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A Novel Drug Combination of
Mangiferin and Cinnamic Acid
Alleviates Rheumatoid Arthritis by
Inhibiting TLR4/NFkB/NLRP3
Activation-Induced Pyroptosis
Weijie Li1, Kexin Wang1, Yudong Liu1, Hao Wu2, Yan He2, Congchong Li1, Qian Wang3,
Xiaohui Su1, Shikai Yan4, Weiwei Su2, Yanqiong Zhang1* and Na Lin1*

1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China, 2 Guangdong
Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese
Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University,
Guangzhou, China, 3 State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking
University, Beijing, China, 4 School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China

Growing evidence shows that Baihu-Guizhi decoction (BHGZD), a traditional Chinese
medicine (TCM)-originated disease-modifying anti-rheumatic prescription, may exert a
satisfying clinical efficacy for rheumatoid arthritis (RA) therapy. In our previous studies, we
verified its immunomodulatory and anti-inflammatory activities. However, bioactive
compounds (BACs) of BHGZD and the underlying mechanisms remain unclear. Herein,
an integrative research strategy combining UFLC-Q-TOF-MS/MS, gene expression
profiling, network calculation, pharmacokinetic profiling, surface plasmon resonance,
microscale thermophoresis, and pharmacological experiments was carried out to
identify the putative targets of BHGZD and underlying BACs. After that, both in vitro
and in vivo experiments were performed to determine the drug effects and
pharmacological mechanisms. As a result, the calculation and functional modularization
based on the interaction network of the “RA-related gene–BHGZD effective gene”
screened the TLR4/PI3K/AKT/NFkB/NLRP3 signaling-mediated pyroptosis to be one
of the candidate effective targets of BHGZD for reversing the imbalance network of
“immune-inflammation” during RA progression. In addition, both mangiferin (MG) and
cinnamic acid (CA) were identified as representative BACs acting on that target, for the
strong binding affinities between compounds and target proteins, good pharmacokinetic
features, and similar pharmacological effects to BHGZD. Notably, both BHGZD and the
two-BAC combination of MG and CA effectively alleviated the disease severity of the
adjuvant-induced arthritis-modified rat model, including elevating pain thresholds,
relieving joint inflammation and bone erosion via inhibiting NF-kB via TLR4/PI3K/AKT
signaling to suppress the activation of the NLRP3 inflammasome, leading to the
downregulation of downstream caspase-1, the reduced release of IL-1b and IL-18, and
the modulation of GSDMD-mediated pyroptosis. Consistent data were obtained based on
org June 2022 | Volume 13 | Article 912933145
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the in vitro pyroptosis cellular models of RAW264.7 and MH7A cells induced by LPS/ATP.
In conclusion, these findings offer an evidence that the MG and CA combination identified
from BHGZD may interact with TLR4/PI3K/AKT/NFkB signaling to inhibit NLRP3
inflammasome activation and modulate pyroptosis, which provides the novel
representative BACs and pharmacological mechanisms of BHGZD against active RA.
Our data may shed new light on the mechanisms of the TCM formulas and promote the
modernization development of TCM and drug discovery.
Keywords: rheumatoid arthritis (RA), traditional Chinese medicine-originated disease-modifying anti-rheumatic
prescription, pyroptosis, bioactive compound, NLRP3 inflammasome
INTRODUCTION

Rheumatoid arthritis (RA), characterized by hyperplasia and
inflammation of the synovial joints, is an intractable and highly
prevalent autoimmune disease with unknown pathogenic triggers
(1, 2). Currently, the key therapeutic approaches to RA are mainly
based on drugs and surgeries (3), including disease-modifying
anti-rheumatic drugs (DMARDs), non-steroidal anti-
inflammatory drugs (NSAIDs), glucocorticoids, and biological
response modifiers, which may reduce synovitis and systemic
inflammation (4). However, there are no specific drugs for RA
therapy due to its various comorbidities, such as cardiovascular
diseases (5–8), osteoporosis (9, 10), interstitial lung disease (9, 11),
malignancies (11, 12), and hypertension (13), as well as the
heterogeneous and complex clinical manifestations with wide
individual differences. Traditional Chinese medicine (TCM), as a
complementary and alternative medicine, has its unique
advantages in the clinical treatment of RA, especially at the
active stage with moist heat arthralgia spasm syndrome (active
RA), which is characterized by the hyperactive immune response
and excessive inflammatory cytokines, subsequently leading to
osteoclast differentiation and active joint inflammation (14, 15).
Among TCM-originated DMARDs, Baihu-Guizhi decoction
(BHGZD) has been indicated to efficiently reverse the aggressive
progression of active RA with moist heat arthralgia spasm
syndrome and to reach a remarkable response rate (90%) (16–
19). Our previous studies identified the chemical profiling of
BHGZD in vitro and verified its immunomodulatory and anti-
inflammatory activities (20–22). However, the bioactive
compounds (BACs) and the underlying mechanisms of BHGZD
against active RA have not been fully elucidated.

In the current study, the candidate BACs of BHGZD were
identified by the ultra-fast liquid chromatography-quadrupole-
time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/
MS) system in vivo. Then, we carried out transcriptomic
profiling, target prediction, and network calculation to screen
the candidate targets of BHGZD for reversing the imbalance
network of “immune-inflammation” during the progression of
active RA. After that, the binding affinities between candidate
BACs and candidate targets of BHGZD were calculated using the
molecular docking simulation, the results of which were
subsequently verified by surface plasmon resonance (SPR)
assay and microscale thermophoresis (MST) analysis.
org 256
Moreover, the in vivo biodistribution and pharmacokinetic
characteristics of candidate BACs were also determined.
Furthermore, the pharmacological effects and the molecular
mechanisms of BHGZD, and its representative BACs against
active RA were further validated by a series of experiments based
on the adjuvant-induced arthritis-modified rat model (AIA-M)
as well as LPS/ATP-induced pyroptosis cellular models on both
RAW264.7 macrophage and MH7A cells.
MATERIALS AND METHODS

Preparation of BHGZD
Crude drugs of BHGZD formula were purchased from Beijing
Tongrentang Co., Ltd. (Beijing, China). BHGZD was prepared
according to the original composition of the formula recorded in
Chinese pharmacopoeia 2020 edition and our previous study
(22) (Supplementary Materials Section 1, and Table S1).

RA Modeling, Grouping, and Treatment
A total of 49 male Lewis rats (200 ± 20 g in weight, 6–8 weeks
old) were obtained from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (SCXK 2019-0003, Beijing, China) and
randomly divided into two independent clusters: a discovery
cluster (n = 24) and a validation cluster (n = 25). All animals
were maintained in specific pathogen-free conditions with a
constant temperature of 24 ± 1°C with a 12-h light/dark cycle,
and had free access to standard rodent diet and water. The
discovery and validation clusters were respectively used for gene
expression profiling and experimental validation. In the
discovery cluster, 24 rats were randomly divided into three
groups [3 per group for microarray and 5 per group for
mRNA sequencing (mRNA-Seq)] (1): the normal control
group, (2) the AIA-M model group, and (3) the BHGZD
treatment group. In the validation cluster, 25 rats were
randomly divided into five groups (5 per group): (1) the
normal control group, (2) the AIA-M model group, (3) the
BHGZD treatment group, (4) the MG+CA treatment group, and
(5) the methotrexate (MTX) treatment group.

The AIA-M rat model was established simulating the
pathological changes and characteristics of active RA with
moist heat arthralgia spasm syndrome based on our previous
studies (20–23). Please see the detailed information on the AIA-
June 2022 | Volume 13 | Article 912933
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M rat model establishment in Supplementary Materials Section
2. The dosage of BHGZD for the corresponding treatment group
was 21.4 g/kg, equivalent to two times the clinical dose, which
has been proved to exert the most prominent therapeutic efficacy
in our previous studies (21, 22). The dosages for the two-BAC
combination of MG and CA for the corresponding treatment
group were respectively 600.912 mg/kg and 46.652 mg/kg,
equivalent to their content in 21.4 g/kg BHGZD. The dosage
for MTX was 0.2 mg/kg. All treatments were performed for 30
days via oral administration from the day of the primary
immunization (20–23).

On the 31st day, all rats were anesthetized by intraperitoneal
injection of pentobarbital sodium (50 mg/kg). The blood samples
were collected using one-time anticoagulant negative pressure
blood collection tubes, and then placed at room temperature for
20 min and centrifuged at 3,000 rpm for 15 min. The sera were
collected, vortexed, and centrifuged again at high speed at low
temperature (4°C) for 15 min, and stored at −20°C for
subsequent assays. Whole blood cells were freshly isolated
from blood, then frozen in liquid nitrogen overnight, and
stored at −80°C for mRNA-Seq. The synovium tissues were
isolated and immediately frozen in liquid nitrogen for
microarray analysis. The right joints of rats were removed and
preserved in 4% paraformaldehyde (PFA) combined with
phosphate-buffered saline (PBS) for 72 h for subsequent assays.
The left joints and organs of rats were kept at −80°C for
subsequent assays.

Assessment of Arthritis Severity
The severity of arthritis was evaluated by arthritis incidence, hind
paw thickness (the diameter of limb), arthritis score, and arthritis
surface temperature as in our previous studies (20–24), and is
provided in Supplementary Materials Section 3. Pain
thresholds were evaluated by mechanical-, acetone-, and
thermal-induced hyperalgesia as previously described (20–25),
and are provided in Supplementary Materials Section 4.

Viscera Index and Histology
The viscera indexes were calculated by the weight of the thymus,
spleen, liver, and kidney relative to total brain weight.
Histological changes were examined using hematoxylin and
eosin (H&E), safranin O-fast green (Solarbio, Beijing, China),
and Masson trichrome staining (Baso, Wuhan, China) according
to routine protocols. Please see detailed information on the
protocol in Supplementary Materials Section 5.

Micro-Computed Tomography Analysis
To quantitatively evaluate bone formation within the defects, the
specimens were scanned using a micro-CT instrument (GE
healthcare, USA) at a resolution of 45 mm. The x-ray settings
and cylinder region of interest (ROI) are provided in
Supplementary Materials Section 6.

Gene Expression Profiling
Whole blood cells and the synovium tissues representing the
pathological characteristics of systemic disease and target organs
during active RA progression were respectively used for whole
Frontiers in Immunology | www.frontiersin.org 367
rat genome microarray analysis (Agilent Technologies, design
ID: 014879, Santa Clara, CA, USA) and mRNA-Seq Illumina
NovaSeq 6000 (Illumina, CA, USA) to screen RA-related genes
[the significant differentially expressed genes (DEGs) between
the AIA-M model group and the normal control group] and
BHGZD therapeutic effect-related genes (DEGs between the
BHGZD treatment group and the AIA-M model group). The
gene expression data have been uploaded and are publicly
available in the NCBI GEO database (GEO No. GSE189942,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE189942, December 3, 2021, and GEO No. GSE190523,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE190523, December 11, 2021), and the DEGs were identified
by referring to the criteria of t-test p-value < 0.05 and fold change
(FC)>2/<0.5. Please see the detailed information in
Supplementary Materials Section 7.

Prediction of Putative BHGZD Targets
Drugs with a high similarity score (>0.80) to structures of
composite compounds of each ingredient contained in
BHGZD were selected based on the TCMIP v2.0 database
(Integrative Pharmacology-based Research Platform of
Traditional Chinese Medicine, last update in 2021-09-10,
http://www.tcmip.cn/TCMIP/index.php/Home) and the
Encyclopedia of Traditional Chinese Medicine (ETCM, http://
www.tcmip.cn/ETCM/index.php/Home/) (26). Therapeutic
targets of the similar drugs approved by the Food and Drug
Administration (FDA) according to DrugBank Online (Version
5.1.8, released 2021-01-03, https://go.drugbank.com/) were
identified as putative targets of BHGZD.

Network Construction and Analysis
The RA-related gene interaction network was constructed using
the links among the DEGs between the AIA-M model and
normal control groups to identify the key RA-related genes.
Then, the interaction network of the “key RA-related gene–
BHGZD-effective gene” was constructed using the links between
the key RA-related genes and BHGZD effective genes. The gene–
gene interaction data were collected from the String database
(version 10.0, http://string-db.org/) (27), and the interaction
networks were all visualized by the Cytoscape platform
(version 3.9.0, https://cytoscape.org/) (28). The network
topological properties of nodes, including “Degree” ,
“Betweenness”, and “Closeness”, were calculated for screening
the key network targets according to our previous descriptions
(20–25, 29) and Supplementary Materials Section 8.

Determining the Chemical Compounds of
BHGZD and Absorption Distribution
Metabolism Excretion Evaluation
A rapid, sensitive, and reliable method by the UFLC-Q-TOF-MS/
MS system was used to identify the chemical profiling of BHGZD
as described in Supplementary Materials Section 9 (30). The
reference standards of these compounds (Supplementary Table
S2) were purchased from Chengdu Must Bio-technology Co., Ltd.
(Chengdu, China), the National Institute for the Control of
June 2022 | Volume 13 | Article 912933
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Pharmaceutical and Biological Products (Beijing, China), and
Chengdu DeSiTe Biological Technology Co., Ltd. (Chengdu,
China). Then, the ADME information on 19 BACs included in
BHGZD was collected from the ETCM database (The
Encyclopedia of Traditional Chinese Medicine, http://www.
tcmip.cn/ETCM/) (26). In addition, in silico ADME models
were used to identify the candidate BACs of BHGZD by
calculating the passive intestinal permeability of the Caco-2
module, the oral bioavailability, and the apparent permeability
coefficient (Papp) of each BACs as described in Supplementary
Materials Section 10.

Molecular Docking Simulation
The molecular docking and virtual screening program was carried
out to investigate the direct binding efficiencies of the two BACs
contained in BHGZD and the corresponding putative targets. The
structures of human TLR4 (PDB ID: 2z65), AKT1 (PDB ID: 3o96),
and NFkB (PDB ID: 1nfi) were obtained from the PDB website
(The Protein Data Bank, https://www.rcsb.org/). For docking
analysis, the ligand mangiferin (MG) and cinnamic acid (CA)
were downloaded from the ZINC database (last update in 2018-
02-14, http://zinc.docking.org/) (31) in mol2 format and converted
to pdb.files using OpenBabel GUI (last update in 2016-09-21,
version 2.4.1, http://openbabel.org/wiki/Main_Page). AutoDock
Tools (Version 1.5.6, https://ccsb.scripps.edu/mgltools/) was used
to convert pdb to pdbqt format. Docking calculations were
performed using AutoDock Vina (The Scripps Research Institute,
version 1.1.2) and AutoDock (The Scripps Research Institute,
version 4.2.6). The visualization and analysis of the results were
obtained from AutoDock Vina by PyMOL (Version 2.5, https://
pymol.org/2/).

SPR Assay
To confirm the binding affinity of recombinant AKT1 protein and
MG, SPR assay was performed with Biacore 8K (Biacore, Cytiva),
and the KD value was calculated using the Biacore 8K evaluation
software 2.0 (GE Healthcare). Detailed information on SPR assay is
provided in Supplementary Materials Section 11.

MST Assay
The binding affinity between recombinant TLR4 protein and CA
was measured by a NanoTemper Monolith NT.115 instrument
(NanoTemper Technologies, Germany). The KD value was fitted
by NanoTemper Monolith affinity software (NanoTemper
Technologies, Germany) using 1:1 binding mode. Detailed
information on the MST assay is provided in Supplementary
Materials Section 12.

In Vivo Pharmacokinetic Analysis
To detect the pharmacokinetic parameters of MG and CA in vivo,
quantification analysis was performed by an ultra-high-
performance liquid chromatography (Shimadzu Corp., Japan)
tandem ion trap quadrupole QTRAP 6500 plus mass
spectrometry (AB Sciex, USA). The quantitative analyses for MG
and CA were approved by the Guidance for Bioanalytical Method
Validation issued by the Chinese Pharmacopoeia Commission in
Frontiers in Immunology | www.frontiersin.org 478
2020. The pharmacokinetic parameters were calculated by Drug
and Statistic software (Shanghai, China). Detailed information on
the collection of blood samples and UHPLC-QTRAP-MS/MS
conditions is provided in Supplementary Materials Section 13.

Cell Culture, Induction, and Treatment
Mouse macrophage cell line (RAW264.7 cells, Bio-Swamp,
Wuhan, China) and fibroblast-like synoviocytes in patients
with RA (MH7A cells, Riken cell bank, Ibaraki, Japan) at
passage numbers four to eight were used in the current
experiment validations. The culture conditions are provided in
Supplementary Materials Section 14.

The conventional NLRP3 inflammasome activation cellular
model was induced by lipopolysaccharide [LPS, Escherichia
coli (O111:B4), Sigma-Aldrich, St Louis, MO, USA] and
adenosine triphosphate (ATP disodium salt hydrate, Sigma-
Aldrich, St Louis, MO, USA) as in our previous study (22)
(Supplementary Materials Section 15).

For the drug treatment, both RAW264.7 and MH7A cells
were divided into the following groups: (1) Normal control
group: with no stimulation and treatment; (2) LPS/ATP-
induced cellular model group: cells were stimulated with the
corresponding concentrations of LPS and ATP; (3) BHGZD
treatment group: after stimulation, cells were treated with
28.54 mg/ml BHGZD for 24 h, which was determined to be the
most effective as in our previous study (22); (4) MG+CA
treatment group: after stimulation, cells were treated with the
two-BAC combination (1.69 ng/ml MG and 0.13 ng/ml CA, with
the same content as that in the 5 mg/ml BHGZD formula) for
24 h; (5) MG treatment group: after stimulation, cells were
treated with 1.69 ng/ml MG for 24 h; and (6) CA treatment
group: after stimulation, cells were treated with 0.13 ng/ml CA
for 24 h. The concentration of DMSO was less than 1‰ of the
solution for the in vitro experiment.

Cell Viability Assay
Cell viability was analyzed with the cell counting kit-8 (CCK-8)
assay kit (Beyotime Biotechnology, Shanghai, China) as
described in Supplementary Materials Section 16.

Flow Cytometry
To identify and quantify the pyroptosis population of RAW264.7
cells, FITC Apoptosis Detection kit I staining with both the
Annexin V-fluorescein isothiocyanate and propidium iodide (PI,
BD Biosciences, San Jose, CA, USA) was used according to the
manufacturer’s guidelines. Flow cytometry was performed using
NovoCyte 2040R (ACEA Bioscience, San Diego, CA, USA), and
analyzed using the NovoExpress 1.4.1 software (ACEA
Bioscience, San Diego, CA, USA). Detailed information of this
experiment is provided in Supplementary Materials Section 17.

Terminal Deoxynucleotidyl Transferase-
Mediated dUTP Biotin Nick End
Labeling Staining
The occurrence of pyroptosis in both MH7A cells and synovium
tissues in AIA-M rats was determined by in situ TUNEL staining
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(TUNEL Andy Fluor™ 594 Apoptosis Detection Kit, ABP
Biosciences, Wuhan, China) in accordance with the
manufacturer’s protocol. Fluorescence images were visualized
and photographed with inverted fluorescence microscopes
(MF53, MSHOT, Guangzhou, China; Olympus, BX51, Tokyo,
Japan). Detailed information on TUNEL assay is provided in
Supplementary Materials Section 18.

FAM-FLICA Caspase-1 Assay
Active caspase-1 was visualized by a FAM-FLICA caspase-1 assay
kit using a FAM-YVAD-FMK inhibitor probe (ImmunoChemistry
Technologies, Bloomington, MN, USA), according to the
manufacturer’s guidelines. Fluorescence images were visualized
and photographed with a confocal microscope (Zeiss LSM 880,
Carl Zeiss, Jena, Germany). Detailed information on FAM-FLICA
capase-1 assay is provided in Supplementary Materials Section 19.

Immunofluorescence Staining
Double fluorescence staining was performed as described previously
(22) (Supplementary Materials Section 20). The images were
visualized and photographed with a confocal microscope (Zeiss
LSM 880, Carl Zeiss, Jena, Germany) or an inverted fluorescence
microscope (MF53, MSHOT, Guangzhou, China).

Immunohistochemical Staining
To detect the expression levels of NLPR3/ASC of the knee joints
in AIA-M rats and corresponding treatment groups,
immunohistochemical staining was carried out using a DAB
kit (Cat No. AR1027, Boster Biological Technology Co., Ltd.,
Wuhan, China) and a rabbit/mouse two-step detection kit (Cat
No. SV0002/SV0001, Boster Biological Technology Co., Ltd.,
Wuhan, China) according to the routine protocols.
Immunohistochemistry quantification was performed using
ImageJ (Image Progressing and Analysis in Java, version 1.42q,
https://imagej.nih.gov/ij/), following the ImageJ User Guide.

Western Blotting Analysis
To evaluate the regulation of BHGZD on the candidate targets in
arthritic tissue samples, as well as RAW264.7 and MH7A cells,
Western blotting analysis was carried out following the protocol as
in our previous studies (21, 24, 29). TLR4, phospho-PI3K (p-PI3K),
PI3K, p-AKT, p-NFkB-p65, NFkB-p65, NLRP3, ASC, caspase-1,
the N-terminal domain of GSDMD (GSDMD-NT), and IL-1b
antibodies were used as shown in Supplementary Table S3.
GAPDH (GAPDH Mouse monoclonal antibody, Abcam,
Cambridge, UK) and b-actin (Anti-beta-Actin/b-Actin Antibody,
Boster Biological Technology, California, USA) were used as loading
controls for arthritic tissue samples and cultured cells, respectively.

Cytokine Analysis and Lactate
Dehydrogenase Measurement
To evaluate the therapeutic effects of two BACs from BHGZD on
the regulation of the “immune-inflammation” system, the levels
of cytokines, proteins, and LDH release in RAW264.7 and
MH7A cellular supernatant, as well as the sera of AIA-M rats
were determined using enzyme-linked immunosorbent assay
Frontiers in Immunology | www.frontiersin.org 589
(ELISA) to assess the integrity of membranes in accordance
with the manufacturer’s guidelines.

Statistical Analyses
Statistical analyses were performed using GraphPad Prism 8.0
Software (San Diego, CA, USA). Data are expressed as the mean ±
SD and analyzed by one-way ANOVA with Bonferroni’s or
Dunnett’s post-hoc test for comparison of multiple columns.
Differences were considered statistically significant when the p-
value was less than 0.05.
RESULTS

BHGZD Reverses the Imbalance of the
“Immune-Inflammation” System in Active
RA Rats
The AIA-M rat model was successfully established (the achievement
ratio of this model was 100%) and verified according to its reliable
and rapid-onset characteristics, and severe disease progression by
external stimulus of wind, dampness, and heat, which may be the
major pathological changes and features of active RA with moist
heat arthralgia spasm syndrome (22). In contrast, the administration
of BHGZD effectively alleviated the disease severity in arthritis of
active RA rats. Detailed information on the characterizations of the
active RA rat model and the therapeutic effects of BHGZD in active
RA severity based on this model was reported in our previous
study (22).

To determine the candidate targets of BHGZD against active
RA, the gene expression profiles of whole blood cells and
synovium tissues were carried out. A total of 473 RA-related
genes (275 upregulated and 178 downregulated genes) and 1,802
BHGZD therapeutic effect-related genes (456 upregulated and
1,346 downregulated genes) were identified. The heatmap and
volcano plot of DEGs are shown in Figures 1A–H, suggesting a
distinct separation between the AIA-M model and normal control
groups, as well as the BHGZD treatment and AIA-M model
groups. Among them, there were 135 RA-related genes reversely
regulated by the treatment of BHGZD (Table 1). Detailed
information on the RA-related genes and BHGZD therapeutic
effect-related genes is respectively provided in Supplementary
Tables S4 and S5.

In addition, 238 putative targets of Anemarrhena asphodeloides
Bge., Cinnamomum cassia Presl, and Glycyrrhiza uralensis Fisch.,
and 197 putative targets of Gypsum, contained in BHGZD with a
high similarity score (>0.80), were predicted based on the TCMIP
v2.0 platform, such as NAHD, HSD17B1, CFTR, TTGR, MIF,
OXYR, CYP1A2, ESRRA, JAK1, ESRRB, CSNK2A1, ANXA5,
ARSA, ATSK, C3L, CACNA1C, CACNA1S, CACNA2D1,
CACNB1, CACNB2, CACNG1, CCKAR, CCL5, CD1D, CGIA,
CRCA, CSLA, CSLB, and EGF. On the basis of the ETCM
database, 184 putative targets of 31 bioactive chemical
compounds contained in BHGZD, and 53 putative targets of
Oryza sativa L. were collected, including ACO2, AKR1B1, ANG,
APRT, BHMT, C8G, CPB1, CS, CTDSP1, GNMT, HGS,
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HS3ST3A1, VDR, CYP27B1, KCND1, KCNA3, PRKAB1,
ADH1A, KCNA10, and GAMT. There were a total of 635
genes, including RA-related genes reversely regulated by
BHGZD, putative targets of bioactive chemical compounds, and
the known therapeutic targets of drug contained in BHGZD,
considered as BHGZD effective genes.

Then, the interaction network of the “RA-related gene–
BHGZD effective gene” was constructed using the links among
RA-related genes and BHGZD effective genes. Following the
calculation of the nodes’ topological features in the network (the
median values of “Degree”, “Betweenness”, and “Closeness” were
7.0000, 0.0009, and 0.2860, respectively), four BHGZD candidate
targets (PI3K, AKT1, NFkB, and IL-1b) against active RA
(Figure 1I, and Supplementary Table S6) were identified due to
their topological importance. In addition, previous data obtained
from our research group and from other research groups indicated
that BHGZD may restore the imbalance of the “immune-
inflammation” system via inhibiting TLR4-induced NLRP3
inflammasome signaling (21, 22), and TLR4/NFkB signaling
may play a vital role in the regulation of the inflammatory
response (32, 33). Moreover, PI3K/AKT signaling is involved in
the process and release of pro-inflammatory cytokines (34, 35),
and the activation of this signaling leads to autoimmunity, showing
the increased activity in some autoimmune diseases, including RA
(36). On this basis, we hypothesize that BHGZDmight reverse the
main pathological changes of active RA, including synovial
inflammation, cartilage damage, and bone erosion, via regulating
TLR4/PI3K/AKT/NFkB/NLRP3 signaling.
Frontiers in Immunology | www.frontiersin.org 6910
MG and CA May Be the Representative
BACs Contained in BHGZD Against
Active RA
To screen the potential BACs contained in BHGZD against active
RA, herein we identified the chemical profiling of this herbal
formula in sera using the UFLC-Q-TOF-MS/MS system. As a
result, a total of 31 chemical compounds were identified in the
serum samples 2 h after the treatment of BHGZD. Among them,
14, 16, and 1 chemical compound were from Anemarrhenae
Rhizoma, Glycyrrhizae Radix et Rhizoma, and Cinnamomi
Ramulus, respectively, and belong to glycosides, flavonoids,
organic acid, triterpenoids, and saponins. Quantitatively,
timosaponin B II, mangiferin, glycyrrhizic acid, neomangiferin,
7-O-methyl mangiferin, anemarrhensaponin I, vitexin,
formononetin, liquiritigenin, isoliquiritin, isoliquiritin apioside,
isoschaftoside, and isovitexin were all detected at 30 min after
the treatment of BHGZD. Detailed information on chemical
profiling is provided in Supplementary Table S7, and the
quantitative detection data are provided in Supplementary
Table S8. In addition, the drug-like properties of the chemical
compounds contained in BHGZD, including the intestinal
absorption rate and oral bioavailability, were evaluated using
ADME models in silico, and a total of 8 candidate BACs with
good drug-likeness were identified (Supplementary Table S9).

After that, molecular docking was performed to determine the
binding affinities of candidate BACs contained in BHGZD to
corresponding proteins of TLR4/PI3K/AKT/NFkB/NLRP3
signaling. As a result, a total of 9 chemical compounds were
A B D

E F G

I

H

C

FIGURE 1 | Transcriptomic profiling-based differential data analysis and biomolecular network-based investigation of AIA-M candidate markers and candidate
targets of Baihu-Guizhi decoction (BHGZD) against AIA-M (Control, AIA-M, BHGZD). (A) The heatmap of the significant differentially expressed genes (DEGs)
between the AIA-M model group and the normal control group in synovium using microarray analysis (n = 3 per group). (B) The heatmap of DEGs between the
BHGZD treatment group and the AIA-M model group in synovium using microarray analysis (n = 3 per group). (C) The heatmap of the DEGs between the AIA-M
model group and the normal control group in whole blood cells using RNA sequencing (RNA-Seq) analysis (n = 5 per group). (D) The heatmap of DEGs between the
BHGZD treatment group and the AIA-M model group in whole blood cells using RNA-Seq analysis (n = 5 per group). (E) The volcano plot of the DEGs between the
AIA-M model group and the normal control group in synovium using microarray analysis (n = 3 per group). (F) The volcano plot of the DEGs between the BHGZD
treatment group and the AIA-M model group in synovium using microarray analysis (n = 3 per group). (G) The volcano plot of the DEGs between the AIA-M model
group and the normal control group in whole blood cells using RNA sequencing (RNA-Seq) analysis (n = 5 per group). (H) The volcano plot of the DEGs between the
BHGZD treatment group and the AIA-M model group in whole blood cells using RNA-Seq analysis (n = 5 per group). (I) The subnetwork of the “formula-drug-
compound-target-pathway” network is constructed using the links between key RA-related genes and BHGZD effective genes. The ellipse refers to BHGZD. Light
orange hexagons refer to drugs contained in BHGZD. Green circles refer to compounds contained in BHGZD. Triangles refer to targets. Green diamonds refer to
pathways. Triangles with red circles refer to the targets of mangiferin (MG). Triangles with purple circles refer to the targets cinnamic acid (CA).
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TABLE 1 | The information on 135 RA-related genes reversely regulated by the treatment of Baihu-Guizhi decoction (BHGZD).

Samples Gene Symbol AIA-M vs. Con p-value log2 Fold Change BHGZD vs. AIA-M p-value log2 Fold Change

Synovium ACKR4 Down 0.0389 −1.4327 Up 0.0011 1.1346
Synovium AQP3 Down 0.0419 −4.6637 Up 0.0003 4.6114
Synovium ARSI Up 0.0157 1.1593 Down 0.0043 −1.9063
Synovium C7 Up 0.0046 1.0014 Down 0.0142 −1.2088
Synovium CAR13 Up 0.0411 1.3595 Down 0.0136 −1.9177
Synovium CFB Up 0.0087 2.3269 Down 0.0100 −1.9143
Synovium CHL1 Up 0.0266 1.3184 Down 0.0082 −1.7127
Synovium CUBN Down 0.0440 −1.5011 Up 0.0272 2.0115
Synovium CYP26A1 Up 0.0410 1.2507 Down 0.0032 −1.5831
Synovium CYP2W1 Up 0.0302 1.6286 Down 0.0320 −2.3456
Synovium EGLN3 Down 0.0224 −1.5984 Up 0.0216 1.4110
Synovium EXPH5 Down 0.0254 −1.2262 Up 0.0204 1.6917
Synovium GAS2 Up 0.0374 3.1797 Down 0.0478 −1.2633
Synovium MARCKS Up 0.0360 1.1328 Down 0.0142 −1.3571
Synovium HHIP Down 0.0135 −1.6433 Up 0.0307 1.4088
Synovium ID4 Down 0.0244 −1.6145 Up 0.0089 1.3183
Synovium PKHD1L1 Down 0.0199 −1.6321 Up 0.0298 1.6867
Synovium TNMD Up 0.0418 3.3639 Down 0.0245 −5.1964
Synovium TUBB3 Up 0.0089 1.5756 Down 0.0031 −2.1800
Synovium UNC5CL Down 0.0172 −1.8548 Up 0.0164 1.3891
Synovium UTS2R Up 0.0234 3.6773 Down 0.0391 −3.3398
Synovium VSNL1 Down 0.0251 −1.1707 Up 0.0161 1.0142
Whole Blood Cells ADCY5 Up 1.5517 0.0011 Down −1.4196 0.0001
Whole Blood Cells AGRP Up 1.4030 0.0234 Down −2.2359 0.0001
Whole Blood Cells ALDOC Up 2.4691 0.0010 Down −1.3832 0.0036
Whole Blood Cells ANGPTL2 Up 3.7609 0.0417 Down −2.6154 0.0384
Whole Blood Cells ASTN1 Up 1.1875 0.0034 Down −1.4422 0.0000
Whole Blood Cells ATF5 Up 1.7382 0.0006 Down −1.7147 0.0144
Whole Blood Cells BFSP2 Up 1.3618 0.0039 Down −1.5460 0.0004
Whole Blood Cells BGLAP Up 1.1948 0.0072 Down −1.3003 0.0003
Whole Blood Cells BRICD5 Up 4.9630 0.0180 Down −4.5770 0.0112
Whole Blood Cells BTLA Down −1.0068 0.0352 Up 1.0449 0.0059
Whole Blood Cells CASP12 Down −3.1532 0.0011 Up 2.2173 0.0236
Whole Blood Cells CBLN2 Up 1.1423 0.0021 Down −1.5381 0.0000
Whole Blood Cells CCDC92 Up 1.7220 0.0000 Down −1.7041 0.0001
Whole Blood Cells CD177 Down −1.9882 0.0031 Up 2.0804 0.0098
Whole Blood Cells CD79AL Down −1.1535 0.0081 Up 1.1442 0.0045
Whole Blood Cells CDCA2 Down −3.2077 0.0117 Up 2.8039 0.0013
Whole Blood Cells CELA1 Up 1.5977 0.0012 Down −1.6140 0.0007
Whole Blood Cells CLU Up 1.0155 0.0039 Down −1.4820 0.0000
Whole Blood Cells CRABP1 Up 1.9562 0.0243 Down −1.9772 0.0081
Whole Blood Cells CRABP2 Down −4.8634 0.0057 Up 3.8683 0.0101
Whole Blood Cells CTDSPL Up 1.0889 0.0348 Down −1.0297 0.0089
Whole Blood Cells CTTN Up 1.0143 0.0137 Down −1.9100 0.0000
Whole Blood Cells CXCL2 Up 1.9025 0.0012 Down −1.2825 0.0001
Whole Blood Cells CXXC4 Up 1.1896 0.0126 Down −1.5581 0.0000
Whole Blood Cells DACT1 Up 3.5048 0.0091 Down −2.7562 0.0059
Whole Blood Cells DDX25 Down −3.1180 0.0396 Up 2.9352 0.0077
Whole Blood Cells DENND2C Up 1.1059 0.0242 Down −1.3200 0.0006
Whole Blood Cells DNAH1 Up 1.1723 0.0186 Down −1.6980 0.0002
Whole Blood Cells DOK4 Up 1.2929 0.0109 Down −1.2531 0.0079
Whole Blood Cells ECE2 Up 3.5704 0.0297 Down −7.0144 0.0000
Whole Blood Cells EHD2 Up 1.0293 0.0323 Down −1.7746 0.0001
Whole Blood Cells ELN Up 4.4083 0.0335 Down −6.1763 0.0005
Whole Blood Cells ERFE Up 3.3489 0.0315 Down −2.7202 0.0101
Whole Blood Cells F11R Up 1.1213 0.0037 Down −1.5369 0.0000
Whole Blood Cells F2RL3 Up 1.1166 0.0056 Down −1.5841 0.0000
Whole Blood Cells FAM184A Up 1.6124 0.0416 Down −1.5781 0.0007
Whole Blood Cells GADD45G Up 1.1221 0.0463 Down −1.1012 0.0309
Whole Blood Cells GAS2L1 Up 1.1011 0.0021 Down −1.4515 0.0001
Whole Blood Cells GNAZ Up 1.0121 0.0086 Down −1.4201 0.0000
Whole Blood Cells GP1BB Up 1.9090 0.0008 Down −1.5758 0.0431
Whole Blood Cells GP9 Up 1.0026 0.0038 Down −1.4034 0.0002
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TABLE 1 | Continued

Samples Gene Symbol AIA-M vs. Con p-value log2 Fold Change BHGZD vs. AIA-M p-value log2 Fold Change

Whole Blood Cells GRB10 Up 2.6721 0.0005 Down −1.3209 0.0028
Whole Blood Cells GSTA1 Up 1.0067 0.0053 Down −1.3929 0.0008
Whole Blood Cells HIVEP3 Down −1.7890 0.0017 Up 1.0399 0.0267
Whole Blood Cells KATNAL1 Up 1.5441 0.0248 Down −1.2866 0.0069
Whole Blood Cells KCNS3 Up 1.0348 0.0105 Down −1.4733 0.0003
Whole Blood Cells KLHL13 Up 2.3729 0.0216 Down −2.3771 0.0009
Whole Blood Cells KLRA22 Down −2.1066 0.0132 Up 1.6770 0.0175
Whole Blood Cells LARGE1 Up 1.0049 0.0112 Down −1.4699 0.0001
Whole Blood Cells LHFPL6 Up 2.1809 0.0305 Down −1.2276 0.0290
Whole Blood Cells LIPG Down −1.2935 0.0374 Up 1.3060 0.0134
Whole Blood Cells LOC100912228 Up 1.0055 0.0074 Down −1.4317 0.0003
Whole Blood Cells LOC102556092 Up 1.1719 0.0026 Down −1.5513 0.0000
Whole Blood Cells LOXL3 Up 1.3740 0.0022 Down −1.4840 0.0002
Whole Blood Cells LRRC71 Up 1.4124 0.0178 Down −1.5799 0.0003
Whole Blood Cells LY6G6F Up 1.0222 0.0043 Down −1.4740 0.0000
Whole Blood Cells LYVE1 Up 1.0159 0.0023 Down −1.3934 0.0000
Whole Blood Cells MAPK8IP1 Up 2.5304 0.0317 Down −2.4659 0.0016
Whole Blood Cells MCPT1L1 Up 1.8206 0.0003 Down −1.7125 0.0000
Whole Blood Cells MEST Up 1.5656 0.0296 Down −1.7263 0.0007
Whole Blood Cells MMRN1 Up 1.0609 0.0026 Down −1.5474 0.0000
Whole Blood Cells MMRN2 Down −2.8201 0.0275 Up 3.0209 0.0015
Whole Blood Cells MRVI1 Up 1.0361 0.0113 Down −1.4740 0.0000
Whole Blood Cells MSRA Up 1.8396 0.0266 Down −1.1511 0.0301
Whole Blood Cells MYCT1 Up 1.1718 0.0058 Down −1.5488 0.0000
Whole Blood Cells MYL9 Up 1.2004 0.0009 Down −1.5114 0.0000
Whole Blood Cells NRGN Up 1.1404 0.0008 Down −1.4248 0.0001
Whole Blood Cells NRIP3 Up 1.1768 0.0188 Down −1.0978 0.0016
Whole Blood Cells OLFM4 Down −1.0349 0.0065 Up 1.1084 0.0336
Whole Blood Cells PCDHGB5 Down −3.9559 0.0262 Up 3.5018 0.0274
Whole Blood Cells PDE3A Up 1.0241 0.0116 Down −1.4264 0.0001
Whole Blood Cells PF4 Up 1.2675 0.0007 Down −1.4629 0.0004
Whole Blood Cells PKIA Up 1.2370 0.0016 Down −1.3519 0.0002
Whole Blood Cells PLA2G2A Up 1.3067 0.0003 Down −1.5044 0.0001
Whole Blood Cells PLOD2 Up 1.3673 0.0338 Down −1.8337 0.0000
Whole Blood Cells PLTP Up 1.4100 0.0003 Down −1.3760 0.0012
Whole Blood Cells PPIF Up 1.0631 0.0030 Down −1.3334 0.0001
Whole Blood Cells PROSER2 Up 2.4378 0.0106 Down −1.4237 0.0073
Whole Blood Cells PTPN13 Up 4.1086 0.0158 Down −2.6389 0.0331
Whole Blood Cells RASL10A Up 1.1205 0.0028 Down −1.3945 0.0001
Whole Blood Cells REEP2 Up 1.0181 0.0048 Down −1.4944 0.0000
Whole Blood Cells RPAP1 Up 1.0304 0.0027 Down −1.4851 0.0000
Whole Blood Cells RPP25 Up 1.8057 0.0048 Down −1.5779 0.0320
Whole Blood Cells RT1-HA Down −1.3847 0.0248 Up 1.1581 0.0230
Whole Blood Cells RTP4 Down −1.1421 0.0350 Up 1.1822 0.0025
Whole Blood Cells SCAI Down −1.2765 0.0173 Up 1.1195 0.0207
Whole Blood Cells SCARF1 Up 1.7774 0.0006 Down −1.5817 0.0020
Whole Blood Cells SEC14L5 Up 1.3750 0.0134 Down −1.8066 0.0013
Whole Blood Cells SEMA5A Up 2.8501 0.0110 Down −4.0576 0.0003
Whole Blood Cells SEPT10 Down −1.7620 0.0426 Up 1.5958 0.0271
Whole Blood Cells SERPINE2 Up 2.2082 0.0383 Down −1.4497 0.0397
Whole Blood Cells Sh3bgr Up 2.4272 0.0004 Down −1.3007 0.0077
Whole Blood Cells SHPK Up 1.0305 0.0005 Down −1.1246 0.0000
Whole Blood Cells SLC6A4 Up 1.0946 0.0021 Down −1.5201 0.0000
Whole Blood Cells SMPDL3B Up 1.0133 0.0071 Down −1.0129 0.0042
Whole Blood Cells STON2 Up 1.8772 0.0063 Down −1.6397 0.0004
Whole Blood Cells SYT5 Up 1.1579 0.0003 Down −1.3477 0.0002
Whole Blood Cells SYTL4 Up 1.6712 0.0402 Down −1.6984 0.0001
Whole Blood Cells TAL1 Up 1.0319 0.0073 Down −1.5858 0.0000
Whole Blood Cells THBS1 Up 1.0434 0.0086 Down −1.5613 0.0000
Whole Blood Cells TMEM56 Up 1.7935 0.0015 Down −2.3856 0.0015
Whole Blood Cells TP53TG5 Up 4.6235 0.0109 Down −3.3568 0.0168
Whole Blood Cells TREML1 Up 1.0076 0.0069 Down −1.4372 0.0002
Whole Blood Cells TRIM17 Up 1.6098 0.0278 Down −1.1120 0.0370

(Continued)
Frontiers in Immunology
 | www.frontiersin.org
 81112
 June 2
022 | Volume
 13 | Article 912933

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Drug Combination for RA Therapy
found to bind these proteins with binding affinities of more than
−4.0 kcal/mol (Supplementary Table S10). In particular, MG
(Figure 2A) from Anemarrhenae Rhizoma and CA (Figure 2B)
from Cinnamomi Ramulus docked well into the TLR4, AKT, and
NFkB binding cavity with more robust interactions and stronger
binding affinity (MG–TLR4 −6.6, CA–TLR4 −6.1, MG–AKT −9.2,
CA–AKT −6.6, MG–NFkB −7.7, and CA–NFkB −5.3 kcal/mol,
Figures 2C–E). Experimentally, MST and SPR assays were carried
out to verify the direct binding efficiency of CA to TLR4 andMG to
AKT, respectively. As shown in Figures 2F and G, the mean KD

values of 2.11e−4 and 3.83e−5 M for CA–TLR4 and MG–AKT,
respectively, indicated strong binding affinities.
Frontiers in Immunology | www.frontiersin.org 91213
Moreover, the content of MG and CA was determined to be
336.96 ng and 26.14 ng in 1 mg of BHGZD lyophilized powder,
respectively, with a conversion ratio of 8.33% (calculated by the
weight of BHGZD lyophilized powder divided by the weight of
crude herbs contained in BHGZD; 1 g of BHGZD lyophilized
powder is equivalent to the amount of 12 g of BHGZD).

The UHPLC-QTRAP-MS/MS system was further used to
detect the pharmacokinetic properties of MG and CA in sera
after the treatment of BHGZD (Supplementary Figure S1). A
summary of MG and CA pharmacokinetic parameters using a
non-compartment model analysis is presented in Table 2, and the
mean plasma concentration–time profiles from time 0 to 24 h after
TABLE 1 | Continued

Samples Gene Symbol AIA-M vs. Con p-value log2 Fold Change BHGZD vs. AIA-M p-value log2 Fold Change

Whole Blood Cells TYRO3 Up 1.0424 0.0372 Down −1.7972 0.0000
Whole Blood Cells UNC13B Up 1.2061 0.0047 Down −1.4375 0.0000
Whole Blood Cells VSIG2 Up 1.4849 0.0204 Down −1.2263 0.0039
Whole Blood Cells VWF Up 1.0792 0.0005 Down −1.4591 0.0000
Whole Blood Cells WNT2 Up 2.4945 0.0406 Down −2.3451 0.0055
Whole Blood Cells XKR8 Up 1.0216 0.0050 Down −1.4189 0.0002
Whole Blood Cells YAP1 Up 2.6466 0.0060 Down −1.9990 0.0002
Whole Blood Cells ZCCHC12 Up 3.7146 0.0010 Down −2.1065 0.0024
Whole Blood Cells ZFP780B-PS1 Down −1.6098 0.0081 Up 1.3243 0.0131
June 2
022 | Volume
AIA-M vs. Con: the significant differentially expressed genes (DEGs) between the AIA-M model group and the normal control group. BHGZD vs. BHGZD: the DEGs between the BHGZD
treatment group and the AIA-M model group.
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FIGURE 2 | Chemical structures of MG and CA, molecular docking simulation of the binding patterns of them with corresponding proteins, as well as the mean
plasma concentration–time curves of MG and CA after the treatment of BHGZD. (A) Chemical structure of MG (obtained from PubChem databases, CID 5281647).
(B) Chemical structure of CA (obtained from PubChem databases, CID 444539). (C) Molecular docking simulation of the binding patterns of TLR4 with MG and CA,
respectively. (D) Molecular docking simulation of the binding pattern of AKT with MG and CA, respectively. (E) Molecular docking simulation of the binding pattern of
NFkB with MG and CA, respectively. (F) Microscale thermophoresis (MST)-determined binding affinity between CA and TLR4 protein. (G) Surface plasmon resonance
(SPR) assay of the interaction between MG and AKT1 protein. (H) The mean plasma concentration–time curves of MG after the treatment of BHGZD for 12 days at the
dosage of 21.4 g/kg each day (n = 3 per group). (I) The mean plasma concentration–time curves of CA after the treatment of BHGZD for 12 days at the dosage of
21.4 g/kg each day (n = 3 per group).
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the treatment of BHGZD at a dosage of 21.4 g/kg each day are
shown in Figures 2H and I. Briefly, the maximum plasma
concentration (Cmax) of MG and CA was 132.01 mg/L and
119.63 mg/L, respectively. The time to reach the maximum
plasma concentration (Tmax) for MG and CA in rats receiving
BHGZD was 4.00 h and 0.25 h, respectively. The plasma
concentration–time curve AUC (0-24h) of MG and CA was
578.42 mg/L·h and 102.48 mg/L·h, respectively. The apparent
elimination half-life (T1/2z) and mean retention time (MRT) of
MG (1.26 h and 4.23 h, respectively) and CA (1.65 h and 1.93 h,
respectively) in rats after the treatment of BHGZDwere measured.

Both BHGZD and the Two-BAC
Combination of MG and CA Improve
Arthritis Severity in Active RA Rats
To verify the pharmacological effects of the two-BAC combination
of MG and CA against active RA, the in vivo experiments were
performed based on the AIA-M rat model (22, 24). Similar
pathological characteristics and changes in AIA-M rats were
observed from the validation cluster to the discovery cluster
(Figure 3). As a result, the ankles and knuckle joints of AIA-M
rats with severe redness and swelling were remarkably improved
by the treatment of the two-BAC combination (equivalent to
BHGZD at a dose of 21.4 g/kg) and BHGZD (dose of 21.4 g/kg,
Figures 3A and B). Importantly, both the treatment of BHGZD
and the two-BAC combination significantly alleviated disease
severity, including reducing arthritis incidence, the diameter of
the limb, and arthritis score (all p < 0.05, on the 27th day after
immunization), and simultaneously elevated pain thresholds
(mechanical-, acetone-, and thermal-induced hyperalgesia), all of
which were similar to the pharmacological effects of MTX
(positive drug, dose of 0.2 mg/kg, Figures 3C and D).

In order to investigate the joint destruction and synovial
inflammation, both the ankle and knee joints of AIA-M rats in
different groups were scanned using Micro-CT analysis on the
31st day after immunization. The quantified data revealed that
BMD, TMD, BV/TV ratio, and Tb.Th were dramatically
decreased, and BS/BV ratio and Tb.Sp was observably
increased in the AIA-M model group (all p < 0.05, Figure 3E
and Supplementary Figure S2B) with rough bone surfaces and
severe bone erosion (Figure 3F, and Supplementary Figure
S2A). As shown in Figure 3F, both BHGZD and the two-BAC
Frontiers in Immunology | www.frontiersin.org 101314
combination treatment groups showed smooth bone surface with
a significantly increased BMD, TMD, BV/TV ratio, and Tb.Th,
as well as a significantly decreased BS/BV ratio and Tb.Sp (all p <
0.05, Figure 3E and Supplementary Figure S2B), suggesting
that the two-BAC combination may efficiently reverse bone
erosion, which was similar to the pharmacological effects
of MTX.

Moreover, H&E, safranin O fast green, and Masson trichrome
staining were carried out to evaluate the degree of joint lesions in
AIA-M rats. As shown in Figures 3G andH, the treatment of the
two-BAC combination, BHGZD, and MTX all apparently
reversed the histopathological changes of knee joints in AIA-M
rats, including the decreased inflammatory cell infiltration, the
prevention of cartilage and bone destruction, and synovial
hyperplasia (all p < 0.05). Consistently, a significant reduction
of the safranin O fast green-positive area and an elevation of the
Masson-positive area were observed on the cartilage surface of
AIA-M rats, reflecting a loss of articular cartilage, but reversed by
the two-BAC combination, similar to the pharmacological effects
of BHGZD and MTX (all p < 0.05, Figures 3G and H). These
findings revealed that BHGZD and the two-BAC combination of
MG and CA may effectively alleviate the progression of bone
damages, repair bone erosion, and simultaneously improve
pathological changes of articular cartilage and synovial
inflammation in the arthritic joints of AIA-M rats.

In terms of the response to inflammation, pathological
changes of the thymus and spleen and viscera indexes in
different groups were examined. As shown in Figure S2C, the
lower proportion of white pulp in the spleen with decreased cell
density lymphatic sheath, lymphoid follicular hyperplasia,
marginal zone, red pulp, and germinal center was observed in
AIA-M rats, which were significantly improved by the treatment
of BHGZD and the two-BAC combination (all p < 0.05,
Supplementary Figure S2D). A thinner thymic cortex, less
thymic lobule, an unclear boundary, and more vacuoles in the
cytoplasm of epithelial reticular cells were also observed in AIA-
M rats, which were remarkably improved by the treatment of
BHGZD and the two-BAC combination (Supplementary Figure
S2C). The treatment with BHGZD and the two-BAC
combination protected the morphological structure of the spleen
and thymus, and simultaneously decreased spleen and thymus
indexes significantly (all p < 0.05, Supplementary Figure S2E).
TABLE 2 | Pharmacokinetic parameters analyzed by the UHPLC-QTRAP-MS/MS system.

Pharmacokinetic Parameter Mangiferin (MG) Cinnamic acid (CA)

Mean ± SD RSD/% Mean ± SD RSD/%

Cmax (mg/L) 132.07 ± 44.67 33.80 119.63 ± 25.87 21.60
Tmax (h) 4.00 ± 0.00 0.00 0.25 ± 0.00 0.00
AUC(0-t) (mg/L*h) 578.42 ± 182.51 31.60 102.48 ± 67.77 66.10
AUC(0-∞) (mg/L*h) 579.07 ± 181.70 31.40 144.23 ± 30.36 21.00
t1/2z (h) 1.26 ± 0.23 17.90 1.65 ± 1.34 81.10
MRT(0-t) (h) 4.23 ± 0.30 7.10 1.93 ± 0.35 18.30
MRT(0-∞) (h) 4.25 ± 0.28 6.50 2.26 ± 0.80 35.20
June 2022 | Volume 13 | Article
Cmax, the maximum plasma concentration. Tmax, the time to reach the maximum plasma concentration. AUC (0-t), area under the concentration–time curve from zero to the last sampling
time. AUC (0-∞), area under the concentration–time curve from zero to infinity. T1/2z, apparent elimination half-life. MRT (0-t), mean residence time from zero to the last sampling time. MRT
(0-∞), mean residence time from zero to infinity. Data are expressed as the mean ± SD.
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Furthermore, H&E-stained tissues of liver and kidney, and the liver
and kidney indexes showed no toxic damages (Supplementary
Figures S2C and F).

Both BHGZD and the Two-BAC
Combination of MG and CA Suppress
NLRP3 Inflammasome-Induced Pyroptosis
Via Regulating TLR4/PI3K/AKT/NFkB
Signaling
The above network-based data imply that BHGZD might reverse
the imbalance of the “immune-inflammation” system during active
RA progression via regulating TLR4/PI3K/AKT/NFkB/NLRP3
signaling. To the best of our knowledge, pyroptosis is a kind of
NLRP3 inflammasome-induced inflammatory cell death,
characterized by cell swelling and release of pro-inflammatory
cytokines depending on the activation of caspase-1, contributing
to inflammation in arthritis (37). The formation of the NLRP3
Frontiers in Immunology | www.frontiersin.org 111415
inflammasome complex requires the interaction of NLRP3 with
ASC and caspase-1, which are vital for the assembly and activation
of the NLRP3 inflammasome. In our previous study, the
immunomodulatory and anti-inflammatory activities of BHGZD
were verified, especially in inhibiting pyroptotic death, which may
be attributed to the activation of TLR4-NLRP3 inflammasome
signaling (22). Currently, our TUNEL data showed a significant
proportion of pyroptosis cells in the arthritic joints of AIA-M rats,
which was improved by the treatment of BHGZD and the two-BAC
combination (Figure 4A). Similar to the pharmacological effects of
MTX, high expression levels of NLRP3 and ASC, high expression
and enhanced activity of caspase-1, and increased expression of IL-
1b and IL-18 (the signature inflammatory cytokines in pyroptosis)
in the AIA-M model group (all p < 0.05) were all significantly
decreased by the treatment of BHGZD and the two-BAC
combination (all p < 0.05, Figures 4B–E). Pyroptosis was assessed
by LDH activity, which may be used to verify cell membrane
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FIGURE 3 | Therapeutic effects of BHGZD, two-BAC combination, and MTX on the severity of arthritis in AIA-M rats (Control, AIA-M, BHGZD, MG+CA, and MTX).
(A) Representative images of arthritis. (B) Infrared thermography. (C) Arthritis incidence (n = 3 per group), the diameter of the limb (n = 5 per group), and arthritis
score on the 27th day after immunization (n ≥ 4 per group, all experiments were performed in triplicate). (D) The pain thresholds (mechanical-, acetone-, and
thermal-induced hyperalgesia, n ≥ 4 per group, all experiments were performed in triplicate). (E) Quantitative micro-computed tomography (micro-CT) analysis of
bone mineral density (BMD), tissue mineral density (TMD), bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular separation (Tb.Sp),
and trabecular thickness (Tb.Th) on the 31st day after immunization (n ≥ 5 per group, all experiments were performed in triplicate). (F) Representative micro-CT
images of knee joints showing bone erosion levels (the red arrow indicates the position of the bone destruction). (G) Pathological changes in the knee joints using
hematoxylin and eosin (H&E, scale bar represents 1 mm), safranin O fast green (scale bar represents 200 mm), and Masson trichrome staining (scale bar represents
200 mm) in different groups (n = 5 per group). (H) Quantitative analysis of H&E staining in inflammatory cell infiltration, bone destruction, and synovial hyperplasia.
Cartilage destruction of safranin O fast, and Masson trichrome staining (n = 5 per group). Data are expressed as the mean ± SD. ***, p < 0.001, comparison with the
normal control group; #, ##, ###, p < 0.05, p < 0.01, p < 0.001, respectively, comparison with the AIA-M model group.
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integrity and the release of intracellular soluble component.
Consistently, the enhancing activity of LDH in the sera of AIA-M
rats was observed, which was significantly decreased by the
treatment of BHGZD, the two-BAC combination, and MTX (all
p < 0.05, Figure 4E), suggesting the alleviation of downstream
membrane damage.

To verify the in vivo findings based on AIA-M rats, an
established method (LPS plus ATP) was applied to induce
NLRP3 inflammasome activation in both RAW264.7 and
MH7A cells. The cell viability on RAW264.7 cells with the
Frontiers in Immunology | www.frontiersin.org 121516
treatment of MG and CA was initially examined using the
CCK8 assay, and the results exhibited no cell toxicity under
0.21–6.74 ng/ml MG or 0.02–0.52 ng/ml CA treatment alone, as
shown in Supplementary Figure S2G. Thus, 1.69 ng/ml MG and
0.13 ng/ml CA treatment were chosen in the following assays (the
same content as that in the 5 mg/ml BHGZD formula). Flow
cytometry analysis revealed that MG, CA, and the two-BAC
combination treatment prominently reduced the PI [a marker of
cells that stains necrotic, dead, and membrane-compromised cells
(38)] positive cell rate of RAW264.7 cells induced by LPS/ATP,
A

B

D

E

C

FIGURE 4 | Regulatory effects of BHGZD, the two-BAC combination, and MTX on the expression of TLR4, p-PI3K/PI3K, p-AKT1/AKT1, p-NFkB-p65/NFkB-p65,
NLRP3, ASC, caspase-1, GSDMD-NT, IL-1b, IL-18, IL-6, TNF-a, and IL-12 in AIA-M rats of different groups (Control, AIA-M, BHGZD, MG+CA, and MTX). (A)
Representative images of pyroptosis in the knee joints of AIA-M rats detected by deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL) assay (scale bar
represents 200 mm, TUNEL red, Hoechst blue). (B) The expression of NLRP3 protein in the knee joints of AIA-M rats (scale bar represents 200 mm). (C, D) The
protein expression of TLR4, p-PI3K/PI3K, p-AKT1/AKT1, p-NFkB-p65/NFkB-p65, NLRP3, ASC, caspase-1, GSDMD-NT, and IL-1b in the knee joints of AIA-M rats
using Western botting analysis (n = 3 per group). (E) The expression levels of TLR4, TNF-a, IL-6, IL-1b, IL-18, and IL-12 in the sera of AIA-M rats using enzyme-
linked immunosorbent assay (ELISA) analysis, and the activities of caspse-1, GSDMD-NT, and LDH in the sera of AIA-M rats using ELISA analysis (n ≥ 3 per group,
all experiments were performed in triplicate). Data are expressed as the mean ± SD. **, ***, p < 0.01, p < 0.001, respectively, comparison with the normal control
group; #, ##, ###, p < 0.05, p < 0.01, p < 0.001, respectively, comparison with the AIA-M model group; &&, &&&, p < 0.01, p < 0.001, comparison with the
treatment of BHGZD.
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which was inferior to that in the BHGZD treatment group (all p <
0.05, Figures 5A and B). As shown in Figures 5C and 6A, LPS/
ATP induced an increase in the number of both FLICA-positive
RAW264.7 cells and TUNEL-positive MH7A cells, which was
reduced by the treatment of BHGZD, MG, CA, and the two-BAC
combination. Intriguingly, the inhibition of MG or CA alone on
cell pyroptosis induced by LPS/ATP was weaker than that in the
two-BAC combination treatment group (all p < 0.05, Figures 5A–
C and 6A). In addition, the expression levels of NLRP3, ASC, and
caspase-1 were significantly increased in both RAW264.7 and
MH7A cells induced by LPS/ATP, the same as the levels of IL-1b,
IL-18, and LDH release in the supernatant of RAW264.7 and
MH7A cells, which were all reduced by the treatment of BHGZD,
MG, CA, and the two-BAC combination (all p < 0.05,
Figures 5D–G and 6B–E). GSDMD, a crucial mediator of
pyroptosis downstream of canonical and non-canonical
inflammasomes (39–41), is cleaved by caspase-1 at a specific site
(GSDMD-NT) and subsequently causes cell lysis and IL-1b release
(42, 43). In the current study, the activities of GSDMD-NT in sera
Frontiers in Immunology | www.frontiersin.org 131617
and its levels in knee joints were both significantly elevated in
AIA-M rats, which was reduced by the treatment of BHGZD, the
two-BAC combination, and MTX (all p < 0.05, Figures 4C–E).
Notably, GSDMD-NT occurred in both RAW264.7 and MH7A
cells induced by LPS/ATP, which was decreased by the treatment
of BHGZD, MG, CA, and the two-BAC combination (Figures 5E,
F and 6C, D).

After determining the inhibitory effects of BHGZD and the
two-BAC combination on NLRP3 inflammasome-induced
pyroptosis, we further investigated the changes of its upstream
determinant TLR4/PI3K/AKT/NFkB signaling in different groups.
Importantly, the expression levels of TLR4 in both sera and knee
joints of AIA-M rats were increased, and subsequently were
effectively reversed by the treatment of the two-BAC
combination, with similar trends to BHGZD and MTX (all p <
0.05, Figures 4C–E). The protein expression ratios of p-PI3K/
PI3K, p-NFkB-p65/NFkB-p65, and p-AKT1/AKT1 were all
significantly increased in AIA-M rats, which were distinctively
reduced by the treatment of BHGZD and the two-BAC
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FIGURE 5 | BHGZD inhibits LPS/ATP-induced pyroptosis in RAW264.7 macrophage by downregulating TLR4, p-PI3K/PI3K, p-AKT1/AKT1, p-NFkB-p65/NFkB-p65,
NLRP3, ASC, caspase-1, GSDMD-NT, IL-1b, and IL-18 (Control, AIA-M, BHGZD, MG+CA, MG, and CA). (A, B) Flow cytometry analysis for Annexin V/PI staining in
RAW264.7 cells (n ≥ 3 per group, all experiments were performed in triplicate). (C) Representative images of FAM-FLICA Casapse-1 that binds only to activated caspase-1
(scale bar represents 50 mm, FAM-FLICA green, PI red, Hoechst blue). (D) Expression of NLRP3 and ASC protein measured by immunofluorescent staining and confocal
microscopy in RAW264.7 cells (scale bar represents 50 mm, NLRP3 FITC green, ASC CY3 red, DAPI blue). (E, F) Expression levels of TLR4, p-PI3K/PI3K, p-AKT1/AKT1, p-
NFkB-p65/NFkB-p65, NLRP3, ASC, caspase-1, GSDMD-NT, and IL-1b in RAW264.7 cells measured by Western blotting (n = 3 per group). (G) Levels of IL-1b, IL-18, and
LDH release in RAW264.7 cells detected by ELISA (n ≥ 3 per group, all experiments were performed in triplicate). *, **, ***, p < 0.05, p < 0.01, p < 0.001, respectively,
comparison with the normal control group; #, ##, ###, p < 0.05, p < 0.01, p < 0.001, respectively, comparison with LPS/ATP-induced model; &, &&&, p < 0.05, p < 0.001,
comparison with the treatment of BHGZD; △, △△, △△△, p < 0.005, p < 0.01, p < 0.001, comparison with the treatment of the two-BAC combination.
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combination (all p < 0.05, Figures 4C, D), indicating their
inhibitory effects on TLR4/PI3K/AKT/NFkB signaling
activation. In addition to the increased accumulation of
inflammatory cells, the expression levels of inflammatory
cytokines in AIA-M rats sera, including TNF-a, IL-6, and IL-12,
were abnormally elevated in AIA-M rats, and reduced by the
treatment of the two-BAC combination, in accordance with the
effects of BHGZD andMTX (all p < 0.05, Figure 4E). Interestingly,
we also achieved the same findings in the in vitro experiment
validations based on both RAW264.7 and MH7A cells induced by
LPS/ATP (all p < 0.05, Figures 5E–G and 6C–E).

These findings demonstrated that both BHGZD and the two-
BAC combination of MG and CA may suppress TLR4/PI3K/
AKT/NFkB signaling-related protein activation, and subsequently
inhibit NLRP3 inflammasome-induced pyroptosis.
DISCUSSION

Growing clinical evidence shows that various immune cells
sustainably influx and migrate into the joints via secreting
different types of immunomodulatory cytokines, leading to
pyroptosis-induced persistent synovitis and cartilage degradation
(44, 45). Thus, reversing the imbalance of the “immune-
inflammation” system, especially alleviating pyroptosis, may be a
promising therapeutic strategy for active RA. The current study
performed an integrative research combining UFLC-Q-TOF-MS/
Frontiers in Immunology | www.frontiersin.org 141718
MS, gene expression profi l ing, network calculation,
pharmacokinetic profiling, SPR/MST assay, and pharmacological
experiment validations, and identified TLR4/PI3K/AKT/NFkB/
NLRP3 signaling-induced pyroptosis as one of the candidate
effective targets of BHGZD for reversing the imbalance network
of “immune-inflammation” during active RA progression. In
addition, both MG and CA were identified as representative
BACs acting on that target, for the strong binding affinities
between compounds and target proteins, good pharmacokinetic
features, and similar pharmacological effects to BHGZD. Notably,
both BHGZD and the two-BAC combination of MG and CA
effectively improved disease severity of active RA rats including
elevating pain thresholds, relieving joint inflammation and bone
erosion via inhibiting TLR4/PI3K/AKT/NFkB signaling to
suppress the activation of the NLRP3 inflammasome, leading to
the downregulation of downstream caspase-1, the reduced release
of IL-1b, and the modulation of GSDMD-mediated pyroptosis.
Consistent data were obtained based on the in vitro pyroptosis
models of RAW264.7 and MH7A cells induced by LPS/ATP.
Thus, RAW264.7 macrophages might be the probable immune
cells targeted by both BHGZD and the two-BAC combination of
MG and CA.

Currently, the AIA-M rat model was established simulating the
pathogenetic characteristics of active RA with moist heat
arthralgia spasm syndrome on the basis of male Lewis rats
according to our previous studies (20–23). The abnormal
changes in indicators reflecting the imbalance of the “immune-
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FIGURE 6 | BHGZD inhibits LPS/ATP-induced pyroptosis in MH7A cells by downregulating TLR4, p-PI3K/PI3K, p-AKT1/AKT1, p-NFkB-p65/NFkB-p65, NLRP3,
ASC, caspase-1, GSDMD-NT, IL-1b, and IL-18 (Control, AIA-M, BHGZD, MG+CA, MG, and CA). (A) TUNEL staining of MH7A cells (scale bar represents 200 mm,
TUNEL red, Hoechst blue). (B) Expression of NLRP3 and ASC protein measured by immunofluorescent staining and confocal microscopy in MH7A cells (scale bar
represents 200 mm, NLRP3 FITC green, ASC CY3 red, DAPI blue). (C, D) Expression levels of TLR4, p-PI3K/PI3K, p-AKT1/AKT1, p-NFkB-p65/NFkB-p65, NLRP3,
ASC, caspase-1, GSDMD-NT, and IL-1b in MH7A cells measured by Western blotting (n = 3 per group). (E) Levels of IL-1b, IL-18, and LDH release in MH7A cells
evaluated by ELISA (n ≥ 3 per group, all experiments were performed in triplicate). **, ***, p < 0.01, p < 0.001, respectively, comparison with the normal control
group; #, ##, ###, p < 0.05, p < 0.01, p < 0.001, respectively, comparison with LPS/ATP-induced model; &, &&&, p < 0.05, p < 0.001, comparison with the
treatment of BHGZD; △△△, p < 0.001, comparison with the treatment of two-BAC combination.
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inflammation” system, including distinct redness and swelling, an
increase in arthritis surface temperature, arthritis incidence, the
diameter of the limb, arthritis score, pathologic changes of the
thymus and spleen, as well as severe inflammatory cell infiltration,
cartilage and bone destruction, synovial hyperplasia, and the high
levels of inflammatory mediators, such as TLR4, IL-6, IL-12, IL-
1b, IL-18, and TNF-a, were observed as the distinctive
characteristics and biological basis of AIA-M rats, which may be
in line with the clinical manifestations in active RA patients.
Following the transcriptomic profiling and biomolecular
network analyses, a series of active RA-related genes were also
identified, and functionally involved in the regulation of the
“immune-inflammation” system accordingly.

