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Confocal laser scanning microscopic image 
of Candida albicans biofilm, showing yeast 
and hyphal elements. C. albicans biofilms are 
highly resistant to antifungal agents.
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Fungal infections such as candidoses can range 
from superficial mucous membrane infection to 
life-threatening systemic mycoses. Candida infec-
tions are a significant clinical problem globally 
due to rapid rise in compromised host popu-
lations including HIV/AIDS, organ transplant 
recipients and patients on chemotherapy. In addi-
tion, sharp increase in aging populations which 
are susceptible to fungal infections is expected in 
next few decades. Antifungal drugs are relatively 
difficult to develop compared to the antibacterial 
drugs owing to the eukaryotic nature of the cells. 
Therefore, only a handful of antifungal agents are 
currently available to treat the myriad of fungal 
infections. Moreover, rising antifungal resistance 
and host-related adverse reactions have limited 
the antifungal arsenal against fungal pathogens. 
In this research topic, we tried to update the the-
oretical aspects pertaining to the antifungal drug 
discovery i.e. proposed novel mechanisms, new 
drug targets and pathways. In addition, invited 

authors explored the new antifungal drugs derived from natural and synthetic sources which 
are currently under development. Contributors were encouraged to bring new insight into the 
antifungal drug discovery. We hope the reader may arrive at a general consensus on the possible 
strategies to combat ever increasing ubiquitous fungal infection in this new century.
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The Editorial on the Research Topic

Antifungal Drug Discovery: New Theories and New Therapies

Medically important fungal infections can be broadly classified into superficial surface infections
and invasivemycoses (Samaranayake andMacFarlane, 1990; Roemer and Krysan, 2014). Superficial
surface infections include mucosal candidiasis, dermatophyte infections whereas invasive mycoses
affect sterile body sites such as bloodstream, central nervous system, kidney, lungs, and liver. Rise
of fungal infections has caused a substantial morbidity and mortality globally (Vallabhaneni et al.,
2016). It is reported that mortality among patients with invasive candidiasis is as high as 40%, even
when patients receive antifungal therapy (Kullberg and Arendrup, 2015).

Antifungal drugs are relatively difficult to develop compared to antibacterial drugs owing to
the eukaryotic nature of the cells. Only a few classes of antifungal drugs, such as polyenes, azoles,
echinocandins, allylamines, and flucytosine, are available to treat the myriad of fungal infections
(Sanglard et al., 2009). Of the current antifungal agents, none have all the characteristics of an ideal
agent (Wong et al., 2014). Antifungal resistance and host-related adverse reactions further limit the
existing antifungal arsenal against fungal pathogens (Chandrasekar, 2011). Rising drug resistance is
an inevitable problem, particularly for fluconazole, a drug of choice for candidiasis in AIDS patients
(Siikala et al., 2010; Rautemaa and Ramage, 2011). Drug resistance has also been reported for
recently introduced echinocandin antifungal agents (Seneviratne et al., 2008a; Ben-Ami et al., 2011;
Clancy and Nguyen, 2011). Moreover, some fungal species are inherently resistance to existing
antifungals (Sanglard; Kołaczkowska and Kołaczkowski, 2016). In addition, biofilmmode of fungal
growth is known to be highly resistant to antifungal agents (Chandra et al., 2005; Seneviratne et al.,
2008b). Hence, the development of more effective and safe antifungal agents is a top priority in
the health care field. Therefore, this special research topic aimed to address the new theories and
therapies pertaining to antifungal drug discovery, covering aspects of clinical relevance and novel
antifungal strategies.

Majority of the articles published under this research topic belongs to the Candida species,
which is a group of major fungal pathogens in humans. Candida species are commensal fungi
that inhabit various niches of the human body, including the oral cavity, gastrointestinal tract,
vagina, and skin (Samaranayake andMacFarlane, 1990; Mayer et al., 2013). However, under certain
circumstances, Candida can cause infections, or candidiasis, ranging from superficial mucous
membrane infections to life-threatening systemic diseases. Candida albicans is the most prevalent
fungal pathogen in lethal blood stream infections of humans (Seneviratne et al., 2011). C. albicans
infections are a significant clinical problem especially in compromised host populations undergoing
HIV/AIDS treatment, chemotherapy or organ transplantation. Moreover, sharp increase in aging
populations which are susceptible to fungal infections is expected in the next few decades. The
currently available antifungal agents are not always effective against C. albicans, which remains
a ubiquitous pathogen in nosocomial diseases, causing severe mucosal infections such as oral
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candidiasis, onycomycoses, vulvovaginal candidiasis, and
systemicmycoses with highmortality rates (Kojic andDarouiche,
2004; Zaoutis et al., 2005; Concia et al., 2009).

At the start of the research topic, clinical relevance of oral
candidiasis has been discussed in order to provide a glimpse
of human fungal infections (Patil et al.). Biofilm formation of
the fungal pathogen is a significant problem in medical-device
associated infections and directly related to therapeutic failure
(Williams and Ramage, 2015). As conventional antifungal agents
are ineffective against fungal biofilms, alternative strategies are
needed. Novel antifungal compounds that target fungal biofilm
formation and the host inflammatory response such as myriocin,
fulvic acid, and acetylcholine have been discussed in the research
topic as candidate dual action therapeutics to treat opportunistic
fungal infections (Borghi et al.). Microbial biotransformation has
emerged as an important tool for obtaining novel substances
which possess antifungal activity. Implication of endophytic
fungi as cell factories for producing new antifungal molecules
and in silico approach using databases of 3Dmolecular structures
are also discussed (Bianchini et al.). Oshima and colleagues
introduce an interesting concept of biogenics for oral candidiasis.
Biogenics advocates the use of beneficial bioactive substances
produced by probiotic bacteria, whose activities are independent
of the viability of probiotic bacteria in human bodies. Ravikumar
and colleagues examine various immune-enhancing strategies for
the invasive fungal diseases caused by Candida and Aspergillus
species. These novel approaches include cytokine therapy,
granulocyte transfusion, antibody-based therapy, natural killer
cell treatment and adoptive T cell transfer. Molecules such
as phenolic compounds, derived from natural sources and
exhibiting considerable antifungal properties are a source for
the development of novel anti-candidal therapy (Teodoro et al.).
Therefore, potential use, proposed mechanisms of action and
limitations of phenolic acids have been discussed.

Candida bloodstream isolates derived from Hong Kong
have shown to possess virulence attributes such as biofilm
formation, hemolysin production, proteinase activity as well
as perturbations in their antifungal sensitivity in the presence
of serum, which may contribute to treatment complication in
candidemia (Seneviratne et al.). One of the major mechanisms
contributing to multi-drug resistance in C. albicans is the
plasma membrane drug-efflux system. Therefore, application
of inhibitors of drug-efflux pumps has been suggested as a
strategy to increase the susceptibility of C. albicans to antifungals.
Szczepaniak et al. developed a new fluorescence method that
allows in vivo activity evaluation of compounds inhibiting
C. albicans transporters. They demonstrated that fluorescence
labeling with diS-C3(3) potentiometric dye enables a real-time

observation of the activity of C. albicans Cdr1 and Cdr2
transporters. The new method was able to demonstrate the
different specificities of enniatin A and beauvericin toward drug-
efflux pumps. In another study investigators have developed three
structurally related chemo-sensititzers i.e., oxathiolone fused
chalcone derivatives to successfully restore the sensitivity of
fluconazole resistantC. albicans strains. Themechanism of action
is a possible non-competitive inhibition of drug-efflux pumps
Mdr1, Cdr1, and Cdr2. However, more research is warranted
in this area to fully establish the role of chemo-sensitizers in
clinical use.

Antimicrobial peptide isolates from various sources are
also a promising source to develop novel antimycotic agents.
A study under this research topic has shown anti-Candida
activity of antimicrobial peptide produced by Enterococcus
faecium (Roy et al.). It appears to target chitin in the cell
wall of Candida species. Host derived molecules like histatin
5 protects human oral mucosa against the transformation
of commensal C. albicans into a pathogenic invader. A
work by Moffa and colleagues demonstrated that coating
with histatin 5 reduces C. albicans colonization of epithelial
cell surfaces and also protects the basal cell layers from
undergoing apoptosis. Hence, there is a possibility of using
host derived antifungal molecules to prevent Candida
infections, which may be a useful strategy in compromised host
populations.

Candida glabrata is an emerging human fungal pathogen.
A study examined the role of glucose sensing mechanism in
C. glabrata using SNF3 (Sucrose Non Fermenting 3) knockout
strains. Mutation results in higher susceptibility to amphotericin
B in low glucose environment (0.1%), but showed no effect on
biofilm formation capability. Going beyond Candida species, a
study of dermatophyte fungus Trichophyton rubrum investigated
the role of Hsp90 in its pathogenicity and drug susceptibility.
Chemical inhibition of Hsp90 resulted in increased susceptibility
of the fungus to itraconazole and micafungin. The synergism
observed between the inhibition of Hsp90 and the effect of
itraconazole or micafungin in reducing the fungal growth is
of great interest as a novel and potential strategy to treat
dermatophytoses.

This specific research topic on antifungal drug discovery
provides a detailed overview of potential novel antifungal
strategies, promising new discoveries and their clinical
implications, particularly that of Candida species.
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Candida bloodstream infections (CBI) are one of themost common nosocomial infections

globally, and they account for a high mortality rate. The increasing global prevalence of

drug-resistant Candida strains has also been posing a challenge to clinicians. In this

study, we comprehensively evaluated the biofilm formation and production of hemolysin

and proteinase of 63 CBI isolates derived from a hospital setting in Hong Kong as well

as their antifungal susceptibility both in the presence and in the absence of human

serum, using standard methodology. Candida albicans was the predominant species

among the 63 CBI isolates collected, and non-albicans Candida species accounted for

approximately one third of the isolates (36.5%). Of them, Candida tropicalis was the

most common non-albicans Candida species. A high proportion (31.7%) of the CBI

isolates (40% of C. albicans isolates, 10% of C. tropicalis isolates, 11% of C. parapsilosis

isolates, and 100% of C. glabrata isolates) were found to be resistant to fluconazole.

One of the isolates (C. tropicalis) was resistant to amphotericin B. A rising prevalence of

drug-resistance CBI isolates in Hong Kong was observed with reference to a previous

study. Notably, all non-albicans Candida species, showed increased hemolytic activity

relative to C. albicans, whilst C. albicans, C. tropicalis, and C. parapsilosis exhibited

proteinase activities. Majority of the isolates were capable of forming mature biofilms.

Interestingly, the presence of serum distorted the yeast sensitivity to fluconazole, but

not amphotericin B. Taken together, our findings demonstrate that CBI isolates of

Candida have the potential to express to varying extent their virulence attributes (e.g.,

biofilm formation, hemolysin production, and proteinase activity) and these, together with

perturbations in their antifungal sensitivity in the presence of serum, may contribute to

treatment complication in candidemia. The effect of serum on antifungal activity warrants

further investigations, as it has direct clinical relevance to the treatment outcome in

subjects with candidemia.
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8

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2016.00216
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2016.00216&domain=pdf&date_stamp=2016-02-26
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jaya@nus.edu.sg
mailto:ljjin@hku.hk
http://dx.doi.org/10.3389/fmicb.2016.00216
http://journal.frontiersin.org/article/10.3389/fmicb.2016.00216/abstract
http://loop.frontiersin.org/people/185643/overview
http://loop.frontiersin.org/people/320915/overview
http://loop.frontiersin.org/people/220855/overview
http://loop.frontiersin.org/people/283532/overview
http://loop.frontiersin.org/people/263799/overview
http://loop.frontiersin.org/people/320513/overview


Seneviratne et al. Virulence of Candida Bloodstream Isolates

INTRODUCTION

Candida is an opportunistic pathogen that can cause life-
threatening systemic and bloodstream infections in humans
(Calderone and Clancy, 2002). It is the fourth leading cause
of bloodstream infection in the United States, accounting for
approximately 9% of the total bloodstream infections, following
coagulase-negative Staphylococci, Staphylococcus aureus, and
Enterococcus species (Wisplinghoff et al., 2004). In recent reports,
Candida spp. remains the leading fungal cause of central line-
associated bloodstream infections (Hidron et al., 2008; Sievert
et al., 2013). Despite the advent of many new antifungal agents,
the incidence of Candida bloodstream infection (CBI) has been
steady over the past decades (Pfaller and Diekema, 2007). In
addition to its high incidence, the attributable mortality rate and
the associated cost burden are substantial (Wilson et al., 2002;
Warnock, 2007). In Hong Kong, an epidemiological study (Yap
et al., 2009) revealed a high prevalence, associated mortality, and
morbidity of CBI.

Of the Candida species, Candida albicans is by far the
predominant species of CBI (Pfaller et al., 2001, 2011; Labbé et al.,
2009). However, recently, the incidence of CBI caused by non-
albicans species (NAC) has increased and some of the common
species isolated are Candida tropicalis, C. parapsilosis, C. glabrata,
C. guilliermondii, C. dubliniensis, and C. krusei (Falagas et al.,
2010). The key virulence factors of Candida that are associated
with bloodstream infections include hemolysin production,
proteinases production and biofilm formation (Calderone and
Fonzi, 2001; Lim et al., 2012). Hydrolytic enzymes, such as
proteinases, of Candida species sequester nitrogen from proteins
of the host and facilitates tissue invasion (Staib, 1966; Schaller
et al., 2005), whereas, hemolysin is needed to acquire iron from
the hosts (Nayak et al., 2013). However, it should be noted that the
relevance of secreted aspartyl proteinases to the fungal virulence
is questionable as shown in data from animal studies (Correia
et al., 2010).

Biofilm formation is another feature that contributes to
Candida pathogenicity in catheter-related bloodstream infection
(Shin et al., 2002).Candida biofilm is known to be highly resistant
to antifungal agents, and it is thus a key attribute to the mortality
in bloodstream infections (Seneviratne et al., 2008a). In addition,
rising drug resistance among Candida species has posed a great
challenge to clinicians, especially when treating bloodstream
infections (Pfaller et al., 2011). Furthermore, there are only a few
studies in the literature that examine the antifungal susceptibility
and virulence attributes of CBI such as biofilm formation in Asian
populations (Shin et al., 2002; Seneviratne et al., 2011; Tay et al.,
2011; Kaur et al., 2014; Tellapragada et al., 2014).

In general, the pharmacologic effect of protein-bound drugs is
lower than their unbound counterparts. The protein binding of
a drug influences the amount of free unbound drug at the site of
infection, as well as its pharmacokinetics and pharmacodynamics
(Ashley et al., 2006). This is particularly important for drugs
targeting bloodstream infections where the drug is intrinsically
exposed to the serum proteins. However, studies on Candida
bloodstream isolates rarely attempted to capture the latter, real-
life scenario by evaluating the in vitro minimum inhibitory

concentration (MIC) of antifungals against these isolates in the
presence of serum.

In the present study, we comprehensively evaluated 63 isolates
from candidemic patients for their pathogenic attributes such
as hemolysin and proteinase production, and biofilm formation
as well as the susceptibility to the two most commonly used
antifungals, amphotericin B (a fungicidal agent) and fluconazole
(a fungistatic agent). Moreover, taking the foregoing research gap
into consideration, we also evaluated the MIC of these antifungal
agents in a serum-laced environment. Our study demonstrated
that CBI isolates are able to express pathogenic attributes to
varying extent; furthermore, the susceptibility of these isolates
against fluconazole is influenced in the presence of serum.

MATERIALS AND METHODS

Species Identification of Candida
Bloodstream Infection Isolates
Anonymous archival collection of Candida isolates was used in
the study with the approval of exemption from the Institutional
Review Board of the University of Hong Kong/Hospital
Authority Hong Kong West Cluster (HKU/HA HKW IRB). It
has been accepted by the funding authority, the Research Office
of the Food and Health Bureau, the Government of the Hong
Kong Special Administrative Region (Health &Medical Research
Fund, Project no.: 12111512). This study included 63 CBI isolates
derived from two hospitals i.e., QueenMaryHospital (23 isolates)
and Queen Elizabeth Hospital (40 isolates) in Hong Kong. The
Candida strains were isolated from patients before any antifungal
medication was administered. Species identification of Candida
isolates was performed by two standard culture-dependent
methods, namely CHROMagar (CHROMagar™ Candida) and
commercially available identification kit API 32C AUX method
(bioMérieux SA, France; Odds and Bernaerts, 1994). In brief,
CHROMagar differentiates various species of Candida by
formation of specific colored colonies when incubated at 37◦C
for 48–72 h. API 32C AUX assay is a carbohydrate assimilation
test which identifies the species based on their sugar metabolism.

Antifungal Susceptibility Testing
Antifungal susceptibility testing of the CBI isolates in planktonic
mode was performed using Clinical Laboratory Standards
Institute method (CLSI) protocol M27-A3 (broth microdilution
assay; Seneviratne et al., 2008b; Fothergill, 2012). Two-fold
dilution series of amphotericin B and fluconazole was prepared
in RPMI 1640 medium. For the serum induction experiment,
RPMI 1640 supplemented with 50% (v/v) human serum (Sigma)
was used (Wiederhold et al., 2007). Inocula from 24 h Candida
cultures were harvested and suspended in RPMI with turbidity
equivalent to McFarland standard 0.5 (1× 106 cells/ml) and then
diluted to approximately 0.5 × 103–2.5 × 103 cells/ml. The test
was performed in pre-sterilized, flat-bottom 96-well polystrene
plates (Iwaki, Japan). C. albicansATCC 90028 was used as quality
control strain. Plates were incubated at 37◦C for 48 h. MIC was
defined as the lowest concentration of the drug that completely
inhibits the growth according to the CLSI criteria.
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Hemolysin Assay
Hemolysin assay for Candida strains was performed according to
a previously validated protocol by our group (Luo et al., 2001).
In brief, Sabouraud dextrose agar supplemented with 7% sheep
blood and 3% glucose was used to determine the hemolysin
production by the CBI isolates. Suspension of yeast (1 × 108

cells/ml) was prepared in phosphate buffered saline (PBS; pH 7.2,
0.1 M) and 10µl was spot-inoculated on sheep blood agar plates,
incubated at 37◦C in 5% CO2 for 48 h. The diameters of the
colony and the transparent halo were measured by computerized
image analyzer (Qwin, Leica, UK). The hemolysin index (Hi)
was calculated by dividing the diameters of the colony and the
transparent halo. The assay was performed on two separate
occasions as quadruplicates for all isolates.

Proteinase Assay
The activity of secreted aspartyl proteinases was determined
by the bovine serum albumin (BSA) plate assay with some
modifications to the previous methods (Staib, 1966; Wu et al.,
1996). Suspensions equivalent to 0.5McFarland standard (1×106

cells/ml) were prepared from 18-h yeast cultured in Sabouraud
dextrose agar (SDA) and 10µl was spotted on 1% BSA plates.
The plates were incubated at 37◦C for 120 h. C. albicans ATCC
90028 and C. parapsilosis ATCC 22019 were used as positive and
negative controls. The plates were stained with staining solution
containing 1.25% of naphthalene black in 90% methanol/water
(v/v) for 5min and decolorized in 90% methanol/water (v/v)
for 48 h. The diameters of the colony and the transparent halo
were measured using the computerized image analyzer (Qwin,
Leica, UK). Proteinase production index (Ppr) was calculated by
dividing the diameters of the transparent halo and the colony
by the diameter of the colony. The assay was performed on two
separate occasions as quadruplicates for all isolates.

Biofilm Formation and XTT Reduction
Assay
Biofilm formation of CBI isolates was analyzed by previously
validated method by our group (Seneviratne et al., 2008b).
In brief, a loopful of 18 h culture grown at 37◦C in SDA
was harvested and suspended overnight in yeast nitrogen
base medium (YNB) supplemented with 50mM glucose in a
rotary shaker at 80 rpm overnight at 37◦C. Yeast cells in the
late exponential phase of growth were extracted and washed
twice with PBS. Then, the cells were re-suspended in YNB
supplemented with 100mM glucose with turbidity equivalent
to 4 McFarland standard. C. albicans ATCC 90028 was used
as a control for comparison. Hundred microliters of the yeast
suspension was transferred to the 96-well polystrene plate and
incubated at 37◦C for 90min (adhesion phase) in an orbital
shaker rotating at 80 rpm. Then, the medium was aspirated
and the biofilms were washed twice with 100µl of PBS to
remove unattached cells. After washing, 200µl of YNB medium
with 100mM glucose was added to each well. The plates were
incubated at 37◦C in a rotary shaker at 80 rpm for 48 h, with a
change of the growth medium at 24 h. After the 48 h incubation
period, the growth medium was pipetted out and the biofilms
were washed twice with 200µl of PBS before quantifying with

XTT reduction assay (Ramage et al., 2001). In brief, 200µl
of the XTT solution was added to the wells and the plate
was incubated in the dark at 37◦C for 3 h. The XTT solution
consisted of 40µl of XTT stock solution (1mg/ml in PBS) and
2µl of menadione (0.4mM in acetone) topped up to 200µl
in PBS. After incubation, 100µl of the colored solution was
aspirated from all the wells, transferred to Eppendorf tubes and
centrifuged at 8000 rpm for 10min. The centrifuged solution
was transferred to a different microtitre plate and the optical
density (OD) of the change in color was measured using a plate
reader (SpectraMAX 340 Tunable Microplate Reader; Molecular
Devices Ltd., Sunnyvale, CA) at 490 nm. This test was performed
in duplicates.

Genotyping of the Candida Isolates by
Random Amplification of Polymorphic DNA
(RAPD)
The genetic similarities of the C. albicans and C. tropicalis isolates
were examined by DNA fingerprinting through RAPD analysis.
Genomic DNA of the isolates was extracted using the QIAamp
DNA Mini Kit (Qiagen, Germany) according to the instructions
of the manufacturer. The PCR master mix was prepared with
2µL (100 ng/µL) of genomic DNA, 5µL 10X PCR buffer
(200mMTris/HCl, pH 8.4, 500mMKCl), 200µMdNTPs, 25mM
MgCl2, 1µM primer (T3B, 5′-AGG TCG CGG GTT CGA ATC
C-3′; Thanos et al., 1996) and 1.5U Taq Polymerase (Invitrogen).
PCR was performed by a thermal cycler (GeneAmp PCR System
9700, Applied Biosystems), with the first five cycles at 94◦C
for 5min, followed by 35 cycles of denaturation (94◦C, 30 s),
annealing (52◦C, 2min) and elongation (72◦C, 2min), and lastly,
final elongation at 72◦C for 10min. Positive control (genomic
DNA of C. albicans SC5314) and negative control (water) were
added in each PCR run. Gel electrophoresis of the PCR products
was performed in 1% agarose gel at constant voltage of 150V
for approximately 1 h. The bands were visualized by UV light
(ChemiDoc Imaging System, Bio-Rad, USA) after staining with
ethidium bromide. The bands of the isolates were analyzed
and dendrogram was constructed by the unweighted pair group
method in the program GelJ (Heras et al., 2015).

Statistical Analysis
One-way ANOVA with Bonferroni’s corrections were used for
multiple comparisons of hemolysin index, proteinase production
index and optical densities of the XTT reduction assay in Prism
6 (GraphPad Software, La Jolla, CA). A p-value of 0.05 or lower
was considered to be significant.

RESULTS

Species Distribution of the Isolates
Of the 63 Candida bloodstream isolates included in the study,
C. albicans was the most commonly detected species (n = 40),
followed by C. tropicalis (n = 10), C. parapsilosis (n = 9),
C. glabrata (n = 2), C. guilliermondii (n = 1) and C. dubliniensis
(n = 1; Table 1).
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Antifungal Susceptibility Testing
The planktonic cells of all the isolates were susceptible to
amphotericin B, except for a single isolate of C. tropicalis
exhibiting marginal resistance with 2µg/ml as MIC (Table 2).
A total of 31.7% of the CBI isolates was resistant to fluconazole
(MIC > 32µg/ml). Of the C. albicans isolates, 16 (40%) were
resistant to fluconazole. For the NAC, all the C. glabrata isolates
were resistant to fluconazole, whilst all the C. guilliermondii and
C. dubliniensis were susceptible. However, it has to be aware that
the low number of isolates of these three species may not be
representative.

Interestingly, serum-laced AST media did not alter the
activity of amphotericin B. On the other hand, 9 out of 63
isolates showed an increase in MIC of fluconazole in serum-
laced media (Table 3). Seven isolates exhibited four-fold raise
in MIC (S18, S25, M4, M5, M6, M8, and M16) and two
isolates exhibited three-fold increase (S29 and S14). On the
contrary, a few isolates (S15, S17, S36, and S11) showed
three-fold reduction in the MIC in the serum-laced medium
(Table 4).

Hemolysin Activity
The mean hemolysin index of the C. albicans isolates was
the lowest among all the species tested (1.592 ± 0.129).
It was significantly lower than the mean hemolysin index
of C. tropicalis and C. glabrata. Only two out of nine
C. parapsilosis isolates produced hemolysin on the blood agar,

TABLE 1 | Species distribution of the Candida bloodstream infection

isolates.

Species No. of isolates (%)

C. albicans 40 (63.5)

C. tropicalis 10 (15.9)

C. parapsilosis 9 (14.3)

C. glabrata 2 (3.2)

C. guilliermondii 1 (1.6)

C. dubliniensis 1 (1.6)

Total 63 (100)

while all isolates of other species exhibited hemolytic activity
(Table 5).

Proteinase Activity
No proteinase activity was observed in the C. glabrata,
C. guilliermondii, and C. dubliniensis isolates (Table 5).
Proteinase activity was observed among the remaining species
(C. albicans, C. tropicalis, and C. parapsilosis) and no statistical
significant difference was observed between the mean proteinase
indices of these three species.

Biofilm Formation and XTT Assay
C. albicans formed significantly more robust biofilms when
compared to NAC (Figure 1). Of the two C. glabrata isolates, one
produced very minimal biofilm, which gave the optical density
(OD) of 0.138 as examined by XTT reduction assay and was
10 times less than the average optical density of the C. albicans
biofilm (OD = 1.087). C. guilliermondii and C. dubliniensis
produced moderate biofilms (OD= 0.9).

TABLE 3 | Fluconazole susceptibility of Candida bloodstream isolates that

showed increase in MIC under 50% serum induction.

Isolates MIC (µg/ml)

RPMI RPMI + 50% serum

C. albicansa

S18 8 128

S25 8 128

S29 16 128

M4 4 64

M5 2 32

M6 2 32

M8 8 128

C. tropicalisb

S14 8 64

M16 8 128

MIC, minimum inhibitory concentration.
a17.5% (7 out of 40) of C. albicans isolates.
b20% (2 out of 10) of C. tropicalis isolates.

TABLE 2 | Antifungal susceptibility of Candida bloodstream isolates.

Species No. of isolates Amphotericin B Fluconazole

Susceptible Resistant Susceptible Resistant

MIC < 2µg/ml MIC ≥ 2µg/ml MIC ≤ 32µg/ml MIC > 32µg/ml

C. albicans 40 40 (100%) 0 (0%) 24 (60%) 16 (40%)

C. tropicalis 10 9 (90%) 1 (10%) 9 (90%) 1 (10%)

C. parapsilosis 9 9 (100%) 0 (0%) 8 (88.9%) 1 (11.1%)

C. glabrata 2 2 (100%) 0 (0%) 0 (0%) 2 (100%)

C. guilliermondii 1 1 (100%) 0 (0%) 1 (100%) 0 (0%)

C. dubliniensis 1 1 (100%) 0 (0%) 1 (100%) 0 (0%)

Total 63 62 (98.4%) 1 (1.6%) 43 (68.3%) 20 (31.7%)

MIC, minimum inhibitory concentration.
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Genotyping of the Candida Isolates by
(RAPD)
Genotyping was performed for C. albicans and C. tropicalis
strains. It seemed that strains derived from QueenMary Hospital
(23 isolates) and Queen Elizabeth Hospital (40 isolates) are
genetically quite similar (Supplementary Figures 1, 2). There was
no clear genotype specially associated with a particular hospital.
There was also no clear association between the genotype of
the species with their phenotypic features of biofilm formation,
hemolysin index and proteinase index.

DISCUSSION

Candidemia due to NAC has shown a steep rise in recent decades
(Samonis et al., 2008; Rodríguez et al., 2010). In the present study,
NAC accounted for a high proportion of all the CBI isolates
collected (36.5%), of which C. tropicalis was the most common.
These results reaffirm the findings of ours (Seneviratne et al.,
2011) and a 9-year long study conducted by Yap et al. (2009),
where NAC accounted for 46% of the 128 CBI isolates collected
in Hong Kong, with C. tropicalis being the most common NAC.
Similarly, C. tropicalis is also the most common NAC amongst

TABLE 4 | Fluconazole susceptibility of Candida blood isolates that

showed decrease in MIC under 50% serum induction.

Isolates MIC (µg/ml)

RPMI RPMI + 50% serum

C. albicansa

S15 16 2

S17 32 4

C. glabratab

S36 32 4

C. tropicalisc

S11 32 4

MIC, minimum inhibitory concentration.
a5% (2 out of 40) of C. albicans isolates.
b50% (1 out of 2) of C. glabrata isolates.
c10% (1 out of 10) of C. tropicalis isolates.

the Candida bloodstream isolates collected in other regions of
Asia (Chen et al., 1997, 2011; Jung et al., 2012; Chander et al.,
2013; Kaur et al., 2014). These data are in contrast to those from
Europe and the Northern and Latin America, where C. glabrata
and C. parapsilosis were the most common NAC in bloodstream
isolate (Pfaller et al., 2011). Clinicians should be mindful of the
geographical variation in the prevalence of different NAC species,
as they are often associated with higher mortality and resistance
to antifungals (Pfaller et al., 2011; Silva et al., 2012).

The increased prevalence of fungal infections and the
concomitant prescription of antifungals, have led to emergence
of drug-resistant Candida strains in the communities worldwide
(Arendrup et al., 2013). For instance, fluconazole-resistance is
now widespread owing to increased use of antifungals (Anaissie

FIGURE 1 | Biofilm formation of the Candida bloodstream infection

isolates measured by XTT reduction assay. OD, optical density; Ca,

C. albicans; Ct, C. tropicalis; Cp, C. parapsilosis; Cg, C. glabrata; Cgui,

C. guillermondii; Cd, C. dubliniensis; Control, C. albicans ATCC 90028; Error

bars, standard deviation; # Standard deviations could not be determined due

to the low number of isolates, *p < 0.05. The biofilm of each Candida

bloodstream infection isolate was quantified by XTT reduction assay. The

readings of isolates of each Candida species were averaged. Among all the

Candida species tested, C. albicans biofilm was the most robust, whilst

C. glabrata biofilm was the least robust. C. albicans biofilm was significantly

more robust than those of C. tropicalis and C. parapsilosis. No significant

difference was observed between the biofilm of C. tropicalis and

C. parapsilosis. The optical density of each of the individual isolates is provided

in Supplementary Table 1.

TABLE 5 | Hemolysin index and proteinase index of the Candida bloodstream infection isolates.

Species (n) Hemolysin index

mean ± SD

No. of hemolysin-positive

isolate/total no. of isolates

Proteinase index

mean ± SD

No. of proteinase-positive

isolate/total no. of isolates

C. albicans (40) 1.592 ± 0.129 40/40 1.854 ± 0.262 31/40

C. tropicalis (10) 1.949 ± 0.206a 10/10 1.799 ± 0.130 8/10

C. parapsilosis (9) 1.778 ± 0.230 2/9 1.640 ± 0.101 6/9

C. glabrata (2) 2.058 ± 0.078a 2/2 1 0/1

C. guilliermondii (1) 1.727 1/1 1 0/1

C. dubliniensis (1) 2.074 1/1 1 0/1

n, number of isolates; SD, standard deviation; a, significant higher than C. albicans. The hemolysin index was calculated by dividing the diameter of the transparent hemolytic halo with

that of the fungal colony. Similarly, the proteinase index was determined by dividing the diameter of the transparent proteolytic halo with that of the fungal colony. A value of one indicates

the absence of enzyme activity, and is excluded in the calculation of the mean. The hemolysin and proteinase indices of each of the individual isolates are provided in Supplementary

Table 1.
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et al., 1996; Kanafani and Perfect, 2008). In a previous study
we reported that all of the Hong Kong derived CBI isolates
(including C. tropicalis) were susceptible to amphotericin B and
fluconazole (Seneviratne et al., 2011). In contrast, in the present
study, almost a third (31.7%) of the CBI isolates were resistant
to fluconazole. Indeed, a single isolate of C. tropicalis showed
marginal resistance (2µg/ml) to amphotericin B (Table 2).
Resistance to amphotericin B has been recorded rarely in the past,
especially in C. tropicalis (Drutz and Lehrer, 1978). These data
point toward a rather insidious emergence of drug-resistance in
CBI in Hong Kong, and hence, the need for constant vigilance
accompanied by clinical surveillance studies.

Protein binding plays an important role in determining the
pharmacodynamics of a drug. Various studies have shown that
serum alters the MIC of antifungal drugs (Zhanel et al., 2001;
Bekersky et al., 2002). Higher dose is required for highly protein-
bound drugs to exhibit the samemicrobial killing efficiency when
compared to low protein-bound drugs (“free drug hypothesis”;
Drusano, 2004). Amphotericin B is a highly protein-bound drug
(>95%) and it is anticipated that there would be an increase in
MICs for Candida in vitro in the presence of serum proteins,
while the MICs of fluconazole, which is a weakly-bound drug
(11%), may remain unchanged (Humphrey et al., 1985; Bekersky
et al., 2002; Ashley et al., 2006).

Other studies have shown that half maximal effective
concentration (EC50) of amphotericin B significantly increased
for C. albicans ATCC 90028 and C. lusitaniae in RPMI
supplemented with 4 and 8% human serum albumin (Lewis et al.,
2006). In contrast, some studies exhibited results contradictory
to the free drug hypothesis (Zhanel et al., 2001; Zeitlinger et al.,
2011; Elefanti et al., 2013). In the study by Zhanel et al. (2001),
the MICs of amphotericin B of all the 10 isolates examined were
not altered in RPMI with 80% fresh human serum; whereas, 64%
of the isolates tested displayed increase in MIC of fluconazole
in RPMI with 80% human serum, and the remaining isolates
showed no change inMIC. In our study, all the isolated examined
displayed no change in the MICs to amphotericin B in the
presence of serum proteins. As for fluconazole, the MICs of the
majority of the isolates remained unchanged, but 14.3 and 6.3%
of the 63 isolates exhibited an increased and decreased MICs,
respectively in the presence of serum proteins (Tables 3, 4). Our
data, therefore, confirm the notion that the in vitro efficacy of
an antifungal drug does not necessarily depend upon its protein
binding capacity as suggested by others (Zhanel et al., 2001;
Elefanti et al., 2013).

Hemolysin is produced by some species of Candida which
destroy the circulating erythrocytes to acquire elemental iron
from hemoglobin (Schaible and Kaufmann, 2004). In the present
cohort, all the CBI isolates, except C. parapsilosis, exhibited
hemolytic activity (Table 5). Interestingly, the hemolytic-positive
isolates of NAC species exhibited higher hemolytic activities than
C. albicans. This is in contrast to the studies of Luo et al. (2001)
who reported that C. albicans as the most potent hemolytic
species.

Secreted aspartyl proteinases of Candida are thought to
degrade human proteins and provide nitrogen for the fungal
growth (Naglik et al., 2003). Only C. albicans, C. tropicalis, and
C. parapsilosis) in the present cohort demonstrated proteolytic

activities, whilst C. glabrata, C. guilliermondii, and C. dubliniensis
were devoid of such activity (Table 5).

Candida spp. are known to form highly organized biofilms,
especially on indwelling catheters and other prosthetic devices
(Seneviratne et al., 2008a). Different Candida species are also
known to have both inter- and intra-species variations in biofilm
development (Seneviratne et al., 2008a; Silva et al., 2010). In the
present study, all the CBI isolates, except C. glabrata, were good
biofilm formers, with C. albicans being superior to other species,
followed by C. tropicalis and C. parapsilosis (Figure 1). It has
been found that the mortality of CBI caused by biofilm-forming
Candida spp. are higher than those caused by non-biofilm-
forming counterparts (Tumbarello et al., 2012). Moreover, non-
albicans Candida species isolated from bloodstream were found
to be higher biofilm formers than those isolated from other
sites (Shin et al., 2002). Patients treated with anti-biofilm
antifungal agent (caspofungin), which demonstrates anti-biofilm
efficacy in vitro, were more commonly associated with shorter
post-CBI hospitalization than those treated with non-anti-
biofilm antifungal agent (fluconazole; Tumbarello et al., 2012).
Furthermore, the lower antifungal susceptibility associated with
Candida biofilm is often implicated in treatment complication
(Douglas, 2003; Seneviratne et al., 2008a). Our current finding
adds to the evidence that biofilm formation is a major
virulence factor that may lead to treatment complication of
CBI. Genotyping of the C. albicans and C. tropicalis strains
using RAPD showed that the strains derived from Queen Mary
and Queen Elizabeth hospitals in Hong Kong are quite similar.
There was no clear pattern of genotypic and phenotypic features
of the Candida strains. This is possibly due to genetic and
environmental relatedness of the strains in a single country.
Other studies have shown geographical location is a major factor
associated with genetic relatedness (Dassanayake et al., 2006).
Therefore, future studies should aim to compare genotype of the
Candida isolates with other regional countries.

In conclusion, the present study demonstrates that CBI
isolates are to varying extents capable of expressing virulence
attributes such as biofilm formation, hemolysin production and
proteinase activity. C. albicans is the predominant pathogenic
species in Hong Kong patients, while the proportion of NAC
species remains high. Our current findings further demonstrate
that C. tropicalis is the most common NAC isolated from CBI
in Asia. Almost all the isolates we have evaluated are able to
form mature biofilms. Antifungal resistance among CBI isolates,
particularly for fluconazole is variably demonstrated amongst the
isolates, a critical factor that should be borne in mind when
managing candidaemic patients for effective care. Finally, this
study indicates that the presence of serum may perturb the
activity of some antifungal agents, a factor that needs to be
considered when prescribing antifungals in candidemias.
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Candida is a major human fungal pathogen causing infectious conditions predominantly
in the elderly and immunocompromised hosts. Although Candida resides as a member
of the oral indigenous microbiota in symbiosis, some circumstances may cause
microbial imbalance leading to dysbiosis and resultant oral candidiasis. Therefore, oral
microbial symbiosis that suppresses the overgrowth of Candida is important for a
healthy oral ecosystem. In this regard, probiotics, prebiotics, and synbiotics can be
considered a potential therapeutic and preventive strategy against oral candidiasis.
Prebiotics have a direct effect on microbial growth as they stimulate the growth of
beneficial bacteria and suppress the growth of pathogens. Probiotics render a local
protective effect against pathogens and a systemic indirect effect on immunological
amelioration. Synbiotics are fusion products of prebiotics and probiotics. This mini
review discusses the potential use and associated limitations of probiotics, prebiotics,
and synbiotics for the prevention and treatment of oral candidiasis. We will also introduce
biogenics, a recent concept derived from the work on probiotics. Biogenics advocates
the use of beneficial bioactive substances produced by probiotic bacteria, whose
activities are independent from the viability of probiotic bacteria in human bodies.

Keywords: probiotics, prebiotics, synbiotics, biogenics, oral candidiasis, lactobacilli

INTRODUCTION

The indigenous microbiota on the surfaces of the skin and mucous membranes plays a role
in preventing the invasion of foreign pathogenic microorganisms. The oral cavity possesses a
diverse set of indigenous microbiota that perpetually interacts with the host mucosal surfaces. The
oral microbiota predominantly comprises bacteria and a small proportion of fungi. Candida is
the major fungus residing even in the healthy human oral cavity (Sardi et al., 2013). However,
depending on circumstances, Candida can transform into a pathogen causing oral infections.
Hence, when there is a collapse in the healthy microbial balance, i.e., dysbiosis, Candida can
proliferate and cause a typical opportunistic infection. Oral candidiasis has been frequently
observed in the elderly population due to problems associated with quality and the production
of saliva, as well as decreased cell-mediated immunity (Scully et al., 1994). Systemic Candida
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infections such as Candida pneumonia and candidemia due
to intravascular indwelling catheters have also been observed
in elderly populations (Eggimann et al., 2003). Recurrent oral
candidiasis occurs frequently in HIV-positive and AIDS patients
(Scully et al., 1994). The administration of antifungal drugs
is generally the first-line therapy of candidiasis. However, the
emergence of drug-resistant strains and frequent recurrence
of the disease in affected individuals are increasing challenges
in antifungal therapy (Pfaller and Diekema, 2007). This has
prompted the need for an alternative therapeutic and prevention
strategy. In this mini review, we will succinctly discuss the
potential use of probiotics, prebiotics, and synbiotics as an
alternative antifungal therapy. In addition, a new concept of
biogenics will be introduced. Biogenics is a strategy to overcome
the potential disadvantage of synbiotics, including difficulties in
the colonization process of non-native probiotic bacteria. It also
provides an additional advantage to produce functional foods
with bioactive metabolites.

PROBIOTICS

The Definition and History
The term “probiotics,” in contrast to antibiotics, was proposed
by Lilly and Stillwell (1965), from the original ecological
term, “probiosis” used by Kollath (1953), meaning a symbiotic
relationship between organisms. Fuller (1989) defined a probiotic
as “A livemicrobial feed supplement which beneficially affects the
host animal by improving its intestinal microbial balance” (Fuller,
1989). Hence, at that time, probiotics were intended to be used
only for the “intestinal microbiota.” Subsequent studies revealed
general health benefits of probiotics, such as an enhancement
of the human immune system, preventive effects concerning
urinary tract and respiratory tract infections and the allergic
or atopic condition in infants (Gourbeyre et al., 2011). Hence,
probiotics were redefined by Salminen et al. (1998) as “A viable
microbial food supplement which beneficially influences the
health of the host.” According to the FAO/WHO, probiotics are
defined as “live microorganisms when administered in adequate
amounts confer a health benefit on the host” (FAO/WHO, 2001).

Clinical Trials of Probiotics for Oral
Candida Infections
There has been a gradual increase in the number of studies that
focus on the application of probiotics on oral health (Haukioja,
2010). The majority of these studies have focused on two major
dental diseases, dental caries and periodontitis (Krasse et al.,
2005; Vivekananda et al., 2010; Cagetti et al., 2013). However,
studies on the use of probiotics for oral candidiasis are sparse
(Table 1). Ahola et al. (2002) and Hatakka et al. (2007) conducted
double-blinded, randomized clinical trials using probiotic cheese
on elderly populations with some oral health problems and
carriers of oral Candida compared with a younger cohort (18–
35 years of age). There was an observed trend that the probiotics
could decrease the quantity of Candida. However, the effect was
not significant (Ahola et al., 2002) or was small without an
improvement in the mucosal symptom (Hatakka et al., 2007).

On the other hand, studies conducted by Mendonça et al.
(2012), Ishikawa et al. (2015), and Kraft-Bodi et al. (2015)
reported a slight or moderate improvement of oral candidiasis
when patients were treated with probiotics. Dos Santos et al.
(2009) reported a drastic improvement of oral candidiasis upon
probiotic treatment.

In Vivo Animal and In Vitro Studies of
Probiotics for Oral Candida Infections
Several in vivo animal studies have been performed which
have examined the effect of probiotics on oral Candida
infections. However, the results remain controversial. Some
reports suggested a local as well as systemic beneficial effect
of probiotics on candidiasis (Wagner et al., 1997; Elahi et al.,
2005; Matsubara et al., 2012), while others have not observed a
positive effect (Zavisic et al., 2012). These diverse observations
may result from differences in the administration technique
employed. However, Kojima et al. (2015) demonstrated that the
key factor for the effectiveness of probiotics may be the selection
of an appropriate strain that works against Candida. A diverse set
of Lactobacilli species has been used for the previous probiotic
studies. The genome size of the Lactobacillus genus ranges from
1.23–4.91 Mb and the GC content spans 31.9–57.0% among
different species (Caufield et al., 2015). In addition, the properties
of strains within the same species of Lactobacillus have been
shown to vary (Koll et al., 2008; Tiihonen et al., 2010). Some of
these studies have selected probiotic (Lactobacillus) strains that
are known to confer intestinal health benefits and presume a
similar beneficial effect on oral infections or Candida infections.
Therefore, it is important to demonstrate the in vitro activity
of a probiotic strain against Candida and subsequently select an
efficient strain for in vivo and clinical studies. Such studies are few
and shown in Table 1.

Anti-Candida Products of Probiotics for
Oral Candidiasis
Probiotic lactobacilli co-aggregate with Candida and produce
antimicrobial substances that have a direct growth inhibitory
effect on Candida. Some of these substances produced include
organic acids (e.g., lactic acid and acetic acid), hydrogen peroxide
(H2O2), bacteriocins, and uncharacterized low molecular weight
substances with antifungal properties. Lactobacilli universally
produce lactic acid that inhibits the metabolic activity of Candida
sp. (Köhler et al., 2012), which has a weak antifungal activity
(Zalán et al., 2010). It appears that lactobacilli do not produce
effective concentrations of H2O2 against fungi (Shokryazdan
et al., 2014), unlike other bacteria (Piard and Desmazeaud, 1991).

Lactic acid bacteria produce bacteriocins, proteinaceous
antimicrobial substances with molecular weights of several
thousand daltons or more. Bacteriocins can be divided into
five classes according to their primary structure, molecular
composition and properties (Chen and Hoover, 2003; Pascual
et al., 2008). Bacteriocin L23 produced by Lactobacillus
fermentum L23 (Pascual et al., 2008), plantaricin produced
by L. plantarum (Sharma and Srivastava, 2014), and pentocin
TV35b produced by L. pentosus (Okkers et al., 1999) appear
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TABLE 1 | Summary of studies that examined the antifungal activity of probiotics against Candida albicans.

Reference Test strains Test design/Feature tested Results

Clinical studies

Ahola et al. (2002) L. rhamnosus GG/LS Intervention with cheese,
Double-blinded placebo RCT

Reduction in the risk of a high level of
Candida

Hatakka et al. (2007) L. lactis,
L. helveticus,
L. rhamnosus GG,
P. freudenreichii

Intervention of an elderly group with cheese for
16 weeks, Double-blinded randomized placebo trial
(tested group, n = 136, control group, n = 140)

10% reduction of the high Candida
count rate in the tested group (after
16-weeks intervention)

Dos Santos et al. (2009) L. casei.
B. breve

No control group, 26 individuals
Intervention with a commercial probiotic drink for
20 days

Reduction of the Candida carrying rate,
reduction of the sIgA level

Mendonça et al. (2012) L. casei,
B. breve

No control group,
42 individuals over 65 years of age
Intervention with a commercial probiotic drink for
30 days

Decrement of Candida prevalence,
increment of sIgA level

Sutula et al. (2013) L. casei No control group, 22 healthy individuals
approximately 32 years of age
Intervention with a commercial probiotic drink for
4 weeks

No reduction of the Candida CFU,
reduction of the halitosis score, did not
detect L. casei after tests

Ishikawa et al. (2015) L. rhamnosus, L. acidophilus,
B. bifidum

Double-blinded randomized trial (tested group,
n = 30, control group, n = 29)
Intervention with trial probiotic products for 5 weeks

Reduction of the Candida carrying rate
in the tested group

Kraft-Bodi et al. (2015) L. reuteri Double-blinded placebo RCT, elderly individuals living
in a nursing home (tested group, n = 84, control
group, n = 90)
Intervention with probiotic lozenges

Improved the Candida score

Animal studies

Wagner et al. (1997) L. acidophilus,
L. reuteri,
L. casei,
B. animalis

Oral candidiasis model in immunodeficient
bg/bg-nu/nu mice
Estimated by the CFU and pathological examinations

Increased the life expectancy in the
tested group

Elahi et al. (2005) L. acidophilus,
L. fermentum

Candida infection model using male DBA/2 mice
(H-2d), 6–8 weeks of age
Oral administration of probiotics

Reduction in the duration of Candida
colonization in the tested group

Matsubara et al. (2012) L. acidophilus,
L. rhamnosus

DBA/2 murine oral Candida infection model. Control
group was treated with nystatin, tested group was
treated with probiotics

Reduction of the Candida level in the
tested group compared with the control
group

Zavisic et al. (2012) L. plantarum,
L. casei

Wister rats and NMRI Ham laboratory mice Did not show an inhibition in C. albicans
growth

Ishijima (2012) S. salivarius ICR mice, oral candidiasis model Probiotics were not fungicidal, but
inhibited Candida adhesion

In vitro test

Chung et al. (1989) L. reuteri MIC assay using partial purified reuterin Reuterin, an anti- microbial substance
with broad spectrum effects, led to the
reduction of C. albicans growth

Koll et al. (2008) L. plantarum,
L. paracasei,
L. salivarius,
L. rhamnosus

Antimicrobial activity was detected using the
antagonism method

Did not show an inhibition in C. albicans
growth

Köhler et al. (2012) L. rhamnosus,
L. reuteri

Antimicrobial activity was detected using an overlay
plate or co-culture assay.
The genome-wide transcriptional profile of C. albicans
was assayed with a cDNA microarray

C. albicans was antisepticized by
inhibition of the metabolic activity under
a low pH

Hasslof et al. (2010) L. plantarum,
L. rhamnosus GG,
L. paracasei,
L. reuteri,
L. acidophilus

Agar overlay interference tests Candida growth was reduced, however,
the effect was generally weaker than for
mutans streptococci

Jiang et al. (2014) L. rhamnosus GG, L. casei,
L. reuteri,
L. brevis,
L. bulgaricus

Estimated the inhibition effect by pH conditions and
the combination of saccharides using EIR

Inhibition capacity differed in the
probiotic strains, L. rhamnosus showed
the strongest inhibition effects against
C. albicans

(Continued)
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TABLE 1 | Continued

Reference Test strains Test design/Feature tested Results

Shokryazdan et al. (2014) L. acidophilus,
L. buchneri,
L. casei,
L. fermentum

Co-culture test with 12 pathogenic microorganisms The active substance was organic acid

Kheradmand et al. (2014) L. johnsonii,
L.plantarum

After selenium treatment, the antimicrobial effects
improved

The active substances were
exometabolities or novel anti-Candida
compounds

Kojima et al. (2015) L. fermentum,
L. plantarum,
L. paracasei
per 12 species (40 strains)

Co-culture and growth inhibition assays of C. albicans
with Lactobacilli culture supernatant or saccharides

Three saccharides and five strains
became candidates for pre- and
probiotics, respectively

to be effective against the yeast form of Candida. Bacteriocins
effective for hyphal forms of Candida have not yet been identified
(Calderone and Fonzi, 2001; Douglas, 2003). Low molecular
substances of lactobacilli, such as reuterin (Talarico et al., 1988),
reutericyclin (Ganzle, 2000), and dyacetyl (Jay, 1982), have also
been shown to be effective against the yeast forms of Candida
(Chung et al., 1989).

