis

of SELs using EUS and to evaluate the diagnostic performance of AI-assisted EUS.

Three databases, PubMed, EMBASE, and the Cochrane Library, were

comprehensively searched for relevant literature. RevMan 5.4.1 and Stata 17.0,

were used to calculate and analyze the combined sensitivity, specificity, positive

likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR),

and summary receiver-operating characteristic curve (SROC). Eight studies were

selected from 380 potentially relevant studies for the meta-analysis of AI-aided

EUS diagnosis of SELs. The combined sensitivity, specificity, and DOR of AI-aided

EUS were 0.92 (95% CI, 0.85-0.96), 0.80 (95% CI, 0.70-0.87), and 46.27 (95% CI,

19.36-110.59), respectively). The area under the curve (AUC) was 0.92 (95% CI,

0.90-0.94). The AI model in differentiating GIST from leiomyoma had a pooled

AUC of 0.95, sensitivity of 0.93, specificity of 0.88, PLR of 8.04, and NLR of 0.08.

The combined sensitivity, specificity, and AUC of the AI-aided EUS diagnosis in

the convolutional neural network (CNN) model were 0.93, 0.81, and 0.94,

respectively. AI-aided EUS diagnosis using conventional brightness mode

(B-mode) EUS images had a combined sensitivity of 0.92, specificity of 0.79,

and AUC of 0.92. AI-aided EUS diagnosis based on patients had a combined

sensitivity, specificity, and AUC of 0.95, 0.83, and 0.96, respectively. Additionally,

AI-aided EUS was superior to EUS by experts in terms of sensitivity (0.93 vs. 0.71),

specificity (0.81 vs. 0.69), and AUC (0.94 vs. 0.75). In conclusion, AI-assisted EUS

is a promising and reliable method for distinguishing SELs, with excellent

diagnostic performance. More multicenter cohort and prospective studies are

expected to be conducted to further develop AI-assisted real-time diagnostic

systems and validate the superiority of AI systems.
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Introduction

Gastrointestinal subepithelial lesions (SELs) are tumors that

originate from the muscularis mucosa, submucosa, or muscularis

propria (1). According to statistics, one SEL is found in every 300

endoscopy examinations (2). SELs, including gastrointestinal

stromal tumors (GIST), leiomyomas, schwannomas,

neuroendocrine tumors (NET), lipomas, and ectopic pancreas,

are asymptomatic and difficult to distinguish due to their similar

morphology in size, shape, surface color, contour, and margin (1).

GISTs are the most prevalent SELs, with a prevalence of 14–20

cases per million, and have the potential to evolve into

malignancies (3, 4). Approximately 60% of patients with GISTs

can be cured by surgery (5). Therefore, it is crucial to differentiate

GISTs from other benign tumors.

With the development of endoscopic ultrasonography (EUS),

fine-needle aspiration biopsy (FANB), immunohistochemical

staining methods, and various new imaging technologies,

such as contrast-enhanced harmonic EUS (CH-EUS), the

approaches for diagnosing and treating SELs have improved

(6). EUS as a useful tool has recently become the conventional

inspection method for the discovery and diagnosis of SELs.

However, the diagnostic accuracy of EUS is limited and closely

related to the professional level and experience of the

endoscopists (7). EUS-FNAB can be used to obtain tissue

specimens for immunohistochemical staining and is the gold

standard for diagnosing SELs. Nevertheless, the diagnostic

yield of EUS-FNAB for SELs is not ideal, ranging from 60%

to 85% (8–10). FNAB is an invasive and risky operation, and

the limited sampling sites are subjectively determined by

endoscopists, which may lead to missed diagnoses. Therefore,

alternative methods are needed for the accurate diagnosis of

SELs to avoid surgical resection of benign lesions as GISTs with

malignant potential.

Recently, artificial intelligence (AI) has been extensively

used in medical imaging technology, owing to its superior

performance. Machine learning (ML) involves the fields of

computer science and statistics, generating algorithms to

analyze various types of data, and building appropriate

descriptive and predictive models (11). Artificial neural

networks (ANN), as mathematical models of information
02
91
processing, are supervised ML models inspired by the

structure of brain synaptic connections (11). A convolutional

neural network (CNN) is a deep learning algorithm that shows

strong performance in image recognition, classification, and

processing (12). AI-aided EUS diagnostic tools have been

widely applied to differentiate various types of pancreatic

diseases, such as pancreatic tumors, chronic pancreatitis, and

autoimmune pancreatitis (13–15). In recent years, several

studies have explored the value of CNN in distinguishing

SELs based on EUS images, mainly in differentiating GIST

from benign lesions. In this systematic review and meta-

analysis, we aimed to assess the effectiveness and accuracy of

AI in diagnosing SELs using EUS images and focused on the

performance of computer-aided diagnosis models in

differentiating GIST from other benign lesions by comparing

AI and EUS experts.
Methods
Search strategy

This study followed the preferred reporting items for

systematic reviews and meta-analyses (PRISMA) guidelines

(16). The PubMed, Embase, and Cochrane Library databases

were systematically and comprehensively searched for studies on

the AI-aided diagnostic accuracy of SELs under EUS with or

without EUS experts as controls published until February 2022.

Search terms in the title, abstract, and keywords are as follows:

(“artificial intelligence” OR “AI” OR “machine learning” OR

“deep learning” OR “convolutional neural network” OR

“computer-assisted” OR “computer-aided” OR “neural

network” OR “digital image analysis” OR “digital image

processing”) AND (“endoscopic ultrasound” OR “endoscopic

ultrasonography” OR “EUS”). To avoid omissions, the SELs

were not included in the retrieval strategy. The retrieved articles

were screened independently by two investigators (Xin-Y L and

WS). Disagreements were discussed and resolved by a third

researcher (TM). This protocol was registered with

PROSPERO (CRD42022303990).
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Inclusion and exclusion criteria

The inclusion criteria for studies were as follows (1):

prospective or retrospective study design; (2) study subjects

were adult participants (≥18 years old); (3) all SELs patients

were diagnosed based on histopathological diagnosis after

surgical or endoscopic resection or EUS-FNAB; (4) AI

algorithm was applied to the diagnosis of patients with SELs

using EUS images; (5) study results demonstrated the diagnostic

performance of computer-aided diagnosis (CAD) algorithms,

including area under the curve (AUC), sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV),

diagnostic odds ratio (DOR), or accuracy, enabling the

calculation of true positive (TP), false positive (FP), true

negative (TN), and false negative (FN); and (6) the manuscript

was written in English. Conference proceedings, case reports,

narrative and systematic reviews, meta-analyses, and studies

with incomplete data (TP, FP, TN, and FN could not be

calculated) were excluded. Studies with failed randomization

and significant differences in baseline data between groups were

also excluded from this systematic review.
Data extraction and quality assessment

The number of histologically confirmed SELs that were

true-positive (GIST considered to be GIST by AI or experts),

true-negative (non-GIST considered to be non-GIST by AI or

experts), false-positive (non-GIST considered to be GIST), or

false-negative (GIST considered to be non-GIST) were

extracted. Additionally, the first author’s name; year of

publication; country where the study was conducted; study

type; number of samples in the training, validation, and test

sets ; imaging modality; AI model; and video were

also retrieved.

The Quality Assessment of Diagnostic Accuracy Studies

(QUADAS-2) tool was used to evaluate the quality and

potential bias of all included studies in four aspects: patient

selection, index test, reference standard, and flow and timing

quality (17). Regarding the problem of pre-specified thresholds,

we referred to the study by Thaninee et al. and modified the

problem as to whether the performance of the AI-assisted

diagnostic system was validated in another cohort (18). Two

reviewers (Xin-Y L and WS) independently assessed the eight

studies, and conflicts were discussed and resolved with a third

reviewer (TM).
Statistical analysis

RevMan 5.4.1 (The Cochrane Collaboration, 2020, London,

United Kingdom) and Stata 17.0 (StataCorp, College Station,
Frontiers in Oncology 03
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TX, USA) were used for diagnostic meta-analysis. Published

data were extracted, including the reported TP, FP, FN, TN,

sensitivity, and specificity of the test datasets. The pooled

sensitivity, specificity, positive likelihood ratio (PLR),

negative likelihood ratio (NLR), diagnostic score, and DOR

with 95% confidence intervals (CIs) were calculated and

analyzed using the bivariate mixed-effects model. A summary

receiver-operating characteristic curve (SROC) was also

constructed, and the AUC was calculated to assess diagnostic

accuracy. A funnel plot and its symmetric distribution were

used to evaluate the risk of publication bias. Subgroup and

meta-regression analyses were performed to explore the

sources of heterogeneity. Heterogeneity among the studies

was determined using I2 and Cochran’s Q tests. P < 0.1

generally suggests significant heterogeneity, and I2 >50%

indicates substantial heterogeneity.
Result
Literature search and bias assessment

The literature retrieval process and screening results are

shown in Figure 1. Initially, 380 potentially relevant studies were

retrieved from the three databases, and 98 duplicates were

removed. Subsequently, 268 studies were excluded after

reviewing the titles and abstracts, as they were irrelevant

articles and were not suitable for the research topic or type.

After screening the full text of 14 eligible studies, two studies that

did not meet the eligibility criteria and four studies related to

GIST malignant potential were excluded. Finally, eight studies

were selected for the meta-analysis of AI-aided diagnosis of SELs

according to the PRISMA flowchart (19–26).

The characteristics of all included studies are summarized

in Table 1. A total of eight studies with 339 patients with GIST

and 194 patients without GIST were included in the meta-

analysis, seven of which were within the last three years. They

were all retrospective studies, and one of them used both

retrospective and prospective test sets in the stage of testing

AI models (22). Three studies were conducted in Japan, two in

South Korea, and three in China, Turkey, and the United

States. Only one study developed an AI model based on

contrast-enhanced harmonic EUS (CH-EUS) images, whereas

the others used the conventional brightness mode (B-mode) of

EUS. Considering computer-aided models, except for one

study that used the ANN model, the remaining studies

applied the CNN model. Only one study did not use EUS

experts as controls (19). The training, validation, and testing

datasets of the included studies are presented in Supplementary

Table 1. All the studies trained and developed AI models using

a large number of EUS images. One of the studies used videos
frontiersin.org
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from each patient divided into 0.1s intervals, yielding images to

train the AI model (24).

The quality and risk of bias of the included studies

determined using the QUADAS-2 tool are presented in
Frontiers in Oncology 04
93
Figure 2. One meta-analysis of AI-aided diagnosis of GIST

identified a high-risk bias in patient selection (19).

The slope coefficient of the Deeks’ funnel plot was symmetrical

(p= 0.14) (Figure 3), indicating that publication bias was insignificant.
TABLE 1 Characteristics of included studies.

Author Year Study type Country GIST non-
GIST

TP FP FN TN Reference
standard

Imaging
modality

AI
model

EUS
experts

as
control

Video Reference

Vien X.

Nguyen

2010 Retrospective USA 124*/

28

217*/

18

100 46 24 171 Histopathology B-mode ANN N N (19)

Yosuke
Minoda

2020 Retrospective Japan 47 13 42 4 5 9 Histopathology B-mode CNN Y N (20)

Yoon Ho
Kim

2020 Retrospective Korea 106*/
32

106*/
37

88 26 18 80 Histopathology B-mode CNN Y N (21)

Xintian
Yang

2021 Retrospective
&
Prospective

China 30**/
36

54**/
41

27/
32

2/
14

3/4 52/
27

Histopathology B-mode CNN Y N (22)

Chang
Kyo Oh

2021 Retrospective Korea 40 14 40 2 0 12 Histopathology B-mode CNN Y N (23)

Keiko
Hirai

2021 Retrospective Japan 85 37 84 12 1 25 Histopathology B-mode CNN Y N (24)

Gulseren
Seven

2021 Retrospective Turkey 35 10 32 4 3 6 Histopathology B-mode CNN Y N (25)

Hidekazu
Tanaka

2022 Retrospective Japan 42 11 38 1 4 10 Histopathology CH-EUS CNN Y Y (26)
fro
*ROI, region of interest, not patient.
**Data of retrospective diagnostic test.
FIGURE 1

Flowchart of literature search.
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Diagnostic performance of AI-assisted
EUS in GIST

We incorporated data from all retrospective diagnostic test

sets and performed a meta-analysis of the eight included studies.

The pooled sensitivity of AI-aided EUS diagnosis of GIST was

0.92 (95% CI, 0.85-0.96) (Figure 4A) and specificity was 0.80

(95% CI, 0.70-0.87) (Figure 4B). The pooled PLR and NLR were

4.61 (95% CI, 3.00-7.08) (Figure 4C) and 0.10 (95% CI, 0.05-

0.19) (Figure 4D), respectively. The diagnostic score and DOR

were 3.83 (95% CI, 2.96-4.71) and 46.27 (95% CI, 19.36-110.59),

respectively (Supplementary Figure 1). Figure 5A shows the

SROC curve of AI-aided EUS, with an AUC of 0.92 (95% CI,

0.90-0.94).

Subsequently, we expanded the sample size by including the

data from a prospective diagnostic test set. The combined results

of AI-assisted EUS diagnosis of GIST were shown as follows:

AUC of 0.92 (95% CI, 0.89-0.94) (Figure 5B), sensitivity 0.92

(95% CI, 0.85-0.95), specificity 0.78 (95% CI, 0.69-0.86), PLR

4.23 (95% CI, 2.88-6.22), and NLR 0.11 (95% CI, 0.06-0.19)

(Supplementary Figure 2). The diagnostic score and DOR were
Frontiers in Oncology 05
94
3.67 (95% CI, 2.90-4.45) and 39.40 (95% CI, 18.20-85.30),

respectively (Supplementary Figure 3).

To investigate the clinical application of AI in the diagnosis

of GIST, we generated a Fagan diagram (Figure 6). Assuming a

20% prevalence of GIST, the diagram shows a posterior

probability of 54% for GIST if the test is positive, and

approximately 2% for a negative test.
Subgroup analysis of AI-assisted EUS

The specific types of SELs in the included studies are shown in

Supplementary Table 2. One study involved five SELs, including

GIST, leiomyomas, schwannomas, NET, and ectopic pancreas

(24). Four studies developed AI only for the differential diagnosis

of GIST and leiomyoma (22, 23, 25, 26), and a subgroup analysis

of these four studies was conducted to explore the discriminating

ability of the two diseases. The AI model had a pooled AUC of

0.95 (95% CI, 0.93-0.97), sensitivity of 0.93 (95% CI, 0.87-0.97),

specificity of 0.88 (95% CI, 0.71-0.96), PLR of 8.04 (95% CI,
FIGURE 2

Quality assessment of included studies using QUADAS-2.
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2.92-22.18), and NLR of 0.08 (95% CI, 0.04-0.15) (Supplementary

Figures 4, 5).

We performed a subgroup analysis after excluding Nguyen’s

study, as the AI model adopted was ANN. The combined

sensitivity and specificity of AI-assisted EUS diagnosis of GIST

on the CNN model were 0.93 (95% CI, 0.87-0.97) and 0.81 (95%

CI, 0.68-0.89) (Supplementary Figures 6A, B), respectively. The

pooled PLR was 4.85 (95% CI, 2.81-8.36) and NLR was 0.08

(95% CI, 0.04-0.17) (Supplementary Figures 6C, D). Figure 7A

shows the SROC curve of the AI-assisted EUS, with an AUC of

0.94 (95% CI, 0.92-0.96). The I2 was 50.57% for PLR, 74.05% for
Frontiers in Oncology 06
95
sensitivity, 71.16% for specificity, and 73.61 for NLR, indicating

that significant heterogeneity existed in the pooled sensitivity,

specificity, and NLR.

We also conducted a subgroup analysis of seven studies

on imaging modalities without CH-EUS. The AI model had a

pooled AUC of 0.92 (95% CI, 0.89-0.94) (Figure 7B),

sensitivity of 0.92 (95% CI, 0.84-0.97), specificity of 0.79

(95% CI, 0.68-0.87), PLR of 4.39 (95% CI, 2.85-6.78), and

NLR of 0.10 (95% CI, 0.04-0.21) (Supplementary Figure 7).

However, the heterogeneity within the subgroups was still

significantly high.
FIGURE 4

Sensitivity (A), specificity (B), positive likelihood ratio (C), negative likelihood ratio (D) of AI-assisted EUS diagnosis of GIST.
FIGURE 3

Deeks’ funnel plot of publication bias.
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A subgroup analysis of AI-assisted EUS diagnosis of GIST

was performed on the study subjects, namely six studies based

on patients and not regions of interest. As shown in

Supplementary Figure 8, the combined sensitivity, specificity,

PLR, and NLR were 0.95 (95% CI, 0.89-0.97), 0.83 (95% CI, 0.67-

0.92), 5.43 (95% CI, 2.75-10.71), 0.07 (95% CI, 0.03-0.13),

respectively. The SROC curve, with an AUC of 0.96 (95% CI,

0.94-0.97), is displayed in Figure 7C. I2 was 38.69% for PLR,

51.31% for NLR, 58.46% for sensitivity, and 71.06% for

specificity, indicating a low degree of heterogeneity in PLR,

whereas there was moderate heterogeneity in NLR, sensitivity,

and specificity.

To further explore the source of heterogeneity, we

performed meta-regression analysis. The number of samples

was a major source of heterogeneity in univariate meta-

regression analysis (p <0.001, Figure 8). Study quality (p =

0.03) and study subjects (p = 0.01) were major sources of

heterogeneity in the joint meta-regression model (Table 2).
Frontiers in Oncology 07
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Comparison between AI and EUS experts

Seven studies simultaneously tested the accuracy of EUS

experts in the diagnosis of GIST. All EUS experts performed

more than 500 EUS examinations or had at least 5-year

experience in evaluating gastrointestinal SELs. The SROC

curve of the EUS experts, with an AUC of 0.75 (95% CI, 0.71-

0.78), is displayed in Figure 7D. The pooled sensitivity of EUS

experts in diagnosing GIST was 0.71 (95% CI, 0.63-0.78)

(Figure 9A) and specificity was 0.69 (95% CI, 0.61-0.76)

(Figure 9B). The combined PLR and NLR are 2.28 (95% CI,

1.85-2.82) (Figure 9C) and 0.42 (95% CI, 0.33-0.54) (Figure 9D),

respectively. There was little heterogeneity in the specificity

(p = 0.37), PLR (p = 0.69), and NLR (p = 0.12).

For diagnosis of GIST under EUS, AI was superior to EUS

experts in terms of sensitivity [0.93 (95% CI, 0.87-0.97) vs. 0.71

(95% CI, 0.63-0.78)], specificity [0.81 (95% CI, 0.68-0.89) vs.

0.69 (95% CI, 0.61-0.76)], and PLR [4.85 (95% CI, 2.81-8.36)

vs. 2.28 (95% CI, 1.85-2.82)], and NLR [0.08 (95% CI, 0.04-0.17)

vs. 0.42 (95% CI, 0.33-0.54)]. Figure 10 shows the comparison of

SROC curves between AI-assisted EUS models and EUS experts

with AUC of 0.94 (95% CI, 0.92-0.96) vs. 0.75 (95% CI, 0.71-

0.78), suggesting that AI-assisted EUS models have better

diagnostic performance.
Discussion

With the application of artificial intelligence in medical

imaging technology, an increasing number of diseases have

advanced their diagnosis and treatment methods. In this
FIGURE 5

SROC curves of AI-assisted EUS diagnosis of GIST. (A) The SROC curve of eight studies. (B) SROC curve of nine datasets including prospective
diagnostic test set.
TABLE 2 P-value of parameters in the joint model.

Parameter LRTChi2 P-value I2 I2lo I2hi

Quality* 6.73 0.03 70 34 100

Number 4.59 0.10 56 2 100

Publish year 2.11 0.35 5 0 100

AI model 2.11 0.35 5 0 100

Imaging form 0.90 0.64 0 0 100

Study subject* 8.85 0.01 77 51 100
*p <0.05
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systematic review and meta-analysis, we explored the

application of computer-aided diagnosis systems in

gastrointestinal SELs and found that artificial intelligence

algorithm models have excellent diagnostic performance with

a sensitivity of 0.92 (95% CI, 0.85-0.96) and specificity of 0.80

(95% CI, 0.70-0.87). EUS is currently the most accurate and

prevalent imaging modality for evaluating gastrointestinal SELs

because of its ability to penetrate tissue layers and, thus, most

likely identify the origin of the lesion (1). A previous study has

shown that CH-EUS has better diagnostic performance than B-

mode EUS in distinguishing leiomyomas from GIST and

discriminating the risk stratification of GIST (27). In addition
Frontiers in Oncology 08
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to improving the equipment performance and imaging

technology of EUS, the application of artificial intelligence

undoubtedly compensates for the limitations of EUS. With the

help of the AI system, it is expected to shorten the diagnostic

time, improve diagnostic efficiency, and reduce the misdiagnosis

rate of GIST and other benign lesions, thus avoiding unnecessary

EUS tests, invasive biopsies, and surgical operations.

In our initial literature search, we found that Kim and Lee

used digital image analysis of objective information provided by

EUS images to diagnose gastric stromal tumors (28, 29). We

excluded these two studies because they were limited to

analyzing the features of EUS images and did not develop
FIGURE 6

Fagan normogram for the prediction of GISTs in EUS images.
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corresponding AI models. We also found four studies that

explored the application of AI in the malignancy stratification

of GISTs, and the overall accuracy of the AI models in predicting

the malignant potential of GISTs was 66.0%-83.4% (30–33).

During the literature search, we found that several studies have

explored the application of AI in SELs, especially GISTs.

Therefore, we systematically and comprehensively summarized

the application of AI-assisted EUS for the diagnosis of SELs.

Although there are many types of SELs, most studies classified

SELs into two categories: GIST and non-GIST, to explore the

accuracy of AI-assisted EUS. In four studies, the non-GISTs only

referred to leiomyoma, and we performed a subgroup analysis

(22, 23, 25, 26). Nguyen et al. developed an ANN with excellent

performance for differentiating lipomas (AUC=0.92), carcinoids

(AUC=0.86), and GISTs (AUC=0.89) (19). Despite the SELs

involved in the Minoda’s research, including GIST, leiomyoma,

schwannoma, and aberrant pancreas, the results section was still
Frontiers in Oncology 09
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divided into GIST and non-GIST for exploration (20). Kim et al.

utilized CNN-CAD to first classify SELs into GIST and non-

GIST tumors, and then sub-classified the non-GIST tumors into

leiomyomas and schwannomas. Accuracy of the CNN-CAD

system in differentiating leiomyomas from schwannomas was

85.0% (95% CI: 81.6-87.7%) (21). In the Hirai’s study, accuracy

of the AI system for five-category classification was 86.1%,

including GIST, leiomyoma, schwannoma, NET, and ectopic

pancreas (24).

Nguyen trained, constructed, and internally validated an

ANN through unsupervised and supervised learning based on

the features extracted through texture analysis (19). In the

traditional sense, ANN is a type of machine learning (ML). As

a computer application, ML can recognize patterns in training

data and generate mathematical models to develop an AI system

to realize the recognition and prediction function, similar to the

learning behavior of humans (13). Other studies trained CNN
FIGURE 7

SROC curves of AI-assisted EUS and EUS experts in diagnosis of GIST. (A) SROC curve of seven studies on CNN AI-models. (B) SROC curve of
seven studies on imaging modality. (C) SROC curve of seven studies based on patients. (D) The SROC curve of the EUS experts.
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FIGURE 8

Univariate meta-regression for the reason of heterogeneity in sensitivity and specificity.
FIGURE 9

Sensitivity (A), specificity (B), positive likelihood ratio (C), negative likelihood ratio (D) of EUS experts in diagnosis of GIST.
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models using deep-learning algorithms. Deep learning-based

analysis does not need to measure characteristic values, as they

can be automatically and accurately identified, thereby

demonstrating greater diagnostic ability (34). This is consistent

with our findings that the combined AUC of CNN model after

excluding the ANN model was improved from 0.92 (95% CI,

0.90-0.94) to 0.94 (95% CI, 0.92-0.96).

Heterogeneity is a prominent issue in this meta-analysis.

Although we performed subgroup analyses based on the AI

models, imaging modalities, and study subjects, the

heterogeneity was not completely eliminated. Possible reasons

for this are as follows: First, we have to consider the diversity of

clinical samples, as most of the included studies were from

different countries, and the manufacturers and models of EUS

were inconsistent. In addition, the sample size was not

sufficiently large. Second, methodological diversity should be

considered. The specific algorithms, tools used, and parameter

settings were not uniform, despite the fact that seven studies

applied the CNN deep-learning model. The EUS expert group

had little heterogeneity, probably because all EUS experts were

selected on the basis of having performed more than 500 EUS

examinations or having at least 5 years of experience in assessing
Frontiers in Oncology 11
100
gastrointestinal SELs. Additionally, different trial designs also

contributed to the heterogeneity. Only two studies applied

training, validation, and test sets (22, 24). Others merely had

two datasets: one set to develop the AI model and the other to

validate it. Considering the existence of heterogeneity, we

avoided directly adopting a fixed-effects model.

In this review and meta-analysis, the diagnostic performance

of AI models was superior to EUS experts, with the accuracy of

0.94 (95% CI, 0.92-0.96) vs. 0.75 (95% CI, 0.71-0.78).

Additionally, two studies also investigated the diagnostic

accuracy of AI-assisted EUS according to the size of SELs,

≥ 20 mm and <20 mm. Minoda et al. found that the accuracy,

sensitivity, and specificity of SELs ≥ 20 mm between AI-assisted

EUS and EUS experts were 90.0% vs. 53.3%, 91.7% vs. 50.0%,

and 83.3% vs. 83.3%, respectively. The diagnostic performance

for SELs ≥ 20 mm of AI-assisted EUS was significantly better

than that of EUS experts, with an AUC of 0.965 vs. 0.684

(p = 0.007) (20). Tanaka et al. discovered that the diagnostic

performance of AI and experts was completely consistent for

cases with lesions <20 mm, but the specificity and accuracy of AI

in diagnosing GISTs ≥ 20 mm were superior to those of experts

(87.5% vs. 75.0% and 88.9% vs. 86.1%, respectively) (26).
FIGURE 10

Comparison of SROC curves between AI-assisted EUS models and EUS experts.
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Therefore, we need to further develop and improve artificial

intelligence algorithms to improve their performance in the

diagnosis of small lesions.

This is the first systematic review and meta-analysis of AI-

assisted EUS for SEL diagnosis. We summarized recent advances

in AI in the diagnosis and differential diagnosis of SELs and

evaluated the overall diagnostic performance of AI. Our meta-

analysis also has some limitations. Although no publication bias

existed, the number of eligible studies was limited (n=8) and

most of the included studies were retrospective. Future studies

are expected to expand the sample size, supplement videos, add

external validation datasets, and conduct prospective real-time

clinical studies to further confirm the credibility of AI diagnostic

performance. In addition, the issue of heterogeneity among

studies is also discussed above.

In conclusion, AI-assisted EUS is a promising and reliable

method for differentiating SELs with high accuracy, and may

become an important tool to assist endoscopists in diagnosing

SELs in the near future.
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Metabolic reprogramming is a vital hallmark of cancer, and it provides the

necessary energy and biological materials to support the continuous

proliferation and survival of tumor cells. NR4A1 is belonging to nuclear

subfamily 4 (NR4A) receptors. NR4A1 plays diverse roles in many tumors,

including melanoma, colorectal cancer, breast cancer, and hepatocellular

cancer, to regulate cell growth, apoptosis, metastasis. Recent reports shown

that NR4A1 exhibits unique metabolic regulating effects in cancers. This

receptor was first found to mediate glycolysis via key enzymes glucose

transporters (GLUTs), hexokinase 2 (HK2), fructose phosphate kinase (PFK),

and pyruvate kinase (PK). Then its functions extended to fatty acid synthesis by

modulating CD36, fatty acid-binding proteins (FABPs), sterol regulatory

element-binding protein 1 (SREBP1), glutamine by Myc, mammalian target of

rapamycin (mTOR), and hypoxia-inducible factors alpha (HIF-1a), respectively.
In addition, NR4A1 is involving in amino acid metabolism and tumor immunity

by metabolic processes. More andmore NR4A1 ligands are found to participate

in tumor metabolic reprogramming, suggesting that regulating NR4A1 by novel

ligands is a promising approach to alter metabolism signaling pathways in

cancer therapy. Basic on this, this review highlighted the diverse metabolic

roles of NR4A1 in cancers, which provides vital references for the

clinical application.

KEYWORDS

metabolic reprogramming, NR4A1, cancers, signaling pathways, tumor cells
Introduction

Metabolic reprogramming is an important characteristic of tumor cells, which can

provide energy and multiple substrates for biosynthesis to support cancer cells’ rapid

proliferation and survival (1). Furthermore, the malignant transformation, invasion, and

metastasis of tumor cells also need metabolic reprogramming. The metabolic pathways

include glycolysis, glutamine metabolism, fatty acid metabolism, nucleic acid, and amino

acid metabolism (2). In the 1920s, Otto Warburg first reported the Warburg effect, which

was once considered the main metabolic pathway in cancer cells. Nowadays, this effect is
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defined as aerobic glycolysis, which can metabolize glucose into

lactate and provides Adenosine triphosphate (ATP) for cancer

cell survival. By downregulating aerobic glycolysis via the c-Myc

signaling pathway, the proliferation of hepatocellular carcinoma

(HCC) was inhibited, and their apoptosis was induced (3).

Besides, glutamine has been reported to contribute to

tricarboxylic acid (TCA) cycle metabolites. The “glutamine

addiction” is a vital metabolic feature to support the rapid

proliferation of cancer cells. In breast cancer, some

polyphenols, such as catechin, delphinidin, and kaempferol,

exhibit an anti-proliferative effect by inhibiting alanine, serine,

cysteine transporter 2 (ASCT2) and decreasing total and Na

+-dependent 3H-glutamine uptake (4). The fatty acid is the key

competitor of the cell membrane and stores energy and acts as

the secondary messengers. Thus, fatty acid synthesis (FSAN) is

vital for transporting intracellular signal transduction and tumor

cell proliferation, differentiation, migration, survival, and

apoptosis (5). Fan et al. (6) reported that a-linolenic acid

could inhibit osteosarcoma cell proliferation and metastasis by

suppressing FASN expression. By blocking fatty acid enzymes

hexokinase 2 (HK2) or acyl-CoA synthetase long-chain family

member 4 (ACSL4), acetyl-CoA accumulation decreased,

leading to a suppressed fatty acid b-oxidation activity. These

results effectively inhibit liver cancer growth (7). In order to meet

the infinite proliferation in tumor cells, transcription and

replication activities are more frequent, so the nucleotides and

amino acids are enhanced. Buel et al. (8) reported the crosstalk

between amino acid and mTORC1, which can regulate tumor

cell fate through the Rag-GTPase pathway. As mentioned above,

cancer metabolism is controlled by many factors, including

genes, enzymes, and signaling pathways; therefore, exploring

novel targets of metabolic reprogramming provides enormous

opportunities to regulate tumor cells fate.

In recent years, metabolism has been widely observed during

cancer development; NR subfamily 4 (NR4A) receptors are

considered the mediators in controlling this metabolic

hallmark of tumors. NR4A family receptors are one of 48

human nuclear receptors that act as transcription factors to

regulate many cell processes. NR4A nuclear receptors include

NR4A1 (NUR77), NR4A2 (NURR1), and NR4A3 (NOR-1),

showing similar structures which consist of a DNA-binding

domain (DBD), a C-terminal ligand-binding domain (LBD),

and an N-terminal transactivation domain (TAD). The TAD
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contains a ligand-independent activation function 1 (AF-1),

responsible for interacting and regulating the activity of

transcription factors. The DBD in the middle can specifically

interact with DNA sequences known as NGFI-B response

element (NBRE) and Nur-responsive element (NurRE); there

is over 90% sequence homology in DBD of NR4A receptors (9).

The last part, LBD, contains a ligand-dependent activation

function 2 (AF-2), which can recognize corresponding ligands

to ensure the transcriptional activity (10–12) (Figure 1).

Although these receptors share a typical structure, about 60%

of the sequences in the LBD region are conserved, while the

sequence of the activation domain changes greatly. Because the

large hydrophobic residues occupy the binding pocket space,

there has no progress in identifying endogenous ligands so far.

Recent reports suggest that the NR4A family receptors may bind

to unsaturated fatty acids in the LBD to exhibit regulation of

metabolism (13). For example, in breast cancer, NR4A1-NR4A3

regulates glycolysis to participate in cell progression (14). The

NR4A receptors are also associated with the activation of T cell,

which involving in cancer immunotherapy (15). From the

literature, increasing evidence proves that among these NR4A

receptors, NR4A1 shows more metabolic functions in cancers,

such as regulating glycolysis and exhibiting activities in fatty acid

synthesis, glutamine, and amino acid metabolism. This paper

summarizes the metabolism roles of NR4A1 in the tumor.
Identification and regulation
of NR4A1

Nuclear receptor 4A1 (NR4A1, also called Nur77, NGFIB,

TR3) is one of the NR4A subfamily transcription factors, which

was firstly identified in mouse fibroblasts in 1988 (16). Next year,

Chang (17) isolated NR4A1 from a human prostate lambda gt11

cDNA library. Then it is found in various tissues and cells,

including cancer cells. NR4A1 is an immediate gene induced by

stress, cytokines, growth factor, glucose, fatty acids, or other

stimuli (18–21). NR4A1 plays diverse roles in many

physiological and pathological processes, for example cell

survival, apoptosis, differentiation, cell cycle, inflammation,

immunity, and metabolism (22–26). NR4A1 can bind to DNA

in three ways to regulate the expression of target genes: (1) it can

form the response element NBRE (sequence: AAAGGTCA); (2) it
FIGURE 1

The structure of NR4A receptors. NR4A structure has a N-terminal domain containing AF-1, and C-terminal domain with AF-2, they flank a
DNA-binding domain (DBD) and a hinge region.
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binds to the NurRE element (AAAT(G/A)(C/T)CA, which are

related to the NBRE) in the form of homodimer or heterodimer

formed with other members of the family; (3) NR4A1 and retinoid

X receptors (RXRs) form heterodimers and then binds to the DR5

response element to produce transcriptional activation (sequence:

AGGTCA-NNNAA-AGGTCA) (27) (Figure 2). Because of the

specific structure, NR4A1 can directly affect the target genes

promoter to exhibit transcriptional activity. For example, in

prostate cancer, prostaglandin E2 (PGE2) activates NR4A-RXR

heterodimer to enhance micrometastasis; this effect can be

reversed by cyclooxygenase 2 (COX2) inhibitor in cancer

suppression (28). NR4A1 also complexes with Sp1 and p300 on

the region of survivin promoter to increase pancreatic cancer cell

proliferation and decrease apoptosis (29). In inflammatory

diseases, NR4A1 could regulate SerpinA3 through the NBRE in

its promoter region (30). NR4A1 transcriptionally inhibits the

expression of Dicer to activate downstream Akt/mTORC1

signaling, thereby inducing colon cancer epithelial-to-

mesenchymal transition (EMT) (31) (Figure 3).

