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Inflammation of the CNS can have devastating, 
long-lived, and in some cases fatal consequences 
for patients. The stimuli that can induce CNS 
inflammation are diverse, and include infectious 
agents, autoimmune responses against CNS-
expressed antigens, and sterile inflammation 
following ischemia or traumatic injury. In these 
conditions, cells of the immune system play 
central roles in promulgation and resolution 
of the inflammatory response. However, the 
immunological mechanisms at work in these 
diverse responses differ according to the nature 
of the response. Our understanding of the actions 
of immune cells in the CNS has been restricted 
by the difficulty in visualising leukocytes as 
they undergo recruitment from the cerebral 
microvasculature and following their entry 
into the CNS parenchyma. However, advances 
in in vivo microscopy over the last 10-15 years 
have overcome many of these difficulties, and 
studies using these forms of microscopy have 
revealed a wealth of new information regarding 
the cellular and molecular mechanisms of CNS 
inflammation.
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Maximum projection confocal microscopy of 
the top of a brain of DPE-GFP mice showing 
CD163+ macrophages (blue) and GFP+ myeloid 
cells (green) distributed around a CD31+ blood 
vessel (red). Scale bar 58 μm.
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This Research Topic brings together state of the art reviews examining the use of in vivo 
imaging in investigating inflammation and leukocyte behaviour in the CNS. Papers in this 
Research Topic describe how in vivo microscopy has increased our understanding of the actions 
of immune cells in the inflamed CNS, following various stimuli including autoimmunity, 
infection and sterile inflammation. 
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Editorial on the Research Topic

Inflammation in the CNS: Advancing the Field Using Intravital Imaging

Inflammation of the central nervous system (CNS) contributes to a diverse array of life-threatening 
and debilitating conditions. These include autoimmune conditions such as multiple sclerosis (MS), 
progressive degenerative conditions [Alzheimer’s disease (AD)], sterile inflammation as occurs in 
stroke/cerebral ischaemia, and inflammation stemming from parasitic, fungal, viral, and bacterial 
infections. Whilst recent developments have led to improved outcomes in some of these conditions, 
most notably MS (1), there remains concerns with these approaches (2). Furthermore, there is an 
increasing prevalence of AD and stroke among the ageing population in the developed world, whilst 
in sub-Saharan Africa, cerebral malaria remains a major cause of mortality. These factors mandate 
a greater understanding of the inflammatory mechanisms in the CNS associated with these condi-
tions. As is the case with all inflammation, inflammatory responses in the CNS involve immune cell 
entry/migration, complex interplay between resident and circulating immune cells, parenchymal 
cells, the cellular constituents of the CNS microvasculature, and alterations in immune cell function.

Intravital or in vivo imaging has been a critical tool for understanding the mechanisms of inflam-
mation throughout the body, including in the brain (3–5). Particularly, the advent of two-photon 
intravital microscopy (2P-IVM) has allowed researchers to directly examine the role of multiple 
immune cell populations in the initiation and regulation of inflammation within the CNS. 2P-IVM 
has become a critical tool not only for understanding the complex interplay between the cellular 
components of the immune system and how they act to provide protection against infection and 
injury but also how the dysregulation of these processes leads to disease.

Whilst application of intravital imaging to the CNS has been technically challenging, several 
issues have been systematically addressed over the years to facilitate generation of high-quality four 
dimensional (x,y,z,t) images. These advances have proved pivotal in understanding animal models 
of CNS inflammation such as EAE. Moreover, the combination of ongoing technical developments 
in imaging technologies, reporter mice, and novel fluorophores for detection of cellular signalling, in 
parallel with improved animal models of CNS disease, has meant that the understanding of inflam-
matory processes in this unique organ is better than ever before.

This Frontiers Research Topic brings together studies illustrating how imaging has advanced CNS 
inflammation and provides an overview of what parameters can be assessed using this approach. 
A key point that emerges from this collection is that intravital imaging has moved beyond simplistic 
descriptions of immune cell accumulation at inflamed sites—new approaches allow investigation 
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of the molecular activities of these cells in situ in the CNS, in an 
ongoing inflammatory response, in unprecedented detail.

Activated T  cells migrating in non-lymphoid organs play 
important homeostatic and pathological roles, including in the 
CNS. Gaylo et  al. discuss the mechanisms that control T  cell 
interstitial migration, emphasising that inflammation can cause 
changes in the composition of the extracellular milieu in which 
T cells navigate. They describe how one of the challenges of using 
imaging to assess T cell migration in the brain is the difference 
in the composition of the stromal and parenchymal CNS compo-
nents relative to other peripheral tissues.

Lovelace et  al. examine evidence linking dysregulation of 
the kynurenine pathway of tryptophan metabolism and the 
pathogenesis of MS, highlighting the role of mononuclear phago-
cytes in generation of neurotoxic metabolites via this pathway. 
Investigation of this pathway in CNS inflammation has involved 
a diverse range of imaging approaches as described in this article, 
including assessment of the blood–retinal barrier in the eye, MRI 
for non-invasive assessment of the blood–brain barrier, 2P-IVM 
for examination of T cell infiltration in EAE, and correlative scan-
ning electron microscopy for assessment of cell–cell interactions 
in the brain.

Maysinger and Zhang define some of the emerging questions 
on the immunomodulatory effects of alimentary components, 
gut microbiota, and nanomaterials on microglial function and 
activation and discuss the use of bioluminescence-based plat-
forms for these analyses.

Pietronigro et al. examine innovative 2P-IVM-based approaches 
for visualisation of the progression of amyloid beta deposition 
and alterations in microglial behaviour in a mouse model of AD. 
This approach has revealed previously unrecognised actions of 
neutrophils in amyloid plaques in the brain.

Radbruch et al. present two studies applying advanced in vivo 
fluorescence lifetime imaging to examine the brain in EAE 
(Radbruch et  al.), and ageing and amyloid-related pathology 
(Radbruch et  al.). These studies use markers to differentiate 
between myeloid cells and astrocytes. Importantly, the authors 
illustrate the capacity of contemporary imaging approaches to 
move beyond simply describing cell behaviour into understand-
ing intracellular biochemistry and signalling of specific cell 

types in inflamed tissues, focussing on NAD(P)H oxidase (Nox) 
activity and Ca2+ signalling. In a separate article focussing on the 
remission phase of EAE, Radbruch et al. show that Nox activity 
remains elevated specifically in microglia. In contrast, under 
conditions of amyloid deposition, Nox activity is predominantly 
elevated in astrocytes (Radbruch et al.).

Fungal pathogens are an important cause of CNS pathology, 
particularly in immunocompromised individuals, although the 
mechanisms of fungal invasion of the brain are poorly under-
stood. Shi and Mody describe the use of confocal intravital 
microscopy to investigate the dynamic interactions undergone 
by Cryptococcus neoformans in the CNS microvasculature, and 
the unusual nature of the neutrophil response to this infection.

Finally, Sonar and Lal provide an overview of the role of 
TNFSF receptor–ligand interactions in driving the pathogenesis 
of neuroinflammation and autoimmune disease in the CNS.

In summary, we anticipate that the collection of articles in this 
Frontiers Research Topic will provide researchers with a useful 
resource for understanding how imaging can be used to inves-
tigate the dynamics of CNS inflammation in its various forms.
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T Cell interstitial Migration: Motility 
Cues from the inflamed Tissue for 
Micro- and Macro-Positioning
Alison Gaylo†, Dillon C. Schrock†, Ninoshka R. J. Fernandes and Deborah J. Fowell*

Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of 
Biomedical Sciences, University of Rochester, Rochester, NY, USA

Effector T cells exit the inflamed vasculature into an environment shaped by  tissue-specific 
structural configurations and inflammation-imposed extrinsic modifications. Once within 
interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, 
non-directional, fashion. Efficient T cell scanning of the tissue environment is essential 
for successful location of infected target cells or encounter with antigen-presenting cells 
that activate the T cell’s antimicrobial effector functions. The mechanisms of interstitial 
T cell motility and the environmental cues that may promote or hinder efficient tissue 
scanning are poorly understood. The extracellular matrix (ECM) appears to play an 
important scaffolding role in guidance of T cell migration and likely provides a platform 
for the display of chemotactic factors that may help to direct the positioning of T cells. 
Here, we discuss how intravital imaging has provided insight into the motility patterns 
and cellular machinery that facilitates T cell interstitial migration and the critical environ-
mental factors that may optimize the efficiency of effector T cell scanning of the inflamed 
tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as 
they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as 
well as a requirement for appropriate long-range macro-positioning within distinct tissue 
compartments or at discrete foci of infection or tissue damage. The central nervous 
system (CNS) responds to injury and infection by extensively remodeling the ECM and 
with the de novo generation of a fibroblastic reticular network that likely influences T cell 
motility. We examine how inflammation-induced changes to the CNS landscape may 
regulate T cell tissue exploration and modulate function.

Keywords: T cell, motility, migration, inflammation, chemokines, extracellular matrix proteins, CNS, multiphoton 
imaging

iNTRODUCTiON

The immune system’s success relies on its ability to survey and rapidly respond to infection or damage 
throughout the body. This task depends on the efficient movement of leukocytes within and between 
diverse tissues. In recent years, the ability to visualize this dynamic migration using intravital 
imaging has led to new insights into the cellular interactions between leukocytes and the tissue 
stroma, T cell “search” patterns within inflamed tissues and the molecular mechanisms that control 
leukocyte motility and positioning (1). Innate and adaptive immune cells have distinct functional 
roles as part of a coordinated immune response and must move within complex tissues that are often 
extensively remodeled by inflammation. Therefore, it is not surprising that mechanisms of motility 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00428&domain=pdf&date_stamp=2016-10-14
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00428
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:deborah_fowell@urmc.rochester.edu
http://dx.doi.org/10.3389/fimmu.2016.00428
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00428/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00428/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00428/abstract
http://loop.frontiersin.org/people/361667/overview


FiGURe 1 | environmental modulators of T cell interstitial migration. T cells enter inflamed sites and must scan the interstitial tissue to locate areas of tissue 
damage or infection. Their efficiency of interstitial migration is influenced by: (1) the physical structure, level of confinement, and stiffness of ECM; (2) composition of 
the ECM, collagen fiber-associated matrix proteins, such as fibronectin; (3) cellular composition of the tissue providing: a cellular surface for traction, a source of 
chemotactic signal, steric hindrance, and a cellular host for pathogens that manipulate the immediate microenvironment; and (4) chemokinetic or chemotactic 
factors, associated with the ECM, or as a soluble gradient, or within cellular membrane fragments.
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differ between immune cell types and differ for a given cell type 
depending on the context-dependent array of environmental 
cues it encounters. Here, we focus on T cell interstitial motility 
but take our “cues” from elegant studies on dendritic cell (DC) 
and neutrophil motility dynamics. How leukocytes integrate and 
interpret the cacophony of signals coming from their tissue locale 
into “go” signals during migration and “stop” signals for cell–cell 
interactions is yet to be fully understood (Figure 1). T cells must 
traverse their immediate tissue terrain (micro-positioning) as well 
as accumulate at specific focal sites of infection or damage within 
inflamed tissues (macro-positioning). Determining whether the 
cues for these related actions are shared or distinct will be critical 
to fully understand in situ T cell function.

The T cell response is initiated in lymph nodes (LNs) that drain 
sites of infection or inflammation. T cells are activated by antigen-
presenting cells (APCs), mainly DCs, that have migrated from the 
infected tissue carrying pathogen-derived products presented as 
peptides in the context cell surface MHC molecules. The APCs 
also convey information on the type of pathogen or inflamma-
tion that they have encountered in peripheral tissues. Through 
the secretion of specific cytokines, DCs drive the differentiation 
of T cells into functionally distinct effector cells (Th1, Th2, and 
Th17) that are better equipped to clear specific pathogens (2, 3). 
Effector T cells also exit the LN better prepared to interact with the 
inflamed vasculature through upregulation of adhesion molecules 
and chemokine receptors (3). As reviewed elsewhere (4, 5), there 
is now a well-defined series of steps for leukocyte extravasation, 
the spatiotemporal kinetics of which have been greatly aided by 
dynamic intravital confocal and multiphoton microscopy. Once 
T cells cross the vascular and basement membrane barriers, they 
are met with an often chaotically organized inflamed interstitium. 
Effector T cells must scan and localize to the area of infection or 
damage to exert their effector function. Although LN-instructed 
tissue-specific homing cues provide some preprogramed localiza-
tion bias (6–9), the inflamed endothelium appears to promote the 

non-selective entry of a host of different effector T cells. These 
effector T cells enter an inflammatory landscape unlike any tis-
sue structure they have previously encountered and must utilize 
cell-intrinsic motility machinery and environment-specific cues 
to “explore” the new space. We know little about this process for 
T cells, but studies on innate immune cell types have revealed 
remarkably adaptable and coordinated mechanisms that prompt 
movement within inflamed tissues. DCs have been shown to be 
extraordinarily adept in their ability to seamlessly adapt to differ-
ent adhesive substrates for locomotion enabling them to traverse 
a variety of inflamed microenvironments (10). For neutrophils, 
interstitial migration is aided by cell–cell communication, in 
part by neutrophil-release of leukotriene B4 (11) that facilitates 
collective streaming or swarming of neutrophils to a focal point 
of tissue damage. How effector T cells navigate through heteroge-
neous inflamed landscapes is less well-defined, yet, it is a critical 
final step in pathogen clearance and tissue repair.

IN SITU ANALYSiS

The mechanics of leukocyte locomotion have largely been defined 
using in vitro models of 2D and 3D environments, most notably 
collagen and fibrinogen gels and microchannels. These studies 
have created basic paradigms for amoeboid versus mesenchymal 
motility, adhesive versus non-adhesive motility (12, 13), the 
impact of physical confinement (14), and the response to soluble 
and immobilized chemokines (15). While useful for defining pos-
sible molecular requirements, such engineered 3D matrices fail to 
reflect the in vivo composition of the extracellular matrix (ECM), 
the combinatorial array of chemokinetic and chemotactic signals 
or the cellular diversity in a given tissue. Importantly, the in vitro 
models do not address the impact of inflammation on such tissue 
complexity. Indeed, this fundamental difference was highlighted 
in our recent intravital multiphoton studies of Th1 interstitial 
motility in the microbially inflamed dermis (16). It is widely 
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TABLe 1 | Novel insights into leukocyte function from intravital imaging.

Discovery Reference

Naïve T cell:APC dynamics. First look at the initiating events in 
T cell activation showing distinct phases of short and longer 
interactions

(127)

Stromal cell networks guiding T cell LN migration. Evidence that 
T cells utilized the fibroblastic reticular network for movement 
within the LN

(34)

T:B cell dynamics at the T/B border. Motile T:B conjugates led by 
the B cells and controlled by T cell SAP

(128, 129)

Lévy walks for CD8 T cells. Dynamic imaging revealed that T cells 
migrate in a random walk pattern that may enhance search 
capacity for rare targets

(45)

Neutrophil swarming. Evidence that neutrophils communicate 
via an intercellular relay mechanism for long-range directional 
guidance

(11)

Lymphocyte trafficking between B cell follicles. Demonstrated 
that TFH cells move between multiple germinal centers, potentially 
enhancing the antibody repertoire

(27)

Intravascular leukocyte function. Neutrophils and CD8 T cells can 
perform antimicrobial functions without leaving the vasculature

(89, 130)

Chemokines in T:APC interactions. CD8 T cells required 
expression of CXCR3 to efficiently contact and kill virally infected 
cells in the skin

(69)

Neutrophil trails. Neutrophils deposit chemokine-rich membrane 
fragments that enhance CD8 cell accumulation in the  
influenza-infected lung

(102)

CTL:target cell dynamics. Revealing motile kinases with 
targets rather than static synapses and a requirement for CTL 
cooperativity

(131)
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thought that leukocyte interstitial motility in 3D environments 
is not dependent on integrin-based adhesive locomotion (12, 
17–19). This notion has been supported by a number of compre-
hensive in vivo studies demonstrating that motility of DCs and 
neutrophils in the skin (steady state or acute injury), and T cells 
in the LN, can indeed be integrin-independent events (11, 20, 21). 
In contrast, we found that Th1 cell motility closely followed the 
ECM fibers in the inflamed dermis and was dependent on T cell 
expression of the matrix-binding integrin αV (in combination 
with β1 and/or β3). The discrepancy between in vitro and in vivo 
studies over the need for integrin-based motility likely reflects 
the impact of inflammation on tissue remodeling. Adjuvant-
induced inflammation in the skin led to a change in the density 
of the collagen fibers in the dermis, in the deposition of the ECM 
components, and in the recruitment of innate cell types. Thus, 
the changes in the tissue landscape in vivo during inflammation 
are complex and multifactorial, and quite distinct from the 
simplified artificial matrices used in in vitro studies. Identifying 
distinct environmental components, which dictate a dependency 
on specific molecular machinery for motility in the context of 
such complexity will be important. With the growing number of 
intravital studies in inflamed and infected tissues, it is likely that 
we will continue to see challenges to the current concepts of 3D 
interstitial migration.

Intravital microscopy has proven a powerful tool for the 
dissection of spatiotemporal behaviors of leukocytes in  situ. 
Numerous observations in the past 15  years have led to novel 
insights into immune function that had not been predicted 
from conventional static measures (Table  1). Yet, there are 
limitations to our current intravital investigative abilities in vivo. 
Multiphoton (two and three photon) microscopy has provided 
the depth resolution to begin to examine tissues in situ. However, 
these studies are only as good as the structures or cells that can 
be illuminated with fluorescent probes or with optical effects such 
as second-harmonic generation (SHG) or use of endogenous tis-
sue fluorescence [elastin, keratin, FAD, and NAD(P)H] (22, 23). 
Multiphoton constraints come from single or dual laser systems 
that limit the number of fluorophores that can be simultaneously 
excited, thus, restricting the complexity of structures and cells 
that can be visualized in a given field at the same time. In addi-
tion, with respect to the ECM, there is limited capacity to label 
these moieties in real time. Current approaches heavily rely on 
intravital multiphoton detection of fibrillar collagen with SHG, 
but this is likely only to reveal a skeleton of the ECM. Fixed tissue 
immune-histochemical techniques have revealed that these col-
lagen structures are often enveloped by other matrix components, 
such as fibronectin and lipid moieties, which are optically silent 
in current multiphoton studies (16, 24, 25). In the brain, defining 
the ECM structure in real time is particularly challenging as the 
ECM structure is often non-fibrillar and hence not visualized by 
SHG. Thus, dynamic imaging of leukocytes is only as good as 
the ability to define the optically dark “black” space surrounding 
the cells of interest (Figure 2). The actual matrix and/or cellular 
structures over or between which T cells move in the inflamed 
interstitium remain poorly defined. The ultimate goal will be to 
generate a topographical map of the inflamed tissue to assess the 
structural, chemical, and cellular contributions that act to guide 

interstitial T cell scanning and positioning. Moreover, while we 
can intensely interrogate the micro-positioning cues measured 
over short distances (200–500 μm) for short periods of time 2–3 h, 
intravital dissection of the macro-positioning (400–800  mm) 
that likely takes place over a much longer timeframe (8–12 h) is 
challenging. Additionally, while multiphoton imaging allows for 
visualization of structures and cells deeper within tissues than 
confocal or epifluorescent imaging modalities, the resolution of 
multiphoton imaging is limited by long excitation wavelengths 
and asymmetric distortion of laser pulses, compromising intra-
vital motility analyses such as the intracellular redistribution 
of molecules during migration and cell–cell interactions (26). 
Recent advances that combine photoactivation or photoconver-
sion systems with multiphoton imaging will allow for pinpoint 
fluorescent labeling of a given cell or groups of cells in a given 
location in a tissue for assessment of long-range spatiotemporal 
dynamics, as recently shown for lymphocyte exchange between B 
cell follicles in the LN (27).

LeSSONS FROM LYMPHOiD TiSSUeS

Before entering inflamed tissues, T cells have undergone a 
series of activation events in the LN that has armed them with 
discrete functional properties and the ability to better respond 
to environmental cues that may be encountered in inflamed tis-
sues. The spatial positioning of T cells within the LN for optimal 
T cell activation and differentiation has been extensively reviewed 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | intravital multiphoton imaging and its limitations. (A) Motility patterns of effector CD4 T cells in the inflamed dermis showing micro-positional 
shape changes consistent with dynamic information sampling. (B) Imaging capabilities and limitations. Current intravital multiphoton analysis utilizes the SHG signal 
to highlight the fibrillar core of the tissue matrix and the association of migrating T cells with this structure (a). However, the fibrillar core is cloaked in numerous ECM 
proteins that cannot, at present, be visualized in real time (b). Moreover, the directional decision making is influenced by chemical signals presented on the ECM, 
these factors are also optically silent in current real time imaging (c). An additional layer of complexity is provided by the host of stromal and immune cells that are 
present in the inflamed tissue (d). Our current multiphoton capacity may allow for the detection of the SHG signal in combination with analysis of the interaction 
between two (may be three) additional fluorescently tagged cell types. But the ability to visualize the quality of these interactions through probes that illuminate 
signaling events is limited both in optically separable colors and in resolution.
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elsewhere (3, 28–30) and is not the focus of this current review. 
However, there are a number of mechanistic concepts that have 
arisen from the study of interstitial migration of T cells within 
the LNs that are worth noting here as reference points for our 
discussion of T cell movement in inflamed non-lymphoid tissues. 
First, T cells must engage with particular DCs in order to receive 
activation signals for function. DCs present a variety of peptides 
in the context of MHC molecules on their cell surface and DCs 
presenting a given peptide are likely at low frequency, estimated at 
1:100 (31). Thus, each antigen-specific T cell needs to scan the cell 
surface of many DCs before encountering one that is presenting 
their specific antigen. Whether this is an active “search” or an 
optimized chance encounter is unclear (32). Second, intravital 
imaging of the LN has shown that T cell amoeboid-like motility 
best fits a random walk with no evidence of directional migra-
tion over a 400–600 μm span (33). The shaping of such motility 
patterns to optimize scanning of the LN is likely to be influenced 
by both T cell intrinsic migratory machinery and extrinsic 
directional cues. Third, the structural organization of the LN 

provides a scaffold for T cell migration that optimizes encounters 
with DCs. The highly organized fibroblastic reticular cell net-
work (34) acts as a cellular platform for chemokine-dependent, 
integrin-independent, haptokinetic T cell movement and also 
promotes encounter with DCs by colocalizing T cells with DCs 
(35). Fourth, T cell effector functions are acquired and refined 
in spatially distinct locations requiring repositioning within the 
LN. In recent years, our understanding of the signals for T cell 
activation and differentiation has been reshaped to incorporate 
location-specific instructional cues. Differentiation of both Th1 
and Th2 cells in the LN is not complete without the relocation of 
activated T cells from the T cell zone to spatially distinct regions, 
namely the peri and interfollicular regions (36, 37). APCs in those 
specific regions provide additional differentiation signals to T 
cells to complete functional maturation. Chemokine production 
by the APCs and corresponding chemokine receptor expression 
by the T cells both appear key to such T cell positioning (28). How 
these apparent long-range positioning cues relate to the cues for 
the observed random walk of T cells still needs to be reconciled. 
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FiGURe 3 | Micro- and macro-positioning cues. (A) Micro-positioning 
cues for short-range cell directionality and motility patterns. T cell motility and 
scanning patterns are influenced by the microanatomical physical and 
chemical structure of the inflamed tissue. (i) The ECM could provide physical 
barriers to forward movement in one direction necessitating a change in 
direction toward a more accessible area. Cells are often seen doubling back 
on their path at points where the tissue may be impassable. (ii) ECM 
components may also positively guide directionality as an adhesive substrate 
that may provide footholds for T cell movement. (iii) Chemotactic cues, such 
as cytokines, are often presented on the ECM and could dictate scanning 
patterns and directionality. That T cells often backtrack suggests chemokines 
may provide a chemokinetic signal in the absence of a directional cue. 
(iv) The cellular make up of a T cell’s immediate surroundings could influence 
directionality through steric hindrance or by facilitating migrational paths 
along cellular projections closely associated with the ECM. (B) Macro-
positioning cues for long-range movement between distinct regions of a 
tissue. (i) The mechanistic basis for cellular positioning within a tissue is 
poorly understood in real time but is controlled in part by distinct expression 
of adhesion receptors and ligands on individual cell types and at distinct 
anatomical locations. (ii) Chemokines are also critical regulators of 
positioning; achieved by active chemotaxis to immobilized, or soluble 
diffusive gradients, or by self-generated chemotactic gradients. 
(iii) Alternatively, chemokines can induce cellular arrest or retention to 
effectively halt T cells in areas of high or uniform chemoattractants such as 
infection foci. (iv) Not touched on in this review, but important for future study, 
pathogens often manipulate these chemoattractant signals through decoy 
receptors or soluble factors that inhibit or disrupt local directional cues for 
T cell positioning.
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The upregulation of specific chemokine receptors may make 
activated T cells more receptive to APC-derived chemotactic 
cues, but direct evidence of T cell directional migration in the 
LN toward the interfollicular region is lacking. If not actively fol-
lowing a chemotactic gradient, it is possible that the chemokine-
driven positioning cues may instead act as focal arrest signals for 
randomly migrating T cells (38). Thus, observations from the LN 
have highlighted the importance of efficient T cell scanning of 
tissues, the interface between T cells and the tissue structure, and 
how tissue location can impact function: all important concepts 
when considering effector T cell motility in non-lymphoid tissues.

MiCRO- AND MACRO-POSiTiONiNG  
iN iNFLAMeD TiSSUeS

The movement of effector T cells within inflamed tissues is critical 
for their ability to function in the control of infection and in tissue 
repair. As in the LN, T cells entering the inflamed tissue require 
encounter with APCs expressing their cognate ligand. The effi-
ciency of APC encounter will depend on a balance between being 
able to scan a large enough area of the tissue and scanning any 
given area with sufficient rigor (32, 39, 40). Unlike the LN, most 
inflamed non-lymphoid tissues do not appear to have an organ-
ized fibroblastic reticular cell network that could help to direct T 
cell scanning along structures that are also sites of APC localiza-
tion. One might imagine that the infected tissue may require less 
organizational help to facilitate T:APC encounters because the 
frequency of both antigen-specific T cells and APCs bearing cog-
nate antigen are enriched at the infection site in comparison to the 
LN. However, intravital studies in mycobacterial granulomas of 
the infected liver revealed that antigen presentation was surpris-
ingly limiting (41). Antigen-specific T cells in the infected liver 
showed few episodes of arrest, often used as a surrogate for T:APC 
interactions, corresponding to poor T cell activation and limited 
IFNγ effector function (41). Thus, there is both a conceptual and 
practical advantage to defining the signals that optimize T:APC 
encounters in inflamed tissues to enhance effector function and 
promote pathogen clearance. With respect to pathogen clear-
ance, certain T cell cytokines have a limited range of biological 
activity, hence interstitial motility must also promote the correct 
cellular positioning relative to a region of focal infection. In the 
Leishmania major model of cutaneous infection, it was estimated 
that CD4 T cell production of IFNγ had an 80-micron effective 
range, measured by the ability of secreted IFNγ to activate nitric 
oxide pathways in macrophages surrounding the site of T cell 
activation (42). We suggest that the signals and mechanisms of 
motility employed for micro-positioning that regulate local T cell 
maneuvering of the tissue terrain on a micrometer scale may be 
distinct from the motility that accounts for macro-positioning 
of T cells at focal points of infection or damage on a millimeter 
scale (Figure 3).

Motility Patterns
In lieu of the current ability to visualize the topography of the 
infected tissues, researchers have initially focused on defining 
the patterns of T cell interstitial motility and the basic molecular 

machinery required for locomotion in inflamed tissues (17, 19, 
32, 43). In a variety of tissue locations (skin, brain, liver, and gut), 
and under distinct inflammatory challenges, T cell interstitial 
motility is amoeboid-like in nature (18) (Figure  2A) and has 
been likened to a non-directional, random walk (33, 44). Unlike 
many innate immune cells, there is no requirement for proteolytic 
cleavage of tissue matrix for motility and no evidence of T:T cell 
communication for streaming or collective migration. A more 
detailed analysis of the type of random walk for CD8 T cells in the 
Toxoplasma gondii-infected brain revealed a pattern of random 
motility that most closely resembled the generalized Lévy walk 
(45) with a number of small steps for intense exploration of an 
area interspersed by random longer steps for a wider search area. 
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This pattern is observed across species from sharks to honeybees 
in the search for rare resources. Indeed, modeling of this T cell 
behavior revealed that the Lévy walk was more efficient in find-
ing rare APC targets than the random Brownian walk (39, 45). 
Whether this type of tissue scanning is generalizable to other T 
cell subsets and to CD8 T cells in different locations is not yet 
known. However, the observation has sparked much interest in 
examining the potential link between the T cell “search” for rare 
APC targets in inflamed sites to models of search theory (32). 
While the use of “search” evokes a desire or need that probably 
does not equate to T cell scanning of inflamed tissues for APC, 
such conceptual parallels are likely to provide interesting hypoth-
eses for future studies.

Mechanisms of Motility
The movement displayed by effector T cells in lymphoid and non-
lymphoid tissues morphologically resembles that of amoeboid 
migration with cells constantly changing shape with protruding 
and retracting pseudopods (Figure 2A). Amoeboid migration is 
driven by the forces generated by polymerization of the actomyosin 
cytoskeleton and, in its basic form, depends on polymerization of 
actin for protrusions and type II myosin-dependent actomyosin 
activity for contraction (17, 18, 46, 47). These forces need traction 
created by an interacting surface to drive locomotion. Migration 
on 2D surfaces, such as the vascular endothelium, during extrava-
sation, requires adhesion for traction (48). Integrins are critical 
for this adhesion step and are dynamically activated at the leading 
edge via inside-out signaling from GCPRs or outside-in signaling 
in the presence of high substrate availability (49). Regulation of 
integrin de-adhesion at the trailing edge of the cells via myosin 
II-dependent contraction detaches the cell from its substrate 
allowing for forward migration (50). In 3D environments, the 
need for surface adhesion for motility is mitigated by the ability 
to use opposing surfaces of the tissue matrix for traction in an 
integrin-independent fashion (14, 51, 52). Leukocytes are thought 
to use the matrix as a physical scaffold for pushing mediated by 
actin polymerization at the leading edge and myosin-dependent 
squeezing at the rear. This non-adhesive locomotion is dependent 
on the degree of physical confinement afforded by the density 
of the surrounding tissue matrix (10, 14, 53, 54). As previously 
mentioned, these lines of distinction between 2D high adhesion 
and 3D low adhesion modes of motility appear to become blurred 
in the context of inflammation, with effector CD4+ T cell intersti-
tial motility being dependent on the matrix-binding αV integrins 
(16). Integrin-dependency for interstitial migration occurred 
within the context of a tissue matrix that had been modified 
by inflammation. The inflamed dermis was associated with the 
fibrillar collagen scaffold (as defined by SHG) becoming less 
dense than the non-inflamed dermis. One possibility, therefore, 
is that the change in the matrix density limits the efficiency of 
a purely biophysical mechanism of force transduction and leads 
to T cell dependency on integrins for traction. At this stage, it 
is not clear if the mechanism of T cell interstitial motility has 
any effect on the efficiency of tissue scanning for cognate antigen. 
Interestingly, adhesion-based motility has long been thought to 
be a slower process than non-adhesive amoeboid movement (17, 
54). Integrin-based interstitial migration may, therefore, afford 

the effector T cells, a more thorough scan of the local inflamed 
microenvironment and may enhance interactions with haptotac-
tic signals.

intrinsic Programing for T Cell  
interstitial Motility
How micro-positioning decisions are made by T cells as they scan 
the inflamed tissue (Figure 2A) is unresolved. However, T cells 
are likely to be guided by their immediate physical and chemical 
milieu as discussed in the next section. Given, how fundamental 
the ability to move through inflamed tissues is to T cell function, 
it has been suggested that T cells may have specific cell-intrinsic 
mechanisms to optimize interstitial motility. The first demonstra-
tion in support of this notion came from the study of a hematopoi-
etic cell-specific myosin, Myosin 1g (Myo1g) (55). T cells express 
high levels of Myo1g, and it appears to be dynamically relocated 
at the plasma membrane particularly during migration in 3D 
environments. In the absence of Myo1g, T cell 3D migration pat-
terns were altered with increased speed and straightness. Using 
in silico modeling alongside in vivo imaging, the altered migration 
pattern in the absence of Myo1g was shown to reduce the capacity 
of T cells to search for rare APC targets. Thus, through expression 
of Myo1g, T cells appear to be inherently prepared for efficient 
scanning of 3D tissues. In addition to a pre-tuned program for 
T cell motility, T cells may also acquire new interstitial migra-
tory potential during their activation and differentiation in the 
LN. Studies on the importance of integrin αV for Th1 interstitial 
motility in the inflamed dermis showed that αV expression is 
specifically upregulated on those activated T cells destined to exit 
the LN for effector function in peripheral tissues (16) and also 
enhanced in Th17 cells in the CNS (56). Therefore, the activation 
and differentiation process in the LN appears to prepare effector 
T cells for more efficient interactions with the inflamed matrix for 
interstitial motility. Distinct cytokine-producing T cell subsets 
such as Th1, Th2, and Th17 cells most likely need to function in 
very different inflammatory milieus that are shaped by distinct 
pathogen challenges. It will be interesting to determine if these 
cells may be distinctly programed during differentiation to 
express a unique motility toolbox tailored to efficient interstitial 
motility in specific inflammatory environments.