PREBIOTICS

The term “prebiotics” was defined by Gibson and Roberfroid
(1995) as “a non-digestible food ingredient that beneficially
affects the host by selectively stimulating the growth and/or
activity of one or a limited number of bacteria in the colon, and
thus improves host health.” Studies of oral prebiotics are limited.
Sugars and dietary fiber have been considered to be prebiotics
for intestinal lactic acid bacteria (Gibson and Roberfroid, 1995).
However, this is not the case for the oral environment, as the
presence of sugars increases the risk of dental caries. The mutans
group of streptococci metabolizes cariogenic sugars, such as
glucose and sucrose, and produces organic acid and insoluble
glucan factors that contribute to dental caries. On the other hand,
sugar alcohols such as xylitol suppress the growth of Streptococcus
mutans. Xylitol, a reduced derivative of xylose, converts to
xylitol-5-phosphate inside S. mutans cells and inhibits glycolysis
(Miyasawa-Hori et al., 2006). Similarly, arabinose, a member
of the same aldopentose group as xylose, is not assimilated by
S. mutans (Coykendall, 1977) and likely has a similar effect
as xylitol. We recently demonstrated that xylitol, xylose, and
arabinose inhibited the growth of S. mutans, but were utilized for
the growth of most of the lactobacilli strains we tested (Kojima
et al., 2015). Although xylitol is generally not assimilated by
lactobacilli, a recent report showed that 36% of lactobacilli strains
isolated from human oral cavities were able to metabolize xylitol
(Almstahl et al., 2013). Meanwhile, our previous data on Candida
albicansATCC18804 showed decreased growth in the presence of
three saccharides (xylitol, xylose, and arabinose) compared with
glucose (Kojima et al., 2015). There are conflicting reports on
the ability of C. albicans to assimilate xylitol and aldopentose.
Mäkinen et al. (1975) andMaleszka and Schneider (1982) showed
that C. albicans is not capable of proper growth in the presence of
xylitol. Uittamo et al. (2011) suggested that xylitol metabolism

of Candida might compete for the nicotinamide adenine
dinucleotide (NADH) coenzyme, leading to the downregulation
of alcohol dehydrogenase (ADH). Clinical trials of Turku sugar
studies III and VIII showed significantly decreased colony counts
and detection frequency of oral Candida in the xylitol intake
group [Larmas et al. (1974, 1976)]. On the other hand, yeast is
known to possess a pentose assimilation pathway that produces
ethanol from arabinose and xylose by an enzymatic reaction
(Chiang and Knight, 1960; Ônishi and Suzuki, 1966). Even if
Candida is capable of slowly assimilating those three candidate
sugars, the phenomenon of slower growth compared to that of
probiotic bacteria may have a competitive inhibition on Candida.
The presence of xylitol inhibits the adhesion of Candida to
mucosal surfaces (Pizzo et al., 2000; Abu-Elteen, 2005). In an
experimental murine model of gastrointestinal candidiasis, the
colonization and invasion of C. albicans was significantly reduced
in the group supplemented with xylitol compared to the group
supplemented with glucose (Vargas et al., 1993).

SYNBIOTICS

The Noteworthy Features of Synbiotics
Associated with the Oral Application
Gibson and Roberfroid (1995) proposed the use of probiotics and
prebiotics fusion products or “synbiotics” for the intestinal tract
microbiota (Panigrahi et al., 2008). However, the use of synbiotics
for the oral microbiota has not been well studied (Kojima et al.,
2015). It is important to understand the limitations associated
with the oral application of synbiotics. Probiotic bacteria are not
able to easily colonize adult oral cavities (Lazarevic et al., 2010;
Tiihonen et al., 2010). Therefore, it appears that synbiotics are
more effective for oral applications than probiotics alone. One
must, however, consider the risk of dental caries while applying
lactic acid bacteria in the oral cavity. Lactobacilli have long
been considered to be one of the cariogenic bacteria present in
dental plaque (Glass, 1952). Currently, there are two concepts
on the association of lactobacilli with dental caries. Lactobacilli
comprise a very small proportion of normal oral microbiota and
are primarily present on the tongue dorsum, rather than in dental
plaque (vanHoute et al., 1972). However, they are hardly detected
in the oral cavity of caries-free individuals (Yang et al., 2010).
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The lactobacilli count in the saliva is an indicator of the dental
caries activity as lactobacilli penetrate porous tooth surfaces in
early caries lesions or adhere to type I collagen exposed in the
carious portion of the tooth (Caufield et al., 2015). As the salivary
lactobacilli count correlates with the amount and frequency
of carbohydrate (sugar) intake (Jay, 1947; Becks, 1950), the
presence of lactobacilli is a reliable indicator for the dental caries
activity (Crossner, 1981). Therefore, if one can maintain good
oral hygiene, oral probiotic therapy with lactobacilli alone may
not contribute to the development of dental caries. In addition,
if appropriate prebiotics are administered simultaneously, then
synbiotic therapy may suppress the development of oral
candidiasis.

The Different Immune Responses
Associated with Synbiotics in the
Intestinal Tracts or Oral Cavities
The important considerations for synbiotic therapy of the
intestine and oral cavity are the host immune component and
reactions. While activation of a substantial host immune response
can be expected in the intestine, a similar phenomenon is not
expected in the oral cavity as it is not an organ of mucosa-
associated lymphoid tissues (MALT). In the intestine, probiotic
bacteria are incorporated into M cells in Peyer’s patches (PP),
which is a major component of gut-associated lymphoid tissues
(GALT), and digested to form active antigens. Macrophages
and dendritic cells in PP phagocytize probiotic bacteria and are
activated to produce several cytokines, which stimulate T-cell
and B-cell functions (Matsuzaki et al., 2007). Moreover, daily
supplementation of lactobacilli as part of a normal diet increased
the number and activity of natural killer cells in healthy elderly

individuals (Tiihonen et al., 2010). Thus, synbiotics in the
intestinal tract can be expected to activate both innate immunity
and acquired immunity of cell-mediated and humoral immunity.
Conversely, the oral cavity it is not an immune organ and
phenomenon such as direct antigen presentation to adaptive
immune cells does not occur. Nevertheless, some probiotic
clinical trials and animal studies using oral candidiasis models
have reported an increase of sIgA against Candida, leading to the
suppression of Candida in the oral cavity (Wagner et al., 1997;
Elahi et al., 2005; Mendonça et al., 2012). It is well known that
secretion of sIgA at the salivary gland is through differentiated
plasma cells from B cells stimulated at MALT. According to
the results of clinical and animal studies described above, oral
synbiotics appear to transition into intestinal synbiotics, as the
oral cavity is connected to the intestine. Children who were oral
lactobacilli carriers were found to have similar lactobacilli in their
feces (Caufield et al., 2015). Hence, it appears that the intestinal
colonization of lactobacilli is transmitted though the oral cavity,
which may provide simultaneous synbiotic activity at the oral
cavity and the intestine.

BIOGENICS

Previous studies have highlighted the limitation of colonization
and fixation of non-nature probiotic bacteria in the intestinal
tracts of human bodies (Haenel, 1960; Mitsuoka and Kaneuchi,
1977). This scenario is also relevant for the probiotic application
in oral cavities, particularly when considering the associated
risk of oral probiotics and dental caries. In order to address
foregoing concerns, the concept of “biogenics” has been
suggested as a solution (Mitsuoka, 2000). Biogenics is defined as

FIGURE 1 | Anti-Candida effects with synchronized prebiotics, probiotics, biogenics, and immunological resistance.
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“food ingredients which beneficially affect the host by directly
immunostimulating or suppressing mutagenesis, tumorigenesis,
peroxidation, hypercholesterolemia, or intestinal putrefaction”
(Mitsuoka, 2000). Hence, previous studies have suggested the
administration of non-viable probiotic bacteria to obtain some
“probiotic” effects. It was reported that the consumption of
pasteurized fermented milk elongated the lifespan of mice (Arai
et al., 1980; Takano et al., 1985). A significant reduction of the
Ehrlich ascites tumor growth in mice was also reported (Takano
et al., 1985). In addition, it was shown that heat-inactivated
Enterococcus faecalis (Terada et al., 2004) or L. gasseri (Sawada
et al., 2016) retained a beneficial regulatory function in the
gut. Moreover, Nakamura et al. (1995) identified an angiotensin
I-converting enzyme (ACE) inhibitor in a Japanese sterilized
milk beverage fermented by L. helveticus and Saccharomyces
cerevisiae.The active substance was lactotripeptides metabolically
generated in the fermentation pathway. Follow-up studies were
able to determine the bioactive metabolites of probiotic bacteria
in addition to the antimicrobial substances, such as bacteriocin
(Ross et al., 2010; O’Shea et al., 2012), and other beneficial
active substances, such as conjugated linoleic acid (CLA; Hayes
et al., 2006; Ross et al., 2010; O’Shea et al., 2012), protein or
peptides (Möller et al., 2008; Bogsan et al., 2013), and polyphenols
(Dharmaraj, 2010; Monagas et al., 2010). Taking all these
observations into account, the new concept, biogenics, which
makes use of the bioactive metabolites as foods or medicine,
was recently advocated (Mitsuoka, 2000, 2014). The biogenics
effect is independent of the colonization and viability of probiotic
bacteria. Hence, biogenics is the direct delivery of an isolated and
purified active ingredient of probiotics to the local environment.
This strategy may also be used as an antifungal therapy. It may

be possible to purify the active ingredients of probiotic bacteria
that demonstrate antifungal activity for use in the biogenics
process. However, this idea requires further study before clinical
use.

CONCLUSION

Taking the abovementioned studies into consideration, it is
conceivable that an innovative combination of prebiotics,
probiotics, synbiotics, and biogenics instrumental in devising a
successful, novel antifungal regime in the future (Figure 1). More
comprehensive investigations on the mechanism of synbiotics
and biogenics are needed for this purpose. Hence, more studies
are warranted to examine the bioactive metabolites of probiotic
bacteria that induce favorable immunological outcomes and
suppress Candida infection in the human oral cavity.
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Antifungal drugs belong to few chemical groups and such low diversity limits the

therapeutic choices. The urgent need of innovative options has pushed researchers

to search new bioactive molecules. Literature regarding the last 15 years reveals

that different research groups have used different approaches to achieve such goal.

However, the discovery of molecules with different mechanisms of action still demands

considerable time and efforts. This review was conceived to present how Pharmaceutical

Biotechnology might contribute to the discovery of molecules with antifungal properties

by microbial biotransformation procedures. Authors present some aspects of (1)

microbial biotransformation of herbal medicines and food; (2) possibility of major and

minor molecular amendments in existing molecules by biocatalysis; (3) methodological

improvements in processes involving whole cells and immobilized enzymes; (4) potential

of endophytic fungi to produce antimicrobials by bioconversions; and (5) in silico research

driving to the improvement of molecules. All these issues belong to a new conception of

transformation procedures, so-called “green chemistry,” which aims the highest possible

efficiency with reduced production of waste and the smallest environmental impact.

Keywords: microbial biotransformation, biocatalysis, bioconversion, metabolism, antifungals

INTRODUCTION

The search for new molecules has forced the pharmaceutical industry to modernize its synthetic
processes. Such modernization has occurred with the adoption of new techniques, such as
miniaturization, nanotechnology, microdosing, chemometrics, and high-throughput analysis (Koh
et al., 2003). Another aspect of modernization, so-called “Green Chemistry,” requires new synthetic
processes with the highest possible efficiency, resulting in reduced production of waste and the
smallest environmental impact (Tucker, 2006).

More than 20,000 molecules with antibiotic activity that are produced by microorganisms have
been described since the discovery of penicillin by Sir Alexander Fleming; however, only a small
fraction of them are clinically useful due to their toxicity. Since the 1980s, a decline in the discovery
of new molecules has been observed (Murphy, 2012).

The antifungal agents available on themarket act on different targets such as ergosterol synthesis,
chitin synthesis, glucan synthesis, nucleic acid synthesis, protein synthesis, microtubule synthesis,
or as inhibitors of squalene epoxidase or ergosterol disruptors (Kathiravan et al., 2012). However,
although there is substantial variability in the mechanisms of action and despite the technical
advances, the development of new antifungal drugs persists considering the co-evolution of
resistancemechanisms. Between 2006 and 2010, only one antifungal was approved for use, a natural
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echinocandin that was chemically changed by a semi-synthetic
route (Chen et al., 2011). In the last 30 years, among
the 28 new naturally occurring molecules, only three semi-
synthetic molecules that underwent chemical changes have been
authorized for clinical use (Newman and Cragg, 2012).

It is estimated that 25% of the world’s population presents
some episode of superficial mycosis and the mortality rate
associated with invasive fungal infections frequently exceeds
50%, even with the available antifungal medications. This
amount corresponds to approximately 1.5 million deaths
annually (Brown et al., 2012). Even under prophylactic use with
antifungals, some changes in epidemiological features have been
reported in more aggressive mucormicoses in patients using
voriconazole, as well as the rampant development of resistance
to azole by Aspergillus spp. (Perfect et al., 2014).

Echinocandins and allylamines are more modern drug classes
approved, but they date back to the 1970s and 1980s, respectively
(Odds, 2003). Echinocandins have been used as the treatment
of choice for systemic candidoses and are effective for strains
resistant to azoles (Zimbeck et al., 2010; Eschenauer et al., 2014);
however, a mutation in the FKS gene increases the resistance of
Candida spp. to echinocandins (Zimbeck et al., 2010; Beyda et al.,
2012). A multicenter study demonstrated that C. glabrata and C.
krusei have lost their susceptibility to caspofungin (24 and 52%,
respectively) and that other common Candida species are rapidly
losing their susceptibility to echinocandins (Zimbeck et al., 2010).

Even assuming great advances in synthetic chemistry,
biotransformation (or biocatalysis) remains the most cost-
effective path to discover new pharmaceuticals (Zaks and Dodds,
1997). Special attention should be given to the significant number
of drugs produced by microorganisms or by interactions with the
host from which they were isolated. Both cases contribute to the
idea that biotransformation processes shall expand significantly
in the future (Newman and Cragg, 2012). Nevertheless, there
are some questions regarding biotransformation that have to be
addressed: (1) How can structural changes occur in a way to
make the processes more time- and cost-efficient? (2) How can
the biological activity of products be enhanced by optimizing
the pharmacokinetic/pharmacodynamic (PK/PD) properties and
safety? (3) How may a supplier guarantee large-scale drug
production under good quality practices? (Bauer and Brönstrup,
2014).

With the appropriation of concepts from White
Biotechnology and Green Chemistry, this review aims to
assess the technological advances in the development of
microbial biotransformation products with antifungal activity.

MICROBIAL METABOLISM VS. MICROBIAL
BIOTRANSFORMATION

Natural products compose more than 2/3 of antibiotics used
in the medical/dental/veterinary practice (Schmitz et al., 2013).
Thus, it is not an erroneous statement to assume that active
substances from plants or those isolated from microorganisms
are the simplest way to search for new molecules. If they have
antifungal potential, some criteria must be observed (Barrett,

2002): (1) Do they present novel mechanisms of action or any
useful known mechanisms? (2) Is it possible to obtain clinical
proof with good biological activity? (3) Is it possible to change
the molecule to make it a tolerable drug? A good example of
a bioactive molecule obtained from plant extracts is eugenol,
which is extracted from Eugenia caryophillis (Indian clove). It is
a phenylpropanoid that presents considerable fungicidal activity
in vitro against C. albicans, and, unlike fluconazole, is also
effective against C. krusei and C. glabrata (Ahmad et al., 2010).

In addition to plants, microorganisms have provided some
bioactive molecules with remarkable antimicrobial activity,
especially in the last two decades.

For fungal infections, the glycopeptide occidiofungin A is
produced by Burkholderia contaminansMS14 and presents great
antifungal activity against pathogens of plants and animals (Lu
et al., 2009). Its mechanism of action has not been elucidated, but
it is assumed that it differs from the known classes and can bypass
fungal resistance problems (Tan et al., 2012). Benanomicin A and
benanomicin B are fermentatively produced by the cultivation
of Actinomadura spadix MH193-16F4 and are broad-spectrum
antimicrobials against various fungi including endemic and
opportunistic pathogens (Kumagai et al., 2008).

Although there remains a myriad of naturally occurring
secondary metabolites to be evaluated and discovered,
microbial biotransformation has emerged as an important
tool for obtaining novel structural analogs or to improve the
pharmacokinetic parameters of other substances (Parshikov
et al., 2000; Borges et al., 2008; Baydoun et al., 2014).

It is important to emphasize that metabolism and
biotransformation are distinct systems of molecular processing.
Microbial metabolism is composed of two major processes;
primary metabolism, which is responsible for cellular
function, and secondary metabolism, which uses pre-existing
metabolic pathways to produce substances from endogenous
intermediates to allow better adaptation of the organism to
the environment (Keller et al., 2005; Brakhage, 2013). Primary
metabolism consists of reactions associated with energy
generating, biomass production, and essential cell components.
Events such as glycolysis, oxidative phosphorylation, and
the Calvin-Benson cycle (in algae and photosynthesizing
bacteria) are examples of typical sets of reactions of primary
metabolism.

In contrast, secondary metabolism involves important events
for adaptation to environmental conditions. In general, it
generates low molar mass metabolites that are not essential for
growth but that offer some advantages and may sometimes have
medical/veterinary/agricultural/industrial importance. They
include antibiotics, pigments, anti-tumor agents, etc. They have
unusual structures and are normally synthesized during the late
phase of cell growth (Ruiz et al., 2010).

Regarding to antibiotics, it is estimated that actinomycetes
are responsible for 70–80% of all molecules produced by
secondary metabolism. Different species belonging to the genus
Streptomyces produces important antibiotics as chloramphenicol,
streptomycin, macrolides, and rifampicin, among others (Raja
and Prabakarana, 2011). A recent review regarding to this
theme presented new perspectives about the optimization in the
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production of actinomycetes-derived antibiotics (Antoraz et al.,
2015).

Biotransformation, sometimes inaccurately called “xenobiotic
metabolism,” is responsible for minor structural modifications
in exogenous substances by enzyme systems that lead to the
formation of molecules with relatively greater polarity (Asha
and Vidyavathi, 2009; Pervaiz et al., 2013). Phenomena such
as stereoselective hydroxylation, epoxidation, and oxidation are
common reactions attributed to biotransformation processes
and have been reported to occur in fungi (Farooq et al.,
2002; Choudhary et al., 2005, 2007, 2009, 2010; Al-Aboudi
et al., 2009). It is a mechanism that microorganisms developed
to adapt to environmental changes and it is useful in a
wide range of biotechnological processes (Crešnar and Petric,
2011).

One of the most remarkable features of biotransformation
reactions is the maintenance of the original carbon skeleton after
obtaining the products. Duringmetabolism, the carbon atoms are
transferred to other molecules with different chemical functions
(Figure 1).

Biotransformation reactions may involve various events such
as the formation of stable intermediates, which may be devoid
of toxic or pharmacologic activity. Sometimes, short-lived
reactants may also be generated. Further, biotransformation
reactions can result in chemically stable compounds with desired
pharmacological activity (Fura, 2006).

The use of microbial biotransformation is part of a new
movement named White Biotechnology, which is an emerging
field of modern biotechnology that serves industry. It employs
living cells (animals, plants, algae, filamentous fungi, yeast,
actinomycetes, and bacteria), as well as enzymes produced by
these cells during the generation of products of interest.

Wisely, Venisetty and Ciddi (2003) presented nine practical
advantages in the use of microbial systems as models for drug
metabolism:

(1) The low-cost and facility to maintain stock cultures of
microorganisms;

(2) Procedures with large number of strains are simple repetitive
processes;

(3) The concentrations of parental molecules used (generally
ranging from 0.2 to 0.5 g/L) are much higher than those
employed in other cell or tissue models;

FIGURE 1 | (A) Typical multi-step metabolic reactions, with deep alterations

on carbon skeleton (in this case, fatty acid oxidation). (B) Typical one-step

biotransformation reaction, with minor punctual alterations on carbon skeleton

(Adapted from: Hegazy et al., 2015).

(4) Novel products can be isolated with new or different
activities;

(5) There is a possibility to predict the most favored metabolic
reactions;

(6) The models can be scaled up easily for the preparation
of metabolites for pharmacological and toxicological
evaluation;

(7) These models can be utilized in synthetic reactions where
tedious steps are involved;

(8) In most cases, relatively mild incubation conditions are used;
(9) The models can be useful in cases where regio- and stereo-

specificity are involved, becoming molecular handling more
easily achieved by biotransformation than by synthetic
chemistry.

With regards to these last two statements, obtaining an
antimicrobial may become critically laborious if only chemical
procedures are employed, even for semi-synthetic compounds
(Wild, 1994; Claes et al., 2013). In this context, microbial
biotransformation becomes an attractive resource.

Living cells can be used in their original state (wild strains)
or improved to work as “cell factories” to produce enzymes or
consumer goods (Carballeira et al., 2009). Despite their potential,
the number and diversity of applications is still modest when
considering the wide availability of microorganisms, the large
number of reactions that they can achieve and the fact that
biotransformation reactions are considered economically and
ecologically competitive (Borges et al., 2009).

BIOTRANSFORMATION BY WHOLE CELLS
VS. IMMOBILIZED ENZYMES

It is insufficient to know the microbial biotransformation
pathways to establish whether they are economically useful;
rather, it is necessary to define reproducibility at a production
scale. This assumption demands some concern regarding
raw materials (the molecule to be biotransformed and the
microorganism/enzyme responsible for the reaction), equipment
(bioreactors), and the necessary technology to be employed in
the purification of the products (downstream processing). In
addition, it is imperative to take into account the lowest possible
production of pollutants and the highest possible enantiomeric
purity of the final product.

The criteria above are focuses of Green Chemistry that have
allowed the construction of chiral chemical building blocks that
lead to the development of enantiopure products obtained under
mild reaction conditions at physiological pH and temperature,
using water as reaction milieu and environmentally friendly
catalysts (enzymes or cells). The obtained products are usually
multifunctional molecules that exhibit highly chemo-regio-
stereoselective activity (Borges et al., 2009; Muñoz Solano et al.,
2012).

Immobilized enzymes are used for the conversion of
molecules in many industrial fields, although they are preferably
directed to simple catalytic processes. For the production of
antimicrobials, the applicability of individualized enzymes in
stricto sensu biotransformation processes is still incipient and

Frontiers in Microbiology | www.frontiersin.org December 2015 | Volume 6 | Article 1433 | 26

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Bianchini et al. Antifungals by Microbial Biotransformation

little explored (Banerjee, 1993a,b; Mujawar, 1999; Takimoto et al.,
2004; Hormigo et al., 2010). Possibly, this may result from the
functional complexity required, which is readily attainable by
living organisms.

An important enzyme feature that has not been properly
explored is their promiscuity, which is the ability of enzymes
to catalyze different reactions with distinct catalytic mechanisms
to create new pathways (Wu et al., 2010). If we obtained
a new molecule with remarkable antifungal properties but
with inappropriate characteristics for ADMET (administration,
distribution, metabolism, excretion, and toxicity), it is possible to
“improve” its structure by enzyme promiscuity. For this, in silico
technologies favor technical development processes, predicting
PK/PD characteristics and increasing the use of immobilized
enzymes in the synthesis of pharmaceuticals.

Some complex processes of anti-proliferation production
via enzymatic biotransformation are already known. A good
example is the biosynthesis of griseofulvin from malonyl-CoA
using purified enzymes (Cacho et al., 2013). Several phases
including aldol condensation, cyclization, halogenation, and
oxidation are enzyme-mediated steps that can be reproduced
without the need of a living organism.

Penicillin G acylase (PGA) is one of the most relevant and
widely used biocatalysts for the industrial production of β-lactam
semisynthetic antibiotics (Srirangan et al., 2013). Such an enzyme
may be bulk produced as heterologous PGA in competent strains
such as Escherichia coliATCC R© 11105™ (Erarslan et al., 1990) or
Bacillus badius PGS10 (Rajendran et al., 2011).

Considering the processes using whole cells, it is assumed
that fungi are the organisms most commonly used to obtain
natural metabolic products and for biotransformation reactions
(Borges et al., 2009), even for the procurement of antifungal
drugs; however, microorganisms from other kingdoms may also
conduct dedicated biotransformation processes in order to obtain
antifungal molecules (Table 1).

The use of whole cells is advantageous once they present all
the needed enzymes and cofactors in adequate concentrations
and energy status. These favorable conditions may modulate the
activity of multienzymatic complexes and contribute to increase
conversion rates (Restaino et al., 2014).

The obtaining of biotransformation products may be
conducted using co-cultivation of two or more distinct entities.
It has been proposed by Wu et al. (2015), who reported
the increased obtaining of bioactive molecules during the co-
cultivation of Streptomyces coelicolor A3(2)M145 (actinomycete)
and Aspergillus niger N402 (fungus). According to the authors,
“growth in microbial communities or interactions between
different microorganisms is the next logical step in the search for
new molecules.”

Another interesting approach involves the possibility
of heterologous expression of biotransformation-related
cytochrome P450 enzymes from actinomycetes in bacteria to
obtain new antimycotic derivates (Kumagai et al., 2008). It
becomes useful for biotransformation procedures in large scale
producing plants where large bioreactors are employed.

It has been reported that pyrethrosin, a germacrane
sesquiterpene lactone commonly found in Chrysanthemum

cinerariaefoliumVisiani (Asteraceae), can be converted to several
new molecules by Cunninghamella elegans NRRL1392 and
Rhizopus nigricans NRRL1477 (Galal, 2001). Such filamentous
fungi are able to completely deplete pyrethrosin, transforming
it into five more polar metabolites that are very active
against Cryptococcus neoformans (IC50 = 25–35.0µg.mL−1) and
Candida albicans (IC50 = 10–30µg.mL−1).

The search for new antifungal molecules via microbial
biotransformation involves not only purified precursor
molecules, but may encompass complex substrates that can
be bioconverted into extracts rich in active substances.

Biotransformation products of cabbage-crude extracts
(Brassica oleracea var. capitata) processed by Pseudomonas
syringe pv. T1 showed promising inhibitory activity for
several Candida spp., with values close to those obtained for
amphotericin B (Bajpai et al., 2011). Pectobacterium atrosepticum
Pepto-A, a Gram-negative plant pathogen, can also be produced
from cabbage extracts to yield anti-Candida compounds (Bajpai
et al., 2012a).

Another Pectobacterium species, P. carotovorum subsp.
carotovorum 21, also presented the ability to biotransform
compounds found in cabbage (Bajpai et al., 2010a) and
in tomatoes (Solanun esculentum) to generate others with
remarkable activity against Candida spp. (Bajpai et al., 2012b,c).

Biotransformation has been successfully utilized as a tool
to generate pharmaceutical compounds from natural products.
Through this process, ethyl p-methoxycinnamate (EPMC) was
extracted from Kaempferia galanga (a Malaysian plant) and was
transformed using Aspergilus niger to ethyl p-hydroxycinnamate
(EPHC) (Omar et al., 2014). Looking at antimicrobial activities,
EPHC has a potential inhibitory effect against C. albicans that is
better than the effect by EPMC. This highlights the possibility of
increasing antifungal value to other known antifungal molecules.

Studies in this area shall be directed toward the diversification
of substrates combined with the numerous species of
biotransforming microorganisms. This can thus result in
the expansion of the antifungal library. In a recent review, a
number of molecules with antimicrobial activity derived from
monoterpenes have been described after biotransformation
processes by various microorganisms (Bhatti et al., 2014).

ENDOPHYTIC FUNGI PRODUCE
ANTIMICROBIALS BY
BIOTRANSFORMATION

Despite the substantial worldwide diversity, the discovery of
new families of bioactive molecules is surprisingly declining,
driving the need to bioprospect new sources (Joseph and Priya,
2011). Following such a thought, a group with promising
potential for new discoveries in the biotransformation area is
that of endophytic fungi. In recent years, endophytic fungi have
garnered great interest.

They are organisms that can grow either intra or
extracellularly in the tissues of higher plants in a clear mutualistic
relationship without causing any symptoms. Evidence shows
that they are a rich source of bioactive natural products. Active
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TABLE 1 | Antifungal molecules obtained by microbial biotransformation.

Antifungal chemical Biotransformer microorganism Parental chemical Antifungal activity Citation

bEPA

Pseudomonas aeruginosa NRRL-B-18602

Eicosapentaenoic acid Botrytis cinerea Bajpai et al., 2008

Colletotrichum capsici Bajpai and Kang, 2007

bDHA Docosahexaenoic acid Fusarium oxysporum Bajpai et al., 2009b

bEFA Hydroxifatty acids:

ricinoleic acid, linoleic acid,

eicosadienoic acid, etc

Fusarium solani

Phytophthora capsici

Rhizoctonia solani

Sclerotinia sclerotiorum

Bajpai et al., 2006

2,3-dihydrotrichostatin A Streptomyces venezuelae YJ028 Trichostatin A Saccharomyces cerevisiae Park et al., 2011

Ethyl p-hydroxycinnamate Aspergillus niger Ethyl p-methoxycinnamate Candida albicans Omar et al., 2014

9-keto-(-)-vasicine Aspergillus braziliensis ATCC®16404™ (-)-vasicine Candida albicans Gopkumar and

Mugeraya, 2010Penicillium notatum ATCC®36740™
Rhizopus arrizus ATCC®10260™
Trametes versicolor ATCC®20869™

5-p-menthene-1,2-diol Alternaria alternata NRRL20593 α-phellandrene Candida spp. İşcan et al., 2012

Aspergillus alliaceus NRRL317

Aspergillus flavus

Botrytis cinerea AHU9424

Devosia riboflavina NRRL-B-784

Fusarium culmorum

Fusarium heterosporium DSM62719

Fusarium solani ATCC®1284™
Kluyveromyces lactis NRRL-Y-8279

Neurospora crassa N23 and N24

Phanerochaete chrysosporium ATCC®24725™
Saccharomyces cerevisae ATCC®9763™
Yarrowia lipolitica NRRL-Y-B423

Oxylipins Pseudomonas aeruginosa 42A2 Hydroxifatty acids:

ricinoleic acid, linoleic acid, oleic

acid, palmitic acid, etc.

Verticillium dhaliae Martin-Arjol et al., 2010

Macrophonia phaesolina

Arthroderma uncinatum

Trycophyton

mentagrophytes

Biotransformed galbonilides

I and II

Streptomyces halstedii ATCC®55964™ Galbonolides A and B Candida albicans Shafiee et al., 1999

Cryptococcus neoformans

metabolites of endophytics show positive actions as antibiotics,
immunosuppressives, anti-helminthics, antioxidants, and
anticancer drugs (Pimentel et al., 2011).

There is a noticeable increase in the rate of resistance

to antimicrobials, which is, at least in part, related to the

insufficient number of effective molecules and the small amount

of new antimicrobial agents in development, probably due to

unfavorable investment returns. In this context, the endophytic

fungi present themselves as an attractive alternative to modify the

current paradigm (Molina et al., 2012).

However, although a promising field, some problems cannot
be ignored in studies with endophytes. Special attention is
recommended in face of:

(1) The high nonspecific toxicity of some antimicrobials already
obtained;

(2) The fact that fungi tend to not produce toxic substances
against themselves, resulting in antimicrobial compounds
with moderate antifungal activity without potential as a
medicament or pesticide;

(3) The difficulty in large scale production of certain
antimicrobial compounds in artificial culture media;

(4) The biosynthesis and regulation of production of
antimicrobials from endophytes are partially or totally
unknown (Yu et al., 2010).

It is important to mention that many of the products related
to endophytics are derived from their secondary metabolism,
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and do not necessarily have a biotransformation background. In
some cases, it is not clear whether the final product is the result
of secondary metabolism or biotransformation. In spite of this
last finding, it is common sense amongst investigators devoted
to biotransformation that these fungi present vast potential
(Pimentel et al., 2011).

Table 2 presents some molecules with antifungal activity that
are produced exclusively by endophytic fungi via secondary
metabolism. As such, organisms that usually live in harsh
conditions in the presence of numerous natural compounds
are expected to be exceptional biotransforming entities (Shibuya
et al., 2003, 2005; Agusta et al., 2005; Fu et al., 2011; Maehara
et al., 2011; Huang et al., 2015; Khoyratty et al., 2015). Although
endophytic fungi are promising organisms for biotransformation
processes, their ability and potential to produce antimicrobial
molecules remain unexplored.

CANDIDATE MOLECULES FOR
BIOTRANSFORMATION

One point of concern when evaluating the feasibility of
producing antifungals via microbial biotransformation is the
choice of parental molecules to be modified. Such chemicals
must not be toxic or inhibitory to the biotransforming organism.
However, this can be circumvented if the concentrations during
fermentation processes remain inferior to those considered as
inhibitory.

Accumulated data has revealed that some classes of molecules
seem to be more ready to undergo biotransformation and
generate antifungals.

Some unsaturated fatty acids have shown interesting results.
Bajpai et al. (2009a, 2010b) have conducted extensive reviews
regarding this matter and reported that Pseudomonas aeruginosa
NRRL-B-18602 PR3 produced mono-, di-, and tri-hydroxy fatty
acid derivatives from unsaturated fatty acids with recognized
antifungal properties. This bacterium can convert oleic acid
to 7,10-dihydroxy-8(E)-octadecenoic acid, an anticandidal
compound (Hou and Forman, 2000).

Other unsaturated fatty acids can also undergo oxidation
in the presence of bacteria (Pseudomonas sp. 42A2 or Bacillus
megaterium ALA2 NRRL-B-21660) or plants (Colocassia
antiquorum) to produce mono-, di-, and tri-hydroxy fatty
acids with antifungal potential such as 15,18-dihydroxy-14,17-
epoxy-5(Z),8(Z),11(Z)-eicosatrienoic acid, 17,20-dihydroxy-16,
19-epoxy-4(Z),7(Z),10(Z),13(Z)-docosatetraenoic, 9,12,13-
trihydroxy-(E)-octadecenoic acid, 12,13,16-trihydroxy-9(Z)-
octadecenoic acid, and 12,13,17-trihydroxy-9(Z)-octadecenoic
acid (Masui et al., 1989; De Andrés et al., 1994; Hou, 1996; Hou
et al., 1997; Hosokawa et al., 2003a,b).

Based on the mechanism proposed for (Z)-9-heptadecenoic
acid (Avis and Bélanger, 2001), the most probable antifungal
mechanism of action must involve the disruption or
disintegration of the plasma membrane caused by a hydrostatic
turgor pressure within the cell resulting in the release of
intracellular electrolytes and proteins (Carballeira, 2008).

Another class of molecules with a promising outlook are
sterols. This class of substances has been evaluated in relation

to their ability to be biotransformed for many years (Mahato
and Mukherjee, 1984; Mahato and Garai, 1997; Holland, 1999;
Malaviya and Gomes, 2008; Bhatti and Khera, 2012; Donova
and Egorova, 2012). Surprisingly, there are few investigations
on the production of antifungals, despite the fact that many
compounds such as 24-amino-lanosterol, 24-amino-cholesterol,
and 24-amino-cholesterol-N-sulfate possess potent antifungal
activities against Candida spp., C. neoformans, and Trichophyton
mentagrophytes (Chung et al., 1998).

Preliminary studies have shown that steroids and steroidal
lactones biotransformed by Cunninghamella spp. produce
metabolites with leishmanicidal activity (Choudhary et al., 2006;
Baydoun et al., 2014). It is reasonable that such metabolites
act on the synthetic pathway of ergosterol in Leishmania spp.
We speculate that these putative mechanisms of action may be
extrapolated to fungi, which should encourage investigators to
drive their efforts toward this problem.

Alkaloids may also be converted into antifungal compounds.
As part of an extensive program which aimed the discovery
and development of antimicrobials from higher plants, Orabi
and colleagues conducted a series of experiments in order to
obtain antifungals from sampangine, an alkaloid found in the
West African tree Cleistophathis patens (Annonaceae) (Orabi
et al., 1999). Their results showed that Beauveria bassiana
ATCC R©7159™, Doratomyces microsporus ATCC R©16225™,
and Filobasidiella neoformans ATCC R©10226™ produced the
4′-O-methyl-β-glucopyranose conjugate, while Absidia glauca
ATCC R©22752™, Cunninghamella elegans ATCC R©9245™,
Cunninghamella sp. NRRL5695, and Rhizopus arrhizus
ATCC R©11145™ produced the β-glucopyranose conjugate.
Both metabolites presented significant in vitro activity against C.
neoformans, but were inactive against C. albicans (Orabi et al.,
1999).

The same group published interesting results about the
biotransformation of the synthetic antifungal alkaloid
benzosampangine (Orabi et al., 2000). They showed that
Absidia glauca ATCC R©22752™, Cunninghamella blakesleeana
ATCC R©8688a™, Cunninghamella sp. NRRL5695, Fusarium
solani f. sp. cucurbitae CSIH#C-5, and Rhizopogon species
ATCC R©36060™ each produced a β-glucopyranose conjugate
of benzosampangine. Such a substance possesses good in vitro
antifungal activity against C. albicans, Aspergillus fumigatus
(MIC = 0.39µg.mL−1; amphotericin B: 0.78µg.mL−1 and
0.39µg.mL−1, respectively), and C. neoformans (MIC =

1.56µg.mL−1; amphotercin B, 0.39µg.mL−1). The authors
emphasized that microbial biotransformation is reliable and
produces significant quantities of metabolites. In addition,
they showed that alkaloids could be converted into conjugate
metabolites with increased antifungal activity.

IN SILICO PREDICTIVE IMPROVEMENT OF
BIOPROCESSABLE MOLECULES

In silico is the term used to define experimentation carried out in
computers. In turn, in silico pharmacology is a large growing area
that helps to develop molecular arrangements using dedicated
software to capture, analyze and integrate biological and medical
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TABLE 2 | Antifungal molecules obtained from secondary metabolism of endophytic fungi.

Antifungal chemical Endophytic fungi Origin Antifungal activity Citation

Camptothecin Colletotrichum sp. Artemisia annua Various human and plant

pathogensPericonicin A and B

Phomol Guo et al., 2008

Pyrrocidines A and B Acremonium zeae NRRL13540 Zea mays Aspergillus flavus

Fusarium verticillioides

Sordaricin Xylaria sp. PSU-D14 Garcinia dulcis Candida albicans Pongcharoen et al., 2008

Lactone multiplolides A and B Xylaria multiplex BCC 1111 Unidentified Thai tree Candida albicans Boonphong et al., 2001

7-amino-4-methylcoumarin Xylaria sp. YX-28 Gynkgo biloba Aspergillus niger Liu et al., 2008

Candida albicans

Penicillium. expansum

Griseofulvin Xylaria sp. F0010 Abies holophylla Blumeria graminis f. sp.

hordei

Park et al., 2005

Corticium sasaki

Magnaporthe grisea

Puccinia recondite

Chaetomugilin A and D Chaetomium globosum Ginkgo biloba Mucor miehei Qin et al., 2009

Cytosporone B and C Phomopsis sp. ZSU-H76 Excoecaria agallocha Candida albicans

Fusarium oxysporum

Huang et al., 2008

(-)-Mycorrhizin A

(+)-Cryptosporiopsin

Pezicula spp. Various German trees Euratium repens Schulz et al., 1995

Mycatypha micraspara

Ustilaga vialacea

Pestalachlorides A, B, and C Pestalotiopsis adusta (L416) Unidentified Chinese tree Fusarium culmorum Li et al., 2008

Gibberella zeae

Verticillium albo-atrum

Emodin

Hypericin

Thielavia subthermophila Hypericum perforatum Aspergillus niger Kusari et al., 2008, 2009;

Kusari and Spiteller, 2011Candida albicans

Brefeldin A Cladosporium sp. Quercus variabilis Aspergillus niger Wang et al., 2007

Candida albicans

Epidermophyton floccosum

Microsporum canis

Trichophyton rubrum

Cytochalasin D

2-hexyl-3-methyl-butanodioic acid

Xylaria sp Palicourea marcgravii Cladosporium

cladosporioides

Cladosporium

sphaerospermum

Cafêu et al., 2005

Ethyl

2,4-dihydroxy-5,6-dimethylbenzoate

Phomopsilactone

Phomopsis cassia Cassia spectabilis Silva et al., 2005

Asperfumoid Aspergillus fumigatus CY018 Cynodon dactylon Candida albicans Liu et al., 2004

Fumigaclavine C

Fumitremorgin C

Helvolic acid

Physcion

(Continued)
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TABLE 2 | Continued

Antifungal chemical Endophytic fungi Origin Antifungal activity Citation

2,6-diOH-2-methyl-7-(prop-1E-enyl)-

1-benzofuran-3(2H)-one

Ergosterol peroxide

Verticillium sp. Rehmannia glutinosa Fusarium sp. You et al., 2009

Rhizoctonia sp.

Septoria sp.

data (Ekins et al., 2007). The use of in silico techniques allows
the prediction of the pharmacokinetic aspects of absorption,
distribution, biotransformation and excretion of new substances.
It can be assumed that in silico projections of newmolecules allow
the prioritization of chemicals to be tested, identifying hazard and
risk assessment (Kulkarni et al., 2005). The computer-assisted
simulations based on pharmacological and biological data reduce
time and costs during the screening of new substances once
they cease to categorize undesirable molecules with improper
characteristics during the early stages of discovery.

In addition, it is possible to evaluate the coupling of molecules
to their possible targets. Using databases of 3D molecular
structures, it is possible to anticipate connections between new
molecules and possible binding sites. Numerous substances have
been evaluated by this method, and it was possible to propose
important features of some of them as the mechanism of
action of antifungal piranocoumarins and antibacterial xanthone
derivatives (Do et al., 2015).

CaCYP51 is a sterol 14-α demethylase that binds the
CYP51 substrates lanosterol and eburicol in C. albicans. In
silico techniques based on the molecular structure of CaCYP51
have allowed the development of new azoles by replacing
the side chains provided in the simulation. The new azoles
showed excellent antifungal activity in vitro with broad spectrum
(Che et al., 2009). The development of new molecules in
silico largely depends on the molecular recognition of possible
couplings between the drug and microorganisms. Therefore,
once elucidated, the mechanism of action of an antifungal
obtained by biotransformation will allow the simulation of
molecules with improved pharmacokinetic characteristics and
may accelerate the development of potential drugs (Rask-
Andersen et al., 2011).

PERSPECTIVES

The prospection of new molecules, principally from endophytic
fungi, is a vast field of study with huge potential for growth.
However, consistent efforts are necessary to achieve results.
Professionals from the fields of biotechnology, pharmacology,
computer sciences, engineering and some other related areas
have to work closely together to explore possible binding sites
for new and existing molecules. The use of in silico analyses
anticipate investigations in a timesaving manner and reduce the
demands for inputs and even animals used in the initial tests.
These features drive future research toward the development
of new and feasible technologies within the Green Chemistry

guidelines connected to the principle of the 3Rs (replacement,

reducing, refinement) for the use of experimental animals
(Russell and Burch, 1959).

A reasonable research design for the prospecting of new
antifungal drugs under the above stated conditions involves the
following:

(1) The in silico analysis of existing molecules for possible new
couplings to different targets;

(2) The in silico identification of necessary changes in the
precursor molecule for effective coupling on targets;

(3) In the absence of new discoveries, the biotransformation of
various candidate substrates for obtaining new molecules;

(4) The recognition of which organisms or isolated enzymes
may modify structural precursor molecules to yield
enantiomerically pure antifungal molecules based on the
theory of enzyme promiscuity;

(5) The in silico evaluation of toxicity for newly developed
antifungal molecules;

(6) The process of scaling up with environmentally friendly
inputs to test the economic viability.

Once the goals outlined above are achieved, the investigator is
ready to conduct clinical trials to confirm the PK/PD properties,
security, and all other steps necessary for commercialization of
the drug.

It is important to notice that with the advent of in silico
technologies, laboratory tests tend to reduce theirmargin of error,
and therefore, save both environmental and financial resources.
However, they primarily accelerate new discoveries to minimize
the impact of developed resistance to existing drugs.

Therefore, it is necessary to sequence and deposit the
genomes of microorganisms with biotransformation capacity in
databases. In addition, further study on the molecular structure
of possible targets in pathogenic fungi is mandatory. This will
provide subsidies to find coupling regions for the developed
molecules.

Currently, we have high cost and low return as factors related
to the decline in the development of new antimicrobial drugs.
There is no other way to achieve such a market if the costs
of research are not reduced and production is enabled in a
sustainable way.
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Candida species have emerged as important and common opportunistic human
pathogens, particularly in immunocompromised individuals. The current antifungal
therapies either have toxic side effects or are insufficiently effect. The aim of this study
is develop new small-molecule antifungal compounds by library screening methods
using Candida albicans, and to evaluate their antifungal effects on Candida biofilms
and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used
in library screening. To identify antifungal compounds, we screened a small-molecule
library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal
susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs
were conducted using Candida strains in various growth modes, including biofilms.
We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF)
cells to evaluate their clinical safety. Only 35 compounds were identified by screening,
which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds
had fungistatic effects and nine compounds had fungicidal effects on C. albicans.
Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine
and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of
Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate
and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no
cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-
7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on
Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida
strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent,
CV-3988 that was previously unknown to be antifungal agent, which could be a novel
therapies for superficial mucosal candidiasis.
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INTRODUCTION

Candida species have emerged as important and
common opportunistic human pathogens, particularly in
immunocompromised individuals, such as patients with
HIV/AIDS, patients with cancer undergoing chemotherapy,
organ transplant recipients receiving immunosuppressive drugs
and patients with advanced diabetes (Richardson, 2005; Aperis
et al., 2006). Candida sp. are responsible for a spectrum of
diseases, which range from local mucosal infections to life-
threatening invasive systemic candidiasis (Wisplinghoff et al.,
2004).

A key feature of the virulence of Candida sp. is their
ability to adhere to surfaces, before developing into distinct
surface-attached communities called biofilms. Biofilms may
develop on biological and inert surfaces, such as intravascular
catheters, stents, shunts, prostheses and implants (Raad, 1998;
Ramage et al., 2006). Candida biofilms are intrinsically
more resistant to commercially available antifungal agents
than their planktonic counterparts (Hawser and Douglas,
1995; Chandra et al., 2001; LaFleur et al., 2006; Seneviratne
et al., 2008). Thus, the biofilms that form on medical
device can resist the host immune defenses and antifungal
treatments, thereby causing chronic infections and failure
of implanted medical devices (Ramage et al., 2005). The
increasing number of immunocompromised patients and
advances in medical technology has led to an increase in
biofilm-related infectious diseases, where Candida albicans
is the major fungal pathogen. Recently, the frequency of
these candidiasis caused by the non C. albicans species of
Candida, such as C. glabrata, C. parapsilosis, C. dubliniensis,
and C. tropicalis, has increased due to the indiscriminate
use of antifungal drugs (Cuellar-Cruz et al., 2012; Pfaller,
2012).

In addition, C. glabrata, C. parapsilosis, and C. krusei
exhibit intrinsic resistance to most azole-based antifungal
drugs (Lee et al., 2009a; Kothavade et al., 2010; Pfaller et al.,
2011) and the emergence of acquired drug resistance to
most commercial antifungals has been reported.(Sanglard
and Odds, 2002; Pfaller et al., 2010). Despite the urgent
requirement for efficient antifungal therapies of systemic
infections, the available antifungal drugs, such as novel
polyene formulations, new azoles and echinocandins, are
few and expensive and have side effects (Rex et al., 2000;
Francois et al., 2005; Cornely et al., 2007; Pasqualotto
and Denning, 2008). Furthermore, common non-life-
threatening superficial infections, such as recurrent vulvovaginal
candidiasis, impose significant restrictions on patients and
result in a reduced quality of life. Thus, it is necessary to
develop new antifungal agents that are effective against
Candida biofilms. These agents should overwhelm biofilm-
related candidiasis and lead to more effective antifungal
treatments.

In recent studies, library screening methods have been
used to identify new antifungal agents, which have focused
on growth retardation or killing the pathogens (LaFleur
et al., 2011; Siles et al., 2013; Stylianou et al., 2014). This

type of screening method can identify candidate antifungal
agents from large numbers of small-molecule compounds.
Small-molecule compounds have many advantages, such
as simple synthesis, high chemical stability and low costs
compared with organic compounds. Therefore, the aim of the
present study was to develop new small-molecule antifungal
compounds by library screening methods using C. albicans.
Moreover, we evaluated the antifungal effects of the small
molecules detected by the library screening method using
Candida biofilms as well as their cytotoxic effects on human
cells.

MATERIALS AND METHODS

Drugs and Fungal Strains
The in vitro susceptibility of well-characterized wild-type
C. albicans strain SC5314, which was provided by Prof.
N.A.R. Gow (University of Aberdeen, Aberdeen, UK)
was tested against 1280 compounds from the Library of
Pharmacologically Active Compounds (LOPAC1280TM, Sigma–
Aldrich, USA). The screen was performed with C. albicans
SC5314, and hits were further confirmed with the type strains
C. dubliniensis MYA 577, C. glabrata ATCC 2001, C. kusei
ATCC 6258, C. palapsilosis ATCC 22019, and C. tropicalis
ATCC13803.

High-Throughput Screening (HTS) with
Antifungal Susceptibility Tests (ASTs)
High-Throughput Screening was conducted using ASTs,
according to the standard Clinical and Laboratory Standard
Institute (CLSI) method (Watamoto et al., 2009). Inocula
from 24-h yeast cultures on Sabouraud’s dextrose agar (SDA)
(Gibco, UK) were adjusted to a turbidity equivalent to a 0.5
McFarland standard at 520 nm using a spectrophotometer.
The suspension was diluted further with RPMI 1640
medium (Gibco, UK) to yield an inoculum concentration
of 0.5 × 103 to 2.5 × 103 cells/mL. C. albicans was
incubated with small-molecule compounds (10 μM) from
LOPAC1280TM, which total volume was 150 μL, in 96-
well plates at 37◦C for 24 h to evaluate the antifungal
effects. After incubation, the viability of the fungal cells
was determined using the CellTiter-Glo luminescent cell
viability kit (Promega, USA). The CellTiter-Glo reagent
(150 μL) was added to the medium and incubated for
15 min at room temperature with shaking at 900 rpm. The
luminescent signals were detected using a luminometer
(GloMax Discover System, Promega, USA). The resulting
signal intensity corresponds to ATP amounts and thus to
the number of viable microbial cells upon drug exposure
(Stylianou et al., 2014). In all 96-well plates, 100 and 0%
growth controls were included as microbes plus dimethyl
sulfoxide (0.1%) and microbes plus amphotericin B (100 μM),
respectively. All assays were performed at least as two biological
replicates in triplicate. The ATP level of C. albicans cells, which
corresponded to the cell metabolic activity and viability, was
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calculated for each compound using the following equation
(Figure 1A).

Percentage inhibition =

100 × 1 −

⎧⎪⎨
⎪⎩

(experimental−
positive control average)

(negative control average−
positive control average)

⎫⎪⎬
⎪⎭

Wells were scored as hits if the percentage inhibition was
>50%. Hit compounds were evaluated further to assess their
antifungal effects.