Considering that TCM contributed to the multi-target
interactions of the complex ingredients of its herbal drugs (46–
Frontiers in Immunology | www.frontiersin.org 151819
48), pharmaceutical development has consistently been an urgent
challenge. Therefore, a new method that combines BACs
contained in herbal formulas has been strongly indicated for
new drug discovery. Herein, the two BACs, namely, MG from
Anemarrhenae Rhizoma and CA from Cinnamomi Ramulus, were
identified as the representative BACs of BHGZD for the strong
binding affinities between compounds and target proteins, good
pharmacokinetic properties, the high content and the importance
of the formula, and similar pharmacological effects to BHGZD.
Interestingly, the treatment of MG or CA alone did not exert
prominently therapeutic effects compared to that of the two-BAC
combination. Similar to the BHGZD formula, the two-BAC
combination treatment of MG and CA may exert satisfying
therapeutic efficacy on both in vivo and in vitro experiments via
regulating TLR4/PI3K/AKT/NFkB signaling, which plays a vital
FIGURE 7 | The schematic diagram of the underlying mechanisms of the two-BAC combination of mangiferin (MG) and (CA) against active RA via reversing the
imbalance of the “immune-inflammation” system by inhibiting TLR4/NFkB/NLRP3 activation-induced pyroptosis. “⟂“: Inhibition. “!“: Activation.
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role in synovial inflammation, cartilage degradation, and bone
erosion by regulating inflammation response, immune disorder
cells, and pyroptosis (37, 49–52). More importantly, the two-BAC
combination of MG and CA offers key potential advantages over
BHGZD for the following points. Firstly, the two-BAC
combination may exert similar pharmacological effects in
treating AIA-M rats with a definite material basis. Secondly, the
two-BAC combination may be flexible in design, easily
synthesized on a large scale, easily absorbed, and relatively
stable, not dependent on the cultivations of crude herbs.
Thirdly, it is better to understand the underlying molecular
mechanisms of TCM-based RA therapeutics.

In conclusion, our data offer an evidence that the MG and CA
combination from BHGZD may interact with TLR4/PI3K/AKT/
NFkB signaling to inhibit NLRP3 inflammasome activation and
modulate pyroptosis, which provides the novel representative
BACs and pharmacological mechanisms of BHGZD against
active RA (Figure 7). The findings may shed new light on the
mechanisms of the TCM formula, and promote the
modernization development of TCM and drug discovery.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The name of the repository and accession number
(s) can be found below: NCBI Gene Expression Omnibus;
GSE190523, GSE189942.
ETHICS STATEMENT

The study was approved by the Research Ethics Committee of
the Institute of Chinese Materia Medica, China Academy of
Chinese Medical Sciences, Beijing, China [Ethics Approval
Number: 2019-026 and IBTCMCACMS21-2105-01, certificate
number of the facility: SYXK (Beijing) 2021-0017]. All animal
studies were treated in accordance with the guidelines and
Frontiers in Immunology | www.frontiersin.org 161920
regulations for the use and care of animals of the Center for
Laboratory Animal Care, China Academy of Chinese Medical
Sciences. All animal-handling procedures were performed
according to the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health and followed the
guidelines of the Animal Welfare Act.
AUTHOR CONTRIBUTIONS

NL and YZ engaged in study design and coordination, material
support for obtained funding, and supervised study. YZ designed
the experimental validation and revised the manuscript. WL
performed most of the experiments and statistical analysis,
as well as wrote the manuscript. SY and WS performed parts
of the experiments, reviewed and approved the final manuscript.
The other authors performed parts of the experiments.
All authors contributed to the article and approved the
final manuscript.
FUNDING

This study is funded by the National Natural Science Foundation
of China (81630107), the Scientific and Technological
Innovation Project of China Academy of Chinese Medical
Sciences (CI2021A03808 and CI2021A01508), and the
National Key Research and Development Program of China
(2018YFC1705201). No study sponsors are involved in the
research process of this project.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2022.912933/
full#supplementary-material
REFERENCES

1. Firestein GS, McInnes IB. Immunopathogenesis of Rheumatoid Arthritis.
Immunity (2017) 46(2):183–96. doi: 10.1016/j.immuni.2017.02.006

2. Catrina AI, Svensson CI, Malmstrom V, Schett G, Klareskog L. Mechanisms
Leading From Systemic Autoimmunity to Joint-Specific Disease in Rheumatoid
Arthritis. Nat Rev Rheumatol (2017) 13(2):79–86. doi: 10.1038/nrrheum.2016.200

3. Tak PP, Kalden JR. Advances in Rheumatology: New Targeted Therapeutics.
Arthritis Res Ther (2011) 13 Suppl 1:S5. doi: 10.1186/1478-6354-13-S1-S5

4. Burmester GR, Pope JE. Novel Treatment Strategies in Rheumatoid Arthritis.
Lancet (2017) 389(10086):2338–48. doi: 10.1016/S0140-6736(17)31491-5

5. England BR, Thiele GM, Anderson DR, Mikuls TR. Increased Cardiovascular
Risk in Rheumatoid Arthritis: Mechanisms and Implications. BMJ (2018) 361:
k1036. doi: 10.1136/bmj.k1036

6. Semb AG, Kvien TK, Aastveit AH, Jungner I, Pedersen TR, Walldius G, et al.
Lipids, Myocardial Infarction and Ischaemic Stroke in Patients With
Rheumatoid Arthritis in the Apolipoprotein-Related Mortality Risk (Amoris)
Study. Ann Rheum Dis (2010) 69(11):1996–2001. doi: 10.1136/ard.2009.126128
7. Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE,
et al. Cardiovascular Morbidity and Mortality in Women Diagnosed With
Rheumatoid Arthritis. Circulation (2003) 107(9):1303–7. doi: 10.1161/
01.cir.0000054612.26458.b2

8. Bordy R, Totoson P, Prati C, Marie C, Wendling D, Demougeot C.
Microvascular Endothelial Dysfunction in Rheumatoid Arthritis. Nat Rev
Rheumatol (2018) 14(7):404–20. doi: 10.1038/s41584-018-0022-8

9. Sapir-Koren R, Livshits G. Postmenopausal Osteoporosis in Rheumatoid
Arthritis: The Estrogen Deficiency-Immune Mechanisms Link. Bone (2017)
103:102–15. doi: 10.1016/j.bone.2017.06.020

10. Adami G, Saag KG. Osteoporosis Pathophysiology, Epidemiology, and
Screening in Rheumatoid Arthritis. Curr Rheumatol Rep (2019) 21(7):34.
doi: 10.1007/s11926-019-0836-7

11. Simon TA, Thompson A, Gandhi KK, Hochberg MC, Suissa S. Incidence of
Malignancy in Adult Patients With Rheumatoid Arthritis: A Meta-Analysis.
Arthritis Res Ther (2015) 17:212. doi: 10.1186/s13075-015-0728-9

12. England BR, Hershberger D. Management Issues in Rheumatoid Arthritis-
Associated Interstitial Lung Disease. Curr Opin Rheumatol (2020) 32(3):255–
63. doi: 10.1097/bor.0000000000000703
June 2022 | Volume 13 | Article 912933

https://www.frontiersin.org/articles/10.3389/fimmu.2022.912933/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.912933/full#supplementary-material
https://doi.org/10.1016/j.immuni.2017.02.006
https://doi.org/10.1038/nrrheum.2016.200
https://doi.org/10.1186/1478-6354-13-S1-S5
https://doi.org/10.1016/S0140-6736(17)31491-5
https://doi.org/10.1136/bmj.k1036
https://doi.org/10.1136/ard.2009.126128
https://doi.org/10.1161/01.cir.0000054612.26458.b2
https://doi.org/10.1161/01.cir.0000054612.26458.b2
https://doi.org/10.1038/s41584-018-0022-8
https://doi.org/10.1016/j.bone.2017.06.020
https://doi.org/10.1007/s11926-019-0836-7
https://doi.org/10.1186/s13075-015-0728-9
https://doi.org/10.1097/bor.0000000000000703
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Drug Combination for RA Therapy
13. Qindeel M, Ullah MH, Fakhar Ud D, Ahmed N, Rehman AU. Recent Trends,
Challenges and Future Outlook of Transdermal Drug Delivery Systems for
Rheumatoid Arthritis Therapy. J Control Release (2020) 327:595–615.
doi: 10.1016/j.jconrel.2020.09.016

14. Guo D, Lv J, Chen X, Yan X, Ma F, Liu Y, et al. Study of Mirna Interactome in
Active Rheumatoid Arthritis Patients Reveals Key Pathogenic Roles of
Dysbiosis in the Infection-Immune Network. Rheumatol (Oxford) (2021) 60
(3):1512–22. doi: 10.1093/rheumatology/keaa369

15. Zhang P, Li J, Han Y, Yu XW, Qin L. Traditional Chinese Medicine in the
Treatment of Rheumatoid Arthritis: A General Review. Rheumatol Int (2010)
30(6):713–8. doi: 10.1007/s00296-010-1370-0

16. Fang L. The Clinical Effect of Baihu Plus Guizhi Decoction in Treating
Rheumatoid Arthritis With Damp-Heat Arthralgia Syndrome and its
Influence on the Expression of RF, IL-22, IL-35 and GPI. Global Tradit
Chin Med (2018) 11(06):964–7. doi: 10.14164/j.cnki.cn11-5581/r.2022.02.078

17. Yuan L, Wu J, Tang J, Chen Y, Zhang Z. Clinical Observation on Baihu Plus
Guizhi Decoction Combined With Western Medicine in Treating
Rheumatoid Arthritis of Rheumatic Fever Arthralgia Sydrome. J Liaoning
Univ Tradit Chin Med (2019) 21(12):168–71. doi: 10.13194/j.issn.1673-
842x.2019.12.044

18. Yuan L. Clinical Observation on Baihu Plus Guizhi Decoction Combined
WithWestern Medicine in Treating Rheumatoid Arthritis of Rheumatic Fever
Arthralgia Sydrome. Guangzhou Chin Med (2020). doi: 10.27879/
d.cnki.ggxzy.2020.000306

19. Wu D. Efficacy of Baihu-Guizhi Decoction Combined With Western
Medicine in Treating Rheumatoid Arthritis. Chin J Urban Rural Enterp Hyg
(2021) 36(01):158–60. doi: 10.16286/j.1003-5052.2021.01.067

20. Li W, Lu J, Mao X, Guo Q,Wang X, GuoM, et al. A Comparative Study on the
Mechanisms of Two Classical Herbal Formulae for Rheumatoid Arthritis
Applying Cold and Heat Patterns Based on Target Network. Acta Pharm Sin
A (2018) 53(09):1387–97. doi: 10.16438/j.0513-4870.2018-0519

21. Li W, Mao X, Wu H, Guo M, Su X, Lu J, et al. Deciphering the Chemical
Profile and Pharmacological Mechanisms of Baihu-Guizhi Decoction Using
Ultra-Fast Liquid Chromatography-Quadrupole-Time-Of-Flight Tandem
Mass Spectrometry Coupled With Network Pharmacology-Based
Investigation. Phytomed Int J phytother phytopharmacol (2020) 67:153156.
doi: 10.1016/j.phymed.2019.153156

22. Li W, Mao X, Wang X, Liu Y, Wang K, Li C, et al. Disease-Modifying Anti-
Rheumatic Drug Prescription Baihu-Guizhi Decoction Attenuates
Rheumatoid Arthritis Via Suppressing Toll-Like Receptor 4-Mediated
Nlrp3 Inflammasome Activation. Front Pharmacol (2021) 12:743086.
doi: 10.3389/fphar.2021.743086

23. Mao X. The Key Material Basis Identification and Pharmacological
Mechanism Investigation of Chinese Herbal Formula Wutou Decoction
Against Rheumatoid Arthritis With Cold Syndrome. Chin Acad Chin Med
Sci (2020). doi: 10.27658/d.cnki.gzzyy.2020.000124

24. Mao X, Li W, Chen W, Li Y, Wang Q, Wang X, et al. Exploring and
Characterizing a Novel Combination of Paeoniflorin and Talatizidine for
the Treatment of Rheumatoid Arthritis. Pharmacol Res (2020) 153:104658.
doi: 10.1016/j.phrs.2020.104658

25. Guo Q, Mao X, Zhang Y, Meng S, Xi Y, Ding Y, et al. Guizhi-Shaoyao-Zhimu
Decoction Attenuates Rheumatoid Arthritis Partially by Reversing
Inflammation-Immune System Imbalance. J Trans Med (2016) 14(1):165.
doi: 10.1186/s12967-016-0921-x

26. Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, et al. Etcm: An
Encyclopaedia of Traditional Chinese Medicine. Nucleic Acids Res (2019) 47
(D1):D976–D82. doi: 10.1093/nar/gky987

27. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
et al. String V10: Protein-Protein Interaction Networks, Integrated Over the
Tree of Life. Nucleic Acids Res (2015) 43(Database issue):D447–52.
doi: 10.1093/nar/gku1003

28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
A Software Environment for Integrated Models of Biomolecular Interaction
Networks. Genome Res (2003) 13(11):2498–504. doi: 10.1101/gr.1239303

29. Zhang Y, Mao X, Guo Q, Bai M, Zhang B, Liu C, et al. Pathway of Ppar-
Gamma Coactivators in Thermogenesis: A Pivotal Traditional Chinese
Medicine-Associated Target for Individualized Treatment of Rheumatoid
Arthritis. Oncotarget (2016) 7(13):15885–900. doi: 10.18632/oncotarget.7419
Frontiers in Immunology | www.frontiersin.org 172021
30. He Y, Su W, Chen T, Zeng X, Yan Z, Guo J, et al. Identification of Prototype
Compounds and Derived Metabolites of Naoxintong Capsule in Beagle Dog
Urine and Feces by Uflc-Q-Tof-Ms/Ms. J Pharm Biomed Anal (2019)
176:112806. doi: 10.1016/j.jpba.2019.112806

31. Sterling T, Irwin JJ. Zinc 15-Ligand Discovery for Everyone. J Chem Inf Model
(2015) 55(11):2324–37. doi: 10.1021/acs.jcim.5b00559

32. Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal
BB. Gambogic Acid, a Novel Ligand for Transferrin Receptor, Potentiates
Tnf-Induced Apoptosis Through Modulation of the Nuclear Factor-Kappab
Signaling Pathway. Blood (2007) 110(10):3517–25. doi: 10.1182/blood-2013-
03-494385

33. Wang Y, Cui Y, Cao F, Qin Y, Li W, Zhang J. Ganglioside Gd1a Suppresses
Lps-Induced Pro-Inflammatory Cytokines in Raw264.7 Macrophages by
Reducing Mapks and Nf-Kappab Signaling Pathways Through Tlr4. Int
Immunopharmacol (2015) 28(1):136–45. doi: 10.1016/j.intimp.2015.05.044

34. Villegas SN, Gombos R, Garcia-Lopez L, Gutierrez-Perez I, Garcia-Castillo J,
Vallejo DM, et al. Pi3k/Akt Cooperates With Oncogenic Notch by Inducing
Nitric Oxide-Dependent Inflammation. Cell Rep (2018) 22(10):2541–9.
doi: 10.1016/j.celrep.2018.02.049

35. Khan H, Sureda A, Belwal T, Cetinkaya S, Suntar I, Tejada S, et al. Polyphenols
in the Treatment of Autoimmune Diseases. Autoimmun Rev (2019) 18
(7):647–57. doi: 10.1016/j.autrev.2019.05.001

36. Ma Z, Yu R, Zhu Q, Sun L, Jian L, Wang X, et al. Cxcl16/Cxcr6 Axis Promotes
Bleomycin-Induced Fibrotic Process in Mrc-5 Cells Via the Pi3k/Akt/Foxo3a
Pathway. Int Immunopharmacol (2020) 81:106035. doi: 10.1016/
j.intimp.2019.106035

37. Spel L, Martinon F. Inflammasomes Contributing to Inflammation in
Arthritis. Immunol Rev (2020) 294(1):48–62. doi: 10.1111/imr.12839

38. Yang J, Zhao Y, Zhang P, Li Y, Yang Y, Yang Y, et al. Hemorrhagic Shock
Primes for Lung Vascular Endothelial Cell Pyroptosis: Role in Pulmonary
Inflammation Following Lps. Cell Death Dis (2016) 7(9):e2363. doi: 10.1038/
cddis.2016.274

39. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of Gsdmd by
Inflammatory Caspases Determines Pyroptotic Cell Death. Nature (2015) 526
(7575):660–5. doi: 10.1038/nature15514

40. Micaroni M, Stanley AC, Khromykh T, Venturato J, Wong CX, Lim JP, et al.
Rab6a/a' Are Important Golgi Regulators of Pro-Inflammatory Tnf Secretion in
Macrophages. PloS One (2013) 8(2):e57034. doi: 10.1371/journal.pone.0057034

41. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al.
Caspase-11 Cleaves Gasdermin D for Non-Canonical Inflammasome
Signalling. Nature (2015) 526(7575):666–71. doi: 10.1038/nature15541

42. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The Pore-Forming Protein
Gasdermin D Regulates Interleukin-1 Secretion From Living Macrophages.
Immunity (2018) 48(1):35–44.e6. doi: 10.1016/j.immuni.2017.11.013

43. DiPeso L, Ji DX, Vance RE, Price JV. Cell Death and Cell Lysis Are Separable
Events During Pyroptosis. Cell Death Discovery (2017) 3:17070. doi: 10.1038/
cddiscovery.2017.70

44. Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY. Pathogenic Role of
Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment
and Biomarker Development. Cells (2018) 7(10):161. doi: 10.3390/
cells7100161

45. Alenzi FQ. The Significance and Occurrence of Tnf Receptor Polymorphisms
in the Saudi Population. Saudi J Biol Sci (2016) 23(6):767–72. doi: 10.1016/
j.sjbs.2016.04.015

46. Wang X, Morris-Natschke SL, Lee KH. New Developments in the Chemistry
and Biology of the Bioactive Constituents of Tanshen. Med Res Rev (2007) 27
(1):133–48. doi: 10.1002/med.20077

47. Jiang M, Lu C, Chen G, Xiao C, Zha Q, Niu X, et al. Understanding the
Molecular Mechanism of Interventions in Treating Rheumatoid Arthritis
Patients With Corresponding Traditional Chinese Medicine Patterns Based
on Bioinformatics Approach. Evid Based Complement Alternat Med (2012)
2012:129452. doi: 10.1155/2012/129452

48. Fan W, Fan L, Peng C, Zhang Q, Wang L, Li L, et al. Traditional Uses, Botany,
Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of
Xanthium Strumarium L.: A Review. Molecules (2019) 24(2):359.
doi: 10.3390/molecules24020359

49. Hennessy EJ, Parker AE, O'Neill LA. Targeting Toll-Like Receptors: Emerging
Therapeutics? Nat Rev Drug Discovery (2010) 9(4):293–307. doi: 10.1038/nrd3203
June 2022 | Volume 13 | Article 912933

https://doi.org/10.1016/j.jconrel.2020.09.016
https://doi.org/10.1093/rheumatology/keaa369
https://doi.org/10.1007/s00296-010-1370-0
https://doi.org/10.14164/j.cnki.cn11-5581/r.2022.02.078
https://doi.org/10.13194/j.issn.1673-842x.2019.12.044
https://doi.org/10.13194/j.issn.1673-842x.2019.12.044
https://doi.org/10.27879/d.cnki.ggxzy.2020.000306
https://doi.org/10.27879/d.cnki.ggxzy.2020.000306
https://doi.org/10.16286/j.1003-5052.2021.01.067
https://doi.org/10.16438/j.0513-4870.2018-0519
https://doi.org/10.1016/j.phymed.2019.153156
https://doi.org/10.3389/fphar.2021.743086
https://doi.org/10.27658/d.cnki.gzzyy.2020.000124
https://doi.org/10.1016/j.phrs.2020.104658
https://doi.org/10.1186/s12967-016-0921-x
https://doi.org/10.1093/nar/gky987
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1101/gr.1239303
https://doi.org/10.18632/oncotarget.7419
https://doi.org/10.1016/j.jpba.2019.112806
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1182/blood-2013-03-494385
https://doi.org/10.1182/blood-2013-03-494385
https://doi.org/10.1016/j.intimp.2015.05.044
https://doi.org/10.1016/j.celrep.2018.02.049
https://doi.org/10.1016/j.autrev.2019.05.001
https://doi.org/10.1016/j.intimp.2019.106035
https://doi.org/10.1016/j.intimp.2019.106035
https://doi.org/10.1111/imr.12839
https://doi.org/10.1038/cddis.2016.274
https://doi.org/10.1038/cddis.2016.274
https://doi.org/10.1038/nature15514
https://doi.org/10.1371/journal.pone.0057034
https://doi.org/10.1038/nature15541
https://doi.org/10.1016/j.immuni.2017.11.013
https://doi.org/10.1038/cddiscovery.2017.70
https://doi.org/10.1038/cddiscovery.2017.70
https://doi.org/10.3390/cells7100161
https://doi.org/10.3390/cells7100161
https://doi.org/10.1016/j.sjbs.2016.04.015
https://doi.org/10.1016/j.sjbs.2016.04.015
https://doi.org/10.1002/med.20077
https://doi.org/10.1155/2012/129452
https://doi.org/10.3390/molecules24020359
https://doi.org/10.1038/nrd3203
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Drug Combination for RA Therapy
50. Feng FB, Qiu HY. Effects of Artesunate on Chondrocyte Proliferation,
Apoptosis and Autophagy Through the Pi3k/Akt/Mtor Signaling Pathway
in Rat Models With Rheumatoid Arthritis. Biomed pharmacother = Biomed
pharmacotherapie (2018) 102:1209–20. doi: 10.1016/j.biopha.2018.03.142

51. AnticaM,KusicB,HranilovicD,DietzAB,Vuk-PavlovicS.CloningtheCdnaforMurine
U2 Snrnp-A' Gene and Its Differential Expression in Lymphocyte Development.
ImmunolLett(2002)82(3):217–23.doi:10.1016/s0165-2478(02)00064-0

52. Behl T, Chadha S, SachdevaM, Kumar A, Hafeez A,Mehta V, et al. Ubiquitination
in Rheumatoid Arthritis. Life Sci (2020) 261:118459. doi: 10.1016/j.lfs.2020.118459

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
Frontiers in Immunology | www.frontiersin.org 182122
Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li,Wang, Liu,Wu, He, Li, Wang, Su, Yan, Su, Zhang and Lin. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
June 2022 | Volume 13 | Article 912933

https://doi.org/10.1016/j.biopha.2018.03.142
https://doi.org/10.1016/s0165-2478(02)00064-0
https://doi.org/10.1016/j.lfs.2020.118459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Drug Combination for RA Therapy
GLOSSARY

ADME absorption distribution metabolism excretion
AIA adjuvant-induced arthritis
AKT1: RAC alpha serine/threonine-protein kinase
ANOVA analysis of variance
ASC apoptosis-associated speck-like protein containing a CARD
ATP adenosine triphosphate
BAC bovine serum albumin
BACs bioactive compounds
BHGZD Baihu-Guizhi decoction
BMD bone mineral density
BS/BV bone surface/bone volume
BV/TV bone volume/tissue volume
CA cinnamic acid
CASP1 caspase-1
CCK-8 cell counting kit-8
Cmax the maximum plasma concentration
DAPI 4’, 6-diamidino-2-phenylindole
DMARDs disease-modifying anti-rheumatic drugs
ELISA enzyme-linked immunosorbent assay
FBS fetal bovine serum
FDA Food and Drug Administration
GSDMD gasdermin
H&E staining hematoxylin and eosin staining
IL-12 interleukin-12
IL-18 interleukin-18
IL-1b interleukin-1 beta
IL-6 interleukin-6
LDH lactate dehydrogenase
LPS lipopolysaccharide
MG mangiferin
Micro-CT micro-computed tomography
MST Microscale thermophoresis
MTX methotrexate
NFkB-P65 NF-kappa B transcription factor p65 subunit
NLRP3 NOD-like receptor pyrin domain containing 3
NSAIDs non-steroidal anti-inflammatory drugs
PBS phosphate-buffered saline
PFA paraformaldehyde
PI3K phosphatidylinositol 3 kinase
PIK3CG phosphatidylinositol 4, 5-bisphosphate 3-kinase catalytic

subunit gamma isoform
PK pharmacokinetic
RA rheumatoid arthritis
RNA-Seq RNA sequencing
ROI region of interest
SPR surface plasmon resonance
Tb.Sp trabecular separation
Tb.Th trabecular thickness
TCM traditional Chinese medicine
TLR4 toll-like receptor 4
Tmax the time to reach the maximum plasma concentration
TMD tissue mineral density
TNF tumor necrosis factor
TUNEL assay deoxynucleotidyltransferase-mediated UTP end labeling
TwHF Tripterygium wilfordii Hook F
UFLC-Q-TOF-
MS/MS

the ultra-fast liquid chromatography-quadrupole-time-of-flight
tandem mass spectrometry

WTD Wu-Tou decoction
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Rheumatoid arthritis (RA) is a chronic autoimmune disease that endangers the health of
approximately 1% of the global population. Current RA medications on the market mainly
include non-steroidal anti-inflammatory drugs, biological agents, and disease-modifying
drugs. These drugs aim to inhibit the overactivated immune response or inflammation of
RA, but they cannot cure RA. A better understanding of the pathogenesis of RA will
provide a new understanding to search for RA targets and for drug development. The
infiltration of T cells and hyper-proliferation of fibroblast-like synoviocytes (FLS) in the
synovium of patients with RA are significantly upregulated. Furthermore, the abnormal
activation of these two types of cells has been confirmed to promote development of the
course of A by many studies. This article systematically summarizes the interactions
between T cells and FLS in RA synovial tissues, including one-way/mutual regulation and
direct/indirect regulation between the two. It further aims to investigate the pathogenesis
of RA from the perspective of mutual regulation between T cells and FLS and to provide
new insights into RA research.

Keywords: RA, T cells, FLS, cellular interaction, therapy
1 INTRODUCTION

In the past few decades, extensive research has been conducted to illustrate the important role of T
lymphocytes (T cell) in rheumatoid arthritis (RA) (1). In RA, T cell can interact with antigen-
presenting cells, including dendritic cell, macrophage, B lymphocyte (B cell), and even non-
professional antigen-presenting cell, such as fibroblast-like synoviocyte (FLS). During T cell
activation, CD4+ T cells initially form contacts with human leukocyte antigen (HLA) or major
histocompatibility class II (MHC-II) molecules and co-stimulatory molecules (e.g., CD28) of other
org July 2022 | Volume 13 | Article 92211112324
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cells, leading to the maturation of CD4+ cells (2). Subsequently,
antigens presented by other cells promote the activation of CD8+

T cells, further exacerbating inflammation in RA (3). The
interaction between T cells and other cellular components is a
key factor in RA pathogenesis.

Apart from immune cells, non-immune cells of target organs
also play a vital role in various autoimmune diseases, forming the
foundation of the pathogeneses of these diseases (4). FLS are a
special type of non-immune cells present in synovial tissue
around joints. FLS play an important destructive role in the
pathogenesis of RA; specifically, the numbers of FLS significantly
increase and become an important part of the destructive pannus
that characterizes the synovial membrane of patients with RA. In
addition, FLS in RA exhibit an aggressive phenotype and mediate
inflammation and joint destruction. Therefore, cellular crosstalk
between FLS and other cellular components might also play an
important role in RA, especially in the pathology of the
joint synovium.

In this review, we summarize the pathophysiological features
of T cells and FLS, which are two important cellular types in the
joint synovium of patients with RA, at the functional and
molecular level. Further, we outline the interactions between T
cells and FLS in RA. Finally, we summarize the potential
therapeutic options by explaining the roles of these cells in RA.
2 INDIRECT REGULATION OF T CELLS IN
RA BY FLS

2.1 Indirect Promotion of T Cell Survival
and Chemotaxis by FLS in RA
RA is an autoimmune disease associated with severe synovitis
and the destruction of bone and cartilage. In the synovial tissues
of patients with RA, T cells can interact with other immune cells,
such as macrophages and B cells, and other non-immune cells,
Frontiers in Immunology | www.frontiersin.org 22425
including FLS, leading to T cell recruitment, activation, and
cytokine production (5). This section focuses on these functions
of T cells mediated by FLS-secreted chemokines (Figure 1).

CD13 released from FLS induces chemotaxis and T cell
activation through a pertussis toxin-sensitive G protein-
coupled receptor in RA (6). FLS-derived stromal cell-derived
factor (SDF)-1 and vascular cell adhesion molecule (VCAM)-1
recruit T cells via their corresponding receptors, CXC motif
chemokine receptor (CXCR)-4 and integrins alpha (VLA)-4,
respectively, in RA (7). FLS can produce an abundance of
proinflammatory cytokines in RA joints. For example,
interleukin (IL)-15 is mainly responsible for local T cell
activation and proliferation (8). The action of FLS-derived IL-7
is essential for lymphoid neogenesis in the RA synovium (9). The
Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) pathway in FLS is indirectly activated by
the tumor necrosis factor (TNF) through the autocrine
expression of type I interferon (IFN), resulting in IFN-a/b
receptor engagement and the production of chemokines by T
cells, which play a role in the effects of the JAK inhibitor CP-
690550 (tofacitinib) in the treatment of RA. The reduction of
chemokine synthesis mediated by FLS limits the recruitment of T
cells and other infiltrating leucocytes (10).
2.2 Indirect Regulation of CD4+ T Cell
Differentiation in RA by FLS
In addition to recruiting and activating T cells, FLS can also
promote the differentiation of proinflammatory subtypes and
inhibit the differentiation of anti-inflammatory subtypes of T
cells in the synovial joints of patients with RA (11) (Figure 2).
FLS co-cultured with peripheral blood mononuclear cells
(PBMCs) increase peripheral T follicular helper (Tfh) cell
(CD4+CXCR5+ICOS+) count in patients with RA (12).
Adiponectin-stimulated FLS can also promote Tfh generation,
predominantly via IL-6 production in RA (13). P53 abrogates
FIGURE 1 | RA-FLS indirectly promotes survival and chemotaxis of T cells in joint synovium of patients with RA via by producing various chemokines, including
CD13, SDF1, VCAM1, IL15, TNF, and type I IFN. SDF, Stromal cell-derived factor; VCAM, Vascular cell adhesion molecule; VLA,Integrins alpha; CXCR, CXC motif
chemokine receptor; IL, interleukin; JAK, Janus kinase; STAT, signal transducer and activator of transcription; TNF, tumor necrosis factor; IFN, interferon.
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FLS-induced Th1 and Th17 cell differentiation in RA (14).
Upregulated KAT7, an H4-specific histone acetylase in FLS,
promotes Th17 cell differentiation in RA by inducing C–C
motif chemokine ligand (CCL) 20 expression and the p44/42
mitogen-activated protein kinase pathway (15). Further,
myeloid-related protein (MRP)8/MRP14 is an endogenous
Toll-like receptor 4 (TLR4) ligand. MRP8 produced by FLS
can promote Th17 differentiation by enhancing the expression
of IL-6 in RA. MRP8 induces IL-6 secretion in FLS via TLR4/
phosphoinositide 3-kinase (PI3K)/nuclear factor kappa B (NF-
kB) and mitogen-activated protein kinase signaling pathways in
RA (16). Moreover, IL-34/colony stimulating factor 1 receptor
(CSF-1R) axis-induced FLS upregulate Th17 production through
increased IL-6 in RA (17). In addition, cysteine-rich protein 61
(Cyr61) induces IL-6 production by FLS, promoting Th17
differentiation via the Avb5/Akt/NF-kB signaling pathway in
RA (18). Co-cultured FLS enhance PBMC-secreted IL-17-A, IL-
6, IFNg, and IL-1b production in RA (19). FLS and macrophages
are the main sources of IL-26 in RA joints. IL-26 induces
production of the proinflammatory cytokines IL-1b, IL-6, and
TNF-a in monocytes. IL-26-stimulated monocytes selectively
promote the generation of RORgt+ Th17 cells through IL-1b
secretion by monocytes. Therefore, IL-26 is constitutively
Frontiers in Immunology | www.frontiersin.org 32526
produced by FLS, induces proinflammatory cytokines in
myeloid cells, and promotes Th17 cell differentiation in RA
(20). Synovial fluid and FLS from patients with RA suppress
enhancer of zeste homolog 2 (EZH2) expression in CD4+ T cells.
EZH2 deficiency attenuates regulatory T cells (Treg)
differentiation in RA (21). Overall, IL-6 seems to be a key
inflammatory factor released by FLS in RA. Thus, FLS
indirectly affect the differentiation of T cells in the synovial
joints of patients with RA through IL-6, promoting the
differentiation of Th17 and Tfh cells.
3 INDIRECT REGULATION OF FLS
IN RA BY T CELLS

3.1 Promotion of FLS Inflammatory
Phenotypes in RA via Cytokines
From T Cells
3.1.1 Indirect Effects of Th17 Cells on FLS in RA
Different subtypes of CD4+ T cells can be detected in the synovial
joints of patients with RA (22). Th17 promotes the development
of RA and is an important aspect of the proinflammatory
FIGURE 2 | FLS regulates differentiation of CD4+ T cells in RA. P53 KD and EZH2 OE promote Th1 and Treg differentiation of T cells in RA synovium, respectively.
FLS promotes Tfh differentiation of T cells via IL-6. FLS directly induces Th17 differentiation through cytokines, including CCL20, MRP8, IL-6, and IL-26, etc. KD,
knockdown; OE, overexpression; Tfh, T follicular helper; CCL, C–C motif chemokine ligand; MRP, myeloid-related protein; TLR, Toll-like receptor; Cyr61, cysteine-
rich protein 61; EZH, enhancer of zeste homolog; Treg, regulatory T cells.
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function of FLS. Transcripts of IL-17R, as well as those of IL-
17RB, C, and D, have been previously detected in the FLS of
patients with RA (23) (Figure 3A).

Th17 cells induce secretion of the cytokine granulocyte-
macrophage colony-stimulating factor (GM-CSF) in synovial
stroma and innate lymphoid cells to initiate and augment
autoimmune arthritis (24). Th17 cells and IL-17 increase
autophagy of FLS by causing mitochondrial dysfunction in RA
(25). The blockade of IL-17 alleviates inflammation in rat
arthritis and matrix metalloproteinase (MMP)-13 expression
from FLS (26). In addition, IL-17-induced receptor activator of
NF-kB ligand (RANKL) expression is decreased by the inhibition
of Act1, TNF receptor-associated factor 6 (TRAF6), and activator
protein (AP)-1. In the absence of RANKL, IL-17-prestimulated
FLS induce osteoclastogenesis from monocytes, which is
repressed by the inhibition of TNF-a (27). FLS express two
types of phospholipase D, namely PLD1 and PLD2. PLD
regulates the Th17-promoted production of proinflammatory
cytokines by FLS (28). The dihydroartemisinin derivative DC32
inhibits the Th17-induced invasion and migration of FLS by
decreasing the secretion of MMPs (MMP-2, MMP-3) in
vitro (29).

Th17-cell-secreted IL-17A and TNF-a have synergistic effects
on promoting the production of inflammatory cytokines in FLS
from patients with RA, the human leukemia cell line THP-1, and
the rheumatoid synovial fibroblast cell line MH7A. IL-17A and
TNF-a also promote the proliferation and migration of MH7A
cells. However, a novel dual targeting fusion protein (targeting
TNF-a and IL-17A) was found to be more efficient in inhibiting
these synergistic effects when compared to the effects of
etanercept (30). Stromal cell-derived factor 1 (SDF-1) is
overproduced in RA FLS, and IL-17 upregulates the expression
of SDF-1 in RA FLS via pathways mediated by PI3K, NF-kB, and
AP-1 (31).

3.1.2 Indirect Effects of Th1/Th2 Cells on FLS in RA
Apart from Th17, Th1 and CXCR3+ Th2 phenotypes are the
main subtypes of T helper cells in the synovium of patients with
RA; IL-4 and IL-13 induce FLS to produce a series of
inflammatory cytokines, such as IL-6, CCL2, CXCL1, and
CXCL8, whereas IFNg promotes the expression of CXCL10
(32). Both Th1 and Th17 cells produce IL-17 and IFNg. The
expression of CD40, intercellular adhesion molecule 1 (ICAM-
1), and MHC-II in FLS is upregulated upon co-culture with Th1
cells, whereas Th17 cells induce only ICAM-1 in FLS. Both T cell
subsets promote the production of IL-6 and IL-8 by FLS from
patients with RA (33). T cell-derived IL-2 might activate FLS (via
IL-2 receptor (CD122) and (CD132) chains) to produce MCP-1,
thus recruiting macrophages into the rheumatoid synovium and
promoting inflammation (34). Both Th1 and Th2 cells express
macrophage migration inhibitory factor (MIF). MMPs are
induced by FLS after co-culture with Th1 and Th2 cells, and
activated T helper cells are more effective than resting cells. The
neutralization of MIF by an anti-MIF antibody leads to the
downregulation of MMP in both Th1- and Th2-stimulated FLS
(35) (Figure 3B).
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3.1.3 Indirect Effects of Other T Cells on FLS in RA
IL-21 is produced primarily by CD4+ T cells and natural killer T
cells. IL-21 induces the migration, invasion, and production of
MMPs (MMP-2, MMP-3, MMP-9, MMP-13) in FLS from
patients with RA (36). IL-21 promotes activation of the PI3K,
STAT3, and ERK1/2 pathways in FLS, and the inhibition of these
A

B

C

FIGURE 3 | T cells promote inflammatory phenotype of FLS in RA, mainly
including proliferation, migration, invasion, and production of proinflammatory
cytokines and destructive MMPs in joint synovium. (A) The indirect effects of
Th17 cells on FLS in RA; (B) The indirect effects of Th1/Th2 cells on FLS in RA;
(C) The indirect effects of other T cells on FLS in RA. GM-CSF, granulocyte-
macrophage colony-stimulating factor; MMP, matrix metalloproteinase; RANKL,
receptor activator of NF-kB ligand; TRAF, TNF receptor-associated factor; AP,
activator protein; ICAM, intercellular adhesion molecule; MIF, migration inhibitory
factor; ATAC, activation-induced, T cell-derived, and chemokine-related
cytokine; Lptn, lymphotactin; FAK,focal adhesion kinase.
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pathways attenuates IL-21-mediated migration and the
production of MMPs (36). The percentage of T cells from the
synovial fluid in patients with RA is upregulated relative to that
in patients with psoriatic arthritis (37). The proportion of IL-
21+CD4+ T cells from peripheral blood in patients with RA is
positively associated with IgM-rheumatoid factor, serum
anticyclic citrullinated peptide antibodies, and disease activity
score 28 (DAS28). IL-21 expression in synovial fluid is correlated
with MMPs; IL-21 significantly induces the production of MMPs
in synovial biopsies from patients with RA (37). CD4+IL-21+ T
cells sorted from synovial fluid promote the secretion of MMPs
by FLS to a greater extent than medium or CD4+IL-21− T cells in
an in vitro co-culture system. The blockage of IL-21 and TNF
leads to the downregulation of MMPs from FLS (37).

In phorbol myristate acetate/ionomycin-stimulated PBMCs,
activation-induced, T cell-derived, and chemokine-related
cytokine (ATAC)/lymphotactin (Lptn) is detected in CD8+ T
cells and is upregulated in CD4+CD28− T cells from patients with
RA as compared with their levels in healthy controls (38). FLS
express the ATAC/Lptn receptor XCR1 in the RA synovium.
ATAC/Lptn leads to the marked downregulation of MMP2
production in FLS (38). TLR3 is induced in the synovium of
rats with pristane-induced arthritis (39). In addition, activation
of the TLR3 signaling pathway promotes the development of this
arthritis model. Interestingly, pristane-primed T cell-derived
cytokines further promote FLS activation (39).

IFNg produced by T cell stimulation promotes the
phosphorylation of focal adhesion kinase (FAK)-Y925, which
is important for cell migration (40). SiRNA-mediated
knockdown of JAK2, but not JAK1, substantially suppresses
FAK activation via IFNg. IFNg-induced FAK activation and
invasion of FLS are also blocked by baricitinib (JAK inhibitor)
(40). Soluble mediators released by Th cells drive synovial fluid
towards a glycolytic and proinflammatory phenotype. Targeting
JAKs or glycolytic enzymes modulates synovial fluid glucose
metabolism and decreases the secretion of IL-6 and MMP3 (41).
Therefore, targeting glycolytic pathways represents a potential
therapeutic strategy to treat inflammation in synovial fluid
(41) (Figure 3C).
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4 DIRECT INTERACTION BETWEEN FLS
AND T CELLS IN RA
4.1 Direct Regulation of T cells by
FLS in RA
In addition to indirect regulation through cytokines and
chemokines, there is a direct interaction between T cells and
FLS in the synovium of patients with RA. Different antigen-
presenting cells, including B cells, macrophages, and dendritic
cells, interact directly with T cells. FLS, as non-immune cells, also
have antigen-presenting capabilities. This section summarizes
the direct communication between T cells and FLS in the
synovium of patients with RA (Figure 4).

Despite not being professional antigen-presenting cells, FLS
can also present peptides, such as human cartilage gp-39 and
human type II collagen (CII), derived from autoantigens
discovered in the joint tissues of patients with RA, to activated
T cells in vitro in an IFN-dependent and MHC-restricted
manner (42). Cell–cell contact between T cells and FLS induce
the lymphocytic expression of aminopeptidase N/CD13 and
results in lymphocytic activation (43). Both FLS (production of
SDF-1) and CD8/CD4+ T cells (expression of CXCR4) play a
positive role in the recruitment of T cells in the joint synovium
(44). CD4+ T cells abnormally express CX3CR1 in the synovium
of patients with RA. Fractalkine (FKN) induces the adhesion of
CD4+ T cells and survival signals and co-stimulates the secretion
of inflammatory cytokines and granules. CD4+ T cells accept
primary stimulatory and co-stimulatory signals from non-
professional antigen-presenting cells, such as FLS, in the RA
synovial microenvironment (45).

A previous study showed the effects of FLS on the
recruitment, activation, and expansion of T cells in RA in a
CD47-TSP1 (thrombospondin-1)-dependent manner (46).
TSP1-mediated co-stimulation is achieved through its
independent interaction with CD36 on antigen-presenting cells
and with CD47 on T cells. A CD47–TSP1–CD36 trimolecular
complex is a new co-stimulatory pathway that represses the
activation of T cells. Because the lesions in rheumatoid synovitis
are sites of antigenic recognition, the identification of TSP1 on
FIGURE 4 | FLS directly regulate functions of T cells in RA.
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antigen-presenting cells such as FLS suggests the central role of
TSP1 in the expansion of T cells in RA (47). Direct contact
between T cells and FLS induces the expression of HLA-DR on
FLS and CD69 on T cells in an allogeneic and autologous
manner. The addition of DAP3.B7 cells to co-cultures of T
cells and FLS alleviates the repressed allogeneic activation of T
cells (48). The allogeneic response by T cells to FLS in the
presence of DAP3.B7 cells can be blocked by inhibiting CD80
with CTLA-4 Ig (48). Strong expression of B7-H3 was detected
on FLS in synovial tissue of a patient with RA (49). Cells
expressing B7-H3 are distinct from but very close to cells
expressing CD45, CD3, and CD20. In addition, FLS and T cell
co-cultures show localization of B7-H3 in the contact section
between them but this is distinct from CD11a/CD18 (LFA-1)+ T
cells and ICAM-1+ FLS. Blocking B7-H3 on FLS affects the
interactions between FLS and T cells. Resting T cells have
upregulated IL-2, TNF-a, and IFN-g, whereas cytokine-
activated T cells exhibit downregulated cytokine production.
However, cytokine production by T cells activated via TCR is
not affected by B7-H3 (49).

4.2 Direct Regulation of FLS by T Cells in
RA
Direct contact between activated CD4+ T cells and an FLS-
facilitated hGITR–GITRL interaction lead to the upregulation of
MMP-13 (50). CII-reactive T cells induce the secretion of
chemokines (IL-8, MCP-1, and MIP-1a) through interactions
with FLS in RA joints, which is mediated by CD40L–CD40
communication (51). FKN–CX3CR1 receptor– l igand
interactions affect FLS growth and T cell functions. FLS
promote autocrine growth by releasing FKN and triggering the
activity of CX3CR1. This growth-promotion loop is amplified by
CX3CR1+ T cell-produced TNF-a upon stimulation by FKN+

FLS (52).
Mutual activation of T cells and FLS results in increased

proliferation and expression of ICAM-1 and VCAM-1 by both
CD4+ T cells and FLS (53). The interaction between CD4+ T cells
and FLS results in the upregulation of TNF-a, IFN-g, and IL-17A
from CD4+ T cells and the secretion of other cytokines, including
IL-6, IL-8, and vascular endothelial growth factor (VEGF).
Moreover, CD4+ T cells cultured in conditional medium
promote invasiveness and glycolysis in FLS while repressing
oxidative phosphorylation, with the effects paralleled by
induced glucose transporters GLUT1 and GLUT3, key
glycolytic enzymes GSK3A, HK2, LDHA, and PFKFB3, VEGF,
and MMPs, which is alleviated by the glycolytic inhibitor 2-DG
and adenosine monophosphate analogue 5-aminoimidazole-4-
carboxamide ribonucleotide (53).

Co-culture with T cells induces the phosphorylation of
protein kinase Akt (Ser473) and downstream mediators,
including GSK-3a/b, FoxO1/3a, and mouse double minute
(MDM)-2, in FLS from patients with RA (54). Co-cultured T
cells also promote the proliferation of FLS and the production of
IL-6, which is repressed by blocking antibodies to CD11a and
ICAM-2. T cell-mediated phospho-Akt upregulation is unique to
Frontiers in Immunology | www.frontiersin.org 62829
FLS because no such effect is observed in B cells and dendritic
cells. Selective involvement of the LFA-1–ICAM-2 pathway has
been confirmed based on increased ezrin phosphorylation at
Tyr353 downstream of ICAM-2, which supports cell survival
through Akt activation (54).

The rapid and robust adhesion of cytokine-activated T cells
(Tck) and super antigen-activated T cells to FLS leads to
flattening and a crawling movement in T cells on the cellular
surface of FLS (55). Tck activates FLS to secret IL-6 and IL-8 in a
cell contact-dependent manner, which is further activated by IL-
17. Antibody blocking of membrane TNF-a on the Tck surface
inhibits cytokine production by FLS, demonstrating a novel
mechanism of TNF-a during T cells–FLS interactions in the
RA synovium (55) (Figure 5).

4.3 Direct Mutual Regulation of T Cells and
FLS in RA
In addition to the one-way direct regulation, there is a direct and
mutual crosstalk between T cells and FLS in the synovium of
patients with RA. This two-way communication further leads to
the development of RA (56) (Figure 6). The T cells from patients
with RA with a stronger response to CII show higher expression
of inflammatory mediators, including IL-15, TNF-a, IFN, and
IL-17. When co-incubated with RA FLS, T cells can stimulate the
secretion of TNF-a, IL-15, and IL-18 from FLS during CII
stimulation. In contrast, T cells also produce higher amounts
of IL-17 and IFN-g during co-culture with RA FLS. The crosstalk
between T cells and FLS requires direct cell–cell contact and
occurs in a CD40L-CD40 dependent manner (57).

IL-17 induces the expression of IL-32 in FLS from patients
with RA, which activates the secretion of IL-17 from CD4+ T
cells (58). IL-17 and IL-32 are co-localized near tartrate resistant
acid phosphatase-positive areas in joints from patients with RA.
IL-32 and IL-17 promote osteoclast differentiation in a
synergistic manner, and both promote osteoclast resorption via
RANKL (58).

The interactions between FLS from rats with collagen-
induced arthritis (CIA) and rat CCR7− effector memory T
(Tem) cells is regulated by KCa1.1 and Kv1.3 (59). Blocking
KCa1.1 on FLS reduces the promoting effects of FLS on the
proliferation and migration of Tem cells, and blocking Kv1.3 on
Tem cells reduces the effects of Tem cells on the expression of
KCa1.1 and MHCII and the invasion of FLS. Furthermore,
combination therapies comprising selective KCa1.1 and Kv1.3
inhibitors are more efficacious than monotherapies in alleviating
disease features of rat arthritis models (59).

Macrophage-produced PGE2 is a response to IL-17 of T cells,
which negatively regulates the expression of TNF-a and IL-17, as
well as the TNF-a/IL-1-mediated activation of FLS via EP2 and
EP4 receptors, resulting in the modulation of proinflammatory
cascades in RA (60). A CTLA4-FasL fusion protein suppresses
FLS proliferation and the development of adjuvant-induced
arthritis (AIA) in rats. However, CTLA4-FasL also acts as an
effective inhibitor for T cells; it not only inhibits the activation of
T cells but also promotes activated T cell death (61).
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5 CORRELATION BETWEEN T CELLS AND
FLS IN RA

The numbers of FLS and T cells in the synovial tissue of patients
with RA are closely associated with joint damage (62). RA naiüve
T cells share hypermethylation sites with FLS. FLS-representative
DNA methylation signatures derived from blood might serve as
biomarkers of RA risk or disease status (63). In the following
section, we summarize some recent studies reporting that some
treatments for RA (Table 1) or the regulation of a specific gene/
protein (Table 2) can affect the function of both T cells and FLS
in RA.

5.1 Simultaneous Effect of an RA Drug on
T Cells and FLS
IL-21 induces the expression of Beclin-1, autophagy-related 5
(Atg5), and LC3-phosphatidylethanolamine conjugate 3-II
(LC3-II) through the inhibition of C/EBP homologous protein
Frontiers in Immunology | www.frontiersin.org 72930
(CHOP) in FLS from rats with adjuvant-induced arthritis.
Berberine (BBR), an alkaloid derivative predominantly present
in Oregon grapes and shoots of barberry, represses FLS
autophagy via PI3K/Akt signaling by inhibiting autophagic
elements, p62 sequestration, and the induction of CHOP. In
addition, IL-21 induces the hyper-proliferation of FLS by
upregulating the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X
protein (BAX) ratio, which can be reversed by BBR. IL-21 also
promotes CD4+ CD196+ Th17 cell expansion via the PI3K/Akt
pathway, and BBR can repress the expansion of Th17 cells by
repressing the specific transcriptional factor RORgt in Th17 cells
in a PI3K/AKT-dependent manner. Furthermore, BBR promotes
the expansion of CD4+CD25+ Treg cells, which exerts an effect
opposite to that of Th17 cells, through induction of a specific
Treg transcriptional factor, forkhead box P3 (Foxp3), via aryl
hydrocarbon receptor (AhR) and the upregulation of
cytochrome P450 family 1, subfamily A, polypeptide 1
(CYP1A1) (64).
FIGURE 6 | The mutual regulation of T cells and FLS in RA. CIA, collagen-induced arthritis; Tem: effector memory T; AIA, adjuvant-induced arthritis.
FIGURE 5 | T cells directly regulate FLS in RA. CII:type II collagen; FKN, Fractalkine; TSP, thrombospondin.
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Silibinin, a natural polyphenolic flavonoid, represses cell
proliferation and induces the apoptosis of FLS from patients
with RA in an NF-kB pathway-dependent manner. Silibinin also
represses Sirtuin1 (SIRT1), and SIRT1 knockdown enhances
silibinin-induced apoptosis in FLS. Silibinin also inhibits
arthritis development in a CIA rat model and the secretion of
inflammatory cytokines in FLS from patients with RA. In
addition, it inhibits the differentiation of Th17 cells in vitro (65).

Single-use or combination treatment with LMT-28 (a
derivative of oxazolidinone) and metformin significantly
Frontiers in Immunology | www.frontiersin.org 83031
ameliorates arthritic signs in rats with CIA by suppressing
Th17 differentiation and IL-6 signaling in FLS (66, 67). A
combination of LMT-28 and tetrahydropapaverine (THP,
benzylisoquinoline alkaloid) could attenuate RA through the
suppression of Th17 differentiation in T cells and
proinflammatory cytokine-induced inflammation in FLS (68).
Diallyl trisulfide induces FLS apoptosis, represses Th17
differentiation, and has a therapeutic effect on mice with CIA
by blocking NF-kB and Wnt pathways (69). Oroxylin A-treated
CIA mice demonstrate an upregulation of Treg cells and
TABLE 1 | The medicinal treatment regimens that can affect the functions of both T cells and FLS in RA.

Treatment T cells FLS Other Ref

BBR BBR inhibits the proliferation of Th17 cells through
downregulation of RORgt and promotes the
differentiation of Treg cells through induction of Foxp3
activation via up-regulation of AhR and CYP1A1.

BBR inhibited autophagy in AA-FLS mediated
through PI3K/Akt signaling via suppression of
autophagic elements, p62 sequestration and
induction of CHOP.
BBR inhibited the proliferation of AA-FLS via
promotion of apoptosis.

(64)

Silibinin Silibinin inhibits Th17 cell differentiation. Silibinin suppresses cell viability and increases
apoptosis of RA-FLS.
The production of inflammatory cytokines in RA-FLS
and a CIA rat model is inhibited by silibinin.

(65)

Single use or
combination
treatment with
LMT-28 and
metformin

Single use or combination treatment with LMT-28 and
metformin suppress Th17 differentiation.

Single use or combination treatment with LMT-28
and metformin and IL-6 signaling in FLS.

(66, 67)

LMT-28 and THP
combination

LMT-28 and THP combination inhibits Th17
differentiation.

LMT-28 and THP combination suppresses of IL-6 or
TNF-induced signaling pathways in RA-FLS.

LMT-28 and THP
combination inhibits
osteoclastogenesis.

(68)

Diallyl Trisulfide Diallyl Trisulfide represses Th17 differentiation and has a
therapeutic effect of CIA mice.

Diallyl Trisulfide induces FLS apoptosis of CIA mice. (69)

Oroxylin A Oroxylin A-treated mice shows an increase in Treg and
reduction in Th17 cells in the ILN.

Oroxylin A decreases the secretion of IL-1b and IL-6
from TNFa-stimulated RA FLS in vitro.

(70)

Formyl peptide
receptor agonist
Cpd43

Cpd43 inhibits the expansion, activation and
differentiation of arthritogenic effector CD4 T cells.

Cpd43 inhibits proliferation of FLS. (71)

MTX In T cell lines, MTX inhibits activation of NF-kB via
depletion of BH4 and up-regulation of JNK-dependent
p53 activity.

Inhibition of NF-kB activation by MTX is prevented by
adenosine receptor antagonists in FLS.

(72)

CP-25 CP-25 decreases the expression of BAFF-R in CD4+ T
cells.

CP-25 inhibits the proliferation and cytokine secretion
of FLS co-cultured with BAFF-activated CD4+ T
cells.

(73)

Bortezomib plus
MSC combination

Bortezomib plus MSC combination restores TLR
expression and Treg frequency in blood.

Bortezomib plus MSC combination normalizes FLS
proliferation, apoptosis and cytokine secretion.

Human UC-MSCs
suppress the
inflammatory effects of
FLSs and T cells of
RA.

(74, 75)

monoclonal BsAb
(TNF-a and
CXCL10)

The BsAb inhibited CXCL10-mediated CD8+ T cell
migration.

The BsAb inhibited TNF-a induced ICAM-1 and
VCAM-1 in FLS. The BsAb decreased the expression
of TNFSF11 and the production of IL-6 in FLS
stimulated with TNF-a and CXCL10.

(76)

FL-BsAb1/17 FL-BsAb1/17 could repress the production of IL-1 and
IL-17 in T cells.

FL-BsAb1/17 could significantly decrease the
production of IL-6 in FLS.

(73)

Huayu Tongbi
Fang

Huayu Tongbi Fang decreased GM-CSF production by T
cells.

Huayu Tongbi Fang could inhibit FLS activation. (77)

Clarithromycin As clarithromycin suppressed HLA-DR and costimulatory
molecule expression was enhanced by IFN, autologous
T cell proliferation was inhibited by clarithromycin.

Clarithromycin suppressed the production of these
cytokines including IL-1, IL-6, IL-8, G-CSF and GM-
CSF but did not enhance IL-10 production of FLS.

(78)
July 20
22 | Volume 13 | Article
Atg5, autophagy-related 5; CHOP, C/EBP homologous protein; BBR, Berberine; BCL, B-cell lymphoma; BAX, Bcl-2 associated X protein; FOXP3, forkhead box P3; AhR, aryl hydrocarbon
receptor; CYP1A1, cytochrome P450 family 1, subfamily A, polypeptide 1; SIRT, Sirtuin1; THP, tetrahydropapaverine; MTX, methotrexate; BH4, tetrahydrobiopterin; JNK, Jun-N-terminal
kinase; BsAb, bispecific antibody; CP-25, Paeoniflorin-6′-O-benzene sulfonate; BAFF-R,B cell-activating factor, belonging to the TNF family-receptor; UC-MSCs, umbilical cord-derived
mesenchymal stem/stromal cells.
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downregulation of Th17 cells in the inguinal lymph nodes.
Oroxylin A also represses the production of IL-1b and IL-6
from TNFa-stimulated FLS in vitro (70). The formyl peptide
receptor agonist Cpd43 inhibits the expansion of arthritogenic
effector CD4 T cells and FLS and reduces joint damage in CIA
and AIA mice (71).

Previous results also showed that methotrexate (MTX)
represses the NF-kB pathway in T cells and FLS. In T cell
lines, MTX blocks the NF-kB pathway by repressing
tetrahydrobiopterin (BH4) and inducing p53 in a Jun-N-
terminal kinase (JNK)-dependent manner (72). Levels of
phosphorylated RelA are decreased in low-dose MTX-treated
patients with RA. However, the MTX-mediated inhibition of the
NF-kB pathway is completely prevented by adenosine receptor
antagonists in FLS from patients with RA but not via BH4 and
JNK (72). Clarithromycin represses the secretion of cytokines
such as IL-1, IL-6, IL-8, G-CSF, and GM-CSF but does not
enhance the production of IL-10 by FLS. As clarithromycin
suppresses HLA-DR and co-stimulatory molecule expression is
enhanced by IFN, the proliferation of autologous T cells is
markedly inhibited by clarithromycin. Clarithromycin exerts a
considerable immunosuppressive effect on FLS by inhibiting co-
stimulatory molecule expression, cytokine production, and
antigen-specific T cell proliferation induced by FLS (78).

The effects of a monoclonal bispecific antibody (BsAb)
targeting TNF-a and CXCL10 was also evaluated in RA (76).
BsAb repressed the CXCL10-mediated migration of CD8+ T
cells. Further, the effect of binding of the BsAb to TNF-a was
comparable to that of adalimumab; BsAb also repressed TNF-a-
mediated cell death and the expression of VCAM-1 and ICAM-1
in FLS. BsAb was also found to inhibit TNFSF11 and IL-6 in
Frontiers in Immunology | www.frontiersin.org 93132
TNF-a- and CXCL10-stimulated FLS (76). Another
recombinant IgG-like bispecific antibody (FL-BsAb1/17)
targeting IL-1b and IL-17A also showed considerable effects
for RA treatment, which could repress the secretion of IL-6 in
FLS from patients with RA (73). Paeoniflorin-6′-O-benzene
sulfonate (CP-25) decreases the expression of B cell-activating
factor, belonging to the TNF family-receptor (BAFF-R), in CD4+

T cells and represses cell proliferation and cytokine production
in FLS co-cultured with BAFF-activated CD4+ T cells (85). A
Chinese herbal formula, Huayu Tongbi Fang, also represses FL-
mediated inflammation in rats by suppressing T cells and FLS-
producing GM-CSF (77). Human umbilical cord-derived
mesenchymal stem/stromal cells (UC-MSCs) inhibit the
inflammatory features of FLS and T cells from patients with
RA and alleviate the progression of CIA, implying that UC-
MSCs can be used as a potential therapeutic strategy for RA (74).
The combination of bortezomib and MSCs rescues TLR
expression and the ratio of Treg cells in peripheral blood and
normalizes FLS proliferation, apoptosis, and cytokine
secretion (75).

5.2 Regulation of T cells and FLS by a
Common Factor in RA
CCL3 enhances the expression of proinflammatory cytokines
(including IL-6, IL-1b, TNF-a, and RANKL) in RA-FLS by
activating the PI3K/AKT signaling pathway. Moreover, CCL3
can upregulate CD4+ T cells to mediate the inflammatory
response in RA (86). Cobrotoxin (CTX) suppresses the
abnormal increase in CD4+/CD8+ T cells and inhibits T cell
proliferation. CTX also inhibits the proliferation of cultured FLS
by inhibiting the NF-kB signaling pathway (79).
TABLE 2 | Specific gene/protein that can affect the functions of both T cells and FLS in RA.

Molecule T cells FLS Other Ref

CCL3 CCL3 could up-regulate CD4
+T cells to mediate the
inflammatory response.

CCL3 enhanced the expression
level of pro-inflammatory
cytokines in RA-FLS via activation
of the PI3K/AKT signaling
pathway.

(79)

IL-21 IL-21 induced RANKL
expression in CD4+ T cells
from RA patients.

IL-21 induced RANKL expression
in RA-FLS.

IL-21 enhanced osteoclastogenesis in vitro. (80,
81)

CTX CTX suppressed the abnormal
increasing of CD4+ T cells/
CD8+ T cells ratio, and
inhibited T cell proliferation.

CTX inhibited the proliferation of
the RA-FLS via suppression of
NF-kB signaling pathway.

(79)

rhIL23R-
CHR

rhIL23R-CHR decreased
secretions of IL-17 and IL-9,
whereas FoxP3 was activated
in the process in the CIA rats.

rhIL23R-CHR repressed
proinflammatory effects on FLS.

synergetic effects with TNF-a (82)

cDHPS cDHPS restored the balance
of Th17 and Treg cells of CIA
mice.

cDHPS reduced the secretion of
pro-inflammatory mediators
related to FLS activation,

cDHPS repressed angiogenesis, articular cartilage degradation and osteoclast
differentiation, inhibited HIF-1a expression and promoted anti-inflammatory
mediator release in the joint tissues and serum of CIA mice .

(83)

DP DP suppressed
lipopolysaccharide-induced
pro-inflammatory cytokine
expression in Jurkat T
lymphocytes.

DP inhibited p65 acetylation in
MH7A cells, a human RA-FLS
line.

DP specifically inhibited the HAT activities of p300/CBP. DP-induced
hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear
localization of IKBa. Accordingly, DP treatment inhibited TNFa-stimulated
increases in NF-kB function and expression of NF-kB target genes in these cells.

(84)
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CTX, Cobrotoxin; cDHPS, Dendrobium huoshanense stem polysaccharide; DP, Delphinidin.
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rhIL23R-CHR can be used to inhibit the IL-23-related
pathway to explore the role of IL-23 in the dysfunction of
Th17/Th9/Treg cells in rats with CIA. CIA rats demonstrate
downregulation of the production of IL-9 and IL-17 and
upregulation of FoxP3 upon rhIL23R-CHR treatment,
implying that IL-23 could alleviate the dysfunctions of Th17/
Th9/Treg cells. Furthermore, IL-23 also promotes the
proinflammatory features of FLS in vitro, showing synergetic
outcomes with TNF-a (82).

RANKL is expressed by both FLS and sub-lining T
lymphocytes (87). IL-21 promotes RANKL in CD4+ T cells
from CIA and in CD4+ T cells and FLS from patients with RA.
IL-21 also induces osteoclastogenesis by inducing RANKL
expression in CD4+ T cells and FLS in vitro (80). Another
study detected RANKL+ cells in FLS and infiltrating
mononuclear cells of synovial tissue of patients with RA (81).
Double immunostaining detected RANKL+ cells in CD3+ and
CD4+ T cells. RANKL is elevated and osteoprotegerin is lowered
in the synovial fluid of patients with RA. The ratio of the
concentration of RANKL to that of osteoprotegerin is also
upregulated in the synovial fluid of patients with RA compared
to that in the synovial fluid of patients administered oroxylin A
or with gout. In addition, RANKL+ T cells promote
osteoclastogenesis from peripheral monocytes. The promoting
function of RANKL osteoclastogenesis was confirmed by
osteoprotegerin-mediated inhibition in a dose-dependent
manner (81).

Dendrobium huoshanense stem polysaccharide (cDHPS)
alleviates the imbalance in Th17/Treg cells; represses the
production of FLS activation-associated proinflammatory
cytokines, damage to articular cartilage, the formation of
osteoclasts, and angiogenesis; reduces HIF-1a; and induces
anti-inflammatory cytokines in joint synovium and serum of
CIA mice (83) . Delphinidin represses the histone
acetyltransferase activities of p300/CBP and p65 acetylation in
MH7A cells, which are a human RA FLS cell line (84).
Delphinidin-mediated hypoacetylation is characterized by the
cytosolic accumulation of NF-kB activator p65 and nuclear
localization of the NF-kB inhibitor IKBa. Delphinidin
suppresses the TNF-a-induced upregulation of the NF-kB
pathway in MH7A cells. It also represses LPS-induced
proinflammatory cytokine production in Jurkat T lymphocytes,
implying that a histone acetyltransferase inhibitor can efficiently
suppress cytokine-mediated immune responses (84).
6 CONCLUSION AND PERSPECTIVE

T cells and FLS play an important role in the pathogenesis of RA.
T cells show a systematic disorder in patients with RA, and FLS
promote inflammation and damage the joints locally in the joint
synovium of patients with RA. However, since T cells can be
recruited to the joint synovium through blood and lymphatic
circulation, there is a possibility of interactions between the two
cellular components in the joint synovium. Recent publications
have confirmed many means of communication between T cells
Frontiers in Immunology | www.frontiersin.org 103233
and FLS in the joint synovium in RA, including direct or indirect
interactions and one-way or two-way interactions, further
amplifying the severity of synovitis. Therefore, blocking this
key interaction has the potential to relieve the symptoms of
RA or even completely treat RA.

Many agents can directly affect both FLS and T cells in RA.
The dual effect of those potential drugs on FLS and T cells
presents a promising solution for the treatment of RA and thus,
should be further studied in the future. For example, blocking the
proinflammatory cytokine (CCL3, IL-21, and IL-23) pathways
will block the activation of T cells and FLS-mediated
proinflammatory effects because their receptors are commonly
expressed on T cells and FLS (88). In addition, for some
pathways that can act mutually between T cells and FLS, such
as PGE2/EP receptors and Kv1.3/KCa1.1, inhibitors that stop
these bidirectional effects should be designed and tested to
prevent the cascading proinflammatory effects and relieve the
symptoms of RA (89).

But there are still some unsolved issues with the current
research, which leads to obstacles to potential application in the
future. For example, FLS is not professional APC, and it is not
clear whether the molecular mechanism of the signals that
activate T cells is exactly the same as that of APCs, and the
interaction between FLS and different subtypes of CD4+ T cells is
also not entirely clear. Secondly, in the joint synovial tissue of RA
patients, in addition to FLS and T cells, there are many other
important cell types, including B cells, macrophages, etc., and the
interaction network between these cells also needs to be further
clarified. Finally, the interaction between T cells and FLS in most
of the literature mentioned in this review was confirmed by in
vitro experiments, and whether the same regulatory patterns still
exist in the in vivo environment require better in vivo models to
confirm. All of these issues need further in-depth study before
clinic application.
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and perspectives
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5Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-
Madison, Madison, WI, United States, 6Arthritis Institute of Integrated Traditional and Western
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Rheumatoid arthritis (RA) is an autoimmune disease that severely affects

patients’ physical and mental health, leading to chronic synovitis and

destruction of bone joints. Although various available clinical treatment

options exist, patients respond with varying efficacies due to multiple factors,

and there is an urgent need to discover new treatment options to improve

clinical outcomes. Cuproptosis is a newly characterized form of cell death.

Copper causes cuproptosis by binding to lipid-acylated components of the

tricarboxylic acid cycle, leading to protein aggregation, loss of iron-sulfur

cluster proteins, and eventually proteotoxic stress. Targeting copper

cytotoxicity and cuproptosis are considered potential options for treating

oncological diseases. The synovial hypoxic environment and the presence of

excessive glycolysis in multiple cells appear to act as inhibitors of cuproptosis,

which can lead to excessive survival and proliferation of multiple immune cells,

such as fibroblast-like synoviocytes, effector T cells, and macrophages, further

mediating inflammation and bone destruction in RA. Therefore, in this study,

we attempted to elaborate and summarize the linkage of cuproptosis and key

genes regulating cuproptosis to the pathological mechanisms of RA and their

effects on a variety of immune cells. This study aimed to provide a theoretical

basis and support for translating preclinical and experimental results of RA to

clinical protocols.

KEYWORDS

rheumatoid arthritis, autoimmune disease, inflammation, cuproptosis, cuproptosis-
related genes
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease

characterized by chronic synovitis, presence of multiple

autoantibodies, and bone and joint destruction (1). Genetic

factors (common risk variants), environmental factors

(smoking), genetic and environmental interactions (epigenetic

mechanisms), and metabolic abnormalities are risk factors for

RA (2). RA affects 1% of the global population and is more

prevalent in women than in men (3). Current clinical treatment

options for RA include disease-modifying anti-rheumatic drugs,

non-steroidal anti-inflammatory drugs (NSAIDs), and biological

and non-biological agents. Painkillers and NSAIDs reduce pain

and stiffness, but NSAIDs have limited effectiveness and may

cause stomach irritation, heart problems, and kidney damage

(1). Disease-modifying antirheumatic drugs (DMARDs) are the

primary treatment, and when used in combination, these drugs

can slow the progression of RA and protect joints and other

tissues from permanent damage. However, some DMARDs have

multiple adverse effects, such as nausea, liver damage, bone

marrow suppression, and development of lung infections (1).

Biological agents, including anti-TNF-a antibodies, are also

effective, but there are still adverse events, such as infection at

the injection site and variation in the efficacy (1). In addition,

proper l i f e s ty l e management , exerc i se , and food

supplementation are prescribed as complementary therapies.