T cell-intrinsic programing for macro-positioning within 
a tissue is evident on numerous levels. In response to herpes 
simplex virus, CD4 and CD8 effector T cells both efficiently enter 
the infected dermis but locate to distinct regions of the skin: CD4 
T cells to the dermis and CD8 T cells to the epidermis (57). Similar 
differences in the position of CD4 and CD8 T cells have been seen 
at other mucosal sites (57–60). Distinct macro-positioning in the 
skin was not due to differences in interstitial motility patterns 
between the two T cell subsets but correlated with CD8 T cell 
expression of the integrin αE (CD103) and epithelial expression 
of its ligand E-cadherin (57). It is not clear if there is differential T 
cell directional guidance to the epidermis, or if these interactions 
simply provide important stop signals for retention in the distinct 
areas. Similar questions arise when considering the programing 
differences in chemokine receptor expression between CD4 T 
effector cell subsets. Functionally distinct Th1, Th2, and Th17 
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subsets express overlapping, yet, distinct arrays of chemokine 
receptors that are induced during differentiation (61). The par-
ticular chemokine receptors expressed appear to provide unique 
recruitment and positioning advantages to each subset. Best 
studied, thus far, is the expression of CXCR3 (ligands, CXCL9, 
CXCL10, and CXCL11) by Th1 and CD8 cells. CXCR3 is not 
expressed by Th2 cells and is variably expressed by Th17 cells. 
CXCR3 has been implicated in CD4 T cell localization to the 
interfollicular region in the LN to complete Th1 differentiation 
(36), Th1, and CD8 entry into numerous infected tissues and 
tumors (62–68) and more recently in the ability of CD8 cytotoxic 
T cells to locate and kill virally infected cells within the infected 
skin (69). CXCR3-deficient CD8 T cells were able to enter the 
vaccinia virus-infected dermis, but fewer CD8 T cells entered, 
or were retained in, the infection foci compared to WT CD8 T 
cells (69). Interestingly, of the CD8 T cells that made it into the 
virus-infected foci, CXCR3-deficient CD8 T cells moved more 
quickly than CXCR3-expressing CD8 T cells suggesting that 
CXCR3 facilitates T:APC interactions by decreasing the speed 
or inducing arrest of the effector T cells. Indeed, elegant studies 
in zebrafish have revealed that neutrophil motility is restricted 
in the immediate vicinity of a cellular chemokine source sug-
gesting that, at high or uniform concentrations, chemokines can 
optimize retention at specific sites in the infected tissue (38). 
Differential chemokine receptor expression on Th1 (CXCR3+) 
and Th17 (CCR6+) cells also appears to play a role in autoreac-
tive T cell accumulation in discrete regions of the central nervous 
system (CNS) resulting in quite different pathological disease 
(see section below). As will be discussed below, it is unclear 
if the expression of these chemokine receptors guide micro-
positioning during interstitial motility of T cells, or if the macro-
positioning of these distinct T cells is guided by focal chemokine 
gradients or retention signals (Figure  3). Nonetheless, T cell 
subset-specific chemokine receptor expression appears critical 
for macro-positioning within the LN and at sites of infection or 
inflammation. Thus, cell-intrinsic motility programs acquired by 
effector T cells during activation in the LN equip T cells with the 
potential to respond and adapt to a variety of environmental cues 
that may be present in the inflamed target tissue. The utilization 
of particular motility components within inflamed tissues will 
be driven by the type of inflammatory-induced changes within 
the target tissue.

eNviRONMeNTAL CUeS

Effector T cells entering an inflamed tissue are met by a cloud of 
environmental cues from the ECM, lipid moieties, chemokines, 
cytokines, and purinergic factors, among others. How the T cell 
integrates and weighs the importance of the different signals for 
interstitial motility is not clear. On the micro-positioning level, 
the rapid cell shape changes during effector T cell interstitial 
motility (Figure 2A) suggest constant information sampling for 
directional decision-making. There is fairly sparse in vivo data 
on the environmental cues that actually support the motility 
patterns observed for T cell migration in 3D, hindered in part 
by the difficulties in visualizing, in real time, the matrix struc-
ture and associated chemotactic factors. An emerging theme, 

however, is that T cells utilize the tissue structure as a scaffold 
for haptotaxic motility.

Physical Guidance Cues
The ECM defines the 3D structure of tissues; the organization 
and composition of which is distinct for individual tissues in 
the steady state. During inflammation, the ECM is extensively 
remodeled through the release of cytokines and matrix metal-
loproteinases, changing the biophysical structure of the matrix, 
its composition and its “presentation” of bioactive compounds 
that impact leukocyte motility and function (70–72). The inter-
stitial matrix of many tissues is made up of a core collagen fiber 
network, the topography of which is shaped by its associating 
glycoproteins, such as fibronectin, and proteoglycans, such as 
decorin and versican, that contain glycosaminoglycans (GAGs) 
subunits. GAGs play important roles in sequestration and display 
of chemokines and cytokines (73–75). Leukocytes interact with 
the ECM and can process signals from the physical spacing and 
composition of the fibers, the rigidity of the matrix (mechano-
sensing), and immobilized chemical signaling moieties (76, 77). 
In turn, these signaling events direct leukocyte migration, func-
tion, and survival.

Intravital imaging in different tissues has shown that T cell 
motility closely follows a network of fibrillar structures defined 
by SHG (16, 78–80). As discussed for actomyosin motility, the 
density of the ECM is likely to dictate the effective molecular 
machinery that will facilitate T cell movement. Three-dimensional 
confinement studies using microchannels revealed a change in 
the CD8 T cell migration efficiency based solely on the spacing 
between fibronectin-coated surfaces, with T cell MyoIIA opti-
mizing T cell motility by limiting surface adhesion (14). In vivo, 
within a given inflamed tissue, T cells are likely to experience a 
highly heterogeneous physical structure with variable degrees of 
confinement. Some have suggested that T cells may adapt to these 
changes by following paths of least resistance (17), while studies 
from DCs and neutrophils suggest that leukocytes can rapidly 
adapt to distinct terrains by switching between adhesive and 
non-adhesive motility (10, 11). The impact of utilizing possible 
“preferred” paths through a tissue, versus the ability to switch 
between migration modes, on the efficiency of T cell scanning 
of a tissue for APC encounter has yet to be determined. To add 
to the complexity, the actual physical space that T cells navigate 
within will also be shaped by the cellular composition of the 
tissue (Figure  2B), thus the true degree of T cell confinement 
in vivo is difficult to predict. In the LN, T cells can migrate along 
the cellular FRC network, where fibroblasts envelop a collagen 
core. In non-lymphoid tissues, both fibroblasts and macrophages 
can extend long cellular protrusions that align along the colla-
gen fibers and could also provide a cellular platform for T cell 
migration. Indeed, macrophage aggregates in liver mycobacterial 
granulomas appear to provide a cellular scaffold for effector T cell 
migration (81). The extent to which T cells interact directly with 
the ECM versus indirectly via ECM-associated cells is likely to be 
context-dependent.

In addition to changes to the structure of the interstitial matrix, 
inflammation and tissue damage have a dramatic impact on the 
composition of the ECM, with collagen fibers being decorated 
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with fibronectin, vitronectin, and tenascin. The magnitude and 
patterning of ECM deposition likely plays a role in both T cell 
micro- and macro-positioning (Figure  3). In contexts where 
matrix-binding integrins facilitate T cell interstitial motility, the 
microanatomical display of the matrix ligands may guide T cell 
motility patterns by providing local “footholds” or may vary the 
efficiency of scanning by impacting the speed of T cell movement 
due to variation in traction. Effector T cells express a variety of 
matrix-binding integrins that provide ligand specificity for 
distinct matrix components (49, 82–84). The relative expression 
of particular matrix-binding integrins differs between inflamed 
tissues. In the skin, CD4 effector T cells predominantly express 
α2β1 and αVβ1/β3, while in the lung and gut effector, T cells express 
a far wider variety of matrix-binding integrins (16). For skin and 
lung, the differences in integrin expression appear to correlate 
with the complexity of the matrix landscape. Inflammation in the 
skin led to a broad distribution of fibronectin across the dermis, 
while in the influenza-infected lung, there were spatially distinct 
regions that where either fibronectin-rich or collagen-rich (16). 
These compositionally distinct ECM regions within a tissue may 
afford distinct macro-positioning cues for local function or reten-
tion (3, 59, 85–88).

Our discussion has focused on the ECM as a physical facili-
tator of T cell interstitial migration. However, studies coming 
from the tumor field highlight the potential barrier function of 
a remodeled ECM. Real-time imaging of human lung tumor 
slices revealed that the density and orientation of the ECM fibers 
surrounding the tumor mass directed T cell migration around 
the tumor but restricted them from entering the tumor mass 
itself (80). Recent intravital imaging of CD8 T cells in the liver 
demonstrated the novel ability of CD8 T cells to sample the 
subsinusoidal hepatocytes and kill virus-infected hepatocytes, 
without exiting the vasculature (89), a function that was inhibited 
by changes to the liver structure during fibrosis. The degree to 
which the ECM imposes a physical restriction on T cell access 
during chronic infection and inflammation is unclear and war-
rants further investigation.

Chemical Guidance Cues
Leukocytes can respond to multiple chemoattractants within the 
inflamed tissue including chemokines, cytokines, lipids, ECM 
fragments, and puronergic signals. For T cells, much of our 
understanding of chemotactic signals have come from the study 
of chemokines, chemokine-receptor expression, and the block-
ade of receptor signaling using GPCR inhibitors such as the Gi 
inhibitor, pertussis toxin. Interference at each of these levels has 
reinforced that chemokines are major positioning cues for T cells 
in the steady state and during infection and inflammation (35, 
61, 90, 91). While it has been assumed that diffusive chemokine 
gradients provide chemotactic cues for T  cell directed migra-
tion, direct evidence for chemokine gradients on a micro- or 
 macro-scale is limited (38, 92, 93). A subtle directional bias was 
observed for migration of CD8 T cells toward  HSV-1-infected 
cells in the skin, but cells moved away from the infection site 
almost as often as moving toward infected cells (94). The weak 
directional cues and the often observed patterns of random 
T cell motility using intravital imaging raise the possibility that 

chemokines direct T cell positioning in ways other than through 
classic concentration gradients (44).

For many chemokines, their activity is dependent on correct 
presentation by GAGs associated with the ECM or cell surfaces. 
While intravital studies utilizing pertussis toxin treatment have 
shown a dependency on Gi-linked signaling for interstitial 
migration, how the chemokines support T cell motility is unclear. 
Blockade of the CXCR3 ligand CXCL10 in the Toxoplasma-
infected brain reduced the velocity of CD8 T cells but did not 
disrupt the Lévy walk pattern of movement in the tissue (45). 
Thus, chemokines may not shape the pattern of T cell motility 
but, rather, optimize the speed of interstitial migration, which 
may in turn increase the rate of T:APC chance encounter. This 
could be achieved through a basic chemokinetic mechanism or 
through activation of matrix-binding integrins, akin to the well-
established role for chemokines in integrin activation and ligand 
binding on the vascular endothelium (95). More recently, an 
alternative mechanism has been proposed, that of self-generated 
chemotactic gradients (96). The model proposes that cells can 
form their own chemical gradient by degrading a local source 
of attractant. In vivo evidence for such a mechanism first came 
from studies of the migrating primordium of zebrafish where, 
in the presence of uniform expression of SDF-1, a signaling 
gradient across the primordium was achieved by sequestration 
of SDF-1 at the rear by the receptor CXCR7 (97, 98). Recent 
examples in the LN and spleen suggest that decoy receptors or 
metabolizing enzymes expressed by immune cells themselves 
remove or degrade the attractants to create local gradients for 
lymphoid migration (99–101). This potential mechanism may 
have distinct advantages for an effector T cell’s “search” of an 
infected/inflamed tissue as it can be effective over a wide range 
of attractant concentrations enabling long-range self-directed 
exploration. Moreover, by regulating the expression of distinct 
scavenging receptors, particular effector T cells may separate the 
functionally important signals from the multitude of chemotactic 
signals in an inflamed tissue.

A recent study of neutrophils in influenza-infected mice 
reveals an additional layer of T cell migratory control (102). 
Neutrophils crawling in the interstitium of the infected trachea 
left long-lasting membrane fragments behind that were enriched 
for the chemokine CXCL12. Such chemokine depots deposited 
by the neutrophils appeared to provide guidance cues for incom-
ing CD8 effector T cells for motility and effector function. These 
novel findings suggest that T cell interstitial migration may be 
shaped by the preceding recruitment and interstitial migration 
of innate cells that leave chemotactic trails for subsequent T cell 
movement.

The lack of evidence for macroscale directional migration 
leaves open the question of how chemokines guide cells to spe-
cific locations within a complex tissue. Common to many studies 
on T cell positioning is the presence of a location-specific cellular 
source of critical chemokines. Stromal cells in the interfollicular 
region of the LN were potent sources of CXCL9 required for 
Th1 intranodal repositioning during Th differentiation (36). 
Similarly, CXCL9 and CXCL10 were enriched in the vaccinia 
virus-infected cells in the skin and enhanced CD8 T cell posi-
tioning (69). As discussed in the context of CXCR3 expression, 
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these sources of high chemokine production may, instead of 
being chemotactic, provide signals for T cell arrest and/or 
retention (38). Indeed, the loss of CXCR3 expression on CD8 
T cells led to accelerated movement within the infection foci 
(69). Mechanistically, calcium signaling, possibly downstream 
of chemokine receptors, has been implicated in T cell arrest 
(103). High local concentrations of chemokines may addition-
ally enhance inside-out activation of matrix- or cell-binding 
integrins, mediating strong adhesion and arrest to cellular or 
ECM structures (95). Furthermore, chemokines, possibly via 
receptor mediated tethering, have also been shown to promote T 
cell activation upon APC encounter (104, 105); in effect doubling 
down on the “stop” signal by optimizing T cell signaling with 
cognate APCs.

In conclusion, the mechanisms that facilitate efficient T cell 
interstitial motility in inflamed tissues are, in part, shaped by 
initial activation and differentiation events in the LN draining 
the site of infection or damage. The implementation of specific 
migratory machinery at the site of inflammation, however, 
appears highly context-dependent. Efficient T cell scanning to 
locate infection or damaged foci is guided by the tissue-specific 
matrix scaffold and optimized, in terms of speed and positioning, 
by chemotactic and arrest/retention cues.

UNiQUe LANSCAPe OF THe CNS

The CNS is an immunologically unique tissue and thus presents 
a specific set of challenges and considerations for studying T cell 
motility and positioning. In the steady state, the composition of 
the CNS extracellular environment is distinct from most other 
peripheral tissues, lacking the collagen fiber networks that often 
impart tissue rigidity and organ-level organization. Instead, 
the interstitial ECM is composed principally of long hyaluro-
nan chains decorated with proteoglycans and cross-linked by 
tenascin-R (106). Along with this distinct interstitial ECM, the 
CNS is also punctuated with perineuronal nets. The perineuronal 
nets are distinct ECM structures composed of chondroitin sulfate 
proteoglycans that form dense structures around certain subsets 
of neurons and provide support and stability to neural connec-
tions (107). Together, the CNS ECM provides protection from 
mechanical stress while supporting the function of the neural 
network (106). Microglia, CNS-specific cells of the innate immune 
system, in conjunction with astrocytes, mediate tissue homeo-
stasis and are the first to respond to tissue damage or infection 
(108). Surveillance of the brain and spinal cord by T cells is rare 
but critical for control of chronic and latent infection (109). The 
importance of continual immune surveillance was highlighted 
following reactivation of latent JC polyomavirus infection and 
development of a progressive multifocal leukoencephalopathy 
after blockade of immune extravasation using the anti-α4 integ-
rin antibody Natalizumab (110). Those T cells that are present in 
the circulating cerebral spinal fluid under  homeostatic conditions 
are enriched for memory T cell markers and CXCR3 expression 
(111); however, a role for specific receptors in T cell immune 
surveillance of the CNS has not been defined. The atypical struc-
ture of the CNS parenchyma under homeostatic conditions may 
require distinct mechanisms of T cell interstitial motility from 

those utilized by T cells recruited to the CNS by inflammation 
and infection (112).

During inflammation, the CNS interstitial ECM as well as the 
perineuronal nets undergo substantial remodeling (113). Factors 
produced by infiltrating immune cells and resident glial cells drive 
this inflammatory restructuring. Enzymes degrade the HA-rich 
network, and the production of new ECM components by cells 
such as astrocytes changes the composition of the CNS ECM, alter-
ing its mechanical properties (106, 114). Inflammation-induced 
upregulation of fibronectin and fibrillar collagens have been 
shown to potentiate T cell migration in the CNS (115), although it 
is not known if this is an integrin-dependent process. Changes in 
the ECM also alter its interactions with other bioactive molecules 
such as chemokines and cytokines. For example, the proteoglycan 
decorin is strongly upregulated in CNS injury (116). In other tis-
sues, decorin has been shown to bind TGFβ and inhibit its func-
tion (117), while decorin binding to IFNγ or TNFα promotes their 
signaling capacity (118). Alterations in these particular cytokines 
could change leukocyte motility by modulating responses to 
chemokines and altering matrix metalloproteinase activity (119). 
New in vivo observations on the structural changes to the CNS 
during inflammation have important implications for T cell 
interstitial exploration and draw parallels to other  non-lymphoid 
and lymphoid tissues. Reports have documented the presence of 
reticular fiber-like structures that develop in the inflamed CNS. 
These structures, absent in the steady-state CNS, generate a SHG 
signal and are observed deep within the cortex, discrete from both 
the vasculature and the meninges (79, 120). While their molecular 
and cellular constituency remains unknown, the reticular fibers 
appear to provide a scaffold for T cell migration within the paren-
chyma. CD8 T cells were shown to traffic along these reticular 
fibers in a model of CNS infection with the protozoan parasite 
Toxoplasma gondii (79). Immunohistochemistry revealed a coin-
cident fibrillar distribution of CCL21, suggesting these reticular 
fibers may represent rich regions of haptotactic guidance through 
immobilization of chemokines. As with infection in other sites, 
infection-induced focal chemokine production likely dictates T 
cell positioning in the CNS. West Nile virus-infected neurons 
produced CXCL10, which mediated CD8+ T cell parenchymal 
infiltration, specifically into the cerebellum (121). Intriguingly, 
CXCR3/CXCL10 deficiency affected parenchymal, but not 
perivascular T cell numbers, suggesting a differential requirement 
for this chemokine in recruitment to the CNS versus localization 
deeper within the tissue.

In non-infectious models of autoimmune inflammation in 
the brain, location-specific expression of individual chemokines 
appears to direct preferential CNS recruitment or retention 
of functionally distinct CD4 effector T cell subsets (122). Th1 
effectors mediated inflammation of the parenchyma of the spinal 
cord, but not the brain, while Th17 effectors supported extensive 
parenchymal inflammation in the brain, but not the spinal cord 
(123–125). Not surprisingly, such differences in positioning 
result in distinct neurological pathologies (122). The mecha-
nisms behind this phenomenon are incompletely understood. 
Differential entry sites into the CNS likely contribute to location 
specificity. Expression of CCL20 (a CCR6 ligand) by epithelial 
cells of the choroid plexus appear to promote CCR6-regulated 
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entry of Th17 cells (126). Whether anatomical differences in the 
tissue structure or ECM composition at these locations impacts 
the efficiency of Th1 or Th17 migration is not yet clear. However, a 
recent study has revealed that Th17 cells in the CNS have elevated 
expression of the integrin αVβ3 (56). Expression of αVβ3 appears 
to facilitate integrin:ECM-driven Th17 accumulation and func-
tion in the CNS as blockade of αVβ3 binding ameliorated Th17-
mediated EAE. Intravital imaging of Th1 and Th17 motility in the 
CNS will be important to determine whether they differentially 
utilize the inflammation-induced reticular fibers as guides for 
haptotactic interstitial migration and/or positional guidance.

FUTURe DiReCTiONS

Intravital imaging has only just begun to reveal the dynamic 
spatiotemporal control of immune function in inflamed tissues. 
Nonetheless, it has already provided novel insight into T cell inter-
actions with the surrounding tissue and with other leukocytes. 
Future identification of critical, context-dependent, molecular 
regulators of cellular migration will play an important role in the 
development of targeted therapeutics that attenuate leukocyte 
function in specific immune-mediated disease. The success 
of these efforts will depend on the ability to understand tissue 
signals in a combinatorial fashion. This will require visualizing 
the tissue topography at the level of ECM, immobilized chemical 

signals, and cellular heterogeneity as well as understanding how 
immune cells integrate and act on the complexity of such signals 
emanating from their inflamed surroundings.
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The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid 
tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is 
the trigger for induction of the KP, driving a complex cascade of production of both neu-
roprotective and neurotoxic metabolites, and in turn, regulation of the immune response 
and responses of brain cells to the KP metabolites. Consequently, substantial evidence 
has accumulated over the past couple of decades that dysregulation of the KP and 
the production of neurotoxic metabolites are associated with many neuroinflammatory 
and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, 
motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In 
the past decade, evidence of the link between the KP and multiple sclerosis (MS) has 
rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 
2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic 
cells), are the principal enzymes triggering activation of the KP to produce kynurenine 
from TRP. This is in preference to other routes such as serotonin and melatonin produc-
tion. In neurological disease, degradation of the blood–brain barrier, even if transient, 
allows the entry of blood monocytes into the brain parenchyma. Similar to microglia 
and macrophages, these cells are highly responsive to IFN-γ, which upregulates the 
expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as 
quinolinic acid. These metabolites circulate systemically or are released locally in the 
brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in 
neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic 
acid receptors. The latest evidence is presented and discussed. The enzymes that 
control the checkpoints in the KP represent an attractive therapeutic target, and conse-
quently several KP inhibitors are currently in clinical trials for other neurological diseases, 
and hence may make suitable candidates for MS patients. Underpinning these drug 
discovery endeavors, in recent years, several advances have been made in how KP 
metabolites are assayed in various biological fluids, and tremendous advancements 
have been made in how specimens are imaged to determine disease progression and 
involvement of various cell types and molecules in MS.

Keywords: kynurenine pathway, neuroinflammation, neurodegenerative disease, multiple sclerosis, multiphoton 
microscopy
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RATiONALe FOR iNvOLveMeNT  
OF KP iN MS

Multiple sclerosis (MS) is a chronic, inflammatory demyelinating 
disorder of the central nervous system (CNS) whose etiology 
remains multifactorial and the subject of intense debate. This 
complexity arises from the several distinct demyelinating dis-
orders of varying severity that are grouped under the general 
definition of MS. This indicates that definitive initial triggers 
(genetic, environmental, and others) that initiate episodes of 
autoimmune demyelination have yet to be identified, and that 
different mechanisms could contribute to lesion formation and 
tissue injury (1). MS is mediated by pathogenic T cells that are 
autoreactive against myelin antigens and coincides with broader 
neurodegenerative processes. Following trafficking into the brain 
via a compromised blood–brain barrier (BBB), T cells target 
and attack the myelin sheath of oligodendrocytes, the myelin-
forming cells of the CNS, which envelop central neurons and 
axons (2). The inflammatory plaque is the pathological hallmark 
of MS and can be identified using magnetic resonance imaging 
(MRI) or histopathologically (3). MS represents one of the most 
common causes of chronic neurological disabilities in young 
people, and its course is greatly variable (4). MS is subclassified 
into at least four distinguishable categories based on the course 
of disease. Approximately 85% of MS patients have a disease 
course that is marked by episodes (relapses) of neurological 
symptoms followed by remission periods where symptoms 
recover or disappear. This relapse-remitting MS form (RRMS) 
is often followed by secondary progressive MS (SPMS), where 
the disease progresses to constant neurological deterioration with 
no period of remission. Primary progressive MS (PPMS) affects 
around 10% of patients who present with gradually increasing 
neurological disability from the onset. Similarly, progressive-
relapsing MS (PRMS), which at 5% incidence is the rarest form, 
is also progressive, however, displays intermittent episodes of 
exacerbated symptoms. There are currently few drugs available to 
treat the progressive forms of disease (PPMS, SPMS, and PRMS), 
and therapies for RRMS have little efficacy in treating disability 
and neurodegeneration (5, 6).

Although an inflammatory aspect of the disease is 
clear – characterized by the presence of infiltrating macrophages 
and activated microglia around lesions (7, 8) as well as the 
autoimmune component arising from lymphocyte entry into 
the CNS, the role of other cells, such as monocytes, and other 
pathways that can further compromise oligodendrocyte health 
and contribute to the pathology of MS is increasingly being 
recognized by a theory of MS as a neurodegenerative disease 
with an autoimmune component (9). The question of whether 
inflammation leads to neurodegeneration or whether these are 
two different processes is currently unclear. The kynurenine 
pathway (KP) is activated in number of inflammatory and 
neurodegenerative diseases, including MS, and as such rep-
resents a common pathological mechanism highly relevant to 
our understanding of MS pathology (10). While the KP is the 
principal means by which tryptophan (TRP) is catabolized, it 
also leads to the production of several potent immunomodula-
tory and neuroactive intermediates, collectively called the 

kynurenines. Dysregulation of many of the enzymatic steps in 
the KP can favor the production of neurotoxic vs. neuroprotec-
tive metabolites (11). Monocytes, in particular, can be activated 
by high levels of inflammatory cytokines, which upregulate the 
expression of KP enzymes, favoring the production, and secre-
tion of neurotoxic metabolites such as quinolinic acid (QUIN) 
(Figure 1, red box) (12).

Dysregulation of the KP may not be the primary cause of 
MS; rather the evidence thus far suggests its involvement is 
characterized by inflammatory episodes triggering KP activation 
(particularly in monocytes), trafficking to the brain, concomitant 
TRP degradation and production of neurotoxic metabolites. 
These aspects can contribute to the pathogenesis and the disease 
course of MS by promoting brain cell dysfunction and death, 
which in turn prevent the induction of essential brain cell 
survival and repair mechanisms. This is evidenced by studies 
showing that the KP is activated in early stages of MS in patients 
and in the experimental autoimmune encephalomyelitis (EAE) 
rodent model of MS (13), while monocytes are highly present in 
MS lesions during autoimmune episodes. Moreover, differences 
in disease course and clinical activity in MS are reflected by 
changes in the levels of KP metabolites, particularly in cerebro-
spinal fluid (CSF) (see CSF: A Window to Study Dysregulation 
of KP in the Pathology of MS and KP Metabolites Correlate 
with Increased MS Severity: Potential Utility as MS Biomarkers). 
Therefore, an activated KP could compromise the effectiveness 
of MS treatments, which predominantly target the autoimmune 
component.

In this review, we focus on evidence accumulated from MS 
studies that have demonstrated a dysregulation of the KP, result-
ing in elevated levels of neurotoxic metabolites both in the plasma 
and brain parenchyma (detected in CSF), and thus contribute 
to the progression of MS pathology. We focus on the cells that 
produce these damaging metabolites (Figure  1); circulating 
monocytes (see Peripheral Blood Monocytes as a Potent Source 
of Inflammatory KP Metabolites in MS) which enter the brain 
via a compromised BBB (see The BBB Performs a Critical Role 
in Maintaining Barrier Integrity and Permeability, Which Is 
Lost in MS) and to a lesser extent endogenous brain cells; how 
these metabolites are measured by analytical sampling (see CSF: 
A Window to Study Dysregulation of KP in the Pathology of 
MS) and also the mechanisms of action of these metabolites 
(see Mechanisms of Toxicity of KP Metabolites) and how they 
cause oligodendrocyte death (see Oligodendrocytes as a Target 
Cell for Elevated Levels of KP Metabolites in MS). We also 
consider how the KP can regulate both adaptive and innate 
immune responses (see KP Influence on the Immune System), 
and how some KP metabolites can serve as potential biomarkers 
of MS progression, detailed evidence for their association with 
MS (see KP Metabolites Correlate with Increased MS Severity: 
Potential Utility as MS Biomarkers) and therapeutic interven-
tions (see Modulation of the KP as a Therapeutic Strategy in MS). 
Concurrent with this discussion, we also consider how advances 
in microscope imaging and allied techniques (see Microscope 
Imaging as a Central Tool for Advancing Knowledge of MS 
Pathology) have made a profound and ongoing contribution to 
our understanding of MS pathology.
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FiguRe 1 | The kynurenine pathway of tryptophan metabolism produces neuroprotective as well as neurotoxic metabolites that can influence MS 
pathology. Neurotoxic metabolites are circled in red, and neuroprotective metabolites in green. Tryptophan (blue box) may be metabolized to serotonin and 
melatonin in multi-step sequential reactions, or alternatively is metabolized via the KP. This reaction is inhibited by 1-methyl tryptophan (1-MT) or berberine. 
Kynurenine (purple box) is the initial rate-limiting KP product of tryptophan metabolism by the enzymes indoleamine-2,3-dioxygenase (IDO-1) and tryptophan 
dioxygenase (orange box). Kynurenine is then converted via kynurenine aminotransferases (KATI/II/III) to kynurenic acid, a neuroprotective molecule as it antagonizes 
glutamate receptor-induced neurotoxicity. 3-hydroxykynurenine is produced by further metabolism of kynurenine, for which evidence is accumulating of its 
neurotoxic capability. This reaction is inhibited by Ro61-8048 or nicotinylalanine. Leflunomide (Avara®) is an immunosuppressive and anti-inflammatory drug. 
Teriflunomide is the active metabolite of leflunomide. These kynurenine analogs are effective in reducing active lesions in both rodent models and in a phase II clinical 
trial (235). Kynureninase catalyzes the conversion of 3-hydroxykynurenine to 3-hydroxyanthranilic acid. Tranilast is a synthetic anthracillic acid derivative drug with 
anti-inflammatory action (236). Sequential conversion to 2-amino-3-carboxymuconate-semialdehyde is the penultimate step leading to enzymatic production of 
(neuroprotective) picolinic acid, and the (non-enzymatic) production of the well-known neurotoxic compound quinolinic acid (QUIN). Further conversion of QUIN to 
the essential cofactor NAD+ is catalyzed by quinolinate phosphoribosyltransferase (QPRT). Dashed boxes indicate synthetic compounds, some of which are in drug 
development, that are derivatives of the KP metabolite described above.
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THe KYNuReNiNe PATHwAY

Approximately 95% of TRP is catabolized via the KP in both 
the CNS and periphery, which is thus the canonical route, while 
the remainder forms a substrate for serotonin and melatonin 
synthesis. In the KP, TRP is converted to N-formyl-l-kynurenine 
by indoleamine 2,3-dioxygenase (IDO-1/IDO-2) and tryptophan 
2,3-dioxygenase 2 (TDO); the rate-limiting enzyme in TRP degra-
dation. TDO is strongly and constitutively expressed in the liver; 
however, it is also expressed at lower levels in neurons, astrocytes, 
and endothelial cells (14, 15). Therefore, extra-hepatically, IDO-1 
is the predominant enzyme in several different cell types, including 

monocytes, macrophages, microglia, astrocytes, neurons, and in 
some stem cells. IDO-2 is structurally and enzymatically similar to 
IDO-1; however, it is thought to function as a redundant enzyme 
to IDO-1 given its basal expression in a narrow range of cell types 
(16). Recently, new evidence suggests that IDO-2 has a role in 
“self-antigen” tolerance in autoimmunity and shaping immune 
tolerance in humans [reviewed in Ref. (17)]. Proceeding along 
the KP, N-formyl-l-kynurenine is metabolized by formamidase 
to l-kynurenine (KYN), the first stable intermediate metabolite 
(Figure  1). In the CNS, ~40% of KYN is locally produced, 
whereas 60% of KYN present is absorbed from the blood (18). 
Kynurenine is a central KP metabolite, capable of being degraded 
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through three specific pathways to generate different metabolites 
[kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 
anthranilic acid (AA)]. Many of the kynurenines display neu-
roactive properties. In particular, the neurotoxic metabolites, 
the N-methyl-d-aspartic acid (NMDA) receptor agonist and 
excitotoxin, QUIN, the free radical generators, 3-hydroxykynure-
nine (3-HK), 3-hydroxyanthranilic acid (3-HA), and the neuro-
protectants, picolinic acid (PIC), and KYNA, have significant 
associations with disease (19, 20), while the essential cofactor 
nicotinamide adenine dinucleotide (NAD+) is a very important 
end metabolite produced by catabolism of QUIN by the enzyme 
quinolinate phosphoribosyltransferase (QPRT).

TRiggeRiNg AgeNTS OF THe KP iN MS

Central nervous system inflammation and/or degeneration 
can trigger metabolism of TRP to produce kynurenine, and 
subsequent neurotoxic metabolites. Cells, such as monocytes 
and microglia, express all the KP components, whereas neurons 
express a restricted set and astrocytes lack expression of kynure-
nine 3-monoxygenase (KMO) resulting in high accumulation of 
kynurenine, a substrate for macrophages to further metabolize 
(12, 21–25). IDO-1 and TDO are the two enzymes that initi-
ate TRP metabolism (Figure 1) and are regulated by different 
mechanisms. TDO is induced by corticosteroids and glucagon 
(26), whereas IDO-1 is induced by proinflammatory cytokines 
during an immune response. The inflammatory mediators 
that activate KP through IDO-1 induction include interferon 
(IFN)-γ (20, 27), interleukin (IL)-1, tumor necrosis factor 
(TNF)-α (28), cytotoxic T lymphocyte-associated antigen-4 
(CTLA-4) immunoglobulin (29), toll-like receptor (TLR) (30) 
ligands polyinosinic:polycytidylic acid, lipopolysaccharide 
(LPS) (31), and unmethylated cytosine phosphatidyl guanosine 
(CpG) motifs (32). Although IFN-γ is regarded as the primary 
inducer of IDO-1, the regulatory mechanisms of IFN-γ medi-
ated IDO-1 induction can be potentiated synergistically by other 
proinflammatory cytokines, such as IL-1, TNF-α, IL-1β, and 
TLR agonists, resulting in synergistic enhancement of IDO-1 
expression (28, 33–36).