ASTs of Hit Compound in Various Growth
Modes Against Candida Strains
To investigate the antifungal effects of the hit compounds,
ASTs were conducted using broth microdilution assays with
high cell densities of the planktonic mode, adhesion phase and
biofilmmode againstCandida strains (C. albicans, C. dubliniensis,
C. glabrata, C. kusei, C. palapsilosis, and C. tropicalis). First,
high density cell (1 × 107 cells/mL) suspensions were added
to the RPMI medium containing each hit compound (10–
1000 μM) in 96-well plates and incubated at 37◦C for 24 h.
Next, the 50% minimum inhibitory concentrations (MICs) of
high-density Candida planktonic cultures were determined using
the CellTiter-Glo luminescent cell viability kit, as described
above. The antifungal effects of the hit compounds were also
evaluated in the adhesion phase and the biofilm mode, in the
same manner as the planktonic mode. Candida biofilms were
produced as described previously (Jin et al., 2004). In brief,
Candida cells were grown on SDA at 37◦C for 18 h. A loopful
of the yeast culture was then inoculated into yeast nitrogen base
(YNB) (Difco, USA)medium supplemented with 50 mMglucose.
After overnight broth culture in a rotary shaker at 75 rpm,
the cells were washed twice with 20 mL of PBS (pH 7.2, 0.1
M). The yeast cells were re-suspended in YNB supplemented
with 100 mM glucose and adjusted to an optical density of 0.38
(1 × 107 cells/mL) at 520 nm. This standardized cell suspension
was used immediately to form biofilms in the wells of 96-well
polystyrene culture plates (Iwaki, Tokyo, Japan). First, the cells
were incubated for 90 min at 37◦C in a shaker at 75 rpm
to allow yeast adherence to the well surface (adhesion phase),
before the medium was aspirated and each well was washed
once with PBS to remove non-adherent cells. YNB containing
100 mM glucose was then pipetted into each well and the
plate was incubated at 37◦C in a shaker at 75 rpm for 24 h.
Non-adherent cells were removed by pipetting and the biofilms
were washed twice with PBS. Following this biofilm growth
phase, microscopic examination of the cultures was performed
to exclude contamination. These ASTs were repeated on three
different occasions.

Cytotoxicity
Primary human gingival fibroblast (hGF) cultures were
established from discarded healthy gingival tissues after surgery

with the informed consent of the donors (Nikawa et al., 2006).
In brief, the gingival tissue specimens were treated overnight
with 0.025% trypsin and 0.02% EDTA at 4◦C. After trypsin
neutralization, the lamina propria mucosae were separated from
the epithelial layer and minced into pieces in a plastic tissue
culture dish, and then maintained in Dulbecco’s modified Eagle
medium (Nacalai Tesque, Kyoto, Japan) supplemented with
10% FBS, 100 U/mL penicillin, 100 mg/mL streptomycin and
250 ng/mL amphotericin B (Nacalai Tesque, Kyoto, Japan).
After the fibroblasts had migrated out of the tissue, the tissues
were removed and the cells were cultured until they reached
confluence. The cells were then seeded onto 96-well tissue culture
plates (500 cells per well) and the culture medium was exchanged
with fresh growth medium containing the hit compounds
(0.98–1000 μM). The cells were cultured continuously and the
culture medium containing the hit compounds was renewed
every other day. The number of cells was evaluated using the
WST-1 cell counting assay (Dojindo Laboratories, Kumamoto,
Japan), as described previously (Hamada et al., 2007). The highest
concentration of each compound that caused greater than 50%
reduction in the number of cell compare to that of compound
free control cell was reported as the cytotoxic concentration. All
the experiments were performed using three samples for each
condition in triplicate.

RESULTS

High-Throughput Screening (HTS)
Results
We screened 1280 compounds using antifungal susceptibility
tests (ASTs) in 96-well plates to identify antifungal agents.
Only 35 compounds were identified, which inhibited the
metabolic activity of C. albicans by >50%. Thus, the overall
hit rate for HTS was approximately 3.9%. Among the hit
compounds, 26 compounds had fungistatic effects and nine
compounds had fungicidal effects onC. albicans (Figure 1B). Five
compounds, BAY11-7082, BAY11-7085, sanguinarine chloride
hydrate, ellipticine and CV-3988, had strong fungicidal effects
and inhibited the metabolic activity of C. albicans by >90%
(Figure 1B). The structures of these five compounds are shown
in Figure 1C. The antifungal effects of these five compounds
were evaluated usingCandida strains (C. albicans, C. dubliniensis,
C. glabrata, C. kusei, C. palapsilosis, and C. tropicalis) in high
density planktonic, adhesion and biofilm modes.

ASTs of Hit Compounds Using Candida
Strains in Various Growth Modes
The HTS results showed that C. albicans was susceptible to all
the hit compounds when a low inoculum size (1 × 103 cells/mL)
was used, according to the CLSI methodology (MIC < 1 μM).
When the cell density increased to 1 × 107 cells/mL, Candida
strains were slightly resistant to four of the compounds, but
not sanguinarine chloride hydrate. However, all five compounds
inhibited the metabolic activity of Candida strains at <31.3 μM
and they had fungicidal effects on the high cell density planktonic

Frontiers in Microbiology | www.frontiersin.org December 2015 | Volume 6 | Article 1453 | 38

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Watamoto et al. Antifungal Application of Small Molecules

FIGURE 1 | Identification of small-molecule compounds that inhibited the metabolic activity of Candida albicans using high-throughput screening
(HTS). (A) Schematic showing the HTS procedure. White circles: low ATP level and no metabolic activity in C. albicans. Yellow circles: high ATP level and high
metabolic activity in C. albicans. (B) Compounds that inhibited the metabolic activity of C. albicans. (C) Structures of the five compounds that inhibited the metabolic
activity of C. albicans by >90%. MW, molecular weight.

mode (Table 1). As a control, amphotericin B inhibited the
metabolic activity of C. albicans at <3.9 μM.

The drug susceptibility of adhesion phase Candida strains to
the five compounds was higher than that of the high density

planktonic cultures (Table 2). In particular, sanguinarine chloride
hydrate was effective against adhesion phase and it could inhibit
the metabolic activity at<15.6μM. Bay 11-7082 and Bay 11-7085
were also effective against the adhesion phase and could inhibit
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TABLE 1 | Minimum inhibitory concentrations (MICs) of five candidate compounds against planktonic mode of Candida strains.

C. albicans C. glabrata C. dubliniensis C. tropicalis C. kusei C. palapsilosis

Bay11-7082 7.8 7.8 3.9 7.8 3.9 3.9

Bay11-7085 3.9 3.9 3.9 3.9 3.9 3.9

Sanguinarine <1 <1 <1 <1 <1 <1

Ellipticine 7.8 7.8 3.9 15.6 7.8 7.8

CV-3988 7.8 7.8 31.3 31.3 15.6 15.6

AMB 3.9

(μM)

Sanguinarine, sanguinarine chloride hydrate; AMB, amphotericin B; MICs, minimal concentration of compound resulting in >50% growth inhibition. MICs were determined
by ATP measurement after 24 h of incubation. The data were analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

TABLE 2 | Minimum inhibitory concentrations of five candidate compounds against adhesion phase of Candida strains.

C. albicans C. glabrata C. dubliniensis C. tropicalis C. kusei C. palapsilosis

Bay11-7082 31.3 31.3 15.6 31.3 15.6 15.6

Bay11-7085 31.3 31.3 15.6 31.3 15.6 7.8

Sanguinarine 15.6 15.6 15.6 7.8 7.8 7.8

Ellipticine 62.5 62.5 125 250 250 125

CV-3988 62.5 62.5 125 62.5 125 125

AMB 15.6

(μM)

Sanguinarine, sanguinarine chloride hydrate; AMB, amphotericin B; MICs, minimal concentration of compound resulting in >50% growth inhibition. MICs were determined
by ATP measurement after 24 h of incubation. The data were analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

the metabolic activity at <31.3 μM. As a control, amphotericin B
inhibited the metabolic activity of C. albicans adhesion phase at
15.6 μM.

Most Candida biofilms were more resistant to the five
compounds than other growth mode. Especially, C. tropicalis
biofilm was most resistant to the five compounds in all growth
modes (Table 3). Bay 11-7082, Bay 11-7085, Ellipticine and CV-
3988 could inhibit the metabolic activity of Candida biofilms at
<62.5, 62.5, 500, and 125μM, respectively. Sanguinarine chloride
hydrate was the most effective antifungal agent in this study
and it could inhibit the metabolic activity of Candida strains at
<31.3 μM. As a control, amphotericin B inhibited the metabolic
activity of C. albicans biofilm at 62.5 μM.

Cytotoxicity
In addition to pharmacologically active compounds, small-
molecule libraries often contain toxic molecules that do not make
good drug candidates. To evaluate the safety for clinical use, we
tested the cytotoxic effects of the hit compounds using human cell
cultures. We used hGF cells because of their ubiquitous nature
and their widespread use in cytotoxicity testing (Egusa et al.,
2009; LaFleur et al., 2011). The hGF cells were grown in 96-well
plates and exposed to increasing doses (two-fold increments) of
each hit compound for 4 days. The hGF metabolic activity was
measured every other day and used as an indicator of cell viability.
After 4 days, Bay 11-7082, Bay 11-7085, ellipticine, sanguinarine
chloride hydrate and CV-3988 inhibited cell proliferation no
more than 50%, namely, did not kill cells at less than 7.81, 7.81,
1.95, 0.73, and 250 μM, respectively (Table 4).

DISCUSSION

Candida species are the main fungal pathogen that causes
infections in humans, ranging from superficial mucosal
infection to systemic mycoses (Navarro-Garcia et al., 2001).
Candida infections are intractable and recurrent diseases,
which have increased due to the rise in the number of
immunocompromised host populations (Beck-Sague and
Jarvis, 1993; Wisplinghoff et al., 2004). Drug-resistant Candida
strains have also increased dramatically because of the increased
use of antifungal agents. Thus, the development of novel
antifungal drugs and treatment strategies are essential for
combating Candida infections. High-throughput screening
(HTS) is an effective method for identifying candidate novel
antifungal drugs. It is important to apply adequate screening
methods to small-molecule compound libraries because
appropriate selection procedures are the key to successful
screening. In this study, LOPAC1280TM was used as the
small-molecule library, which contained pharmacologically
active compounds and all the compounds were commercially
available. Thus, the main effects of these small molecules on
human cells are already known and described in database
of manufacture. Therefore, it may be easier to apply these
compounds in clinical practice with fewer unexpected drug side
effects.

In general, polyenes, azoles, allylamines, morpholines,
antimetabolites, and echinocandins are the six major antifungal
drug categories to manage fungal infections (Khan and Jain,
2000; Ruhnke et al., 2008). Most of these antifungal drugs
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TABLE 3 | Minimum inhibitory concentrations of five candidate compounds against biofilm mode of Candida strains.

C. albicans C. glabrata C. dubliniensis C. tropicalis C. kusei C. palapsilosis

Bay11-7082 31.3 62.5 31.3 62.5 62.5 15.6

Bay11-7085 31.3 62.5 62.5 62.5 62.5 15.6

Sanguinarine 15.6 15.6 15.6 31.3 31.3 7.8

Ellipticine 125 62.5 500 250 250 250

CV-3988 125 125 125 125 125 125

AMB 62.5

(μM)

Sanguinarine, sanguinarine chloride hydrate; AMB, amphotericin B; MICs, minimal concentration of compound resulting in >50% growth inhibition. MICs were determined
by ATP measurement after 24 h of incubation. The data were analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

TABLE 4 | Cytotoxic concentrations of five candidate compounds on
human gingival fibroblasts.

Cytotoxic concentration

Bay11-7082 7.81

Bay11-7085 7.81

Ellipticine 1.95

Sanguinarine chloride hydrate 0.73

CV-3988 250

(μM)

Cytotoxic concentration, maximal concentration of compound resulting in >50%
the number of cell reduction compares to compound free control. The data were
analyzed and evaluated from 3 biological replicate in triplicate (n = 3).

have fungistatic or fungicidal effects on exponentially growing
planktonic cells, but Candida cells are resistant to these drugs
after biofilm formation (Watamoto et al., 2009). Interestingly,
we found that five small-molecule compounds (BAY11-7082,
BAY11-7085, sanguinarine chloride hydrate, ellipticine and
CV-3988) were antifungal drug candidates with inhibitory effects
on various Candida biofilms at concentrations below 500 μM.

BAY11-7082 and BAY 11-7085 is known to be an inhibitor of
nuclear factor κB (NF-κB) activation by the blockade of inhibitor
κB (IκB) phosphorylation, which is a trigger of apoptosis (Pierce
et al., 1997; Guzman and Jordan, 2005; Chopra et al., 2008; Lee
et al., 2009b; Zanotto-Filho et al., 2010). Bay 11-7082 triggers
cell membrane scrambling and cell shrinkage (Lang et al., 2008).
BAY 11-7085 has been shown to activate c-jun N-terminal
kinase and p38 mitogen-activated protein kinase (MAPK) (Pierce
et al., 1997). BAY 11-7085 inhibits cell proliferation by inducing
apoptosis and G0/G1 arrest of the cell cycle in human cells
(Bockelmann et al., 2005). These actions have anti-inflammatory,
anticancer and slight hemolytic effects (Ghashghaeinia et al.,
2011).

Sanguinarine chloride hydrate is a phytoalexin and has been
reported to suppress activation of the transcription factor NF-
κB (Chaturvedi et al., 1997) and to modulate the functions of
various enzymes, such as MAPK phosphatase-1 (Vogt et al.,
2005), protein kinase C (Gopalakrishna et al., 1995) and
phosphoinositide-dependent protein kinase 1 (Vrba et al., 2008).
These actions of Sanguinarine have antimicrobial, antioxidant,
anti-inflammatory, hemolytic and cytotoxic effects (Lenfeld et al.,

1981; Godowski, 1989; Malikova et al., 2006; Babu et al., 2008;
Matkar et al., 2008; Jang et al., 2009).

Ellipticine, an alkaloid isolated from Apocyanaceae plants,
has been reported to mediate primarily DNA damage such as
DNA intercalation (Auclair, 1987), inhibition of topoisomerase
II (Auclair, 1987; Stiborova et al., 2006), inhibition of casein
kinase 2 (Prudent et al., 2010) and the formation of covalent
DNA adducts by cytochrome P450s and peroxidases (Stiborova
et al., 2011). These actions of Ellipticine has anti-tumor, cytotoxic,
hemolytic and mutagenic activities (Lee, 1976; Rouesse et al.,
1985). Therefore, the known cell proliferation inhibitory effects
of these four small-molecules agree with the findings of the
present study. Furthermore, the antifungal and cytotoxic effects
of these small molecules on Candida strains may involve the
same mechanism because Candida strains are eukaryotes and
possesses the same targets. Thus, these small molecules are toxic
to human cells and Candida strains, and inappropriate for clinical
use corroborated by the relatively low cytotoxic concentration
on hGF.

On the other hand, platelet-activating factor (PAF), which is
released almost immediately in response to inflammatory stimuli
(Im et al., 1997) by various inflammatory cells, is a potent
lipid messenger involved in cellular activation, fertilization,
intracellular signaling, apoptosis and diverse inflammatory
reactions (Braquet et al., 1987; Shukla, 1992; Buttke and
Sandstrom, 1995; Fukuda and Breuel, 1996). CV-3988 (Terashita
et al., 1983; Terashita et al., 1987) is a structural analog of PAF,
which has been shown to specifically inhibit the in vitro and
in vivo activities of PAF (Sultana et al., 1999) by competitive
binding with the PAF receptor (PAF-R) (Terashita et al., 1983;
Summers andAlbert, 1995; NegroAlvarez et al., 1997). Therefore,
CV-3988 is an antagonist of PAF-R, which inhibits the functions
of leukocytes, including platelet aggregation, inflammation and
anaphylaxis. We showed for the first time that CV-3988 had a
fungicidal effect on various Candida biofilms and low cytotoxity
effect on hGF cells. In past study, CV-3988 had slight hemolytic
effect and can safely be administered to human (Arnout et al.,
1988). These results demonstrate that CV-3988 has a novel and
specific fungicidal effect on Candida strains and may become
initial drug choice for the treatment of candidiasis. Furthermore,
Candida sp. are common microbes in the oral cavity and vagina
and causes mucotitis in immunocompromised and healthy hosts.
Mouthwashes and ointments containing antifungal agents are
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primary treatment for oral and vaginal candidiasis. Therefore,
CV-3988 may be suitable for use on oral mucosal surfaces
to combat Candida biofilm infections such as thrush and
denture-related stomatitis. Although CV-3988 may facilitate
novel treatment strategies to combat Candida infections, further
studies about fungicidal mechanism and pharmacokinetics are
required before it can be applied in clinical practice.

CONCLUSION

We identified five small-molecule compounds (BAY11-7082,
BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-
3988) as novel antifungal drug candidates using HTS methods.

BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and
ellipticine were toxic to Candida strains as well as hGF
cells. In contrast, CV-3988 had fungicidal effects on Candida
strains, but low cytotoxic effects on hGF cells. Therefore,
in future, mouthwashes and ointments containing CV-3988
may be used as a novel treatment for superficial mucosal
candidiasis.
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There has been a sharp rise in the occurrence of Candida infections and associated
mortality over the last few years, due to the growing body of immunocompromised
population. Limited number of currently available antifungal agents, undesirable side
effects and toxicity, as well as emergence of resistant strains pose a considerable
clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from
natural sources exhibiting considerable antifungal properties are a promising source for
the development of novel anti-candidal therapy. Phenolic compounds isolated from
natural sources possess antifungal properties of interest. Particularly, phenolic acids
have shown promising in vitro and in vivo activity against Candida species. However,
studies on their mechanism of action alone or in synergism with known antifungals are
still scarce. This review attempts to discuss the potential use, proposed mechanisms of
action and limitations of the phenolic acids in anti-candidal therapy.

Keywords: Candida, phenolic acids, phenolic compounds, antifungal effect, synergism

INTRODUCTION

Candida species are a major group of fungal pathogens in humans, particularly among
immunocompromised and hospitalized patients (Cuellar-Cruz et al., 2012). Candida albicans
inhabits various body surfaces like oral cavity, gastrointestinal tract, vagina, and skin of the healthy
individuals as a commensal organism (Kleinegger et al., 1996; Huffnagle and Noverr, 2013). Host-
related factors can predispose the transformation of harmless Candida into an opportunistic
pathogen, causing infection or candidiasis in superficial mucous surfaces which can progress
into invasive mycoses (Nett and Andes, 2006). Foregoing factors include, but not limited to
immuno-suppression, prolonged treatment with wide-spectrum antibiotics and chronic diseases
(Kullberg and Arendrup, 2015; Polke et al., 2015). The epidemiology of invasive candidiasis
varies geographically (Morgan, 2005; Pfaller et al., 2011). It significantly increases the period
of hospitalization, economic burden and mortality, especially in ICU patients or those under
chemotherapy or with a history of abdominal surgery (Falagas et al., 2006; Berdal et al., 2014;
Drgona et al., 2014).

Only few classes of antifungals such as polyenes, azoles, echinocandins, allylamines, and
flucytosine are available for the treatment of Candida infections (Sanglard et al., 2009).
However, there are various undesirable properties, most importantly the dose-related toxicity
in aforementioned antifungals (Chandrasekar, 2011). Ideally, an antifungal should have null or
reduced toxicity toward human cells (Wong et al., 2014). For instance, amphotericin B is a polyene
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FIGURE 1 | Examples of phenolic compounds and main derivates classified as phenolic acids.

available for systemic administration, but its use has been limited
due to its systemic side effects such as nephrotoxicity (Odds
et al., 2003). Azole antifungals have some side effects associated
with gastrointestinal, hepatic, and endocrinologic disorders and
interfere with oxidative drug metabolism in the liver (Joly et al.,
1992).

In addition, rising drug resistance is an inevitable problem. In
particular, Candida glabrata and Candida krusei show intrinsic
resistance to fluconazole, the drug of choice for AIDS patients
(Kanafani and Perfect, 2008; Siikala et al., 2010; Rautemaa and
Ramage, 2011). Drug resistance has already been reported for
recently introduced echinocandin antifungal agents (Hakki et al.,
2006; Ben-Ami et al., 2011; Clancy andNguyen, 2011; Seneviratne
et al., 2011). Moreover, biofilm mode of Candida is known to be
highly resistant to antifungal agents (Chandra et al., 2005; Niimi
et al., 2010). Therefore, it is necessary to discover new antifungal
agents or safer alternatives to improve the efficacy of treatment
againstCandida infections. In this regard, antifungal agents based
on natural resources, such as phenolic compounds may be an
alternative strategy to negate the rising antifungal drug resistance
(Negri et al., 2014). This review attempts to critically analyze the
possible use of phenolic acids as a therapeutic strategy against
Candida infections.

Phenolic compounds are widely found in plant foods (fruits,
cereal grains, legumes, and vegetables) and beverages (tea, coffee,
fruits juices, and cocoa). Themost common phenolic compounds
are phenolic acids (cinnamic and benzoic acids), flavonoids,
proanthocyanidins, coumarins, stilbenes, lignans, and lignins
(Figure 1; Cowan, 1999; Chirinos et al., 2009; Khoddami et al.,

2013). The anti-Candida properties of phenolic compounds that
have been widely reported in the literature include inactivation of
enzyme production (Evensen and Braun, 2009) and anti-biofilm
effect (Evensen and Braun, 2009; Shahzad et al., 2014).

Phenolic acids are derivatives of hydrocinnamic,
hydrobenzoic, phenylacetic, and phenylpropionic acids
(Figures 1 and 2; Pereira et al., 2009; Cueva et al., 2010).
Phenolic acids commonly exist as esters, glycosides or amides
in nature, but not in their free form. The determining factor for
characterization of phenolic acids is the number and the location
of hydroxyl groups on the aromatic ring. Some natural sources
are rich in phenolic acids and shown to possess a promising
action against Candida (Table 1). In this review, we discuss the
anti-candidal activity of the phenolic acid compounds, possible
mechanism of actions and future directions.

ANTIFUNGAL ACTIVITY OF PHENOLIC
ACIDS AGAINST Candida SPECIES

Natural extracts containing phenolic acids have demonstrated
antifungal activity against Candida species (Table 1). Phenolic
acid derivatives isolated from these sources such as gallic, caffeic,
cinnamic, benzoic, protocatechuic, and phenylacetic acids also
have antifungal activity (Table 2). However, the antifungal effect
of the natural extracts may vary due to the differences in
the quantity and the type of phenolic acid. In addition, the
solvents used for extraction may also affect the antifungal effect.
Moreover, other compounds present in natural extracts may
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FIGURE 2 | General chemical structures of the phenolic acids [based on Pereira et al. (2009) and Cueva et al. (2010)].

act synergistically with phenolic acids to enhance the overall
antifungal effect (Pereira et al., 2007; Nowak et al., 2014).
Therefore, phenolic acids derived from different natural sources
have highly variable MIC values against Candida (Table 2).
Hence, a clear understanding of the composition of phenolic
acids present in the natural extract is important to assess
its potential as an antifungal agent (Salvador et al., 2004;
Rangkadilok et al., 2012).

The main Candida virulence factors are exoenzymes
production, biofilm formation, adherence, and dimorphism
(Vuong et al., 2004; Netea et al., 2008; Williams et al., 2011).
Few studies have demonstrated the influence of phenolic acids
against these factors. Anti-biofilm effect of phenolic acids
against Candida sp. was reported (Wang et al., 2009; Alves
et al., 2014; De Vita et al., 2014). However, the studies used only
reference samples or did not cite the tested strain (Table 2). The
anti-biofilm effect of these molecules should be carried out with
clinical isolates in vitro and in vivo, since the ultimate goal of
using these molecules is to treat candidiasis and a wider range
of strains could provide more reliable results. Besides that, it
also has found an influence of caffeic acid derivate against the
Candida dimorphism (Sung and Lee, 2010).

However, several studies described effect onCandida virulence
factors of some others phenolic molecules. For instance,
bisbibenzyl stimulates the synthesis of farnesol, an inhibitor
of hyphae formation, via upregulation of Dpp3 gene (Zhang
et al., 2011). Hence, bisbibenzyl may reduce C. albicans hyphal
formation and affect biofilm formation. Moreover, anti-hyphae
effect in C. albicans was also found following the treatment with

epigallocatechin-gallate (Han, 2007), licochalcone A, gladribin
(Messier and Grenier, 2011), and thymol (Braga et al., 2007).
Additionally, eugenol reduces germ tube formation in C. albicans
(Pinto et al., 2009). Beyond that, several studies have shown anti-
biofilm (Messier et al., 2011; Alves et al., 2014; Rane et al., 2014;
Shahzad et al., 2014) and anti-adhesive (Feldman et al., 2012;
Rane et al., 2014; Shahzad et al., 2014) activities of phenolics
against Candida.

The number of studies on other phenolic molecules on
Candida virulence factors with interesting results inspires a
carefully investigation of phenolic acids influence on these
factors.

MECHANISM OF ACTION, BIOLOGICAL
PATHWAYS, AND SYNERGISM WITH
ANTIFUNGAL AGENTS OF PHENOLIC
ACIDS AGAINST Candida

In order to obtain some insights on the antifungal activity of
phenolic acids, herein we compare the existing data along the
lines of mechanism of action, synergy with known antifungal
agents and others biological pathways (Figure 3).

Mechanisms of Action and Biological
Pathways
Phenolic acids such as ferulic and gallic acids are known to
affect the cell membrane of Gram-positive and Gram-negative
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TABLE 1 | Phenolic acids derived from plants extracts showing activity against Candida sp.

Plant Phenolic acids found Type of
extract

Microorganism MIC value
µg/ml

MBC value
µg/ml

Reference

Buchenavia tomentosa Gallic acid Aqueous C. albicans ATCC 18804
C. tropicalis ATCC 13803
C. krusei ATCC 6258
C. glabrata ATCC
C. parapsilosis ATCC 22019
C. dubliniensis NCPF 3108

200–12500 6500 C. krusei
(ATCC 6258)

Teodoro et al.,
2015

Rosa rugosa Protocatechuic, gallic, and
p-coumaric acids

Methanolic C. albicans ATCC 10231
C. parapsilosis ATCC 22019

156 1250 Nowak et al.,
2014

Teucrium arduini L. Ferulic acid Ethanolic C. albicans ATCC 10231 4000 NR Kremer et al.,
2013

Potentilla sp. Caffeic acid and ferulic acid Acetonic and
methaolic

C. albicans ATCC 10231 780–1560 NR Wang et al.,
2013

Dimocarpus longan
Lour

Gallic acid Spray-dried or
Freeze-dried
water

C. krusei ATCC 10231
C. parapsilosis ATCC 22019
C. albicans ATCC 90028 and
clinical strains

500–4000 NR Rangkadilok
et al., 2012

Ligusticum mutellina L. Gallic, p-OH-benzoic,
caffeic, p-coumaric, and
ferulic acids

Methanolic C. albicans ATCC 10231
C. parapsilosis ATCC 22019

1250 2500 Sieniawska
et al., 2013

Limonium avei Caffeic, m-coumaric,
p-coumaric, ferulic,
isovanillic,
p-methoxybenzoic,
protocatechuic, sinapinic,
and vanillic acids

Ethanolic C. albicans ATCC 10231 4000 >4000 Nostro et al.,
2012

Kitaibelia vitifolia p-hydroxybenzoic, caffeic,
syringic, p-coumaric, and
ferulic acids

Ethanolic C. albicans ATCC 10231 15.62 NR Maskovic et al.,
2011

Tamarix gallica L. Gallic, synnapic,
p-hydroxybenzoic, syringic,
vanillic, p-coumaric, ferrulic,
trans-2-hydroxycinnamic
and trans-cinnamic acids

Hydromethanolic C. kefyr, C. holmii, C. albicans,
C. sake, C. glabrata

2000 NR Ksouri et al.,
2009

Cirsium sp. Caffeic, p-coumaric, ferulic,
p-hidroxybenzoic,
protocatechuic vanillic, and
gallic acids

Aqueous C. albicans ATCC 10231 780–1560 6250 to
>50000

Nazaruk et al.,
2008

Olea europaea L. Caffeic acid Aqueous C. albicans CECT 1394 5000∗ NR Pereira et al.,
2007

Anogeissus latifolia Gallic acid Hydroalcoholic
after maceration
with ether

Candida albicans (MTCC 183) 7.28 μg/ml NR Govindarajan
et al., 2006

Berry (Cloudberry
Raspberry, Strawberry)

Hydroxycinnamic acids Acetonic 70% Candida albicans NCPF 3179 1000 μg/ml NR Nohynek et al.,
2006

NR, not reported; *IC25.

bacteria leading to a change in cell surface hydrophobicity
and charge, ultimately causing leakage of cytoplasmic content
(Borges et al., 2013). A similar effect has been suggested for
the caffeic acid derivative on Candida cytoplasmatic membrane
(Sung and Lee, 2010). Furthermore, a possible effect on the
C. albicans cell wall has been shown for caffeic acid derivatives
which may interfere with 1,3-β-glucan synthase (Ma et al.,
2010).

It is noteworthy that polyene antifungals also cause pouring of
cellular contents through direct binding to ergosterol, distorting
the membrane function. Also, azole antifungal agents inhibit
biosynthesis of ergosterol (Vanden Bossche et al., 2004). No study

on the effect of phenolic acid on the ergosterol composition or
biosynthesis could be detected.

Mode of action of several others phenolic compounds
provide some clues to deduce the mechanism of phenolic
acids. For instance, isoquercetin (Yun et al., 2015), curcumin
(Lee and Lee, 2014), and lariciresinol (Pinto et al., 2009) can
damage the C. albicans cell membrane. On the other hand,
eugenol and methyleugenol cause considerable reduction in the
ergosterol biosynthesis in Candida and subsequently affecting
the cell membrane (Ahmad et al., 2010b). Similar effect has
been observed with epigallocatechin-3-gallate (Navarro-Martinez
et al., 2006), thymol and carvacrol (Ahmad et al., 2011). Besides,
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TABLE 2 | Evidences from literature regarding anti-Candida effect of phenolic acids.

Molecule Anti-Candida effect Result found Reference

Gallic acid Planktonic cells of C. albicans (ATCC 18804), C. krusei
(ATCC 6258), C. parapsilosis (ATCC 22019),
C. dubliniensis (NCPF 3108), and C. glabrata (ATCC
90030)

MIC (μg/ml) respectively: 10000, 10000, 10000,
10000, 8

Teodoro et al., 2015

Planktonic cells and biofilm of C. albicans (ATCC
90028), C. glabrata (ATCC 2001), C. parapsilosis
(ATCC 22019), and C. tropicalis (ATCC 750)

MIC (μg/ml) planktonic: <156 μg/ml MIC (μg/ml)
biofilm respectively: 5000, 1250, 625, 625

Alves et al., 2014

Planktonic cells (plate diffusion) MIC (mg cm−3): 2.5 Manayi et al., 2013

Planktonic cells of C. albicans (ATCC 10231) and
C. tropicalis (ATCC 750)

MIC and MFC (μg/ml) respectively: 200, 200, 200, 100 Gehrke et al., 2013

Planktonic cells of C. albicans (ATCC 90028) and 5
clinical strains, C. krusei (ATCC 6258), and
C. parapsilosis (ATCC 20019)

MIC (μg/ml) respectively: 4000,4000,8000,4000,
16000, 16000, 8000, 4000

Rangkadilok et al., 2012

Planktonic cells of C. albicans (ATCC 10231) and
C. parapsilosis (ATCC 22019)

MIC (μg/ml) respectively: 8, 16 Ozcelik et al., 2011

Planktonic cells of C. albicans (ATCC 90028), C. krusei
(ATCC 6258), and C. parapsilosis (ATCC 22019)

MIC (μg/ml): 100 Liu et al., 2009

Biofilm of C. albicans (not cited strain) MIC (μg/ml): 1000 Wang et al., 2009

Planktonic cells of C. albicans (MTCC 183) MIC (μg/ml): 1.78 Govindarajan et al., 2006

Planktonic cells of C. albicans (not cited strain) Halo: 12 mm (100 μg on a sterile filter paper disk with
6 mm diameter)

Fogliani et al., 2005

Caffeic acid Planktonic cells of C. albicans and inhibition of isocitrate
lyase activity assay

MIC (μg/ml): 1000; inhibition of 91,5% of the isocitrate
lyase enzyme activity

Cheah et al., 2014

Planktonic cells and biofilm of C. albicans (ATCC 10231) MIC (μg/ml): planktonic: 128; pre-formed, 4 and 24 h
biofilm: 256

De Vita et al., 2014

Planktonic cells of C. albicans (ATCC 10231) and
C. parapsilosis (ATCC 22019)

MIC (μg/ml) respectively: 8, 16 Ozcelik et al., 2011

Protocatechuic acid Planktonic cells of C. albicans (LMP709U) MIC and MFC (μg/ml) respectively: 156, 312 Kuete et al., 2009

Planktonic cells of C. albicans (10231) and C. tropicalis
(ATCC 7349)

MIC (μg/ml) respectively: 500, 400 Pretto et al., 2004

Phenylacetic acid Planktonic cells (plate diffusion) of C. albicans (clinical
strains)

Halo: 8–10.5 mm (20 μl of a 2000 ng/ml phenylacetic
acid water solution on sterile filter paper disk with 6 mm
diameter)

Mendonca Ade et al., 2009

Cinnamic acid Immunoregulatory effect on monocytes activation
against C. albicans (SC 5314)

Significant reduce of C. albicans counts in 50 and
100 μg/ml

Conti et al., 2013

Planktonic cells of C. albicans (ATCC 90028, ATCC
10231, PYCC 3436T) C. parapsilosis (ATCC 22019,
PYCC 2545), C. glabrata (PYCC 2418T) C. tropicalis
(PYCC 3097T), C. krusei (PYCC 3341), C. lusitaniae
PYCC 2705T and synergism with antifungals

IC 50 (mmol l−1): 0.09 to 0.74; none synergism found Faria et al., 2011

Benzoic acid Planktonic cells of C. albicans (ATCC 90028, ATCC
10231, PYCC 3436T) C. parapsilosis (ATCC 22019,
PYCC 2545), C. glabrata (PYCC 2418T) C. tropicalis
(PYCC 3097T), C. krusei (PYCC 3341), C. lusitaniae
PYCC 2705T and synergism with antifungals

IC 50 (mmol l−1): 0.05–0.73 Synergism found to
C. albicans with amphotericin and itraconazole

Faria et al., 2011

cardanol demonstrated chitin-binding ability in C. albicans cell
wall (Mahata et al., 2014).

Few studies have found about others biological pathways
of phenolic acids against Candida. Exemplifying, an in vitro
immunoregulatory effect on monocytes against C. albicans by
cinnamic acid (Conti et al., 2013) and a inhibition of C. albicans
isocitrate lyase enzyme activity after treatment with caffeic acid
(Cheah et al., 2014) was reported. However, several studies
have suggested that the other biological pathways and cellular
targets of others phenolic compounds may be different from
that of existing antifungal agents. Some phenolic compounds
have shown to induce apoptotic mechanisms in Candida, thereby

contributing to their antifungal activity (Zore et al., 2011). For
instance, eugenol inhibits the cell cycle at G1, S, and G2-
M phases in C. albicans and consequently induces apoptosis.
Another phenolic compound, curcumin also induces apoptosis
in C. albicans, by increasing the reactive oxygen species (ROS)
and induction of CaMCA1 gene expression (Cao et al., 2009).
On the contrary, baicalein increases ROS causing perturbation
in mitochondrial homeostasis in C. krusei without inducing
apoptosis (Kang et al., 2010). Methyl chavicol seemed to induce
aptotosis in C. albicans although the exact pathway is still not
clear (Khan et al., 2014). Blocking effect of thymol, carvacrol
(Ahmad et al., 2013) and baicalein (Huang et al., 2008) on the
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FIGURE 3 | Described mechanisms of action and biological pathways of some phenolic acids against Candida. (1) Ma et al. (2010); (2) Cheah et al.
(2014); (3,4) Sung and Lee (2010); (5) Conti et al. (2013); (6) Alves et al. (2014); (7) De Vita et al. (2014); (8) Wang et al. (2009).

drug transporter pumps in Candida has been demonstrated using
rhodamine 6G dye. Inhibition of efflux transporters results in
accumulation of antifungal compounds inside the cell making
Candida highly susceptible to the antifungal agent (Huang et al.,
2008). These helpful anti-Candida biological pathways observed
for phenolic molecules, mainly on the drug transporters pumps
may contribute to elucidate the possible effects of phenolic acids
against Candida.

Another aspect to be considered is that previous studies
reported that some Candida species were able to metabolize
phenolic acids (Middelhoven et al., 1992; Middelhoven, 1993).
C. parapsilosis was able to grow in the presence of some phenolic
acids after 3 days of cultivation. On the other hand, C. tropicalis
was unable to grow in the presence of phenolic acids even after
14 days of cultivation (Middelhoven, 1993). These evidences
should be better investigated in the future. Further studies are
warranted to obtain a deeper understanding of the mechanism
of action and others biological pathways of phenolic acids on
Candida cells.

Synergism with Existing Antifungal
Agents
Apart from rising antifungal resistance, there are other important
limitations in the existing antifungal agents, such as inadequate
spectrum of activity, poor bioavailability, small tolerance index,
interactions with other drugs, inadequate pharmacokinetic
profile, and considerable toxic effects (Lewis and Graybill,
2008; Pfaller et al., 2010). Although phytochemicals remain
an important source for the discovery of new antifungal
agents, micro-plate based in vitro screening assays have not
shown higher effectiveness of plant extracts when compared

to the existing antifungal agents with higher efficacy (Newman
and Cragg, 2012). Hence, in general, plant extracts with
higher minimum inhibitory concentrations (MICs) such
as 1000 μg/ml are considered ineffective (Morales et al.,
2008).

Therefore, some studies have explored the possibility of
synergistic activity of phenolic acids and existing antifungal
agents in order to maximize the antifungal effect. It is
a good strategy to study the synergistic effect when MIC
values of phenolic acids against Candida are highly variable
(Rauha et al., 2000; Kalinowska et al., 2014). Synergistic
effect of benzoic acid with amphotericin B and itraconazole
against C. albicans has been reported in literature (Faria
et al., 2011; Table 3). However, mechanism of this synergistic
effect of phenolic acids and conventional antifungal agents
is poorly understood. Therefore, it is important to examine
similar synergistic effects shown by others phenolic compounds
and conventional antifungal agents in order to obtain some
insight.

A promising synergism between phenolic compounds and
fluconazole against resistant strains of Candida tropicalis was
described recently (da Silva et al., 2014). Several other studies
have also demonstrated a significant synergism between other
known antifungals and phenolic compounds against C. albicans
(Table 3). Some studies suggested that the synergism is due to
the induction of apoptosis by an increase in the production
of ROS. Hence, it was found that amphotericin B together
with baicalein or curcumin increases the production of ROS
(Sharma et al., 2010; Fu et al., 2011). A similar effect has
been observed with fluconazole and curcumin (Sharma et al.,
2010).
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TABLE 3 | Synergism of phenolic compounds with traditional antifungals in their action against Candida albicans.

Compound Fluconazole Amphotericin B Itraconazole Others

2,5 Dihydroxybenzaldehyde ___ Faria et al., 2011 Faria et al., 2011 ___

Baicalein Huang et al., 2008† Fu et al., 2011 ___ ___

Benzoic acid∗∗ ___ Faria et al., 2011 Faria et al., 2011 ___

Benzyl benzoate Zore et al., 2011† ___ ___ ___

Butylated hydroxyanisole Simonetti et al., 2002† Andrews et al., 1977∗ ; Beggs et al.,
1978∗

Simonetti et al., 2003†

Carvacrol Ahmad et al., 2013‡ ___ ___ ___

Cinnamaldehyde Khan and Ahmad, 2012 ___ ___ ___

Curcumin I Sharma et al., 2010‡ Sharma et al., 2010 Sharma et al., 2010‡ Sharma et al., 2010‡

Epigallocatechin-gallate Hirasawa and Takada, 2004‡ Hirasawa and Takada, 2004‡ ; Han,
2007

Navarro-Martinez et al.,
2006

Navarro-Martinez et al.,
2006

Eugenol Ahmad et al., 2010a‡ ; Zore et al.,
2011; Khan and Ahmad, 2012∗∗∗

___ ___ ___

Glabridin Liu et al., 2014 ___ ___ Messier and Grenier, 2011

Honokiol Jin et al., 2010† ___ ___ ___

Licochalcone A ___ ___ ___ Messier and Grenier, 2011

Methyleugenol Ahmad et al., 2010a‡ ___ ___ ___

Punicalagin Endo et al., 2010† ___ ___ ___

Propyl gallate D’Auria et al., 2001† Andrews et al., 1977; Beggs et al.,
1978∗

D’Auria et al., 2001† Strippoli et al., 2000†

Thymol Guo et al., 2009‡ ; Faria et al.,
2011; Ahmad et al., 2013‡

Guo et al., 2009; Faria et al., 2011 Faria et al., 2011 ___

∗ Ineffectiveness antifungal effect of phenolic alone; ∗∗phenolic acid; ∗∗∗performed on biofilm formation; †resistant strain; ‡resistant and susceptible strains.

Another hypothesis for the aforementioned synergism is the
association between folic acid cycle and ergosterol biosynthesis
pathways of C. albicans. Hence, epigallocatechin-gallate, a
phenolic compound was demonstrated to have a synergistic
antifungal effect on Candida when combined with itraconazole
or ketoconazole (Navarro-Martinez et al., 2006). Azoles directly
inhibit the ergosterol biosynthesis while epigallocatechin-gallate
has an antifolatic effect that indirectly affects the ergosterol
biosynthesis. Epigallocatechin-gallate causes a depletion of the
enzyme S-adenosylmethionine which in turn affects the enzyme
Sterol C24 methyltransferase. Hence, lower production of C24
methyltransferase negatively affects the ergosterol biosynthesis.
Direct and indirect effects on ergosterol biosynthesis explain the
synergism between epigallocatechin-gallate and azoles (Navarro-
Martinez et al., 2006).

Another study has shown that phenolic compounds such
as thymol and carvacrol significantly decrease the expression
levels of virulence genes CDR1 and MDR1 in fluconazole-
resistant C. albicans (Ahmad et al., 2013). An in vivo study
on systemic candidiasis in mice demonstrated that following
the treatment with honokiol and fluconazole, the survival rate
was 100% while a monotherapy showed only a survival rate
of 80% to fluconazole and 20% to honokiol, respectively.
Furthermore, the synergism of these two compounds led to
a notable reduction in C. albicans counts in mouse kidneys
compared with the fluconazole treatment alone (Jin et al.,
2010). Similarly, mice treated with epigallocatechin-gallate and
amphotericin B survived approximately 24 and 30 days longer
when compared to the groups treated only with epigallocatechin-
gallate or amphotericin B, respectively (Han, 2007). Considering

the foregoing evidence obtained for other phenolic compounds,
it is likely that potential of synergism exists between known
antifungal agents and phenolic acids and this possibility needs to
be examined in future.

Safety of the Phenolic Acids In vitro and
In vivo
An ‘ideal’ antifungal agent for Candida infections should not
have side effects or toxicity (Chapman et al., 2008; Wong et al.,
2014). However, in reality, all the antifungals currently in use
have some side effects on gastrointestinal tract, liver and kidney
(Wingard et al., 1999; Bates et al., 2001). Therefore, practically
one would expect to have some dose-related side effects from
any new antifungal agent. It is imperative to understand this
limitation in order to appreciate promising qualities of the drug
under investigation. DNA-damaging effect of phenolic acids has
been observed in p53R cell lines treated with gallic acid (Hossain
et al., 2014). Moreover, in vivo hepatotoxicity was observed in rats
when given a diet supplemented with more than 200 mg/kg/day
of gallic acid (Galati et al., 2006). In addition, hematological
disorders, as well as liver and kidney weight increase were
observed in rats fed with 0.6–5% of gallic acid daily for 13 weeks
(Niho et al., 2001).

A potential carcinogenicity was observed on the fore-stomach
of rats when fed with a powdered diet containing 0.4% of caffeic
acid for up to 28 weeks (Hirose et al., 1998). The clastogenic
power of caffeic and cinnamic acids have been described in vitro
(Maistro et al., 2011). Subcronic administration of protocatechuic
acid (0.1% in drinking water) for 60 days has shown a possible
liver and kidney toxicity in mice (Nakamura et al., 2001).
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Sodium benzoate and sodium phenylacetate have been used in
the treatment of acute hyperammonaemia and are derived from
benzoic acid and phenylacetic acid respectively. Inappropriate
doses of both substances may cause plasma acidosis, hypotension,
cerebral edema and other neurotoxical effects, sometimes even
death of patients (Kaufman, 1989; Praphanphoj et al., 2000).
Phenylacetic acid can also affect the osteoblastic functions
in vitro and increase cell proliferation in the alveolar region
(Kaufmann et al., 2005; Yano et al., 2007). Sodium and potassium
benzoates could be clastogenic, mutagenic and cytotoxic to
human lymphocytes in vitro (Zengin et al., 2011). Therefore, is
imperative to examine the dose-related toxicity of phenolic acids
in a series of comprehensive in vitro, in vivo and clinical studies
before administration as an antifungal agent.

CONCLUSION

Phenolic acids demonstrate considerable antifungal properties
against Candida. Previous studies have shown phenolic acid
compounds possess considerable anti-adhesion, anti-biofilm
effects, and inhibitory activity on morphogenesis and exoenzyme
production of Candida species. However, hitherto no clear
mechanism of action of phenolic acids on Candida cells
and virulence factors has been described compared to the
existing antifungal agents. Interestingly, there is substantial
evidence of the synergistic effect of phenolic acids and existing

antifungal agents which may become a promising anti-candidal
strategy. However, more studies are in demand for a conclusive
statement regarding their role. Therefore, we propose that
more comprehensive studies are mandatory to obtain evidence
regarding the suitability of the use of phenolic acids as a successful
antifungal agent in future.
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Candida species present both as commensals and opportunistic pathogens of the oral
cavity. For decades, it has enthralled the clinicians to investigate its pathogenicity and
to improvise newer therapeutic regimens based on the updated molecular research.
Candida is readily isolated from the oral cavity, but simple carriage does not predictably
result in development of an infection. Whether it remains as a commensal, or transmutes
into a pathogen, is usually determined by pre-existing or associated variations in the host
immune system. The candida infections may range from non-life threatening superficial
mucocutaneous disorders to invasive disseminated disease involving multiple organs. In
fact, with the increase in number of AIDS cases, there is a resurgence of less common
forms of oral candida infections. The treatment after confirmation of the diagnosis
should include recognizing and eliminating the underlying causes such as ill-fitting
oral appliances, history of medications (antibiotics, corticosteroids, etc.), immunological
and endocrine disorders, nutritional deficiency states and prolonged hospitalization.
Treatment with appropriate topical antifungal agents such as amphotericin, nystatin,
or miconazole usually resolves the symptoms of superficial infection. Occasionally,
administration of systemic antifungal agents may be necessary in immunocompromised
patients, the selection of which should be based upon history of recent azole exposure,
a history of intolerance to an antifungal agent, the dominant Candida species and current
susceptibility data.

Keywords: antifungal therapy, Candida, NCAC species, oral candidosis, opportunistic infections

INTRODUCTION

The malady of thrush or candidiasis has been known to occur in people for over 2000 years. As
mentioned by the famous Greek physician, Hippocrates in his findings, it commonly presents
as superficial infections of the oral and vaginal mucosa. However, it was not until the mid-1800s
that the documented research on pathogenesis of candidiasis were instigated. The principal yeast
pathogen, Candida albicans, itself, was identified in the nineteenth century. In the early 1900s,
C. albicans was found in the oral cavity of 54% of 2–6 weeks old and 46% of 1 year old infants and
in 39% of 1–6 years old children, nonetheless several of them were rather healthy (Barnett, 2008).
It was only later, that the subsequent studies revealed the normal oral carriage of C. albicans is 2.0–
69.1% among the healthy adult population, depending upon the sampled population and technique
(Scully et al., 1994).

In recent years, noteworthy escalation in pathogenic state of this commensal has been observed,
as reflected in the increased incidence of the common and infrequent forms of candidiasis
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(Williams and Lewis, 2011). The probable explanations
include changes in the practice of medicine like introduction
of broad-spectrum antibiotics, immunosuppressive agents,
transplantations, indwelling catheters, etc., and morbid
conditions such as diabetes, severe malnutrition in children
and AIDS (Lalla et al., 2013). Oral candidiasis is a significant
source of morbidity, as it can cause chronic pain or discomfort
upon mastication, limiting nutrition intake in the elderly
or immunodeficient patients. There are multiple clinical
presentations of oropharyngeal and esophageal candidiasis
caused by C. albicans, either alone or in mixed infection
(Sherman et al., 2002). Thus, with the above outlook, the present
review comprehends the varied clinical manifestations and the
current treatment strategies for this opportunistic pathogen.

EPIDEMIOLOGY

Oral candidosis is frequent in the extremes of age (Akpan and
Morgan, 2002). Approximately 5–7% of infants develop oral
candidiasis. Its prevalence in AIDS patients is estimated to be 9–
31% and close to 20% in the cancer patients (Lalla et al., 2013).
The oral carriage of candida organisms is reported to be 30–
45% in the general healthy adult population (Akpan andMorgan,
2002). The incidence of C. albicans in healthy and various health
conditions is depicted in Table 1. The additional important
species isolated from clinical infections include, C. glabrata,
C. guillierimondii, C. krusei, C. lusitaniae, C. parapsilosis,
C. pseudotropicalis, C. stellatoidea, and C. tropicalis (Crist et al.,
1996). In recent years higher incidences of the above mentioned
non- C. albicans Candida (NCAC) species have been also
reported (Williams and Lewis, 2011).

Systemic candidiasis is less frequent but carries a mortality
rate of 71–79%. The annual incidence of bloodstream infection
(BSI) associated with candida ranges from 6–23/100,000 to
2.53–11/100,000 individuals in USA and European countries,
respectively. Overall NCAC species have shown an increasing
trend as causative pathogens in BSIs with a 10–11% increment
over a 6.5−year period in a global report. In addition to
C. albicans, the common NCAC species involved in BSIs
include C. parapsilosis (premature neonates and catheterized
patients); C. glabrata (elderly patients); C. tropicalis
(hematological malignancies); and C. krusei (Richardson,
2005).

TABLE 1 | Oral carriage of Calbicans albicans in various subjects (Akpan
and Morgan, 2002).

Subjects Oral carriage of C. albicans

Neonates 45%

Healthy children 45–65%

Healthy adults 30–45%

Removable denture wearers 50–65%

Long term facilities 65–88%

Acute leukemia undergoing chemotherapy 90% (approximately)

HIV patients 95% (approximately)

FACTORS PREDISPOSING FOR ORAL
CANDIDIASIS (TABLE 2)

Local Factors
Saliva
Salivary gland dysfunction predisposes to oral candidiasis.
Constituents of saliva such as histidine-rich polypeptides,
lactoferrin, lysozyme, and sialoperoxidase inhibit the overgrowth
of candida. Hence, conditions affecting the quantity and quality
of salivary secretions may lead to an increased risk of oral
candidosis (Scully et al., 1994; Turner and Ship, 2007).

Dental Prostheses
Dental prostheses creates a favorable microenvironment for the
candida organisms to thrive. Approximately 65% of complete
denture wearers are predisposed to candida infection. The
possible explanations include enhanced adherence of candida
to the acrylic, ill-fitted appliances, decreased saliva flow under
the denture surfaces or inadequate hygiene (Ashman and Farah,
2005; Martori et al., 2014).