In addition, increasing evidence indicates that NR4A1

displays non-genomic functions to affect cell biological

processes. NR4A1 exerts non-genomic activities by translocating

from the nucleus to mitochondria, or endoplasmic reticulum

(ER), which triggers apoptosis or autophagy (32). Studies have

shown that the overexpressed NR4A1 can activate the Wnt/b-
catenin signaling pathway to enhance colon tumor growth, colony

formation, and migration (33). It also moves to the cytoplasm to
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stimulate the dysregulation of b-catenin and the stabilization of

HIF-1a under normoxia (34). In mitochondrial, NR4A1

translocated from the nucleus and bound to Bcl-2, converts Bcl-

2 to a pro-apoptotic protein, then induces cytochrome C release

and apoptosis (35). Another report showed that NR4A1 could

induce MDM2 ubiquitination and degradation by blocking p53

acetylation, this effect can enhance p53-depended apoptosis (36).

Furthermore, NR4A1 interacts, and blocks binds and sequesters

Liver kinase B1 (LKB1) in the nucleus, then releases and shuttles

LKB1 to the cytoplasm, thereby attenuating AMP-activated

protein kinase (AMPK) activation to treat metabolic diseases

such as streptozotocin-induced diabetes (37). In osteoclast,

knockout of NR4A1 can promote the differentiation of

RAW264.7 by activating the NF-kB signaling pathway, in order

to decrease the expression of IkB-a and induce IKK-b (23).

Additionally, NR4A1 translocated from nucleus to

mitochondria, then interacted with tumor necrosis factor

receptor-associated factor 2 (TRAF2), leading to TRAF2

ubiquitination. NR4A1 also interacted with p62/SQSTM1 to

sensitize cells to autophagy (38) (Figure 4).
Metabolism roles of NR4A1 in tumor

NR4A1 is widely involved in the metabolism of tumors,

including glucose metabolism, glutamine metabolism, fatty acid

metabolism, and amino acid metabolism (39–42).
FIGURE 2

Interactions of NR4A1 with different elements. NR4A1 activates target gene expression through binding with NBRE, NurRE, and a DR5 motif
(with RXR), respectively.
FIGURE 3

Some genomic effects of NR4A1. NR4A1 can bind to different genes promoter to involve in cancer progression. GC: GC-rich promoter regions
of Survivin.
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NR4A1 and glucose metabolism

Glucose metabolism is the key source to provide metabolic

carbon in cells. There are three main ways of glucose

metabolism: aerobic oxidation, glycolysis and pentose

phosphate pathways. Normally, cells uptake glucose by glucose

transporters (GLUTs), then it enters the glycolysis process with

the action of hexokinase (HK), fructose phosphate kinase (PFK),

and pyruvate kinase (PK) under normal oxygen conditions to

produce pyruvate. However, uncontrolled proliferation is a

crucial characteristic of cancer. Tumor cells alter their glucose

metabolism patter to an efficient aerobic glycolysis rate to sustain

vigorous proliferation and other biological activities. In this

process, the activities and expression levels of GLUT and

glycolytic rate-limiting enzymes such as HK, PFK, and PK

were significantly up-regulated to improve glucose uptake,

which is called the “Warburg effect” (43). This effect not only

provides the energy for tumor cell survival, but also provides

biosynthetic raw materials for other metabolic pathways,

including the tricarboxylic acid (TCA) cycle, hexosamine

pathway, pentose phosphate pathway, glycogen synthesis, and

serine biosynthesis pathway (44).

Recently, it has been progressively realized that NR4A1 plays

diverse roles in glucose metabolic regulation. GLUTs facilitate

the transport of glucose from extracellular to the cellar

membrane. Overexpressed NR4A1 has been reported to

upregulate GLUT4 production to increase glucose oxidation
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and glycogen synthesis in muscle L6 cells. NR4A1 also

changes the activity of several key glycolytic enzymes; for

example, NR4A1 upregulates the expression of HK and PFK

in rat muscle cells (45). In HFD-induces obese mice, inhibition

of NR4A1 by siRNA could modulate the key rate-limiting

enzyme HK2, leading to the disturbed glucose metabolism

homeostasis in mice cardiac (46). Furthermore, bis-indole-

derived NR4A1 ligands enhanced the accumulation of GLUT4

in the cell membrane and the overall glucose uptake in muscle

cells in diabetes (47). NR4A1 is considered a promising

therapeutic target for metabolic syndromes.

In addition, the paradoxical roles of NR4A1 in regulating

glucose metabolism in cancer were investigated. In

hepatocellular carcinoma, low expression of NR4A1 was

observed, promoting HCC development. NR4A1 can inhibit

glycolysis and elevate gluconeogenesis by interacting with and

suppressing the rate-limiting enzyme phosphoenolpyruvate

carboxykinase (PEPCK1), leading to ATP depletion and an

arrest of cell growth (48). Another research reported that by

binding to the promoter of WAP four-disulfide core domain 21

pseudogene (WFDC21P), NR4A1 also inhibited two key

glycolysis enzymes, the platelet-type PFK (PFKP) and the M2

isoform of pyruvate kinase (PKM2), to suppress the HCC cell

proliferation and tumor metastasis (49). Furthermore, in acute

promyelocytic leukemia (APL) cells, silencing NR4A1 can

activate glycolytic transporter GLUT1 and decrease the

expression of TIGAR (TP53-induced glycolysis and apoptosis
FIGURE 4

The non-genomic regulations of NR4A1. NR4A1 can affect kinds of biological processes through binding to LKB1, b-catenin, Bcl-2, MDM2,
TRAF2, or blocking NF-kB.
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regulator) to induce APL development (50). Cytosporone B

(CsnB) is an NR4A1 agonist; it induced tumor cell apoptosis

and inhibited tumor growth in C57 mice via translocating

NR4A1 to mitochondrial to cause cytochrome C release. CsnB

also induced gluconeogenesis-related genes, resulting in elevated

of blood glucose levels in tumors (51).

In contrast, NR4A1 is overexpressed in many other human

malignant tumors, for example, pancreatic cancer, colorectal

cancer, and breast cancer. Several studies have revealed that

hypoxic exposure results in increased HIF-1a protein

stabilization, which has been implicated in promoting the

glycolysis of tumor cells. This response can be regulated by

NR4A1 through repressing MDM2 expression, suggesting the

enhancement of glycolysis induced by HIF-1a was partially

attributed to NR4A1 upregulation (52, 53). In colorectal

cancer cells, Dong et al. (54, 55) reported the relationship

between enhanced glycolysis and the aberrant activation of b-
catenin, while our previous study confirmed that b-catenin and

NR4A1 could form a mutually feedback control circuit to

promote CRC invasion, demonstrating that NR4A1 may be

involved in the glycolysis in colorectal cancer. These findings

underscore the regulation of NR4A1 on glucose oxidation and

glycogen synthesis, indicating that the impact of NR4A1 on

glucose metabolism is complex and cell-dependent.
NR4A1 and glutamine metabolism

Glutamine metabolism is dysregulated in a variety of solid

tumor cells, and it is indispensable for cancer cell proliferation.

Depletion of glutamine can promote EMT and metastasis,

overcome tumor immune evasion (56–58). Therefore,

glutamine has become a very attractive target for tumor anti-

metabolic therapy. To be better utilized by cells, glutamine is

transported into cells through specific transporters and

converted into glutamate under the action of glutaminase to

enter the TCA cycle and provide energy for the growth and

development of tumor cells. Glutamine enters cells via the solute

carrier family (SLC) transporters, including SLC1A5 and

SLC7A8, which are overexpressed in many cancers. These

Na+-independent neutral amino acid transporters can activate

mTOR signaling and are controlled by Myc (59). In 2009, Gao

et al. (60) reported that Myc inhibits glutamine metabolism by

suppressing miR-23a/b expression to generate energy for

proliferating cancer cells. In ovarian cancer, miR-145

decreased glutamine metabolism through targeting c-Myc via

activating glutaminase 1 (GLS1) transcription expression (61).

In pancreatic cancer, the nuclear translocation of b-catenin can

increase c-Myc expression, resulting in a rise in glutamine

uptake and glutamate release (62). On the other hand, a study

indicated that NR4A1 acts as a b-catenin mediator to allow b-
catenin to escape degradation in HCC (63). Meanwhile, our

previous study reported a positive NR4A1-b-catenin feed-
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forward loop in cancers (31, 55). Another study reported that

NR4A1 inhibition decreased the levels of b-catenin and c-Myc

(64); thus, it is reasonable to speculate that NR4A1 may

participate in glutamine metabolism through b-catenin/Myc

signaling pathway. In terms of mTOR, glutamine upregulated

the activity of glutaminase (GLS) and glutamate dehydrogenase

(GDH) by inducing mTOR upregulation. This effect can be

reversed by mTOR inhibitor rapamycin, leading to a decrease of

glutamine-induced cell proliferation in ovarian cancer (65).

NR4A1 can regulate mTOR signaling, and knockdown of

NR4A1 inhibits mTOR through reactive oxygen species-

dependent activation of AMPK (66, 67), so NR4A1 may be

involved in glutamine metabolism via mTOR regulation.

Furthermore, reduced oxygen supply increases GLS1 mRNA

and protein expression due to transcriptional activation of HIF-

1, accelerates glutamine metabolism, and is conducive to the

growth, invasion, migration, as well as metastasis in colorectal

cancer (68). NR4A1 is an important regulator of HIF-1. The

relationship between NR4A1 and HIF-1 has been shown in

many tumors (53, 69). In renal cell carcinoma, NR4A1 stabilized

and transactivated HIF-1a. Moreover, NR4A1 is highly

expressed in acute myeloid leukemia; when truncated protein-

encoding for part of the N-terminal domain of NR4A1, the

NR4A1 transcript variant still maintains the stability and activity

of HIF-1a (70). On the other hand, HIF-1a activated NR4A1 by

binding to the putative HIF responsive element in the NR4A1

promoter, then upregulating the expression of NR4A1 (71).

Under chronic hypoxia conditions, NR4A1 has low expression

in non-small cell lung cancer (NSCLC) cells by the mediation of

HIF-1a, involved in hypoxia-induced apoptosis resistance (72).

Therefore, NR4A1 and HIF-1a can form an interaction circulus,

influencing each other. Since HIF-1 is a vital regulator in

glutamine metabolism, NR4A1 is likely to become a potential

target of tumor glutamine metabolism.
NR4A1 and fatty acid metabolism

Lipids are classified as fatty acids, cholesterol, phospholipids,

or triacylglycerides, major components of cell membranes.

Lipids are widely contributed to energy sources, signaling

molecules, and second messengers. As an important

component of various lipids, fatty acid synthase (FASN) plays

an irreplaceable role in cell proliferation and survival. Various

raw materials for fatty acid synthesis synthesize fatty acids from

scratch under the catalysis of enzymes such as ATP citrate lyase

(ACLY), acetyl CoA carboxylase (ACC), and fatty acid synthase

(FAS). Accumulating evidence has shown that dysregulation in

lipid metabolism is one of the most abnormal metabolic changes

in tumor cells, while the enhancement of de novo fatty acid

synthesis is the main manifestation of lipometabolic

reprogramming in tumor cells. The FASN process leads to the

increased expression of a variety of key enzymes, mainly ACLY,
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ACC, and FAS (73), which affect multiple aspects of

carcinogenesis, such as cell proliferation, differentiation and

cell cycle (74).

Cancers drive fatty acid mainly from exogenously

microenvironment or endogenously through de novo synthesis

by FASN. The most well-characterized transporters include

CD36, solute carrier protein family 27 (SCL27), and fatty acid-

binding proteins (FABPs). Among them, CD36 is reported to be

highly expressed in various malignancies, including breast

cancer, ovarian cancer, and gastric cancer (75–77). SCL27

family has six members (SCL27 A1-A6) associated with tumor

fatty acid uptake (78, 79). FABPs consists of 12 family members,

and they can transport lipid to cellular mitochondria, nuclei, and

so on (80). And they are frequently found to be highly expressed

in bladder cancer, prostate cancer, and renal cell carcinoma

(81, 82).

In the early decade, numerous studies explored the complex

roles of NR4A1 in regulating fatty acid metabolism in normal

tissues, including liver, skeletal muscle, and adipose. For

example, Wang’s team reported (83) that NR4A1 could

specifically bind to LKB1 in the nucleus and prevent the

translocation of LKB1 to the cytosol. This interaction between

NR4A1 and LKB1 can be broken by antagonist TPMA,

promoting of AMPKa phosphorylation and activating

downstream fatty acid enzymes like ACC and CPT1A to

inhibit fatty acids synthesis in primary hepatocytes. Sterol

regulatory element-binding protein 1 c (SREBP1c) is a well-

established transcription factor to regulate FASN (84), to

regulate hepatic lipid metabolism, NR4A1 decreased SREBP1c

expression by reducing its target genes stearoyl-coA desaturase-1

(SCD1), mitochondrial glycerol-3-phosphate acyltransferase

(GPAT), and FASN (85). In skeletal muscle cells, attenuation

of NR4A1 expression decreased lipolysis by inhibiting beta-AR

and its downstream CD36, adiponectin receptor 2, and caveolin-

3 expressions (86). Like in liver cells, Jung’s team reported (86,

87) that the interaction of NR4A1 and AMPKa in inhibiting

adipogenesis in vitro and in vivo.

Recently, the lipid metabolic roles of NR4A1 attracted more

and more attention in tumor progression, especially fatty acid

metabolism. Fatty acid metabolism includes fatty acid synthesis

and fatty acid oxidation (FAO). NR4A1 is thought to participate

in fatty acid uptake and oxidation to affect cancer cell fate. Fatty

acid oxidation provides the ATP and NADPH to overcome

metabolic stress. To assess the role of NR4A1 in cancers, a recent

study reported that NR4A1 is required in melanoma cells to

protecting FAO. The overexpressed NR4A1 can bind to and

activate the rate-limiting enzyme trifunctional protein b (TPb)
to maintain ATP and NADPH levels and prevent ROS increase

and melanoma cell death. NR4A1 regulated the linkage FAO-

NADPH-ROS during metabolic stress to target melanoma (88).

Holla et al. (89) reported the pro-oncogenic effect of NR4A1 in

regulating the fatty acid oxidation pathway in colon cancer. A

high level of PGE2 induced-NR4A2 was reported to bind to
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NR4A1-binding response elements (NBRE), which can recruit

and induce the expression of four genes related to fatty acid

metabol i sm: acy l -CoA oxidase (ACOX), carni t ine

palmitoyltransferase 1B (CPT1M), fatty acid-binding protein-2

(FABP2) and FABP4. A novel study reported that peroxisome

proliferator-activated receptor-g (PPARg) acts as an antagonist

of NR4A1 and can ubiquitination and degradation of NR4A1

through ubiquitin enzyme tripartite motif 13 (TRIM13); this

process interferes with the interaction of NR4A1 and SWI/SNF

complex, and recruit to the promoter of fatty acid transporters

CD36 and FABP4 to inhibit their transcription, which blocked

fatty acid uptake to suppress cancer cell proliferation

(41) (Figure 5).

Apart from fatty acid synthesis, NR4A1 also participates in

cholesterol metabolite, Dendrogenin A (DDA) is identified as a

cholesterol metabolite in mammal cells. There has a

complemental effect between cancer cells and DDA; by

binding to the liver X receptor (LXR), DDA can activate

NR4A1 expression to exhibit an anti-tumor effect on breast

cancer and melanoma (90). In acute myeloid leukemia, DDA

also partly activates LXR to increase NR4A1, further inhibiting

the expression level of cholesterol biosynthesizing enzyme 3b-
hydroxysterol-D8,7-isomerase (D8D7I), leading to cancer

autophagy induction (91). In HepG2 cells, downregulation of

NR4A1 induced an increase in total cholesterol (TCHO) levels,

low-density lipoprotein receptor (LDLR), and HMGCoA

reductase (HMGCR) levels are also increased following the

inhibition of NR4A1, suggesting NR4A1 is capable of reducing

hepatic cholesterol based on lipid overloading. This evidence is

proved that the effect of NR4A1 in regulating lipid metabolism

in cancer growth and proliferation.
NR4A1 and amino acid metabolism

Amino acid is essential for mammalian cells as the substrate

for new protein synthesis. However, to drive the continuous

proliferation of cancer cells, an abundant supply of amino acids

is observed (92). A novel reports demonstrated that amino acid

deficiency (AAD) could activate myocyte enhancer factor 2D

(MEF2D) and induce the expression of NR4A1, which mediated

reticulophagy to maintain intracellular amino acid levels (93).

Although amino acid deficiency induces NR4A1, there are rare

study focusing on the connection between NR4A1 and amino

acid metabolism. Almost 20 years ago, Li and colleagues found

(94) that changing the DNA-binding site of NR4A1 at Ser354

with negatively charged amino acids, such as Asp or Glu, can

significantly decrease the NR4A1 transactivation activities. A

most recent study from Xu et al. (21) first indicated the role of

NR4A1 in regulating amino acids. They observed total amino

acids compositions and found valine (Val), leucine (Leu), and

isoleucine (Ile) were all decreased as well as many other amino

acids, including aspartic acid (ASP), glutamic acid (Glu), alanine
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(Ala), tyrosine (Tyr), histidine (His), methionine (Met), proline

(Pro), and so on in NR4A1−/− zebrafish larva (Figure 6).
NR4A1 and tumor
microenvironment

Additionally, NR4A1 also participated in cancer immunity

by regulating metabolic pathways. In acute myeloid leukaemia

(AML), researchers found COX2 inhibition dramatically

decreased NR4A1 transcription and the WNT signaling
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pathway. In AML-mesenchymal stromal cells (MSCs)-CD34+

cells co-cultured system, this a novel COX2/NR4A1/CTNNB1

axis increased leukaemia-reactive T-effector cells and rescued

cellular metabolism and anti-leukaemia immunity (95). In the

melanoma tumor microenvironment, T-cell receptor (TCR)

signaling can trigger its downstream NR4A1 expression, so

using NR4A1-GFP indicated that blocking b-AR signaling

increased metabolic reprogramming of CD8+ T-cell activation

via TCR signaling. This impairment of b-AR on TCR signaling

occurs through GLUT-1 downregulation and subsequent

increase of glycolysis (96) (Figure 7).
FIGURE 5

The metabolic regulation of NR4A1 in glucose, glutamine, and fatty acid metabolism. In glucose metabolism, NR4A1 can regulate glucose
transporter GLUT1 and 4, key enzymes HK and PFK, as well as HIF-1a. NR4A1 mediates glutamine metabolism by regulating SLC1A5 via c-Myc.
NR4A1 can regulate the fatty acid synthesis of major enzymes ACLY, ACC, and FASN, and it also participates in fatty acid uptake through CD36
and FABP4.
frontiersin.org

https://doi.org/10.3389/fonc.2022.972984
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2022.972984
FIGURE 6

The amino acid metabolic pathway of NR4A1. In zebrafish larva, NR4A1 deficiency can decrease key branched-chain amino acids Val, Leu, and
Ile, leading to the inhibition of ASP, Glu, Ala, Tyr, His, Met and Pro.
FIGURE 7

The roles of NR4A1 in regulating T cell. In AML, the inhibition of COX2/NR4A1/CTNNB1 signaling pathway can increase the produce of CD8+ T
cell to rescue anti-cancer immunity. In melanoma, b-AR agonist inhibits NR4A1 and its downstream glycolysis to mediate CD8+T cell activity.
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Potential for targeting NR4A1

The expression and functions of NR4A1 in cancer

metabolism are emerging as a promising area in treating and

preventing human cancer malignant evolvement. Developments

on mechanisms of NR4A1 silencing or strategies for its activity

are leading to the explore of novel therapeutic agents. For

example, CsnB is the first described NR4A1 agonist; multiple

studies have indicated the CsnB can bind to LBD of NR4A1 and

modulate NR4A1 nuclear export to mitochondria, causing Cyto-

C release and apoptosis (51). Additionally, CsnB also acts as a

candidate to downregulate CD36/FABP4 expression, leading to

the inhibition of fatty acid uptake and consequent breast cancer

cell proliferation in NR4A1-dependent manner (41). A class of

Bisindole-derived (CDIMs) NR4A1 antagonists, such as 1,1-bis

(3’-indolyl)-1-(p-hydroxyphenyl) methane (DIM-C-pPhOH),

can decrease the expression of NR4A1 in breast, lung, and

liver cancer cells to inhibit tumor growth, EMT and stemness

(97, 98). Additionally, some natural compounds also act as

NR4A1 ligands to exhibit an anti-tumor effect. Kaempferol

and Quercetin are flavonoid compounds; they bind to NR4A1

and inhibit NR4A1-dependent transactivation by decreasing

PAX3-FOXO1-G9a and mTOR signaling to suppress RMS cell

growth (64). 1,3,7-trihydroxy-2,4-diprenylxanthone (CCE9) is a

xanthone compound that induces the expression of NR4A1 and

the interaction of NR4A1 and Bcl-2, leading to increased

apoptosis through p38a/MAPK signaling pathway (99).

Celastrol has a potent anti-inflammation effect by binding to

NR4A1 and inducing NR4A1 to transport to mitochondria,

resulting in sensitivity to autophagy (38). (Table 1 and Figure 8).
Discussion

Aberrant metabolism reprogramming is a core feature of the

tumor; increased cancer metabolism, such as fatty acid synthesis,

glycolysis, plays vital roles in tumor proliferation, metastasis,

and multidrug resistance. Hence, developing novel therapeutic
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methods and drug targets are required. Accumulating evidence

proves that NR4A1 implicated metabolic processes in regulating

various diseases, including obesity, atherosclerosis, liver

disorders, and diabetes.

NR4A1 is an orphan nuclear receptor that exhibits pro-

oncogene or anti-cancer effects in different cancers. For example,

in colorectal cancer, overexpressed NR4A1 promoted cancer cell

growth, epithelial-mesenchymal transition (EMT), and cancer

stem-like cells (CSCs) properties. However, in HCC, NR4A1 is

low expressed, upregulating NR4A1 by CsnB or other

compounds, such as 4-(quinoline-4-amino), can inhibit tumor

cell growth in vitro and in vivo (105). In terms of metabolism, it

has been found that targeting NR4A1 can regulate glycolytic key

enzymes GLUT4, HK2, and PFK in the liver and muscle cells to

target metabolic syndromes. Although the metabolic roles of

NR4A1 have been reported, the diverse effects in cancer

metabolic reprogramming have not been delineated. This

review links NR4A1 to metabolic processes in cancers. By

altering glucose metabolism, NR4A1 depleted ATP and

induced cell cycle arrest in HCC. NR4A1 also inhibited

glycolysis enzymes PFKP and PKM2 to block HCC metastasis.

The NR4A1 mediator CsnB induced tumor cell apoptosis; this

suppressive function of CsnB is associated with the translocation

of NR4A1 from the nucleus to mitochondria to release the

cytochrome C-depended Bcl-2 apoptot ic pathway.

Paradoxically, in colorectal, pancreatic, and breast cancer,

NR4A1 shows the opposite effect in modulating glycolysis.

Aberrant activated b-catenin signaling in colon cancer

enhanced glycolysis; meanwhile, an NR4A1-b-catenin feed-

f o rwa r d l o op h app en i n g i n c o l on c an c e r c e l l s

proves from the side that NR4A1 may be involved in

promoting glycolysis. Nonetheless, the two side effects of

NR4A1 have been observed on glucose metabolism,

underscoring the complex and cell depend on its metabolic

regulation, demonstrating NR4A1 acts as a potential therapeutic

target in malignant tumors.

Fatty acid metabolism has its particularity and university.

Cells run FASN and FAO to supply necessary nutrients. NR4A1
TABLE 1 NR4A1 ligands.

Type Name Target Applications Ref

Inducer Cytosporone B Cyto-C Breast cancer
Colon cancer
Lung cancer
Bladder cancer

(41, 72, 100, 101)

Inhibitor DIM-C-pPhOH Breast cancer Rhabdomyosarcoma Pancreatic cancer (102–104)

Kaempferol mTOR Rhabdomyosarcoma (64)

Quercetin mTOR Rhabdomyosarcoma (64)

CCE9 p38a
MAPK
Bcl-2

Cervical cancer
Liver cancer

(99)

Celastrol p62 Cervical cancer (38)
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draws increasing attention to this procedure. On the one hand,

in non-cancer tissues, such as liver, muscle, and adipose, NR4A1

can alter the expression levels of fatty acid key enzymes ACC,

SCD1, CPT1A, as well as transporters CD36, adiponectin

receptor 2 (ADIPOR2), and Caveolin 3 (CAV3) by regulating

LKB1-AMPK classic signaling pathway and its downstream

SREBP1c and FAS. On the other hand, as a core hallmark of

cancer, altered fatty acid synthesis is specifically important.

Tumor cells drive this process to provide energy and biological

materials for uncontrolled proliferation. Hence, overexpression

of NR4A1 binds to TPb to maintain the FAO-NADPH-ROS

loop, leading to the suppression of cancer growth. NR4A1 has

been found to bind to the NBRE or coactivator SWI/SNF

complex response elements by NR4A2 or PPARg, resulting in

the change of fatty acid-related genes ACOX, CPT1M, FABP2,

and FABP4 in melanoma and breast cancer. In addition, NR4A1

exhibits cholesterol regulating function by interacting with LXR

in acute myeloid leukemia. All the above evidence suggests the

unique and irreplaceable features in lipid metabolism; However,

whether NR4A1 displays similar metabolic effects in regulating

cancer metastasis, cancer stem cell phenotypes need to be deeply

explored in the future.

Furthermore, MYC, mTOR, and HIF-1 are the main

mediators regulating SLC transporters and glutamine synthase

relative enzymes in cancers. NR4A1 is involved in glutamine

metabolism through interaction with b-catenin, which further

influences the expression level of Myc. In order to increase the

activity of key enzymes GLS and GDH, NR4A1 induced mTOR

upregulation by activating the ROS-depended AMPK signaling

pathway. Similar to b-catenin, NR4A1 can stabilize and
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transactivate HIF-1a; meanwhile, HIF-1a bins to the

promoter NR4A1 and promotes its transcription; under

hypoxia, HIF-1a and NR4A1 form an interaction circuit to

affect each other.

Additionally, amino acid regulation is also a function of

NR4A1. It has been reported that amino acid deficiency can

induce NR4A1 expression. NR4A1−/− zebrafish larva decreased

total amino acids and the level of ASP, Glu, Ala, Tyr, His, Met,

Pro. However, there are rare studies on tumor cells, so it could be

a promising area worth exploring further. Besides the amino acid

metabolism, NR4A1 also participates in tumor immunity. The

COX2/NR4A1/CTNNB1 axis has been reported to increase

CD34+ T effector cells, while TCR- NR4A1-b-AR system can

increase metabolic reprogramming of CD8+ T-cell activation

through downregulating GLUT-1 expression. Therefore, for one

thing, further studies could focus on the diverse functions of

NR4A1 on cancer immunity by glycolysis reprogramming. For

another, maybe it can be extended the roles of NR4A1 to other

aspects of tumor metabolism.

Cancer metabolism provides innovative opportunities for

next-generation anticancer therapies that could be further

improved using novel NR4A1 agonists or antagonists that

simultaneously regulate NR4A1 and its downstream

signaling pathways.
Conclusion and perspectives

NR4A1 is a well-studied transcription factor, and recent

researches focus on identifying its genomic and non-genomic
FIGURE 8

Structure of NR4A1 agonists or antagonists. Structure of NR4A1 inducer Cytosporone B, and inhibitors DIM-C-pPhOH, Kaempferol, Quercetin,
Celastrol, CCE9.
frontiersin.org

https://doi.org/10.3389/fonc.2022.972984
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2022.972984
effects in cancers, including melanoma (106), breast cancer

(107), and colorectal cancer (31). As described above, NR4A1

exhibits important functions in cancer cell metabolic

reprogramming. By regulating glucose and fatty acid-related

enzymes, such as GLUT4, PEPCK1, ACC, ACLY, NR4A1

exhibits divers metabolic effects by regulating the downstream

signaling pathways. NR4A1 acts as a novel application to enable

tumor growth, evasion of apoptosis, migration, and invasion.

However, whether NR4A1 displays the lipid metabolic functions

in cancer metastasis is not fully identified. Although increasingly

ligands are found to bind to, and active or inactive NR4A1,

leading to cancer cell growth, apoptosis, autophagy, EMT, the

study on metabolism is rare. Thus, it is an urgent need to

understand the metabolic functions of NR4A1, especially how

this receptor mediates fatty acid synthesis, amino acid

metabolism and glutamine in tumors. The underlying

mechanisms are worthy of exploring. The continued

investigation of agents that can modulate NR4A1 is needed.

The selective NR4A1 agonists or antagonists against cancer cell

metabolism might be potential for cancer treatment.
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Diagnostic performance of
elastosonography in the
differential diagnosis of benign
and malignant salivary gland
tumors: A meta-analysis
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Purpose: The clinical practice of elastosonography for the detection of salivary

gland tumors is still a controversial issue. The objective of this meta-analysis

was to evaluate the effect of elastosonography for the diagnosis of salivary

gland tumors and to compare the diagnostic value of elastosonography and

conventional ultrasound in the diagnosis of salivary gland tumors.

Methods: A comprehensive literature search through PubMed, EMBASE, and

Cochrane Library was carried out from inception to November 2021. Two

researchers independently extracted the data from the enrolled papers using a

standard data extraction form. The pooled sensitivity, specificity, positive

likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio

(DOR), and area under the curve (AUC) were calculated to evaluate the

diagnostic performance of elastosonography. The Quality Assessment of

Diagnostic Accuracy Studies—2 (QUADAS-2) tool was utilized to evaluate the

quality of each included study. Meta-DiSc version 1.4, Review Manager 5.3, and

StataSE 15 were used.

Results: Sixteen studies with a total of 1105 patients with 1146 lesions were

included in this meta-analysis. The pooled sensitivity, specificity, PLR, NLR, and

DOR of elastosonography for the differentiation between benign andmalignant

salivary gland tumors were 0.73 (95%CI, 0.66–0.78), 0.64 (95%CI, 0.61–0.67),

2.83 (95%CI, 1.97–4.07), 0.45 (95%CI, 0.32–0.62), and 9.86 (95%CI, 4.49–

21.62), respectively, with an AUC of 0.82. Four studies provided data regarding

the conventional ultrasound for the differentiation between benign and

malignant salivary gland tumors. The pooled sensitivity, specificity, and DOR

were 0.62 (95%CI, 0.50–0.73), 0.93 (95%CI, 0.90–0.96), and 25.07 (95%CI,

4.28–146.65), respectively. The meta-regression and subgroup analyses found

that assessment methods were associated with significant heterogeneity, and
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quantitative or semiquantitative elastosonography performed better than the

qualitative one.

Conclusions: Elastosonography showed a limited value for diagnosing

malignant salivary gland tumors; it could be considered as a supplementary

diagnostic technology to conventional ultrasound, and quantitative or

semiquantitative elastosonography was superior to the qualitative one.
KEYWORDS

elastosonography, conventional ultrasound, diagnosis, salivary gland tumor,
meta-analysis
Introduction

Salivary gland tumors are rare, which account for 2%–6% of

all head and neck tumors, with an annual incidence ranging

from one to five cases per 100,000 population. The most

common benign tumors of the salivary glands include

pleomorphic adenoma (PA) and Warthin tumor (WT), and

85% of the tumors arise in the parotid gland (1, 2). The

treatment strategy of salivary gland tumors depends primarily

on its pathology, and preoperative diagnosis of the tumor entity

directly affects the selection of surgical procedure; therefore, to

determine whether a tumor is benign or malignant is crucial

(3–5).

Currently, it is not an easy task to accurately identify benign

from malignant salivary tumors because of a broad variety of

potential differential diagnoses and the lack of specific imaging

characteristics (6–8). Conventional ultrasound (US) is the first-

line imaging technique for the diagnosis of the salivary gland

tumors as it is a widely available, noninvasive, nonradioactive,

and cost-effective method (6). However, the diagnostic accuracy

of conventional US depends on the sonographer’s diagnostic

skill and experience, and there are overlaps of sonographic

appearances among different pathological tumors (6, 7).

Consequently, the accuracy of conventional US for salivary

tumors is less than satisfactory (6–8). Magnetic resonance

imaging (MRI) and computed tomography (CT) are also the

primary imaging modalities for evaluating salivary gland tumors
Warthin tumor; US,

omputed tomography;

eedle biopsy; MeSH,

ratio; NLR, negative

confidence intervals;

a under the curve; I2,

wave velocity; ARFI,
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(9–11). While they can find tumors with high sensitivity, these

are less accurate for predicting histology due to an appreciable

overlap of imaging findings between different pathological types

of salivary gland tumors (8, 11). Thus, acquiring the

histopathology of tumors by US-guided fine-needle aspiration

cytology (FNAC) or core-needle biopsy (CNB) continues to be

necessary before the surgical procedure (12). However, these

techniques are invasive and could possibly lead to some

complications such as pain and hemorrhage. Thus, an

alternative imaging technique providing additional

information for identifying salivary gland tumors would be

greatly valuable.