There is limited evidence that other enzymes within the KP 
can also be induced by proinflammatory cytokines, particularly 
by IFN-γ. Apart from the induction of IDO-1, IFN-γ is able to 
increase kynureninase (KYNU) activity in murine macrophages 
but not in microglial cells, which is of particular interest as 
TRP degradation by IDO-1 may not be the only enzymatic step 
controlling this pathway in activated macrophages (37). The 
enzyme diverting the KP toward the neurotoxic branch instead 
of KYNA production, KMO, is also increased through IFN-γ 
in activated macrophages (38) and in the brains of immune-
activated macaques (39). Finally, in the human hippocampal 
progenitor cells, IL-1β treatment increased KMO and KYNU 
transcript levels (40). At millimolar concentrations, PIC acted 
as a macrophage coactivator by inducing macrophage inflam-
matory proteins 1-α and 1-β in conjunction with IFN-γ in the 
induction of reactive nitrogen intermediate production (41–43). 
The complex interaction between PIC and IFN-γ highlights the 
importance of its involvement in inflammatory response (41) in 

neurodegenerative conditions. Interestingly, the current disease-
modifying agent of RRMS, IFN-β1b also induces KP metabolism 
in human macrophages and may be a limiting factor in its efficacy 
in the treatment for MS (21).

CSF: A wiNDOw TO STuDY 
DYSReguLATiON OF KP iN THe 
PATHOLOgY OF MS

Cerebrospinal fluid bathes the inner ventricles of the cortical 
subventricular zone (SVZ) and subarachnoid space. CSF is a 
complex mixture of water, secreted proteins, enzymes, antibod-
ies, peripheral blood, immune cells (e.g., B and T cell subsets), 
etc. and is constantly turned over, providing a sink for elimination 
of wastes from the interstitial fluid of the brain. This process is 
critical to proper brain homeostasis (44), and abnormal states 
are linked with multiple neurological diseases (45, 46). Choroid 
plexuses (47) are specialized structures located in the borders of 
the ventricles, facing the lateral wall, and consist of arrangements 
of epithelial cells (48), which secrete CSF and contain many villi 
which project into the ventricular space, vascular capillaries, 
neuronal contacts (49), and other supporting cells (Figure  2). 
Choroid plexuses, therefore, form a functional interface between 
the blood and CSF circulation and the bidirectional diffusion of 
important molecules, models of which are constantly evolving 
(50). Increasing evidence exists of alterations in choroid plexus 
function in various inflammatory CNS diseases (51).

From diagnostic, prognostic, and therapeutic aspects, CSF 
presents a unique opportunity to sample the content of fluid cir-
culating around the brain and cerebrovascular interfaces (52–56). 
For many years, we have utilized CSF from patients of various 
neurological diseases to assay for the concentrations of KP metab-
olites as a discrete compartment separate from the blood plasma 
(for which concentrations of KP metabolites are not an accurate 
measure of brain levels). Our standard techniques developed and 
improved over the years include analysis by sensitive methods, 
such as high-pressure liquid chromatography (HPLC) and gas 
chromatography-mass spectrometry (GC-MS), to determine KP 
metabolite levels (12, 14, 20, 21, 24, 25, 57–62). While analyses 
using these methods are extremely sensitive and able to accurately 
quantify KP metabolites in microliter-sized aliquots, due to BBB 
breakdown in MS (detailed further in Section “The BBB Performs 
a Critical Role in Maintaining Barrier Integrity and Permeability, 
Which Is Lost in MS”), the obtained data reflect the heterogeneity 
of such samples by influence of these factors and thus the extent 
of the pathology, and should be considered in concert with other 
pathological information. Furthermore, our previous study of 
brain microvascular endothelial cells (BBB endothelial cells) and 
pericytes uncovered that these cells express components of the 
KP that vary depending on the presence of inflammatory stimuli 
such as IFN-γ or TNF-α. After stimulation, both BBB endothelial 
cells and pericytes produced KYN that could potentially act as a 
substrate for the production of damaging KP metabolites in other 
neighboring cells (63). Other biomarkers within CSF related to 
MS pathology are also being progressively developed which 
would not be considered further here, e.g., Ref. (56, 64–66).
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FiguRe 2 | Schematic summarizing the arrangement of cells within the choroid plexus and the physiology of exchange of solutes relevant to the 
understanding of how KP metabolites are found in CSF. From website http://jonlieffmd.com/blog/the-very-intelligent-choroid-plexus-epithelial-cell
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KP Metabolites Correlate with 
increased MS Severity: Potential 
utility as MS Biomarkers
In the EAE model of MS, significantly elevated levels of QUIN 
and the KYN/TRP ratio in rat serum were observed and these 
levels correlated with increasing disease severity (67). IDO-1 
expression was demonstrated to play a role in remission of acute 
MS in the EAE model, suggesting that the KP enzymes and 
metabolites could be involved in regulating disease course in MS 
(68). In patient samples, the first report of the potential involve-
ment of KP activation in MS pathology was several decades ago, 
when decreased levels of TRP were found in plasma and CSF of 
MS patients (69). This involvement was confirmed with numer-
ous subsequent studies showing alterations in KP metabolites 
in RRMS patients. These include evidence that patients showed 
decreased levels of neuroprotective KYNA in the CSF during the 
remission phase but became elevated during remitting, acute 
phases compared with healthy controls (70–72). While KYNA 
levels in humans are highly varying in concentration (73), an 
upregulation of KAT enzyme expression as a neuroprotective 
mechanism could be a possible explanation for this, hence more 
studies are needed.

Given that KP activation is modulated by proinflammatory 
factors including IFN-γ, it is expected that MS patients in the 
acute phase (compared with the later chronic neurodegenerative 

phase) exhibit CNS inflammation with greater involvement of 
KP metabolites in disease progression (1). A comprehensive 
study into the relation between several KP metabolites and 
neurocognitive symptoms is only now beginning to unravel the 
subtle distinctions in the subtypes of MS. RRMS patients show 
higher levels of QUIN in the relapse phase vs. during remission 
(74), suggesting that QUIN is a potential biomarker of active 
demyelination phases. Indeed, RRMS patients in remission did 
not show KP metabolite levels different from controls, suggest-
ing that kynurenine dysregulation is most prominent during 
symptomatic periods. Interestingly, PPMS showed increased 
concentrations of QUIN, TRP, and KYN, whereas SPMS had 
decreased levels of TRP and KYNA indicating that underlying 
pathogenic mechanisms that occur in PPMS may be distinct from 
those in SPMS. Notably, PPMS and the inflammatory control 
group (containing inflammatory disorders of the CNS) displayed 
similarities with amyotrophic lateral sclerosis, supporting the 
working hypothesis that alterations in KP metabolites are a 
common pathogenic mechanism across inflammatory diseases. 
Importantly, Hedegaard et al. has shown that MS patients sera, 
and not healthy controls, contain anti-myelin basic protein 
(MBP) autoantibodies that facilitate IFN-γ production (75). 
In line with this finding, a study examining changes in IDO-1 
activity and expression in peripheral blood mononuclear cells 
(PBMCs) of RRMS patients found high IDO-1 expression and 
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serum neopterin (a marker of inflammation) with a concomitant 
decrease in IFN-γ in the relapse phase of MS, but not in the stable, 
remitting phase of disease (76). This suggests that inflammation 
and KP activation are both mechanisms that are reflected in 
disease relapse and appearance of clinical signs. Current treat-
ments that aim to slow the progression of MS, including IFN-β 
1a and 1b and glucocorticoids, also alter KP metabolite levels. 
RRMS patients treated with IFN-β were found to have increased 
levels of neuroprotective KYN compared with untreated RRMS 
patients (77), whereas glucocorticoid treatment significantly 
reduced IFN-γ levels and IDO-1 expression.

THe BBB PeRFORMS A CRiTiCAL 
ROLe iN MAiNTAiNiNg BARRieR 
iNTegRiTY AND PeRMeABiLiTY, 
wHiCH iS LOST iN MS

The BBB and blood–cerebrospinal fluid barrier (BCB) are 
complex microvasculature barriers for the CNS and systemic 
circulation. These barriers provide protection, nutrient, and 
oxygen supply to the CNS. Under physiological conditions, 
the BBB (that surrounds parenchymal venules) and BCB (that 
surrounds the choroid plexus) protect the CNS from peripheral 
immune cell infiltration. The tight junctions (TJ) between the 
endothelial cells (of the BBB) and epithelial cells (of the BCB) 
restrict access of circulating cells to the CNS. Nevertheless, even 
in healthy brains, T cells can carry out immune surveillance of 
the CNS because they express adhesion molecules, chemokine 
receptors, and integrins that allow them to cross these barriers 
(78). On the other hand, the non-CNS targeted T cells are also 
capable of altering permeability and glial cell activity. Previous 
studies have shown that ovalbumin (OVA)-specific T cells are 
able to disrupt barrier integrity of the brain (79) and retina (80). 
Using an MRI approach, another group investigated in vivo T cell 
transmigration in relation to the BBB disruption on CNS tissues 
in a model using OVA- and proteolipid protein (PLP)-specific 
T cells, finding that antigen specificity (and not absolute number 
of infiltrating cells) is a critical determinant of the extent of BBB 
breakdown (81). Cerebral microvascular endothelial cells are also 
joined by TJ complexes with associated pericytes and astrocyte 
processes. During MS, damage of TJ proteins facilitates leukocyte 
infiltration, leading to oligodendrocyte death, axonal damage, 
demyelination, and lesion formation. Glial cell activation and 
further leukocyte invasion cause myelin damage and axonal deg-
radation. Production of cytokines worsens BBB damage leading 
to progressive disability (82).

The CP (Figure  2) is a highly vascularized brain structure 
located within brain ventricles and consists of an epithelial layer 
forming a tight BCB, surrounding a core of fenestrated capillaries 
and connective tissues. The fenestrated capillaries are surrounded 
by CP epithelial cells, which confer tight barrier properties and 
restrict the entry of immune cells in the CSF. A local impairment 
of the endothelial cells and chemokine production results in a 
reduction in barrier integrity of the BCB, which are prominent 
events for early invasion of immune cells into the CSF. Indeed, 

the presence of oligoclonal bands from B cells in Western blots 
from CSF is seen in ~90% of MS patients and is a common test 
for confirmation of MS diagnosis (52). After passing the BCB, 
CSF-infiltrated leukocytes produce large amount of cytokines 
and activate endothelial cells of the brain vasculature, inducing 
expression of adhesion molecules and chemokines, leading to the 
formation of inflammatory lesions (83).

BBB Breakdown and entry of 
immune Cells as a Key Hallmark 
of early MS Pathology
A damaged BBB allows infiltration of autoreactive T cells and 
monocytes into the brain parenchyma. In MS, leukocyte infiltra-
tion into the CNS parenchyma is one of the earliest hallmarks (80, 
84) and is thought to play a fundamental role in the development 
of the disease, including contributing to the early stages of lesion 
formation. BBB breakdown is also found in relapses (85–87); 
indeed, optic neuritis (ON) was the condition in which this was 
first noticed. Examination of the whole-mount retina preparation 
from EAE Lewis rats visualized the presence of BBB breakdown, 
cellular infiltration, and microglial activation as the earliest 
abnormal events in ON. This study also correlated the intensity 
of the immune response with the number of infiltrated leuko-
cytes and microglial activation in the retinal parenchyma (84). 
Inflammatory cells are found to predominantly colocalize within 
the disrupted BBB (88, 89). Activated inflammatory cells (ED1+ 
monocytes, CD4+, and CD8+ T cells) in the lumen of affected ves-
sels are capable of disrupting BBB permeability (84). Overall, these 
studies emphasize that abnormal BBB permeability and leukocyte 
infiltration in the CNS are key events leading to pathogenesis of 
MS. As discussed in greater detail in Section “Peripheral Blood 
Monocytes as a Potent Source of Inflammatory KP Metabolites 
in MS,” high expression of KP enzymes in activated monocytes, 
and their translocation into the brain parenchyma means they 
are poised to exert a profound impact on the survival of oligo-
dendrocytes and neurons, and hasten the progression of lesion 
development and MS pathology.

Although these previous studies have provided ample evi-
dence that BBB breakdown is the earliest event leading to MS 
pathology, these findings have been reinforced by modern MRI 
of the brain. For example, serial MRI studies have demonstrated 
that abnormalities of the BBB may precede myelin damage and 
leukocyte infiltration (90). Histopathological (91–94) and serial 
MRI (90,  95) studies indicated that structural changes may 
precede myelin damage and leukocyte infiltration. Cramer and 
colleagues use a sensitive dynamic contrast-enhanced (DCE) 
MRI concluded the importance of a BBB defect in MS. MS 
lesions are predominantly located in the periventricular nor-
mal appearing white matter (96, 97). The presence of ON and 
lesions can be predictive of MS progression, as an MRI-based 
risk stratification showed that patients with MRI T2 lesions and 
ON progressing faster to full MS compared with patients with 
ON alone (56 vs. 22%) (98).

Subsequently, Cramer and colleagues showed that the BBB 
permeability is able to predict conversion from ON to MS within 
2 years, in a group of patients presenting with monosymptomatic 
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ON- and T2-lesion count compared with another group presented 
with T2-lesion count alone (99). Subtle disruption to the BBB is 
often found at discrete locations in the brain, for which modern 
radiographical imaging modalities such as MRI can be utilized 
(100). Kawakami and Flugel also used intravital two-photon 
imaging to measure BBB permeability. Using this imaging tech-
nique, they examined infiltration of autoreactive T cells across 
the intraluminal surface of CNS blood vessels in animal model 
of MS (101).

KP iNFLueNCe ON THe 
iMMuNe SYSTeM

One of the most profound roles of the KP has been its implication 
in the pathological regulation of both the innate and adaptive the 
immune system (18, 102). IDO-1 is considered the major con-
tributor to the immunoregulatory functions of the KP due to the 
depletion of TRP and the production of kynurenine metabolites. 
IDO-1 is expressed in several types of immune cells, including 
microglia, monocytes, and macrophages, and can be readily 
induced by interferons, most effectively by IFN-γ (102). IDO-1 
activation has potent antimicrobial effects, which occurs partly 
through the depletion of the essential amino acid TRP. IDO-1 
plays a vital function in maintaining polymorphonuclear cells 
effector function against pathogens (103). Conversely, IDO-1 can 
also suppress the immune response leading to immunological 
tolerance, which mediates various phenomena such as allograft 
acceptance, tumor camouflage, and maternofetal tolerance (18).

To date, at least three mechanisms that initiate immunological 
suppression are known. These immunosuppressive effects all 
correspond to IDO-1 activation and its downstream effects in 
certain populations of T cells. First, TRP levels are depleted 
following IDO-1 induction, which inhibits the proliferation 
of reactive T lymphocytes and increases their susceptibility to 
apoptosis (104). Second, the resulting increase in kynurenine 
metabolites (KYN, QUIN, and 3-HAA) interferes with pro-
liferation and initiates selective apoptosis of T helper 1 (TH1) 
lymphocytes, which are responders to antigen-presenting cells 
(105, 106). Notably, there is a preferential inhibition for TH1 
cells by IDO-1 activation, although the activation of regulatory 
T-cells may also impede TH2 cells (102). There are contro-
versial data surrounding QUIN’s effect on T cell regulation, 
although it is currently thought that this process relies on a 
TRP-deficient microenvironment (105, 107, 108). KYN has been 
found to moderately impair the killing ability of natural killer 
cells, whereas KYN and 3-HAA both exert proapoptotic and 
suppressive effect on these cells (105, 106, 109). Additionally, 
TRP depletion and kynurenine metabolites act synergistically 
to downregulate expression of the T cell receptor ζ-chain on 
CD8+ T lymphocytes consequently reducing their cytotoxic 
capabilities (110). Third, the combination of the presence of 
kynurenine metabolites and TRP depletion increases the number 
of regulatory T cells positive for forkhead box P3 (FOXP3+) via 
TGFβ induction and its impact on naive T cells (110). Moreover, 
downstream TRP catabolites are able to shift dendritic cells to 
a tolerogenic phenotype independent of the microenvironment 

TRP levels, i.e., without functional IDO-1 (111, 112). Therefore, 
IDO-1 competent dendritic cells also contribute to KP-mediated 
immune-suppression by contributing to a tolerogenic environ-
ment. Together, this plays a substantial role in the development 
of immune tolerance and the induction of a negative feedback 
loop that regulates the immune response (113).

KP and immune Modulation 
in the Pathomechanism of MS
The importance of IDO-1 in immune modulation particularly to 
counteract autoimmunity has been illustrated in the EAE mouse 
model. Autoreactive CD4+ TH1 cells and TH17 cells mediate the 
autoimmune characteristics present in CNS inflammation in MS 
and in the EAE animal model (114). Indeed, there is widespread 
evidence that shows the potential of IDO-1 activation to reduce 
autoimmune inflammation in the CNS. Furthermore, pharmaco-
logical inhibition or genetic ablation of IDO-1 exacerbates EAE 
clinical scores, associated with decreased TReg cell responses and 
increased TH1 and TH17 responses (68, 115, 116). Conversely, the 
clinical symptoms of EAE can be ameliorated by administration 
of 3-HAA or its synthetic derivative, Tranilast, and are likely 
associated with an enhanced expression of TGFβ by 3-HAA. This 
possibly leads to an increase in the number of TReg cells, which 
can suppress the responses of autoreactive T cells, including the 
TH17 response (115). Furthermore, Xiao et al. reported that den-
dritic cells pretreated with IFN-γ alleviated the histopathological 
and clinical characteristics of EAE (117). It is hypothesized that 
IDO-1 activation is a self-limiting mechanism as both IDO-1 
and KMO are induced by the autoreactive, IFN-γ secreting TH1 
cells (37). This response could be designed to counteract the 
detrimental effects to the pathological elevation of kynurenine 
metabolites. This is supported by the observation of toxic levels 
of QUIN and 3-HK that are reached in the spinal cord but not the 
brain in EAE animals with concomitant increased activity and 
expression of KMO (67, 117, 118).

The neuroinflammatory process can be significantly decreased 
by inhibition of IDO-1 enzyme activity, considerably reducing 
disease exacerbation (119). Monaco et al. revealed corresponding 
clinical evidence of depressed TRP levels in both serum and CSF 
of MS patients (69). A subsequent study has yielded conflicting 
results to these findings, however, a negative correlation between 
neopterin, a marker of macrophage activity, and TRP levels in 
the CSF was observed, reflecting IFN-γ-induced macrophage 
induction and IDO-1 activation, respectively (120). Although 
an additional clinical study this year found an increase in IDO-1 
activation via QUIN/KYN ratios in MS patients compared with 
control, there were no significant differences in kynurenine 
metabolite levels between MS and other neuroinflammatory 
disorders. However, some patterns emerged upon stratification of 
disease into acute and chronic phases of disease course such as a 
high QUIN/KYN ratio in RRMS patients who are in relapse com-
pared with the remission phase. This suggests a high degree of 
variation in the course of neuroinflammation in MS (74). Initial 
IDO-1 activation is thought to be beneficial in MS; however, 
there is an emergence of a double-edged sword that is present 
following prolonged exposure. During CNS inflammation, 
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FiguRe 3 | Passage of activated lymphocytes and monocytes across 
a compromised blood–brain barrier leads to dysregulation KP 
metabolism. Neurotoxic metabolites QUIN and 3-hydroxykynurenine are 
increased, while formation of neuroprotective kynurenic acid (KYNA) is not 
favored.
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increased IDO-1 activity generates kynurenine metabolites that 
are neuroactive, specifically neurotoxic QUIN (121). Therefore, 
although IDO-1 activation acts as an anti-inflammatory, its 
induction could contribute to the neurodegenerative features in 
MS in the long-term.

Peripheral Blood Monocytes as 
a Potent Source of inflammatory 
KP Metabolites in MS
Current evidence suggests that excessive activation of the KP in 
mononuclear phagocytes can participate in the pathogenesis of 
MS. Activated monocytes and monocyte-derived macrophages 
(MDMs) are abundantly present in the demyelinating plaques of 
MS patients and their migration from the periphery to the CNS 
is necessary for the development of the MS mouse model, EAE. 
Mononuclear phagocytes, in particular circulating monocytes 
and MDMs, display high levels of pivotal KP enzymes and can 
up regulate their expression in response to inflammation (23). 
Monocytes display considerable plasticity, being found in vari-
ous tissues and organs as resident macrophages, and patrolling 
forms with decreased expression of classical inflammation mol-
ecules (e.g., Ly6C in mice and CD14/16 in humans). Patrolling 
forms carry out immune surveillance of the endothelium and 
rarely extravasate into tissues without immune stimulus or tissue 
damage (122), in which case they are then alternatively regulated 
in classical inflammatory form [reviewed in Ref. (123)]. This 
makes them a potent source of neurotoxic KP metabolites (e.g., 
QUIN and 3-hydroxykynurenine) to contribute to MS pathology 
upon their migration and entry to the brain. Indeed, IFN-γ also 
caused upregulation of KMO and QPRT, two enzymes involved 
in the production of neurotoxic metabolites such as 3-HK and 
QUIN (12, 23).

Studies of the EAE model have reported a distinct rise in the 
level of Ly6Chigh proinflammatory monocytes within the blood 
stream before onset of clinical signs. At disease onset, or during 
relapses, proinflammatory monocytes migrate to the CNS, where 
their numbers directly correlate with the severity of EAE symp-
toms (124–126) and in turn, with elevated levels of neurotoxic 
QUIN in the spinal cord (67). This migration might be facilitated 
by a damaged BBB, one of the earliest clinical findings in MS, 
thought to play a fundamental role in the development of the 
disease [see BBB Breakdown and Entry of Immune Cells as a Key 
Hallmark of Early MS Pathology; Ref. (86, 87)]. To confirm that 
monocyte migration to the CNS is involved in EAE pathogenesis, 
Mishra and colleagues have demonstrated that its inhibition by 
the candidate MS drug Laquinimod prevented the onset of EAE 
and its clinical signs (126). More recently, depletion of phagocy-
totic monocytes by clodronate treatment reduced the severity of 
EAE symptoms and protected against further axonal loss (127).

In humans, early postmortem studies of MS plaques have cor-
related the number of macrophages present in chronic demyeli-
nating lesions to the severity of axonal damage responsible for the 
symptoms of the disease (128, 129). Indeed, monocytes have been 
found in acute demyelinating lesions and in the demyelinating 
edges of chronic lesions (130). Moreover, advanced microscopy, 
through 3D reconstruction of serial block-face scanning electron 

microscopy images, has been used in a pivotal study of EAE mice 
where Yamasaki and colleagues demonstrated that MDMs are 
directly in contact with the axoglial unit and begin demyelina-
tion, as opposed to microglia-derived macrophages that were 
only found adjacent to the lesions and participated in debris 
clearance (131).

The importance of this study and of the evidence linking 
activated mononuclear phagocytes to MS is highlighted by dif-
ferent lines of evidence about the KP in these cells: first, the 
activated MDMs produce 19 times more QUIN than activated 
microglia (23); second, the CNS-resident cells do not possess 
the full enzymatic machinery of the KP and are unable to 
synthesize high quantities of QUIN, but can still produce KYN 
(14, 22,  62); third, extra KYN released by astrocytes in the 
brain can be used by monocytes and MDMs that traffic into the 
brain to synthesize more QUIN (22); fourth, the level of QUIN 
produced by monocytes and MDMs is toxic to neurons and to 
oligodendrocytes (20, 132). Overall, this evidence suggests that 
monocytes and macrophages migrated to the CNS and activated 
by IFN-γ (133) can act as a major reservoir for the secretion and 
accumulation of damaging QUIN in the brain and spinal cord of 
MS patients. Therefore, this lends support to the possibility that 
monocytes and MDMs participate in the pathogenesis of MS via 
dysregulation of the KP and excessive accumulation of QUIN 
and associated neurotoxicity of oligodendrocytes and neurons 
(summarized in Figure 3).

MeCHANiSMS OF TOXiCiTY 
OF KP MeTABOLiTeS

Several decades ago, it was suggested that the kynurenines 
could act as important endogenous modulators and that they 
may be involved in the pathogenesis of not only MS but also 
a number of neurodegenerative diseases such as Alzheimer’s, 
psychological disorders such as schizophrenia and depres-
sion, and neuroinflammatory diseases such as HIV-associated 
neurological disorder (HAND) (57, 59–61, 134–137). Three 
kynurenines in particular, QUIN, 3-HK, and 3-HAA, were 
noted for their ability to cause in  vitro and in  vivo neuronal 
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TABLe 1 | The mechanisms of toxicity following pathological increases in 
neurotoxic KP metabolites.

Metabolite Mechanism Pathology

3-HK ROS formation Oxidative stress, apoptosis, 
potentiation of excitotoxicity

QUIN Generation of free 
radicals, NMDA 
receptor activation

Excitotoxicity, free radical formation, 
mitochondrial dysfunction, apoptosis 
or necrosis, cytoskeletal destabilization

3-HAA Generation of free 
radicals

Oxidative stress, apoptosis
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death at slightly elevated concentrations. At low concentrations 
(≈50 nm), QUIN serves as a substrate for NAD+ production in 
neurons and astrocytes (132).

In pathological conditions, the concentrations of QUIN 
and 3-HK found in the CNS are significantly lower than the 
levels required to perturb neuronal survival (102). Rather, it 
is considered that these molecules become markedly potent 
neurotoxins during chronic exposure to low levels and those 
different populations of neurons are selectively affected by each 
agent (60). Chiarugi et  al. demonstrated that in murine mixed 
cortical cells, prolonged exposure to QUIN and 3-HK from 24 
to 72 h, significantly decreased neurotoxic thresholds from 100 
to 1 μM, respectively, and that exposure to a combination of the 
two compounds also increased the neurotoxic effects (138). This 
is of relevance to pathological conditions where both QUIN and 
3-HK are simultaneously released and concomitantly accumulate 
to levels that are neurotoxic leading to chronic exposure of CNS 
cells (7). QUIN neurotoxicity is primarily attributed to activation 
of the NMDA receptor and free radical production, and there-
fore shows complex patterns of neurodegeneration, while 3-HK 
and 3-HAA are accepted to have a primary role as pro-oxidant 
metabolites (Table 1) (138).

Quinolinic Acid
Under normal conditions, QUIN is present in nanomolar concen-
trations in the brain and is catabolized for the synthesis of NAD+. 
At low nanomolar physiological concentrations, QUIN is not toxic 
to neural cells; however, at elevated levels of QUIN (300 nM and 
possibly even as low as 100 nM with chronic exposure) that are 
found in inflammatory microenvironments, QUIN begins to be 
toxic (139). The pathological mechanisms of QUIN neurotoxic-
ity have therefore been found in numerous neurodegenerative 
processes associated with neuroinflammation such as MS.

Two major factors that render QUIN a potent neurotoxin 
is the saturation limit of QPRT, and QUINs ability to act as an 
endogenous weak agonist on the NMDA glutamate receptor. 
The 3-HAO enzyme, which produces QUIN, has an 80-fold 
higher reaction velocity than QPRT, the enzyme which degrades 
QUIN (140). Furthermore, neuronal QPRT is saturated at 
QUIN concentrations that exceed 500  nM (141). This leads to 
the production of QUIN at a faster rate than its conversion to 
NAD+, causing the accumulation of toxic QUIN- and NMDA-
mediated excitotoxicity (142). Furthermore, surrounding cells 
(astrocytes, neurons, and microglia) can take up excess released 

QUIN from the microenvironment, further promoting cellular 
damage. Moreover, astrocytes favor KYNA synthesis as they do 
not express KMO (25), whereas microglia preferentially form 
metabolites of the QUIN branch due to their low expression of 
KAT (102). Thus, astrocytes appear to maximize the synthesis 
of KYNA and alone are neuroprotective. However, it should be 
mentioned that it takes a threefold higher concentration of KA to 
antagonize the same amount of QUIN (143).

The low levels of QUIN in astrocytes are rapidly degraded. 
Indeed, the expression of QPRT by astrocytes is IFN-γ inducible 
and explains the rapid catabolism of QUIN in these cells (22). 
However, the presence of microglia or infiltrating macrophages, 
such as in MS, means that the high levels of KYN produced by 
astrocytes can be metabolized to QUIN by neighboring cells 
(Figure 4) (144). Low levels of neuroprotective PIC may also be 
synthesized in astrocytes, but production is severely compro-
mised by IFN-γ stimulation (25).

NMDA and excitotoxicity
Excitotoxicity is a pathological process that results in neuronal 
damage and death caused by the overactivation of excitatory 
amino acid receptors. Excitatory amino acids are the primary 
excitatory neurotransmitters in the hippocampus and cerebral 
cortex and thus play crucial roles in the psychological functions 
of neurons. Neuronal excitotoxicity typically refers to the exces-
sive exposure to glutamate, the major excitatory neurotransmitter 
in the CNS of mammals (145). QUIN is a selective agonist of 
NMDA receptors, specifically receptor subtypes are composed of 
NR2A and NR2B subunits. Therefore, as the hippocampus and 
striatum contain the widest distribution of NMDA receptors, 
they are areas of the brain most susceptible to QUIN neurotoxic-
ity. Interestingly, neural stem cells (NSCs) in the adult human 
brain are localized to the subventricular zone of the striatum and 
the subgranular zone of the hippocampus (146). Considering 
the importance of adult NSCs in migration and maturation into 
oligodendrocytes following demyelination in MS, their location 
in the regions of the brain that exhibit the highest levels of QUIN 
neurotoxicity, suggests a relationship between KP overactivation 
and the inhibition of remyelination in MS. In support of this 
concept, Croitoru-Lamoury et al. found that IFN-γ stimulation 
and concomitant KP activation in mesenchymal stem cells 
(MSCs) diminished their proliferation and altered their capacity 
to differentiate. Similar to MSCs, NSCs also express the complete 
and functional KP enzyme machinery (147). In addition, there 
is a plethora of studies that have demonstrated that QUIN, as 
well as KYN and 3-HA, have significant effects on proliferation 
and activation in specific T cell subsets (105, 107, 148). These 
studies indicate a key role of the KP in controlling proliferation 
and differentiation in various cell types. If pathophysiological 
concentrations of QUIN do affect NSC proliferation and dif-
ferentiation, it could provide a relevant mechanism by which 
remyelination is hindered in MS. Due to the rapid saturation of 
QPRT, the uptake of QUIN at the synaptic cleft can be delayed, 
causing further stimulation of the NMDA and continual damage 
(149). Prolonged activation of the NMDA receptors impairs cal-
cium homeostasis, generates free radicals through the activation 
of nitric oxide synthesis, and leads to mitochondrial damage and 

28

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiguRe 4 | Schematic summarizing the cytotoxicity mechanisms of QuiN in neural cells. This figure is taken from Ref. (149), under Creative Commons 
license. The significant effects of QUIN on oligodendrocytes have been summarized separately (see Oligodendrocytes Express Only a Subset of KP Enzymes and 
Oligodendrocytes Are Particularly Sensitive to Quinolinic Acid Toxicity).
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initiates programed cell death (150). This induced death has been 
observed at pathological concentrations in vitro with rat oligo-
dendrocytes (1  mM), primary human neurons and astrocytes 
(150 nM), and recently in motor neurons (100 nM) (132, 136, 
151, 152). There is additional evidence showing that QUIN can 
induce NOS activity in both neurons and astrocytes leading to 
increases in both poly(ADP-ribose) polymerase (PARP) activity, 
extracellular lactate dehydrogenase (LDH) activity, and oxidative 
stress through an increase in production of free radicals (149).

Quinolinic acid toxicity is also due to its direct effect 
upon the glutamatergic system, which potentiates its primary 
mechanism of excitotoxicity. In hippocampal slices and cultured 
astrocytes, QUIN has been shown to increase glutamate release 
in the synapses, inhibit its re-uptake, and reduce glutamate to 
glutamine recycling by inhibiting glutamine synthetase activity. 

This elevates synaptic glutamate concentration and potentiates 
excitotoxicity by further overstimulating the NMDA receptor 
(153–157). Therefore, chronic QUIN exposure is similar to the 
pathological effects seen in the neurodegeneration of MS. This 
is in agreement with the findings of Flanagan et al., who found 
a causal relationship between the degree of clinical severity in 
the EAE model and the levels of QUIN in the spinal cord (67).

Free Radical Production
N-methyl-d-aspartic acid receptor activation does not account 
for all of the neurotoxic effects mediated by QUIN. Indeed, 
oxidative stress and the generation of free radicals can occur 
through NMDA receptor-dependent activation or independently 
by the formation of QUIN–iron complexes. It has been shown 
that the QUIN–Fe2+ complex mediates the formation of reactive 
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FiguRe 5 | The Fenton reaction for the production of reactive oxygen 
species.
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oxygen species (ROS) through the Fenton reaction (Figure  5) 
leading to downstream lipid peroxidation and in  vitro DNA 
damage (158).

This effect was attenuated when an alternative ligand for 
iron, the nucleoside analog acyclovir, was added. The removal 
of iron from QUIN inhibited lipid peroxidation and decreased 
the production of superoxide anion radicals demonstrating 
that the ligand identity is important to ROS development 
(159). Supporting this hypothesis, QUIN has also been shown 
to dysregulate redox homeostasis by affecting the endogenous 
antioxidants such as reduced glutathione, and depleting enzymes 
that scavenge free radicals, such as copper/zinc–superoxide 
dismutase (CuZn–SOD). QUIN has been shown to modify 
the activities of several endogenous antioxidants and deplete 
the activity of cytosolic CuZn–SOD, therefore exerting stress 
on primary antioxidant defense mechanisms (160). Moreover, 
these pro-oxidant effects of QUIN can be prevented by treatment 
with different antioxidants such as melatonin and pyruvate. The 
pro-oxidant toxicity of QUIN is likely to occur by decreasing 
the nuclear translocation of the transcription factor NF-E2-
related factor 2 (Nrf2), and important transcriptional activator 
of antioxidant response element (ARE). The Nrf2/ARE pathway 
induces phase II antioxidant enzymes and is therefore an impor-
tant promoter to detoxify oxidants. Tert-butylhydroquinone 
(tBHQ) exhibits antioxidant properties through its ability to 
induce Nrf2 nuclear translocation, thus activating ARE. In rat 
striatal slices, QUIN was observed to decrease nuclear Nrf2, 
while tBHQ protected against QUIN-induced mitochondrial 
dysfunction and lipid peroxidation, and partially recovered 
glutathione-S-transferase activity (161). This suggests that QUIN 
toxicity is also associated with a silencing of phase II antioxidant 
enzymes, thereby generating oxidative stress and simultaneously 
reducing antioxidant defenses.