Topical Medications
Another important local factor increasing the risk of oral
candidosis could be use of topical or inhalational corticosteroids
and overzealous use of antimicrobial mouthwashes. They
temporarily suppress the local immunity and cause alterations in
the oral flora (Scully et al., 1994; Jainkittivong et al., 2007).

Smoking
Some studies suggest that smoking alone or in combination
with other factors, significantly affects the oral candida carriage
while few studies propose otherwise (Soysa and Ellepola, 2005;
Barnett, 2008; Munshi et al., 2015). The precise mechanism is
not established but various theories have been postulated. The
possible explanations facilitating candida colonization include
localized epithelial alterations caused by smoking (Arendorf and
Walker, 1980); smoking in association with denture friction
altering the mucosal surface (Arendorf and Walker, 1987);
nutritional products obtained through enzymatic breakdown

TABLE 2 | Factors predisposing for oral candidiasis (Rautemaa and
Ramage, 2011).

Local factors Systemic factors

• Impaired local defense
mechanisms

• Impaired systemic defense mechanisms

• Decreased saliva production • Primary or secondary immunodeficiency

• Smoking • Immunosuppressive medications

• Atrophic oral mucosa • Endocrine disorders- Diabetes

• Mucosal diseases (Oral lichen
planus)

• Malnutrition

• Topical medications – corticoids • Malignancies

• Decreased blood supply
(radiotherapy)

• Congenital conditions

• Poor oral hygiene • Broad spectrum antibiotic therapy

• Dental prostheses

• Altered or immature oral flora
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of aromatic hydrocarbons contained in cigarette smoke (Hsia
et al., 1981; Krogh et al., 1987); suppression of local immunity
and reduction in gingival exudate; elevation of glycosylated
hemoglobin levels and lastly tobacco smoke increasing the
adrenaline levels in blood, indirectly affecting the blood glucose
levels.

Diet
Unbalanced dietary intake of refined sugars, carbohydrates and
dairy products (containing high content of lactose) might serve as
growth enhancers by reducing the pH levels and hence favoring
the candida organisms to thrive (Martins et al., 2014).

Systemic Factors
Age
Extremes of age may predispose to candidiasis due to immature
or weakened immunity (Weerasuriya and Snape, 2008).

Nutritional Status
Among the nutritional deficiency states, iron has been the
most common deficient essential micronutrient implicated in
the colonization of candida. Deficiency of iron diminishes
the fungistatic action of transferrin and other iron-dependant
enzymes. In addition, other nutrients frequently deficit in chronic
candidiasis includes essential fatty acids, folic acid, vitamins A
and B6, magnesium, selenium, and zinc (Paillaud et al., 2004;
Martins et al., 2014).

Systemic Drugs
Prolonged use of systemic drugs like broad-spectrum antibiotics,
immune-suppressants and drugs with xerostomic side-effects,
alter the local oral flora or disrupt mucosal surface or reduce
the salivary flow, creating a favorable environment for candida
to grow (Martins et al., 2014). Escalation in candida organisms
has also been reported in patients undergoing radiation therapy
to the head and neck region.

Endocrine Disorders
Various reports reveal that oral and invasive candidiasis are
more prevalent in patients with endocrine dysfunctions such as
diabetes and Cushing’s syndrome (Graham and Tucker, 1984;
Bakker et al., 1998; Sashikumar and Kannan, 2010).

Immune Disorders
Immunodeficiency conditions such as AIDS and severe
combined immunodeficiency syndrome (SCID) are also
predisposing factors for candidiasis (Anil and Challacombe,
1997; Owotade and Patel, 2014).

Malignancies
The host defense mechanisms are compromised by
chemotherapy and radiotherapy administered for the treatment
of malignant conditions. The prevalence of oral candidiasis for
all cancer treatments, according to a systematic review, was
reported to be 7.5% pre-treatment, 39.1% during treatment and
32.6% post-cancer therapy. The prevalence of oral candidiasis
during head and neck radiation therapy and chemotherapy was
observed to be 37.4 and 38%, respectively. The colonization

by C. albicans was reported to be 46.2%. The prevalence of
NCAC species were C. tropicalis (16.6%), C. glabrata (5.5%), and
C. krusei (3%) (Scheffel et al., 2010).

Congenital Conditions
Lastly, individuals affected by congenital conditions associated
with defective immune system such as Di George’s syndrome,
hereditary myeloperoxidase deficiency and Chediak–Higashi
syndrome are commonly predisposed to candida infections
(Ashman and Farah, 2005).

FORMS OF ORAL CANDIDA
INFECTIONS (TABLE 3)

Primary Oral Candidiasis
Primary Triad
Pseudomembranous candidiasis
This form of candidiasis classically presents as acute infection,
though the term chronic pseudomembranous candidiasis has
been used to denote chronic recurrence cases. It is commonly
seen in extremes of age, immunocompromised patients especially
in AIDS, diabetics, patients on corticosteroids, prolonged
broad-spectrum antibiotic therapy, hematological, and other
malignancies (Figure 1). On the oral surfaces, the superficial
component presents as white to whitish-yellow creamy confluent
plaques resembling milk curds or cottage cheese. These plaques
consist of desquamated epithelial cells, tangled aggregates of
fungal hyphae, fibrin, and necrotic material (Lalla et al.,
2013). The superficial pseudo-membrane can be removed by
wiping gently, leaving behind an underlying erythematous and
occasionally bleeding surface (Ashman and Farah, 2005; Farah
et al., 2010). The oral surfaces frequently involved include labial
and buccal mucosa, tongue, hard and soft palate and oropharynx.

TABLE 3 | Classification of oral candidosis (Axell et al., 1997).

Primary oral candidosis Secondary oral candidosis

Acute forms Oral manifestations of systemic
mucocutaneous candidosis

Pseudomembranous Thymic aplasia

Erythematous Candidosis endocrinopathy
syndrome

Chronic forms

Hyperplastic (nodular or plaque-like)

Erythematous

Pseudomembranous

Candida-associated lesions

Denture stomatitis

Angular cheilitis

Median rhomboid glossitis

Keratinized primary lesions with
candidal super infection

Leukoplakia

Lichen planus

Lupus erythematosus
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FIGURE 1 | Pseudomembranous candidiasis of the tongue. The
copyright of the images is owned by Prof. Anil and a written consent was
obtained for the Figures 1–6.

The involvement of both oral and oesophageal mucosa is
prevalent in AIDS patients. The symptoms of the acute form are
rather mild and the patients may complain only of slight tingling
sensation or foul taste, whereas, the chronic forms may involve
the oesophageal mucosa leading to dysphagia and chest pains.
Few lesions mimicking pseudomembranous candidiasis could
be white coated tongue, thermal and chemical burns, lichenoid
reactions, leukoplakia, secondary syphilis and diphtheria (Lalla
et al., 2013).

Erythematous candidiasis
Erythematous candidiasis is relatively rare and manifests as both
acute and chronic forms (Ashman and Farah, 2005). Previously
known as ‘antibiotic sore mouth,’ due to its association with
prolonged use of broad-spectrum antibiotics (Farah et al., 2010).
The chronic form is usually seen in HIV patients involving the
dorsum of the tongue and the palate and occasionally the buccal
mucosa (Figure 2). Clinically, it manifests as painful localized
erythematous area. It is the only form of candidiasis associated
with pain. The lesions are seen on the dorsum of the tongue
typically presenting as depapillated areas. Palatal lesions are more
common in HIV patients. Differential diagnosis may include
mucositis, denture stomatitis, erythema migrans, thermal burns,
erythroplakia, and anemia (Dodd et al., 1991).

Hyperplastic candidiasis
The hyperplastic candidiasis mainly presents as chronic form.
It has been commonly referred previously by several authors
as ‘candidal leukoplakia.’ Clinically, it may manifest as one of
the two variants; homogeneous adherent white plaque-like or
erythematous multiple nodular/speckled type (Holmstrup and
Bessermann, 1983; Sanketh et al., 2015). The lesions usually occur
bilaterally in the commissural region of the buccal mucosa and
less frequently on the lateral border of the tongue and palate
(Figure 3). Unlike the pseudomembranous type, hyperplastic
candidiasis lesions are non-scrapable. There appears to be a
positive association with smoking and in addition may present

FIGURE 2 | Erythematous candidiasis of the palate.

FIGURE 3 | Hyperplastic candidiasis at the lateral border of the tongue.

with varying degrees of dysplasia (Williams and Lewis, 2011).
A confirmed association between Candida and oral cancer is
yet to be recognized, although in vitro studies have shown that
the candida organisms can generate carcinogenic nitrosamine
(Farah et al., 2010; Sanketh et al., 2015). A small percentage
of cases occur in association with iron and folate deficiencies
andwith defective cell-mediated immunity. Differential diagnosis
may include leukoplakia, lichen planus, angular cheilitis and
squamous cell carcinoma.

Candida-associated Lesions
Denture stomatitis
It is also known as “chronic atrophic candidiasis.” As the name
indicates, it is chronic inflammation of the mucosa typically
restricted to the denture-bearing area, seen in association with
candidiasis (Lund et al., 2010). It is seen in almost 50–65% of
the denture wearers (Ashman and Farah, 2005; Williams and
Lewis, 2011). Clinically, the lesions may be seen as pinpoint
hyperaemia, diffuse erythematous or granular/papillary type.
It occurs frequently along with angular cheilitis and median
rhomboid glossitis. The lesions are usually asymptomatic, though
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occasionally patients may complain of burning sensation or
soreness. It commonly affects the palate although mandibular
mucosa may also be affected (Figure 4). The associated etiological
factors include poor oral hygiene practice, nocturnal denture
wear, ill-fitting prostheses and limited flow of saliva (Farah et al.,
2010; Williams and Lewis, 2011).

Angular cheilitis
This form of candidiasis usually manifests as erythematous or
ulcerated fissures, typically affecting unilaterally or bilaterally the
commissures of the lip (Samaranayake et al., 1995; Sharon and
Fazel, 2010). Angular cheilitis often represents an opportunistic
infection of fungi and/or bacteria, with multiple local and
systemic predisposing factors involved in the initiation and
persistence of the lesion (Park et al., 2011). The factors associated
include old age and denture-wearers (due to reduced vertical
dimension), vitamin B12 deficiency and iron deficiency anemia
(Jenkins et al., 1977). Other causative organisms implicated are
Staphylococcus and Streptococcus (Farah et al., 2010).

Median rhomboid glossitis
Median rhomboid glossitis appears as the central papillary
atrophy of the tongue and is typically located around the midline
of the dorsum of the tongue. It occurs as a well-demarcated,
symmetric, depapillated area arising anterior to the circumvallate
papillae (Figure 5). The surface of the lesion can be smooth or
lobulated (Joseph and Savage, 2000). While most of the cases
are asymptomatic, some patients complain of persistent pain,
irritation, or pruritus (Lago-Mendez et al., 2005). The lesion is
now believed to be a localized chronic infection by C. albicans.
It is commonly seen in tobacco smokers and inhalation-steroid
users (Aun et al., 2009; Williams and Lewis, 2011).

Linear gingival erythema
It was previously referred to as “HIV-gingivitis” since its
typical occurrence was in HIV associated periodontal diseases
(Figure 6). It manifests as linear erythematous band of 2–
3 mm on the marginal gingiva along with petechial or diffuse
erythematous lesions on the attached gingiva. The lesions may
present with bleeding. In addition to C. albicans, C. dubliniensis

FIGURE 4 | Denture stomatitis of the palate.

FIGURE 5 | Median Rhomboid glossitis-note the candidal overgrowth.

FIGURE 6 | Linear Gingival erythema in an HIV infected patient.

has been reported as an emerging pathogen in this form of
candidiasis (Williams and Lewis, 2011).

Secondary Oral Candidiasis
This group is characterized by chronic mucocutaneous
candidiasis, which consists of heterogeneous disorders,
presenting as persistent or recurrent superficial candida
infections of the mouth, skin, nail beds, and occasionally
producing granulomatous masses over the face and scalp. The
primary clinical features include chronic oral, cutaneous and
vulvovaginal candidiasis. Oral cavity involvement is reported in
more than 90% cases and the lesions can occasionally spread
into the larynx, pharynx or esophagus but further involvement
is infrequent. It is associated with diverse immunodeficiency
disorders such as, Di George syndrome, hyper-immunoglobulin
E syndrome, Nezelof ’s syndrome MPO deficiency, SCID
syndrome and endocrine disorders like Addison’s disease and
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hypoparathyroidism (Ashman and Farah, 2005; Farah et al.,
2010; Williams and Lewis, 2011; Lalla et al., 2013).

ORAL CANDIDA INFECTION IN
NEWBORNS

Oral candidiasis in neonates is reported to be 0.5–20%, depending
upon the various studies (Yilmaz et al., 2011; Stecksen-Blicks
et al., 2015). The most common form of candidiasis affecting
this age group is the acute pseudomembranous candidiasis
(Berdicevsky et al., 1984). Candida species isolated from
these lesions include C. albicans, followed by C. glabrata,
C. tropicalis and C. krusei (Tinoco-Araujo et al., 2013).
Majority of the lesions are asymptomatic. They mainly present
as white scrapable pseudomembranous lesions. The major
predisposing factors were low birth weight, prolonged hospital
stay and associated increased risk of exposure to environmental
factors. The participation of dental surgeon is essential in
early diagnosis of the oral signs and symptoms of this
opportunistic infection in order to prevent disseminated
candidiasis and subsequent mortality (2–20%; Sitheeque and
Samaranayake, 2003). Treatment for superficial infection is
topical administration of antifungals such as 1% clotrimazole
solution thrice daily for 7 days. In case of invasive or disseminated
candidiasis, systemic interventions are obligatory (Sitheeque and
Samaranayake, 2003).

MANAGEMENT OF ORAL CANDIDOSIS

An effective management of oral candidiasis can be achieved by
adhering to the following simple guidelines:

(1) Diagnosis through detailed medical and dental history,
clinical manifestations confirmed with laboratory tests.

(2) Correction of predisposing factors where achievable.
(3) Maintenance of proper hygiene of the oral cavity and oral

prostheses, if any.
(4) Selection of antifungal therapy based on severity of the

infection and susceptibility of the Candida species prevalent
in that patient.

Diagnosis of oral candidosis, includes identification of clinical
signs and symptoms, presence of the candida organisms on
direct examination of a smear from the lesion or biopsy
examination showing hyphae in the epithelium, positive

culture, and serological tests (Rossie and Guggenheimer, 1997;
Ellepola and Morrison, 2005). Another concern with respect
to the treatment, is the increase in NCAC species which
are naturally resistant to some of the common antifungal
drugs (Table 4). For example, in HIV positive cases there
is reported increase in C. glabrata, followed by C. krusei; in
insulin using diabetes mellitus patients’ significant percentage
of C. dubliniensis and C. glabrata was noted; also certain
mucosal lesions, oral cancer and elderly hospitalized patients
have shown increase in NCAC species carriage (Gutierrez et al.,
2002).

ANTIFUNGAL AGENTS

Antifungal agents that are available for the treatment of
candidosis fall into three main categories: the polyenes (nystatin
and amphotericin B); the ergosterol biosynthesis inhibitors-
the azoles (miconazole, clotrimazole, ketoconazole, itraconazole,
and fluconazole), allylaminesthiocarbamates, and morpholines;
and DNA analog 5-fluorocytosine, and newer agents such as
caspofungins (Ghannoum and Rice, 1999; Pappas et al., 2009).
The choice of antifungal treatment depends on the nature of
the lesion and the immunological status of the patient. There
are three main antifungal drug targets in Candida: the cell
membrane, cell wall, and nucleic acids (Figure 7) (Cannon et al.,
2007).

Superficial oral candidosis in generally healthy patients can
be treated topically and oral candidosis in immunocompromised
patients should be treated systemically as well as topically.
Patients with persisting risk factors and relapsing candidosis
should be treated with antifungals with the lowest risk of
development or selection of resistant strains (Soysa et al.,
2008; Rautemaa and Ramage, 2011). The commonly used
antifungal agents in the management of OPC is listed in
Table 5.

TOPICAL ANTIFUNGALS

Topical antifungals are usually the drug of choice for
uncomplicated, localized candidiasis in patients with normal
immune function. High levels can be achieved in the oral
epithelium with topically administered antifungals. Polyenes
are fungicidal drugs that act through direct binding to the
ergosterol within the fungal cell membranes, inducing leakage

TABLE 4 | Susceptibility of C. albicans and common NCAC species (Gutierrez et al., 2002; Pappas et al., 2009).

Candida species Fluconazole Itraconazole Amphotericin B Echinocandin Flucytosine

Candida albicans S S S S S

Candida tropicalis S S S S S

Candida glabrata S-DD to R S-DD to R S-I S S

Candida krusei R S-DD to R S to S-I S S-I to R

Candida dubliniensis S to R S to R S S S

S, Susceptible; S-DD, Susceptible dose-dependent; S-I, Susceptible intermediate; R, Resistant.
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FIGURE 7 | Cellular targets of antifungal agents. (The antifungal agents target three cellular components of fungi. Azoles inhibit the synthesis of ergosterol in the
endoplasmic reticulum of the fungal cell. Polyenes such as amphotericin B bind to ergosterol in the fungal membrane causing disruption of membrane structure and
function. Flucytosine is converted within the fungal cell to 5-fluorouracil which inhibits DNA synthesis.)

TABLE 5 | Treatment of oropharyngeal candidiasis (OPC; Thompson et al., 2010).

Severity Antifungal drug Dosage/ Duration

First-line agents

Fluconazole (PO or IV) 100–200 mg/7–14 days

Clotrimazole troches 10 mg five times/7–14 days

Nystatin suspension (100,000 U/mL) 4–6 ml four times/7–14 days

Nystatin pastilles (200,000 U each) 1–2 pastilles four times/7–14 days

Second-line agents

Itraconazole solution (PO) 200 mg/28 days

Posaconazole (PO) 400 mg daily in divided doses

Voriconazole (PO or IV) 200 mg twice daily

Agents used in refractory case of OPC

Caspofungin (IV) 70 mg loading dose followed by 50 mg daily

Micafungin (IV) 100-150 mg daily

Anidulafungin (IV) 100 mg loading dose followed by 50 mg daily

Amphotericin B oral suspension 500 mg every 6 h

Amphotericin B deoxycholate (IV) 0.3 mg/kg once

of cytoplasmic contents leading to the fungal cell death.
Nystatin or amphotericin B solutions are used for 4 weeks. In
recurrent cases the duration of treatment should be for at least
4–6 weeks.

Topically administered miconazole gel is also suitable for
the treatment of uncomplicated infections in generally healthy
patients (Bensadoun et al., 2008). It should also be used
for 1 week after resolution of symptoms. The gel inhibits
the action of fungal ergosterol synthesis; interacts with the
cytochrome P450 enzyme 14-alpha demethylase; inhibits growth
of pathogenic yeasts by altering cell membrane permeability.
Repeated use of miconazole, however, may cause a risk
of development of azole-resistant strains (Rautemaa et al.,
2008).

SYSTEMIC ANTIFUNGALS

Systemic antifungals are usually indicated in cases of
disseminated disease and/or in immunocompromised patients.
Azoles are fungistatic drugs that inhibit the fungal enzyme
lanosterol demethylase responsible for the synthesis of ergosterol.
Among the azoles, fluconazole attains a higher concentration in
the saliva making it principally the suitable drug for treating this
oral infection. Fluconazole and itraconazole are administered
orally and it gets secreted onto mucous membranes. The
oral solution also has a topical effect (Pappas et al., 2004).
The other antifungals, echinocandins, and flucytosine act
through inhibition of D-glucan synthase and DNA/protein
synthesis, respectively (Muir et al., 2009; Vandeputte et al., 2012).
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Posaconazole, is available only as an oral solution and is used
in immunocompromised patients and patients resistant to other
drugs (Clark et al., 2015).

One of the risks while using fluconazole and other drugs of the
azole group is the development of resistant strains (Siikala et al.,
2010). For fluconazole-refractory disease, either itraconazole
solution at a dosage of 200 mg daily or posaconazole suspension
at a dosage of 400 mg twice daily for 3 days, then 400 mg
daily for up to 28 days, are recommended. Voriconazole at a
dosage of 200 mg twice daily or a 1-mL oral suspension of
AmB-d, administered at a dosage of 100 mg/mL four times daily,
are recommended when treatment with other agents has failed.
Intravenous echinocandin or AmB-d at a dosage of 0.3 mg/kg
daily can be used in treating patients with refractory disease
(Vazquez, 2003).

ALTERNATIVE ANTI CANDIDAL AGENTS

Lastly, to mention a few natural anti-yeast substances which can
be used as an alternative treatment. These agents with recognized
activity against C. albicans includes berberine-containing plants;
caprylic acid; grapefruit seed extract; garlic; probiotics; tea
tree oil and enteric-coated volatile oil preparations containing
cinnamon, ginger, oregano, peppermint and rosemary; propolis
and thyme (Hofling et al., 2010; Valera et al., 2013). Agents
capable of inhibiting microbial growth such as xylitol is known
to inhibit microbial metabolism in the oral cavity. It is therefore
incorporated in chewing gums and tablets as well as in health
care products such as dentifrice and oral rinses. Although it has
a limited effect on Candida, it could be beneficial in prevention
of the mixed biofilm infection (Pizzo et al., 2000). The essential
oil of Melaleuca alternifolia, also known as tea tree oil has
been shown to be promising as a topical antifungal agent,
with recent clinical data indicating efficacy in the treatment
of oral candidiasis (Hammer et al., 2004; Sitheeque et al.,
2009).

PREVENTION OF ORAL CANDIDOSIS

Good oral hygiene practices may help to prevent oral thrush
in people with weakened immune systems. Careful mechanical
cleaning of teeth and dentures with a toothbrush is the
cornerstone of the prevention of candida infections. Oral
decontamination using antifungal and antibacterial rinses is one
of the approaches often used to manage oral mucositis (Fathilah
et al., 2012). Chlorhexidine digluconate, and cetylpyridinium
chloride are two antiseptics often incorporated in mouth rinses
and used as prophylaxis for both chemotherapy and radiotherapy
induced mucositis (Salim et al., 2013). People who use inhaled
corticosteroids may be able to reduce the risk of developing
thrush by washing out the mouth with water or mouthwash after
using an inhaler (Soares et al., 2011). For susceptible denture
wearers, it is advisable to remove the denture at night and soak
in 0.2% Chlorhexidine solution or 15–30 min in white vinegar
(diluted 1:20) or 0.1% hypochlorite solution (Kassaify et al.,
2008). The elimination or at least regulation of the predisposing
factors for candidiasis is essential. Failure to recognize this may
only provide a temporary relief using antifungal therapy, but with
inevitable relapse of the infection (Akpan and Morgan, 2002).

CONCLUSION

In the past few decades extensive clinical data has been recorded
on oral candidiasis with respect to its advent with the various
immunocompromised conditions. With the increasing incidence
of NCAC species and the development of antifungal resistance,
there is a persistent requirement in research for newer effective
agents. One such prospect is development of vaccine against
candida organisms. Various experimental strategies have been
employed for developing such a vaccine, like attenuated live
candida organisms, SAP gene family proteins, glycoconjugates
(mannans and β-glucans) to mention a few, but clinical trials are
still a distant vision.
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Candida glabrata is an emerging human fungal pathogen that has efficacious nutrient

sensing and responsiveness ability. It can be seen through its ability to thrive in diverse

range of nutrient limited-human anatomical sites. Therefore, nutrient sensing particularly

glucose sensing is thought to be crucial in contributing to the development and

fitness of the pathogen. This study aimed to elucidate the role of SNF3 (Sucrose Non

Fermenting 3) as a glucose sensor and its possible role in contributing to the fitness and

survivability of C. glabrata in glucose-limited environment. The SNF3 knockout strain was

constructed and subjected to different glucose concentrations to evaluate its growth,

biofilm formation, amphotericin B susceptibility, ex vivo survivability and effects on the

transcriptional profiling of the sugar receptor repressor (SRR) pathway-related genes.

The CgSNF31 strain showed a retarded growth in low glucose environments (0.01 and

0.1%) in both fermentation and respiration-preferred conditions but grew well in high

glucose concentration environments (1 and 2%). It was also found to bemore susceptible

to amphotericin B in low glucose environment (0.1%) and macrophage engulfment but

showed no difference in the biofilm formation capability. The deletion of SNF3 also

resulted in the down-regulation of about half of hexose transporters genes (four out of

nine). Overall, the deletion of SNF3 causes significant reduction in the ability ofC. glabrata

to sense limited surrounding glucose and consequently disrupts its competency to

transport and perform the uptake of this critical nutrient. This study highlighted the role of

SNF3 as a high affinity glucose sensor and its role in aiding the survivability of C. glabrata

particularly in glucose limited environment.

Keywords: Candida glabrata, glucose sensor, SNF3, glucose-limited environment, hexose transporter

INTRODUCTION

Glucose is commonly known as an important carbon source and energy for many organisms.
Several studies have attempted to establish the linkage between glucose availability and
physiological response of Candida species, including the biofilm formation, oxidative stress,
and antifungal resistance (Rodaki et al., 2009; Uppuluri et al., 2010; Ene et al., 2012;
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Ng et al., 2015b). The regulatory effect by glucose found
in these studies is suggestive of the importance of glucose
sensing and uptake mechanism in contributing to the fitness of
Candida species. Brown et al. (2006) have demonstrated that
the loss of Hgt4, a high affinity glucose sensor resulted in a
less virulent C. albicans type that failed to grow in low glucose
and fermentation-preferred environments. In addition, the loss
of Hgt4 also affects the ability of C. albicans to perform the
yeast-hyphal morphological switch and therefore compromises
its pathogenicity in mouse model of disseminated candidiasis
(Brown et al., 2006). Apart from that, the ability to transport
glucose by Cryptococcus neoformans is also diminished with
the loss of Hxs1, a high affinity glucose sensor-like protein
(Liu et al., 2013). The diminished glucose uptake activity
leads to an attenuated strain of C. neoformans in which the
strain demonstrated a delay in lethal infection in mice model.
However, little is known about the role of high affinity glucose
sensor in the emerging human fungal pathogen, Candida
glabrata.

The ability of C. glabrata to thrive in several glucose-limited
anatomical sites of host such as vaginal and blood (Ehrström
et al., 2006) is suggestive of its sensitivity toward the low
glucose availability in the niches with its superior glucose sensing
ability. The primary mechanism for Saccharomyces cerevisiae
to sense and transport surrounding glucose is through SNF3-
RGT2mediated sugar receptor repressor (SRR) pathway (Rolland
et al., 2002; Santangelo, 2006; Gancedo, 2008). This pathway
employs two glucose sensors with different affinity toward
glucose: SNF3 (high affinity) and RGT2 (low affinity). They
are located in the cell membrane and modulate the expression
of the hexose transporters (HXTs) for the uptake of glucose
through the interplay of transcription regulators (RGT1 and
MIG1) and downstream component of SRR: YCK1 and YCK2
(casein kinase), GRR1 (Glucose Repression Resistant), STD1
(repressor of RGT1; summarized and illustrated in Figure 9;
Schmidt et al., 1999; Kim and Johnston, 2006). The homologs
of these key genes were found in the C. glabrata genome.
The phylogenetic analysis conducted demonstrates the shared
neighborhood between CgSNF3 (sequence ID: CAGL0J09020g)
and ScSNF3 (Palma et al., 2009; Ng et al., 2015a). In addition,
the key feature of glucose sensor as found in ScSNF3, for
example the unusual long C-terminal segment amino acids and
the signature Özcan motif were also found in the CgSNF3
(Palma et al., 2009; Ng et al., 2015a). Nevertheless, these studies
have only managed to highlight the phylogenetic relatedness
between ScSNF3 and CgSNF3, but the actual physiological role
of SNF3 in C. glabrata is remains unknown. In respect to the
importance of glucose in cell physiology, the disruption in SRR
pathway may have negative impact on the fitness of C. glabrata.
Therefore, this study aimed to explore the possible role of SNF3
in supporting the growth and fitness of C. glabrata under low
glucose concentration environment. Its growth profile, biofilm
formation, antifungal susceptibility, and capability to withstand
phagocytosis of macrophage were assessed. In addition, its
role in regulating the expression of the SRR pathway-related
genes, which includes the hexose transporters (HXTs), was also
deciphered.

MATERIALS AND METHODS

Yeast Strain and Media Preparation
C. glabrata BG14 (gift from Brendan Cormack, John Hopkins
University; Cormack and Falkow, 1999) and its parental strain
C. glabrata BG2 (gift from Paul Fidel, Louisiana State University
Health Sciences Center) were used in this study (Table 1). Three
types of media were utilized: standard YPD (Becton, Dickinson
and Company, USA; 20 g of peptone, 20 g of glucose, 10 g of yeast
extract), synthetic minimal glucose medium, SD [0.67% of yeast
nitrogen base (Becton, Dickinson and Company, USA)+ glucose
(Fisher Scientific, USA)] and synthetic complete media with
uridine dropout [0.17% yeast nitrogen base without ammonium
sulfate and amino acid (Becton, Dickinson and Company,
USA) + 0.5% ammonium sulfate (Sigma Aldrich, USA) + 2%
glucose (Fisher Scientific, USA)+ complete supplement mixture
with uridine dropout (ForMedium, UK)] (Sherman, 2002). All
strains were maintained at 37◦C in YPD, unless otherwise
indicated.

Strain Construction
For the construction of the C. glabrata SNF31 strain, the C.
glabrata BG14 was transformed to Ura3 + by replacing the SNF3
open reading frame (ORF) with SNF3::URA3 disruption cassette.
SNF3::URA3 disruption cassette that consists of “upstream
SNF3-URA3-downstream SNF3” was amplified by PCR (primers
TS_SNF3_F and TS_SNF3_R; Table 2) and purified through
Expin™ Combo GP purification kit (GeneAll, Korea). The
purified cassette was then transformed into C. glabrata BG14 as
described in Cormack and Falkow (1999). Transformants were
selected on synthetic complete media with uridine dropout and
insertion was confirmed by diagnostic PCR (primers CHK_F_1
CHK_R_1 and CHK_F_2 CHK_R_2; Table 2) for the absence
of SNF3 and presence of URA3 at the correct locus. In order to
eliminate the possible effect from secondary mutation of mutant
constructed, three independently constructed SNF31 mutants
were analyzed, and treated as three biological replicates in the
subsequent assays (Odds et al., 2006).

Growth Profiling and Growth Rate
Calculation
The capability of SNF31 strain and parental wild type BG2 to
grow in different levels of surrounding glucose was assessed using
a modified procedure as described in Brown et al. (2006) and

TABLE 1 | Candida glabrata strains used in this study.

C. glabrata Genotype References

strains

BG2 Wild type Cormack and Falkow, 1999

BG14 Ura31 (−85+ 932):: Tn903NeoR Cormack and Falkow, 1999

SNF3∆_a

SNF3∆_b Derived from BG14, SNF3::URA3 This study

SNF3∆_c

Frontiers in Microbiology | www.frontiersin.org December 2015 | Volume 6 | Article 1334 | 67

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Ng et al. Glucose Sensor in C. glabrata

TABLE 2 | List of primers used in this study.

Target gene name Direction Sequence 5′–3′ Expected amplification

size

RGT2 (Restores Glucose Transport 2) Forward CGTTTGTGGGACTTTTCGTT 203 bp

(CAGL0I03872) Reverse TGAAATCCATGGAGCAATGA

GRR1 (Glucose Repression-Resistance 1) Forward TTGTCGAGCTTACAGGCAGA 149 bp

(CAGL0M09130) Reverse CCCTCCAATCTTTGGTTTCC

STD1 (Suppressor of Tbp Deletion 1) Forward GAGTGCCCCACCAGAATATG 146 bp

(CAGL0L10043) Reverse AGGACTGCGAGCTGTGACTT

YCK1 (Yeast Casein Kinase 1) Forward CGCTGACAATGCTAACCAGA 150 bp

(CAGL0G06138) Reverse TGAACACGTTGTCCTTGCAT

YCK2 (Yeast Casein Kinase 1) Forward TCGGAGAGACTATGGACGGTA 149 bp

(CAGL0J05940) Reverse GGCAGCGTTTCTGTTCCTAT

RGT1 (Restores Glucose Transport 1) Forward CCAACTCAAAGGATGGAGGA 194 bp

(CAGL0L01903) Reverse TATCGTTGGCGTCATTTTGA

MIG1 (Multicopy Inhibitor of GAL gene expression 1) Forward CCGGGATGTGTCAAGAGATT 212 bp

(CAGL0A01628) Reverse CGTTTCGTCTTCCTCCTCAG

HXT1 (Hexose Transporter 1) Forward AAACCAAGTCGGCAAGAATG 224 bp

(CAGL0A01804) Reverse ATTCAGTTCCGTCAGGATGC

HXT3 (Hexose Transporter 3) Forward TGACCTTCGTTCCAGAATCC 165 bp

(CAGL0A0231) Reverse TACCAGCGGCATTAGCTTCT

HXT5 (Hexose Transporter 5) Forward TATGTTTCGCATGGGCATTA 153 bp

(CAGL0A01826) Reverse CCAAAAGGACGATTGGAGAA

HXT4 (Hexose Transporter 4) Forward TCCTGGGGTGAATTGTTCTC 228 bp

(CAGL0A01782) Reverse GCCAAATCTACCGACCAAGA

HXT6/7 (Hexose Transporter 6/7) Forward GCTTCGGTCGTCGTAAATGT 195 bp

(CAGL0A00737/A02233) Reverse GAGTTGGTGCCCAAGTTGTT

HXT6/7 (Hexose Transporter 6/7) Forward GGTCAAGACCAACCATCCTCC 182 bp

(CAGL0A02211) Reverse CCCCAGATCCAGTTGGAAGC

HXT2/10 (Hexose Transporter 2/10) Forward AAGCTGGAAGGCGAAGATTT 146 bp

(CAGL0I00286) Reverse TCCCAACCAAAGACAAAACC

HXT2/10 (Hexose Transporter 2/10) Forward TGCCGAAACCTACCCACTAC 147 bp

(CAGL0D02662/D02640) Reverse CAGCCCATGAAGACGTAACC

HXT14 (Hexose Transporter 14) Forward TACGCCAGCACACTAAAGCA 153 bp

(CAGL0M04103) Reverse TTGCAGAGGACACAATCGTC

UBC13 (Ubiquitin-Conjugating 13) (CAGL0G08063) Forward TGCCCGAGGACTACCCTATG 100 bp

Reverse AGCACGTCCAGGCAGATACG

ACT1 (ACTin 1) Forward TTGCCACACGCTATTTTGAG 225 bp

Reverse ACCATCTGGCAATTCGTAGG

TS_SNF3 Forward CATGGCTGGAACTAGGCGCTTATTGACGGGTATTGGAGACTTAGGAT

AGAGGAAGATTTTGGCATAGGATGTCCAGTGCCTCATATTTAC

–

Reverse GCTGCGTCTGATCGTTGTCGTTTTGTGAGTACCCTGTATTTTG

GCTGGTATAGGTATTACTCTTCAGTTTCCTATTCTTTTCAAGTAAGC

–

CHK_F_1 Forward AGCAGAGGACTCCCTCAATG –

CHK_R_1 Reverse TTTCAGCAACTTGGAAGCAA –

CHK_F_2 Forward GATACAGGAACAACAGCGAG –

CHK_R_2 Reverse CCATGAGCGTTGGTGATATC –

Rodaki et al. (2009). C. glabrata cells were grown overnight in
YPDmedium at 37◦C and washed with phosphate buffered saline
(PBS, pH 7.4) for three times before re-inoculated into 50mL
fresh SD (OD600 = 0.1) with prepared glucose concentrations
of 0.01 (extremely low), 0.1 (low), 0.2 (moderate), 1 (high), and
2% (extremely high), respectively. The cells were allowed to grow

at 37◦C, 200 rpm in shaking incubator (shaking). Another set of
cells were incubated in the samemanner but were left to be static.
These two conditions served as respiration-preferred (shaking)
and fermentation-preferred (static) atmosphere, respectively
(Brown et al., 2006). The cells were harvested hourly for 10 h and
the optical density of cells (OD600) for each hour were recorded
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and proceeded with the growth rate calculation as shown in
Equation (1) (Widdel, 2010).

µ =
2.303

(

lg OD2 − lgOD1

)

t2 − t1
(1)

where,
µ = growth rate, h−1

OD1 = optical density obtained from the log phase of growth
curve

OD2 = two times of OD1 obtained from the log phase of
growth curve

t1 = time of OD1 obtained
t2 = time of OD2 obtained.

Biofilm Formation
The biofilm formation assay were performed with minor
modification as described in Pierce et al. (2008) by replacing
RPMI1640 medium with SD (0.01 and 0.1% glucose). Overnight
grown C. glabrata cells were harvested and washed prior to re-
inoculation into the defined SD (OD600 = 0.1). A volume
of 100µl of cell suspension was added to microtitre plate (U-
shaped, tissue culture treated) (Becton, Dickinson and Company,
USA). The microtitre plate was covered with lid and sealed
with parafilm, followed by incubation for 24 h at 37◦C. The
media was aspirated and the plate was washed three times using
200µl of PBS, pH 7.4. The plate was placed in an inverted
position on a blotting paper to remove residual PBS. The biofilm
activity was quantified via XTT 2,3-Bis (2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. A
freshly prepared 100µL mixture of 0.5 g/L XTT (Sigma Aldrich,
USA) and 10mM menadione (Sigma Aldrich, USA) (10000:1,
v/v) was added to the washed-biofilm in the microtitre plate.
The plate was wrapped with aluminum foil and incubated in
dark at 37◦C for 3 h. A volume of 80µL of the supernatant was
transferred to a new microtitre plate and the plate was read by
using microtitre plate reader (Bio-Tek, USA) at wavelength of
490 nm.

Amphotericin B Susceptibility Assay
The inhibitory concentration of C. glabrata BG2 against
amphotericin B was determined using the method as described
in NCCLS (CLSI) M27-A2 by replacing the RPMI1460 with
0.1% glucose SD. The inhibitory concentration obtained was
applied in the modified method from Rodaki et al. (2009)
to elucidate the possible role of SNF3 in contributing to the
anti-amphotericin B susceptibility. Briefly, overnight grown
C. glabrata cells were harvested and washed prior to re-
inoculation into the 0.1% glucose SD (OD600 = 0.1) and
regrown to OD600 = 0.5. Cell suspension was added to 1.5mL
centrifuge tube (Axygen, USA) and microtitre plate (U-shaped,
tissue culture-treated) (Becton, Dickinson and Company, USA)
together with defined concentration of amphotericin B. The
centrifuge tube and microtitre plate was covered and sealed
with parafilm, followed by incubation for 24 h at 37◦C. CFU
(colony-forming unit) was determined from cell suspension in
centrifuge tube for the calculation of survival percentage. In

addition, the plate was read by using microtitre plate reader
at wavelength of 600 nm to examine the cell density for the
confirmation of C. glabrata viability. The survivability percentage
of C. glabrata was calculated by applying the formula as
below:

Survival percentage =
CFU of stressed sample

CFU of unstressed control
× 100% (2)

Candida-Macrophage Co-culture Assay
The capability of bothC. glabrata strains to withstand engulfment
of macrophage was analyzed as described by Kaur et al. (2006)
and Collette et al. (2014) with minor modification. Murine
macrophage cells, RAW264.7 (gift from Daud Ahmad Israf Ali,
Universiti Putra Malaysia) were maintained and incubated in
Dulbecco’sModified Eagle’s Medium (DMEM; Life Technologies,
USA), supplemented with 10% Fetal Bovine Serum (FBS; Life
Technologies, USA) at 37◦C/5% CO2. Prior to the co-culture
step, 5 × 105 of RAW264.7 cells were seeded into 6-well plate
(Becton, Dickinson and Company, USA) for 24 h at 37◦C/5%
CO2. After incubation, the washed cell was counted for the
determination of cells number. For the preparation of C. glabrata
cells, overnight grown C. glabrata cells were washed and regrown
in fresh YPD (OD600 = 0.5). Harvested mid-log phase cells
were washed and re-inoculated in fresh DMEM + 10% FBS for
desired cell density tomatch the ratio of 1:1 (effector: target) prior
to the co-culturing with RAW264.7 cells prepared. The mixed
culture of C. glabrata and RAW264.7 was incubated at 37◦C/5%
CO2. In order to measure the growth of macrophage engulfed-
yeast, non-engulfed yeast cell were washed away with DMEM
after 2 h of incubation. The lysates of infected macrophages were
scrapped and collected from wells at two time points (2 and 24
h) in ice-cold deionized water and plated on YPD agar. CFUs
were determined after incubation of 24 h at 37◦C and the growth
ratio of engulfed cells were determined by applying the formula
below:

Growth ratio =
CFU of 24 h sample

CFU of 2 h control
× 100% (3)

RNA Extraction
Overnight-cultured C. glabrata cells in YPD medium were
washed and regrown in fresh YPD (OD600 = 0.1) to mid-log
phase (OD600 = 0.5). The mid-log phase cells were collected,
washed and re-suspended in SD (0.01% glucose) and allowed
to grow at 37◦C for 2 h. The collected cell was washed and
RNA extraction was performed based on the described protocol
in Yeast Current Protocols in Molecular Biology (Collart and
Oliviero, 1993). Verification of the RNA integrity and quality
were performed by visualization on 1% Tris-acetate-EDTA gel
and NanoPhotometer R© (Implen, Germany). RNAs were treated
with Maxima H minus first strand cDNA synthesis kit with
dsDNase (Thermo Scientific, USA) as described in kit manual
with minor modification where RNAs were reverse transcribed
with the mixture of Oligo(dT) 18 and random hexamer for the
generation of full length transcripts (Resuehr and Spiess, 2003).
The RNAs were also reverse transcribed with reaction suspension
lacking reverse transcriptase (Non Reverse Transcriptase, NRT)
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and without RNA template (Non Template Control, NTC)
as controls, respectively. The RNA isolation and subsequent
cDNA synthesis were performed in three biological independent
experiments.

Quantitative Real-time PCR (qRT-PCR)
Two reference genes were employed as internal controls namely
the ACT1 and UBC13 (Li et al., 2012) for a more reliable
and accurate normalization output. All PCR primers (Table 2)
were designed to amplify target genes based on the gene
sequences sourced from the Candida Genome Database (http://
www.candidagenome.org/). The PCR efficiency using each set
of primers of the respective genes was determined in two
independent experiments by running a series of five-fold dilution
of C. glabrata DNA in MiniOpticon™ Real time PCR (Bio-
Rad, USA) machine. The amplification efficiency for each
respective gene was determined to be between 90 and 110%.
For the expression analysis of the genes, all samples were
performed in technical triplicate. The total volume of each
reaction was 20µl where it contained the cDNA template,
500–600 nM primers, 2X SensiFAST SYBR No-ROX (SYBR
green) master mix (Bioline, UK) and type-1 ultrapure water
(Milipore, USA). The reagents mixture was placed in low-
profile white strip tube (Life Technologies, USA) and allowed
to amplify in two-step cycling PCR amplification (polymerase
activation: 95◦C for 2min, 40 cycles of denaturation: 95◦C
for 5 s and annealing/extension: 60◦C for 30 s). Melting curve
analysis was performed to ensure no non-specific PCR products
were generated. A NRT and NTC were included for each gene
during the qRT-PCR analysis. For post-experimental expression
analysis, normalized expression ratios were calculated based on
the mathematical equation developed by Pfaffl (2001). Wild

type BG2 was chosen as the reference strain (baseline) when
interpreting the result for the transcript profiling. Normalized
expression ratio calculated was presented in logarithms based
(log10).

Statistical Analysis
Statistical analyses were performed using SPSS Statistics (Version
17.0) software. All the experiments were performed at least
three times and the data presented are mean of all experiments
performed. Error bars represent standard error of the mean
(SEM). Statistical significance was assessed by unpaired t-test to
compare control (wild type) and sample (mutant). The relative
expression software tool (REST©) version 2009 (Pfaffl et al.,
2002) was employed to test the statistical significance in qRT-PCR
analysis.

RESULTS

Loss of SNF3 Resulted in the Failure of C.
glabrata to Thrive in Low Glucose
Concentration Environments
The inabilities of SNF31 to grow in low glucose environments
were demonstrated in both shaking and static condition
(Figures 1–3). After 10 h of incubation, the growth rate of
SNF31 strain was significantly reduced (p-value < 0.05) in
0.01 and 0.1% glucose environment for respiration preferred-
condition (shaking) and in 0.01, 0.1, and 0.2% glucose
environment for fermentation preferred-condition (static).
However, deletion of SNF3 did not weaken the growth of
SNF31 strain in higher glucose environment (1 and 2%;
Figures 1–3). These observations highlighted the role of SNF3 in
sustaining the growth of C. glabrata, particularly in low glucose

FIGURE 1 | Growth profile of Candida glabrata BG2 and SNF31 in five difference glucose concentrations tested for both fermentation and

respiration-preferred condition.
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FIGURE 2 | Growth rate of Candida glabrata BG2 and SNF31 in five differences glucose concentrations with respiration-preferred condition. Significant

differences (indicated by *) were found between wild type and mutant under low glucose environments: 0.01 and 0.1% (p-value < 0.05).

FIGURE 3 | Growth rate of Candida glabrata BG2 and SNF31 in five differences glucose concentrations with fermentation-preferred condition.

Significant differences (indicated by *) were found between wild type and mutant under low glucose environments: 0.01, 0.1, and 0.2% (p-value < 0.05).

for both respiration and fermentation-preferred environment.

Furthermore, SNF3 is deemed to be more important in

fermentation process where the growth defect of SNF31 was

found to be more severe (extended up to 0.2% glucose)
in fermentation-preferred condition. In respect of the data

obtained, which suggested the deleterious effect of SNF31 is
seen only in low glucose environment, the subsequent assays
including biofilm formation and amphotericin B susceptibility

assays were carried out in glucose limited environment (0.01
and 0.1%).

Deletion of SNF3 Gives No Effect in the
Biofilm Formation Capability of C. glabrata
in Glucose-Limited Environments
Previous study demonstrated the effects of glucose levels in
directing C. albicans to form biofilm. Candida albicans tends to
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form biofilm in low glucose environment and lives in planktonic

form in higher glucose environment (Uppuluri et al., 2010;
Ng et al., 2015b). The sensitivity of SNF3 in responding to

surrounding glucose leads to the thought whether this putative

high affinity glucose sensor could contribute in detecting the

flow of surrounding glucose and therefore orchestrates the
biofilm/planktonic living form of Candida species in accordance

to the availability of glucose. Result showed SNF3 did not
participate in the biofilm formation of C. glabrata in low glucose

environment as no significant differences were found between
BG2 and SNF31 in the 0.01 and 0.1% glucose tested, respectively
(Figure 4).

The Loss of SNF3 Makes C. glabrata More
Vulnerable to Amphotericin B Treatment in
Low Glucose Concentration Environment
Previous study demonstrated the ability of Candida species to
withstand antifungal is affected by the type of carbon sources and

FIGURE 4 | Biofilm formation activity of Candida glabrata BG2 and SNF31 strains under 0.01 and 0.1% glucose concentration. Unpaired T-test was

carried out for the statistical analysis to examine the significant difference between BG2 and SNF31 and no significant difference was found.

FIGURE 5 | Survivability of Candida glabrata BG2 and SNF31 strains under treatment of three different concentrations of amphotericin B in 0.1%

glucose. Unpaired T-test was carried out for the statistical analysis to examine the significant differences (indicated by *) between BG2 and SNF31 (p-value < 0.01).
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levels (Ene et al., 2012; Mota et al., 2015; Ng et al., 2015b). With
the aim to elucidate further the possible role of SNF3 in regulating
the fitness of C. glabrata, the ability of both strains to withstand
amphotericin B in low glucose environment was tested. However,
the complete retarded growth of SNF31 in 0.01% glucose leads
to the inability in the effort to set up an unstressed control for the
calculation of survival percentage. Thus, only 0.1% glucose was
tested in this assay. The growth of both wild type and SNF31
strain were arrested at 2µg/mL of amphotericin B. The wild
type strain was able to resist amphotericin B at 1µg/mL while
complete inhibition was observed in the SNF31 strain (p-value<

0.01). The wild type showed a better growth in comparison to
SNF31 strain at 0.5µg/mL amphotericin B (Figure 5). These
data established the fact that glucose sensing by the SNF3 gene
may contribute to the ability of C. glabrata in withstanding the
effects of amphotericin B under low glucose environment.

SNF31 Strain Shows Reduced Growth in
Macrophages
The microenvironment in macrophage is always linked to
nutrient-limited environment, particularly in glucose availability.
In order to validate the possible role of SNF3 in promoting the
fitness of C. glabrata under glucose-limited environment, the
survivability of macrophage trapped- C. glabrata was assayed in
an ex vivo manner. Results demonstrated a significant reduced
growth (p-value < 0.01) of the internalized mutant strain in
comparison to wild type strain (Figure 6) and this suggests
the essential role of SNF3 in supporting the survivability of C.
glabrata upon macrophage engulfment.

Deletion of SNF3 Affects the Expression of
Downstream Hexose Transporters (HXTs)
There are 11 hexose transporters found in C. glabrata. The
expressions of these hexose transporters were examined
and compared between wild type and SNF31 strain. Out
of 11 hexose transporters, only nine hexose transporters
were studied because the nucleotide sequences of putative
hexose transporters CAGL0A02211 and CAGL0A02233
were found to be 96% similar while CAGL0A02662 and
CAGL0A02640 displayed 100% similarity. The high similarity
among these hexose transporters caused the inability in
primer design for the expression study of those genes. Out of
nine hexose transporters, six of them were affected with the
deletion of SNF3, where four of them (CAGL0A1804_HXT1,
CAGL0A01782_HXT4, CAGL0A02211/2233_HXT6/7, and
CAGL0D02662/2640_HXT2/10) were down regulated while two
(CAGL0A02321_HXT3 and CAGL0A01826_HXT5) were up
regulated (Figure 7). In addition, deletion of SNF3 resulted in
down-regulation of STD1, YCK1, and YCK2, which serve as the
downstream messengers of SNF3 to modulate the expression of
hexose transporters (Figure 8). Nevertheless, the expression of
RGT2 was up regulated while expression of RGT1, GRR1, and
MIG1 did not change significantly with the deletion of SNF3
(Figure 8). These observations suggest the significant role of
SNF3 in regulating the signaling pathway of glucose uptake
mechanism.

FIGURE 6 | The survival ratio ofCandida glabrata BG2 and SNF31

strains recovered frommacrophages at 24h vs. 2 h after co-cultivation.

Unpaired T-test was carried out for the statistical analysis to examine the

significant differences (indicated by *) betweenBG2andSNF31 (p-value<0.01).