Elasticity is an important feature revealing tissue stiffness,

which is defined as the rate of change of spatial displacement due

to the tensile stress on the tissue under applied pressure (13).

Elastosonography is a simple approach that determines tissue

stiffness as qualitative, semiquantitative, or quantitative, which

has been demonstrated to be useful for the evaluation of thyroid

nodules, breast tumors, and cirrhosis (14–17).

The clinical practice of elastosonography for the detection of

salivary gland tumors is still a controversial issue, as the

diagnostic performance is variable in different studies, with the

sensitivity ranging from 38% to 100% and specificity from 26%

to 97% (18–21). Thus, we thought it is necessary and timely to

summarize currently available data to provide valuable

information for clinical practice. The objective of this meta-

analysis was to evaluate the effect of elastosonography for the

diagnosis of salivary gland tumors and to compare the diagnostic

value of elastosonography and conventional US in the diagnosis

of salivary gland tumors.
Materials and methods

This meta-analysis was performed in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

analysis (PRISMA) Statement (22).
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Literature search

A comprehensive literature search through PubMed, EMBASE,

and Cochrane Library was carried out from inception to November

2021 to identify English-language studies on elastosonography

for diagnosing salivary gland tumors. The search strategy was

in accordance with the combination of the medical subject

heading (MeSH) terms, key words, and word variants for

“elastosonography”, “elastography”, “ultrasound elastography”,

“ultrasonic elastography”, “parotid gland tumor”, and “salivary

gland tumor”. Reference lists of the included papers were also

manually screened to detect additional relevant studies. Details of

the strategy of searching are provided in Supplementary Table 1.
Inclusion and exclusion criteria

Two researchers independently scanned the titles and

abstracts of the relevant papers. The inclusion and exclusion

criteria were defined to increase reproducibility and validity

before identifying the studies. All the disagreements were

resolved by consensus. All potentially relevant articles

satisfying the following criteria were included: (1) diagnostic

studies were included; (2) studies assessing the diagnostic

performance of elastosonography in differentiating benign

from malignant salivary gland tumors were included; and (3)

reference standards such as postoperative pathology and/or

biopsy results were adopted. The exclusion criteria for the

studies were as follows: (1) case reports, reviews, consensus

statements, editorial comments, letters, conference reports, and

unpublished articles were excluded; (2) studies without sufficient

data to construct a 2 × 2 contingency table were excluded; and

(3) studies that were not published in English were excluded.
Data extraction and processing

Two researchers independently extracted the data from the

enrolled papers using a standard data extraction form. All the

disagreements were resolved by consensus. For included studies,

the following items were extracted: author, year of publication,

country, study type, sample method, blinding method, sex,

number of lesions, age, mean size of tumors, site of lesions,

technology, index of elastography, threshold value, reference

standard, ultrasound equipment and probe, sensitivity,

and specificity.
Quality assessment

The Quality Assessment of Diagnostic Accuracy Studies—2

(QUADAS-2) tool recommended by the Cochrane collaboration

was utilized to evaluate the quality of each included study (23).
Frontiers in Oncology 03
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The QUADAS-2 tool comprises two main categories, namely the

risk of bias of four domains and the clinical applicability of three

domains. The four domains include patient selection, index test,

reference standard, and flow and timing. Every domain is

assessed for risk of bias, and the first three domains are

assessed for clinical applicability. The quality assessment was

performed using the RevMan 5.3 software (Nordic Cochrane

Centre, Copenhagen, Denmark).
Statistical analysis

From the enrolled papers, a bivariate effect model was

utilized in this study to calculate the pooled sensitivity,

specificity, positive likelihood ratio (PLR), negative likelihood

ratio (NLR), and diagnostic odds ratio (DOR) with

corresponding 95% confidence intervals (CIs), which revealed

the diagnostic performance of elastosonography in

differentiating benign from malignant salivary gland tumors.

The presence of a threshold effect was determined by analyzing

the Spearman correlation coefficient between sensitivity and the

false-positive rate, through a p < 0.05 indicating threshold effect.

In addition, the summary receiver operator curve (SROC) was

developed, and this allowed us to compute the area under the

curve (AUC). The AUC values of 0.5–0.7, 0.7–0.9, and >0.9

indicate low, moderate, and perfect diagnostic performance,

respectively (24). The Higgins I2 statistic and Q test were

utilized to evaluate the heterogeneity of the study with I2 >

50% showing significant heterogeneity (25). A random-effects

model is adopted when the significant heterogeneity is found

across studies; otherwise, a fixed-effects model is adopted. The

Deeks’ funnel plot was generated to evaluate publication bias

(26) through a p < 0.05 indicating potential publication bias.

Meta-regression and subgroup analyses using several

covariates were conducted to investigate the potential factors

of heterogeneity: study design (prospective vs. others), year of

publication (2010–2013 vs . 2014–2020), diagnostic

measurement (quantitative or semiquantitative vs. qualitative),

and blinding method (yes vs. unclear). All the above statistical

analyses were carried out by Meta-DiSc version 1.4 and StataSE

15 (Stata Corporation, College Station, TX).
Results

Literature search

On the basis of the predefined MeSH terms, key words, and

word variants, our database search initially identified 210 papers

for consideration. PubMed found 95 studies, EMBASE identified

88, and the Cochrane Library discovered 27. After excluding the

duplications, the remaining 136 potentially eligible original

papers were further reviewed. Furthermore, according to the
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inclusion criteria in the study selection process, 107 studies were

discarded after screening the titles and abstracts. Twenty-nine

papers were assessed by reviewing the full text, of which 13 were

further excluded. Finally, 16 studies were included in this meta-

analysis. Figure 1 shows the detailed flowchart of the

literature search.
Characteristics of included studies

The 16 included studies were published from 2010 to 2020 and

written in English (18–21, 27–38). A total of 1105 patients with

1146 lesions were included in these studies. Strain elasticity (SE) was

used in 11 studies; shear wave velocity (SWE) was used in one

study; acoustic radiation force impulse (ARFI) was used in three

studies; and SE and ARFI were used in one study. Ten studies

included parotid tumors only, while other studies included parotid,

submandibular, or sublingual tumors. Quantitative or

semiquantitative methods were utilized in four studies, while

qualitative assessment methods were used in 12 studies. More

detailed data extracted from the enrolled studies are available in

Tables 1 and 2. The histopathological results of the included studies

are revealed in Supplementary Table 2.
Frontiers in Oncology 04
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Quality assessment

Quality assessment of each study based on the QUADAS-2 tool

is shown graphically in Figure 2. Concerning the patient selection

domain, five studies were thought to be “unknown” (18–20, 31, 37)

because the sample method of patient selection was not definitely

mentioned. Concerning the index test domain, four studies (19–21,

35) were thought to be “unknown” because the blinded status of the

reference standard was not definitely mentioned; one study was

considered as “high” because the sonographer was aware of the

histological results of the respective tumors (18).With respect to the

reference standard domain, 14 studies (19–21, 27–30, 32–38) were

regarded as “unknown” because the blinded status of the

elastosonography results was not definitely depicted. Regarding

the flow and timing domain, 14 studies were regarded as

“unknown” because the authors did not definitely mention the

precise duration between the reference standard and the

elastosonography examination (18–21, 27–33, 36–38).

With regard to applicability, one study was regarded as

“high” for the patient selection domain because 12 benign

tumors were all pleomorphic adenomas (19). For the index

test and reference standard domains, all studies were thought

to have low concerns.
FIGURE 1

Flowchart of study selection.
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Meta-analysis

The Spearman correlation coefficient was 0.24 (p = 0.37),

indicating that no threshold effect existed. The sensitivities of

the 16 enrolled studies ranged from 38.0% to 100.0%, and the

specificities ranged from 47.0% to 97.0%. Overall, the pooled

sensitivity and specificity of elastosonography for the

differentiation between benign and malignant salivary gland

tumors were 0.73 (95% CI, 0.66–0.78) and 0.64 (95% CI, 0.61–

0.67) (Figure 3). The summary estimates of the diagnostic

sensi t iv i ty and specificity of e lastosonography for

differentiating benign from malignant salivary gland tumors

were analyzed by the random effects method based on

significant statistical heterogeneity (I2 = 55.7% for sensitivity,
Frontiers in Oncology 05
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p = 0.00; I2 = 94.1% for specificity, p = 0.00). The pooled PLR,

NLR, and DOR of elastosonography for the differentiation

between benign and malignant salivary gland tumors were

2.83 (95%CI, 1.97–4.07), 0.45 (95%CI, 0.32–0.62), and 9.86

(95%CI, 4.49–21.62) (Figure 4), respectively. As illustrated in

Figure 5, the AUC under the SROC curve for the value of

elastosonography in the diagnosis of malignant salivary gland

tumors was 0.82.
Meta-regression and subgroup analyses

As a result of the significant heterogeneity among the 16

included studies, a meta-regression analysis was performed to
frontiersin.org
TABLE 1 Primary data extracted from the included studies for meta-analysis.

Author Year Country Study
type

Sample
method

Blinding
method

Number
of

lesions

Male/
female

Age, year
(mean or
range)

Mean size of
tumors, mm

Site of lesions

Bhatia et al.
(27)

2010 China NR Consecutive Single blind 65 48/13 60.5 26 Parotid (57) and
submandibular (8)

Dumitriu
et al. (28)

2011 Romania NR Consecutive Single blind 74 37/29 50.8 29.54 Parotid (63) and
submandibular (11)

Klintworth
et al. (18)

2012 Germany R NR Single blind 57 27/30 53.3 NR Parotid

Yerli et al.
(29)

2012 Turkey P Consecutive Single blind 36 NR NR 19.5 Parotid (30) and
submandibular (6)

Celebi et al.
(30)

2012 Turkey P Consecutive Single blind 81 36/39 Men: 44.75;
women: 49.44

NR Parotid

Badea et al.
(19)

2013 Romania P NR NR 20 15/5 40-72 NR Parotid

Wierzbicka
et al. (21)

2013 Poland P Consecutive NR 43 16/27 54 NR Parotid

Yu et al.
(31)

2016 China NR NR Double
blind

51 NR 45 NR Parotid

Zhou et al.
(32)

2016 China R Consecutive Single blind 40 26/14 44 24.9 Parotid (29) and
submandibular (11)

Cortcu
et al. (33)

2017 Turkey P Consecutive Single blind 39 22/17 52 PA: 27.8; WT: 33; other
benign: 28; malignant:

25.6

parotid

Mansour
et al. (20)

2017 Germany P NR NR 202 NR 58.6 NR Parotid

Cantisani
et al. (34)

2017 Italy P Consecutive Single blind 63 36/29 56 NR Parotid

Altinbas
et al. (35)

2017 Turkey P Consecutive NR 54 26/20 60.01 23.68 Parotid

Liu et al.
(36)

2018 China P Consecutive Single blind 76 40/36 47.24 Benign: 24.53;
malignant: 25.05

Parotid

Karaman
et al. (37)

2019 Turkey P NR Single blind 60 30/30 48.8 24.36 Parotid (42) and
submandibular (18)

Matsuda
et al. (38)

2020 Japan R Consecutive Single blind 185 103/65 Benign: 62.8;
malignant: 62.7

Benign: 27.6; malignant:
31.5

Parotid (169),
submandibular (15), and
sublingual (1)
NR, not reported; P, prospective; R, retrospective; PA, pleomorphic adenocarcinoma; WT, Warthin tumor.
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explore potential sources of heterogeneity. The covariates

included the blinding method (yes vs. unclear), year of

publication (2010–2013 vs. 2014–2020), study design

(prospective vs. others), and assessment methods (quantitative

or semiquantitative vs. qualitative). Among the various potential

covariates, the assessment methods were associated with the

significant heterogeneity (Table 3).

Four studies (20, 21, 34, 36) provided data regarding the

conventional ultrasound for the differentiation between benign

and malignant salivary gland tumors. The pooled sensitivity and

specificity of conventional ultrasound for malignant salivary

gland tumors were 0.62 (95% CI, 0.50–0.73) and 0.93 (95% CI,

0.90–0.96) (Figure 6). The pooled DOR of conventional

ultrasound was 25.07 (95%CI, 4.28–146.65) (Figure 7). As

illustrated in Figure 8, the AUC under the SROC curve for the

value of conventional ultrasound in the diagnosis of malignant

salivary gland tumors was 0.74.
Frontiers in Oncology 06
122
Sensitivity analysis

A sensitivity analysis was carried out, and the results of the

sensitivity analysis found that the meta-analysis results are

robust (Figure 8).
Fagan plot analysis and likelihood matrix

The Fagan diagram was developed for the assessment of

clinical application as revealed in Figure 10, indicating that when

the pretest probability was 20%, the posttest probability was 46%

if the results were positive and 8% if the results were negative for

malignant salivary gland tumors (Figure 9).

The likelihood matrix demonstrated that the summary PLR

and NLR for the elastosonography diagnosis of malignant

salivary gland tumors with 95% confidence intervals were
TABLE 2 Characteristics of the included studies.

Author Technology Index of
elastography

Threshold
value

Reference
standard

US equipment and probe Sen
(%)

Spe
(%)

Bhatia et al.
(27)

SE 4-point ≥ 3 Surgery or
biopsy

Philips IU22 and Siemens Acuson Premium Edition; a 5- to 12-
MHz linear probe and a 13.5-MHz linear probe

83 47

Dumitriu
et al. (28)

SE 4-point ≥ 3 Surgery EUB 8500, Hitachi; a 6- to 13-MHz linear probe 72 57

Klintworth
et al. (18)

SE Garland sign or
not

Garland sign Surgery Acuson S2000; a 9-MHz linear probe 38 96

Yerli et al.
(29)

SE 4-point ≥ 3 Surgery or
biopsy

EUB-7000 ultrasound system; a 5- to 13-MHz linear probe 75 64

Celebi et al.
(30)

SE 4-point ≥ 3 Surgery or
biopsy

Siemens Acuson S2000 US; a 13-MHz probe 59 61

Badea et al.
(19)

SE or ARFI NR NR Surgery GE 7, GE 8, GE 9, iU22 Phillips, and Siemens S 2000; a 7- to 11-
MHz linear probe

100 50

Wierzbicka
et al. (21)

SE 5-point ≥ 4 Surgery AIXPLORER equipment; a Linear SL-15-4 transducer 40 97

Yu et al.
(31)

SWE SWV 2.76 Surgery ACUSON S2000; a 7- to 12-MHz linear probe 69 97

Zhou et al.
(32)

VTI (ARFI) 6-point ≥ 4 Surgery or
biopsy

Siemens Acuson S2000; a 9L4 linear probe 63 81

Cortcu et al.
(33)

SE Strain ratio 2.1 Surgery or
biopsy

Aplio XG SSA-790A; a 12-MHz linear probe 83 97

Mansour
et al. (20)

SE 3-point ≥ 2 Surgery Acuson S2000; a 9- to 14-MHz linear probe 69 26

Cantisani
et al. (34)

SE Elasticity
contrast index

>3.5 Surgery or
biopsy

ACCUVIX A30, RS 80 A; a 10- to 18-MHz linear probe 94 89

Altinbas
et al. (35)

SE 0-6 3 Biopsy Logiq S7 Expert machine; a 9L-D linear probe 70 66

Liu et al.
(36)

VTQ (ARFI) SWV 2.445 m/s Surgery or
biopsy

Siemens Acuson S2000; 14L5 linear probe and curvilinear probe 80 92

Karaman
et al. (37)

SE 4-point ≥ 3 Histopathology Acuson Antares; a 6- to 13-MHz linear probe 100 66

Matsuda
et al. (38)

VTI (ARFI) 4-point ≥ 3 Surgery or
biopsy

Siemens Acuson S2000; a 4- to 9-MHz or 14-MHz linear probe 77 64
f
rontiers
SE, strain elasticity; ARFI, acoustic radiation force impulse; VTI, virtual touch imaging; VTQ, virtual touch quantification; NR, not reported; SWV, shear wave velocity; Sen, sensitivity; Spe,
specificity.
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FIGURE 2

Summary of risk of bias and applicability concerns.
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concentrated on the right lower quadrant, indicating that

elastosonography was not effective for malignant salivary gland

tumor confirmation and exclusion (Figure 10). Therefore,

elastosonography is a limited value in the diagnosis of

malignant salivary gland tumors.
Publication bias

The Deeks’ funnel plot revealed symmetry in scattered

points, suggesting that there was no significant publication

bias (p = 0.05) (Figure 11).
Discussion

Our current study found that elastosonography had a pooled

moderate sensitivity of 0.73 (95% CI, 0.66–0.78) and a relatively
Frontiers in Oncology 08
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low specificity of 0.64 (95%CI, 0.61–0.67) for the differentiation

between benign and malignant salivary gland tumors. The

pooled PLR and NLR were 2.83 (95%CI, 1.97–4.07) and 0.45

(95%CI, 0.32–0.62), demonstrating that elastosonography was

not effective for malignant salivary gland tumor confirmation

and exclusion. The diagnostic odds ratio was 9.86 (95%CI, 4.49–

21.62), with an AUC of 0.82. The results indicated that

elastosonography revealed a limited value for diagnosing

malignant salivary gland tumors.

Four papers supplied the data with regard to conventional

ultrasound for the differentiation between benign and malignant

salivary gland tumors. The pooled sensitivity, specificity, DOR, and

AUC of conventional ultrasound diagnosing malignant salivary

gland tumors were 0.62 (95% CI, 0.50–0.73), 0.93 (95% CI, 0.90–

0.96), 25.07 (95%CI, 4.28–146.65), and 0.57, respectively. Compared

with elastosonography in the diagnosis of salivary gland tumors

indirectly, conventional ultrasound had higher specificity (0.93 vs.

0.64), but lower sensitivity (0.62 vs. 0.73), which meant that
BA

FIGURE 3

Forest plots for sensitivity (A) and specificity (B) of elastosonography for diagnosis of malignant salivary gland tumors.
FIGURE 4

Forest plot for diagnostic odds ratio of elastosonography for diagnosis of malignant salivary gland tumors.
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conventional ultrasound was more effective in the diagnosis of

benign salivary gland tumors than of malignant tumors; in contrast,

compared with conventional ultrasound, elastosonography had

slightly high sensitivity so that it was more effective in the

diagnosis of malignant tumors. Consequently, taking the place of

utilizing elastosonography or conventional ultrasound alone,

the combined use of the two techniques might result in

better diagnostic performance. Hence, we believed that
Frontiers in Oncology 09
125
elastosonography could be considered as a supplementary

diagnostic technique to conventional ultrasound for the

assessment of salivary gland tumors.

A prior meta-analysis by Zhang et al. in 2018 (39)

included 10 eligible studies on elastosonography for

differential diagnosis between benign and malignant parotid

lesions, with a total of 725 parotid lesions, and demonstrated

that sonoelastography had a limited value for diagnosing
FIGURE 5

Summary receiver operating characteristic (SROC) curve of elastosonography for diagnosis of malignant salivary gland tumors.
TABLE 3 Meta-regression and subgroup analyses.

Covariate Number of studies Pooled sensitivity
(95% CI)

Pooled specificity
(95% CI)

Pooled DOR
(95% CI)

AUC p-Value

Study design 0.57

Prospective 10 0.75 (0.67–0.81) 0.61 (0.57–0.65) 12.14 (3.60–40.92) 0.85

Others 6 0.69 (0.58–0.79) 0.69 (0.64–0.73) 7.20 (3.50–14.81) 0.78

Year of publication 0.23

2010-2013 7 0.64 (0.54–0.74) 0.67 (0.62–0.73) 4.16 (2.32–7.40) 0.72

2014-2020 9 0.78 (0.70–0.85) 0.63 (0.59–0.67) 16.25 (4.28–61.68) 0.86

Assessment method 0.0034*

Quantitative or semiquantitative 4 0.81 (0.68–0.91) 0.93 (0.88–0.96) 73.49 (25.99–207.76) 0.96

Qualitative 12 0.70 (0.63–0.77) 0.58 (0.54–0.61) 4.72 (2.43–9.17) 0.74

Blinding method 0.24

Yes 12 0.74 (0.67–0.81) 0.73 (0.57–0.65) 12.43 (5.54–27.90) 0.84

Unclear 4 0.68 (0.55–0.80) 0.43 (0.37–0.49) 4.35 (0.79–23.94) 0.73
fron
*, Statistical significance (p < 0.05); CI, confidence interval; DOR, diagnostic odds ratio; AUC, area under the curve.
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BA

FIGURE 6

Forest plots for sensitivity (A) and specificity (B) of conventional ultrasound for diagnosis of malignant salivary gland tumors.
FIGURE 7

Forest plot for diagnostic odds ratio of conventional ultrasound for diagnosis of malignant salivary gland tumors.
B
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A

FIGURE 8

Sensitivity analysis of studies.
Frontiers in Oncology frontiersin.org10
126

https://doi.org/10.3389/fonc.2022.954751
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2022.954751
malignant parotid lesions with a pooled sensitivity and

specificity of 0.67 and 0.64, respectively. Compared with

their study, our meta-analysis found that elastosonography

had comparable sensitivity (0.73 vs. 0.67) and equal

specificity (0.64 vs. 0.64), which confirmed the value of

elastosonography in the diagnosis of salivary gland tumors.

Furthermore, our study included patients not only with

parotid lesions but also with submandibular or sublingual

lesions, while Zhang et al.’s study only included patients with

parotid lesions. In addition, our meta-analysis enrolled more

eligible studies (16 vs. 10 papers). Therefore, we believed that

the conclusion of our study might be more generalized.
Frontiers in Oncology 11
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Another prior meta-analysis by Li et al. (40) included nine

eligible articles with 581 tumors using real-time elastography to

differentiate benign and malignant salivary gland tumors, and

demonstrated moderate diagnostic performance that the pooled

sensitivity, specificity, and AUC were 0.76, 0.73, and 0.81,

respectively. All the eligible studies adopted strain elastography

technology, the traditional form of elastography, which depends on

the sonographer’s experience and external manual pressure and is a

non-quantitative technology, to assess the stiffness of tumors. In

contrast, the included studies in our meta-analysis used not only

strain elastography but also shear wave elastography (31, 36), which

allows an objective and quantitative assessment of the tumor
FIGURE 9

Fagan plot of elastosonography by patient analysis for the diagnosis of malignant salivary gland tumors.
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stiffness (41). The pooled sensitivity and specificity of our meta-

analysis were lower compared with Li et al.’s study, whereas our

meta-analysis enrolled more recently published articles that not

only enhanced the statistical power of this study but also further

supported clinical application of elastosonography for diagnosing

malignant salivary tumors.
Frontiers in Oncology 12
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A study by Dumitriu et al. (28) indicated that the depth of the

tumor might be a hindrance for elastosonography, which was

particularly true for tumors located in the deep parotid lobe. Yerli

and colleagues (29) revealed that the assessment of tumors located

in the deep parotid lobe was a limitation of conventional ultrasound

and was also a limitation of elastosonography. For tumors located in
FIGURE 10

Likelihood matrix indicated that summary positive likelihood ratio and negative likelihood ratio for elastosonography in the diagnosis of
malignant salivary gland tumors with 95% confidence intervals were concentrated on the right lower quadrant.
FIGURE 11

Funnel plot for evaluating potential publication bias.
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the superficial parotid lobe but relatively deep, the mandibula can

hinder the performance of optimal compression in the transverse

plane. Furthermore, the mandibula can also affect the performance

of optimal longitudinal compression of the submandibular gland.

Matsuda et al. (38) found that the sensitivity for differentiating

malignant tumors in the superficial parotid lobe was 100%, while

the sensitivity was 20% for tumors in the deep lobe, which was

attributed to the inability of attenuated acoustic pulses to reach the

deep parotid lobe. Therefore, for certain anatomic structures, such

as themandible, the depth of the tumor location and tumors located

in different salivary glands might have an effect on the results of

elastosonography. However, we were not able to implement

meaningful subgroups based on the factors mentioned above, as

the data were not recorded in most of the studies.

Although malignant tumors are generally stiffer than benign

lesions, a substantial overlap of elastic properties betweenmalignant

and benign salivary gland tumors was found in published papers

(27, 28, 34). Pleomorphic adenoma, the most common benign

salivary gland tumor, is a histologically diverse group of tumors

(42), which results in the extremely wide range of elastographic

values. In addition, some types of tumors, like Warthin tumors,

have variable proportions of solid and cystic components, which

would result in a considerable variance in stiffness. Moreover, some

benign lesions, inflammatory diseases, as well as abscesses are

considered as malignant tumors due to their appearance on

elastosonography. It is still significantly difficult to discriminate

between benign and malignant salivary gland tumors, and the

diagnostic performance of elastosonography is unsatisfying (20,

29, 30). Therefore, other imaging methods complementing

elastosonography, such as conventional ultrasound, magnetic

resonance imaging, and computed tomography, are needed.

High heterogeneity among the included studies was a major

problem in this meta-analysis. The Spearman correlation coefficient

was 0.24 (p = 0.37), indicating that no threshold effect existed.

Further meta-regression and subgroup analyses revealed that the

assessment methods (quantitative or semiquantitative vs.

qualitative) might play an important role in the heterogeneity.

Quantitative or semiquantitative elastosonography, with higher

pooled sensitivity (0.81 vs. 0.70), specificity (0.93 vs. 0.58), DOR

(73.49 vs. 4.72), and AUC (0.96 vs. 0.74), performed better than the

qualitative one, as shown in Table 3. The probable explanation was

that compared with qualitative elastosonography, quantitative or

semiquantitative elastosonography adopted an algorithm

automatically calculated by an ultrasound equipment and was

thus less operator-dependent and more objective. Although meta-

regression and subgroup analyses excluded the influence of study

design, year of publication, and blinding method, other factors such

as ultrasound equipment, threshold values, index of elastography,

and demographic characteristics would like to be taken into

account. Due to the limited included studies, we were not able to

perform meaningful subgroups on the basis of other factors

mentioned above.
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This meta-analysis has some limitations, which should be

taken into account while interpreting the conclusions. First, a

strict procedure was performed to review the articles and

ultimately 16 eligible studies that fulfilled the inclusion criteria

were enrolled. There are still relatively rare published studies

exploring the value of elastosonography for diagnosis of salivary

gland tumors, as the clinical application of elastosonography in

the diagnosis of malignant salivary gland tumors was not

reported until 2010 (27). Furthermore, only studies written in

English were included in our meta-analysis, and then, language

bias was inevitable. Second, the comparison between

elastosonography and conventional ultrasound was performed

indirectly. To determine which imaging modality is superior, a

more rigorous research should be carried out adopting these two

ultrasound technologies on the same cohort of patients. Finally,

methodological limitations in the majority of the included

studies were identified, especially in domains including patient

selection, index test, reference standard, and flow and timing.

Hence, more rigorous studies in the future are needed to address

these methodological limitations.
Conclusions

The existing evidence indicated that elastosonography showed a

limited value for diagnosing malignant salivary gland tumors; it

could be considered as a supplementary diagnostic technology to

conventional ultrasound, and quantitative or semiquantitative

elastosonography performed better than the qualitative one.

However, large prospective multicenter studies are still needed to

validate the conclusion and to further develop the clinical

application of elastosonography in salivary gland tumors.
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Ultrasound-based deep learning
using the VGGNet model for the
differentiation of benign and
malignant thyroid nodules:
A meta-analysis
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Ming Chen1, Tian Sang1, Wen-Xiao Li1, Jun Li1,3*

and Xin-Wu Cui2*
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Huazhong University of Science and Technology, Wuhan, China, 3NHC Key Laboratory of
Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School
of Medicine, Shihezi University, Shihezi, China
Objective: The aim of this study was to evaluate the accuracy of deep learning

using the convolutional neural network VGGNetmodel in distinguishing benign

and malignant thyroid nodules based on ultrasound images.

Methods: Relevant studies were selected from PubMed, Embase, Cochrane

Library, China National Knowledge Infrastructure (CNKI), and Wanfang

databases, which used the deep learning-related convolutional neural

network VGGNet model to classify benign and malignant thyroid nodules

based on ultrasound images. Cytology and pathology were used as gold

standards. Furthermore, reported eligibility and risk bias were assessed using

the QUADAS-2 tool, and the diagnostic accuracy of deep learning VGGNet was

analyzed with pooled sensitivity, pooled specificity, diagnostic odds ratio, and

the area under the curve.

Results: A total of 11 studies were included in this meta-analysis. The overall

estimates of sensitivity and specificity were 0.87 [95% CI (0.83, 0.91)] and 0.85

[95% CI (0.79, 0.90)], respectively. The diagnostic odds ratio was 38.79 [95% CI

(22.49, 66.91)]. The area under the curve was 0.93 [95% CI (0.90, 0.95)]. No

obvious publication bias was found.

Conclusion: Deep learning using the convolutional neural network VGGNet

model based on ultrasound images performed good diagnostic efficacy in

distinguishing benign and malignant thyroid nodules.

Systematic Review Registration: https://www.crd.york.ac.nk/prospero,

identifier CRD42022336701.
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Introduction

Thyroid nodules are the most common diseases of the

endocrine system, with an ultrasound population detection

rate of about 65%, of which approximately 10% is thyroid

cancer (1). Thyroid cancer, despite the low incidence, is one of

the fastest growing of all cancer types, having increased

approximately 2.4 times in the last 30 years (2). It has

become a public health concern in most parts of the world.

Therefore, early detection and early accurate diagnosis of

benign and malignant thyroid nodules are crucial to develop

treatment plans and predict prognosis for patients with

thyroid nodules, yet this is a great challenge for radiologists

and physicians.

Ultrasound is currently the first-line examination of choice

for the clinical diagnosis of thyroid nodules, and it is not only the

main method for cancer risk stratification of thyroid nodules,

but also usually used for the guidance of fine-needle aspiration

biopsy. However, the differential diagnosis of thyroid nodules by

2D ultrasound has certain limitations. The quality of ultrasound

images is susceptible to many factors, such as the cooperation of

patients, the performance of ultrasound machines, and the

operating techniques of radiologists (3). In addition,

ultrasound diagnostic results are affected by the experience

level of radiologists, and the recognition of ultrasound image

characteristics of nodules differs among radiologists with

different working experience, which is subjective (4).

Therefore, there is an urgent need to explore a diagnostic

tool that is noninvasive, accurate, and objective in the

differential diagnosis of the benign and malignant thyroid

nodules preoperatively.

In 2013, deep learning of artificial intelligence (AI) was

ranked as one of the top 10 breakthrough technologies by MIT

Technology Review, ranking no. 1. From then on, deep learning

entered an era of rapid development and played a pivotal role in

the medical field, especially in medical image recognition. Some

studies used the deep learning convolutional neural network to

extract ultrasound features to identify and diagnose benign and

malignant thyroid nodules, and some of the studies with

diagnostic performance could be comparable to or better than

the advanced physicians, which could reduce unnecessary

punctures and overtreatment, and help grassroots and

inexperienced physicians improve diagnostic efficiency and

accuracy (5–7). In addition, Lee et al. (8) explored the use of

deep learning convolutional neural networks in predicting the

presence of lymph node metastasis in thyroid cancer on

ultrasound, and their results indicated good predictive

diagnostic accuracy (accuracy of 83.0%). Accordingly,

ultrasound-based AI provides a new direction and method for

radiologists to accurately and non-invasively identify and

diagnose benign and malignant thyroid nodules and predict

lymph node metastasis in the neck before surgery.
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Previous published AI studies on thyroid disease can be

broadly classified into two categories: traditional machine

learning (ML) and deep learning (DL). Traditional ML uses

manual extraction of image features, but ultrasound images are

highly variable and feature extraction is dependent on physician

experience; therefore, the accuracy of diagnosing benign and

malignant thyroid nodules varies between empirical

practitioners. Deep learning is a development of machine

learning using automated extraction of image features, which

is independent of physician experience (9). Among them,

convolutional neural network (CNN) is a well-known deep

learning structure in the field of medical image analysis and is

a fully trainable deep learning algorithm consisting of an input

layer, a hidden layer, and an output layer (10, 11). The hidden

layer usually contains a convolutional layer, a pooling layer, and

a fully connected layer. Compared with traditional machine

learning methods, CNN performs better in target detection and

image classification, and can better extract semantic features

(12). Nowadays, CNN is considered one of the most advanced

methods among many representative algorithms of deep

learning, and VGGNet is a widely used model in CNN

algorithms (10, 11). This model is the first network structure

to reach “deep” in a real sense, as it takes a different research

direction from previous CNN models, namely, deepening the

network, and proves that the deep network with small filters is

superior to the shallow network with large filters (13). Therefore,

the deep learning VGGNet model alone was selected as the

research subject to avoid selection bias and ensure the stability

and reliability of the results.

At present, a number of studies have demonstrated that

using the deep learning VGGNet model can differentiate benign

and malignant thyroid nodules on ultrasound to assist

physicians in making diagnostic results, but the sensitivity of

different studies varies. The sensitivity was 93% in the study

results of Zhu et al. (5), but only 77% in the study results of Zhou

et al. (14). The sensitivity of ultrasound-based deep learning

VGGNet in the diagnosis of thyroid nodules was quite different,

and no meta-analysis of ultrasound-based deep learning

VGGNet models for the determination of the nature of

thyroid nodules has been found. Therefore, this meta-analysis

aims to evaluate the efficacy of the ultrasound-based deep

learning VGGNet model in distinguishing and diagnosing the

nature of thyroid nodules to help radiologists make more

accurate diagnoses.
Materials and methods

Search strategy

This meta-analysis was a study summarizing previously

published literature on the differential diagnosis of thyroid
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nodules with an ultrasound-based deep learning convolutional

neural network VGGNet model, thus requiring no ethical

confirmation or patient consent. The literature was

independently searched in PubMed, Embase, Cochrane

Libraries, China National Knowledge Infrastructure (CNKI),

and Wanfang databases up to September 2021, updated as of

June 2022. The main following keywords were searched: “Deep

learning” or “DL” or “Neural network” and “ultrasonography”

OR “ultrasound” OR “ultrasonic” or “diagnostic imaging” and

“thyroid” or “thyroid gland” or “thyroid nodules”. Moreover,

references of retrieved topic-related systematic reviews were also

manually searched, and other relevant studies were read and

identified to make the search more comprehensive.
Study selection

Inclusion criteria were as follows (1): studies that used the

deep learning VGGNet model for the differential diagnosis of

benign and malignant thyroid nodules (2); at least one

ultrasound imaging modality (3); literature that can provide

true positives (TP), false positives (FP), false negatives (FN), and

true negatives (TN) (4); test set data or validation set data would

be chosen; if both were present at the same time, we chose to use

the test set; if there were both external and internal test sets, we

also conducted a meta-analysis on the external test sets; if there

were more than one external test set results in a paper at the

same time, we would remove the highest and lowest diagnostic

performance results and select the intermediate results; and (5)

the gold standard was fine-needle aspiration (FNA), pathology,

or both.