In recent years, evidence implicates the roles of nitrative and 
oxidative damage and mitochondrial dysfunction in directly 
causing acute axonal damage in new inflammatory lesions in 
MS that may lead to degeneration (4, 162). An in  vivo study 
using confocal microscopy of early lesions in the EAE found free 
radicals caused early mitochondrial damage at inflammation 
sites prior to demyelination (163). Of interest, scavengers of 
reactive oxygen and nitrogen species could reverse this injury, 
indicating a potential neuroprotective strategy. It is thought that 
oxidative and nitrative damage advances both the initial and 
chronic active lesion in MS. Indeed, Haider et al. found that in 
active MS plaques and not in control brain tissue, there were 
high levels of oxidized lipids and DNA. DNA oxidation occurred 
mainly in oligodendrocyte nuclei, which also exhibited signs of 
apoptosis. Additionally, DNA and lipid oxidation correlated sig-
nificantly with inflammation, determined by quantifying human 
leukocyte antigen-D expressing macrophages and microglia and 

CD3+ T cells in the lesions (164). Given the key role of oxida-
tive damage in driving MS pathology, and QUIN-mediated free 
radical production, this could constitute an additional means by 
which the KP contributes to MS.

However, more recent reports have suggested a dual role of 
QUIN in being able to both scavenge and produce ROS, depend-
ing on the chemical environment and its concentration (165). 
Other small molecules that act as antioxidants, such as specific 
vitamins and metabolites, also typically show this double behavior 
and likely play a relevant role in maintaining redox homeostasis 
and oxidative balance. In support of this, studies have indicated 
that lower concentrations of QUIN affect the redox homeostasis 
of iron maintaining the Fe(II)/Fe(III) equilibrium (166). Indeed, 
it has been suggested that at low QUIN concentrations, QUIN 
participates as an antioxidant and that the combination of high 
levels of ROS and QUIN are required for oxidative stress and 
cytotoxicity (166). It should be noted that these experiments 
examined QUIN activity in non-cellular based assays. The com-
plex chemistry of QUIN will be largely milieu dependent and 
based on specific cellular environments.

Cytoskeleton
Quinolinic acid has also been shown to induce damage to den-
drites and axons with recent evidence showing that toxic QUIN 
levels phosphorylate structural proteins, thereby destabilizing the 
cytoskeleton (167, 168). The cytoskeleton is vital for neuronal cell 
shape and function and is involved in maintaining synapse for-
mation, internal transport of molecules, and neurite outgrowth. 
Furthermore, it has been well established that axonal injury, 
including axonal transport disruption, is prevalent in active 
MS lesions (169). Acute intrastriatal administration of QUIN 
was found to cause NMDA-mediated Ca2+ influx and oxidative 
stress that resulted in the hyperphosphorylation of intermediate 
filaments in neural striatal cells (149, 168). In rat striatal slices, 
100 μM QUIN altered the cytoskeletal homeostasis of both astro-
cytes and neurons. In astrocytes, QUIN’s actions were mediated 
by a rise in Ca2+ influx through L-type voltage-dependent Ca2+ 
channels (L-VDCC) and NMDA receptors, whereas in neurons, 
additional actions involved intracellular Ca2+ and metabotropic 
glutamate receptors. Both cases similarly result in a cascade of 
second messenger-dependent kinase activation, the phospho-
rylation of domain sites on neurofilament subunits and GFAP 
and irregular assembly of intermediate filaments in both glia and 
neuronal cells (167, 170, 171).

Additionally, work performed by Rahman et al. demonstrated 
that prolonged exposure to QUIN-induced significant changes 
to the structure of human neurons including decreasing orga-
nelles, dendritic beading, and the disruption of microtubules. 
The observed structural perturbations were associated with a 
decrease in major tau phosphatases expression and activity and 
consequently a concomitant increase in tau phosphorylation at 
multiple sites (168). In line with this evidence, Anderson et al. 
identified irregular tau phosphorylation in the EAE model and 
in progressive MS patients (169). Abnormal tau phosphorylation 
and insoluble tau accumulation is associated with both axonal 
and neuronal loss, which parallels the transition of relapse-
remitting to the chronic, secondary progressive stage in EAE. 
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Analysis of secondary progressive brain tissue in humans with 
MS revealed significant abnormal phosphorylated tau and 
insoluble tau formation. This observation was focused on areas 
dominated by demyelination, gliosis, and neuronal injury. Given 
that QUIN has direct effects on gliosis, neuron survival, and tau 
phosphorylation, this further supports a role for QUIN in the 
neurodegeneration associated with MS. Interestingly, QUIN 
may also have an effect on intracellular Ca2+ signaling as QUIN-
induced NMDA receptor overstimulation causes early damage to 
the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump, 
thereby disturbing intracellular Ca2+ regulations (172).

3-Hydroxykynurenine
Similar to QUIN, the plasma, brain, and spinal cord levels of 3-HK 
are elevated in EAE rats (118). There is evidence that 3-HK is a 
neurotoxic metabolite and it, therefore, may have an important 
role in the neurodegeneration of MS (173). To date, there is a mul-
titude of literature providing evidence that 3-HK is a pro-oxidant 
and a potent generator of reactive species that induces apoptosis. 
This characterization has been performed in vitro at concentra-
tions that are supraphysiological, ranging from 10 μM to 1 mM. 
These concentrations are considerably higher than both normal 
brain (~0.08–0.3 μM) and pathological brain (0.3–1.2 μM) con-
centrations and could evoke toxicity not observed under normal 
conditions (113). In support of this, there is growing evidence 
suggesting that 3-HK is an endogenous antioxidant. Despite these 
considerations, 3-HK is described as neurotoxic and the dual 
effects of this metabolite will be discussed below.

In the presence of oxygen and at neutral pH, 3-HK easily 
undergoes auto-oxidation forming o-semiaminoquinone. The 
oxidation of 3-HK has been found to (1) generate ROS, which 
promotes lipid oxidation, protein modification, inflamma-
tory response modulation, and DNA damage; (2) reduce trace 
transition metals, including Fe3+ and Cu2+, to pro-oxidants, Fe2+ 
and Cu+, capable of generating further radical formation in 
Fenton-like reactions; (3) o-semiaminoquinone readily reacts 
with oxygen generating quinone-imine, another highly reactive 
product which also participates in additional oxidative reactions 
(113). In line with this, 3-HK and 3-HAA (10  μM) induced 
neuronal cell death with apoptotic features following generation 
of ROS in primary striatal neurons. This toxicity was dependent 
on its cellular uptake by large neutral amino acid transporters 
in a sodium-dependent process and the increase in intracellular 
ROS, as various antioxidants inhibited this process (174, 175). 
Cell death occurred via p38 death signaling and was independent 
of caspase-3 mechanisms. However, cerebellar granule neurons 
appeared more resistant than striatal cells to HK-induced dam-
age, suggesting toxicity specificity (250 μM) (176, 177).

Interestingly, when human astrocytes are treated with 3-HK at 
concentrations lower than 100 nM, intracellular NAD+ levels are 
significantly augmented. At doses above 100 nM, however, NAD+ 
levels are significantly decreased and extracellular LDH activity is 
increased (178). NAD+ is a molecule involved in many metabolic 
processes and is a vital cofactor for several enzymes. For example, 
NAD+ is a precursor for agents that mobilize calcium and regu-
late gene transcription through chromatin-associated protein 
modification and is a substrate for ADP ribosylation of proteins 

(179, 180). Therefore, alterations in 3-HK concentrations may 
indirectly change (1) gene expression, (2) DNA repair, and (3) 
intracellular Ca2+ levels.

There have been few studies of the in  vivo effect of 3-HK. 
Of these, the most notable examined the synergistic possibility 
of the combination of 3-HK and QUIN in neurotoxicity. In rat 
brains, intrastriatial injection of 3-HK (5 nM) or QUIN (15 nM) 
individually caused no or marginal damage, whereas coinjection 
of the two metabolites caused impaired rotational behavior and 
significant increases in the volume of lesions (113). Notably, 
there was an absence in de novo generation of QUIN suggest-
ing that the in  vivo conversion of QUIN from 3-HK was not 
the mechanism behind the potentiation of QUIN toxicity (181). 
This could be a result of coinjection, as there is a possibility of 
chemical interactions that could modify the reactive components 
of each reagent (113). These findings might also indicate that 
the normal brains capacity to scavenge radicals is sufficient to 
counteract 3-HK-induced radical formation and prevent cellular 
apoptosis (182).

3-HAA
At present, there have been several studies that have examined 
3-HAA activity in conjunction with 3-HK. It has been recognized 
that 3-HAA exhibits similar characteristics to 3-HK to generate 
superoxide anions by undergoing auto-oxidation and, thus, 
initiate apoptosis (183). Recent evidence has also indicated that 
3-HAA has immunomodulatory roles that could play important 
roles in MS (184). This emerging evidence is discussed in Section 
“KP Influence on the Immune System” above.

OLigODeNDROCYTeS AS A TARgeT 
CeLL FOR eLevATeD LeveLS OF KP 
MeTABOLiTeS iN MS

Oligodendrocytes are demyelinated and perish in MS most prob-
ably through the action of autoimmune T cells and associated 
neuroinflammation. As there is substantial influx of immune 
cells into the brain in MS, a significant body of evidence exists 
supporting a dysregulated KP in MS, which can favor the pro-
duction of neurotoxic metabolites which further compromise 
oligodendrocyte health and function and could also contribute to 
neuronal atrophy. The known studies investigating the presence 
of KP metabolites and/or KP action on oligodendrocytes in MS 
are discussed below.

Oligodendrocytes express Only a Subset 
of KP enzymes
Overall, while oligodendrocytes express several KP enzymes and 
may be able to uptake certain KP metabolites and participate 
in their metabolism, they appear not to express IDO-1, mean-
ing that they are incapable of modulating T cell phenotype and 
KP action by metabolizing TRP. Radiolabeled QUIN was not 
detected in rat brain cultured oligodendrocytes after IFN-γ 
stimulation and incubation with radiolabeled TRP (185), lead-
ing to the subsequent conclusion following the study of human 
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primary oligodendrocytes that oligodendrocytes are not capable 
of synthesizing QUIN de novo, rather they metabolize it (62). Via 
PCR, we demonstrated that IDO-1 is not expressed in human 
primary oligodendrocytes, even with IFN-γ stimulation (62), 
though data on adult oligodendrocytes are currently lacking. 
The enzymes tryptophan-2,3-dioxygenase (TDO) and kynure-
nine amino transferases II (KATII) were also not expressed, 
while KAT-I and enzymes further down the KP [KYNU, KMO, 
3-hydroxyanthranilate oxygenase (3-HAO), and QPRT] were 
expressed, and increased in expression with IFN-γ stimulation.

The oligodendrocytes constitutively express the QPRT 
enzyme shows that they have the enzymatic machinery for fur-
ther metabolism of QUIN to the essential cofactor NAD+ (62). 
QPRT was only modestly increased in expression in human oli-
godendrocytes in response to IFN-γ stimulation (62), suggesting 
that in inflammatory environments it could be easily saturated 
(considered further in Section “NMDA and Excitotoxicity”). 
Clearly, with regard to oligodendrocytes, the expression of QPRT 
and function in disease requires further study. Oligodendrocytes 
can also produce the neuroprotective PIC at concentrations of 
45–55 nM [depending on whether IFN-γ stimulus is present (62)]; 
intriguingly, this was present at substantial (≈10-fold) excess 
compared with QUIN (even with IFN-γ stimulus) suggesting the 
predominant balance of the metabolism of the common QUIN/
PIC precursor α-amino-β-carboxymuconate-ε-semialdehyde 
(ACMS) is skewed toward PIC production, or alternatively, that 
excess QUIN in oligodendrocytes is rapidly converted to NAD+ 
via QPRT. Our recent experiments in cultured oligodendrocytes 
[Ref. (20) and discussed in Section “Oligodendrocytes Are 
Parti cularly Sensitive to Quinolinic Acid Toxicity] currently do 
not support the latter hypothesis. The presence and function 
of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase 
(ACMSD) in oligodendrocytes is unknown at present, although 
from other studies its enzymatic activity is known to be partially 
inhibited by KYNA, QUIN, and PIC (186).

Oligodendrocytes Are Particularly 
Sensitive to Quinolinic Acid Toxicity
Quinolinic acid is an NMDA receptor agonist and excitotoxin 
(139, 187), and oligodendrocytes are susceptible to NMDAR-
mediated excitotoxicity with subsequent alterations to Ca2+ and 
other intracellular signaling that culminates in apoptosis (151, 
152, 188–190). Therefore, in the context of activated monocyte 
influx during inflammatory demyelination episodes and secretion 
of QUIN, excitotoxicity induced by QUIN on oligodendrocytes 
is a major consideration in the progression of MS pathology. 
Conventional MS treatments can reduce the frequency of inflam-
matory episodes but do little to counteract the demyelination and 
death of oligodendrocytes (191).

Activated monocytes can enter the brain during BBB break-
down events and secrete QUIN or activate KP in neural cells by 
secretion of IFN-γ. Exposure of oligodendrocytes to excitotoxic 
QUIN at high levels, therefore, constitutes a further insult in 
concert with autoimmune-mediated demyelination. Indeed, we 
recently demonstrated by microscopy that QUIN can be rapidly 
taken up in vitro by cultured oligodendrocyte cell lines (substantial 

uptake was observed within 30–90 min), without significant deg-
radation of QUIN. One possibility for the enhanced uptake is that 
the QPRT enzyme responsible for further metabolism of QUIN 
is saturated at a lower concentration, and hence in inflammatory 
circumstances QUIN accumulates in oligodendrocytes similar 
to that observed in neurons that are associated with Alzheimer’s 
pathology (168).

More importantly to MS pathology, these cells were also very 
sensitive to QUIN toxicity, which induced apoptotic cell death 
(LD50 0.5–1.0  μM in oligodendrocyte cell lines) (20). This is 
supported by the findings of others (151, 152). Apoptosis could 
be completely reversed by treatment with a monoclonal block-
ing antibody recognizing QUIN or by the use of specific IDO-1 
enzyme inhibitors (to abolish QUIN production in monocyte-
lineage cells) (20). In addition to QUIN concentration, chronicity 
of exposure and cell type is likely additional determinants of exci-
totoxic effects on brain cells. In the context of an inflammatory 
microenvironment, T-cell-induced damage to the myelin sheath 
as well as the toxicity induced by the presence of elevated levels of 
monocyte-produced QUIN are likely to significantly contribute 
to apoptosis of oligodendrocytes observed in MS.

Oligodendrocytes express multiple types of glutamate 
receptors, including N-methyl-d-aspartate (NMDA), alpha-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), 
and kainate. In white matter ischemic damage, excitotoxic cell 
death  of oligodendrocytes via AMPA and kainate receptors 
are  most often implicated (190, 192, 193). Oligodendrocytes 
lacking glutamate receptor subunit 2 (GluR2) are susceptible to 
AMPA/Kainate-induced excitotoxicity (190, 194). Spinal gray 
(195) and the myelinating processes of white matter oligodendro-
cytes express some NMDA receptors (188, 189, 196). Subsequent 
work confirmed that oligodendrocytes have an unusual NMDA 
receptor composition compared with neurons or other cells (197). 
Oligodendrocytes do express NR2A and 2B subunits (188), which 
have been confirmed in Xenopus oocytes to bind and be activated 
by QUIN, while NR2C subunits have 10-fold less affinity (198).

Although there is evidence that blockade of NMDA receptors 
is neuroprotective in inflammatory CNS diseases, and indeed can 
improve survival of oligodendrocytes (199, 200), future therapeu-
tic use of this strategy needs to be tempered with an understand-
ing that a “one-size-fits-all” approach such as broadly targeting 
NMDA receptors may not result in complete neurological disease 
resolution, and indeed, could have substantial side-effects includ-
ing effects on other cell types such as neurons (201, 202). Hence, 
in our opinion, there is a clear notion that understanding the role 
of the KP in immune modulation and production of neurotoxic 
metabolites with action on oligodendrocytes could lead to the 
generation of alternative kinds of targeted therapies, which may 
be used as novel treatments for MS and possibly other autoim-
mune diseases.

MODuLATiON OF THe KP AS A 
THeRAPeuTiC STRATegY iN MS

Many therapeutic strategies are currently being pursued to protect 
against dysregulated KP metabolism in neurological diseases 
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[summarized in Ref. (203)]. In the context of MS, current treat-
ments are anti-inflammatory and although they effectively reduce 
the number and duration of relapses they do not appear capable of 
preventing long-term disability and mortality (204). This demon-
strates an obvious lack of therapies that target the neurodegenera-
tive components of the disease and that facilitate remyelination. As 
the KP is highly implicated in the pathophysiology of neurodegen-
eration and neuroinflammation, KP enzyme inhibitors together 
with kynurenine metabolites and their pharmacological analogs, 
could represent promising new therapeutic strategies that could 
target these mechanisms. A synthetic analog of the TRP metabolite 
N-[3,4-dimethoxycinnamoyl]-anthranilic acid (3,4-DAA), known 
commercially as Tranilast, has shown promising results in both 
in vivo and in vitro experiments (Figure 6).

Hertenstein et al. found that 3,4-DAA inhibited CD4+ T cell 
activation and proliferation and naive CD8+ T cells, although 
to a lesser extent (205). EAE animals treated with 3-HK or its 
synthetic derivate, Tranilast, showed reduced symptoms, number 
of relapses, and fewer inflammatory nodes in the spinal cord and 
brain (115, 206). In the EAE mouse model, the activity of KMO is 
significantly increased in spinal cords and this correlates with an 
increase in QUIN and 3-HK to neurotoxic levels. Administration 
of the KMO inhibitor Ro 61-8048 reduced the rise in levels of both 
QUIN and 3-HK, increased neuroprotective KYNA production 
and significantly alleviated disease progression (118). A number 
of immunomodulatory drugs such as leflunomide (the active 
metabolite is Teriflunomide) and Laquinimod, are structurally 
analogous to KYN and KYNA, respectively, and exhibit immu-
nosuppressive properties by promoting a TH2 profile through a 
shift in cytokine balance and inhibiting activated T cells. These 

drugs were shown to ameliorate disease in EAE and Teriflunomide 
passed phase III clinical trials and is currently approved by the 
FDA. Although Laquinimod demonstrated only modest effects on 
the relapse rate in RRMS in phase III trials, it showed significant 
reductions in brain atrophy and is currently in phase III trials for 
PPMS, in which there are currently no approved disease-modify-
ing treatments (207, 208). Together, the immunomodulatory and 
structural similarities of these drug candidates to kynurenines 
strongly implicate kynurenine analogs as novel and intriguing 
therapies for MS. The concept of KP therapies in MS is further 
supported by in  vitro findings that QUIN is toxic to oligoden-
drocytes. Importantly, inhibiting IDO-1 (1-MT or berberine) or 
neutralizing QUIN directly with anti-QUIN antibodies overcame 
the toxicity toward oligodendrocytes that QUIN displayed (20).

Given that QUIN is present at pathophysiological concentra-
tions that correlates with severity in EAE mice, manipulations 
that directly modulate its concentration-such as inhibition of 
IDO-1 or KMO are of considerable interest. However, systemic 
inhibition of IDO-1 has been demonstrated to exacerbate disease 
in EAE mice (18). This is due to the double nature of IDO-1 
activation, where initial activation is immunosuppressive and 
is an important mechanism to counteract the autoimmune 
response; however, prolonged activation leads to the production 
of neurotoxic and oligotoxic kynurenines, thereby contributing 
to the pathology of MS. It is, therefore, likely that the timing of 
intervention is important. It is clear through both experimental 
and indirect evidence that the complex anti-inflammatory and 
neuroprotective properties of the KP metabolites have a funda-
mental link with MS. This warrants screening of these candidate 
drugs and highlights their therapeutic potential in MS.
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MiCROSCOPe iMAgiNg AS A CeNTRAL 
TOOL FOR ADvANCiNg KNOwLeDge 
OF MS PATHOLOgY

This review has discussed (particularly in Sections “The BBB 
Performs a Critical Role in Maintaining Barrier Integrity and 
Permeability, Which Is Lost in MS” and “Peripheral Blood 
Monocytes as a Potent Source of Inflammatory KP Metabolites 
in MS”) the significant achievements which have been generated 
by the use of imaging technology in MS studies, particularly non-
invasive imaging such as MRI, and also correlative microscopy 
and histopathology. For mouse models of MS, multiphoton 
microscopy (Figure 7) has traditionally been the imaging tech-
nique of choice for imaging intact thick tissue sections (>200 μm) 
(209–212). Additionally, the easy availability of intravital imag-
ing technology has greatly expanded the opportunity of directly 
observing the spatio-temporal context in which inflammatory 
events unfold in  situ within the natural microenvironment of 
the CNS (213–215). Therefore, it is fast becoming the preferred 
modality for analyzing neuroinflammation in vivo. The advent of 
highly streamlined surgical protocols used in combination with 
two-photon intravital microscopy (2P-IVM) has proven to be 
powerful for characterizing the cellular and molecular mecha-
nisms that underlie neuroinflammation (216–218). Its applica-
bility across a breadth of neurological disciplines have helped 

identify novel routes of immune cell entry, their locomotion 
patterns, intravascular and transendothelial migration, homing, 
interactions with endothelial, immune, stromal, and neuronal 
cells, among others (219–223). These studies have significantly 
increased our understanding of the initiation and perpetuation 
of inflammation within the CNS and laid an excellent platform 
for making further advances within the field.

Our knowledge of how immune cells are recruited to the CNS; 
navigate through the CNS tissue; respond to self-antigens, patho-
gens, toxic metabolites, etc., and how they contribute to inflam-
matory diseases has been greatly informed by intravital imaging 
studies on EAE, one of the most intensely studied animal models 
of MS (224–228). In the past, EAE studies have been limited by 
the requirement for sophisticated imaging tools that can track 
T cell entry, behavior, and transmigration at cellular and subcel-
lular resolution within the CNS. The complexities of tracking 
T cells in the CNS are related to the unique anatomical barriers 
such as the BBB that partly seclude the CNS from the constantly 
changing microenvironment of the blood stream, and its circulat-
ing immune cells (78, 229, 230). 2P-IVM (fluorochrome excited 
by two photons of 976 nm wavelength) circumvents some of these 
limitations due to its twin advantages of low phototoxicity and 
photobleaching, which enable long-term visualization (~1.5–6 h) 
and better penetrance (250–300 μm) of the CNS tissue (216).

Two-photon intravital microscopy studies have revealed 
that TMBP cells (T cells recognizing oligodendrocyte MBP) first 
appear in the CNS vasculature during the build-up to EAE (225). 
Although it was not possible initially to ascertain the precise 
location of the infiltrating TMBP cells using video microscopy, it is 
now clear that ~80% of the infiltrating TMBP cells arrest and then 
crawl along the inner surface of the vessel wall soon after their 
entry (101). Only TMBP cells that carry specific molecular signa-
tures such as VLA-4 transmigrate through the BBB where they 
spend 80% of their time crawling once again on the abluminal 
surface of the vasculature, before detaching and crawling finally 
on the surface of the neuropil (224, 225). Therefore, infiltrating 
TMBP cells crawl along three different cellular planes at different 
velocities with the end objective of “seeking” and contacting 
perivascular macrophages (PVM) that reside in the perivascular 
space (101, 231).

Real-time imaging studies have shown that after gaining pas-
sage into the perivascular space, TMBP cells make short or long-
lasting contact (>10  min) with PVM, antigen-presenting cells 
that strategically line blood vessels and monitor the environment 
with thin, motile cellular processes (209, 225, 232). Polarization 
of TCR and adhesion molecules such as LFA-1 as well as 
nuclear translocation of fluorescent NFAT, indicative of calcium- 
dependent T cell activation have been reported to occur at these 
contact points (227, 233). Interestingly, perivascular microglial 
and PVM clustering is one of the first pathological alterations 
that occurs in response to BBB disruption, during the build-up 
to EAE (234). As part of this alteration, cell body motility and 
process extension of microglia and PVM are specifically directed 
toward the affected vasculature where BBB disruption occurs. 
Thus, PVM clustering may only serve to enhance the chance of 
TMBP cells encountering cognate antigen and invading the CNS 
parenchyma, besides its reported contribution to axonal damage.
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Studies have shown that a majority of the TMBP cells that invade 
the CNS parenchyma meander through the tissue (233). A small 
number exhibited confined motility, reminiscent of cells that 
have found cognate autoantigen. At first glance, these TMBP cells 
appeared stationary; however, closer examination showed that 
they were remarkably agitated, rapidly extending and retracting 
cell protrusions and migrating at very low velocities through the 
tissue. Expectedly, extended recordings spanning several hours 
were necessary to resolve these fine locomotion patterns of TMBP 
cells at the single cell level, especially since the sum of their 
directionality and length of migration remained close to zero 
(101, 233).

Despite the increasing number of real-time multiphoton 
studies that have yielded tremendous insights into the behavior 
of T cells in the processes leading to lesion formation at the single 
cell level in mouse MS models, application of this technology 
to the study of monocytes has yet to emerge. As described in 
Section “Peripheral Blood Monocytes as a Potent Source of 
Inflammatory KP Metabolites in MS,” evidence supports a role 
of activated monocytes in production of neurotoxic metabolites, 
which could contribute to MS pathology. Therefore, future 
studies to understand the behavior of monocytes as they pass 
into the brain parenchyma and interact closely with cells such as 
oligodendrocytes will provide additional insight to those gained 
recently by serial block-face reconstruction ultrastructure imag-
ing (131).

SuMMARY AND CONCLuSiON

Imaging is now a central tool in MS research and treatment, 
allowing clinicians to evaluate the extent of the pathology and 
effectiveness of treatments while microscopy advances have 
allowed us to, in the case of multiphoton microscopy, peer deep 
into the brain to uncover mechanisms involved in immune cell 
trafficking and BBB dysfunction. Electron microscopy advances 

have also allowed automated processing and imaging of slices of 
tissue sections, allowing the ultrastructure of cell–cell interac-
tions in MS to be confirmed. While MS is traditionally thought 
of in the context of aberrant autoimmune triggering of T cells, 
the multifaceted nature of the disease has emerged through 
increasing evidence of neurodegenerative pathology and the 
involvement of other cell types such as monocytes, and in turn 
signaling systems including the KP. This increasing recognition 
has led to the current notion of MS as involving a substantial 
degenerative disorder component (9). In this context, over the 
past two decades, a substantial body of literature has proven that 
dysregulation of the KP results in overproduction of neurotoxic 
metabolites that can potently kill brain cells. In MS, the extent of 
the pathology and disease progression correlates with elevated 
levels of neurotoxic metabolites which can contribute to the 
death of myelinating oligodendrocytes and their neighboring 
neurons, including during autoimmune inflammatory episodes. 
Therapeutic interventions to reduce the levels of damaging KP 
metabolites and improve oligodendrocyte and neuron survival 
are in continual development and progress toward clinical 
utility.
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Microglia are the essential responders to alimentary, pharmacological, and nanotechno-
logical immunomodulators. These neural cells play multiple roles as surveyors, sculptors, 
and guardians of essential parts of complex neural circuitries. Microglia can play dual 
roles in the central nervous system; they can be deleterious and/or protective. The immu-
nomodulatory effects of alimentary components, gut microbiota, and nanotechnological 
products have been investigated in microglia at the single-cell level and in vivo using 
intravital imaging approaches, and different biochemical assays. This review highlights 
some of the emerging questions and topics from studies involving alimentation, micro-
biota, nanotechnological products, and associated problems in this area of research. 
Some of the advantages and limitations of in vitro and in vivo models used to study the 
neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital 
imaging modalities employed are presented.

Keywords: neuroinflammation, microglia, immunomodulation, nutrition, microbiota–gut–brain axis, intravital 
imaging, nanodelivery systems, nanomedicine

iNTRODUCTiON

Neuroinflammation has been considered a detrimental factor in many neurodegenerative diseases 
(e.g., Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis) (1–4). As the resident immune 
cells of the brain, microglia play a central role in neuroinflammatory processes. Traditionally, 
microglia were considered seminal contributors to neurodegeneration associated with neuroinflam-
mation (5, 6). However, this view is gradually changing (7). Under normal conditions, microglia 
survey the brain and perform essential housekeeping functions, ranging from the scavenging of 
cellular debris to synaptic remodeling, but they switch from “surveyors” to “attackers” or “protectors” 
when challenged by pathogens, injurious stimuli, or nanoparticulates (8–10). If excessively and 
chronically activated, microglia exert deleterious effects in the central nervous system (CNS) by 
secreting proinflammatory cytokines and interfering with synaptic integrity and functions (11, 
12). Microglia exhibit at least four different functions: surveillance, phagocytosis, cytotoxicity, 
and neuroprotection. Depending on the nature and structure of the challenger, as well as the 
intensity, duration, and location of the challenge, activated microglia can take on a protective or 
destructive role (13). Signals from healthy and damaged neurons, astrocytes, and factors from the 
periphery also modulate the phenotype of activated microglia (14–16). Neuroprotection is achieved 
through different modes of their action, e.g., (i) synaptic stripping in development and motoneuron 
regeneration (5), (ii) promotion of neurogenesis in the injured CNS (17, 18), (iii) phagocytosis 
of misfolded proteins and damaged organelles (19, 20), and (iv) production of anti-inflammatory 
mediators, such as interleukin-4, interleukin-10, and transforming growth factor beta (15, 21–24). 
Cytokines, chemokines, neurotrophins, reactive oxygen species, and glutamate are endogenous 
signal molecules exchanged between neurons and glia cells (25–28) that can be modulated by 
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pharmacological agents, but the access of these agents to the 
CNS may be limited by the blood–brain barrier (29, 30). More 
recently, it was shown that the microbiome can affect the integrity 
and function of the blood–brain barrier, as well as the maturation 
and phenotype of microglia (31–34). The emergence of drug 
nanocarriers and nanotechnological probes has facilitated the 
entry of therapeutics into the brain, but some of them exerted 
immunogenicity. The present review will focus on key neural 
factors and pharmacological targets in neuroinflammation, and 
discuss the potential of alimentary and nanotechnological agents 
in modulating immune processes in the brain. The merits and 
pitfalls of in vitro and in vivo models of neuroinflammation will 
be summarized, and the use of intravital imaging modalities to 
investigate neuroinflammation will be reviewed.

MODULATORS OF 
NeUROiNFLAMMATiON

Alimentary and environmental 
Neuroimmunomodulators
Numerous genetic, environmental, and alimentary components 
can modulate neuroinflammation (35–37). For example, pol-
luted urban air contains toxins, droplets, and particulates that 
are inhaled and travel though the blood stream, olfactory, and 
lymphatic systems to the brain, where they have been implicated 
in diseases of the CNS (37). Our daily diet can also affect neural 
cells, thereby altering their functions (38, 39). Rats fed high-fat 
diets were shown to have increased pro-inflammatory cytokines, 
such as tumor necrosis factor alpha (TNF-α), interleukin-6 
(IL-6), and interleukin-1 beta (IL-1β), in the hypothalamus, 
compared to controls fed regular chow (40). The arcuate nucleus 
in the mediobasal hypothalamus is particularly sensitive to 
metabolic factors from the periphery, as it is located near the 
median eminence, a circumventricular organ unprotected by 
the blood–brain barrier (41). The activation of microglia in the 
arcuate nucleus of animals on high-fat diets, thus, demonstrates 
the direct impact of nutrition on neuroinflammation. Dietary 
components have also been used for therapeutic purposes as 
neuroprotective agents. For instance, vitamins E, C, and B have 
been shown to reduce oxidative stress in the brain (42, 43). The 
ketogenic diet is an established treatment for childhood epilepsy 
(44–46). It is thought that the increase in circulating polyunsatu-
rated fatty acids can modulate ion channels, and that inflamma-
tion is altered by increasing circulating beta-hydroxybutyrate 
and activating hydroxy-carboxylic acid receptor 2 in immune 
cells (47–49). Ketogenic diets have since been proposed in 
neurological conditions, such as Alzheimer’s disease and brain 
malignancies, but further clinical studies are required to confirm 
these findings and explain the beneficial effects at the molecular 
level (50–53). The polyunsaturated fatty acid docosahexaenoic 
acid (DHA) is a major component of neuronal cell membranes 
that is metabolized into resolvins and protectins, two families of 
neuroprotective lipid-derived mediators (54–56). Dietary DHA 
was shown to attenuate ischemic brain injury and pro-inflamma-
tory markers in animal models (57–59). We have investigated the 
direct effects of DHA on synaptic integrity and indirect effects 

via microglia in the hippocampal CA1 region. Our studies have 
shown that DHA exerts neuroprotective effects in organotypic 
hippocampal tissue slices by preventing post synaptic spine dete-
rioration (59). We also showed that DHA in microglia attenuates 
LPS-induced inflammation through the remodeling of lipid 
bodies and associated organelles (60). Furthermore, Bailey et al. 
provided evidence for the antioxidant role of lipid bodies in glia 
cells and neural stem cells (61, 62).