DISCUSSION

Data presented in present study is suggestive of the role of SNF3
as high affinity glucose sensor in C. glabrata, which is essential for
it to grow in glucose-limited environment. SNF3 appeared to be
important for the growth of C. glabrata in both respiration and
fermentation preferred condition with low glucose environments
(0.01 and 0.1%) and up to 0.2% glucose in fermentation preferred
condition. Brown et al. (2006) demonstrated the deletion of
glucose sensor, HGT4 in C. albicans attenuates its ability to grow
only in the fermentation-preferred condition and low level of
fermentable carbon source (0.2%). Data suggest high affinity
glucose sensor appears to be more essential in C. glabrata than
in C. albicans. The dissimilarities observed in both the Candida
species could be due to the differences in their nature of glucose
utilization. C. glabrata is identified as Crabtree-positive yeast or
aerobic fermenter where, it prefers fermentation over respiration
and produces ethanol even there is presence of oxygen (Van Urk
et al., 1990), whileC. albicans is known as Crabtree-negative yeast
or respiratory yeast, which prefers respiration whenever there
is presence of oxygen. The preferred-fermentation in Crabtree-
positive yeast produces only two ATP per glucose, in comparison
to 36/38 ATP per glucose produced in respiration. Owing to
the preferred-inefficient mode of metabolism, Crabtree-positive
yeast is found to exhibit higher glucose consumption rate than
Crabtree-negative yeast (Van Urk et al., 1990; Fleck et al., 2011).
Therefore, the presence of two specialized glucose sensors in C.
glabrata (Palma et al., 2009; Ng et al., 2015a) may contribute
to the higher glucose uptake sensitivity in order to fulfill its
ATP demands and removal of this high affinity glucose sensor
lead to detrimental effect on the growth of C. glabrata in low
glucose environment (Figures 1–3). Unlike C. glabrata, there is
only one high affinity glucose sensor (HGT4) found in C. albicans
(Brown et al., 2006). The capability of C. albicans to assimilate
both fermentable and non-fermentable carbon sources at the
same time suggests C. albicans has evolved distinctively to adapt
itself by not relying solely on glucose for its growth in hostile
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FIGURE 7 | Comparison of expression ratios (Log10) for the Candida glabrata hexose transporters (HXTs) after the knockout of SNF3. *p < 0.1,

**p < 0.05, ***p < 0.01.

FIGURE 8 | Comparison of expression ratios (Log10) for the Candida glabrata Sugar Receptor Repressor (SRR) related genes after the knockout of

SNF3. *p < 0.1, **p < 0.05, ***p < 0.01.

host niche with limited glucose availability (Sandai et al., 2012).
Thus, a single glucose sensor is probably sufficient to support the
life process of C. albicans. However, it is still unclear whether
C. glabrata is equipped with the same metabolic flexibility. The
presence of the two glucose sensors with different affinity in C.
glabrata similar to the ones found in S. cerevisiae suggests it

would behavemore like S. cerevisiae. The baker’s yeast is unable to
assimilate both fermentable and non-fermentable carbon sources
at the same time (Sandai et al., 2012). Further investigation on
the carbon metabolic flexibility in C. glabrata is warranted as
this could provide insight into the metabolic adaptation on the
disease progression of this fungal pathogen.
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Apart from glucose sensing and uptake mechanism, the
expression of glucose sensor gene HGT4 in C. albicans is
deemed to be regulated by macrophage engulfment, antifungal
mechanism, and biofilm formation activity of yeast (Barker et al.,
2004; Liu et al., 2005; Brown et al., 2006). The deletion of SNF3
indeed diminished the capability of C. glabrata to withstand the
macrophage challenge and amphotericin B treatment but did not
affect its biofilm formation activity. Data presented demonstrated
the importance of SNF3 in supporting the growth of C. glabrata
under low glucose environment in the growth profiling assay.
This observation was extended further to the nutrient-limiting
microenvironment of macrophage. Macrophage is critically
important in building up an immunological barrier to counter
infectious agents through its unique nutritional seal off and
oxidative stress to destroy engulfed intruders (Kaur et al., 2006).
Previous study demonstrated the capability of C. glabrata to
perform autophagy for the nutritional scavenging and recycling
in order to sustain its growth upon phagocytosis (Roetzer
et al., 2010). Data (Figure 6) suggests in addition to autophagy
mechanism, glucose sourcing and uptake are also important
in aiding C. glabrata to sustain prolonged phagocytosis. The

absence of SNF3 may result in the inability of C. glabrata to
absorb sufficient glucose to perform basic physiological function
or even to initiate autophagy mechanism and therefore lead to
the diminished growth. On the other hand, deletion of SNF3 did
not affect the capability of C. glabrata to form biofilm under low
glucose condition as expected. Data presented suggest there is
probably another sensor inC. glabrata but not SNF3 that assists in
detecting the nutrient flow in environment. Further investigation
is warranted for a clearer picture on how this pathogenic yeast
senses and alters its lifestyle to adapt itself in such environment
where abrupt change of nutrients takes place.

The transcriptional analysis on selected hexose transporters
(HXTs) revealed that almost half (four out of nine) hexose
transporters were down regulated with the removal of SNF3,
together with the down-regulation of downstream casein kinase
(YCK1 and YCK2) and STD1 (Figures 7, 8). The disruption
of the signaling pathway for high affinity hexose transporters
explained the compromised fitness of C. glabrata under low
glucose environment (Figures 1–3) as this triggers the failure in
transporting sufficient glucose to support its growth. In addition,
data presented concurs with the view that the expression

FIGURE 9 | A model of glucose sensing in Candida glabrata under low glucose environment. The part of the pathway labeled with asteisks inferred from

published works done on S. cerevisiae (Rolland et al., 2002; Santangelo, 2006; Gancedo, 2008). Hexose transporters are repressed by Std1-bounded-Rgt1 when

there is no stimulation from glucose sensor located in the cell membrane. Presence of low concentration of glucose induced signal from high affinity glucose sensor,

Snf3 to the phosphorylation of Std1 by the Yck kinase. Phosphorylated Std1 is then subjected to the SCFGrr1—mediated ubiquitination and degraded by proteasome.

Degraded Std1 results in the activation of Rgt1, which then leads to derepression of downstream hexose transporters. Deletion of SNF3 gives rise to the disruption of

hexose transporters expression and glucose uptake mechanism, therefore leads to the interference of Candida glabrata fitness under low glucose environment.

However, the possible interaction between RGT2 and downstream HXT3/HXT5 (labeled with dotted line) is remains unclear and requires further investigation.
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of transcription regulator, RGT1 is regulated by the glucose
concentration but not affected by the signal generated from
glucose sensors (Özcan and Johnston, 1999) as the expression
of RGT1 remain unchanged even with the missing signal from
SNF3. However, the direct regulation of glucose concentration
on the expression level of RGT1 is still not fully understood.
Nonetheless, the shutting down of these four hexose transporters
did not diminish the growth ofC. glabrata completely as there are
two other hexose transporters that were still actively expressed
namely the CAGL0A0232 (HXT3) and CAGL0A01826 (HXT5),
together with the up regulation of RGT2. This could be a
compensatory mechanism used by C. glabrata to compensate
the loss of SNF3 with the activation of RGT2. Notably, these
HXT3 and HXT5 were regarded as key hexose transporters for
C. glabrata in low glucose environment from our previous work
(Ng et al., 2015a). Nevertheless, this compensatory mechanism
still failed to salvage C. glabrata from glucose uptake crisis as
the growth defect is still significant (p-value < 0.05; Figures 1–3)
in the absence of SNF3. We opine the compensation of glucose
uptake by HXT3 and HXT5 is insufficient to provide the amount
of glucose needed and this highlights the importance of four
other repressed HXTs in supporting the growth of C. glabrata
under low glucose environment. In addition, the capability of
RGT2 to induce expression ofHXT3 andHXT5 supports the view
that SNF3 and RGT2 have separate but overlapping functions.
Özcan et al. (1998) demonstrated the capability of SNF3 in S.
cerevisiae to restore the expression of HXT1 (supposedly induce
by RGT2) by 64%, in a RGT2 mutant. This observation suggests
a complex and interconnected regulatory pathway of glucose
sensing and uptake mechanism in yeast. From the data obtained,
a model of glucose sensing in C. glabrata through the modulation
of SNF3 is illustrated based on the understanding of the homolog
and the inferred glucose sensing mechanism in S. cerevisiae
(Figure 9). Further work is warranted, as the compensatory
mechanism proposed here is still not fully deciphered. In
addition, effort to study the transcriptional profile of the highly
homologousHXTs genes using other approach should be carried
out. With more complete information on the role of each
hexose transporters present in C. glabrata, a clearer and more

comprehensive picture on the role of SNF3 in SRR pathway will
be achieved.

In conclusion, our results thus far suggest the important
role of SNF3 in C. glabrata in the expression of hexose
transporters under low glucose environment. We also highlight
the vital role of SNF3 in promoting C. glabrata growth, resistant
toward amphotericin B under glucose limited environment
and macrophage engulfment by governing the glucose uptake
mechanism. These results suggest SNF3 could be a potential
factor for C. glabrata to survive and thrive in host niches with
limited glucose availability. Further investigation such as RNA-
sequencing and comparative proteomic study could be carried
out for the analysis of global transcriptomes and validation
of the obtained result. Owing to the essential role of glucose
on metabolic network of organism, further exploration on the
glucose sensing mechanism highlighted in current study could
contribute in the discovery of novel drug target and help in
controlling the emergence of C. glabrata.

AUTHOR CONTRIBUTIONS

TS, LT, and DS designed the experiments. TS, SY, and PR carried
out the experiments. TS analyzed and interpreted the data. TS
and LT wrote the manuscript with critical revision for important
intellectual content from MD, DS, and PP.

ACKNOWLEDGMENTS

This study was financed by the Universiti Putra Malaysia (04-02-
12-1799RU). TSN is a recipient of the Mybrain 15 Scholarship
offered by the Ministry of Education (MOE) Malaysia. This work
was presented, in part, at the 19th Congress of the International
Society for Human and Animal Mycology (abstract number:
706), 4th-8th May 2015, Melbourne, Australia. We would like to
acknowledge the generosity of Prof. Brendan Cormack and Prof.
Paul Fidel for granting us theC. glabrata strains used in this study.
In addition, we also would like to thank Dr. Iryna Bohovych for
her advice in themutant construction work andMs Ley Juen Looi
for her valuable comments on the manuscript.

REFERENCES

Barker, K. S., Crisp, S., Wiederhold, H., Lewis, R. E., Bareither, B., Eckstien, J.,

et al. (2004). Genome-wide expression profiling reveals genes associated with

amphotericin B and fluconazole resitance in experimentally induced antifungal

resistant isolates of Candida albicans. J. Antimicrob. Chemoth. 54, 376–385. doi:

10.1093/jac/dkh336

Brown, V., Sexton, J. A., and Johnston, M. (2006). A glucose sensor

in Candida albicans. Eukaryot. Cell 5, 1726–1737. doi: 10.1128/EC.00

186-06

Collart, M. A., andOliviero, S. (1993). Preparation of yeast RNA.Curr. Protoc. Mol.

Biol. 23, 13.12.1–13.12.5.

Collette, J. R., Zhou, H. J., and Lorenz, M. C. (2014). Candida albicans suppresses

nitric oxide generation from macrophage via a secreted molecule. PLoS ONE

9:e96203. doi: 10.1371/journal.pone.0096203

Cormack, B. P., and Falkow, S. (1999). Efficient homologous and illegitimate

recombination in the opportunistic yeast pathogen Candida glabrata. Genetics

151, 979–987.

Ehrström, E., Yu, A., and Rylander, E. (2006). Glucose in vaginal secretions

before and after oral glucose tolerance testing in women with and without

recurrent vulvovaginal candidiasis. Obstet. Gynecol. 108, 1432–1437. doi:

10.1097/01.AOG.0000246800.38892.fc

Ene, I. V., Adya, A. K., Wehmeier, S., Brand, A. C., MacCallum, D. M., Gow, N.

A. R., et al. (2012). Host carbon sources modulate cell wall architecture, drug

resistance and virulence in a fungal pathogen. Cell. Microbiol. 14, 1319–1335.

doi: 10.1111/j.1462-5822.2012.01813.x

Fleck, C. B., Schöbel, F., and Brock, M. (2011). Nutrient acquisition

by pathogenic fungi: nutrient availability, pathway regulation, and

differences in substrate utilization. Int. J. Med. Microbiol. 301, 400–407.

doi: 10.1016/j.ijmm.2011.04.007

Gancedo, J. M. (2008). The early steps of glucose signalling in yeast. FEMS

Microbiol. Rev. 32, 673–704. doi: 10.1111/j.1574-6976.2008.00117.x

Kaur, R., Ma, B., and Cormack, B. P. (2006). A family of

glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence

of Candida glabrata. Proc. Natl. Acad. Sci. U.S.A. 104, 7628–7633. doi:

10.1073/pnas.0611195104

Frontiers in Microbiology | www.frontiersin.org December 2015 | Volume 6 | Article 1334 | 76

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Ng et al. Glucose Sensor in C. glabrata

Kim, J. H., and Johnston, M. (2006). Two glucose-sensing pathways converge on

Rgt1 to regulate expression of glucose transcporter genes in Saccharomyces

cerevisiae. J. Biol. Chem. 281, 26144–26149. doi: 10.1074/jbc.M603636200

Li, Q. Q., Skinner, J., and Bennett, J. E. (2012). evalution of reference genes for real-

time quantitative PCR studies in Candida glabrata following azole treatment.

BMCMol. Biol. 13:22. doi: 10.1186/1471-2199-13-22

Liu, T. B., Wang, Y., Baker, G. M., Fahmy, H., Jiang, L., and Xue, C. (2013).

The glucose sensor-like protein Hxs1 is a high affinity glucose transporter and

required for virulence in Cryptococcus neoformans. PLoS ONE 8:e64239. doi:

10.1371/journal.pone.0064239

Liu, T. T., Lee, R. E. B., Barker, K. S., Lee, R. E., Wei, L., Homayouni, R.,

et al. (2005). Genome-wide expression profiling of the response to azole,

polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans.

Antimicrob. Agents Chemother. 49, 2226–2236. doi: 10.1128/AAC.49.6.2226-

2236.2005

Mota, S., Alves, R., Carneiro, C., Silva, S., Brown, A. J., Istel, F., et al. (2015).

Candida glabrata susceptibility to antifungals and phagocytosis is modulated

by acetate. Front. Microbiol. 6:919. doi: 10.3389/fmicb.2015.00919

Ng, T. S., Desa, M. N. M., Sandai, D., Chong, P. P., and Than, L. T. L. (2015a).

Phylogenetic and transcripts profiling of glucose sensing related genes in

Candida glabrata. Jundishapur J. Microbiol. 8:e25177. doi: 10.5812/jjm.25177

Ng, T. S., Desa, M. N. M., Sandai, D., Chong, P. P., and Than, L. T. L. (2015b).

Growth, biofilm formation, antifungal susceptibility and oxidative stress

resistance of Candida glabrata are affected by different glucose concentrations.

Infect. Genet. Evol. doi: 10.1016/j.meegid.2015.09.004. [Epub ahead of print].

Odds, F. C., Gow, N. A. R., and Brown, A. J. P. (2006). “Chapter 22: Toward

a molecular understanding of Candida albicans virulence,” in Molecular

Principles of Fungal Pathogenesis, eds J. Heitman, S. G. Filler, J. E. Edwards.

Jr., and A. P. Mitchell (Washington, DC: American Society for Microbiology),

305–319. doi: 10.1128/9781555815776.ch22

Özcan, S., Dover, J., and Johnston, M. (1998). Glucose sensing and signaling by two

glucsoe receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17, 2566–2573.

doi: 10.1093/emboj/17.9.2566

Özcan, S., and Johnston, M. (1999). Function and regulation of yeast hexose

transporters.Microbiol. Mol. Biol. Rev. 63, 554–569.

Palma, M., Seret, M. L., and Baret, P. V. (2009). Combined phylogenetic and

neighbourhood analysis of the hexose transporters and glucose sensors in

yeasts. FEMS Yeast Res. 9, 526–534. doi: 10.1111/j.1567-1364.2009.00511.x

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in

real-time RT–PCR. Nucleic Acids Res. 29:e45. doi: 10.1093/nar/29.9.e45

Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002). Relative expression

software tool (REST©) for group-wise comparison and statistical analysis of

relative expression results in real-time PCR. Nucleic Acids Res. 30:e36. doi:

10.1093/nar/30.9.e36

Pierce, C. G., Uppuluri, P., Tristan, A. R., Wormley F. L. Jr., Mowat, E., Ramage,

G., et al. (2008). A simple and reproducible 96-well plate-based method for

the formation of fungal biofilms and its application to antifungal susceptibility

testing. Nat. Protoc. 3, 1494–1500. doi: 10.1038/nprot.2008.141

Resuehr, D., and Spiess, A. N. (2003). A real-time polymerase chain reaction-based

evaluation of cDNA synthesis priming methods. Anal. Biochem. 322, 287–291.

doi: 10.1016/j.ab.2003.07.017

Rodaki, A., Bohovych, I. M., Enjalbert, B., Young, T., Odds, F. C., Gow, N. A.

R., et al. (2009). Glucose promotes stress resistance in the fungal pathogen

Candida albicans. Mol. Biol. Cell 20, 4845–4855. doi: 10.1091/mbc.E09-

01-0002

Roetzer, A., Gratz, N., Kovarik, P., and Schüller, C. (2010). Autophagy supports

Candida glabrata survival during phagocytosis. Cell. Microbiol. 12, 199–216.

doi: 10.1111/j.1462-5822.2009.01391.x

Rolland, F., Winderickx, J., and Thevelein, J. M. (2002). Glucose-sensing and –

signallingmechanism in yeast. FEMSYeast Res. 2, 183–201. doi: 10.1111/j.1567-

1364.2002.tb00084.x

Sandai, D., Yin, Z., Selway, L., Stead, D., Walker, J., Leach, M. D., et al. (2012).

The evolutionary rewiring of ubiquitination targets has reprogrammed the

regulation of carbon assimilation in pathogenic yeast Candida albicans. mBio

3, 1–12. doi: 10.1128/mBio.00495-12

Santangelo, G. M. (2006). Glucose signalling in Saccharomyces cerevisiae.

Microbiol. Mol. Biol. Rev. 70, 253–282. doi: 10.1128/MMBR.70.1.253-

282.2006

Schmidt, M. C., McCartnet, R. R., and Zhang, X. D. (1999). Std1 and Mth1

proteins interacts with the glucose sensors to control glucose-regulated gene

expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4561–4571. doi:

10.1128/MCB.19.7.4561

Sherman, F. (2002). Getting started with yeast. Method Enzymol. 350, 3–41. doi:

10.1016/S0076-6879(02)50954-X

Uppuluri, P., Chaturvedi, A. K., Srinivsan, A., Banerjee, M., Ramasubramaniam,

A. K., and Köhler, J. R. (2010). Dispersion as an important step in the

Candida albicans biofilm developmental cycle. PLoS Pathog. 6:e1000828. doi:

10.1371/journal.ppat.1000828

VanUrkH., Voll,W. S. L., Scheffers,W. A., and VanDijken, J. P. (1990). Transient-

state analysis of metabolic fluxes in crabtree-positive and crabtree-negative

yeasts. Appl. Environ. Microbiol. 56, 281–287.

Widdel, F. (2010). Theory and Measurement of Bacterial Growth. University

Bremen. Available online at: www.mpi-bremen.de/Binaries/Binary13037/

Wachstumsversuch.pdf

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Ng, Chew, Rangasamy, Mohd Desa, Sandai, Chong and Than.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Microbiology | www.frontiersin.org December 2015 | Volume 6 | Article 1334 | 77

http://www.mpi-bremen.de/Binaries/Binary13037/Wachstumsversuch.pdf
http://www.mpi-bremen.de/Binaries/Binary13037/Wachstumsversuch.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


REVIEW
published: 26 November 2015

doi: 10.3389/fmicb.2015.01322

Edited by:
Edvaldo A. R. Rosa,

The Pontifical Catholic University
of Paraná, Brazil

Reviewed by:
Dmitri Debabov,

NovaBay Pharmaceuticals, USA
Vishvanath Tiwari,

Central University of Rajasthan, India

*Correspondence:
Louis Y. A. Chai

chailouis@hotmail.com

Specialty section:
This article was submitted to

Antimicrobials, Resistance and
Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 31 August 2015
Accepted: 10 November 2015
Published: 26 November 2015

Citation:
Ravikumar S, Win MS and Chai LY

(2015) Optimizing Outcomes
in Immunocompromised Hosts:

Understanding the Role
of Immunotherapy in Invasive

Fungal Diseases.
Front. Microbiol. 6:1322.

doi: 10.3389/fmicb.2015.01322

Optimizing Outcomes
in Immunocompromised Hosts:
Understanding the Role
of Immunotherapy in Invasive
Fungal Diseases
Sharada Ravikumar 1,2, Mar Soe Win 1,2 and Louis Yi Ann Chai 1,2*

1 Division of Infectious Diseases, University Medicine Cluster, National University Health System, Singapore, Singapore,
2 Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

A major global concern is the emergence and spread of systemic life-threatening fungal
infections in critically ill patients. The increase in invasive fungal infections, caused most
commonly byCandida and Aspergillus species, occurs in patients with impaired defenses
due to a number of reasons such as underlying disease, the use of chemotherapeutic and
immunosuppressive agents, broad-spectrum antibiotics, prosthetic devices and grafts,
burns, neutropenia and HIV infection. The high morbidity and mortality associated with
these infections is compounded by the limited therapeutic options and the emergence of
drug resistant fungi. Hence, creative approaches to bridge the significant gap in antifungal
drug development needs to be explored. Here, we review the potential anti-fungal targets
for patient-centered therapies and immune-enhancing strategies for the prevention and
treatment of invasive fungal diseases.

Keywords: invasive fungal infections, immunocompromised, immune regulation, immune enhancement, cytokines

INTRODUCTION
From among more than a million species of fungi present in nature, only a few 100 of them are
capable of causing infections in humans (O’Brien et al., 2005). Of these, only a handful can cause
diseases in healthy people, which ismostly superficial in nature (Kohler et al., 2015; LIFE at www.life-
worldwide.org). Invasive fungal diseases (IFD) usually occur in susceptible individuals who are
immunocompromised due to serious illnesses such as leukemia, neutropenia, AIDS, etc. In addition,
medical advances have created vulnerable populations such as patients undergoing chemotherapy,
solid and hematopoietic stem cell transplantation (HSCT), complex surgeries, immunosuppressive
therapies for auto-immune and auto-inflammatory diseases, antibiotic therapies and treatment in
intensive care units.

The major fungi responsible for these invasive infections, which kill about one and a half million
people every year, are Candida, Aspergillus, and Zygomycetes species. Invasive candidiasis is the
fourth and sixth most common nosocomial infection in US and Europe respectively with a high
mortality rate ranging from 36 to 63% (Wisplinghoff et al., 2004; Brown et al., 2012; Rodrigues
et al., 2014). The risk factors for candidemia include prior antibiotic usage, abdominal surgery,
Candida colonization, central lines and parenteral nutrition (Wey et al., 1989; Blumberg et al.,
2001) Aspergillus is a ubiquitous filamentous saprophytic mold whose conidia are dispersed in
the air. Like the Zygomycetes, these molds cause several invasive diseases in hosts with markedly
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suppressed immunity and have a mortality rate in excess of
50–60% despite treatment (Herbrecht et al., 2002; Neofytos et al.,
2009).

Such is the concern of the impact of IFD in immuno-
compromised patients. This is despite the ever wider availability
of anti-microbials beyond the conventional amphotericin-B
based preparations and in the recent decade especially, the
newer generation and classes of anti-fungals like voriconazole,
posaconazole, and isavuconazole (of the azole family) and the
echinocandins (caspofungin, anidulafungin, and micafungin).
Some of the reasons for the high mortality are the difficulties
in the early and correct diagnosis of invasive fungal infections
(de Pauw and Picazo, 2008; Erjavec et al., 2009) as well as
drug resistance profiles among specific fungal pathogens (Perlin,
2007; Verweij et al., 2007; Xie et al., 2014). The main reason
for the poor outcomes from invasive disease nonetheless, is
the incapacity of the patient’s compromised immune system
to respond appropriately to the invading pathogen despite the
presence of antimicrobials.

The response to such a challenge faced by the clinician
at the bedside has led to exploration of novel therapeutic
modalities beyond conventional antimicrobials; specifically, the
manipulation and augmentation of the host immune response
in the face of IFD. Through understanding how the immune
system can detect the fungi, immunotherapeutic strategies may
be formulated as adjuncts in the management of IFD.

IMMUNE RECOGNITION AND RESPONSE
BY THE HOST

The susceptibility and outcome of fungal infections depend on
two main factors: the pathogen and the host. Pathogen factors
may include the dose of the infecting fungi and its virulence. The
efficacy of the immune response and the degree of the immune
suppression in the patient are the major host determinants.
The host defense capacity to fungal infection range from the
protective mechanisms provided by skin, mucosa and innate
immunity to the humoral response and adaptive immunity
(Mueller-Loebnitz et al., 2013). The innate immune systemdespite
its lack of specificity has been considered to bear significant
importance in the defense mechanism against fungi. Monocytes,
macrophages, neutrophils, and natural killer (NK) cells effect anti-
fungal capabilities through phagocytosis, and directed pathogen
killing. The fungal cell wall is the first structure encountered by
host cells. Fungal cell wall is made up of various polysaccharides
that have immune activating and modulatory properties. These
pathogen associated molecular patterns (PAMPs); such as alpha
and beta glucans, chitins, mannans, β- 1, 2-oligomannosides and
galactomannan of varying constitutions in the cell wall of various
fungi allow recognition by the innate immune cells; mainly
monocytes, macrophages, dendritic cells (DCs) and endothelial
cells (Netea et al., 2008). Pathogen recognition receptors (PRRs),
a protein family of cellular receptors that mediate recognition
of microbial pathogens and subsequent inflammatory response
are present on the surface of DCs and macrophages (Hamad,
2012).

IMMUNE RECOGNITION

One of the main PRRs are the Toll-like receptors (TLRs), whose
role in the recognition of Aspergillus and Candida has been
well documented especially, TLR2, TLR4, and TLR9 (Pasare
and Medzhitov, 2005; Takeda and Akira, 2005; Goodridge and
Underhill, 2008; Uematsu and Akira, 2008; Loures et al., 2010).
The PRRs mounted on the host cells recognize specific fungi
cell wall moieties of polysaccharide origin, namely the PAMPs.
Fungal PAMPs for cell surface TLRs have been identified mainly
through studies involving fungi with cell wall mutations. For
instance, fungal phospholipomannans (PLMs), linear beta-1, 2-
oligomannosides and glucuronoxylomannan (GXM) are known
to bind with TLR2, while, O-linked mannans have been shown
to activate TLR4 (Netea et al., 2006). Apart from cell surface
PAMPs, nucleic acids released from the fungi in the phagosome
also stimulate TLRs and modulate the host responses. TLR 9
activation occurs through interaction of genomic DNA whereas
double stranded and single stranded RNA stimulate TLR3 and
TLR7 respectively (Bourgeois and Kuchler, 2012).

Recognition of fungal antigen by TLR4 leads to pro-
inflammatory cytokine production by NF-κB activation mediated
by the adaptor protein Myd88. Bellocchio et al. (2004) supported
that TLR4-mediated pro-inflammatory effects are protective
against invasive aspergillosis by showing increased susceptibility
of TLR4−/− mice to Aspergillus fumigatus infection. Mutation
of Asp299Gly in TLR4 is associated with increased incidence
of pulmonary aspergillosis (Carvalho et al., 2008). It was
subsequently demonstrated that HSCT patients in possession
of the D299G/T399I haplotype were at higher risks of invasive
aspergillosis (Bochud et al., 2008). TLR2 was shown to influence
early recruitment and killing capacity of neutrophils against
A. fumigatus (Bellocchio et al., 2004). TLR2−/− mice infected
intraperitoneally with Candida albicans were found to have
lesser recruitment of neutrophils and monocytes (Tessarolli
et al., 2010). However, TLR2−/− mice had decreased fungal
burden compared to the control mice accompanied by increased
production of interleukin 12 (IL12) and decreased production
of IL10. The role of TLR2 is still under debate as studies based
on targeted patient genotype of TLR2 did not reveal enhanced
susceptibility. TLR9−/− mice are reported to have higher fungal
burden than control mice and found to be producing more IL10
and lower IL12 which is in contrast to findings in TLR2−/− mice.
Mutations in TLR9 are associated with increased incidence of
allergic bronchopulmonary aspergillosis (Carvalho et al., 2008;
Mezger et al., 2010). An association of invasive aspergillosis was
also seen in patients undergoing HSCT with SNPs in TLR1 and
TLR6 (Kesh et al., 2005). It should be noted that TLR response
may vary depending on fungal species and morphotype, and
route of infection as well as the specific fungal infection (Romani,
2011).

Another family of PRRs that are important in the recognition
of fungal PAMPs are C-type lectin receptors, otherwise known
as CLRs. β-glucans present on the cell walls of Candida and
Aspergillus species activate Dectin-1 receptor, while Dectin-2, and
Dectin-3 mainly recognize hyphal α-mannan (Saijo et al., 2010).
N-mannan is recognized by mannose receptor while galectin-3
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binds to β-mannans. Fungal N- linked mannans also bind to DC-
SIGN and mannose binding lectin (MBL) receptors present on
phagocytes (Becker et al., 2015).

Dectin-1 is the most widely known CLR associated with
fungal recognition. Dectin-1 recognition of β-glucan activates
canonical and non-canonical NF-κB activation by two pathways,
Syk-CARD9 and RAF pathways, resulting in increase in the
pro-inflammatory cytokine production. Stimulation of Dectin-
1 also increases IL1β and IL18 production through NLRP3
inflammasome pathway. Dectin-1 also collaborates with TLR2 to
trigger pro-inflammatory cytokine production upon recognition
of Candida albicans and zymosan. Dectin-1 deficient and CARD
9 deficient mice have predisposition to Candida infections
(Ferwerda et al., 2009; Drewniak et al., 2013). Dectin-2 pairs
with FcRγ to induce pro-inflammatory cytokine release. Dectin-
1 plays an important role in human fungal infections too. It
is evident from the polymorphism Y238X noticed in a Dutch
family whose members were subject to recurrent vulvovaginal
candidiasis and/or onychomycosis, while increased oral and
gastrointestinal colonization of Candida was observed in HSCT
recipients. In addition, it was noticed that there were defects
in the expression of Dectin-1 and β-glucan recognition by
phagocytes coupled with decrease in the production of cytokines,
especially IL17 (Ferwerda et al., 2009; Plantinga et al., 2009).
Similarly CARD9−/− patients show increased susceptibility to
chronic mucocutaneous candidiasis and reduced Th17 cells
(Glocker et al., 2009). MINCLE, which is mainly expressed by
macrophages, also induce NF-κB activation through Syk-CARD9
signaling. Mannose receptors are involved in the phagocytosis of
un-opsonized Candida yeasts. Mannose receptor interacts with
galectin-3, a PRR which recognizes carbohydrate moieties on
fungal cell wall, to induce TNFα production (Esteban et al., 2011;
Kawai and Akira, 2011).

Both Candida and Aspergillus also trigger an immune response
through activation of the inflammasome—most well described
through NLRP3 and caspase-1 activation, with the involvement
of the tyrosine kinase Syk and Dectin-1 (Gross et al., 2009; Said-
Sadier et al., 2010). The non-canonical caspase-8 pathway is also
implicated in the context of Candida (Gringhuis et al., 2012).
Both result in the cleaving and production of IL1β, a pivotal
mediator of inflammatory response together with interferon
gamma (IFNγ) and tumor necrosis factor alpha (TNFα). The
invocation of a “pro-inflammatory” response necessitates a
“counter-regulatory” component which is maintained by IL4 and
IL10 and more recently, possibly through the inhibitory group of
NLR (nucleotide-binding domain, leucine-rich repeat containing)
proteins (Ting et al., 2010). It is believed that it is in the context
of such a conventional paradigm of a balance between a “pro- and
anti-inflammatorymilieu” that host susceptibility and outcome of
an IFD episode may be determined (Chai et al., 2011).

IMMUNE REGULATION

Role of Neutrophils
The state of neutropenia is a well-established risk factor for
invasive aspergillosis (Marr et al., 2002). Neutrophils, being
the primary effector cells of innate immune system, efficiently

and rapidly kill fungi by various mechanisms. Neutrophils are
capable of recognizing fungi by TLR2, TLR4, Dectin-1, and
complement receptors such as CR1 and CR3 (Braem et al.,
2015). MAP kinase signaling is reported to mediate neutrophil
activation, especially ERK signaling pathway, since inhibition of
ERK signaling pathway abolishes C. albicans induced neutrophil
migration (Wozniok et al., 2008). Once activated, neutrophils are
able to release neutrophil extracellular traps as well as an array
of cytokines and chemokines. Neutrophils recruitment, activation
and survival in inflammatory sites are affected by Th17 controlled
pathway in fungal infections. Neutrophils are also the source of
pattern recognition molecule, pentraxin 3 (PTX3) which forms
complexes on the conidial surface of the fungus and acts as
an opsonin, enhancing recognition and phagocytosis of conidia
through mechanisms that depend on Fcγ receptor, CD11b and
complement (Mantovani et al., 2011; Cunha et al., 2014).

Role of Dendritic Cells/Monocytes/
Macrophages
Dendritic cells serve the bridge between innate and adaptive
immunity since they can present antigen to T cells, activate both
innate and adaptive immune system by release of cytokines and
chemokines. DCs can recognize fungal pathogens by the receptors
such as Dectin-1, TLR2, and TLR4. Production of CCL20 as well
as PTX3 increasedwith the activation ofDCs (Mezger et al., 2008).
DCs alsomature after phagocytosis of fungal cells andpromote the
differentiation of naive T cells to CD4+ T cells which are essential
for antifungal defense.Aspergillus conidia and hyphae induce NF-
κB translocation and release of proinflammatory cytokine TNFα,
and MIP2 in TLR2 and TLR4 dependent manner via adaptor
protein Myd88.

Monocytes are macrophage and DC precursors; they serve
as phagocytes as well as antigen presenting cells. Monocytes
produce CCL20which activates neutrophils, monocytes and naive
T cells. Alveolar macrophages destroy Aspergillus conidia via
non-oxidative mechanisms. The activity of macrophages can be
enhanced by GM-CSF or IFNγ (Mueller-Loebnitz et al., 2013).

IMMUNE RESISTANCE VS IMMUNE
TOLERANCE
T cells act as the immune modulators and master effectors in the
immune response against fungal pathogens. Conventionally, Th1
response is associated with TLR4 signaling resulting in secretion
of IFNγ and TNFα (for protection against fungal pathogen), while
Th2 response is associated with TLR2 signaling resulting in the
production of anti-inflammatory cytokines (IL4 and IL10) to
regulate the inflammatory response (which unfortunately leads
to more susceptibility against fungal infection). Th17 cells have
been increasingly recognized to serve one of the central roles
in the anti-Candida response especially the mucosal immunity.
Th17 has long been attributed to autoimmune diseases while
defective Th17 response results in mucocutaneous candidiasis
in patients with primary immunodeficiencies (Zelante et al.,
2009). In fungal infections, Th17 activation occurs through
Syk-CARD9, Myd88 and mannose receptor signaling pathways in
DCs and macrophages (Romani, 2011). Activation of IL17 results
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FIGURE 1 | Immune enhancement strategies for invasive fungal infections in immunocompromised hosts.

in the recruitment of neutrophils, defensins and ultimately results
in inflammation. However, IL17 activation is also associated
with high inflammatory pathology and inhibitory effects on
the IFNγ related activation of indolamine 2, 3-dioxygenase
(IDO) that is important for immune tolerance function (Romani
and Puccetti, 2008). Candida albicans is known to dampen
Th17 response resulting in chronic inflammation due to the
impairment of IL17 dependent neutrophil recruitment leading
to fungal persistence and immune dysregulation (Cheng et al.,
2010).

While inflammation and immune response is necessary to
eliminate the fungus, it is also important to limit the collateral
damage to tissue and restore homeostasis to the environment.
IL10, a major suppressive cytokine produced by CD4+ T
regulatory cells plays an important role in keeping inflammation
under control. However, the delicate balance of IL10/IFNγ needs
to be in check since high level of IL10 suppresses the activity
of IFNγ which provides the main Th1 defense against fungal
infections. IDO which is a product of tryptophan metabolism is
also increasingly recognized as the master regulator of immune
resistance and tolerance since it can induce T regulatory cells and
inhibit Th17. IDO and kynurenines balance immune tolerance
and resistance by providing adequate elimination of fungal

pathogenwhile preventing the unacceptable level of inflammation
and allergy (Zelante et al., 2009).

IMMUNE ENHANCEMENT STRATEGIES
The increased understanding of anti-fungal host responses
has facilitated novel approaches into molecular and cell-based
immunotherapeutics for invasive fungal infections (Figure 1).
Notably, the major protective host response against fungi is
the effective induction of Th1 and IFNγ responses, which in
turn, activates effector phagocytic cells that kill the fungi. A
cautionary note, however, is that this inflammatory response
needs to be appropriately regulated or curbed when the pathogen
or stimulatory ligand is contained, to minimize progression into
a chronic inflammatory state which may induce collateral tissue
damage.

Cytokine Therapy
The use of recombinant cytokines such as human granulocyte
macrophage colony-stimulating factor (GM-CSF), granulocyte
colony-stimulating factor (G-CSF), macrophage colony-
stimulating factor (M-CSF) and interferon-gamma (IFNγ) have
been explored as immune enhancing agents. GM-CSF, G-CSF,
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andM-CSF belong to the family of hematopoietic cytokines. They
stimulate the proliferation of granulocyte and/or macrophage
progenitor cells, induce differentiation and maturation, and
stimulate functional activity of mature hematopoietic cells
(Pikman and Ben-Ami, 2012). GM-CSF alone or in combination
with IFN-γ has been shown to enhance the fungicidal activity of
innate phagocytic cells in vitro and in vivo. GM-CSF has been
shown to preferentially enhance both the numbers and activity
of type 1 DCs and cause upregulation of macrophage dectin-1
expression (Willment et al., 2003; Van de Veerdonk et al., 2010).
Human M-CSF enhanced the activity of phagocytic cells and
prolonged survival alone or in combination with amphotericin
B in immunosuppressed mice with systemic Candida infection
(Kuhara et al., 2000). Similarly, M-CSF when added to standard
antifungal treatment of 46 stem cell transplantation recipients
with progressive fungal infections showed better overall survival
rates (Nemunaitis et al., 1993).

G-CSF is widely used in clinical practice during chemotherapy
induced neutropenia. While G-CSF clearly reduces neutropenic
days and neutropenia-related hospitalization, its efficacy in
clinical outcomes including infection and mortality rates remain
less clear (Smith et al., 2006). In a review of 925 mucormycosis
cases, 15 of 18 patients showed favorable clinical response when
given G-CSF adjunctive therapy (Roden et al., 2005). Clinical data
on the use of GM-CSF as adjuvant antifungal therapy are scarce.
Few case reports or small patient series with drug-refractory
invasive aspergillosis infection have been published but provide
limited information. Recently, a retrospective assessment of 66
patients was performed in whom GM-CSF was given during
antifungal therapy to high-risk cancer patients and stem cell
transplant recipients with IFD. A complete or partial response
occurred in more than half of the patients treated with GM-CSF
despite recent treatment with antineoplastic therapy and presence
of other predictors of poor outcomes (Safdar et al., 2013). Further
prospective studies to assess CSFs efficacy in the treatment of
established fungal disease are needed.

IFNγ, produced by T and NK cells, increases the cytotoxic
capacity of antigen presenting cells and intracellular killing. In a
recent prospective case series, eight patientswith invasiveCandida
and/or Aspergillus infections were treated with recombinant
IFN-γ for 2 weeks in addition to standard antifungal therapy.
Recombinant IFN-γ treatment in patients with invasive Candida
and/or Aspergillus infections partially restored immune function,
as characterized by an increased HLA-DR expression in those
patients and an enhanced production of pro-inflammatory
cytokines involved in antifungal defense (Delsing et al., 2014).
IFNγ is also used in the treatment of recalcitrant aspergillosis
(Kelleher et al., 2006; Bandera et al., 2008; Estrada et al., 2012).
Further large-scale clinical studies to assess the potential clinical
benefit of IFNγ is needed, but the cost of the drug remains amajor
concern.

Preclinical trials have assessed other pro-inflammatory
cytokines that upregulate the antifungal Th1 response such as
IL12, IL15, and TNFα as candidate adjuvants. IL12 is required
for Candida-induced differentiation of Th1 cells in vivo (Romani
et al., 1997) and for the antifungal activity of monocytes
against A. fumigatus hyphae in vitro (Roilides et al., 1999). The

usefulness of IL12 as immune enhancer is controversial. Invasive
mold infections were reported in two autologous stem cell
transplantation recipients treated with IL12 (Toren et al., 1997),
raising concern that IL12 may paradoxically provoke an immune
flare to fungal pathogens.

IL15 is also a potential new drug candidate. This cytokine,
shares biological activities with IL2, in enhancing antifungal
granulocyte activity in cell cultures (Vazquez et al., 1998; Winn
et al., 2003). Neutralization of TNFα, a signature cytokine
of Th1 cells, increases the susceptibility of mice to invasive
aspergillosis, whereas intratracheal instillation of TNFα agonist
peptides confers protection against A. fumigatus conidia (Mehrad
et al., 1999). Further preclinical investigation is required not only
for these cytokines, but also for IL18 and IL36 belonging to the
interleukin 1 family (Gresnigt et al., 2013; Ketelut-Carneiro et al.,
2015).

Granulocyte Transfusion
Transfusion of granulocytes from healthy donors has been
used anecdotally for immune enhancement in patients with
neutropenia who suffer from invasive fungal infections. Earlier
attempts were beset by the lower yield and quality of granulocytes
recovered from steroid treated donors. However, with advances in
apheresis methods, better sedimenting agents and the recent use
of recombinant cytokines like G-CSF and IFN-γ1b in addition to
steroids, the yield and quality of leukocytes from healthy donors
have improved.

The efficacy of granulocyte transfusion has been shown by the
increased survival rates following its use in the treatment of cancer
patients with candidemia (Price et al., 2000). In an uncontrolled
prospective study of 23 patients treated for IFD with granulocyte
transfusion, no recurrent infection was observed (Mousset et al.,
2005). However, in a Phase III randomized trial of 74 patients
with febrile neutropenia, 55 of whomhad IFD and 39 had received
stem cell transplantation, there was no clear effect of granulocyte
transfusion on survival up to day 100 (Seidel et al., 2008). Though
major randomized trials are lacking for patients with invasive
aspergillosis and mucormycosis, good clinical efficacy and safety
using appropriate granulocytes is evident through various small
case series and case reports (Dignani et al., 1997; Illerhaus et al.,
2002; Slavin et al., 2002; Safdar et al., 2006). Therefore, the use of
granulocyte transfusions in patients with severe neutropenia and
uncontrolled infection, in spite of appropriate antifungal therapy
might be considered as a potential life-saving treatment option.

Antibodies
The era of antibody-based therapy for invasive fungal infections
dawned with the discovery of protective monoclonal antibodies
(mAbs) against the capsular polysaccharide of Cryptococcus
neoformans (Dromer et al., 1987). Subsequently, protective
antibodies against Candida albicans (Han and Cutler, 1995;
Moragues et al., 2003), Aspergillus fumigatus (Chaturvedi et al.,
2005) and other fungi were elucidated.

Two antifungal mAbs have been evaluated in clinical trials.
18B7, amAb against the capsular polysaccharide of C. neoformans
was found to be safe in a Phase I study (Larsen et al., 2005)
but there is a lack of efficacy data. Efungumab (Mycograb) is
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a genetically engineered human recombinant antibody against
fungal heat shock protein 90. HSP90 is an immunodominant
antigen of the Candida cell wall and is required for its survival.
In preclinical studies, Mycograb showed activity against a wide
range of Candida species and synergized with antifungal drugs
(Matthews et al., 2003; Hodgetts et al., 2008). But the role of
Mycograb at the bedside remains still controversial. Results of a
double-blind clinical trial in 117 patients with invasive candidiasis
receiving liposomal Amphotericin B with or without Mycograb,
showed that by day 10, the patient group receiving Mycograb
combination (84 vs 48%; p < 0.001) had complete response with
more rapid clearance of fungal cultures and reduced Candida-
attributable mortality rate (Pachl et al., 2006). However, due to
methodological and safety issues (Herbrecht et al., 2006), the drug
has not gained licensure yet.

On a similar note, monoclonal antibodies mAb C7 and mAb
A9, against Candida cell wall mannoprotein and A. fumigatus cell
wall glycoprotein respectively, exhibit direct fungicidal activity
(Moragues et al., 2003; Chaturvedi et al., 2005) with reduced
fungal burden and increased survival rate in murine models of
invasive infection.

Killer anti-idiotypic antibodies, which mimic broad spectrum
antimicrobial peptides have been developed. These antibodies,
upon intranasal administration to immunosuppressed mice with
invasive aspergillosis have resulted in cure and long-term survival
(Cenci et al., 2002).

Radioimmunotherapy is another novel antibody-based
concept, whereby radiolabeled antibodies that recognize fungal
antigens are used to deliver microbicidal radiation with less
systemic toxicity (Bryan et al., 2010). It is hoped that radiolabeled
mAbs that bind antigens shared by many pathogenic fungi, such
as HSP60 and β1, 3 glucan, may act as adjuncts in tandem with
conventional antifungals (Bryan et al., 2012).

Vaccination
Antifungal vaccines is an area that has drawn increasing interest
and research in recent years. The effective usage of fungal vaccines
is limited in the immunocompromised hosts as they not only
tend to mount weak protective responses to vaccines but are also
at risk from live attenuated formulations. Hence fungal vaccines
are often based on standardized cellular subunits which require
an adjuvant to induce protective immunity. Heat shock proteins
may serve as powerful adjuvants while the immune response
may be enhanced by mannosylation of antigens (Spellberg, 2011).
Protective immunity arises frombothT-cell responses, specifically
Th1 and/or Th17 (Wuthrich et al., 2011) and antibody responses.

Preclinical evaluation of vaccines to a number of important
fungal pathogens have been performed and at least two have been
subject to Phase I clinical trials (Pikman and Ben-Ami, 2012).
Universal fungal vaccines may be on the horizon with a conjugate
vaccine that evokes antibodies to β-glucans offering cross-
protection against three major fungal pathogens: C. albicans, A.
fumigatus, and C. neoformans (Torosantucci et al., 2009). Another
promising panfungal vaccine preparation originates from heat-
killed Saccharomyces and is found to confer protection against
Aspergillus, Coccidioides, and Candida infections (Stevens et al.,
2011).

Though animal studies with crude A. fumigatus antigens are
promising, the ideal dose that can be safely administered to
humans is not well understood (Stevens, 2004). Vaccination
of mice with a distinct Aspergillus antigen Aspf 3 prior to
immunosuppression was shown to confer protection against
subsequent inhalational challenge with A. fumigatus (Ito et al.,
2006). It was shown that immunization confers cellular rather
than humoral immunity since naive mice were protected from
invasive aspergillosis by passive transfer of CD4+ cells rather than
anti-Aspf 3 antibodies from immunizedmice (Diaz-Arevalo et al.,
2011). Additional vaccine candidates include secreted protein
Pep1p and anchored proteins Gel1p and Crf1p (Bozza et al., 2009)
of which, Crf1p proved to be immunogenic with cross-reactivity
and protection against C. albicans (Stuehler et al., 2011).

Natural Killer Cell Treatment
Recently the role of NK cells in antifungal immunity is being
investigated. It has been found that IL2-primed NK cells are
cytotoxic toward A. fumigatus germlings and hyphae, an effect
that is not mediated through degranulation of its cytotoxic
proteins like perforin, granzymes etc., but mediated by IFNγ and
TNFα secretion (Bouzani et al., 2011; Schmidt et al., 2011). NK
cells have been shown to be the most important source of IFN-
γ in the lungs of neutropenic hosts during the early stages of
invasive aspergillosis (Park et al., 2009). It was also shown that
the chemokine ligand MCP1/CCL2 mediates recruitment of NK
cells resulting inmore rapid clearance ofAspergillus from the lungs
(Morrison et al., 2003) implicating the potential for NK-based
therapeutic applications.

Adoptive T cell Transfer
Defective T-cell immunity is a hurdle in the path to a robust
immune response to vaccines and antimicrobial treatment.
Conceptually, this problem could be overcome by T-cell-
independent vaccination, wherein the CD4+ T-cell-derived factor
CD40L, required for DC costimulation of B cells, is replaced
(Zheng et al., 2005).

One of the strategies to reduce the risk of invasive aspergillosis
is the induction of Th1-type immune response that may be
achieved by either transferring Aspergillus-specific Th clones
or DCs that have been primed to trigger Aspergillus-specific
immunity (Pikman and Ben-Ami, 2012). Adoptive T-cell transfer
has been shown to decrease galactomannan levels significantly
with higher survival rates as compared with patients who did not
receive immunotherapy (Perruccio et al., 2004). Specific Candida
cell wall proteins expressed during invasive infection have
been synthesized as immunogenic peptide epitope–β-mannan
conjugates. DCs pulsed with three of these epitopes conferred
protection against disseminated candidiasis inmice.Of note is one
epitope, derived from fructose-bisphosphate aldolase, which was
shown to induce robust antibody dependent protective responses
to C. albicans (Xin et al., 2008).

Various vaccine formulations using DCs to induce adoptive
immunity to Aspergillus have been studied. DCs pulsed
with live conidia, transfected with conidial RNA or primed
with unmethylated CpG oligodeoxynucleotides and pulsed
with Aspf16 antigens trigger specific Th1-type responses and
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protective immunity against invasive aspergillosis in a mouse
model. DC infusion was shown to be more effective and superior
to that of Aspergillus-specific T cells (Bozza et al., 2002, 2003).
Subsequently, it was shown that DCs transfected with IL-12 DNA
and pulsed with heat-inactivated A. fumigatus induced protective
immunity against invasive pulmonary aspergillosis, as reflected by
decreased fungal burden and increased survival (Shao et al., 2005).

CONCLUSIONS AND FUTURE
PERSPECTIVES
Despite the advances in our knowledge and understanding in
pathogenesis, IFD continues to result in significant morbidity
and mortality in immunocompromised patients. The current
conventional therapeutic modalities have not been fully effective.
In addition, prolonged use of antifungal agents pose the risk of
emergence of fungi resistant to conventional drugs.