Excluded studies include (1) studies that did not match the

gold standard (2); convolutional neural network models

unrelated to the deep learning VGGNet model (3); studies that

did not provide the necessary 2×2 contingency data (4);

literature with only abstracts, reviews, conference report,

papers not published in journals, full text that were not

accessible online, and so on; and (5) duplicate studies.
Quality assessment and data extraction

The Quality Assessment of Diagnostic Accuracy Studies

(QUADAS) tool is a recognized tool for quality assessment of

diagnostic accuracy tests, because of its specific problem

definition and clinical actionability that is widely used in

diagnostic meta-analyses (15, 16). The QUADAS tool was

revised in 2011 and was called QUADAS-2, consisting of four

main parts: case selection, index test, reference standard, and

flow and timing, and all components are evaluated in terms of

risk of bias (17). The 11 studies included were independently

evaluated by two reviewers using the QUADAS-2 tool, and
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resolved by discussion between internal members if a

disagreement was encountered during the assessment.

QUADAS-2 results were output using RevMan 5.3, the

dedicated software for the Cochrane Collaboration Network.

In this study, two authors independently read the titles and

abstracts to screen eligible papers, and then read the full text to

determine the included papers. The information obtained from

each study was extracted independently, including first author,

year of publication, country, gold standard, training set size,

test set size, fourfold table data (TP, FP, FN, and TN),

sensitivity, specificity, VGGNet type, and testing objects. If

fourfold table data were not available in the literature, they

were excluded.
Statistical analysis

The entire data from the included studies were selected using

Excel 2019, and sensitivity, specificity, and diagnostic odds ratio

(DOR) [95% confidence interval (CI)] were summarized using

STATA software version 16.0. The area under the receiver

operating characteristic (ROC) curve and 95% CI were also

calculated, and the value of the diagnostic test was assessed by

the area under the curve (AUC) value, where AUC < 0.70 means

low diagnostic accuracy, 0.70 < AUC < 0.90 indicates moderate

diagnostic accuracy, and AUC ≥ 0.90 indicates high diagnostic

accuracy. Statistical inconsistency between studies was assessed

using the I2 and Cochrane Q tests; if I2 < 50%, it will choose a

fixed-effects model to assess sensitivity and specificity, and if I2 >

50%, a random-effects model would be used. Meta-regression

analysis was used and reasons were given when statistical

heterogeneity was large . p < 0.05 was considered

statistically significant.
Results

Literature searches

Through a comprehensive search, 2,495 records were obtained

for our study as of September 2021, updated as of June 2022,

including 544 papers from PubMed, 1,837 papers from Embase, 40

articles from Cochrane Libraries, 31 papers from CNKI, 37 papers

from Wanfang database, and 6 papers from other sources. After

preliminarily eliminating duplicate literatures, two researchers

independently read the titles and abstracts of the remaining

literatures, excluding literature reviews, cases, news, and other

research types. The full text of the literature obtained will be

further read through and eventually include 11 studies eligible for

the meta-analysis. The detailed selection procedure is shown

in Figure 1.
frontiersin.org

https://doi.org/10.3389/fonc.2022.944859
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.944859
Study characteristics

We registered this meta-analysis on the PROSPERO

website; the registration number is CRD42022336701.

Following the PRISMA-Diagnostic studies selection process,

we eventually included 11 papers; all studies are included in

Table 1. The following are some basic characteristics of the
Frontiers in Oncology 04
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included literature. All studies were published within the last 5

years. Eight papers used the deep learning VGG-16 model (14,

18–24). Four papers clearly indicated retrospective study (5, 6,

14, 19). Two papers did not give an explicit number of training

sets (19, 20). Three papers compared the deep learning CNN

algorithm with radiologists, and the results were comparable

to or better than those of the advanced radiologists (5, 7, 23).
FIGURE 1

Study flowchart. Eleven studies were included in this meta-analysis.
TABLE 1 Characteristics of the included studies.

Author Year Country Gold standard Training
database

Test
database

Se (%) Sp (%) TP FP FN TN VGG Testing objects

B M B M

Kwon S.W et al. (18) 2020 Korea FNA / pathology 199 260 62 83 0.92 0.70 76 19 7 43 16 Interior

Liu Z et al. (19) 2021 China FNA – – 67 96 0.79 0.87 76 9 20 58 16 Interior

Wu K et al. (20) 2020 China pathology – – 520 636 0.86 0.78 547 114 89 406 16 Interior

Qin P.L et al. (21) 2019 China pathology 424 484 115 133 0.93 0.98 123 2 10 113 16 Interior

Zhu J.L et al. (7) 2021 China pathology 6760 9641 73 227 0.93 0.85 212 11 16 62 19 Interior

6760 9641 502 530 0.95 0.90 503 50 27 452 19 Exterior

Zhou H et al. (14) 2020 China FNA / pathology 719 448 359 224 0.84 0.88 172 72 52 287 16 Interior

719 448 802 161 0.9 0.9 155 80 6 722 16 Exterior

Liang et al. (22) 2021 China pathology 545 530 136 133 0.86 0.98 114 1 19 133 16 Interior

Zhu Y.C et al. (5) 2020 China pathology 421 298 57 45 0.84 0.88 38 7 7 50 19 Interior

Zhu Y.C et al. (23) 2021 China pathology 300 300 100 100 0.85 0.79 85 21 15 79 16 Exterior

Chan W.K et al. (6) 2021 China pathology 4044 3316 264 204 0.81 0.8 100 14 24 56 19 Interior

Kim Y.J et al. (24) 2022 Korea FNA 9772 2555 310 122 0.92 0.73 122 84 10 226 16 Interior

0.87 0.68 106 99 16 211 19 Interior

9772 2555 34 25 0.79 0.77 20 8 5 26 16 Exterior

0.75 0.81 19 6 6 28 19 Exterior
Se, sensitivity; Sp, specificity; M, Malignant; B, Benign; TP, true positives; FP, false positives; FN, false negatives; TN, true negatives; FNA, fine needle aspiration.
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Qin et al. (21) extracted both ultrasound image features and

ultrasound elastic image features. Zhu et al. (5) only included

thyroid nodules in female patients.
Methodology quality assessment

The results of evaluating the papers’ quality assessed by the

QUADAS-2 are shown in Figure 2. Most of the studies

themselves were of high quality, but a few studies had

potential risk of bias in flow and timing. In general, the

included studies were considered as eligible.
Accuracy of the ultrasound-based deep
learning VGGNet model in the
differential diagnosis of benign and
malignant thyroid nodules

The comprehensive Pooled Sensitivity (PSEN) and Pooled

Specificity (PESP) of the ultrasound-based deep learning

VGGNet model for the differential diagnosis of benign and

malignant thyroid nodules were 0.87 [95% CI (0.83, 0.91)] and

0.85 [95% CI (0.79, 0.90)], respectively (Figure 3). Higgins I2

statistics showed significant heterogeneity in terms of sensitivity

(p < 0.05, I2 = 91.09%) and specificity (p < 0.05, I2 = 92.12%);

therefore, we selected the random-effects model to analyze the

sensitivity and specificity; the DOR was 38.79 [95% CI (22.49,
Frontiers in Oncology 05
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66.91)] (Figure 4). The AUC was 0.93 [95% CI (0.90, 0.95)]

(Figure 5). The result of Spearman correlation coefficient by

Meta-DiSc version 1.4 (r = −0.18, p = 0.50) indicated that there

was no significant threshold effect (p > 0.05), which also showed

that other factors may lead to the generation of heterogeneity.
Publication bias

Deek’s funnel plot drawn by STATA16.0 showed no

significant asymmetry, with a p-value of 0.84 (p > 0.05)

(Figure 6), which indicated that there was no possibility of

significant publication bias.
Heterogeneity detection

Given the heterogeneity of the studies included in the

pooled statistics, this research used regression analysis to

analyze several clinically relevant survey variables. The result

showed that year of study publication (≤2020 or >2020),

number or scale of the region of interest (ROI) (single or

multiple), and type of deep learning VGGNet (VGG-16 or

VGG-19) were all associated with heterogeneity and were

statistically significant for sensitivity (p < 0.05). Results of the

meta-regression analysis are shown in Table 2. Among these

covariates, the pooled sensitivity of studies published in 2020

and before was 0.89 [95% (0.84,0.95)] and 0.86 [95% (0.81,

0.91)] in papers published after 2020; the pooled specificity of

papers published in 2020 and before was 0.86 [95% (0.79,0.94)]

and 0.85 [95% (0.78,0.92)] in studies published after 2020, both

being statistically significant (p < 0.05). The pooled sensitivity

was 0.87 [95% (0.82, 0.91)] for a single ROI and 0.89 [95%

(0.82, 0.96)] for multiple ROIs, the pooled specificity was 0.84

[95% (0.78, 0.90)] for a single ROI and 0.89 [95% (0.80, 0.97)]

for multiple ROIs, and the pooled sensitivity difference was

statistically significant (p < 0.05); the pooled specificity showed

no significant differences (p > 0.05). The pooled sensitivity of

VGG-16 was 0.88 [95% (0.83,0.93)] and VGG-19 was 0.87

[95% (0.80,0.93)], and the pooled specificity of VGG-16 was

0.86 [95% (0.80,0.93)] and VGG-19 was 0.84 [95%(0.75,0.93)],

both of which were statistically significant (p < 0.05).
Sensitivity analysis

To explore whether the studies affected the stability of PSEN

and PSPE, this study used a method of eliminating the literature

one by one, and the results of sensitivity and specificity analysis

are shown in Table 3. The results demonstrated that with every

single paper excluded, neither PSEN and PSPE nor Higgins I²

had significant changes.
FIGURE 2

Bias risk of the included studies (QUADAS 2 criteria). The
authors’ assessment of each domain for each included study.
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FIGURE 3

The forest plot of sensitivity and specificity for diagnosing thyroid nodules. Horizontal lines illustrate 95% confidence intervals of the individual
studies.
FIGURE 4

The diagnostic odds ratios (DOR) for diagnostic thyroid nodules. Horizontal lines illustrate 95% confidence intervals of the individual studies.
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Fagan plot analysis

The analysis of the Fagan plots showed that the ultrasound-

based deep learning VGGNet model could provide some help for

radiologists on the differential diagnosis of the nature of thyroid

nodules (Figure 7). When the prior probability was 50%, the
Frontiers in Oncology 07
138
posterior probability of the deep learning VGGNet model

correctly discriminating malignant nodules as “positive” was

86%, and the posterior probability dropped to 13% when it was

“negative”. When the prior probabilities were 25% and 75%, the

post-test probabilities for positive were 67% and 86%, and the

post-test probabilities for negative were 5% and 31%.
Discussion

This meta-analysis evaluated the efficacy of the ultrasound-

based deep learning VGGNet model in the differential diagnosis

of benign and malignant thyroid nodules. The results showed

that the deep learning VGGNet model achieved satisfactory

results in discriminating benign and malignant thyroid

nodules on ultrasound images; the pooled sensitivity and

specificity were 0.87 [95% CI (0. 83, 0.91)] and 0.85 [95% CI

(0.79, 0.90)], respectively, the DOR was 38.79 [95% CI (22.49,

66.91)], and the AUC was 0.93 [95% CI (0.90, 0.95)]. These

results indicated that ultrasound-based deep learning VGGNet

has high diagnostic accuracy for distinguishing the nature of

thyroid nodules.

Traditional machine learning usually involves feature

extraction and classification of ROI. Although the popularity

of machine learning has gradually increased in recent years, ROI

can only be manually selected and analyzed with machine

learning using single-area information such as image texture,

geometric shape, and statistical distribution (9). Ding et al. (25,

26) extracted statistical and textural features from thyroid

elastograms, and then trained support vector machine (SVM)
FIGURE 6

The publication bias of the included studies. No significant publication bias was found in the present meta-analysis. Each circle represented
eligible research. ESS, effective sample size.
FIGURE 5

The receiver operating characteristic curve (ROC). SENS,
sensitivity; SPEC, specificity; SROC, summary receiver operating
characteristic curve; AUC, area under the SROC curve.
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to detect malignancy of thyroid nodules with a maximum

classification accuracy of 95.2%. However, the classification

accuracy was affected by a hard threshold.

Compared with ML, deep learning can automatically extract

the multi-level features of the ROI, and learn features from the

nodule itself and the difference between the textures of different

tissues, which greatly improves the image classification and

detection performance (27). Buda et al. (28) used CNN for

feature extraction and nodule classification of thyroid nodules,

and also compared the diagnosis results with those of nine

radiologists; the average sensitivity and average specificity of

deep learning for diagnosis were higher than those of the nine

radiologists, indicating that deep learning has a good clinical

diagnostic value. Vasile et al. (29) used the fusion method of

CNN-VGG for thyroid disease feature extraction and image

classification, with an overall accuracy of 97.35%, showing that

the integrative method is an excellent and stable classifier.
Frontiers in Oncology 08
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Previously, some meta-analyses were published about

cardiovascular disease (30), gastrointestinal disease (31), and

colorectal polyposis disease (32), and their combined AUCs were

equal to or greater than 0.9, showing the excellent performance

of CNN in disease diagnosis. Obviously, meta-analyses of

thyroid nodules in ultrasound-based artificial intelligence have

been conducted. Zhao et al. (33) included only five studies in

meta-analysis. Xu et al. (34) mainly evaluated the overall

computer-aided systems (CAD) efficacy of VGGNet, S-Detect,

AlexNet, Inception, and so on in meta-analysis. In addition, the

number of studies that included various single models was small,

and none of them yielded the diagnostic efficacy of single-class

models. Through further retrieval and reading of papers, no

meta-analysis using ultrasound-based deep learning VGGNet

model to differentially diagnose benign and malignant thyroid

nodules has been found so far. Therefore, the authors conducted

such a study.
TABLE 2 Meta-regression of ultrasound-based deep learning for differentiating and diagnosing benign and malignant of thyroid nodules.

Category N Se (95% CI) p Sp (95%CI) p

Year

≤2020 6 0.89 (0.84, 0.95) <0.05 0.86 (0.79, 0.94) <0.05

>2020 10 0.86 (0.81, 0.91) 0.85 (0.78, 0.92)

ROI

Single 12 0.87 (0.82, 0.91) <0.05 0.84 (0.78, 0.90) 0.18

Multiple 4 0.89 (0.82, 0.96) 0.89 (0.80, 0.97)

VGG

VGG-16 10 0.88 (0.83, 0.93) <0.05 0.86 (0.80, 0.93) <0.05

VGG-19 6 0.87 (0.80, 0.93) 0.84 (0.75, 0.93)
frontiers
N, number of included studies; Se, sensitivity; Sp, specificity; CI, confidence interval; ROI, region of interest.
TABLE 3 The sensitivity analysis using the method of eliminating papers one by one.

Delete papers Se (95% CI) I2 (95% CI) p Sp (95% CI) I2 (95% CI) p AUC (95% CI)

Zhou H et al. (14) 0.87 (0.82, 0.90) 90.54 (88.89, 94.18) 0.00 0.85 (0.78, 0.90) 91.16 (87.82, 94.49) 0.00 0.92 (0.90, 0.94)

Kim Y.J et al. (24) 0.88 (0.84, 0.91) 91.71 (88.64, 94.78) 0.00 0.86 (0.79, 0.90) 92.74 (90.15, 95.33) 0.00 0.93 (0.91, 0.95)

Kin Y.J et al. (24) 0.88 (0.83, 0.91) 91.80 (88.78, 94.83) 0.00 0.86 (0.79, 0.91) 92.75 (90.17, 95.33) 0.00 0.93 (0.91, 0.95)

Zhu J.L et al. (7) 0.87 (0.82, 0.90) 88.89 (84.40, 93.37) 0.00 0.85 (0.78, 0.90) 91.68 (88.60, 94.76) 0.00 0.92 (0.90, 0.94)

Zhu Y.C et al. (23) 0.88 (0.83, 0.91) 91.75 (88.70, 94.80) 0.00 0.86 (0.79, 0.91) 92.70 (90.09, 95.30) 0.00 0.93 (0.91, 0.95)

Kim Y.J et al. (24) 0.87 (0.83, 0.91) 91.74 (88.68, 94.79) 0.00 0.86 (0.80, 0.91) 90.04 (86.15, 93.93) 0.00 0.93 (0.91, 0.95)

Kim Y.J et al. (24) 0.87 (0.82, 0.91) 91.48 (88.29, 94.66) 0.00 0.86 (0.80, 0.91) 91.81 (88.79, 94.83) 0.00 0.93 (0.90, 0.95)

Chan W.K et al. (6) 0.89 (0.85, 0.91) 84.91 (78.27, 91.55) 0.00 0.86 (0.79, 0.90) 92.25 (89.93, 95.20) 0.00 0.93 (0.91, 0.95)

Liang J.W et al. (22) 0.88 (0.83, 0.91) 91.58 (88.45, 94.71) 0.00 0.83 (0.78, 0.87) 91.04 (87.65, 94.44) 0.00 0.92 (0.89, 0.94)

Zhu J.L et al. (7) 0.87 (0.82, 0.90) 90.89 (87.42, 94.36) 0.00 0.85 (0.79, 0.95) 92.50 (89.80, 95.19) 0.00 0.93 (0.90, 0.95)

Liu Z et al. (19) 0.88 (0.84, 0.91) 91.62 (88.51, 94.73) 0.00 0.85 (0.79, 0.90) 92.67 (90.05, 95.28) 0.00 0.93 (0.91, 0.95)

Wu K et al. (20) 0.88 (0.83, 0.91) 91.49 (88.31, 94.66) 0.00 0.86 (0.79, 0.91) 92.40 (89.66, 95.14) 0.00 0.93 (0.91, 0.95)

Zhu Y.C et al. (5) 0.88 (0.83, 0.91) 91.66 (88.57, 94.76) 0.00 0.85 (0.79, 0.90) 92.56 (89.89, 95.23) 0.00 0.93 (0.90, 0.95)

Zhou H et al. (14) 0.88 (0.84, 0.91) 90.89 (87.42, 94.36) 0.00 0.86 (0.79, 0.91) 92.52 (89.84, 95.21) 0.00 0.93 (0.91, 0.95)

Qin P.L et al. (21) 0.89 (0.84, 0.92) 91.12 (87.76, 94.47) 0.00 0.87 (0.81, 0.92) 91.35 (88.10, 94.59) 0.00 0.94 (0.92, 0.96)

Kwon S.W et al. (18) 0.87 (0.83, 0.91) 91.58 (88.45, 94.71) 0.00 0.84 (0.80, 0.91) 92.47 (89.75, 95.18) 0.00 0.93 (0.91, 0.95)
Se, sensitivity; Sp, specificity; CI, confidence interval; AUC, area under the curve.
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All the included studies reported good quality, indicating

that most of the included studies were of high quality and did

not show significant publication bias. However, a few numbers

of included studies did not inform about the continuity and

randomization of case selection and the incompleteness of the

implementation of the gold standard, resulting in a small

number of studies with slightly poorer quality reports, which

may lead to implementation bias and measurement bias,

resulting in high heterogeneity. Therefore, this study chose

meta-regression to explain this high degree of heterogeneity.

From the results, we can see that the year of study publication,

number or scale of ROI, and type of deep learning VGGNet

model may be important reasons for this heterogeneity. The

reasons for heterogeneity are analyzed separately in

detail below.

Firstly, there were 6 sets of data from five papers published in

2020 and before (5, 14, 18, 20, 21) and 10 sets of data from six

papers published after 2020 (6, 7, 19, 22–24); sensitivity and

specificity were statistically significant (p < 0.05). The papers

published after 2020 had a lower sensitivity than those published

in 2020 and before (0.86 vs. 0.89). The reason may be that some

papers published after 2020 included malignant images of

thyroid nodules of different pathological types (6, 19, 23),

which reduced the sensitivity of papers published after 2020.

In addition, the total number of benign nodules included in

papers after 2020 was less than that in 2020 and before, which

reduced the specificity.

Secondly, it is easy for the ROI depicted on a single scale to

ignore the rich details of ultrasound images of thyroid nodules

(35). Therefore, different numbers or scales of ROIs were an
Frontiers in Oncology 09
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important factor affecting study heterogeneity. Among the

included studies, the number or scale of different studies in

dividing the ROI was varied, 12 sets of data from eight papers

delineated one ROI (5–7, 19–21, 23, 24), and 4 sets of data

from three papers delineated two or more ROIs at different

scales (14, 18, 22); sensitivity was statistically significant (p <

0.05). Among them, Zhou et al. (14) delineated three target

regions of thyroid nodules based on average size, which were

located roughly inside, around, and outside the thyroid

nodule, and all three ROIs contained the nodule, which

showed an AUC comparison of classification accuracy

between one ROI and three ROIs (0.82 vs. 0.87) indicating

that the classification accuracy using three ROIs was more

accurate. Therefore, it is reasonable to believe that the number

or scale of ROIs had an impact on the identification results of

thyroid nodules.

Finally, the all included studies used the deep learning

VGGNet model. The 10 sets of data from eight papers used

the deep learning VGG-16 models (14, 18–24), and 6 sets of data

from four papers used the deep learning VGG-19 models (5–7,

24); the paper of Kim et al. (24) had both VGG-16 and VGG-19.

Our results suggested that the diagnostic sensitivity and

specificity of the VGG-16 model were higher than that of the

VGG-19 (0.90 vs. 0.79, 0.87 vs. 0.83); sensitivity and specificity

were p < 0.05. A study had similar results, Kim et al. (24) used the

VGGmodel to classify benign and malignant thyroid nodules on

ultrasound images and compared the diagnostic accuracy of the

VGG-16 model with the VGG-19 model. VGG-16 showed

higher diagnostic accuracy than VGG-19 in both internal and

external test sets.
A B C

FIGURE 7

Fagan plot analysis for VGGNet model in detecting thyroid nodules: (A) Pre-test probability at 25%. (B) Pre-test probability at 50%. (C) Pre-test
probability at 75%. The Fagan plot is composed of the left vertical axis representing the pre-test probability, the middle vertical axis representing
the likelihood ratio, and the right vertical axis representing the post-test probability.
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Moreover, the performance of the DL model is closely

connected with the number of training data, and the DL

model performs better when the data of the training sample

are sufficiently large (36). Based on an analysis of 11 included

studies, 2 sets of data from two papers did not give an explicit

number of training sets, and 14 sets of data from nine papers did

give the number of training sets, but the amount of pre-training

varied across studies and the amount of learning varied; thus, it

is difficult to know the overfitting results of the model. In

addition, some researchers have explored the use of

autonomously VGGNet fine-tuned models. Currently, there is

no mature deep learning CNN model that can directly

differentially diagnose the nature of thyroid nodules on

ultrasound, which may inevitably lead to the generation of

high heterogeneity.

In addition, the Fagan plot explored the clinical utility of

ultrasound-based deep learning VGGNet models. The results

showed that the ultrasound-based deep learning VGGNet model

had the potential to differentiate benign and malignant thyroid

nodules. When a patient was considered to have a 50% chance of

developing thyroid cancer after initial clinical assessment, the

likelihood of developing thyroid cancer increases from 50% to

86% if the deep learning VGGNet model results appear positive.

Therefore, this high probability was highly accurate. In contrast,

if the deep learning VGGNet was negative, then patients had a

13% chance of thyroid cancer, which could help our radiologists

to exclude thyroid cancer. In real-world clinical practice, a

biopsy of masses with a predicted 25% probability of

malignancy will be performed regardless of the outcome of

deep learning VGGNet. Therefore, the Fagan plot showed

that the deep learning VGGNet model can aid in

radiologist diagnosis.

This diagnostic meta-analysis has several limitations. Firstly,

studies from Europe and America were excluded because they did

not meet the inclusion criteria of using the deep learning VGGNet

model to differentiate benign from malignant thyroid nodules,

which might cause geographic bias. Secondly, this study only

included papers published in English and Chinese, which might

cause an unavoidable language bias. Thirdly, this meta-analysis

only included 11 papers, and the small sample size of the test set in

some studies may affect the accuracy of the results of the meta-

analysis. To further assess the differential diagnostic efficacy of

deep learning VGGNet models, large-scale, prospective,

multicenter studies in different regions are necessary.
Conclusion

This meta-analysis suggests that the ultrasound-based

deep learning VGGNet model is a suitable and effective

method for radiologists to differentiate and diagnose benign
Frontiers in Oncology 10
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and malignant thyroid nodules. However, given the

limitations of the sample size and the varying quality of the

studies themselves, additional prospective or multicenter

studies are expected to follow for further evaluation to make

up for the deficiency.
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patients – an overview
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Non-small cell lung cancer (NSCLC) has one of the highest cancer-related

mortality rates worldwide. In a subgroup of NSCLC, tumor growth is driven by

epidermal growth factor receptors (EGFR) that harbor an activating mutation.

These patients are best treated with EGFR tyrosine kinase inhibitors (EGFR TKI).

Identifying the EGFR mutational status on a tumor biopsy or a liquid biopsy using

tumor DNA sequencing techniques is the current approach to predict tumor

response on EGFR TKI therapy. However, due to difficulty in reaching tumor sites,

and varying inter- and intralesional tumor heterogeneity, biopsies are not always

possible or representative of all tumor lesions, highlighting the need for alternative

biomarkers that predict tumor response. Positron emission tomography (PET)

studies using EGFR TKI-based tracers have shown that EGFR mutational status

could be identified, and that tracer uptake could potentially be used as a biomarker

for tumor response. However, despite their likely predictive and monitoring value,

the EGFR TKI-PET biomarkers are not yet qualified to be used in the routine clinical

practice. In this review, we will discuss the currently investigated EGFR-directed

PET biomarkers, elaborate on the typical biomarker development process, and

describe how the advances, challenges, and opportunities of EGFR PET biomarkers

relate to this process on their way to qualification for routine clinical practice.

KEYWORDS

NSCLC, EGFR TKI, PET/CT, radiolabeled EGFR TKI, molecular imaging
1 Introduction

Lung cancer is one of the most prevalent cancer types worldwide (1). Lung cancer

accounts for approximately 22% of all cancer-related mortality, emphasizing that lung

cancer is not only a highly prevalent cancer type, but also one of the deadliest (1). For

decades, the standard of care treatment for advanced stage non-small cell lung cancer
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(NSCLC) was only chemotherapy (2–5). The introduction of

tyrosine kinase inhibitors (TKI) directed against the epidermal

growth factor receptor (EGFR), an oncogenic driver pathway

promoting cell growth and division, led to a shift in the

treatment paradigm of EGFR mutation positive NSCLC, and,

ultimately to an acceleration of the development of targeted

therapies against other oncogenic driver mutation targets (2–5).

Wild type EGFR activation is ligand-dependent, i.e., the EGFR

kinase function only activates if an EGF ligand is bound at the

extracellular binding site of the receptor (6). However, with

activating mutations in the EGFR kinase domain, activation

occurs in the absence of a ligand, leading to tumor cell

proliferation and growth (6). EGFR TKIs bind with high

affinity at the kinase domain of the mutated EGFR and block

its function (6, 7). As a result, patients harboring activating

EGFR mutations achieve higher tumor responses on EGFR TKI

than on conventional chemotherapy (2–4, 8).

The iPASS trial was the first trial that clearly showed the

superior clinical efficacy of EGFR TKI as compared to

conventional chemotherapy. In this study, Mok et al.

demonstrated that the first-generation EGFR TKI gefitinib

achieved a higher progression-free survival (PFS) in the

intention-to-treat population (HR 0.74; 95%CI 0.65 to 0.85;

P<0.001) (3). Many other first-line phase 3 clinical studies

using the first-generation EGFR TKI gefitinib or erlotinib,

showed comparable results (2, 4, 9, 10). In contrast to the

first-generation TKIs, the second-generation TKIs afatinib and

dacomitinib were characterized by an irreversible binding of the

TKI to the EGFR kinase domain and by multi-kinase targeting

(5, 10–15). These second-generation TKIs had possibly a

superior efficacy as compared to first-generation TKI at the

cost of slightly higher toxicities (10, 16). The third-generation

TKI osimertinib was primarily designed to target the secondary

resistance mutation T790M (17–21). In the AURA3 trial,

patients with T790M secondary mutations, occurring as

resistance mutations on an initial treatment with gefitinib or

erlotinib, were randomized between osimertinib versus

conventional chemotherapy (17). Osimertinib showed superior

PFS (10.1m vs. 4.4m; HR 0.30; 95%CI 0.23 to 0.41; P<0.001). The

objective response rate was also significantly better with

osimertinib (71%; 95% CI, 65 to 76) than with chemotherapy

(31%; 95% CI, 24 to 40) (OR 5.39; 95%CI 3.47 to 8.48; P<0.001)

(17). Surprisingly, osimertinib also performed above

expectations as a first-line therapy. In the FLAURA study,

treatment-naïve EGFR mutation positive patients were

randomized to osimertinib versus a first-generation EGFR TKI

(22). Osimertinib showed superior PFS (18.9m vs. 10.2m; HR

0.46; 95%CI 0.37 to 0.57; P<0.001). In a recent update of the

study results, osimertinib also showed OS superiority as

compared to the first-generation TKI (38.6m vs. 31.8m; HR

0.80; 95%CI 0.64 to 1.00; P=0.046) (23). These developments
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illustrate that over the course of approximately a decade,

significant advances have been made in the treatment of EGFR

mutation positive NSCLC, and that the identification of these

patients is of paramount importance.

Diagnosis through next-generation sequencing of tumor DNA,

obtained through a histological biopsy, is the gold standard for

identifying tumor EGFR mutations (24). Unfortunately, taking

biopsies is invasive, at risk for complications and not always

possible due to difficult to reach tumor sites. Also, biopsies may

not always be representative for all the tumor lesions due to varying

intra- and interlesional heterogeneity, this may especially be of

importance when resistance occurs and mapping the residual

sensitivity for TKI treatment is needed (24). To overcome these

limitations new biomarkers have been investigated. Liquid biopsies

are ever more used in situations when representative tumor biopsies

cannot be obtained. Even though the current sensitivity of liquid

biopsies is approximately 70% with specificities above 90%, not all

patients can be diagnosed using liquid biopsies alone (25, 26). Also,

liquid biopsies do not address the limitation of tumor heterogeneity.

Alternatively, in recent years, imaging studies using radiolabeled

EGFR TKI have shown that PET could potentially be of value for

identifying EGFR mutation positive patients and predicting tumor

sensitivity to EGFR TKI (27–31).

In this review, we will discuss the current EGFR-directed

PET tracers that have been investigated in EGFR mutated

NSCLC. The special focus will lie with radiolabeled EGFR

TKI: inertly labeled EGFR TKI used as a PET tracer in NSCLC

patients. In addition, we will discuss the framework of the PET

biomarker development process, highlighting the different

contexts of use to better elucidate the stage in which these

EGFR TKI PET biomarkers are at. We will describe the

challenges, but also the recent advances and opportunities that

could help EGFR PET on its path to generating qualified

predictive biomarkers for clinical use.
2 Current EGFR PET biomarkers

2.1 PET biomarker background

PET is a molecular imaging technique, widely in use in the

staging and treatment monitoring schedules in cancer patients.

A radioactively labeled compound used as a tracer, which is

expected to accumulate at the site of a specific target in the

tumor lesion, is injected into the body and its distribution is then

imaged. When using a validated tracer, its accumulation in the

tumor and other sites is expected to be sensitive and quantifiable.

The tracer accumulation or the so-called tracer uptake can be

measured using different metrics, which can serve as biomarkers.

In general, a biomarker is a measurable indicator of a

biological process and in case of PET imaging, this can be a
frontiersin.org
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measure derived from the tracer uptake in tumors or in healthy

tissues, e.g., the Standardized Uptake Value (SUV) or the

Distribution Volume (VT).

Also, depending on their aims, biomarkers will have different

‘contexts of use’. The evidence that is necessary to support

qualification towards clinical practice is dependent on the

specific context of use. The FDA Qualification Framework

recommends categorizing biomarkers using the BEST

biomarker categories according to their aims, as described in

Figure 1 (32).

Considering EGFR, PET should provide a predictive

biomarker, which is most relevant for the clinical practice. The

presence of common EGFR mutations (i.e., exon19 deletions,

exon21 L858R) are highly predictive for response to TKI

therapy; however, in case of uncommon mutations, less is

known regarding their clinical relevance and tumor TKI
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responses may vary greatly between different uncommon

mutations. A predictive PET biomarker would therefore be

most interesting.

EGFR directed PET biomarkers will de facto never be able to

diagnose an activating EGFR mutation, as this requires tumor

DNA sequencing on tumor tissue or liquid biopsies. Therefore, a

PET imaging biomarker could never be a diagnostic biomarker

that replaces DNA sequencing. On the other hand, PET imaging

biomarkers could very well become qualified as predictive

biomarkers to predict tumor sensitivity to EGFR TKI as

mentioned before.