In addition to polyunsaturated fatty acids, such as DHA, 
numerous endogenous and exogenous fatty acids with different 
degree of saturation and chain lengths have been investigated 
in models of physiological and pathological conditions. The 
gut microbiota is an important source of small chain fatty acids 
(SCFA). Its population is heavily influenced by diet, and in 
turn, it modulates both the intestinal environment and overall 
human health (63–65). Once absorbed, SCFA directly impact 
on energy homeostasis in the liver, muscles, and adipose tissues, 
thereby affecting obesity and insulin resistance (66). SCFA can 
also affect the CNS by modulating neuroendocrine and cogni-
tive responses, particularly when changes in the gut microbiome 
lead to increased intestinal permeability (34, 67, 68). Emerging 
research on the gut–brain axis has shown that there is a tight 
link between the gut microbiota and the function of neural 
cells. The gut microbiota are necessary for the early and normal 
development of the brain, and contribute in programing the 
hypothalamic–pituitary–adrenal axis (69). In germ-free mice, 
microglia were found to have an immature phenotype, resulting 
in altered immune responses (31). Chronic enteric infections 
and antibiotics can also drastically modify the gut microbiome, 
resulting in neuropsychological symptoms (34, 70). The term 
“psychobiotics” has since been coined, referring to probiotics 
benefiting psychiatric illness, but further clinical studies are 
required to demonstrate the therapeutic benefits (71). While the 
composition and function of the gut microbiota can be affected 
by alimentary components, they can also be influenced by food 
contaminants, including nanoparticulate matter.

Nanotechnological immunomodulators
Mammals have been exposed to airborne, waterborne, food-
borne, and other nanomaterials in the environment for millen-
nia and have developed mechanisms to deal with them (72, 73). 
Nevertheless, the explosion of nanoparticles in electronics, medi-
cal devices, paints, clothing, and cosmetics raised the awareness 
of the nanostructured materials in everyday life, requiring careful 
monitoring and analysis of the level and type of nanoparticles 
in soil, water, and air (74). In recent years, many nanomaterials 
have been designed for the development of diagnostics, delivery 
of therapeutic agents, and implants for the replacement of miss-
ing or impaired organ parts (e.g., joints, heart) (75–78). Some of 
these materials are well tolerated and efficiently eliminated, but 
others induce immune reactions and are toxic. Nanostructured 
materials are mainly recognized by cells of the immune system, 
primarily the mononuclear phagocytic system (MPS) (79). For 
example, internalized carbon nanotubes can be partly degraded 
in macrophages and the extent of biodegradation may be a major 
determinant in the severity of the associated inflammatory 
responses (80). Nanomaterial accumulation in macrophages 
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within clearance organs (e.g., liver, kidneys, and spleen) can 
initiate both acute and chronic inflammation (81, 82). Although 
nanomaterials can cause toxic responses in these organs, tech-
nological manipulations of their morphologies, surfaces, sizes, 
charges, and porosities can minimize adverse effects (83–85). The 
structure–activity relationship of several classes of nanoparticles 
and outcome measures in immune and non-immune cells has 
been previously discussed (86, 87).

Our laboratory is particularly interested in investigating 
the effects of nanomaterials on microglia because of increas-
ing evidence that (1) microglia are the major “consumers” 
of nanoparticles in the CNS (10, 88, 89), (2) microglia and 
macrophages contribute to the maintenance and progression 
of glioblastoma, one of the most complex and deadly brain 
tumors (90), and (3) there is a structural and functional link 
between the CNS and lymphatic vessels (91). The discovery that 
lymphatic vessels lining dural sinuses are gateways between the 
systemic lymphatic system and the brain has recently re-defined 
our understanding of the immune system of the brain and is 
seminal in investigating neuroinflammatory and neurodegen-
erative disorders associated with impairments of the immune 
system. The majority of the studies showing either positive or 
negative effects of nanomaterials on the immune system focused 
on peripheral macrophages. This is understandable considering 
that most foreign materials are taken up by these cells. However, 
brain cancers, such as gliomas, are infiltrated mainly by the 
brain macrophages, the microglia. In fact, the proportion of 
microglia in low-grade gliomas can exceed (>35%) the normal 
microglia contribution (10–15%) in non-neoplastic brains. 
The majority of non-neoplastic cells in gliomas are tumor-
associated macrophages (TAM) either originating from the 
periphery or intrinsic to the brain (90, 92). These cells form 
the microenvironment of the brain tumor and play a major role 
in the maintenance and progression of the cancer cells. They can 
contribute to cancer survival, invasiveness, and proliferation. 
Although the mechanisms underlying microglia stimulation 
of low- and high-grade gliomas are not fully understood, the 
existence of a unique tumor microenvironment resulting from 
the infiltration of central and peripheral macrophages provides 
an opportunity to establish more effective chemotherapeutic 
interventions (93). Achieving this goal is not simple because 
of the considerable diversity and plasticity of macrophages 
and microglia. The common classification of M1 polarization, 
deemed pro-inflammatory, and M2, designating alternatively 
activated macrophages (with subclasses M2a, M2b, and M2c), 
seems inadequate for TAM. RNA microarray analyses indicated 
that about 1000 transcripts were found to be differently expressed 
in glioblastoma-associated microglia and macrophages relative 
to control microglia. The expression patterns only partially 
(<50%) overlapped with reported gene signatures for M1 and 
M2 macrophages (94). Therapeutic interventions targeting glio-
blastoma cells alone usually failed because of the contribution of 
the complex environment made of surrounding cells and brain 
tumor stem cells (95, 96). The problem is that macrophages 
and microglia secrete growth- and invasion-promoting factors, 
whereas brain tumor stem cells residing in perivascular niches 
often give raise to the resistance to radiation and chemotherapy 

(97–100). By contrast, some data suggest that the ketogenic diet 
combined with standard cancer treatment could increase the 
sensitivity of cancer cells toward therapies due to their reliance 
on glycolytic metabolism (101). Such a diet could also decrease 
inflammation caused by infiltrating macrophages and microglia. 
Although the results are encouraging, additional clinical trials 
are required to confirm the previous findings, suggesting the 
beneficial effects of the ketogenic diet (102). Immunomodulation 
of the glioma microenvironment by nanoparticles is also an 
attractive therapeutic avenue to reduce tumor invasiveness and 
growth. Data from preclinical and clinical studies are encourag-
ing despite limitations and hurdles, which need to be overcome 
before this strategy becomes more widely applied (103–105).

In inflammation, immunomodulation using nanoparticles 
could provide suitable alternatives to standard treatment strate-
gies because of the versatility of particle surface modifications, 
compositions, and charges. Particles with a negative surface 
charge can bind to monocytes, marking them for sequestration 
by the spleen and preventing their migration and participation 
at the inflammation site (65). Interesting examples of polyanions 
with anti-inflammatory effects are dendritic polyglycerol sulfates 
(dPGS) (106–108). Studies with dPGS suggest that they are 
effective anti-inflammatory agents per  se with strong inhibi-
tory effects on inflammation-induced degenerative changes in 
microglia and the ability to rescue dendritic spine morphology 
(108). Their L-selectin binding in the low nanomolar range, 
limited impact on blood coagulation, and minor activation of the 
complement system render them attractive anti-inflammatory 
agents (106). A simplified molecular mechanism of dPGS bind-
ing to selectins and their intracellular location in microglia is 
illustrated (Figure 1).

Mechanisms for nanoparticle-induced tolerance and reduction 
of inflammation severity have been previously reviewed in Ref. 
(109). Although there are still numerous unanswered questions 
related to the mechanisms of nanoparticle–immune system inter-
actions, it is anticipated that in the next decade, clinical studies 
will show if negatively charged biodegradable nanoparticles (e.g., 
polylactic–polyglycolic acid) will reduce severe inflammations in 
myocardial infarction and acute encephalitis syndrome. If these 
and similar studies show a positive outcome, nanoparticle-based 
therapies could become a valuable addition to existing therapies 
targeting the immune system (110). However, a series of safety 
testing and validation has to be performed in preclinical and 
clinical investigations. A tiered approach for assessing nanopar-
ticle compatibility with the immune system in vitro during the 
early phase of preclinical development, strategies for designing 
early phase preclinical immunotoxicity screening, and challenges 
associated with these investigations have been reviewed in Ref. 
(86). Despite disappointments due to the lack of standards and 
standardized procedures, limited understanding of underlying 
mechanisms involved in nanoparticle–immune cell interac-
tions, inadequate nanoparticle characterization and incomplete 
knowledge about plasma proteins and their interactions with 
nanoparticle surfaces under physiological and pathological 
conditions, results obtained so far have provided a baseline for 
investigations to harness biocompatible and safe nanomaterials 
for immunomodulation.
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FiGURe 1 | (A) Molecular mechanism of dPGS binding to L-selectins and P-selectin ligands. (B) Fluorescence micrograph of fluorescently labeled dPGS (red) in 
microglia. Nuclei are labeled with Hoechst 33342 (blue).
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MODeLS OF NeUROiNFLAMMATiON

In Vitro Models
Neuroinflammation involves complex intercellular communica-
tion between different neural cell types organized into intricate 
networks. Thus, suitable primary neural cells in 3D cultures 
(prepared either from dissociated cells or organotypic slices) are 
preferable to cell line models grown in 2D (Figure 2). However, 
both types of in vitro models have important limitations (Table 1). 
Phenotypic traits of primary cells are often lost following in vitro 
culture, particularly in monolayer and monocultures. Microglia 
are ramified in the healthy brain and in astrocyte co-cultures, 
but in the absence of astrocytic support, they take on various 
morphologies (e.g., amoeboid, spindle, and rod like) (111). 
Astrocyte-conditioned media are only partly effective in main-
taining the ramified morphology of microglia, because astrocytes 
provide not only soluble (e.g., granulocyte macrophage colony-
stimulating factor and colony-stimulating factor 1) but also non-
diffusible factors. An astrocyte feeder layer is commonly used to 
support microglia and neuronal cultures alike (112, 113). This can 
be achieved using a two-chamber culture system comprising an 
enriched microglia culture separated from an enriched astrocyte 
culture by an inset with a porous membrane.

Immortalized microglia cell lines were initially established 
from rodents in the 1980s, and the first human cell line was 
reported in 1995 (114). N9 and BV2 are among the oldest and 
best-described murine microglia cell lines, while CHME and 
HMO6 are the main human microglia cell lines. Recently, 
another immortalized microglia cell line was generated from 
the adult murine brain (131). Beside the practical advantages of 
an established cell line, immortalized microglia provide a rela-
tively homogeneous cell population that retains the phagocytic 
and secretory abilities of their primary counterparts. However, 
surface markers vary from cell line to cell line, and as with any 
continuous cell culture, phenotypic traits may change as cells 
differentiate over time (114). The systematic analysis of primary 
mouse and human microglia genes and microRNAs identified 
a unique molecular signature that was distinct from peripheral 

immune cells and immortalized microglia cell lines. This striking 
difference between primary and immortalized cells indicates 
that continuous cell lines are not always suitable to answer some 
questions, such as the role of surface markers highly expressed 
in human or mouse microglia [e.g., purinergic receptor P2Y, 
G-protein coupled, 12 (P2ry12) in human, and Fc receptor-like S 
(FCRLS) in mouse microglia] (132, 133).

Brain slices are 3D, ex vivo models with partial brain architec-
ture and synaptic circuitries. These models are used to investigate 
intercellular communication between neural cells under “physi-
ological” and pathological conditions. Organotypic brain cultures 
are usually prepared from postnatal animals (days 3–9), and slices 
are maintained in culture until the maturation of the synaptic 
networks. Although the structural development of organotypic 
brain slices has been found to be largely comparable to that of 
age-matched animals, it has been reported that these ex vivo cul-
tures had increased dendrite numbers and glutamatergic synaptic 
currents resulting from the rewiring of axons damaged during 
the initial slice preparation (120). Nevertheless, the preservation 
of tissue structure and the presence of microglia in organotypic 
brain slices are major advantages in the study of neuroinflamma-
tion. Acute brain slices are similar to organotypic brain cultures. 
They can be harvested from animals of any age, and experiments 
are typically completed within hours. However, the biomechani-
cal stress caused by tissue slicing, presence of damaged cells, and 
release of soluble factors from these cells must be considered 
when interpreting results from such preparations (134).

Inflammation in neural cells can be induced using pathogen-
derived ligands, pro-inflammatory cytokines, and injurious 
stimuli. Among the most common pro-inflammatory stimuli 
is lipopolysaccharide (LPS), an endotoxin from Gram-negative 
bacteria, which binds to toll-like receptor 4 (TLR4) on micro-
glia, astrocytes, oligodendrocytes, and neurons (14, 135). The 
production of cytokines (e.g., interleukin-1 beta, interleukin-6, 
interleukin-18, interleukin-33) by microglia in response to LPS is 
mediated by the inflammasome, a multiprotein complex typically 
composed of pro-caspase-1, the adaptor molecule apoptosis-
associated speck-like protein containing a caspase recruitment 
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FiGURe 2 | Models of different complexity used to study the effects of immunomodulators in neural cells. In vivo models of neuroinflammation are most 
suitable for morphological and functional studies, while in vitro models of neural cells in 2D (primary and immortal dissociated cells) and 3D (neurospheres and brain 
slice cultures) are useful for morphological, mechanistic, and signaling studies. Isolated organelles can be used to investigate mechanisms of inflammation at the 
subcellular level. [*Hippocampus (hippos = horse; campos = sea monster); **neurons, microglia, astrocytes; ***organelles: mitochondria, lipid droplets, lysosomes, 
nucleoli.]
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domain (ASC) and nucleotide-binding oligomerization domain, 
leucine-rich repeat-containing receptor (NLR) family proteins 
(Figure 3) (136). Different types of inflammasomes can assemble 
depending on the nature and intensity of the stimulus, and many 
members of the NLR family can facilitate the assembly (e.g., 
NLRP1, NLRP7, and NLRP12). In particular, the NLR family, 
pyrin domain-containing 3 (NLRP3) inflammasome is common 
in neuroinflammation-associated disorders, and can be regulated 
by a wide variety of factors, such as pathogen-associated molecular 
patterns, damage-associated molecular patterns, COX-2 activity, 
and damaged mitochondria (137–139). In Alzheimer’s disease, 
traumatic brain injuries (TBI), and MS, the NLRP3 inflam-
masome was found to exacerbate inflammatory responses and 
damage mediated by microglia (140–143). Notably, hyperactiva-
tion of microglia characterized by inflammasome activation and 
cytokine release can lead to the programed cell death pyroptosis 
in neural cells (144–146). Pro-inflammatory cytokines are major 
inducers of immune activation, both in the peripheral and central 
immune systems. These include, among others, TNF-α, IFNγ, 
IL-1β, and IL-6 (26, 147, 148). Modulation of IL-6 classical and 
trans-signaling has been exploited for therapeutic interventions 
in several preclinical and clinical trials (149, 150). The evolution-
ary conserved glycoprotein 130 (gp130) system inspired the 
development of sgp130Fc, an effective pharmacological tool to 
distinguish classical from trans-signaling. The results from phase 
III studies with sgp130Fc are awaited  –  it is anticipated that 
blockade of trans-signaling will prove to be superior to the global 
blockade of IL-6 signaling by the neutralizing antibody tocili-
zumab. Recent studies showed that the small molecule LMT-28 
can also block trans-signaling of IL-6 (151). LMT-28 is stable, 
simple to synthesize, and functions by binding directly to gp130. 
Clinical data for its effectiveness in neurological disorders are not 
yet available. Anti-inflammatory cytokines, such as interleukin-4 
and -10, can dampen the effects of pro-inflammatory stimuli. 
The production of these secreted factors can be monitored using 
enzyme-linked immunosorbent assays (ELISA). Inflammation 

induced by ischemic and TBI is difficult to replicate in vitro, but 
some morphological and biochemical changes can be assessed 
in simplified models. For instance, oxygen and glucose depriva-
tion (OGD) is often used to mimic brain ischemia and induce 
the activation of toll-like receptors 2 and 4 in primary cortical 
neurons (135). Transection, compression, hydrostatic pressure, 
and stretch injuries are other examples of brain “injuries in the 
dish” (134).

In Vivo Models
A great number of animal models of neuroinflammation are 
available today, many of which are disease specific (see examples 
in Table 1). Although transgenic animals are popular to examine 
the effects of gene knock-in and knock-out, wild-type animals 
remain necessary to understand the fundamental pathophysiol-
ogy of neuroinflammation. LPS can be injected either systemically 
or intracranially. Circulating LPS rapidly causes an inflammatory 
response in the brain, first at the circumventricular organs, then 
across the CNS (152). Although the choice of LPS serotype has 
little impact on TLR4 stimulation, it can significantly affect 
in vivo studies involving the adaptive immune system. The degree 
of purity of the LPS is also an important factor, as products of 
lesser quality can contain other pathogen-associated molecules 
that will alter the potency of the LPS and the magnitude of the 
inflammatory response. Systemic injection is often administered 
intraperitoneally, intravenously, or by stereotaxic administration 
directly into the brain parenchyma. The stereotaxic apparatus 
holds the head of the animal in place and a stereotaxic atlas is 
used to determine the coordinates for the site at which a small 
hole in the skull should be drilled to access a specific site in the 
brain (153). Until recently, innate recognition of LPS was limited 
to its membrane receptor TLR4/MD-2-stimulated cytokine 
transcription. Therapeutic intervention by Eritoran has achieved 
very moderate success in sepsis (154). This could be in part 
because of the existence of non-canonical LPS signaling induced 
by cytosolic LPS. This non-canonical signaling via intracellular 
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TABLe 1 | Models of immunomodulation: from in vitro to in vivo models.

inflammatory stimuli endpoints Advantages (+) and  
limitations (−)

Reference

In vitro models (2D)

• Immortalized 
cells lines

• Primary 
dissociated 
cells

 – Bacterial toxins (e.g., LPS)
 – Pro-inflammatory cytokines 

(e.g., TNFα)
 – Protein aggregates 

(e.g., amyloid-β)
 – Environmental pollutants 

(e.g., heavy metals)
 – Organic and inorganic 

nanocrystals (e.g., 
cholesterol, quantum dots)

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Phagocytosis
 – Morphology and function of 

organelles (e.g., mitochondria, 
lysosomes)

 – Cell death (e.g., pyroptosis, 
apoptosis)

(+) Homogeneous cell population
(−) Abnormal cell biology

(114–116)

(+) Non-cancerous cells
(+) Cells can be isolated from specific 

brain regions
(−) Finite retention of phenotypic traits

In vitro models (3D)

• Organotypic 
brain slices

• Acute brain 
preparations

 – Bacterial toxins (e.g., LPS)
 – Pro-inflammatory cytokines 

(e.g., TNFα)
 – Protein aggregates (e.g., 

amyloid-β)
 – Environmental pollutants 

(e.g., heavy metals)
 – Organic and inorganic 

nanocrystals (e.g., 
cholesterol, quantum dots)

 – Physical injuries
 – (e.g., “wound in the dish”)

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Morphological and functional 
properties of neurons

 – Cell death (e.g., pyroptosis, 
apoptosis)

(+) Useful to study neurogenesis and 
neural development

(−) Finite retention of neurogenic 
properties 

(117–119)

(+) Preserved brain structure and cell 
population

(−) Damage from slicing can alter the 
maturation of neuronal circuitry

(120–123)

(+) Neuronal circuitry close to in vivo 
conditions

(+) Cultures can be derived from donors 
of any age

(−) Damage from slicing can interfere with 
experiments

(124–126)

In vivo models

Wild-type animals  – Bacterial toxins (e.g., LPS)
 – Pro-inflammatory cytokines 

(e.g., TNFα)
 – Protein aggregates (e.g., 

amyloid-β)
 – Environmental pollutants 

(e.g., heavy metals)
 – Physical injuries (e.g., stroke,
  traumatic brain injury)

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Circuit integrity
 – Cognitive and physical performance
 – Clinical signs of pain and distress, 

weight and survival

(+) Complete, normal biological system
(+) Useful to study cognitive and 

physical functions
(−) Variability between animals
(−) Higher cost and logistic  

requirements 

(1, 127–130)

Transgenic 
animals

• Knock-in
• Knock-out
• Optogenetic

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Circuit integrity
 – Cognitive and physical performance
 – Clinical signs of pain and distress, 

weight and survival
 – Tracking of bioluminescent or 

fluorescent tags 

(+) Complete, normal biological system
(+) Possible to study cognitive and 

physical functions
(−) Variability between animals
(−) Higher cost and logistic requirements
(−) Off-target effects and mosaicism
(−) Breeding problems and lower survival 

rates
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LPS activates pro-inflammatory caspases – caspase-11 in mice 
and caspase-4/5 in humans  –  and does not depend on TLR4 
(155–157). LPS binding to caspases induces their oligomeriza-
tion, which is a prerequisite for caspase activation. A simplified 
model of canonical and non-canonical signaling by LPS is 
illustrated (Figure  4). Resulting CNS complications, such as 
encephalopathy, are mainly mediated by neuroinflammation and 
oxidative stress (158). Aside from LPS administration, inflam-
mation can be induced more globally by bacterial infections. 
A standard method to induce polymicrobial sepsis is cecal liga-
tion (159). It is easily performed, and the severity of the disease 
can be controlled to a certain extent (160). However, there is a 

high mortality rate, and variable outcomes have been observed 
between animals and laboratories (161).

Inflammatory processes in transgenic models of neuroinflam-
mation often result indirectly from the expression of a disease-
specific mutant gene, and most models were developed for the 
study of neurodegenerative diseases. The APP/PS1 mouse model, 
for instance, is used in the study of Alzheimer’s disease. These 
mice express a chimeric amyloid precursor protein and a mutant 
human presenilin-1, causing the accumulation of amyloid-beta 
plaques by the age of 6  months, extensive neuroinflammation 
and, later on, memory impairment (162). By contrast, it was 
recently suggested that the amyloid beta peptide can protect 
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FiGURe 3 | Organellar remodeling in inflammation. Multiple pro-inflammatory stimuli can disrupt redox homeostasis in microglia. Mitochondria are the major 
source of reactive oxygen species (ROS). Excessive ROS induces the formation of lipid bodies and impairs their communication with intracellular organelles. Several 
signal transduction pathways implicated in inflammation converge on the inflammasome. Inflammasome activation leads to the caspase activation and cytokine 
release. Modulation of these pathways can lead to resolution of inflammation or exacerbation with pyroptotic cell death.
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against microbial infection in a mouse model of Alzheimer’s 
disease (163). This is an intriguing proposition, raising the pos-
sibility that amyloid beta may play a protective role in innate 
immunity through its binding to microbial cell walls via heparin-
binding domains. In the adeno-associated virus-alpha-synuclein 
mouse model of Parkinson’s disease, the animal expresses alpha-
synuclein under the control of a viral promoter. This results in 
the loss of dopaminergic neurons, as well as the activation of 
microglia (164). For the study of amyotrophic lateral sclerosis, 
transgenic mice expressing a mutant superoxide dismutase 1 gene 
were observed to show astrocyte and microglia activation, lead-
ing to motoneuron degeneration and muscle atrophy (165, 166). 
Transgenic mouse models used to investigate neuroinflammation 
can provide valuable information on morphological, biochemical, 
and functional changes in neural cells, but they have limitations 
that must be considered in the context of human pathology (1). 
Other knock-out and knock-in animals have also been employed 
to study the role of key mediators of neuroinflammation. 
Caspase-1 knock-out mice, for example, seemed more resistant 
to ischemia-induced neural cell death than wild-type animals 
(167). More recently, the clustered regularly interspaced short 
palindromic repeats (CRISPR) and CRISPR-associated protein-9 
(Cas9) gene editing technique has generated considerable excite-
ment, as it was successful in targeting single or multiple genes 
in the mouse brain (168). The technique allows the generation 

of mutant animals with ease and efficiency compared to the 
traditional transfection of mouse embryonic stem cells. However, 
emerging problems include off-site effects and mosaicism (169).

iNTRAviTAL iMAGiNG OF 
NeUROiNFLAMMATiON

A great variety of reporters and probes are currently available to 
investigate neuroinflammation at the cellular level (170–173). 
Cellular events of interest include the migration and phagocytic 
activity of microglia, the infiltration of peripheral immune cells, as 
well as the production of secreted factors, metabolism, and viabil-
ity of neural cells. Intravital imaging is useful to study the patho-
physiology of neuroinflammation in a non-invasive manner, but 
an important limitation is the scattering and absorbance of light 
entering biological tissues. The availability of strong reporters and 
powerful imaging modalities have allowed for better detection 
and facilitated the generation of quantitative data from inves-
tigated signals while minimizing autofluorescence. The natural 
fluorescence of different tissues can mask signals from fluorescent 
probes. Lipofuscin, which can be excited anywhere in the range 
of 360–647  nm, is commonly found in neurons and glia cells, 
and increases with animal age. The imaging of green fluorescent 
protein, one of the most common and popular fluorescent labels, 
can also be hindered by a subset of green autofluorescent cells 
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FiGURe 4 | LPS and iL-6 signaling in microglia. LPS can interact with membrane-bound TLR4 (canonical signaling) or can enter the cytosol independently from TLR4 
(non-canonical signaling). The major cytosolic receptors for LPS are pro-inflammatory caspases. IL-6 binds either to the membrane receptor IL-6R (mIL-6R; classical 
signaling) or to the soluble IL-6 receptor (sIL-6R; trans-signaling). These receptor complexes subsequently bind to gp130 to initiate intracellular signaling cascades.
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in the rat cortex and hippocampus (174). In tissue sections, the 
risk of false positives can be reduced by using autofluorescence 
quenchers, such as copper sulfate (175). The choice of fluoro-
phores emitting in the near-infrared spectrum can be made to 
avoid this issue. Imaging of structural and functional changes in 
the living brain can be performed using open-skull preparations, 
where a small window in the skull is protected by a glass coverslip. 
Following the implantation of the cranial window, a recovery 
time is necessary to avoid inflammation caused by the surgery 
(176, 177). However, long-term imaging using the open-skull 
technique can be obscured by bone re-growth and the thickening 
of the meninges (178). Imaging of the cortex using the thinned-
skull cranial window technique is useful when longer intervals 
are needed in between imaging sessions. However, repeated 
imaging requires the re-thinning of the skull, which has to be 
carefully monitored to avoid cortical trauma and inflammation 
(179, 180). For both imaging techniques, two-photon microscopy 
in the near infrared region is suitable to avoid photobleaching and 
photodamage.

Transgenic animals expressing luciferase in glia cells have 
been employed to track and image processes in neuroinflam-
mation at the cellular level (181–183). Our studies have shown 
marked activation of microglia, pro-inflammatory caspases, and 
astrocytes by nanocrystals (184–186). Data from these studies 
showed that stable nanocrystals injected directly into the paren-
chyma of mice induced transient astrocyte activation, suggesting 
that only nanocrystals adequately coated with polyethylene glycol 
(PEG) are suitable nanotechnological tools. Glia cells were also 

activated by gold nanoparticles, depending on the nanoparticles’ 
morphology (10). Activation of glia cells is often accompanied by 
the activation of inflammatory caspases and caspases implicated 
in apoptosis (187). Nanosensors for caspases have been devel-
oped, and examples of constructs for these sensors are illustrated 
in Figure 5 (170, 188).

A whole palette of fluorescent proteins, mostly mutant 
derivatives of the jellyfish’s green fluorescent protein, have also 
been employed to “illuminate” the brain. The use of cell-type-
specific fluorescent labels allowed to map brain structures and 
to distinguish different cell populations with greater accuracy. 
High-resolution pictures have been recorded in recent years, and 
unprecedented 3D images and videos have been produced from 
fluorescently labeled brain tissues (189, 190). Although the qual-
ity of these imaging techniques remains variable and is dependent 
on the success of the genetic probes and the available imaging 
modalities, these techniques have been instrumental in under-
standing structural and functional aspects of the CNS – includ-
ing glia–neuron interactions. Optogenetics have also been used 
to study light-responsive channels and other proteins in neural 
cells (191–193). For instance, the selective expression of chan-
nelrhodopsin-2, a light-responsive membrane channel, has been 
employed to study calcium signaling in astrocytes in  vitro and 
in  vivo (194). Optogenetic tools could, thus, be used to reveal 
the contribution of microglia in neuroinflammatory processes 
(195). Although optogenetics has generated valuable informa-
tion on macromolecules in cells, this approach cannot be applied 
to investigate small molecules, such as phospholipids. More 
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FiGURe 5 | (A) Schematic representation of a quantum dot-based sensor for caspase activity. In the absence of caspase activity, there is fluorescence resonance 
energy transfer (FRET) between the quantum dot (QD) and the rhodamine molecule (Rd), and the fluorescence of the QD is quenched. In the presence of caspase 
activity, FRET is disrupted, and the QD is fluorescent. (B) Schematic representation of a ratiometric biosensor for caspase activity. In the absence of caspase activity, 
the dimerization-dependent green fluorescent protein (GFP) is dimerized with the partner protein B and is retained in the cytoplasm through a nuclear exclusion 
signal (NES). In the presence of caspase activity, the dimerization is disrupted, and B translocated to the nucleus using a nuclear localization signal (NLS), and 
associates with the dimerization-dependent red fluorescent protein (RFP). As a result, green fluorescence in the cytoplasm fades, and red fluorescence in the 
nucleus increases.
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recently, the approach of optolipidomics was used to study the 
processing of mitochondria-specific cardiolipins in apoptosis 
(196). Mitochondrial functions are often impaired in inflam-
matory processes, and the combination of optogenetics and 
optolipidomics could provide complementary information on 
underlying intricacies in neuroinflammation.

CONCLUSiON

Neuroinflammation is considered a significant contributor in 
many neurodegenerative diseases. Microglia are the immune cells 
of the CNS, and are modulated by numerous factors, including 
alimentary products and the gut microbiome. Nanoparticulates 
have emerged as a new group of “xenobiotics” that must be thor-
oughly characterized prior to investigating their immunomodu-
latory effects in the CNS and elsewhere. Nanotechnology offers 
a wide selection of shape- and size-tunable probes, ranging from 
quantum dots to fluorescently labeled polymeric constructs (163). 
Nanoprobes can be brighter and more stable than genetic probes, 
and designed to “activate” in response to a particular stimuli, such 
as light or acidic pH. However, nanotechnological probes are 
often large and cannot reach desirable intracellular locations. In 
addition, these probes are complex and relatively little is known 
about their stability in vivo, as well as their pharmacokinetics and 
pharmacodynamics (186, 187). It is well established that the bio-
logical identity of a nanoparticle is distinct from its well-defined 
chemical identity. Serum protein binding, sensitivity to pH, and 
clearance rates are all factors affecting the immunogenicity and 
fate of a nanoparticle in  vivo (146, 147). On  the other hand, 

nanoparticle-induced immune responses can be exploited for 
improving vaccine efficiency and boost the immune system in 
pathologies with weakened immune responsiveness (197–199). 
Diverse fluorescent nanostructures can provide tools for the 
tracking and imaging of complex networks in different cell types 
in a spatio-temporal manner. The combined use of nanotech-
nological tools and advanced intravital imaging techniques can, 
thus, provide unprecedented insight into the mechanisms of 
neuroinflammation. Exciting data related to brain abnormalities 
implicating glial cells come from gene editing techniques, such as 
CRISPR/Cas9 (168). Animal studies exploiting these approaches 
in mice models of neurodegenerative diseases will help to reveal 
intricacies in neural circuitries under physiological conditions 
and mechanisms involved in multifactorial diseases associated 
with neuroinflammation.
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Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is char-
acterized by a progressive decline of cognitive functions. The neuropathological features 
of AD include amyloid beta (Aβ) deposition, intracellular neurofibrillary tangles derived 
from the cytoskeletal hyperphosphorylated tau protein, amyloid angiopathy, the loss of 
synapses, and neuronal degeneration. In the last decade, inflammation has emerged as a 
key feature of AD, but most studies have focused on the role of microglia-driven neuroin-
flammation mechanisms. A dysfunctional blood–brain barrier has also been implicated in 
the pathogenesis of AD, and several studies have demonstrated that the vascular depo-
sition of Aβ induces the expression of adhesion molecules and alters the expression of 
tight junction proteins, potentially facilitating the transmigration of circulating leukocytes. 
Two-photon laser scanning microscopy (TPLSM) has become an indispensable tool to 
dissect the molecular mechanisms controlling leukocyte trafficking in the central nervous 
system (CNS). Recent TPLSM studies have shown that vascular deposition of Aβ in the 
CNS promotes intraluminal neutrophil adhesion and crawling on the brain endothelium 
and also that neutrophils extravasate in the parenchyma preferentially in areas with Aβ 
deposits. These studies have also highlighted a role for LFA-1 integrin in neutrophil accu-
mulation in the CNS of AD-like disease models, revealing that LFA-1 inhibition reduces 
the corresponding cognitive deficit and AD neuropathology. In this article, we consider 
how current imaging techniques can help to unravel new inflammation mechanisms in 
the pathogenesis of AD and identify novel therapeutic strategies to treat the disease by 
interfering with leukocyte trafficking mechanisms.