The urgent need of the hour is to improve treatment options
for patients with IFD by the usage of newer and more effective
drugs, alone or combined together that can cure the infection. The
other promising solution would be the use of immunotherapeutic

modalities to improve and enhance the host defense system
against fungal pathogens. The increase in knowledge of the
pathogenesis of fungal infections has ushered in a new era of
immunotherapeutic options. It is of utmost importance that
further relevant clinical trials be conducted to explore the various
immunotherapeutic strategies that hold promise for the better
treatment and control of IFD in the near future.
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Treatment of fungal infections is difficult due to several reasons, such as side effects
of drugs, emergence of resistant strains, and limited number of molecular targets for
the drug compounds. In fungi, heat shock proteins (Hsps) have been implicated in
several processes with the conserved molecular chaperone Hsp90 emerging as a
potential target for antifungal therapy. It plays key cellular roles by eliciting molecular
response to environmental changes, morphogenesis, antifungal resistance, and fungal
pathogenicity. Here, we evaluated the transcription profiles of hsp genes of the most
prevalent dermatophyte Trichophyton rubrum in response to different environmental
challenges including nutrient availability, interaction with cells and molecules of the
host tissue, and drug exposure. The results suggest that each Hsp responds to a
specific stress condition and that the cohort of Hsps facilitates fungal survival under
various environmental challenges. Chemical inhibition of Hsp90 resulted in increased
susceptibility of the fungus to itraconazole and micafungin, and decreased its growth in
human nails in vitro. Moreover, some hsp and related genes were modulated by Hsp90
at the transcriptional level. We are suggesting a role of Hsp90 in the pathogenicity and
drug susceptibility of T. rubrum as well as the regulation of other Hsps. The synergism
observed between the inhibition of Hsp90 and the effect of itraconazole or micafungin in
reducing the fungal growth is of great interest as a novel and potential strategy to treat
dermatophytoses.

Keywords: Hsp, antifungal therapy, molecular target, drug synergism, itraconazole, micafungin, 17-AAG

INTRODUCTION

Dermatophytes are pathogenic fungi and primary causative agents of superficial mycoses in
humans (Brown et al., 2012). These fungi are keratinolytic and infect keratinized structures such as
skin, nails, and hair in the host, giving rise to diseases (also known as dermatophytoses or tineas)
such as athlete’s foot, onychomycosis, ringworm, and jock itch. Among the species belonging to
this group of filamentous fungi, Trichophyton rubrum is the leading cause of human skin and
nail mycoses and has high prevalence worldwide (Havlickova et al., 2008; Seebacher et al., 2008;
Nenoff et al., 2014). Although rare, disseminated or deep dermatophytoses have been reported
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in immunocompromised or immunosuppressed patients (Gong
et al., 2007; Marconi et al., 2010; Lanternier et al., 2013).
Depending on the amplitude and the site of infection,
dermatophytoses can be difficult to cure and often relapse post-
treatment, even in immunocompetent individuals (Gupta and
Cooper, 2008; Ghannoum and Isham, 2014).

Although a reasonable number of antifungal drugs are
commercially available, majority of the clinical drugs act on the
ergosterol biosynthesis pathway, thus restricting the number of
cellular targets. Besides, resistance to commonly used antifungal
drugs has been reported in dermatophytes and other human
pathogens, rendering the choice of drug challenging and
exacerbating the prospect of successful treatment (Martinez-
Rossi et al., 2008; Pfaller, 2012). Therefore, novel antifungal
targets have become the prime focus of several researchers in
the field of medical mycology. Drug combinations and synergism
have been proposed as therapeutically desirable approaches to
decrease the development of resistance (Kontoyiannis and Lewis,
2002).

Evaluation of the interconnection among drug resistance,
stress response, and the signaling pathways activated in these
processes has been revealing key elements or the core circuitry
as targets for antifungal therapy (Cowen and Steinbach, 2008;
Shapiro et al., 2011). One such promising cellular candidate is
the heat shock protein 90 (Hsp90) (Wirk, 2011), a molecular
chaperone belonging to the highly conserved family of heat
shock proteins (Hsps). These proteins rapidly accumulate in the
cytosol in response to heat and environmental challenges such
as antifungal drugs, oxidative stress, and heavy metal exposure
among others. The heat shock response (HSR) is considered a
rescue mechanism that enables the cells to cope under stressful
conditions and protects from severe damage. The primary role of
Hsps is to sense and assist proper protein folding and refolding,
and direct them for degradation in case of misfolding, thereby
assuring proteome integrity and homeostasis (Lindquist and
Craig, 1988). Hsps act as molecular chaperones or transcriptional
regulators in a myriad of physiological functions. These proteins
are classified into several families based on their function and
molecular weight, which ranges from 9 to 110 kDa. Hsps
are also found in all organisms (Lindquist and Craig, 1988;
De Maio et al., 2012), and are involved in the assembly of
protein complexes, transport and sorting of proteins into the
proper cellular compartments, cell-cycle control, and protein fate,
among other functions. In fungi, Hsps have been implicated
in several processes, including pathogenicity, phase transition
in dimorphic fungi, and antifungal drug resistance. Hsps are
synthesized as an adaptive response to stress that contributes to
the survival of pathogenic microorganisms in the host (Burnie
et al., 2006; Brown et al., 2010).

Heat shock protein 90 is highly abundant in cells even in non-
stressful state and increases further in response to different forms
of stress. However, some eukaryotes present two hsp90 genes,
one inducible and the other constitutively expressed (Taipale
et al., 2010). Hsp90 can associate with several proteins involved
in signaling, metabolism, cell growth, transcription, protein
trafficking, chromatin remodeling, and stress response, among
others (Leach et al., 2012b). It is an ATP-dependent chaperone

and functions as a dimer. Each monomer presents an amino-
terminal domain (NTD) that binds ATP and hydrolyzes upon
association with the target proteins, a middle domain (MD)
crucial for the interaction with the target proteins, and a carboxyl-
terminal domain (CTD) responsible for dimerization. The energy
produced by the hydrolysis of ATP is used by Hsp90 to fold the
target proteins to their active conformations (Taipale et al., 2010).
By chaperoning the target proteins, Hsp90 can modulate several
downstream processes and regulatory cascades, thus controlling
the responses to dynamic environments (Shapiro et al., 2011;
Leach et al., 2012b).

Inhibitors of Hsp90 have been thoroughly searched for
and some natural compounds produced by microorganisms
have been isolated. These include geldanamycin, which is a
benzoquinone ansamycin derived from actinomycetes, and a
resorcyclic acid lactone called radicicol produced by certain
fungal species (Piper and Millson, 2012). Some Hsp90 inhibitors
are in clinical trial for cancer therapy and derivatives of natural
compounds have been synthesized to increase efficacy and
decrease side effects and toxicity (Gorska et al., 2012). In general,
these inhibitors act as ATP competitors and interfere with
the ATP-binding domain, which turns Hsp90 non-functional
and leads to the ubiquitination and proteasome degradation
of target proteins because of their aberrant conformation
(Wirk, 2011). Besides their therapeutic potential, geldanamycin
and its derivatives have been used to characterize the role
of Hsp90 in fungal adaptation to host environment and
antifungal resistance, as well as to understand their synergism
with other antifungal drugs. A promising and interesting
consequence of Hsp90 inhibition was that the emergence of
resistance to azoles and echinocandins were reduced in vitro in
human pathogens Candida albicans and Aspergillus fumigatus,
respectively, thus validating the efficiency of these antifungal
drugs in experimental infection models (Cowen, 2008; Cowen
et al., 2009). Compromising the Hsp90 function was also effective
against C. albicans and A. fumigatus biofilms, which are highly
drug-resistant recalcitrant structures and an important cause of
mortality. Targeting Hsp90 with chemical inhibitors increased
the susceptibility of C. albicans biofilms to azoles in vitro and
in an animal infection model, and the efficacy of azoles and
echinocandins against A. fumigatus biofilms (Robbins et al.,
2011). In C. albicans, inhibition of Hsp90 also affected cell wall
biogenesis by disrupting the signaling pathways involved in cell
wall remodeling (Leach et al., 2012a). Additionally, this also
impaired the Hsf1–Hsp90 auto-regulatory circuit in C. albicans.
The heat shock transcription factor Hsf1 governs the HSR and
is a target of Hsp90. Thus, Hsp90 inhibition affected the Hsf1
regulon, consequently the regulation of HSPs and the resistance
to proteotoxic stress (Leach et al., 2012a).

In this work, we have chemically inhibited Hsp90 in the
dermatophyte T. rubrum and analyzed the effects to assess
the roles played by this molecular chaperone in response to
antifungal drugs, fungal pathogenicity, and regulation of other
genes. To analyze drug susceptibility, three molecules with
different modes of action were tested; itraconazole (ITRA),
5-Fluorocytosine (5-FC), and micafungin (MCFG) act on
ergosterol biosynthesis, nucleic acids, and glucan synthesis,
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respectively. The antifungal effects of these drugs in synergy
with the Hsp90 inhibitor against the growth of T. rubrum were
evaluated. In order to analyze the role of Hsp90 in pathogenicity,
the ability of T. rubrum to colonize human skin and nail in
the presence of Hsp90 inhibitor was tested in an ex vivo model
of infection. The influence of Hsp90 in the regulation of hsp
genes and other related genes such as those encoding for the
heat shock factor Hsf1 and the pH responsive regulator PacC
was evaluated by transcription profile analyses in response to
nutritional sources. Finally, in order to assess the adaptive
response to various stress conditions, the transcriptional profile
of Hsps, including Hsp90, was evaluated after exposure of
T. rubrum to antifungal drugs and substrates present in the host.

MATERIALS AND METHODS

Trichophyton rubrum Strain
Trichophyton rubrum strain CBS118892 (CBS-KNAW Fungal
Biodiversity Centre) was cultivated inmalt extract agar (MEA: 2%
peptone, 2% glucose, 2% agar, pH 5.7) at 28◦C. To prepare the
conidia suspension, 15-day-old plates were flooded with sterile
0.9% NaCl and the suspension filtered through fiber glass to
remove mycelia debris. The conidia concentration in the filtrate
was estimated using a Neubauer chamber, as previously described
(Persinoti et al., 2014).

Antifungal Drug Susceptibility Test
The synergistic effect between chemical inhibition of Hsp90
and antifungal agents was tested by the following method:
T. rubrum conidia (1 × 106 per plate) were spread on the
surface of MEA containing 10, 100, and 300 μM of the
inhibitor 17-AAG (17-allylamino-17-demethoxygeldanamycin;
InvivoGen, San Diego, CA). E-test (AB Biodisk, Solna, Sweden)
gradient strips of ITRA, 5-Fluorocytosine (5-FC), or MCFG were
then placed on these plates. Gradient concentration of the tested
antifungal drugs ranged from 0.002 to 32 μg/mL and the results
were observed after incubation at 28◦C for 5 days. Plates without
antifungal agents were used to assess fungal development in
the presence of 17-AAG. Three independent experiments were
conducted.

Ex vivo Pathogenicity Test
The ex vivo nail and skin interaction assays were performed as
described here. Autoclaved small pieces of human nail obtained
from healthy donors were infected with 1 × 104 T. rubrum
conidia and incubated at 28◦C for 5 days, in the absence or
presence of 50, 100, or 200 μM of Hsp90 inhibitor 17-AAG.
After incubation, nail fragments were observed under a light
microscope to evaluate the hyphal development and fungal
morphology.

Small pieces of human skin were obtained from patients
who underwent abdominal surgery at the University Hospital
of Ribeirão Preto Medical School, University of São Paulo,
Brazil (HC-FMRP-USP). After removal of the adipose tissue,
the small pieces of human skin were infected with 1 × 104

T. rubrum conidia in the absence or presence of 200 μM 17-
AAG and incubated at 28◦C for 5 days. Infected skin fragments
were maintained in skin graft fluid (SGF; Duek et al., 2004)
supplemented with or without 200 μM 17-AAG. Scanning
electron microscopy (SEM) was employed to visualize hyphal
development. For this purpose, the skin fragments were fixed
with 3% glutaraldehyde in 0.1% phosphate buffer (pH 7.2) at 4◦C
for 2 h, rinsed with 0.1% phosphate buffer (pH 7.2), and post-
fixed with 1% osmium tetroxide for 2 h. Samples were dehydrated
by a graded ethanol series and sputter-coated with gold to obtain
a layer of approximately 200 μm thickness. The samples were
viewed under a Jeol JSM -6610 LV scanning electron microscope
at an acceleration voltage of 25 kV.

Growth Conditions for Gene Expression
Assays
T. rubrum conidia (1 × 106) were inoculated in 100 mL of
malt extract (ME) medium (pH 5.0) or keratin medium (KM:
2.5 g/L keratin powder, MP Biomedicals, suspended in water,
pH 5.0). After shaking at 28◦C for 96 h, the resultant mycelia
were filtered, frozen in liquid nitrogen, and stored at -80◦C
for expression studies. For the Hsp90 chemical inhibition assay,
fresh mycelia grown for 96 h at 28◦C in ME or KM were
incubated for 30 or 90 min at 28◦C with 100- or 300 μM
17-AAG. For antifungal drug response assays mycelia grown
in ME at 28◦C for 96 h were aseptically transferred to RPMI
1640 (Life Biotechnologies—buffered with 0.167M MOPS, pH
7.0) in the absence (control) and presence of sub-inhibitory
concentrations of acriflavine (ACR; 1.75 μg/mL) or terbinafine
(TRB; 0.2 μg/mL), and incubated for 3 h at 28◦C.

For the interaction assays, the small pieces of human skin
were cleaned, infected with 1 × 104 T. rubrum conidia, and
incubated at 28◦C for 96 h. The fungus was then harvested and
used for total RNA extraction. For the nail interaction assay,
each human nail fragment was exposed to 1 × 104 T. rubrum
conidia and incubated at 28◦C for 96 h. The infected nail
fragments were vortexed to release fungal mycelia for total RNA
extraction and the nails discarded. The interaction assays were
approved by the local Ethics Committee (Protocol No. 046/2009).
Three independent experiments were conducted for each growth
condition and interaction assay.

Gene Expression Analysis
Total RNA was isolated from frozen mycelia using Illustra
RNAspin Mini RNA Isolation Kit (GE Healthcare). First-strand
cDNA was synthesized using the SuperScriptIII First-Strand
Synthesis Super Mix for qRT-PCR kit (Invitrogen). Both RNA
extraction and cDNA synthesis were performed according to
the manufacturer’s recommendations. An intron flanking region
of the β-tubulin gene was used as positive control to verify
DNA contamination and proper cDNA synthesis, as previously
described (Jacob et al., 2012).

Specific primer pairs for each T. rubrum gene were designed
using the Primer Express v.3 software (Life Technologies) and are
listed in Table 1. qRT-PCR reactions were carried out in a final
volume of 12.5 μL, containing 6.25 μL Power SYBRGreen PCR
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TABLE 1 | Primers used for qPCR assays.

Gene Accession numbera Primer sequences (5’– 3’) Amplicon length (bp) Efficiency(%)

hsp20 TERG_01659 F: GCCAAGGAGGAGTTGAATCCT
R: AGCCCTCTCCAATCTCGTCTT

57 95.29

hsp60 TERG_04141 F: AAGCGTCGTTGTCGGTAAGC
R: TGTCGAAGCCACGGTTAAAGT

62 92.6

hsp70 TERG_01883 F: CCGCCATGAACCCTGAGA
R: CGAATCGTCGTCCGATAAGAC

60 96.0

hsp70-like TERG_06505 F: CACGTACTCCTGCGTGGGTAT
R: TGCGGTTTCCCTGATCGT

71 96.0

hsp clpa TERG_07049 F: CCGGCAGTCTCCCAAGTCT
R: GTAGGCAGCAGCCATGACTTC

60 91.8

hsp88-like TERG_07658 F: AAGGGTGTCACCGCTGATG
R: TCAGTCTAGCCTTGAGCTTGCA

61 95.8

hsp90 TERG_06963 F: ACCGTGCTGCCCTTGCT
R: GTGATCTCGTCGCCAGACTTG

61 96.0

cdc37 TERG_06398 F: GAGATCGCAACTCTAGGGTACGA
R: GCCCGTCAATCCGTTTCA

64 93.5

hsp ssc1 TERG_03206 F: ACCGAGTCCGTCAAGAGCAT
R: TCGTCGGGATTAACGGACTT

59 96.1

hsp78 TERG_07949 F: CCGGTCTCAGCGGTGAAA
R: GGTGGGCCCAAGAAACATG

56 92.6

hsf1 TERG_04406 F: AGTGCTGGAGGCCGAGAAG
R: TCCCGACCCGAGAGCAA

60 97.4

pacC TERG_00838 F: TCCCAGCAGCCCCAAC
R: ATGTGGGAGGTGATGTGGT

63 98.3

aDermatophytes genome database accession number (http://www.broadinstitute.org/annotation/genome/dermatophytecomparative).

Master Mix (Life Technologies), 1.0 μL of each primer (hsp20,
250 nM; hsp60, 500 nM; hsp70, 450 nM; hsp70-like, 350 nM; hsp
clpa, 300 nM; hsp88-like, 350 nM; hsp90, 300 nM; cdc37, 400 nM;
hsp ssc1, 400 nM; hsp78, 350 nM; hsf1, 350 nM; pacC, 350 nM),
2.0-μL template cDNA (50 ng), and 3.25-μL ultra-pure water.
Thermal conditions for qRT-PCR were 95◦C for 10min, followed
by 40 cycles of 95◦C for 15 s and 60◦C for 1 min. All reactions
were performed in triplicate in 96-well reaction plates using
the StepOnePlus Real-Time PCR System (Life Technologies).
A melting curve for each gene was obtained and 2% agarose
gel electrophoresis was performed to confirm the amplification
of the unique product of expected size for each hsp gene. To
determine PCR efficiency, standard curves were generated using
cDNA sample at five-point, twofold dilutions and measured in
triplicates. The reference genes rpb2 and actin were used for
data normalization as previously described (Jacob et al., 2012).
Relative expression was calculated by the 2−��CT method (Livak
and Schmittgen, 2001). Statistical significance was evaluated by
one-way ANOVA followed by the Tukey’s ad hoc test, using the
GraphPad Prism v 5.1 Software.

RESULTS

Inhibition of Hsp90 by 17-AAG
In order to evaluate the synergism of Hsp90 with other antifungal
drugs, as well as its role in T. rubrum pathogenicity, 17-
AAG was used to chemically inhibit Hsp90 expression in
T. rubrum. Although inhibition of Hsp90 using 300 μM of

17-AAG had no effect on T. rubrum growth in MEA, an
increase in fungal susceptibility to ITRA andMCFGwas observed
(Supplementary Figure S1). This was demonstrated by 10- and
fourfold decreases in minimal inhibitory concentration (MIC)
values, respectively. Moreover, there was no effect when the
fungus was challenged with 5-FC (Table 2). The role of Hsp90
in T. rubrum pathogenicity was also analyzed using an ex vivo
nail interaction assay. Inhibition of Hsp90 decreased T. rubrum
growth on human nail in vitro. This decrease was dependent on
the concentration of 17-AAG used, and at 200 μM, T. rubrum
growth was almost entirely inhibited (Figure 1), indicating the
attenuation of fungal virulence. However, SEM of ex vivo human
skin inoculated with T. rubrum conidia showed no significant
difference in fungal growth whenHsp90 was inhibited at the same
17-AAG concentration. (Supplementary Figure S2). This suggests
that other virulence factors or incomplete inhibition of Hsp90
activity might foster fungal growth in the ex vivo skin model.

TABLE 2 | Synergism of heat shock protein 90 (Hsp90) inhibition and
antifungal drugs.

17-AAG (µM) MIC (µg/mL)

5-Fluorocytosine
(5-FC)

Itraconazole
(ITRA)

Micafungin
(MCFG)

0 >32 0.125 0.008

10 >32 0.125 0.008

100 >32 0.125 0.004

300 >32 0.012 0.002
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FIGURE 1 | Effect of heat shock protein (Hsp90) inhibition on Trichophyton rubrum growth in human nail. Light microscopy was used to analyze hyphal
development in human nail fragments infected with T. rubrum conidia in the absence (positive control) or presence of the Hsp90 inhibitor 17-AAG (50, 100, or
200 μM) after 5 days at 28◦C. Negative control consists of uninoculated and untreated nails. Asterisks indicate nail fragments.

Expression Profile of hsps and Related
Genes
The expression of several hsps and related genes is modulated
during the growth of T. rubrum in KM and ME in the presence
of Hsp90 inhibitor 17-AAG. For some genes, this effect is time-
and concentration-dependent (Figure 2). While the inhibition
of Hsp90 led to decreased accumulation of hsp70-like and hsf1
transcripts, regardless of the growth medium, the levels of
hsp60 and hsp88-like transcripts were decreased in response
to ME and KM, respectively. However, hsp70 and hsp clpa
genes were upregulated in the absence of Hsp90 activity, which
led to increased accumulation of hsp90 transcripts, perhaps in
an attempt to compensate for the chemical inhibition of the
protein. Interestingly, pacC was downregulated when Hsp90
was inhibited in the presence of keratin. Moreover, the gene
coding for the Hsp90 co-chaperone cdc37 was upregulated
in ME but not in KM, whereas hsp ssc1 was upregulated
only in KM (Figure 2) upon Hsp90 inhibition. These results
suggest a regulatory role for Hsp90 in the expression of pacC
and other hsp genes in T. rubrum, depending on the growth
medium.

Given the involvement of Hsps in the pathogenicity of several
fungal pathogens and in drug susceptibility, the expression profile
of some of these hsp genes was evaluated in T. rubrum in
response to other antifungal drugs, such as TRB and ACR,
and during its growth on nail and skin fragments (Figure 3).
The analysis revealed different expression profiles in response
to these environmental challenges. While hsp clpa gene was not
modulated in response to any stimuli analyzed (Figures 3A,B),
hsp90, hsp88-like, and hsp20 transcripts accumulated in response
to drug exposure (Figure 3B). However, hsp60 and hsp78
presented a slightly broad range of modulation with transcripts
accumulating during growth on nails and in response to one or
both drugs (Figures 3A,B).

DISCUSSION

Dermatophytes affect millions of individuals annually and have
become an important public health concern because of their
refractivity to therapy, which prolongs the duration of treatment
especially in aging populations (Coelho et al., 2008; Martinez
et al., 2012). Because both the host and the pathogen are
eukaryotic organisms, treatment of fungal infections is difficult

due to the limited number of antifungal targets available
(Martinez-Rossi et al., 2008). Another concern is the emergence
of resistance to antifungal drugs currently in clinical use.
Thus, it is necessary to identify new strategies for therapy
against fungal infections. In this study, we observed that it is
possible to increase the efficacy of antifungal drugs, ITRA and
MCFG, by targeting the molecular chaperone Hsp90 with 17-
AAG, an inhibitor of the Hsp90 ATPase activity. Interestingly,
these antifungal agents have different mechanisms of action.
While ITRA inhibits the enzyme lanosterol 14α-demethylase,
thus preventing the biosynthesis of ergosterol, a key sterol
in the fungal membrane (Lupetti et al., 2002; Odds et al.,
2003), MCFG inhibits the enzyme 1, 3-β-D-glucan synthase,
thereby blocking the biosynthesis of a key linker molecule in
the fungal cell wall (Onishi et al., 2000). When challenged
with antifungal drugs, several dermatophytes generally react
by activating stress responses (Paião et al., 2007; Yu et al.,
2007; Zhang et al., 2009; Peres et al., 2010), which often
depends on the Hsp90 chaperone. Hsp90 can associate itself
with a myriad of target proteins such as its co-chaperones and
functional regulators, and modulate the activation and stability
of the complex. Thus, functional inhibitors of the Hsp90 that
act on its ATPase-coupled conformation (Siligardi et al., 2002;
Lotz et al., 2003) disassemble the molecular complex of Hsp90
with co-chaperones and target proteins, thereby abrogating
drug resistance and increasing the efficacy of traditional
antifungal drugs (Veri and Cowen, 2014). Although Hsp90 is
conserved among eukaryotes, it presents some conformational
differences in fungi, especially in regions such as the ATP
binding and the MDs that could be selectively targeted by
the chemical inhibitors (Wider et al., 2009; Shahinas et al.,
2015). Alternatively, it is possible to interfere with the Hsp90
targets or functional regulators, thus expanding the possibility
to find clearer discrepancies between the pathogen and the
host (Veri and Cowen, 2014). Therefore, targeting Hsp90 or
other related proteins may be a viable alternative to treat
fungal infections caused by T. rubrum and probably by other
dermatophytes as well. We have also shown that the Hsp90
chaperone has a role in conferring the fungus with the ability
to colonize human nails in vitro. The involvement of this
chaperone in the pathogenicity of other pathogens such as
C. albicans and C. glabrata has been demonstrated (Noble
et al., 2010; Leach et al., 2012b; Singh-Babak et al., 2012).
Thus, blocking the action of Hsp90 in dermatophytes becomes
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FIGURE 2 | Effect of Hsp90 on the expression of hsp and related genes in T. rubrum. qRT-PCR analyses of the hsp and related genes of T. rubrum grown in
malt extract (ME) or keratin medium (KM) in the absence or presence of Hsp90 inhibitor. Gene expression levels are represented by the quantities of mRNA in each
condition relative to the control (ME). Data are represented as mean ± SD from three independent experiments with reactions performed in triplicate. Tukey’s ad hoc
test was used for statistical analysis ; ∗P < 0.05.

a potential strategy that combines this therapy with conventional
antifungal drugs, which would enhance the overall outcome of
the treatment.

The broad spectrum of Hsp90 functions were confirmed by
changes in the expression profile of various hsp and related
genes upon chemical inhibition of this chaperone in T. rubrum.
Moreover, these changes in gene expression in the fungus were
nutrient-dependent (ME and KM medium). The heat shock
transcription factor Hsf1 positively regulates the transcription
of the hsp90 gene in C. albicans and Saccharomyces cerevisiae;
both pharmacological inhibition and genetic depletion of Hsp90
correlate with Hsf1 activation in response to thermal stress
(Wu, 1995; Leach et al., 2012b). However, hsf1 transcript levels
decreased when T. rubrum was challenged with the Hsp90
inhibitor in MEA or KM, under non-stressful temperature
conditions (Figure 2). Additionally, there was an evident increase

in hsp90 transcripts in T. rubrum treated with the Hsp90
inhibitor, which was likely to compensate for the absence
of Hsp90 function (Figure 2). This suggests a regulatory
role for Hsp90 over hsf1 transcript levels or a compensatory
mechanism upon Hsp90 inhibition, in which most of the
hsf1 transcripts in the cell are efficiently transduced into
protein, in turn aiding hsp90 transcription. In T. rubrum,
putative DNA-binding sites for Hsf1 in the hsp90 promoter
region enable direct regulation. Another interesting observation
from this study is the decreased amount of the pacC
transcripts during growth in keratin cultures containing 17-
AAG (Figure 2). The transcription factor PacC mediates diverse
metabolic events, including virulence and keratinolytic activity,
in T. rubrum (Ferreira-Nozawa et al., 2006; Silveira et al.,
2010; Martinez-Rossi et al., 2012), suggesting a correlation
between the pacC and hsp90 genes and fungal virulence.
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FIGURE 3 | Transcript levels of T. rubrum hsp genes in response to environmental challenges. (A) qRT-PCR analyses of the transcript levels of hsp genes
of T. rubrum grown in malt extract (control), human nail, or human skin fragments for 96 h. (B) Mycelia were transferred to RPMI medium in the absence (control) or
presence of sub-inhibitory doses of terbinafine (TRB) or acriflavine (ACR) for 3 h for assessment of drug response. mRNA quantity in each condition relative to the
control are represented as mean ± SD from three independent experiments with reactions performed in triplicate. Tukey’s ad hoc test was used for statistical
analysis, ∗P < 0.05.

Additionally, we observed an increased accumulation of
some hsp transcripts on Hsp90 inhibition, while others,
including those belonging to the same family, suffered drastic
decline. For example, regardless of the culture condition,
transcription of the hsp70-like gene showed a significant
reduction, whereas hsp70 transcripts increased significantly and
hssc1 (Hsp70 family protein) transcripts practically accumulated

to the same amount, suggesting different roles for each Hsp
(Figure 2).

In order to evaluate the expression profiles of some hsp genes
in ex vivo models, as well as during treatment with antifungal
drugs, T. rubrum was cultured in MEA or in nail or skin
fragments (Figure 3A) and in RPMI medium containing sub-
inhibitory concentrations of TRB or ACR (Figure 3B). hsp90
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gene expression increased only in response to TRB, an antifungal
used to treat dermatophytosis. Unexpectedly, hsp90 transcript
levels were similar to those observed in other experimental
conditions tested, including the human nail, in which the fungus
was dependent on Hsp90 function when this substrate was its
sole nutrient source. It is possible that the fungus depends on
similar amounts of the Hsp90 protein to cope with varying
culture conditions. The transcription profile of the hsp clpA
gene was unchanged in the analyzed conditions, demonstrating
constitutive expression in response to various antifungal drugs
and growth conditions. However, there was an increase in
hsp20, hsp60, hsp78, and hsp88-like gene transcript levels when
T. rubrumwas challenged with ACR and/or TRB, suggesting their
involvement in cellular stress responses. An increase in hsp60 and
hsp78 transcripts was also observed when the fungus was grown
in nail fragments, suggesting that Hsp60 and Hsp78 proteins act
as Hsp90 co-chaperones in nail infections.

CONCLUSION

Complex formation of Hsp90 and its chaperones depends on
an ATPase-coupled conformational cycle, which links ATP
binding and hydrolysis. This is a highly conserved mechanism
in eukaryotic organisms, including C. albicans and other human
pathogenic fungi, since ATP binding and hydrolysis are essential
for Hsp90 function. Functional inhibition of ATP binding to
Hsp90 disassembles the molecular complex between Hsp90 with
target proteins and co-chaperones, consequently abrogating drug
resistance and increasing the efficacy of traditional antifungal
drugs such as ITRA and MCFG. Blocking the Hsp90 activity
drastically decreased the ability of T. rubrum to grow on human
nail fragments and interfered with the modulation of some hsp
genes and the pacC gene, a regulator involved in T. rubrum
virulence. Thus, blocking Hsp90 function in dermatophytes is
suggested as a potential strategy for combination of this therapy
with traditional antifungal drugs, which would enhance the
antifungal efficacy. This is an attractive hypothesis to be explored
further probably using in vitro and/or ex vivomodels of infection
as well as new inhibitors for Hsp90 and other co-chaperones.
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Fungal infections have dramatically increased in the last decades in parallel with an
increase of populations with impaired immunity, resulting from medical conditions such
as cancer, transplantation, or other chronic diseases. Such opportunistic infections result
from a complex relationship between fungi and host, and can range from self-limiting to
chronic or life-threatening infections. Modern medicine, characterized by a wide use of
biomedical devices, offers new niches for fungi to colonize and form biofilm communities.
The capability of fungi to form biofilms is well documented and associated with increased
drug tolerance and resistance. In addition, biofilm formation facilitates persistence in
the host promoting a persistent inflammatory condition. With a limited availability of
antifungals within our arsenal, new therapeutic approaches able to address both host and
pathogenic factors that promote fungal disease progression, i.e., chronic inflammation
and biofilm formation, could represent an advantage in the clinical setting. In this paper
we discuss the antifungal properties of myriocin, fulvic acid, and acetylcholine in light of
their already known anti-inflammatory activity and as candidate dual action therapeutics
to treat opportunistic fungal infections.

Keywords: biofilm-related infections, antifungal resistance, myriocin, fulvic acid, acetylcholine

Introduction

The population of subjects at risk of developing fungal infections is steadily increasing due to rising
life expectancy and the continuous medical progress in the treatment of serious diseases such as
cancer, transplantation or impairment of immune system (Brown et al., 2012).

Even though advanced medical treatments allow these patients to live longer, the exposure to
surgery and medical devices composed of polymeric materials results in evolved ecological niches
for biofilm-producingmicroorganisms and increases the risk for infectious diseases, including those
caused by opportunistic fungi (Ramage et al., 2006).Candida albicans amongst yeasts andAspergillus
fumigatus amongst molds are still the most common pathogens in the clinical setting (Morace and
Borghi, 2010; Kriengkauykiat et al., 2011; Guinea, 2014), and continue to carry a high mortality
despite the antifungal treatment.

Antifungal resistance is emerging in Candida and Aspergillus species (Arendrup, 2014), and
together with intrinsic or acquired mechanisms, the drug tolerance related to biofilm formation is
emerging as having a crucial role in the failure of treatments (Ramage et al., 2014). Fungal cells within
the biofilms display resistance to azoles and polyenes, at least at therapeutic doses (Taff et al., 2013).
Echinocandins seem to achieve better results against Candida biofilms, but not against A. fumigatus
(Pierce et al., 2013). Thus, the development of new compounds able to overcome the drug-resistance
of biofilms is undoubtedly a current and, even more, a future medical need for the treatment of such
infections.
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Recently, some compounds with known anti-inflammatory
properties have been investigated for their antifungal activity.
This is of particular relevance in the context of fungal infections.
The interplay between fungus and host, i.e., immune system and
inflammatory milieu, is crucial in determining the tolerance or
the disease status (Romani, 2011). Although inflammation is
required to control of fungal infections, its resolution is necessary
to avoid collateral damage to tissues and to restore a homeostatic
environment (Romani, 2011). Drugs displaying dual activity,
antifungal and anti-inflammatory, could thus represent novel
approaches to treat biofilm-related infections. In this work we
discuss the anti-biofilm properties of myriocin, fulvic acid, and
acetylcholine, three compounds recently investigated for their
antifungal activity in the context of fungal biofilms.

Myriocin

Sphingolipids (SPLs) are a class of molecules with structural
and signaling activities conserved from fungi to humans. Many
studies have demonstrated that SPL mediators are involved in
infection-related mechanisms (Mor et al., 2015). Both microbial
and mammalian dysregulation of SPLs play a role in the delicate
relationship between pathogen and host during the infection
process, having an impact on signaling pathways that eventually
lead to commensalism or host damage (Heung et al., 2006).

Fungal SPLs have been implicated in several cellular processes
such as endocytosis, apoptosis, heat stress response, and fungal
pathogenesis (Lattif et al., 2011). In fact, SPLs are part, together
with ergosterol, of plasma membrane domains named lipid rafts
that are crucial for cell signaling and membrane trafficking, and
mediate protein–protein interactions (Farnoud et al., 2015).

Changes in the SPLs content could thus strongly impact the
local membrane structure and alter specific protein localization
such as the GPI-anchored proteins (Singh and Del Poeta, 2011).
These have been extensively studied in C. albicans and are crucial
for adhesion to substrates in the early phases of biofilm formation
(Cabral et al., 2014). Differences in SPLs content have been
observed in planktonic and sessile cells of C. albicans, suggesting
a role for the lipid moiety in biofilm formation and maturation
(Lattif et al., 2011). Lipid rafts have been found to localize
at the hyphal tip, and drugs affecting SPLs biosynthesis, such
as myriocin, lead to defects in hypha formation (Martin and
Konopka, 2004).

Myriocin targets the first step of SPLs de novo biosynthesis,
by inhibiting the enzyme serine palmitoyl transferase (SPT) that
catalyzes the condensation of a fatty acyl CoA with serine, a
common step to both fungal and mammalian SPLs biosynthesis.

Many cell-stress responses cause ceramide, the centralmolecule
of SPL metabolism, to accumulate and trigger the activation of
inflammatory processes (Hannun and Obeid, 2008). High levels
of ceramide are characteristic of several inflammatory diseases.
Animal models showed that myriocin treatment is able to reduce
inflammation by down-regulating ceramide and its related pro-
inflammatory cascade (Jiang et al., 2011; Lee et al., 2012; Caretti
et al., 2014).

Besides this action and similarly to other SPLs metabolism
inhibitors (Groll et al., 1998; Mormeneo et al., 2008), myriocin

has a direct antifungal activity (Martin and Konopka, 2004; Lattif
et al., 2011; de Melo et al., 2013; Sharma et al., 2014). Recently,
Lattif et al. (2011) assessed a potential antibiofilm activity for
the drug. The authors grew C. albicans biofilms in the presence
and absence of various myriocin concentrations and observed a
progressive reduction in biofilm biomass and metabolic activity.
In addition, lipid raft formation was strongly reduced as well as
the C. albicans filamentation (Lattif et al., 2011).

Myriocin has been found to be also active against A. fumigatus
(Cirasola et al., 2014). Administration of myriocin to conidia
resulted in a dose-dependent inhibition of germination, whereas
the treatment of 24 h pre-formed biofilms strongly reduced
the biofilm biomass, as determined by crystal violet assay,
and the metabolic activity. In particular, myriocin led to the
presence of aberrant hyphal structures in A. fumigatus, with
increased branching and reduction in apical hyphal growth.
Hyphal polarization and branching in A. fumigatus, as well as
filamentation in C. albicans, have been shown to be crucial for
virulence and biofilm formation, resulting in more stable biofilms
(Brand, 2012; Riquelme, 2013). The inhibition of SPL metabolism
disrupts the actin organization at the tip, impacting on normal
hyphal growth and differentiation (Cheng et al., 2001). Moreover,
a deprived quantity of SPLs results in a decrease of SPLs in
lipid rafts with a subsequent reduction of plasma membrane-
anchored proteins that participate in themaintenance of polarized
growth (Momany, 2002). Although the compound is also active
against planktonic fungal cells, all the major SPLs classes seem to
be over-represented in the biofilm-organized cells (Lattif et al.,
2011), suggesting a key role for SPLs in modulating biofilm
formation.

To improve the delivery of myriocin, a highly lipophilic
compound, Strettoi et al. (2010) explored the use of solid
lipid nanocarriers in a mice model of retinitis pigmentosa.
Similarly, other authors observed a decrease in the effective
drug concentration compared with pure compound when using
nanocarrier delivery in a cystic fibrosis mouse model (Caretti
et al., 2014). By treating mice with intratrachea myriocin-loaded
nanocarriers, Caretti et al. (2014) were able to achieve a reduction
of lung infection and inflammation after Pseudomonas aeruginosa
infection.

Due to the poor penetration of biofilm matrix by drugs,
the same nanocarriers were investigated on fungal biofilms.
Nanocarriers improved myriocin delivery into A. fumigatus
biofilms, allowing its distributionwithin few hours even in bottom
layers (Cirasola et al., 2014).

Due to its dual action, anti-inflammatory and antifungal,
myriocin might represent a useful treatment for patients suffering
from chronic diseases that increase the risk of fungal infections.
However, deeper investigations into its administration need to
be performed. Recently de Melo et al. (2013) observed that
prophylaxis treatment with myriocin, in an invertebrate model
of systemic candidiasis, reduces the insect survival (de Melo
et al., 2013). The optimal scenario for the myriocin use could be
late phases of fungal infection as well as pathological situations
characterized by ceramide mediated hyper-inflammation. On the
other hand, the development of myriocin derivatives as well
as other compounds targeting downstream steps in the fungal
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SPL synthesis could increase the specificity of these compounds
against fungal enzymes avoiding host side effects.

Fulvic Acid

Humic substances are commonly found in decaying organic
matter including plants, animal residues, sewage and soil (Snyman
et al., 2002). Although fulvic acids account for ∼90% of all
humic substances and their biological significance recognized for
many years (van Rensburg et al., 2000), there is still minimal
scientific understanding on which to support the claims of its
biological properties. Oxifulvic acid, a derivate of fulvic acid,
has been shown to elicit antibacterial and antifungal properties
(van Rensburg et al., 2000). However, these formulations contain
numerous toxic elements thatmake their use clinically impossible.
Recently, there has been the development of a pure form of fulvic
acid, carbohydrate derived fulvic acid (CHD-FA), that has been
shown to be safe to use clinically and absent from environmental
contaminants known to be harmful to the host (Gandy et al.,
2011).

An initial randomized double blind controlled trial indicated
that fulvic acid was well-tolerated in patients with eczema,
where side effects were minimal and severity and erythema were
significantly reduced compared with the placebo control (Gandy
et al., 2011). A subsequent phase 1 clinical study carried out to
determine the safety profile of CHD-FA, showed that this agent
was able to elicit anti-inflammatory properties in addition to being
non-toxic when used as an oral formulation (Gandy et al., 2012).
This anti-inflammatory activity was also shown in a rat wound
model, where the use of a topical cream enhanced wound healing
andwas non-toxic during both acute and chronic treatments (Sabi
et al., 2012). However, so far the mechanism by which CHD-FA
elicits the observed immunomodulatory effects is unknown.

Although the anti-inflammatory properties of CHD-FA have
been studied, there are very few reports of the antimicrobial
properties of this agent. Recent studies have shown CHD-FA to be
fungicidal againstC. albicans planktonic and sessile cells at similar
concentrations, indicating good biofilm activity unlike azole
antifungals (Sherry et al., 2012). Time-kill analysis of CHD-FAwas
performed in comparison to the other classes of antifungals, and
whilst caspofungin achieved the greatest kill, CHD-FA elicited its
maximum activity quicker than any of the other agents, which
is of particular benefit in treating systemic infections such as
candidemia, where delayed antifungal therapy coincides with
mortality rates (Morrell et al., 2005). The rapid killing action
was further analyzed by visualizing the uptake of propidium
iodide by the cells, only feasible when the cell membrane has
been compromised. Membrane damage was recorded as early as
10 min following CHD-FA exposure, which also correlates with
the release of intracellular ATP from the cell (Sherry et al., 2012).
To further test the hypothesis of a membrane active compound,
the activity against the C. albicans cell membrane was investigated
using a chitin synthase inhibitor. Chitin is a simple polysaccharide
found in the cell walls of fungi that provides cell structure and
rigidity (Lenardon et al., 2010). It was argued that if the cell
membrane was the target of CHD-FA, then by weakening the cell
by inhibiting its chitin production would increase the exposure

of the cell membrane to the agent and would increase CHD-FA
sensitivity (Sherry et al., 2012). Here it was demonstrated that C.
albicans cells were hyper-susceptible to CHD-FA in the presence
of a chitin synthase inhibitor, a finding that was also observed in
voriconazole treated biofilms (Kaneko et al., 2010). Collectively,
these data suggest that CHD-FA acts through disruption to the
cell membrane. It is therefore feasible to suggest that this agent
may have broad-spectrum antimicrobial activity against a variety
of fungi and bacteria. Indeed, this was the case when CHD-FA
was shown to possess antibacterial activity toward a range of oral
bacterial biofilms, including an in vitro four-species periodontal
biofilm model (Sherry et al., 2013).

Additionally, fulvic acid was shown to be minimally affected
by characterized biofilm resistance mechanisms, including the
extracellular matrix (ECM) and efflux pumps. For example, it
is known that glucans within the cellular matrix hinder the
penetration of azoles through biofilms,with the depletion ofFKS1,
encoding a β-1,3 glucan synthase, increasing the susceptibility
of fluconazole within these communities (Nett et al., 2010a,b).
Overexpression of FKS1, as well as a deletion mutant, was used
to determine the impact of CHD-FA activity. Here it was shown
that this agent’s sensitivity was not compromised by the elevated
expression of FKS1, which is in contrast to azoles, polyenes and
echinocandins, where thematrix sequesters these agents and their
activity is significantly reduced against C. albicans biofilms (Nett
et al., 2010a).

Efflux pumps have been widely shown to play a role in azole
resistance within Candida biofilms, particularly during early
biofilm development both in vitro and in vivo (Ramage et al.,
2002;Mukherjee et al., 2003; Nett et al., 2009). Although CHD-FA
was shown to induce efflux pump activity in C. albicans biofilms,
there was no change in the minimum inhibitory concentration
(MIC) when an efflux pump inhibitor was used, demonstrating
that CHD-FA activity is not compromised by these pumps unlike
other antifungals (Sherry et al., 2012).

Overall, whilst our knowledge base for CHD-FA is relatively
limited, it does appear to have appropriate biological properties
of a broad-spectrum antimicrobial agent and not compromised
by know biofilm resistance mechanisms, which has yet undefined
immunomodulatory capacity. Further in vitro and in vivo studies
are required to determine its safety profile.

Acetylcholine

Bi-directional neurochemical interactions occur between the host
and colonizing microorganisms (Lyte, 2013, 2014a,b; Sandrini
et al., 2015). Many microorganisms share neuro-endocrine
mediator synthesis pathways and recognition receptors with
their human hosts (Lyte, 2013). Therefore, it is hypothesized
that there is constant communication between a vertebrate host
and its microbiota, and a bi-directional influence on behavior
(Freestone, 2013). However, many of the inter-kingdom signaling
molecules and receptors, particularly from the fungal perspective,
remain to be characterized in detail. Furthermore, the biological
consequences of neuro-endocrine signaling in fungi, with respect
to growth and pathogenicity, are only just beginning to be
determined.
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Acetylcholine (ACh) is widely distributed in both prokaryotic
and eukaryotic cells. In mammalian systems, ACh has two
major roles: (1) neuronal ACh acts as a neurotransmitter to
mediate rapid communication between neurons and effector cells
and (2) non-neuronal ACh acts as a local signaling molecule
involved in the regulation of cellular phenotype, modification
of ciliary activity, and modification of cell-cell contact (Wessler
and Kirkpatrick, 2008). In recent years ACh has received
greater attention due to the discovery of the “cholinergic anti-
inflammatory pathway” that has been demonstrated to regulate
immune responses (Borovikova et al., 2000). In this pathway,
ACh released from efferent vagus nerve terminals interacts
with the alpha 7 nicotinic receptor (α7nAChR) on proximal
immune cells resulting in down regulated localized immune
responses. In addition, the efferent vagus nerve interacts with
the splenic nerve to activate a unique ACh-producing memory
phenotype T-cell population, which can propagate ACh mediated
immune-regulation throughout the body (Rosas-Ballina et al.,
2011). Furthermore, as ACh is also produced by cells out
with neural networks, non-neuronal ACh can also play a vital
role in localized immune-regulation through its cytotransmitter
capabilities (de Jonge et al., 2005; Macpherson et al., 2014). In
addition, evidence also suggests that ACh signaling through other
cholinergic receptor subtypes, such as the muscarinic receptors,
can also modulate inflammatory responses in mammalian
systems (Verbout and Jacoby, 2012).

Interestingly, in a recent study, ACh was found to play
multiple roles in the pathogenesis of fungal infections in a
primitive Galleria mellonella infection model. Specifically, ACh
was found to: (i) inhibit C. albicans yeast–to-hyphae transition
and biofilm formation; (ii) promote a rapid and effective cellular
immune response to C. albicans infection; and (iii) regulate
antifungal defenses to limit sepsis induced damage of host tissues
(Rajendran et al., 2015). The fact that ACh can directly act on C.
albicans to inhibit yeast–to-hyphae transition suggests that this
organism possesses a functional ACh receptor. However, the ACh
receptor(s) and the downstream signaling pathway(s) that are
involved in inhibiting C. albicans yeast–to-hyphae transition have
yet to be characterized in detail.

Sequencing of the C. albicans genome has suggested this
organism possesses putative cholinergic receptor genes (Inglis
et al., 2012). Furthermore, pharmacological evidence suggests that
C. albicans may possess a receptor that is homologous to human
muscarinic (M) receptors. Midkiff et al. (2011) demonstrated
that the dopamine receptor antagonist clozapine could inhibit C.
albicans budding-to-hyphal transition by inhibiting a component
of the Efg1 pathway, upstream of the Gpa2 G-alpha subunit,
which the authors hypothesized to be theGpr1G-protein-coupled
receptor (GPCR). However, clozapine has a broad range complex
pharmacological profile. Indeed, it is now known that clozapine
is a weak dopamine D2 receptor inverse agonist/antagonist and
has mixed agonist-antagonist properties on human muscarinic
receptors, with strong evidence that it can act as a potent agonist
of the M1 and M4 receptors in mammalian systems (Zorn et al.,
1994; Olianas et al., 1997, 1999; Miller, 2009; Wiebelhaus et al.,
2012). Therefore, it is interesting to speculate that the observed
effects on C. albicans budded-to-hyphal transition in the study

of Midkiff et al. (2011) may be in fact due to clozapine acting
upon a putative C. albicans cholinergic receptor homologous to
human muscarinic receptors. However, further research aimed
at characterizing the cholinergic receptor mediated signaling
pathways of C. albicans is required to confirm this hypothesis.

There is also substantial evidence to suggest that fungi can
synthesize and release ACh (Horiuchi et al., 2003; Kawashima
and Fujii, 2008). Indeed, sequencing of the C. albicans genome
revealed this organism to possess putative genes for the enzymes
responsible for ACh synthesis; choline acetyltransferase (ChAT)
and carnitine acetyltransferase (CrAT; Inglis et al., 2012).
However, the ACh synthesis machinery of C. albicans remains to
be characterized. Furthermore, the biological functions of fungal
derived ACh remain to be elucidated.

The fact that both C. albicans and its human host both
synthesizeACh andpossess cholinergic receptors lead to speculate
that there is cholinergic mediated bi-directional communication
between the two species in vivo. The role of this cholinergic bi-
directional communication in the maintenance of health and/or
the pathogenesis of C. albicans infections are at present unknown.
The evidence to date suggests the host may utilize ACh to
protect against candidiasis (Rajendran et al., 2015). Although, the
fact that ACh can modulate host immunity (Tracey, 2010) and
also mucosal integrity through the regulation of epithelial cell
phenotype and cell–cell contact (Wessler and Kirkpatrick, 2008),
may also suggest that C. albicans derived ACh may be a potential
virulence factor. Either way, further research into the role of bi-
directional cholinergic signaling mechanisms between C. albicans
and the colonized host is required.

The preliminary data to date imply that cholinergic
mechanisms may be rational novel therapeutic targets to prevent
or treat candidiasis (Rajendran et al., 2015). Indeed, there are
a number of pharmacological agonists and antagonists already
marketed for the treatment of neurodegenerative disorders,
cancers and chronic inflammatory diseases that target cholinergic
receptors (Pohanka, 2012; Zoheir et al., 2012; Sales, 2013; Matera
and Tata, 2014; Russo et al., 2014). Many of these molecules have
already undergone extensive safety and efficacy testing in human
trials. Therefore, one or more of these molecules may be worthy
of investigation for the prevention or treatment of candidiasis
and may offer novel therapeutic approaches beyond conventional
antifungals.

Concluding Remarks

The opportunistic nature of fungal infections highlights the
crucial role of the host immune system in regulating host–fungus
interactions.

Humans suffer from a range of fungal biofilm diseases that
cause high levels of morbidity and mortality. Conventional
antifungal drugs have been demonstrated to ineffective against
fungal biofilms, and alternative strategies are needed to overcome
their intrinsic resistance.

Therefore molecules targeting both fungal biofilm formation
and the host inflammatory response could represent a new
therapeutic approach to treat fungal biofilm-related infections
with broader implications for healthcare applications.
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Candida albicans is the most pathogenic fungal species, commonly colonizing on
human mucosal surfaces. As a polymorphic species, C. albicans is capable of switching
between yeast and hyphal forms, causing an array of mucosal and disseminated
infections with high mortality. While the yeast form is most commonly associated
with systemic disease, the hyphae are more adept at adhering to and penetrating
host tissue and are therefore frequently observed in mucosal fungal infections, most
commonly oral candidiasis. The formation of a saliva-derived protein pellicle on the
mucosa surface can provide protection against C. albicans on oral epithelial cells, and
narrow information is available on the mucosal pellicle composition. Histatins are one of
the most abundant salivary proteins and presents antifungal and antibacterial activities
against many species of the oral microbiota, however, its presence has never been
studied in oral mucosa pellicle. The objective of this study was to evaluate the potential
of histatin 5 to protect the Human Oral Epithelium against C. albicans adhesion. Human
Oral Epithelial Tissues (HOET) were incubated with PBS containing histatin 5 for 2 h,
followed by incubation with C. albicans for 1 h at 37◦C. The tissues were then washed
several times in PBS, transferred to fresh RPMI and incubated for 16 h at 37◦C at 5%
CO2. HOET were then prepared for histopathological analysis using light microscopy. In
addition, the TUNEL assay was employed to evaluate the apoptosis of epithelial cells
using fluorescent microscopy. HOET pre-incubated with histatin 5 showed a lower rate
of C. albicans growth and cell apoptosis when compared to the control groups (HOET
alone and HOET incubated with C. albicans). The data suggest that the coating with
histatin 5 is able to reduce C. albicans colonization on epithelial cell surfaces and also
protect the basal cell layers from undergoing apoptosis.