However, due to multiple heterogeneous factors and a

complex network of immune-inflammatory pathological

mechanisms in RA, available therapies have shown limited

clinical efficacy in some patients (2). Therefore, innovative

discovery of new drug targets and elucidation of new

mechanisms are of great importance for the clinical

management of RA.

Cell death is closely associated with RA. Reduced apoptosis

in fibroblast-like synoviocytes (FLS) leads to harmful and

excessive proliferation, and other pro-inflammatory cell death

mechanisms (e.g., pyroptosis and necroptosis) promote

inflammation in RA (4). Tsvetkov et al. have characterized a

novel form of cell death called “cuproptosis” (5). Cuproptosis in

human cells occurs when mitochondrial respiration is disrupted,

primarily by the direct binding of excess copper to the lipid-

acylated components of the tricarboxylic acid (TCA) cycle. This

leads to aggregation of lipid-acylated-related proteins, loss of

iron-sulfur cluster proteins, and ultimately, cell death due to

intracellular proteotoxic stress (5). In addition, Tsvetkov et al.

identified 10 key genes for cuproptosis, including positive

regulation factors (ferredoxin 1(FDX1), lipoic acid synthetase

(LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide

dehydrogenase (DLD), drolipoamide S-acetyltransferase

(DLAT), pyruvate dehydrogenase E1 subunit alpha 1(PDHA1),

and pyruvate dehydrogenase E1 subunit beta (PDHB)) and

negative regulatory factors (metal-regulatory transcription
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factor-1 (MTF1), glutaminase (GLS), and cyclin-dependent

kinase inhibitor 2A (CDKN2A)) (5). A meta-analysis of 1444

patients with RA showed that their serum copper levels were

significantly higher when compared to that of healthy controls

(6). Similarly, Ma et al. found elevated serum copper and

decreased zinc and selenium levels in RA patients by

systematic evaluation and meta-analysis of common trace

metals in them, with possible geographical differences in all

three, and that serum selenium levels positively correlated with

steroid treatment (7). In addition, serum copper levels were

higher in patients with active RA, positively correlated with

erythrocyte sedimentation rate (ESR) and morning stiffness, and

negatively correlated with hemoglobin levels, which are auxiliary

markers for disease assessment (8). Therefore, given the excess

copper levels in RA, we sought to elucidate its potential

association with RA by searching for cuproptosis and

cuproptosis–related genes in PubMed to provide theoretical

references and guidance for the discovery and innovative

development of clinical treatment options for RA.
Relationship between cuproptosis
and RA

Tsvetkov et al. characterized an extensive and detailed

characterization of cuproptosis (5). First, the factors necessary

for cuproptosis include the presence of glutathione, and the

mitochondrial metabolism of galactose and pyruvate (5).

Second, cuproptosis appears to be more dependent on

mitochondrial respiration, which is inhibited under various

conditions such as hypoxia, and presence of mitochondrial

antioxidants, inhibitors of mitochondrial function and fatty

acids (5). Finally, the knockdown of seven genes that positively

regulate cuproptosis may inhibit cuproptosis. For example,

knockdown of FDX1 results in the loss of protein-lipid

acylation, decreased mitochondrial respiration, accumulation

of pyruvate and a-glutarate, and loss of iron-sulfur cluster

proteins (5). In addition, accumulation of regulatory gene

oligomers is important for the occurrence of cuproptosis (5).

Synovial tissue of patients with RA presents a hypoxic

environment due to chronic inflammation, vascular

proliferation, and excessive cell proliferation (9). Under

hypoxic conditions, multiple mediators of bone destruction

(matrix metallopeptidases (MMPs)), pro-inflammatory factors

(interleukin 8 (IL-8) and IL-6), and chemokines (chemokine (C-

C motif) ligand 20 (CCL20)) are involved in bone destruction

and inflammatory processes in RA (10, 11). Multiple cells in RA

are characterized by an imbalance between cell survival and cell

death. The metabolic mechanisms associated with cuproptosis

may be linked to these cells. For example, the overall glucose and

glutamine levels were reduced in RA FLS, showing enhanced

depletion, and indicating that glutamine plays an essential role in
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FLS proliferation. Glutamine is a critical factor in cuproptosis

and its reduced levels, which lead to significant inhibition of

cuproptosis, may contribute to the abnormal proliferation of

FLS. RA FLS have multiple tumor-like features and survive and

over proliferate in a tumor-like microenvironment. The aberrant

proliferation of RA FLS is partially attributed to the inhibition of

apoptosis (12, 13). The hypoxic environment may also inhibit

cuproptosis and thus may contribute to abnormal cell survival

and proliferation. The link between copper and hypoxia is

complex. Hypoxic conditions promote copper cytotoxicity by

inhibiting antioxidant defense mechanisms by increasing

reactive oxygen species (ROS), copper transport, and mitotic

phagocytosis, with specific molecular mechanisms possibly

involving MTF1 and the forkhead box O-3 (FoxO3) signaling

pathway (14). Additionally, similar to the inhibition of

cuproptosis by the glycolytic effect of FLS, effector T cells exert

their effect through the mTOR-dependent pathway, using

glycolysis to take in large amounts of glutamine and glucose to

provide energy, which may also inhibit cuproptosis, thereby

exerting a pro-inflammatory effect. Overactivation of the

glycolytic pathway may also inhibit Treg cell function (15).

Activated M1 pro-inflammatory macrophages are glycolytic

and release pro-inflammatory mediators through multiple

mechanisms to destroy tissues (15). These factors may

promote inflammatory effects by inhibiting the cuproptosis

process in pro-inflammatory cell populations (Table 1). Next,

we describe the potential association between critical genes

associated with cuproptosis and RA development.
Frontiers in Immunology 03
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PDHA1

Lactate levels are significantly increased and glucose

concentrations are significantly decreased in RA synovial

membranes, suggesting excessive activation of glycolytic

pathways (16). Glycolysis converts glucose to pyruvate, and

the downstream pathways of glycolysis include lactate

fermentation and oxidation of pyruvate (17). PDHA has been

extensively studied in tumor cells. Tumor cells promote their

growth primarily by enhancing the glycolytic pathway and

attenuating oxidative phosphorylation, which appears to also

like the excessive glycolysis in RA FLS. During oxidative

phosphorylation, the pyruvate dehydrogenase complex

(PDHC) converts pyruvate to acetyl coenzyme A. PDHA1, a

subunit of PDHC, is a key component linking glycolysis and the

TCA cycle (18). PDHA1 inhibition affects PDHC activity,

leading to tumor cell glycolysis, enhanced consumption of

glucose and glutamine, and inhibition of oxidative

phosphorylation (19). Gut microbial-derived butyrate inhibits

sirtuin 3 and mitochondrial complex I in tumor cells to prevent

the conversion of TCA cycle intermediates to adenosine

triphosphate (ATP). Butyrate induces hyperacetylation of

PDHA1 to relieve the inhibition of PDHA1 phosphorylation

at serine 293 to promote tumor cell apoptosis (20). The

transcription factor RUNX family transcription factor 2

(RUNX2) promotes the expression of several glycolytic

proteins (phosphorylated protein kinase B (PKB), hexokinase 2

(HK2), and PDH kinase 1(PDHK1)), inhibits the expression of
TABLE 1 The potential function of cuproptosis-related genes in RA.

Gene May affect cells
in RA

Function

PDHA1 FLS, Macrophages PDHA1 inhibition may contribute to the FLS hyperproliferative state. PDHA1 may synergize with STAT3 to regulate the
macrophage inflammatory response.

PDHB Treg cell, FLS, PDHB may co-regulate Treg cells and maintain functional integrity with DJ-1. Downregulation of PDHB may contribute to the
abnormal proliferative state of RA FLS

GLS FLS, CD4+T cell (Th1,
Th2, Th17), B cell

GLS1 may promote aberrant proliferation of RA FLS, and GLS1 inhibition has different effects on different CD4+ T cell
subpopulations. GLS is involved in regulating B cell activation and antibody production.

LIAS Treg cell LIAS is mainly involved through the regulation of oxidative stress and inflammation and has potential links to RA.

DLAT FLS DLAT may influence the development of RA mainly by affecting pyruvate oxidation in the PDHC, TCA cycle, and mitochondrial
function

FDX1 Dendritic cells,
monocytes-
macrophages, Treg
cells

FDX1 mainly affects fatty acid oxidation and steroid regulation, affecting different cells.

MTF1 FLS, T cells MFT1 stimulates FLS recruitment and inflammatory factor production, promotes angiogenesis, and facilitates pro-inflammatory T
cell arrest in the joints.

CDKN2A Macrophages, T cells,
B cells, FLS

CDKN2A is a marker of cellular senescence and may be involved in the aberrant proliferation of FLS and regulation of inflammatory
factor release, promoting pro-inflammatory responses in monocytes and macrophages, and may be involved in the functional
regulation of abnormal T and B cells.

LIPT1 FLS LIPT1 is mainly responsible for regulating glutamine metabolism aiming to support mitochondrial respiration, TGA cycling, and
fatty acid production, which may promote the abnormal proliferative process of FLS.
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PDHA1 and sirtuin 6 (SIRT6), and suppresses the rate of

mitochondr ia l oxygen consumpt ion (a marker of

mitochondrial oxidative phosphorylation), thereby promoting

tumor cell proliferation (21). Therefore, it can be speculated that

PDHA1 may be involved in RA FLS by regulating the glycolytic

process. PDHA1 in RA FLS may be in an inhibited state, thus

contributing to the excessive glycolytic and hyperproliferative

state of FLS.

In addition to what has been described above, PDHA1 can

also be potentially linked to RA through the regulation of

inflammation. The release of the NLRP3 inflammasome and

related pro-inflammatory mediators plays an important role in

the inflammation in RA (4). Activation of the nucleotide-

binding oligomerization domain (NOD)-like receptor pyrin

domain containing 3 (NLRP3) inflammasome requires lactate

fermentation and inhibition of PDHA1 leads to impaired

pyruvate oxidation. NLRP3 inflammasome activation leads to

release of IL-1b pro-inflammatory mediators (17). Macrophages

are important effector cells that are involved in the inflammatory

response to RA. Macrophage SIRT-3 is deacetylated at lysine 83,

which activates PDHA1, and inhibits NLRP3 inflammasome

activation and IL-1b release (22). In addition, the LPS-induced

in vitro cell model is an important model for RA inflammation

(23). Melatonin receptor 1 (MT1) inhibits LPS-induced aerobic

glycolysis and impairs oxidative phosphorylation by promoting

PDHA1 expression to suppress inflammation (24).The role of

MT1 has been extensively studied in RA. MT1 plays critical roles

such as altering the Th1/Th17 balance to suppress inflammation

(25) and reducing inflammation and cartilage degradation

through the phosphatidylinositol 3−kinase (PI3K)/protein

kinase B (AKT), extracellular signal-regulated kinase (ERK),

and nuclear factor-kB (NF-kB) signaling pathways, as well as

tumor necrosis factor a (TNFa) and IL-1b (26). In summary,

PDHA1 appears to be a potent regulator of excessive glycolysis

and inflammation and is regulated by different transcriptional

mechanisms. Further studies specific to RA are still needed.
PDHB

PDHB is a subunit of pyruvate dehydrogenase, which is

similar in function to PDHA1 in that they both catalyze pyruvate

to acetyl coenzyme A (27). PDHB has been identified as a

susceptibility gene for RA and its expression is downregulated

in various tissues and cells (28). Deglycase DJ-1 was found to

bind PDHB in Tregs, inhibit PDHA phosphorylation, and

promote PDH activity and oxidative phosphorylation to

maintain Treg cell differentiation and the functional integrity

of T cells (29). In addition, PDHB has also been studied in

various tumor cells. As previously mentioned, it may be linked to

abnormalities in RA FLS. Maternally expressed gene 3 (MEG3)

inhibits miRNA (miR)-103a-3p, upregulates PDHB-induced

endoplasmic reticulum stress proteins’ expressions (glucose-
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regulated protein 78 (GRP78), activating transcription factor 6

(ATF6), C/EBP homologous protein (CHOP), caspase-3, and

caspase-9), inhibits cell viability, colony formation ability and

invasion, blocks the cell cycle, and induces apoptosis in tumor

cells (30). MiR-203, miR-146b-5p, and miR-363-3p promote

pro-tumor cell growth, invasion, inhibition of apoptosis, and

enhancement of glycolysis by targeting PDHB (31–33). PDHB

also inhibits RasV12-driven ERK signaling and tumor cell

proliferation (34). The interaction between PDHB and NIMA-

related kinase 10 (NEK10) may be necessary for maintaining

mitochondrial homeostasis, and NEK10 knockdown leads to

increased mitochondrial damage and dysfunction (35). Thus,

PDHB appears to be regulated by multiple miRNAs, while

abnormalities in multiple miRNAs contribute to the

pathological progression of RA, and the interconnection

between the two deserves further exploration (36). In

conclusion, downregulation of PDHB may contribute to the

abnormal proliferative state of FLS in RA and may lead to

defective Treg function through reduced binding to DJ-1.
GLS

GLS primarily includes two isoforms, GLS1 and GLS2, which

are the key enzymes for glutamine metabolism. GLS1 exists in

two splice variants: KGA and GAC (37). GLS1 may promote

abnormal proliferative processes in RA FLS. In response to the

inflammatory factor IL-17, the mRNA expression of GLS1 was

upregulated, whereas the expression of GLS2 was extremely low,

implying that GLS1 is primarily responsible for glutamine

metabolism. Furthermore, the inhibition of GLS1 suppresses

the proliferation of RA FLS and improves joint inflammation in

arthritic mice (38).

GLS1 inhibition has multiple effects on CD4+ T cells and

their subpopulations. First, it leads to a-CD3/CD28-induced
suppression of CD4+ T cell proliferation and decreased

expression of T cell activation markers CD25 and CD226 (39).

Second, it inhibits cytokine secretion frommultiple CD4+ T cell-

differentiated T cell subsets, e.g., IL-2 and interferon gamma

(IFN-g) (Th1 cytokines), TNF-a, IL-6, IL-4 (Th2 cytokines), and
IL-17a (Th17 cytokines) (39). Finally, the percentage of CD4+ T

cells expressing chemokine (C-C motif) receptor 6 (CCR6) and

C-X-C chemokine receptor 3 (CXCR3) is reduced (39), both of

which have essential roles in inflammatory chemotaxis in RA

(40, 41). Th17 is a critical pro-inflammatory mediator in RA that

releases IL-17 pro-inflammatory factors to promote

inflammation, which preferentially uses glycolysis and

glutamine catabolism to provide energy (42). Peroxisome

proliferator-activated receptor gamma (PPAR-g) expression is

significantly reduced in the synovial membranes of RA patients

(43). PPAR-g activation inhibits Th17 differentiation by

suppressing glutamine catabolism. On one hand, the specific

mechanism may involve PPAR-g inhibiting GLS1 and decreasing
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2-hydroxyglutarate (2-HG) levels, thereby regulating lysine

demethylase 5 (KDM5)-specific trimethylation of Histone H3

at Lysine 4 (H3K4me3) modifications in the promoter and CNS2

binding regions of the IL-17 locus. In contrast, PPAR-g inhibits
GLS1 and reduces GSH levels, increases ROS levels, and

downregulates retinoic acid-related orphan receptor gamma

(RORgt) expression (44). In conclusion, GLS1 may primarily

affect FLS, B cell and CD4+ T cell subsets in RA by promoting

FLS cell proliferation, inflammatory cell differentiation, and pro-

inflammatory cytokine release.
LIAS

LIAS is an iron-sulfur cluster mitochondrial enzyme that

replicates the final step of the ab initio pathway that catalyzes

lipoic acid biosynthesis, in which lipoic acid is a powerful

antioxidant (45). Lipoic acid can be synthesized in the

mitochondria by an enzymatic reaction involving octanoic

acid. Lipoic acid is essential for mitochondrial a-keto acid

dehydrogenase activity and plays an important role in

mitochondrial energy metabolism (46). Mitochondria are

important organelles in organisms and play several roles,

including providing energy to the cell through oxidative

phosphorylation and ATP synthesis. When mitochondria

produce energy, they store the electrochemical potential

energy in the inner mitochondrial membrane. On both sides

of the inner membrane, an asymmetric distribution of protons

and other ion concentrations results in the mitochondrial

membrane potential. Glycolysis oxidizes pyruvate and

combines it with coenzyme A, a reaction coupled with the

reduction of NAD+, to produce CO2 and acetyl coenzyme A.

Acetyl coenzyme A can enter the tricarboxylic acid cycle, which

produces ATP (or GTP), more CO2, FADH2, and NADH (47).

NADH is then involved in the electron transport chain and

oxidative phosphorylation. Oxidative stress is an important

factor in mitochondrial dysfunction that leads to RA injury

and RA-related atherosclerosis (48). LIAS is primarily associated

with oxidative stress, inflammation, and RA. Significantly lower

LIAS expression in mice after LPS induction is accompanied by

enhanced inflammatory response and tissue damage (49). LIAS

overexpression in experimental atherosclerotic mice

significantly increases the number of Tregs and reduces T-cell

infiltration (50). Similarly, reduced liver LIAS in mice with

hepatic fibrosis is accompanied by mitochondrial dysfunction

and morphological abnormalities, including mitochondrial

edema, reduced density or vacuolization of mitochondrial

cristae and matrix, reduced activity of mitochondrial

complexes I, II, IV, and V, increased mitochondrial fission

activity, and reduced mitochondrial fusion activity (51).

Overexpression of LIAS reduced hepatic oxidative stress in

non-alcoholic fatty liver disease in mice and protected

mitochondrial function by upregulating the nuclear factor
Frontiers in Immunology 05
4041
erythroid 2–related factor 2 to reduce ROS production (52),

attenuated the chronic inflammatory response, inhibited NF-kB

activity in lung fibrosis in mice (53), significantly increased Treg

cell numbers, and reduced T cell infiltration (50). Mutations in

LIAS stabilizeHIF-1a in its non-hydroxylated form and promote

HIF-1 activation by inhibiting the activity of prolyl hydroxylases

(PHDs), which potentially leads to enhanced glycolytic effects in

cells (54). Therefore, LIAS and HIF-1 may be involved in

RA progression.
DLAT

E4 transcription factor 1 (E4F1) is a crucial gene involved in

controlling mitochondrial function and cell cycle checkpoints

that can interact with RA via P53 (55, 56). E4F1 regulates DLAT.

These two factors may synergistically regulate the pathogenesis

of RA (57). Mitochondrial PDHC is primarily involved

in pyruvate oxidation and the TCA cycle, and provides

energy to the body (57). Sirtuin 4 (SIRT4) has enzymatic

hydrolytic activity and it was significantly downregulated and

markedly correlated positively with anti-cyclic citrullinated

peptide (anti-CCP) antibody, ESR, and C-reactive protein

(CRP) levels in patients with RA (58, 59). SIRT4 can

hydrolyze the lipoamide cofactors of DLAT, thereby inhibiting

PDH activity (59). In addition, component 1 Q subcomponent-

binding protein (C1QBP) in the mitochondria is associated

with histological inflammation scores in RA. It can

regulate mitochondrial metabolism by affecting PDGH

activity through binding to DLAT (60, 61). Therefore,

DLAT may influence the development of RA primarily by

affecting pyruvate oxidation in PDHC, the TCA cycle, and

mitochondrial function.
FDX1

FDX1 is a member of the ferredoxin family, which comprises

iron-sulfur (Fe/S) proteins (62). The transcription factors c-Jun

and SF1 can synergistically promote the transcription and

expression of FDX1 (63). FDX1 influences immune cells

(dendritic cells, monocytes, macrophages, and iTreg cells) (64).

Monocytes in RA prefer to use fatty acid oxidation to provide

energy and drive receptor activator of nuclear factor kappa-B

ligand (RANKL)-induced osteoclast survival and the associated

bone destruction (65).FDX1 was found to significantly promote

ATP production in these cells. FDX1 knockdown significantly

promotes production of fructose 6-phosphate, thus affecting

downstream glycolysis, and decreases the levels of many long-

chain fatty acids, indicating that it promotes fatty acid

oxidation (64).

Abnormalities in and regulation of steroid production play

an important role in RA. For example, there are multiple
frontiersin.org

https://doi.org/10.3389/fimmu.2022.930278
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.930278
abnormal steroid-related metabolites in patients with RA (66).

Increased pro-inflammatory factors in RA may be associated

with the reduced renal clearance of steroids (67). FDX1 may be

involved in RA development, by potentially influencing

this process. Ferredoxin reductase transfers electrons

from nicotinamide adenine dinucleotide phosphate (NADPH)

to FDX1, reducing members of the mitochondrial cytochrome

P450 protein family such as cytochrome P450 11A1 (CYP11A1)

and CYP11B (62). CYP11A1 catalyzes the conversion of

cholesterol to pregnenolone via side-chain cleavage in the

mitochondria, which is the rate-limiting step in adrenal steroid

biosynthesis (63). CYP11B promotes the conversion of cortisol

to corticosterone, or aldosterone (62). CYP11A1 also converts

vitamin D3 to the non-calcemic analog 20S-hydroxyvitamin,

which significantly reduces the release of pro-inflammatory T

cell subsets and pro-inflammatory cytokines, increases the

proportion of Treg cells, and improves symptoms in a mouse

model of arthritis (68).
MTF1

MTF1 is a classical metal-binding transcription factor

closely associated with copper homeostasis in eukaryotic

organisms (69). Copper loading induces transcriptional

activation of metallothionein (MT) through MTF1 and metal

responsive element (MRE)-dependent pathways and promotes

the nuclear express ion of MTF1 , which promotes

metallothionein expression (70). When copper is depleted,

MTF1 also binds to the MRE of CTR1B to promote its

transcription and expression of CTR1B, facilitating the

introduction of copper to maintain copper homeostasis (71).

In addition to MTF1 to maintain copper homeostasis,

mammalian cells express a variety of copper transporter

proteins or enzymes, such as copper transporter 1 (CTR1),

cytochrome c-oxidase 1 (Cox1), Cox2, Cox11, Cox17,

synthesis of cytochrome c oxidase 1 (Sco1), Sco2, superoxide

dismutase 1 (SOD1), antioxidant-1 (Atox1), ATPase copper

transporting alpha (ATP7A), ATPase copper transporting beta

(ATP7B), extracellular superoxide dismutase (ecSOD, SOD3),

and lysyl oxidase (LOX). Copper homeostasis can be divided

into several stages. Firstly, CTR1 uptake of copper, where the

copper is transported via protein interactions to three different

sites for further processing. For example, ligand-bound copper

ions and copper transport proteins, such as Cox1, Cox2, Cox11,

and Cox17, are subsequently transported to Sco1 and Sco2 in

mitochondria (72) whereas in the cytoplasmic lysates and

mitochondrial gap copper is transported to SOD1 (72).

Copper is transported via ATP7A or ATP7B to the secreted

enzymes EcSOD, SOD3, and LOX (72). Other copper

transporter proteins and their specific roles have been clearly

described, and here we focus only on cuproptosis-related

genes (72).
Frontiers in Immunology 06
4142
MTF-1 can directly or indirectly regulate a variety of cellular

functions, and is mainly associated with hypoxic conditions in

patients with RA. The RA risk SNP (rs28411362) forms a 3D

contact with the MTF1 promoter during inflammatory factor-

stimulated chromatin remodeling of RA FLS, whose binding

motif stimulates FLS recruitment, and MTF1 inhibition

significantly suppresses FLS cytokine and chemokine

production and improves the mouse arthritis model (73).

Under hypoxic conditions, MTF-1 expression promotes the

transcriptional activation of phosphatidylinositol glycan

anchor biosynthesis class F(PIGF) to promote angiogenesis

and enhance endothelial growth and permeability via the

vascular endothelial growth factor (VEGF) (74). MTF1 also

promotes the activity of hypoxia-inducible factor-1 (HIF-1)

(75). HIF-1a is a major regulator of cells under hypoxic

conditions and is highly expressed in the RA synovium (10,

76, 77). HIF-1a can also induce MMP-3 production to promote

bone destruction (10). HIF-1a promotes pro-inflammatory T

cell arrest in joints and Th17 differentiation through

transcriptional activation of RORgT and tertiary complex

formation with RORgt and p300 recruitment to the IL-17

promoter. HIF-1 inhibits Treg development by targeting

forkhead box P3 (FOXP3) for proteasomal degradation (77).

HIF-1a promotes the conversion of pyruvate to lactate by

increasing LDHA activity. High concentrations of lactate

promote cell proliferation of FLS (10, 76, 77). Furthermore, in

addition to its effects on RA FLS, high lactate concentrations can

promote pro-inflammatory T-cell arrest in the joints. It is worth

noting that MTF1 responds to copper stimulation through

different binding genes (78), and phosphorylation of MTF1 is

essential for the functional activation of MTF (79). For example,

MTF1 promotes ATP7B expression by binding to the MRE in the

promoter region of ATP7B to promote Wilson’s disease caused

by copper overload (80). Phosphorylation of the kinase LATS of

the Hippo pathway and inhibition of MTF1 protects cells from

heavy metal-induced cytotoxicity (81). Thus, MTF1 primarily

responds to excess copper levels in RA, and the hypoxic

environment affects multiple pathological aspects of RA.
CDKN2A

The fraction of cells expressing p16 (CDKN2A) is a typical

marker of cellular senescence (82). Cellular senescence has been

associated with RA in various cell types. For example, senescent

T cells are highly inflammatory, secrete cytotoxic mediators, and

express natural killer receptors (NKR), bypassing their antigenic

specificity (83, 84). Histone deacetylase1 (HDAC1) is

overexpressed in RA FLS and promotes cell proliferation in

FLS (85). The deacetylase (HDA) inhibitor FK228 inhibits joint

swelling, synovial inflammation, and bone destruction in mice

with experimentally induced arthritis. It also inhibits the

proliferation of RA FLS in vitro by a mechanism that involves
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FK228, thereby inducing high histone acetylation and DKN2A

expression in synovial cells, upregulating p21, and decreasing the

release of TNF and IL-1b (86). However, it is noteworthy that

the senescent phenotype of RA FLS highly expresses CDKN2A

and releases more pro-inflammatory mediators in response to

TNF or oxidative stress stimuli to promote inflammation (87).

The histone methyltransferase EZH2 is strongly induced in

chronic inflammation of RA FLS, which may suppress

CDKN2A expression and thus contribute to the abnormal

response to FLS (88). In addition to its potential effects on RA

FLS, CDKN2A may affect RA by influencing the function of

macrophages, T cells, and leukocytes. Oxidized low-density

lipoprotein (ox-LDL) activates multiple immune cells in RA to

promote the secretion of pro-inflammatory mediators and

assemble Abs to promote the production of immune

complexes to mediate RA pathological progression (89). Ox-

LDL promotes the secretion of TNF-a and IL-1b by

macrophages and functions via the MEG3/miR-204/CDKN2A

axis (90). CDKN2A expression in macrophages inhibits LPS-

induced IL-6 production by a specific mechanism involving

CDKN2A, promoting ubiquitin-dependent degradation of

IRAK1 and impairing the activation of AP-1 (91). Reduced

expression of CDKN2A in leukocytes appears to be associated

with increased CD14++CD16++ monocyte subsets, increased

immune complex responses, and overproduction of pro-

inflammatory factors in RA (2, 92). EZH2 is also thought to

be essential for B and T cell development, and IL-17 in RA

patients with RA synovial fluid may inhibit EZH2 expression

downregulation in CD4+ T cells and suppress Treg
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differentiation (93). EZH2 also suppresses CDKN2A

expression in naive CD8+ T cells by reducing H3K27me3

levels at two loci (50) and by controlling B-cell maturation

(94). Therefore, EZH2 may work in combination with CDKN2A

to regulate abnormal T and B cell responses in RA.
LIPT1

LIPT1 primarily encodes LIPT1, which catalyzes the transfer

of lipoic acid from the H protein of the glycine cleavage system

to the E2 subunit of 2-ketoacid dehydrogenase, an essential step

in lipid acylation (95, 96). LIPT1 is primarily responsible for

regulating glutamine metabolism to support mitochondrial

respiration, the TGA cycle, and fatty acid production (95).

Mutations in LIPT1 impair mitochondrial proteolipid

acylation and TGA cycling, and promote the accumulation of

lactate and pyruvate (95). Among them, lactate and pyruvate can

stimulate synovial cell proliferation, angiogenesis, and vascular

opacification in patients with RA (97). Little research has been

conducted on LIPT1 in diseases, and further studies are

still needed.
Conclusion

A specific concentration of copper in an organism

contributes to organismal homeostasis. However, the

imbalance in copper homeostasis may affect the organism by
FIGURE 1

Potential association of cuproptosis and cuproptosis–related genes with RA. Copper can induce cuproptosis by binding to lipid-acylated TCA
cycle components, promoting lipid-acylated protein aggregation, and inducing protein stress. This may affect various cells in RA, such as FLS
and monocytes/macrophages, thereby aiding in inflammation, angiogenesis, and the bone destruction processes. Vital regulatory genes for
cuproptosis are potentially linked to RA through distinct biological functions. However, the specific mechanisms require further investigation.
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triggering cuproptosis, leading to disease development.

Cuproptosis is considered a potential therapeutic option for

oncological diseases, and its possible association with RA is

multifaceted (Figure 1). First, cuproptosis in multiple immune

cells may be suppressed, and this suppression contributes to

their over-proliferation in RA. Secondly, several essential

regulatory genes of cuproptosis have been identified to be

associated with multiple RA processes, such as aberrant FLS

proliferation and inflammatory processes in various immune

cells. PDHA1 regulates glycolysis and inflammation; miRNAs

primarily regulate PDHB, GLS1, and LIPT1 regulate glutamine

metabolism; DLAT regulates mitochondrial function and the

TCA cycle metabolism; and FDX1 regulates fatty acid oxidation

and steroidogenesis; MTF1 and LIAS regulate copper

homeostasis; and HIF-1 and CDKN2A regulate cellular

senescence. Finally, it is worth noting that cuproptosis is a

newly characterized form of cell death, and its specific

mechanisms and effects on disease are not as well studied as

other forms of cell death, such as apoptosis and ferroptosis.

Well-designed preclinical experiments and clinical trials are still

required for in-depth studies of cuproptosis and its associated

genes in the context of RA, which still present a significant

challenge. However, it is undeniably a research direction with

great potential.
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Glossary

RA rheumatoid arthritis

TCA
cycle

tricarboxylic acid cycle

NSAIDs non-steroidal anti-inflammatory drugs

FLS fibroblast-like synoviocytes

FDX1 ferredoxin 1

LIAS lipoic acid synthetase

LIPT1 lipoyltransferase 1

DLD dihydrolipoamide dehydrogenase

DLAT drolipoamide S-acetyltransferase

PDHA1 pyruvate dehydrogenase E1 subunit alpha 1

PDHB pyruvate dehydrogenase E1 subunit beta

MTF1 metal-regulatory transcription factor-1

GLS glutaminase

CDKN2A cyclin-dependent kinase inhibitor 2A

MMPs matrix metallopeptidases

IL interleukin

CCL20 chemokine (C-C motif) ligand 20

FoxO3 forkhead box O-3

PDHC the pyruvate dehydrogenase (PDH) complex

ATP adenosine triphosphate

RUNX2 RUNX family transcription factor 2

PKB phosphorylated protein kinase B

HK2 hexokinase 2

PDHK1 PDH kinases 1

SIRT6 sirtuin 6

PI3K phosphatidylinositol 3−kinase

AKT protein kinase B

ERK the extracellular signal-regulated kinase

NF-k;B nuclear factor-k;B

TNFa tumor necrosis factor a

NLRP3 the nucleotide-binding oligomerization domain (NOD)-like receptor
pyrin domain containing 3

MEG3 maternally expressed gene 3

miR miRNA

GRP78 glucose-regulated protein 78

ATF6 activating transcription factor 6

CHOP C/EBP homologous protein

NEK10 NIMA-related kinase 10

IFN-g interferon g

CCR6 chemokine (C-C motif) receptor 6

CXCR3 C-X-C chemokine receptor 3

PPAR-g peroxisome proliferator- activated receptor g

2-HG 2-hydroxyglutarate

KDM5 lysine demethylase 5

H3K4me3 trimethylation of Histone H3 at Lysine 4

ROS reactive oxygen species

RORgt retinoic acid-related orphan receptor gt

E4F1 E4 transcription factor 1

(Continued)
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Continued

SIRT4 sirtuin 4

anti-CCP the antibodies cyclic citrullinated peptides

ESR erythrocyte sedimentation rate

CRP C-reactive protein

C1QBP component 1 q subcomponent-binding protein

Fe/S iron-sulfur

RANKL receptor activator of nuclear factor k-B ligand

NADPH nicotinamide adenine dinucleotide phosphate

CYP11A1 cytochrome P450 11A1

MRE metal responsive element

PIGF phosphatidylinositol glycan anchor biosynthesis class F

HIF-1 hypoxia-inducible factor-1

FOXP3 forkhead box P3

PHDs prolyl hydroxylases

ox-LDL oxidized low-density lipoprotein

NKR natural killer receptors
frontiersin.org
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Melatonin promotes sirtuin
1 expression and inhibits
IRE1α–XBP1S–CHOP to reduce
endoplasmic reticulum
stress–mediated apoptosis in
chondrocytes
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Osteoarthritis (OA) is themost common chronic disease characterized by a loss of

chondrocytes and the degeneration of cartilage. Inflammation plays an important

role in the pathogenesis and progression of OA via the activation of the

endoplasmic reticulum (ER) stress signaling pathway. In this study, we

stimulated human primary chondrocytes with lipopolysaccharide (LPS) to

reduce cell viability and induce chondrocyte apoptosis. LPS–stimulated human

primary chondrocytes induced ER stress and significantly upregulated the ER

chaperone glucose–regulated protein 78 (GRP78) and increased the expression

level of C/EBP–homologous protein (CHOP), a key mediator of ER

stress––induced apoptosis. Interestingly, melatonin treatment attenuated ER

stress–mediated chondrocyte apoptosis. Melatonin inhibited the expression of

cleaved caspase-3, cleaved caspase-10, Bax, CHOP, GRP78, cleaved caspase-4,

phospho–inositol–requiring enzyme 1α (P-IRE1α), and spliced X-box-binding

protein 1 (XBP1S). In an anterior cruciate ligament transection mouse model of

OA, melatonin (50 and 150mg/kg) dose–dependently relieved joint cartilage

degeneration and inhibitied of chondrocyte apoptosis. Immunohistochemical

analysis indicated that melatonin could promote SIRT1 the expression and

inhibit CHOP and cleaved caspase-3 expression in OA mice. In conclusion, our

findings demonstrate for the first time that melatonin inhibits the IRE1α-XBP1S-
CHOP signaling pathway by promoting the expression of SIRT1 in LPS-treated

human chondrocytes and delaying OA progression in vivo.

KEYWORDS

melatonin, osteoarthritis, endoplasmic reticulum stress, apoptosis, IRE1α–XBP1S–
CHOP
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Introduction

Osteoarthritis (OA) is a common degenerative condition that

affects many people worldwide. Its primary causes include

obesity, aging, genetics, and trauma, and it is characterized by

a loss of cartilage cells and the gradual degradation of cartilage (Li

et al., 2014; Uehara et al., 2014; Chen et al., 2017; Shi et al., 2017).

Chondrocytes, the only cells in articular cartilage, are primarily

responsible for maintaining the dynamic balance of articular

cartilage by regulating a anabolism and catabolism of the

extracellular matrix (Thomas et al., 2007). Persistent

inflammation and apoptosis of chondrocytes are important

processes involved in the development of OA (Kaczanowski,

2016; Moon et al., 2016; Robinson et al., 2016; Dai et al., 2018).

Apoptosis is a process that is regulated by genes and ultimately

leads to cell death (D’arcy, 2019). Currently there are three

known triggers of apoptosis, the exogenous apoptosis

pathway, the mitochondrial–mediated endogenous apoptosis

pathway, and the endoplasmic reticulum (ER) stress (ERS)–

mediated apoptosis pathway. Of these, the ERS-mediated

apoptosis pathway has attracted the most attention

(Kaczanowski, 2016; Moon et al., 2016).

Accumulation of misfolded proteins within the ER lumen

leads to ER stress. Stressed cells then activate a downstream

adaptive mechanism to alleviate the stress and restore ER

homeostasis (Hetz et al., 2020). This adaptive mechanism is

known as the unfolded protein response (UPR) (Tavernier et al.,

2017). Mild ERS helps misfolded and unfolded proteins to fold

correctly, and supports the degradation of misfolded proteins,

thereby promoting cell survival and maintaining balance in the

intracellular environment. If stress factors persist however, ERS

will exceed the UPR threshold and cell apoptosis will be induced

(Xin et al., 2014; Sepulveda et al., 2018). UPR occurs mainly

through the activation of resident ER, activating transcription

factor 6 (ATF6), protein kinase R (PRK)-like ER kinase (PERK),

and inositol-requiring protein 1-α (IRE1-α)-sensor
transmembrane proteins by activating the corresponding

signaling pathways (Abdullah and Ravanan, 2018). PERK-

eukaryotic initiation factor 2α (eIF2α)-C/EBP homologous

protein (CHOP), IRE1α-X-box-binding protein 1 (XBP1)-

CHOP, and ATF6-XBP1-CHOP have been described as the

three pathways key to inducing apoptosis (Komoike and

Matsuoka, 2016). As the most conservative signaling pathway

in the UPR, the IRE1α-XBP1-CHOP pathway plays a significant

role in ERS and is considered a promising target for drug therapy.

The IRE1α signaling pathway and its relationship with

chondrocyte apoptosis have been extensively studied (Wu

et al., 2018). Inhibition of apoptosis and the promotion of

cartilage regeneration are both of clinical significance with

respect to delaying the development of OA by directly

blocking the IRE1α pathway. To date however, no relevant in

vivo or in vitro studies have been published (Huang et al., 2021).

A sustained inflammatory response during OA results in chronic

ER stress (Zhang et al., 2019a); thus, in the current study

lipopolysaccharide (LPS) was used to induce ERS and

apoptosis to investigate OA treatment mechanisms.

Accumulation of misfolded proteins within the ER lumen

leads to ER stress. Stressed cells then activate a downstream

adaptive mechanism to alleviate the stress and restore ER

homeostasis (Hetz et al., 2020). This adaptive mechanism is

known as the unfolded protein response (UPR) (Tavernier et al.,

2017). Mild ERS helps misfolded and unfolded proteins to fold

correctly, and supports the degradation of misfolded proteins,

thereby promoting cell survival and maintaining balance in the

intracellular environment. If stress factors persist however, ERS

will exceed the UPR threshold and cell apoptosis will be induced

(Xin et al., 2014, Sepulveda et al., 2018). UPR occurs mainly

through the activation of resident ER, activating transcription

factor 6 (ATF6), protein kinase R (PRK)-like ER kinase (PERK),

and inositol&hyphen;requiring protein 1-α (IRE1-α)-sensor
transmembrane proteins by activating the corresponding

signaling pathways (Abdullah and Ravanan, 2018). PERK-

eukaryotic initiation factor 2α (eIF2α)-C/EBP homologous

protein (CHOP), IRE1α-X-box-binding protein 1 (XBP1)-

CHOP, and ATF6-XBP1-CHOP have been described as the

three pathways key to inducing apoptosis (Komoike and

Matsuoka, 2016). As the most conservative signaling pathway

in the UPR, the IRE1α-XBP1-CHOP pathway plays a significant

role in ERS and is considered a promising target for drug therapy.

The IRE1α signaling pathway and its relationship with

chondrocyte apoptosis have been extensively studied (Wu

et al., 2018). Inhibition of apoptosis and the promotion of

cartilage regeneration are both of clinical significance with

respect to delaying the development of OA by directly

blocking the IRE1α pathway. To date however, no relevant in

vivo or in vitro studies have been published (Huang et al., 2021).

A sustained inflammatory response during OA results in chronic

ER stress (Zhang et al., 2019a); thus, in the current study

lipopolysaccharide (LPS) was used to induce ERS and

apoptosis to investigate OA treatment mechanisms.

Silent information regulator 2 type 1 (SIRT1) has been

implicated in several age-related conditions such as cancer,

obesity, cardiovascular disease, dementia, type 2 diabetes,

arthritis, osteoporosis, and OA (Morris, 2013). It is a histone

deacetylase that relies on nicotinamide adenine dinucleotide,

which has a protective effect in human chondrocytes and can

prevent OA progression (Lim et al., 2012; Terauchi et al., 2016). It

can reportedly promote cell survival while suppressing cell

apoptosis by modulating multiple transcription factors,

including nuclear factor-κB, p53, forkhead box O protein,

DNA repair factor Ku70, and transcription co-activator p300

(Vaziri et al., 2001; Brunet et al., 2004; Cohen et al., 2004; Yeung

et al., 2004; Bouras et al., 2005). The protective role of SIRT1 in

ERS-induced cells has been demonstrated in previous

investigations (Feng et al., 2019; Luo et al., 2019; Hu et al.,

2020). Previous studies have also shown that SIRT1 levels in
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normal cartilage samples taken from elderly individuals are lower

than those in samples taken from younger people, and that

SIRT1 levels in samples from OA patients are lower than

those in samples from healthy people. SIRT1 is a potential

therapeutic option for the treatment of OA because it plays a

crucial role in articular cartilage protection (Sacitharan et al.,

2020). Luo et al. (Luo et al., 2019) reported that SIRT1 reduces

hypoxia-induced apoptosis through the IRE1α pathway, thereby

protecting cardiomyocytes from hypoxic stress. It was recently

shown that Sirt1 inhibition induces hyperacetylation and

phosphorylation of eIF2α and PERK to regulate PERK-ATF4

signaling of ER stress (Prola et al., 2017; Kang et al., 2018).

Additionally, SIRT1 deacetylates PERK physically through

physical interactions (Zhang et al., 2021). It has been shown

that SIRT1 deacetylates XBP1s and inhibits the transcriptional

activity of XBP1s to regulate UPR signaling (Wang et al., 2011).

Luo and collaborators reported that reported that SIRT1 reduces

hypoxia–induced apoptosis through the IRE1α pathway, thereby

protecting cardiomyocytes from hypoxic stress. (Luo et al., 2019).

However, whether SIRT1 can regulate ERS and slow the

progression of OA in human chondrocytes via the IRE1α-
XBP1S-CHOP pathway is unclear.

N-acetyl-5-methoxy tryptamine (melatonin) is a hormone

produced by the pineal gland in mammals, including humans. It

has a variety of biological functions including anti-oxidative, anti-

inflammatory, and anti-apoptotic effects (Mazzon et al., 2006;

García et al., 2014). It is evidently effective for the treatment of

several pathological conditions including cancer, neurotoxicity, OA,

and liver and metabolic diseases, but the specific mechanisms by

whichmelatonin exerts its effects remain unclear (Pei et al., 2009; Liu

et al., 2014). Many in vivo and in vitro studies have shown that

melatonin inhibits ERS-mediated apoptosis in some cells (Chen Y.

et al., 2016; Zhou et al., 2020; Qin et al., 2021). In a recent study

melatonin prevented chronic obstructive pulmonary disease by

inhibiting ERS and apoptosis via the upregulation of

SIRT1 expression in mice (He et al., 2019).

However, whether melatonin inhibits ERS-induced apoptosis

in human chondrocytes by activating SIRT1 protein levels

remains unclear. In the current study the effects of melatonin

on LPS-induced chondrocyte apoptosis were investigated, as

were the potential mechanisms involved. The therapeutic

effects of melatonin were also investigated in a murine model

of arthritis of the knee.

Materials and methods

Patients and tissue samples

The study was approved by the Research Ethics Committee

of the First Affiliated Hospital of Anhui Medical University,

china written informed consent was obtained from all individuals

before their operations. International Cartilage Repair Society

grade 4 human OA cartilage was obtained from the knee joints of

26 OA patients (mean age 62.73 ± 5.5 years) at the First Affiliated

Hospital of Anhui Medical University. The cartilage was stored at

4°C for 2–3 h to extract primary cartilage cells.

Reagents and antibodies

Fetal bovine serum, Dulbecco’s modified Eagle medium

(DMEM)/F12 medium, and phosphate-buffered saline (PBS) were

purchased from HyClone (Logan, UT, United States). Melatonin

(73314) was purchased from Med Chem Express (Princeton, NJ,

United States). LPS (ST1470), tunicamycin (TM) (SC0393), 4′,6-
diamidino-2-phenylindole (DAPI) (P0131), 0.25% trypsin (C0205),

and EX527 were purchased from Beyotime (Shanghai, China).

Primary antibodies against SIRT1 (13161-1-AP), Bax

(50599–2–Ig), glucose-regulated protein 78 (GRP78) (11587-1-

AP), CHOP (15204-1-AP), IRE1α (27528-1-AP), and β-actin
(15204-1-p) were purchased from Proteintech (Wuhan, Hubei), as

were horseradish peroxidase (HRP)-conjugated secondary

antibodies. Phospho-IRE1α (P-IRE1α) (ab124945), Bcl-2

antibodies (ab32124), cleaved caspase-4 (ab22687), and cleaved

caspase-10 (ab11475) were purchased from Abcam (Cambridge,

United Kingdom), and XBP1S (#40435) and cleaved caspase-3

(Asp175) were purchased from Cell Signaling Technology

(Danvers, MA, United States). Cell-counting kit 8 (CCK-8) was

purchased from Beyotime.

Chondrocyte isolation and culture
identification and treatment

Primary human knee chondrocytes were isolated from OA

cartilage tissue using a previously described protocol (Tardif

et al., 2009). Briefly, OA cartilage tissue was collected from the

proximal tibia and distal femur and washed three times with sterile

PBS. The samples were then sliced into pieces measuring 1 mm3,

trypsinized in sequential digestion (ethylenediaminetetraacetic acid

[EDTA]-free trypsin) for 30 min, and treated with 0.2% type II

collagenase dissolved in DMEM/F12 at 37°C for 10 h. Tissues and

cells were then passed through a 50-ml filter to remove undigested

contents, then cells were transferred into a 15-ml tube and

centrifuged. Chondrocytes were then obtained via centrifugation.

The supernatant was discarded and cell pellets were resuspended in

a 25 cm2 cell culture flask with 3 ml of DMEM containing 10% fetal

bovine serum and 1% penicillin/streptomycin. Cells were cultured at

37°C in a 5% CO2 humified atmosphere. The culture medium was

replaced every 2–3 days. After two or three passages, chondrocytes

were used in assays. For LPS treatment different concentrations were

added to the culturemedium (0, 1, 5, 10, 20, or 50 μg/ml), and 10 μg/

ml was ultimately chosen for further experimentation. When the

cells reached 70–80% confluence the medium was replaced, and the

cells were divided into different treatment groups. Melatonin was
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dissolved in absolute ethyl alcohol to obtain an initial stock

concentration of 250 mM, which was then diluted with basic

medium to create stocks of 5, 10, 50, and 100 µM for use. There

were no concerns of potential absolute ethyl alcohol-mediated

toxicity. Chondrocyte identification was performed via Alcian

blue staining as previously described (Schofield et al., 1975). In

short, chondrocytes were fixed with 4% paraformaldehyde for

20 min, followed by staining with 0.5% Alcian blue for 30 min.

They were then washed with distilled water, and assessed via

microscopy (LEICA, Wetzlar, Germany).

Cell viability assay

The viability of articular chondrocytes was assessed using the

CCK-8. Chondrocytes were seeded at 5 × 104 cells per well in a

96-well plate well overnight. A drug-inoculation assay was

performed when the cells reached 60–70% confluence.

Chondrocytes were treated with increasing concentrations of

melatonin (0, 5, 10, 50, and 100 µM) or LPS (10 μg/ml) for 24 h,

then 100 μl of CCK-8 solution (10 μL CCK-8 + 90 μl basal

medium) was added to each well followed by incubation at

37°C in the dark for 2 h. Lastly, the absorbance of each

sample was determined via a Thermomax microplate reader

(Bio-Tek Instruments, Winooski, VT, United States) at a

wavelength of 450 nm. Each sample was plated in triplicate,

and data are representative of three independent experiments.

Flow cytometry

Briefly, chondrocytes in 6-well plates were exposed to LPS, TM

(1 μM), a classic ERS inducer, or melatonin + LPS for 24 h. Each

group was prepared separately. At the end of the experiment

chondrocytes were digested with EDTA-free trypsin and

centrifuged to obtain cell pellets. The cell pellets were gently

resuspended in 500 μl of 1 × annexin V binding buffer

(Beyotime), then stained with annexin V-fluorescein

isothiocyanate and propidium iodide for 10 min at room

temperature in the dark. The stained chondrocytes were assessed

via flow cytometry (BD, Franklin Lakes, NJ, United States), and the

rate of apoptosis was expressed as the percentage of cells with annexin

V-fluorescein isothiocyanate positivity and propidium iodide

positivity/negativity. Each sample was assessed in triplicate, and

data are representative of three independent experiments.

Quantitative real–time polymerase chain
reaction

Total RNA was obtained from chondrocytes using TRIzol

(Invitrogen, Carlsbad, CA, United States), then 1 μg of RNA was

reverse-transcribed into complementary DNA using a specific

reverse-transcription kit (Accurate Biotechnology, Changsha,

China) in accordance with the manufacturer’s instructions.

qPCR Master Mix (Accurate Biotechnology) was then used to

perform quantitative real-time polymerase chain reaction (qRT-

PCR) assays using corresponding primers. Gene expression levels

were normalized to glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) levels, and data were quantified via the −ΔΔCt
method. Each sample was assessed in triplicate, and data are

representative of three independent experiments. The primer

sequences used are shown in Table 1.

Western blot assay

Melatonin-pretreated chondrocytes were incubated with LPS

in a 6-well plate. After 24 h chondrocytes were washed with cold

PBS and lysed in RIPA lysis buffer containing a protease inhibitor

mixture and a phosphatase inhibitor cocktail (Roche Diagnostics,

Basel, Switzerland) for 30 min to extract total intracellular

proteins. A BCA protein assay kit (Beyotime) was used to

measure total protein concentrations. Equal concentrations of

total protein were separated on 10% SDS-PAGE gels and

transferred to polyvinylidene difluoride membranes (Millipore,

Burlington, MA, United States), which were activated by methyl

alcohol and incubated overnight at 4°C with primary antibodies

against Bcl-2 (1:1,000), cleaved caspase-3 (1:500), Bax (1:2000),

SIRT1 (1:500), CHOP (1:500), GRP78 (1:1,000), XBP1S (1:500),

IRE1α (1:2000), and P-IRE1α (1:1,000). The membranes were

then washed for 10 min three times with tris-buffered saline

containing 0.1% Tween-20, then incubated with HRP-

conjugated secondary antibody for 1 h at room temperature.

Images of blots were obtained via the Chemo Dox XRS system

(Bio-Rad Laboratories, Hercules, CA, United States). ImageJ

version 6.0 (U.S. National Institutes of Health, Bethesda, MD,

United States) was used to calculate the optical density of each

band. Each sample was assessed in triplicate, and data are

representative of three independent experiments.

Immunofluorescence assays

Chondrocytes were seeded on a slide in a 6-well plate (1 × 106

cells/well) and fixed with freshly prepared 4% paraformaldehyde

for 15 min. The cells were then treated with 0.5% (v/v) Triton X-

100 for 10 min after being washed three times with PBS and

blocked with 5% (w/v) bovine serum albumin for 1 h at room

temperature. They were then incubated with primary antibodies

against cleaved caspase-3 (1:200), SIRT1 (1:200), CHOP (1:200),

and XBP1S (1:500) overnight at 4°C, followed by incubation with

fluorescent secondary antibodies (1:300) (Thermo Fisher

Scientific, Waltham, MA, United States) in a dark room.

DAPI (Beyotime) was subsequently added for 2 min. An

inverted fluorescence microscope (LEICA) was used to
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examine and photograph the samples. Each sample was assessed

in triplicate, and data are representative of three independent

experiments.

Transmission electron microscopy

Human chondrocytes were cultured in 25 cm2 culture flasks.

We washed them with PBS and collected cells with 0.05%

trypsin–free EDTA treatment. The cell aggregates were fixed

with 2.5% glutaraldehyde, and the samples were dehydrated by a

series of incubations in 50, 70, 90, and 100% ethanol, then

dehydrated with 100% acetone and embedded in epoxy resin.

An ultramicrotome was used to cut the fixed cell aggregates into

ultrathin sections, stained them, and inspected their

ultrastructure using a transmission electron microscope (Talos

L120C G2; Thermo Fisher Scientific, Waltham, MA,

United States).

Mouse OA model

All mouse experiments were approved by the Ethics

Committee for Animal Research, Anhui Medical University,

Anhui, China. Forty 10–12 week-old male C57/BL mice

weighing 25–30 g were provided by the Laboratory Animal

Center of Anhui Medical University (He Fei, China). OA was

induced in the mice via anterior cruciate ligament (ACL)

transection (ACLT) of the right knee. Arthrotomy without

transection of the ACL in the right knee joint was also

performed in 10 C57/BL mice, which were used as a control

group. The mice were randomly divided into four groups: a

sham group, an ACLT group, an ACLT + low-dose melatonin

treatment group, and an ACLT + high-dose melatonin

treatment group. After the ACLT surgery, melatonin was

injected intraperitoneally once a day for 8 weeks. Briefly,

anesthesia was induced via intraperitoneal injection of

50 mg/L chloral hydrate, hair was shaved at the operation

site, and the left posterior region was fixed in the supine

position. The knee joint was exposed after a medial capsular

incision and gentle lateral displacement of the extensor

mechanism without transection of the patellar ligament, the

ACL was transected, and the joints were flushed with sterile

saline prior to closure of the joint capsule. The articular cavity

was then sutured with 7–0 surgical sutures, and the skin wound

was closed. Topical amoxicillin was applied to prevent wound

infection. Anesthesia recovery and wound healing were

monitored.

Intraperitoneal injection of melatonin

Melatonin (100 mg) was dissolved in 1 ml of absolute ethanol

then diluted to a final concentration of 10 mg/ml in normal

saline. Mice were intraperitoneally injected with either low-dose

melatonin (50 mg/kg) or high-dose melatonin (150 mg/kg) once

a day for 8 weeks (Zhang et al., 2019b). They were then

euthanized, and knee joint samples were collected.

Micro-computed tomography

Knee joints were evaluated via micro-computed tomography

(CT) (Sky Scan 1,176; Bruker, Billerica, MA, United States),

conducted for 120 min at 800 μA and 50 kV with a resolution of

12 μm. Micro-CT data were analyzed by CTAn (SkyScan,

United States) and mimics medical 21 (Materialise, Belgium).

The 3D structural parameters analyzed included the BMD and

region of interest of the subchondral region of the tibial plateau,

selected for analysis with the following morphological

parameters: 1) Bone volume/total tissue volume (BV/TV) (%);

2) trabecular thickness (Tb.Th) (mm); 3) trabecular number

(Tb.N) (1/mm); 4) trabecular separation (Tb.Sp) (mm); and 5)

trabecular mesh factor (Tb.Pf) (1/mm).

Histology

Mice were killed 8 weeks after the surgery. Knee joints were

dissected, fixed in 4% paraformaldehyde for 24 h, decalcified in

TABLE 1 Primer sequences of target genes.

Gene Forward primer (5–39) Reverse primer (5–39)

GRP78 AGGGCAACCGCATCACG ATCGCCAATCAGACG

CHOP GAACAGTGGGCATCACCTC CAGTCCCCTCCTCAGCAT

XBP1S AGCAGCAAGTGGTGGATT CTCTGGAACCTCGTCA

BCL2 ACGGTGGTGGAGGAACTCTTCAG GGTGTGCAGATGCCGGTTCAG

SIRT1 GACGACGAGGGCGAGGAG ACAGGAGGTTGTCTCGGTAGC

COLII ACGCTCAAGTCGCTGAACAACC ATCCAGTAGTCTCCGCTCTTCCAC

GAPDH TGGCCTTCCGTGTTCCTAC GAGTTGCTGTTGAAGTCGCA
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10% EDTA for 2–3 weeks, paraffin-embedded, sectioned

coronally at a thickness of 5 μm, stained with safranin O and

fast-green, then stained with hematoxylin-eosin in accordance

with the manufacturer’s instructions. OA severity was

determined using the Osteoarthritis Research Society

International (OARSI) scoring system (Glasson et al., 2010).

Immunohistochemical analysis

Expression levels of CHOP, cleaved caspase-3, and

SIRT1 were detected via immunohistochemical staining.

Cartilage tissue was fixed with paraformaldehyde, embedded

in paraffin, then cut into 5-mm-thick sections. The sections

were then deparaffinized, treated with 3% hydrogen peroxide

for 15 min, sealed with 5% normal serum, and blocked for

30 min. After incubation with primary antibodies against

CHOP (1:300), cleaved caspase-3 (1:400), and SIRT1 (1:300)

the sections were incubated with the secondary antibody. Images

of the sections in each group were acquired via light microscopy.

ImageJ version 6.0 was used to analyze each image. Levels of

CHOP, cleaved caspase-3, and SIRT1 were determined via

integral absorbance values.

Statistical analysis

All data are representative of three independent experiments.

All results are presented as mean ± standard deviation. All

statistical analysis was performed using the unpaired Student’s

t-test for two groups, or one-way analysis of variance for more

than two groups, via GraphPad Prism version 9 (GraphPad

Software, San Diego, CA, United States). P < 0.05 was

considered statistically significant.

Results

Effects of melatonin on human primary
chondrocyte viability with or without LPS

CCK–8 assay was used to assess the effects of melatonin on

chondrocyte viability at different time periods (24, 48, and

72 h) following treatment with or without LPS at different

concentrations. An LPS concentration of 10 μg/ml obviously

reduced chondrocyte viability (Figure 1B). Treatment with

melatonin at a concentration of≤100 μM had no cytotoxic

effect on chondrocytes (Figure 1C), and 10–100 μM of

melatonin markedly alleviated LPS–induced cytotoxicity in

a concentration-dependent manner (Figure 1D). Previous

studies showed that a dose range of 10 nM–100 µM is ideal

for studying the effects of melatonin (Liu et al., 2011; Quan

et al., 2015; Xiong et al., 2015). Therefore, a dose of 10 μM

melatonin was used as the therapeutic concentration. In

addition, OA is a chronic degenerative joint disease

characterized by persistent aseptic inflammation. Hence a

relatively moderate amount of LPS (10 μg/ml) was used to

stimulate human primary chondrocytes for 24 h to mimic

aseptic inflammation in OA in vitro. Therefore 10 µM of

melatonin and 10 μg/ml of LPS were used in the

subsequent experiments.

Melatonin protected human primary
chondrocytes from LPS–induced
apoptosis

To investigate the effects of melatonin on LPS–induced

apoptosis in chondrocytes, we treated chondrocytes with

10 μg/ml of LPS with or without melatonin. First, primary

human chondrocytes were pretreated with 10 μg/ml LPS for

2 h, and then with or without 10 μM melatonin for 24 h.

Western blotting showed that melatonin suppressed

pro–apoptotic proteins (cleaved caspase–3, cleaved

caspase–10, Bax) and promoted a greater level of

anti–apoptotic protein (bcl-2) compared to that in the LPS

group (Figures 2A,B). The results revealed that the apoptosis

of chondrocytes induced by LPS was significantly reduced

after melatonin treatment. qRT–PCR results showed that

melatonin–treated chondrocytes markedly elevated the

expression levels of COLII and Bcl–2 compared to

LPS–treated chondrocytes (Figure 2C), Flow cytometry and

fluorescence analysis were used to assess the degree of

apoptosis of chondrocytes (Figures 2D,E), and the results

showed that LPS stimulation caused a significant increase

in the apoptosis of human primary chondrocytes; however,

the effect of LPS on apoptosis was significantly inhibited by

melatonin. In addition, immunofluorescence staining for

cleaved caspase–3 was consistent with the western blot

results (Figures 2F,G). Therefore, the findings indicated

that melatonin could inhibit LPS–induced chondrocyte

apoptosis.

Melatonin inhibits ERS in human
chondrocytes induced by LPS

First, we evaluated whether the anti–apoptotic effect of

melatonin inhibited ERS. The ERS–related biomarkers

GRP78, CHOP and cleaved caspase–4 were analyzed by

western blotting (Figures 3A,B). The messenger RNA

expression levels of GRP78 and CHOP were analyzed by

qRT–PCR (Figure 3C). The results showed that CHOP,

GRP78 and cleaved caspase–4 were significantly increased

in LPS–stimulated human primary chondrocytes. Moreover,

treatment with melatonin could reverse the upregulation of
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ERS induced by LPS. Melatonin added to the human primary

chondrocytes without LPS did not change the levels of CHOP,

GRP78 and cleaved caspase–4 compared to those in the

control group, indicating that Melatonin alone did not

influence ER state of chondrocyte (figures no showed). The

immunofluorescence staining for CHOP were consistent with

the western blot and qRT-PCR results (Figures 3D,E). The

results of transmission electron microscopy showed that the

ER of the human chondrocytes treated with LPS was in an

expanded state, and the expansion of the ER was reduced

following treatment with melatonin (Figure 3F). ERS markers

were also detected in human chondrocytes treated with TM,

and TM attenuated the downregulation of ERS by melatonin.

Melatonin attenuates LPS–Induced
apoptosis of human primary chondrocytes
by inhibiting ERS

To further explore whether melatonin inhibited ERS in human

primary chondrocytes treatedwith LPS, we used TM, to activate ERS

in human primary chondrocytes. Western blot results (Figures

FIGURE 1
The effect of melatonin on the viability of human chondrocytes with or without lipopolysaccharide (LPS). (A) The chemical structure of
melatonin. (B,C) The cytotoxicity effects of LPS and melatonin on human chondrocytes at different concentrations were tested at 24, 48, and 72 h
using a cell–counting kit 8. (D) The viability of human chondrocytes treated with LPS (10 μg/ml) after different concentrations melatonin treatment.
The experiment was repeated three times independently. All values are shown as mean ± standard deviation. **p < 0.01, ***p < 0.001, ****p <
0.0001. ns: not significant. Abbreviations: LPS, lipopolysaccharide; ns, not significant; MLT, melatonin.
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FIGURE 2
Melatonin inhibited apoptosis in human chondrocytes stimulated by lipopolysaccharide (LPS). (A,B)Wedetected the protein levels of Bcl–2, Bax
cleaved caspase-10 and cleaved caspase–3 in each group. (C)mRNA expression levels of collagen II and Bcl–2 in each group were measured using
qRT–PCR (D–E) Apoptosis of human chondrocytes were determined by flow cytometry following annexin V-PE and propidium iodide staining. (F,G)
Quantification of the intensity of cleaved caspase–3 in human chondrocytes in each group was performed with immunofluorescence staining.
The experiment was repeated three times independently. All values are shown asmean± standard deviation. **p < 0.01, ***p < 0.001, ****p < 0.0001.
Abbreviations: DAPI, 4′,6–diamidino–2–phenylindole; ns, not significant; PI, propidium iodide; LPS, lipopolysaccharide; MLT, melatonin; TM,
tunicamycin.
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FIGURE 3
Melatonin inhibited inflammation–induced endoplasmic reticulum stress in human chondrocytes. (A,B) Western blot analysis Protein
expression levels of GRP78, CHOP and cleaved caspas-4 were determined by western blotting. (C) The messenger RNA expression levels of
glucose–regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were checked by real–time polymerase chain reaction analysis in
each group. (D,E) CHOP immunofluorescence staining. Obvious increasingly bright green spots indicate elevated CHOP expression (bar,
20 μm). (F) The effect of altered endoplasmic reticulum morphology after treatment was observed with transmission electron microscopy (bar,
500 nm) (black arrows refer to the endoplasmic reticulum). The experiment was repeated three times independently. All values are shown asmean ±
standard deviation. **p < 0.01, ***p < 0.001, ****p < 0.0001. Abbreviations: LPS, lipopolysaccharide; ns, not significant; MLT, melatonin; TM,
tunicamycin.
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3A,B) and qRT–PCR (Figure 3C) showed that the expression levels

of CHOP, GRP78 and cleaved caspase–4 in human primary

chondrocytes treated with TM were significantly increased

compared to those in the melatonin + LPS group. In addition,

the fluorescence staining of CHOP showed that TM increased the

expression of ERS (Figures 3D,E). Transmission electron

microscopy revealed the inhibitory effect of melatonin on ERS,

while TM reverses the protective effect of melatonin on ERS

(Figure 3F). We confirmed that melatonin protects chondrocytes

from inflammation–induced apoptosis. To verify whether

melatonin inhibited LPS–Induced chondrocyte apoptosis by

inhibiting the ERS of human primary chondrocytes, we activated

ERS using TM and measured the expression levels of pro–apoptotic

biomarker, including cleaved caspase-3, cleaved caspase-10 and Bax

and anti–apoptotic biomarkers: Bcl-2, (Figures 2A,B). Flow

cytometry (Figures 2D,E) and immunofluorescence assays

(Figures 2F,G) were also used to detect the level of apoptosis of

human primary chondrocytes treated with TM. In summary, these

FIGURE 4
Melatonin upregulated the expression of sirtuin 1 (SIRT1) and attenuated the activation of the inositol–requiring enzyme 1α–X–box–binding
protein 1 (IRE1α–XBP1S) pathway. (A,B) The protein expression levels of SIRT1 and P-IRE1α, P-IRE1α and XBP1S proteins were determined by western
blot analysis. (C)We evaluated the messenger RNA expression level of SIRT1 and XBP1S by real–time polymerase chain reaction analysis. (D,E)
SIRT1 immunofluorescence staining and quantification of the number of SIRT1–positive human chondrocytes in different groups. The
experiment was repeated three times independently. Significantly increased green spots indicate that SIRT1 protein expression is upregulated (bar,
20 μm). All values are shown as the mean ± standard deviation. **p < 0.01, ***p < 0.001, ****p < 0.0001. Abbreviation: ns, not significant.
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results revealed that TM can reduce the anti–apoptotic activity of

melatonin and melatonin attenuates apoptosis by inhibiting ER

stress.

Melatonin enhanced SIRT1 expression and
inhibited the IRE1α-XBP1S-CHOP pathway
in LPS-Treated human primary
chondrocytes

According to our results, melatonin increased the expression

of SIRT1 and inhibited the IRE1α–XBP1S–CHOP pathway in

chondrocytes treated with LPS. Previous research has shown that

the expression of SIRT1 in OA chondrocytes is significantly lower

than that in normal cells (Sacitharan et al., 2020). Therefore, we

measured the expression levels of SIRT1 and

IRE1α–XBP1S–CHOP pathway–associated proteins. As shown

in Figure 4, LPS reduced SIRT1 expression in human primary

chondrocytes, and melatonin treatment eliminated the inducing

effect of LPS. We also observed that the SIRT1 protein expression

level in chondrocytes treated with melatonin alone did not change

compared to that in the control group. In addition, our results

revealed that melatonin attenuated p–IRE1α and XBP1S protein

levels in LPS–stimulated human primary chondrocytes (Figures

4A,B). The results of qRT–PCR (Figure 4C) and

SIRT1 immunofluorescenc staining (Figures 4D,E) were

consistent with the western blotting. Immunofluorescence

results showed that SIRT1 can co-localize with IRE1α
(Supplementary Figure S1), which provides a basis for the study

of the interrelationship between SIRT1 and IRE1.

Melatonin inhibits ERS–Related human
primary chondrocyte apoptosis by
promoting SIRT1 activation and inhibiting
the IRE1α-XBP1S-CHOP signaling pathway
in chondrocytes

To assess the roles of SIRT1 and IRE1α-XBP1S activation in

ERS–Induced chondrocyte apoptosis, cells were treated with TM

to activate ER stress. Our results revealed that TM downregulated

SIRT1 expression and upregulated P–IRE1α and XBP1S

expression (Figures 4A,B). In addition, we used EX527, a

known SIRT1 inhibitor, to treat human chondrocytes. Our

results showed that the protein levels of GRP78, CHOP and

cleaved caspase-4 were elevated in the EX527 (10 μM) +

melatonin + LPS group (Figures 5A,B). CHOP

immunofluorescence result was similar to the western blot

results (Figures 5C,D). In addition, transmission electron

microscopy observed the extent of ER expansion of

chondrocytes, and melatonin inhibited ERS (Figure 5E). These

results demonstrated that inhibition of SIRT1 and activation of

IRE1α are related to chondrocyte apoptosis induced by ERS.

Melatonin inhibits the ERS of human
primary chondrocytes induced by LPS by
promoting SIRT1 expression and inhibiting
the IRE1α-XBP1S-CHOP signaling axis

Melatonin inhibited LPS-induced apoptosis in human

primary chondrocytes by promoting SIRT1 expression

while suppressing the IRE1α-XBP1S-CHOP pathway.

However, the interaction between SIRT1 and the IRE1α-
XBP1S-CHOP pathway remains uncharacterized. To further

investigate the connections between SIRT1 and IRE1α-
XBP1S-CHOP, EX527 was used to downregulate

SIRT1 expression in human primary chondrocytes.

EX527 treatment reduced the levels of SIRT1 protein.