A monitoring biomarker is also of interest, as all tumors

eventually develop resistance to EGFR TKI, in which case it

could be of clinical importance to know whether lesions or parts

of lesions remain TKI sensitive to decide whether TKI should be

continued beyond progression.
FIGURE 1

The biomarker classification according to the BEST biomarker categories. The red arrows indicate in which category EGFR-directed PET tracers
could be included.
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The current PET biomarkers can be categorized into 2

categories, i.e., those based on non-EGFR-directed tracers and

those that are derived from EGFR TKI-based tracers.
2.2 Non-EGFR PET biomarkers in EGFR
mutated NSCLC

The most widely-used tracer is 18F-fluorodeoxyglucose (18F-

FDG), a radioactive analogue to glucose, that can quantify

metabolic activity. In the past decade, many clinical studies

attempted to establish the role of 18F-FDG in evaluating the

EGFR mutational status (33). A meta-analysis by Du et al.

looked at studies that compared the lesional maximum of

standardized uptake value (SUVmax) of 18F-FDG uptake

between wild-type and mutant EGFR and evaluated its value for

predicting the EGFR status in NSCLC patients (33). In 15 studies

(3574 patients), the pooled sensitivity and specificity was found to

be low. The authors concluded that 18F-FDG based SUVmax

should be used with caution when predicting EGFR mutations

in NSCLC (33). However, new studies are exploring the potential

outcome of radiomics and artificial intelligence (AI) algorithms as

biomarkers to assess the predictive capacity of 18F-FDG PET. For

example, Yin et al. demonstrated in a training data set of 198

NSCLC patients with a testing data set of 103 patients that their

algorithm could predict EGFR mutations automatically with a

ROC-AUC of 0.84 (95% CI, 0.75–0.90) (34). These developments

may indicate an increasing role for radiomics and AI as new 18F-

FDG based biomarkers in the future, albeit, these algorithms need

optimization and validation using larger cohorts.

In recent years, 3-deoxy-3-18F-fluorothymidine (18F-FLT)

PET scans have generated interest in oncology. As opposed to
18F-FDG, 18F-FLT PET reflects cell proliferation (10, 35). This

tracer is trapped intracellularly in the S-phase of the cell cycle

(35). Elevated 18F-FLT uptake of lesions could therefore be

indicative of tumor cell proliferation and treatment-resistance.

This supports the notion that 18F-FLT could serve to generate

treatment monitoring biomarkers. Indeed, studies using 18F-FLT

in EGFR mutation positive NSCLC have shown that a decrease

of 18F-FLT uptake in tumor lesions is associated with response to

EGFR TKI treatment (10, 36, 37). As 18F-FLT is nonspecific to

EGFR mutations, the validation of 18F-FLT-based monitoring

biomarkers could be of interest for many cancer types as well.

Other non-EGFR PET tracers that have been investigated in

EGFR mutation positive NSCLC patients, are 11C-choline and O-

(2-[18F]fluoroethyl)-L-tyrosine(18F-FET). 11C-choline, a tracer

mainly used in diagnostics of prostate cancer, is a component of

phospholipids in the cell membrane (38). Phosphorylation of

choline is upregulated in cancers through choline-kinase (38).

Although 11C-choline PET is used in the routine practice in other

cancer types, results in NSCLC are discouraging (39–41). 18F-FET
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has been used in diagnostics of brain tumors, including brain

metastases of NSCLC, however, no studies were published on
18F-FET in extracranial NSCLC tumors (42, 43).
2.3 EGFR PET biomarkers

2.3.1 Characteristics of EGFR PET tracers
For radiolabeling target-specific drugs such as EGFR TKI,

the characteristics of the radionuclide that is used for labeling

needs to be aligned with the pharmacokinetic properties of the

parent compound. For example, using radionuclides with long-

lived isotopes such as zirconium-89 (t1/2 78 hours) are best

suited to label large molecules with slow pharmacokinetics like

monoclonal antibodies, e.g., 89Zr-cetuximab, however,

inappropriate for labeling EGFR TKI. Since EGFR TKI are

small molecules with relatively fast pharmacokinetics, i.e., fast

target binding and rapid clearance from the circulation, using

short-lived isotopes such as carbon-11 (t½ 20 min) or fluorine-

18 (t½ 110 min) is more appropriate.

Also, instead of adding the radionuclide on the parent

compound, substituting an existing carbon or fluorine atom of

the TKI molecule will maintain the original pharmacokinetic

(PK) behavior of the TKI resulting in a tracer that is equally

specific as the original TKI. The choice whether carbon-11 or

fluorine-18 is used for this inert substitution is based on the

chemical structure of the parent compound (27, 31, 44).

Although tracers based on EGFR TKI that are in clinical use,

when labeled inertly, provide the best PK behavior metrics to

investigate tumor sensitivity to the respective TKI, the

development of such tracers is inherently delayed, as clinical

safety and efficacy data of the parent TKI need to be established.

Moreover, the fast development of subsequent generations of

TKI could disrupt the development of early generation TKI

tracers and make them redundant. To illustrate this, a timeline

indicating the approval of the 3 generations of EGFR TKI used in

the clinical and their tracer counterparts is shown in Figure 2.

Clinical PET studies are not only being performed using

EGFR PET tracers based on EGFR TKI, but also on tracers

without treatment analogue. Many of these tracers without

direct treatment analogue have been specifically developed for

the purpose of imaging. These tracers, e.g., 18F-MPG, 11C-

PD153035 and 18F-IRS, show significant differences amongst

themselves in kinetic characteristics, mainly in the binding

affinity to the kinase domain (45–47).

2.3.2 Present EGFR TKI PET biomarkers
An overview of published clinical studies using EGFR

PET tracers is given in Table 1. For 11C-erlotinib and 18F-

afatinib, studies have shown that EGFR mutation positive

patients can be identified and that tumor response to
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treatment using the corresponding EGFR TKI (27, 31) could

be predicted using PET biomarkers. This was seen in

patients with common and uncommon EGFR mutations.

For 11C-osimertinib, the clinical studies investigating its

predictive value are still ongoing.
Frontiers in Oncology 05
147
For EGFR PET tracers without treatment analogue, e.g.,
18F-MPG, 11C-PD153035 and 18F-IRS, studies have shown that

tumor tracer uptake could be quantified and that this was

predictive for the presence of an EGFR mutation and for TKI

therapy response (45–47). Both 18F-IRS and 11C-PD153035
TABLE 1 Overview of clinical EGFR TKI PET studies.

Year Tracer N Uptake
parameter

Kinetic
modeling?

Used as biomarker for
EGFR status?

EGFR mutation in studies Study

2008 11C-
PD153035

11 SUV No No Exon 19 & exon 21 mutations Yu et al. (48)

2009 11C-
PD153035

14 SUVmax No Yes Exon 19 & exon 21 mutations Yu et al. (49)

2010 11C-
PD153035

19 SUVmax No No Unknown Liu et al.
(50)

2011 11C-
PD153035

21 SUVmax No No Unknown Meng et al.
(45)

2011 11C-Erlotinib 13 Radioactivity
per mL tissue

No No Unknown Memon
et al. (51)

2013 11C-Erlotinib 10 VT Yes Yes Exon 19 del Bahce et al.
(27)

2017 18F-IRS 3 SUVmax No Yes Exon 19 del Song et al.
(47)

2018 18F-MPG 75 SUVmax No Yes Unknown Sun et al.
(46)

2018 18F-
ODS2004436

20 SUVratio No Yes Unknown Cochet et al.
(52)

2021 18F-Afatinib 12 TBR_WB60-90 Yes Yes Exon 19 deletion, exon 19 L747P insertion, exon 18 G719A
point mutation, exon 18 G709T deletion

van de Stadt
et al. (30)

2021 11C-erlotinib 10 VT & SUVmean Yes Yes Exon 19 deletion, L858R point mutation, G719S + S768I
mutation, L861Q mutation

Petrulli et al.
(53)
fro
The EGFR mutational status as described in the study is shown.
SUV, standardized uptake value; VT, volume of distribution; TBR_WB60-90, tumor-to-whole-blood ratio in the time interval 60-90 minutes post-injection.
FIGURE 2

Development timeline of EGFR TKI and their respective EGFR-directed PET tracers. .
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showed a close relation between tracer uptake (SUVmax) and

EGFR expression, and for all three tracers a correlation

between uptake (SUVmax) and treatment response was

observed (45–47).

The overview in Table 1, comprising approximately 200

NSCLC patients, summarizes several study characteristics. When

new tracers are introduced, the pharmacokinetic behavior of this

tracer needs to be established by performing kinetic modeling.

Kinetic modeling allows to better understand the obtained PET

images and to quantify the tracer uptake using optimal dynamic

parameters of uptake such as ‘Distribution Volume’ (VT). For some

tracers, this has been performed, as indicated in Table 1. In the

absence of dynamic uptake parameters, usually simplified static

uptake parameters such as ‘Standardized Uptake Values’ (SUVs) are

used. For some tracers such as 11C-erlotinib and 18F-afatinib, the

pharmacokinetic modeling has been published and, in these tracers,

uptake parameters other than SUV have been suggested (29, 30, 53).

In Table 2, tracer targets are listed for each tracer.

While this overview highlights the efforts done to investigate

and discover the potential of the existing EGFR PET tracers and

their biomarkers, it also highlights that data is scarce. From a

clinical point of view, the question rises on what would be needed

for EGFR PET biomarkers to be able to qualify in the routine

clinical practice. To better understand the framework in which

such a qualification occurs, we will below elaborate on the typical

biomarker development process and how the current state of these

tracers and their respective biomarkers relate to this process.
3 Challenges and opportunities
in the development of EGFR
PET biomarkers

3.1 Development process of PET
biomarkers

To be able to qualify for use in the clinical practice, there

are 3 main phases of development that a PET imaging
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biomarker must transition. See Figure 3, which is based on

the consensus paper of the CRUK and the EORTC (59). In

transitioning from one phase into another, biomarkers need to

bridge several gaps. The first gap for a biomarker is to be able to

enter the validation phase as a potential biomarker, fit to be

tested for performance. In the validation phase, a biomarker

needs to proof it is reliable and ‘fit for purpose’. For the

development of PET biomarkers, the 3 main validation tracks

(analytical, clinical and cost-effectiveness validation) are

typically developed in parallel and in an iterative manner. In

the qualification phase, sufficient evidence will be needed to

support the qualification of a biomarker for a specific context

of use in drug development or routine clinical care. support

qualification of a biomarker.
3.2 EGFR PET biomarker
validation challenges

3.2.1 Analytical validation
The analytical validation track evaluates the measures related

to biomarker precision, e.g., repeatability, reproducibility and

technical bias, and the measures related to biomarker

availability in the targeted patient group. The analytical

validation, generally, does not consider the clinical utility of the

biomarker, however, poor analytical features will hamper the

clinical validation and qualification (59).

Ideally, new EGFR PET tracers for biomarking EGFR that are

used in humans will undergo full kinetic modeling. This is an

elaborate dynamic PET scanning procedure with arterial blood

sampling and measurement of blood radioactivity and blood tracer

metabolites. A dynamic PET scan is a continuous scan of 1 section

of the body, where both the tumor and a large blood pool or vessel is

included in the field of view (FoV), as depicted in Figure 4. Since

conventional PET scanners have a limited (e.g., 18 cm) FoV, only a

small part of the body where the tumor is located will be scanned

continuously. The pharmacokinetic behavior over time of the

tumor tracer concentration will be measured to produce a time-

activity-concentration curve (TAC). Additionally, the radioactivity
TABLE 2 Key tracer targets for each tracer are shown.

Tracer Key tracer targets

11C-PD153035 EGFR (wild-type and mutations), HER2 (54)
11C-erlotinib 1st-generation TKI: common EGFR mutations (exon 19del, exon 21 L858R), partly wild-type EGFR, not T790M (7)
18F-IRS Comparable to 1st-generation TKI: common EGFR mutations, no T790M (48)
18F-MPG Common EGFR mutations, not wild type EGFR, not T790M (47)
18F-
ODS2004436

Limited data is publicly available, targets wild type and exon 21 L858R, not T790M (55,
56)

18F-afatinib 2nd-generation TKI: common EGFR mutations (exon 19del, exon 21 L858R) + other ERBB family kinases, partly T790M (57–
59)

11C-
osimertinib

3rd-generation TKI: specifically developed for EGFR T790M mutation, common EGFR mutations, also uncommon non-exon20 insertions, not
wild type EGFR

(20,
23)
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concentrations of the arterial blood pool over time will be measured

to calculate the so-called blood ‘input functions’ using both blood

samples from an arterial cannula, and PET image-derived blood

pool data. Also, metabolites will be measured repeatedly via arterial

blood samples to calculate the true parent tracer concentrations

over time. Using the TACs, the blood input function and the

metabolites data, the pharmacokinetic model that best describes the

pharmacokinetic behavior of the tracer in the tumor will be

established. This pharmacokinetic model yields various

physiologic parameters, which can be used to select the optimal

tracer uptake parameter to quantify the tracer uptake. These

dynamic uptake parameters are considered the most precise

biomarkers for tracer uptake. Only a few EGFR PET tracers such

as 11C-erlotinib and 18F-afatinib have undergone full

kinetic modeling.

To evaluate intra-patient repeatability is another step in the

analytical validation of a biomarker to assure that biomarkers

produce similar results when repeatedly measured in the same

circumstances. This has been shown for tumor 11C-erlotinib VT,

however, this crucial step is lacking in many other tracers.

Availability of short-lived EGFR PET tracers is limited due

to the short half-life of their radionuclides. For examples, the

half-life of carbon-11 is approximately 20 minutes, meaning

that the scan must be performed in the same center where

the tracer is produced and cannot be exported to other centers.

The half-life of fluorine-18 is approximately 5 times longer
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(t ½ ~110 min), which allows shipping to external not-too-

distant centers. Another factor limiting the availability is the

scarcity of expertise to apply the complex algorithms used to

interpret uptake. In the same vein, dedicated software with

intuitive user-friendly interfaces are lacking.

3.2.2 Clinical validation
The clinical validation is a process in which the relationship

of a biomarker to a clinical feature is evaluated. Biomarkers are

typically linked to biological mechanisms of action at the tumor

microenvironment. Ultimately, depending on the context of use,

the clinical validation should lead to the identification of

biomarkers that benefit clinical outcomes or improve the

prevention, screening, staging, diagnosis, therapies, or care of

patients (59).

Insights obtained in clinical validation studies will feedback

into the analytical validation process in order to further optimize

the technical aspect of the biomarker. This positive feedback

loop highlights the interdependency between these two tracks.

Another time-consuming factor in this (clinical) track is the fact

that large, prospective clinical PET studies will only be initiated

after analytical validation studies have established the precision

and accuracy of the tracer as an EGFR biomarker.

The prompt introduction of new EGFR TKI therapy options

and the rapid changes in the standard of care for these patients

pose a risk on the EGFR PET tracer development, as most TKI-
FIGURE 3

The biomarker development process is shown using a modified scheme, based on the consensus statement on biomarker development of the
CRUK and EORTC (59). There are 3 phases of development (discovery, validation, qualification) that biomarkers go through. Biomarkers need to
overcome gaps to become potential biomarkers, reliable biomarkers and qualified biomarkers. In the validation phase, 3 separate tracks will be
evaluated in parallel and iteratively, i.e., the analytical, clinical and cost-effectiveness track. To be able to use a biomarker in drug development
or in routine clinical care, biomarkers need to provide qualification evidence. (*) The FDA Evidentiary Framework provides recommendations
that guide the evidence needed to support qualification, bridging the final gap to routine care and drug development in the qualification phase.
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based tracers have a few years of delay vis-à-vis their therapeutic

parents, which can lead to tracers become obsolete. This is

highlighted by the timeline depicted in Figure 2: approval of

afatinib dates back to 2013, whereas research regarding 18F-

afatinib was first published in 2020, a 7-year delay. In contrast,

osimertinib was approved for clinical use in 2015, only 2 years

after afatinib entered the market and 5 years before the first

publication of 18F-afatinib.

3.2.3 Cost-effectiveness
In the cost-effectiveness track, the costs associated with the

use of biomarkers need to be assessed. To become a qualified

biomarker for clinical use, these costs need to compare favorably

to the existing alternative biomarkers such as bio specimen-
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derived biomarkers, e.g., liquid biopsies. Costs may become

lower at a later stage after broad-scaled implementation (59).

The added advantage of the EGFR PET is to evaluate tumor

EGFR TKI sensitivity when regular biopsies are not informative

enough or for obtaining spatial insights in the tumor TKI sensitivity

to guide decision-making. This technique is therefore used in

addition to regular biopsy-techniques. Consequently, evaluating

the cost-effectiveness for these situations is difficult. With further

analytical and clinical optimization supported by upcoming PET

technology and improved data processing algorithms, EGFR PET

biomarkers hold promise to provide value for their costs. However,

at the current stage, no EGFR PET tracer could be considered cost-

effective, especially when compared to biopsy-techniques already

widely-used in clinical practice.
FIGURE 4

Conventional PET scan versus total body PET scan. From left to right: schematic representation of scan procedure, illustrations on the left are
parts of the body that can be scanned using each scanning technique. Illustrations on the right are tracer uptake quantification differences for
each technique. The pink box represent conventional PET scanning, the blue box represents total body PET. Table below shows characteristics
of each scanning technique. Full kinetics indicates whether quantification using pharmacokinetic modeling is possible using this technique.
g
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3.3 Opportunities

The clinical implementation of EGFR PET biomarkers have

been limited by the abovementioned challenges, however, recent

developments in emerging new technologies are promising to

help the biomarker validation process. Although technological

advancements may seem to mainly benefit the technical

validation and cost-effectiveness tracks, these optimizations

feedback positively to the clinical track as well and therefore

improve the full validation process. One of the developments

that will advance the validation of EGFR PET biomarkers will be

the large-scaled introduction of the so-called ‘total body PET’.

3.3.1 Total body PET
The total body PET scanner refers to a new generation of

commercially available PET-CT scanners that have a much

larger axial FoV as compared to conventional state-of-the-art

PET-CT systems with an axial FOV of less than 20cm. These

new large-FoV PET-CT systems achieve ultra-high (40-to-200-

fold higher) sensitivity and allow to visualize and quantify tracer

uptake in all major internal organs in the body simultaneously

(60–64). This provides numerous new imaging opportunities for

patient care and research, since these total body PET-CT

scanners will speed up the validation of EGFR PET

biomarkers by optimizing their analytical validation and by

supporting the clinical validation.

One of the advantages of the ultra-high sensitivity will be the

possibility to use lower amounts of radioactivity per tracer

injection, which will enable to lower the radiation burden to

the patients (60, 64). This could make EGFR PET imaging

biomarkers more suited for therapy monitoring through

performing multiple PET-CT scans longitudinally.

For static tracer uptake parameters such as SUV, another

advantage of the ultra-high sensitivity will be the shorter scan

durations (currently 30-40 min per 18F-FDG PET scan), which

in turn will improve patient comfort. The optimal scan duration

per EGFR tracer on the total body PET-CT scanner is not clear

yet, but this could be as short as 20 seconds (a breath-hold) for

some tracers. Short acquisition times could also significantly

decrease possible partial volume effects caused by smearing the

PET signal by the movement of small lesions, e.g., due to

breathing-motions (60, 64). Also, this will reduce co-

registration mismatch of the PET and CT data, e.g., because of

patients moving on the scanner while scanning, which generates

artefacts in the reconstructed PET data due to faulty CT-

attenuation correction (60, 64). These improvements will

increase the resolution and precision of the PET biomarkers,

broadening their applicability.

For dynamic tracer uptake parameters, combining the large-

axial FOV and the ultra-high specificity of the PET-CT system

could greatly improve biomarker specificity, repeatability, and

reproducibility. As compared to static PET studies, using dynamic
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PET studies allows to better characterize the pharmacokinetic

(PK) behavior of short-lived tracers by generating dynamic tracer

uptake parameters (i.e., biomarkers) that are more target specific

and accurate than simplified static parameters (60–64). Typically,

the limited axial FoV of the conventional PET-CT systems limits

most dynamic scans to single organ studies. Also, for dynamic

kinetic analysis a so-called ‘arterial input function’ is needed to

describe the bioavailability of the radiotracer in blood. The total

body PET-CT, covering all major organs and arterial blood pools

(eliminating the need for an arterial cannula) could not only

dynamically scan most tumor lesions and all major organs at once

but could also provide a reliable image-based arterial input

function, non-invasively and automatically, which could

generate easily-accessible dynamic uptake parameters with

higher specificity and precision (60, 64). Also, the large-FOV

coverage will generate new insights on biodistribution in healthy

organs, which may open avenues for discovering new PET

biomarkers to predict toxicity or biomarkers to guide drug dosing.

Using the total body PET-CT would allow to address many

of the analytical validation steps in a single PET study, while this

would require many studies using the conventional PET system.

Speeding up the analytical validation would significantly fasten

the clinical validation as well. As less patients would be needed in

the various validation steps of a biomarker, this would ultimately

be more cost-effective, through shortening the delay between the

introduction of a new EGFR TKI and its validation testing. As

most of the tumor lesions, all the major organs and a significant

part of the blood pool will be included in the dynamic scans,

more comprehensive and automatable scanning and data

processing algorithms will be developed. With such

algorithms, uptake parameters will be produced more easily,

and may require less effort from the PET physics personnel.

3.3.2 Further optimizations
With the advent of new PET technologies and improved data

processing algorithms, radiolabeling new EGFR TKI could be of

interest for pharmaceutical companies to learn about the

biodistribution and PK behavior of their new EGFR TKI therapies

at an early stage of development. For example, variations in the brain

tissue penetration and uptake of TKI in the brainmetastases could be

of interest as there is quite some variability in the brain penetration of

different TKIs (65). Also, blocking studies could be used to explore

the optimal dosing to saturate all targets to support the optimal

dosing strategy of a TKI (66, 67). The analytical validation associated

with these pharmacological drug development projects could

support the clinical validation effort as well.
4 Conclusion

The use of EGFR TKI PET tracers can generate predictive

biomarkers to identify and monitor patients who will respond to
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EGFR TKI therapies. Current EGFR TKI tracer biomarkers are

still in a validation phase, where clinical and analytical

improvements loop back iteratively. New developments such as

the availability of large-FoV total body PET systems and more

improved data processing algorithms can optimize the EGFR TKI

PET biomarker validation process. Nevertheless, more evidence is

needed for their qualification as predictive and monitoring

biomarkers in drug development and routine clinical practice.
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Deep learning in bladder
cancer imaging: A review

Mingyang Li1†, Zekun Jiang2†, Wei Shen2* and Haitao Liu1*

1Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2Ministry of Education (MoE) Key Lab of Artificial Intelligence, Artificial
Intelligence (AI) Institute, Shanghai Jiao Tong University, Shanghai, China
Deep learning (DL) is a rapidly developing field in machine learning (ML). The

concept of deep learning originates from research on artificial neural networks

and is an upgrade of traditional neural networks. It has achieved great success

in various domains and has shown potential in solving medical problems,

particularly when using medical images. Bladder cancer (BCa) is the tenth

most common cancer in the world. Imaging, as a safe, noninvasive, and

relatively inexpensive technique, is a powerful tool to aid in the diagnosis and

treatment of bladder cancer. In this review, we provide an overview of the latest

progress in the application of deep learning to the imaging assessment of

bladder cancer. First, we review the current deep learning approaches used for

bladder segmentation. We then provide examples of how deep learning helps

in the diagnosis, staging, and treatment management of bladder cancer using

medical images. Finally, we summarize the current limitations of deep learning

and provide suggestions for future improvements.

KEYWORDS

bladder cancer, deep learning, artificial intelligence, medical imaging, computed
tomography, magnetic resonance imaging
Introduction

According to the latest statistics from Global Cancer, bladder cancer (BCa) is the tenth

most common cancer in the world, with approximately 573,000 new cases and 213,000

deaths in 2020 (1). Early diagnosis and treatment are key to reducing morbidity and

mortality associated with BCa (2, 3). In current clinical practice, pathological examination

following transurethral resection of bladder tumor (TURBT) and cystoscopy are the gold

standard for diagnosing BCa (4). However, these methods are expensive and invasive,

making it difficult for many patients to afford them, which may delay diagnosis (5).

Therefore, as a noninvasive and inexpensive method, imaging techniques play an

increasingly important role in the diagnosis of BCa (6). At present, magnetic resonance

imaging (MRI), positron emission tomography (PET), and computed tomography (CT) are

the conventional imaging methods for diagnosis before treatment (7). However, due to the

complex and variable imaging features of BCa, it is difficult for radiologists to make an
frontiersin.org01
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accurate BCa diagnosis based only on their experience. Therefore,

there is an urgent need for better imaging methods to achieve a

noninvasive and accurate diagnosis of BCa.

Deep learning (DL) is a rapidly developing field in machine

learning (ML). Compared with classical ML algorithms, manual

selection of features is not necessarily required in advance in DL. In

contrast, the algorithm can learn the most relevant features for

classification or prediction (8). In addition, it easily takes advantage

of increases in the amount of available computation and data, with

very little engineering by hand. This makes DL particularly useful for

solving complex computational problems involving large-scale image

classification, speech recognition, and many other domains (9, 10).

Medical images contain a vast amount of data with extremely

valuable signals and information, which is far beyond the ability of

human beings to analyze. ML is naturally and rapidly used in this

field because of its unique ability to integrate, analyze, and make

predictions based on large amounts of data (11). As an emerging

technology in recent years, DL has the potential to make better use

of a large amount of data and provide better results (12, 13). In this

review, we describe the research status of DL in the image

segmentation, diagnosis, staging, and treatment response

prediction of BCa (Figure 1). We are the first comprehensive

review to present the current state of research on DL in BCa

imaging. We focus on the purpose, DL methods, advantages, and

limitations of the current research and discuss possible future

directions in the field.
Methods

We conducted a literature search in the PubMed, Web of

Science, and IEEE Xplore databases using the term “Bladder
Frontiers in Oncology 02
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Cancer,” combined with the terms “Deep Learning”, “Diagnostic

Imaging”, and “Medical Imaging”. In order to obtain articles that

met the requirements of this review, we applied the following

eligibility criteria: ① The paper is written in English; ② the paper

is not a review article or editorial; ③ the paper is mainly related

to BCa; ④ the paper discusses DL; and ⑤ the paper discusses

imaging data. Figure 2 illustrates the process of selecting articles

based on the PRISMA criteria. To conduct our review, we

extracted the names of the papers, authors, year of publication,

DL modules, number of patients included, performance

evaluation parameters, and many other features.
Deep learning in bladder cancer
segmentation

Medical image segmentation plays an important role in

current medical imaging systems (14). In BCa, the accurate

segmentation of normal bladder structures and tumor regions is

an important step in tumor diagnosis and tumor stage

evaluation (15). Figure 3 illustrates the workflow of bladder

cancer image segmentation using deep learning. The deep

learning model is first trained by the training dataset and the

ground truth label. Then the model can automatically analyze

the input validation images and output the corresponding

segmented images of all regions and compare them with

ground truth for verification. However, as a hollow organ, the

bladder undergoes various changes in position, shape, and

volume. In addition, complex noise and artifacts are prevalent

in medical images, which makes segmentation difficult (17–19).

To date, many DL studies have focused only on the

segmentation of the bladder wall (20–24). This is due to the
FIGURE 1

The development history of DL in BCa imaging. Each node corresponds to a research, named after the DL architecture that the research
primarily used. DL, deep learning; BCa, bladder cancer.
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high variability in tumor shape and intensity, making it difficult

to distinguish between the bladder wall and a tumor. Therefore,

it is more difficult to obtain accurate segmentation results than

with normal bladder segmentation. In this review, we focus only

on the literature that contains the segmentation of tumor

regions (Table 1).

In 2016, Cha et al. (25) developed a network consisting of

two convolution layers, two locally connected layers, and one

fully connected layer, which is based on the well-known AlexNet

(30) backbone. They then used level sets to perform minor

refinements to the contour to identify the tumor boundary.
Frontiers in Oncology 03
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However, these methods have many limitations, including a

considerably slow process, sensitivity to initialization and image

intensity, and independent pixel prediction. The achieved results

were not significantly improved when compared with manual

segmentation; therefore, they were quickly replaced by fully

convolutional architectures.

U-Net (31) is undoubtedly one of the most successful

methods in the fully convolutional architectures in image

segmentation tasks, serving as the backbone of many new

medical image segmentation methods. In 2018, Dolz et al. (26)

added dilated convolutions to the U-Net model, where the
FIGURE 3

An example for bladder cancer image segmentation using deep learning. Image from Ref (16). Copyright © 2020, IEEE.
FIGURE 2

Summary of study selection process.
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dilation rate within each module progressively increased. The

dilated convolutions can provide a larger receptive field that can

leverage more contextual information. The increasing dilation

rate allows the use of multi-scale information to better meet the

segmentation requirements for both small and large objects. The

model was trained and evaluated on T2-weighted (T2W) MR

image datasets of 60 BCa patients and compared with the

original U-Net, E-Net (32), and ERF-Net (33). The mean Dice

similarity coefficient (DSC) values of their model were 0.98, 0.84,

and 0.69 for the segmentation of the bladder inner wall, bladder

outer wall, and tumor region, respectively, which were the best

values of all the models trained. In addition, even though U-Net

was improved with progressive dilated convolutional modules to

avoid too much computation, the model’s inference time for the

entire 3D volume is still less than 1 s. In 2019, Liu et al. (27)

proposed a CNN architecture called the Pyramid in Pyramid

Network (PiPNet), which is based on the U-Net model. The

proposed PiPNet consists of a pyramid backbone similar to that

of U-Net and adopts atrous spatial pyramid pooling (ASPP) of

four parallel atrous convolutions with increasing dilation rates.

In addition, the proposed model generates three prediction
Frontiers in Oncology 04
158
masks for the segmentation in the feature map of the last

three layers to compute an overall loss function to extract

multi-scale features. Depthwise separable convolution was

used to improve the efficiency and performance of the model.

The model was trained and evaluated on T2W MR images of 47

patients with BCa and compared with SegNet (34), U-Net, and

Dolz’s (26) model. The DSC values were 0.89 and 0.95 for the

outer wall and tumor, respectively, which were better than those

of other models. Interestingly, in this study, Dolz et al.’s (26)

model also achieved better results than the original, with DSCs

of 0.86 and 0.92 for the outer wall and tumor, respectively. All

models achieved better segmentation accuracy on tumors than

on the bladder wall, contrary to the findings of Dolz et al. (26).

Therefore, we believe that in the case of less data, different

dataset quality and ground truth annotation methods have a

greater impact on the performance of the trained model. Yu et al.

(29) developed a Cascade Path Augmentation Unet (CPA-Unet)

in 2022. They proposed a two-stage segmentation strategy and a

hybrid loss function to improve the segmentation results. They

first used U-Net for rough segmentation and then used the

segmented image with the original image concatenated as a
TABLE 1 Studies using deep learning approach for bladder cancer segmentation.

Author Year Modality Number of patients
(Train/Val/Test)

CNN structure Target Performance
(validation or
testing dataset)

Cha et al.
(25)

2016 CT 62, LOOCV A network contains 2 convolution layers, 2 locally connected
layers, and 1 fully connected layer with level sets

Tumor AVDIST = 4.7mm
JACCARD = 36.3%

Dolz et al.
(26)

2018 T2W MRI 40/5/15, LOOCV U-Net with progressive dilated convolutional modules, 2D IW/
OW/
Tumor

DSC (IW) = 0.9836
DSC (OW) = 0.8391
DSC (Tumor) = 0.6856
ASSD (IW) =
0.3517mm
ASSD (OW) =
0.4299mm
ASSD (Tumor) =
2.8352mm

Liu et al.
(27)

2019 T2W MRI 40/-/7, n-fold CV PiPNet (U-Net with progressive dilated convolutional modules
and three prediction masks), 2D

OW/
Tumor

DSC (OW) = 0.8874
DSC (Tumor) = 0.9543

Hammouda
et al. (28)

2019 T2W MRI 20, LOOCV DeepMedic (a dual pathway CNN with a learnable adaptive
shape prior model), 2D

IW/
OW/
Tumor

DSC (IW) = 0.9895
DSC (OW) = 0.9775
DSC (Tumor) = 0.9705
HD (IW) = 0.17mm
HD (OW) = 0.18mm
HD (Tumor) =
0.25mm

Hammouda
et al. (16)

2020 T2W MRI 17, LOOCV DeepMedic (two CNN network with a learnable adaptive shape
prior model and CRF), 3D

IW/
OW/
Tumor

DSC (IW) = 0.9802
DSC (OW) = 0.9742
DSC (Tumor) = 0.9566
HD (IW) = 0.13mm
HD (OW) = 0.19mm
HD (Tumor) =
0.35mm

Yu et al. (29) 2022 T2W MRI 220/-/25, CPA-Unet (a Unet for rough segmentation,a path augmentation
structure for fine segmentation)

IW/
OW/
Tumor

DSC (IW) = 0.9819
DSC (OW) = 0.8224
DSC (Tumor) = 0.8740
AVDST, average distance; JACCARD, Jaccard similarity coefficient; DSC, Dice similarity coefficient; ASSD, average symmetric surface distance; HD, Hausdorff distance; IW, bladder inner
wall; OW, bladder outer wall; LOOCV, leave-one-out cross-validation.
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sample with two channels and input into the path augmentation

structure (PA-Unet) for fine segmentation. The PA-Unet was

based on the Path Aggregation Network (35), and the hybrid loss

function incorporated the dice and cross-entropy losses, which

can improve the performance (36). The CPA-Unet extracts

multi-scale features more accurately, improves small target

classification, and achieves better segmentation results than the

U-Net, Prog Dilated (26), and PiPNet (27) networks.

These methods based on U-net improve the network

performance through a more elaborate network design.

However, these methods do not take advantage of the unique

characteristics of BCa data and only improve the results by

increasing network’s robustness. The advantages of these

methods include better network characteristics and improved

prediction results, which prove their effectiveness. However, as

these methods are not specific in nature, which is not

fundamentally different from other methods and networks in

medical imaging, they do not make good use of data specificity

when designing methods.

In addition to U-Net, another well-known CNN architecture

for medical image segmentation, DeepMedic (37), has also been

used for BCa segmentation. It can make better use of the

geometric information of the bladder. Hammouda et al. (28)

adopted a dual pathway 2D CNN to segment T2-weighted MRI

images. In addition to inputting MRI image data, they also input

subject-specific shape information that is adaptively built during

segmentation. The adaptive shape prior (ASP) information

comes from the results of co-aligning MRI images and ground

truth images using an Affine transformation followed by a B-

spline based transformation. The use of adaptive shape and

contextual information significantly enhanced the segmentation

performance, with DSC values of 0.99, 0.98 and 0.97 for the

bladder inner wall, outer wall, and tumor, respectively. In 2020,

Hammouda et al. (16) further improved their study. They

extended their work to 3D bladder segmentation using T2W

MRI. The proposed 3D CNN contains two branch networks.