Keywords: histatins, salivary proteins, mucosal pellicle, oral mucosa, Candida albicans

Introduction

Removable dentures provide edentulous patients with the rehabilitation of masticatory and esthetic
functions (Dhir et al., 2007); however, one consequence of the continual use of dentures is
the adhesion of microorganisms and biofilm formation (Lazarin et al., 2014). Candida sp. are
opportunistic pathogens that are frequently isolated from the oral cavity, and its biofilms are often
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associated with candidiasis (Gomes et al., 2011; Hahnel et al.,
2012; Lazarin et al., 2014). These biofilms are extremely resistant
to antimicrobial agents compared to planktonic microorganisms
due to the presence of extracellular polymeric substance (EPS)
generated by microorganisms themselves, which acts as an
impervious and protective covering of biofilms. They are not
only resistant to the action of most of the available antifungal
substances, but they also resist the phagocytic action of our
immune cells (Chandra et al., 2001b). Salivary pellicle is a
thin, biological film of selective salivary proteins, lipids, and
carbohydrates which coats oral surfaces and acts as an interface
between the oral surface and the first layer of microorganisms.
When the salivary proteins adsorb on the tooth surface, it is
called acquired enamel pellicle (AEP). A mature AEP has more
than 130 different proteins, ranging from protein to peptide size
(Siqueira et al., 2007). The formation of a saliva-derived protein
pellicle on the mucosa surface can provide protection against the
colonization and invasion of Candida albicans on oral epithelial
cells, which leads to candidiasis. In the literature, narrow
information is available on the mucosal pellicle composition, and
few studies have reported the presence of salivary proteins such
as mucins, cystatins, IgA, amylase, and statherin (Bradway et al.,
1992; Gibbins et al., 2013) on the oral epithelial cell.

Histatins are one of the most abundant salivary proteins and
have been shown to be multifunctional in the oral cavity due to
their strong antifungal and antibacterial activities against many
species of the oral microbiota (Pollock et al., 1984). Histatin
5, for example, adsorbed as a protein integument on PMMA
and hydroxyapatite, effectively inhibits C. albicans colonization
(Vukosavljevic et al., 2012). Potentially, histatin 5 could be one of
the salivary components in mucosal pellicle that protects the oral
cavity against infections caused by pathogenic microorganisms.
The purpose of this study was to assess the potential effect of
histatin 5 human oral mucosa coating to protect epithelial cells
against C. albicans colonization.

Materials and Methods

Microorganisms and Growing Conditions
Stock culture of C. albicans (ATCC 90028) maintained at –80◦C
was used in each experiment. After recovery, C. albicans was
maintained on Sabouraud Dextrose Agar (SDA; BDTM Difco,
Franklin Lakes, NJ, USA), stored at 4◦C. A loopful of the stock
culture of C. albicans was streaked onto SDA and incubated
aerobically at 37◦C for 48 h to prepare the yeast inoculum. One
loopful of this young culture was then transferred to 20 mL of
YNB broth (BioShop R© , Canada Inc., Burlington, ON, Canada)
supplemented with 50 mM glucose and incubated at 37◦C for
21 h. Cells of the resultant culture were harvested, washed twice
with PBS at pH 7.4, and centrifuged at 4,000 × g for 10 min.
The final concentration was adjusted to 107 cells mL−1 (Chandra
et al., 2001a; Pereira-Cenci et al., 2008).

Candida albicans Killing Assay
A total of 50 µL from the suspension was added to 50 µL of
a 10-fold serial dilution of histatin 5 in a 96-well polystyrene

microtiter plate (Corning Inc., Corning, NY, USA) with an initial
concentration of 800 µg/mL. For the control group, 50 µL of
C. albicans suspension was added to 50 µL of PBS. After 1.5 h
of incubation at 37◦C, 50 µL of suspension from the selected
wells were diluted in 9 mL of PBS. After that, 25 µL aliquot of
the diluted suspension was plated on SDA and incubated at 30◦C
for 48 h (Helmerhorst et al., 2006). Colony counting was used to
assess cell viability (CFUmL−1). This experiment was carried out
in triplicate.

The Effect of Histatin 5 When Adsorpted on a
Microtiter Plate Prior C. albicans Biofilm
Formation
Prior to the C. albicans assay, histatin 5 (protein purity > 95%,
GenScript, Piscataway, NJ, USA) was re-suspended in distilled
water with a concentration of 15 µg/mL. A total volume of
200 µL of histatin 5 solution was added to each well of a 96-
well polystyrene microtiter plate, and the wells were incubated for
2 h at 37◦C under gentle agitation. The wells were then washed
with distilled water to remove the non-adsorbed histatin 5, and
subsequently used for the formation of C. albicans biofilm at
different time periods: 90min, 24 h, 48 h, and 72 h. Non-adherent
C. albicans cells were removed by washing them with PBS. At
each time period, the adherent cells were harvested from the
microtiter plate and plated onto SDA as described above. This
experiment was carried out in triplicate.

Effect of Histatin 5 When Incubated Over a
48 h C. albicans Biofilm Formation
A 48 h C. albicans biofilm was developed as described above. The
only difference was the absence of histatin 5 as a solid surface.
After the C. albicans biofilms formation, histatin 5 was added
with different concentrations, ranging from 6.3 to 12,800 µg/mL.
After 24 h of contact with histatin 5, the C. albicans were washed
three times with PBS and the cells were harvested, which was
followed by 10-fold serial dilutions from 10−1 to 10−4 and plated
onto SDA. The experiment was carried out in triplicate.

For the three tests described above, the number of CFU mL−1

was calculated and the analyses of variance (ANOVA) follow by
the TukeyHonestly Significant Difference (HSD) post hoc test was
used to determine differences between means (a = 0.05).

Cell Culture
The cytotoxicity effect of histatin 5 was evaluated on gingival
fibroblasts grown in Dulbeccco’s Modified EagleMedium (gibco R©

by life technologies), supplemented with antibiotic–antimycotic
solution (Sigma–Aldrich) and 10% v/v fetal bovine serum (gibco R©

by life technologies). The culture was maintained at 37◦C in
an atmosphere of 5% CO2 in 95% air. (Thermo Scientific,
USA). Cells were cultured until reaching confluence (90%) and
removed with trypsin (0.05%)/EDTA (0.02%), (gibco R© by life
technologies) in 1X PBS. The trypsin was inactivated by the
addition of culture medium, and the cells were then subjected
to centrifugation at 2000 rpm for 5 min, resuspended and re-
plated. The medium was changed two to three times per week.
Total viable cell counts were made in a Neubauer chamber (New
Optics), and a suspension containing 2.0 × 104 cells/ml was
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placed in 24 well plates (TPP) and incubated in a humidified
atmosphere containing 5% CO2 at 37◦C for 48 h. After the
incubation period, the culture medium was disposed, and
attached cells remained at the bottom of the plates. A serial
dilution of histatin 5 was performed using fresh culture medium,
and 1 mL was added to each well. The plates were maintained
at 37◦C in an atmosphere of 5% CO2 in 95% air for 24 h. Five
wells were used for each experimental group. Five wells received
only 1ml of culture mediumDulbeccco’s Modified EagleMedium
(gibco R© by life technologies), supplemented with antibiotic–
antimycotic solution (Sigma–Aldrich) and 10% v/v fetal bovine
serum (gibco R© by life technologies), which served as the negative
control.

Cytotoxicity Assay (MTT)
Mitochondrial dehydrogenase activity was measured using
the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide] assay from Sigma–Aldrich. After 24 h of cell growth in
either control or test culture media, 100 µl of MTT stock solution
(MTT, Sigma Chemical Co., St. Louis, MO, USA) was added to
each well. The plates were incubated for 4 h at 37◦C in 5% CO2.
After the incubation period, the cultures were removed from
the incubator, and the resulting formazan crystals were dissolved
by adding 100 µL of MTT solubilization solution (MTT, Sigma
Chemical Co., St. Louis, MO, USA). Plates were then shaken
until the crystals were completely dissolved and the absorbance
was spectrophotometrically measured at a wavelength of 570 nm
(Labsystems Multiscan Ascent, Thermo Labsystems, Vantaa,
Finland). All experiments were performed three times.

The results were submitted to ANOVA and Bonferroni tests.
In addition, the results were also evaluated in accordance with
ISO standard 10993-5:

0: not cytotoxic (inhibition below 25%)
1: slightly cytotoxic (inhibition between 25 and 50%)
2: moderately cytotoxic (inhibition between 50 and 75%)
3: intensely cytotoxic (inhibition higher than 75%).

Human Oral Epithelium Infection
Reconstructed human oral epithelium (HOE) tissues (SkinEthic
Laboratories, Lyon, France) were incubated overnight in 12-well
polystyrene microtiter plates containing 1.0 mL of Maintenance
Medium at 37◦C in a humidified atmosphere with 5% CO2.
After the incubation period, the tissues were washed three times
with PBS. Before the infection procedure, the HOE tissues were
divided into four experimental groups (n = 3), with G1 and G2
incubated with PBS, and G3 and G4 incubated with histatin 5
(50 µg mL−1). The incubation time was performed for 2 h at
37◦C under 5% CO2 (Vukosavljevic et al., 2012). Following, the
tissues were washed three times with PBS and then transferred to
a new microtiter plate containing 5 mL of RPMI-1640 medium
(gibco R© by life technologies) in eachwell. For G2 andG4, aliquots
of 50 µL of 107 mL−1 C. albicans cells were transferred into each
well and incubated for 60 min at 37◦C in an orbital shaker at
75 rev min−1 for the adhesion phase. Tissues were then washed
three times with PBS, transferred to a new microtiter plate filled
with fresh RPMI-1640 medium and incubated for 24 h at 37◦C

with 5% CO2. The same protocol was followed for G1 and G3 but
without adding the microorganism.

Histology and Light Microscopy
The HOE tissues were excised around the circumference with
a blade, fixed immediately in 4% buffered formalin, and
then embedded in paraffin wax. For each HOE tissue, 30 of
3 µm paraffin wax sections were prepared. After deparaffinized
in xylene, the sections were stained using hematoxylin and
eosin (H&E) technique, mounted in DPX mountant (VWR,
Lutterworth, UK), and examined by light microscopy with a
Leica DFC295 camera connected to a Leica DM1000 microscope
(Leica Microsystems, Wetzlar, Germany). To determine which
cells were in apoptosis, terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) was assayed fluorescently using
in situ cell death detection kit (Roche, West Sussex, UK) and
HOE sections were imaged under the fluorescent microscope
Zeiss Axio Imager M.1 Axio coupled with a Qimaging Retiga EXi
CCD camera (Zeiss, Jena, Germany). Histological changes during
infection were examined by microscopy at ×40 magnification.

Results

For the purposes of analysis, CFUmL−1 values were transformed
into logarithm values (log10). The results of number of
colony-forming units per milliliter (CFU mL−1) were evaluated
statistically by ANOVA. Tukey HSD post hoc test was used
to determine differences between means (a = 0.05). Figure 1
presents the mean (M) and standard deviation (SD) of the
logarithm cell count in CFU/mL for the killing assay test. There
were no statistically significant differences between the control
and the group treated with 12.5 µg/mL of histatin 5. Moreover,
the control and the group treated with 12.5 µg/mL of histatin
5 produced higher mean values of logarithm cell count. This
was statistically different (p = 0.00) when compared to the other
groups, which are statistically similar to each other (Figure 1).

The effect of histatin 5 when adsorbed to microtiter plate
prior C. albicans biofilm formation was summarized in Figure 2.
The logarithm cell counts in CFU/mL were compared with
the two groups (control and group coated with histatin 5) at
each time point. The results revealed that the group coated
with histatin 5 in a concentration of 15 µg/mL previous
to microorganisms colonization exhibited lower mean values
of C. albicans for all time points (90 min, 24 h, 48 h,
and 72 h) when compared with control group (p = 0.00).
On the other hand, according to the results presented in
Figure 3, when histatin 5 was incubated for 24 h over a
prior formed 48 h C. albicans biofilm, there was no difference
in cell counts in all tested concentrations of histatin 5
(6.3–12,800 µg/mL) when compared with each other and with
the control (p = 0.454).

The ANOVA followed by Bonferroni test shows statistically
significant differences between groups, where we can observe
that the concentrations of 12800, 6400, and 3200 ug/mL
are statistically similar and have the highest cytotoxicity
by reducing the viability of the fibroblasts to up to 94%.
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FIGURE 1 | Killing of Candida albicans by histatin 5. Cells were incubated for 1.5 h at 37◦C with a dilution series of histatin 5 or without histatin 5 (control
group). The dilutions were then plated in Sabouraud Dextrose Agar (SDA) media and the logarithm values of CFU/mL−1 were calculated.

FIGURE 2 | Logarithm values of CFU/mL−1 when histatin 5, in a concentration of 15 µg/mL, is adsorpted on a microtiter plate prior to C. albicans
biofilm formation in different stages of growth: 90 min, 24, 48 and 72 h, and their respective controls.

FIGURE 3 | Logarithm values of CFU/mL−1 when histatin 5 was in
different concentrations, ranged from 12,800 to 6.3 µg/mL, were
incubated for 24 h over a 48 h C. albicans biofilm.

The results show that concentrations ranging from 800 to
6.25 µg/mL have statistically similar values to the control
group, may be considered non-cytotoxicity to human cells
(Table 1).

After identifying the minimal concentration range needed
to coat a solid surface with histatin 5 in order to obtain a

significant inhibition effect on C. albicans biofilm, our approach
was to evaluate the effect of histatin 5 adsorbed to HOE cells
using a similar concentration. Figure 4 shows that untreated
HOE (G1) and the group treated with 50 µg/mL of histatin
5 (G3), both without C. albicans, exhibited a normal HOE
morphology (Figures 4A,C). Our results also demonstrated that
the epithelium cells treated according to G1 and G3 are not in
apoptotic stage (Figures 4E,G).

In order to assess the potential implications of histatin
5 as a protein that is able to protect the oral epithelium
against microorganism adhesion, the tissues from G2 and G4
were infected with C. albicans. As expected, examination of
H&E stained tissue sections demonstrated efficient adherence
of C. albicans on the outer layer of the reconstructed HOE
(Figures 4B,D). For G2, which was not treated with histatin 5,
a higher number of C. albicans in hyphae form (Figure 4B) was
observed. Interestingly, for the group treated with histatin 5 (G4),
we can observe that C. albicans cells are in the non-invasive
form. These images were consistent with those observed with
TUNEL assay, where the group treated with histatin 5 showed
that the presence of the apoptotic cells were restricted to the
outer layer (Figure 4H). In contrast, the group without histatin
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TABLE 1 | Mitochondrial dehydrogenase activity of gingival fibroblast
exposed to histatin 5 solutions.

Group Mean SD % of inhibition

Control 0.230AB 0.043 0

12800 0.015C 0.002 94

6400 0.015C 0.001 94

3200 0.025C 0.003 89

1600 0.173B 0.008 25

800 0.199AB 0.013 14

400 0.220AB 0.021 4

200 0.211AB 0.025 8

100 0.231A 0.017 0

50 0.204AB 0.026 9

25 0.142AB 0.020 7

12.5 0.221AB 0.075 4

6.25 0.208AB 0.076 9

Cytotoxicity mean values designated with vertically identical capital letters were not
statistically different (P > 0.05).

5 clearly displays the presence of apoptotic cells in different
layers.

Discussion

The processes that lead to the development of oral infections
have been extensively studied. In the cases when there is balance
between the virulence of a microorganism and the host ability
to prevent microbial colonization, both host and microorganism
can leave in a commensal state. On the other hand, when there is
an imbalance, the oral cavity becomes an opportune environment
for the development of infection diseases such as candidiasis,
C. albicans being one of the most successful oral pathogens (Gow
et al., 2012).

The fungicidal activity of histatin 5 has been shown to
compromise residues 11–24 (Raj et al., 1990) where histatin 5
enters the C. albicans cell by involving specific receptors and/or
driven by the transmembrane potential causing mitochondrial
swelling, inhibiting the Krebs cycle, reducing the expression of
an ATPase complex, and leading to a decrease in ATP production
(Komatsu et al., 2011). The final result is the release of ATP and
other essential energy storage molecules from the cell and cellular
demise.

The data from killing assay (Figure 1) indicates that
C. albicans are highly susceptible to histatin 5 solutions
ranged from 800 to 25 µg/mL, leading to an approximated 2-
log reduction in CFU mL−1. Our results are in accordance
with Konopka et al. (2010), which treated different strains of
C. albicans with histatin 5, and concluded that in a concentration
of 4.8 µM, histatin 5 was able to reduce the yeast growth by 50%.
In addition, it was observed that there is no statistical significant
difference between the solutions ranged from 800 to 25 µg/mL.
This observation might be due to the fact that histatin precipitates
at > 64 µg/mL (Pettit et al., 2005). According to Jori et al. (2006),
the efficiency of a treatment can be expressed when it induces a 4-
log decrease in the survival of microorganisms; however, herein

is an in vitro study, and in the oral cavity histatin 5 is secreted
continuously.

The effect of histatin 5 when adsorpted to microtiter plate
prior C. albicans biofilm formation (90 min, 24, 48, and 72 h)
are summarized in Figure 2. The reduction of C. albicans
was significantly higher for the group treated with histatin 5,
irrespective of the evaluated time point (p = 0.00). Interestingly,
48 h histatin 5 coating resulted in a reduction of biofilm
development compared to the 24 and 72 h, suggesting that
histatin 5 is effective in reducing C. albicans growth during a later
stage. According to Pusateri et al. (2009), PMMA disks treated
with histatin 5 did not present an effect in reducing biofilm
until 72 h. Similar results showed that the amount of C. albicans
initially attached to PMMA surface was not significantly different
between the control group and a group treated with histatin
5 until after 24 h (Yoshinari et al., 2006). However, herein, in
the initial stage of C. albicans adhesion (90 min), a decrease
in the number of cells was observed, showing a clear effect
of histatin 5. In another study, histatin 5 adsorbed on PMMA
or hydroxyapatite effectively inhibited C. albicans adhesion in
initial stages and continued this inhibitory effect after 24 h
(Vukosavljevic et al., 2012).

When histatin 5 was incubated for 24 h over a prior formed
48 hC. albicans biofilm, evenwith high concentrations of histatin
5, no effect against the C. albicans was observed (Figure 3).
Development of C. albicans biofilms are associated with an
increasing presence of extracellular polysaccharides (EPS), which
is known to physically interact with antibiotics and contributes
to resistance against these drugs Hawser and Douglas (1995).
Moreover, Candida sp. EPS has a hydrophobic characteristic,
which can diminish the penetration of histatin 5 into C. albicans
biofilm (Chandra et al., 2001b).

Merely the presence of C. albicans cannot be related to the
candidiasis establishment. The change of yeast to hyphae is a
critical step for the host invasion by C. albicans and colonization
of host tissue (Berman and Sudbery, 2002). Interestingly, our
study demonstrated that pre exposition of histatin 5 to oral
epithelial cells diminished the adhesion of C. albicans to
the epithelium. In addition, a change to hyphae form was
significantly inhibited when histatin 5 was adsorbed to HOE.
This outcome suggests that histatin 5 interfere in the not totally
characterized mechanism of C. albicans adhesion on the oral
mucosa.

Candida albicans has the ability to invade and damage oral
epithelial cells, which is critical for infection establishment.
Indeed, oral epithelial cells after 18 h of candidal infection
demonstrate significant death prevalence. The invasion for
C. albicans stimulates oral epithelial signaling pathways and
causes early apoptotic cell death, which is followed by secondary
necrosis (Villar and Zhao, 2010). Our results verified that pre
incubation of histatin 5 to oral epithelium drastically decreased
the oral epithelium apoptosis caused by C. albicans, which was
restricted to the outer layer of HOE. This event can most
likely be explained by inhibition of hyphae formation when
histatin 5 is adsorbed to HOE. In addition, only histatin 5
in the tested concentration did not damage the epithelial cell,
which suggests a low cytotoxicity effect of this protein against
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FIGURE 4 | Histopathology analysis of reconstructed human oral
epithelium, exposed or not to histatin 5, both without C. albicans,
exhibited a normal morphology (A,C) and no apoptotic cells (E,G).
For the tissues exposed to C. albicans, hematoxylin and eosin (H&E)
stained sections demonstrated efficient adherence of C. albicans on the
outer layer of the reconstructed human oral epithelium (HOE; B,D). In the
group which was not treated with histatin 5, a higher number of C.
albicans in hyphae form (B) was observed. Interestingly, for the group

treated with histatin 5 (50 µg ml−1), we can observe that C. albicans
cells are in the non-invasive form (D). For the TUNEL assay, HOE treated
with histatin 5 showed presence of apoptotic cells restricted to the outer
layer (H). In contrast, the group without histatin 5 clearly displays the
presence of apoptotic cells in different layers (F). Scale bars = 50 µm.
All pictures were taken with ×40 magnification with exception of the
details presents in figure (B,D) that are ×100 magnification. HOE is
formed on polycarbonate filter (∗ ).
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host cell. Moreover, our cytotoxicity data showed that histatin 5
at the concentration of 50 µg/mL was able to cause an inhibition
of 9% on cell viability of gingival fibroblast, and according to
ISO standard 10993-5, a inhibition below 25% is considered not
cytotoxic.

In the present study, different assays were used to quantify the
activity of histatin 5 against C. albicans planktonic cells, biofilm
and an in vitro formation of a histatin 5 oral mucosal pellicle.
Histatin 5 in a physiological concentration was able to protect
the HOE against C. albicans colonization and, at the same time,
not interfere in the host cell homeostasis. This exciting outcome

prepares a base for clinical research where the protection of the
human oral mucosa against yeast infection could be evaluated by
using a native protein.
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Charles University in Prague, Prague, Czech Republic, 4Membrane Biology Laboratory, School of Life Sciences, Jawaharlal

Nehru University, New Delhi, India

Three structurally related oxathiolone fused chalcone derivatives appeared effective

chemosensitizers, able to restore in part sensitivity to fluconazole of multidrug-resistant

C. albicans strains. Compound 21 effectively chemosensitized cells resistant due to

the overexpression of the MDR1 gene, compound 6 reduced resistance of cells

overexpressing the ABC-type drug transporters CDR1/CDR2 and derivative 18 partially

reversed fluconazole resistance mediated by both types of yeast drug efflux pumps. The

observed effect of sensitization of resistant strains of Candida albicans to fluconazole

activity in the presence of active compounds most likely resulted from inhibition of the

pump-mediated efflux, as was revealed by the results of studies involving the fluorescent

probes, Nile Red, Rhodamine 6G and diS-C3(3).

Keywords: multidrug resistance, chalcones, antifungals, chemosensitization, Candida albicans

Introduction

Opportunistic fungal infections in immunocompromised hosts have become an important
clinical problem, with Candida species remaining one of the leading causes of hospital-acquired
bloodstream infections. The attributable frequency of deaths from candidemia remains close to
40% and Candida albicans comprises nearly half of the isolated fungal pathogens (Pfaller and
Diekema, 2007). The main factors determining high mortality from candidal infections are: a
limited repertoire of clinically used antimycotics and an emerging appearance of drug resistance,
including its multidrug form (Sanglard and Odds, 2002; Pfaller, 2012; Srinivasan et al., 2012).
Among molecular mechanisms underlying multidrug resistance (MDR), the most important is an
overproduction of membrane proteins belonging to the ATP-binding cassette (ABC) transporters
or the major facilitator superfamily (MFS). A number of efflux pumps have been identified in
fungi, including Cdr1p, Cdr2p, Mdr1p, and Flu1p in C. albicans (Prasad et al., 2002; Prasad and
Goffeau, 2012). In view of these facts, the search for new antimycotics active against MDR fungi
and/or chemosensitizers, i.e., compounds able to render MDR strains sensitive to clinically used
antifungals, is an urgent need. Chemosensitization has been postulated as one of the ways of
overcoming fungal resistance to the most popular triazole antifungals, including fluconazole (FLC).
Reported examples of compounds effectively chemosensitizing FLC-resistant human pathogenic
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fungi include Cdr1p/Cdr2p–specific curcumin (Sharma et al.,
2009), ibuprofen (Ricardo et al., 2009), or cyclosporine
(Marchetti et al., 2000), inhibitors of MFS-type drug
transporters, like cerulenin analogs (Diwischek et al.,
2009) or synthetic heterocycles containing a cyclobutene-
dione core (Keniya et al., 2015) and clorgyline, targeting
both types of fungal drug efflux pumps (Holmes et al.,
2012).

Chalcones, compounds constituting a subclass of flavonoids,
exhibit a number of biological effects, including antimicrobial
activity (Dimmock et al., 1999; Nowakowska, 2007). Antifungal
properties of some chalcones were demonstrated and it was
suggested that the observed activity might be related to the
inhibition of biosynthesis of cell wall components, β(1→3)glucan
and chitin (López et al., 2001). It was also shown that some of the
chalcone derivatives inhibited drug extrusion by the yeast drug
transporters of the ABC type (Conseil et al., 2000; Wink et al.,
2012).

We reported previously that a synthetic oxathiolone fused
chalcone derivative AMG-148 exhibited in antifungal activity
(Ła̧cka et al., 2011). In the present communication, results
of our studies on structural analogs of AMG-148, concerning
especially their chemosensitizing effect on MDR yeast cells, are
described.

Materials and Methods

Compounds and Reagents
The oxathiolone fused chalcone derivatives were synthesized as
described (Konieczny et al., 2007a,b,c). Fluconazole was kindly
provided by Pliva Krakow (Cracow, Poland). All other chemicals
were from Sigma-Aldrich, St. Louis, MO.

Strains and Culture Conditions
The reference strain used in this study was Candida albicans
ATCC 10231. Non-reference strains are listed in Table 1. C.
albicans F2, F5, B3, B4, Gu4, and Gu5 clinical isolates (Franz
et al., 1998, 1999) were kindly provided by J. Morschhäuser,
Würzburg, Germany, while DSY2039 and DSY750 by D.
Sanglard, Lausanne, Switzerland. S. cerevisiae AD1-8u− and
US50-18C mutants AD1-3, AD12, AD13, and AD23 were
kindly provided by A. Goffeau, Louvain-la-Neuve, Belgium. The
AD-derived strains ADCDR1, ADCDR2, and ADMDR1 were
constructed by the previously described methods (Gupta et al.,
1998; Prasad et al., 1998; Smriti et al., 2002). Strains were grown
at 30◦C in Sabouraud medium (2% glucose, 1% yeast extract, and
2% bactopeptone) and stored on Sabouraud plates containing
2% agar.

Susceptibility Testing Procedures
MIC values of tested compounds were determined in RPMI-1640
medium by the slightly modified serial dilution microtiter plate
method recommended by CLSI (Clinical Laboratory Standards
Institute, 2008). Turbidity in individual wells was measured with
a microplate reader (Victor3V, Perkin Elmer). The MIC was
defined as the lowest drug concentration at which at least 80%

TABLE 1 | Non-reference yeast strains used in this study.

Strains Description Source/

references

SACCHAROMYCES CEREVISIAE

US50-18C MATα, PDR1-3, ura3, his1 (parent strain) Balzi et al., 1987

AD1-8u− MATα, PDR1-3, ura3, his1, 1yor1::hisG,

1snq2::hisG, 1pdr5::hisG,

1pdr10::hisG, 1pdr11::hisG,

1ycf1::hisG, 1pdr3::hisG, 1pdr15::hisG

Decottignies et al., 1998

ADCDR1 AD1-8u− transformed with CaCDR1 Smriti et al., 2002

ADCDR2 AD1-8u− transformed with CaCDR2 Smriti et al., 2002

ADMDR1 AD1-8u− transformed with CaMDR1 Gupta et al., 1998

AD1-3 MATα, PDR1-3, ura3, his1, 1yor1::hisG,

1snq2::hisG, 1pdr5::hisG

Decottignies et al., 1998

AD12 MATα, PDR1-3, ura3, his1, 1yor1::hisG,

1snq2::hisG

Decottignies et al., 1998

AD13 MATα, PDR1-3, ura3, his1, 1yor1::hisG,

1pdr5::hisG

Decottignies et al., 1998

AD23 MATα, PDR1-3, ura3, his1,

1snq2::hisG, 1pdr5::hisG

Decottignies et al., 1998

CANDIDA ALBICANS CLINICAL ISOLATES

Gu4 Fluconazole sensitive Franz et al., 1998

Gu5 Fluconazole-resistant due to the

overexpression of CDR1 and CDR2

Franz et al., 1998

F2 Fluconazole sensitive Franz et al., 1999

F5 Fluconazole-resistant due to the

overexpression of CaMDR1 and ERG11

Franz et al., 1999

B3 Fluconazole sensitive Franz et al., 1998

B4 Fluconazole-resistant due to the

overexpression of CaMDR1

Franz et al., 1998

DSY2039 Fluconazole sensitive D.S.a

DSY750 Fluconazole-resistant due to the

overexpression of CaMDR1

D.S.

astrains provided by Dominique Sanglard, Lausanne, Switzerland.

decrease in turbidity, in comparison to the drug-free control, was
observed.

The same conditions were applied for quantification of an
antifungal effect of chalcones in combination with Fluconazole
(FLC), using the checkerboard microdilution assay. The final
concentrations of chalcones ranged from 2 to 64µg/mL for all
chalcones but 11, for which the concentration range was 0.0625
to 2µg/mL. FLC was tested in the 0.03125–8µg/mL range. The
data obtained by the checkerboard microdilution assays were
analyzed using the model-fractional inhibitory concentration
(FIC) index method based on the Loewe theory. The FIC index
is defined as the sum of the MIC of each drug when used in
combination divided by the MIC of the drug used alone. Synergy
and antagonism were defined by FIC indexes of ≤0.5 and >4,
respectively. A FIC index value >0.5 but ≤4 was considered
indifferent (Odds, 2003).

ATPase Activity Assay
The ATPase activity of the plasma membrane fractions was
measured in terms of oligomycin-sensitive release of inorganic
phosphate, as described previously (Smriti et al., 2002), either
alone or in the presence of compounds tested.
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Quantification of Energy-dependent Rhodamine
6G Efflux
Preparation of yeast cells was performed as described previously
(Sharma et al., 2009). Rhodamine 6G (R6G) solution was added
to 1ml aliquots of 2% cell suspension in PBS (to get the 10µM
final concentration of R6G) along with the compound tested
and the mixtures were incubated for 1 h at 30◦C. The cells were
washed twice with PBS and re-energized by re-suspending them
in 1ml of PBS containing 2% glucose and incubated at 30◦C for
30min. After incubation, the samples were centrifuged at 9000×
g for 2min and absorption of the supernatant was measured at
527 nm.

Nile Red Accumulation Assay
The accumulation of Nile Red (NR) was determined by
modification of the method described elsewhere (Ivnitski-Steele
et al., 2009) and measured with a FACSort flow cytometer
(Becton-Dickinson Immunocytometry Systems, San Jose, CA).
Exponential phase yeast cells were collected, washed 3 × with
water and suspended in PBS, pH 7.4, containing 2% glucose to
the final cell density 2% (w/v). The NR solution was added to 1ml
portions of the cell suspension in PBS/glucose to get the 7µM
final concentration of NR, along with the compound tested. After
30min incubation at 30◦C, the samples were excited with a 488-
nm laser and PE–Texas Red filter was used to detect NR-derived
fluorescence. The mean fluorescence intensity was calculated
using the histogram stat program. Analysis was performed with
the CellQuest software (Becton-Dickinson Immunocytometry
Systems).

DiS-C3(3) Accumulation Assay
Fluorescence measurement of diS-C3(3) accumulation in cells
was performed using the procedure described previously
(Hendrych et al., 2009). Briefly, the fluorescent probe diS-C3(3)
(final concentration 2×10−8 M)was added to the cell suspension
10min after compounds tested and fluorescence emission spectra
of the cell suspensions were measured (λex = 531 nm) at the
time of staining. In each experiment, the CD cocktail (5µM
CCCP plus 10µM DM-11) was added, usually after 40min of
staining.

Transmission Electron Microscopy
C. albicans cells from the overnight cultures were harvested,
washed and suspended in Sabouraud medium to the final cell
density of ≈ 106 cfu/mL. The compounds tested were added
and cultures were incubated for 9 h at 30◦C. For ultrastructural
studies, the cells were fixed with 2% glutaraldehyde in 0.1%
phosphate buffer for 3 h at 25◦C, washed with 0.1M phosphate
buffer (pH 7.2) and post-fixed with 1% OsO4 in 0.1M phosphate
buffer for 1 h at 4◦C. Samples were dehydrated with graded
acetone, cleared with toluene, infiltered consequently with
toluene and araldite mixture at room temperature and pure
araldite at 50◦C and finally embedded in an Eppendorff tube with
pure araldite mixture at 60◦C. Semithin and ultrathin section
cutting was done with ultramicrotome (Ultramicotome Lecia EM
UC6). Sections were taken on the 3.05mm diameter, 200 mesh
copper grid, stained with uranyl acetate.

Results

Growth Inhibitory Effect of Chalcone Derivatives
In the previous study, AMG-148, an oxathiolone fused chalcone
derivative, was found to exhibit in vitro antifungal activity against
several strains of human pathogenic yeasts, with MIC values
within the range of 1–16µg/mL and a fungicidal effect was
observed at concentrations 4–32-fold higher than the MICs
(Ła̧cka et al., 2011). In this work, a growth inhibitory effect
of AMG-148 (here compound 11) was compared to that of
its 26 structural analogs, using the serial dilution microtiter
plate method employing C. albicans ATCC 10231 as a reference
microorganism. Results presented in Table 2 indicate that all
compounds but 11 exhibited poor anticandidal activity, with
MICs in the 64 − >256µg/mL range. MIC of the known
antifungal drug FLC in this assay was 2µg/mL.

Combined Antifungal Effect of Chalcone
Derivatives and Fluconazole
Antifungal effect of 11 chalcone derivatives with MIC values ≤
64µg/mL (Table 2) in combination with FLC was quantified
using the checkerboard serial dilution assay. The only case of a
slight synergistic effect was noted for combination of FLC with
compound 11, where a FIC index = 0.22 was determined. For
combinations of all the other 10 chalcones tested with FLC, the
FIC indexes were in the 0.92–1.36 range, thus indicating neither
synergy nor antagonism.

Modulation of Multidrug Resistance
Some natural flavonoids and their synthetic derivatives were
reported to be effective modulators of microbial multidrug
resistance (Ivanova et al., 2008; Liu et al., 2008; Sharma et al.,
2010). To check whether chalcones tested in this work were able
to restore the antifungal potency of FLC against FLC-resistant
human pathogenic yeasts, an in vitro assay was performed
employing C. albicans clinical isolates resistant to fluconazole,
due to the FLC-induced overexpression of genes encoding
multidrug efflux pumps. The Gu5 and B4 isolates are FLC-
resistant, due to the documented overexpression of CDR1 and/or
CDR2 in the former and MDR1 in the latter. Their FLC-
sensitive counterparts, Gu4 and B3, respectively, exhibit a basal
expression of these resistance genes. The antifungal activity of
FLC against Candida isolates was determined in the presence
of a fixed concentration of each chalcone. All compounds were
tested at concentrations that did not interfere with fungal growth
(< 1/2MIC; 0.5µg/mL for 11 and 25µg/mL for the other
compounds). Sixteen out of twenty seven chalcones did not show
any effect but the remaining 11 were able to decrease the MICFLC

value of at least one of the FLC-resistant isolates (Table 3).
Eight derivatives demonstrated ability to enhance sensitivity of
C. albicans B4 to FLC. This effect was significant in the case
of compounds 11, 18, and 21. Seven compounds were able to
enhance sensitivity of C. albicans Gu5 to FLC, however this
change was significant only for compounds 6 and 18. The
chemosensitizing efficiency of compounds 6, 18, and 21 is thus
comparable to that of the known chemosensitizers of fungal drug
efflux pumps, verapamil and trifuoperazine. On the other hand,
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TABLE 2 | Fungistatic activity of oxathiolone-fused chalcones.

Compound Structure MICa (µg mL−1)

C. albicans

ATCC 10231R1 R2 R3 R4 R5 R6

Type 1

1 −OCH3 −H −H −H −H −H 64

2 −OCH3 −H −H −H −Cl −H 64

3 −OCH3 −H −H −OCH2CH2N(C2H5)2 −H −H 64

4 −OCH2CH2N(C2H5)2 −H −H −H −H −H 128

5 −OCH2CH2N(C2H5)2 −H −H −Br −H −H 128

6 −OCH2CH2N(C2H5)2 −H −H −OCH3 −H −H 64

Type 2

7 −OCH3 −H −H −OCH3 −OCH3 −H >256

8 −OCH3 −H −H −N(CH3)2 −H −H >256

9 −OCH3 −H −H −NO2 −H −H >256

10 −OCH3 −H −H −H −Cl −H >256

11 −OCH3 −H −H −OCH2CH2N(CH3)2 −H −H 2

12 −OCH2CH2N(C2H5)2 −H −H −Cl −H −H 128

13 −OCH2CH2N(C2H5)2 −H −H −H −Cl −H 128

14 −OCH2CH2N(C2H5)2 −H −H −H −H −Cl 128

15 −OCH2CH2N(C2H5)2 −H −H −OCH3 −H −H 64

16 −OCH2CH2N(C2H5)2 −H −H −OCH2CH2N(CH3)2 −H −H 64

17 −OCH2CH2N(C2H5)2 −H −H −H −H 64

18 −OCH3 −H −H −OCH2CH2CH2N(CH3)2 −OCH3 −H 64

19 −OCH2CH2CH3 −H −H −H −H 128

20 −OCH3 −H −H −H −H 128

21 −OCH2CH2CH3 −H −H −OCH2CH2N(CH3)2 −H −H 64

22 −OCH2CH2N(C2H5)2 −H −OCH3 −OCH3 −OCH3 −H 128

23 −OCH2CH2N(C2H5)2 −H −H −OCH3 −OCH3 −H 128

24 −OCH2CH2CH3 −H −H −OCH3 −H −H 128

25 −OCH2CH2CH3 −H −H −OCH3 −OCH3 −H 128

26 −OCH2CH2CH3 −OCH3 −H −OCH3 −H −OCH3 128

27 −OCH2CH2N(CH3)2 −H −H −OCH3 −H −H 64

aMICs were determined in RPMI-1640 buffered medium, as described in Materials and Methods.

the observed substantial reduction of MICFLC of the B4 strain in
presence of 11may result from chemosensitization, but at least in
part could be also attributed to the observed synergism between
FLC and 11 as antifungals.

Several lower concentrations of compounds listed in Table 3

were examined in order to find the lowest concentrations at
which the FLC-sensitizing effect was observed. In the case
of CDR1/CDR2-overexpressing C. albicans Gu5, a two-fold
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TABLE 3 | Influence of chalcones on MICFLC values determined for

Candida albicans clinical isolates.

Compound MIC of FLC (µg/mL)a

B3 B4 Gu4 Gu5

− 1 16 4 256

5 1 4 4 256

6 1 16 4 32

11 0.5 1 2 128

15 1 8 4 64

18 1 2 4 32

19 1 8 4 256

20 1 16 4 128

21 1 2 4 64

22 1 16 4 128

23 1 8 4 128

25 1 8 4 128

VPb 1 0.5 4 64

TFPb 1 1 4 128

aMIC values for FLC were determined by the serial dilution method as described Materials

and Methods, in the presence of a fixed concentration of a compound tested (0.5µg/mL

for 11 and 25µg/mL for the other compounds).
bVerapamil (50µg/mL) and trifluoroperazine (20µg/mL) were used as positive controls.

Cases of significant (>4-fold) MICFLC reduction by a given compound are highlighted in

bold.

TABLE 4 | Activity of compounds 6, 18, 21 and fluconazole against MDR C.

albicans clinical isolates and their drug-sensitive counterparts.

Strain MIC/ICa
50

(µg/mL)

6 18 21 FLC

C. albicans B3 64/38.5 64/40.0 64/42.8 1

C. albicans B4 (MDR1) 64/37.3 64/41.2 64/43.9 16

C. albicans Gu4 32/24.2 64/36.6 64/38.4 4

C. albicans Gu5 (CDR1/CDR2) 64/35.5 64/36.2 64/39.6 256

aMICs and IC50s were determined by using RPMI-1640 buffered medium, as described

in Materials and Methods.

reduction of MICFLC was found for 6 at 5µg/mL, while 18 did
the same at 6.25µg/mL. In the case of C. albicans B4, compounds
21 and 18 caused the twofold reduction of MICFLC at 0.25µg/mL
and 0.1µg/mL, respectively.

Compounds 6, 18, and 21 were also tested for their intrinsic
antifungal activity against FLC-resistant and FLC-sensitive C.
albicans clinical isolates. Comparison of MIC or IC50 values
determined for B3/B4 and Gu4/Gu5 pairs indicates, how
the enhanced activity of a particular transporter affects drug
susceptibility. Data presented in Table 4 confirm resistance
of B4 and Gu5 strains to FLC. On the other hand, the
antifungal activity of chalcones was in most cases not affected
by presence/absence of drug transporters, except for the slight
effect observed for compound 6 in the case of the Gu4/Gu5
pair, while no difference in MIC values was found for 18 and
21. These results suggest that 18 and 21 are not effluxed by
both ABC-type and MFS-type drug transporters of C. albicans,

while 6 may be a poor substrate of Cdr1p or Cdr2p but not of
Mdr1p.

Effect on ATPase Activity of Cdr1p/Cdr2p
The effect of selected compounds (6, 21, and 18) on the
ATPase activity of Cdr1p/Cdr2p was studied by determination
of the oligomycin-sensitive ATP hydrolysis by plasma membrane
preparations isolated from C. albicans Gu5 clinical isolate
overproducing the ABC pumps. No significant reduction of the
ATPase activity in presence of the tested compounds was found
up to 50µg/mL. A very slight reduction, about 20% was noted
for 18 (50µg/mL), however at 25µg/mL the reduction was lower
than 5%. It seems therefore that the oxathiolone-fused chalcones
studied are not inhibitors of the ATPase activity of the ABC-type
C. albicans drug transporters.

Changes in Membrane Potential and Cell
Integrity Monitored with the diS-C3(3) Probe
Using a set of five isogenic mutant strains, the effect of selected
chalcone derivatives on membrane potential and activity of
Pdr5p and Snq2p ABC-type drug exporters in S. cerevisiae was
tested by the fluorescence method, with diS-C3(3) as a probe.
Intracellular accumulation of the probe is accompanied by a
gradual shift of its λmax toward longer wavelengths (red shift),
while any possible efflux results in a blue shift. DiS-C3(3) is a
substrate for both Pdr5p and Snq2p (Čadek et al., 2004; Hendrych
et al., 2009), so that comparison of the probe accumulation curves
obtained for Pdr5p- and/or Snq2p-expressing and Pdr5p- and
Snq2p-deficient cells measured in the presence of any compound
may provide information about its effect on a given drug efflux
pump. On the other hand, analysis of the level of staining of
pump-deficient cells treated with any compound may reveal its
influence on membrane potential, as the blue shift indicates
plasma membrane depolarization, while a red shift is usually a
consequence of hyperpolarization or permeabilization of the cell
membrane. Finally, the cell destruction upon the action of any
compoundmay be confirmed by the consequences of inclusion of
the CD cocktail (5µM CCCP with 10µM DM-11) into the diS-
C3(3) assay. Addition of the lipophilic, weak acid (CCCP) plus
the H+-ATPase blocker (DM-11) results in the rapid blue shift
for the suspension of intact cells, while the shift does not occur if
the cells are broken.

Selected chalcones 6, 11, 18, and 21 were tested in a
broad range of concentrations, from 0.1µM to 20µM. The
representative staining curves obtained for chalcone derivatives
are presented in Figure 1. Cells treated with 11 (Figure 1A)
demonstrated the highest initial rate of staining, indicating
rapidly increasing cell surface permeability for the probe.
It should be noted that the magnitude of the red shift
induced by 11 action on AD1-3 cells (drug efflux pump-
free) was concentration-dependent and was observed even at
concentration as low as 0.1µM (graphs not shown). Addition of
the CD cocktail caused lower drop of λmax, indicating partial cell
damage.

Three compounds, 6, 18, and 21, caused hyperpolarization
of the cell membrane but did not damage the cells. Increased
staining of pump-expressing cells after their exposure to
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FIGURE 1 | Effect of selected compounds on the membrane

potential and activity of MDR pumps of S. cerevisiae. Staining

curves of AD1-3 (squares), AD23 (diamonds), AD12 (circles), AD13

(inverted triangles), and US50-18C (triangles) cells. Empty

symbols–no compound added; full symbols–compounds added

10min before diS-C3(3) at following concentrations: 1µM (A),

10µM (B–D). Dotted lines with arrows indicate the addition of the

CD cocktail.

compounds in comparison to chalcone-free controls was caused
by both hyperpolarization and inhibition of the probe export. A
strong inhibition of diS-C3(3) efflux by 6 and 11 was observed
in the case of cells expressing Pdr5p or Snq2 (Figures 1A,B),
presence of chalcones 18 and 21 led only to a partial inhibition
of the probe export (Figures 1C,D).

Effect of Chalcone Derivatives on Nile Red
Accumulation
Nile Red (NR) is a fluorogenic substrate of C. albicans
ABC transporters Cdr1p and Cdr2p and the MFS transporter
Mdr1p (Ivnitski-Steele et al., 2009). The probe was used in a
flow cytometry-based assay to measure influence of chalcone
derivatives on NR accumulation in yeast cells. Biological
models used in these studies were: the Saccharomyces cerevisiae
AD1-8u− strain and its fluconazole-resistant transformants:
ADCDR1, ADCDR2, and ADMDR1, along with the matched
pairs of clinical Candida isolates, F2/F5, Gu4/Gu5, and
DSY2039/DSY750. Cells were loaded with NR and levels of
fluorescence derived from NR accumulated by chalcone treated
pump-expressing cells was compared to that of the pump-
deficient cells. As shown in Figure 2, significantly lower level
of NR-derived fluorescence was measured in all resistant cells,
comparing to their pump-deficient counterparts, what indicates
an active efflux of NR from the former. The ADMDR1 cells

accumulated approximately tenfold more, the ADCDR2 cells
threefold more and ADCDR1 twofold more of NR in the
presence of compound 18 at 70µM (∼ 28µg/mL) than the AD1-
8u− cells. Significant accumulation NR in ADMDR1 was also
induced by 21. Accumulation of NR in ADCDR1 and ADCDR2
cells remained unaffected by 11. Further studies showed that
21 and 18 at concentrations as low as 0.5µg/mL still strongly
inhibited NR efflux from ADMDR1, causing a twofold higher
accumulation of the probe in comparison AD1-8u− (data not
shown). Compound 6 at 70µM caused significant accumulation
of NR exclusively in ADCDR2 and ADCDR1 (2.5 × and 2 ×,
respectively in comparison to AD1-8u−), with no effect on
ADMDR1 (details not shown).

The inhibitory effect of 21 and 18 on MDR1p-mediated
efflux was confirmed in the model of clinical Candida isolates.
Compound 21 inhibited NR efflux only from the cells of
the F5 and DSY750 strains overexpressing the MDR1 gene,
where respectively fivefold and twofold increase in NR-derived
fluorescence was observed. Surprisingly enough, compound 18

was also found to interfere only with Mdr1p-mediated efflux.
In F5 cells, accumulation of NR increased two times and in
DSY750, three times. Both compounds were not able to inhibit
NR efflux from Gu5 isolate overproducing Cdr1p and Cdr2p
proteins. Some accumulation of NR in Gu5 but not in F5 and
DS750 was observed in the presence of 6 (details not shown).
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FIGURE 2 | Influence of selected chalcones on Nile Red accumulation in drug efflux pump-free and MDR yeast cells. Cells were incubated for 30min with

Nile Red and chalcones and then fluorescence was measured with a flow cytometer. Values are the means of three independent experiments. Bars represent SD.

Interestingly, in all sensitive strains, presence of 21 resulted in
lower NR accumulation than presence of 18.

Effect of Chalcones on Rhodamine 6G Efflux
In order to get more data characterizing chalcone derivatives
as substrates of membrane multidrug transporters, their effect
on efflux from yeast cells of another probe, Rhodamine 6G
(R6G), which is a known substrate of Cdr1p/Cdr2p but not
of the Mdr1p transporter, was investigated. Saccharomyces
cerevisiae ADCDR1, ADCDR2 and control AD1-8u− cells
were first de-energized in presence of 2-deoxy-D-glucose and
2,4-dinitrophenol, then loaded with R6G (final concentration
10µM) along with a compound tested and subsequently activity
of drug-effluxing ABC-type proteins was triggered by glucose
addition. Concentration of the effluxed R6Gwas determined after
30min in supernatants obtained after cell harvesting.

The ADCDR1 and ADCDR2 cells extruded five times
more R6G than the AD1-8u− cells, thus confirming that this
compound is indeed a substrate of the Cdr1p and Cdr2p drug
transporters. Presence of compounds 6, 18, and 21 at 100µM
(∼ 40µg/mL) did not change the amount of R6G released from
AD1-8u− cells. Addition of 21 at 100µM to the suspension of
ADCDR1 or ADCDR2 cells inhibited R6G efflux only in about
5 ± 9% and 8 ± 4%, respectively, whereas presence of 6 and 18

at the same concentration resulted in 45 ± 10% and 38 ± 9%
inhibition of the probe efflux from ADCDR2 and in 27± 8% and
33 ± 6% inhibition of R6G export from ADCDR1, compared to
the untreated cells. These results corresponded well with those
from the Nile Red assay and showed that compounds 6 and 18

may block to some extent the Cdr1p/Cdr2p-mediated efflux from
recombinant S. cerevisiae, while presence of 21 had almost no
effect on the activity of this drug transporter.

Influence of Chalcones on Cell Wall Structure
The effect of selected chalcones on morphology and
ultrastructure of C. albicans cells was investigated using
transmission electron microscopy (TEM). The morphological
alterations observed in cells treated with 6, 11, 18, or 21 at
10µg/mL were documented by microphotographs and some
of these photos are shown in Figure 3. The cross-section of
untreated cells reveals a typical morphology with an intact cell
wall and cytoplasmic membrane, separated by a low-density
space (Figure 3A). Treatment of cells with compounds 6,

18, and 21 did not cause any visible changes, as the cross-
sections of chalcone-treated cells looked very similar to those
of the untreated control (photos not shown). This is not
surprising, since 10µg/mL is well below the MIC value of
these compounds (64µg/mL). On the other hand, 11 induced
significant morphological changes, which ranged from some
discrete alterations to the total destruction of the outer layers
of fungal cells (Figures 3B–D). A common alteration observed
after treatment with compound 11 was a loss of a typical
layered structure and discontinuity or even disappearance of
the cytoplasmic membrane (Figures 3C,D). Other changes
comprised appearance of the irregular cell surfaces, loss of
cell-wall integrity and penetrating lesions of the wall with an
apparent shedding of the cell components (Figure 3C).