P-IRE1α, XBP1S, and CHOP protein levels were reduced by

melatonin, and P-IRE1α and XBP1S protein levels in

chondrocytes treated with LPS were increased (Figures

6A,B). SIRT1 and XBP1S immunofluorescence results were

consistent with the western blotting (Figures 6C–F).

Collectively the data indicate that SIRT1 inhibits ERS in

human primary chondrocytes by inhibiting the IRE1α-
XBP1S-CHOP pathway.

Melatonin attenuates mouse chondrocyte
apoptosis, inhibits ERS, and delays OA
progression in a mouse model

Changes in bone mineral density and bone morphology

were observed via micro-CT. The subchondral region of the

tibia was used as the region of interest to determine the

percentage of bone, bone volume/total tissue volume (BV/

TV), trabecular number (Tb.N), trabecular thickness (Tb.Th),

trabecular pattern factor (Tb.Pf), and trabecular separation

(Tb.Sp). In the treatment groups BMD, BV/TV, Tb.N, and

Tb.Th were increased compared with the OA group, whereas

Tb. Sp and Tb. Pf were decreased. These results indicated that

melatonin attenuated OA in a dose-dependent manner

(Figures 7A,B). Melatonin reversed this situation in a

concentration-dependent manner. Hematoxylin and eosin

staining and safranine O of tissue from the knee joints of

sham group mice revealed that the articular cartilage was

smooth and red (Figure 8A). In the OA group severe damage,

erosion, and destruction of articular cartilage were evident,

but melatonin attenuated the apoptosis of chondrocytes and

slowed the progression of OA in OA mice in a concentration-

dependent manner. OARSI scores were highly consistent with

the histology results (Figure 8C). OARSI scores in the OA

group were markedly greater than those in the sham group,

but melatonin reduced the OARSI scores in the OA group in a

concentration-dependent manner. Immunohistochemical

staining of mouse cartilage showed that melatonin

attenuated the expression levels of cleaved caspase-3 and
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CHOP in OA cartilage, and increased SIRT1 expression

compared to the OA group, and these results were similar

to those of the in vitro studies (Figures 8B,D). Collectively

these results indicate that melatonin inhibited ERS and had

obvious anti-apoptotic effects in the in vitro and in vivo

experiments.

FIGURE 5
EX527 attenuated the inhibitory effect of melatonin on the endoplasmic reticulum stress of human chondrocytes induced by inflammation.
(A,B) Expression levels of GRP78, C/EBP homologous protein (CHOP) and cleaved caspase-4 was determined by western blotting. (C,D) A
representative CHOP level was detected by immunofluorescence staining to the endoplasmic reticulum. ImageJ was used to detect the
fluorescence intensity of CHOP (bar, 20 μm). (E) The effect of altered endoplasmic reticulum morphology was observed with transmission
electron microscopy (bar, 500 nm (black arrows refer to the endoplasmic reticulum); TM, tunicamycin; EX527, a classic sirtuin 1 inhibitor. The
experiment was repeated three times independently. All values are shown as mean ± standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001. Abbreviations: MLT, melatonin; ns, not significant.

Frontiers in Pharmacology frontiersin.org12

Qin et al. 10.3389/fphar.2022.940629

5859

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.940629


Discussion

OA is a multifactorial disease (Koyama et al., 2014).

Despite numerous recent studies the pathogenesis of OA is

not fully understood. Increasing evidence indicates that the

onset of OA is related to the death of chondrocytes (Thomas

et al., 2007; Ryu et al., 2012), and apoptosis of chondrocytes

plays a crucial role in the onset and progression of OA (Dai

et al., 2018; Park et al., 2020). The occurrence and

development of OA are due to the loss of cartilage cells,

resulting in the degradation of cartilage and thickening of

subchondral bone. Mild inflammation and ERS are adaptive

FIGURE 6
EX527 eliminated the protective effect of melatonin on human chondrocytes stimulated by lipopolysaccharide by inhibiting the
inositol–requiring enzyme 1α–X–box–binding protein 1s (IRE1α–XBP1S) pathway. (A,B) Western blot analysis was performed to detect the protein
expression level of SIRT1 and P-IRE1α, IRE1α and XBP1S after EX527 treatment. (C–F) Immunofluorescence staining of sirtuin 1 (SIRT1) and XBP1S (bar,
20 μm). ImageJ was used to detect the fluorescence intensity of SIRT1 and XBP1S. The experiment was repeated three times independently. All
values are shown as the mean ± standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Abbreviations: LPS: lipopolysaccharide; MLT,
melatonin; ns, not significant; TM, tunicamycin; EX527, a classic SIRT1 inhibitor.
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self-protection mechanisms of chondrocytes. Under

prolonged or severe ERS conditions however, the dynamic

balance of the ER cannot be restored, and the excessive

activation of the UPR cannot be ameliorated (Xin et al.,

2014). During unremittent ER stress chondrocytes activate

the UPR, ultimately leading to apoptosis of cells (Tabas and

FIGURE 7
Preventive effect of melatonin on OA development in mice. (A,B) Analysis of bone destruction and knee joint bone histomorphometric
parameters usingmicro -CT data, Data were shown asmean ± standard deviation and analyzed using one-way ANOVA (each group n = 6). *p < 0.05,
**p < 0.01, ***p < 0.001, ns: not significant versus the normal group, #p < 0.05, ##p < 0.01, ###p <0.001, ####p <0.0001, ns: not significant versus
the OA group.
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Ron, 2011). Recent studies have shown that continuous

inflammatory stimulation can lead to ERS (Zhang et al.,

2019a), and the occurrence of ERS can initiate apoptotic

signals through the IRE1α signaling pathway.

IRE1α is an ER transmembrane protein that plays a key role

in regulating the UPR clock after ER stress activation. UPRs

caused by long-term chronic inflammation can cause IRE1α to be
phosphorylated, causing the splicing of XBP1, which results in

FIGURE 8
Melatonin inhibited apoptosis of chondrocytes and endoplasmic reticulum stress in themouse ACLTmodel. (A)Hematoxylin and eosin staining
safranin O staining and (bar, 50 μm) were performed to complete histological analysis and microscopic observation of cartilage destruction in each
group at 8 weeks after surgery. The pathological manifestations of osteoarthritis were cartilage destruction and defects. (B,D) Immunohistochemical
staining and quantification of immunohistochemical staining of cleaved caspase–3, chop, and sirtuin1 expression in each group (bar, 50 μm).
(C) The scores for the four groups of articular cartilage were based on the International Association for Osteoarthritis Research system, as shown in
the figure. All values are shown as the mean ± standard deviation (each group n = 6). *p < 0.05 **p < 0.01, ***p < 0 0.001 ****p < 0.0001, ns: not
significant versus the normal group. Abbreviations; IHC, immunohistochemical; high melatonin, 150 mg/ml; low melatonin, 50 mg/ml.
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the activation of downstream pro-apoptotic proteins including

CHOP (Uehara et al., 2014). Notably IRE1α is involved in cell

differentiation and extracellular matrix formation in

chondrocytes, and regulates the expression of chondrocyte

survival proteins including Bcl-2 and XBP1S (Han et al., 2013;

Wu et al., 2018). In the current study the apoptosis biomarkers

cleaved caspase-3 and Bax were upregulated in LPS-stimulated

chondrocytes, whereas the anti-apoptotic protein Bcl-2 was

downregulated. We proved during this study for the first time

that melatonin significantly reduces the apoptosis of

chondrocytes.

Typical biomarkers of ERS include CHOP and GRP78

(Malhotra and Kaufman, 2007; Uehara et al., 2014). In the

present study the protein levels of CHOP, GRP78, and

caspase-4 were significantly reduced by treatment with

melatonin (10 µM). Moreover, melatonin inhibited ERS

caused by inflammation. In mammalian cells, ER stress

activates the three main ER-localized transmembrane

signaling proteins IRE1α, PERK, and ATF6, which in turn

activate UPR (Hotamisligil, 2010). Previous studies have

shown that ERS promotes IRE1α phosphorylation, which

leads to increased XBP1 cutting and promotes the degradation

of OA cartilage (Walter et al., 2015). A delay in the development

of OA was achieved by inhibiting ERS, thus, the excessive

activation of IRE1α induced a terminal UPR that led to

apoptotic signals via XBP1 messenger RNA splicing (Chen

and Cubillos-Ruiz, 2021). We first found that melatonin

relieved the ERS of chondrocytes by inhibiting the IRE1α-
XBP1S-CHOP signaling pathway. The classic ERS inducer TM

was used to further investigate the relationship between ERS and

apoptosis in human primary chondrocytes. TM attenuated the

anti-apoptotic effect of melatonin in chondrocytes. The above

experimental results indicate that melatonin inhibited the ERS-

mediated apoptosis of chondrocytes by inhibiting the IRE1α-
XBP1S-CHOP signaling pathway, especially by directly

inhibiting CHOP. However, whether the protective effect of

melatonin on OA chondrocytes is achieved through the other

two ERS-related pathways requires further experimental

research. With the progression of OA, SIRT1 continues to

decrease in the cartilage of OA patients. SIRT1 regulates

expression of the extracellular matrix, and has anti-catabolic,

anti-inflammatory, anti-oxidant, and anti-apoptotic effects

(Deng et al., 2019). In chondrocytes SIRT1 can protect

cartilage by regulating mitochondrial biogenesis, oxidative

stress, autophagy, and ERS, and it can also inhibit

chondrocyte hypertrophy and degeneration (Fujita et al., 2011;

Wang et al., 2015). Therefore, SIRT1 has emerged as a promising

therapeutic target for the treatment of OA.

Based on previous research results, the current study

investigated whether melatonin inhibits inflammation

mediated ERS and the apoptosis of chondrocytes through

SIRT1. In this study, the experimental results indicated that

LPS decreased the expression of SIRT1. Then, after treatment

with melatonin, SIRT1 expression was significantly increased. To

confirm that melatonin regulated ERS through SIRT1, we used

an exclusive SIRT1 inhibitor, EX57, and we observed that

EX57 significantly elevated the protein levels of CHOP,

GRP78 and casepase-4, reversing the inhibitory effect of

melatonin on the ER. These results indicate that

SIRT1 inhibits the apoptosis of inflammation–induced

chondrocytes by alleviating ERS. Previous study showed that

SIRT1 plays a crucial role in regulating ERS–related apoptosis

(Prola et al., 2017; Huang et al., 2018; Li et al., 2018).

SIRT1 regulates the IRE1α–XBP1S–CHOP signaling pathway

and promote the formation of growth cartilage plates (Chou

et al., 2019). Previous research also demonstrated that

SIRT1 activation can inhibit cadmium–induced ERS by

inhibiting the IRE1α–XBP1S pathway (Romeo-Guitart et al.,

2018). However, the relationship between SIRT1 and the

IRE1α–XBP1S–CHOP signaling pathway in chondrocytes

needs to be further explored. Human chondrocytes treated

with the classic SIRT1 inhibitor EX57 showed markedly

elevated expression levels of P–IRE1α, XBP1S, and CHOP.

For the first time, our experiment has confirmed the

importance of SIRT1 for ERS–mediated apoptosis and

revealed that its mechanism of action is through the

inhibition of the IRE1α–XBP1S–CHOP signaling pathway.

Based on the above experimental results, we found for the

first time that melatonin inhibits the IRE1α–XBP1S–CHOP

signaling pathway by promoting SIRT1 expression in human

primary chondrocytes induced by inflammation in vitro.

However, whether the protective effect of melatonin and the

expression of SIRT1 in OA are related to the other two pathways

of ERS needs to be further verified. The typical features of OA

progression are obvious destruction of articular surfaces and

lesions and apoptosis of chondrocytes. The ACLT mouse model

is a the widely used OA model in several studies (Zhou et al.,

2019). Here, the mouse ACLT model was used to imitate the

progression of OA. The concentration of melatonin varies greatly

in animal models of different diseases. Zhang et al. (Zhang et al.,

2019b)used a melatonin solution at a dose of 10 mg/ml in the

treatment of ACLTmodels of OA, where intra–articular injection

of the same amount (10 μL) of melatonin achieved a good

curative effect. Meanwhile, other research has studied the

effects of prenatal use of melatonin on the regulation of

neonatal brain inflammation. In a study, intraperitoneal

injection of melatonin (5 mg/kg) effectively reduced neonatal

inflammation and related brain damage caused by maternal LPS

(Carloni et al., 2016). According to another study, melatonin at a

concentration of 10 mg/kg/day had a protective effect on COPD

by reducing lung tissue cell apoptosis and ERS in COPD rats (He

et al., 2019). Chen et al. (Chen S. J. et al., 2016) demonstrated that

a melatonin dose of 200 mg/kg delivered through subcutaneous

injection had a good effect on immune encephalomyelitis. In

summary, melatonin at a dosage of up to 200 mg/kg is safe. In our

experiments and related reports, the therapeutic effect of
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melatonin is dose–dependent, so we tested whether melatonin

delayed the progression of OA at a low concentration of

50 mg/kg and a high concentration of 150 mg/kg. We assessed

the effect of the drug on body weight in mice, these results show

that melatonin attenuates weight gain with age in male mice

(Supplementary Figure S2), similar to what has been reported in

the literature (Tamura et al., 2021).

In the current study micro-CT indicated that melatonin could

delay the progression of OA.We also found that in a mouse model of

OA melatonin delayed joint degeneration and reduced chondrocyte

apoptosis in a concentration-dependent manner. Our study revealed

for the first time that melatonin inhibits the protein expression levels

of CHOP and cleaved caspase-3 by promoting the expression of

SIRT1. These results indicate that the potential mechanism of

melatonin-based resistance to apoptosis is activation of

SIRT1 expression, and inhibition of ERS.

We conclude from our experiments that melatonin can

delay the progression of OA by inhibiting ERS–induced

apoptosis of chondrocytes in vivo and in vitro.

Furthermore, melatonin protects articular cartilage by

promoting SIRT1 expression and inhibiting ERS and

apoptosis by blocking the IRE1α-XBP1S-CHOP signaling

pathway (Figure 9). The protective effect of melatonin on

cartilage was similarly verified in vivo experiments. Based on

the above experimental results, melatonin may be a treatment

option for OA. We also verified that melatonin reduces ERS of

arthritic chondrocytes through the perk pathway

(Supplementary Figure S3). Therefore, there results suggest

that melatonin may alleviate chondrocyte apoptosis through

the IRE1 pathway, but the IRE1 pathway is not the only

pathway and further experimental exploration is needed

regarding the effect of melatonin on ERS in chondrocytes.
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SUPPLEMENTARY FIGURE S1
The colocalization of SIRT1 with IRE1 by Immunofluorescence (bar,
20 μm).

SUPPLEMENTARY FIGURE S2
Effects of long-termmelatonin treatment on body weight with aging. 10-
weeks mice were divided into sham group, OA group, low–dose
melatonin (50 mg/kg) and high–dose melatonin (150 mg/kg). Body
weights were measured at 0, 2, 4 6, 8, 10, 12 weeks after operation, (each
group n = 6).

SUPPLEMENTARY FIGURE S3
Melatonin attenuates the activation of PERK pathway
(A) Melatonin attenuated the phosphorylation of PERK. (B)
EX527 eliminated the protective effect of melatonin on human
chondrocytes stimulated by lipopolysaccharide by inhibiting the
phosphorylation of PERK.
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Identification of diagnostic
mRNA biomarkers in whole
blood for ankylosing spondylitis
using WGCNA and machine
learning feature selection

Yaguang Han1†, Yiqin Zhou1,2†, Haobo Li1†, Zhenyu Gong3,
Ziye Liu1, Huan Wang1, Bo Wang1*, Xiaojian Ye4* and Yi Liu1,4*

1Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University,
Shanghai, China, 2Department of Radiology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 3Department of Neurosurgery, Klinikum rechts der Isar,
Technische Universität München, Munich, Germany, 4Department of Orthopaedics, Tongren
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Ankylosing spondylitis (AS) is a common inflammatory spondyloarthritis

affecting the spine and sacroiliac joint that finally results in sclerosis of the

axial skeleton. Aside from human leukocyte antigen B27, transcriptomic

biomarkers in blood for AS diagnosis still remain unknown. Hence, this study

aimed to investigate credible AS-specific mRNA biomarkers from the whole

blood of AS patients by analyzing an mRNA expression profile (GSE73754)

downloaded Gene Expression Omnibus, which includes AS and healthy control

blood samples. Weighted gene co-expression network analysis was performed

and revealed three mRNA modules associated with AS. By performing gene set

enrichment analysis, the functional annotations of these modules revealed

immune biological processes that occur in AS. Several feature mRNAs were

identified by analyzing the hubs of the protein-protein interaction network,

which was based on the intersection between differentially expressed mRNAs

and mRNA modules. A machine learning-based feature selection method,

SVM-RFE, was used to further screen out 13 key feature mRNAs. After

verifying by qPCR, IL17RA, Sqstm1, Picalm, Eif4e, Srrt, Lrrfip1, Synj1 and Cxcr6

were found to be significant for AS diagnosis. Among them, Cxcr6, IL17RA and

Lrrfip1 were correlated with severity of AS symptoms. In conclusion, our

findings provide a framework for identifying the key mRNAs in whole blood

of AS that is conducive for the development of novel diagnostic markers for AS.

KEYWORDS

weighted gene co-expression network analysis (WGCBA), recursive feature
elimination (RFE), ankylosing spondylitis (AS), mRNAs biomarkers, support
vector machine
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Introduction

As a kind of chronic axial spondyloarthritis, ankylosing

spondylitis (AS) is characterized by aseptic sacroiliitis, spinal

stiffness and deformity, ultimately leading to severe disability in

patients. Due to the undefined etiology and paucity of early

effective detecting methods, the diagnosis of AS is delayed for an

average of 8 years (1–3). To date, human leukocyte antigen B27

(HLA-B27) , C-react ive prote in (CRP) and matr ix

metalloproteinase 3 (MMP-3), have been found to be

associated with AS and positive in 85–95% of patients with AS

(4, 5). However, they are also significantly positive in most

patients with other immunologic disorders (6–10), indicating

their insufficient diagnostic value for assessing AS activity and

predicting therapeutic effectiveness. Therefore, to facilitate early

diagnosis and assess AS activity, finding novel biomarkers with

satisfactory sensitivity and specificity by exploring the molecular

mechanisms of AS is crucial.

With the rise of high-throughput transcriptomic techniques

such as microarray and sequencing, multiple bioinformatic

methods have subsequently been developed and applied in the

construction of gene correlation networks on a large scale to

shed new light on screening key RNAs in terms of molecular

interactions and the exploration of candidate biomarkers for

diseases (11). Compared with other developed network

analytical methods, weighted gene co-expression network

analysis (WGCNA) is a novel systematic biological method

that describes the correlation between the expression levels of

genes with a weighted value rather than with the all-or-none

dichotomy (12). Compared with analyzing single differentially

expressed genes, WGCNA can cluster mRNAs into different

modules that are more stable and comprehensive in reflecting

the underlying pathological mechanism of transcriptomic

alterations by calculating the topological parameters of gene

correlations. Moreover, WGCNA reveals the correlation of each

mRNA module with different clinical traits of interest, which

provides more clues for identifying specific biomarkers or

therapeutic targets (13).
Abbreviations: AS, ankylosing spondylitis; HlA-B27, human leukocyte

antigen B27; GEO, Gene Expression Omnibus; GO, Gene Ontology; HC,

healthy control; WGCNA, weighted gene co-expression network analysis;

GSEA, gene set enrichment analysis; PPI, protein-protein interaction;

STRING, Search Tool for the Retrieval of Interacting Genes/Proteins;

MMP-3, matrix metalloproteinase 3; SVM; support vector machine; RFE;

recursive feature elimination, ROC, receiver operating characteristic; APCs,

antigen presenting cells; TNF, tumor necrosis factor; CXCR6, C-X-C Motif

Chemokine Receptor 6; eIF4E, eukaryotic translation initiation factor 4E;

LRRFIP1, LRR Binding FLII Interacting Protein 1; MAPK8IP3, mitogen-

activated protein kinase 8 interacting protein 3; ESR, erythrocyte

sedimentation rate; CRP, C-reactive protein; BASDAI, Bath Ankylosing

Spondylitis Disease Activity Index; VAS, visual analog scale.

Frontiers in Immunology 02
6869
Generally, the use of traditional experimental methods to

validate the function of genes filtered by microarray and

sequencing is a long process because of the large amount of

data (14). Furthermore, the redundancy and collinearity of high-

throughput data severely disrupt the accuracy of bioinformatic

analyses. To solve this problem, many gene selection algorithms

based on machine learning have been proposed to remove

irrelevant or redundant information or features. Among these

algorithms, recursive feature elimination based on support

vector machine (SVM-RFE) is an effective tool for gene

selection (15). As a backward elimination method, SVM-RFE

can rank the different genes or features based on the squared

sum of the feature coefficients and select the top-ranked genes

that significantly influence the classification or identification of

different clinical traits (16). Hence, applying SVM-RFE in

identifying key mRNAs or biomarkers from transcriptomic

data is promising.

To identify novel biomarkers for AS from whole blood, we

utilized a microarray dataset to perform WGCNA. After

generating the modules of mRNAs specific to AS, we

performed gene set enrichment analysis (GSEA) with Gene

Ontology (GO) on the mRNAs of these modules and then

overlapped them with differentially expressed mRNAs to

screen out more specific feature mRNAs to construct a

protein-protein interaction (PPI) network. Based on this

network, we found hub mRNAs by Cytoscape calculation.

Then, we utilized SVM-RFE analysis on these hub mRNAs

and screened out 13 feature mRNAs. After verification

through qRT-PCR and correlation analysis, 8 key mRNAs

were finally identified as the key biomarkers for AS diagnosis.
Patients and methods

AS patients and control group

The Ethics Committee of Shanghai Changzheng Hospital

has approved this study. All included AS patients and control

donors provided the informed consent including details of

present study. According to the modified New York criteria

(17), 40 AS patients were included in this study. In addition, 40

healthy donors were recruited in control group. The general

information (age and gender), symptoms, erythrocyte

sedimentation rate (ESR), C-reactive protein (CRP) and Bath

Ankylosing Spondylitis Disease Activity Index (BASDAI) of

patients were recorded (Table 1).
Acquisition of microarray data
and processing

The microarray dataset GSE73754 by Eric Gracey et al (18)

was downloaded from the Gene Expression Omnibus (GEO)
frontiersin.org

https://doi.org/10.3389/fimmu.2022.956027
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2022.956027
database for analysis. This dataset comprises whole blood

mRNA expression data from 72 subjects (52 AS patients and

20 healthy controls). The raw data of GSE73754 were

preprocessed using the “affy” and “limma” packages available

from Bioconductor in R. The missing values were replenished

using the k-nearest neighbor algorithm (19). The normalization

of raw data was performed using the robust multiarray average

algorithm (20). The batch effect was eliminated using the “sva”

package of R based on the COMBAT method. Due to the public

availability of relevant data, approval from a local ethics

committee was not required.
WGCNA

The “WGCNA” package of R was used for clustering

modules and constructing a co-expression network. To

eliminate noise and speed up the computation, the mRNAs

whose variance in expression was in the top 25% of all the

expression profiles were selected. The power parameter b was

determined based on the function of the scale-free topology fit

index. Based on the weighted Pearson correlation coefficients, an

adjacency matrix was constructed to reveal unsupervised co-

expression relationships between each mRNA. To simplify this

step, the function “blockwiseConsensusModules” was

performed with a minimum module size of 30 to construct a

network and detect a consensus module. The conservation of

each module was assessed using the “modulePreservation”

function, which predicts the Z-score. Module-trait correlations

were calculated using “modTraitCor” to detect the modules

correlated with AS.
GSEA

GSEA of GO is an effective computational method that

assesses an a priori-defined set of genes enriched in specific

biological states (21). GSEA was performed on the modules

selected from WGCNA with the GO gene sets database
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(c5.all.v6.2.symbols.gmt). The cutoff criterion of the P-value

was set as < 0.05.
Identification of differentially
expressed mRNAs

The screening of differentially expressed mRNAs was

performed using the “limma” package of R software (version

3.6.2), and Benjamini-Hochberg adjusted P-values < 0.01 and

|fold change| >1 were set as the cutoff criteria. The heatmap was

visualized using the “pheatmap” package of R.
PPI network construction and hub
gene identification

The online analysis tool, Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING), was used to evaluate the

interactions between each of the selected mRNAs. Afterwards, a

PPI network was constructed using Cytoscape. The nodes’ scores

of each mRNA in the PPI network were obtained by the

cytoHubba plugin of Cytoscape and were defined as the

criterion for further mRNA selection.
Support vector machine based recursive
feature elimination

As a powerful machine learning model, SVM has been

widely applied in the functional prediction of biological

molecules (22). In this study, SVM modeling was performed

by using the “e1071” package of R, in which the radial basis

function was the selected kernel function.

SVM-RFE is a backward feature deletion method that loops

around SVM22. First, all of the original features are used to build

the SVM learning model to obtain the absolute coefficient |w| of

each input feature. Second, the features are ranked based on the

square of |w|, and the bottom-ranked features are discarded.
TABLE 1 General information of the AS patients and control donors.

AS group (n=40) Control group (n=40)

Age (years) 41.2±11.4 42.9±12.3

Gender(male/female) 15/6 15/5

Positive rate of HLA–B27 85.71% N/A

Duration of back pain (months) 3.52±2.51 N/A

ESR, mm/hour 49.95±25.63 N/A

CRP, mg/L 33.27±14.86 N/A

BASDAI (10-mm VAS) 5.29±1.44 N/A
ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; VAS, visual analog scale.
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Then, the rest of the features are subject to a new loop of SVM

model building and ranking with the same procedures as before.

These procedures are repeated until all features are removed.

The order of removed features represents the level of feature

importance (23). The top-ranked features that are discarded

later are deemed to be more informative than those that are

discarded earlier. In this study, the features correspond to

mRNAs. To determine how many top-ranked mRNAs should

be selected, 5-fold cross-validation was performed on the

dataset. This method randomly divides the dataset into 5

sections, of which 4 sections are selected as the training set,

with the last section as the testing set. Depending on these sets,

SVM is built with different numbers of top mRNAs for

calculating the generalized prediction error. These procedures

are repeated 5 times. Finally, the number of top-ranked mRNAs

corresponding to the minimum error is the optimal number of

selected mRNAs. Using the “pROC” package of R, receiver

operating characteristic (ROC) curve analysis was performed

to calculate the area under the curve (AUC) value for each

selected feature mRNA to evaluate its predictive capability for

the diagnosis of AS.
Validation of mRNA expression

5 ml of whole blood was drawn into an EDTA tube from AS

patients before medical interventions. Ficoll was used to separate

mononuclear cells from whole blood. The total RNA was

isolated from mononuclear cells by using TRIzol LS reagent

(Ambion). The extracted RNA was used to synthesize cDNA

with a Reverse Transcription kit (Takara). The expression of

RNAs was first ly determined by 1.5% agarose gel

electrophoresis. Electrophoresis was performed at a constant

voltage of 100 V for 30 min in TBE running buffer, and the

retardation of RNA mobility was visualized under UV light.

Quantitative real-time PCR (qRT-PCR) was performed using

SYBR Green qPCR Master Mix (Takara) in qPCR CFX 96

Thermocycler system (Bio-Rad). The primers for each selected

mRNAs were listed in Supplementary Table S1. The reactions

were run according to the following conditions: initial hold at

95°C for 10 min, followed by 40 cycles of amplification at 95°C

for 15 s, and annealing for 60s at 60°C and drawing the melting

curves by increasing from 60°C to 95°C (0.3°C per second). All

expression values were normalized to the expression of GAPDH.

Relative expression levels are obtained by calculating 2-DDCT.
Statistical analysis

The statistical analysis was performed with R software

(version 3.6.2). The continuous variables were presented with

Mean ± SD, while the categorical variables were presented with

quartile. The expression values of mRNAs were compared by
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using one-way analysis of variance (ANOVA) between AS group

and control group. Correlation between expression of mRNAs

and BASDAI was evaluated by using Pearson’s correlation

coefficient test. The P<0.05 was selected as the cut-off for

statistical significance.
Results

Generation of key modules associated
with AS by WGCNA

The initial step was to generate consensus modules of

mRNA expression by constructing a weighted gene co-

expression network. We made hclust analysis, with height 45

as cutoff. There was no outlier in included samples

(Supplementary Figure S1). The determination of the soft

thresholding power b is entailed in raising Pearson correlation

matrices to obtain the network (24). According to the criterion

of approximate scale-free topology, in which the scale-free

topology model fit index was more than 0.9 and the mean

connectivity degree was close to 0, the optimal power b was

chosen to be 14 (Figure 1A). Afterwards, the weighted co-

expression networks were constructed, and consensus modules

with similar expression trends were clustered and labeled with

different colors, as shown in a dendrogram (Figure 1B). Then,

the correlation matrices between consensus modules and clinical

traits (AS and HC) were calculated (Figure 1C). Based on the

cutoff of 0.3 to correlation, the Blue, Yellow and Gray modules

with specific relation to AS were selected for further

investigation. There were 463 mRNAs in the Blue module, 318

mRNAs in the Yellow module, and 404 mRNAs in the Gray

module, of which information about the network is presented in

Supplementary Table S2. In addition, we performed correlation

analysis of Module Membership vs. Gene Significance, and

found significant correlation coefficients were 0.28 in Blue

module, 0.44 in Grey module, and 0.38 in Yellow module,

respectively (Supplementary Figure S2).
GSEA with GO on selected modules

To further investigate the role of the selected mRNA modules

and pathological processes in white blood cells, we performed

GSEA with GO terms on mRNAs of the Blue, Yellow and Gray

modules. As shown in Figure 2, mRNAs in the Blue module were

enriched in the top 10 GO terms with the lowest normalized P-

value, including “leukocyte chemotaxis”, “leukocyte migration”,

“cell chemotaxis” and “regulation of inflammatory response”,

which implicated active inflammatory and immune responses in

AS patients’ blood. However, in contrast to the Blue module, most

GO terms enriched by the mRNAs in the Yellow and Gray

modules are unspecific to AS activity, except for “leukocyte cell
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FIGURE 1

WGCNA analysis. (A) Determination of an optimal soft-thresholding power b by calculating the scale-free topology mode fit and mean connectivity.
(B) The cluster dendrogram of mRNAs in GSE73754, revealing different mRNA co-expression modules marked with colors. (C) The heatmap for
module-traits relationships, in which the correlation of different modules with AS or HC, P-values are presented in each cell.
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adhesion”, suggesting that these two modules may represent

secondary pathological processes of AS. Therefore, it can be

inferred that mRNAs in the Blue module exert more imperative

effects than those in the Yellow and Gray modules and are

immune dysregulated by AS activity.
Screening of differential
expressed mRNAs

To further investigate the discrepancy in whole blood

between AS and HC, we filtered differentially expressed

mRNAs. A total of 1116 mRNAs were differentially expressed,

among which 491 mRNAs were upregulated and 625 mRNAs

were downregulated (Supplementary Table S3). Next, we

constructed a heatmap for the top 100 most differentially

expressed mRNAs to show the consistencies and discrepancies

in mRNA expression among the samples. As shown in

Supplementary Figure S3, most AS blood samples are clustered

together with similar expression tendencies, which means that

their expression patterns differ from the patterns of HC samples.
Selection of feature mRNAs
from modules and differential
expressed mRNAs

To obtain comprehensive information from the whole blood

mRNA expression of AS, finding a balance between WGCNA

modules and differentially expressed mRNAs is critical.

Accordingly, we overlapped 1185 mRNAs from the Blue

module, Yellow module and Gray module with 1116

differentially expressed mRNAs and screened out 296 feature

mRNAs for AS. The intersection of each module with
Frontiers in Immunology 06
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differentially expressed mRNAs is shown in Supplementary

Table S4.
Construction of PPI network based on
feature mRNAs

Given the interaction between key genes in various

pathological processes, performing interaction network

analysis on mRNA groups is effective for identifying candidate

biomarkers. To this end, we constructed a PPI network on the

296 feature mRNAs by STRING (Supplementary Figure S4). A

total of 427 protein interactions and 280 gene nodes were

identified in this network with an enrichment P-value of

5.26e-07.

In the expression network, hub genes are a series of key

genes that have great topological connectiveness with their

neighboring genes. To distinguish the hub genes in a network,

Closeness Centrality (CC) and Betweenness Centrality (BC),

which are based on a concept of moving along the most optimal

and shortest paths throughout a network, are widely used in

network analysis (25). Because of the vague principles of the

usage of these 12 parameters, we simultaneously applied all of

them to measure the connectiveness of mRNAs in the PPI

network. After inputting the data of the PPI network into

Cytoscape and calculating each nodes’ scores through

cytoHubba, we sorted feature mRNAs by 12 nodes’ scores in

descending order and generated 12 sequences of mRNAs. Then,

we selected the top 25% mRNAs from these 12 sequences and

converted these selected mRNAs together. Finally, according to

the occurrence of mRNAs in each sequence, 63 mRNAs

appearing more than 4 times were obtained as the hub genes

(Supplementary Table S5). The interaction network of these

feature mRNAs is shown in Supplementary Figure S5.
FIGURE 2

GSEA with GO terms on Blue, Yellow and Grey modules. The size and color intensity of a circle represent the numbers of mRNAs and −log10
(P value) of enrichment for each module.
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Identification of key mRNAs by SVM-RFE

Although the 63 selected feature mRNAs can serve as

biomarkers for AS, there is still much redundant information

in them, resulting in poor feasibility in practical applications. To

solve this problem, we applied SVM-RFE according to the

feature ranking of the correlation coefficients to eliminate

relatively unspecific feature mRNAs and preserve the key

mRNAs. To determine the optimal number of feature mRNAs

with the greatest accuracy in the SVM model, 5-fold cross-

validation was introduced into the SVM classifier step, and the

error rates of different numbers of mRNAs were captured. We

plotted the change in the 5-fold cross-validation error rate at

each recursive step (Supplementary Figure S6). The error rate

fluctuated with increasing numbers of mRNAs until it reached a

minimum with 14 feature mRNAs, suggesting that

discrimination between AS and HC reached almost 90%

accuracy. ROC curve analysis was further carried out, and the

AUC values of the 14 key mRNAs were calculated to reveal their

predictive power (Figure 3). Accordingly, MAP3K11 was

discarded because of its nonsignificant predictive power in

distinguishing between AS and HC. Among the 13 remaining

selected feature mRNAs, Sqstm1, Srrt, Cxcr6, Eif4e, Ppid, H2afy,

Card11, IL17ra, Picalm, Lrrfip1, Polr2a, Mapk8ip3 and Synj1

were screened out as the key mRNAs of AS for further analysis.
Validation of key mRNAs expression

To verify the prediction of bioinformatic and SVM analysis,

we performed qRT-PCR and agarose gel electrophoresis to test the

expression levels of these 12 key mRNAs in whole blood of AS

group and control group. As shown in Figure 4, the expression of

Sqstm1, Srrt, Cxcr6, and Eif4e were significantly down-regulated

in AS patients, while the expression of IL17ra, Picalm, Lrrfip1 and

Synj1 were significantly up-regulated compared with control

group. In addition, there were no significant differences on the

expression of Ppid, H2afy, Card11, Mapk8ip3 and Polr2a between
Frontiers in Immunology 07
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two groups. These results indicated the expression patterns of 8

significant key mRNAs in included patients were consistent with

bioinformatic analysis and SVM prediction.
Correlating analysis between BASDAI and
expression of key mRNAs

To further examine the predictive strength of 8 significant key

mRNAs, we analyzed the correlation between their expression

levels and BASDAI of AS patients. In a total of 40 blood samples

from AS group, a significant correlation between BASDAI and

expression level was revealed in three key mRNAs (Cxcr6, IL17ra,

Lrrfip1), while the remaining 5 mRNAs showed no significant

correlation with BASDAI (Figure 5). There, Cxcr6, IL17ra, Lrrfip1

were proposed to serve as the potential biomarkers for AS.
Discussion

While HLA-B27 has been demonstrated tomainly account for

the genetic effects of AS, the other undefined markers may be

associated with this immunologic disease (4, 26, 27). People with

positive HLA-B27 have a significantly higher risk of developing

AS than those with negative HLA-B27. However, most of the

former remain healthy, implying that in addition to HLA-B27,

other potential factors may contribute to the onset of AS (28, 29).

Hence, elucidating AS pathogenesis from the perspective of

immune regulation, especially associated with blood karyocytes,

can be regarded as a promising direction for finding diagnostic

biomarkers with reliable specificity and sensitivity beyond HLA-

B27. In present study, we explored the microarray dataset of

GSE73754 by WGCNA and PPI network construction, and then

identified 3 modules (Blue, Yellow and Gray) and 63 hub mRNAs.

Several studies have demonstrated the pivotal role of adaptive

immune responses in AS pathogenesis (30). The interaction

between CD4+ T cells and HLA-B27 triggers the cascade

reaction of various chemokines and cytokines, contributing to
FIGURE 3

The ROC curve analysis of 14 key mRNAs in diagnostic specificity for AS.
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inflammatory damage and bone erosion in AS (31). In addition to

the adaptive immune response, innate immune abnormalities also

contribute to the initiation of AS (32). In AS, Tumor necrosis

factor (TNF) mediates the destabilization of bone morphogenetic

signaling proteins in osteoblasts and inhibits the expression of

insulin-like growth factor-1, osterix and Runx2, resulting in poor

osteoblastogenesis (33–35). Consistent with the preceding

findings, the GSEA results of this study regarding GO terms in

the Blue module showed the involvement of inflammatory and

immune responses in AS, further verifying the imperative role of

immune dysregulation in AS progression. However, the results of

GO enrichment in Yellow and Gray modules revealed a negative

relationship with immune response. Although the mRNAs in the

Yellow and Gray modules seem to reflect uncorrelated effects with

immune responses, the possibility of their synergism with the

immune response cannot be ruled out and needs to be

further explored.

In analyzing thousands of gene expression data through

bioinformatic method, the “curse of dimensionality” cannot be
Frontiers in Immunology 08
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denied which severely impairs the accuracy of classification and

prediction. To reduce the dimensionality, wrapper methods have

been developed to be incorporated into a machine learning

algorithm, which evaluate the values of different features

according to the pre-estimated errors (36). SVM-RFE, as a

novel established wrapper method for feature selection, can

refine the optimum feature by ranking the coefficients of

different features obtained by SVM (23). This is because the

rank of each coefficient indirectly reflects the orthogonal degree

between the feature and hyperplane generated by SVM. The

orthogonality of a feature to the hyperplane signifies that this

feature is more informative than others (23). In this study, we

used a PPI network to identify 63 hub mRNAs that are already

highly correlated with AS. However, to some extent, using these

63 mRNAs as biomarkers for further prediction is also a kind of

high-dimensional modeling, which likewise encounters

overfitting or other high-dimensional challenges. Therefore, to

address these problems, we utilized SVM-RFE and optimally

selected 13 out of the 63 feature mRNAs based on a 5-fold cross-
B

A

FIGURE 4

Differences in relative expression level of 13 key mRNAs between AS group and control group. Agarose electrophoresis (A) and qRT-PCR
quantification (B) for Sqstm1, Srrt, Cxcr6, Eif4e, Ppid, H2afy, Card11, IL17ra, Picalm, Lrrfip1, Polr2a, Synj1 and Mapk8ip3. ** means P-value < 0.01.
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validation error rate. Moreover, ROC curves were subsequently

plotted and reflected the significant specificities of these 13 key

mRNAs for recognizing AS. Then, 8 of 13 key mRNAs (Sqstm1,

Srrt, Cxcr6, Eif4e, IL17ra, Picalm, Synj1 and Lrrfip1) in AS blood

sample showed significant consistence with microarray data in

qRT-PCR validation, and 3 of them (Cxcr6, IL17ra, Lrrfip1)

were correlated with symptomatic severity of AS, indicating the

efficacy of SVM screening combined with bioinformatics.

IL-17ra is one of five well-known receptor subtypes for IL-17

ligands. When bound by IL-17, this receptor upregulates the

expression of various cytokines and chemokines to exert a

proinflammatory role in host defense. In whole blood, IL-17 and

its receptors are mainly expressed in Th17 cells and neutrophils

and were demonstrated to play a pivotal role in AS patients (37–

39). Evidence suggests that the binding of IL17 to its receptor

triggers several feedback-loop mechanisms in spondyloarthritis,

resulting in the proliferation of Th17 cells, thereby causing

increased production of IL-17 (40). This was further highlighted

by the significant remission of AS symptoms after the application

of inhibitory medication targeting IL-17 pathways (41, 42). In

addition to Il-17RA, the downregulation of Sqstm1 in whole blood

may be related to AS. As a kind of ubiquitin binding protein,

Sqstm1 is reduced when autophagy is activated, which

subsequently increases the level of IL23 in the intestinal mucosal

surfaces of AS patients (43). Intriguingly, thus far, there is no

robust proof to verify the direct involvement of the other

significant feature mRNAs (Cxcr6, eIF4E, Lrrfip1, Srrt, Synj1

and Picalm) in AS pathogenesis. Cxcr6, eIF4E, and Lrrfip1, were

found to be related to innate or adaptive immune processes. C-X-

C Motif Chemokine Receptor 6 (CXCR6), a kind of chemokine

receptor, is mainly expressed on the CD4+ T cell surface and

mediates a series of immune cellular activation and chemotaxis

events (44). Eukaryotic translation initiation factor 4E (eIF4E) is

mainly expressed in macrophages and activated following the

stimulation of LPS, leading to the upregulation of IkBa, which
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inhibits the expression of inflammatory cytokines and genes (45).

LRR Binding FLII Interacting Protein 1 (LRRFIP1) was found to

be involved in the innate defense against pathogenic organisms

and in the regulation of autoimmune disorders (46). In our study,

upregulated IL-17RA and Cxcr6 were found to be positively

correlated with BASDAI, while downregulated Lrrfip1 was

negatively correlated, implying the potential of IL-17RA, Cxcr6

and Lrrfip1 in predicting AS symptom. In addition, the biological

function of Srrt, Synj1 and Picalm has not been shown to be

specific to AS, even though they are significant differential

expressed in AS patients. But this does not mean that they are

unqualified to serve as biomarkers. Their correlations with AS

need further investigation to be elucidated in the future.

Undeniably, there was an inevitable limitation in our study.

Because of the shortage of a proper microarray dataset for the

whole blood of AS patients, there were not sufficient samples for

randomly selecting and establishing a training set and testing set

for machine learning, so we were incapable of further verifying

the efficacy of the SVM classifier made of feature mRNAs.

Further studies are expected to include more available datasets

and verify the accuracy of prediction.

In summary, this study reveals that IL17RA, Sqstm1, Picalm,

Eif4e, Srrt, Lrrfip1, Synj1, Cxcr6 can be seen as potential

predictors for AS. These mRNAs may function via

involvement in various pathways of AS, especially in immune-

related pathways. Exploration of their function in AS pathology

may be beneficial for the diagnosis of AS.
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FIGURE 5

Correlation between expression value of 8 significant mRNAs and BASDAI. (A–H): Sqstm1, Srrt, Cxcr6, Eif4e, IL17ra, Picalm, Lrrfip1, Synj1. R2,
correlation coefficient. BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; VAS, visual analog scale.
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Gut microbiota-derived
metabolites in inflammatory
diseases based on targeted
metabolomics
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The gut microbiota plays an important role in inflammatory diseases.

Metabolites in the three metabolic pathways of tryptophan (Trp), histidine

(His), and phenylalanine (Phe) can affect various inflammatory conditions,

such as obesity, diabetes, arthritis, colitis, atherosclerosis, and

neuroinflammation. We established an LC–MS/MS method to measure

17 metabolites—Trp, 3-indole-acetic acid (Iaa), 3-indole-lactate (Ila), 3-

indole-propionic acid (Ipa), 3-indole formaldehyde (Iald), kynurenine (Kn),

kynurenic acid (Kyna), 3-Hydroxyanthranilic acid (3-Haa), His, 3-

methylhistidine (3-Mhis), histamine (Hist), imidazole propionic acid (Imp), 4-

imidazoacetic acid (Imaa), urocanic acid (Ua), Phe, phenylethylamine (Pea), and

hippuric acid (Ha)—in the threemetabolic pathways. Themethod exhibited high

sensitivity and good selectivity, linearity, accuracy, precision, stability; and

recovery rate; all met the requirements of biological sample analysis. By

establishing a rheumatoid arthritis (RA) model of Sprague–Dawley rats and

performing 16S rRNA sequencing on their feces, it was found that there was

dysbiosis, including changes in phylum level, genus level, and α biodiversity of

gut bacteria. The contents of the microbiota metabolites Iaa and Ipa in the

model group were significantly decreased, and those of Iald, Kn, Kyna, Ha, and

Imp were significantly increased. The common therapeutic drugs Tripterygium

glycosides, total glucosides of peony, and their main active ingredients were

screened by in vitro incubation with gut bacteria: it was found that Tripterygium

glycosides and their active ingredients could lead to a variation in metabolites in

the Trp and Phe pathways. Total glucosides and active components of peony

could lead to a variation in metabolites in the Phe pathway of the gut

microbiota.

KEYWORDS

inflammatory diseases, amino acid metabolites, tryptophan, phenylalanine, histidine,
gut microbiota, LC-MS/MS
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Introduction

Inflammation is the body’s defense response to stimuli such as

infection and tissue damage, including acute and chronic

inflammation. Acute inflammation is of short duration, while

chronic inflammation is associated with the immune system

and underlies the progression of diseases such as obesity (Truax

et al., 2018), diabetes (Kanazawa et al., 2021), arthritis (Vadell et al.,

2020), inflammatory bowel disease (Silverberg et al., 2005),

cardiovascular diseases (Ridker et al., 2019), neurological disease

(Jensen et al., 2019), cancer (Singh N. et al., 2019), and

autoimmune disease (Cai et al., 2019). These inflammatory

diseases seriously affect human health and quality of life.

Although they are also influenced by important factors other

than inflammation, inhibition of inflammation often improves

the clinical symptoms of these diseases (Ridker et al., 2017; Jensen

et al., 2019; Vadell et al., 2020; Chicco et al., 2021). However, the

mode of action of inflammation is very complex and has not yet

been fully elucidated.

There are more than 100 trillion microorganisms in the human

intestine, collectively referred to as the “gut microbiota”, which play

a very important role in maintaining human health and are

considered the “invisible organ” of the human body (Collins and

Patterson, 2020; Pan et al., 2020; Wang et al., 2021). In recent years,

the pathogenesis of inflammation-related diseases has been shown

to be closely related to the gut microbiota, including intestinal

inflammation, inflammation of organs other than the gut, and

systemic inflammation (Yang et al., 2020b; Zhang X. et al., 2021;

He et al., 2021; Shang et al., 2021). Targeting the gut microbiota for

the treatment of inflammatory diseases has great potential. The

mechanism of gut microbiota involvement in the occurrence and

development of inflammatory diseases is very complex, and research

on how intestinal metabolites and the host interact to affect diseases

is a hot topic. The influence of gut metabolites on the inflammation

of organs other than the gut and on systemic inflammation ismainly

because the metabolites can be absorbed into the blood by intestinal

epithelial cells to enter systemic circulation.

We selected the metabolic pathways of three essential amino

acids—tryptophan (Trp), phenylalanine (Phe), and histidine

(His)—which are closely related to inflammation. The

metabolism of Trp by bacteria is mainly divided into two

pathways: indole and kynurenine. A portion of Trp is

metabolized into Iaa, Ipa, Ila, and Iald, which are released into

the systemic circulation. Trp is metabolized by Lactobacilli in the

gut through aromatic amino acid aminotransferase (ArAT) and

indole lactate dehydrogenase (ILDH) to the intermediate product

indolepyruvate, which further generates Iald. Peptostreptococcus

bacteria such as P. anaerobius and P. stomatis that contain the
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phenyllactate dehydratase gene cluster (fldAIBC) in the gut can

metabolize Trp into Iaa, Ipa, and Ila (Wlodarska et al., 2017;

Roager and Licht, 2018). The other portion of Trp is metabolized

into Kn by indoleamine 2,3-dioxygenase 1 (IDO1) and Kyna; Kn is

further converted into 3-Haa through hydroxylation (Agus et al.,

2018). Phe is produced in the gut microbiota by Morganella

morganii decarboxylase to phenylethylamine. It is first

metabolized into trans-cinnamic acid, which is further

metabolized to hippuric acid. His is produced by histidine

decarboxylase (HDC) to generate histamine, which is further

oxidized to imidazole-4-acetic acid. Histamine is a well-known

proinflammatory factor that induces different immune cells to

produce inflammatory mediators and cytokines (Branco et al.,

2018). His is degraded by histidine ammonia lyase (HAL) or

histidase to urocanic acid, which is reduced to imidazole propionic

acid by urocanic acid reductase (Acuña et al., 2021). These amino

acid metabolites are closely related to inflammatory diseases. The

Trp metabolite Iald can activate aromatic hydrocarbon receptor

(AHR) and induce the expression of interleukin-22 (IL-22) to

improve the intestinal barrier and alleviate colitis in mice (Teng

et al., 2018). The His metabolite histamine can modulate

NLRP6 inflammasome signaling and downstream antimicrobial

peptide secretion, promote interleukin-18 (IL-18) secretion from

intestinal epithelial cells, and shape the gut microenvironment

through the metabolite-inflammasome-antimicrobial peptide axis

(Levy et al., 2015). Phe metabolites are related to neuritis.

Therefore, the search for inflammation-related amino acid

microbiota metabolites is of great significance for elucidating

the mechanisms of various inflammatory diseases and screening

drugs.

Although many LC–MS/MS analytical methods for

determining Trp metabolites have been reported in the literature,

there are few analytical methods for His and Phe metabolites, and

there is still no simultaneous analytical method for the

determination of the 17 metabolites on three metabolic pathways

of Trp, His, and Phe (Fuertig et al., 2016; Wang et al., 2019). We

constructed a simple and rapid LC–MS/MS analytical method with

sufficient sensitivity to detect intestinal content; this method can be

applied to various inflammatory diseases as targeted metabolomics.

Materials and methods

Reagents and materials

Trp, indole acetic acid (Iaa), indole propionic acid (Ipa),

indole lactic acid (Ila), kynurenine (Kn), kynurenic acid (Kyna),

His, histamine (Hist), urocanic acid (Ua), Phe, hippuric acid

(Ha), acetaminophen (IS), triptolide (TL), celastrol (CSL),

wilforine (WR), wilforlide A, and triptonide (TN),

paeoniflorin, albiflorin std, and benzoylpaeoniflorin were

purchased from Solarbio Scientific Ltd. (Beijing, China). 3-

hydroxyanthranilic acid (3-Haa) and indole formaldehyde

(Ilad) were purchased from Yuanye Biotechnology Co., Ltd.

TABLE 1 Optimized multiple reaction monitoring (MRM, positive) and mass spectrometry (MS) conditions.

Analyte Formula MW Precursor
Ion (m/z)

Quantification
(m/z)

Quantifier
(m/z)

Q1 CE
(volt)

Q2 CE
(volt)

Q3 CE
(volt)

Hippuric acid (Ha) C9H9NO3 179.17 179.75 105.05 77.00 −21.0 −13.0 −10.0

Imidazole-4-acetic acid
(Imaa)

C5H6N2O2 126.11 127.00 54.00 81.10 −13.0 −30.0 −19.0

Phenylethylamine (Pea) C8H11N 121.18 122.05 77.05 105.05 −12.0 −28.0 −13.0

3-Methylhistidine (3-Mhis) C7H11N3O2 169.18 170.00 94.95 109.10 −10.0 −30.0 −29.0

Urocanic acid (Ua) C6H6N2O2 138.12 139.00 93.00 121.10 −15.0 −22.0 −15.0

Imidazole propionic
acid (Imp)

C6H8N2O2 140.14 140.95 81.10 123.05 −10.0 −22.0 −30.0

Tryptophan (Trp) C11H12N2O2 204.23 205.00 189.20 146.10 −16.0 −10.0 −17.0

Phenylalanine (Phe) C9H11NO2 165.19 166.00 120.10 103.00 −12.0 −13.0 −11.0

Histidine (His) C6H9N3O2 155.15 156.00 110.05 93.00 −10.0 −15.0 −10.0

Histamine (Hist) C5H9N3 111.15 112.05 95.10 83.04 −10.0 −15.0 −18.0

Indole formaldehyde Iald) C9H7NO 145.16 145.95 91.05 118.00 −16.0 −26.0 −13.0

Kynurenic acid (Kyna) C10H7NO3 189.17 189.90 144.00 171.96 −13.0 −19.0 −13.0

Indole lactic acid (Ila) C11H11NO3 205.21 205.90 130.00 117.89 −15.0 −33.0 −20.0

Indole acetic acid (Iaa) C10H9NO2 175.18 176.00 130.00 77.03 −12.0 −14.0 −20.0

Indole propionic acid (Ipa) C11H11NO2 189.20 189.95 130.15 55.01 −10.0 −17.0 −19.0

Kynurenine (Kn) C10H12N2O3 208.22 209.10 192.00 146.00 −15.0 −11.0 −18.0

3-Hydroxyanthranilic acid
(3-Haa)

C7H7NO3 153.14 153.90 136.00 108.00 −18.0 −14.0 −22.0
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(Shanghai, Beijing). Imidazole propionic acid (Imp), imidazole-

4-acetic acid (Imaa), 3-methyl-L-histidine (3-Mhis), and

phenethylamine (Pea) were purchased from Aladdin

Biochemical Technology Co., Ltd. (Shanghai, China). The

purities of all the reference standards were greater than 98%.

Tripterygium wilfordii polyglycoside tablets (henceforth referred

to as “Tripterygium glycosides”) were purchased from Zhejiang

Deen Pharmaceutical Co., Ltd. (Hangzhou, China). Total

glucosides of white paeony capsules (henceforth referred to as

“total glucosides of peony”) were purchased from Ningbo Lihua

Pharmaceutical Co., Ltd. Formic acid (100%), complete Freund’s

adjuvant, and isoflurane were purchased from Merck

(Darmstadt, Germany). Acetonitrile and methanol were

purchased from Fisher Scientific (HPLC grade, Fairlawn,

United States). Deionized distilled water was purchased from

Hangzhou Wahaha Group Co., Ltd. (Hangzhou, China). TNF-α,
IL-1β, and IL-6 kits were purchased from Nanjing Jiancheng

Bioengineering Institute (Nanjing, China). Anaerobic culture

medium was purchased from Qingdao Hope Bio-Technology

Co., Ltd. (Qingdao, China).

Instruments

Ahigh-performance liquid chromatography–mass spectrometry

(LC–MS/MS 8060, Shimadzu, Japan) instrument was utilized. A

vortex mixer (VortexGenie2, United States), a small benchtop high-

speed centrifuge (Eppendorf 5418, Germany), a 1–14 small benchtop

high-speed centrifuge (D-37520, Sigma, Germany), an analytical

balance (XS1050U, Mettler - Toledo, Switzerland), an incubator

shaker (LYZ-100, Shanghai Longyue Co., Ltd., China), and a

nitrogen vaporizer (MD 200-2, Hangzhou Diansheng Instrument

Co., Ltd., China) were utilized.

Animals

Sprague–Dawley rats (180–220 g, 6–8 weeks, male) were

provided by Beijing Huafukang Biotechnology Co., Ltd.

(Beijing, China). All animals had free access to food and

water. The temperature was maintained at 22–24°C with a

light/dark cycle of 12 h and a relative humidity of 40–60%.

Fresh stool samples were collected in sterile nitrogen-filled

zip-lock bags and kept at −70°C.

LC–MS/MS conditions

Analysis was performed using a liquid chromatography-

tandem mass spectrometer LC–MS/MS 8060 (Shimadzu, Japan)

equipped with an ESI source. Separation was performed using a

C18 column (250 mm× 4.6 mm× 5 μm, SVEA, Sweden). The flow

rate was 0.4 ml/min, and the column temperature was maintained

at 25°C. Themobile phases were formic acid: water (0.1:100, v/v) as

mobile phase A, and methanol:acetonitrile (1:1) and 0.1% formic

acid as mobile phase B. The binary gradient elution conditions

were: (A:B): 0.01 min–5 min, 70:30→5:95; 5–8 min, 5:95;

8.01 min–16 min, 70:30. Detection was performed using

multiple reaction monitoring (MRM) in positive mode, and the

optimized MRM parameters for each compound are shown in

Table 1. The mass condition parameters were set as: nebulizer gas,

3 L/min; drying gas, 10.0 L/min; heating gas, 10.0 L/min; interface

temperature, 300°C; collision-induced dissociation (CID) gas,

230 kPa; DL temperature, 250°C; thermal block temperature,

400°C; interface voltage, −4.5 kV. The autosampler was kept at 4°C.

Standard solutions and sample
preparation

Trp, Kn, Phe, His, Hist, 3-Mhis, Ua, and Pea were dissolved

in 2% aqueous formic acid, and Iaa, Ila, Ipa, Iald, Kyna, 3-Haa,

Imp, Ha, and Imaa were dissolved in methanol containing 2%

formic acid, all prepared to 1 mg/ml, for use. The IS was dissolved

in methanol containing 2% formic acid to prepare 1 mg/ml. The

lower limits of quantitation and detection were determined by

serial dilutions of the non-matrix stock solution in methanol

containing 2% formic acid. After mixing the intestinal contents of

20 normal rats, anaerobic culture medium at a 1:20 (weight:

volume) ratio as matrix was added. Calibration standards were

prepared by spiking the mixed stocking solutions at a volume

ratio of 1:9, then adding at a volume ratio of 1:3 of methanol

containing IS (1ug/ml) and 2% formic acid (100, 200, 500, 1000,

2000, 8000, 10,000, and 12500 ng/ml for Trp, Phe, His, and Imp;

20, 40, 100, 200, 400, 1000, 2000, and 2500 ng/ml for other

compounds); 5 µL of the supernatant was taken for injection after

centrifugation at 12,000 rpm for 10 min at 4°C. Low concentration

QC, medium concentration QC, and high concentration QC were

prepared by spiking the mixed stocking solutions in matrix at a

volume ratio of 1:9 (200, 2000, and 10,000 ng/ml for Trp, Phe, His,

and Imp; 40, 400, and 2000 ng/ml for other compounds). The

specific steps are shown in Supplementary Figure S1. For sample

preparation, added methanol solution containing IS (1 μg/ml) and

2% formic acid at a volume ratio of 1:3.5 µL of the supernatant was

taken for injection after centrifugation at 12,000 rpm for 10 min

at 4°C.

Method validation

Specificity and residue
Specificity was obtained by comparing the chromatogram of

the standard added to the matrix to the chromatogram of the

matrix. After five consecutive injections of high concentration

quality control (HQC), the residue was judged by the response of

the injection blank solvent.
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Accuracy and precision
Accuracy was assessed on samples of known analytes, using

three batches of quality control samples with high, medium, and

low concentrations, five samples per concentration, and

expressed as measured value/true value*100%.

Precision was repeated for three consecutive days using three

batches of high, medium, and low concentrations of quality

control samples, with five samples per concentration; the

precision was expressed as the relative standard deviation.

Linear range and lower limit of quantitation
A non-zero calibration curve was established by plotting the

peak area ratio of analyte to internal standard (Y) versus the

nominal concentration of compound added to the matrix sample

(X). The correlation coefficient (R2) was used to assess linearity

and was fitted with a weighting factor of 1/X. The linear range

was accepted when the relative error of the calibrator was

within ±15% of the theoretical concentration.

The lower limit of quantification was determined by

continuous dilution of the standard solution. A signal-to-noise

(S/N) ratio greater than 3 for each compound is the LLOD, and

an S/N greater than 10 is the instrument’s LLOQ.

Stability
Stability was assessed using spiked samples (LQC, MQC, and

HQC), five samples of each concentration, placed at 4°C for 12 h

before or after sample treatment, or by repeated freeze–thaw cycles

at −20°C before treatment three times. Stability was calculated by the

ratio of the concentration of each compound before treatment to the

concentration of the corresponding sample after treatment. Data in

the 85–115% range are considered stable.

Extraction recovery
Extraction recovery is the ratio of sample concentration after

extraction/before extraction; data in the 85–115% range are

considered acceptable.

Matrix effect
Matrix effect = (concentration of standard-spiked

samples – concentration of matrix)/standards free from matrix.

Establishment of a rat model of
rheumatoid arthritis

Ten Sprague-Dawley rats (male, 6–8 weeks) were randomly

divided into two groups—a blank control group and a model

group—with five animals in each group. After isoflurane

anesthesia, 100 µL of normal saline was injected into the soles

of the right feet of the blank group, and 100 µL of complete

Freund’s adjuvant was injected into the soles of the right feet of

the model group. After 21 days, the exact same procedure was

repeated. After 25 days, the rats were weighed, fresh feces and

blood were collected, and the rats were sacrificed by removing

their cervical vertebrae. The contents of intestinal bacteria were

collected, and the spleen was weighed.

16S rRNA sequencing of feces

The DNA extraction
DNA was extracted using PowerSoil DNA Isolation Kit

(MoBio Laboratories, Carlsbad, CA) following the manual.

Purity and quality of the genomic DNA were checked on 1%

agarose gels and a NanoDrop spectrophotometer (Thermo

Scientific).

PCR amplification

The V3-4 hypervariable region of bacterial 16S rRNA gene

were amplified with the primers 338F (ACTCCTACGGGAGGC

AGCAG) and 806R (GGACTACHVGGGTWTCTAAT). For

each fecal sample, a ten-digit barcode sequence was added to

the 5’ end of the forward and reverse primers (provided by

Allwegene Company, Beijing). The PCR was carried out on a

Mastercycler Gradient (Eppendorf, Germany) using 25 µL

reaction volumes, containing 12.5 μL KAPA 2G Robust Hot

Start Ready Mix, 1 µL Forward Primer (5 µM), 1 µL Reverse

Primer (5 µM), 5 µL DNA (total template quantity is 30 ng), and

5.5 µL H2O. Cycling parameters were 95°C for 5 min, followed by

28 cycles of 95°C for 45 s, 55°C for 50 s, and 72°C for 45 s, with a

final extension at 72°C for 10 min. The PCR products were

purified using a Agencourt AMPure XP Kit.

High throughput sequencing
Deep sequencing was performed on the Miseq platform at

Allwegene Company (Beijing). After the run, image analysis, base

calling, and error estimation were performed using Illumina

Analysis Pipeline Version 2.6.

Data analyses
The raw data were first screened: sequences were removed from

consideration if they were shorter than 230 bp, had a low-quality

score (≤20), contained ambiguous bases, or did not exactly match

the primer sequences and barcode tags. Qualified reads were

separated using the sample-specific barcode sequences and

trimmed with Illumina Analysis Pipeline Version 2.6. The dataset

was then analyzed using QIIME. The sequences were clustered into

operational taxonomic units (OTUs) at a similarity level of 97%, to

generate rarefaction curves and calculate the richness and diversity

indices (including Chao 1, Observed_ species, PD_ whole_ trees,

and Shannon indices). Histogram analysis of α biodiversity was

performed using GraphPad Prism 8. The Ribosomal Database
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Project (RDP) Classifier tool was used to classify all sequences into

different taxonomic groups. To examine the similarity between

different samples, clustering analyses and PCA were used based on

the OTU information from each sample using R. The evolution

distances between microbial communities from each sample were

calculated using the Bray Curtis algorithms and represented as an

unweighted pair group method with an arithmetic mean

(UPGMA) clustering tree describing the dissimilarity (1-

similarity) between multiple samples. A Newick-formatted tree

file was generated using this analysis. To compare the membership

and structure of communities in different samples, histogram

analysis of changes in phylum level relative abundance was

performed using GraphPad Prism 8. Changes in relative

abundance at genus level were shown as a heatmap, which was

processed in R.

Screening of drugs for RA in vitro

The intestinal contents of normal Sprague-Dawley rats

were obtained, weighed, added to anaerobic culture medium

at a 1:20 (w/v) ratio, preincubated for half an hour at 37°C

and 200 rpm, and 10 µL of the target drugs or compounds

solutions (1 mg/ml and 10 mg/ml) was added to 990 µL of

anaerobic culture medium containing gut microbiome to

achieve final concentrations of 10 μg/ml (low dose) and 100 μg/

ml (high dose). The drug or compound solutions were added in

advance, and anaerobic culture medium containing gut

microbiome was added during nitrogen purging. Chosen drugs

and compounds includes Tripterygium glycosides, triptolide,

celastrol, wilforine, wilforlide A, triptonide, total glucosides of

peony, paeoniflorin, albiflorin std, and benzoylpaeoniflorin. For

FIGURE 1
Seventeen metabolites and internal standard structural formulas measured.
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total glucosides of peony, the contents of the capsule were weighed

and dissolved with methanol. For Tripterygium glycosides, we first

crushed the tablets with a mortar, then weighed them, added

methanol, and dissolved them by ultrasound. All dissolved drug or

compound solutions should be filtered by microporous

membranes (0.22 um). We first added the solution filtered by

the microporous membrane to the EP tube, then added intestinal

bacterial incubation solution. For the control group, exactly the

same procedure was repeated, except that the compound and drug

solutions were replaced with methanol solution. After incubating

for 12 h at 37°C and 200 rpm, the samples were immediately

analyzed according to “Standard Solutions and Sample

Preparation”.

Data sets were obtained from LC-MS. Modules for

quantitative analysis were selected by SIMCA (MKS Umetrics,

Sweden). Automatic construction simulation was then

performed on adjusted parameters and number groups.

Finally, data from all groups were scored and a principal

component analysis (PCA) score graph was acquired.

Imported data sets were obtained from LC-MS into R

software. We read the data set, defined the colors of the

heatmap, modified the legend size and scope, and performed

normalization of datasets which controlled ranges from −1 to 1.

Finally, the heatmap was acquired.

Statistical analysis

Data analysis was performed using GraphPad Prism 8. A

two-sided t test was used; p < 0.05 was considered statistically

significant. Heatmaps were processed in R, with blue

representing lower levels and red representing higher levels.

The PCA graph was processed using SIMCA (MKS Umetrics,

Sweden), and the data were normalized before plotting.

Results

Method development

To establish targeted metabolomics methods, we optimized

mass spectrometry, chromatographic conditions, and sample

preparation in order to obtain optimal sensitivity, separation,

and quantitative accuracy.

Mass spectrometric conditions
Mass spectrometric detection was performed using multiple

reaction monitoring (MRM) with electrospray ionization (ESI).

The structural formulas of the 17 metabolites and the internal

standard determined in this paper are shown in Figure 1; all

contain nitrogen groups, and the response is higher in positive

ion mode. The optimized mass spectrometry parameters of the

17 metabolites—such as molecular weight, transition, and

collision energy—are shown in Table 1.

Chromatographic conditions
In terms of column selection, the target compounds had

almost no retention on Bridge C18 column (2.1 mm × 100 mm,

2.7 μm), while all compounds eluted within 0.5 min. On the

Acquity UPLC HSS T3 column, the peak shape of the indole

derivative exhibited severe tailing. Finally, a SVEA C18 opal

column (250 mm × 4.6 mm × 5 μm) was selected, exhibiting

good resolution and a symmetrical peak shape. The flow rate was

0.4 ml/min. Water with 0.1% formic acid (FA) was used as the

aqueous mobile phase, and 0.1% FA in methanol: acetonitrile (1:

1) was used as the organic mobile phase. When the organic phase

is pure methanol or pure acetonitrile, the analyte exhibited a

front or split peak phenomenon. When the organic phase was

adjusted to methanol: acetonitrile (1:1), the peak shape of the

analyte was more symmetrical. Considering that the mass

spectrometry conditions were in positive ion mode and that

most metabolites contain carboxyl groups, a certain

concentration of acid was chosen for addition to the mobile

phase to improve the mass spectral response and peak shape;

0.1% acetic acid, 0.2% acetic acid, 0.5% acetic acid, and 0.1 and

0.5% FA were successively tested. The addition of acetic acid

delayed the metabolite peak and prolonged the time of the whole

chromatographic method. The best response was obtained with

0.1% FA, so this was chosen for addition to the aqueous and

organic phases. The gradient elution conditions were: 0–5 min,

30–95% B; 5–8 min, 95%; 8.01–16 min, 30% B. Considering the

structural formulas of the 17 metabolites, it was difficult to obtain

the isotopic internal standard related to each substance, so

acetaminophen with a similar structure was selected.

Sample preparation
In the extraction of intestinal content, the extraction solvent

and extraction method were mainly investigated. Water,

methanol, and acetonitrile were considered when choosing the

extraction solvent, with water extracting the best peak shape. The

extraction methods considered the following: direct treatment

after mixing, posttreatment with ice bath ultrasound for 1 h, and

shaking at 150 rpm and 20°C for 1 h. There will be a small

number of interference peaks with the same MRM after shaking

or sonication. There was no significant difference in the response

of the target compound compared with the direct treatment by

mixing. Therefore, the samples were processed directly after

mixing. In addition, the Trp metabolites measured in the

literature are unstable under conventional processing

conditions, and methanol containing 2% FA (Ma et al., 2021)

or methanol containing 10 mg/ml ascorbic acid (Fuertig et al.,

2016) is generally chosen as the precipitant. In this experiment, it

was found that adding methanol containing 2% FA to the

precipitating agent resulted in a better peak shape.
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FIGURE 2
Extracted ion chromatograms of the 17 metabolites and internal standard. (A) Extracted ion chromatograms of standard solutions. (B) Extracted
ion chromatograms of authenticmatrix. (C) Extracted ion chromatograms of standard added into authenticmatrix. (D) Extracted ion chromatograms
of blank solution after five injections of the HQC standard).