Keywords: Alzheimer’s disease, leukocyte trafficking, two-photon laser scanning microscopy

iNTRODUCTiON

Alzheimer’s disease (AD) is the most common neurodegenerative cause of dementia in the elderly 
and is characterized by a progressive deterioration of cognitive functions. The neuropathological 
features include amyloid beta (Aβ) neuritic plaques, neurofibrillary tangles (NFTs) comprising 
aggregates of hyperphosphorylated microtubule tau protein, amyloid angiopathy, and the loss of 
neurons and synapses (1). The major pathogenic concept in the field of AD research is the amyloid 
cascade hypothesis, which states that the sequence of pathological events leading to AD is character-
ized by the accumulation of Aβ peptides resulting from the aberrant processing of amyloid precursor 
protein (APP) and dysfunctional Aβ clearance, followed by the deposition of NFTs and the onset of 
synaptic dysfunction and neuronal loss. Aβ peptides are formed by the proteolytic cleavage of APP 
due to the sequential activities of β-site APP-cleaving enzyme 1 (BACE-1) (β-secretase), γ-secretase, 
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and a protein complex with presenilin 1 (PS1) at its catalytic core. 
Although amyloid plaques and aggregated tau are both part of 
the neuropathological definition of the disease, numerous stud-
ies suggest that soluble oligomeric forms of Aβ and tau are the 
predominant mediators of cytotoxicity in AD (2).

Alzheimer’s disease pathology is also characterized by an 
inflammatory response primarily driven by cytokines and the 
intrinsic myeloid cells in the brain, which are known as microglia 
(3). It is now widely accepted that microglia-mediated neuro-
inflammatory responses may promote the neurodegeneration 
observed in AD (1, 3). Microglial activation precedes neuropil 
loss in AD patients, and recent genome-wide association stud-
ies have revealed that microglial genes, such as CD33, TREM2, 
and HLA-DR, are associated with susceptibility to the late-onset 
form of the disease (3). Furthermore, in response to Aβ or NFTs, 
microglial cells produce proinflammatory cytokines, chemokines, 
and complement peptides, which can recruit leukocyte sub-
populations to the brain. Aβ also stimulates microglia to produce 
reactive nitrogen intermediates, such as nitric oxide (NO) and 
reactive oxygen species (ROS), and the resulting oxidative stress 
induces neuronal damage (3).

Circulating leukocytes may also play a role in the inflam-
mation process during AD. The migration of leukocytes from 
blood vessels into the central nervous system (CNS) involves a 
sequence of adhesion and activation events including (1) capture 
(tethering) and rolling, which are mediated by the interactions 
between selectins and mucins, and/or between integrins and 
proteins with immunoglobulin domains; (2) activation induced 
by chemokines, resulting in the subsequent activation of integ-
rins; (3) arrest mediated by integrins and their counter-ligands; 
and (4) diapedesis or transmigration (4). Additional steps may 
include slow rolling, adhesion strengthening and spreading, and 
intravascular crawling (5). Leukocyte trafficking in the CNS 
during inflammatory diseases is mediated predominantly by 
endothelial E-selectin, P-selectin, and their mucin ligands, as well 
as leukocyte integrins including α4β1 (also known as very late 
antigen 4, VLA-4) and αLβ2 (also known as leukocyte function-
associated antigen 1, LFA-1), which bind the endothelial vascular 
cell adhesion molecule (VCAM-1) and intercellular cell adhesion 
molecule (ICAM-1), respectively.

The role of circulating immune system cells in AD-related 
brain damage is poorly understood, but the use of in vivo imag-
ing techniques, such as two-photon laser scanning microscopy 
(TPLSM), can provide insights into the mechanisms controlling 
leukocyte trafficking in AD and may lead to the development 
of novel therapeutic strategies to delay the progression of the 
disease. In this review, we discuss recent work on the role of cir-
culating leukocytes in AD, highlighting the use of in vivo imaging 
to investigate leukocyte recruitment in the CNS and to study the 
basis of novel disease mechanisms.

LeUKOCYTe TRAFFiCKiNG iN AD

Monocytes are circulating leukocytes that play an important role 
in the innate immune response against pathogens. Numerous 
studies have shown that peripheral myeloid cells can infiltrate 
brain tissue and reduce the deposition of Aβ plaques (6–9). 

The entry of monocytes into the CNS is tightly regulated and 
involves the CC-chemokine ligand 2 (CCL2)–CCR2 axis (10). 
Aβ is chemotactic for monocytes, and it induces the secretion 
of proinflammatory cytokines and monocyte transendothelial 
migration in a blood–brain barrier (BBB) model, in a process 
that involves the Aβ receptor (RAGE) and platelet endothelial 
cell adhesion molecule (PECAM-1) expressed on endothelial 
cells (11, 12). In agreement with these in vitro studies, the injec-
tion of synthetic Aβ peptides into the hippocampus triggers 
the trafficking of bone-marrow-derived monocytic cells into 
the brain, which then differentiate into ramified microglia and 
penetrate into the core of Aβ plaques (7, 13). Furthermore, recent 
data indicate that infiltrating monocytes rather than resident 
microglia express TREM2, a receptor involved in myeloid cell 
phagocytosis, further supporting the role of peripheral myeloid 
cells in AD pathogenesis (14). Intravital TPLSM has elegantly 
confirmed that patrolling monocytes are attracted to and crawl 
onto the luminal walls of Aβ-positive veins but not Aβ-positive 
arteries or Aβ-negative blood vessels (15).

Neutrophils are the most abundant population of cells in 
the blood and are the primary mediators of the innate immune 
response. Previous reports (16, 17), including our own results 
(18), have shown that neutrophils do not necessarily need to 
accumulate in tissues in high numbers in order to induce tissue 
damage: intravascular adhesion per se without transmigration is 
sufficient to induce endothelial injury. The role of neutrophils in 
the induction of neuropathological changes and memory deficit 
in AD models has been demonstrated only recently (19). A higher 
number of infiltrating neutrophils was observed at the onset of 
cognitive deficits in 5xFAD and 3xTg-AD mice, especially in 
the cortex and hippocampus. In corresponding TPLSM studies, 
neutrophil extravasation was observed at the early stage of the 
disease inside the cerebral parenchyma, particularly in areas 
adjacent to vascular Aβ deposits or rich in intraparenchymal Aβ 
plaques (19). Similarly, Gr1+-labeled cells also infiltrate the brain 
parenchyma of 5xFAD mice and migrate toward Aβ plaques (20). 
These data, together with previous in vitro results, suggest that Aβ 
plays a role in the chemotaxis and accumulation of neutrophils in 
the brains of AD mice (21, 22). Furthermore, soluble Aβ oligom-
ers rapidly trigger neutrophil adhesion to integrin ligands in vitro 
and induce the transition of LFA-1 integrin from the low- to the 
high-affinity binding state, suggesting that Aβ plays a key role in 
neutrophil intravascular adhesion and migration into the brain 
during AD (19). Neutrophils migrate into the brains of mice with 
AD-like disease by using LFA-1 integrin, which controls both 
intravascular adhesion and intraparenchymal motility. Indeed, 
the treatment of AD-like transgenic mice with monoclonal 
antibodies that block LFA-1 integrin or deplete neutrophils at 
early stages of the disease (when mice start to present memory 
impairment) mitigated the neuropathological hallmarks of AD 
and reversed the cognitive deficits. Most importantly from a 
therapeutic perspective, blocking neutrophil adhesion during the 
early stages of the disease provided a long-term beneficial effect 
on cognition in older mice (19).

The presence of neutrophils in the brains of AD subjects was 
previously suggested by the presence of cells expressing cathepsin 
G, a protease produced specifically by neutrophils, within the 
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AD brain parenchyma and inside cerebral blood vessels (23). 
Additionally, the presence of CAP37, an inflammatory mediator 
expressed in neutrophils, was reported in the blood vessels and 
hippocampal vasculature of AD patients (24, 25). However, the 
first definitive evidence for the presence of neutrophils in the 
AD brain was our confirmation that myeloperoxidase (MPO)+ 
cells are localized in areas with Aβ deposits (19). These cells were 
typically found around the periphery of Aβ plaques at a distance 
of <50 μm, and their non-random distribution suggested that Aβ 
influences the microenvironmental positioning of neutrophils 
inside the AD brain.

Several reports indicate that T cells also accumulate in the 
AD brain (26–29). For example, a greater number of activated 
CD4+ and CD8+ T cells was observed in the blood, adhering to 
the vascular endothelium or migrating into the parenchyma of 
AD patients, compared to healthy controls or patients with other 
types of dementia (4, 26–29). Notably, the majority of T cells in 
AD brain tissue are located in the hippocampus and other limbic 
structures, which are among those regions most affected in AD 
(28). In support of these data, enhanced activated CD4+ and CD8+ 
were recently identified in the cerebrospinal fluid (CSF) of indi-
viduals with mild cognitive impairment (MCI) and patients with 
mild AD, with the proportion of activated CD8+ T cells showing 
the greatest increase (30). In agreement with human data, mouse 
studies have shown that T cells infiltrate the brains of APP/PS1 
mice, and a proportion of these cells secrete interferon (IFN)-γ 
or interleukin (IL)-17 (31). This suggests that the inflammatory 
response stimulated by T cells that have migrated into the AD 
brain may activate microglia and astrocytes and may recruit other 
inflammatory cells that are potentially harmful to the CNS, thus 
exacerbating the pathogenesis of AD.

Taken together, the studies discussed in this section sug-
gest that a role for circulating leukocytes in AD is becoming 
clearer, but further studies are needed to determine the impact 
of specific immune cell populations on the cognitive deficit and 
neuropathological changes in AD. In this context, future TPLSM 
studies may provide key data to increase our understanding of the 
mechanisms controlling leukocyte trafficking in the AD brain, 
as well as interactions between migrating leukocytes and CNS-
resident cells.

TPLSM – THe GeNeRAL CONTeXT

The optical principles of two-photon microscopy are based on 
the absorption of two longer-wavelength lower-energy photons 
as a single quantum of energy by a fluorophore, thus promot-
ing an electron to an excited state (32). TPLSM offers several 
advantages over traditional forms of microscopy for the inves-
tigation of living systems because it provides three-dimensional 
deep-tissue images and single-cell spatiotemporal information 
that other imaging techniques cannot achieve (33–35). TPLSM 
is particularly suitable for high-resolution imaging in intact thick 
tissues, such as whole organs, brain slices, embryos, and live 
animals (intravital imaging). Extensive tissue penetration is pos-
sible due to the reduced scattering of the infrared (IR) excitation 
light compared to one-photon confocal microscopy. The restric-
tion of two-photon excitation solely to the focal plane provides 

most of the advantages over traditional confocal microscopy. 
TPLSM generates fluorescence only within the focal plane, thus 
substantially reducing photobleaching and photodamage outside 
the excitation volume (which represents only a small proportion 
of the overall sample), and thereby prolonging the viability of 
specimens especially during long-term imaging.

The spatiotemporal dynamics of leukocyte trafficking can be 
investigated in vivo using cutting-edge TPLSM technology (36, 
37). This technique has changed our static view of the immune 
system and allowed the dissection of leukocyte migration behav-
ior and cell–cell contacts, which are fundamental requirements 
for an effective immune response (38, 39). Several aspects of 
leukocyte migration that could not be predicted using in  vitro 
systems have been identified, thanks to this advanced technology, 
including leukocyte intravascular crawling and the directional 
movement and polarization of emigrated leukocytes along an 
extravascular chemokine gradient (40, 41).

TPLSM iN THe AD BRAiN

Two-photon laser scanning microscopy has recently contributed 
to several developments in the field of neuroscience, facilitat-
ing studies of cell morphology and function in the living brain. 
TPLSM has become increasingly necessary to study structural and 
functional changes in the living brain because the imaging of neu-
rons, glia, and vasculature provides new insights into the function 
of the CNS under physiological and pathophysiological conditions 
(42–45). Initial studies investigated the structural plasticity of 
dendritic spines and the axons of pyramidal neurons in the mouse 
cortex and how their changes could influence long-term informa-
tion storage (46, 47). TPLSM also revealed the dynamic structure 
of microglial cells that constantly survey the brain parenchyma 
and switch their behavior to an activated state immediately after 
injury (48). In addition to such morphological studies, TPLSM has 
also been used for calcium imaging, thus improving the analysis of 
neuronal signaling and plasticity (49, 50).

In the context of AD, intravital imaging in the brain has mainly 
been used to study amyloid plaque deposition, dendritic spine loss, 
and microglial aggregation around Aβ plaques (6, 51–55). TPLSM 
has allowed the repeated visualization of the same amyloid plaques 
labeled with fluorescent dyes to evaluate their growth in transgenic 
mouse models of AD (51, 55, 56). A refined TPLSM method was 
used to define the kinetics of amyloid plaque growth in Tg2576 
mice (57). The simultaneous imaging of amyloid plaques and neu-
rons labeled with viral-expressed green fluorescent protein (GFP) 
in a transgenic mouse model of AD highlighted the detrimental 
effect of Aβ on the neuronal circuitry (58).

Recent TPLSM studies have confirmed that dendritic spine 
loss after newborn amyloid deposits persists in the proximity of 
amyloid plaques in APP/PS1 mice (59). TPLSM imaging has also 
revealed that the depletion of Aβ in the brains of PDAPP-YFP 
transgenic mice treated with anti-Aβ antibodies promotes the 
rapid recovery of existing amyloid-associated neuritic dystrophy 
in vivo, indicating that axonal and dendritic damage is a partially 
reversible phenomenon (60).

The availability of transgenic mice expressing fluorescent 
cells, such as microglia, has provided a more intimate view of the 
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interactions between amyloid plaques, neuronal structures, and 
cells in the brain parenchyma during the progression of AD (61) 
or astrocytes (62). The rapid appearance of new amyloid plaques 
induces progressive changes in neurites, manifesting as dendritic 
and axonal abnormalities, and the activation and recruitment of 
microglia to areas with amyloid plaques (63).

Two-photon laser scanning microscopy has also facilitated 
the characterization of impaired microglial functionality near 
amyloid deposits in AD mice, suggesting a correlation between 
plaque deposition and microglial behavior (64).

Two-photon laser scanning microscopy analysis of leukocyte 
trafficking in the inflamed CNS has focused almost exclusively 
on infections, stroke, and experimental autoimmune encepha-
lomyelitis (EAE) (65–69). However, recent TPLSM studies have 
shown that circulating leukocytes migrate into the brain paren-
chyma of AD mice, revealing previously unknown mechanisms 
of AD pathogenesis and helping to identify new therapeutic 
strategies for AD (19, 20). Our recent TPLSM experiments have 
demonstrated that circulating neutrophils arrest and perform 
intraluminal crawling preferentially inside blood vessels with Aβ 
deposits, supporting a role for Aβ in leukocyte migration into the 
brain (19). Furthermore, we have recently shown using TPLSM 
that neutrophils isolated from LFA-1-deficient mice cannot 
adhere to the brain vessels and therefore extravasate in the brain 
parenchyma, suggesting that LFA-1 integrin is a key mediator of 
neutrophil trafficking in AD and that targeting this adhesion mol-
ecule may have a therapeutic effect. Future studies are necessary 
to better understand the dynamics of immune cell trafficking in 
AD and TPLSM experiments that allow the imaging and analysis 
of leukocyte trafficking in the AD brain are discussed below.

iMAGiNG THe CORTeX iN AD MiCe

In vivo imaging in the cortex of AD mice can be achieved using 
deeply anesthetized animals with the head fixed on a stereotaxic 
device to reduce movement artifacts. Mice in deep anesthesia can-
not maintain their core body temperature at 35–38°C. Heat lamps 
or a heated stage are therefore required to maintain the correct 
temperature because leukocyte motility is temperature depend-
ent (70). An incision is made along the midline of the scalp to 
expose the skull, and any fascia overlying the skull is scraped away 
(71). Two different surgical preparations can be used for intravital 
TPLSM in the mouse cortex: the thinned skull preparation and 
open cranial window. Both these methods have advantages and 
drawbacks depending on the purpose of the investigation.

The thinned skull technique involves thinning the calvarium 
to approximately 20–30 μm leaving an intact and almost trans-
parent periosteal layer. A circular region of 1–2 mm in diameter 
is prepared with a high-speed micro drill and/or a stainless steel 
burr above the somatosensory and motor cortex. Heat and 
vibration artifacts are minimized during drilling by the frequent 
application of cold saline solution or artificial CSF. Heating is also 
avoided by interrupting the drilling every few seconds. Bone dust 
is removed using compressed air.

The mouse skull consists of two thin layers of compact bone, 
sandwiching a thick layer of spongy tissue. This spongy bone 
contains tiny cavities arranged in concentric circles and multiple 

canaliculi that carry blood vessels. After removing the external 
compact bone, the middle layer of spongy bone is carefully 
thinned to approximately 75% of its original thickness. Some 
bleeding from the blood vessels running through the canaliculi 
may occur during thinning but usually stops spontaneously (72). 
The clear visualization of the pial vasculature gives an indication 
of the skull thickness, then thinning is continued manually using 
a microsurgical blade. This process is repeated until the bone in 
the central region becomes flexible and maximum image clarity 
is achieved (Figures 1A,B). Once the surgical procedure is com-
plete, the thinned skull preparation can be imaged immediately 
(73). When imaging is completed, the wound margins of the scalp 
are closed using a nylon suture.

Skull thinning creates a translucent viewing window allowing 
the visualization of cells up to a depth of 200–300 μm below the 
pial surface, including the meninges and neocortex but not the 
deeper brain structures (48). Imaging through the thinned cranial 
window is a minimally invasive method allowing long acquisition 
sessions because the thinned skull still protects the brain from 
external changes in temperature and pressure (74, 75). Despite 
minor bleeding from diploic vessels, the thinned skull technique 
leaves the majority of anastomoses between the diploic vessels 
and dural vessels intact. However, thinning the skull to a specific 
depth over a large zone is technically challenging due to the cur-
vature of the skull, and the area should therefore be no more than 
3 mm in diameter to avoid damage to the underlying tissue (72). 
Furthermore, in the case of multiple acquisition sessions over time, 
re-thinning the excess bone deposition after few days is necessary 
to prevent skull regrowth occluding the preparation (73). Among 
the two available techniques, the thinned cranial preparation is 
better for the analysis of larger structures, such as cerebral vascu-
lature, amyloid plaques, and leukocytes (19, 51, 52, 76).

The study of AD mechanisms in mice may benefit from the 
creation of a small break with the tip of a needle in the lateral wall 
at the site of the thinned skull preparation to allow the delivery 
of fluorophores into the brain, leaving the thinned region intact. 
The hole is then filled with sterile bone wax, and the animals are 
allowed to recover on a heating pad before being returned to their 
cages. This approach can be used, e.g., to allow the diffusion of 
anti-Aβ antibodies directly labeled with fluorescein or thioflavin 
S, a sensitive and specific fluorescent reporter for the dense-core 
subset of senile plaques. This molecule has been used to label Aβ 
deposits in transgenic mouse models of amyloid deposition, and 
the growth rate of Aβ plaques and cerebral Aβ angiopathy have 
been extensively monitored in vivo (51, 55, 76–78).

The in vivo imaging of senile plaques in AD mice can also be 
achieved using Methoxy-X04, which can be administered intra-
venously or intraperitoneally (79). Methoxy-X04 is a relatively 
small, lipophilic molecule that can enter the brain rapidly and in 
sufficient amounts to allow the sensitive and specific detection of 
Aβ deposits (79). Senile plaques and cerebrovascular Aβ angiopa-
thy in AD-like mice are visible 30 min after intravenous injection 
or 24 h after intraperitoneal injection (79). The intravenous or 
intraperitoneal administration of Methoxy-X04 is a more physi-
ological approach to label Aβ in vivo compared to the creation of a 
small break in the skull near the thinning region to allow delivery 
of fluorophores into the brain.
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thinned skull. The thinned area is enclosed by the black circle. (C) For the open cranial window technique, a small island of cranial bone on the parietal region (black 
circle) is drilled, removed with a pair of sharp forceps, and covered with a circular glass coverslip.
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The second major approach for TSPLM imaging is the open 
cranial window. The most challenging aspect of this technique 
is the surgical skill required for a successful preparation. In this 
procedure, a circular groove is drilled on the parietal region of 
the skull, and the island of cranial bone is carefully removed with 
a pair of sharp forceps. These should be held parallel to the skull 
surface as far as possible to avoid mechanical injury, because the 
dura can be attached to the overlying bone. Immediately after 
removing the region of the skull, slight bleeding above the dura 
may occur from small blood vessels attached to the removed skull 
fragment, but this should stop spontaneously within few seconds. 
The exposed brain tissue is preserved using a drop of 0.9% NaCl. 
A circular glass coverslip (5 mm in diameter) is placed over the 
incision site to cover the window (Figure 1C). After cementing 
the coverslip in place, mice are given a bolus of warm saline 
for rehydration and are allowed to recover from anesthesia for 
7–14 days before imaging. The open cranial window technique 
also makes it unnecessary to introduce a needle-hole in the skull 
to deliver stains and labeling compounds. A recently described 
simple device provides easy physical access to the brain and 
allows long-term imaging (80). After the initial open cranial 
window surgery, a glass coverslip is applied as described above, 
but this has a pre-drilled access hole sealed with biocompatible 
silicone. This device allows many different types of manipulation 
to be carried out for weeks or months, e.g., drug, dye, and virus 
delivery, sample extraction, or electrophysiological recording and 
stimulation, while protecting the brain from infection (80).

The open cranial window provides improved optical access to 
the cortical layers, allowing repeated high-resolution imaging, 
and is preferable for the imaging of small structures, such as 
dendritic spines and filopodia (73, 81). However, removing the 
skull may induce a neuroinflammatory reaction and unavoidable 
meningeal vascular injury, involving the activation of microglia 
and astrocytes in the intact brain (72, 73, 81, 82). In this case, 
only cells lying deeper than 80 μm below the pial surface should 
be considered for image analysis to eliminate possible artifacts 
caused by the surgical preparation.

To conduct multiple imaging sessions, some authors place a 
small metal bar containing a hole for a screw next to the coverslip 

to allow for repositioning of the mouse during subsequent imag-
ing sessions. This approach has been used in Tg2576 mice for the 
long-term in vivo imaging to monitor individual amyloid plaques 
stained with Methoxy-X04 over a period of 6 weeks (55). Other 
studies using the same technique have followed individual Aβ 
plaques in Tg2576 mice for 5 months, confirming the biophysical 
model of Aβ plaque growth in vivo, which had been extrapolated 
from in vitro experiments.

Blood vessels can be labeled by the intravenous injection of 
fluorescent high-molecular-weight dextran (>2000  kDa) or 
semiconductor nanocrystals (quantum dots), which suffer less 
interstitial leakage than dextrans (83) (Figure 2). Leukocytes can 
be labeled ex vivo with vital dyes, such as 7-amino-4-chloromethyl-
coumarin (CMAC, blue), 5- (and 6-) carboxyfluorescein-diacetate 
succinimidyl-ester (CFSE, green), 5- (and 6-) (((4-chloromethyl)
benzoyl)amino)tetramethylrhodamine (CMTMR, orange), 
C42H40ClN3O4 (CMTPX, red), and C33H24N2O9 (SNARF-1, far 
red). The cells can then be adoptively transferred to syngeneic 
recipients allowing tracking for short time periods, usually a few 
days (Figure 2). Alternatively, the use of donor mice expressing 
fluorescent proteins ubiquitously is an option for the in  vivo 
analysis of highly proliferative cell populations (84). Similarly, 
mice expressing fluorescent cell subsets allow the study of specific 
cell populations, such as neutrophils, lymphocytes, microglia, or 
macrophages (61, 85–87). Nowadays, mice engineered for the 
lineage-specific expression of GFP derivatives, such as eCFP and 
eYFP, or dsRed derivatives, such as tdTomato and mCherry, are 
widely used because they are less susceptible to phototoxicity 
and there is no need for cell isolation and labeling. However, 
most of these mice have been generated using GFP derivatives, 
limiting the ability to analyze several reporter genes in the same 
mouse simultaneously. Hence, new IR fluorescent dyes have been 
developed, which also facilitate deeper tissue imaging (88). The 
IR excitation wavelength requires the application of an optical 
parametric oscillator (OPO) to TPLSM. This allows live imaging 
for an extended duration because it reduces the photobleaching 
of fluorophores and phototoxicity-induced tissue damage.

The simultaneous expression of fluorescent proteins or staining 
using fluorescent dyes with different excitation spectra in the same 
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FiGURe 2 | Neutrophils invade the brain of 5xFAD mice. Representative TPLSM images of wild-type control mice (A) and 5xFAD mice (B) showing blood 
cortical vessels labeled in green using 525-nm non-targeted Qdots injected before image acquisition and neutrophils labeled in red with the fluorescent cell tracker 
CMTPX. The skull was exposed above the somatosensory cortex using the thinned skull preparation. We performed acquisition inside the brain parenchyma at a 
depth of approximately 150–250 μm. Images were acquired 16–48 h after cell injection. (A) Neutrophils did not interact with the endothelium of blood vessels in 
wild-type control mice. (B) Numerous neutrophils migrated into the brain parenchyma of 5xFAD mice. Scale bars = 50 μm.
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mouse allows the in  vivo visualization of interactions between 
specific cell populations and Aβ deposits, thus enabling the study 
of AD-specific cellular dynamics in the brain. This approach 
was recently used by our group to demonstrate that neutrophils 
migrate inside the parenchyma of 5xFAD–YFPH mice in areas 
with Aβ plaques labeled with Methoxy-X04, probably driven 
by chemotactic factors, potentially including Aβ peptides (19) 
(Figure 3). Our TPLSM studies also showed that the extravasa-
tion of neutrophils inside the brain of 5xFAD–YFPH mice occurs 
in areas depleted for eYFP fluorescent neurons (Figure 3). We 
speculate that eYFP fluorescent neurons are turned off in the 
zones with neutrophil infiltration, probably due to the cytotoxic 
effects of proinflammatory mediators released by neutrophils, 
such as ROS, enzymes, neutrophil extracellular traps (NETs), 
and cytokines. Alternatively, this may reflect an indirect negative 
effect caused by the activation of microglia. Moreover, we have 
shown that neutrophils display arrest and intraluminal crawling 
preferentially inside blood vessels with labeled Aβ deposits and 
that some cells undergo diapedesis adjacent to vascular Aβ depos-
its (19). TPLSM experiments performed by others have shown 
that neutrophils are attracted inside the brain parenchyma by 
chronic Aβ deposition – initially the cells move randomly outside 
the vessels and then they are suddenly and massively recruited to 
specific Aβ plaques in the brain parenchyma (20).

Two-photon laser scanning microscopy can be used to study 
CNS-resident cells (such as neuronal subsets, astrocytes, micro-
glia, and perivascular macrophages) in relation to each other or 
in relation to infiltrating leukocytes. TPLSM studies have shown 
that local resident microglia react to Aβ plaque formation by 
extending processes and subsequently migrating toward plaques 
in APP/PS1 mice crossed with mice containing fluorescent 
microglia (53). Furthermore, astrocytes in the mouse neocortex 
can be visualized in vivo by intravenous injection of the non-toxic 
molecule sulforhodamine B or by using transgenic mice, in which 
astrocytes express enhanced GFP under the control of the mouse 

glial fibrillary acidic protein (GFAP) promoter (89, 90). TPLSM 
in vivo imaging of astrocyte Ca2+ signaling revealed abnormalities 
in astrocyte activity that may contribute to vascular instability 
and thereby to neuronal cell death in several transgenic mouse 
models of AD (91). However, whether infiltrating leukocytes 
interact with resident neural cells is completely unknown in AD 
and future studies focusing on such interactions will be necessary 
to discover and understand these new disease mechanisms.

iMAGe ACQUiSiTiON AND ANALYSiS

During image acquisition, mice are deeply anesthetized with iso-
flurane and the rate of respiration is controlled. The laser intensity 
and photomultiplier tube (PMT) gain need to be set carefully to 
minimize photodamage. The imaging volume and sampling fre-
quency must be chosen to ensure successful image analysis with 
fine resolution in time and space. Stacks of optical sections are 
serially re-acquired at defined time intervals, and cell centroids 
need to be determined in order to track cell motion. The tracks 
locate the cells at each time point. They consist of serial sets of xyz 
coordinates of single-cell centroids. The tracks are then exported 
as numerical data and are used to calculate specific parameters 
for the analysis of cell migration (36). Specialized software pack-
ages are used for automated 3D cell tracking and the analysis of 
migration paths for each cell. The automatic tracking and analysis 
of individual cells is more reliable when a small proportion of 
cells is labeled, because this reduces the likelihood of overlapping 
pixels representing different cells and allows the distinction of 
individual cells based on their centers of mass.

Several parameters can be used to analyze the migration 
behavior of cells during TPLSM experiments. Cell velocity can 
be represented as either instantaneous velocity or track velocity. 
Instantaneous velocity is a basic parameter derived from the dis-
placement of the cell divided by the elapsed time (70). The track 
velocity is calculated from the median or mean instantaneous 
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FiGURe 3 | Neutrophils infiltrate the brain of 5xFAD–YFPH mice in Aβ-rich areas. Representative TPLSM images of cortical regions in 5xFAD–YFPH mice 
showing YFP neurons in green, neutrophils in red stained with cell tracker CMTPX, and Aβ plaques in blue labeled by the intravenous injection of Methoxy-X04. The 
vessel edges are traced artificially with a white line to show the vessel bed. (A) Neutrophils interact with the vascular endothelium. Scale bar = 50 μm. (B) 
Neutrophils infiltrate into the brain parenchyma, characterized by abundant Aβ plaques and weak neuronal fluorescence. Scale bar = 40 μm.
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velocity computed from all time intervals throughout a track, 
typically 6–14 time points at intervals of 20–50 s (92). Because 
leukocytes migrate along stromal cell networks, they do not travel 
along a linear path but instead make frequent turns in a “random 
walk.” Therefore, higher sampling frequencies are necessary to 
provide an accurate readout of instantaneous velocities and to 
avoid the underestimation of real velocity when cells are persistent 
for only a finite period of time (93). It is easy to find differences in 
the motility parameters of leukocytes reported in previous stud-
ies, and such differences are likely to reflect the frame rate of data 
acquisition. If there is a long gap between each frame, then the 
true velocity of the cell will be underestimated. Therefore, the “fast 
sampling” theory (the use of sampling intervals shorter than the 
persistence time of the cell) should be taken into account in order 
to correctly compare data obtained in different laboratories (93).

A useful parameter that is derived from velocity is the arrest 
coefficient, representing the fraction of time during track-
ing in which a cell does not move (threshold <  2 μm/min). It 
is calculated as the ratio of the time a cell is immotile over the 
whole observation time. The arrest coefficient is calculated from 
cell tracks and reported as the percentage of cells in the entire 
population (70). The arrest coefficient is high when leukocytes 
are in stable contact with other cells or when they swarm in a 
chemoattractant microenvironment (94).

The cell locomotion parameter allows some speculation on the 
nature of cell movement, e.g., cells may show directed migration 
along a gradient of a soluble or surface-immobilized chemoat-
tractant. The displacement of a cell moving with a constant 
velocity is the shortest distance between the positions at two time 
points (95). An accurate parameter to analyze migration patterns 
is the mean displacement (MD) plot (70), in which the average 
displacement of a population of cells over specific time intervals is 
plotted against the square root of time. The slope of the resulting 
curve can be used to determine the motility coefficient of a cell 
population and measures the volume that a cell scans per unit 
time. Cells usually exhibit directed movement for a few minutes, 

which means that during short time intervals, they tend to move 
in one preferred direction (36).

The chemotactic index, also called the meandering index 
or straightness index, is another parameter representing the 
confinement of cell tracks and is calculated based on the ratio 
of displacement from origin by track length. The meandering 
can vary between 0 (the cell returns to its exact starting position) 
and 1 (a perfectly straight cell track). Cells exhibiting frequent 
angle changes will produce tracks with low meandering indices, 
whereas a meandering index of 0.7–1 generally shows that cell 
migration has a strong directional bias (70).

During time-lapse acquisition, a moving cell is observed by 
taking snapshots at fixed time intervals; hence, the movement of 
each cell might be considered as a sequence of vectors. Trajectory 
vectors represent the direction of displacement of individual cells, 
so the calculation of angles between the direction of migration 
and various other directions in space is possible, e.g., the orienta-
tion of a blood vessel. The vector-vessel angles of individual tracks 
are useful for the description of tangential movement along an 
axis and are determined by mirroring the trajectory vectors onto 
the nearest vessel (reference vector), resulting in angles of 0–90° 
for each cell track (96).

It is important to realize that cell populations analyzed 
using the parameters described above may consist of distinct 
subpopulations that have different biological roles and migration 
behaviors. These subpopulations may be revealed by plotting 
the distribution of the parameter of interest among all cells or 
by studying correlations between multiple motility parameters. 
For example, neutrophils invading the brain parenchyma in 
AD-like mice show two distinct behaviors: the first involves a 
strong directional bias characterized by a high meandering index, 
motility coefficient, and mean track velocity, whereas the second 
is characterized by low motility and undirected movement 
resembling swarming behavior (19). The undirected motility 
behavior with numerous cells displaying full arrest indicates the 
presence of activating stop signals for neutrophils in the brains of 
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mice with AD-like pathology, whereas the directed movement of 
neutrophils strongly suggests the presence of chemotactic factors 
(19).

Other parameters calculated from leukocyte intratissue migra-
tion may reveal whether a chemoattractant released by injured 
tissue, resident cells, or recruited blood-derived leukocytes direct 
their movement. For example, after entering peripheral tissues, 
neutrophils assume an amoeboid motility profile characterized 
by coordinated migration along a chemokine gradient and cluster 
formation. The dramatic changes in neutrophil morphology 
can be analyzed by shape index (length/width), revealing the 
significant elongation of cell bodies, which is the characteristic of 
adhesion-independent movement associated with a low degree of 
cytoskeletal organization and a lack of discrete focal contacts (97).