Discussion

Three out of 27 chalcones studied in this work (Figure 4)
appeared effective chemosensitizers, able to restore to large
extent sensitivity to fluconazole of MDR C. albicans strains.
Compound 21 effectively chemosensitized cells overexpressing
the MFS-type Mdr1p, compound 6 did the same with cells
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FIGURE 3 | Changes in the cell surface of C. albicans cells observed by

transmission electron microscopy: (A) control cells; (B–D) cells treated

with 11, 10 µg/mL, for 3, 6, and 9h.

FLC-resistant due to the activity of ABC-type drug transporters
and derivative 18 partially reversed fluconazole resistance
mediated by both types of yeast drug efflux pumps. This is
worth mentioning that compounds 6, 18, and 21 demonstrated
low in vitro mammalian toxicity against different cell lines
in the tissue cultures (Konieczny et al., 2007a,b,c), what
makes them promising candidates for clinical application
as agents augmenting antifungal chemotherapy with FLC of
infections caused by MDR C. albicans. On the other hand, the
chemosensitizing potential of 11 seems questionable, since this
compound exhibits a strong growth inhibitory and fungicidal
effect at relatively low concentrations. In our previous studies
we provided evidence for inhibition of chitin biosynthesis as
a molecular basis of fungistatic effect of 11 and for inhibition
of β(1→3)glucan synthase resulting in fungicidal action of this
chalcone derivative (Ła̧cka et al., 2011). The latter has been now
confirmed by the loss of continuity of C. albicans cells and the
appearance of the cell wall defects, followed by leakage of cell
components, demonstrated by TEM upon the action of 11 at
concentration well above its MIC and close to the MFC value.
Destruction of S. cerevisiae cells treated with 11, revealed by
the results of experiments involving the diS-C3(3) fluorescent
probe, provides another evidence confirming this hypothesis.
Inhibition of chitin biosynthesis by 11 at concentrations close
to its MIC (Ła̧cka et al., 2011) seems to constitute a molecular
basis for the observed synergism of 11 and FLC, similarly as it
was shown previously for combination of the known inhibitor of
chitin synthase nikkomycin and azole antifungals (Milewski et al.,
1991).

It is not clear why the chemosensitizing potency of 6, 18,
and 21 is much better than that of their other close structural
analogs tested by us. The only characteristic common structural
pattern observed here is presence of the 4′-dimethylaminoalkoxy

FIGURE 4 | Structures of chemosensitizers of MDR yeasts selected in

this study.

substituent in ring B (compounds 11, 16, 18, and 21) that seems
beneficial for the chemosensitizing efficacy (18 and 21) or high
antifungal activity (11) of type 2 oxathiolone fused chalcones but
this effect is abolished when the similar substituent is also present
in the A ring (16).

Results of experiments employing Rhodamine 6G and Nile
Red showed that some chalcones studied effectively interfered
with extrusion of the fluorescent probes by the ABC and/or
MFS proteins. Compounds 18 and 6 inhibited the efflux of
Nile Red by Cdr1p, Cdr2p, and Mdr1p, export of Rhodamine
6G by the Cdr1p and Cdr2p transporters and efflux of diS-
C3(3) from the S. cerevisiae strain overexpressing PDR5. On
the other hand, 21 did not affect the Rhodamine 6G and Nile
Red efflux mediated by Cdr1p/Cdr2p efflux and poorly affected
export of diS-C3(3) from S. cerevisiae strains overexpressing
PDR5 and/or SNQ2, while it effectively inhibited the efflux
of Nile Red from strains overexpressing MDR1. An inhibitory
effect of 6 on Pdr5p- and Snq2p-mediated efflux of the diS-
C3(3) probe and a very slight inhibition of the Cdr1p/Cdr2p-
derived ATPase activity under in vitro conditions indicates its
possible inhibitory activity against different ABC-type yeast
drug transporters, probably not resulting from interaction with
the ATP-binding domains. Previously it was shown that 4-
alkoxychalcones (structure different from that of compounds
described in this study) bind to the ATP binding site and to the
steroid binding site of mammalian ABC-type drug transporter
P-glycoprote (Conseil et al., 1998). It is possible therefore that
compound 6may also bind tomore than one site in the ABC-type
yeast drug transporters.

The fact that some chalcones effectively prevented extrusion
of particular fluorescent probes from MDR C. albicans cells and
chemosensitized MDR cells to FLC but on the other hand, their
intrinsic anticandidal activity against FLC-resistant MDR cells,
was very similar or the same as against FLC-sensitive cells, may
indicate that these compounds bind to the MDR proteins outside
their substrate-binding sites and prevent binding of probes or
fluconazole to these sites but are not effectively extruded by
the drug efflux pumps. In summary, the observed effect of
sensitization of resistant strains of Candida albicans to FLC in the
presence of chalconic chemosensitizers, most likely results from
a non-competitive inhibition of drug efflux proteins, especially
those of theMFS-type, although this hypothesis should be further
verified.
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An antimycotic activity toward seven strains of Candida albicans was demonstrated

erstwhile by a wild-type Enterococcus faecium isolated from a penguin rookery of

the Antarctic region. In the present study the antimicrobial principle was purified

by ion exchange and gel permeation chromatography and further was analyzed by

LC-ESI-MS/MS. In the purification steps, the dialyzed concentrate and ion exchange

fractions inhibited C. albicans MTCC 3958, 183, and SC 5314. However, the gel

filtration purified fractions inhibited MTCC 3958 and 183. The data obtained from

the LC-ESI-MS/MS indicate that the antimicrobial activity of the anti-Candida protein

produced by E. faecium is facilitated by Sag A/Bb for the binding of the indicator

organism’s cell membrane. Partial N-terminal sequence revealed 12 N-terminal amino

acid residues and its analysis shown that it belongs to the LysM motif. The nucleotide

sequence of PCR-amplified product could detect 574 nucleotides of the LysM gene

responsible for binding to chitin of the cell wall of Candida sp.

Keywords: antimycotic peptides, anti-Candida protein, Enterococcus faecium/lactic acid bacteria (LAB), Lysin M,

Candida albicans

Introduction

Antimicrobial and antimycotic peptides are small cationic and amphipathic molecules, generally
with fewer than 50 amino acids. These peptides are omnipresent and have been isolated from
prokaryotes and eukaryotes in plants, bacteria, fungi, and animals (Zasloff, 2002; Bulet et al., 2004).

Amongst Lactic Acid Bacteria (LAB), members of the genus Enterococcus are widely distributed
throughout nature as inhabitants of the gastrointestinal tract of humans and other animals and are
also present in vegetables, plant materials and foods (Giraffa, 2002). Many LAB bacteriocins, partic-
ularly those produced by enterococci (enterocins), are characterized by their broad range of activity
against many gram-positive bacteria (van Belkum and Stiles, 1995; Nes et al., 2007). Bacteriocins
may also play an important role in maintaining bacterial community structures (Riley and Wertz,
2002) in specific ecological niche. They have also been proposed as probiotics for both the gastroin-
testinal and urogenital tracts (Redondo-Lopez et al., 1990). One of the main mechanisms used by
the LAB to interfere with the colonization of pathogens and avoid proliferation of those poten-
tial pathogens is production of antimicrobial agents, such as organic acids, hydrogen peroxide and
bacteriocins or related substances (Redondo-Lopez et al., 1990; Jack et al., 1995).

Though the vast majority of enterocins produced by Enterococcus faecalis and Entero-
coccus faecium are found active only against Gram-positive bacteria (Larsen, 1993), some
exceptions with broad activity spectra have been described in recent years to show the

121

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.00339
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:utpalroy010@gmail.com
mailto:utpalroy@gmail.com
http://dx.doi.org/10.3389/fmicb.2015.00339
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00339/abstract
http://community.frontiersin.org/people/u/210897


Roy et al. E. faecium produces anti-Candida peptides

ability of bacteriocins to inhibit the Gram-negative microorgan-
isms (De Kwaadsteniet et al., 2005; Line et al., 2008). Reports
on antifungal prowess of E. faecium or E. faecalis are relatively
rare. It was demonstrated in one of the previous investigations
that the antifungal compounds such as phenyllactic acid and
4-hydrophenyllactic acid were produced by Lactobacillus plan-
tarum (Lavermicocca et al., 2000). Besides this, bacteriocin-like
substances and other compounds were produced by L. pentosus,
L. coryniformis, and E. faecalis (Okkers et al., 1999; Magnusson
and Schnurer, 2001; Lupetti et al., 2002).

Candida albicans is the major human fungal pathogen of
immunocompromised patients (Lupetti et al., 2002). The nature
of the resistance to a few drugs has been identified as related
to altered transport, modification of an enzyme, and a change
in membrane composition (Lupetti et al., 2002). Additionally,
antimicrobial peptides are promising candidates for the treat-
ment of fungal infections since they have both mechanisms of
action distinct from available antifungal agents and the ability
to regulate the host immune defense systems as well (Lupetti
et al., 2002). Probiotic strains that can be used for the treatment
of vulvo-vaginal infection should be able to produce metabolites
that are fungistatic for C. albicans and C. glabrata (Strus et al.,
2005).

Though an umpteen number of peptide bacteriocins from
Enterococci have been purified and genetically characterized over
the last several years, yet the anti-Candida peptide/proteins are
less investigated from the E. faecalis and E. faecium. Due to
the increasing frequency of fungal infections in immunocom-
promised patients and development of an ominous trend in
the treatment failures amongst the candidiasis patients receiv-
ing long-term antifungal chemotherapy resulted from the rapidly
acquiring multidrug resistance (MDR) amongst pathogenic
C. albicans a strong and pressing need has been felt in finding
alternative form of antifungal antibiotics (Matejuk et al., 2010).

In this study, the APR210, the anti-Candida factor producer
strain that was earlier identified as E. faecalis based on the
biochemical tests and fatty acid methyl ester (FAME) analysis
got redisgnated as E. faecium based on rDNA sequence analy-
sis (Shekh et al., 2011), biochemical tests (e.g., L-Arabinose+,
Raffinose+, Melibiose and Sorbitol−), and PCR-amplification
data obtained using the E. faecium-specific primers (Cheng et al.,
1997) and the genomic DNA of the producer strain. In this study
the anti-Candida protein produced by the wild type E. faecium
was gel-filtration purified and the peptides responsible for the
anti-Candida activity in the pooled active fractions was identified
by LC-ESI-MS/MS Supplementary 1 (Image 1-a gel picture).

Results

We attempted to purify the antimicrobial protein by using
crude proteins in the cell free supernatant. A three-step method
was followed that included salting-out by ammonium sulfate
fractionation, ion exchange and gel filtration chromatography.
The fractions collected from each step of purificationwas checked
for the antimicrobial activity by cut-well agar assay using three
C. albicans strains that are different in drug-resistance pattern
and are from different sources. The protein band that produced

the anti-Candida activity in the zymogram assay was subjected to
the LC-ESI-MS/MS analysis. The PCR-amplified product corre-
sponding to the LysM domain gene was sequenced and analyzed.

Gel Filtration of the Antimycotic Protein
Dialyzed concentrate (after ammonium sulfate fractionation and
dialysis) showed a clear zone of inhibition against C. albicans
SC 5314 (Figure 1A) and MTCC 3958 (photo not shown). Prior
to gel filtration, the ion exchange fractions were tested against
C. albicans MTCC 3958, 183, and SC 5314. The ion exchange
fractions showed clearly the antimicrobial activity against these
three yeast strains. However, we have shown here the activity
against SC 5314 only (Figure 1B). The Sephadex G-75 gel fil-
tration chromatography showed that the recovery of antifungal
activity was approximately 22-fold (Shekh and Roy, 2012) with
a reduction of 45%. The chromatogram of fractions collected
during gel filtration on Sephadex G-75 is shown in Figure 2. The

FIGURE 1 | (A) Dialyzed concentrate (after ammonium sulfate fractionation

and dialysis) shows clear zone of inhibition against C. albicans SC 5314. F25

and F38 denote ion-exchange fractions showing no inhibition. (B)

Anti-Candida activity of pooled (30–36) fractions (collected during

DEAE-Sepharose anion exchange chromatography) against C. albicans SC

5314.
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FIGURE 2 | Gel filtration elution profile of ACP on Sephadex G 75 column. Anti-Candida activity was detected in fractions 31–36. The pooled fractions showed

a distinct anti-Candida activity against C. albicans MTCC 3958 and MTCC 183 in the inset. �, represents AU ml−1; N, represents absorbance at 280 nm.

FIGURE 3 | (A) Tricine SDS-PAGE (10%) profile of ion exchange and gel

filtration fractions having biological activity in zymogram. Lane1 (from left)

shows the molecular weight marker, lane 3 pooled ion exchange fractions

(IEF) and lane 4 gel filtration fractions (GF). The arrow shows the band that

showed in-gel inhibition in a zymogram assay. (B) Zymogram (right side) of

the gel-filtration purified fraction after concentration.

fractions were tested against C. albicans MTCC 3958, MTCC
183, and SC 5314. It was observed that fractions between 31
and 36 showed antimicrobial activity against MTCC 3958 and
MTCC 183 (Figure 2 inset), whereas no zone of inhibition was
recorded against SC 5314. These active fractions were pooled for
further processing. As observed in Figure 3A, 10% SDS-PAGE

fractionation indicated the presence of a protein band from
ion exchange and gel filtration fractions that showed antimi-
crobial activity in the zymogram assay of Tricine Native PAGE
(Figure 3B). Minimum inhibitory concentration (MIC) values
againstMTCC 183 and 3958 were 133 and 267µg/ml respectively
as determined in the earlier study (Shekh and Roy, 2012).
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PCR-Amplification from the N-Terminal Sequence

N-terminal amino acid analysis of the ion-exchange purified
antimicrobial protein revealed the following partial sequence:
NH2-DEVYTVKSGDSL (Shekh and Roy, 2012). Homology
search was performed using NCBI BLAST (http://blast.ncbi.nlm.
nih.gov/). The sequence DEVYTVKSGD displays high similar-
ity (as evident from the e-values) to LysM domain contain-
ing protein of most of the Enterococcus species 29 amino acids
residues away from the N-terminus of the LysM domain pro-
tein (sequences similarity and alignments are shown below). This
sequence demonstrated identity with LysM domain proteins of
six E. faecium strains.

The forward (34–50) and reverse (592–610) primers were
designed based on the N-terminal and C-terminal sequence of

FIGURE 4 | From the left. Lane 1 50bp step-up DNA ladder; Lane 2

574bp amplified fragment of LysM gene; Lane 3. Control reaction

showing no amplification, Lane 4 1 kbp DNA ladder.

the LysM domain respectively. The 574 bp amplicon (Figure 4)
was obtained by PCR and was further sequenced and the
sequence analysis revealed 94.7% similarity with the 574 bp LysM
domain-encoding gene of the strain E. faecium DO chosen for
the PCR amplification. The nucleotide sequence that encodes 12
amino acids (DEVYTVKSGDSL) previously found as a result of
N-terminal sequencing was detected.

Identification of the Protein by LC-ESI–MS/MS
The gel-filtration purified band that showed anti-Candida activ-
ity in zymogram assay (Figure 3B, right side plate), was sub-
jected to ESI-MS/MS analysis. The resulting protein sequence
was blasted against the NCBI database with the best over-
all match showing 30 % identity with the NlpC/P60 fam-
ily protein Tax_Id=791161 protein of E. faecium [PC4.1].
Out of 509 amino acids of the NlpC/P60, 149 amino acids
were detected by LC-MS/MS and the subsequent data anal-
ysis revealed that 30% sequence match with the NlpC/P60
family protein (Figure 5). Based on the LC-ESI-MS/MS,
the peaks corresponding to (NQQADAQSQIDALESQVSEIN-
TQAQDLLAK (Figure 6C), DIADLQER, VQAMTTMVK, and
TSLAAEQATAEDKK) were obtained in the mass spectra.

The peptide sequence NQQADAQSQIDALESQVSEIN-
TQAQDLLAK revealed the score 96.0 with an expected value
of 3.4e-08 in LudwigNR database, tr|D4VYT1|NlpC/P60 family
protein Tax_Id=791161 [E. faecium PC4.1] whereas the peptide
sequence TSLAAEQATAEDKK scored 69 (hall mark of identity)
with an expected value of 5e-05. The individual peaks with
corresponding amino acids are shown in Figures 6A–C.

Protein View
MASCOT Search Results: Protein View: D4VYT1
tr|D4VYT1|NlpC/P60 family protein Tax_Id=791161 [E. fae-
cium PC4.1]
Database: LudwigNR
Score: 251
Nominal mass (Mr): 53958
Calculated pI: 4.35
Protein sequence coverage 30%.

FIGURE 5 | Aligned amino acid sequence (in red, bold font) of the novel protein with sequences from the amino acid database of Mascot and

LudwigNR.
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Discussion

A number of species belonging to the genus Enterococcus
have been reported to synthesize bacteriocins active against
Gram-positive and negative bacteria. However, the reports on the
anti-Candida activity of Enterococcus are rather rare.

In the present investigation, the anti-Candida substance was
purified to a near homogeneity from the cell free supernatants
via a three-step purification protocol. Sephadex G-75 gel filtra-
tion fractions containing nearly purified protein showed antimi-
crobial activity against C. albicans MTCC 3958 and MTCC 183
(Figure 2).

Based on the 12 amino acid residues from the N-terminal
sequence determined in the previous study (Shekh and Roy,
2012), primers were designed and the PCR-amplified fragment
of size 574 bp obtained (Figure 4) using the purified genomic
DNA (as template) of the producer strain was sequenced; the
nucleotide sequence was analyzed by BLAST using the NCBI
search. The deduced amino acid sequence from the nucleotide
sequence generated from the PCR amplified fragment (Figure 4)
reveals the LysM motif that includes the DEVYTVKSGDSL.
In a mutational analysis study conducted by Onaga and Tiara
(2008), the LysM domain of PrChi-A was found to bind a chitin
contributing significantly to the antifungal activity mediated by
PrChi-A through their binding activity. TheN-terminal sequence
of PrChi-A was determined as DCTTYTVKSGDTCYAISQAN.
This sequence is not homologous to the sequence of any plant
chitinase, but very interestingly shares homology with the LysM
of other proteins from several organisms (Onaga and Tiara,

2008). The nucleotide sequence encoding the LysM motif and
the N-terminal sequence belonging to the LysM motif derived
from the protein band that produced the zone of inhibition in
zymogram (in-gel assay) in our study revealed striking similar-
ity with the PrChi-A that exhibited antifungal activity (Onaga
and Tiara, 2008). The shaded serine amino acid residue present
adjacent to YTVKSGD is of same nature since threonine is the
hydroxylated version of serine. However, the CYA amino acid
residues in the N-terminal sequence of LysM of PrChi-A was not
found in the translated sequence deriving from the nucleotide
sequence of the PCR-amplified product; this CYA was also not
found in the LysM motif sequence of E. faecium DO; how-
ever the pink shaded amino acid stretch ISQ matched with the
LysM motif. LysM is a protein domain of about 45 amino acids
found initially in several bacterial autolysin proteins (Joris et al.,
1992). The domains are also known to bind N-acetylglucosamine
(GlcNAc)-containing glycan molecules including peptidoglycan
from several bacteria and chitin from fungi (Bateman and
Bycroft, 2000; Buist et al., 2008; Iizasa et al., 2010; Petutschnig
et al., 2010). In the plant kingdom, LysM domains are found
in receptors for chitooligosaccharide and related compounds.
The PrChi-A was reported to bind to chitin in the fungal cell
wall mainly through LysM domains and then it degraded the
chitin by hydrolytic action. This led to disruption of the fun-
gal cell wall and fungal growth inhibition (Onaga and Tiara,
2008).

The LC-ESI-MS/MS generated the spectrum of separated
peaks (Figures 6A–C) showing three abundant peaks, consistent
with the molecular form of the purified protein. The resulting

FIGURE 6 | (A) MALDI-TOF spectra of anti-Candida peptide DIADLQER, produced by E. faecium. (B) MALDI-TOF spectra of anti-Candida peptide VQAMTTMVK,

produced by E. faecium. (C) MALDI-TOF spectra of anti-Candida peptide NQQADAQSQIDALESQVSEINTQAQDLLAK, produced by E. faecium.
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protein sequence was blasted against the NCBI database
with the best overall match showing 30 % identity with the
NIpC/P60 family (Anantharaman and Aravind, 2003). In mass
spectrometry analysis, the protein sequence matched upto
30% with NlpC/P60 family protein present in the MASCOT
database (Figures 6A–C, 7A–C). The Figures 7A–C, depict the
dendrogram presentations of the multiple alignments of the
deduced amino acid sequences of three peptides of NipC/P60 of
E.faecium and other closely related strains. NlpC/P60 is a large
family of cell-wall related cysteine peptidases that are broadly
distributed in bacteria, archaea and eukaryotes (Anantharaman
and Aravind, 2003). While their biochemical function seems
to be conserved, the physiological roles of NlpC/P60 proteins
are diverse, including cell separation, expansion, differentiation,
cell-wall turnover, cell lysis, protein secretion and virus infection
(Xu et al., 2010). Multiple proteins with NlpC/P60 domains
are found in individual Gram-positive bacteria (Humann and
Lenz, 2009). SagA of E. faecium belongs to this NIpC/P60 and
is a secreted antigen which binds to the extracellular matrix
proteins (Teng et al., 2003). Teng et al. (2003) reported the N-
terminal sequencing of the fibrinogen- binding protein revealing
a 20-amino-acid sequence, DFDSQIQQQDQKIADLKNQQ,
identical to the predicted N-terminal sequence of the mature
SagA (Teng et al., 2003). In our study, the significant peptides
NQQADAQSQIDALESQVSEINTQAQDLLAK, DIADLQER,
VQAMTTMVK, and TSLAAEQATAEDKK detected were
matched with secreted antigen Sag A/SagBb proteins produced
by the E. faecium strain. NlpC/P60 proteins are often fused to
auxiliary domains, many of which are known cell-wall binding
modules (e.g., LysM domain) (Xu et al., 2010). These auxiliary
domains may be thought to function as targeting domains which
localize their proteins to the cell wall (Xu et al., 2010). The species
designation of E. faecium isolates was confirmed by amplification
of specific DNA sequences by PCR. The results obtained in this
study reveal a so far not described function for enterococcal
LysM domain protein and taken together our findings clearly
indicate the presence of this auxiliary domain in the form of
LysM domain and NIpC/P60. However, the functional synergy
between the NlpC/P60 domains and their auxiliary domains
(Xu et al., 2010) needs to be investigated further to establish the
rationale of our findings in the present study.

Extracellular E. faecium Sag A/Bb protein that is antigenic
in nature is apparently essential for growth and shows broad-
spectrum binding to extracellular matrix (ECM) proteins form-
ing oligomers (Humann and Lenz, 2009) whereas the secreted
protein sspA or sspB produced by Streptoccoccus sp. was reported
to adhere to collagen type I and C. albicans (Teng et al., 2003).
Insertion inactivation experiments have shown that both sspA
and sspB genes are necessary for the binding of S. gordonii
cells to C. albicans (Holmes et al., 1996). The SspB protein,
when expressed on the surface of E. faecalis, confers upon the
enterococcal cells the ability to bind C. albicans (Teng et al.,
2003). In the same study conducted by Teng et al. (2003) the
gene in clones d1–27 and d2–29 named Sag A for major secreted
antigen was found in all 11 E. faecium strains from different com-
munities and/or from different geographic sources (Teng et al.,
2003).

The results obtained in the present work are in partial agree-
ment with the earlier works. The identified peptide sequences
derived from the LC-ESI-MS/MS match partly with the secreted
antigen A/Bb that might impart binding ability toward the extra-
cellular matrix present on the cell surface of C. albicans and the
bacteriocin secretion accessory proteins might play an important
role in the antimicrobial activity of the producer strain. The SagA
(often called P60), P54 from E. faecium and SagBb secreted by
Enterococcus hirae (Teng et al., unpublished data; Muller et al.,
2006) have been reported to be associated with the cell wall
biosynthesis; however these secreted proteins have the likelihood
in mediating cell wall hydrolysis to indicate that apart from the
binding to the cell surface of C. albicans, Sag A/Bb might play a
role in antimicrobial activity indirectly.

Methods

Bacterial Strains, Growth Conditions, and Media
The producer test strain was routinely propagated in TGYE (tryp-
tone, 5 g l−1; glucose, 1 g l−1; yeast extract, 3 g l−1, pH 7.2 ± 0.4)
medium andwas grown at 14± 0.5◦C. The producer strain E. fae-
cium and three indicator strains (C. albicansMTCC 3958, MTCC
183, and SC 5314) used in the present study were maintained in
glycerol stock at −70◦C (Shekh et al., 2011) and subcultured as
and when required.

Gel-Filtration of ACP
The anti-Candida protein (ACP) was partially purified from
supernatant of cultures of E. faecium using ammonium sul-
fate fractionation and ion exchange chromatography (Shekh and
Roy, 2012) which was followed by gel filtration chromatogra-
phy. The dialyzed sample was loaded onto a DEAE-Sepharose
Fast flow column (GE Healthcare) equilibrated with 20mmol
sodium phosphate buffer, pH 8.0. The fractions were eluted using
a linear gradient of 0–0.30M NaCl (Shekh and Roy, 2012). The
ion exchange fractions exhibiting the anti-Candida activity were
pooled and further purified by gel permeation chromatography.
Three grams of Sephadex G-75 were soaked in 200ml of sterile
distilled water and washed three times for removing fine par-
ticles, and then dissolved in 20ml of sterile distilled water and
poured in a 1 × 50 cm column. Void volume was determined by
passing blue dextran (2000 kDa) through the column. The pooled
ACP fractions (2.0ml) were loaded onto the gel filtration column.
The above mentioned buffer was used to elute the fractions each
of 1.5ml; those fractions were collected at a flow rate of 65ml
h−1 and read at 280 nm using UV-Visible spectrophotometer
(Shimadzu). Antimicrobial assay for all fractions was performed
against the freshly grown C. albicans MTCC 3958, MTCC 183
and SC 5314 by using cut-well agar assay (Shekh et al., 2011).
The active fractions were concentrated by U-tube concentrator.
That facilitated the removal of small molecules and also any salts
present. The concentrated samples (100µL) were added into a
well of diameter 7.0mm made in a freshly prepared MGYP agar
plate which was seeded with freshly grown (diluted to 106–107

cells/ml) C. albicans. After 48 h of luxurious growth of C. albicans
at 37◦C, the plates were inspected for the zone of inhibition and
the zone diameter was measured in terms of millimeter.
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FIGURE 7 | Continued
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FIGURE 7 | (A) Dendrogram presentation of the multiple alignment of the

deduced amino acid sequence of NQQ. LAK of NlpC/P60 from

Enterococcus sp. and other closely related strains. (B) Dendrogram

presentation of the multiple alignment of the deduced amino acid sequence

of VQAMTTMVK of NlpC/P60 from Enterococcus sp. and other closely

related strains. (C) Dendrogram presentation of the multiple alignment of the

deduced amino acid sequence of DIADLQER of NlpC/P60 from

Enterococcus sp. and other closely related strains.

Tricine SDS-PAGE
Samples were separated on a one dimensional SDS-PAGE. Slabs
of 10% polyacrylamide (acrylamide/bisacrylamide, 30:0.8) with a
5% stacking gel were electrophoresed at 100mV until the bro-
mophenol dye reached the bottom of the gel. The gel was viewed
after silver staining.

Direct Detection of Biological Activity on Tricine
PAGE
Tricine Native-PAGE (10%) (Schagger and Von Jagow, 1987)
followed by a gel overlay was performed with active pooled
fractions from gel filtration. After electrophoresis for 2 h at
20mA, 2 duplicate gels were cut. One of the gels was sil-
ver stained. The other gel was fixed in 20% (v/v) iso-
propanol and 10% (v/v) acetic acid for 30min, rinsed with
500ml of MilliQ water for 1 h, and placed aseptically on an
MGYP plate. To identify the active peptide band, the Tricine
gel containing pooled active fraction was overlaid by freshly
grown C. albicans MTCC 3958. After the agar solidified, the
plate was incubated at 37◦C for 48–72 h until C. albicans
grew uniformly over the plate or an inhibition zone was
observed.

N-Terminal Amino Acid Sequence Analyses
The protein band that showed inhibition in the in-gel assay in
Tricine-Native PAGE was further subjected to N-terminal amino
acid sequencing using an ABI Procise 494 protein sequencer
(Applied Biosystems), Iowa State University, US (Shekh and Roy,
2012).

PCR Amplification and Nucleotide Sequencing
Based on the N-terminal sequence (Joris et al., 1992) of the
LysM domain of the E. faecium, forward and reverse primers
were designed. The primers used were: forward primer 5′ ACT
TTT GCT GCT GGT GC 3′ and reverse primer 5′ TTA GTA
CCA GCC GTT TGC 3′; a 25µl of reaction consisted of 100 ng
of purified genomic DNA of the producer strain, forward and
reverse primers (30 picomoles each) and 200µM of dNTPs
each, and 1.5 units of Taq polymerase. The PCR conditions
consisted of an initial denaturation step at 94◦C for 90 s, fol-
lowed by 35 cycles of denaturation 60 s at 94◦C, annealing at
50 s at 48◦C, and 50 s at 72◦C. The final extension step was at
72◦C for 3min. The nucleotide sequence was determined on
both strands by using Big Dye Terminator chemistry and ABI
3500 × L Genetic Analyzer. The sequence data was evaluated
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on the basis of sequence homology to GenBank entities using
BLASTN and was analyzed using the open reading frame finder
of NCBI.

Mass Spectrometry of the Gel-Filtration Purified
Protein
The gel filtration purified fractions that contained anti-Candida
principle were pooled and resolved using the SDS-PAGE. The
band in the stained gel was precisely cut and used for LC-ESI-
MS/MS (Proteomics International, Australia). Protein samples
were trypsin digested and peptides extracted according to stan-
dard techniques (Xu et al., 2010). Peptides were analyzed by
electrospray ionization mass spectrometry using the Ultimate
3000 nano HPLC system [Dionex] coupled to a 4000 Q TRAP
mass spectrometer [Applied Biosystems]. Tryptic peptides were
loaded onto a C18 PepMap100, 3µm [LC Packings] and sep-
arated with a linear gradient of water/acetonitrile/0.1% formic
acid (v/v). Spectra were analyzed to identify proteins of inter-
est using Mascot sequence matching software [Matrix Science]
with Ludwig NR database. Spectra were obtained for the major
peptide ions in MS mode and sequence data obtained when
the spectrometers automatically reverted to MS/MS mode. These
spectra were then compared with databases (MASCOT and Lud-
wigNR) to provide hits that could identify matching or similar

sequences. The amino acid sequences were identified using the
tool provided by the National Center for Biotechnology Infor-
mation (NCBI) and ORF Finder tool (www.bioinformatics.org/
sms/orf=find.html) for the sequences obtained. The translated
ORFs were compared to known sequences deposited in the non-
redundant protein databases (www.ncbi.nlm.nih.gov) using the
BLAST program (Shekh and Roy, 2012). Multiple alignments
were performed with the CLUSTAL W proGram (Altschul et al.,
1993) Supplementary Material Images 2–4.
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Candida albicans is a major cause of opportunistic and life-threatening, systemic fungal
infections. Hence new antifungal agents, as well as new methods to treat fungal infections,
are still needed. The application of inhibitors of drug-efflux pumps may increase the
susceptibility of C. albicans to drugs. We developed a new fluorescence method that
allows the in vivo activity evaluation of compounds inhibiting of C. albicans transporters.
We show that the potentiometric dye 3,3′-dipropylthiacarbocyanine iodide diS-C3(3) is
pumped out by both Cdr1 and Cdr2 transporters. The fluorescence labeling with diS-C3(3)
enables a real-time observation of the activity of C. albicans Cdr1 and Cdr2 transporters.
We demonstrate that enniatin A and beauvericin show different specificities toward these
transporters. Enniatin A inhibits diS-C3(3) efflux by Cdr1 while beauvericin inhibits both
Cdr1p and Cdr2p.

Keywords: Candida albicans, ABC transporters, inhibitors, diS-C3(3), enniatin A, beauvericin

INTRODUCTION
The mechanism of resistance in yeasts to antifungal drugs is differ-
ent depending on the mode of action of the antifungals (Spamp-
inato and Leonardi, 2013). The drug-efflux system represented
by plasma membrane transporters is one of four mechanisms of
multidrug resistance in Candida albicans (Sanglard et al., 2009).

Three efflux pumps situated in the C. albicans plasma mem-
brane are responsible for decreasing the intracellular concentra-
tion of antifungals. These pumps are encoded by Candida drug
resistance (CDR1 and CDR2) and multidrug resistance (MDR1)
genes and they differ in the source of energy used for their activity
and in the specificity to the antifungals molecules (Cannon et al.,
2009).

One of the strategies used to identify the mechanism and
function of the C. albicans efflux pumps, and to screen for their
substrates and inhibitors, is the preparation of the collection
of C. albicans mutants with deletions of the CDR1, CDR2, and
MDR1 genes, which are used for investigating the molecular
mechanisms governing the regulation of multidrug transporter
genes (Coste et al., 2004, 2009). Studies of the multidrug resis-
tance process have provided important knowledge about efflux
pump gene regulation, their substrates and inhibitors, sources of
energy, and transport mechanism.

Another strategy for testing drugs’ inhibition of the efflux
pumps is to study their heterologous expression in the non-
pathogenic yeast Saccharomyces cerevisiae (Cannon et al., 2009).
Tanabe et al. (2011) cloned 28 chimeric constructs between C.
albicans Cdr1p (CaCdr1p) and Cdr2p (CaCdr2p) into S. cere-
visiae, showing that most of the transmembrane spans and the
nuclear binding domains (NBDs) are inhibitor binding sites or
affect substrate efflux. Although S. cerevisiae is a frequently chosen
yeast organism for expression and investigation of C. albicans

efflux pumps, it is important to consider the differences in the
metabolism of the two microorganisms (Rodaki et al., 2009;
Calahorra et al., 2012). Besides the obvious differences between
the two species, heterologous expression affects several other
intracellular interactions responsible for resistance to drugs. For
example, tested transporter expression level, and its interplay
with other proteins and regulations systems, could be completely
different.

Thus, it is important to develop methods that may enable real-
time observation of transporter activity fluctuations in response
to environmental factors in wild, not modified strains. To this day
the most popular method to measure activity of transporters is
using rhodamine 6G or rhodamine 123 (Clark et al., 1996) or nile
red as pump subtrates (Ivnitski-Steele et al., 2010). But methods
and knowledge about the activity of the pumps in real time is
scarce. Therefore, our purpose was to develop such a method and
to validate it by using collections of isogenic strains with deletions
of CDR1, CDR2, and MRD1 genes and by testing transporters
inhibitors.

One of the most potent inhibitors of MDR transporters are
group of enniatins, cyclic hexadepsipeptides produced by Fusar-
ium spp. Those mycotoxins have ionophoric properties but it
was shown that enniatin can interact with S. cerevisiae Pdr5p
(Hiraga et al., 2005) and C. albicans Cdr1p (Holmes et al., 2008)
and inhabit their activity. Other compound from this family,
beauvericin was observed to act synergistically with miconazole
(Fukuda et al., 2004) and ketoconazole (Zhang et al., 2007)
also suggesting its involvement in ATP binding cassette (ABC)
transporters inhibition.

Hendrych et al. (2009) developed a novel screening method
which uses potentiometric fluorescent probe diS-C3(3) that mea-
sures the kinetics and potency of inhibitors of the S. cerevisiae
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multidrug resistance pumps. In this work, we show for the first
time in C. albicans that diS-C3(3) is pumped out of the cell by
both Cdr1p and Cdr2p. We set up the method for testing new
drugs and transporters inhibitors, and we also demonstrated that
enniatin A and beauvericin are effective inhibitors of Cdr1p and
both Cdr1p and Cdr2p, respectively.

MATERIALS AND METHODS
STRAINS AND GROWTH MEDIA
The C. albicans strains used in this study (Table 1) were generous
gifts from D. Sanglard (Lausanne, Switzerland; Sanglard et al.,
1995, 1997; Sanglard and Ischer, 1996). All strains were grown
at 28°C on YPD medium with 2% glucose, 1% Bacto peptone
(Difco), and 1% yeast extract (Difco) and they were shaken at
120 rpm, as described herein. Solid medium was supplemented
with 1.5% agar.

SAMPLE PREPARATION
Cells were prepared according to Gásková et al. (1998) with mod-
ifications. Stationary cultures were prepared by growing strains
at 28°C for 24 h. A volume of 150 µl of stationary culture was
added to 20 ml of fresh YPD medium, incubated for 10 h at
28°C, and was shaken at 120 rpm. The cells were harvested by
centrifuging at 110 × g for 3 min, washed twice with deionized
water, resuspended in citrate-phosphate (CP) buffer (pH 6.0) at
OD600 = 0.1 or OD600 = 0.4 (±10%), and kept on ice.

DiS-C3(3) UPTAKE INTO CELLS
Aliquots of cell suspensions in CP buffer (3 ml, OD600 = 0.1;
1.02 × 106 cfu) were labeled with diS-C3(3) (Sigma) at a final
concentration of 5 × 10−8 M at room temperature. Fluorescence
spectra were measured every 4 min for 120 min, with gentle
stirring before each measurement, with a Fluorescence Spec-
trophotometer (HITACHI F-4500) equipped with a xenon lamp.
The excitation wavelength was 531 nm and the fluorescence range
was 560–590 nm. Scattered light was eliminated by an amber glass
filter with a cutoff wavelength of 540 nm. Where indicated herein,
2% glucose was added after 60 min and enniatin A (2 µg/ml)
(Sigma) and beauvericin (2 and 0.1 µg/ml) (Cayman) was
added after 80 min. All experiments were repeated at least three

Table 1 | Collection of C. albicans strains used in this study.

Strain Genotype Reference

CAF 2-1 ura3∆::imm434/URA3 Fonzi and Irwin (1993)
DSY 448 cdr1∆::hisG-URA3-

hisG/cdr1∆::hisG
Sanglard and Ischer (1996)

DSY 465 mdr1∆::hisG-URA3-
hisG/mdr1∆::hisG

Sanglard and Ischer (1996)

DSY 653 cdr2∆::hisG-URA3-
hisG/cdr2∆::hisG

Sanglard et al. (1997)

DSY 654 cdr1∆::hisG/cdr1∆::hisG
cdr2∆::hisG-URA3-
hisG/cdr2∆::hisG

Sanglard et al. (1997)

DSY 1050 cdr1∆::hisG/cdr1∆::hisG
cdr2∆::hisG/cdr2∆::hisG
mdr1∆::hisG-URA3-
hisG/mdr1∆::hisG

Mukherjee and Chandra
(2003)

times and means with standard deviation were used as staining
curve.

DISK DIFFUSION ASSAY
Candida cells were suspended in deionized water (McFarland
standard No. 0.5) and were streaked on YPG agar plates. Tested
antifungal agents at concentrations described herein were applied
to sterile OXOID Antimicrobial Susceptibility Test Disks, which
were then placed on the agar. Culture growth was assessed after a
48 h incubation at 28°C. In disk diffusion assays concentrations
below the one that gave inhibitory effect for a given compound
was used 1/2 MIC (minimal inhibitory concentration)for flucona-
zole determined independently for each strain.

CONFOCAL MICROSCOPY
Cell suspensions in CP buffer (5 ml, OD600 = 0.4) were stained
with 2 × 10−7 M diS-C3(3) probe for 30 and 150 min, with
2% glucose added after 60 min and enniatin A (2 µg/ml) and
beauvericin (2–40 µg/ml) added after 80 min. Aliquots of cell
suspensions were pelleted by centrifuging, washed in deionized
water, and 4 µl of samples were viewed with Leica TCS SP8 X
confocal microscope.

RESULTS
FLUORESCENT PROBE diS-C3(3) IS A SUBSTRATE FOR C. albicans Cdr1
AND Cdr2 TRANSPORTERS
Previous studies of S. cerevisiae have shown that the fluorescent
probe diS-C3(3) is a substrate for the pleiotropic drug resistance
(PDR) pumps, namely the Pdr5p and Snq2p pumps (Hendrych
et al., 2009). The observed fluorescence results from both passive
membrane-potential-dependent probe uptake and active probe
extrusion by ABC pumps. The final maximum fluorescence wave-
length (λmax) corresponds to the concentration equilibrium of
the probe. Since the λmax of free probe in solution is about
10 nm lower than that of probe bound inside the cell, higher
concentration of the probe within the cell results in higher λmax
(red shift). The magnitude of this red shift decreases when the
probe accumulation in the cell is lowered by the action of probe-
expelling pumps; the extent of this lowering thus reflects relative
activity of the transporters. To determine whether diS-C3(3) is
suitable for measuring transporter activity in C. albicans and
to determine which pumps are responsible for its export, we
monitored fluorescence in a collection of strains which expressed
all pumps (wild type, WT), or which lacked the Cdr1, Cdr2,
or Mdr1 pump (Table 1; Figures 1A,B). A maximum red shift
was measured in a strain with simultaneous deletion of both
Cdr1p and Cdr2p and a strain lacking all three transporters–
Cdr1, Cdr2, and Mdr1. Mutants lacking Cdr1p or Cdr2p stained
more intensely than the parent strain (Figure 1A). This means
that diS-C3(3) is actively expelled from C. albicans cells and
serves as the substrate for the two Cdr transporters but not
for Mdr1.

In the strain lacking Cdr2p the final λmax was higher, and thus
the intracellular concentration of the probe was higher than in
strain lacking Cdr1p. This indicates that under these conditions
Cdr2p plays a larger role in lowering of the probe concentration
in stained cells than Cdr1p.
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FIGURE 1 | Fluorescence of diS-C3(3) probe in strains with deleted
transporters and wild-type strain. Probe was added at the beginning of
the experiment and 2% glucose was added at the 60 min point.
Fluorescence in the strains was measured every 4 min. The probe is
exported by the ABC transporters Cdr2 and, after addition of glucose,
Cdr1—but not by the MFS family transporter Mdr1 (N = 3–4).

ENNIATIN A AND BEAUVERICIN INHIBIT TRANSPORTERS WITH
DIFFERENT SPECIFICITY
Fluorescent probes enabling the measurement of transporter
activity in real time are valuable tools for screening new pump
inhibitors. We tested the influence of a known inhibitor of Cdr1,
enniatin A, on the transporter activity measured by fluorescence
(Figures 2A,B). Addition of enniatin A to yeast cells resulted in
a red shift of the fluorescence maximum of the probe in strains
expressing Cdr1p, showing that the inhibitor is specific for Cdr1p
and does not affect the activity of Cdr2p (Figure 2B).

After validation of the method with enniatin A, we tested the
specificity of a new C. albicans CDR pump inhibitor, beauvericin
(Figure 3). This inhibitor has been found to increase cell sensitiv-
ity to miconazole (Fukuda et al., 2004). But, to our knowledge, its
specificity toward C. albicans transporters has never been tested.

In contrast to enniatin A, which affects the activity of only
Cdr1p (Figure 2), beauvericin inhibited the activity of both Cdr1p
and Cdr2p (Figure 3). As shown by diS-C3(3) efflux, Cdr1p was
more sensitive to beauvericin than Cdr2p.

To observe the activity of enniatin A and beauvericin as
inhibitors of ABC transporters in real time, we monitored the
accumulation of diS-C3(3) in C. albicans strains which express

all pumps or lack Cdr1 and Cdr2 pumps using the confocal
microscopy (Figure 4). We observed similar results to those
obtained with the fluorimeter. The strain without Cdr1p pumped
diS-C3(3) out the cell faster than the strain without Cdr2p. In
strain without Cdr2p the fluorescence is visible after 30 min while
in strain without Cdr1 diS-C3(3) is mainly present outside the
cell (Figure 4). This confirms that Cdr2p plays a larger role in
lowering of the probe concentration from the cells than Cdr1p.

After application of beauvericin the probe accumulated in both
the CDR1∆ and CDR2∆ strains, unlike enniatin A in which
activity as an inhibitor of probe efflux was observed only in the
CDR2∆ strain (Figure 4). This result confirms our observation
that beauvericin inhibited the activity of both Cdr1p and Cdr2p.

Inhibition of C. albicans transporters observed by using the
fluorescent probe diS-C3(3) should enable the screening for new
drugs. We performed disk diffusion chemosensitization assays:
paper disks containing fluconazole, alone, inhibitors (enniatin A,
beauvericin), or combination of both were placed on plates seeded
with C. albicans (Figure 5). The concentration of fluconazole
was matched to the strain sensitivity so that it did not generate
a growth inhibition zone. In case of strains expressing Cdr1p
(C. albicans WT, C. albicans MDR1∆ or C. albicans CDR2∆) inhi-
bition zones were observed after addition of enniatin A or beau-
vericin together with fluconazole. This effect was not observed
when the strains without Cdr1p were used. The combination
of enniatin A with fluconazole increased the sensitivity of the
strains in the same way shown by the fluorescence measurements
(Figure 2). Beauvericin did inhibit probe export by both Cdr1 and
Cdr2 (Figure 2), but it increased the sensitivity of the strain with-
out Cdr2, not the strain without Cdr1 to fluconazole (Figure 5).
This show further differences in the specificity of the inhibitors
against diS-C3(3) and fluconazole.

DISCUSSION
Multidrug resistance is a feature that causes serious medical
problems associated with an increasing prevalence and diversity
of fungal infections. This process was at first studied in the
non-pathogenic yeast S. cerevisiae (Kolaczkowska and Goffeau,
1999; Rogers et al., 2001). But recently, investigators are focusing
on pathogenic fungi such as C. albicans, Candida glabrata, or
Candida parapsilosis (Morschhäuser, 2010).

The fluorescent probe diS-C3(3) has been found to be a useful
tool to estimate and to continuously follow changes of the plasma
membrane potential (PMP) of whole S. cerevisiae cells (Gášková
et al., 1999), as well as to measure the kinetics of PDR pumps
(Hendrych et al., 2009).

Our results indicate that diS-C3(3) may be useful in measuring
the activity of PDR transporters in C. albicans as well. The diS-
C3(3) probe is a substrate of Cdr1p and Cdr2p, but not Mdr1p.
Previous investigations suggest that high aromatic, molecular
branching compounds are substrates for Cdr1p, probably because
of interactions with a large number of aromatic residues at an
active site of the transporter (Puri et al., 2010). The possibility
of observing the activity of efflux pumps in real time could
provide a new tool for obtaining the answers to as yet unresolved-
questions like the speed of changes in pump activity in response
to environmental factors (e.g., substrates or inhibitors).
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FIGURE 2 | Inhibition of ABC transporter Cdr1p by enniatin A.
DiS-C3(3) was added at the beginning of the experiment and
fluorescence was measured every 4 min in strains with or without

transporters; filled symbols indicate enniatin A addition (2 µg/ml)
at 80 min, 2% glucose was added to the sample at 60 min
(N = 3–4).

FIGURE 3 | Inhibition of ABC transporters Cdr1p and Cdr2p by
beauvericin. DiS-C3(3) was added at the beginning of the experiment
and fluorescence was measured every 4 min. Two percent glucose was
added to the sample at 60 min and beauvericin at 80 min. (A) Influence
of 1 µg/ml beauvericin on diS-C3(3) staining in C. albicans WT and

CDR1∆CDR2∆ strains. (B) Dose-dependent inhibition of diS-C3(3)
staining by beauvericin on C. albicans CDR1∆ strain. Lower lambda max
indicates more probe transported out of the cells. (C) Dose-dependent
inhibition of diS-C3(3) staining by beauvericin on C. albicans CDR2∆

strain.

DiS-C3(3) easily passes through the plasma membrane and
accumulates in the cells in response to membrane potential
(Gášková et al., 1999). The staining of C. albicans strains by
diS-C3(3) is approximately twice as slow as that of S. cerevisiae

(Figures 1A,B; Hendrych et al., 2009). The reason for this differ-
ence in the rate of staining could be a lower PMP in C. albicans
cells relative to S. cerevisiae cells. In the S. cerevisiae US 50–18C
strain, with an overexpression of major pumps Pdr5p, Snq2p, and
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FIGURE 4 | Inhibition of diS-C3(3) export by enniatin A and beauvericin.
Staining was observed by confocal microscopy at 30 min (probe loaded into
cells) and 150 min (full effect of the inhibitors).

FIGURE 5 | Disk diffusion chemosensitization assays. Paper disks
containing inhibitors (2 µg of enniatin A; 10 µg beauvericin; 1.25 µg
fluconazole for WT, MDR1∆, and CDR2∆; 0.15625 µg fluconazole for the
three remaining strains) were placed on the surface of agarose plates
seeded with yeast and the plates were incubated at 28 °C for 48 h.

Yor1p, the cell ATP level varies depending on the growth phase
and activity of PDR pumps (Krasowska et al., 2010). This is not
the case in C. albicans.

The efflux of diS-C3(3) from Candida cells was inhibited by
the depsipeptides, enniatin A, and beauvericin (Figures 2 and 3).
Hiraga et al. (2005) suggested that enniatin A is a potent and
specific inhibitor for Pdr5p, and Holmes et al. (2008) com-
plemented these data by showing that enniatin A functions as
an inhibitor of Cdr1p. Beauvericin was been found to function
as an inhibitor of miconazole efflux from C. albicans (Fukuda
et al., 2004). Enniatin A and beauvericin are ionophores that
enhance the permeability of the cell membranes for ions (Ton-
shin et al., 2010). As shown here by the inhibition of diS-
C3(3) efflux, both enniatin A and beauvericin interact with
ABC transporters (Figure 3). But beauvericin, in contrast to
enniatin A, shows a different synergism in case of flucona-
zole susceptibility (Figure 5). Similar differences in inhibitor
activity were observed for curcumin (Sharma et al., 2009), the
modulatory effect of which was restricted to rhodamine 6G or
miconazole while it had no effect on the efflux of flucona-
zole. Indeed, most of inhibitors like enniatin A (Holmes et al.,
2008), FK506 (Niimi et al., 2004), or curcumin (Sharma and
Prasad, 2011) inhibit only Cdr1p. It seems that only tetran-
drine blocks all Cdr1, Cdr2, and Mdr1 pumps (Zhang et al.,
2009). To our knowledge, our report is the first to show that
beauvericin is an inhibitor of not only Cdr1p but also of
Cdr2p. The response of transporter activity was fast (visible
after 12 min when examining gene transcription, as well as in
cell staining) yet about 40 min were necessary to reach full
activity.

CONCLUSION
In this paper we show that the carbocyanine dye diS-C3(3) is
employed in monitoring of real time activity of C. albicans ABC
transporters Cdr1 and Cdr2. This method can be used as a pow-
erful tools in the fight against multidrug resistance. Furthermore
we present that two depsipeptides: enniatin A and beauvericin act
as inhibitors of Cdr1p or Cdr1p and Cdr2p, respectively.
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