The first network aimed to segment the bladder wall with the

tumor, and the second network only extracted the bladder. They

used a 3D ASP model mixed with the original training data to

feed the second network, and the outputs were refined using a

fully connected conditional random field (CRF). The CRF can

effectively reduce isolated small regions or small holes caused by

local minima during training and noise in the input images. The

performance of the proposed model significantly outperformed

that of U-Net. These methods improved the results because the

novelty of these methods changed from a simple network layer

design to combining geometric information for segmentation.

When comparing the results of the existing segmentation

works, we found that different literature often adopted different

evaluation metrics. Most articles used the popular evaluation

metric in medical image segmentation, the Dice coefficient

(DSC). It can be computed as follows:
Frontiers in Oncology 05
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DSC =
2 A ∩ Bj j
Aj j + Bj j

DSC is a metric to assess the similarity between the predicted

area and ground truth area based on the number of pixels of the

overlapping region. A similar evaluation metric to it is the

Jaccard index, which can be defined as:

JACCARD =
A ∩ B
A ∪ B

However, region-based evaluation metrics are not sufficient to

evaluate the segmentation of the bladder wall or to evaluate the

contour consistency between the predicted area and ground truth

area. Therefore, some articles included distance-based evaluation

metrics, such as the average distance (AVDIST), the average

symmetric surface distance (ASSD) and the Hausdorff distance

(HD). AVDIST (25) is the average of the distances between the

closest points of contours A and B and can be calculated as follows:

AVDIST3DðA,BÞ

=
1
2

oa∈Amin
b∈B

d(a, b)

NA

 !
+

ob∈Bmin
a∈A

d(b, a)

NB

 !

NA and NB denote the number of voxels on A and B,

respectively. The function d is the Euclidean distance. The

ASSD is also used to calculate the average distance between 2

contours, which can be defined as follows:

ASSDðA, BÞ = 1
Aj j + Bj j oa∈A min

b∈B
d(a, b) +ob∈Bmin

a∈A
d(b, a)

0
@

1
A 

The HD is also a commonly used distance-based evaluation

metric that is sensitive to segmentation boundaries. It can be

computed using the following equation:

HDðA, BÞ = max max
a∈A

min
b∈B

d(a, b)f g
� �

;max
b∈B

min
a∈A

d(a, b)f g
� �� �

However, the use of diverse evaluation metrics makes it difficult

to directly compare the performance of different models. In

addition, metrics that are closely related to the clinical application

such as model computation time should also be included. We

believe that the adoption of consistent and comprehensive

evaluation metrics, such as DSC and HD, can help us recognize

the effects of different methods andmake reasonable improvements.

In summary, these researches use different deep learning

networks and algorithms to significantly improve the

segmentation accuracy. Before deep learning methods were

widely used, early literature used methods including Markov

Random Fields, region growing, mathematical morphology,

level-set, Chan-Vese model, geodesic active contour (GAC)

and continuous max-flow algorithm for bladder segmentation

(17–19, 38–47). And most of these researches were not able to
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segment tumor regions due to the limitations of algorithm and

dataset size. In the only article that segmented the tumor region

and used JACCARD as an evaluation criterion, they adopted a

level-set-based method on a small dataset of ten patients, and the

JACCARD of tumor regions extracted by it was 86.3% (45). The

best DSC of tumor segmentation among the deep learning

methods, on the other hand, reached 97.05% (28). For the

segmentation of the bladder wall, the best DSC achieved by

the method before deep learning was 87.28% (47). In contrast,

the DSC of bladder wall segmentation of deep learning methods

generally achieves over 90%. Deep learning methods have

different innovations and produce satisfactory results that

beyond traditional methods.
Deep learning in bladder cancer
diagnosis and staging

BCa is divided into non-muscle-invasive bladder cancer

(NMIBC) and muscle-invasive bladder cancer (MIBC)

according to whether the cancer invades the muscle (4).

NMIBC accounts for approximately 75% of BCa cases and

MIBC accounts for approximately 25%. MIBC is associated

with a high degree of malignancy and a poor prognosis. The

5-year survival rate of MIBC patients after radical cystectomy is

approximately 45-68%, whereas the survival time of MIBC

patients with metastases generally does not exceed 2 years

(48). Therefore, early and accurate diagnosis of BCa and

assessment of the tumor stage are crucial for guiding clinical

treatment and evaluating patient prognosis (49, 50).

In the past, the combination of artificial intelligence and

radiomics has replaced traditional methods of manually defining
Frontiers in Oncology 06
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the region of interest (ROI) and extracting image features and has

achieved good results in the diagnosis and staging of BCa (51).

However, DL can perform the above tasks automatically and

achieve better results (Table 2). Yang et al. (52) proposed a small

DL-CNN containing four convolutional and max-pooling layers to

differentiate NMIBC from MIBC. The small DL-CNN was trained

on their own database of 369 patients. In contrast, they developed

eight well-known models that were pretrained on the ImageNet

dataset. The results show that the possibility of overfitting for the

small-CNN is minimized with a sensitivity of 0.722 and a specificity

of 1.000. This may be because of the relatively low complexity of the

model. Among the eight pretrained DL-CNNs, VGG16, VGG19,

etc. (56) showed high performance, with an AUROC of 0.997-0.762.

In general, DL-CNNs can achieve a favorable performance.

However, in this study, an additional artificial enhancement step

was required before the data were fed into the DL-CNN model

rather than being fully automatic. This prevents the fully automated

processing capability of DL from being fully exploited. Zhang et al.

(53) used CT urography images of 441 patients from two medical

centers to predict the muscular invasiveness of BCa. To date, this is

a rare multicenter study of DL in BCa with a large dataset. The

model is based on a novel 3D DL-CNN, a Filter-guided Pyramid

Network (FGP-Net) (57). Dense blocks were applied to the network

to enhance the transmission of features and alleviate vanishing-

gradient problems, and discriminative filter learning (DFL)

modules were used to enhance the mid-level representation by

learning a bank of convolutional filters that capture class-specific

discriminative patches. The network adopted a 2-channel input,

and the input data consisted of a vertical superposition of the

original and masked tumor regions. They compared the evaluation

results of the model with those of two radiologists. Notably, they

applied an external cohort evaluation to assess performance more
TABLE 2 Studies using deep learning approach for bladder cancer diagnosis and staging.

Author Year Modality Number of patients
(Train/Val/Test)

CNN structure Performance
(validation or
testing dataset)

Yang et al.
(52)

2021 CT 369 patients,1200 images (70%/
15%/15%)

A small convolutional network contains four conv_layer
+max_pooling_layer stages/eight pretrained models, 2D

Accuracy (small) = 0.861
AUROC (small) = 0.998
Accuracy (VGG16) =
0.939
AUROC (VGG16) =
0.997

Zhang et al.
(53)

2021 CT 183/110/73 (internal)/75
(external)

FGP-Net (a novel convolutional network contains Dense Blocks and
DFL modules), 3D

AUC (internal) = 0.861
Accuracy (internal) =
0.795
AUC (external) = 0.791
Accuracy (external) =
0.747

Liu et al.
(54)

2022 T2W MRI 51/8/16 ResNet18 with the super-resolution module and the Non-local attention
module, 2D

Sensitivity = 94.74

Taguchi
et al. (55)

2021 T2W MRI 68 The denoising Deep Learning Reconstruction (dDLR) –
AUC, area under curve; Sensitivity=TP/(TP+ FN).
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rigorously (58). Although its final performance is not satisfactory

and needs to be improved, the DL model can obtain slightly better,

more objective, andmore stable results compared with the results of

the two radiologists. However, the objective results had another

advantages. Radiologists may subjectively improve tumor staging in

some ambiguous patients because of concerns about the negative

consequences of losing MIBC, which may help in early clinical

intervention. Liu et al. (54) adopted the ResNet18 (59) network for

the diagnosis and staging of BCa based on MRI. They applied the

super-resolution module and non-local attention module to

improve the quality of MRI images and enhance the model’s

ability to perceive features at longer distances.

In addition to diagnosis, DL can be used to improve other

parts of the imaging workflow, such as removing image noise

and indirectly improving diagnostic capabilities in conjunction

with other systems. The vesical imaging reporting and data

system (VI-RADS) (60) is a tool for evaluating BCa staging

using MRI images. Taguchi et al. (55) used a convolutional

neural network to improve the signal-to-noise ratio in high-

spatial-resolution images. Although they did not develop the

network themselves, this study also showed the potential of DL

in assisting in BCa diagnosis.
Deep learning in bladder cancer
treatment assessment

Neoadjuvant chemotherapy has been shown to improve

overall survival for patients with BCa (61). However, not all

patients benefit from neoadjuvant treatment and instead suffer

from severe side effects (62). Therefore, it is important to assess

changes in tumor size and treatment response early to help

doctors make personalized treatment plans. Nevertheless, there

are two major problems with the current clinical treatment

assessment. First, although accurate, surgery may not be

appropriate for patients undergoing chemotherapy. Second,

the current World Health Organization (WHO) criteria (63)

and Response Evaluation Criteria in Solid Tumors (RECIST)

(64) are inaccurate. Neither set of criteria address three-

dimensional (3D) measurements, and the results are heavily

influenced by observer experience, especially for tumors with

complex and irregular shapes (65). At the same time, because

organs and tumors are not rigid bodies, they will have different

deformations in the human body, making the design of direct

networks for ML very difficult. These problems make ordinary

ML methods not particularly adaptable, and therefore drive the

progress of DLmethods in this field. DL has been recognized as a

powerful tool to solve these problems (Table 3).

Cha et al. (25) used the network they developed to segment

and measure the gross tumor volume (GTV) from CT images to

predict treatment response. As described in the bladder
Frontiers in Oncology 07
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segmentation section, classification-based networks cannot

accurately segment tumors because of their limitations,

particularly those that shrink after treatment. Their DL-CNN

was comparable to radiologists’ manual predictions. In 2017, Cha

et al. (66) developed a DL-CNN with a structure similar to that in

previous studies. However, DL-CNN was used to predict the

response to neoadjuvant chemotherapy in this study. They first

used their auto-initialized cascaded level set (AI-CALS) (69)

system to segment the tumor region. They then paired ROIs

extracted from pre- and post-treatment tumor regions of the same

patient’s scans to form 6700 image pairs. They compared the

model with two radiomic feature-based approaches. Owing to

their relatively simple DL-CNN structure, the three methods they

tested achieved similar results and were also similar to the manual

methods. However, it also demonstrates the potential of DL

techniques in predicting the treatment response. In 2019, Wu

et al. (67) developed seven DL-CNNs based on a previous study

(66) and adopted the same image-processing method (66). They

modified the filter size, filter stride, and padding type of

convolutions and max pooling performed in layers C1 and C2

to develop three different models, and developed two models by

freezing different layers. Furthermore, they pretrained the model

on the CIFAR10 (70) image set. Only one network variation (DL-

CNN-2, C1 convolution filter stride 1!2, C2 max pooling size

3×3!2×2, stride 2!1) exhibited significant performance

improvements. The performance of the DL-CNN generally

decreased as more layers were frozen, but there was a slight

improvement in performance when the C1 layers were frozen.

This may be because the subsequent layers are designed to capture

more specific features, such as bladder lesions. The pretrained

network achieved better performance, but it was better to pretrain

with data related to the training images. Overall, they

demonstrated that the use of DL-CNN can match or even

exceed the level of doctors, and using deeper DL-CNN models

and making more effective adjustments to network structures can

further improve its performance in the future. Recently, Cha et al.

(68) developed a computerized CT-based decision-support system

for MIBC treatment response assessment (CDSS-T) based on

their previous work (56). They followed the segmentation system

and their previously developed DL-CNN combined with a

radiomics assessment model. A combined score from the DL-

CNN and radiomic model was used to assist physicians in the

assessment of the treatment response. With the help of the CDSS-

T, 12 physicians improved the assessment accuracy for evaluating

the neoadjuvant chemotherapy response in MIBC. This is the first

observer study to use a CAD system for this purpose.

Interestingly, the accuracy rate of the CDSS-T alone was higher

than that of using CDSS-T to assist physicians in assessment. This

shows that doctors’ experience and trust in using the system still

needs to be cultivated, which is also one of the key issues to be

overcome in the future clinical application of DL.
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Challenges and future directions

DL is a state-of-the-art technology and popular research area

in medical imaging. Its performance is comparable to that of

human experts in many studies and applications and it has good

development prospects and potential (71). However, research on

DL in BCa is still in its infancy, and there are still many

shortcomings compared to other fields with mature applications.
For data

The imaging diagnosis of BCa by clinicians often requires

the integration of various imaging data, such as CT and different

sequences of MRI images. Although CT is the most commonly

used imaging technique for the diagnosis of BCa, MRI has been

shown to be more effective, especially in staging, because of the

increased soft-tissue contrast resolution. Diffusion-weighted

imaging (DWI) and dynamic contrast enhancement (DCE) are

far more useful for assessing tumor invasiveness and infiltration

into surrounding structures. However, most of the current DL

studies on BCa imaging still use CT as the original data.

Moreover, all studies using MRI have chosen T2WI sequences,

and there is a lack of studies on DWI and DCE sequences.

Combining DL with the most appropriate as well as the most
Frontiers in Oncology 08
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advanced techniques in BCa imaging will be a research direction.

In addition, based on CT or MRI, most data currently used in

BCa studies focus on only one modality of medical imaging. In

recent years, many studies have shown that processing multiple

modalities simultaneously can significantly improve the

performance of DL models (26, 72, 73).

We can also attempt to improve performance by combining

imaging-based assessment with other available clinical data,

such as genomics and pathology. Multimodal approaches have

been shown to outperform unimodal ones (74). In fact, in both

natural and medical image processing, multimodal fusion is

becoming a mainstream and effective trend. BCa are

heterogeneous at the molecular level, and different molecular

classifications may be useful to stratify patients for prognosis or

response to treatment. The inclusion of multimodal information

helps to complement the shortcomings of BCa imaging in these

areas. However, due to various reasons, such as the small

number of BCa open datasets, there are not many multi-

modality processing methods used in the research of DL in

BCa. In addition, the limited quantity of medical image data

restricts the development of DL. The amount of data

significantly affects the performance of DL models. Transfer

learning (75) and data augmentation can improve performance

to some extent, but they cannot replace the need for a large

dataset. To date, the datasets of many studies of DL in BCa have
TABLE 3 Studies using deep learning approach for bladder cancer treatment.

Author Year Modality Number of patients
(Train/Val/Test)

CNN structure Performance
(validation or
testing dataset)

Cha et al.
(25)

2016 CT 62, LOOCV A network contains 2 convolution layers, 2 locally connected layers, and 1
fully connected layer.

AUC = 0.73

Cha et al.
(66)

2017 CT 82 A network contains 2 convolution layers, 2 locally connected layers, and 1
fully connected layer. Each layer contains 16 kernals.

AUC = 0.73

Wu et al.
(67)

2019 CT 73/9/41 The basic network contains 2 convolution layers, 2 locally connected layers,
and 1 fully connected layer.

AUC (basic-random
weights) = 0.73
AUC (basic-pretrained
weights) = 0.79
AUC (DL-CNN-1) =
0.72
AUC (DL-CNN-2) =
0.86
AUC (DL-CNN-3) =
0.69
AUC (C1 Frozen) =
0.81
AUC (C1,C2 Frozen) =
0.78
AUC (C1,C2,L3
Frozen) = 0.71

Cha et al.
(68)

2019 CT 123, LOOCV DL-CNN with a radiomics assessment model AUC (CDSS-T only) =
0.80
AUC (with CDSS-T) =
0.77
AUC (No CDSS-T) =
0.74
AUC, area under the curve; LOOCV, leave-one-out cross-validation.
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been so small that they do not even have independent validation

or test sets, which biases the assessment of the model

performance. In addition, the different scanning methods and

equipment adopted by different hospitals make the established

models difficult to use across institutions, which also limits the

clinical application of DL. In this case, it is necessary to use semi-

supervised or self-supervised methods to process data. However,

the application of these methods for BCa is limited, highlighting

the need for future research. In this case, we expect increasing

data diversity, multimodal methods, and more comprehensive

BCa datasets including multi-center data or a nationwide BCa

imaging database to significantly advance the field.
For algorithm

Most of the DL models used in the current research only stay

in the application of existing networks and lack optimization of

the imaging characteristics of BCa. The BCa data have many

unique structures, including their unique geometry, empty

structure, and other characteristics. However, in the current

research field on BCa, these characteristics are not well utilized.

Compared with other ML methods, DL is a complex black box.

To optimize this model in the future, it is important to reflect

doctors’ ideas and experiences in the diagnosis and treatment of

diseases in the DL model and improve its interpretability. Only

when the doctor can understand the reason why the DL model

makes the assessment can the model better assist the doctor in

decision-making. Furthermore, many state-of-the-art results in

the field of DL, such as self-supervised learning, pre-training

models, transformers, and contrastive learning, have not yet

been applied in the field of BCa research, which could be the

subject of our future research.
For application

There are many application scenarios and research

directions of DL that people can explore in BCa. For example,

there are various pathological types of BCa, including urothelial

carcinoma and squamous cell carcinoma. NMIBC and MIBC

can also be divided into many molecular subtypes according to

the MD Anderson Cancer Center (MDA) (76), Cancer Genome

Atlas (TCGA) (77), and other classification criteria. Based on the

above criteria, a more complex classification of BCa can be

attempted using medical imaging. In addition, DL can be used to

predict patient prognosis through medical imaging. Whether DL

can predict the outcome of surgical treatment for BCa or be

applied to ROI extraction, feature extraction, and feature

modelling in radiomics remains unclear. At present, a large
Frontiers in Oncology 09
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amount of research is still focused on image segmentation, and

we believe that the development of DL can help doctors in

more ways.
Conclusions

This study reviews the applications of DL in BCa imaging.

As a potential technology, DL has extremely broad application

prospects in BCa. Limited by the small number of studies in this

field, we provide a detailed review of the existing studies, but lack

more evidence to demonstrate more possibilities of DL in BCa

imaging. However, in the era of increasing emphasis on

precision medicine and individualized diagnosis and

treatment, how to give full play to the advantages of DL and

transform it into a means that can effectively help physicians in

clinical diagnosis and treatment will be the direction of our

future research. The powerful potential demonstrated by DL is

expected to bring about a new revolution in BCa management.
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Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University,
Wuhan, China
Methods for molecular imaging of target areas, including optical imaging,

radionuclide imaging, magnetic resonance imaging and other imaging

technologies, are helpful for the early diagnosis and precise treatment of

cancers. In addition to cancer management, small-molecule inhibitors are

also used for developing cancer target probes since they act as the tight-

binding ligands of overexpressed proteins in cancer cells. This review aims to

summarize the structural designs of affinity probes based on small-molecule

inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and

discusses the influence of the modification of these structures on affinity and

pharmacokinetics. We also present examples of inhibitor affinity probes in

clinical applications, and these summaries will provide insights for future

research and clinical translations.

KEYWORDS

inhibitor, affinity probe, near-infrared, radiotracer, tumor imaging
Introduction

Multiple enzymes and receptor proteins in organisms are involved in life processes

such as cell metabolism, proliferation, differentiation, migration, and apoptosis by

regulating biochemical reactions or signaling pathways. Small-molecule inhibitors can

regulate protein function by reversibly or irreversibly binding with these proteins (1, 2).

By specifically binding to highly expressed proteins in cancer cells and producing effects,

many small-molecule inhibitors have been used in targeted cancer therapy. Moreover,

new targets and subtype-selective inhibitors have also been developed in response to the

problems of cancer resistance and potential side effects (3–6). On this basis, affinity

probes based on small-molecule inhibitors (AfPIs) for targeted cancer imaging have

become research areas of major interest in recent years. Despite their severe metabolic

problems, like peptide probes (7, 8), AfPIs not only have the advantages of non-

immunogenicity, easy structure modification, fast target recognition, and strong

affinity, but also have a broader biodistribution and a higher signal-to-noise ratio than

antibody-conjugated probes or peptide probes (9, 10). Hence, they are efficient tools for
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cancer research and have broad application prospects in early

diagnosis, prognosis assessment, surgery navigation and drug

delivery monitoring (11, 12).

This review summarizes the tumor-targeting AfPIs emerging

in recent years and aims to provide design strategies for

developing novel AfPIs. The key challenges and corresponding

solutions in the design of such probes are discussed below.

Herein, we classify AfPIs into traditional visible-region, near-

infrared, radiolabeled and dual-modal probes for comparison.

We specifically focus on near-infrared and radiolabeled probes

with promising clinical applications, and reveal the

characteristics of the two probe types and provide references

for future clinical translation. Scheme 1 summarises the

classifications of AfPIs and their features.
Frontiers in Oncology 02
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Visible-region AfPIs

Fluorescence imaging is an excellent, noninvasive imaging

method that allows the visualization of cell status and many

biochemical reactions (13, 14). The introduction of inhibitor

structures enhances the targeting ability of probes to distinguish

cancer from the normal region. This section focuses on the

fluorescent AfPIs in the visible region (wavelength below 700

nm), mainly used for targeted imaging of cells or tissues. As

shown in Figure 1, the recognition group Polo-like kinase 1

(PLK1) inhibitor SBE13 (15) was conjugated with linker and

coumarin derivatives chosen for fluorophores, forming two kinds

of PLK1 affinity probes, 1 and 2, with emission wavelengths of 480

nm and 660 nm, respectively. Modifying the coumarin structure
SCHEME 1

The classifications of AfPIs and their features. In this review, we classified AfPIs into visible-region, near-infrared, radiolabeled and dual-modal
probes, and introduced them from three aspects: the inhibitors, linkers and dyes or radionuclides.
FIGURE 1

Some structures of traditional visible AfPIs and their parent inhibitors (Blue, inhibitor structure; green and red, fluorophores).
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in 2 resulted in intramolecular charge transfer (ICT), and a

redshift close to the near-infrared region in its emission could

be imaged in vivo (9). Overexpression of PLK1 in some human

tumor cells makes it a target for antitumor drug treatment (16). By

binding with PLK1, the probe is concentrated in the PLK1 kinase-

rich region to distinguish it from normal regions. Although the

imaging effect of 2 was demonstrated in vivo, 660 nm is

insufficient to meet the needs of in vivo detection. In addition,

inhibitors with unique structures can also serve as fluorescent

moieties; hence, no extra dye conjugation is warranted. For

instance, histone deacetylase 6 (HDAC6) inhibitors containing a

naphthalimide skeleton, which is intrinsically fluorescent, were

synthesized as inhibitor-based affinity probes (3 and 4) to detect

the expression of HDAC6 in tumor cells (Figure 1) (17, 18).

Moreover, there are affinity probes based on the biotin-avidin

system that conjugate inhibitors and biotin for proteomic analysis

and imaging in cells (19). However, these probes without an OFF-

ON function will lead to false positives and phototoxicity because

they will be retained in normal tissue regions and release

fluorescence. Furthermore, their low signal-to-noise ratio (SNR)

blurs the tumor location (20, 21).

Hence, smart probes with an “OFF-ON” design appear more

attractive. Because affinity probes bind to proteins directly, the

“trigger” can be activated by changing the spatial conformation

rather than an enzymatic or chemical reduction stimulus (22).

Photoinduced electron transfer (PeT) involves a-PeT and d-PeT

processes. In the a-PeT process, the inhibitor provides electrons

to the highest occupied molecular orbital (HOMO) of the

adjacent fluorophore. In contrast, the fluorophore donates its

electrons to the lowest unoccupied molecular orbital (LUMO) of

the inhibitor in the d-PeT process. Finally, the electrons in the

LUMO of the fluorophore fail to return to the HOMO, resulting

in fluorescence quenching (23). When the inhibitor binds to the

target, changes in the spatial structure or electronic energy levels
Frontiers in Oncology 03
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will disrupt the process, releasing fluorescence (Figure 2). Based

on this principle, Peng et al. (24) used the intramolecular spatial

folding effect caused by small-molecule inhibitors and dyes to

design the fluorescence probe 5 targeting the Golgi apparatus of

cancer cells based on the cyclooxygenase 2 (COX-2) inhibitor

indomethacin (IMC).When IMC binds to the amino acid residues

Arg120, Tyr355 and Glu522 of the COX-2 molecule, its folded

structure is open, and the PeT effect disappears, resulting in the

release of fluorescence with a maximum excitation wavelength of

547 nm. Although the two-photon property of the probe has

improved its tissue penetration to a certain extent, its emission

wavelength still limits its application in biological imaging in vivo.

Based on 5-bromobenzofuran-2-carboxylic acid, an inhibitor of

Pim-1 kinase, Guo designed probe 6 with a PeT effect, whose

emission wavelength reached the red light level and achieved live

animal imagingof tumor xenograftmice (25). Similar to theCOX-2

probe, probe6 changes fromthe folded state to theunfoldedstateby

binding with Pim-1 kinase, thereby removing the fluorescence

quenching and releasing the fluorescence. Compared with

traditional non-OFF-ON probes, this type of probe utilizes the

conformational changes of inhibitors and dyes to exhibit a higher

SNR, reduce the phototoxicity of nontargeted areas, and

significantly reduce the false-posit ive phenomenon

during imaging.

Many commercial fluorescent dyes in the visible region have

been developed (26), and less steric hindrance and better

pharmacokinetics can be easily obtained by modifying the

structure of dyes. However, due to the short wavelength of

these probes, it is difficult to obtain good results for in vivo

imaging, so they are more suitable for qualitative or

semiquantitative research at the molecular level and imaging

at the level of cells or tissue slices. Designing near-infrared

probes with near-infrared dyes is the future trend in the

clinical translation of AfPIs.
FIGURE 2

The quenching mechanism of PeT effects and AfPIs are designed based on PeT effects. When probes do not bind to the proteins, the
fluorescence is quenched by Pet effects. After binding to proteins, the folded structure is open and the PeT effect disappears, resulting in the
release of fluorescence (HOMO, highest occupied molecular orbital; LUMO, lowest unoccupied molecular orbital).
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Near-infrared AfPIs

The near-infrared (NIR) band can be roughly divided into

near-infrared window I (700-1000 nm) and near-infrared

window II (1000-1700 nm) (27) and exhibits a higher

penetrating capability than visible fluorescence in tissues. In

addition, compared with traditional visible-light imaging, near-

infrared imaging is less affected by biological matrix scattering

and tissue autofluorescence, which gives it a higher signal-to-

noise ratio and better spatial resolution. Therefore, near-infrared

imaging is more suitable for in vivo imaging, and NIR AfPIs are

also ideal for early diagnosis, surgery navigation and

photothermal therapy of tumors (28–30). Near-infrared

inhibitor probes mainly include three structures: inhibitors,

linkers and near-infrared dyes. The influences of these three

structures on the affinity and metabolism of the probe and the

design strategy of the probe are discussed in the following.
Inhibitor structure in AfPIs

The presence or absence of the inhibitor structure in the probe

and themodificationof crucial groups in the inhibitor structurewill

significantly impact the probe’s affinity and selectivity. Taking the

monoamine oxidase (MAO) series of probes as an example, MAO

is an important enzyme that regulates some biochemical reactions

in the body, controlling the metabolism of catecholamines and

serotonin. It plays a crucial role in the progression of tumors and

Parkinson’s disease. MAO contains two isoforms: MAO-A and

MAO-B. The original design of theMAO-A targeting probe 7 only

contains a fluorophore and propylamine group as the recognition

moiety. When propylamine meets MAO, the propylamine group
Frontiers in Oncology 04
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undergoes a continuous oxidation/b-elimination reaction and is

removed, releasing free fluorescent groups and producing

fluorescence (31). However, this probe shows no subtype

selectivity and has insufficient affinity. Based on this probe

structure, Wu et al. (32) introduced the structure of the MAO-A

selective inhibitor clorgyline to the probe (8), which gave the probe

higherMAO-A affinity and selectivity. Replacement of the chlorine

substituent on the benzene ring, such as themethoxy group (probe

9), drastically decreased the selectivity of the probe to lower than

thatof8but still higher than thatof thepreviousgenerationprobe7,

which lacked an inhibitor structure. Similarly, the clorgyline

derivative probes 10 and 11 based on the dicyanomethylene-4H-

pyran chromophore (DCM) structure developed byYang et al. (33)

had a higher selectivity for MAO-A than MAO-B, with relative

fluorescence intensity of approximately 42-fold. However, when

the halogen substituent was changed, the affinity of the

unsubstituted (H atom) probe 12 decreased slightly, and the

selectivity decreased by approximately 20-fold. The resulting

product lost selectivity and affinity if it was substituted with

methoxy or methyl. Comparing the performance of these probes

shows that in addition to the fact that the halogen element chlorine

plays a key role in binding, steric hindrancemay also have a certain

effect. This potential effect is consistent with previous molecular

docking results for MAO-A and clorgyline (34). When clorgyline

undergoes docking with MAO-A, two chlorine atoms form

hydrogen bonds with the Cys323 and Thr326 residues of MAO-

A (Figure 3A). These hydrogen bonds help stabilize the binding

between the inhibitor and the protein. Wu et al. (35) chose to

connect theNIR dye to the other end of the clorgyline to synthesize

13, protecting two chlorine atoms so that the probe had a more

potent antitumor ability than the parent compound. Although the

mitochondrial-targeting effect of the NIR dyes here contributes to
FIGURE 3

Structures of clorgyline and clorgyline-derived AfPIs (Blue, inhibitor structure; red fluorophores). (A) Molecular docking shows that clorgyline
forms hydrogen bonds between its chlorine atoms and the Cys323 and Thr326 residues of MAO-A (PDB ID: 2BXR).
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the antitumor ability, it also illustrates the importance of protecting

key groups.

The above studies indicate that the interaction between the

targetsof somekeygroupsofAfPIsand the sterichindranceof some

groups play critical roles in the performance of probe affinity. In

designing AfPIs, the groups of the inhibitor that play a vital role in

binding to the target must be protected to avoid diminishing the

overall affinity of the probe. However, the loss of certain key groups

does not necessarily or directly lead to the failure of probe imaging.

For example, in the aforementioned OFF-ON probe based on the

Pim-1 inhibitor, the carboxyl groupon its parent inhibitor structure

can forma salt bridge andhydrogenbondwithPim-1 kinase,which

is crucial for binding kinase. And when the carboxyl group is

destroyed, this will lead to an apparent loss of affinity (36). This

result shows that imaging can still be achieved in the case of the loss

of somekey groups, possibly because the benzene ring still contains

a bromine atom to help stabilize the binding, and the OFF-ON

imaging mechanism avoids the fluorescence of probes when they

are not bound to the kinase. This also illustrates the imaging

advantages of OFF-ON probes from another aspect, which can

avoid the problem that the tumor cannot be distinguished
Frontiers in Oncology 05
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sufficiently from the surrounding normal tissues due to a loss

of affinity.

Containing multiple inhibitor structures or co-targeting

through multiple regions can also help probes more easily

gather in the target region. Prostate-specific membrane antigen

(PSMA), a peripheral glutamate carboxypeptidase, is a

biomarker highly expressed by prostate cancer cells. PSMA is

located on the cell membrane surface, and its active site faces the

outside of the cell; this enzyme has become a common target for

AfPIs (37). Its representative inhibitor structure is glutamate-

urea-lysine. Based on this structure, the NIR dye can be

connected to achieve targeted prostate cancer imaging (38, 39).

On this basis, Kwon et al. (40) established two bivalent AfPIs, 15

and 16, with two GLU units, and these probes exhibited a higher

tumor uptake rate than that with only one GLU unit (14). Later,

2-nitroimidazole, which has a targeted hypoxia effect, was

introduced onto the other end of the structure to synthesize

17 (41) so that the dual-targeting effect of hypoxia and PSMA

was achieved without significant loss of the original affinity of

PSMA(Figure 4A). There was a partial loss of affinity in

compound 18 with the introduction of two 2-nitroimidazole
FIGURE 4

Structures of the PSMA inhibitor and its derived AfPIs (Blue, GLU units Green, 2-nitroimidazole group). (A) Schematic of bivalent and dual-
targeted AfPIs for prostate cancer (PC, prostate cancer).
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groups simultaneously, which may be ascribed to the increased

steric hindrance. The simultaneous existence of multiple

recognition groups further enhances the imaging effect,

reducing the false-negative rate and thus identifying tumor

regions more clearly. At the same time, attention needs to be

paid to the increase in steric hindrance caused by introducing

new groups.

When designing a novel AfPI, the factors affecting inhibitor

affinity must be considered, and the probe should be designed as

a new “inhibitor”. For example, when designing the structure of

CYP1B1 targeted AfPI, Meng et al. (42) excluded areas bound to

the enzyme and made modifications in a relatively safe area via

molecular docking (Figure 5A). Wang et al. (46) avoided the

sulfonamide structure of celecoxib and chose to modify the

pyrazole ring position to reduce the loss of affinity. In this
Frontiers in Oncology 06
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approach, determining the inhibitor’s crucial structure,

attempting to protect these structures in connecting dyes and

linkers, and performing molecular dynamics simulation on these

structures is conducive to predicting whether the synthesized

probe can bind to the target protein.
Dyes and linkers in AfPIs

Near-infrared dyes can be roughly classified into two types:

nonorganic and organic. Nonorganic dyes include single-walled

carbon nanotubes, quantum dots, and rare-earth materials (26)

(Figure 5B). Similar to antibodies, inhibitors can be introduced

into these inorganic dyes through covalent or noncovalent

binding to achieve targeted imaging (47, 48), in which
A

B

D

E

C

FIGURE 5

Conjugations between inhibitors and NIR fluorophores. (A) Conducting molecular docking analysis of CYP1B1 inhibitor and its target before
conjugation to avoid the loss of affinity. Reprinted with permission (42). Copyright 2018 American Chemical Society. (B) The common types of
NIR fluorophores. (C) Conjugating with the heptamethine cyanine dye MHI148 can improve the antitumor effect of the MAO-A inhibitor
isoniazid. Reprinted with permission (43). Copyright 2018 Elsevier. (D) The conjugation of FTS with cancer-targeting heptamethine cyanine dye
improved its pharmacological profile. Reprinted with permission (44). Copyright 2017 American Chemical Society. (E) Molecular docking results
demonstrated a 20 Å tunnel region in PSMA. Reprinted with permission (45). Copyright 2020 Elsevier.
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covalent binding is more stable, and these inorganic materials

can also be used to deliver targeted drugs to achieve the

integration of diagnosis and treatment (49). However, these

inorganic materials need to be functionalized in advance (50),

and the limitations of water solubility, photothermal stability,

immunity uptake and biological clearance in the body must be

addressed (51).