TABLE 2 Retention time, linearity, quantitative range, and lower limit of quantitation of 17 metabolites.

Analyte Rt (min) Linear range(ng/ml) R2 LLODng/ml LLOQng/ml

Ha 9.1 20–2500 0.996 1 2

Imaa 5.5 20–2500 0.999 0.5 2

Pea 6.5 20–2500 0.996 0.5 1

3-Mhis 5.2 20–2500 0.994 1 2

Ua 5.6 20–2500 0.991 1 2

Imp 5.5 100–12500 0.998 0.05 0.1

Trp 7.1 100–12500 0.997 0.5 1

Phe 8.7 100–12500 0.997 0.5 1

His 5.2 100–12500 0.999 0.1 1

Hist 4.8 20–2500 0.993 1 5

Iald 10.6 20–2500 0.999 0.5 2

Kyna 8.5 20–2500 0.997 1 2

Ila 10.1 20–2500 0.997 1 5

Iaa 10.7 20–2500 0.999 0.5 1

Ipa 11.3 20–2500 0.993 0.5 1

Kn 6.5 20–2500 0.993 0.5 1

3-Haa 8.9 20–2500 0.992 0.5 1
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TABLE 3 Precision and accuracy of 17 metabolites.

Analyte Concentrationng/ml Intraday(n = 5) Interday (n = 15)

LQC Accuracy (%) RSD (%) Accuracy (%) RSD (%)

MQC

HQC

Ha 40 94.97 11.53 96.27 7.01

400 100.06 5.37 105.82 5.06

2000 92.03 5.40 97.37 5.22

Imaa 40 100.88 4.99 101.32 5.33

400 104.59 4.57 106.80 3.55

2000 95.00 2.11 97.74 4.30

Pea 40 92.98 3.50 97.79 5.85

400 101.14 4.86 106.14 4.57

2000 102.98 5.88 99.03 6.70

3-Mhis 40 95.05 10.21 97.35 6.57

400 102.40 3.99 104.51 3.80

2000 92.33 3.23 96.71 5.16

Ua 40 100.84 5.44 100.80 5.32

400 104.19 3.96 106.81 3.35

2000 91.99 2.28 95.68 4.39

Imp 200 92.16 8.25 94.94 6.70

2000 107.50 3.79 114.01 7.28

10000 92.07 2.92 95.01 6.42

Hist 40 95.69 6.15 98.64 5.13

400 103.14 5.80 103.32 5.42

2000 92.20 2.84 93.53 3.05

Iald 40 94.02 3.95 95.51 3.74

400 102.19 4.56 104.95 3.41

2000 92.34 2.03 97.13 4.65

Kyna 40 96.11 8.39 97.60 5.94

400 102.98 3.61 103.89 3.09

2000 93.18 3.95 98.90 5.78

Ila 40 98.64 4.78 100.32 3.49

400 95.52 4.53 102.78 6.56

2000 92.92 3.79 96.03 5.50

Iaa 40 99.68 5.11 97.45 4.09

400 98.38 3.60 103.71 5.03

2000 101.64 3.18 99.38 3.15

Ipa 40 97.71 5.80 98.63 4.28

400 100.82 3.34 104.81 3.96

2000 90.69 1.72 96.09 5.14

Kn 40 100.11 1.98 99.32 3.38

400 98.31 4.41 103.59 4.90

2000 89.45 2.66 95.88 8.37

3-Haa 40 98.88 3.12 100.65 3.24

400 98.15 2.42 103.25 5.64

2000 94.51 2.15 98.32 5.15

(Continued on following page)
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Method validation

Method validation was performed to obtain repeatable, stable

targeted metabolomics. To validate the endogenous compound

analysis methods, the following threemethods aremainly adopted:

1) use of an isotope-labeled internal standard; 2) adding a standard

to a surrogate matrix (Virág et al., 2020); and 3) adding standards

to an authentic matrix (Fuertig et al., 2016). In this experiment, the

corresponding isotope-labeled internal standards of the

17 substances were difficult to obtain, and the endogenous

substances in the matrix could not be completely removed by

various treatment methods. Therefore, the standards were added

to the authentic matrix for method validation.

Specificity and carryover
Figures 2A–C shows the chromatograms of the standard

substance, authentic matrix, and authentic matrix with standards.

In the chromatogram of the authentic samples, all 17 metabolites

corresponded to the retention time of the standard chromatogram. In

authentic samples, multiple chromatographic peaks appear under the

same MRM conditions, such as Imp, Trp, the IS and Ipa, but such

compounds have proper chromatographic resolution. The peak shape

of the chromatographic peaks after adding the standard to the

authentic samples was good, and the retention time was consistent

with that of the standard. After five consecutive high concentration

QC (HQC) injections, the blank solvent chromatogram is shown in

Figure 2D, indicating that there is no residue.

Linearity and lower limit of quantitation
Considering the concentration levels of these metabolites in

intestinal bacterial samples, Trp, Phe, His, and imidazole

propionic acid were basically at the microgram level, and the

quantitative range was set as 100 ng/ml-12500 ng/ml. The

quantitative range of other substances was set as 20 ng/ml-

2500 ng/ml. A calibration curve for the analytes was built

using the peak area ratio of each analyte to internal standard

versus analyte concentration, plotted using 1/x weighted least

squares linear regression. The correlation coefficient R2 was used

to represent the linearity, and the R2 values of the 17 substances

were all greater than 0.99. Since the metabolites in the matrix

cannot be removed, we used the standard solution to calculate the

lower limit of quantitation (LLOQ) and lower limit of detection

(LLOD), as shown in Table 2.

Accuracy and precision
According to the verification principle of the biological

sample analysis method in the Chinese Pharmacopoeia, the

low concentration QC (LQC), middle concentration QC

(MQC), and high concentration QC (HQC) concentrations of

Trp, Phe, His, and Imp were set as 200 ng/ml, 2000 ng/ml, and

10000 ng/ml, respectively. The LQC, MQC, and HQC

concentrations of the other 13 metabolites were set to 40 ng/

ml, 400 ng/ml, and 2000 ng/ml, respectively. The precision and

accuracy of the 17 metabolites are shown in Table 3. The intraday

accuracy was 88.80–107.50%, and the RSD was 1.72–11.53%. The

inter-day accuracy was 90.38–114.01%, and the RSD was

2.96–10.78%, which were within the acceptable range, as

shown in Table 3.

Stability
Taking the needs of practical experiments into account, the

spiked samples were placed at 4°C for 12 h before or after

treatment or freeze-thawed at −20°C thrice before treatment.

The stability under the three conditions is shown in Table 4, and

TABLE 3 (Continued) Precision and accuracy of 17 metabolites.

Analyte Concentrationng/ml Intraday(n = 5) Interday (n = 15)

LQC Accuracy (%) RSD (%) Accuracy (%) RSD (%)

MQC

HQC

Trp 200 89.30 5.98 95.23 7.51
2000 98.02 1.74 106.22 6.79

10000 96.71 5.16 99.75 4.47

Phe 200 88.80 7.14 93.79 8.41

2000 99.01 3.08 107.58 6.86

10000 91.40 3.13 96.52 5.90

His 200 98.54 7.76 90.38 10.78

2000 104.81 4.10 107.71 5.37

10000 94.44 3.19 96.20 2.96
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TABLE 4 Stability of 17 metabolites under three conditions.

Analyte Concentration (ng/ml) Stability before
treatment (4°C 12 h)

Stability after treatment
(4°C 12 h)

Repeated freezing and
thawing 3 times (-20°C)

LQC Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

MQC

HQC

Ha 40 103.12 7.11 95.10 6.29 91.00 5.77

400 103.14 6.28 92.98 5.01 100.42 3.87

2000 105.99 6.12 93.86 3.11 99.08 2.36

Imaa 40 98.58 4.16 90.81 6.18 98.56 5.89

400 97.64 5.05 94.79 2.81 104.90 3.96

2000 101.76 3.59 92.29 4.26 96.13 1.67

Pea 40 107.75 2.88 92.29 4.36 91.77 6.07

400 101.63 4.12 95.94 4.84 109.92 4.50

2000 92.65 7.57 99.67 4.27 97.11 2.01

3-Mhis 40 107.05 11.84 94.43 5.73 96.83 5.95

400 97.94 2.29 93.84 3.36 104.44 4.20

2000 102.41 3.75 92.62 4.18 92.59 3.41

Ua 40 100.10 5.50 98.73 3.05 91.14 6.18

400 102.25 3.80 95.06 4.22 106.14 2.29

2000 102.59 3.16 97.82 2.65 96.98 3.38

Imp 200 110.04 10.35 103.03 6.33 92.72 8.68

2000 99.69 4.17 85.06 5.66 98.00 1.83

10000 99.94 3.52 96.56 4.75 93.18 2.03

Hist 40 102.12 7.19 97.87 9.26 90.21 2.32

400 103.69 4.84 101.13 6.69 88.34 8.83

2000 97.30 4.72 100.27 6.47 93.78 1.91

Iald 40 107.84 3.48 105.49 4.76 91.34 4.35

400 104.79 2.72 88.89 3.73 107.27 3.37

2000 106.78 2.02 92.16 3.96 98.43 1.69

Kyna 40 103.97 7.14 98.91 6.38 99.91 5.57

400 104.08 2.52 98.12 4.24 107.81 3.96

2000 109.31 4.15 94.71 2.74 91.24 3.02

Ila 40 102.94 4.12 98.54 1.34 92.41 7.63

400 108.75 5.87 95.84 2.93 99.43 5.21

2000 101.77 3.98 93.89 3.67 93.59 1.99

Iaa 40 100.49 5.05 102.97 4.99 90.68 2.77

400 109.14 1.61 102.67 6.02 102.22 4.59

2000 96.13 3.62 100.45 2.33 97.10 3.37

Ipa 40 102.44 9.15 95.92 3.95 91.87 4.24

400 98.62 4.78 89.72 3.19 110.39 1.76

2000 106.94 3.78 94.39 2.90 95.49 1.23

Kn 40 98.20 3.18 98.79 8.43 89.68 3.87

400 96.98 5.06 88.73 2.85 104.88 4.98

2000 100.10 4.67 95.39 3.95 90.56 1.87

3-Haa 40 100.25 6.17 95.97 3.96 88.63 9.39

400 101.65 3.82 96.55 5.20 100.50 3.51

(Continued on following page)
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all metabolites are in the range of 85–115%, which meets the

requirements of biological sample analysis.

Extraction recovery
The extraction recovery rate = the concentration of the

sample after extraction/the concentration of the sample before

extraction * 100%; the extraction recovery rate of 17 substances

was 88.34–114.26%, which met the requirements of biological

sample analysis (see Table 5.

Matrix effect
The results showed that the matrix effect was consistent at

different levels and in the range of 86.38–112.64%, as shown in

Table 6.

Establishment of the rheumatoid arthritis
rat model

We applied the previously established targeted omics

approach to the model of rheumatoid arthritis, a classic

inflammation-related disease. We first demonstrated the

successful establishment of rheumatoid arthritis. The model

group was initiated by intradermal injection of complete

Freund’s adjuvant (CFA) at the base of the hind paw region

(Choudhary et al., 2018) and recorded as Day 0. On the second

day, the injected soles of the rats were observed to be red and

swollen. On the 21st day, when the rats were injected again, the

toe and ankle joints were observed to be swollen. The other soles

that were not injected also showed redness and swelling of the

soles and joints. On the 25th day, the rats were weighed, blood

and feces were collected, and the gut microbiota, feces, and

spleen were collected after sacrifice. The process is shown in

Figure 3A. Using a kit to measure inflammatory factors in

plasma, it was found that, compared with the control group, the

inflammatory factors IL-6, IL-1β, and TNF-α were significantly

increased in the model group, as shown in Figures 3B–D. The

spleen and rats were weighed, and the spleen weight/body

weight was recorded as the immune index. The immune

index in the model group was significantly increased, as

shown in Figure 3E, which proved that the model was

successfully constructed.

16S RNA sequencing of feces of
rheumatoid arthritis rats and
determination of the intestinal contents

Since all the metabolites we measured were microbiota

metabolites, we also examined the changes of intestinal

microbiota in rats with rheumatoid arthritis. We hoped to

determine whether there is a correlation between changes in

intestinal microbiota and changes in these metabolites in rats

with rheumatoid arthritis. The feces of model and control rats

were analyzed by 16S sequencing. Compared with the control

group, the α-biodiversity of the model group decreased, as shown

in Figures 4A–D. Analysis of the gut microbiota in the feces

revealed dysbiosis. As shown in Figures 4E,F, the phylum level is

mainly composed of Firmicutes and Bacteroidetes, accounting

for more than 95% of the total bacteria—similar to the

TABLE 4 (Continued) Stability of 17 metabolites under three conditions.

Analyte Concentration (ng/ml) Stability before
treatment (4°C 12 h)

Stability after treatment
(4°C 12 h)

Repeated freezing and
thawing 3 times (-20°C)

LQC Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

MQC

HQC

2000 101.87 2.51 88.61 2.45 95.02 3.30

Trp 200 101.89 4.95 89.90 6.94 89.65 7.47

2000 106.21 2.75 106.35 3.10 99.13 3.44

10000 98.02 6.60 105.63 4.43 95.38 1.29

Phe 200 102.35 6.75 91.91 7.36 88.96 3.32

2000 109.05 3.78 101.04 3.16 97.09 3.89

10000 106.54 3.50 102.75 2.49 96.36 1.86

His 200 94.62 9.56 107.88 8.31 95.42 4.21

2000 101.91 4.50 105.82 4.53 98.44 5.37

10000 104.70 3.23 100.81 4.44 100.94 1.49
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composition of the human gut microbiota (Turnbaugh et al.,

2006). The abundance of Bacteroidetes in the model group

increased while the abundance of Firmicutes was decreased. In

other phyla with relatively low contents, the abundance of

Proteobacteria and Verrucomicrobiota was elevated and the

abundance of Cyanobacteria decreased. As shown in

Figure 5A, at the genus level, the relative abundances of

g__undentified, g__Turicibacter, and g__Lachnoclostridium

increased and the relative abundances of

g__Ruminococcus_gnavus_group, g__UCG-005,

g__Ruminococcus, g__Jeotgalicoccus, g__Sellimonas,

g__Erysipelotrichaceae_UCG-003, and

g__Eubacterium_oxidoreducens_group decreased compared to

the control group. The intestinal contents samples were

analyzed, as shown in Figure 5B. Compared with the control

group, the three amino acids in the model group changed

significantly: Phe was significantly decreased (p < 0.05), and

His and Trp were significantly increased (p < 0.001). In the Trp

pathway, Iaa and Ipa were significantly decreased (p < 0.001 and

p < 0.001), and Iald, Kn, and Kyna were significantly increased

(p < 0.001, p < 0.001, and p < 0.001). In the Phe pathway, Ha was

significantly elevated (p < 0.001). In the His pathway, Imp was

significantly elevated (p < 0.001).

Screening of drugs for RA in vitro

The field of gut bacteria is a new direction in studying the

mechanism of drug action. Here, we selected several Chinese

patent drugs and their effective components commonly used in

the clinical treatment of arthritis and used the targeted omics

method established by us to provide new ideas for the study of

TABLE 5 Extraction recoveries of 17 metabolites.

Analyte Concentration (ng/ml) Extraction recovery

LQC Mean (%) SD (%)

MQC

HQC

Ha 40 97.68 6.80

400 104.24 3.30

2000 99.76 3.83

Imaa 40 101.16 5.58

400 105.07 2.11

2000 107.34 1.70

Pea 40 104.89 4.08

400 104.50 1.43

2000 103.99 1.68

3-Mhis 40 100.22 6.69

400 101.41 3.44

2000 105.77 3.43

Ua 40 99.39 5.30

400 102.54 4.99

2000 107.48 2.77

Imp 200 104.15 2.48

2000 104.36 2.05

10000 113.49 3.19

Hist 40 99.99 5.10

400 101.02 3.24

2000 103.76 5.89

Iald 40 109.19 6.13

400 102.36 1.32

2000 111.08 5.23

Kyna 40 98.77 3.18

400 102.92 3.96

2000 104.35 3.80

Ila 40 101.59 6.16

400 105.04 2.42

2000 105.62 1.95

Iaa 40 101.73 3.31

400 100.37 2.26

2000 91.47 3.10

Ipa 40 99.57 2.66

400 103.04 1.14

2000 114.26 5.34

Kn 40 105.06 4.72

400 101.19 1.95

2000 110.80 2.85

3-Haa 40 98.28 5.04

400 99.73 4.21

2000 106.02 2.86

(Continued in next column)

TABLE 5 (Continued) Extraction recoveries of 17 metabolites.

Analyte Concentration (ng/ml) Extraction recovery

LQC Mean (%) SD (%)

MQC

HQC

Trp 200 96.81 4.03
2000 96.05 3.32

10000 96.61 1.64

Phe 200 108.99 7.94

2000 103.38 1.51

10000 101.32 2.83

His 200 98.65 8.08

2000 91.23 1.88

10000 88.34 3.54
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their mechanism of action from the perspective of intestinal

bacteria. Tripterygium wilfordii and Paeonia lactiflora are both

commonly used Chinese herbal medicines for the treatment of

rheumatoid arthritis (Zhang and Wei, 2020; Zhang Y. et al.,

2021). We chose total glucosides of paeony (the extract

composition of white paeony capsules is shown in

Supplementary Table S1). Their active ingredients are

paeoniflorin, albiflorin std, and benzoylpaeoniflorin.

Tripterygium wilfordii polyglycoside tablets (the extract

composition of which is shown in Supplementary Table S2)

has as active ingredients triptolide, celastrol, wilforine,

wilforlide A, and triptonide. We incubated these drugs

in vitro with the gut bacteria of SD rats and then measured

them with established targeted metabolomics for a

preliminarily exploration of whether they can change the

concentration of these metabolites.

As shown in Figure 6A, principal component analysis (PCA)

was performed on 11 high-dose groups and a control group. It

was found that, except for the triptolide group, the other groups

were separated from the control group. These results showed that

the addition of drugs changed metabolites in the in vitro

incubation system compared to the control group. As shown

in Figure 6B, Tripterygium glycoside and its active ingredient

groups, the high-dose triptolide group, the low-dose wilforine

group, and the high-dose wilforine group showed a significant

increase of indole propionic acid in gut bacteria (p < 0.01, p <
0.05, p < 0.05). The high-dose celastrol group showed a

significant increase of indoleacetic acid (p < 0.001). The high-

dose celastrol group, high-dose wilforine group, low-dose

wilforlide A group, and high-dose Tripterygium glycoside

group showed significant increase of Pea (p < 0.05, p < 0.05,

p < 0.05, and p < 0.05). The low-dose celastrol group, the low-

dose and high-dose wilforine groups, the high-dose wilforlide A

TABLE 6 Matrix effects of 17 metabolites.

Analyte Concentration (ng/ml) Matrix effect

LQC Mean (%) SD (%)

MQC

HQC

Ha 40 95.08 9.82

400 91.14 4.82

2000 91.54 3.46

Imaa 40 98.59 7.81

400 98.17 3.19

2000 99.36 3.72

Pea 40 93.12 2.19

400 93.67 4.13

2000 112.64 9.19

3-Mhis 40 96.16 12.38

400 97.58 1.77

2000 96.64 1.94

Ua 40 102.04 4.19

400 96.28 2.13

2000 97.23 2.32

Imp 200 97.18 12.70

2000 87.59 3.91

10000 101.66 5.05

Hist 40 96.69 4.60

400 104.55 3.60

2000 99.66 2.66

Iald 40 95.95 5.28

400 96.28 2.95

2000 93.89 2.83

Kyna 40 95.90 9.42

400 97.77 2.80

2000 94.84 3.66

Ila 40 97.98 5.59

400 91.93 4.89

2000 99.88 3.27

Iaa 40 104.74 5.92

400 93.62 4.70

2000 103.61 2.70

Ipa 40 99.15 7.27

400 93.05 3.20

2000 94.62 1.51

Kn 40 101.29 3.92

400 91.96 3.52

2000 97.16 1.09

3-Haa 40 96.66 5.33

400 96.06 5.90

2000 98.09 3.36

(Continued in next column)

TABLE 6 (Continued) Matrix effects of 17 metabolites.

Analyte Concentration (ng/ml) Matrix effect

LQC Mean (%) SD (%)

MQC

HQC

Trp 200 89.21 5.15
2000 92.39 3.32

10000 97.68 4.79

Phe 200 86.38 6.97

2000 90.47 2.36

10000 96.06 2.53

His 200 106.30 10.33

2000 98.39 3.04

10000 98.16 1.87
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FIGURE 3
Inflammatory factors and immunization index of the rheumatoid arthritis rat model. (A) Establishment of the rheumatoid arthritis rat model. (B)
Interleukin-6 in serum of the rheumatoid arthritis rat model and control group. (C) Interleukin-1β in serum of rheumatoid arthritis rat model and
control group. (D) Tumor necrosis factor-α in serum of the rheumatoid arthritis rat model and control group. (E) Ratio of spleen weight to body
weight of rheumatoid arthritis rat model and control group. A two-sided t test was used, and p < 0.05 was considered statistically significant.
**p < 0.01, ***p < 0.001.

FIGURE 4
Analysis of fecal biodiversity and phylum level of RA rats. (A–D)Chao 1, Observed_ species, PD_whole_ trees and Shannon indices ofmodel and
control groups. (E,F) The relative abundance of bacteria at the phylum level. A two-sided t test was used, and p < 0.05 was considered statistically
significant. *p < 0.05, **p < 0.01.
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FIGURE 5
Genus-level differences in fecal microbiota and metabolite differences in intestinal microbiota samples in the RA model. (A) The top-20
bacterial genera with the most substantial change in abundance after the establishment of rheumatoid arthritis rat model. (*The red pentagram
represents bacteria with abundance increased after the establishment of rheumatoid arthritis model. *The blue pentagram represents bacteria with
decreased abundance after the establishment of rheumatoid arthritis model.) (B) Differences in metabolites in the gut microbiota of model rats
and the control group. A two-sided t test was used and p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 6
Screening of drugs for rheumatoid arthritis in vitro. (A) Principal component analysis plots of in vitro high-dose group samples. (B) Changes in
metabolites after drug treatment in vitro. A two-sided t test was used and p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01, ***p <
0.001. (L means low dose 10 ug/ml, H means high dose 100 ug/ml, “Tripterygium glycoside” represents Tripterygium wilfordii polyglycoside tablets,
“total glucosides of peony” represents total glucosides of white paeony capsules.)
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group, and the low-dose Tripterygium glycoside group showed a

significant decrease of Trp (p < 0.01, p < 0.05, p < 0.01, p < 0.001,

p < 0.05). The low-dose triptolide group, the high-dose celastrol

group, the low-dose and high-dose wilforlide A groups, and the

high-dose triptonide group significantly elevated Phe (p < 0.05,

p < 0.001, p < 0.01, p < 0.01, and p < 0.01). In the total glucosides

of paeony and its active components, the low-dose paeoniflorin

group, the high-dose albiflorin std group, and the low-dose

benzoyl paeoniflorin group significantly elevated Pea (p <
0.05, p < 0.05, p < 0.05). The low-dose and high-dose

paeoniflorin groups, the low-dose and high-dose albiflorin std

groups, the high-dose benzoyl paeoniflorin group, and the high-

dose total glucosides of paeony group can significantly decrease

Trp (p < 0.05, p < 0.01, p < 0.01, p < 0.01, p < 0.05, and p < 0.01).

The low-dose and high-dose paeoniflorin group, low-dose

benzoyl paeoniflorin group, and low-dose and high-dose total

glucosides of paeony group can significantly elevate Phe (p <
0.05, p < 0.05, p < 0.001, p < 0.001, and p < 0.05) (p values of

differential metabolites compared with the control group after

incubation with drugs or compounds are shown in

Supplementary Table S3). Therefore, gut microbiota derived

metabolites in Trp and Phe pathways occurred in variations

after incubation with Tripterygium glycosides and their active

components, including two increasing beneficial Trpmetabolites:

indole propionic acid and indole acetic acid. Concentrations of

phenylethylamine in the gut microbiota increased after

incubation with total glucosides and active components of peony.

Discussion

We successfully developed a simple, rapid, and

derivatization-free LC–MS/MS method for the simultaneous

determination of 17 metabolites targeting Phe, Trp, and His

in intestinal content, targeting three metabolic pathways. The

method has good specificity, and high sensitivity, accuracy,

precision, and recovery rate, meets the requirements of

biological sample analysis, and can be successfully applied to

bacterial samples.

In this experiment, a rat model of rheumatoid arthritis was

selected, and dysbiosis was found in the feces of the model

group. In our experiments, increased abundances of

g__Turicibacter and g__Lachnoclostridium and decreased

abundances of g__Erysipelotrichaceae_UCG-003 were

observed in the model group. g__Turicibacter belongs to the

phylum Firmicutes (Maki and Looft, 2022) and is a strictly

anaerobic Gram-positive rod-shaped bacterium (Bosshard

et al., 2002), the specific function of which is still unclear.

However, studies have shown that it is positively correlated with

a variety of inflammatory diseases and its abundance is

increased in hepatitis mice (Yang et al., 2020a; Somm et al.,

2021). One study showed that the use of icariin significantly

reduced the abundance of the genus g__Turicibacter in colitis

mice (Zhang H. et al., 2021). Similarly, the same phenomenon

occurred during the treatment of colitis mice with caffeic acid

(Wan et al., 2021). Its abundance was significantly increased in

a chronic inflammation-based mouse model of atherosclerosis

and was significantly positively correlated with plaque area in

the mouse aorta (Huang K. et al., 2021). g__Lachnoclostridium

produces short-chain fatty acids mainly through the 4-

aminobutyrate/succinate pathway (Zhao E. et al., 2021) and

is a proinflammatory bacterium. Its relative abundance is

significantly increased in mice with ulcerative colitis (Wang

et al., 2018), patients with eosinophilic inflammation (Kim

et al., 2020), and mice with atherosclerosis (Sun et al., 2021).

g__Erysipelotrichaceae_UCG-003 is a butyric acid-producing

bacterium that can be induced by helper T-cell 17 (Th17 cells)

(Cheng et al., 2021); a clinical experiment showed that the

bacterium was more abundant in healthy aging volunteers than

in the diseased aging group (Singh H. et al., 2019). Another

clinical study showed that the abundance of this bacterium was

significantly decreased in lung cancer patients compared to

healthy patients (Zhao F. et al., 2021). Therefore, it is speculated

that g__Erysipelotrichaceae_UCG-003 is a beneficial bacterium,

although the specific mechanism is still unclear. Less consistent

with the literature is the decreased abundance of

g__Ruminococcus_gnavus_group in the model group. This is

a mucin-degrading gut bacterium (Ahn et al., 2022) belonging

to the phylum Firmicutes (Graziani et al., 2016) and is enriched

in patients with inflammatory bowel disease.

g__Ruminococcus_gnavus_group can produce an

inflammatory polysaccharide, which can induce dendritic

cells to produce inflammatory cytokines such as TNF-α,
further leading to the progression of Crohn’s disease.

Although not the same as our research results, a study based

on genomic analysis of g__Ruminococcus_gnavus_group

mainly secreted glycoside hydrolase and polysaccharide lyase,

suggesting that these bacteria may be closer to the intestinal

mucosa or adhere to the position of the intestinal mucosa

(Graziani et al., 2016). Therefore, this bacterium has a

greater effect on inflammatory bowel disease, but the

mechanism may be different from that of rheumatoid

arthritis. The functions of g__undentified,

g__Eubacterium_oxidoreducens_group, g__Jeotgalicoccus, and

g__Sellimonas are not very well studied, this being the first time

they have been found to be significantly reduced in rheumatoid

arthritis rats. Unfortunately, in the rat model of rheumatoid

arthritis, the different genera we found were not related to the

metabolism of the three amino acids we measured. Therefore,

we did not find a correlation between changes in gut bacteria

and changes in these metabolites in rats with rheumatoid

arthritis—one of the limitations of our study. However,

many of these different bacteria were related to butyric acid

metabolism, so our results suggest that butyric acid can also be a

direction for research on rheumatoid arthritis and intestinal

bacteria which is worthy of further exploration.
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Furthermore, we used the established targeted metabolomics

method to measure the concentration of the metabolites in

intestinal content of the model mice; differential metabolites

were found. Iaa and Ipa were significantly decreased, but Iald, Kn,

Kyna, Ha, and Imp were significantly increased. Among them,

Iaa and Ipa were negatively correlated with inflammation. These

indole derivatives can act on pregnane X receptors (PXR) and

AhR and have a certain inhibitory effect on inflammatory

diseases such as colitis (Huang W. et al., 2021), arthritis

(Rosser et al., 2020), steatohepatitis (Ji et al., 2019; Zhao et al.,

2019), ankylosing spondylitis (Shen et al., 2022), and obesity (Su

et al., 2022)—consistent with our experimental results. Trp is

metabolized by bacteria into two pathways, indole derivatives

and kynurenine, which antagonize each other. Therefore, the

change trend of Kn and Kyna is opposite to that of indole

derivatives. Studies have shown that Iald induces IL-22 by

activating the AHR pathway and has an inhibitory effect on

inflammation (Teng et al., 2018). However, another study

showed that, although Iald has anti-inflammatory activity

in vitro, it has pro-osteoclastogenesis and pro-angiogenic

effects (Langan et al., 2021), which may be the reason for the

significantly higher concentration of Iald in the model

group. Hippuric acid, a biomarker identified from the urine of

rheumatoid arthritis rats, inhibits osteoclast production in vitro

to prevent osteoclasts from increasing bone resorption; this may

be related to the underlying mechanism of rheumatoid arthritis

(Jiang et al., 2016; Zhao et al., 2020). Ha has been identified as a

biomarker of rheumatoid arthritis, and a study has revealed that

hippuric acid inhibits osteoclast production in vitro to prevent

osteoclasts from increasing bone resorption; this may be related

to rheumatoid arthritis. Imidazole propionic acid is a newly

discovered product of His metabolism by intestinal bacteria that

positively correlates with systemic inflammation and is a

biomarker related to diabetes (Koh et al., 2018). One study

showed that it was negatively correlated with anti-

inflammatory bacteria (Molinaro et al., 2020), which is

consistent with our experimental results. In conclusion, these

metabolites of intestinal content in rheumatoid arthritis model

rats appeared varied. We then screened Tripterygium glycosides,

total peony glucosides, and their active ingredients in vitro. The

results showed that Tripterygium glycosides could modulate Trp

and Phe pathways, especially Ipa, Iaa, and Pea. Total peony

glucosides can modulate the Phe pathway, especially

phenylethylamine. It has been documented in the literature

that phenethylamine has an effect on the progression of

chronic inflammation in humans (Maráková et al., 2020),

especially neuroinflammation (Chen et al., 2022). However,

phenethylamine has been less studied in nonbrain

inflammatory diseases.

There is currently no targeted metabolomic method of

simultaneously targeting the inflammatory markers of these

three amino acid pathways. Due to the close connection

between inflammatory diseases and intestinal microbiota, it

is very important to establish our method. However, our

experiment still has certain limitations. Some different

genera were identified in the analysis of the fecal samples of

the model rats but the functional analysis did not find that these

genera had metabolic effects on the three amino acid pathways.

Therefore, further in vivo experiments may be required for

confirmation. In conclusion, it was found that the pathogenesis

of RA was related to dysbacteriosis, that Iaa and Ipa in the

bacterial microbiota were significantly decreased, and that Iald,

Kn, Kyna, Ha, and Imp were significantly increased. Using the

method of in vitro incubation, the commonly used drugs for the

treatment of RA—Tripterygium glycosides, total peony

glucosides, and their corresponding monomers —were

screened, and metabolites in Trp and Phe pathways

occurred. Their variations of Ipa, Iaa, and Pea deserve

special attention, which may be related to the mechanism of

the treatment of rheumatoid arthritis. Our method can identify

targets for the interaction of inflammatory diseases and

microbiota and can be applied to the mechanistic study and

drug screening of other inflammatory diseases. However, our

research existed some limitations in the in vitro screening of

drugs. We selected the gut microbiome of healthy rats to

incubate with drugs, which were more related to the drugs’

preventive effects. Further studies are needed to more widely

apply our approach to drug screening for the treatment of RA

and mechanism elucidation, including whether drugs can

reverse gut microbiota-derived metabolites of RA model rats

in vitro, whether drugs can reverse metabolites of gut

microbiome in RA model rats after dosing of drugs, and

whether drugs can reverse these metabolites in patients with

rheumatoid arthritis. These are all worthy of further

exploration.

Conclusion

In summary, we established targeted metabolomics of

bacterial inflammatory markers and completed method

validation. A typical inflammatory disease model of

rheumatoid arthritis was then established, and we successfully

applied targeted metabolomics of inflammatory markers to this

model of inflammatory disease. In addition, we screened

rheumatoid arthritis drugs in vitro and found that their

treatment of rheumatoid arthritis may be related to microbial

metabolites. In conclusion, our study may provide new insights

into the mechanisms of inflammatory diseases and drug

screening.
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Omaveloxolone inhibits
IL-1β-induced chondrocyte
apoptosis through the Nrf2/ARE
and NF-κB signalling pathways
in vitro and attenuates
osteoarthritis in vivo
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Osteoarthritis (OA) is a commondegenerative joint disease. Effective drugs that can

halt or decelerate osteoarthritis progression are still lacking. Omaveloxolone is a

semisynthetic oleanane triterpenoid exerting antioxidative and anti-inflammatory

effects. The present study aims to determine whether omaveloxolone has a

therapeutic effect on OA. Chondrocytes were treated with interleukin (IL)-1β to

establish an OA cell model in vitro. Indicators of cell viability, oxidative stress,

inflammation, cell apoptosis and extracellular matrix (ECM) degradation were

investigated. Proteins related to the Nuclear factor erythroid derived-2-related

factor 2 (Nrf2)/antioxidant response element (ARE) and nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) signalling pathways were assessed

using Western blotting. A destabilized medial meniscus surgery-induced OA rat

model was used in vivo. Gait analysis, microcomputed tomography analysis, and

histopathological and immunohistochemical analyses were performed to

determine the therapeutic effect of omaveloxolone on attenuating osteoarthritis

in vivo. The results showed that omaveloxolone exerts antioxidative, anti-

inflammatory, antiapoptotic and anti-ECM degradation effects via activation of

the Nrf2/ARE signalling pathway and inhibition of the NF-κB signalling pathway in

chondrocytes in vitro and attenuates OA progression in vivo, suggesting that

omaveloxolone may be a potential therapeutic agent for OA.
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Introduction

Osteoarthritis (OA) is a chronic degenerative disease

characterized by the degeneration of articular cartilage. The

prevalence of OA has been rapidly increasing owing to an

ageing population as well as an obesity epidemic.

Approximately 300 million people suffer from OA worldwide

(Vitaloni et al., 2020). OA is a leading cause of disability (Hunter

et al., 2020). Nonsteroidal anti-inflammatory drugs (NSAIDs),

selective cyclooxygenase-2 inhibitors and acetaminophen are

used clinically for symptomatic relief. However, they cannot

effectively prevent the progression of OA (Abdel-Aziz et al.,

2021; Zhang et al., 2021b). Patients with severe OA eventually

require arthroplasty. OA constitutes a considerable burden on

society worldwide (Hawker and King, 2022).

Chondrocytes, the only cell population of articular cartilage, play

a crucial role in maintaining articular cartilage homeostasis (Chen

et al., 2021). Hence, the survival of chondrocytes is critical and

essential for the structural preservation, functional regulation and

extracellular matrix (ECM) turnover of articular cartilage (Hall,

2019). Growing evidence demonstrates an association between

chondrocyte death and OA (Yang et al., 2021). Increased reactive

oxygen species (ROS) generation and inflammation can initiate

chondrocyte apoptosis, which contributes to the occurrence and

development of OA. Inhibiting chondrocyte apoptosis is a potential

therapeutic intervention for OA (Blanco et al., 1998; Hashimoto

et al., 1998; Hwang and Kim, 2015; Chow and Chin, 2020).

Omaveloxolone (also known as RTA408) is a semisynthetic

oleanane triterpenoid and a novel compound in the antioxidant

inflammation modulator class (Probst et al., 2015).

Omaveloxolone is one of the most potent activators of the

nuclear factor erythroid derived-2-related factor 2 (Nrf2)/

Nrf2 activates antioxidant response element (ARE) pathway

(active at nanomolar concentrations) (Cuadrado et al., 2018).

Increasing evidence indicates that targeting the Nrf2/ARE

signalling pathway is of pharmacological interest in the

treatment of OA. Nrf2 is a critical regulatory factor in the

system of oxidative stress defence. Nrf2 binds to the

inhibitory protein Kelch-like ECH-associated protein 1

(Keap1) in the cytoplasm under physiological conditions.

Nrf2 dissociates from Keap1 and translocates into the nucleus

under stress or pathological conditions. ARE-regulated

antioxidant proteins, including haem oxygenase-1 (HO-1) and

NADPH quinone oxidoreductase 1 (NQO-1), to exert

antioxidant effects (Ulasov et al., 2021; Panda et al., 2022).

Several previous studies have confirmed that the Nrf2/ARE

signalling pathway plays a protective role in articular cartilage

(Marchev et al., 2017; Song et al., 2021; Chen et al., 2022).

Consequently, agents, including omaveloxolone, may have

therapeutic potential for the treatment of OA for their ability

to activate Nrf2/ARE signalling pathway.

In addition, omaveloxolone is also an effective inhibitor of

the Nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-κB) signalling pathway (Sun et al., 2020; Zhang

et al., 2021). NF-κB is also an important regulator of oxidative

stress and inflammation. NF-κB dimers interact with inhibitory

IκB proteins in the cytoplasm under physiological conditions.

NF-κB dimers translocate from the cytoplasm into the nucleus to

activate NF-κB-dependent genes following injury or stress. The

canonical and noncanonical pathways are the two major

signalling pathways involved in the activation of the NF-κB
signalling pathway. The canonical pathway is dependent on

IKKβ and NEMO, while the non-canonical pathway is

dependent on IKKα(Rigoglou and Papavassiliou, 2013; Jimi

et al., 2019). The NF-κB signalling pathway has been

identified as a key contributing factor that is abnormally

activated in OA. Inhibition of the NF-κB signalling pathway

shows therapeutic potential in the treatment of OA (Marcu et al.,

2010; Choi et al., 2019; Lepetsos et al., 2019). It is conceivable that

omaveloxolone with a suppressive role in NF-κB signaling would

have therapeutic potential for OA.

Omaveloxolone has been shown to have strong antioxidant and

anti-inflammatory effects by activating the Nrf2 pathway and/or

suppressing the NF-κB signalling pathway in vitro or in vivo in

studies of some diseases, such as acute asthma exacerbation,

nonalcoholic steatohepatitis, acute kidney injury and

neurodegenerative diseases (Han et al., 2017; Yang et al., 2019;

Zhang et al., 2019; Reisman et al., 2020). In addition, the safety of

omaveloxolone was preliminarily confirmed in a phase Ⅰ clinical trial
in patients with metastatic non-small-cell lung cancer or melanoma

and a phase Ⅱ clinical trial in Friedreich ataxia (Creelan et al., 2017;

Lynch et al., 2019; Madsen et al., 2020).

Given the effects of omaveloxolone on the regulation of the

Nrf2/ARE andNF-κB signalling pathways and the critical role of the

NF-κB pathways in OA, omaveloxolone may have potential as a

therapy for OA. However, supporting evidence is still lacking. We

thus conducted the current study to explore the roles and

mechanism of omaveloxolone in protecting chondrocytes against

IL-1β-induced cell apoptosis in vitro and to determine the potential

therapeutic effects of omaveloxolone on preventing OA in vivo.

Materials and methods

Cell isolation and culture

All animal experiments in the present study were approved by the

Committee on Ethics of Animal Experiments of Fudan University

Jinshan Hospital (Shanghai, China). Four, 4-week-old male Sprague-

Dawley (SD) rats (Shanghai SLACLaboratory Animal Co. LTD)were

euthanized by an overdose of carbon dioxide. The cartilage of the hip

joints was harvested, cut into small pieces and digested with 0.1%

collagenase II (Gibco; Grand Island, NY, United States) at 37°C

overnight. The chondrocytes were collected and cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco) with 10%

foetal bovine serum (FBS, Gibco) in a 5% CO2 atmosphere at 37°C.
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Cell viability assay

The cell viability of chondrocytes was measured using a Cell

Counting Kit-8 (CCK-8, Beyotime Institute of Biotechnology,

Shanghai, China). Cells were treated with different

concentrations of omaveloxolone (5, 10, 25, 50, 100, 250, 500,

1000 and 2000 nM) for 24, 48 and 72 h. IL-1β (10 ng/ml,

PeproTech EC, London, United Kingdom) was used to mimic

inflammatory conditions (Jin et al., 2021). DMEM containing

10% CCK-8 solution was added to each well for 2 h. Absorption

was detected at 450 nm using a microplate reader (Epoch; BioTek

Instruments Inc., Vermont, United States).

ROS level evaluation

2′,7′-dichlorofluorescein diacetate (DCFH-DA, Sigma-Aldrich,

Missouri, United States) staining was used to evaluate ROS levels in

chondrocytes 24 h after treatment. Briefly, chondrocytes were

washed with PBS twice, stained with 10 μM DCFH-DA for

30 min, washed with serum-free DMEM three times to remove

the DCFH-DA solution and observed under an Olympus

FV3000 confocal laser scanning microscope. In addition, cells

were collected and stained with DCFH-DA for flow cytometry

analysis using a BD Accuri C6 plus flow cytometer (BD

Biosciences, Vianen, Netherlands) to quantify ROS levels.

Malondialdehyde (MDA) and superoxide
dismutase (SOD) evaluation

MDAcontent in chondrocytes was detected using anMDAassay

kit (Beyotime). SOD levels in chondrocytes were determined using a

SOD assay kit (Nanjing Jiancheng Bioengineering Institute, Jiangsu,

China). In brief, cell lysates were cultured with working buffer for

30 min at 37°C according to the manufacturer’s instructions 24 h

after treatment. Absorbance was detected at a wavelength of 523 nm

(MDA) or 450 nm (SOD) using amicroplate reader. A bicinchoninic

acid (BCA) protein assay kit (Beyotime) was used to determine the

total protein concentration to normalize the MDA and SOD levels.

Mitochondrial membrane potential
determination

The mitochondrial membrane potential of chondrocytes was

detected using a JC-1 mitochondrial membrane potential assay

kit (Abcam, Cambridge, United Kingdom) 24 h after treatment.

Chondrocytes were stained with JC-1 (5 μg/ml) for 25 min

followed by Hoechst 33,342 (Thermo Fisher, Waltham, MA,

United States) staining for 5 min at 37°C. The cells were then

observed under an Olympus FV3000 confocal laser scanning

microscope. In addition, cells were collected and stained with JC-

1 for flow cytometry analysis using a BD Accuri C6 plus flow

cytometer to quantify mitochondrial membrane potential levels.

Annexin V-fluorescein isothiocyanate
(FITC)/propidium iodide (PI) staining

Chondrocyte apoptosis was measured using an Annexin

V-FITC kit (BD Bioscience, CA, United States) 24 h after

treatment. Then, 5 μL Annexin V was added to the

chondrocytes for 30 min, and 5 μL PI was added for 5 min at

37°C in the dark. Flow cytometry analysis was performed using a

BD Accuri C6 plus flow cytometer. Chondrocytes were observed

under an Olympus FV3000 confocal laser scanning microscope.

Western blotting

Chondrocytes were lysed in radioimmunoprecipitation assay

buffer to extract total protein. In addition, a nuclear protein

extraction kit (Beyotime) was used to extract nuclear protein from

chondrocytes. Proteins were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and transferred to polyvinylidene

fluoride membranes (Beyotime). Membranes were incubated

overnight at 4°C with the following primary antibodies: inducible

nitric oxide synthase (iNOS, 1:2,000, ab178945, Abcam),

cyclooxygenase-2 (COX-2, 1:2,000, ab188183, Abcam), B cell

lymphoma 2 (Bcl2, 1:2,000, ab196495, Abcam), Bcl2-Associated X

(Bax, 1:2,000, ab32503, Abcam), metalloproteinase with matrix

metalloproteinase (MMP) 3 (1:2,000, ab52915, Abcam),MMP13 (1:

2,000, 18165-1-AP, Proteintech, Wuhan, China), collagen type II (1:

2,000, ab188570, Abcam), aggrecan (1:2,000, 13880-1-AP,

Proteintech), phosphorylated P65 (p-P65) (1:1,000; ab76302,

Abcam), P65 (1:1,000; ab19870, Abcam), p-IκBα (1:1,000;

ab133462, Abcam), IκBα (1:1,000; ab32518, Abcam), Nrf2 (1:1,000,

16396-1-AP, Proteintech), HO-1 (1:2,000, ab13243, Abcam), NQO-1

(1:2,000, 11451-1-AP, Proteintech), Lamin B1 (1:2,000, 12987-1-AP,

Proteintech) and β-actin (1:5,000; #4970, Cell Signaling Technology

Inc., Danvers, MA, United States). Membranes were subsequently

cultured with the corresponding secondary antibodies (horseradish

peroxidase-labelled goat anti-rabbit IgG and anti-mouse IgG,

Proteintech). Signals of target proteins were visualized using

enhanced chemiluminescence on an imaging system (Tanon,

Shanghai, China). Relative protein levels were quantified using

ImageJ software (version 1.8.0; National Institutes of Health,

Bethesda, MA, United States) normalized to β-actin or Lamin B1.

Immunofluorescence assay

Immunofluorescence was performed to explore the changes

in the expression of aggrecan, collagen type II, MMP3 and

MMP13. Chondrocytes were incubated in blocking solution
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and stained with primary antibodies against aggrecan, collagen

type II, MMP3 andMMP13 overnight at 4°C. Chondrocytes were

then stained with the FITC- or phycoerythrin (PE)-conjugated

secondary antibody (Thermo Fisher). The nucleus was labelled

with Hoechst 33,342. Cells were observed under an Olympus

FV3000 confocal laser scanning microscope.

Animal model

Twenty-four 4-week-old SD rats were used for in vivo

experiments. Animal experiments were performed after 1week

adaptive feeding. Destabilized medial meniscus (DMM) surgery

was performed to induce OA in the right knee of rats as described

previously (Lin et al., 2022; Teng et al., 2022). The rats were

randomized to four groups (sham group, DMM group, DMM

+200 μg/kg omaveloxolone group and DMM +500 μg/kg

omaveloxolone group), with six rats in each

group. Omaveloxolone was dissolved in normal saline. Rats

received intraperitoneal injections of omaveloxolone every

3 days. Intraperitoneal injections of omaveloxolone were

performed 2 weeks after modeling. The omaveloxolone

dosages were based on our pre-experiment results and

previous study (Sun et al., 2020).

CatWalk XT gait analysis

The Catwalk-gait test was performed using the Catwalk

automated gait analysis system (Noldus Information

Technology, Wageningen, Netherlands). Rats walked freely on

a glass floor lit by green light, and the position of the rat

footprints was recorded by a high-speed video camera. The

recorded data were analysed using catwalk program software

(Noldus, CatWalk XT version 10.6.608).

Radiographic analysis

Increasing evidence indicates that subchondral bone changes

are crucial pathological changes in OA (Li et al., 2013; Aizah

et al., 2021; Hu et al., 2021). Hence, structural alterations of

subchondral bone architecture were evaluated in this study. Rats

were euthanized by carbon dioxide 8 weeks after the

omaveloxolone treatment. The right knee joints were

harvested. Microcomputed tomography (micro-CT) images of

the knee joints were obtained using a SCANCO 50 (Switzerland).

Three-dimensional (3D) images of the knee joints were

reconstructed. Bone morphometric parameters of tibial

subchondral bone, including bone mineral density (BMD),

bone volume (BV)/total volume (TV), trabecular number (Tb.

N), trabecular separation (Tb. Sp) and trabecular thickness

(Tb.th) were analysed.

Histopathology and
immunohistochemistry analysis

Knee joints of rats were fixed with 4% paraformaldehyde and

decalcified in 10% ethylenediamine tetraacetic acid (EDTA).

Tissues were processed and embedded in paraffin for

histopathological examination. The sections were stained with

haematoxylin-eosin (HE), safranin O/fast green (SO/FG) and

toluidine blue (TB). For IHC analysis, antigen retrieval was

performed using microwave treatment. Endogenous

peroxidases were blocked using 3% hydrogen peroxide. Goat

serum (10%) was used to block nonspecific staining. Sections

were incubated with the primary antibody against collagen type

II and aggrecan at 4°C overnight, followed by the secondary

biotinylated antibody (Proteintech) for 30 min at 37°C. Sections

were stained with 3,3′-diaminobenzidine tetrahydrochloride for

25 s and then stained with haematoxylin for 5 min at room

temperature. Sections were digitally scanned using a

BX51 Olympus fluorescence microscope. Collagen type II

levels were quantified using ImageJ software.

Statistical analysis

All experiments were replicated independently three times.

Data are presented as the mean ± standard deviation. A two-

tailed Student’s t test was applied for two-group comparisons.

The Mann–Whitney test was used for nonparametric data

(OARSI scoring and Mankin scoring). p values <0.05 were

considered statistically significant. Statistical analyses were

performed using SPSS software (version 22.0; IBM Corp.).

Results

Omaveloxolone improved the viability of
chondrocytes exposed to IL-1β

The structural formula of omaveloxolone is presented in

Figure 1G. The cell cytotoxicity of different concentrations of

omaveloxolone (5, 10, 25, 50, 100, 250, 500, 1000 and 2000 nM)

was assessed using a CCK8 assay. No significant cytotoxicity of

omaveloxolone on chondrocytes was observed at concentrations

below or equal to 500 nM at 24, 48 and 72 h (Figures 1A–C).

Therefore, omaveloxolone at concentrations below or equal to

500 nM was used to evaluate the effects on the viability of

chondrocytes exposed to IL-1β. The results showed that 10,

25, 50, 100, 250 and 500 nM significantly improved the

viability of chondrocytes exposed to IL-1β at 24, 48, and 72 h

(Figures 1D–F). 10 nM was the lowest effective concentration

able to effectively improve the cell viability and thus was selected

for subsequent treatments. At concentration of 25 and 50 nM,

omaveloxolone had the best effects on improving the viability of
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chondrocytes exposed to IL-1β. With the aim to maintain the

omaveloxolone therapeutic potential while keeping

omaveloxolone concentration as low as possible (to reduce

potential adverse effects of drugs on chondrocytes), a

concentration of 25 nM was selected for subsequent

treatments. Therefore, 10 and 25 nM omaveloxolone were

used for the subsequent in vitro study based on these results.

Omaveloxolone suppressed oxidative
stress and inflammation in chondrocytes
exposed to IL-1β

Excessive ROS production causes oxidative stress. DCFH-

DA staining was used to evaluate ROS levels in chondrocytes.

Representative fluorescence confocal microscopic images are

shown in Figure 2A. Green fluorescence indicates ROS

production in chondrocytes. Chondrocytes in the control

group showed almost no green fluorescence. Bright green

fluorescence was observed in IL-1β-treated chondrocytes,

whereas the green fluorescence was weak in chondrocytes

treated with 10 nM or 25 nM omaveloxolone. In addition, the

ROS level was quantified using flow cytometry (Figures 2B,C).

The results showed that IL-1β significantly promoted ROS

generation in chondrocytes, while 10 and 25 nM

omaveloxolone both decreased ROS levels in chondrocytes

exposed to IL-1β, suggesting that omaveloxolone effectively

suppressed IL-1β-induced ROS generation in chondrocytes.

SOD and MDA are two frequently used indices of oxidative

stress. IL-1β significantly increased MAD levels while decreasing

SOD levels. Omaveloxolone (10 and 25 nM) reduced MAD levels

but increased SOD levels, suggesting that omaveloxolone could

prevent IL-1β-induced oxidative stress in chondrocytes

(Figures 2G,H).

COX2 and iNOS, two important indicators of

inflammation, were measured using Western blotting

(Figure 2D). The results showed that IL-1β enhanced the

protein expression of COX2 and iNOS, which was partially

FIGURE 1
Omaveloxolone improved the viability of chondrocytes treated with IL-1β in vitro. Cell viability of chondrocytes treated with different
concentrations of omaveloxolone (5, 10, 25, 50, 100, 250, 500, 1000, and 2000 nM) at 24 h (A), 48 h (B) and 72 h (C). Effects of different
concentrations of omaveloxolone (5, 10, 25, 50, 100, 250, and 500 nM) on the viability of chondrocytes exposed to 10 ng/mL IL-1β for 24 h (D), 48 h
(E) and 72 h (F). (G) The structural formula of omaveloxolone. *p < 0.05 and **p < 0.01 versus the control group. #p < 0.05 and ##p < 0.01 versus
the IL-1β group (10 ng/ml IL-1β, 0 nM omaveloxolone).
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reversed by administration of 10 and 25 nM omaveloxolone

(Figures 2E,F). The results suggested that omaveloxolone

could suppress inflammation in chondrocytes exposed to

IL-1β.

Omaveloxolone prevented the apoptosis
of chondrocytes exposed to IL-1β

Mitochondrial membrane potential was assessed using JC-1

staining. Representative fluorescence confocal microscopic

images are shown in Figure 3A. Green fluorescence indicates

decreased mitochondrial membrane potential, while red

fluorescence indicates normal mitochondrial membrane

potential. The results showed that IL-1β exposure led to

decreased mitochondrial membrane potential in chondrocytes,

which is a landmark event in early apoptosis. Omaveloxolone

(10 and 25 nM) significantly improved the mitochondrial

membrane potential in chondrocytes exposed to IL-1β
(Figures 3A,B).

Chondrocyte apoptosis was then detected using Annexin V/PI

staining. The results of flow cytometry showed that IL-1β increased
the apoptosis ratio of chondrocytes, while 10 and 25 nM of

omaveloxolone significantly reduced the apoptosis ratio of

chondrocytes exposed to IL-1β (Figures 3C,D). In addition, the

apoptosis markers Bax and Bcl2 were measured using Western

blotting. IL-1β decreased Bcl2 protein levels but increased Bax

protein levels in chondrocytes. Omaveloxolone (10 and 25 nM)

promoted Bcl2 protein expression and inhibited Bax protein

expression in chondrocytes exposed to IL-1β (Figures 3E–G).

The results above indicated that omaveloxolone effectively

prevented IL-1β-induced apoptosis of chondrocytes.

FIGURE 2
Omaveloxolone exerted antioxidative and anti-inflammatory effects on chondrocytes exposed to IL-1β. (A) Representative fluorescence
confocal microscopic images of chondrocytes stained with DCFH-DA (scale bar, 100 μm). (B and C) Chondrocytes stained with DCFH-DA were
assessed by flow cytometry to quantify the ROS level. (D) Representative Western blots. Quantitative analysis of COX2 (E) and iNOS (F) was
performed. (G) The SOD levels in chondrocytes among the four groups. (H)MDA levels in chondrocytes among the four groups. *p < 0.05 and
**p < 0.01.
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Omaveloxolone inhibited ECM
degradation of chondrocytes exposed to
IL-1β

To assess the degree of ECM degeneration, ECM proteins

and ECM degrading enzymes, including collagen type II,

aggrecan, MMP3 and MMP13, were evaluated using

immunofluorescence and Western blotting assays.

Representative fluorescence confocal microscopic images

are shown in Figures 4A–D. The results of quantitative

analysis of the fluorescence intensity showed that IL-1β

decreased the expression levels of collagen type II and

aggrecan while increasing the expression levels of MMP

3 and MMP 13. Omaveloxolone (10 and 25 nM) increased

the expression levels of collagen type II and aggrecan but

reduced the expression levels of collagen type II and aggrecan

(Figures 4E–H). The results of the Western blotting assay

showed that 10 and 25 nM of omaveloxolone significantly

promoted collagen type II and aggrecan protein expression

while inhibiting MMP 3 and MMP 13 protein expression

(Figures 5A–E), which is consistent with the

immunofluorescence results. The results indicated that

FIGURE 3
Omaveloxolone prevented IL-1β-induced chondrocyte apoptosis. (A) Representative fluorescence confocal microscopic images of
chondrocytes stained with JC-1 (scale bar, 50 μm). (B)Mitochondrial membrane potential quantitative analysis. (C) Chondrocytes were stained with
Annexin V/PI and measured by flow cytometry. (D) Quantitative analysis of the apoptosis ratio of chondrocytes. (E) Representative Western blots.
Quantitative analysis of Bcl2 (F) and Bax (G) was performed. *p < 0.05 and **p < 0.01.
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FIGURE 4
Omaveloxolone suppressed IL-1β-induced ECM degradation in vitro. Representative immunofluorescence images of aggrecan (A), collagen
type II (B), MMP3 (C) and MMP13 (D) (scale bar, 50 μm). The results of the quantitative analysis showed that omaveloxolone enhanced aggrecan (E)
and collagen type II (F) protein expression while inhibiting MMP3 (G) andMMP13 (H) protein expression in chondrocytes exposed to IL-1β. **p < 0.01.
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FIGURE 5
Omaveloxolone activated the Nrf2/ARE signalling pathway while suppressing the NF-κB signalling pathway in chondrocytes exposed to IL-1β.
(A) Representative Western blots of proteins involved in ECM degradation. Quantitative analysis of aggrecan (B), collagen type II (C), MMP3 (D) and
MMP13 (E)was performed. (F) Representative Western blots of proteins involved in the Nrf2/ARE signalling pathway. Quantitative analysis of Nrf2 (G),
HO-1 (H) and NQO1 (I)was performed. (J) Representative Western blots of proteins involved in the NF-κB signalling pathway. Omaveloxolone
(10 and 25 nM) reduced the p-P65/P65 ratio (K) and p-IκBα/IκBα ratio (L). *p < 0.05 and **p < 0.01.
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omaveloxolone could inhibit ECM degradation in

chondrocytes exposed to IL-1β.

Omaveloxolone activated the Nrf2/ARE
signalling pathway while suppressing the
NF-κB signalling pathway in chondrocytes
exposed to IL-1β

To explore the underlying mechanism by which

omaveloxolone prevents IL-1β-induced apoptosis of

chondrocytes, the expression of proteins involved in the Nrf2/

ARE and NF-κB signalling pathways was assessed by Western

blotting.

To assess the Nrf2/ARE signalling pathway, chondrocytes

were pretreated with 10 nM or 25 nM of omaveloxolone for 2 h

and then incubated with 10 ng/ml IL-1β for another 24 h. The

results showed that 10 and 25 nM of omaveloxolone promoted

Nrf2 translocation into the cell nucleus and thus enhanced HO-1

and NQO1 protein expression in chondrocytes exposed to IL-1β,
suggesting that the Nrf2/ARE signalling pathway, an important

antioxidant signalling pathway, was activated by omaveloxolone

(Figures 5F–I).

In addition, for assessment of the NF-κB signalling pathway,

chondrocytes were pretreated with 10 nM or 25 nM of

omaveloxolone for 2 h and then incubated with 10 ng/ml IL-

1β for another 1 h (Xian et al., 2022; Yao et al., 2022). The results

of Western blotting analysis showed that 10 and 25 nM of

omaveloxolone reduced the p-P65/P65 and p-IκBα/IκBα ratio,

indicating that omaveloxolone could suppress the NF-κB
signalling pathway in chondrocytes exposed to IL-1β
(Figure 5J-L).

Omaveloxolone alleviated osteoarthritis in
rats

Gait analysis is commonly used to assess pain-related behaviours

in a rat OA model. CatWalk data were obtained as the right hind

(RH)/left hind (LH) limb ratio of light intensity, print area, duty cycle,

stance phrase, swing phrase and swing speed. The results of CatWalk

analysis showed that the RH/LH ratios of light intensity, print area,

duty cycle, stance phrase and swing speed were decreased, while the

RH/LH ratio of swing phrase was increased in rats with OA

compared with those in control rats. Low dose of omaveloxolone

(200 μg/kg) and high dose of omaveloxolone (500 μg/kg)

significantly improved the RH/LH ratios of light intensity, print

area and swing speed in rats with OA. In addition, high dose of

omaveloxolone effectively improved the RH/LH ratios of the stance

phase (Figure 6G). These results suggest that omaveloxolone is

beneficial for relieving pain in OA rats.

Histopathology and immunohistochemistry analyses were

performed to evaluate the protective effects of omaveloxolone on

OA in rats. Representative images of HE, SO/FG and TB staining

are shown in Figure 7A. Severe cartilage erosion, massive

proteoglycan loss, and decreased number and disordered

arrangement of chondrocytes were observed in the OA

group. These pathological changes could be ameliorated by

low and high doses of oamveloxolone. Histological evaluation

was performed using the Osteoarthritis Research Society

International (OARSI) scoring system and the modified

Mankin scoring system. The results showed that the OARSI

scores and Mankin scores of the low-dose and high-dose of

oamveloxolone groups were higher than those of the OA groups

(Figures 7B,C). Representative immunohistochemistry images of

collagen type II and aggrecan are also shown in Figure 7A. The

quantitative analysis results showed that.

The expression level of collagen type II in the OA group was

lower than that in the control group. Low-dose and high-dose

oamveloxolone both increased collagen type II and aggrecan

levels in vivo (Figures 7D,E).

Furthermore, microCT analysis was performed to assess the

changes in the microarchitecture of the subchondral bone.

Representative 3D images are shown in Figure 6A.

Quantitative analysis of bone microarchitecture parameters

showed that both the low dose and high dose of

oamveloxolone increased BMD, BV/TV, Tb. th and Tb.N in

rats with OA. No significant difference was observed in Tb. Sp

among the four groups (Figures 6B–F). The results of

behavioural, radiographic, histopathology and

immunohistochemistry assays indicate that omaveloxolone

effectively alleviated osteoarthritis in rats.

Omaveloxolone toxicity assessment in
vivo

Major organs (lungs, heart, liver, spleen and kidneys) of rats

were harvested and stained with H&E to evaluate the potential

toxicity of omaveloxolone. No obvious pathological changes were

observed among the four groups, suggesting that 200 and

500 μg/kg omaveloxolone did not cause significant organ

toxicity after 8 weeks of treatment. (Figure 8).

Discussion

Omaveloxolone is a semisynthetic oleanane triterpenoid.

Mounting studies have shown that omaveloxolone can exert

antioxidative and anti-inflammatory effects via activation of

the Nrf2/ARE signalling pathway and inhibition of the NF-κB
signalling pathway (Probst et al., 2015; Han et al., 2017; Sun et al.,

2020). Therefore, we conducted the current study to explore the

effects of omaveloxolone on attenuating OA.

We first explored the effect of omaveloxolone on the viability

of chondrocytes exposed to IL-1β in vitro. Omaveloxolone at
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FIGURE 6
Omaveloxolone relieved pain and suppressed subchondral bone loss and microarchitecture deterioration in OA rats. (A) Representative
3D reconstructed images of right knee joints. Quantitative analysis of bone morphometric parameters of tibial subchondral bone, including
BMD (B), BV/TV (C), Tb. th (D), Tb. Sp (E) and Tb. N (F). (G)Gait analysis of light intensity, print area, duty cycle, stance phrase, swing phrase and
swing speed. *p < 0.05 and **p < 0.01. n. s., not significant.
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concentrations lower than or equal to 500 nM improved the

viability of chondrocytes exposed to IL-1β without significant

cytotoxicity. Classic indices correlated with inflammation and

oxidative stress were then detected. Omaveloxolone (10 and

25 nM) significantly prevented ROS production, reduced SDO

levels and increased MDA levels in chondrocytes treated with IL-

1β, suggesting that omaveloxolone could prevent IL-1β-mediated

oxidative stress in chondrocytes. In addition, 10 and 25 nM of

omaveloxolone effectively suppressed COX2 and iNOS protein

expression, indicating that omaveloxolone could inhibit

inflammation in chondrocytes. Inflammation and redox

imbalance are important pathogenic factors of OA (Henrotin

et al., 2003; Lepetsos and Papavassiliou, 2016; Rahmati et al.,

2016). Excessive ROS generation and inflammation contribute to

FIGURE 7
Histopathology and immunohistochemistry analysis of rat knee joints. (A) Representative images of HE, SO/FG, TB, collagen type II and
aggrecan staining. Images are presented at lowmagnification (×4magnification, scale bar, 500 μm) and highmagnification (×40magnification, scale
bar, 50 μm). Omaveloxolone (200 and 500 μg/kg) significantly reduced OARSI scores (B) and Mankin scores (C). Omaveloxolone (200 and
500 μg/kg) significantly increased collagen type II (D) and aggrecan levels (E) in OA rats. **p < 0.01.
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the acceleration of chondrocyte apoptosis and cartilage

degradation. Therapeutic agents based on antioxidative and

anti-inflammatory effects may be readily available and

effective (Ziskoven et al., 2010; Zhuo et al., 2012; Tudorachi

et al., 2021). This study demonstrated that omaveloxolone

protects cells against oxidative injury and inflammation.

Apoptosis is strongly correlated with excessive inflammation

and oxidative stress. Excessive chondrocyte apoptosis is considered a

key factor for OA progression (Blanco et al., 1998). Therefore, we

explored the effects of omaveloxolone on chondrocyte apoptosis.

The results showed that omaveloxolone significantly improved

mitochondrial membrane potential, enhanced Bcl2 protein

expression and inhibited Bax protein expression in chondrocytes

exposed to IL-1β. The decrease in mitochondrial membrane

potential provided significant evidence of early apoptosis of

chondrocytes. Omaveloxolone upregulated the anti-apoptotic

protein Bcl2 and downregulated the pro-apoptosis protein Bax,

which led to a reduced susceptibility of cells to apoptotic stimuli,

such as IL-1β(Dadsena et al., 2021; Lalier et al., 2022; Spitz and

Gavathiotis, 2022). The results of the Annexin V/PI staining assay

also confirmed that omaveloxolone effectively reduced the apoptosis

ratio of chondrocytes treated with IL-1β.
ECM degradation is also a key event in OA progression. The

imbalance of synthesis and decomposition of the cartilage matrix

caused by various factors results in cartilage degeneration. The

results of immunofluorescence and Western blotting assays

showed that omaveloxolone significantly promoted collagen

type II and aggrecan protein expression while inhibiting MMP

3 and MMP 13 protein expression. Collagen type II and aggrecan

are the predominant components in articular cartilage. MMP3 is

remarkably active against aggrecan (Vo et al., 2013). The main

role of MMP13 is to degrade collagen type II(Akhtar et al., 2017).

Cartilage degradation occurs once the homeostasis of these ECM

proteins and ECM degrading enzymes is disrupted. Hence, the

results demonstrated that omaveloxolone could inhibit ECM

degradation in chondrocytes exposed to IL-1β.
To explore the underlying mechanism by which

omaveloxolone prevents IL-1β-induced cell damage, the

FIGURE 8
H&E staining of major organs. No obvious pathological changes were observed in the lungs, liver, spleen, heart or kidneys between the four
groups, which indicates that 200 and 500 ug/kg omaveloxolone did not cause significant organ toxicity in rats after 8 weeks of treatment. (scale bar,
50 μm).
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expression levels of proteins involved in the Nrf2/ARE and NF-

κB signalling pathways were assessed. The results showed that

omaveloxolone promoted Nrf2 translocation into the cell

nucleus, enhanced HO-1 and NQO1 protein expression and

reduced the p-P65/P65 and p-IκBα/IκBα ratios in

chondrocytes exposed to IL-1β. Nrf2 is a master regulator of

antioxidant gene activation. After Nrf2 is translocated into the

nucleus it can promote the expression of downstream genes,

including HO-1 and NQO1, thereby exerting an antioxidant

effect (Khan et al., 2018). Cartilage destruction in Nrf2 knockout

OA model mice becomes more obvious and severe, suggesting

that Nrf2 activation has chondroprotective potential (Cai et al.,

2015). Many drugs have also been shown to protect chondrocytes

by activating the Nrf2 signalling pathway. Targeting the Nrf2/

ARE signalling pathway might be an effective approach for

treating OA (Marchev et al., 2017; Chen et al., 2022).

Additionally, the NF-κB signalling pathway is activated in OA

joints. The activation of the NF-κB signalling pathway is critical

for the expression of inflammation-related proteins in

chondrocytes, including COX2, iNOS, MMP3 and

MMP13(Marcu et al., 2010). Targeted NF-κB inhibitors have

therapeutic potential for the treatment of OA. Therefore,

omaveloxolone may exert chondroprotective effects by

activating the Nrf2/ARE signalling pathway and suppressing

the NF-κB signalling pathway (Figure 9).