The directional component of migration can be determined 
by measuring the turning angles of neutrophil tracks, which is 
achieved by calculating the angle change between vectors con-
structed from each time point. The peak angle distribution in 
absolute values varies in the range 0–180°, and changes of 10–30 
units indicate highly directed migration following a chemotactic 
gradient (97). In order to identify specific chemotactic molecules 
that direct leukocyte movement, instantaneous radial velocities 
can be calculated for the comparative chemotaxis analysis of 
wild-type and gene-deficient neutrophil populations (98). The 
radial velocity–time plot with fitted regression lines can provide 
insight into the recruitment dynamics of cell populations, and a 
reduction in radial velocity may be a consequence of impaired 
chemotaxis (98). Although no data are yet available in AD 
models, integrin-dependent intravascular neutrophil migration 
in sterile liver injuries requires CXCR2 ligands on liver sinusoids 
and formyl peptides in the injury zone (99). Furthermore, in 
sterile skin injuries, leukotriene B4 acts as an intercellular signal 
between neutrophils that allows rapid integrin-independent 
neutrophil recruitment throughout the tissue (98). Future studies 
are needed to characterize the dynamics of neutrophils as well as 
other leukocyte populations in the brains of AD models.

FUTURe DiReCTiONS

Two-photon laser scanning microscopy has made it possible to 
study leukocyte recruitment in the living brain, improving our 
understanding of immune cell functions in CNS diseases, such 
as AD. Advanced imaging techniques will also allow us to define 
the role of leukocyte subpopulations at different stages of disease, 
as well as the relationships among migrating leukocytes, amyloid 
deposition, and tau pathology. Moreover, it is conceivable that 
TPLSM in the AD brain will help us to visualize and analyze 
the interplay between migrating leukocytes and resident cells, 
such as microglia, neurons, and astrocytes. TPLSM could also 
be used to unravel the role of toxic molecules, such as ROS and 
NO intermediates that may be produced by invading innate 
immunity cells during AD. For example, dihydroethidium and 
hydroethidine are cell-permeable fluorescent dyes suitable for 
the evaluation of ROS synthesis in  vitro, but they have also 
been used successfully to visualize anion superoxide production 
in vivo (100, 101). The development of new fluorescent probes 
and the deep-tissue imaging capability of TPLSM may allow 

the in vivo visualization of ROS production by neural cells and 
infiltrating leukocytes.

One of the limitations of current imaging studies is the lack of 
access to deeper areas of the intact brain, such as the hippocam-
pus, which is strongly affected during AD. Nevertheless, recently 
developed micro-optics and micro-mechanical components 
have improved deep-tissue imaging (102, 103). Indeed, the use of 
micro-prisms and gradient index (GRIN) lenses allows the long-
term imaging of deep-layer cortical tissue in the mouse brain, 
although such devices must be inserted into the parenchyma, 
potentially altering neural cell functions and inducing inflam-
matory responses (102, 104). GRIN lenses feature plane optical 
surfaces and are focused by continuously changing the refractive 
index within the lens material by eliminating aberrations typically 
found in traditional spherical lenses. An alternative deep-tissue 
imaging method is stimulated emission depletion (STED) laser 
microscopy, which allows the exploration of deep areas, such as 
the hippocampus in living brains (105). This recent imaging tech-
nique improves spatial resolution by quenching the fluorescence 
everywhere except the central region, thus substantially reducing 
the size of the original fluorescence spot. Therefore, the higher 
peak signal-to-background ratio reveals more detailed structures, 
improving the quality of the images. In the near future, STED 
laser microscopy may expand to include the analysis of leukocyte 
recruitment in key brain areas during AD, leading to the identifi-
cation of new disease mechanisms. Moreover, STED technology 
brings in  vivo super-resolution microscopy to small structures 
involved in the morphofunctional interactions between astro-
cytes and neurons, suggesting future exciting opportunities for 
the study of leukocyte interactions with neural cells (106).

Overall, the augmentation of TPLSM using optical systems, 
such as GRIN lenses or STED laser microscopy, and advances 
in fluorescent dye and protein engineering to produce brighter 
and more photostable fluorophores will play an important role 
in the study of molecular mechanisms controlling leukocyte-
dependent brain injury and will help to identify new therapeutic 
approaches for AD.
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Ongoing Oxidative stress causes 
subclinical neuronal Dysfunction  
in the recovery Phase of eae
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Randall Lindquist2 , Anja E. Hauser2,3 and Raluca Niesner2*

1Department of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany, 2 German Rheumatism Research 
Center (DRFZ) a Leibniz Institute, Berlin, Germany, 3 Immundynamics, Charité – Universiätsmedizin Berlin, Berlin, Germany

Most multiple sclerosis (MS) patients develop over time a secondary progressive dis-
ease course, characterized histologically by axonal loss and atrophy. In early phases of 
the disease, focal inflammatory demyelination leads to functional impairment, but the 
mechanism of chronic progression in MS is still under debate. Reactive oxygen species 
generated by invading and resident central nervous system (CNS) macrophages have 
been implicated in mediating demyelination and axonal damage, but demyelination and 
neurodegeneration proceed even in the absence of obvious immune cell infiltration, 
during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence 
lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to 
identify the cellular source of oxidative stress in the CNS of mice affected by experimental 
autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly 
affects neuronal function in vivo, as monitored by cellular calcium levels using intravital 
FRET–FLIM, providing a possible mechanism of disease progression in MS.

Keywords: nOX, eae/Ms, intravital imaging, FliM–FreT, calcium

inTrODUcTiOn

Multiple sclerosis (MS) is a chronic neuroinflammatory disease, with most patients exhibiting a 
relapsing and remitting course of disease. The neurological damage is a consequence of a mainly  
T cell-driven immune reaction against myelin in the central nervous system (CNS) (1). Macrophages/
microglia, B, and T cells create an acute inflammatory setting, resulting in demyelination and 
neuronal damage. Most of the patients who experience a second episode develop further relapses. 
Despite the intensive analysis of the acute immune attack, only little is known about the processes 
going on at the lesion site after the initial insult (2, 3).

Why and where do new relapses appear? What factors determine the chronicity of a lesion and 
the course of disease? “Old” lesions appear morphologically inert and are characterized by single 
perivascular T cells, minimal axonal damage in histological stainings with anti-amyloid precursor 
protein (APP) antibodies and a dominant fibrotic glial scar (4, 5). In contrast to the progressive 
disease phase, the inflammatory phase is well modeled by murine experimental autoimmune 
encephalomyelitis (EAE). In this mouse model using an immunization with MOG35–55 peptide, acute 
clinical signs remit after a few days and mice enter into a chronic phase with or without a residuum 
of neurological deficits (1). Reactive oxygen species (ROS) generated by invading and resident CNS 
macrophages have been implicated in mediating demyelination and axonal damage (6–8). In this 
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study, we address implications of the ceased immune attack for 
the CNS tissue, beyond the fact that the majority of peripheral 
immune cells disappeared. In MS patients, we previously detected 
an ongoing over-activation of NADPH oxidases (especially 
NOX2) in blood monocytes during remission (8). Using intravital 
NAD(P)H fluorescence lifetime imaging in mice affected by EAE, 
during the inflammatory phase (onset and peak of the disease), 
we detected a massively increased amount of functional NADPH 
oxidases (NOX1–4, DUOX1, 2) within the CNS as compared to 
healthy controls (8). Using the same method, we investigated 
whether functional NADPH oxidases are still present in the 
CNS after recovery of EAE and, thus, whether oxidative stress 
is still ongoing in absence of peripheral infiltration of the CNS. 
We simultaneously monitor calcium concentrations in neurons 
using intravital FRET–FLIM-based neuronal calcium imag-
ing to evaluate the reaction of the neurons on the altered CNS 
environment over the course of EAE development and remission. 
Thereby, we investigate whether in mice with clinical recovery 
morphologically inert appearing lesions exhibit residual inflam-
mation, as reflected by increased oxidative stress and sub-clinical 
neuronal dysfunction, in order to better understand mechanisms 
of chronicity and disease progression in MS and related diseases.

resUlTs

characterization of the remission Phase 
in the cns of Mice affected by eae
The grade of inflammation in brain stem of mice with EAE after 
clinical recovery (remission) was characterized and compared 
to animals at the peak of disease and to healthy controls. Our 
aim was to first characterize peripheral and CNS resident cellular 
compartments during the remission phase by means of intravital 
imaging and to corroborate previous results concerning the lack 
of overt inflammation in this phase.

characterization of cellular Markers in the 
cns, during eae remission
It is widely accepted that in MS, inactive CNS lesions with no 
signs of immune infiltration are detectable. In our EAE model, 
some mice show a complete clinical recovery of EAE signs. We 
characterized these mice by FACS analysis of whole murine CNS 
(brain and spinal cord) and demonstrated that both monocytes/
macrophages (CD45highCD11b+ cells) and T cells (CD45highCD3+ 
cells) disappear from the CNS during the remission phase of EAE. 
Only 7.9 ± 2.8% of the isolated CNS cells were CD45highCD11b+ 
cells (macrophages/monocytes), comparable with healthy con-
trols with 6.2 ±  2.4% (Figures 1A,B), whereas their frequency 
during onset and peak of EAE was previously shown to be strongly 
increased, to ~50% of the infiltrates (8–10). The majority of cells 
after EAE recovery were cells with characteristics of microglia: 
72.5 ± 3.6% were CD45lowCD11b+ of which 95.2 ± 6.7% expressed 
CX3CR1. The overlap of CX3CR1 and tdRFP (LysM) was in 
both compartments under 5% (3.5 ± 3.2% for CD45highCD11b+ 
cells and 3.5  ±  3.1% for CD45lowCD11b+ cells). CD45highCD3+ 
cells –  typically present during the peak of EAE (11) – mainly 
disappeared after EAE recovery, constituting only 0.2  ±  0.1% 

of total cell number. All these findings are in line with the low 
clinical scores of the mice (between 0 and 0.5; Table 1) and are 
consistent with previous observations of cellular compositions 
after EAE recovery (10). Our results encompass two independent 
EAE experiments with a total number of n = 3 mice analyzed in 
remission phase (Table 1) and n = 5 analyzed healthy mice.

Using intravital microscopy in CX3CR1+/− EGFP mice 
(n = 3) after EAE recovery, we could show a reduced overlap of 
3.6 ± 1.8% between EGFP and i.v. injected sulforhodamin 101 
(SR101), which labels astrocytes both in health and in peak EAE 
(8). These results are similar to the overlap measured in healthy 
CX3CR1+/−EGFP mice labeled by i.v. injection with SR101 
(2.7 ± 1.1% overlap, Figure 1C).

intravital imaging reveals Morphologic 
Features of eae remission in the cns
We performed intravital imaging experiments in the brain stem 
of CerTN L15 × LysM tdRFP mice (neurons express the Ca2+ indi-
cator TN L15, while predominantly LysM+ phagocytes express 
tdRFP) and of CX3CR1+/− EGFP mice (microglia/macrophages 
express EGFP, while predominantly astrocytes are labeled by 
SR101).

Infiltration of the CNS by LysM+ cells is transient, and varies 
with the stage of disease. In health, practically no LysM+ cells 
are present except for few perivascular LysM+ microglia. During 
peak of EAE, many LysM+ cells are present within CNS lesions, 
and they mostly disappear during the remission phase. We could 
only identify isolated regions where LysM+ cells were present 
inside or in the close proximity to blood vessels or meninges 
(Figure 2A).

In contrast to the peripheral immune cells, the inflammatory-
induced gliosis of CNS-resident cells [microglia and astrocytes 
having phagocytic capacity (8)] persists after EAE recovery 
(Figure 2B). We evaluated shape and function of astrocytes and 
microglia to test our hypothesis that the function of these CNS 
cells, in chronic neuroinflammation, has persistently (patho-
logically) elevated phagocytic features, even in the absence of 
peripheral immune cells.

First, we quantitatively analyzed the shape of microglia, based 
on the fact that resting microglia, typical for healthy CNS, are 
highly ramified, whereas activated microglia, especially those 
having a phagocytic function, lose their cellular processes and 
adopt an amoeboid shape. The amoeboid shapes are expected to 
be found especially in the diseased CNS (10).

We used Fourier coefficients to quantify and reproduce the 
ramified shape of microglia and to quantify their shape changes 
in the remission phase as compared to health and peak of the 
disease. Briefly, single microglia cells were segmented from intra-
vital microscopy data acquired in the brain stem of healthy and 
EAE mice (in peak and remission phase). Six two-dimensional 
projections from each three-dimensional object (cell) were gen-
erated, and their shape was approximated by overlapping circles 
as displayed in Figure 2C. Each layer of circles is mathematically 
characterized by a scalar parameter called Fourier coefficient. 
Thus, the first Fourier coefficient defines the position of a cell, the 
second defines its dimensions by approximating it with a perfect 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


MP

MG

CD11b

CD3

CD
45

CD
45

%
 o

f c
el

ls ns.

CX
3C

R1

tdRFP

CD45hiCD11b+
CD45lhiCD11b+ CD45lowCD11b+ CD3+

healthy remission

%
 o

f c
el

ls

CX3CR1+ in MG

CX3CR1+ in MP CX3CR1+tdRFP+ in MP

CX3CR1+tdRFP+ in MG

tdRFP

CX
3C

R1

CX3CR1
SR101

A B

C

FigUre 1 | Peripheral immune infiltration of the cns has largely resolved in the remission phase of eae. (a) FACS analysis of CNS cells after recovery of 
EAE shows a low immune infiltrate with few monocytes/macrophages (CD45highCD11b+; MP) and CD3+ cells. Most of the CD45 expressing cells are CD45lowCD11b+ 
(microglia; MG). CD45highCD11b+ frequencies are comparable to healthy untreated mice (n = 5; ±SD). We applied an unpaired t-test to statistically evaluate the 
results. In the CD45highCD11b+ fraction (MP), only few cells express CX3CR1 but most of the cells in the CD45lowCD11b+ fraction (MG). The overlap of CX3CR1 and 
tdRFP was comparable in both cell types around 3% (n = 3; ±SD, clinical information listed in Table 1) (B) Exemplarily gating strategy of the FACS analysis of whole 
CNS in mice after recovery of EAE. (c) Projection of 3D intravital fluorescence image in the brain stem of a CX3CR1+/− EGFP mouse in health and during the 
remission phase of EAE. The astrocytes (and blood vessels) are labeled by i.v. injected SR101 (red), while the microglia are expressing EGFP (green). Scale 
bar = 50 μm. The colocalization of the EGFP and SR101 signals, i.e., overlap of the microglial and astrocytic markers, respectively, amounts to 3.6 ± 1.8%.

March 2016 | Volume 7 | Article 9269

Radbruch et al. Oxidative Stress in Chronic Neuroinflammation

Frontiers in Immunology | www.frontiersin.org

sphere, and the next Fourier coefficients define the number and 
length of cellular processes. Each cellular process is approxi-
mated by a set of spheres of various diameters, with the center 
on the surface of the most distant, previous sphere (Figure 2C). 
The higher the ramification and the length of cellular processes,  
the larger are the relative values of the high-order Fourier coef-
ficients with respect to the second Fourier coefficient. We found 
a high shape similarity of microglia during the remission phase 
(118 cells) and of those imaged at the lesion site, at the peak of the 

disease (57 cells). In comparison to resting microglia in healthy 
controls (71 cells), the similarity was rather low (Figure  2D). 
The third, fourth, and fifth Fourier coefficients show a significant 
difference (using an ANOVA test) both in remission and in 
peak as compared to healthy controls. The results encompass 
two independent EAE experiments with n = 3 healthy controls, 
n = 2 mice at peak EAE, and n = 4 mice during the remission 
phase. The findings of our intravital experiments demonstrate 
that in remission, after clinical recovery, microglia retain an 
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TaBle 1 | Mouse strains, eae data of the mice and mean nOX activation area values within lesions or gliosis/astrogliosis areas with sD per animal 
(6–20 areas within the brain stem per animal).

eae iD Mouse strain eae score at analysis 
time point

Maximum eae score Mean nOX activation 
area (%)

sD

1 CX3CR1.EGFP 1.5 1.5 17.88 5.13
1 CerTN L15 × LysM tdRFP 1.0 1.0 13.20 1.06
1 CerTN L15 × LysM tdRFP 0.5 2.0  8.15 2.25
2 CerTN L15 × LysM tdRFP 2.5 2.5 16.99 9.02
2 CerTN L15 × LysM tdRFP 0.5 1.5  9.91 3.97
3 CerTN L15 × LysM tdRFP 2.0 2.0 10.65 0.51
3 CerTN L15 × LysM tdRFP 2.0 2.0  7.18 1.42
3 CX3CR1.EGFP 1.5 1.5 11.61 1.34
3 CX3CR1.EGFP 0.0 1.5  9.27 3.25
3 CX3CR1.EGFP 0.0 1.0  8.77 3.97
4 CX3CR1.EGFP 0.0 2.0 11.53 5.38
4 CX3CR1.EGFP 0.0 1.5  9.71 2.79
4 CX3CR1.EGFP 0.5 2.0 12.19 4.65
4 CerTN L15 × LysM tdRFP 0.0 2.0 – –
5 CerTN L15 × LysM tdRFP 0.5 3.5 – –
5 CerTN L15 × LysM tdRFP 0.5 3.5 – –

healthy 
controls

Mouse strain Mean nOX activation 
area (%)

sD

1 CerTN L15 × LysM tdRFP 0.37 0.13
2 C57BL/6 2.84 0.29

3 CerTN L15 × LysM tdRFP 0.47 0.09
4 C57BL/6 0.60 0.28
5 CerTN L15 × LysM tdRFP 2.08 0.91

We included five independent EAE experiments and five healthy controls for the intravital NAD(P)H–FLIM experiments.
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activated morphology, suggesting that their function remains 
predominantly phagocytic despite the fact that clinical symptoms 
disappeared.

Consistent with the results of shape analysis of microglia, the 
astrocytic network appears intact in healthy controls (n  =  2), 
whereas during peak EAE (n  =  4) and the remission phase 
(n = 3), it appears disrupted (Figure 2E). Additionally, the fine 
astrocytic processes completely disappear and are replaced by 
thick perivascular processes, while the astrocytic cell bodies 
adopt ameboid shapes (Figure  2E). A quantification of these 
observations is rather difficult. Even if a good segmentation of 
the single astrocytes and their processes is given, currently there 
is no available mathematical approach or set of mathematical 
parameters to summarize the complexity of the profound changes 
of the astrocytic network. However, altogether the observations 
regarding morphological modifications suggest that the astro-
cytes are also shifted toward a phagocytic function.

subclinical neuronal Dysfunction 
correlates with Oxidative stress without 
Overt immune infiltration after recovery 
of eae
Altered morphology often indicates functional changes, but 
morphology is not a direct measure of the cellular function. To 
evaluate alterations in cellular function over the course of EAE, 
we used intravital NAD(P)H fluorescence lifetime imaging 
(FLIM), as previously described (8), to detect the over-activation 
of NADPH oxidases (NOX1–4, DUOX1, 2). As we previously 

showed in intravital imaging experiments of mice affected by EAE, 
a concentration of ~200 μM of ROS is detectable in the brain stem, 
in EAE, using local ROS labeling with Amplex Red. In contrast, 
in healthy animals, we could not detect any ROS generation. As 
ROS molecules are highly reactive and diffusive, their detection is 
limited and the analysis of their cellular source practically impos-
sible. We circumvent this disadvantage by detecting the catalyzer 
of ROS production, i.e., NOX enzymes, using NAD(P)H–FLIM 
in vivo. We previously showed that high ROS concentration in the 
brain stem of EAE animals correlates with the over-activation of 
NOX enzymes as detected by intravital NAD(P)H–FLIM (12). 
The fluorescence lifetime of NADPH bound to NADPH oxidases 
is ~3650  ps (12), differing from generally active NADH- and 
NADPH-dependent enzymes [fluorescence lifetime of NAD(P)H  
~2200 ps]. The over-activation of NADPH oxidases is a prereq-
uisite of oxidative stress – known to be one of the main causes 
of neuronal dysfunction in chronic neuroinflammation (6, 13).

In healthy mice, intravital NAD(P)H–FLIM of the brain stem 
reveals predominantly metabolic enzyme activity (8). At peak 
of EAE, the lesion site is associated with vast areas of activated 
NADPH oxidases, leading to increased oxidative stress (8). 
Surprisingly, even if overt inflammation and the clinical symp-
toms disappear, a local activation of NADPH oxidases does not 
decline to levels found in healthy mice. While the area of NOX 
enzymes activation in the brain stem of healthy mice amounts in 
average to 1.8 ± 1.3%, the same average value at peak of the dis-
ease significantly increases eightfold to 15.6 ± 5.1% and declines 
only slightly to 9.4 ± 1% during the remission phase, still over 
fivefold higher than in healthy mice (Figures 3A,C).
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FigUre 2 | intravital imaging reveals that remission in eae correlates with lack of overt immune infiltration, with persisting disruptions of the 
microglial and astrocytic networks. (a) 3D intravital fluorescence images in the brain stem of CerTN L15 × LysM tdRFP mice in health (n = 5), at peak EAE 
(n = 6) and in the remission phase (n = 2). λexc = 850 + 1110 nm, λem = 525 ± 25 nm (Thy1-Citrine in neurons depicted in green), λem = 593 ± 20 nm (LysM tdRFP in 
phagocytes depicted in red), scale bar = 50 μm. (B) 3D intravital fluorescence images in the brain stem of CX3CR1+/− EGFP mice in health (n = 3), at peak EAE 
(n = 4) and in the remission phase (n = 5). λexc = 935 nm, λem = 525 ± 25 nm (CX3CR1+/− EGFP in microglia/macrophages depicted in green), scale bar = 50 μm. 
(c) Using higher-order Fourier coefficients, we describe the complex shape of microglia. The first Fourier coefficient describes the position of the cells, the second 
coefficient the sphericity of the cell body and starting from the third Fourier coefficient, the ramification of all cell processes is reproduced: the higher the values of 
high-order Fourier coefficients with respect to the second Fourier coefficient, the higher the degree of ramification and length of cellular processes of microglia.  
(D) The different shapes of the microglia, shown in (B), were classified in health (71 cells) at peak EAE (57 cells) and in its remission phase (63 cells). The difference 
between the values of the third, fourth, and fifth Fourier coefficients is significant between healthy controls and remission, but not significant between peak of EAE 
and remission of EAE. Statistical significance was determined by ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001). (e) Projection of 3D intravital fluorescence images in 
the brain stem of C57/B6 mice i.v. injected with sulforhodamine 101 (SR101) in health (n = 2), at peak EAE (n = 4) and in the remission phase (n = 3). λexc = 880 nm, 
λem = 593 ± 20 nm (SR101 in astrocytes depicted in red), scale bar = 50 μm.
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ratio images (Calcium images) of the axons. At the contact sites between axons and immune cells, we observe strongly increased neuronal calcium. After 2 h, at 
exactly these sites, we observed dramatic morphological changes of the axons, i.e., appearance of ovoid bodies and axonal disruption. The axonal disruption and 
ovoid bodies formation along the axon is indicated by white arrows in the lower panels of (F). Statistical evaluation in (c,D) was determined by ANOVA tests 
(*p < 0.05, **p < 0.01, ***p < 0.001).
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To determine if this increased activation of NAD(P)H oxidases 
was associated with subclinical neuronal dysfunction, we deter-
mined the neuronal calcium level using intravital FRET–FLIM in 
the brain stem of CerTN L15 × LysM tdRFP mice affected by EAE, 
as previously described (8, 14, 15). Associated with the persisting 

oxidative stress, we observed increased neuronal calcium indi-
cating subclinical neuronal dysfunction, and progressing to neu-
ronal damage, within the areas of elevated oxidative stress. The 
area of measured neuronal dysfunction in the remission phase 
(6.2 ± 1.7%) is lower than at peak of disease (11.7 ± 2.8%) (16), 
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in line with higher scores during peak than in the recovery phase 
(Table 1); however, it is significantly higher than in healthy mice, 
in which no neuronal dysfunction can be observed using the 
same approach (Figures 3B,D) (14). As depicted in Figure 3E, 
in regions with no or very low over-activation of NOX enzymes 
(<4% of the total observed area), no neuronal dysfunction can 
be detected. Beyond this value, the oxidative stress regime is 
established and neuronal dysfunction linearly increases with 
increasing area of NOX enzymes activation, within the CNS 
(Pearson’s R = 0.90883).

As we and others previously demonstrated, a sustained elevated 
calcium concentration in neurons, both in vivo and in primary 
neuronal cultures, can precede morphological changes and finally 
neuronal death. In the brain stem of a CerTN L15 × LysM tdRFP 
mouse affected by EAE, enhanced contact of axons with periph-
eral LysM cells correlate with an increased calcium baseline in 
axons (Figure 3F). Imaging over 2 h reveals after recovery of EAE 
sites of increased calcium concentration do not correlate with 
dramatic morphological changes such as ovoid bodies or even 
axonal disruption, in contrast to the situation in peak EAE as 
depicted in Figure 3F (white arrows). Since the TN L15 geneti-
cally encoded biosensor reacts slowly to calcium (within few 

hundred milliseconds), it cannot track the physiologic calcium 
oscillations typical for neurons, but records only the low average 
baseline (≈100 nM) (14).

Microglia and astrocytes Mainly 
contribute to Oxidative stress after  
eae recovery
Next, we elucidated the specific cellular origin of the persis-
tent oxidative stress in the CNS during the remission phase. 
The approach used in our study  –  performing endogenous  
NAD(P)H–FLIM in the CNS of mice with differently fluoresc-
ing cell subsets (LysM+tdRFP, CerTNL15, CX3CR1+/− EGFP, or 
SR101 labeled cells) affected by EAE – enables the direct identifi-
cation of specific cellular origins of oxidative stress by examining 
colocalization of assembled NOX enzymes acquired via NAD(P)
H–FLIM with cellular markers visualized by fluorescence imag-
ing (Figures 4A,B).

We quantified the contribution of specific cell types to the total 
area of NOX enzymes activation in the CNS and found that the 
mean contribution of LysM+ phagocytes amounts to maximally 
4.3%, a value comparable to that of neurons (Thy1+ cells, 4.7%). 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


March 2016 | Volume 7 | Article 9274

Radbruch et al. Oxidative Stress in Chronic Neuroinflammation

Frontiers in Immunology | www.frontiersin.org

Whereas the contribution of neurons to the area of oxidative 
stress generation is, as expected, similar at peak EAE and during 
the remission phase, LysM+ phagocytes proved to be a major 
source of massive ROS production only during peak EAE but 
not during the remission, due to their low frequency within the 
CNS in this phase. Only few perivascular macrophages could be 
detected (Figure 4A, bottom panel) in line with the results of our 
FACS analysis in Figure 1A (5% of the cells are tdRFP expressing) 
and complementary to Figure 2A, in which no LysM tdRFP cell 
infiltration is shown after EAE recovery. LysM tdRFP cells can 
are located only in closest proximity to or within blood vessels 
(marked by white lines in Figure 4A) and are, even then, only 
partially activated (Figure 4A, bottom panel right image).

The main contribution to ROS production after recovery in 
EAE is associated with CX3CR1+ cells, i.e., 26%, and astrocytes 
(SR101), i.e., 45% (Figure  4B). Thus, microglia and astrocytes 
together contribute over 70% of the oxidative stress generation 
in remission of EAE. Since only in half of the microglia EGFP is 
detectable by intravital microscopy (heterozygous breeding) and 
not the entire astrocyte population takes up SR101 [i.e., only half 
of GFAP+ cells, namely GFAPlow (8)], the frequencies of microglia 
and astrocytes may well be underestimated, and we expect an 
even higher effective contribution of these cell types to oxidative 
stress.

DiscUssiOn

It is widely accepted that during chronic neuroinflammation, both 
in the human disease MS and in its murine model EAE, oxidative 
stress plays a major role in demyelination and neuronal damage 
(6–8). Most of the findings reported in EAE studies resulted from 
investigations during the peak of inflammation (17). After peak of 
disease, in C57BL/6 mice immunized with MOG35–55 peptide (7),  
clinical signs can resolve spontaneously (10, 17) or the mice enter a 
chronic phase with persistent paralysis (1). This pattern resembles 
features of the human disease MS, since in its relapsing-remitting 
phase (RRMS) symptoms are normally self-limiting and patients 
spontaneously recover.

Despite our knowledge about the dynamic processes of 
the acute immune response in the CNS, information about 
the reaction of the tissue after the inflammatory attack is very 
limited. The processes determining how and where new lesions 
occur are difficult to study in human tissue as the majority of 
the samples derives either from very early (biopsies) or very late 
(post-mortem) lesions. How lesions resolve, how progression 
takes place, and other characteristics of the later phases of the 
disease are not well understood (3, 18–20). The alterations of the 
immune system in MS lesions are obvious, but how this impacts 
the function of the CNS tissue is almost unknown. Only few 
inflammatory animal models focus on remyelination as a tissue 
response, e.g., studies using models of inflammatory cortical 
demyelination (18, 19).

In this study, we addressed the question of tissue dam-
age regarding oxidative stress as a major detrimental factor 
for the cells within CNS tissue and consecutive ongoing 
subclinical neuronal dysfunction after clinical remission of 
EAE signs. We observed that astrocytes and microglia are 

shifted toward an activated phenotype, showing both changes 
in morphology and, even more striking, a high level of acti-
vated NADPH oxidases correlating with persisting neuronal 
elevated calcium levels without evident morphological 
alterations. Hence, the consequences of sustained neuronal 
calcium levels after EAE recovery in contrast to peak of EAE 
are not clear yet (16). Could this be a reason for long-term 
neuronal damage leading to a progressive disease course in 
humans?

The role and fate of microglia/macrophages during neuro-
inflammation is still not well understood (10, 20). From BrdU 
studies, it was concluded that although microglia enter the cell 
cycle during acute inflammation, they return to quiescence fol-
lowing remission (21). Furthermore, gene expression analysis of 
microglia and macrophages suggested that after EAE recovery, 
these cells return toward homeostasis (10). In contrast, our data 
demonstrate that at least a subpopulation of microglia is not qui-
escent and still retains their activated function during remission, 
as demonstrated by their ameboid morphology and enhanced 
NOX activity in our model.

The results of our present study indicate that even after remis-
sion of the clinical signs, astroglial scars represent areas of ongo-
ing tissue damage, even in the absence of peripheral immune 
cells. Our findings support the idea of a “trapped” ongoing 
CNS inflammation as a mechanism of chronic progression in 
MS (2). At this phase of the disease, astrocytes and microglia 
alone are a source of persistent oxidative stress locally correlating 
with ongoing subclinical neuronal dysfunction, as measured by 
pathologically increased calcium levels in CerTN L15  ×  LysM 
tdRFP mice.

Our model provides a useful tool to further investigate the “tis-
sue memory” of neuroinflammatory processes, in order to better 
understand mechanisms of chronicity and disease progression 
in MS.

MaTerials anD MeThODs

Two-Photon laser-scanning Microscopy
Both fluorescence intensity and FLIM experiments were per-
formed using a specialized two-photon laser-scanning micro-
scope based on a commercial scan head (TriMScope, LaVision 
BioTec, Bielefeld, Germany). The detection of the fluorescence 
signals was accomplished either with photomultiplier tubes in the 
ranges 460 ± 30, 525 ± 25, 593 ± 20 nm or with a 16-channel par-
allelized TCSPC detector (FLIM-X16, LaVision BioTec, Bielefeld, 
Germany) in the range 460 ± 30 nm. The excitation of NADH and 
NADPH was performed at 760 nm (detection at 460 ± 30 nm), 
of Cerulean (detection at 460  ±  30  nm), SR101 (detection at 
593 ± 20 nm), and EGFP (detection at 525 ± 25 nm) at 850 or 
880 nm, and of tdRFP at 1110 nm (detection at 593 ± 20 nm).

For both intensity and fluorescence lifetime imaging, we used 
an average maximum laser power of 8 mW to avoid photodamage. 
The experimental parameters for FLIM were 160 ps histogram 
bin [for NAD(P)H–FLIM] and 80 ps histogram bin (for FRET–
FLIM) and maximum acquisition time for a 512  ×  512 image 
was 5 s to record a fluorescence decay stack. The time-window 
in which the fluorescence decays were acquired was set to 9 ns.
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Data analysis
Three-dimensional intravital images acquired within the brain 
stem of CX3CR1+/− EGFP mice, either healthy or affected by EAE, 
at peak and in the remission phase of the disease, were segmented 
using image analysis software (Imaris, BitPlane, UK). The 3D 
surfaces of the segmented cells (50–200 cells per condition) were 
transferred to Fiji/ImageJ and six orthogonal projections were 
generated for each cell. For each projection of each cell, the Fourier 
coefficients, describing the sphericity vs. ramification of the cell, 
were calculated (custom plug-in available in Fiji developed by 
Zoltan Cseresnyes). All Fourier coefficients corresponding to a 
single cell were merged following a linear algebraic combination 
to describe all ramifications of the cell (cell processes). The rank 
of the Fourier coefficients describes increasingly complex cellular 
ramifications: whereas the first Fourier coefficient corresponds to 
the first spherical approximation of the cell, the next coefficients 
describe increasingly longer processes.

Fluorescence lifetime imaging data analysis was performed 
using self-written software, as previously described (12, 14). The 
time-resolved fluorescence signal of NAD(P)H, as acquired by 
the TCSPC device, was approximated with a bi-exponential decay 
function (Eq. 1):

 
I a e a etNAD P H

t t
( )

− −= + +× ×( ) / /ε τ τ
1 2

1 2  (1)

with ɛ the background, the 1-indexed term of the sum rep-
resenting the fluorescence decay of free NADH and NADPH 
and the 2-indexed term representing the fluorescence decay of 
enzyme-bound NADH and NADPH. The fluorescence lifetime 
τ1 [free NAD(P)H] is 400–450 ps, while the fluorescence lifetime 
τ2 of NAD(P)H bound to metabolic enzymes has an average of 
~2000 ps. If bound to NADPH oxidases (NOX1–4, DUOX1, 2),  
NADPH shows a typical fluorescence lifetime of 3650 ps, inde-
pendent of cell type and even of species, since we repeatedly 
measured this value in various cell types of humans, mice, 
and even plants (Nicotiana tabacum). We focused all through 
the manuscript on the fluorescence lifetime τ2 of the enzyme 
bound NAD(P)H.