Organic dyes have lower molecular weight and higher

plasticity, biocompatibility and safety than inorganic dyes.

Additionally, some of them have been approved for clinical

use or have started in clinical trials, such as indocyanine green

(ICG). Some heptamethine cyanine dyes can also preferentially

accumulate in the mitochondria of tumor cells through the

high expression of organic anion transporter peptides (OATPs)

in tumors and the higher transmembrane potential of tumor

cells (52, 53), and they can achieve tumor seeking,

accumulation and retention via the covalent binding of meso-

chlorine and albumin (54). The conjugation of these dyes and

small-molecule inhibitors provides a way to change the

pharmacokinetics (55). In addition, the overall properties of

organic dyes, such as excitation/emission wavelengths, water-

solubility and photostability, can be easily adjusted by

chemical modification.

The introduction of dyes and linkers is related to the affinity

and pharmacokinetics of the probe, and the differences in some

substituents on these dyes will alter the probe metabolism and

accumulation of the tumor area. Generally, when choosing dyes,

better water solubility and higher emission wavelengths are

pursued because these characteristics will be conducive to

clinical translation. However, in the process of conjugating

dyes, due to steric hindrance or changes in functional groups,

the overall affinity of the probe will decrease, which is not

conducive to later targeted imaging. Therefore, suitable dyes

and synthetic routes should be chosen to avoid loss of affinity.

Additionally, better imaging results can be achieved if

improvements can be made to synthesize probes that

overcome parent inhibitors’ deficiencies. Genistein has limited

clinical antitumor applications because of its low oral

bioavailability and poor pharmacokinetics. Guan et al. (56)

conjugated genistein with the near-infrared dye IR-783 and

used the advantage that IR-783 could be transported by

OATPs and enriched in breast cancer cells to improve its

antitumor effect and achieve NIR imaging. Similarly, Lv et al.

(43)conjugated the MAO-A inhibitor isoniazid with the

heptamethine cyanine dye MHI148 and used its mitochondrial

targeting ability to obtain a theranostic probe for prostate cancer

(Figure 5C), which showed a more potent antitumor effect than

the parent inhibitor isoniazid. Similar designs have been

reported in many other studies. When S-trans-trans-farnesyl

salicylic acid (FTS), an RAS and mammalian target of rapamycin

(mTOR) inhibitor, was connected with the heptamethine

cyanine dye, the inhibitory effect on mTOR and antitumor
Frontiers in Oncology 07
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effect of the probe was better than FTS, and the EC50 was

reduced from 51.3 nm to 16.8 nm (Figure 5D) (44). These

results may be ascribed to the fact that the sulfonate group and

the tumor-targeting ability of the dye improve its dose

distribution. Inorganic dyes can also achieve this effect. Hu (7)

combined carbon quantum dots with an ST14 (suppressor of

tumorigenicity 14) inhibitor to improve renal clearance and

increase the retention of the inhibitor in tumors, which is

beneficial for its antitumor effect and imaging. These studies

demonstrated that the improved pharmacokinetics ascribed to

introducing dyes and linkers could enhance the tumor targeting

and antitumor ability of AfPIs.

Although there have been many studies on AfPIs in the first

NIR window, AfPIs whose emission wavelength falls in the

second NIR window are just emerging (57, 58), and the

wavelength of the existing inhibitor probes is generally low,

possibly because it is relatively difficult to design novel dyes. To

achieve a redshift of the wavelength, extended p conjugation is

required (59). After the probe is combined with small molecules,

the resulting structure will become more complex, and the

binding effect will be more uncontrollable, so existing dyes are

conjugated in most studies. Furthermore, when the wavelength

of dyes redshifts to the second NIR window, their quantum

yields drop sharply (60). Other issues that NIR dyes share,

including water solubility and probe biocompatibility, are

challenges that still need to be overcome in studying inhibitor

NIR-II window probes.

The linker is also critical to the properties of the probes. It

can avoid the effect of steric hindrance of the dye on the affinity

of the inhibitor and can improve the metabolic kinetics of the

probe through modifications, such as with polyethylene glycol

(PEG). Taking prostate cancer as an example, Son et al. used the

PEG chain as a linker to conjugate 4,4-difluoro-4-bora-3a,4a-

diaza-s-indacene (BODIPY) and Glu-CO-Lys to construct

probes (45). The molecular docking results showed that the

PEG linker was located in the tunnel region, with a length of

approximately 20 Å (Figure 5E), which is consistent with

previous findings (61). This design allows the entire

fluorophore molecule to be outside the target molecule and

avoids steric hindrance caused by the introduction of the bulky

dye. PEG improves the water solubility and biocompatibility of

the probe and eliminates adverse effects of the lipophilic dye

BODIPY so that its metabolic kinetics in vivo are improved, and

the overall affinity is also ensured. When Kwon et al. (40)

attempted to change the glutamine structure in the linker to a

benzene structure to obtain 16 based on the structure of 15, the

probe showed slower clearance and lower affinity than 15

because of the introduction of the benzene ring structure on

the linker. The same is true for the principle of designing

radionuclide probes and modifications in the linker area can

significantly improve the tumor uptake rate and in vivo

pharmacokinetics (37, 62).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1028493
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yi et al. 10.3389/fonc.2022.1028493
Clinical applications

The probe tool should be based on actual clinical problems

and converted into clinical applications, which is our ultimate

goal in designing AfPIs. Zhu et al. (63) used two AfPIs to

perform dual-target imaging of BCL2 and MDM2,

simultaneously detecting the activities/expression of apoptosis

markers. Arlauckas et al. (64) designed and synthesized JAS239,

a novel AfPIs targeting choline kinase alpha (ChoKa), and
realized the goals of breast cancer imaging, antitumor therapy

and monitoring choline metabolism in breast cancer. Osada

et al. (65) took heat shock protein 90 (Hsp90) as the target and

used the inhibitor SNX-5422 to connect the near-infrared dye

with the PEG chain as the linker to image the target area of the

subtype estrogen receptor-positive luminal invasive lobular

carcinoma. Their study was representative of the use of

imaging to detect a histological subtype that is difficult to

diagnose early. This application reflects the advantages of

inhibitor probe imaging at the molecular level, which can

achieve subtype classification and higher sensitivity than

traditional imaging examination (66). It is also possible to use

heat shock protein inhibitors to target and inhibit the

overexpression of heat shock proteins in tumor cells, thereby

enhancing the efficiency of NIR photothermal therapy (67). In

addition, there are applications such as surgery navigation and

postoperative reconfirmation of the tumor area (57, 68). The

design of these probes is based on an actual clinical problem

rather than simple imaging and diagnosis of tumors, so they

have a promising application prospect in the clinic.

This section mainly discusses the three key elements,

inhibitors, dyes and linkers, and their novel applications in the

design of NIR AfPIs, with MAO and PSMA inhibitors as

examples. Each element may have a significant impact on

the fundamental properties of the probe. When designing the

structure, not only the properties of the three elements but also

the interactions between them must be considered to improve

the pharmacokinetics and avoid adverse effects such as

decreased affinity caused by the increased steric hindrance.
Radiolabeled AfPIs

According to the imaging principle, radiolabeled AfPIs can

be classified into single-photon-emission computed tomography

(SPECT) and positron emission tomography (PET) probes.

Compared with SPECT, PET has a lower radiation dose and

higher resolution and sensitivity, but the high costs limit its

application in primary medical institutions (69). SPECT probes

can provide longer image acquisition time due to a longer half-

life (a few hours to a few days). Unlike PET, which emits two

511-eV photons, SPECT probes can emit photons with different

energies, allowing multiple probes to be imaged simultaneously
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(70, 71). Our focus is on the imaging effect of radioactive probes

based on inhibitors, and due to the differences in radionuclides,

the design ideas of the probes will differ significantly. Radioactive

elements commonly used in labeling inhibitors include

nonmetallic C, F, Br and I, while metal elements include Ga,

Cu, Tc and Zr. Depending on their isotopes, Ga and I can be

used for PET or SPECT imaging.
Nonmetallic radionuclide labels

Nonmetallic radionuclide labels can be introduced with a

low influence on the affinity of inhibitors because nonradioactive

carbon, nitrogen and oxygen atoms are inherently present in

various biomolecules and compounds. As a result, compared

with the nonlabeled inhibitors, only minimal changes occur in

the chemical properties of the final probes. In the PET imaging

[11C] NMS-E973 probe constructed by Vermeulen et al. (72), the

carbon atoms on the methyl group of the Hsp90 inhibitor NMS-

E973 (19) (73) were replaced with 11C (20) to conduct in vivo

melanoma imaging. The time of synthesis and purification

should be limited to 2-3 half-lives to ensure the effectiveness of

the radiolabeled APSMI (74), and the half-life of 11C is short,

which limits its clinical application. However, the introduction

of 11C generally does not change the pharmacological properties

of the parent inhibitor, and it can be used to study the fate of the

inhibitor in vivo. Brown et al. (75) used the 11C-labeled focal

adhesion kinase (FAK) inhibitor GSK2256098 to study the

pharmacokinetics of parent inhibitor in vivo and compared

the distribution of probes in normal brain and tumor tissues

to study the impact of tumors on the blood-brain barrier. Yu

et al. (76) labeled the transient receptor potential channel

subfamily member 5 (TRPC5) inhibitor HC608 (21) to obtain

22 to study its metabolism in vivo and the effect of targeting

TrpC5. Moreover, the half-lives of 13N and 15O, at 10 min and 2

min, respectively, are too short to be used for labeling inhibitors.

Probes labeled with halogen radionuclides have been widely

used to diagnose tumors and metastases in the clinic. 18F-labeled

fludeoxyglucose (FDG) as a PET probe has been used

particularly often (77), but due to the active glucose

metabolism in the brain and inflammation, it still has

limitations in tumor imaging (78–80). Such probes based on

small-molecule inhibitors can reduce the false-positive rate

because AfPIs can specifically bind to the target, and some of

them have entered clinical trials (81). For inhibitors with

fluorine in the structure, the loss of affinity caused by

radiolabeling can be avoided, such as by replacing the fluorine

atom (24) or carbon atom (25) on the benzene ring of the ROS1

inhibitor lorlatinib (23) (82). For inhibitors that do not contain

fluorine atoms, 18F can be substituted for a hydrogen atom or

hydroxyl group through electrophilic or nucleophilic reactions,

which will not cause significant steric hindrances because of
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their similar sizes. Additionally, the C-F bond formed is stronger

than the C-H bond and thus is not easily destroyed in the body

(83), which can decrease false positives in imaging. In the [18F]

labeled tropomyosin receptor kinase (Trk) inhibitor (27)

synthesized by Bernard-Gauthier et al. (84), the hydrogen

atom on the benzene ring was replaced on the parent inhibitor

(26), resulting in a loss of affinity. However, this loss is

acceptable because it does not considerably affect the imaging

effect of the probe (Figures 6A, B). Another method to add F to

the noncritical area of the inhibitor, such as the PEG chain (28),

which can also avoid the damage of steric hindrance to the

affinity, can improve the metabolic kinetics of the probe and is

conducive to the imaging effect (62, 85). However, it is necessary

to verify the affinity of probes by molecular docking and

affinity experiments.

Radiobromine and radioiodine are also commonly used

labeling inhibitors. 76Br (29) (86) and 124I (87) are used for

PET imaging and 123I/125I (30) (88, 89) for SPECT Imaging.

Although the steric hindrance of I and Br is greater than that of

F, inhibitors can still be introduced through the abovementioned

strategy, with a slight loss of affinity. In addition, these

radionuclides exhibit a longer half-life than 18F, facilitating the

final synthesis of the AfPIs. When these halogen radionuclides

are introduced, they may have greater affinity than the parent

inhibitors (90), possibly ascribed to the electronegativity of the

halogen radionuclides and the extra hydrogen bond formed

between the radionuclides and the target receptor.

In general, introducing nonmetallic radionuclide labels to

inhibitors to realize tumor imaging is relatively simple. Direct
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replacement of the original nonradioactive atoms or adding

radionuclide with a linker, such as PEG, can avoid

diminishing the affinity.
Metallic radionuclide labels

Unlike nonmetall ic radionuclide labels, metall ic

radionuclides cannot be directly introduced into the inhibitor,

so the aid of a metal chelating agent is required. To allow the

inhibitors to be labeled without considerably changing their

physicochemical properties, bifunctional chelating agents are

ideal candidates, which can conjugate with metal ions and

inhibitors and can easily react with common functional groups

(such as carboxyl, amino and alkyne/azide groups) on inhibitors

to form stable covalent bonds (91).

Bifunctional chelating agents can be roughly classified into

acyclic and macrocyclic, and the latter is more stable in

complexation than the former (92). As a part of the linker in

the probe, the chelating agent should be chosen after considering

the following factors. The first requirement is that it does not affect

the affinity of the original inhibitor and ensures that the ligand can

bind to the target later. The design is the same as other AfPIs: The

chelating agent cannot affect the critical binding group, and the

change in steric hindrance needs to be considered. Second,

the thermodynamic stability and kinetic inertness of the

chelating agent should be ideal to avoid the release of metal

ions to cause biological toxicity (93). During the synthetic process,

the production of isomers should also be circumvented to avoid
FIGURE 6

Some structures of radiolabeled AfPIs with nonmetallic radionuclide labels(Red: radionuclide labels). (A, B) The molecular docking result of [18F]
labeled TrkA inhibitor with TrkA protein showed that the labeled inhibitor could bind with Trk. Reprinted with permission (84). Copyright 2018
American Chemical Society.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1028493
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yi et al. 10.3389/fonc.2022.1028493
affecting the overall physicochemical properties of the probe.

Based on the chelating agent, the metabolism of the probe can

be improved by inserting hydrophobic/hydrophilic groups to

achieve a careful balance, obtaining the optimal imaging effect.

In addition, the insertion of PEG can improve water solubility and

promote metabolism, which is governed by the same principle

described above. The properties of metal radionuclides, such as

size, shape and coordination number, also affect the choice of the

chelating agent (94, 95). Therefore, when choosing a chelating

agent, the nature of the metal radionuclides should be considered.

Commonly used chelating agents for a given radionuclide are

often not bad choices.

In summary, the design of radiolabeled AfPIs differs according

to the kind of radionuclide. For nonmetal radionuclides, the atoms

or groups in the parent inhibitor can be substituted directly, while

for metal radionuclides, bifunctional chelating agents are

warranted to reduce the loss of affinity. Regardless of the type,

the main idea is to complete radionuclide labeling without

lowering the affinity of the parent inhibitor while considering

the metabolism and biological safety of the final product.
Dual-modal AfPIs

The advantage of dual-modal probes is that they combine the

two imaging technologies to take full advantage of each technique

and offset their disadvantages, achieving the goals of high sensitivity

and high resolution simultaneously. The most direct examples are

PET/CT, SPECT/CT and PET/MRI, which use the anatomical

information provided by CT or MRI technology to offset the

insufficient spatial resolution of PET/SPECT, and these

approaches have also been widely used in the clinic. PET/optical

imaging (OI) or SPECT/OI can overcome not only the insufficient

tissue penetration of fluorescent probes but also provide higher

imaging resolution than PET and SPECT. Based on the connection

of the PSMA inhibitor to the Cy3 fluorescent dye, Kommidi et al.

(96) introduced 18F through the click reaction at the distal end of

the linker to achieve dual-modal imaging. PET imaging is helpful

for preoperative planning, while fluorescence imaging can help

surgery navigation for tumor resection and reconfirm the edge after

surgery. Metal radionuclides can also be labeled on inhibitors with

fluorescent dyes using bifunctional chelating agents. Baranski et al.

(68) used Glu-urea-Lys-HBED-CC as the core structure to connect
68Ga and various fluorescent dyes, and performed fluorescence-

guided tumor resection in mice using a probe connected with

IRDye 800CW. Near-infrared dyes provide a greater imaging depth

for fluorescence imaging, making fluorescence-guided surgical

resection possible, and deeper tumor tissues need to be positioned

by PET before surgery. In addition to diagnosis and surgery

navigation, PET/OI can be used to observe the administration

and metabolism of the inhibitor by labeling the parent structure.

Wang et al. (11) designed a PET/OI dual-modal dasatinib probe to

compare the effect of convection-enhanced delivery on bypassing
Frontiers in Oncology 10
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the blood-brain barrier and delivering it to glioma by intravenous

administration. Fluorescence imaging overcomes the shortcoming

that PET cannot monitor drug delivery at the cellular level. These

applications are examples of solving clinical needs through the

combination of radionuclide imaging and optical imaging. In

addition, by adding functional groups, such as amino groups, to

a-Fe2O3 nanoparticles, inhibitors and fluorescent dyes can be

labeled to achieve MRI/OI dual-modal imaging (97).

As with single-modal AfPIs, the affinity, metabolism and

tissue distribution should also be considered for dual-modal

AfPIs. Conducting multiple labeling at the same time will

inevitably cause more significant potential damage to affinity

because it may alter more groups or cause greater steric

hindrance, so additional dyes and radionuclide labeling should

be as far as possible from the target area when the probe

structure is being designed. Metabolism and tissue distribution

need to be modified according to the in vivo performance of the

core structure of probes. For example, Kimura et al. (98) used

hydrophobic Cy5.5 dye to enhance tumor retention and reduce

the impact of 64Cu labeling on the imaging effect. Alternatively,

increasing the number of sulfonate groups could improve the

water solubility of the probe and switch the hepatobiliary to

renal elimination, and a more concentrated signal at the tumor

was obtained (99). Therefore, further structure modification can

improve the metabolism and tissue distribution and eliminate

the influence of multiple labels on the imaging effect of

the probe.

Although much progress has been made in dual-modal

imaging in recent years, the bimodal imaging probes including

the dual-modal AfPIs still fall short of applicability in the clinic

due to the limitations of the development of imaging

instruments and software. However, these dual-modal or

trimodal probes can provide more anatomical or functional

information, and this considerable advantage is worthy of

more research and development.
Conclusion

The design and synthesis of AfPIs involve interdisciplinary

research, and numerous issues need to be considered, including

the affinity, distribution and pharmacokinetics in vivo of probes;

the synthetic route; and translation to clinical applicability. It is

necessary to perform molecular docking before designing probes

to determine the effect of changes in steric hindrance and

modification of moieties on their affinity. Moreover, the probe’s

fate in vivo is crucial for imaging, and appropriate dyes and linkers

can significantly improve the pharmacokinetic and imaging

efficacy of the probe.

Over the last decade, there have been tremendous advances

in the research of AfPIs. The AfPIs have been proved to have

better specificity , smal ler molecular weight, lower

immunogenicity and faster targeting than protein and peptide
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probes. Although there are many reports on radiolabeled AfPIs,

and some have entered into clinical trials, there is considerable

room for improvement in NIR and dual-modal AfPIs, especially

in the second NIR window. This challenge is related to the lack

of suitable dyes and the greater difficulty of design and synthesis

in the second NIR window probe. Therefore, problems such as

developing new-generation inhibitors, NIR dyes and

bifunctional chelators, improving quantum yield, and

biological safety are still hindering the clinical application of

AfPIs and are warranted to be solved. Finally, the probe is only a

tool, and the ultimate objective is to solve medical needs. Hence,

the final product should be convenient for clinical application in

disease diagnosis or treatment.

In conclusion, it remains to be seen whether AfPIs can be

applied in the clinic. However, with the development of more

economical imaging instruments and new-generation inhibitors

with fewer side effects and better selectivity, and the urgent need

for more reliable detection methods and more efficient and safer

treatment for cancer, AfPIs have broad prospects for cancer

diagnosis and treatment monitoring.
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radiomics for predicting
hematoma expansion:
A meta-analysis

Yan-Wei Jiang †, Xiong-Jei Xu †, Rui Wang
and Chun-Mei Chen*

Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
Background: This meta-analysis aimed to assess the efficacy of radiomics

using non-enhanced computed tomography (NCCT) for predicting hematoma

expansion in patients with spontaneous intracerebral hemorrhage.

Methods: Throughout the inception of the project to April 11, 2022, a

comprehensive search was conducted on PubMed, Embase, and Cochrane

Central Register of Controlled Trials. The methodological quality of studies in

this analysis was assessed by the radiomics quality scoring system (RQS). A

meta-analysis of radiomic studies based on NCCT for predicting hematoma

expansion in patients with intracerebral hemorrhage was performed. The

efficacy of the radiomics approach and non-contrast CT markers was

compared using network meta-analysis (NMA).

Results: Ten articles comprising a total of 1525 patients were quantitatively

analyzed for hematoma expansion after cerebral hemorrhage using radiomics.

Based on the included studies, the mean RQS was 14.4. The AUC value (95%

confidence interval) of the radiomics model was 0.80 (0.76-0.83). Five articles

comprising 846 patients were included in the NMA. The results synthesized

according to Bayesian NMA revealed that the predictive ability of the radiomics

model outperformed most of the NCCT biomarkers.

Conclusions: The NCCT-based radiomics approach has the potential to

predict hematoma expansion. Compared to NCCT biomarkers, we

recommend a radiomics approach. Standardization of the radiomics

approach is required for further clinical implementation.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

display_record.php?RecordID=324034, identifier [CRD42022324034].

KEYWORDS

non-enhanced computer tomography, radiomics, hematoma expansion, meta-
analysis, spontaneous intracerebral hemorrhage
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1 Introduction

Intracerebral hemorrhage is a life-threatening and costly

disorder that accounts for 10–15% of all strokes (1). Hematoma

expansion is an independent risk factor for poor neurological

outcomes. Predictions of hematoma expansion risks can help to

stratify patients. Previous studies have reported that spot signs

are a good predictor of hematoma expansion (2, 3).

Nevertheless, the application of spot signs is limited because

computed tomography angiography (CTA) and contrast-

enhanced CT are not routinely performed in the emergency

department. Non-enhanced CT (NCCT) is most commonly

used for intracerebral hemorrhage imaging. Several studies

have reported that radiological markers extracted from NCCT,

including the black hole, satellite, and blend signs, are related to

hematoma expansion (2). However, the extraction of radiomic

markers is time-consuming and heterogeneous. Further, the

accuracy of radiomic markers may depend on the experience

of the clinician who reads the medical images.

Radiomics is a new method for the quantitative analysis of

medical images (4). Radiomics analysis was initially

implemented in the mining of medical images related to

oncology. Recently, the radiomics approach has been applied

in non-oncological fields (5). An increasing number of studies

have used an NCCT-based radiomics approach to predict

hemorrhage expansion(Figure 1) (4, 6, 7). However, data on

the predictive efficacy of radiomics methods remain insufficient

for further implementation.

This meta-analysis aimed to determine whether NCCT-

based radiomics approaches are effective for predicting

hematoma expansion. Radiomics quality scoring (RQS) was
Frontiers in Oncology 02
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used to determine the quality of the studies included in the

meta-analysis (8). Network meta-analysis (NMA) was employed

to synthesize diagnostic test accuracy data in order to assess the

efficacy of different diagnostic tests (9, 10). We compared the

efficacy of common NCCT markers and radiomics approaches

for predicting intracerebral hemorrhage expansion using NMA.
2 Methods

2.1 Literature search and study selection

This study was conducted according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA) statement (eTable 1) (11). This study was registered

with PROSPERO (CRD42022324034). PubMed, Embase, and

the Cochrane Central Register of Controlled Trials were

searched thoroughly from inception to April 11, 2022

(eTable 2) for articles in English. References to relevant

published articles were also searched to obtain the

desired articles.

After pooling the search results from the three databases and

removing duplicate articles, the abstracts and titles of the articles

were screened independently by two researchers. Eligible articles

were identified by a comprehensive reading of the full text. We

included all eligible radiomics articles that used non-enhanced

CT to assess hematoma expansion in patients with intra-cerebral

hemorrhage. Articles that met one or more of the following

criteria were excluded: (1) conference abstracts, reviews, letters,

case reports, and case series studies with sample sizes < 10; (2) in

multiple studies using the same population, only the study with
FIGURE 1

Flowchart of (NCCT-based radiomics. NCCT: non-enhanced computed tomography.
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the largest dataset was included; (3) non-human studies; (4)

secondary intra-cerebral hemorrhage; (5) intraventricular

hemorrhage; and (6) studies without comparison. All

inconsistencies were resolved by negotiation or by a

third investigator.
2.2 Data extraction

Eligible articles contained information that was

independently extracted by two researchers, including authors,

year of publication, sample size, number of cases in the training

and validation sets, study population, study design, study

country, number of institutions, composition of model

construction, mode of visualization, interval image

examination, research topic, segmentation software, method of

extraction of imaging histology features, validation method,

method of screening variables, final study characteristics,

sensitivity (Se), specificity (Sp), true positives (TPs), false

positives (FPs), true negatives (TNs), false negatives (FNs),

diagnostic accuracy rate (DAR), diagnostic odds ratio (DOR),

number of hematoma expansions, and non-expansions. All

inconsistencies were resolved by negotiation or by a

third investigator.
2.3 Quality assessment

All eligible studies were assessed for bias using the

QUADAS-2 tool for diagnostic meta-analyses (12). Four key

domains were assessed, including flow and timing, reference

standards, index tests, and patient selection. Three main

domains were assessed using the Applicability Concerns Test.

Risk of bias was categorized as low, high, or unclear. When all

domains were rated as yes, the risk was considered low. A

potential risk of bias existed when any of the domains was

rated no. The unclear classification only applied when there were

insufficient data to report. The 16 components of RQS were used

to assessed the quality of radiomics studies (8). Reviewers scored

each component and summed up the scores. The procedures for

scoring each component have been described previously.
2.4 Outcome measures

We performed a synthetic analysis of TP, FP, TN, and FN

indicators of eligible articles using a diagnostic meta-analysis.

Comparative analyses were performed for Se, Sp, positive

predictive value (PPV), negative predictive value (NPV), DAR,

and DOR. Articles that did not provide the four indicators TP,

FP, TN, and FN were calculated using the number of cases of

hematoma expansion and non-expansion, combined with Se

and Sp, using Review Manager 5.4.1. (eTable 3).
Frontiers in Oncology 03
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Se refers to the proportion of positive cases detected within

the group diagnosed with disease by the gold standard; a higher

Se indicates a lower chance of a missed diagnosis. Sp refers to the

proportion of negative tests within the group diagnosed as

disease-free by the gold standard; a higher Sp indicates a lower

chance of misdiagnosis. PPV reflects the proportion of

individuals with a positive screening test result who are

actually sick. NPV reflects the proportion of individuals with a

negative screening test result who do not actually have the

disease. DAR is defined as the proportion of all cases detected

as TPs and TNs by clinical diagnostics within all cases. A higher

DOR value indicates that the diagnostic test is more effective at

distinguishing between patients and non-patients.
3 Data Synthesis

3.1 Diagnostic meta-analysis to evaluate
diagnostic test accuracy

Diagnostic test accuracy indicators, such as Se, Sp, PPV,

NPV, DAR, and DOR, were synthesized using a meta-analysis

based on a random-effects model. Forest plots were used to

represent the effect values (odds ratio, OR) and 95% confidence

intervals (CIs). Evaluation of the screening biomarkers

(radiological features or radiomics) was based on summary

receiver operating characteristic (sROC) curves and areas

under the curve (AUCs), whereby a larger AUC indicates

better model performance. The Cochrane Q test and I2 were

used to measure the heterogeneity of the outcomes. The

robustness of the results was evaluated, and sources of

heterogeneity were explored by omitting each included article

one by one in the pooled analysis. Publication bias was evaluated

using funnel plots. A p-value < 0.05 for the Q test or I2 > 50%

indicated the possibility of significant heterogeneity.
3.2 NMA

Studies that included a comparison of radiomics and

radiological markers were used for the NMA. We used NMA

to evaluate the diagnostic value of all radiological features and

radiomics evaluating hematoma expansion in cerebral

hemorrhage in all eligible studies to estimate the OR and 95%

CI for predicting hematoma expansion for Se, Sp, PPV, and NPV

in eligible articles, and to summarize the rank order for all

screening biomarkers.

The implementation of the NMA was based on a Bayesian

model using Markov chain Monte Carlo simulation methods

(MCMC), where the calculated prior distribution and likelihood

values were substituted into MCMC, and the parameters were

adjusted to three chains and 5000 burn-ins using a random-

effects model with 50,000 iterations and an interval of 5. An
frontiersin.org
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optimal fit state of the convergent posterior distribution was

obtained, minimizing the variation of the MCMC error and

deviation information criterion to stabilize the ending (13, 14).

Trace plots and density distribution plots were used to assess

aggregation. We constructed network plots for each outcome

measure separately. The plot points represented different

screening biomarkers, point sizes indicated the total sample

size for each feature, and line thickness represented the

number of studies that were conducted between the two points

connected. The OR values and 95% CIs between different

predictors were represented using forest plots. To better

compare diagnostic efficacy, surface under the cumulative

ranking (SUCRA) was used to calculate the rankings of the

predictors (15). SUCRA values ranged between 0 and 1, with

l a r g e r v a l u e s r ep r e s en t i ng h ighe r r ank ing s and

diagnostic efficacies.

In hypothesis testing for the NMA, we determined

homogeneity and transferability by assessing the baseline

characteristics of the included articles, methodological and

statistical approaches, and agreement of the same predictor

across articles. For consistency tests, we explored local

heterogeneity using nodal splits and the deviance information

criterion for consistency and inconsistency models (DIC) (16). A

smaller difference between DIC values of the two models

indicated good agreement.

As most of the articles constructed the model using the

training set, we only used data from the validation set for

synthetic analysis. Model performance was verified using the

validation set. Articles that were not categorized into the training

and validation sets were analyzed as validation sets.

All data synthesis was conducted using R version 4.1.2

(“meta” package for diagnostic meta-analysis to evaluate

diagnostic test accuracy; “gemtc” package for NMA) and

Review Manager 5.4.1.
4 Results

A comprehensive search of 2114 articles was conducted, and

2037 articles were screened after excluding duplicates. Of the 77

full-text articles searched, 67 were excluded according to the

inclusion and exclusion criteria (Figure 2). Ten articles

comprising a total of 4929 patients were finally included in the

meta-analysis, five of which were used for the NMA. (Table 1).

The causes of cerebral hemorrhage were spontaneous

intracerebral hemorrhage and hypertensive intraparenchymal

hematoma. A total of 1391 (28.22%) patients had hematoma

expansion. The radiological features or radiomics analysis

performed included radiomics model, radiological model,

radiomics-radiological model, black hole sign, blend sign,

heterogeneity, hypodensity, irregular shape, island sign,

midline shift, satellite sign, and swirl sign.
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Based on the QUADAS-2 tool for assessing bias and

applicability (eFigure 1), the overall quality of the included

articles was satisfactory. For some studies, we could not

determine whether the included patients were consecutive or

randomized (n=8) and whether a blinded approach and

diagnostic thresholds were used for analysis (n=3); these

articles were therefore categorized as unclear.

Based on RQSs (Table 2), the included articles were generally of

low quality. In ten studies, the mean score was 40% (range, 30.1–

69.4%), and one study scored above 50%. The protocols for image

acquisition reported in most studies were well-documented. Most

studies (70%) used manual segmentation (which is usually

performed by an expert drawing ROIs), and three (30%) used

semi-automatic segmentation (which combines manual

segmentation with some algorithms). Two (20%) of the studies

integrated clinical data into radiomic models and suggested that this

could improve prediction accuracy.
4.1 Diagnostic test meta-analysis

4.1.1 Radiomics model
Ten studies comprising a total of 1525 patients were

quantitatively analyzed for hematoma expansion after cerebral

hemorrhage using the radiomics method (4, 6, 7, 17–23). The

pooled Se, Sp, PPV, NPV, and DAR were 0.771 (0.710-0.832),

0.743 (0.684-0.801), 0.612 (0.448-0.737), 0.863 (0.815-0.912),

and 0.748 (0.707-0.788), respectively (Figure 3). The synthetic

DOR was 9.85 (6.01-16.12) (eFigure 2).
FIGURE 2

Flowchart for study selection.
frontiersin.org

https://doi.org/10.3389/fonc.2022.973104
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.973104
TABLE 2 Radiomics quality scores.

Author ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ Total score Mean score (%)

Song 1 1 0 0 3 1 0 0 1 1 0 2 2 2 0 0 14 38.9

Li 1 1 0 0 3 0 0 0 0 0 0 2 2 2 0 0 11 30.6

Ma 1 1 0 0 3 0 0 0 0 0 0 2 2 2 0 0 11 30.6

Xie 1 1 0 0 3 1 1 0 0 0 0 2 2 2 0 0 13 36.1

Chen 1 1 0 0 3 1 1 0 1 1 0 2 2 2 0 0 15 41.7

Pszczolkowski 0 0 0 0 3 1 1 1 1 1 7 4 2 2 0 2 25 69.4

Zhan 1 0 0 0 3 1 1 0 1 0 0 2 2 2 0 0 13 36.1

Zhu 0 1 0 0 3 1 1 0 1 1 0 2 2 2 0 0 14 38.9

Duan 1 1 0 0 3 1 0 0 1 0 0 2 2 2 0 0 13 36.1

Xia 1 1 0 0 3 1 0 0 1 1 0 3 2 2 0 0 15 41.7

①:Image protocol quality; ②: Multiple segmentations; ③: Phantom study on all scanners; ④: Imaging at multiple time points; ⑤: Feature reduction or adjustment for multiple testing; ⑥:
Multivariable analysis with non-radiomics features; ⑦: Detect and discuss biological correlates; ⑧: Cutoff analyses; ⑨: Discrimination statistics;⑩: Calibration statistics;⑪: Prospective
study registered in a trial database; ⑫: Validation; ⑬: Comparison to gold standard; ⑭: Potential clinical utility; ⑮: Cost effectiveness analysis; ⑯: Open science and data.
F
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TABLE 1 Baseline characteristics of included studies.