A DMM-induced OA rat model was established to examine

the effects of omaveloxolone on OA in vivo. The results of gait

analysis showed that omaveloxolone was beneficial for relieving

pain in OA rats. Histopathology and immunohistochemistry

analyses provided evidence that omaveloxolone could inhibit

chondrocyte loss, improve chondrocyte cell morphology, and

increase the levels of proteoglycans, collagen type II and aggrecan

in articular cartilage of OA rats. The results of the OARSI scores

and Mankin scores also verified the chondroprotective effect of

omaveloxolone in vivo.

The results of the microCT analysis suggest that omaveloxolone

can effectively suppress subchondral bone loss and

microarchitecture deterioration in OA rats. These findings

support the therapeutic potential of omaveloxolone for OA

treatment. Considering that the systemic administration of

omaveloxolone may cause potential organ toxicity, H&E staining

of the lungs, heart, liver, spleen and kidneys was performed, and the

results suggest an absence of major organ toxicity, which provides

preliminary evidence of the safety of omaveloxolone in rats.

In conclusion, the present study indicates that omaveloxolone

can exert antioxidative, anti-inflammatory, antiapoptotic and anti-

ECM degradation effects via activation of the Nrf2/ARE signalling

pathway and inhibition of the NF-κB signalling pathway in

chondrocytes in vitro. Moreover, omaveloxolone attenuates OA

progression in vivo. However, our study does have some

limitations. First, only one time point was investigated in our in

vivo study. Therefore, data on the long-term effects of

omaveloxolone in the treatment of OA and assessments of the

potential toxicity of long-term administration of omaveloxolone are

FIGURE 9
Schematic diagram of the mechanisms by which omaveloxolone affects chondrocytes.
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lacking. In addition, further studies are needed to explore other

possible underlying molecular mechanisms of omaveloxolone in

chondrocyte protection.
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miR-210-3p protects against
osteoarthritis through inhibiting
subchondral angiogenesis by
targeting the expression of
TGFBR1 and ID4

Han Tang1†, Wenrun Zhu1†, Lu Cao1†, Jin Zhang2,
Juncheng Li1, Duan Ma2* and Changan Guo1*

1Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,
2Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of
Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
Excessive subchondral angiogenesis is a key pathological feature of

osteoarthritis (OA), as it alters the balance of subchondral bone remodeling

and causes progressive cartilage degradation. We previously found that miR-

210-3p correlates negatively with angiogenesis, though the specific

mechanism of miR-210-3p-related angiogenesis in subchondral bone during

OA progression remains unclear. This study was conducted to identify the miR-

210-3p-modulating subchondral angiogenesis mechanism in OA and

investigate its therapeutic effect. We found that miR-210-3p expression

correlated negatively with subchondral endomucin positive (Emcn+)

vasculature in the knee joints of OA mice. miR-210-3p overexpression

regulated the angiogenic ability of endothelial cells (ECs) under hypoxic

conditions in vitro. Mechanistically, miR-210-3p inhibited ECs angiogenesis

by suppressing transforming growth factor beta receptor 1 (TGFBR1) mRNA

translation and degrading DNA-binding inhibitor 4 (ID4) mRNA. In addition,

TGFBR1 downregulated the expression of ID4. Reduced ID4 levels led to a

negative feedback regulation of TGFBR1, enhancing the inhibitory effect of

miR-210-3p on angiogenesis. In OA mice, miR-210-3p overexpression in ECs

via adeno-associated virus (AAV) alleviated cartilage degradation, suppressed

the type 17 immune response and relieved symptoms by attenuating

subchondral Emcn+ vasculature and subchondral bone remodeling. In

conclusion, we identified a miR-210-3p/TGFBR1/ID4 axis in subchondral ECs

that modulates OA progression via subchondral angiogenesis, representing a

potential OA therapy target.
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GRAPHICAL ABSTRACT
Introduction
Osteoarthritis (OA) is a chronic degenerative disease that

causes high morbidity and disability rates, endangers the health

and quality of life of patients and increases medical care system

burden and socioeconomic costs (1, 2). The pathogenic factors of

OA include aging (3), mechanical alteration (4), dysfunction of

synthesis and metabolism (5), inflammation (6) and immune
Abbreviations: OA, osteoarthritis; ECs, endothelial cells; TGFBR1,

transforming growth factor beta receptor 1; ID4, DNA-binding inhibitor 4;

AAV, adeno-associated virus; TIE2, tyrosine kinase with immunoglobulin-

like and EGF-like domains 2; ACLT, anterior cruciate ligament transection;

IGF2, insulin-like growth factor 2; ECs, endothelial cells; OARSI,

Osteoarthritis Research Society International; MMP13, metalloproteinase

13; Emcn, endomucin; ISH, in situ hybridization; HUVECs, human

umbilical vein endothelial cells; RT-qPCR, real-time quantitative

polymerase chain reaction; FDR, false discovery rate; GO, gene ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; VEGF, vascular

endothelial growth factor; CXCL1, C-X-C motif chemokine ligand 1; CCL2,

C-C motif chemokine ligand 2; IL-17, interleukin 17; BMD, bone mineral

density; RUNX2, runt-related transcription factor 2; OBs, osteoblasts; OC,

osteoclasts; RANKL, receptor activator of nuclear factor kB ligand; OPG,

osteoprotegerin; PGE2, prostaglandin E2; ssDNA, single‐stranded DNA;

PDGF-BB, platelet-derived growth factor-BB; EP4, prostaglandin E

receptor 4.
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abnormalities (7). All these complex factors result in joint tissue

lesions mainly characterized by cartilage damage, subchondral

bone remodeling and osteophyte formation (8–13). In recent

years, substantial progress has been achieved in understanding

the role of subchondral bone remodeling in the pathogenesis of OA

(14–16). As subchondral bone provides mechanical stress support

and is the main source of nutrients for carti lage,

microenvironmental and structural changes in subchondral bone

might affect cartilage metabolism directly or indirectly and are

presumed to be one of the factors initiating OA (14). Specifically,

aberrant angiogenesis in subchondral bone alters the balance of

bone remodeling and results in sclerosis of subchondral bone in

pre-OA lesions, which changes the mechanical stress

characteristics of the subchondral bone and the nutrition supply

pattern of cartilage and increases cartilage vulnerability (14, 17). In

advanced OA, increased neurovascular coupling causes the most

significant clinical symptom of OA, pain (18). Meanwhile, the

subchondral vasculature gradually invades the cartilage through

the tidemark and causes more serious degradation of the cartilage

matrix (19). Thus, inhibition of subchondral angiogenesis is

proposed to be crucial in preventing the pathological progression

of OA, allowing cartilage to maintain a “healthy” state.

Bone is a particularly hypoxic tissue with pO2 levels ranging

from less than 1% to 6% (20, 21), and the pO2 levels in the deep
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zone of articular cartilage are also less than 1% (22). Thus,

vascular invasion from subchondral bone to cartilage occurs

under hypoxic conditions in vivo. Notably, miR-210-3p, called

the “master miRNA of hypoxia”, exerts multiple and complex

effects on different diseases and tissues (23–25). We previously

reported significantly increased expression of miR-210-3p in

tissues with avascular necrosis of the femoral head (26),

indicating that miR-210-3p may be negatively correlated with

angiogenesis in subchondral bone. In particular, miR-210-3p

manifests antiangiogenic properties in diseases with aberrant

vascular formation. For example, miR-210-3p significantly

inhibits the angiogenic ability of human retinal vascular

endothelial cells by directly targeting insulin-like growth factor

2 (IGF2) in the retina (27). In preeclampsia, overexpression of

miR-210-3p impairs extravillous trophoblast formation of

endothelial-like networks (28). Therefore, we assume that the

decrease in miR-210-3p expression may be attributed to

angiogenesis in subchondral bone during the development

of OA.

Here, we aimed to study the mechanism by which miR-210-3p

affects subchondral angiogenesis and its therapeutic effect on OA.

As a method to achieve our goal, we first overexpressed and

inhibited miR-210-3p expression in endothelial cells (ECs) to

determine its effect on the angiogenic ability of ECs in vitro.

RNA sequencing and subsequent molecular experiments were

implemented to determine the targets and downstream pathways

of miR-210-3p. In vivo, we selectively overexpressed miR-210-3p

in ECs of mice with anterior cruciate ligament transection (ACLT)

induced OA to verify its role in the progression of OA using an

adeno-associated virus (AAV) containing the tyrosine kinase with

immunoglobulin like and EGF like domains 2 (TIE2) promotor

(miR-210-3p/TIE2/AAV). We then performed CatWalk,

microCT, histological staining, flow cytometry and

immunochemistry experiments to evaluate the progression of

OA. The regulatory mechanisms employed by miR-210-3p were

also investigated in our study.We highlight a novel role of themiR-

210-3p/transforming growth factor beta receptor 1 (TGFBR1)/

DNA-binding inhibitor 4 (ID4) axis in subchondral ECs that

modulates the progression of OA via subchondral angiogenesis,

thereby suggesting a potential target for OA therapy.
Materials and methods

Cell culture and transduction

Human umbilical vein endothelial cells (HUVECs) were

obtained from the Cell Bank of the Chinese Academy of

Sciences (Shanghai, China). HUVECs were cultured in

Dulbecco’s modified Eagle’s medium (BI, Israel) supplemented

with 10% fetal bovine serum (Gibco, Grand Island, NY, USA), 50

U/ml penicillin and 50 mg/ml streptomycin in the presence of 5%

CO2 and 1% O2 at 37°C in a humidified incubator. All culture
Frontiers in Immunology 03
117118
media were renewed every 3 days. The miR-210-3p mimic,

inhibitor and each negative control were synthesized by Ribobio

(Guangzhou, China) and transfected into HUVECs using

Lipo3000 (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s protocol. In addition, we constructed shRNAs to

knock down the expression of TGFBR1 and ID4 using the

pLKO.1-puro vector. Scrambled shRNA was used as shRNA

negative control. Then, we packaged lentiviral particles in

HEK293T cells using a packaging system including GAG, TAT,

Rev, and VSVG vectors and constructed plasmids. We collected

culture medium containing lentiviral particles at 48 and 72 hours

and filtered it with a 0.45 mm filter. HUVECs at a 60-80% density

were infected for 24 hours and selected with blasticidin,

puromycin or neomycin for 7 days to establish overexpression

or KD cell lines. The shRNA sequences are listed in Table S1.
Transwell assay

HUVECs cultured under different intervention conditions

were digested with 0.25% trypsin and adjusted to a density of 2 ×

105 cells/ml with serum-free DMEM. Then, 100 mL of the

resuspended cells were added to the upper chamber of

transwell plates (8 mm pore size) (Corning, NY, USA). Then,

600 mL of DMEM containing 10% FBS were added to the lower

chamber. After 18 h of incubation at 37°C in a 5% CO2

incubator, the cells were fixed with methanol for 10 min and

stained with a 0.1% crystal violet staining solution for 5 min.

Next, cotton swabs were used to gently remove cells remaining

on the top of the filter. Images of migrated cells were captured

using an inverted microscope. Five visual fields were randomly

chosen, and stained cells were counted by ImageJ software.
EdU staining

An EdU staining kit was purchased from Ribobio

(Guangzhou, China). According to the manual, we diluted the

EdU solution at a ratio of 1000:1 with complete culture medium

to reach a concentration of 50 mM. Then, we added 100 mL of the
diluted EdU solution to each well and incubated the samples for

2 hours. After the incubation, we fixed the cells in each well with

4% paraformaldehyde for 30 min at room temperature, added 50

mL of 2 mg/mL glycine to each well, and incubated the samples

for 5 minutes. Next, 100 mL of penetrant (0.5% Triton X-100 in

PBS) were added to each well, and the samples were incubated

for 10 minutes. Then, we applied Apollo® 567 staining solution

and Hoechst for EdU and nuclear staining, respectively. The

reaction solution was incubated in the dark at room temperature

for 30 minutes. Finally, each well was washed with 100 mL of PBS
1~3 times. Images were captured immediately using a

fluorescence microscope after the staining was completed.
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Tube formation

Ninety-six-well plates were precoated with 50 mL of Matrigel

(Corning, NY, USA) and incubated at 37°C for 30-60 minutes. A

total of 50 mL of the HUVEC suspension (4×105 cells/ml) was

seeded in Matrigel-coated 96-well plates and incubated with 5%

CO2 at 37°C in a humidified incubator for 6 hours. After the

incubation, the formation of tube-like structures was assessed

using a phase contrast microscope and ImageJ software.
Western blotting

Adherent cells were digested with RIPA buffer (Biotime,

Shanghai, China) containing PMSF (Yeasen, Shanghai, China)

after two washes with ice-cold PBS. Twenty micrograms of total

protein from each sample were separated on SDS–PAGE gels

and transferred onto NC membranes (Millipore, Bedford, MA,

USA). Then, we used 8% nonfat milk to block nonspecific sites

for 1 hour at room temperature. The membranes were then

incubated with primary antibodies against vascular endothelial

growth factor (VEGF; Servicebio, Wuhan, China), TGFBR1

(Abcam, Cambridge, UK), ID4 (Santa Cruz, Dallas, Texas,

USA), C-C motif chemokine ligand 2 (CCL2; Huabio,

Hangzhou, China), Smad2 (Santa Cruz, Dallas, Texas, USA),

pSmad2 (CST, Danvers, Massachusetts, USA), Smad3 (CST,

Danvers, Massachusetts, USA), pSmad3 (CST, Danvers,

Massachusetts , USA) and GAPDH (CST, Danvers ,

Massachusetts, USA) at 4°C overnight. The membranes were

washed with TBST 3 times for 10 minutes each and then

incubated with a horseradish peroxidase-conjugated goat anti-

rabbit or goat anti-mouse IgG secondary antibody (CST,

Danvers, Massachusetts, USA) at room temperature for 2

hours according to the species of primary antibody. Finally,

the ECL Detection Kit (NCM Biotech, Suzhou, China) was used

for detection and photography. Images of protein bands were

analyzed using ImageJ software.
Dual-luciferase reporter gene assay

The 500 bp UTRs of TGFBR1 and ID4 containing the

predicted binding sites or mutant predicted binding sites of

miR-210-3p were subcloned downstream in the pmirGLO

miReport vector. We cotransfected the vector and miR-210-3p

mimic or scrambled negative control with Lipofectamine 3000

reagent (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer ’s instructions. Forty-eight hours after

transfection, we lysed the cells and measured firefly and

Renilla luciferase activity with the Dual-Luciferase Reporter

Assay System (Solarbio, Peking, China).
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Real-time quantitative polymerase chain
reaction (RT–qPCR)

Total RNA was extracted from each sample using TRIzol

reagent (Thermo, Waltham, Massachusetts, USA), separated

using chloroform and precipitated with isopropanol according

to the manufacturer’s instructions. Then, reverse transcription

was performed using the PrimeScript RT Master Mix Kit

(Takara, Tokyo, Japan) to acquire cDNAs. RT–qPCR was

performed in a 20 µl reaction system using TB Green Premix

Ex Taq (Takara, Tokyo, Japan) according to the manufacturer’s

instructions. miR-210-3p and U6 were reverse-transcribed using

Bulge-Loop miRNA qRT–PCR Primers (Ribobio, Guangzhou,

China). GAPDH and U6 were used as internal references for

mRNA and miRNA quantification, respectively. The primer

sequences are listed in Table S2. Relative gene expression was

quantified using the 2−DDCT method.
Animal experiments

Animal experiments were performed according to the protocol

approved by the Department Laboratory Animal Science of Fudan

University. We used 6-week-old C57BL/6 mice and assigned 6 mice

to each group. All C57BL/6mice other than those in the control and

sham groups received intra-articular (i.a.) or intravenous (i.v.)

injection of AAV-control or miR-210-3p/TIE2/AAV 3 weeks

before ACLT. For the i.a. injection, the mice were immobilized in

the supine position, the left hindlimbwas straightened, and the knee

joint and surrounding hair were shaved. We used an insulin syringe

and vertically injected 10 µl of AAV (1.5×1012 v.g./mL) into the

knee joint. In addition, 100 µl of AAV (1.5×1012 v.g./mL) were used

for the i.v. injection. For ACLT, C57BL/6 mice were anesthetized

with 0.3% sodium pentobarbital. A 0.5 cm longitudinal incision was

made along the left knee joint of the mice. The fascia above the

patellar ligament was bluntly separated. A longitudinal incision was

made at the medial side of the patellar ligament to open the joint

cavity. Then, we pulled the patellar ligament laterally to expose the

joint cavity. After blunt separation of the infrapatellar fat pad, we

transected the anterior cruciate ligament. Notably, we did not

transect the anterior cruciate ligament of the sham group at this

step. Then, the joint cavity was washed with saline, and the patellar

ligament, fascia and skin were stitched with absorbable sutures after

repositioning the ligament.
In situ hybridization (ISH)

ISH staining for miR-210-3p in subchondral bone of normal

mice and mice was performed 4 weeks after ACLT. The miR-

210-3p probes and ISH kits were purchased from Servicebio

(Wuhan, China) and used according to the manufacturer’s

instructions. Briefly, paraffin sections of mouse knees were
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subjected to dewaxing, repair and prehybridization. For

hybridization, 50 mL of the probe-containing hybridization

solution were added to cover the tissue, and samples were

incubated in a humid chamber at 37°C overnight. After the

incubation, sections were washed with 37°C prewarmed 2×SSC

solution once for 10 minutes and 37°C prewarmed 1×SSC

solution twice for 5 minutes each. DAPI was used for nuclear

staining. Images were captured using a fluorescence microscope.
Histology and immunohistochemical
analysis

We harvested the left hind knees of mice after euthanasia at 2 or

4 weeks after ACLT and fixed them with 4% formaldehyde for 48

hours. Then, the knees were immersed in 1.5 M EDTA for 1-1.5

weeks for decalcification. Following dehydration in a gradient of

alcohol solutions, the knees were embedded in OCT compound for

sectioning (6 mm). For safranin-O & fast green staining, sections

were dewaxed in water and immersed in fast green staining solution

for 6 minutes. After washing with distilled water for 1 minute, the

sections were immersed in safranin O solution for 4 minutes, rinsed

with distilled water for 1 minute and differentiated in glacial acetic

acid for 1 minute. The sections were sealed with neutral resin after

dehydration. For immunohistochemical staining, sections were

dewaxed in water and repaired in boiled antigen retrieval solution

for 8 minutes. After blocking with a 3% BSA/PBS solution for 1

hour at room temperature, sections were incubated with anti-

endomucin (Emcn; Santa Cruz, Dallas, Texas, USA), anti-matrix

metalloproteinase 13 (MMP13; Abcam, Cambridge, UK) and anti-

Runt-related transcription factor 2 (RUNX2; Servicebio, Wuhan,

China) antibodies, followed by fluorescent dye-conjugated

secondary antibodies (Abcam, Cambridge, UK) for fluorescence

imaging and HRP-conjugated secondary antibodies (Servicebio,

Wuhan, China) for DAB staining.
Flow cytometry

We harvested inguinal lymph nodes at 2 weeks after ACLT and

digested the lymph nodes with a mixture of type II collagenase

(Yeasen, Shanghai, China) and DNase I (Yeasen, Shanghai, China)

for 20 min at room temperature. The digest was filtered through a

70 mm cell strainer (Miltenyi, Germany) and then washed with 1×

PBS. For staining of cytokine interleukin 17a (IL-17a), cells were

stimulated with the leucocyte activation cocktail BD Pharmingen

(BD Biosciences, Franklin Lakes, New Jersey, U.S.) for 4 hours at

37°C. Then, the cells were incubated with antibodies against surface

markers on ice for 30 minutes in the dark. After fixation and

permeabilization with a BD CytoFix/CytoPerm Kit (BD

Biosciences, Franklin Lakes, New Jersey, U.S.), cells were stained

with IL-17a fluorescent antibodies on ice for an additional 30

minutes in the dark. The T cell panel included the following
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antibodies: Zombie NTR Fixable Viability APC-Cy7 (Biolegend,

San Diego, California, U.S), CD25 PE-Cy7 (Biolegend), CD3 FITC

(Biolegend) and IL-17a PE (Biolegend). Analyses were performed

using FlowJo software.

MicroCT analysis

The isolated knee joints were fixed overnight with 4%

formaldehyde and analyzed using microCT (Sky-scan 1174,

Bruker MicroCT) (voltage, 65 kVp; current, 153 mA; and

resolution, 9 mm/pixel). We used image reconstruction software

(NRecon v1.6, Bruker), data analysis software (CTAn v1.9, Bruker),

and 3-dimensional model visualization software (mCTVol v2.0,
Bruker) to analyze the parameters of the tibia subchondral bone.

The whole subchondral bone medial compartment was the region

of interest, and 100 consecutive images from the medial tibial

plateau were used for 3-dimensional reconstruction and analysis.

The bone mineral density BMD and bone volume/tissue volume

(BV/TV) were measured in three-dimensional structures.
CatWalk analysis

The CatWalk gait analysis system (Noldus Information

Technology) was used to measure the disability of mice in this

study. Mice were placed individually in the walkway and allowed

to walk freely. When the mouse traversed from one side of the

walkway to the other, a high-speed color video camera recorded

mouse movements and footprints simultaneously. The software

automatically identified all contacted areas and assigned them to

the respective paws. The durations and left hind limb duty cycle

were analyzed.
Statistical analysis

We performed statistical analyses using GraphPad Prism 9

software. Numerical data are presented as the mean ± SD.

Unpaired two-tailed Student’s t test was used to compare the

results from two groups, and one-way ANOVA was used to

compare variables between more than two groups. Statistical

significance was defined as *P < 0.05 and **P < 0.01.
Results

miR-210-3p expression is negatively
related to aberrant subchondral
angiogenesis in OA

We applied ACLT to induce OA in mice as a method to verify

the potential correlation between miR-210-3p expression and

aberrant vascularization of subchondral bone. At 4 weeks after

ACLT, the cartilage was significantly degenerated in ACLT mice,
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as shown by safranin-O & fast green staining (Figure 1A), and the

Osteoarthritis Research Society International (OARSI) scores were

also significantly increased compared with those of control mice

(Figure 1E). Meanwhile, the expression of MMP13, a molecule

directly involved in cartilage degradation, was significantly increased

in the cartilage of ACLT mice compared with control mice

(Figures 1B, F). Next, we stained for Emcn, a specific marker of

capillaries and sinusoids in the metaphysis and diaphysis (29–31), to

assess the vasculature in the subchondral bone of mouse knees using

immunohistochemical staining. We observed abnormally

proliferating Emcn+ blood vessels in subchondral bone, and some

vessels even invaded the cartilage through the tidemark in ACLT

mice (Figures 1C, G). We next validated the expression of miR-210-

3p in subchondral bone by performing an ISH assay. The expression

of miR-210-3p was significantly decreased in subchondral bone of
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ACLT mice compared with control mice (Figures 1D, H). Based on

these findings, we speculated that miR-210-3p may be involved in

the abnormal vascularization of subchondral bone during the

development of OA.
miR-210-3p regulates the angiogenic
ability of HUVECs in vitro under hypoxia

We transfected the miR-210-3p mimic or inhibitor into

HUVECs in vitro to investigate the role of miR-210-3p in

aberrant angiogenesis of subchondral bone in OA. The miR-

210-3p level was substantially increased after the miR-210-3p

mimic transfection, as evidenced by the qPCR results

(Figure 2D). Briefly, proliferation, migration and tube
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FIGURE 1

miR-210-3p expression is negatively related to aberrant subchondral angiogenesis in OA. Ten-week-old C57BL/6 mice underwent ACLT. Knee
joints were harvested at 4 weeks after surgery. n = 5 mice per group. (A) Safranin O–fast green staining for the knee joint (sagittal view). Scale
bar: 200 mm (top), 50 mm (bottom). (B) Immunohistochemical staining for MMP13 in the joint (top) and cartilage (bottom) of normal mice and
ACLT for 4 weeks mice. Scale bar: 200 mm (top), 50 mm (bottom). (C) Immunofluorescence staining for Emcn (red) and DAPI (blue) in the
subchondral bone of tibia. Vessels invading the cartilage are indicated by white arrows. Scale bars: 100 mm. (D) ISH staining for miR-210-3p (red)
and DAPI (blue) in the subchondral bone of tibia. Scale bars: 200 mm. (E) Calculation of OARSI scores. (F) Quantification of the number of
MMP13-positive cells in cartilage. (G) Quantification of the positive area of Emcn staining. (H) Quantification of the intensity of miR-210-3p
staining in subchondral bone. **P < 0.01. All data are presented as the means ± standard deviations. Statistical significance was determined
using unpaired, 2-tailed Student’s t test.
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formation were assessed as measures of the angiogenic ability of

ECs. Notably, we found that miR-210-3p had no effect on the

angiogenesis ability of HUVECs under normoxic conditions

(Figure S1). Then, we evaluated the effect of miR-210-3p on

the angiogenic ability of HUVECs grown in the presence of 1%

oxygen. Our results revealed that miR-210-3p did not affect the

proliferation of HUVECs (Figures 2A, F) but significantly

repressed the migration (Figures 2B, E) and tube formation

(Figures 2C, G) of HUVECs under hypoxic conditions, implying

that miR-210-3p may play an important role in EC migration

from normoxic to hypoxic regions in vivo.

RNA sequencing of miR-210-3p-
overexpressing HUVECs and miR-210-3p
target prediction

We performed RNA sequencing of miR-210-3p mimic-

transfected and control HUVECs under hypoxic conditions to
Frontiers in Immunology 07
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evaluate the transcriptional changes in the miR-210-3p-

overexpressing (OE) HUVECs. The Benjamini-Hochberg false

discovery rate (FDR) method was applied to obtain FDR-

adjusted p-values (q-values). Based on our results, forced miR-

210-3p OE downregulated 43 genes and upregulated 36 genes

(FC > 2, q< 0.05) (Figure 3A). These differentially expressed

genes were also displayed in a heatmap (Figure 3B). The Gene

Ontology (GO) enrichment results showed that miR-210-3p

mainly affected the process of cellular responses to external

stimulation such as cytokines and peptides, which are critical in

the angiogenic behavior of ECs (Figure 3C). Furthermore, The

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis showed that VEGF-independent

angiogenic signaling pathways, such as the TGF-b signaling

pathway and pathways related to cytokine–cytokine receptor

interactions, were significantly enriched in miR-210-3p-OE

HUVECs (Figure 3D). Subsequently, we used the miRWalk

database to predict the target genes of miR-210-3p and
B
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FIGURE 2

miR-210-3p affects the angiogenic ability of HUVECs in vitro under hypoxia. (A) EdU staining for control HUVECs and HUVECs transfected with
vehicle, miR-210-3p mimic, mimic NC, miR-210-3p inhibitor or inhibitor NC and cultured under hypoxia (1% O2). Scale bars: 150 mm. (B)
Transwell assay of control HUVECs and HUVECs transfected with vehicle, miR-210-3p mimic, mimic NC, miR-210-3p inhibitor or inhibitor NC
and cultured under hypoxia (1% O2); Scale bars: 300 mm. (C) Representative images of tube formation by control HUVECs and HUVECs
transfected with vehicle, miR-210-3p mimic, mimic NC, miR-210-3p inhibitor or inhibitor NC. Scale bars: 275 mm. (D) Quantification of miR-
210-3p expression levels in control HUVECs and HUVECs transfected with miR-210-3p mimic or mimic NC using RT–qPCR. (E) Quantification
of proportion of proliferated cells. (F) Quantification of the number of migrated cells. (G) Quantification of the total branching length of each
group. **P < 0.01. NC, negative control. All data are presented as the means ± standard deviations. Statistical significance was determined using
unpaired, 2-tailed Student’s t test.
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intersected them with the genes downregulated in miR-210-3p-

OE cells identified by RNA sequencing (Figures 3E, F). The

results showed 4 overlapping genes. Among these genes, ID4 and

TGFBR1 were of particular interest because of their

proangiogenic properties. ID4 ranked the highest, and ID4 has
Frontiers in Immunology 08
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been reported to promote EC-related angiogenesis by affecting

the stability of chemokine mRNAs. TGFBR1 is an important

membrane receptor in the TGF-b signaling pathway that is

closely related to the angiogenesis of ECs. Therefore, we sought

to verify ID4 and TGFBR1 as target genes of miR-210-3p.
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FIGURE 3

RNA sequencing of miR-210-3p-OE HUVECs and miR-210-3p target prediction. RNA sequencing of miR-210-3p-OE HUVECs compared to the
control group under hypoxia (n = 3). (A) The differential gene expression analysis showed that miR-210-3p overexpression downregulated 43
genes and upregulated 36 genes (FC > 2, q < 0.05). (B) Heatmap of the differentially expressed genes. (C, D) KEGG and GO enrichment analyses
of genes that were differentially expressed in miR-210-3p-OE cells. (E) Venn diagram of miR-210-3p target genes predicted by the miRWalk
database intersected with genes downregulated upon miR-210-3p overexpression (FC > 2, q < 0.05). (F) Heatmap of the 4 intersecting genes.
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miR-210-3p directly targets TGFBR1 and
ID4

According to our results, the ID4 mRNA and protein levels were

significantly decreased in the miR-210-3p mimic group but were

significantly increased in the miR-210-3p inhibitor group compared

with the control group (Figure 4A), which provided indirect evidence

that ID4 is a target gene of miR-210-3p. Consistent with the ID4
Frontiers in Immunology 09
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expression level, the levels of the proangiogenic chemokines C-X-C

motif chemokine ligand 1 (CXCL1) and CCL2 showed similar trends

(Figures 4C, D), indicating that CXCL1 and CCL2 may be

downstream molecules of ID4. Although TGFBR1 mRNA

expression level showed no differences among the groups

(Figure 4B), TGFBR1 protein expression was significantly inhibited

by the miR-210-3p mimic and was significantly increased in the

miR-210-3p inhibitor group (Figures 4D, F). Thus, miR-210-3p
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FIGURE 4

miR-210-3p directly targets TGFBR1 and ID4. (A–C) ID4, TGFBR1 and CXCL1 mRNA expression levels quantified by RT–qPCR. (D–F)
Representative bands showing the levels of the VEGF, ID4, CCL2, TGFBR1, Smad2, pSmad2, Smad3, pSmad3 and GAPDH proteins (D). The
relative VEGF, ID4, CCL2 and TGFBR1 protein levels were normalized to the GAPDH level. The relative pSmad2 and pSmad3 protein levels were
normalized to those of Smad2 and Smad3, respectively (E, F). (G) Predicted binding sites for miR-210-3p in the ID4 and TGFBR1 sequences. (H,
I) A dual-luciferase reporter assay showed that luciferase activity was significantly inhibited in groups cotransfected with ID4 or TGFBR1 WT
vectors and miR-210-3p mimic. **P < 0.01. *P < 0.05. WT, wild-type. Mu, mutant. ns, not significance. All data are presented as the means ±
standard deviations. Statistical significance was determined using unpaired, 2-tailed Student’s t test.
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mainly inhibits the translation of TGFBR1 instead of degrading the

TGFBR1 mRNA. Regarding the activation of downstreammolecules

in the TGF-b signaling pathway, levels of the phosphorylated forms

of Smad2/3 showed a similar trend to TGFBR1 (Figures 4D, F),

suggesting that miR-210-3p inhibits the activation of the TGF-b
signaling pathway by inhibiting TGFBR1 expression. Importantly,

the VEGF protein level did not differ among the groups (Figures 4D,

E), which further illustrated thatmiR-210-3p regulates the angiogenic

ability of ECs through VEGF-independent signaling pathways. We

then validated the predicted sites by which miR-210-3p binds to ID4

and TGFBR1 using a dual-luciferase reporter assay (Figures 4G–I),

providing direct evidence that ID4 and TGFBR1 are target genes of

miR-210-3p.
Knock down of TGFBR1 and ID4
regulates the angiogenic ability of ECs

Without interfering with the expression of miR-210-3p, we

used shRNAs to knock down the expression of TGFBR1 and ID4 to

observe whether this approach was sufficient to inhibit the

angiogenesis of ECs. We constructed three shRNA plasmids each

for TGFBR1 and ID4 (Table S1) and selected one shRNA plasmid

each for TGFBR1 and ID4 with satisfactory knockdown (KD)

efficiency and no effect on the survival of ECs. Unexpectedly, our

results showed that TGFBR1 KD significantly suppressed the

expression of ID4 (Figures 5A, C), while ID4 KD increased the

expression of TGFBR1 (Figures 5B, D), suggesting that ID4 is also

downstream of TGFBR1 and regulates the expression of TGFBR1

expression through negative feedback. Regarding the angiogenesis

of ECs, the proliferation, migration and tube formation ability of the

TGFBR1 KD group were significantly decreased. Although the

proliferation of the ID4 KD group was increased, the migration

and tube formation ability were significantly reduced (Figures 5E–

J). The effects of TGFBR1 and ID4 KD largely explain the regulation

of the angiogenic ability of ECs by miR-210-3p.
miR-210-3p overexpression induced by
AAV attenuates OA progression

Based on the results described above, we used miR-210-3p/

TIE2/AAV to selectively overexpress miR-210-3p in ECs and

observed whether miR-210-3p/TIE2/AAV exerted a therapeutic

effect on the OAmodel. Briefly, we i.a. or i.v. injected miR-210-3p/

TIE2/AAV, and ACLT was applied to induce posttraumatic OA 3

weeks after AAV administration. Biological and behavioral tests

were performed at 2 and 4 weeks after ACLT (Figure 6A). Before

ACLT, we assessed Zsgreen fluorescence to determine the

efficiency of miR-210-3p/TIE2/AAV infection in each group.

Our results illustrated that i.a. administration alone was

sufficient to infect the entire knee joint tissue, and i.v.

administration induced more obvious infection of blood vessels
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in subchondral bone, while the i.a.+i.v. administration showed the

most pronounced infection intensity (Figure 6B). In further

therapeutic efficacy assessments, we found that the ACLT+miR-

210-3p i.a. group, the ACLT+miR-210-3p i.v. group and the

ACLT+miR-210-3p i.a.+i.v. group exhibited alleviated cartilage

degradation at 2 and 4 weeks compared with the ACLT group, as

evidenced by safranin-O & fast green staining and OARSI scores

(Figures 6C, F). In addition, the expression of MMP13 in cartilage

was also significantly reduced in the three treatment groups

compared with the ACLT group (Figure 6D). The proportion of

IL-17+ cells among T lymphocytes (CD3+) in inguinal lymph

nodes was doubled at 2 weeks after ACLT and significantly

decreased in ACLT+miR-210-3p i.a.+i.v. group (Figures 6E, G).

Regarding behavioral testing, the CatWalk analysis results showed

that the time it took for mice to pass through the test channel was

significantly prolonged in the ACLT group and significantly

decreased in the three treatment groups, especially in the ACLT

+miR-210-3p i.v. group and ACLT+miR-210-3p i.a.+i.v. group

(Figure 6H), while the duty cycle of the left hind limb of mice was

significantly reduced in the ACLT group and returned to normal

levels in all treatment groups (Figure 6I). Based on these results,

miR-210-3p/TIE2/AAV had surprising therapeutic efficacy in

attenuating OA progression with respect to cartilage protection,

immune change as well as symptom relief.
OA alleviation by miR-210-3p
overexpression is attributable to the
inhibition of subchondral angiogenesis

We next assessed subchondral bone remodeling and

angiogenesis in each group. The microCT results showed that

subchondral bone sclerosis occurred in the ACLT group at 2 weeks

and was more severe at 4 weeks, which was manifested as higher

intensities in the reconstructed 3D images (Figure 7A), increased

bone mineral density (BMD) (Figure 7D) and increased relative

bone volume fractions (Figure 7E). However, subchondral bone

sclerosis was significantly relieved in the treatment groups,

especially in the ACLT+miR-210-3p i.a.+i.v. group. Meanwhile,

the expression of RUNX2, a key transcription factor associated

with osteoblast differentiation, was significantly increased in

subchondral bone of the ACLT group, with a positive zone

adjacent to the tidemark (dotted lines), and was significantly

decreased in the treatment groups (Figure 7B). Notably, Emcn+

blood vessels in subchondral bone were abundant and invaded the

cartilage layer at 4 weeks after ACLT, as evident from Emcn

staining (Figures 7C, F). Impressively, the growth of abnormal

Emcn+ blood vessels in subchondral bone was effectively inhibited

in ACLT+miR-210-3p i.a. group and ACLT+miR-210-3p i.v.

group and was particularly reduced in the ACLT+miR-210-3p

i.a.+i.v. group. In conclusion, gene therapy withmiR-210-3p/TIE2/

AAV significantly alleviated the process of OA by inhibiting

angiogenesis in subchondral bone.
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Discussion

As subchondral bone serves as mechanical support and a

dominant source of nutrition for cartilage, alterations in the

subchondral bone microenvironment are intimately involved in
Frontiers in Immunology 11
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the progression of OA. These alterations are caused by biological

uncoupling and coupling interactions among osteocytes,

osteoblasts (OBs), osteoclasts (OCs), ECs and sensory neurons

in subchondral bone (15, 32). In the early stage of OA, the

balance of subchondral bone remodeling is skewed toward bone
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FIGURE 5

Knock down of TGFBR1 and ID4 regulates the angiogenic ability of ECs. (A, C) Representative bands showing the of levels of the TGFBR1 and
ID4 protein in control, shRNA NC and TGFBR1-sh1-3 HUVECs (A). The relative TGFBR1 and ID4 protein levels were normalized to those of
GAPDH (C). (B, D) Representative bands showing the levels of the TGFBR1 and ID4 proteins in control, shRNA NC and ID4-sh1-3 HUVECs (B).
The relative TGFBR1 and ID4 protein levels were normalized to those of GAPDH (D). (E, F) Representative images of EdU staining and the
proportions of proliferating cells in NC, TGFBR1-sh and ID4-sh HUVECs. Scale bar: 300 mm. (G, H) Representative images of the transwell assay
and the proportions of migrating cells in control, TGFBR1-sh and ID4-sh HUVECs. Scale bar: 300 mm. (I, J) Representative images of the tube
formation assay and the total branching length of control, TGFBR1-sh and ID4-sh HUVECs. Scale bar: 300 mm. **P < 0.01. ns, not significance.
All data are presented as the means ± standard deviation. Statistical significance was determined using unpaired, 2-tailed Student’s t test.
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resorption in response to altered mechanical stress and

inflammation. An increased ratio of receptor activator of

nuclear factor kB ligand (RANKL)/osteoprotegerin (OPG) in

osteocytes and excessive levels of interleukin (IL)-6,

prostaglandin E2 (PGE2) and MMPs produced by OBs

promote osteoclastogenesis (33–36). Subsequently, OCs
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produce proangiogenic cytokines, such as platelet-derived

growth factor-BB (PDGF-BB), VEGF and TGF-b, and

promote excessive subchondral neurovascularization and bone

formation, causing worsening of joint pain and progressive OA

(37, 38). We found that miR-210-3p deficiency is responsible for

angiogenesis in subchondral bone in an OA model, and selective
B

C

D

E

F G H I

A

FIGURE 6

miR-210-3p overexpression induced by AAV attenuates OA progression. (A) Design of animal experiments. C57BL/6 mice were i.a. or i.v.
injected with miR-210-3p/TIE2/AAV. ACLT was performed to induce posttraumatic OA 3 weeks after AAV administration. Biological and
behavioral tests were performed at 2 and 4 weeks after ACLT. (B) Representative photos of Zsgreen fluorescence in the affected knees of mice
from miR-210-3p/TIE2/AAV i.a., i.v. and i.a.+i.v. injected group. (C) Representative images of safranin-O & fast green staining of LH knee joints in
each group at 2 weeks and 4 weeks. Scale bar: 200 mm. (D) Representative images of immunohistochemical staining for MMP13 in cartilage and
subchondral bone of the tibial plateau in each group at 4 weeks. Scale bar: 100 mm. (E, G) Flow cytometry images and quantified results for IL-
17+/CD3+ cells in inguinal lymph nodes at 2 weeks after ACLT. (F) OARSI scores of LH knees from each group. (H, I) Durations and LH duty
cycle of each group at 4 weeks after ACLT. **P < 0.01. *P < 0.05. LN, lymph nodes. LH, left hindlimb. All data are presented as the means ±
standard deviations. Statistical significance was determined using unpaired, 2-tailed Student’s t test.
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overexpression of miR-210-3p in ECs effectively attenuated OA

progression, as evidenced by cartilage protection, immune

changes and improved mobility. In our opinion, the

improvement in mobility is a direct reflection of the treatment

effect on OA. We found that the mobility of the treatment

groups was almost indistinguishable from that of normal mice,

which is fairly rare in previous studies (16, 37), providing

evidence that miR-210-3p is an effective treatment target for OA.

A substantial number of epigenetic variations and the

expression of noncoding RNAs, such as miRNAs, circular

RNAs and long noncoding RNAs, are known to dynamically

regulate changes in gene expression in normal and OA articular

joints (5, 39–43). However, recent studies have mainly focused

on functional noncoding RNAs in cartilage and assessed the

efficacy of treatments targeting chondrocytes (44–47), and few

reports of noncoding RNAs associated with pathological
Frontiers in Immunology 13
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changes in subchondral bone, including subchondral

angiogenesis, in OA are available. We found that miR-210-3p

expression is significantly downregulated in subchondral bone in

an OA model in parallel with aberrant subchondral

angiogenesis. Indeed, miR-210-3p is widely considered a

proangiogenic miRNA involved in ischemia–reperfusion

diseases and cancer (48–50). However, we found that selective

miR-210-3p overexpression in ECs induced antiangiogenic

effects in vitro and in vivo. This discrepancy may be due to the

differences in the biological effects of different miR-210-3p levels

on tissues and ECs. Germana Zaccagnini et al. reported that

macrophages with elevated miR-210-3p levels in samples with

mismatched miR-210-3p levels in ischemic tissue display

dysfunctional angiogenesis, leading to impaired tissue repair

(51). This finding further illustrates the heterogeneity of miR-

210-3p function in cells and tissues. Consistent with our study,
B

C

D E F

A

FIGURE 7

OA alleviation by miR-210-3p overexpression is attributable to the inhibition of subchondral angiogenesis. (A) Representative microCT
reconstruction images of the tibial plateau of LH knees in each group at 2 weeks and 4 weeks. (B) Representative images of
immunohistochemical staining for RUNX2 in subchondral bone of the tibial plateau in each group at 4 weeks. Dotted lines: tidemark. Scale bar:
100 mm. (C) Representative images of immunofluorescence staining for Emcn (red) and DAPI (blue) in the tibial plateau of LH knees in each
group at 4 weeks. Vessels invading the cartilage are indicated by white arrows. Scale bars: 100 mm. (D, E) Quantification of the BMD and BV/TV
of subchondral bone of the tibial plateau in each group at 2 weeks and 4 weeks. (F) Quantification of Emcn positive staining area in each group.
**P < 0.01. *P < 0.05. BMD, bone mineral density. BV/TV, bone volume/tissue volume. All data are presented as the means ± standard
deviations. Statistical significance was determined using unpaired, 2-tailed Student’s t test.
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some reports indicate that miR-210-3p inhibits EC function and

regulates vascular remodeling in pulmonary hypertension (52,

53) and preeclampsia (28). In summary, we provide the first

evidence that miR-210-3p may be exploited as an effective target

to inhibit aberrant subchondral angiogenesis in OA. However,

we still must explore the molecular mechanism underlying miR-

210-3p deficiency in subchondral bone in OA and its effects on

processes other than angiogenesis in the subchondral

microenvironment in future studies.

AAVs are small (≈25 nm in diameter), nonenveloped,

single‐stranded DNA (ssDNA) viruses that serve as promising

vectors for gene therapy in animal experiments and clinical trials

(54–59). In this study, we applied AAV vectors to overexpress

miR-210-3p in subchondral bone vascular ECs. However, more

than ten AAV serotypes have been isolated from human and

nonhuman primate tissues, and different serotypes have

preferences for distinct cells and tissues (60). For i.a. injection,

we selected AAV5 for its cartilage permeability and affinity for

blood vessels (61–64). For i.v. injection, we chose AAV9 for its

extensive ability to invade the circulatory system and affinity for

bone tissue (65). In particular, we added TIE2, an endothelial

cell-specific promoter, upstream of the miR-210-3p sequence to

specifically overexpress miR-210-3p in vascular ECs. Finally, our

study showed that miR-210-3p/TIE2/AAV effectively infected

subchondral vascular and inhibited aberrant subchondral bone

angiogenesis in vivo. Apart from its cartilage-protecting effect,

miR-210-3p also showed strong inhibition of subchondral bone

sclerosis, similar to therapies targeting PDGF-BB (37) or

prostaglandin E receptor 4 (EP4) (34) in OCs. However, the

group that received i.a. and i.v. injection of miR-210-3p/TIE2/

AAV exhibited a reduced BMD of subchondral bone compared

with that of the control group, indicating that high levels of miR-

210-3p might impair the subchondral vasculature and result in

decreased bone formation.

During the development of OA, the inflammatory

environment together with complex multicellular interactions

affects subchondral angiogenesis, and the molecular mechanisms

remain to be elucidated. In the cartilage layer, hypertrophic

chondrocytes express high levels of VEGF (66), and cartilage

with high mechanical stress secretes excess TGF-b (67). These

molecules further promote vascular invasion of cartilage and

disrupt cartilage homeostasis during OA development. In OA

subchondral bone, TGF-b1 produced by OBs is mainly

responsible for subchondral angiogenesis in early OA (11). Our

study showed that miR-210-3p inhibits the angiogenic ability of

ECs by directly inhibiting the translation of the TGFBR1 mRNA

and subsequently affecting Smad2/Smad3 phosphorylation under

hypoxia. In addition, we also found that miR-210-3p degrades the

ID4 mRNA in ECs. ID4 is a member of a protein family that

functions as a negative regulator of helix-loop-helix transcription

factors. Giulia Fontemaggi et al. reported that ID4 binds and

stabilizes mRNAs encoding the proangiogenic factors IL8 and

CXCL1 to promote neuroangiogenesis (68). In our study, we
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found that ID4 may promote angiogenesis by stabilizing the

CXCL1 and CCL2 mRNAs. Interestingly, we identified ID4 as a

possible downstreammolecule of TGFBR1 that regulates TGFBR1

through negative feedback, producing a strong inhibitory effect on

cells overexpressing miR-210-3p. In summary, we verified that

miR-210-3p modulates TGFBR1 and ID4 expression and

attenuates OA progression by inhibiting subchondral

angiogenesis, providing a new therapeutic target for

OA treatment.

Nonetheless, this study still has some limitations. First, we

did not assess changes in the expression of miR-210-3p in

normal and OA human knee joints. Furthermore, the

therapeutic effect of miR-210-3p on human OA remains to be

further validated. Second, we tested the treatment efficacy of

miR-210-3p at 2 weeks and 4 weeks after ACLT in mice, but its

long-term therapeutic effects and side effects related to the

cardiovascular system and vital organs still require further

investigation. Finally, this study only preliminarily suggested

that ID4 is downstream of TGFBR1, and we are working to

elucidate the specific underlying molecular mechanism.
Conclusion

In conclusion, our study provides the first evidence that

miR-210-3p inhibits the angiogenic ability of ECs by directly

targeting TGFBR1 and ID4, and the miR-210-3p/TGFBR1/ID4

axis in subchondral ECs modulates the progression of OA via

subchondral angiogenesis, which might represent a potential

target for OA therapy.
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Regulatory role of KCa3.1 in
immune cell function and its
emerging association with
rheumatoid arthritis

Yi Lin1,2†, Ying-Jie Zhao1†, Hai-Lin Zhang1,2, Wen-Juan Hao1,2,
Ren-Di Zhu1,2, Yan Wang1,2, Wei Hu1,3* and Ren-Peng Zhou1,3*

1Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China,
2Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of
Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China, 3The Key Laboratory of
Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by

chronic inflammation. Immune dysfunction is an essential mechanism in the

pathogenesis of RA and directly linked to synovial inflammation and cartilage/

bone destruction. Intermediate conductance Ca2+-activated K+ channel

(KCa3.1) is considered a significant regulator of proliferation, differentiation,

and migration of immune cells by mediating Ca2+ signal transduction. Earlier

studies have demonstrated abnormal activation of KCa3.1 in the peripheral

blood and articular synovium of RA patients. Moreover, knockout of KCa3.1

reduced the severity of synovial inflammation and cartilage damage to a

significant extent in a mouse collagen antibody-induced arthritis (CAIA)

model. Accumulating evidence implicates KCa3.1 as a potential therapeutic

target for RA. Here, we provide an overview of the KCa3.1 channel and its

pharmacological properties, discuss the significance of KCa3.1 in immune cells

and feasibility as a drug target for modulating the immune balance, and

highlight its emerging role in pathological progression of RA.

KEYWORDS

KCa3.1, immune cells, joint inflammation, rheumatoid arthritis, synovitis
Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects the joints.

The average global incidence is 0.5% to 1.0%, with genetic factors accounting for

approximately 60% risk of RA (1). The primary goal of RA therapy is to restore the

immune balance and reduce synovial inflammation and joint damage. The traditional

drug of RA ranges from disease-modifying anti-rheumatic drugs (DMARDs) (eg,

methotrexate and Janus kinase inhibitor tofacitinib) to biologic agents (eg, tumor
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necrosis factor inhibitors) and some adjuvant therapy drugs

like non-steroidal anti-inflammatory drugs (NSAIDs) and

glucocorticoids (GC) (1). However, the currently available

drugs provide limited long-term efficacy along with increased

risk of severe side-effects. Therefore, management of RA remains

a topic of considerable research focus. In this context, we propose

potential novel strategies for the treatment of RA by searching for

targets that restore the balance of immune function.

KCa3.1, a Ca2+-activated intermediate conductance K+

channel regulated by the Ca2+-binding protein calmodulin

(CaM), was first identified in erythrocytes by Gardos in 1958

(therefore also designated the Gardos channel) (2). The channel

is encoded by the KCNN4 gene and directly pre-associated with

CaM in the absence of Ca2+. When the intracellular free Ca2+

concentration is higher than 100 nM, the KCa3.1 channel is

activated after Ca2+ binds to CaM (3). This results in increased

K+ efflux and change in membrane potential, providing a driving

force for Ca2+ influx. Physiological and pharmacological studies

have shown that the KCa3.1 channel modulates membrane

potential and Ca2+ signaling in activated T and B cells,

macrophages and fibroblasts (4). From a pathological

perspective, the KCa3.1 channel is abnormally opened to

maintain Ca2+ homeostasis, thereby regulating various cellular

functions ranging from proliferation and differentiation to

migration (5). Therefore, the KCa3.1 channel may serve as a

potential therapeutic target for diseases associated with cell

activation and hyperproliferation, such as diabetic

nephropathy (6), ulcerative colitis (7), and RA (8).

The pathological process of RA involves interactions of

multiple immune cells, synovial fibroblasts, cytokines, and

proteases. Synovial tissue gradually develops chronic

inflammation that progresses to cartilage damage and bone

erosion, leading to joint damage and multiple clinical

symptoms (1, 9). Several studies have provided evidence that

KCa3.1 contributes substantially to immune imbalance in RA.

Notably, obstruction of the KCa3.1 channel effectively inhibits

disease progression by alleviating immune inflammation and

joint damage, suggestive of its significant therapeutic value in

RA. This article provides a summary of the current information

on the immunoregulatory mechanisms related to KCa3.1, its

functional roles in the development of RA, and potential as a

pharmacological target for disease management.
Overview of KCa3.1

KCa3.1 is a multifunctional intermediate conduction channel

also known as IKCa1, SK4, IK-1 or KCa4 (10, 11). This channel

belongs to a gene family consisting of all Ca2+-activated K+

channels. The International Union of Pharmacology has now

classified the gene family into three groups: KCa1.1 (BK, big-

conductance K+ channel), KCa2.1, KCa2.2, KCa2.3 (SK, small-

conductance K+ channel) and KCa3.1 (IK, intermediate-
Frontiers in Immunology 02
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conductance K+ channel) (12). KCa3.1 is a membrane-spanning

protein composed of four a-subunits (13). Each a-subunit has six
transmembrane segments (S1-S6) with a pore motif between S5

and S6. The pore region is formed by the transmembrane helices S5

and S6 in the symmetrical center of the tetramer, generating a K+

conduction pathway (14). In genetics, the coding gene KCNN4 is

located at the q13.2 locus of human chromosome 19 (15, 16). The

encoded protein contains 427 amino acids with a short N-terminal

domain and long C-terminal tail. The C-lobe of CaM constitutively

binds to CAM-binding domain (CAMBD) 1 (positions 312-329) in

a Ca2+-independent manner at the C-terminus of KCa3.1, whereas

the CaMN-lobe barely binds to the channel and its binding pocket

remains closed. In the presence of high Ca2+, the N-lobe of CaM

binds with Ca2+ and rearranges into an open conformation. The N-

lobe of CaM pulls the S45A (first helix of the S4-S5 linker) helix

down, keeping the S45B (tightly coupled to the pore-lining S6

helix) away from the pore axis. This expands the S6 helical bundle

and eventually opens the pore (17). The N-lobe of CaM binds to

KCa3.1 at CAMBD2A (a nearby segment, positions 344-353) in

the same subunit and CAMBD2B (a distal segment, positions 360-

373) in an adjacent subunit (18). Furthermore, a pivotal role of

channel tetramerization and trafficking of two leucine zipper (LZ)

motifs in the N- and C-termini has been reported (19, 20). The

structure of KCa3.1 is shown schematically in Figure 1.

Here we focus on the transcriptional regulation, spliceosome

regulation and epigenetic regulation of KCa3.1 (21). At the

transcriptional level, activation protein-1 (AP-1) in conjunction

with transcription factor Ikaros-2, was demonstrated to enhance

KCa3.1 channel expression, which promoted the mitogenesis of

preactivated lymphocytes (22). Additionally, laminar shear stress

upregulates endothelial KCa3.1 by binding of AP-1 and cAMP

response element (CRE) to promoter in a CaMK/Akt/p300

pathway-dependent manner (23). Mutation of the AP-1 binding

motif in T cells as well as the transfection of AP-1 decoy

oligonucleotides into cardiac fibroblasts were shown to

significantly downregulate the expression of KCa3.1 (22, 24).

Furthermore, two NF-kB binding sites were identified in the

promoter region of KCa3.1, and the up-regulation of KCa3.1 in

colon cancer cells was mediated in an NF-kB-dependent manner

(25). A functional repressor element 1-silencing transcription

factor (REST or NRSF) was confirmed to be a negative

regulator of KCa3.1 transcription (26). In a study on tumors,

histone deacetylase 2 (HDAC2) and HDAC3 were found to

downregulate KCa3.1 transcript levels in a REST-independent

and insulin-like growth factor-binding protein 5 (IGFBP5)-

independent manner in the breast cancer cell line, TMB-1 (27).

Meanwhile, HDAC2 and HDAC3 were found to be involved in

the epigenetic regulation of KCa3.1 in the KCa3.1-expressing

human prostate cancer cell line, PC-3. Epigenetically, KCNN4 is

hypermethylated in memory B cells in common variable

immunodeficiency (CVID) individuals relative to healthy

individuals (28). However, in a genome-wide DNA methylation

analysis, Bulk et al. found that the KCNN4 promoter was
frontiersin.org
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hypomethylated in lung cancer (29). Besides, Ohya et al. identified

novel spliced variants of KCa3.1 (human(h) KCa3.1b) from the

human thymus, which differs from hKCa3.1a for the lack of the

N-terminal domains. The study suggests that the N-terminal

domain of KCa3.1 is essential for channel trafficking to the

plasma membrane (30). Moreover, Du et al. showed that

KCNN4 was regulated by several microRNAs, such as miR-204-

5p studied in the research of pancreatic ductal adenocarcinoma

(PDAC) (31).

KCa3.1 is located in the lung, distal colon, and immune-related

tissues, such as thymus, bone marrow, and lymph nodes (32). In-

depth studies have shown that KCa3.1 is almost expressed in non-
Frontiers in Immunology 03
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excitable cells, such as fibroblasts, lymphocytes, and other immune

cells. At the cellular level, electrophysiological and pharmacological

characterization studies have identified the presence of KCa3.1 in

plasmalemma and mitochondrial membrane (33). KCa3.1 channels

are additionally voltage-independent and unaffected by membrane

potential, with Ca2+-dependent and inwardly rectifying properties

of intermediate conduction (34). Functionally, basolateral KCa3.1

provides the driving force for Cl- secretion induced by activators

such as Ca2+ in human and rat colon (35). KCa3.1 is also involved

in regulation of cell volume in lymphocytes (36). Similarly, patch-

clamp studies showed that the CFT1-LCFSN cell, a cystic fibrosis

airway cell line, copes with hypotonic challenge via increasing the
B

C

A

FIGURE 1

Schematic representation of the structure of KCa3.1. A functional Ca2+-activated intermediate conductance K+ channel (KCa3.1) comprises four a
subunits organized around a central pore through which K+ flows out of the cell. (A) KCa3.1 channel composed of four a subunits. (B) Top view of
four a subunits around the central pore. (C) Schematic representation of a single KCa3.1 subunit, showing a total of 427 amino acids and consists of
six transmembrane segments, named S1-S6. The K+ ion conduction pore is located between the loop and S6, containing the GYGD K+ channel
pore sequence. CaM N-lobe binds to CAMBD2A and CAMBD2B with Ca2+, leading to channel opening. (Created with BioRender.com).
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KCa3.1 current (37). Moreover, the KCa3.1 channel is activated at

elevated cytosolic Ca2+ concentrations of above 100 nM. Substantial

activation of the KCa3.1 channel leads to K+ efflux, thereby

restoring and stabilizing the fully hyperpolarized membrane

potential to maintain a continuous driving force of Ca2+ influx

(38). While Ca2+ is indispensable for various physiological activities

of the body, continuous influx is necessary for activation,

proliferation and other physiological function of immune cells

and cytokine production (39). Thus, the functions of KCa3.1

described above suggest the potential of targeting KCa3.1 in the

treatment of diseases associated with immune imbalance.
Activators and inhibitors of KCa3.1

The pharmacological effects of the KCa3.1 channel have been

widely explored and its activators and inhibitors analyzed in various

diseases (Table 1). The majority examples of channel activators are

documented in the literature related to cardiovascular diseases,

neurological diseases and immune diseases. For instance, 1-ethyl-2-

benzimidazolidinone (1-EBIO) serves as a direct and potent

specific activator of KCa3.1 via increasing sensitivity of the

channel to resting levels of Ca2+ (43). A dichloro analog of

benzimidazolidinone, 5,6-dichloro-1-EBIO (DC-EBIO), is

reported to be 30 times more potent than EBIO (44). Naphtho

[1, 2-d] thiazole-2-ylamine (SKA-31) and its optimized product, 5-

methylnaphtho [2,1-d] oxazole-2-amine (SKA-121), act in a similar

manner to EBIO (45). Another preliminary study showed for the

first time that 6,7-dichloro-1H-indole-2,3-dione-3-oxime (NS309)

positively regulates KCa3.1 with higher potency and selectivity than

1-EBIO in the HEK-293 cells (human embryonic kidney cells). The

above findings indicate that NS309 presents an excellent alternative

to 1-EBIO as a pharmacological tool in KCa3.1 activation-related

research (46). In addition, chlorzoxazone (CZ) and zoxazolamide

(ZOX) are often used clinically as pharmacological activators of the

KCa3.1 channel and have entered Phase IV and Phase II clinical

trials, respectively (51). Classical methylxanthine compounds,

including theophylline, 3-isobutyl-1-methylxanthine (IBMX) and

caffeine, are reported to interact directly with channel proteins to

activate KCa3.1 (47). Gerlach et al. demonstrated that ATP activates

KCa3.1 in excised, inside-out patches in a protein kinase A inhibitor

5-24-dependent manner (52). In their experiments, ATP specifically

activated chimera containing the KCa3.1 C-terminal amino acids

His299-Lys427, but not other highly homologous Ca2+-activated K+

channels. In terms of indirect activation, the human single cAMP-

dependent protein kinase (PKA) site (S334A) on the KCa3.1 a
subunit is dependent on phosphorylation of PKA to reduce

binding of CaM to the KCa3.1 channel. PKA signaling pathway

inhibitors, such as PKI14-22, Rp-8-Br-cAMPS, and N-[2-(4-

bromocinnamylamino) ethyl]-5-isoquinoline (H-89), significantly

reversed downregulation of KCa3.1 channel, thereby restoring its

function, while Sp-8-Br-cAMPS, a PKA activator, exerted the

opposite effect (48, 53). Interestingly, PKA-mediated
Frontiers in Immunology 04
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phosphorylation was shown to have no regulatory effect on

KCa3.1 channel in the above study (50). Moreover, a monoclonal

blocking antibody against programmed death 1, pembrolizumab,

has been identified that promotes KCa3.1 activity and

concomitantly increases Ca2+ flux in cytotoxic T cells of patients

immediately after treatment (54, 55). In conclusion, most KCa3.1

channel activators have low potency and poor selectivity and

modulate other ion channels simultaneously.

KCa3.1 channel inhibitors are divided into two main

categories: peptides and small molecule inhibitors. Peptide

blockers bind to the outer vestibule of the channel and form

multi-point contacts with channel residues whereas small-

molecule blockers pass through the membrane and bind the

cavity from the inside, blocking K+ outflow (38). The majority of

KCa3.1 channel peptide inhibitors are toxin polypeptides. The

most common is the scorpion toxin Glu32-charybdotoxin,

initially isolated from Leiurus quinquestriatus. Nevertheless,

the scorpion toxin peptide has low selectivity for KCa3.1 and

additionally shows activity against both KCa1.1 and Kv1.3

channel (a voltage-gated K+ channel) (56, 57). Maurotoxin

(MTX) (58) and urotoxin (a-KTx6) (59) display affinity for

KCa3.1 but also affect the Kv1.2 channel (a voltage-gated K+

channel). Accordingly, toxin polypeptide KCa3.1 channel

blockers have limited experimental value for in vivo research

on KCa3.1 due to their low specificity and are more commonly

used to investigate the pharmacological properties of KCa3.1 in

vitro (60).

Small-molecule inhibitors of KCa3.1, primarily derived from

the antibacterial drug clotrimazole, effectively block the channel

and inhibit mitosis of activated prolymphocytes (22). However,

clotrimazole inhibits cytochrome P450 enzymes in vivo, causing

severe side-effects, which limits its pharmaceutical value (45). A

derivative inhibitor of clotrimazole, 1-[(2-chlorophenyl)

diphenylmethyl]-1H-pyrazole (TRAM-34), was further

developed, which could avoid the adverse reactions of

cytochrome P450 enzyme inhibition (61). TRAM-34 is the

most commonly used KCa3.1 channel inhibitor in

pharmacological experiments. Mechanistically, TRAM-34

binds threonine 250 and valine 275 in the pore cavity of the

KCa3.1 channel, preventing penetration of ion (62).4-[[3-

(trifluoromethyl) phenyl] methyl]-2H-1, 4-benzothiazin-3

(4H)-one (NS6180) inhibits KCa3.1 channel activity using the

same mechanism as TRAM-34 but has low bioavailability and is

therefore only suitable for topical therapy. Senicapoc, also

known as ICA-17043, is a potent and selective blocker of

KCa3.1. Compared to other receptors, senicapoc displays

higher selectivity for KCa3.1 and lower possibility of off-target

effects (63, 64). A number of novel compounds have been

synthesized using the L-type Ca2+ channel blocker nifedipine

as the template, such as cyclohexadiene 4 (32) and the nano-

affinity KCa3.1 channel inhibitor cyclohexadiene lactone

composed of cyclohexadiene (4), and phenyl-4H-pyran. Due

to the difficulty in synthesizing phenyl-4H-pyran and its short
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TABLE 1 Inhibitors and Activators of KCa3.1.

Activators/
Inhibitors

Substances Structure/
formula

IC50/EC50 Experimental cells Description Clinical
trial

References

Channel
activators

1-EBIO 84 mM(EC50) Xenopus oocytes Increase channel
open rate

\ (29, 32)

DC-EBIO Test at 100 mM Capan-1 cells Increase channel
open rate

\ (40, 41)

SKA-31 260 nM (EC50) COS-7 cells open channel \ (30)

SKA-121 110 nM (EC50) COS-7 cells open channel \ (30)

NS309 10 nM (EC50) HEK-293 cell open channel \ (31)

CZ 98 mM(EC50) Xenopus oocytes Increase channel open
rate

Phase
I-IV

(32)

ZOX Test at 300 mM Xenopus oocytes Increase channel open
rate

Phase
I-II

(32)

theophylline Test at 0~1500 mM HEK-293 cell Mandatory Ca2
+-dependent
, independent of
phosphorylation

Phase
I-IV;

(33)

Channel
activators

IBMX Only test at 1mM HEK-293 cell Mandatory calcium
dependence

\ (33)

Caffeine Only test at 1mM HEK-293 cell Mandatory calcium
dependence

Phase
I-IV

(33)

ATP Only test at 100 mM Human microglia activate purinergic
receptors, free [Ca2+]i
↑

Phase
I-IV

(42)

PKI14-22 C53H100N20O12 Only test at 10M MLS-9 microglia, primary
rat microglia

Inhibit PKA, increase
current

\ (35)

Rp-8-Br-
cAMPS

Test at 10M, 100mM MLS-9 microglia, HEK-
293 cell, post-SE neurons

Inhibit PKA, increase
current

\ (35, 36)

H-89 Test at 1mM, 10 mM Inhibit PKA \ (36)

(Continued)
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half-life after intravenous injection (62), the compound is not a

suitable replacement for TRAM-34 as a KCa3.1 inhibitor.

Clinically, the antihypertensive drug nitrendipine blocks

KCa3.1 channel at a dose of 100 nM (65). Previous studies

have shown that in the PI3K-PI(3)P signaling pathway,

LY29400259 (a phosphatidylinositol 3-kinase inhibitor) (55)

and ellagic acid (a nucleoside diphosphate kinase B kinase

inhibitor) (66), prevent phosphorylation of specific group

amino acid and inhibit activity of the KCa3.1 channel.

Recently, Licochalconer A, a chalcone compound extracted

from licorice, was shown to block KCa3.1 in a concentration-

dependent manner, with anti-inflammatory effects (67). In

general, the pharmacological effects of the KCa3.1 channel are

relatively well characterized and meet the pharmacological needs

in the relevant studies. However, the most rigorous obstacle to
Frontiers in Immunology 06
136137
clinical application of KCa3.1 modulators is almost associated

with their low selectivity, so it is of great significance to explore

highly specific drugs targeting KCa3.1 for conforming to

clinical use.
Abnormal expression of KCa3.1 in
rheumatoid arthritis

RA is an autoimmune disease characterized by inflammation

of the synovium, with the essential site of inflammation

identified as the synovial lining. In the process of lymphocyte

activation and pathological function in rheumatoid arthritis, the

increase of transient intracellular free calcium level plays a

crucial role. A study have found that compared with healthy
TABLE 1 Continued

Activators/
Inhibitors

Substances Structure/
formula

IC50/EC50 Experimental cells Description Clinical
trial

References

Post-SE neurons, HEK-
293 cell

Peptide
inhibitors

ChTX-Glu32 C175H272N56O57S7 250 nM (Emax) Human T-lymphocytes Salt bridge anchors the
outer vestibule

\ (43, 44)

MTX C145H231N45O47S8 1.4 nM (IC50) CHO cells Selective inhibitor \ (45)

a-KTx6 \ \ \ Inhibit KCa3.1 with
nanomolar affinity

\ (46)

Small
molecule
inhibitors

clotrimazole 3±0.5 mM (EC50) T cell inhibit mitosis Phase
I-IV

(47)

TRAM-34 5.5±0.5 mM(EC50) T cell inhibit mitosis \ (47)

NS6180 Human: 14 Nm; Mouse: 15
nM; Rat: 9 nM (IC50)

human, mice, and rat
erythrocytes

binding amino acid \ (48, 49)

ICA-17043 11±2 nM (IC50) Human erythrocytes High selective Phase
I-III

(50)

4-Phenyl-4H-
pyran

8nM (IC50) C6BU1 rat glioma cells Inhibit ion conduction
directly

\ (20, 48)
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people, RA patients have elevated basal cytoplasmic free calcium

level ([Ca2+]cyt) and abnormal activation of KCa3.1 channel to

maintain calcium influx in peripheral T lymphocytes (68).

Addit ional ly , Ca2+-act ivated K+ currents with the

characteristics of KCa3.1 channel were detected in synovial

fibroblasts from RA patients. TGF-b1-induced KCa3.1

overexpression stimulates the proliferation and mediator

secretion of synovial fibroblasts, which can be suppressed by

KCa3.1 inhibitors. This result supports the theory that KCa3.1 is

closely related to synovial inflammation (8). In addition, KCNN4

is required for fusion of macrophages to form osteoclasts or

multinucleated macrophages (MGCs) during the immune

response to RA (69). KCa3.1 is expressed in both physiological

and inflammatory osteoclast formation and is the only channel

in the Ca2+-activated K+ channel family that is upregulated

during the process of receptor activator of nuclear factor-kB
ligand (RANKL)-induced osteoclast formation. The collective

results confirm an association of abnormal expression of KCa3.1

with pathogenesis of RA.

Experimental studies on animal models suggest that KCa3.1 is

significantly associated with inflammation and pathogenesis of RA.

In a collagen antibody-induced arthritis (CAIA) model, alleviated

joint inflammation and tissue damage was observed in KCNN4-/-

mice compared to KCNN4+/+ mice (69). One extremely interesting

phenomenon was that collagen-induced arthritis (CIA) KCNN4-/-

mice did not develop autoimmune arthritis (70). Specifically,

following intradermal injection of chicken collagen type II into

the base of the tail ofKCNN4-/- mice on days 0 and 21, noKCNN4-/-

mice developed clinical evidence or histological signs of arthritis, in

contrast to wild-type mice. Notably, the CIA KCNN4-/- model

indicates a possible pro-inflammatory effect of KCa3.1 in RA.

However, the specific mechanisms by which deficiency of KCNN4

induces resistance against joint inflammation in CIA models

remain unclear. These findings suggest that targeting KCa3.1

deficiency may alleviate joint inflammation and limit the

development of persistent joint damage in experimental animal

models, presenting a potential strategy for RA therapy.
Regulatory roles of KCa3.1 in
immune cells

Role of KCa3.1 in T cells

The most prominent cell type in immune diseases is the T

cell, which is responsible for recognizing antigens and generating

immune responses. During pathogenesis of RA, autoantigens are

presented to T cells by antigen-presenting cells. Following

activation of pathogenic self-reactive T cells, various innate

immunocytes are activated. Immediately afterwards,

inflammatory signaling pathways are initiated, secreting

various cytokines to trigger synovial tissue inflammation.

KCa3.1 expressed in T cells initiates expression of genes that
Frontiers in Immunology 07
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promote T cell activation and proliferation (71). Notably,

stimulated activated T cells express significantly higher levels

of KCa3.1 than resting T cells (22).

CD4+ T cells are core cells of the immune system,

coordinating the adaptive immune response and regulating

immune and non-immune cell functions through cytokine

production (72, 73). In CD4+ T cells, the KCa3.1 channel is

activated mainly through the phosphatidylinositol 3 phosphate

(PI(3)P) signaling pathway. After antigen presentation to T cell

receptors, the class II phosphatidylinositol 3 kinase C2b (PI3K-

C2b) is activated, which, in turn, promotes production of PI(3)P

(74). Several studies indicate that KCa3.1 channel activation by PI

(3)P is associated with NDPK-B. The inhibitory effect of the 14

amino acid region at CT of KCa3.1 is eliminated upon

recruitment of nucleoside diphosphate kinase B (NDPK-B) to

phosphorylate the histidine residue H358 in this region (75).

Based on the above mechanism, existing studies have focused on

inhibition of KCa3.1 channel opening through potential effects on

three sites of activity. First, intracellular PI (3)P synthesis is

restricted by the PI(3)P phosphatase myotubularin-related

protein 6 (MTMR6). Consistently, the highly selective PI3K

inhibitor wortmannin depletes intracellular PI(3)P that results

in inhibition of KCa3.1 (75, 76). Second, phosphoglycerate mutase

family 5 (PGAM5) induces dephosphorylation of NDPK-B and

directly inhibits NDPK-B-mediated histidine phosphorylation,

thereby blocking KCa3.1 channel activation (77). Third, the

mammalian protein histidine phosphatase (PHPT-1) binds

d i r e c t l y to phosphory l a t ed H358 , t r i gge r ing i t s

dephosphorylation to achieve inhibition of KCa3.1 channel

activity (78). Moreover, intracellular copper deficiency is

associated with elevated H358 phosphorylation, implying that

the use of copper chelators may enhance the activity of KCa3.1

(79). In an established KCa3.1-/- mouse model, it was observed

that T helper (Th)-0, Th1, and Th2 cells isolated from KCa3.1-/-

mouse are defective in Ca2+ flux and cytokine production, while

the Th17 and Treg subsets displayed normal function. The above

phenomenon supports a key role of KCa3.1 in Th0, Th1, and Th2-

mediated diseases, including RA, colitis, and several other

immune inflammatory disorders (80). Consistently,

pharmacological inhibition of KCa3.1 decreased inflammatory

bowel disease mice symptoms via increasing IL-10 production in

Treg cells, suggests that KCa3.1 is responsible for the invalidation

of anti-inflammatory efficiency of Treg cells in chronic

inflammatory disorders (81, 82).

CD8+ cells are cytotoxic T lymphocytes that infiltrate solid

tumors to perform immune surveillance functions. Chimote et al.

provided evidence of compartmental reduction of CaM levels at the

plasma membrane of CD8+ T cells in head and neck squamous cell

carcinoma (HNSCC) patients, leading to decreased activity and

chemotaxis of KCa3.1 (83). Similarly, another recent study showed

that targeted KCa3.1 activation could restore the chemotaxis ability

of HNSCC CD8+ T cells in the presence of adenosine (84).

Furthermore, KCa3.1 is reported to support the migration of
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CD8+ T cells. Reduced K+ channel activity could be restored by

cytokines, ultimately leading to functional recovery of impaired

CD8+ T cells, facilitating clearance of pathogens or control of local

tissue inflammation (85).
Role of KCa3.1 in B cells

The primary function of B cells is to differentiate into plasma

cells that secrete antibodies to mediate humoral immune response

under conditions of antigen stimulation and Th cell assistance. In

RA condition, abnormal activation of B cells lead to autoantibodies

secretion following autoantigen presentation by certein antigen

presenting cells. In addition, B cells can regulate bone formation

in RA by inhibiting differentiation of osteoblasts (86). Other than

supporting T cell proliferation, KCa3.1 coordinates the proliferation

and migration of B cells. KCa3.1 is reported to be expressed in B

cells and activity of the channel is significantly elevated during

differentiation of activated naive B cells into memory B cells (87,

88). As professional antigen-presenting cells, B cells play a

significant role in the adaptive immune response. Mechanistically,

B cells ingest, process, and present antigens by expressing the B cell

receptor (BCR) and regulating the human leukocyte antigen HLA-

DO (89). Non-competitive anti-N-methyl-D-aspartate-receptor

(NMDAR) antagonists modulate BCR-induced B cell

proliferation, migration, and production of the anti-inflammatory

factor interleukin-10 (IL-10) through negative regulation of the

KCa3.1 channel (88). KCNN4 encoding KCa3.1 has been

characterized as a tissue-specific transcriptional coactivator

(OCA-B)-dependent gene involved in B cell proliferation and

function that is required for antigen-dependent B

cell differentiation.

In contrast to the above findings, KCa3.1 has been shown to

be positively engaged in BCR-induced B cell proliferation but

not required during the active phase of B cell differentiation (90).

After TRAM-34 treatment, the ability of B lymphocytes to

proliferate was weaker and expression of chemokine (C-C

motif) ligand 7, a chemotactic-related factor that promotes B

cell migration, significantly decreased (91). While the underlying

mechanisms have not been established, it is reasonable to

speculate that Ca2+-associated changes are significantly linked

to inhibition of KCa3.1 channel in B cells. At the molecular level,

activation of the extracellular signal-regulated kinase (ERK)

upstream protein RAS affects the ERK signaling pathway,

leading to reduced secretion of B cell chemokines and

recruitment of inflammatory cells (92).
Role of KCa3.1 in macrophages

Macrophages play a fundamental role in the pathogenesis of

RA disease, with significant infiltration at the inflamed synovium

and cartilage junction, promoting inflammation by secreting
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cytokines and chemokines (93). Studies demonstrated that

macrophages may contribute to RA synovial inflammation

through activation of Notch signaling, leading to M1 pro-

inflammatory phenotype, or via c-Jun N-terminal kinase

(JNK) signaling channels activating nuclear factor kB and

producing large amounts of tumor necrosis factor-a (TNF-a)
(94). Earlier in vitro studies have demonstrated KCa3.1

expression in macrophages, with key roles in regulation of

macrophage proliferation, migration, reactive oxygen species

(ROS), and cytokine production (95, 96). In keeping with its

role in T and B cells, KCa3.1 is reported to maintain Ca2+ influx

and membrane hyperpolarization in macrophages (97). Upon

blockage of the KCa3.1 channel in a study by Xu et al., the

activity of signal transducer and activator of transcription 1

(STAT-1) protein was inhibited and phosphorylation levels

reduced in macrophages (98). Moreover, the levels of pro-

inflammatory cytokines and chemokines were significantly

decreased in M1 macrophages whereas markers in M2

macrophages remained unchanged, suggesting that the KCa3.1

channel mainly regulates the function of M1 type macrophages

and expression of pro-inflammatory genes. In chronic diseases,

such as RA, multinucleation of macrophages is a critical step in

the formation, differentiation and activation of osteoclasts,

which lead to bone erosion and long-term inflammation (99,

100). In a microarray analysis of fused rat macrophages and

human monocytes forming osteoclasts by Kang et al., the role of

KCNN4 as a potential modulator of multinucleation was

validated (69). The main downstream effect of nuclear factor-

kB (NF-kB) ac t iva t ion i s upregu la t ion of T ce l l

dephosphorylation by nuclear translocation of nuclear factor

cytoplasmic 1 (NFATc1), which stimulates Ca2+ signaling and

activates Akt. Silencing or blockage of KCa3.1 suppressed

NFATc1 expression and Akt activation, implying that KCNN4

is also closely associated with cell death (69). Another study

reported that TNF-a mediates the NF-kB pathway through

increased autocrine secretion. NF-kB binds directly to the

promoter region of KCNN4 and enhances its activity to

upregulate gene expression and promote cell proliferation

(101). Furthermore, blockade of the KCa3.1 channel with

TRAM-34 negatively regulates NF-kB and STAT3 signaling

and impairs the ability of macrophages to differentiate into the

pro-inflammatory M1 phenotype, in parallel with reduced levels

of inflammatory factors, such as interleukin-1 (IL-1),

interleukin-6 (IL-6), TNF-a and monocyte chemoattractant

protein-1 (MCP-1) (102). The majority of studies indicate that

the role of KCa3.1 in macrophages is closely associated with NF-

kB and STAT signaling pathways.
Role of KCa3.1 in mast cells

Mast cells (MCs) recognize endogenous and exogenous

mediators, which boost the release of various mediators from
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other immune and non-immune cells, consequently regulating

different physiological activities in vivo (103). During the process

of RA, activated MCs produce an array of pro-inflammatory

mediators that activate other immune system cells, initiating and

maintaining the inflammatory response. TNF-a preformed by

mast cells initiates an inflammatory cascade response promoting

cytokine expression. Meanwhile, products of mast cells, in

particular, histamine and TNF-a, promote proliferation and

catabolic effects of articular chondrocytes and synovial stromal

cells, leading to the development of RA (104). A number of

previous studies have confirmed the presence of KCa3.1 in mast

cells. Activation of the KCa3.1 channel maintains high

concentrations of intracellular free Ca2+ in mast cells, promotes

IgE-dependent histamine release, and regulates the secretory

responses of mast cells (105). The Orai/CRACM1 ion channel

provides the major Ca2+ influx pathway for mast cells to release

mediators and activation of the KCa3.1 channel in mast cells is

highly dependent on this process (106). Prostaglandin E2 (PGE2)

suppresses the IgE-dependent cell activation pathway by

inhibiting activation of EP2 receptors. Inactivation of EP2

receptors limits the influx of free cytoplasmic Ca2+, leading to

reduced chemokine production and subsequent closure of the

KCa3.1 channel (107). Upon interference with channel gene

expression via lentiviral targeting of KCa3.1, signaling pathways

are disrupted and mast cell activity is reduced, followed by

attenuation of the immune inflammatory response (108). In

addition, E3 ubiquitin ligase (containing a tripartite motif of

protein 27) negatively regulates high-affinity receptor for IgE

(FcepsilonRI) activation and downstream signaling of KCa3.1

through ubiquitination and inhibition of PI3KC2b in mast cells

(109). The levels of chemokine CXC motif chemokine ligand 10,

chemokine stem cell factor, and TNF-a in mast cells are reported

to be significantly decreased by charybdotoxin and TRAM-34,

along with diminished mast cell migration capacity (110).
Role of KCa3.1 in dendritic cells

Dendritic cells (DCs) participate in the presentation of

autoantigens and production of pro-inflammatory factors, which

contribute to ongoing inflammation in RA. In addition, DCs are in

charge of maintenance and differentiation of autoimmune B and T

cells which directly participated in RA pathogenesis (111). Studies

show that the binding of lymphatic chemokines CCL19 and CCL21

to their receptor CCR7 induces mobilization of Ca2+ stored in

mature DCs and subsequent opening of the KCa3.1 channel (112,

113). The migratory capacity of DCs is tightly regulated by the

intracellular Ca2+ concentration and chemokine receptors are

differentially expressed in DCs at two states of maturation. In the

presence of TRAM-34, temporal coupling between KCa3.1 and Ca2

+ inward flow was shown to be disrupted and subsequent CCR7-

induced chemotaxis impaired (112). Paradoxically, KCa3.1

exhibited migratory capacity only in immature dendritic cells and
Frontiers in Immunology 09
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expression of its migration marker CCR5 was modified in the

presence of TRAM-34 (114, 115). Data from the above study

additionally confirmed that activation of T lymphocyte

proliferation by dendritic cells is not affected by KCa3.1. In vitro,

prevention of [Ca2+]i elevation under conditions of KCa3.1

deficiency decreased the directed migration of lipopolysaccharide

(LPS)-challenged DCs, supporting the involvement of KCa3.1 in

LPS-induced DC migration (116).
Roles of KCa3.1 in other immune cells

In RA, neutrophils can activate other immune cells that

perpetuate inflammation and lead to the destruction of cartilage

and bone in affected joints. This pathogenic effect occurs

primarily through mechanisms including increased cell

survival and migration capacity, abnormal inflammatory

activity, elevated oxidative stress, and exacerbated neutrophil

extracellular trap formation (117). Recently, Henrıq́uez et al.

demonstrated the existence of KCa3.1 in mammalian

neutrophils for the first time and showed a positive correlation

between upregulation of the channel and neutrophil migration

(118). Concomitantly, targeted KCa3.1 inhibition altered the

capacity of cells to properly regulate cell volume and limited

neutrophil migration in vitro with no effect on Ca2+ homeostasis.

Likewise, the membrane potential of the KCNN4-/- neutrophil

subpopulation was balanced in a study by Grimes et al., resulting

in a homogeneous lower-calcium (Calo) response (119). In

addition, erythrocytes have a partial immune function

although they are not conventional immune cells. The KCa3.1

channel present on erythrocytes regulates cellular volume by

transporting K+ across the membrane and its activity increases

in response to high cytokine levels (120). The role of KCa3.1 in

immune cells has been summarized in the Table 2.
Correlative regulation of KCa3.1 and
immune-inflammatory cytokines

Synovial inflammation is a critical process in the

pathogenesis of RA and directly associated with clinical

symptoms, such as inflammatory pain, joint swelling and

progressive destruction of multiple joints. Accumulating

evidence suggests that the KCa3.1 channel is capable of

cytokine regulation with potential significant implications in

immune-inflammatory diseases (Figure 2). KCa3.1 has been

shown to stimulate TGF-b1 production. In experiments by C.

Huang et al . , treatment with TRAM-34 suppressed

transcription of TGF-b1 and TGF-b1 type II receptor mRNA

and negatively regulated phosphorylation of Smad2/3 (122).

The above processes led to reduced production of

inflammatory cytokines, PAI-1, and matrix proteins in the

nucleus, with anti-inflammatory and anti-fibrotic effects. The
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KCa3.1 channel is reported to mediate K+ efflux, promote

intracellular Ca2+ concentrations, and activate calmodulin

k i n a s e IV (C aMK IV ) , wh i c h f a c i l i t a t e s CREB

phosphorylation, contributing to upregulation of c-fos/AP-1

and NFATc1 expression, and ultimately leading to osteoclast

formation (123). Moreover, NF-kB and STAT3 signaling

pathways are inactivated upon blockade of the KCa3.1

channel. Consequently, decreased secretion of pro-

inflammatory factors, such as IL-1b, IL-6, TNF-a, and MCP-

1, limits the progression of inflammation (102). In regulatory T

cells, suppression of KCa3.1 channel activity initiates

phosphorylation of JNK and c-Jun, activation of JNK/c-Jun

signaling, and E4BP4/Blimp1-mediated anti-inflammatory IL-

10 cytokine secretion (81, 82). The above findings suggest that

inhibition of KCa3.1 channel activity modulates immune-

inflammatory factors and al lev iates inflammat ion.

Paradoxically, TRAM-34 is reported to activate two types of

transcriptional regulators, KLF4 and/or TRIM33, and mediate

upregulation of pro-inflammatory IL-17A (82). Another study

disclosed no pro-inflammatory changes in T cell subsets and

plasma cytokines or chemokines following administration of

SKA-31, a KCa3.1 activator, in rats (124).

The KCa3.1 channel both regulates and is regulated by

cytokines (Figure 3). TGF-b1 has the capability to inhibit

catalase activity and promote hydrogen peroxide levels,

thereby inducing an increase in KCa3.1 expression. The

p38MAPK signaling pathway plays a vital role in stress

responses, such as inflammation and apoptosis. p38MAPK/

AP-1/NF-kB signaling activates the AP1 complex (composed

of c-fos and c-Jun) and promotes transcription and translation

of KCa3.1 (125). Upregulation of KCa3.1 stimulates the
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expression and production of interferon-g (IFN-g), in turn,

mediating the mobilization and accumulation of inflammatory

T cells, which are involved in inflammation (126). In addition,

IL-1b stimulation is reported to activate NF-kB signaling and

upregulate the KCa3.1 channel in pancreatic islet cells. The

drug modafinil suppresses progression of inflammation via

elevation of adenosine 3’, 5 cyclic monophosphate (cAMP) and

inhibition of KCa3.1 channel activity (127). Furthermore, IL-4

specifically binds type I receptors and regulates JAK3 and RAS/

MEK/ERK signaling pathways. In the above mechanisms, the

transcription factor AP-1 is activated and upregulates KCa3.1

(128). However, in-depth studies revealed that IL-4 increases

the current in the KCa3.1 channel only slightly, inducing no

significant changes in channel density with increasing

membrane area (40). Based on the available information,

targeting the KCa3.1 channel is proposed as a means to

effectively regulate immune-related molecules, such as

cytokines and inflammatory factors, which play a crucial part

in immune system-mediated disorders.
KCa3.1 as a potential drug
target for RA

Targeting the inflammatory process
of RA

The occurrence and continuous development of RA is

manifested by failure of spontaneous regression of

inflammation. Increasing evidence suggests that KCa3.1

promotes secretion of inflammatory factors by regulating
TABLE 2 Role of KCa3.1 in immune cell.

Cells Experimental cells Inhibition/activation of KCa3.1 Mechanism References

T
lymphocytes

CD4+ T cells MTMR6/
Wortmannin

PI(3)P↓, KCa3.1↓,
proliferation↓

(75, 76)

CD4+ T cells PGAM5 Dephosphorylation NDPK-B, Histidine phosphorylation↓,
KCa3.1↑

(77)

CD4+ T cells PHPT-1 Bind p-H358, dephosphorylation p-H358, KCa3.1↓ (78)

CD8+ T cells 1-EBIO Chemotactic capacity↑ (84)

B
lymphocytes

Splenic B cells NMDAR antagonists Inhibit BCR, KCa3.1↓, IgM, IgG↓, IL-10↑ (88)

Splenic B cells TRAM-34 KCa3.1↓, cells proliferation↓, CCL7↓, migration↓ (91)

Macrophages THP-1 cells TRAM-34 KCa3.1↓, STAT-1↓, type M1 polarization↓ (98)

Human macrophages KCNN4 deficiency KCa3.1↓, RANKL↓, NF-kB↓, NFATc1↓, Akt↑ (69)

Mast cells HLMC AH6809 EP2↓, KCa3.1↓, chemokine↓, migration↓ (107)

P815 cells LV-KCa3.1-shRNA KCa3.1↓, AKT phosphorylation↓, IL-6, IL-8↓, mast cell activity↓ (108)

BMMC TRIM27-/- FcϵR1↑, PI3KC2b↑, KCa3.1↑, mast cell activation↑ (121)

HLMC TRAM-34 KCa3.1↓, CXCL10, TNF-a↓, migration↓ (110)

Dendritic
cells

Lung dendritic cells TRAM-34 CCR7 inhibition, KCa3.1↓, migration↓ (112)

Immature dendritic
cells

TRAM-34 CCR5 inhibition, KCa3.1↓, migration↓ (114)
fr
The symbols ↑ and ↓ mean the up-regulation and down-regulation of KCa3.1 expression, respectively.
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immune-inflammatory cells in RA. In related reports, KCa3.1 is

considered a pro-inflammatory ion channel that activates the

function of inflammasome. Hydroxychloroquine is reported to

impair the inflammasome and inhibit neutrophil recruitment in

a dose-dependent manner through inhibition of Ca2+-activated

K+ conductance in THP-1 macrophages (70). Interestingly,

earlier findings indicate that TGF-b induces transcription and

translation of KCa3.1 and, conversely, silencing or inhibition of

KCa3.1 negatively regulates TGF-b (8). In addition, the pro-

inflammatory and invasive behavior of synovial fibroblasts plays

an essential role in RA. Another study showed that blockage of

KCa3.1 with TRAM-34 or siRNA treatment could suppress

proliferation of RA-SFs. Inactivation of the channel led to

downregulation of the pro-inflammatory factors IL-6,

interleukin-8 (IL-8), and MCP-1, as well as tissue-destructive

protease MMP3 at both mRNA and protein levels. Notably,

inhibition of the KCa3.1 channel also upregulated MMP1

mRNA and enhanced secretion of IL-1b while decreasing that

of IL1-RA, resulting in inhibition of short-term activation of Th2

lymphocytes in RA and consequently, a shift in the

inflammatory homeostasis of RA to a pro-inflammatory state

(41). However, limited data on the specific role of KCa3.1 in

inflammation of RA are available at present. Further studies are
Frontiers in Immunology 11
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required to elucidate the functions and mechanisms of action of

KCa3.1 in the inflammatory process associated with RA.
Targeting of cartilage destruction and
bone erosion

The pathogenesis of RA is synovial inflammation

accompanied by cartilage damage and bone erosion. In

addition to synovial tissue and immune cells that show critical

immune-inflammatory activities, synovial fibroblasts and

osteoclasts play a central role in cartilage and bone destruction

and bone erosion in RA. Although no evidence of direct

mediation of RA cartilage and osteogenic destruction by

KCa3.1 has been obtained, its involvement in these processes

via regulation of fibroblast (FLS) and osteoclast activation is a

strong possibility.

Previous studies have shown that highly activated FLS can

promote inflammation and tissue invasion and mediate tissue

damage with tissue-infiltrating macrophages and immune cells,

such as T cells and B cells (42). FLS are involved in the

pathological process of synovitis, synovial lining hyperplasia,

activation of a number of synovial cells, and destruction of
FIGURE 2

KCa3.1 regulates cytokine production and secretion. TGF-b1 binds to type II receptors and transphosphorylates type I receptors, phosphorylates
Smad2/3 and secretes many inflammatory factors. Activation of KCa3.1 also promotes the secretion of IL-1b, IL-6, IL-8, TNF-a, and MCP-1
through the STAT3 and NF-kB signaling pathways. IFN-g is upregulated by KCa3.1 either. KCa3.1 restrains the production of IL-10 through the
JNK/c-Jun and NF-kB pathways. The blocked KCa3.1 channel by TRAM-34 inhibits these pathways. IL-17A is a pro-inflammatory cytokine that is
upregulated by TRAM-34 through activation of KLF4 and/or TRIM33. (Created with BioRender.com).
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cartilage matrix through production of cytokines and

chemokines. The p38 MAPK (mitogen-activated protein

kinase) pathway is a crucial signal transduction step during

chronic inflammation (49). Two isoforms of p38MAPK, a and

g, are expressed in FLS, which play key roles in the

inflammatory process by activating the p38MAPK signaling

pathway to produce inflammatory factors, such as TNF-a, IL-
1b and IL-6 (129). In addition, FLS regulate the proliferation

and differentiation of immune cells through the p38 pathway.

Transcriptional growth factor b1 (TNF-b1) is highly expressed
in RA-SFs and can induce expression of pro-inflammatory and

pro-destructive proteins (130). TNF-b1 has been shown to

induce KCNN4 transcription and translation, activate the

KCa3.1 channel, increase K+ current, provide continuous

power for Ca2+ influx, and promote inflammatory processes

(131). At present, studies on the mechanism of action of

KCa3.1 in synovial fibroblasts are lacking and the pathways

underlying KCa3.1 upregulation by TGF-b1 remain to be

established. Further clarification of whether KCa3.1 has

functional activity in RA-SFs through signaling pathways,

such as p38MAPK (132) and NF-kB (133, 134), should

fur ther suppor t i t s potent ia l invo lvement in RA

cartilage injury.
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Osteoclasts and RANKL act together to promote the

occurrence of bone erosion (124, 125). In a recent study,

activation of endogenous fibroblast-like synoviocytes induced

RANKL expression and stimulated osteoclast formation (135,

136). The KCa3.1 channel inhibitors, TRAM-34 and ICA-17043,

have been shown to inhibit monocyte formation in osteoclasts in

a dose-dependent manner but the precise molecular

mechanisms remain to be established (69). It is speculated that

the KCa3.1 channel is functionally active in the formation of

osteoclasts. KCa3.1 can prevent the progression of bone erosion

by inhibiting the differentiation and formation of osteoclasts,

thereby relieving the clinical symptoms of RA patients,

providing further support for its utility in management of RA.
Blockage of the KCa3.1 channel

In applications of KCa3.1 channel inhibitors, existing studies

indicate that TRAM-34 exerts no notable side-effects when used at a

high concentration (~120 mg/kg) and has no effect on blood

biochemistry and hematology parameters (137). Senicapoc has

passed Phase I-III clinical trials for clinical drug use in sickle cell

disease, with a reported IC50 value of 11 nm (138). Senicapoc may
FIGURE 3

Cytokines regulate KCa3.1 expression and activity. TGF-b1 inhibits catalase, thereby synthesizing hydrogen peroxide to activate KCa3.1. IL-4 and
IL-1b upregulates AP-1 through JAK3/RAS/MEK/ERK and NF-kB signaling pathway, resulting in the initiation of KCa3.1 transcription. AP-1 can be
upregulated by activated CaMKIV/CREB and p38 MAPK pathway, either. KCa3.1 activity is controlled by elevated cAMP in response to agents.
(Created with BioRender.com).
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2022.997621
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2022.997621
cause diarrhea, nausea, and other adverse reactions in a dose-

dependent manner, but overall drug safety is good. The KCa3.1

inhibitors TRAM-34 and Senicapoc have been used in RA-related

in vitro studies (8, 69). Clotrimazole and nitrendipine have

progressed to the clinical trial stage and are widely used to treat a

number of diseases. According to the tissue distribution

characteristics of the KCa3.1 channel, KCa3.1 generally not

expressed in excitable tissues and reproductive organs, which

indicates a low-risk, acute-toxicology profile of KCa3.1 channel

blockade. The results obtained to date support the feasibility,

efficacy, and safety of the KCa3.1 channel as a therapeutic target

in RA. However, extensive research is required before introduction

of KCa3.1 channel blockers in the clinic. Remarkably, related

studies have shown that the KCa3.1 channel is the basis of slow

afterhyperpolarization (SAHP) in neurons and may exert side-

effects that affect sensory transmission (139).
Conclusions and outlook

KCa3.1 promotes inflammation, cartilage damage, and bone

erosion in synovial fibroblasts and osteoclasts that are

mechanistically involved in development of RA. Based on its

ability to restore the immune balance by interfering with Ca2+

signaling, KCa3.1 presents a promising therapeutic target for

RA. The possible functions of KCa3.1 in the pathological process
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of RA is shown in Figure 4. Despite interesting experimental

findings to date, research in this field is still in its infancy.

Considerable work remains to be done to elucidate the in-depth

mechanisms underlying the involvement of KCa3.1 in RA. For

example, the issue of whether KCa3.1 directly mediates cartilage

and bone destruction in RA is yet to be resolved. Furthermore,

no clinical trials have directly investigated the effects of KCa3.1-

specific inhibitors and activators in RA as yet. In summary,

KCa3.1 provides excellent research prospects for treatment of

RA and further development of drugs targeting this channel may

be of considerable benefit to patients.
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Glossary

1-EBIO 1-Ethyl-2-benzimidazolidinone

AP-1 activation protein-1

BCR B cell receptor

BMMC bone marrow-derived mast cells

CAIA collagen antibody-induced arthritis

CaM calmodulin

CAMBD CAM-binding domain

CaMKIV calmodulin kinase IV

cAMP adenosine 3’, 5 cyclic monophosphate

CHO cells Chinese hamster ovary cells

CIA collagen-induced arthritis

CRE cAMP response element

CVID common variable immunodeficiency

CZ chlorzoxazone

DCs dendritic cells

DC-EBIO 5, 6-dichloro-1-EBIO

DMARDs disease-modifying anti-rheumatic drugs

EC50 effective concentration producing 50% of maximum response

FLS fibroblast-like synoviocytes

GC glucocorticoids

H-89 N-[2-(4-bromocinnamylamino) ethyl]-5-isoquinoline

HDAC histone deacetylase

HEK-293
cells

human embryonic kidney cells

HNSCC head and neck squamous cell carcinoma

IBMX 3-isobutyl-1-methylxanthine

IC50 inhibitory concentration (e.g. 50% inhibition of maximum)

IFN-g interferon-g

IGFBP5 insulin-like growth factor-binding protein 5

IL interleukin

JNK c-Jun N-terminal kinase

KCa3.1 intermediate conductance Ca2+-activated K+ channel

LPS lipopolysaccharide

LZ leucine zipper

MAPK mitogen-activated protein kinase

MCP-1 monocyte chemoattractant protein-1

MCs mast cells

MGCs multinucleated macrophages

MTMR6 myotubularin-related protein 6

MTX Maurotoxin

NDPK-B nucleoside diphosphate kinase B

NFATc1 nuclear translocation of nuclear factor cytoplasmic 1

NF-kB nuclear factor-kB

NMDAR anti-N-methyl-D-aspartate-receptor

NS309 6, 7-dichloro-1H-indole-2, 3-dione-3-oxime

NS6180 4-[[3-(trifluoromethyl) phenyl] methyl]-2H-1, 4-benzothiazin-3
(4H)-one

NSAIDs non-steroidal anti-inflammatory drugs

(Continued)
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PGAM5 phosphoglycerate mutase family 5

PGE2 prostaglandin E2

PHPT-1 protein histidine phosphatase

PI3K phosphatidylinositol 3-kinase

PI3K-C2b the class II phosphatidylinositol 3 kinase C2b

PI(3)P phosphatidylinositol 3 phosphate

PKA cAMP-dependent protein kinase

RA rheumatoid arthritis

RANKL receptor activator of nuclear factor-kB ligand

REST repressor element 1-silencing transcription

SKA-121 5-methylnaphtho [2, 1-d] oxazol-2-amine

SKA-31 Naphtho [1, 2-d] thiazole-2-ylamine

STAT-1 signal transducer and activator of transcription 1

TNF-a tumor necrosis factor-a

TNF-b1 transcriptional growth factor b1

TRAM-34 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole

TRIM27 tripartite motif containing protein 27

ZOX zoxazolamide
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Osteoarthritis (OA) is a prevalent joint disease, which is associated with

progressive articular cartilage loss, synovial inflammation, subchondral

sclerosis and meniscus injury. The molecular mechanism underlying OA

pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-

protein coding RNAs with length more than 200 nucleotides. They have

various functions such as modulating transcription and protein activity, as

well as forming endogenous small interfering RNAs (siRNAs) and microRNA

(miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved

in the pathogenesis of OA which opens up a new avenue for the development

of new biomarkers and therapeutic strategies. The purpose of this review is to

summarize the current clinical and basic experiments related to lncRNAs and

OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and

HOTAIR. The potential translational value of these lncRNAs as therapeutic

targets for OA is also discussed.

KEYWORDS

long non-coding RNA, osteoarthritis, pathogenesis, biomarkers, therapeutic strategies
Introduction

Osteoarthritis (OA) is a prevalent joint disease in aging and obese populations,

resulting in joint pain, stiffness, and movement limitation (1). It has been estimated that

OA affects more than 240 million people all over the world which is projected to double in

the next 20 years (2). OA is regarded as one of the leading causes of major health and

socioeconomic burdens in many countries (3). OA was once considered as a disease of

articular cartilage alone. However, it is now generally believed that OA pathogenesis is

associated with pathological changes of other joint tissues, such as synovial inflammation,

subchondral bone remodeling and meniscal degeneration (4, 5). Risk factors, such as aging,
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obesity, trauma, genetic predisposition, and bone density, have

been implicated in the onset and development of OA (6). Despite

these well documented factors and other routinely used clinical

parameters such as patient history and radiographic examination,

there is still a lack of sensitive approach to detect OA at its

reversible stage (7, 8). In the clinics, multiple conservative

treatments are available at the early stage of OA, such as

physical measures or pharmacological anti-inflammatory and

analgesic drugs (6). Surgical interventions, such as osteotomies

and total replacement surgeries are served as the ultimate

therapeutic options to rehabilitate the persistent pain and

functional limitations of patients suffering from severe OA (9,

10). Obviously, these approaches are not able to halt or the

progressive degeneration in the joints. Collectively, a better

understanding of the molecular mechanism underlying this

complex pathogenesis will provide an insight into the

development of more specific and sensitive biomarkers as well

as disease-modifying drugs for OA prevention and treatment (11).

In human genome, approximately 2% of genome is made up

of protein-coding genes. The remaining 98% genome was

thought to be nonfunctional evolutionary leftovers. It is now

evidenced that these widely distributed non-coding genomes can

be classified into two groups, namely short (< 200 nucleotides)

and lncRNAs (> 200 nucleotides) which have diverse biological

functions in various human diseases (12). In general, lncRNAs

modulate the expression of target genes or the activity of

downstream pathways by direct binding to DNA, RNA and

proteins (13). Increasing evidence reveals that there are

differential expressions of lncRNAs at cellular and tissue levels

in human OA condition (14), suggesting the undefined roles of

lncRNAs in OA development and progression (15), and

potentially a new class of biomarkers for OA (16).

To supplement our current understanding as summarized in

previous reviews and to update the landscape of lncRNAs

research in OA (17, 18), this review takes a more

comprehensive approach to critically review the current

findings about the role of lncRNAs in OA pathobiology and

diagnosis with emphasis on those extensively studied lncRNAs,

including lncRNA H19, GAS5, MALAT1, XIST and HOTAIR

and their effects on various joint tissues, and to propose novel

treatment strategies via targeting lncRNAs.

This review on clinical and basic studies was conducted to

provide a current understanding about the lncRNAs research on

multiple joint tissues of OA pathogenesis through searching

published articles on the PubMed, Google Scholar, and

ScienceDirect databases from February 2003 to August 2022.

The searching keywords include (“long non-coding RNA” OR

“lncRNA”) AND (“osteoarthritis” OR “arthritis” OR

“osteoarthritis treatment”) AND (“plasma” OR “synovial fluid”

OR “body fluid” OR “cartilage” OR “synovium” OR “subchondral

bone” OR “meniscus” OR “chondrocyte” OR “synoviocyte” OR

“osteoblast” OR “exosome” OR “nanoparticle” OR “siRNA” OR

“Gene-editing”).
Frontiers in Immunology 02
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Classification and function
of lncRNAs

One common classification of lncRNAs is based on their

positions to protein-coding genes: (i) Sense lncRNAs and (ii)

antisense IncRNAs are those overlap with the same and opposite

strand of coding genes, respectively; (iii) Intronic lncRNAs are

those locate in the same intronic region of protein-coding genes.

While (iv) bidirectional lncRNAs are transcribed from the same

promoter as the protein-coding genes, but in the opposite

direction and (v) long intergenic noncoding RNAs (lincRNAs)

locate in the genomic interval between two genes (19) (Figure 1).

In addition, lncRNAs can be further classified by their

interactions with targets, including decoy lncRNAs, guide

lncRNAs, scaffold lncRNAs, stabilizing lncRNAs and

competitive endogenous-lncRNAs. Decoy lncRNAs sequester

DNA-binding proteins to limit their bindings to DNA

recognition elements. Guide lncRNAs recruit chromatin

remodeling agents to impart specificity to genomic locations

through either DNA-protein or RNA-DNA recognition. While

scaffold lncRNAs join several proteins together in a complex,

and stabilizing lncRNAs bind to target mRNA transcripts,

stabilize and promote their translations. Competitive

endogenous-lncRNAs (ceRNAs) or ‘RNA sponges’ compete

with miRNAs to limit their effects on protein-coding mRNA

targets (20).

Extensive research over the past decade has deciphered

various biological functions of lncRNAs (21). In general,

lncRNAs regulate gene expression via chromatin modification,

transcription and post-transcriptional processes (22). During

chromatin modification, lncRNAs recruit chromatin remodeling

complexes to specific chromatin loci (23). Transcriptional

regulation is the core role of lncRNAs in which they serve as

pervasive enhancers or promoters of transcription. In addition,

lncRNAs also behave as RNA binding proteins, transcription

factors and RNA polymerase (RNAP) II in regulating the

initiation of transcription (21). During post-transcriptional

regulation, lncRNAs mediate mRNA dynamics in both cis-

and trans-targets (24). Overall, lncRNAs serve as master

regulators of gene expression, and it is not surprising that the

value of lncRNAs in key aspects of OA progression has attracted

considerable attention.
Overview of lncRNAs in
OA pathogenesis

Currently, most of the studies focused on the lncRNAs

functions in OA cartilage/chondrocyte. Given that OA is a

disease of the whole joint (25), it is of clinical value to provide

an overview regarding the lncRNAs expression in different joint

tissues. The section summarizes some recent key findings about
frontiersin.org
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the dysregulation of lncRNAs expression and their potential

biological roles in cartilage degradation, synovial inflammation,

dysfunction of subchondral bone homeostasis and meniscus

injury. The full list of literature search can be referred to Table 1.
lncRNAs in Cartilage

Cartilage is an integral part of the skeletal system and is

mostly composed of chondrocytes. Chondrocytes can secrete

cartilage matrix and maintain joint activity (124), making this

cell type indispensable to the dynamic and continuous

processes of extracellular matrix (ECM) deposition and

remodeling to maintain homeostasis of cartilage (125).

However, such balance is disrupted in OA, and finally

resulting in degeneration of cartilage matrix (notably type II

collagen, COL2), production of fibrous ECM, aberrant

proliferation, senescence and hypertrophy of chondrocytes,

as well as secretion of inflammatory cytokines (126).

Previous studies described the abnormal expression of

lncRNAs in OA cartilages or chondrocytes, indicating the

probable l ink between lncRNAs and the aberrant
Frontiers in Immunology 03
151152
chondrocyte function (127, 128). Liu and colleagues are one

of the pioneer groups to profile lncRNA in human OA cartilage

tissues, providing a new insight into the mechanism of cartilage

injury and the progression of ECM degradation (52). Similarly,

Hoolwerff and colleagues reported the differential expression of

lncRNAs with OA pathophysiology in cartilage, and they

discussed the potential of antisense lncRNA P3H2-AS1 on

collagen chain assembly in lesioned OA cartilage via the

regulation of P3H2 expression (129). On the other hand,

Pearson et al. identified 125 lncRNAs were differentially

expressed upon IL-1b stimulation in primary human OA

chondrocytes. Amongst, two novel lncRNAs, namely

ClLinc01 and ClLinc02, were found to mediate the secretion of

proinflammatory cytokines in IL-1 stimulated human

chondrocytes, suggesting that some lncRNAs might mediate the

response of chondrocytes to inflammation and inflammation-

driven cartilage degeneration within the OA joint (92). Of note,

different types of cellular model, such as cartilage derived primary

cell culture or immortalized cell line with or without prior

stimulation, were used in previous studies to delineate the effects

of various lncRNAs on chondrocytes (130). Whether these effects

are associated with or even causative factors in OAdevelopment or
frontiersin.org
FIGURE 1

Biogenesis and function of lncRNAs. Classification of lncRNAs into five classes: sense lncRNAs, intronic lncRNAs, lincRNAs, antisense lncRNAs
and bidirectional lncRNAs, based upon their genomic locations and transcription. LncRNAs regulate the expression of genes in the cytoplasm by
interacting directly with microRNAs (miRNAs) or proteins, and stabilizing mRNA transcripts. Noncoding transcripts in the nucleus are known to
regulate gene expression at the level of chromatin modification, transcription and post-transcriptional processing. In addition, lncRNAs are
considered as biomarkers or participant in tissue crosstalk by entering the bloodstream directly, or bound to carrier proteins, even incorporated
into extracellular vesicles which can be further released into bloodstream.
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TABLE 1 The dysregulated lncRNA in clinical OA samples.

LncRNA Human tissue/ Expression in Potential targets Cellular process Proposed molecular mechanism References

675 host (26)

eraction with miR106-5p (27)

eraction with p53 (28)

eraction with miR140-5p (29)

(30)

eraction with miR21 in autophagy (31)

eraction with miR34a (32)

eraction with miR137 (33)

(34)

eraction with miR145 (35)

ulated PI3K/Akt pathway by interacting with miR127-5p (36)

(37)

(38)

ulated DNMT3A by interacting with miR149-5p (39)

ulated GNG5 by interacting with miR675-3p (40)

ulated MAPK signaling by interacting with miR211 (41)

eraction with miR376 (42)

ulated ADAM10 by interacting with miR222-3p (43)

ulated BCL2L13 by interacting with miR130a-3p (44)

ulated STGB by interacting with miR1277-5p (45)

ulated CXCL12 by interacting with miR107 (46)
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H19 OA Cartilage Upregulated COL2A1, COL9A1, COL10A1, CILP, and HTRA1 ECM anabolism mi

OA chondrocyte Upregulated PCNA, CyclinD1, and cleaved Caspase 3 Cell proliferation In

OA Cartilage Upregulated IL-38 Inflammatory response Int

OA Cartilage Upregulated Bax and Bcl2 Cell apoptosis In

COL2A1, MMP1, and MMP13 ECM degradation

ALP, OCN, and BSP Ossification

OA synovium Upregulated – – –

GAS5 OA chondrocyte Upregulated MMP2, MMP3, MMP9, MMP13, and ADAMTS4 ECM degradation In

OA chondrocyte Upregulated Bax and Bcl2 Cell apoptosis In

OA Cartilage Upregulated Caspase 3, Bax, and Bcl 2 Cell apoptosis In

OA synovium Downregulated Caspase 3, and Bax Cell apoptosis –

MALAT1 OA chondrocyte Upregulated ADAMTS5, COL2A1, ACAN, and COMP ECM degradation Int

OA Cartilage Upregulated OPN Cell proliferation Re

OA synoviocytes Upregulated IL-6 and CXCL8 Inflammatory response –

OA Subchondral
bone

Upregulated PGE2 Inflammatory response –

OA Cartilage Upregulated Cleaved caspase3 and Bcl2 Cell apoptosis Re

COL2 and aggrecan ECM degradation

OA Cartilage Upregulated Cleaved caspase3 and Bcl2 Cell apoptosis Re

COL2A1 and MMP13 ECM degradation

IL-6 and IL-8 Inflammatory response

OA Cartilage Upregulated CXCR4 Cell proliferation Re
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ICAM1, MMP3, MMP9, and MRP8 Migration

OPN, ACAN, and COL2 in chondrocyte Crosstalk
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COL2, COL10, SOX9, and MMP13, ECM degradation
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OA Cartilage Upregulated Cleaved caspase3, Survivin, Bcl2 and Bax Cell apoptosis Re

OA Cartilage Upregulated IL-1b and TNF-a Inflammatory response Re

Aggrecan and COL2 ECM degradation

OA Cartilage Upregulated Aggrecan, COL2, MMP13 and MMP9 ECM degradation Re

– Cell apoptosis

152153
R

t

t

t

t

t

g

g

g

g

g

g

g

g

https://doi.org/10.3389/fimmu.2022.982773
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

raction with promotor (47)

ulated FUT2/WNT aixs by interacting with miR17-5p (48)

ulated WIF1/WNT pathway (49)

genetic regulation (50)

ulated FRK by interacting with miR 663a (51)

entin inhibition (52)

raction with miR27 (53)

ivating autophagy (54)

ulated TMSB4 by interacting with miR152 (55)

raction with miR149 (56)

ulated TRAF3 by interacting with miR27b-3p (57)

(34)

raction with miRNAs (58)

raction with miR204-5p (59)

ulated SphK2 by competing with miR577 (60)

ulated JAK2/STAT3 signaling by interacting with miR216a- (61)

ulated DANCR by interacting with miR19a (62)

ulated HIF-1a, HIF-1a target genes, and PI3K/AKT/mTOR
way

(63)

(64)

raction with miR206 (65)

raction with miR451 (66)

ulated TGF-b signaling by interacting with miR22 (67)

ulated FGFR1 by interacting with miR376-3p (68)

(Continued)
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OA chondrocyte Upregulated ADAMTS5
MMP13, ADAMTS5, COL2, and ACAN

ECM degradation Int

OA Cartilage Upregulated Cleaved caspase3, cleaved caspase9 and Bax ECM degradation Re

Cell apoptosis

OA Cartilage Upregulated COL2, MMP9, MMP13, TIMP3, ACAN and ADAMTS5 ECM degradation Re

HOTTIP OA chondrocyte Upregulated HoxA cluster – Ep

OA Cartilage Upregulated – Cell proliferation Re

CIR OA Cartilage Upregulated MMP13, ADAMTS5, COL2, COL1, and ACAN ECM degradation Vim

OA chondrocyte Upregulated MMP13 ECM degradation Int

OA Cartilage Upregulated COL2A1, and MMP13 ECM degradation Ac

MSR OA Cartilage Upregulated COL2A1, ACAN, MMP13, and ADAMTS5 ECM degradation Re

PVT1 OA Cartilage Upregulated COL2, ACAN, MMP3, MMP9 and MMP13 ECM degradation Int

PGE2, NO, IL-6, IL-8, and TNF-a Inflammatory response

OA Cartilage Upregulated Cleaved caspase3 and autophagy Cell apoptosis Re

OA synovium Upregulated Caspase 3, and Bax Cell apoptosis –

Nespas OA chondrocyte Upregulated COL2, COL1, MMP2 and MMP13 ECM degradation Int

UCA1 OA Cartilage Upregulated COL2, COL4, and MMP13 ECM degradation Int

– Cell proliferation

DANCR OA Cartilage Upregulated Caspase3 and Bcl2 Cell apoptosis Re

OA Cartilage Upregulated IL-6 and IL-8 Inflammatory response Re
5p

OA Cartilage Upregulated IL-1, IL-6, IL-8, and TNF-a Inflammatory response Re

– Cell apoptosis

LncHIFCAR OA Cartilage Upregulated MMP1, MMP3 and MMP13 ECM degradation Re
patTNF-a and IL-6 Inflammatory response

Bcl2, Bax, and Cytochrome C Cell proliferation

FAS-AS1 OA Cartilage Upregulated COL2, MMP1 and MMP13 ECM degradation –

– Cell proliferation –

FOXD2-AS1 OA Cartilage Upregulated CCND1 Cell proliferation Int

p21 OA chondrocyte Upregulated Bcl2, and Bax Cell apoptosis Int

TM1P3 OA chondrocyte Upregulated MMP13 ECM degradation Re

TNFSF10 OA chondrocyte Upregulated IL-6 and IL-8 Inflammatory response Re

– Cell proliferation
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TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

action with miR140-5p (69)

lated SP1/NF-kB axis by interacting with miR145 (70)

action with miR30a-5p (71)

lated KDM5C by interacting with miR423-5p (72)

action with miR27b-3p (73)

lated TLR4/NF-kB axis by interacting with miR15a-5p (74)

lated FUT1 by interacting with miR17-5p (75)

lated ONECUT2/Smurf2/GSK-3b axis (76)

lated CDK9 by interacting with miR206 (77)

lated TCF4 by interacting with miR211-5p (78)

lated TRPS1 by interacting with miR126-5p (79)

lated ATF3 (80)

lated Wnt/b-catenin pathway by interacting with miR150 (81)

lated DDX6 by interacting with miR152-3p (82)

action with miR9-3p (83)

action with miR 140-3p/TLR4 axis (84)

action with miR199-3p (85)

lated FSHR by interacting with miR330-5p (86)

(Continued)
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– Cell apoptosis

LINC01534 OA Cartilage Upregulated MMP3, MMP9, MMP13, COL2 and aggrecan ECM degradation Inte

NO, PGE2, TNF-a, IL-6, and IL-8 Inflammatory response

NKILA OA Cartilage Upregulated Bcl2, Bax, and cleaved caspase3 Cell apoptosis Reg

LINC00461 OA Cartilage Upregulated IL-6, IL-10 Inflammatory response Inte

COL2, MMP2, MMP3 and MMP13 ECM degradation

– Cell proliferation

LOXL1-AS1 OA Cartilage Upregulated Cleaved Caspase 3, Cleaved Caspase 9, and Bax Cell apoptosis Reg

IL-6, IL-8 Inflammatory response

PCAT-1 OA chondrocyte Upregulated Cleaved Caspase3, Bcl2, and Bax Cell apoptosis Inte

ARFRP1 OA Cartilage Upregulated CCND1, Bcl2, and Bax Cell apoptosis Reg

TNF-a, IL-6, and IL-1b Inflammatory response

TUG1 OA Cartilage Upregulated MMP13, COL2 and aggrecan ECM degradation Reg

– Cell apoptosis

LINC00671 OA Cartilage Upregulated Col2A1, Aggrecan, MMP3, MMP13, ADAMTS4, and
ADAMTS5

ECM degradation Reg

RMRP OA Cartilage Upregulated – Cell proliferation Reg

KCNQ1OT1 OA Cartilage Upregulated IL-1b, TNF-a and IL-6 Inflammatory response Reg

COL2, COL10, and MMP13 ECM degradation

OA Cartilage Downregulated COL2, and MMP13 ECM degradation Reg

– Cell proliferation

RP11-364P22.2 OA Cartilage Upregulated Col2A1, Aggrecan, and MMP13 ECM degradation Reg

Caspase3, and NF-kB Cell apoptosis

Cox2 OA Cartilage Upregulated Ki67 and PCNA Cell proliferation Reg

Caspase3, Caspase9, and Bax Cell apoptosis

CASC19 OA Cartilage Upregulated IL-6, IL-8, and TNF-a Inflammatory response Reg

– Cell apoptosis

MIR22HG OA Cartilage Upregulated COL2A1, ACAN, MMP13, ADAMTS5 ECM degradation Inte

– Cell apoptosis

LINC01385 OA Cartilage Upregulated IL-6, TNF-a, PGE2 Inflammatory response Inte

LINC00707 OA Cartilage Upregulated – Cell apoptosis Inte

OA Cartilage Upregulated – Cell apoptosis Reg

COL2, ACAN, MMP13, MMP3 ECM degradation

IL-6, TNF-a Inflammatory response
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TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

lated SIRT1 by interacting with IGF2BP2 (87)

lated TAK1/NF-kB aixs by interacting with PRMT1 (88)

action with miR671-5p (89)

(90)

lated FOXO1 by interacting with miR361-5p (91)

(92)

(93)

action with miR34a (94)

action with miR26a (95)

lated autophagy by interacting with miR141-3p (96)

lated H3F3B by interacting with miR10a-5p (97)

lated TGFBR3 by interacting with miR181a‐5p (98)

lated BMPR2/MAPK aixs by interacting with miR125b (99)

lated YAF2 by interacting with miR141 (100)

lated IGF1 by interacting with miR126 (101)

lated TGFBR2/Smad3 axis by interacting with miR590-3p (102)

lated SOX4 by interacting with miR373-3p (103)

lated SOX5 by interacting with miR373-3p (104)

(Continued)
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LINC00680 OA Cartilage Upregulated – Cell proliferation Reg

COL2, ACAN, MMP13, ECM degradation

PILA OA Cartilage Upregulated MMP13, MMP3, ADAMTS4 ECM degradation Reg

– Cell apoptosis

DLEU1 OA Cartilage Upregulated COL2, ACAN, ADAMTS5 and MMP3 ECM degradation Inte

IL‐1, IL‐6, and TNF-a Inflammatory response

MEG3 OA Cartilage Downregulated VEGF Angiogenesis –

OA chondrocyte Downregulated Ki67 and PCNA Cell proliferation Reg

Bcl2 and Bax Cell apoptosis

MMP13, ADAMTS5, COL2, ACAN ECM degradation

CILinc01 OA chondrocyte Downregulated IL-6 Inflammatory response –

CILinc02 OA Cartilage Upregulated IL‐1, IL‐6, and IL‐17 Inflammatory response –

TIMP1, MMP1 and MMP13 ECM degradation –

– Cell apoptosis –

UFC1 OA Cartilage Downregulated – Cell proliferation Inte

SNHG5 OA Cartilage Downregulated SOX2 Cell proliferation Inte

OA Cartilage Downregulated MMP13, ADAMTS5, COL3 and ACAN ECM degradation Reg

Cleaved caspase3 Cell apoptosis

OA Cartilage Downregulated Cleaved caspase3, and cleaved caspase9 Cell apoptosis Reg

COL2, and ADAMTS5 ECM degradation

OA Cartilage Upregulated MMP13 and ADAMTS5 ECM degradation

Reg

Caspase3 Cell apoptosis

HOTAIRM1-1 OA Cartilage Downregulated – Chondrogenic
differentiation

Reg

Cleaved caspase3, cleaved caspase9, Bcl2 and Bax Cell apoptosis

COL2, COL10, and aggrecan ECM degradation

LINC00341 OA Cartilage Downregulated Bcl2, and Bax Cell apoptosis Reg

DNM3OS OA Cartilage Downregulated Cleaved caspase3, Bcl2, and Bax Cell proliferation Reg

PART1 OA Cartilage Downregulated Cleaved caspase3, cleaved caspase9 and Bax Cell apoptosis Reg

OA Cartilage Downregulated MMP13, COL2, and ACAN ECM degradation Reg

Bcl2, Bax and cleaved caspase3 Cell apoptosis

NEAT1 OA Cartilage Downregulated ACAN, Col2a1, MMP3, MMP13, and ADAMTS5 ECM degradation Reg

IL-1, TNF-a, IL-6, and IL-8 Inflammatory response
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TABLE 1 Continued

LncRNA Human tissue/
cells

Expression in
OA

Potential targets Cellular process Proposed molecular mechanism References

Regulated PLA2G4A by interacting with miR543 (105)

Regulated GPR120 by interacting with miR15b-5p (106)

Regulated PGRN by interacting with miR29b-3p (107)

Regulated HRAS/MAPK axis by interacting with miR101 (108)

Regulated SNHG7/PPARg axis by interacting with miR214-5p (109)

Regulated SOX9 by interacting with miR138 and miR145 (110)

Interaction with miR30a-5p (111)

Regulated TGFBR2 by interacting with miR302d-3p (112)

Regulated SIRT1 by interacting with miR138-5p (113)

Regulated PI3K/AKT signaling (114)

Regulated NRF2 by interacting with miR1323 (115)

Regulated STAT3 (116)

Regulated DUSP4 by interacting with miR122-5p (117)

Interaction with miR770 (118)

Interaction with miR142-5p (119)

Regulated MAP3K4 (120)

Regulated TLR4/NF-kB axis by interacting with miR6891-3p (121)

Regulated FRZB/WNT signaling (122)

Regulated SESN3 by interacting with miR212-5p (123)

; ALP, Alkaline phosphatase; OCN, Osteocalcin; BSP, Bone sialoprotein; ACAN, Aggrecan;
tin; TIMPs, Tissue inhibitor of metalloproteinases; CXCL, C-X-C Motif Chemokine Ligand;
xygen species; SOD, Superoxide Dismutase; PBMCs, Peripheral Blood Mononuclear Cells.
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– Cell apoptosis

OA Cartilage Upregulated MMP3, MMP9, and MMP13 ECM degradation

IL-6, and IL-8 Inflammatory response

p-Akt1 and Bcl2 Cell proliferation

LINC00662 OA chondrocyte Downregulated TNF‐a, IL‐6, and IL‐8 Inflammatory response

Cleaved caspase3, cleaved caspase9 and Bax Cell apoptosis

OIP5-AS1 OA Cartilage Downregulated IL-6, IL-8, and TNF-a Inflammatory response

Bax Cell apoptosis

LINC00623 OA Cartilage Downregulated MMP13, and COL2 ECM degradation

Cleaved caspase3, and cleaved caspase7 Cell apoptosis

SNHG7 OA Cartilage Downregulated Cleaved Caspase3, Cleaved Caspase7 Cell apoptosis

IL-1b, TNF-a and IL-6 Inflammatory response

ROR OA Cartilage Downregulated COL2, ACAN, MMP13 and COL10 Chondrogenesis

OIP5-AS1 OA Cartilage Downregulated Caspase 3, Caspase 9, Bax, and Bcl2 Cell apoptosis

IL-6, IL-8, and TNF-a Inflammatory response

FGD5-AS1 OA Cartilage Downregulated – Cell apoptosis

MCM3AP-AS1 OA Cartilage Downregulated – Cell apoptosis

MEG8 OA Cartilage Downregulated Caspase3 Cell apoptosis

IL-6 and TNF-a Inflammatory response

ZFAS1 OA Cartilage Downregulated ROS, SOD, and Catalase Oxidative stress

IL-1b, TNF-a and IL-6 Inflammatory response

– Cell apoptosis

GACAT3 OA synoviocytes Upregulated Caspase3 Cell proliferation

ANRIL OA synoviocytes Upregulated Cleaved caspase3, Bax, and Bcl2 Cell proliferation

PCGEM1 OA synoviocytes Upregulated PARP and caspase9 Cell proliferation

OA synoviocytes Upregulated Chondrocyte apoptosis and cartilage matrix degradation Crosstalk

AK094629 OA synovium Upregulated IL-6 Inflammatory response

IGHCg1 PBMCs Upregulated IL-6 and TNF-a Inflammatory response

AC005165.1 OA Subchondral
bone

Downregulated – –

LOC107986251 OA Menisci Upregulated – –

COL, Collagen; CILP, Cartilage intermediate layer protein; ECM, Extracellular matrix; PCNA, Proliferating cell nuclear antigen; MMPs, Matrix metalloproteinase
ADAMTS, A disintegrin and metalloproteinase with thrombospondin motifs; COMP, Cartilage oligomeric matrix protein; PGE2, Prostaglandin E2; OPN, Osteopon
CXCR, C-X-C chemokine receptor; MRP, Multidrug resistance-associated protein; CCND1, Cyclin D1; VEGF, Vascular endothelial growth factor; ROS, Reactive
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progression requires further investigation with appropriate

transgenic animal models.
lncRNAs in Synovium

Synovium is a specialized connective membrane lining the

inner surface of synovial joint capsules, and almost 75% of cells

in the synovium are fibroblast-like synoviocytes (FLS) (131).

Increasing evidence shows that FLS secretes proinflammatory

cytokines which mediate the degradation of cartilage during OA

progression (132), which has been speculated to be associated

with disease progression (133). Till now, the effects of lncRNAs

on OA synovium remains elusive. Early work by Xiang and

colleagues identified the differential expressions of 17 lncRNAs

in OA synovium of aged patients undergoing total knee

replacement surgery, in which some of these lncRNAs were

found to be related to immune response. The recruitment of

younger control subjects requiring arthroscopic meniscectomy

in this case-control study is ethically sound but not ideal to

exclude the influences of the acute injury of meniscus on the

lncRNAs in the synovial microenvironment (134). Li and

colleagues focused on a hepatocellular carcinoma associated

lncRNA (ANRIL) and found a higher level of ANRIL in the

OA cartilage tissue when compared with that of normal cartilage

tissue obtained from subjects requiring traumatic emergency

amputation without OA or rheumatic arthritis. Then primary

chondrocytes isolated from the collected cartilage tissues, and

commercially available normal and OA synoviocytes were used

to show differentially upregulated ANRIL expression in OA

synoviocytes but not in OA chondrocytes. It appears that

ANRIL dysregulation in OA is cell-type specific, affecting the

proliferation of synoviocytes via binding to miR-122-5p (117).

However, it should be noted that the information of the subjects

where those chondrocytes and synoviocytes derived from (such

as age and sex) were not provided, which should be taken

into consideration.
lncRNAs in Subchondral bone

Impaired mineralization is a pathological feature of

osteoarthritic subchondral bone. Such distinct microstructural

alterations, including sclerotic changes and osteophyte

formation, are both believed to arise from elevated bone

turnover with an increase in osteoblastic over osteoclastic

activities (135). In addition, the subchondral bone is also

considered as a major site of OA pain, likely due to the

innervation with sensory neurons and vascular channels (136).

From bone remodeling perspective, it is evidenced that several

lncRNAs could regulate osteoblast and osteoclast activities, and
Frontiers in Immunology 09
157158
there are attempts to modulate lncRNAs expression in vivo via

various strategies (137). Therefore, it is of interest to ask whether

aberrant subchondral bone remodeling in OA is associated with

lncRNAs dysregulation. By comparing subchondral bone

samples collected from hip and knee, Tuerlings and colleagues

identified 21 lncRNAs differentially expressed between preserved

and lesioned OA subchondral bone significantly. It is interesting

to note that a further stratified analysis identified 15 lncRNAs

were differentially expressed in knee samples but none in hip

samples (122). These findings prompt to further research

questions. 1) Whether lncRNAs differential expression in OA

subchondral bone is site-specific and associated with aberrant

mechanical loading? 2) What are the biological functions of

these lncRNAs in OA subchondral bone remodeling? Further

investigation on the effects of lncRNAs on osteoblasts,

osteoclasts and osteocytes functions related to subchondral

bone mineralization and remodeling is warranted to develop a

more comprehensive understanding of the lncRNAs and their

roles and therapeutic values in OA.
lncRNAs in Meniscus

Meniscus is a crucial tissue for supporting the structure,

stability, and biomechanical function of the knee joint (138).

During OA progression, it undergoes various histopathological

changes, including tears, calcification, and atypical cell

arrangement (139). Till now, there is limited studies exploring

the mechanism of meniscal pathogenesis in OA, and only two

studies were found to investigate the expression level of lncRNAs

in OA meniscus tissues. The work by Brophy and colleagues

depicted the transcriptome profile in the meniscus between end

stage OA patients and patients undergoing arthroscopic partial

meniscectomy with no evidence of OA. The subjects in the OA

groupwere older and hadhigher BMI. Twenty-six and 10 lncRNAs

were found up- and down-regulated in the OA group, respectively.

Lnc-RPL19-1 and lnc-ICOSLG-5 were highlighted because of their

correlations with some cartilage disease related genes. qPCR was

performed to validate the microarray results (140). Recently, Jiang

and colleagues performed a whole-transcriptome profile of

lncRNAs dysregulation using isolated meniscus cells from OA

patients with and without IL-1b, suggesting a potential crosslink
between menisci and cartilage during OA. Of note, LCN2 and

RAB27B were consistently upregulated in both OA meniscus and

IL-1b treated primary meniscus cells derived from three OA

meniscus samples, and appears to be associated with OA severity

(123). Although different samples were used in the analysis, these

twoworks both illustrated the potential link between inflammatory

phenotype inmeniscus and lncRNAs, which is subjected to further

investigation to confirm the molecular mechanisms and biological

functions of these lncRNAs in OA meniscus injury.
frontiersin.org
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Clinical biomarkers of lncRNAs for
OA diagnosis

In general, the secretion and transport of lncRNAs into

extracellular environment are mediated by three manners (1):

Direct release of extracellular RNAs by joint tissues and cells (2).

Encapsulated in high density lipoprotein (HDL) or apoptosis

bodies or associated with protein complexes (3). Packed in

membrane vesicles, such as exosomes and micro-vesicles

(141). In clinical research, serum and synovial fluid are often

the preferred biological fluid samples for OA biomarker

discovery (142). Recent detections of the extracellular lncRNAs

in these biological fluids of OA subjects implicate that they

might serve as alternative indicators for OA onset and

progression (Table 2).
Circulation

Previous studies have shown that there is a relationship

between the blood level of lncRNAs and OA progression
Frontiers in Immunology 10
158159
(Table 2). For instance, lncRNA DILC (145), and lncRNA

FER1L4 (146) were also found to be closely associated with

OA inflammatory condition in plasma. As ANCR is known to

regulate TGF-b signaling, Li and colleagues proposed that the

plasma levels of TGF-b1 and ANCR could differentiate OA

patients from healthy control subjects. They found a higher

TGF-b1 and a lower ANCR level in OA plasma (N=62) when

compared with that of healthy controls (N=46), which was

inversely correlated. The mean area under curve (AUC) for

OA plasma TGF-b1 and ANCR were 0.8929 and 0.8845,

respectively (147). However, it is not shown if combination of

plasma TGF-b1 and ANCR could enhance the sensitivity and

specificity. Zhou et al. indicated that the expression of lncRNA

H19 was negatively correlated with bone metabolic index of OA

patients, such as Procollagen I N-Terminal Propeptide (PINP),

N-MID-Osteocalcin, bone Gla protein (BGP), and bone alkaline

phosphatase (BALP). Particularly, lncRNA H19 is highly

correlated with K-L grading, VAS, WOMAC and Lysholm

scores, suggesting H19 was associated with disease severity in

OA patients (144). These two biomarkers discovery studies show

encouraging AUC value, however, discussion on confounding

factors and validation with separate cohort were missing.
TABLE 2 LncRNAs as biomarkers for OA diagnosis.

LncRNA Human Samples Expression in
OA

Sample size(Health vs
OA)

AUC Correlation References

ATB Serum Downregulated 76 vs 98 0.8902 No significant association with the
clinical data

(143)

H19 Peripheral Blood Upregulated 100 vs 103 0.891 K-L grading, and Bone metabolism
indexes

(144)

DILC Plasma Downregulated 52 vs 87 0.9321 IL-6 (145)

Synovial Fluid Downregulated 14 vs 22 – –

FER1L4 Plasma Downregulated 49 vs 81 0.9221 IL-6 (146)

Synovial Fluid Downregulated 16 vs 19 –

ANCR Plasma Downregulated 62 vs 46 0.8845 TGF‐b1 (147)

MIR4435-
2HG

Plasma Downregulated 58 vs 78 – – (148)

Synovial Fluid Downregulated 0.96

LUADT1 Synovial Fluid Downregulated 60 vs 60 – – (149)

CAIF Synovial Fluid Downregulated 60 vs 60 0.89 miR1246 and IL-6 (150)

PMS2L2 Synovial Fluid Downregulated 62 vs 62 – OA stages (151)

HOTAIR Synovial Fluid Upregulated 13 vs 21 – – (152)

CASC2 Synovial Fluid Upregulated 60 vs 60 – miR93-5p (153)

CTBP1-AS2 Synovial Fluid Upregulated 62 vs 62 – miR130a (154)

GAS5 Synovial Fluid Downregulated 45 vs 45 – – (155)

Synovial Fluid Downregulated 62 vs 62 – – (34)

Peripheral Blood Mononuclear
Cells

Downregulated 60 vs 67 – – (156)

LINC00167 Peripheral Blood Leukocytes Downregulated 60 vs 60 0.879 No significant association with the
clinical data

(157)

PVT1 Serum/Serum Exosomes Upregulated 30 vs 30 – miR93-5p (158)

Synovial Fluid Upregulated 62 vs 62 – – (34)

PCGEM1 Synovial Fluid Exosomes Upregulated 20 vs 42 0.879 OA Stages, and WOMAC Index (159)
fr
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Synovial fluid

Based on current findings, it is reasonable to speculate that the

expression of lncRNAs is cell and tissue specific in OA joint.

Therefore, the information from research on synovial fluid is

likely to provide additional clues on the clinical values of lncRNAs

as OA biomarkers. Qi and colleagues showed lower levels of CAIF

in the synovial fluid collected from the hip and knee of OA

patients, and CAIF was inversely and significantly correlated with

IL-6 expression level (150). Meanwhile, Xiao and colleagues

reported lower levels of lncRNA MIR4436-2HG in both plasma

and synovial fluid of OA patients. The mean AUC for CAIF and

MIR-4435-2HG were found to be 0.89 and 0.96, respectively. It is

interesting to note that 1 or 3 months treatment including

exercise, prescription of non-steroidal anti-inflammatory drugs

(NSAIDs) and joint burden reduction seems to increase the

plasma level of MIR-4435-2HG (148). Although the study

design, the details of these treatment and the compliance were

not mentioned, this preliminary result suggests that lncRNAs level

in circulation could be modulated. In these studies, healthy

volunteers were recruited as control group for the collection of

synovial fluid. If the collections of synovial fluid from mild to

moderate stages are also ethically feasible, it will be of clinical

interest to determine the correlations between lncRNAs level in

synovial fluid and OA severity and progression in order to explore

the prognostic value of those selected lncRNAs.