Author Year Sample
size

HE non-
HE

Study design Study
location

Imaging
modality

Research question

Chen et al 2021 1153 236 917 Retrospectively China NCCT To compare the predictive performance for HE among clinical model,
radiomics model, and hybrid model.

Duan et al 2022 108 54 54 Retrospectively China NCCT To predict HE by using different machine learning methods and to
determine the best radiomics model.

Li et al 2019 167 42 125 Retrospectively China NCCT To quantify the heterogeneity of hematomas in order to find more
quantitative, sensitive, and accurate indicators for predicting HE.

Ma et al 2019 254 58 196 Retrospectively China NCCT To explore the feasibility of predicting hematoma expansion at acute
phase via a radiomics approach.

Pszczolko-
wski et al

2021 1732 474 1258 Retrospectively England NCCT To investigate the use of NCCT radiomics-based features and
generalized linear models for prediction of both HE and poor
functional outcome

Song et al 2021 261 110 151 Retrospectively China NCCT To determine whether NCCT) models based on multivariable,
radiomics features, and machine learning (ML) algorithms could
further improve the discrimination of early hematoma expansion (HE)
in patients with spontaneous intracerebral hemorrhage.

Xia et al 2022 376 108 268 Retrospectively China NCCT To identify supratentorial spontaneous intracerebral hemorrhage
patients with HE on admission

Xie et al 2020 251 108 143 Retrospectively China NCCT To predict hematoma expansion and to compare the predictive
performance with conventional radiological feature-based model

Zhan et al 2021 313 44 269 Retrospectively China NCCT To predict HE and the short- term outcomes in patients with small
hematomas.

Zhu et al 2021 314 157 157 Retrospectively China NCCT To evaluate HE prediction in the perihematomal region using
radiomics technology and compare its predictive performance with the
intra-hematomal radiomics signature.

HE: hematoma expansion; NCCT: non-enhanced computed tomography.
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4.2 sROCs and AUCs

The sROC curves demonstrated similar model performance

for the radiomics and radiomics-radiological models, and better

performance than that of the other screening biomarkers

(eFigure 3). The AUC value (95% CI) of the radiomics model

was 0.80 (0.76-0.83) (eFigure 4). However, other biomarkers

were not available due to the limited number of studies that

obtained AUC values and 95% CIs.
4.3 Sensitivity analysis and
publication bias

For most diagnostic indictors, the Cochrane’s Q (p<0.05)

and I2 (I2>50%) tests revealed significant heterogeneity.

However, no significant changes were observed in the Se, Sp,

PPV, NPV, and DAR values after article-by-article exclusion,
Frontiers in Oncology 06
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suggesting the robustness of the outcomes and relatively low

potential heterogeneity (eFigures 5). Funnel plots for different

diagnostic indicators of the radiomics model suggested

publication bias (eFigure 6).
4.4 NMA

Figure 4A presents a network plot of the indicators involved

in the composition. In the NMA, 846 patients from five articles

were included (4, 6, 7, 21, 22). The results synthesized according

to Bayesian NMA revealed that the predictive ability of the

radiomics model outperformed most of the NCCT biomarkers

(Figure 5). According to SUCRA (eTable 4), both radiomics and

radiomics-radiological models were ranked in the top two for Se,

Sp, PPV, NPV, and DAR. SUCRA curves are presented in

Figures 4B–F.

The results of the node-splitting method revealed good

consistency (p > 0.05) in most of the direct or indirect

comparisons (eFigure 7). The difference between the DIC

values of both the consistent and inconsistent models did not

exceed 5 and exhibited good consistency (eTable 5).
5 Discussion

This meta-analysis examined the utility of NCCT-based

radiomics methods to predict hematoma expansion. Our

analysis indicated that the radiomics approach demonstrated

potential for the prediction of hematoma expansion. Despite

these promising results, the relatively low RQSs of the included

studies revealed that the radiomics approach was suboptimal for

clinical application. Additionally, our analysis revealed that the

aggregated Se, Sp, and AUC of the radiomics model

outperformed those of the radiological biomarkers.

The results of our meta-analysis demonstrated that NCCT-

based radiomics is a feasible approach for stratifying the risk of

spontaneous intracerebral hemorrhage (21, 24–27). Hematoma

expansion is associated with clinical outcomes of spontaneous

intracerebral hemorrhage. Though there is currently no

definitive therapeutic strategy for prevention of hematoma

expansion, we believe that the HE is an appealing target for

medical intervention, as it may ultimately help some patients

with intracerebral hemorrhages. The CTA spot sign is useful for

stratifying patient risk and providing appropriate treatment (3,

28). However, in most medical centers in China, immediate CTA

is not routinely performed, thus limiting the implementation of

spot signs. NCCT, which is cheaper and more convenient, is the

most commonly used method for diagnosing intracerebral

hemorrhage. Previous studies have reported that NCCT

biomarkers, including the blend sign, black hole sign, and

satellite sign, can be used to predict the risk of hematoma

expansion. According to Li et al. (29), the blend sign
FIGURE 3

Forest plot of radiomics model. CIs: confidence intervals; DAR:
diagnostic accuracy rate; NPV: negative predictive value; PPV:
positive predictive value; Se: sensitivity; Sp: specificity.
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FIGURE 4

Network plot and SUCRA of biomarkers for ranking the accuracy of diagnosis. (A) The network plot of Bayesian network meta-analysis;
(B) sensitivity; (C) specificity; (D) positive predictive value; (E) negative predictive value; (F) diagnosis accuracy rate. SUCRA: Surface under the
cumulative ranking curve.
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(Figure 6A), which is defined as an area that has relatively low

attenuation adjacent to an area with high attenuation, showed

39.3% sensitivity and 95.5% specificity for predicting hematoma

growth. The black hole sign (Figure 6B), which represents a low-

density area within a hematoma with high density, is reported to

have sensitivity of 31.9% and specificity of 94.1% (30). One of the
Frontiers in Oncology 08
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attributes of the satellite sign (Figure 6C) is shape irregularity. A

comparative study by Shakya (31) showed that the areas under

the curve for the black hole sign and the satellite sign were 63.4%

and 67%, respectively. The relatively low efficacy of the

predictive ability of a single NCCT biomarker restricts their

clinical utility. In contrast, the radiomics studies included in our

meta-analysis exhibited superior performance.

Compared to radiological markers, the radiomics method,

which is based on mathematical calculation, is a more stable

method to predict the risk of hematoma expansion (4, 32). The

definition of radiological markers can be inconsistent, which has

hindered clinical implementation of NCCT biomarkers. In this

regard, a degree of overlap exists between NCCT markers (33).

Moreover, the identification of radiological signs depends on the

reader’s experience. Our meta-analysis demonstrated that the

efficacy of NCCTmarkers was suboptimal for implementation in

clinical practice. Notably, radiomics features may quantitatively

reflect the corresponding NCCT biomarkers. Although a limited

number of studies was included, our results demonstrated that

the radiomics method outperformed radiological biomarkers for

predicting hematoma expansion.

Despite its potential, the radiomics method is relatively

novel, and non-standardized imaging protocols remain

commonplace. RQS was designed to measure the quality of

radiomics research (8, 34). The RQSs, which includes 16 items,

can be used to assess the quality of radiomics studies. Although

evolving rapidly, research applying radiomics must comply with

certain basic principles. For instance, data obtained from other

institutions is considered to be more independent and therefore

more reliable when compared to data obtained internally.

External validation of models is crucial for ensuring their

generalizability. Indeed, the lack of external validation is the

main factor for a low RQS (35). Standardization of high-quality

image-extracted data may be helpful for clinical decision support

systems (36, 37).

This study had several limitations. Meta-analysis had the

limitation of heterogeneity among studies included. Based on the

methods used for image reconstruction, feature extraction, and

algorithms used, there were considerable differences between the

included studies. Second, there was a limited number of eligible

studies in the meta-analysis, possible because the relative

improvement in performance of the radiomics method was

overestimated, and the radiological markers were understated.

Third, radiomics studies are generally of low quality, most lack

external validation, and promising results from radiomics

should be interpreted with caution. Higher-level evidence from

clinical trials is necessary for clinical implementation of

radiomics approaches.

In conclusion, our meta-analysis highlights the potential of

NCCT-based radiomics approaches to predict hematoma

expansion. In this regard, we recommend a radiomics
D
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FIGURE 5

Network forest plot for biomarkers compared with radiomics
model. Crl: credible interval.
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approach over NCCT markers. Nevertheless, standardization of

radiomics approaches is necessary for further clinical

application, and further multicenter prospective studies with

stricter designs are warranted to verify our findings.
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of radiomics-based MRI in
predicting microvascular invasion
in hepatocellular carcinoma:
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Objective: The aim of this study was to assess the diagnostic performance of

radiomics-based MRI in predicting microvascular invasion (MVI) in hepatocellular

carcinoma (HCC).

Method: The databases of PubMed, Cochrane library, Embase, Web of Science, Ovid

MEDLINE, Springer, and Science Direct were searched for original studies from their

inception to 20 August 2022. The quality of each study included was assessed

according to the Quality Assessment of Diagnostic Accuracy Studies 2 and the

radiomics quality score. The pooled sensitivity, specificity, positive likelihood ratio

(PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated.

The summary receiver operating characteristic (SROC) curve was plotted and the area

under the curve (AUC) was calculated to evaluate the diagnostic accuracy. Sensitivity

analysis and subgroup analysis were performed to explore the source of the

heterogeneity. Deeks’ test was used to assess publication bias.

Results: A total of 15 studies involving 981 patients were included. The pooled

sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.79 (95%CI: 0.72–0.85), 0.81

(95%CI: 0.73–0.87), 4.1 (95%CI:2.9–5.9), 0.26 (95%CI: 0.19–0.35), 16 (95%CI: 9–

28), and 0.87 (95%CI: 0.84–0.89), respectively. The results showed great

heterogeneity among the included studies. Sensitivity analysis indicated that the

results of this study were statistically reliable. The results of subgroup analysis

showed that hepatocyte-specific contrast media (HSCM) had equivalent sensitivity

and equivalent specificity compared to the other set. The least absolute shrinkage

and selection operator method had high sensitivity and specificity than other

methods, respectively. The investigated area of the region of interest had high

specificity compared to the volume of interest. The imaging-to-surgery interval of

15 days had higher sensitivity and slightly low specificity than the others. Deeks’ test

indicates that there was no publication bias (P=0.71).

Conclusion: Radiomics-based MRI has high accuracy in predicting MVI in HCC,

and it can be considered as a non-invasive method for assessing MVI in HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the most common primary

liver malignant tumor, which is also the third leading cause of cancer

death (1, 2). Hepatectomy and liver transplantation are still the main

treatments for HCC (3, 4). Despite curative therapies, the prognosis of

HCC patients remains poor, with 5-year recurrence rates reaching

50%–70% after hepatectomy and <35% after liver transplantation

(5–7). It was proven that 15.0%–57.1% of patients presented

microvascular invasion (MVI) after hepatectomy, which is a well-

established risk factor for postoperative recurrence (8–10). In

addition, the 5-year survival rate of patients with MVI significantly

declined (11). For the MVI-positive patients, a wide resection margin

is recommended. Therefore, an accurate prediction of MVI before

operation is of great importance for clinical treatment decision and

prognosis evaluation.

MVI is defined as the cancer cell nest in small vessels lined with

endothelium, which is visible only under microscopy (12).

Conventional imaging methods are of limited value and pose a

challenge for non-invasive diagnosis in assessing MVI in HCC. In

recent years, radiomics has been widely applied in the tumor

diagnosis, the evaluation of response to treatment, and prognosis

prediction. As a new and non-invasive technology, radiomics can

high-throughput-extract features from large quantities of images to

improve diagnostic or prognostic accuracy, which is also effective to

preoperatively predict MVI (13). As imaging markers, the extracted

radiomics feature can reflect the microscopic pathological changes of

the tumor (Supplementary Figure S1), which is promising in the

diagnosis of carcinomas (14).

MRI can also provide better soft-tissue resolution, multiparameters,

and more stable features for assessing tumor heterogeneity. Previous

similar studies have included CT-, MRI-, and US-combined radiomics

original studies (13–15). Although they made a subgroup analysis of

different imaging modalities, the number of MRI-based radiomics

studies included was small. There is no unified conclusion regarding

the accuracy of radiomics-based MRI for predictingMVI in HCCs. The

current meta-analysis aimed to comprehensively and systematically

assess the accuracy of radiomics-based MRI in evaluating the MVI

of HCCs.
Materials and methods

Patients, public-involvement patients, and the public were not

involved in this study.
Searching strategies

The literature search was independently performed by two

radiologists. The databases were searched from their inception to 20

August 2022 including PubMed, Cochrane Library, Embase, Web of

Science, Ovid MEDLINE, Springer, and ScienceDirect. The search

terms were “hepatocellular carcinoma,” “liver malignant tumor,”

“liver cancer,” “liver cell carcinoma,” “texture analysis,”

“radiomics,” “advanced analysis,” etc. The titles and abstracts were
Frontiers in Oncology 02190
searched for their relevance. Disagreements were discussed and

resolved to reach a consensus. In addition, the search strategy is

presented in detail in Supplementary File 1.
Study selection

Studies were selected according to the following criteria: (1)

original research studies. (2) HCC patients with MVI were

confirmed by biopsy or histopathology. (3) Data were available and

could be extracted for calculating the true-positive (TP), false-positive

(FP), true-negative (TN), and false-negative (FN) values. (4) MRI-

based radiomics was applied to predict MVI in HCC. (5) English

literature: the excluding criteria were case reports, reviews, abstracts,

meta-analyses, insufficient calculable data, or animal studies.
Data extraction

The relevant information extracted from the original study was as

follows: the first author, the year of publication, country and language,

sample size, research type, gold standard, the age of patients, TP, FP,

FN, TN, MRI field strengths, and radiomics software. When there is a

disagreement in the process of document screening and data

extraction, the third radiologist will discuss and resolve it.
Quality assessment of included studies

The quality of each study was assessed on the basis of the

Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)

guideline and the radiomics quality score (RQS) (16, 17), which is

recommended by the Cochrane collaboration web. The QUADAS-2

tool consists of four parts: (1) patient selection; (2) index test; (3)

reference standard; and (4) flow and timing. The RQS checklist is

described in Supplemental Table S1.
Statistical analysis

Meta-analysis was performed by Stata version 15.1, and Review

Manager software, version 5.3. We adopted a bivariate random

effects model to calculate the pooled estimates in advance. The

Cochran-Q method and inconsistency index (I2) were used to

investigate heterogeneity among the studies. If I2 > 50%, P < 0.05, the

observed heterogeneity was significant. If I2 < 50%, P > 0.05, the observed

heterogeneity was not significant. If there were obvious heterogeneity, the

Spearman’s correlation coefficient was used to assess the threshold effect

between the sensitivity logit and the specificity logit. If there were no

threshold effect, sensitivity analysis and subgroup analysiswere performed

to further investigate the cause of the heterogeneity.

Pooled sensitivity (Sen), specificity (Spec), PLR, NLR, and DOR

were calculated to assess the diagnostic performance of radiomics-

based MRI. The summary receiver operating characteristic (SROC)

curve was plotted, and the area under the curve (AUC) was calculated.

Deeks’ test was used to evaluate publication bias, and P > 0.05, which

indicates that there was no significant bias.
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Clinical utility

A Fagan plot was used to evaluate the clinical utility, which

demonstrated the posttest probability (P post) of MVI when pretest

probabilities were calculated.
Results

Research and selection of studies

A total of 661 relevant studies were initially identified from

multidatabases, and 229 duplicated articles were excluded.

Additionally, 385 records were removed after reading their titles

and abstracts and being deemed irrelevant. Subsequently, after

reading the full texts, 28 articles were found to be reviews or not

related to the MVI of HCC, and 4 articles were unavailable for data

extraction. Ultimately, 15 articles were included (18–32). The

literature search process is shown in Figure 1.
Study characteristics

The characteristics of the included studies are shown in

Tables 1, 2. All 15 studies were retrospective cohort studies. The

total number of patients was 981. From the included studies, the

number of MVIs and no MVIs were reported and the pathological

histology was used as reference standards. Six studies used

hepatocyte-specific contrast media (HSCM). The LASSO method
Frontiers in Oncology 03191
and other methods were used as the method for selection in 11

studies and 4 studies, respectively.
Quality assessment and publication bias

The quality of the included studies was evaluated according to the

QUADAS-2 checklist, and the results are shown in detail in Table 3. It

was observed that the ‘index test’ in the ‘risk of bias’ and ‘applicability

concerns’ revealed uncertain shortcomings, which may suggest bias

regarding inclusion. Overall, the quality of all included studies was

satisfactory. Deeks’ funnel plot asymmetry test was used to assess the

potential publication bias. The results indicated that there was no

significant bias (P = 0.71), which are shown in Figure 2. The 15 studies

reached a mean ± standard deviation RQS of 14.80 ± 1.57, median 16,

and range 12–17. The average percentage RQS was 20.6% with a

maximum of 47.2%. The RQS individual scores and inter-rater

agreement are presented in Supplemental Tables S2, S3.The RQS

was reached with good inter-rater agreement (ICC 0.977, 95% CI

0.934–0.992).
Meta-analysis

The results of the meta-analysis are presented in Figures 3, 4.

Pooled sensitivity and specificity were 0.79 (95% CI 0.72–0.85) and

0.81 (95% CI 0.73–0.87), respectively. The values of PLR, NLR, and

DOR were 4.1 (95% CI 2.9–5.9), 0.26 (95% CI 0.19–0.35), and 16 (95%

CI 9–28), respectively. The AUC of SROC was 0.87 (95% CI 0.84–
FIGURE 1

Included study selection process for this meta-analysis.
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TABLE 1 Characteristics of included studies in the meta-analysis.

VI
-)

MRI parameters Radiomics
software

Gold
standard

Data

Contrast
media

Field
strength

(T)

TP FP FN TN

0 HSCM 3.0 A.K Histology 18 7 2 23

7 Other 3.0 MATLAB Histology 21 15 5 32

6 Other 1.5 Python Histology 28 11 2 65

2 Other 3.0 Omni-
Kinetics

Histology 28 17 9 45

4 Other 1.5 or 3.0 TexRAD Histology 15 5 7 9

5 NA 3.0 A.K Histology 26 5 8 20

8 Other 1.5 Python Histology 49 8 12 30

8 HSCM 3.0 Python Histology 26 0 7 48

0 Other 3.0 MATLAB Histology 27 7 2 33

1 NA 3.0 Python Histology 16 9 15 62

7 HSCM 1.5 or 3.0 Python Histology 14 1 12 26

9 Other 3.0 Python Histology 17 12 7 17

1 HSCM 3.0 R software Histology 9 1 1 10

6 HSCM 3.0 R software Histology 17 4 2 12

2 HSCM 3.0 R software Histology 11 14 2 18
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Author Year Country Study
design

Imaging-to-
surgery
interval

Tumor size (cm), mean (range) Tumor
number

Patient
number
(all)

(Male/
female)

MVI
(+)

M

Feng
(18)

2019 China Re Within 1
month

4.3 (2.7, 6.0) 50 50 46/4 20

Zhang
R (19)

2019 China Re Within 1
month

MVI(+)
5.13 (1.4–10.2), MVI(-)

4.00 (0.8–9.7)

73 73 64/9 26

Chong
(20)

2018 China Re Within 1
month

within 5.0 106 106 88/18 30

Zhu YJ
(21)

2019 China Re 15 days
(range, 7–35

days)

MVI(+)3.82 ±0.88, MVI(-)
3.21 ± 0.94

99 99 32/54 37

Willson
G (22)

2020 USA Re Within 3
months

4.5 (2.3–6) 36 36 32/4 22

Zhang
Y (23)

2021 China Re Within a week MVI(+)4.00 (2.73–5.00), MVI(-)
3.20 (2.00–5.00)

59 59 50/9 34

Nebbia
(24)

2020 USA Re Within a week MVI(+)3.45, MVI(-)
3.84

99 99 83/16 61

Chen Y
(25)

2020 China Re Within 2
weeks

NA 81 81 NA 33

Dai (26) 2020 China Re Within a
month

MVI(+) 5.54 ± 2.68 (2.3–11.3),
MVI(-) 4.49 ± 2.12(1.4–9.2)

69 69 65/4 29

Meng
(27)

2021 China Re Within a
month

3.4 (2.4–4.7) 102 102 84/18 31

Yang Y
(28)

2021 China Re Within a
month

NA 53 53 40/13 26

Qu C
(29)

2022 China Re Within a
month

MVI(+) 2.98 ± 1.13, MVI(-)2.94
± 1.04

53 53 45/8 24

Jiang T
(30)

2022 China Re NA MVI(+) 5.70 ± 3.97, MVI(-) 3.91
± 1.92

21 21 17/4 10

Gao L
(31)

2022 China Re Within a
month

NA 35 35 29/6 19

Tian Y
(32)

2022 China Re Within a
month

Within 3.0 45 45 35/10 13

HSCM, hepatocyte-specific contrast media; NA, not attended; Re, retrospective; A.K, Artificial Intelligent Kit software.
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TABLE 2 Radiomic characteristics of included studies in the meta-analysis.

Author Investigated
area

Segmentation
method

Feature
extraction

Radiomic feature categories Machine-
learning

method for
feature
selection

Number of
selected
features

AUC of radiomic
model with the
best performance

AUC of
radiomic–
clinical
model

Feng
(18)

VOI: tumor Manual
delineation

1,044
radiomic
features

Gray-level histogram, texture
analysis, wavelet features

LASSO/LR 10
radiomic
features

Training 0.850,
Validation 0.833

NA

Zhang
R (19)

ROI: tumor
and

surrounding
tissue

Manual
delineation

484
radiomic
features

Intensity features, texture
features, wavelet features

mRMR/LR mRMR
features

Training 0.784,
Validation 0.820

Training
0.753,

Validation
0.729

Chong
(20)

VOI: tumor Manual
delineation

854
radiomic
features

Shape, size, intensity, and
texture features

LASSO/RF,
LR

4 subsets
of

radiomic
features

Training 0.999,
Validation 0.918

Training
0.798,

Validation
0.725

Zhu YJ
(21)

VOI: tumor Manual
delineation

58 texture
features

Texture features LR/texture
analysis

10, 12
texture
features
AP, PP

Training 0.765,
Validation 0.773

Training
0.810,

Validation
0.794

Willson
G (22)

ROI: largest
cross section

manual drawn 6 type
texture
features

Texture features NA/LR NA 0.83 NA

Zhang
Y (23)

VOI: tumor Manual
segmentation

396
radiomic
features

GLCM, GLSZM, RLM,
formfactor, haralick features

LASSO/LR 6 subsets
of

radiomic
features

Training 0.889,
Validation 0.822

Training
0.901,

Validation
0.840

Nebbia
(24)

VOI: tumor
and margin

Manual
segmentation

100
radiomic
features

Shape features, first-order
features, texture features

LASSO/
SVM,
decision
trees, LR

NA 0.808 NA

Chen Y
(25)

VOI: tumor Manual
segmentation

1,395
radiomic
features

First-order features, texture
features, high-order features

LASSO/
SVM,

XGBoost,
LR

6 subsets
of

radiomic
features

Training 1.00,
Validation 0.842

NA

Dai (26) ROI: axial
slice

Manual
segmentation

167
radiomic
features

Shape features, intensity
features, texture features

mRMR,
LASSO/RF,
SVM, LR

68
radiomic
features

0.792 NA

Meng
(27)

VOI: tumor Manually
drawn

10,304
radiomic
features

Shape features, first-order
features, high-order features

LASSO/LR 2,114
radiomic
features

0.804 0.872

Yang Y
(28)

VOI: tumor
and margin

Manual
segmentation

851
radiomic
features

First-order features, shape
features, texture features,

wavelet-transformed features

LASSO/
mRMR

NA Training 0.896,
Validation 0.788

Training
0.932,

Validation
0.917

Qu C
(29)

VOI: tumor
and margin

Manual
segmentation

874
radiomic
features

Shape, first-order statistics,
GLCM, GLRLM, GLSZM,

GLDM

RFE
algorithm

560
radiomic
feature

Training 0.89,
Validation 0.66

Training
0.90,

Validation
0.70

Jiang T
(30)

ROI: largest
cross section

Manual
segmentation

1,967
radiomic
features

Shapes, first-order statistics,
filter-transformed features,

GLCM, GLSZM, GLDM, GLCM

LASSO/
least

absolute
shrinkage

11
radiomic
features

Training 0.807,
Validation 0.835

NA

Gao L
(31)

VOI: tumor
and margin

Manual
segmentation

107
radiomic
features

Shape-based characteristics, first-
order statistics, textural features

LR, SVC,
RFC,

adaboost

NA Training 0.823,
Validation 0.740

Training
0.915,

Validation
0.868

Tian Y
(32)

VOI: tumor
and margin

Manual
segmentation

1,561
radiomic
features

Shape-based features, first-order
statistics features, GLCM,
GLRLM, GLSZM, GLDM

LASSO/
least

absolute
shrinkage

43
radiomic
features

Training 0.842,
Validation 0.800

Training
0.934,

Validation
0.889
F
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 f
NA, not available; ROI, region of interest; VOI, volume of interest; LASSO, least absolute shrinkage and selection operator; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone
matrix; LR, logistic regression; SVM, support vector machine; RLM, run length matrix; mRMR, minimum redundancy maximum relevance; GLRLM, gray-level run length matrix; GLDM, gray-level
dependence matrix; RFE, recursive feature elimination; SVC, support vector classifier; RFC, random forest classifier.
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0.89). These findings indicated that radiomics-based MRI has a high

diagnostic performance for evaluating MVI in HCC.
Exploration of heterogeneity

Heterogeneity was tested using Cochran-Q and I2. In Figure 3, the

P-value of the Cochran-Q test was 0.00 (P < 0.05), and I2 was 61.12%

in pooled sensitivity. Additionally, the P-value of the Cochran-Q test

was 0.00 (P < 0.05), and I2 was 71.58% in pooled specificity. These

results indicated that there was significant heterogeneity in pooled

sensitivity and specificity among the included studies.
Frontiers in Oncology 06194
The result of sensitivity analysis showed that the bivariate model

was moderately robust in goodness-of-fit and bivariate normality

analyses (Supplemental Figure S2A, B). Influence analysis and outlier

detection identified two outliers (Supplemental Figure S2C, D). After

we excluded these outliers, the overall results did not change

significantly, which suggested that the results of this study were

statistically reliable.

Subgroup analysis was performed by comparing included studies

with different variables. Six studies using HSCM had equivalent

sensitivity (0.737 vs. 0.729) and specificity (0.816 vs. 0.820)

compared to nine studies using the other. There were 11 studies

with the LASSOmethod that had high sensitivity (0.775 vs. 0.620) and

high specificity (0.842 vs. 0.765) than other methods. There were 11

studies using the investigated area of VOI that had equivalent

sensitivity (0.731 vs. 0.730) and low specificity (0.814 vs. 0.844)

than those studies with ROI. The imaging-to-surgery interval of 15

days had higher sensitivity (0.823 vs. 0.682) and slightly low specificity

(0.790 vs. 0.837) than the others. The details of the subgroup analysis

are shown in Table 4 and Figures 5A–D.
Evaluation of clinical utility

The clinical utility of radiomics-based MRI was evaluated by

using the likelihood ratio to simulate a Fagan nomogram. The results

are shown in Figure 6. With a 20% pretest probability of MVI, the

posttest probabilities of MVI and given positive and negative results

of radiomics-based MRI are 51% and 6%, respectively. The Fagan

nomogram revealed that the posttest probability increased by 31% in
TABLE 3 Results of the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) quality assessment of included studies.

Study Risk of bias Applicability concerns

Patient
selection

Index test Reference standard Flow and timing Patient selection Index test Reference
standard

Feng (18) + + + + + + +

Zhang.R (19) + + + + + + +

Chong (20) + + + + + + +

Zhu YJ (21) + + + + + + +

Willson G (22) + ? + + + + +

Zhang Y (23) + ? + + + + +

Nebbia (24) + + + + + + +

Chen Y (25) + + + + + ? +

Dai (26) + + + + + ? +

Meng (27) + + + + + + +

Yang Y (28) + + + + + + +

Qu C (29) + + + + + + +

Jiang T (30) + + + + + ? +

Gao L (31) + ? + + + + +

Tian Y (32) + + + + + + +
+: Low risk; -: High risk;?: Unclear risk.
QUADAS, Quality Assessment of Diagnostic Accuracy Studies.
FIGURE 2

Deeks’ funnel plot to test publication bias.
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positive pretest patients but decreased by 14% in patients with a

negative pretest, indicating that radiomics based-MRI was useful in

clinical practice.
Discussion

MVI is defined as the presence of cancer cells in the portal vein,

hepatic vein, or a large capsular vessel of the surrounding hepatic

tissue lined by the endothelium, which is visible on microscopy (12).

MVI is recognized as the strongest independent predictor of the early

recurrence and poor prognosis of HCC (8–10). Previous studies

found that some conventional imaging features, such as the tumor

margin, size, number, capsule, shape, apparent diffusion coefficient
Frontiers in Oncology 07195
values, and enhancement pattern, may contribute to the diagnosis of

MVI before surgery (33). However, imaging features have some

limitations, such as the fact that the reviews of medical images rely

on subjective experience. The quantitative radiomics features

can reflect the microscopic pathological changes of HCC by

extracting features from the overall level of the tumor on the basis

of conventional imaging images and evaluating the internal

heterogeneity of the tumor (34, 35). Several previous similar studies

have demonstrated that radiomics has high accuracy in evaluating

the MVI in HCC; however, all of these studies analyzed CT-, MRI-,

and ultrasound-based radiomics (13–15). This meta-analysis

demonstrates that radiomics-based MRI has high diagnostic

performance for predicting the MVI of HCC and can be used as a

reliable and quantitative method for the non-invasive diagnosis of

MVI in clinical practice. MRI can provide better soft-tissue

resolution, multiparameters, and more stable features for assessing

tumor heterogeneity.

However, obvious heterogeneity between included studies was

noted. HSCM gadoxetate disodium was proven effective to assess the

presence of MVI. The study demonstrated that the specificity of the

hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine

pentaacetic acid Gd-EOB-DTPA-enhanced MRI combined with

tumor margins and low signal intensity around the tumor to

predict MVI is as high as 92.5% (36), but the contrast agent is

expensive and not widely used in clinical practice. Subgroup analysis

found that different contrast media (HSCM and others), the

investigated area, and the method for selection were not the factors

of significant heterogeneity. Furthermore, different imaging-to-

surgery interval times have different. Therefore, the procedure and

method should be standardized by conducting further research.

This study still has some limitations: (1) MRI scanning

parameters (including the scanner machine model, field strength,

and radiomics software) have not yet been unified; external datasets

and different MRI scanning parameters are necessary for confirming

the prediction value of the radiomics model. (2) Only English

literatures of studies were included, which may result in applicable
FIGURE 3

Coupled forest plots of the sensitivity and specificity of radiomics-based microvascular invasion (MRI) for predicting the MVI of hepatocellular carcinoma
(HCC).
FIGURE 4

Summary receiver operating characteristic curve to evaluate the MVI
of HCC.
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TABLE 4 Results of subgroup analysis.

Variate Studies (n) Sensitivity (95% CI) Specificity (95% CI) PLR NLR DOR

Contrast media

HSCM 6 0.737 (0.547–0.867) 0.816 (0.715–0.888) 4.118 (2.513–6.748) 0.182 (0.059–0.563) 17.769 (5.572–56.079)

Other 9 0.736 (0.654–0.804) 0.824 (0.735–0.887) 3.885 (2.626–5.747) 0.320 (0.239–0.430) 14.027 (8.626–25.021)

Method for the selection of radiomic features

LASSO 11 0.775 (0.678–0.849) 0.842 (0.770–0.895) 4.719 (3.307–6.734) 0.182 (0.099–0.335) 23.092 (12.505–42.642)

Other methods 4 0.620 (0.533–0.700) 0.765 (0.586–0.865) 2.625 (1.690–4.079) 0.484 (0.344–0.681) 6.042 (3.440–10.611)

Investigated area

VOI 11 0.731 (0.630–0.812) 0.814 (0.747–0.866) 3.862 (2.681–5.213) 0.228 (0.123–0.421) 14.566 (8.007–26.498)

ROI 4 0.730 (0.581–0.840) 0.844 (0.625–0.946) 4.684 (1.765–12.435) 0.387 (0.246–0.609) 16.222 (4.113–63.984)

Imaging-to-surgery interval

Within 15 days 4 0.823 (0.636–0.925) 0.790 (0.701–0.858) 3.816 (2.573–5.659) 0.145 (0.045–0.470) 15.291(6.250–37.411)

Other 10 0.682 (0.596–0.757) 0.837 (0.747–0.899) 4.035 (2.631–6.188) 0.327 (0.199–0.538) 13.491(6.699–27.168)
F
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PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio.
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FIGURE 5

(A, B) The forest plots of subgroup analysis. (C, D) The forest plots of subgroup analysis.
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articles not being included in the review. (3) There was great

heterogeneity in pooled estimates between the included studies. All

of these factors may reduce the reliability of the results of this study.

In the future, a large number of unified and standardized prospective

studies are still needed to confirm the value of radiomics based-MRI

in predicting the MVI of HCC.

Conclusion

In conclusion, this study demonstrated that radiomics based on

MRI has high accuracy for predicting MVI in HCC, and it can be used

as a reliable method to predict the presence of MVI in HCC before

surgery in clinical applications.
Frontiers in Oncology 09197
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