Others

LncRNAs in cells/extracellular carriers within the blood and

synovial fluid are another sources of biomarker candidates (160).

The expression profile of lncRNAs in peripheral blood

leukocytes of OA patients showed that LINC00167 may serve

as a potential early diagnosis marker for OA in clinical practice

(157). In addition, lncRNA GAS5 in the peripheral blood

mononuclear cells isolated from the knee of OA patients was

also lower than that of healthy subjects, indicating a novel

marker for occurrence and progression of OA (156). The first

study of IncRNA profiles in human OA synovial exosomes by

Wu et al. found that exosomal lncRNA PCGEM1 is a potential

indicator to distinguish the early stage of OA from the late-stage.

Moreover, the expression of lncRNA PCGEM1 in synovial

exosome rather than that in plasma was found to be closely

associated with the WOMAC Index (159).
Biological functions of lncRNAs in
OA pathogenesis

lncRNA H19

H19 lncRNA is located on chromosome 11p15.5, and its

transcription product, H19 RNA, primarily resides in cytoplasm
Frontiers in Immunology 11
159160
(161). It is the first reported mammalian lncRNA (162), which is

highly expressed during fetal stage but markedly down-regulated

after birth. H19 was found to be upregulated in OA cartilage, and

appears to be associated with the disease progression (26, 163,

164). In primary human chondrocytes, H19 and H19-derived

miR675 increased the matrix production of differentiated

chondrocytes via activating COL2 transcription (165).

Furthermore, H19 could regulate the proliferation and apoptosis

of chondrocytes treated by IL-1b via sponging miR106a-5p (27).

Meanwhile, lncRNA H19 upregulated IL-38, which is bound to

IL- 36R and brought about suppression of knee joint

inflammation in mouse chondrocytes (28). Inconsistent

outcomes were observed in different in vitro models and upon

different stimulations. Knockdown of lncRNA H19 could alleviate

apoptosis and inflammatory response via sponging miR130a in

LPS-stimulated human C28/I2 chondrocytea (166). Furthermore,

the effect of H19 silencing suppressed the expression of matrix

metalloproteinases (MMPs) family (MMP1 and MMP3) via

targeting miR-140-5p in human HC-A chondrocyte cells ,

suggesting a protective role of H19 on the degradation of the

chondrocyte extracellular matrix (29). Besides OA chondrocyte,

H19 RNA level in OA synovial tissue was also found to be

significantly higher those that in synovium of normal and

trauma joint (30). However, there is a lack of strong evidence

supporting that H19 RNA upregulation is a sign of inflammation

of synovial FLSs nor polarization of synovial macrophages (167).

Notably, rats FLS-derived exosomal lncRNA H19 was found to

promote chondrocyte viability and migration, as well as inhibit

ECM degradation in IL-1b-induced chondrocytes by targeting

miR106b-5p expression (168). Altogether, these studies suggest

that lncRNA H19 may play an essential role in the crosstalk

between synovium and cartilage during OA progression, and

H19-targeted therapy is expected to open new perspectives for

OA management.
lncRNA GAS5

The growth arrest-specific 5 (GAS5) lncRNA is located on

chromosome 1q25.1 and consists of 12 exons with a short open

reading frame (ORF) (169). Its name reflects its nature and

predominant expression in growth-arrested cells (170). As such,

GAS5 is mainly responsible for suppressing multiple anti-

apoptotic genes, thereby enhancing the vulnerability of cells to

pro-apoptotic signals (171). In OA cartilage, GAS5 was found to

be upregulated with positive correlation pattern to the disease

stages (172, 173). Overexpression of GAS5 was reported to

increase the activity level of chondrocyte catabolism (several

MMPs), and apoptosis (31). Meanwhile, GAS5 can serve as

negative regulators for miR21 (31), miR34a (32), miR137 (33),

miR144 (173) and miR27a (174). It is also evidenced that GAS5

could directly target KLF2 to alleviate LPS-induced

inflammatory damage in murine chondrocytic ATDC5 cell
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line (175). On the contrary, the expression levels of GAS5 in

synovial fluid and tissues were significantly lower in OA (34,

155), which possibly implicate different functions of GAS5 in

OA synovium. Considering the small sample size (N=45) and a

lack of in vivo functional analysis, future study is required to

evaluate the function of GAS5 in OA synovium by including a

clinical study with a larger sample size and experiments with

appropriate animal models.
lncRNA MALAT1

Metastasis-associated lung adenocarcinoma transcript 1

(MALAT1), also known as NEAT2 for nuclear-enriched

abundant transcript 2, is transcribed by RNA polymerase II at

human chromosome 11q13 (176). It is a highly abundant nuclear

transcript localized to the nuclear speckles and have a longer half-

life (9–12 h) than other lncRNAs owing to bipartite triple helix

structure (177, 178). MALAT1 is upregulated in human OA

cartilage and IL-1b-induced chondrocyte cells (35).

Overexpression of MALAT1 in human chondrocytes inhibited

cells viability and promoted cartilage ECM degradation through

targeting miR145 (35). Also, lncRNA MALAT1 overexpression in

human C28/I2 chondrocyte cells was proved to promote

chondrocyte migration, inflammation suppression, and ECM

degradation (179). Besides, MALAT1 could act as sponges for

other miRNAs, like miR127-5p (36), miR150-5p (180) and

miR146a (181), thus likely to play some regulatory roles in OA

cartilage. It should be noted that lower level of MALAT1 was also

reported in IL-1b stimulated rat chondrocytes, which enhanced cell

proliferation and type II collagen (Col II) expression by blocking

JNK signaling activation (182). In synovium, the synovial fibroblasts

isolated from OA patients had a higher expression of MALAT1

compared with that of normal subjects, which could be owing to

proinflammatory challenge in synoviocytes especially to IL-6 and

CXCL-8 (37). It is worth mentioning that MALAT1 is the first

lncRNA to be investigated in OA subchondral bone. Higher

expression level of MALAT1 was reported in both knee and hip

subchondral bone of patients with OA, and its expression in the

osteoblasts appears to be associated with the production of

inflammatory prostacyclins. Since the subchondral bone is

considered to be an important site of OA pain, MALAT1 may

play an important role in the development of OA bone pain and

inflammation (38). Based on current evidence, it appears that

MALTA1 plays more pro-inflammatory role in OA synovial and

subchondral bone, which represents a potential candidate for

research on OA pathogenesis and therapeutic target.
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lncRNA XIST

X-inactive specific transcript (XIST) encodes a 17-kb

lncRNA which, despite being capped, spl iced and

polyadenylated, it is retained in the nucleus (183). lncRNA

XIST and its associated chromatin modifying complex play

vital roles in the regulation of the X-chromosome inactivation

process (184). Emerging evidence indicates that it is correlated

with the modification of ECM component of OA (185). XIST

was upregulated in OA cartilage and promoted MMP-13 and

ADAMTS-5 expression in human chondrocytes, indicating its

role in ECM degradation through functioning as a ceRNA of

miR1277-5p (186). Notably, the consistency results could be

seen in the studies of XIST in terms of repressing the

development of OA as indicated by different models. For

instance, in IL-1b induced human C28/I2 chondrocyte cells,

the knockdown of XIST expression suppressed the production of

IL-6, TNF-a, PGE2 and NO through the interaction with

miR130a (187). XIST regulated IL-1b-induced chondrocyte

growth, apoptosis and ECM synthesis through sponging with

miR-142-5p in human chondrosarcoma cell line SW1353 (188).

Moreover, the silencing of XIST could promote cell viability but

inhibit cell apoptosis through acting as a sponge for miR149-5p

in human CHON-001 chondrocyte cell line (39). In addition,

XIST expression was significantly upregulated in the OA

synovium compared with that in normal synovium. More

importantly, XIST/miR376c‐5p/OPN axis has been proven to

modulate the inflammatory microenvironment in OA synovial

macrophage, subsequently affecting chondrocyte apoptosis and

ECM degradation (42).
lncRNA HOTAIR

HOX transcript antisense RNA (HOTAIR) resides within

the intergenic region in HOXC cluster on chromosome 12, and

acts as a crucial modulator of chromatin re-modeling and

transcriptional silencing (189). As an epigenetic agent,

HOTAIR can interact with various factors, leading to genomic

stability, proliferation, survival, invasion, migration, metastasis,

and drug resistance (190). In OA cartilage, HORAIR was

upregulated than that of normal samples (164). HOTAIR was

reported as a promising promoter for ADAMTS-5 expression

and ECM degradation in human OA articular chondrocytes

(47). HOTAIR silencing reduced cartilage tissue damage in OA

mice, and promoted the expression of collagen II and aggrecan

in cartilage tissue, while inhibited the expression of MMP-13

and ADAMTS-5 by targeting miR-20b/PTEN axis in mouse
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primary chondrocytes (191). Interestingly, cumulative evidence

shows that Wnt/b-catenin pathway might play a certain role in

the pathogenesis of cartilage damage, and lncRNA HOTAIR

could directly bind to miR17-5p and indirectly regulate FUT2/b-
catenin axis in connection with OA progression, such as ECM

degradation and cell apoptosis (48). Wnt inhibitory factor 1

(WIF-1), a key inhibitor of the Wnt/b-catenin pathway, could be

directly modulated by HOTAIR and interfered with the

activation of downstream pathway and relative genes

expression on cartilage degradation in human chondrosarcoma

cell line SW1353 (49). Overexpression of HOTAIR in human

CHON-001 chondrocyte cell line could aggravate LPS-induced

cell apoptosis and inflammatory cytokines influx, including IL-

1b, IL-6, IL-8 and TNF-a. While blocking HOTAIR could

suppress cleavage of caspase-3 and p62 proteins and elevated

secretion of IL-6 and TNF-a via suppression of miR222-3p (43).

Meanwhile, HOTAIR inhibited chondrocytes proliferation via

sponging with other miRNAs, including miR130a-3p (44),

miR1277-5p (45), miR107 (46), and miR221 (192). Therefore,

all HOTAIR-related factors form a comprehensive regulatory

network, suggesting the central role of HOTAIR in the

physiology of chondrocytes during OA (130).

Collectively, the identification of disease-specific lncRNAs

for OA pathophysiology, including H19, GAS5, MALAT1, XIST,
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HOTAIR and future identified lncRNAs, emphasized the general

consistency of lncRNAs functions in various tissues, which

might be further developed as lncRNAs-targeted therapies for

OA treatment in the future.
Targeting lncRNAs: A novel
treatment strategy for OA?

Based on current evidence, it is worthwhile to explore if

targeting lncRNAs could be a novel strategy for preventing and/

or treating OA. Till now, according to clinical trials registries

(clincialtrials.gov), there is only one registered clinical trial

studying the role of lncRNAs as biomarkers for OA articular

microenvironment. Without relevant clinical studies can be

included for discussion, we attempted to propose strategies

developed for lncRNA delivery and targeting with reference to

published animal studies (Figure 2).

Extracellular vesicles hold some promise to be a vehicle for

selective delivery of target genes into tissues of interest (193). In

animal study, intra-articular injection of exosomes with

overexpressed lncRNA H19 is found to promote cartilage

repair and restore OA joint homeostasis (194). Liu and

colleagues highlighted the possible mechanism for OA therapy
B

A

FIGURE 2

Potential delivery strategies for lncRNA H19 is proposed in OA treatment. (A) Nanotechnology and lncRNA-loaded exosomes could overcome
the low efficiency of in vivo transgene lncRNA transfection, which would be applicable for widespread clinical application of gene therapy
targeting lncRNAs. (B) Various transgene technologies may benefit lncRNA overexpression or downregulations in vivo studies, which opened a
new door in studying the delivery of genetic material for OA treatment.
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by cellular delivery of exosomal lncRNA KLF3-AS1, which could

facilitate cartilage repair by promoting chondrocyte proliferation

and migration and inhibiting apoptosis (195). Zhang and

colleagues also reported that targeting lncRNA NEAT1

through artificial exosomes could be one of the options to

elevate chondrocyte proliferation for OA treatment (196). Pan

and colleagues confirmed the effect of MALAT1 on

chondrocytes, which exhibited a slight cartilage damage and a

smooth surface after intra-articular injection of LAMAT1

extracellular vesicles in OA animal model (179). In addition,

the use of nanoparticles as an effective delivery vehicle for

targeting lncRNAs provides a new therapeutic strategy owing

to improved stability, biocompatibility, and high-dose

therapeutic payloads (197). Recent advancement in lipid

nanoparticles, polymeric nanocarrier and metal-based delivery

system provides novel approaches for delivering of nucleic acids

and lncRNAs-based therapeutic agents (198–200). At the time of

writing, although nanoparticle delivery strategies for targeting

lncRNAs in OA field has not been reported, therapeutic carriers,

exosomes and nanomaterials pose enormous potential as

vehicles loading gene-editing systems for OA treatment.

Considering upregulation of lncRNAs in OA pathogenesis

appears to be the most common aberrant change, it is reasonable

to propose approaches which can inhibit their expression or

activity. Short interfering RNAs (siRNAs) is currently one of the

in vivo feasible methods that has been shown to alleviate joint

inflammation and decrease the expression of pro-inflammatory

mediators by targeting lncRNA PVT1 in OA mice (201). Other

in vivo approaches to regulate lncRNAs expression, such as

locked nucleic acids (LNA) and ASOs have been shown to be

effective to inhibit cancer progression (202, 203), which is

pending for testing in OA animal models. Gene-editing

enzymatic systems, such as zinc finger nucleases (ZFNs) and

clustered regularly interspaced short palindromic repeats

(CRISPR), are known far superior to RNAi technique for

lncRNAs knockdown (204). Recently, some small molecule

inhibitors are identified to systematically target lncRNA

expression by masking the binding sites or disrupting the

RNA structure (205).
Conclusions and future direction

Increasing evidence indicates that lncRNAs are playing

certain important roles associated with the pathological

changes of OA joints through diverse actions on various joint

components, which is exemplified by lncRNAs H19, GAS5,

MALAT1, XIST and HOTAIR in this review.

The roles of lncRNAs have been mainly investigated with

OA cartilage tissues and chondrocytes, and found to participate
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in the regulation of cartilage metabolism and chondrocyte

function as a miRNA sponge regulating target genes

expression. However, this kind of action and post-

transcriptional regulation on target genes/proteins might not

represent the whole picture of lncRNAs function in the context

of OA. In addition, it should be admitted that the diverse

methods employed in previous studies for lncRNA expression

and functional analyses, such as the source of the testing cells,

experimental procedures and even stimulation approaches,

might lead to inconsistent findings.

In addition, the following questions remain elusive (1): the

cause of lncRNAs dysregulation in the onset, development and

progression of OA is still unclear. Whether the inflammation,

hypoxia (26) or mechanical stress (206) are the major upstream

factors leading to the aberrant expression of lncRNAs (2).

Numerous miRNAs or proteins are reported to be downstream

targets of lncRNAs, but their roles in line with lncRNAs

dysfunction in OA pathogenesis remains largely unclear (3). In

view of the diverse biological functions of lncRNAs, it is uncertain

whether the effect of lncRNAs on the development and

progression of OA is tissue- and/or cell-specific.

In view of the association with OA phenotypes, the clinical

value of lncRNAs as biomarkers for disease severity and

prognostication also draws much attention. However, it should

be admitted that this kind of preliminary findings need to be

validated further. It will be desired to (1) develop a standardized

lncRNAs testing system, including sample preparation,

extraction, selection of appropriate endogenous controls (2);

other statistical approaches such as predictive value, likelihood

ratio, odd ratio and so on subjecting to the purpose of the

biomarkers under investigation (3); conduct a multi-center

study with a larger sample size to eliminate discrepancy such

as ethnicity and sampling bias (4); perform a longitudinal study

to validate lncRNAs as biomarkers for OA.

It appears that the modulation of the expression and activity

of IncRNAs might be a novel strategy for OA management.

Despite therapeutic nuclei acids hav been reported in OA

treatment, several technical concerns including mechanism of

action and an effective and specific delivery approach are not fully

understood nor developed for OA application. Furthermore, the

clinical application of lncRNAs-based therapy requires more

stringent and robust investigation particularly safety issues

including immunogenicity, cytotoxicity and long-term safety

profile (207). In addition, the specificity of targeting lncRNAs is

very important, and further studies are needed to avoid off-target

side effects. Last but not least, a suitable target lncRNAs would

lead to a more effective approach for OA treatment, and the focus

of disease-specific lncRNAs described herein might draw some

attention collaterally as the fields of gene-delivery and editing

therapy develop.
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Osteoarthritis (OA) is a chronic degenerative joint disease characterized by

articular cartilage destruction. The pathological mechanisms are complex; in

particular, inflammation, autophagy, and apoptosis are often involved. 3,3-

Diindolylmethane (DIM), a phytoconstituent extracted from cruciferous

vegetables, has various effects such as anti-inflammatory, antioxidant and

anti-apoptotic. However, the effects of DIM on osteoarthritic chondrocytes

remain undetermined. In this study, we simulated a lipopolysaccharide (LPS)-

induced osteoarthritis model in human primary chondrocytes. We found that

LPS stimulation significantly inhibited autophagy, induced chondrocyte

apoptosis and extracellular matrix (ECM) degradation, which could be

ameliorated by DIM. DIM inhibited the expression of a disintegrin and

metalloproteinase with thrombospondin motif 5 (ADAMTS-5), matrix

metalloproteinase 13 (MMP13), cleaved caspase-3, Bax, and p62, and

increased the expression level of collagen II, aggrecan, Bcl-2, light chain 3 Ⅱ
(LC3 Ⅱ), and beclin-1. Mechanistic studies showed that DIM increased

chondrocyte autophagy levels by inhibiting the activation of PI3K/AKT/mTOR

pathway. In mice destabilization of the medial meniscus (DMM) model,

immunohistochemical analysis showed that DIM inhibited the expression of

p-PI3K and cleaved caspase-3, increased the expression of LC3 Ⅱ. Furthermore,

DIM relieved joint cartilage degeneration. In conclusion, our findings

demonstrate for the first time that DIM inhibits LPS-induced chondrocyte

apoptosis and ECM degradation by regulating the PI3K/AKT/mTOR-

autophagy axis and delays OA progression in vivo.
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Introduction

Osteoarthritis (OA) is a degenerative joint disease that

affects older people worldwide, characterized by progressive

destruction and inflammation of articular cartilage (Glyn-

Jones et al., 2015). The incidence of OA is reported to be

increasing year by year, and the condition is a major cause of

disability in older adults. Contemporary treatment mainly

improves symptoms, and there is no effective treatment to

prevent the progression of OA (Maudens et al., 2018).

Therefore, it is clinically important to develop more

convenient and effective interventions to slow down

progression of the disease (Goldring, 2006). Degenerative

changes of articular cartilage are the most important

pathological changes in OA, and articular cartilage consists

of only chondrocytes and extracellular matrix (ECM). The

main matrix components of the ECM are collagen II and

aggrecan, and the main ECM catabolic enzymes are matrix

metalloproteinases (MMPs) and a disintegrin and

metalloproteinase with thrombospondin motifs (ADAMTS)

(Cucchiarini et al., 2016). Under normal physiological

conditions, chondrocytes maintain the balance of ECM

synthesis and catabolism to ensure the structural and

functional integrity of cartilage (Musumeci et al., 2011a).

Recently, an increasing number of studies have shown that

OA has diverse causative factors and a complex pathogenesis and

determined that the release of inflammatory mediators causes

inhibition of cellular autophagy, resulting in increased apoptosis,

which ultimately leads to an imbalance in ECM metabolism and

accelerates OA development (Li et al., 2019). Previous study has

reported that apoptosis is positively correlated with the severity

of cartilage destruction and matrix depletion in human OA tissue

specimens (Musumeci et al., 2015). Chondrocytes freshly isolated

from human OA cartilage displayed morphological evidence of

apoptosis, while those from normal donors did not have any

apoptotic cell signatures. These findings suggest that OA

chondrocytes exhibit distinct apoptotic propensities

(Musumeci et al., 2011a; Musumeci et al., 2011b). In addition,

when chondrocyte homeostasis is unbalanced, the release of

inflammatory mediators and catabolic enzymes is accelerated,

the destruction of ECM speeds up, and OA progression occurs

(Zhao et al., 2020).

Autophagy is a mechanism and a dynamic cellular process

whereby damaged cellular components (such as organelles and

proteins) are wrapped by membrane structures to form

autophagic vesicles, which then fuse with lysosomes, and

whose contents are degraded and recycled to maintain normal

cellular metabolism (He and Klionsky, 2009; Ravikumar et al.,

2010; Polewska, 2012; Li et al., 2016). It has been reported that

normal cartilage tissue expresses abundant LC3 II, Beclin1 and

other important autophagy-related proteins, suggesting that

autophagy may be involved in maintaining the normal

physiological function and structural integrity of cartilage

tissue (Sasaki et al., 2012; Zhang et al., 2015; Qin et al., 2017).

In contrast, the expression of autophagy-related proteins is

reduced in human OA chondrocytes (Loeser, 2011; Lian et al.,

2018). Activation of autophagy increases the expression levels of

both collagen II and aggrecan while reducing those of ADAMTS-

5 and MMP-13 in chondrocytes and ameliorating arthritis

progression (Qin et al., 2017; Huang et al., 2020; Lin et al.,

2021). Furthermore, inhibition of autophagy in mice

chondrocytes exacerbated arthritis progression (Bouderlique

et al., 2016), while intra-articular injection of rapamycin to

activate autophagy in a mice destabilization of the medial

meniscus (DMM) model improved cartilage degeneration

(Takayama et al., 2014).

3,3-diindolylmethane (DIM) is a natural product found in

cruciferous edible plants, such as cauliflower, cabbage, and

broccoli. Previous studies have reported that DIM has several

preventive effects, especially displaying anti-tumor, anti-

inflammatory, antioxidant and free radical scavenging roles

(Luo et al., 2018; Ye et al., 2021). Recent studies have

determined that DIM also protects against kidney, heart,

and liver damage. It has been reported that DIM attenuated

carbon tetrachloride–induced acute liver injury in mice by

inhibiting inflammatory responses and apoptosis and by

modulating oxidative stress (Munakarmi et al., 2020). DIM

has been reported to attenuate oxidative stress–induced

apoptosis in hippocampal neurons (Lee et al., 2019) and

protect neuronal cells from inflammation and brain tissue

ischemia (Rzemieniec et al., 2016; Lee et al., 2019). In addition,

DIM attenuates lipopolysaccharide (LPS)-induced

inflammatory responses and apoptosis in cardiomyopathy

(Luo et al., 2018) and induces protective autophagy in

prostate cancer (Draz et al., 2017). In a rat model of

rheumatoid arthritis, DIM was observed to block osteoclast

formation (Dong et al., 2010) and, through inhibition of the

MAPK and AKT/mTOR pathways, inhibit synovial fibroblast

proliferation, migration, invasion, and inflammatory factor

release and attenuate experimental arthritis progression (Du

et al., 2019).

Although previous studies have extensively investigated

the function of DIM, the potential role of DIM in

osteoarthritis and its effects on chondrocytes remain

undetermined. In the present study, we observed the effects

of DIM on LPS stimulation-induced chondrocyte autophagy,

apoptosis, and ECM metabolism in vitro and explored the

possible molecular mechanisms. The potential therapeutic

function of DIM was also evaluated in a DMM mice model

of OA.
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Materials and methods

Experimental design

DIM was purchased from MCE (HY-15758, Monmouth

Junction, NJ, United States) (purity >99%). LPS is currently

the main pro-inflammatory inducer (Mayeux, 1997), which is

commonly used to induce arthritis models in chondrocytes

(Yoshino et al., 2000; Lorenz et al., 2013; Ding et al., 2019; Li

et al., 2020; Zeng et al., 2021). So, we used LPS (10 µg/ml, Sigma-

Aldrich) to treat human primary chondrocytes to simulate OA

models. Six groups were established. The control group

contained chondrocytes without any treatment. The negative

control group contained chondrocytes to which only DIM

(40 µM) was added. The LPS group contained chondrocytes

only treated with LPS (10 ug/ml). The LPS + DIM group

contained the chondrocytes treated with different

concentrations of DIM (10, 20, 40 µM) for 2 h, and then LPS

was added in the medium to stimulate chondrocytes for 24 h

(without replacing the medium). We used 40 µM of DIM for the

detection of immunofluorescence, flow cytometry,

monodansylcadaverine (MDC) staining, transmission electron

microscopy (TEM) and glycosaminoglycan (GAG) experiments.

In vivo, mice were randomly divided into a sham-operated

group, an OA group (DMM), and a DIM-treated OA group

(DMM + DIM) (n = 10 in each group). Mice DMM model

creation took place in the OA group, and the DIM-treated OA

group received a 50 mg/kg/day dose of DIM (via daily

intraperitoneal injection for 8 weeks). Mice in the Sham and

DMM groups received equal amounts of saline. All animals were

executed 8 weeks after surgery, and cartilage samples were

collected for immunological and histological analysis.

Isolation and culture of primary
chondrocytes

The collection of cartilage tissue involving human OA was

approved by the Medical Ethics Committee of the First Affiliated

Hospital of Anhui Medical University (ethics no. PJ2022-04-55),

and all participants signed an informed consent form. Articular

cartilage was obtained from patients who had undergone total knee

arthroplasty at the First Affiliated Hospital of Anhui Medical

University. The specimens were rapidly transferred to the

operating table and washed 3–5 times with phosphate-buffered

saline (PBS) in a sterile environment, and the cartilage tissue was

then cut into bone pieces of 1 mm3 in size and then digested with

0.25% trypsin (Beyotime, Shanghai, China) for 30 min, followed by

0.2% collagenase Ⅱ (Sigma-Aldrich) in a 37°C incubator overnight.

The digested chondrocytes were then resuspended and inoculated in

culture flasks containing Dulbecco’s modified Eagle medium/

nutrient mixture F-12, 10% fetal bovine serum, and 1%

penicillin/streptomycin antibiotics; when 80%–90% fusion was

achieved, the cells were then digested using 0.25% trypsin

solution, centrifuged, resuspended, and passaged. The complete

medium was changed every 2 days, and only cells of the first or

second generation were used for the experiments to avoid

phenotypic changes.

Toluidine blue staining of chondrocytes

Chondrocytes were inoculated in 24-well plates and cultured

for 24 h, then washed three times with PBS solution for 5 min/

time and subsequently fixed in 4% paraformaldehyde solution for

20 min. After being washed with PBS, they were treated with 1%

toluidine blue solution (Solarbio, Beijing, China) for 1 h at room

temperature, washed with PBS again, dried and placed on slides,

and then sealed with neutral gum. All chondrocytes were

observed under a microscope (Tissue FAXS Plus S; Tissue

Gnostics, Vienna, Austria) and photographed.

Cell viability assay

The cytotoxicity of DIM on human chondrocytes was

assayed with a cell counting kit 8 (CCK-8) (Beyotime). First,

human chondrocytes were cultured in 96-well plates (5×103 cells/

well) for 24 h with different concentrations of DIM (0, 1, 5, 10,

20, 40, or 80 μM) for 24 or 48 h. After each well washed with PBS,

100 μL new medium containing 10% CCK8 was added to each

well, incubated at 37°C for 2 h. The absorbance was then detected

at 450 nm using a microplate reader (Leica Microsystems,

Wetzlar, Germany).

RNA extraction and quantitative real-time
polymerase chain reaction (qRT-PCR)

The treated cells were washed with enzyme-free water, and total

cellular RNA was subsequently extracted with TRIzol reagent

(Invitrogen, Carlsbad, CA, United States), RNA purity was

assessed according to a 260-/280-nm ratio using a NanoDrop

One device (Thermo Fisher Scientific, Waltham, MA,

United States), and RNA concentrations were measured using a

reverse transcription kit (Takara Bio, Kusatsu, Japan) A 10-µL

reaction system was set up to reverse-transcribe the extracted

RNA to complementary DNA. Subsequently, qRT-PCR of the

target genes was performed according to the SYBR® Premix Ex

Taq™ II kit (Takara Bio), and data analysis was performed with the

Light Cycler 96 software (Roche, Alameda, CA, United States). The

target gene messenger RNA levels were normalized to GAPDH

levels, and the data obtained were analyzed using the 2−ΔΔCTmethod.

All experiments were repeated three times. The primer sequences

were provided by Sangon (Shanghai, China) and are listed in

Supplementary Table S1.
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Protein extraction and western blotting

A western blot technique was used to detect the expressions of

related proteins. The treated cells were collected,

radioimmunoprecipitation assay (RIPA) lysis buffer (Beyotime)

and phenylmethylsulfonyl fluoride (PMSF) (Beyotime) were

added, and the mixture was placed on ice for 30 min to lyse.

Then, the supernatant was centrifuged and subsequently protein

concentration wasmeasured by BCAmethod (Beyotime) and added

to 5 × sodium dodecyl sulfate–polyacrylamide gel electrophoresis

(SDS-PAGE) protein loading buffer (Beyotime) and boiled for

10 min to obtain the total protein. Each well was loaded with

20ug protein, and then under the same GAPDH condition, the

loading volume of each sample was calculated according to the

required loading amount of protein and the sample protein

concentration. The protein was subsequently separated by SDS-

PAGE, then transferred to a polyvinylidene fluoride membrane

(Millipore, Burlington, MA, United States) in constant flow. The

membranes were subsequently closed with 5% skim milk for 2 h at

room temperature. washed with tris-buffered saline and polysorbate

20 and incubated with the specific primary antibody overnight at

4°C, then washed and incubated with the corresponding specific

secondary antibody for 2 h at room temperature, respectively.

Finally, all band signals were detected using ECL ultrasensitive

chemiluminescence reagents (Thermo Fisher Scientific, Waltham,

MA, United States) and detected using the ImageJ version 1.53c

software (U.S. National Institutes of Health, Bethesda, MD,

United States) for quantitative analysis. The following antibodies

were used in the western blot analysis: anti–collagen Ⅱ antibody (1:

1000, 28459-1-AP, ProteintechGroup, Rosemont, IL, United States),

anti-aggrecan antibody (1:1000, 13880-1-AP, Proteintech Group),

anti–ADAMTS-5 antibody (1:1000, Ab41037, Abcam, Cambridge,

United Kingdom), anti–MMP-13 antibody (1:1000, 18165-1-AP,

Proteintech Group), anti–LC3 A/B antibody (1:1000, 12741, CST,

Danvers, MA, United States), anti-p62 antibody (1:10000,

Ab109012, Abcam), anti–beclin-1 antibody (1:1000, Ab62557,

Abcam), anti–cleaved caspase-3 antibody (1:1000, 5A1E, CST),

anti-Bax antibody (1:5000, Ab32503, Abcam), anti–Bcl-2

antibody (1:1000, Ab32124, Abcam), anti–p-PI3K antibody (1:

1000, ab151549, Abcam), anti–PI3K antibody (1:1000, 3358,

CST), anti-AKT antibody (1:1000, 4691, CST), anti–phospho-

AKT antibody (1:2000, 4060, CST), anti-mTOR antibody (1:

5000, Ab32028, Abcam), anti–phospho-mTOR antibody (1:5000,

Ab109268, Abcam), and anti-GAPDH antibody (1:10000, 60004-1-

lg, Proteintech Group).

Immunofluorescence staining

The treated cells were washed with PBS, then underwent 4%

paraformaldehyde fixation for 20 min, were washed with PBS

three more times, and underwent 0.3% Triton X-100

permeabilized for 15 min at room temperature. The cells were

then closed with 10% bovine serum albumin (BSA) (goat serum

blocking solution, Beyotime) for 1 h, then were washed with PBS

and incubated overnight at 4°C in a wet box with the appropriate

specific primary antibody, as follows: anti–collagen Ⅱ antibody

(1:300, 28459-1-AP, Proteintech Group), anti–MMP-13

antibody (1: 300, 18165-1-AP, Proteintech Group),

anti–LC3 A/B antibody (1:200, 12741, CST), anti–cleaved

caspase-3 antibody (1:400, 5A1E, CST), or anti–p-PI3K

antibody (1:300, Ab151549, Abcam). After three washes, the

cells were incubated with fluorescein isothiocyanate (FITC) or

rhodamine-labeled secondary antibody (1:100ZF-0311/ZF-0316,

ZSGB-BIO, Beijing, China) for 1 h at room temperature and

protected from light. Subsequently, 4′,6-diamidino-2-

phenylindole (DAPI) staining solution (Beyotime) was added

to label cell nuclei for 5 min, and finally anti-fluorescence

quenching mounting solution was added dropwise. Images

were observed and obtained under an automatic positive

fluorescence microscope (DM6B; Leica, Wetzlar, Germany)

and were quantified using ImageJ version 1.53c (U.S. National

Institutes of Health, Bethesda).

MDC staining

MDC is one of the most used fluorescent probes for

cellular autophagy detection. It can specifically label

autophagosomes through ion capture and specific binding

to membrane lipids (Biederbick et al., 1995; Niemann et al.,

2000; Niemann et al., 2001; Vázquez and Colombo, 2009).

During our study, treated chondrocyte crawls were fixed in 4%

paraformaldehyde for 20 min, washed three times with PBS,

and incubated with MDC staining solution (Beyotime) for

60 min at 37°C in an incubator protected from light. Then, we

washed them three times with assay buffer. Green fluorescence

was observed under an automatic positive fluorescence

microscope (DM6B; Leica).

Transmission electron microscopy (TEM)

The treated cells were collected, then the samples were fixed

with 2.5% glutaraldehyde in 0.1 M phosphate buffer (P885738,

Macklin, Shanghai, China) at 4°C overnight. After washing with

phosphate buffer, the samples were fixed in phosphate buffer

with 1% OsO4 at 4°C for 2 h and rinsed thoroughly with ddH2O.

The 2% aqueous uranyl acetate was used for en bloc staining for

2 h and then the samples were serially dehydrated with 50%, 70%,

90% and 100% alcohol and 100% acetone and embedded in

epoxy resin for making the blocks of samples. Silver sections were

cut with an ultramicrotome (EM UC7, Leica; thickness

70–90 nm), stained with lead citrate and uranyl acetate, and

observed with an electron microscope (Talos L120C G2, Thermo

Scientific, MA, United States).
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Cellular safranin O staining

Safranin O is a cationic dye that binds polyanions and binds

to GAGs in chondrocytes to give them a red color, with the

intensity of the red color being directly proportional to the GAG

content. It is used to assess the content of GAGs in chondrocytes

and can reflect the ability of chondrocytes to perform anabolic

and catabolic activities. We washed the treated chondrocytes

with PBS and fixed them with 4% paraformaldehyde for 20 min,

then washed them with PBS and incubated them with safranin O

staining solution (Solarbio, Beijing, China) for 30 min at room

temperature. The cells were then washed with PBS and observed

by microscopy (Tissue FAXS Plus S; Tissue Gnostics), and

photographs were taken.

Apoptosis analysis

The treated chondrocytes were collected in flow tubes,

washed twice with cold PBS, and resuspended with 400 μL of

1 × annexin V conjugate using the annexin V-FITC/propidium

iodide double-stained apoptosis assay kit (BestBio, Shanghai,

China), followed by the addition of 5 μL of annexin V-FITC

staining solution and incubation for 15 min at 4°C under light-

proof conditions. Finally, 5 μL of propidium iodide (PI) staining

solution was added and incubated for 3 min at 4°C under light-

proof conditions, followed by flow cytometry (BD Celesta, San

Jose, CA, United States). Flow analysis was performed with

FlowJo version 10.6.0 (FlowJo LLC, Ashland, OR, United States).

Animal model

Thirty 10-week-old C57BL/6 male wild-type mice were

obtained from the Animal Center of Anhui Medical

University. All surgical interventions, treatments, and

postoperative animal care procedures were administered in

accordance with the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and

were performed in strict accordance with the requirements of the

Animal Ethics Committee of Anhui Medical University (ethics

no. LISC20190738). All the mice in the experiment were housed

in standard experimental cages with a 12-h light/dark cycle and

were freely access to water and standard food. Mice OA models

were created by DMM surgery. Anesthesia was performed by

intraperitoneal injection of an appropriate amount of 2%

pentobarbital, followed by exposure of the joint capsule

medial to the patellar tendon of the right knee and dissection

of the medial meniscus tibial ligament with microsurgical

scissors. In the sham group, only the joint capsule was

incised, and the medial meniscal tibial ligament was not treated.

Immunohistochemical assay

The obtained knee joints were fixed in 4% paraformaldehyde

for 24 h, then decalcified, paraffin-embedded, cut into 5-μm

sections, dewaxed, and rehydrated. Antigen repair was

performed using the E enzyme method (DIG-3008; MXB,

Fuzhou China), and appropriate amounts of rabbit- or

mouse-derived endogenous peroxidase blocker (PV-6001/PV-

6002, ZSGB-BIO) were added and incubated at room

temperature for 10 min. After rinsing with PBS, an

appropriate amount of primary antibody was added dropwise

and incubated at 37°C for 60 min, using the appropriate specific

primary antibody, as follows: anti–LC3 A/B antibody (1:300,

12741, CST), anti–cleaved caspase-3 antibody (1:1000, 5A1E,

CST), anti-p-PI3K antibody (1:100, Ab151549, Abcam),

anti–collagen Ⅱ antibody (1:800, 28459-1-AP, Proteintech

Group), anti-aggrecan antibody (1:200, 13880-1-AP,

Proteintech Group), anti–ADAMTS-5 antibody (1: 200,

DF13268, Affinity), anti–MMP-13 antibody (1:200, 18165-1-

AP, Proteintech Group). This was followed by the addition of

the corresponding enzyme-labeled goat anti-rabbit or mouse

immunoglobulin G polymer (PV-6001/PV-6002, ZSGB-BIO)

dropwise to the section, then incubation at room temperature

for 20 min; the addition of DAB (ZLI-9018, ZSGB-BIO) color

development solution. Finally, re-staining, dehydration,

transparency, and sealing of the section. The staining results

were observed and interpreted by a qualified pathologist under a

light microscope.

Histopathological analysis

The obtained mice knee sections were dewaxed, hydrated,

and stained with hematoxylin and eosin (H and E) staining as

well as safranin O/fast green staining (Servicebio,Wuhan, China)

to assess cartilage destruction. The extent of cartilage

degeneration in the stained sections was assessed using the

Osteoarthritis Research Society International (OARSI) scoring

system (Glasson et al., 2010). The extent of synovial tissue

changes in the stained sections was assessed using the Krenn

Synovitis Score Criteria (Krenn et al., 2002; Krenn et al., 2006).

X-ray imaging method

Eight weeks after DMM, mice were placed on a digital X-ray

machine (Labscope, Glenbrook Technologies lnc, Randolph, NJ,

United States) to undergo X-ray frontal and lateral imaging of all

knee joints to assess the joint space, cartilage surface sclerosis,

and bone formation. X-ray machine settings were 25 kV and

0.1 mA.
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Statistical analysis

All experiments were performed at least three times, and data

are presented as mean ± standard deviation (SD) values.

Statistical analysis was performed using the Prism version

9.0 software (GraphPad Software, San Diego, CA,

United States). Statistically significant differences between the

two groups were analyzed by t test, one-way ANOVAwas used to

compare multiple data groups. p < 0.05 was statistically

significant.

Results

Identification of human chondrocytes

First, we used toluidine blue staining and

immunofluorescence staining to identify the isolated primary

chondrocytes. Toluidine blue staining showed that the

proteoglycans in the chondrocytes stained blue-purple, and

the chondrocytes were spindle-shaped (Figure 1A). In

addition, immunofluorescence staining showed greenish

collagen II in the cytoplasm of chondrocytes and no positive

staining in cell nuclei (Figure 1B). These two staining methods

confirmed that the primary cells extracted from articular

cartilage were chondrocytes.

Effects of DIM on human chondrocyte
viability

The chemical structure of DIM is illustrated in Figure 2A. To

clarify the cytotoxic effect of DIM on human chondrocytes, we

assayed the cell viability by CCK-8 assay. Different

concentrations of DIM (0, 1, 5, 10, 20, 40, and 80 μM) were

incubated with chondrocytes for 24 and 48 h. After DIM

treatment of chondrocytes for 24 and 48 h, there was no

significant cytotoxic effect on primary chondrocytes at

concentrations of 0–40 μM, but the high concentration of

80 μM reflected significant cytotoxicity and affected cell

viability (Figures 2B,C). Therefore, the safe concentrations of

0, 10, 20, or 40 μM of DIM were used in subsequent related

experiments.

DIM alleviates LPS-induced ECM
degradation in human chondrocytes

We used western blot analysis (Figures 3A,B) and qRT-PCR

(Figure 3C) to detect the expression of the following anabolic and

catabolic indicators in cartilage: collagen II, aggrecan, ADAMTS-

5, and MMP-13. Collagen II and aggrecan were significantly

reduced in the LPS group, while ADAMTS-5 and MMP-13 were

significantly increased. Pre-treatment with DIM reversed the

downregulation of collagen II and aggrecan and the

upregulation of ADAMTS-5 and MMP-13 induced by LPS

stimulation in a dose-dependent relationship. We further

examined the deposition of GAGs in human chondrocytes

using safranin O staining, and GAG expression appeared

significantly reduced in LPS-treated chondrocytes compared to

controls, whereas DIM treatment ameliorated the LPS-induced

loss of GAGs (Figure 3D, Supplementary Figure S2). In addition,

we detected the expressions of collagen II and MMP-13 by

immunofluorescence, and the results of fluorescence analysis

were consistent with the western blot results (Figures 3E,F).

Overall, the results showed that DIM ameliorated LPS-

induced human primary chondrocytes anabolic and catabolic

imbalance, which in turn reflected that DIM improved LPS-

induced ECM degradation.

DIM attenuates LPS-induced apoptosis in
human chondrocytes

We detected the expressions of Bax, Bcl-2, and cleaved

caspase-3 by western blot analysis and further detected the

expression of cleaved caspase-3 by immunofluorescence

staining. Compared to the control group, LPS stimulation

FIGURE 1
Identification of human primary chondrocytes and the effect of DIM on human OA chondrocyte viability (A) Proteoglycans in human primary
chondrocytes were stained purple by toluidine blue (scale bar, 50 μm) (B) Collagen II immunofluorescence staining showed that the collagen II was
stained green, while cell nuclei were stained blue by DAPI (scale bar, 20 μm).
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upregulated Bax and cleaved caspase-3 expression, while Bcl-2

expression was significantly down-regulated. In contrast, the

expressions of Bax and cleaved caspase-3 were significantly

down-regulated in the LPS group with the addition of DIM

pre-treatment, while Bcl-2 expression was significantly increased

(Figures 4A,B). Similarly, immunofluorescence staining for

labeled cleaved caspase-3 results showed that DIM treatment

decreased the intensity of cleaved caspase-3 (Figures 4C,D). In

addition, apoptotic cells were examined by flow cytometry, and

LPS caused an increase in chondrocyte apoptosis compared to

the control group. However, the percentage of LPS-induced

apoptosis was significantly reduced following pre-treatment

with 40 μM of DIM (Figures 4E,F). These data suggest that

DIM has an anti-apoptotic effect in human chondrocytes.

DIM relieves the LPS-induced inhibition of
autophagy and enhances autophagic flux
in chondrocytes

Autophagy is a common mechanism for the removal of

redundant or damaged organelles during development and

aging. Moreover, autophagy plays a key role in regulating

energy cycling and cellular homeostasis in chondrocytes

(Mizushima and Levine, 2020). To investigate whether DIM

activates autophagy in chondrocytes, we performed western

blot analysis to assess changes in beclin-1, LC3 II, and

p62 protein levels in human chondrocytes under different

treatment conditions, which play a key role in the onset of

autophagy (Glick et al., 2010; Boya et al., 2013). In LPS-

treated primary human chondrocytes, a significant increase in

LC3 II and beclin-1 levels and a significant decrease in p62 levels

were observed in cells pre-treated with increased DIM (Figures

5A,B). Then, immunofluorescence staining results showed that

DIM pre-treatment significantly increased the expression of

LC3 II in LPS-stimulated chondrocytes (Figures 5C,D). In

addition, MDC is an eosinophilic fluorescent dye that is

specific for autophagosome formation. we assessed autophagic

flux by MDC staining and transmission electron microscopy to

observe the effect of DIM as well as that of LPS on the number of

autophagosomes in chondrocytes; the intensity of MDC staining

was diminished and the number of autophagosomes was reduced

in LPS-treated chondrocytes compared to the blank control

group. The intensity of MDC staining and the number of

autophagosomes were significantly increased in primary

human chondrocytes in the LPS + DIM group compared to

the LPS group (Figures 5E,F). Based on these results, DIM could

ameliorate the LPS-induced inhibition of autophagy and restore

chondrocyte autophagy levels.

DIM inhibits activation of the PI3K/AKT/
mTOR signaling pathway

It is well known that the PI3K/AKT/mTOR signaling

pathway is a key regulatory pathway for autophagy, and

activation of the PI3K/AKT/mTOR pathway in OA is

associated with autophagy inhibition (Xue et al., 2017). To

confirm whether the mechanism of enhanced autophagy by

DIM is related to the PI3K/AKT/mTOR signaling pathway,

p-PI3K, p-AKT, and p-mTOR were detected by western blot

analysis. The results showed that LPS treatment activated the

PI3K/AKT/mTOR pathway compared to the control group, and

the expressions of p-PI3K, p-AKT, and p-mTOR were

significantly increased; meanwhile, the addition of DIM pre-

treatment to the LPS group dose-dependently down-regulated

the expressions of p-PI3K, p-AKT, and p-mTOR but did not

affect the expressions of total PI3K, total AKT, or total mTOR

FIGURE 2
(A) Chemical structure of DIM (B,C) The cytotoxicity of DIM on chondrocytes was examined at various concentrations of DIM (0, 1,5, 10, 20, 40,
and 80 μM) for 24 and 48 h by using the CCK-8 assay. The data are presented asmean ± SD values from 3 independent experiments. Using one-way
ANOVA, * p <0.05, ** p <0.01 vs. the control.
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FIGURE 3
DIM alleviates LPS-induced ECM degradation in human chondrocytes (A,B) Effects of DIM on the protein expression levels of collagen II,
aggrecan, ADAMTS-5, and MMP-13 in human chondrocytes treated as above weremeasured by western blotting and quantitation (C) Effects of DIM
on themessenger RNA expression levels of collagen II, aggrecan, ADAMTS-5, and MMP-13 in human chondrocytes treated as above weremeasured
by qRT-PCR (D) Safranin O staining of GAGs in human primary chondrocytes in each group (scale bar, 50 μm) (E) After treatment,

(Continued )
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(Figure 6A). The western blotting quantification analysis were

based on the ratio of phosphorylated proteins (p-PI3K, p-AKT

and p-mTOR) to total proteins (PI3K, AKT and mTOR)

(Figure 6B). Immunofluorescence staining showed that DIM

pre-treatment significantly inhibited p-PI3K activation

(Figures 6C,D). These data suggest that the DIM can Inhibit

activation of the PI3K/AKT/mTOR pathway in human

chondrocytes.

DIM enhances autophagy levels via the
PI3K/AKT/mTOR signaling pathway

To determine whether DIM-enhanced autophagy was

mediated by the PI3K/AKT/mTOR pathway, the pathway

activator 740Y-P (HY-P0175, MCE, Monmouth Junction, NJ,

United States) and inhibitor LY294002 (HY-10108, MCE,

Monmouth Junction, NJ, United States) were used for

functional reversion experiments (Figures 7A,B). DIM

increased LC3 II and beclin-1 expression levels and decreased

p62 levels in the LPS group, but the increase in autophagy

triggered by DIM was eliminated with 740Y-P, while the

increase in autophagy triggered by DIM was enchanced with

LY294002. Similar results were obtained for

immunofluorescence labeling of LC3 II. Compared to the LPS

+ DIM group, the green fluorescence intensity of LC3 II

decreased after 740Y-P use and increased after LY294002 use

(Figures 7C,D). In addition, we observed the number of

autophagosomes by MDC staining and transmission electron

microscopy in chondrocytes. Compared to the LPS +DIM group,

The intensity of MDC staining and the number of

autophagosomes were significantly decreased after 740Y-P

used and increased after LY294002 used (Figures 7E,F). These

data suggested that the regulatory effect of DIM on autophagy

was mediated via the PI3K/AKT/mTOR pathway.

DIM attenuates LPS-induced apoptosis in
chondrocytes via autophagy

We used chloroquine (CQ), an autophagy inhibitor (HY-

17589A, MCE), and rapamycin (Rapa), an autophagy activator

(HY-10219, MCE), to determine whether autophagy was

involved in the inhibitive effects of DIM on apoptosis.

Compared to the LPS + DIM group, CQ effectively abolished

the effects of DIM on reducing cleaved caspase-3 and Bax

expression levels as well as increasing Bcl-2 expression levels.

Compared to the LPS + DIM group, Rapa further reduced

cleaved caspase-3 and Bax expression levels as well as

increased Bcl-2 expression levels (Figures 8A,B). Additionally,

we also detected the expression level of cleaved caspase-3 by

immunofluorescence staining (Figures 8C,D) and the apoptosis

of chondrocytes by flow cytometry (Figures 8E,F). Compared to

the LPS + DIM group, the fluorescence intensity of cleaved

caspase-3 and the chondrocyte apoptosis were significantly

increased after CQ treatment. In contrast, both the

fluorescence intensity of cleaved caspase-3 and chondrocyte

apoptosis were reduced after Rapa treatment. These data

suggested that inhibition of chondrocyte apoptosis by DIM in

LPS-treated chondrocytes is mediated by autophagy.

DIM alleviates OA cartilage degeneration
in the surgical DMM mice model

We evaluated the therapeutic effect of DIM using a mice

DMMmodel. The morphological and histological changes of the

model mice were observed by H and E staining, safranin O/fast

green staining, and X-ray analysis. X-ray (Figure 9A) and

Hematoxylin and eosin staining (Figure 9B) results revealed

that, compared to the Sham group, the joint space of the mice

in the DMM group was significantly narrowed; the cartilage

surface was hardened, rough, and uneven; and osteophyte counts

were increased. However, DIM treatment alleviated this

pathological manifestation. In addition, safranin O/fast green

staining showed that, compared to the Sham group, the DMM

group had significant loss of proteoglycan in the articular

cartilage and aggravated cartilage erosion; however, these

changes were improved after DIM treatment (Figure 9C). The

OARSI scores and Synovitis Scores were consistent with the

above pathological results, indicating that the DMMmice model

treated with DIM were significantly different from the OA group,

and the OARSI scores and Synovitis Scores of the DMM + DIM

group were significantly lower than those of the OA group

(Figure 9D, Supplementary Figure S3). Immunohistochemical

results showed that the average optical densities (AODs) of

p-PI3K and cleaved caspase-3 in the DMM group were

significantly higher than those in the sham group, while the

AOD of LC3 II was lower than that in the sham group. Compared

to the DMM group, the AOD of LC3 II was significantly

increased after DIM treatment, while the AODs of p-PI3K

and cleaved caspase-3 were significantly decreased (Figures

FIGURE 3 (Continued)
immunofluorescence staining showed the changes in the fluorescence intensity of collagen II and MMP-13 in each group (scale bar, 20 µm) (F)
The fluorescence intensity was measured with the ImageJ software (U.S. National Institutes of Health, Bethesda). The data are presented as mean ±
SD values from three independent experiments. Using one-way ANOVA, NS, no statistical difference. # p <0.05 vs. the control; # # p <0.01 vs. the
control; * p <0.05 vs. the LPS group; ** p < 0.01 vs. the LPS group.
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9E,F). The AODs of MMP-13 and ADAMTS-5 in the DMM

group were significantly higher than those in the sham

group. Compared to the DMM group, the AODs of MMP-13

and ADAMTS-5 were significantly decreased after DIM

treatment (Supplementary Figure S4). In addition,

immunohistochemical staining analysis of Collagen II and

FIGURE 4
DIM attenuates LPS-induced apoptosis in human chondrocytes (A,B) Effects of DIM on the protein expression levels of cleaved caspase-3, Bcl-
2, and Bax in human chondrocytes treated as above were measured by western blotting and quantitation (C) After treatment, immunofluorescence
staining showed the changes in the fluorescence intensity of cleaved caspase-3 in each group (scale bar, 20 µm) (D) The fluorescence intensity was
measuredwith the ImageJ software (U.S. National Institutes of Health, Bethesda) (E,F) After treatment, the results of flow cytometry detection of
apoptotic cells in each group and quantitation. The data are presented as mean ± SD values from three independent experiments. Using one-way
ANOVA, NS, no statistical difference. # p <0.05 vs. the control; # # p <0.01 vs. the control; * p <0.05 vs. the LPS group; ** p <0.01 vs. the LPS group.
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FIGURE 5
DIM relieves the LPS-induced inhibition of autophagy (A,B) Effects of DIM on the protein expression levels of beclin-1, LC3 II, and p62 in human
chondrocytes treated as above were measured by western blotting and quantitation (C) After treatment, immunofluorescence staining showed the
changes in the fluorescence intensity of LC3 II in each group (scale bar, 20 µm) (D) The fluorescence intensity was measured with the ImageJ
software (U.S. National Institutes of Health, Bethesda) (E) After treatment, the effects of DIM and LPS on the number of chondrocytes

(Continued )

Frontiers in Pharmacology frontiersin.org11

Tang et al. 10.3389/fphar.2022.999851

179180

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.999851


FIGURE 5 (Continued)
autophagosomes were observed by MDC staining (punctate green staining represents autophagosomes; scale bar, 20 μm; partially enlarged
image scale bar, 10 µm) (F)Microstructural detection of autophagosomes by transmission electronmicroscopy (White arrows indicate the formation
of autophagosomes. Scale bar = 2 μm; partially enlarged image scale bar, 500 nm). The data are presented as mean ± SD values from three
independent experiments. NS, no statistical difference; # p <0.05 vs. the control; # # p <0.01 vs. the control; * p <0.05 vs. the LPS group; **
p <0.01 vs. the LPS group.

FIGURE 6
DIM inhibits the activation of the PI3K/AKT/mTOR signaling pathway (A,B) Effects of DIM on the protein expression levels of p-PI3K, total PI3K,
p-AKT, total AKT, p-mTOR, and total mTOR in human chondrocytes treated as above were measured by western blotting and quantitation (C) After
treatment, immunofluorescence staining showed the changes in the fluorescence intensity of p-PI3K in each group (scale bar, 20 µm) (D) The
fluorescence intensity was measured with the ImageJ software (U.S. National Institutes of Health, Bethesda). The data are presented as mean ±
SD values from three independent experiments. Using one-way ANOVA, NS, no statistical difference; # p <0.05 vs. the control; # # p <0.01 vs. the
control; * p < 0.05 vs. the LPS group; ** p < 0.01 vs. the LPS group.
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FIGURE 7
DIM enhances autophagy levels by modulating the PI3K/AKT/mTOR signaling pathway (A,B)Compared to the LPS + DIM group, the addition of
PI3K activator (740Y-P) after treatment triggered a reduction in the level of autophagy, while the addition of PI3K inhibitor LY294002 increased the
level of autophagy. Levels of autophagic marker proteins (beclin-1, p62, and LC3 II) were measured by western blotting and quantitation (C) The
fluorescence intensity of LC3 II was detected by immunofluorescence staining (scale bar, 20 µm) (D) The fluorescence intensity was measured
with the ImageJ software (U.S. National Institutes of Health, Bethesda) (E) The number of chondrocytes autophagosomes was observed by MDC
staining (punctate green staining represents autophagosomes; scale bar, 20 μm; partially enlarged image scale bar, 10 µm) (F) Microstructural
detection of autophagosomes by transmission electron microscopy (White arrows indicate the formation of autophagosomes. Scale bar = 2 µm;
partially enlarged image scale bar, 500 nm). The data are presented as mean ± SD values from three independent experiments. Using one-way
ANOVA, NS, no statistical difference; # p < 0.05 vs. the LPS group; # # p < 0.01 vs. the LPS group; * p < 0.05 vs. the LPS + DIM group; ** p < 0.01 vs. the
LPS + DIM group.
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Aggrecan showed that the AODs of Collagen II and Aggrecan in

articular cartilage were lower in the DMM group than those in

the sham group. Compared to the DMM group, the AODs of

Collagen II and Aggrecan were significantly increased after DIM

treatment (Supplementary Figure S5), consistent with the in vitro

results.

Discussion

OA is the most common joint disease and the leading cause of

disability worldwide. It can limit the patient’s daily activities, such as

walking and running and other dependent behaviors, and severely

affecting their quality of life, causing a significant social burden, with

a high prevalence in the elderly population. Recent epidemiological

findings show that the prevalence of OA is 9.6% in elder men and

18% in elder women (Woolf and Pfleger, 2003; Verlaan et al., 2018).

The most affected site of OA is the knee joint (Fransen et al., 2011).

OA is caused by a variety of factors and is an extremely complex

pathogenic process that involves several different pathophysiological

mechanisms, including increased inflammatory stimulation, an

imbalance in chondrocyte metabolism, increased apoptosis, and

degradation of the cartilage matrix (Li et al., 2019). Current

treatments are limited to oral medications, which can relieve

joint swelling and pain but cannot completely cure the

development of OA, and joint replacement surgery is still

required in the long term, so there is still a need to develop safer

and more effective drugs to treat OA (Vaishya et al., 2016).

FIGURE 8
Activation of autophagy by DIM ameliorates LPS-induced chondrocyte apoptosis (A,B) Compared to the LPS + DIM group, the addition of an
autophagy inhibitor (CQ) after treatment increased chondrocyte apoptosis, while the addition of an autophagy activator (Rapa) reduced chondrocyte
apoptosis. Apoptosis marker proteins (cleaved caspase-3, Bcl-2, and Bax) were measured by western blotting and quantitation (C) The fluorescence
intensity of cleaved caspase-3 was detected by immunofluorescence staining (scale bar, 20 µm) (D) the fluorescence intensity was measured
with the ImageJ software (U.S. National Institutes of Health, Bethesda) (E,F) The apoptosis rate of chondrocytes was detected by flow cytometry and
quantitation. The data are presented asmean ± SD values from three independent experiments. Using one-way ANOVA, NS, no statistical difference;
# p <0.05 vs. the LPS group; # # p <0.01 vs. the LPS group; * p <0.05 vs. the LPS + DIM group; ** p <0.01 vs. the LPS + DIM group.
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FIGURE 9
DIM alleviates OA development in the DMMmicemodel (A) Assessment of kneeOA progression in amice DMMmodel was conducted by digital
X-ray imaging. Joint space narrowing was evident in the OA group (white arrows) (B) H and E staining of different experimental groups (scale bar,
100 µm) (C) SafraninO/fast green staining was used for the assessment of cartilage destruction (scale bar, 100 μm; partially enlarged image scale bar,
20 µm) (D) Mice articular cartilage OARSI scores (E,F) Immunohistochemical staining of cleaved caspase-3, LC3 II, and p-PI3K expressions in

(Continued )
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DIM is a natural Fat-soluble small molecule compound

harvested from cruciferous vegetables which belongs to the

class of indole glucosinolate (Maruthanila et al., 2014; Shi

et al., 2017). Due to its lipophilic nature, DIM can directly

cross the cell membrane into the cytoplasm to exert biological

activity (Jellinck et al., 1993; Carpenter et al., 2016; Khan et al.,

2019; Ong and Amstad, 2019; Martinotti et al., 2020). DIM can

intracellularly regulate a variety of signaling pathways as well as

signaling enzymes (Laiakis et al., 2020). For example, DIM can

block PI3K/Akt/MTOR/NF-κB signaling (Ahmad et al., 2013),

activate AMP-activated protein kinases (Chen et al., 2012),

inhibit nuclear factor kappa B (Cho et al., 2008; Weng et al.,

2012), inhibit cell cycle protein-dependent kinases (Kim et al.,

2012), and reduce androgen receptor levels (Palomera-Sanchez

et al., 2017). In recent years, an increasing number of studies have

explored the chondroprotective effects of plant components

(Sukhikh et al., 2021). DIM has been found to have various

health-promoting benefits. However, it remains unclear whether

DIM has any effect on OA chondrocytes, which is explored in

depth in this paper. We investigated the role and mechanism of

DIM in arthritis both in vivo and in vitro.

It has been reported that chondrocytes are the only cell type

that constitutes articular cartilage and are responsible for the

synthesis and secretion of cartilage ECM macromolecules, such

as collagen II and aggrecan (Goldring and Marcu, 2009;

Musumeci et al., 2015; Guilak et al., 2018). In addition,

chondrocytes also can synthesize matrix degrading enzymes,

such as MMP-13 and ADAMTS-5 (Vincenti and Brinckerhoff,

2002; Rowan et al., 2008; Takahata et al., 2019; Meng et al., 2020).

Currently, the synthesis and degradation status of cartilage

matrix is mainly reflected indirectly by detecting anabolic and

catabolic marker proteins as well as proteoglycan moieties in

chondrocytes (Chang et al., 2019; Huang et al., 2020; Lin et al.,

2021). Under normal physiological conditions, chondrocytes

maintain a balance between the synthesis and degradation of

ECM components to ensure the structural and functional

integrity of cartilage (Musumeci et al., 2011a). However, in

the pathogenesis of OA, chondrocytes produce excess matrix-

degrading enzymes to damage the extracellular matrix,

particularly MMP-13 and ADAMTS-5 (Kapoor et al., 2011).

MMP-13 is a subclass of collagenase with the function of cleaving

ECM collagen II (Bramono et al., 2004), while ADAMTS-5 is a

zinc protein hydrolase that destroys aggrecan (Gendron et al.,

2007). The decrease in matrix component synthesis and the

increase in chondrocyte matrix breakdown by catabolic proteins

resulted in loss of cartilage matrix components and increased

cartilage destruction. It has been reported that therapeutic

substances targeting MMP-13 and ADAMTS-5 may be ideal

agents for the treatment of OA (Burrage et al., 2006; Mead and

Apte, 2018). In the present study, we found that DIM acts against

LPS-induced chondrocyte matrix degradation with a protective

effect, and DIM significantly inhibited the expression of catabolic

indicators MMP-13 and ADAMTS-5 and increased the

expression of anabolic indicators collagen II and aggrecan in

cartilage ECM.

Increased apoptosis is another major cause of matrix

degradation. Apoptosis is a form of programmed cell death

that can be activated through several different pathways,

including death receptor–mediated and mitochondria-

dependent apoptosis (Musumeci et al., 2011a; Zamli and

Sharif, 2011). Among the biomarkers of OA, inflammatory

mediators play a clear role in chondrocyte apoptosis. The

synthesis of pro-inflammatory cytokines, which contribute to

increased apoptosis, is involved in the degeneration of the

cartilage ECM (Wu et al., 2007; Musumeci et al., 2011b).

Indeed, in human OA tissue specimens, dissolution and

calcification of the descending ECM correlate with apoptosis,

and the rate of apoptosis is positively correlated with the severity

of OA (Musumeci et al., 2011a). Abnormal mechanical stress on

normal cartilage can lead to chondrocyte apoptosis and result in

cartilage degeneration and loss (Kim et al., 2002). In addition, the

literature reports that DIM exerts neuroprotective effects

through the production of brain-derived neurotrophic factor

and antioxidant enzymes in oxidative stress–induced apoptosis

in hippocampal neurons (Lee et al., 2019). We found that

chondrocyte apoptosis was significantly increased after LPS

stimulation, while pre-treatment with the addition of DIM

reversed LPS-induced chondrocyte apoptosis and revealed an

increase in anti-apoptotic protein levels (Bcl-2) and a decrease in

pro-apoptotic protein levels (Bax and cleaved caspase-3). This

indicates that DIM can also play an anti-apoptotic role in

chondrocytes.

Our previous studies have demonstrated that ECM

degradation can be improved by activating autophagy in OA

chondrocytes (Huang et al., 2020; Wang et al., 2022). Next, we

conducted an in-depth study of the mechanism by which DIM

inhibits LPS-induced chondrocyte apoptosis in vitro. Previously,

it was reported that, in human prostate cancer cells, DIM induced

cytoprotective autophagy through the induction of AMPK

activation by AEG-1 (Draz et al., 2017). DIM inhibited the

FIGURE 9 (Continued)
cartilage samples of different experimental groups (scale bar, 50 μm; partially enlarged image scale bar, 20 µm) and AODs were analyzed by the
ImageJ software (U.S. National Institutes of Health, Bethesda). The data are presented asmean ± SD values from three independent experiments (n =
10 in each group). Using one-way ANOVA, NS, no statistical difference; # p < 0.05 vs. the Sham group; ## p < 0.01, vs. the Sham group, * p < 0.05 vs.
the DMM group; ** p < 0.01 vs. the DMM group.
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proliferation of gastric cancer cells through the miR-30e/

ATG5 pathway involved in autophagy control (Ye et al.,

2016). Therefore, we hypothesized that the molecular

mechanism by which DIM exerts its protective effect may be

related to restoring the level of chondrocyte autophagy. Cellular

autophagy is an important protective mechanism for cells to

maintain homeostasis and survival in the internal environment

(Mizushima, 2007; He and Klionsky, 2009; Ryter et al., 2013), and

changes in inflammation, starvation, pathogen infection, and

endoplasmic reticulum stress can cause alterations in autophagy.

In addition, autophagy is known to regulate a variety of cellular

processes, such as apoptosis, pathogen removal, antigen

presentation, and inflammation and is associated with many

human diseases (Levine and Kroemer, 2008; Doria et al., 2013).

Autophagy has been widely reported to be associated with the

development of OA, and autophagic flux has been suggested as a

possible therapeutic target for OA (He and Cheng, 2018; Huang

et al., 2020; Xu et al., 2021). In vitro, we found that autophagy in

chondrocytes after LPS stimulation was significantly decreased

and LC3 II and beclin-1 protein expression levels were decreased,

p62 protein expression was increased, the number of autophagic

vesicles was decreased, and autophagic flux was blocked, but

these phenomena were significantly reversed after the application

of DIM treatment. We employed CQ and Rapa, as a specific

inhibitor and activators of autophagy, to determine whether DIM

regulates apoptosis through autophagy. We found that DIM

ameliorated LPS-induced apoptosis, but CQ reversed this

phenomenon; while activation of autophagy by Rapa further

inhibited apoptosis, acting synergistically with DIM. Our results

indicate that DIM inhibits LPS-induced chondrocyte apoptosis

by restoring the level of chondrocyte autophagy.

The literature reports that the PI3K/AKT/mTOR signaling

pathway regulates a variety of cellular processes, including

cellular autophagy, metabolism, inflammation, metabolism,

angiogenesis, and the cell cycle (Malemud, 2015). It is also an

important regulator of chondrocyte autophagic flux, and inhibition

of PI3K/AKT/mTOR signaling pathway activation to promote

increased autophagy is an effective strategy to improve OA

symptoms (Xue et al., 2017; He and Cheng, 2018; Han et al.,

2021). In our study, we found that the PI3K/AKT/mTOR

signaling pathway was activated after LPS stimulation of

chondrocytes compared to the normal group, and the

expressions of p-PI3K, p-AKT, and p-mTOR were increased,

while DIM treatment significantly inhibited LPS-induced

activation of this pathway. Moreover, we employed the PI3K

agonist 740Y-P and PI3K inhibitor LY294002 to determine

whether DIM regulates autophagy through PI3K/AKT/mTOR

signal pathway. We found that activation of the PI3K/AKT/

mTOR pathway by 740Y-P reversed DIM-induced autophagy

recovery, while LY294002 inhibited the activation of the PI3K/

AKT/mTOR pathway and further enhanced autophagy in

chondrocytes, synergizing with DIM. The results showed that

DIM enhanced the autophagy level of chondrocytes by inhibiting

the PI3K/AKT/mTOR signaling pathway.

In vivo, we used the DMMmethod to establish a C57BL/6 mice

OA model, which was assessed by hematoxylin and eosin staining,

X-ray, safranin O/fast green staining, and immunohistochemistry.

We found that, compared to mice in the sham group, the model

mice in the DMM group showed severe cartilage destruction in the

knee joint with rough surfaces, massive proteoglycan loss, reduced

autophagy protein levels, increased apoptotic protein levels, and

activated pathway proteins, while DIM treatment improved these

FIGURE 10
Schematic representation of the role of DIM in OA chondrocytes.
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symptoms, reversed chondrocyte apoptosis and ECM degradation,

and reduced the OARSI score in DMMmice. The results of in vivo

and in vitro were generally consistent. Taken together, the present

study showed that DIM, as an easily accessible botanical component,

not only improved the degeneration of articular cartilage in mice,

but also had a significant protective effect on inflammation-induced

chondrocyte destruction. Therefore, it is of great value to further

investigate the potential applications of DIM in the treatment of

osteoarthritis.

Conclusion

We found that DIM can act as a protective agent for

chondrocytes. More importantly, our results reveal the

mechanism by which DIM exerts its chondroprotective effects

(Figure 10). DIM can reduce inflammation-induced

chondrocytes apoptosis and extracellular matrix degradation

by activating PI3K/AKT/mTOR-mediated autophagy. This

study provides new guiding directions for DIM as a promising

drug for the treatment of OA.
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