As previously described, we define the area of neuronal 
dysfunction as the area of free neuronal calcium exceeding a 
concentration of 1  μM (14). The neuronal calcium concentra-
tion was measured in vivo using FLIM, in mice expressing the 
FRET-based calcium biosensor TN L15 in Thy1+ cells. Thereby, 
the time-resolved fluorescence decay of the donor in the FRET 
construct (Cerulean) was also approximated by a biexponential 
function (Eq. 2):

 I a e a etCerulean
t t( ) / /= + +× ×− −ε τ τ

1 2
1 2  (2)

with ɛ the background, the 1-indexed term representing the fluo-
rescence decay of the FRET-quenched donor and the 2-indexed 
term representing the fluorescence decay of the unquenched 
donor. Here, we focused on the ratio a1/(a1  +  a2) of the rela-
tive concentrations of the FRET-quenched a1 and unquenched 
Cerulean a2, and, using our previously published calibration 
curve, we determined the absolute calcium concentration within 
neurons.

Statistical analysis and graphical presentation was carried 
out with GraphPad Prism 4 (Graphpad Software, USA) and 
OriginPro (OriginLab, USA). Results are shown as mean values 
from analyzed data per mouse, in addition the mean ± SD sum-
marize collective data from performed experiments.

Mice
All mice used were on a C57BL/6 background. The CerTN 
L15  ×  LysM tdRFP mouse expresses a FRET-based calcium 
biosensor consisting of Cerulean (donor) and Citrine (acceptor) 
bound to troponin C, a calcium-sensitive protein present in 
certain subsets of neurons (22). Additionally, tdRFP is expressed 
in LysM+ cells. The CX3CR1+/− EGFP mouse was used to detect 
microglia (Table 1).

eae induction
Experimental autoimmune encephalomyelitis was induced as 
previously described. Briefly, mice were immunized subcutane-
ously with 150 μg of MOG35–55 (Pepceuticals, UK) emulsified in 
CFA (BD Difco, Germany) and received 200 ng pertussis toxin 
(PTx, List Biological Laboratories, Inc.) intraperitoneally at the 
time of immunization and 48  h later. Intravital multi-photon 
microscopy was performed at different stages of the disease, i.e., 
peak (3–7 days after appearance of first clinical symptoms) and 
remission (after decline of clinical symptoms to a score ≤0.5). 
Mice were randomly picked for analysis. Detailed information 
about the performed EAE runs and individual scores of the mice 
are listed in Table 1. Mice at peak of disease were part of a previ-
ous study of Mossakowski et al. (8) and serve as a reference in 
this study. We did not included animals that never got sick and at 
onset analyzed animals.

Preparation of the Brain stem Window  
for intravital imaging
As previously described, the brain stem was exposed by carefully 
removing the musculature above the dorsal neck area and remov-
ing the dura mater between the first cervical vertebra and the 
occipital skull bone. The head was inclined for access to deeper 
brainstem regions and the brain stem superfused with isotonic 
Ringer solution. Anesthesia depth was controlled by continuous 
CO2 measurements of exhaled gas and recorded with a CI-240 
Microcapnograph (Columbus Instruments, USA) and by an 
Einthoven three-lead electrocardiogram (ECG). In order to avoid 
strong breathing artifacts in the brainstem of anesthetized mice, 
the ECG signal was correlated to the respiration rate and used as an 
external trigger for the image acquisition software, which controls 
the hardware of the microscope setup. Thus, each fluorescence 
stack was recorded at the same respiration state of the mouse and 
also in the same tissue region. Animal experiments were approved 
by the appropriate state committees for animal welfare (G0081/10, 
LAGeSo  –  Landesamt für Gesundheit und Soziales) and were 
performed in accordance with current guidelines and regulations.

Facs analysis
To isolate cells from the whole brain and spinal cord of LysM 
tdRFP mice, the tissue was homogenized after PBS perfusion, 
and a percoll gradient was performed according to standard 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


March 2016 | Volume 7 | Article 9276

Radbruch et al. Oxidative Stress in Chronic Neuroinflammation

Frontiers in Immunology | www.frontiersin.org

protocols with 25 and 75% stock istotonic percoll (GE Helthcare) 
and HBSS. Cells were blocked with antibodies to Fcγ receptors 
(DRFZ, clone 2.4G2) to avoid non-specific staining, and were 
subsequently stained with FITC-labeled PerCP-labled rat anti-
CD45 (BioLegend) or Cy5- (DRFZ), APC- or Pacific Blue™ 
(BioLegend)-labeled rat anti-CD11b, in some experiments fix-
able Viability Dye eFluor®780 (eBioscience), anti-CX3CR1 APC 
and anti-CD3 Brilliant Violet™ (both BioLegend) were used 
according to standard procedures, followed by fixation using 4% 
Paraformaldehyde (Electron Microscopy Science) for 10  min. 
FACS analysis was performed on a LSR Fortessa (BD).
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Julian Pohlan1,2, Lennard Ostendorf2, Robert Günther2, Ruth Leben2, Werner Stenzel1, 
Raluca Aura Niesner2† and Anja E. Hauser2,4*†

1 Department of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany, 2 German Rheumatism Research 
Center (DRFZ), A Leibniz Institute, Berlin, Germany, 3 Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ),  
A Leibniz Institute, Berlin, Germany, 4 Immune Dynamics, Charité – Universitätsmedizin Berlin, Berlin, Germany

In aging individuals, both protective as well as regulatory immune functions are declining, 
resulting in an increased susceptibility to infections as well as to autoimmunity. Nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase 2-deficiency in immune cell subsets 
has been shown to be associated with aging. Using intravital marker-free NAD(P)
H-fluorescence lifetime imaging, we have previously identified microglia/myeloid cells 
and astrocytes as main cellular sources of NADPH oxidase (NOX) activity in the CNS 
during neuroinflammation, due to an overactivation of NOX. The overactivated NOX 
enzymes catalyze the massive production of the highly reactive O2

− , which initiates in 
a chain reaction the overproduction of diverse reactive oxygen species (ROS). Age-
dependent oxidative distress levels in the brain and their cellular sources are not known. 
Furthermore, it is unclear whether in age-dependent diseases oxidative distress is initi-
ated by overproduction of ROS or by a decrease in antioxidant capacity, subsequently 
leading to neurodegeneration in the CNS. Here, we compare the activation level of NOX 
enzymes in the cerebral cortex of young and aged mice as well as in a model of vascular 
amyloid pathology. Despite the fact that a striking change in the morphology of microglia 
can be detected between young and aged individuals, we find comparable low-level 
NOX activation both in young and old mice. In contrast, aged mice with the human 
APPE693Q mutation, a model for cerebral amyloid angiopathy (CAA), displayed increased 
focal NOX overactivation in the brain cortex, especially in tissue areas around the ves-
sels. Despite activated morphology in microglia, NOX overactivation was detected only 
in a small fraction of these cells, in contrast to other pathologies with overt inflammation 
as experimental autoimmune encephalomyelitis (EAE) or glioblastoma. Similar to these 
pathologies, the astrocytes majorly contribute to the NOX overactivation in the brain 
cortex during CAA. Together, these findings emphasize the role of other cellular sources 
of activated NOX than phagocytes not only during EAE but also in models of amyloid 
pathology. Moreover, they may strengthen the hypothesis that microglia/monocytes 
show a diminished potential for clearance of amyloid beta protein.

Keywords: aging, naDPh oxidases, microglia, astrocytes, alzheimer’s disease, cerebral amyloid angiopathy
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inTrODUcTiOn

Following the free-radical theory of aging, reactive oxygen spe-
cies (ROS) are massively produced, e.g., >100  nM H2O2, and 
attack their targets in the organism randomly, indiscriminative 
and cumulative, thus, generating oxidative distress (1). Oxidative 
distress is a general term for the dysfunction of signaling and 
defense mechanisms based on ROS.

As several ROS are highly reactive, their localization is cru-
cial for the resulting effects: on the one hand, ROS act as specific 
signaling molecules intracellularly at ~1–10 nM concentration, 
on the other hand, they constitute effective extracellular host 
defense mechanisms at concentrations over 100 nM. Since the 
organism has efficient mechanisms to neutralize high ROS 
concentrations, e.g., via glutathione peroxidase or superoxide 
dismutase (2), these phenomena are physiological and can 
be summarized under the term “oxidative eustress” (1). The 
enzymes of the nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase family, consisting of NOX1, NOX2 (phox), 
NOX3, NOX4, DUOX1, DUOX2 (3), are central players lead-
ing both to oxidative eustress and distress. Their activation 
catalyzes the oxidative burst when abundant highly reactive O2

− 
is produced by oxidation of molecular oxygen. Under enzymatic 
catalysis, O2

− reacts with various small molecules leading to 
massive ROS production. When this massive ROS production 
exceeds the capacities of antioxidant defense mechanisms of the 
tissue or when extracellular highly reactive ROS species such as 
H2O2 enter the cells via peroxiporins such as AQP8 (4), oxida-
tive distress occurs, leading to tissue dysfunction and damage. 
It is assumed that oxidative distress responsiveness is linked to 
aging. However, this hypothesis is mainly funded on genetic 
studies (5), which allow conclusions on the expression levels, 
but not on the actual activation of these central enzymes.

Here, we focus on NADPH oxidase enzyme activation levels 
in the brain, as this organ is especially vulnerable to oxidative 
distress. There is evidence that the aged brain is more susceptible 
to injuries (6). This is mainly attributed to a so-called activated 
basal state of low-grade chronic inflammation that has been 
called “inflamm-aging” (7). Low-grade inflammation in aging 
is also associated with microgliosis; however, the function of 
microglia in this process is highly discussed as studies using cell 
morphology, protein expression, cellular dynamics, or ex vivo 
cytokine production could detect age-dependent differences (8). 
No information on the age-dependent oxidative distress levels 
and their cellular sources in situ are available.

In this study, we determine NADPH oxidase activation levels 
in the context of amyloid pathology, in order to investigate 
age-dependent, immune-mediated tissue damaging mecha-
nisms in neurodegenerative diseases. We hypothesize that an 
age-dependent dysregulation of immune responses in the CNS 
contributes to neuroinflammatory processes associated with 
neurodegeneration. ROS have been implicated in mediating 
age-dependent changes and promoting age-dependent neuro-
degeneration (9). Recently, oxidative distress has been regarded 
as an early sign of Alzheimer’s disease (AD) pathophysiology, 
although the source of ROS and the mechanisms how amy-
loid peptides (Aβ) influence oxidative distress have not been 

adequately investigated (10). Subunits of NOX2 are upregu-
lated in patients with mild cognitive impairment compared to 
normal age-matched controls. During disease progression, a 
further increase of the cytosolic subunits p67phox, p47phox, 
and p40phox could be detected in the CNS tissue. In addition, 
there was a robust correlation between NOX subunit expres-
sion and the individual’s cognitive status (11). Together, this 
suggests that increases in NOX activity participate in early AD 
pathogenesis and contribute to AD progression due to massive 
ROS production initiated by NADPH oxidases, activating 
signaling pathways leading to neuronal excitotoxicity and glial 
cell-mediated inflammation (12).

Although many studies claim to analyze NOX activity, 
only limited information can be gained based on the analysis 
of subunit expression levels. The quantification of ROS levels 
in tissue has been widely used. However, the highly diffusive 
nature of ROS does not allow to draw conclusions on their 
origin in tissues. Up to now, neither the catalytic activity of 
NOX enzymes leading to oxidative distress nor their cellular 
sources could be tracked in vivo. We therefore use our previ-
ously published marker-free method of intravital fluorescence 
lifetime imaging (FLIM) of NAD(P)H (13) to analyze the 
distribution and cellular source of NADPH oxidase activation 
(14, 15). Since activated NOX enzymes are membrane-bound 
and can be detected by FLIM, this technique allows for an 
unambiguous identification of the cellular source of massive 
ROS production.

MaTerials anD MeThODs

Two-Photon laser-scanning Microscopy
For intravital imaging, a frontoparietal cranial window prepara-
tion was performed and the dural layer was removed according 
to previous publications (16). Both fluorescence intensity and 
FLIM experiments were performed as previously described 
with a two-photon laser-scanning microscope based on a 
commercial scan head (TriMScope, LaVision BioTec, Bielefeld, 
Germany). All images are acquired in 30–150 µm depth within 
the frontoparietal cortex (z-step =  2  µm). Ten imaging fields 
per mouse were acquired, and the fields of vision with the 
highest NOX enzyme activation in every group were included 
into analysis. The detection of the fluorescence signals was 
accomplished either with photomultiplier tubes in the ranges 
460 ± 30, 525 ± 25, 593 ± 20 nm or with a 16-channel paral-
lelized TCSPC detector (FLIM-X16, LaVision BioTec, Bielefeld, 
Germany) in the range 460 ± 30 nm. The excitation of NADH 
and NADPH [hereafter collectively referred to as NAD(P)H] 
was performed at 760 nm (detection at 460 ± 30 nm). Dextran–
rhodamine (detection at 593  ±  20  nm) and EGFP (detection 
at 525 ± 25 nm) were excited at 850 or 880 nm. For intensity 
and FLIM, we used an average maximum laser power of 8 mW. 
The experimental parameters for FLIM were 80 ps histogram 
bin [for NAD(P)H-FLIM] and maximum acquisition time 
for a 512 × 512 image was 5 s to record a fluorescence decay 
stack. The time-window in which the fluorescence decays were 
acquired was set to 9 ns.
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TaBle 1 | Overview of NOX activation from individual mice analyzed.

Mouse iD age (months) nOX activation (%)

WT 6 1.7
Young 1
WT 6 1
Young 2
WT 6 0.6
Young 3
WT 24 0.3
Old 1
WT 20 0.7
Old 2
WT 18 1.5
Old 3
WT 20 1.8
Old 4
APP 6 0.8
Young
APP 24 4.3
Old 1
APP 24 4.2
Old 2
APP 20 4.2
Old 3
APP 18 5.2
Old 4
APP 18 5.4
Old 5

1–4 imaging fields were analyzed per mouse. NOX activation represents mean values.
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Data analysis
Fluorescence lifetime imaging data analysis was carried out with 
self-written software, as previously described (14, 15). We used a 
bi-exponential decay function (Eq. 1):

 I t e ea at t
NAD P H( )

τ( ) ε += ⋅ ⋅+− −
1 2

1 2/ /τ
 (1)

with ɛ the background, the 1-indexed term of the sum represent-
ing the fluorescence decay of free NADH and NADPH, and the 
2-indexed term representing the fluorescence decay of enzyme-
bound NAD(P)H. The fluorescence lifetime τ1 [free NAD(P)H] is 
400–450 ps, while the fluorescence lifetime τ2 of NAD(P)H bound 
to metabolic enzymes has an average of ~2,000 ps and of 3,650 ps if 
bound to an enzyme of the NOX family. We focused in this study 
on the fluorescence lifetime τ2, of the enzyme-bound NAD(P)H. As 
previously described (14), we calculated the area of NOX activation 
within a τ2 image as the percentage of pixels having fluorescence life-
times between 3,300 and 3,900 ps as compared to the total number 
of pixels displaying fluorescence lifetimes between 0 and 10,000 ps.

In order to quantify microglial ramification in young and old 
Iba1:GFP mice from immunofluorescence data, we used our previ-
ously published algorithm based on discrete Fourier coefficients 
(17). Briefly, single microglia cells were segmented from the green 
channel of the immunofluorescence data acquired in the cortex 
of healthy 6 or 20  months old Iba1:GFP mice. Their shape was 
approximated by overlapping circles—the first centered in the 
center of the cell and the others centered on the periphery of the 
previous circle. Each layer of circles is mathematically characterized 
by a scalar parameter called Fourier coefficient. The first Fourier 
coefficient represents the position of the cell, the second defines its 
dimensions by approximating it with a sphere, and the next coef-
ficients define the degree of ramification of the cellular processes.

Statistical analysis and graphical presentation was performed 
with GraphPad Prism 4 (GraphPad Software, USA) and OriginPro 
(OriginLab, USA). Results are shown as mean values from the 
analyzed imaging fields (±SD) per group.

Mice
APPE693Q i.v. labeled with sulforhodamine 101 (for astrocyte staining 
in vivo) or APPE693Q:Iba-1-EGFP mice (18, 19) hemizygous for both 
genes were generated and maintained on a C57BL/6J background. 
Littermates with wild-type murine APP were used as controls. 
Groups of n ≥ 3 mice were used in all in vivo experiments and also 
for postmortem histological analysis, n ≥ 3 mice per group were 
used. Young mice were 6 months old and aged mice were between 
18 and 24 months old at time of analysis (in APP mutant and wild-
type group; individual mouse age listed in Table 1). Animals were 
group housed in standard cages under pathogen-free conditions on 
a 12-h light/dark cycle with food and water ad libitum. All animal 
experiments were performed in accordance to the national animal 
protection guidelines approved by the regional veterinary office for 
health and social services in Berlin (LaGeSo Berlin).

Murine Tissue Processing and 
immunofluorescence histology
After each intravital microscopy experiment, the brains of the 
mice were prepared for immunofluorescence by perfusion with 4% 

paraformaldehyde. The tissue was embedded in Tissue Tek (Sakura), 
frozen in a methylbutane/dry ice mixture into 10- or 30-µm sec-
tions using a cryostat. Sections were stained with goat anti-EGFP 
(Rockland, conjugated at the DRFZ to Alexa®488), mouse anti-
GFAP-Alexa®488 (eBioscience, Germany), rabbit anti-Noxo-1 
(Novus Biologicals, Germany), or goat anti-p47 (Abcam, Germany). 
Secondary antibodies used were donkey anti-rabbit Alexa®647 (Life 
Technologies, Germany) or donkey anti-goat-Alexa®647. Slides were 
analyzed on a Zeiss LSM 710 confocal system. Co-localization was 
analyzed by standardized background subtraction and subsequently 
multiplying the Noxo1 and GFAP channel using with Fiji Software.

human Tissue Processing and 
immunofluorescence histology
Brain samples were obtained from the Department of Neuro-
pathology, Charité – Universitätsmedizin Berlin. We included 
only anonymized individuals with cerebral amyloid angiopathy 
(CAA). The study was approved by the local ethics committee 
under the number EA1/078/16. Paraffin-embedded brain tissues 
were sectioned at 4 µm with a microtome (Microm HM330, GMI), 
followed by deparaffinization and rehydration in a decreasing 
ethanol series. For immunofluorescence staining, sections were 
blocked with 10% normal serum (NS) for 1  h. After washing, 
sections were incubated with primary antibodies mouse a-hu 
HLA-DR 1:100 (Dako), goat a-hu p47phox 1:100 (Abcam), rabbit 
a-GFAP (DAKO) 1:2,000, and mouse a-oxidized phospholipids 
at 1:50 (clone E06, Avanti Polar Lipids) with 2% NS. Secondary 
antibodies (goat a-ms-Alexa®546 and chicken a-goat-Alexa®594, 
donkey a-rabbitAlexa®488) were diluted 1:500 with 2% NS and 
added to the sections. Nuclei were stained with DAPI (Sigma) 
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FigUre 1 | Morphology of cortical microglia and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in young and old healthy mice.  
(a) Iba-1:EGFP reporter mice were stained with anti-EGFP and 30-µm thick sections were analyzed of frontoparietal cortex by confocal microscopy. Representative 
immunofluorescence images (maximum intensity projections) from the neocortex of a 6-month-old (left) and 20-month-old (right) mouse indicate the differences in 
morphology of Iba1-EGFP+ cells (green). Scale bar: 50 µm. In the graph, the normalized values of the 3rd to the 10th Fourier coefficients, calculated as described in 
the manuscript, indicate that the ramification of the microglial processes is higher in young (n = 4) than in old healthy mice (n = 4). (B) Representative images of 
PMT-based detection of fluorescence signals and (c) enzyme-bound NAD(P)H-fluorescence lifetime imaging (FLIM) maps (τ2-maps) in a young (6 months; upper 
row) and old (24 months; lower row) mouse. Scale bar: 50 µm. The τ2-maps of the left column show the false color-encoded fluorescence lifetime τ of enzyme-
bound NAD(P)H at each recorded pixel of the image. NAD(P)H bound to metabolic enzymes are depicted in blue and green (τ2 between 1 and 3 ns), whereas 
NADPH bound to activated NOX enzymes appears in red (τ2 between 3.3 and 3.9 ns, “NOX only” gate) is displayed in the right column of (B).
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at a 1:1,000 dilution in phosphate-buffered saline. Slides were 
analyzed on a Zeiss LSM 710 confocal system.

resUlTs

Differences in the Morphology, but similar 
naDPh Oxidase activation levels in 
cortical Microglia of Young and Old Mice
When analyzing the morphology of microglia in Iba-1-EGFP 
reporter mice by immunofluorescence microscopy in various 
age cohorts, we noticed striking differences between young and 

old individuals. While the majority of microglia in mice at the 
age of 6  months displayed a ramified, surveilling morphology 
in the cortex, we noted that those cells in mice between 18 and 
24 months of age had short, blunt processes, suggesting a more 
activated phenotype (Figure 1A). Using our previously published 
algorithm based on discrete Fourier coefficients (17), we found 
a higher ramification of the microglial processes in young mice 
(n =  122 cells) than in old mice (n =  83 cells) as indicated by 
all Fourier coefficients up to the 10th rank, especially by the 3rd 
Fourier coefficient (graph in Figure 1A).

The detection of these morphological differences in micro-
glia between various young and aged mice prompted us to 
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FigUre 2 | Continued
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FigUre 2 | Continued  
Elevated NOX activity in the cortex of aged APPE693Q mice. Representative images of areas with elevated (a) and low (B) NOX enzymes activation are both found in 
old APPE693Q mice with established cerebral amyloid angiopathy (CAA). PMT-based detection of fluorescence signals [left column (a,B) dextran–rhodamine in red 
and iba1+ cells in green] in a 24-month-old APPE693Q mouse. Scale bar: 50 µm. The corresponding τ2-maps of the middle column show the false color-encoded 
fluorescence lifetime τ of enzyme-bound NAD(P)H at each recorded pixel of the image. NAD(P)H bound to metabolic enzymes are depicted in blue and green (τ2 
between 1 and 3 ns), whereas nicotinamide adenine dinucleotide phosphate (NADPH) bound to activated NOX appears in red (τ2 between 3.3 and 3.9 ns, “NOX 
only” gate) is displayed in the right column of (a,B). (c) Quantification of the NOX activation area within, i.e., ratio of the area of NOX only gate to the total tissue 
area, 4.9 ± 2.0% (n = 14 fields of view of 5 mice with 2–4 fields of view per mouse) in APPE693Q mice compared to 1.1 ± 0.7% (n = 10 fields of view of 4 mice with 
1–4 fields of view per mouse) and 1.0 ± 0.9% (n = 8 fields of view of 3 mice with 2–3 fields of view per mouse) in healthy controls (old and young, respectively). At 
least 3 mice per group and 2–4 imaging fields per mouse were analyzed. For statistic evaluation, we applied the ANOVA test (**p < 0.01). (D) The τ2 NAD(P)
H-fluorescence lifetime imaging (FLIM) map shows a specific bilayered pattern in the proximity of the vasculature of APPE693Q mice. Scale bar: 25 µm.  
(e) Representative immunofluorescence image within the cortex of patients with CAA showing strong reactivity with the E06 antibody recognizing oxidized 
phospholipids in areas with astrogliosis (stained with anti-GFAP antibody) Scale bar: 50 µm, compared to normal appearing tissue from patients with CAA (shown in 
insets). Scale bar: 50 µm.
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investigate whether they are actually accompanied by differ-
ences in the functionality of these cells. This was performed 
by making use of our previously established method of in vivo 
FLIM (20). The method uses a time-correlated single-photon 
counting device in order to detect the endogenous fluorescence 
lifetime of NAD(P)H, as a differential indicator for the activ-
ity of metabolic enzymes as well as for NOX enzyme activa-
tion in tissue. In combination with PMT-based detection of 
fluorescence signals (Figure 1B), we are able to allocate NOX 
enzyme activation to certain neocortical regions and cell types. 
By applying these techniques in the neocortex of Iba1-EGFP 
mice injected with dextran–rhodamine, we neither detected 
significant differences in the overall activation state of NOX-
dependent enzymes nor an increase in NOX enzyme activation 
specifically in Iba-1+ cells in aged mice (Figure  1C). Taken 
together, this indicates a comparable level of metabolic activity 
of NOX enzymes in young and old mice.

locally elevated nOX activity in the 
cortex of aged aPPe693Q Mice and Oxidized 
Phospholipids in Patients with caa
Next, we aimed to investigate microglia activation in an 
aging-associated disease. We chose an age-dependent model of 
congophilic Aβ CAA. In this model, transgenic mice (APPE693Q 
mice) overexpress E693Q-mutated human APP under the con-
trol of the neuron-specific Thy1 promoter element (19, 21, 22).  
Mice with the APPE693Q mutation exhibit glial reaction 
and neuronal apoptosis in certain areas of the brain without 
extensive presence of Aβ plaques in the parenchyma. However, 
APPE693Q mice display fibrillary Aβ at the vessel walls leading to 
an amyloid angiopathy (starting at an age of 9 months), causing 
hemorrhagic strokes and dementia in aged mice. In order to 
monitor microglia activity in vivo, we crossed the APPE693Q mice 
with Iba1-EGFP mice (18).

We analyzed the activation of NOX enzymes in the frontopa-
rietal neocortex by intravital microscopy. For visualization of 
the vasculature, mice were injected with dextran–rhodamine 
prior to imaging. NAD(P)H-FLIM revealed heterogeneous 
local elevations in NOX activity in APPE693Q mice, and an overall 
elevation of NOX enzyme activity in the tissue was appar-
ent. This effect could be mainly attributed to focal spots with 

elevated NOX activity (Figure 2A), which occurred near areas of 
normal appearing tissue with no elevation in NOX activity. Age-
matched control mice did not exhibit tissue regions of elevated 
NOX activity (Figure  2B), as reflected in the quantification 
of the overall percentage of NOX-signal present in the tissue 
(Figure  2C). The mean area of NOX enzyme activation was 
4.9 ± 2.0% (n = 5 mice) in APPE693Q mice older than 20 months. 
In contrast, aged-matched wild-type controls had only a mean 
of 1.1 ± 0.9% (n = 4 mice) NOX enzyme activation area, a value 
comparable with young wild-type mice: mean  =  1.0  ±  0.9% 
(n = 3 mice) and with young APPE639Q mice: mean = 0.8 ± 0.6% 
(n = 1 mouse) (Table 1). Regarding the distribution and range, 
we found that elevated NOX activation was enhanced in the 
immediate vicinity of blood vessels of APPE693Q mice. The activa-
tion appeared in a layered pattern around the vessels: besides 
the endothelium being strongly activated, we also detected other 
activated structures in the tissue neighboring the endothelia; 
frequently, these structures were found to run parallel to the 
vessels (Figure 2D). Having demonstrated the overactivation of 
NOX, we next addressed the question to what extent this NOX 
activity affects the CNS tissue in terms of oxidative distress. We 
therefore stained CNS tissue of patients with CAA by histology, 
using an antibody (E06) that recognizes the phosphocholine 
headgroup of oxidized phospholipids (23) in combination with 
an anti-GFAP antibody labeling astrocytes. Consistent with our 
results regarding elevated NOX activation in the APPE693Q mouse 
model, we found a strong focal presence of oxidized phospho-
lipids, localized in areas with an astrogliosis as displayed by 
GFAP immunoreactivity, compared to normal appearing tissue 
in patients with CAA (Figure 2E, n = 4).

Minor role of Microglia as cellular 
sources of activated nOX in aged 
aPPe693Q Mice and in Patients with caa
In order to further identify the cellular source of NOX activity 
in heterozygous APPE693Q mice, we analyzed aged APPE693Q:Iba1-
EGFP mice by intravital NAD(P)H-FLIM. Microglia were 
identified based on their EGFP fluorescence and vessels identi-
fied by the presence of dextran–rhodamine (Figure  3A, left 
panel). By using the EGFP-signal for masking the image of the 
NAD(P)H-fluorescence lifetime data (Figure 3A, right panel), 
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we were able to determine the levels of NOX activation specifi-
cally in microglia (Figure 3B). This “gating” strategy revealed 
that only a minor fraction (mean =  1.6 ±  0.8%; n =  3 mice) 
of the total NOX enzymes activity actually originated from 
microglia, whereas the major fraction arouse from other cel-
lular sources in the parenchyma. Moreover, when we analyzed 
the activation state of the microglia population, we found NOX 
enzyme activity in only ~2% of these cells (mean = 1.7 ± 1.4%; 
n = 3 mice, see Table 1). Taken together, these results indicate 
a minor relevance of microglia in the generation of ROS in the 
APPE693Q mouse model and imply other, yet undefined, cells as 
main contributors.

Similar to our results regarding microglial NOX activation in 
the APPE693Q mouse model, we found only low expression levels of 
p47 (a cytosolic subunit present in all NOX enzymes) in cells with 
microglial morphology as compared to blood-derived immune 
cells such as neutrophil granulocytes or macrophages/monocytes 
(Figure 3C, n = 4) in patients with CAA.

Major contribution of astrocytes to 
activated nOX in aged aPPe693Q Mice
Using immunofluorescence histology and intravital NAD(P)
H-FLIM, we previously found NOX1-expressing astrocytes as 
contributors to NOX enzyme overactivation in the context of 

chronic neuroinflammation (17). Based on that, we hypoth-
esized that astrocytes may also contribute to NOX enzyme 
activation observed in APPE693Q mice. In order to identify 
further cellular sources of NOX in the cortex of these mice, we 
performed intravital NAD(P)H-FLIM after local staining with 
sulforhodamine 101 (SR101). Astrocytes were identified based 
on their SR101 fluorescence (Figure  4A, left panel), which 
was used to mask the corresponding NAD(P)H-fluorescence 
lifetime maps (Figure  4B, left panel) and, thus, to determine 
the NOX activation levels in these cells (Figure 4B, right panel). 
By “gating” the NAD(P)H-FLIM maps in this way, we identified 
SR101 labeled cells (astrocytes) to be major cellular contribu-
tors to the NOX activation signal in the cortex of aged APPE693Q 
mice (mean = 37.9 ± 2.1%; n = 2 mice).

In order to verify this finding using immunofluorescence 
histology, we stained brain cortex sections from aged APPE693Q 
mice with antibodies against the Noxo1, a membrane-bound 
subunit of NOX1. While NOX2 is mainly expressed in phago-
cytic cells, other NOX enzymes prevail in other cell types (3, 17). 
Consistent with our intravital data, we could detect an enriched 
membrane-bound Noxo1 signal, co-localizing with processes of 
astrocytes (Figures 4C,D). Taken together, our data suggest that 
the observed bi-laminar NOX activation pattern in APPE693Q mice 
consists of an inner endothelial NOX activation and an outer 
astrocytic NOX activation layer.
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DiscUssiOn

Age-related changes in immune responses, commonly known 
as immunosenescence, are increasingly moving in the focus of 
immunological research. Immunosenescence is a multifactorial 
phenomenon caused, among other factors, by the diminished 
potential of hematopoietic stem cells to self-renew (24), age-
dependent impairment of antigen-presenting cells (25), a 
reduction of T cell (26) and B cell repertoire and numbers (27), 
causing a decline in adaptive immunity (28). A reduction in 
numbers of phagocytes has been described in aged individuals 
(29), along with an impaired functionality, which has been sug-
gested to reflect the adaptation to age-associated changes in their 
environment (30).

On a molecular level, an age-related deficiency in NOX2 has 
been recently shown to result in a reduced suppressive function 
in aged CD8+ regulatory T cells (31), leading to inflammation 
and tissue destruction. Whether changes in NOX activity also 
occur in other immune subsets during aging, especially in 
phagocytic cells, which are known to express NOX2 at high 
levels, is not known. By analyzing the changes in fluorescence 
lifetime of NAD(P)H as a means to analyze NOX activation 
in vivo, we recently demonstrated that NOX enzyme overacti-
vation in cerebral phagocytes contributes to oxidative distress 
associated with chronic neuroinflammation. Here, we com-
pared the activation of microglia in young versus aged mouse 
cohorts. We found a striking difference in microglia morphol-
ogy between the two groups. While the majority of those cells 
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area in the SR101 labeled cell subsets: mean 37.9 ± 2.1% out of 2 mice; with 2–3 fields of view per mouse. Scale bar: 50 µm. (c) Representative 
immunofluorescence image within the cortex of a 20-month-old APPE693Q mouse indicating the distribution of Noxo1 (subunit of NOX1, red) and GFAP signal 
(green). Nuclei are stained with DAPI (blue). Scale bar: 50 µm. White box marks inset displayed in (D).
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in young mice showed a ramified morphology typical of a 
surveilling behavior, microglia in old mice typically exhibited 
an activated phenotype characterized by shorter processes. 
Our findings are in line with a previous report in mice (32), 
describing similar changes in morphology. Moreover, a recent 
study has confirmed similar age-dependent changes in human 
microglia (33).

However, none of the previous studies functionally analyzed 
microglia in different age cohorts in  vivo. We chose to take 
NOX enzyme activation as a functional readout for microglia 
activation. Despite the obvious differences in morphology, we 
could not detect differences between young and old individu-
als, when comparing NOX activation by NAD(P)H-FLIM in 
the cerebral cortex of mice. In old and young healthy mice, 
there was also no elevated NOX enzyme activation in the CNS 
tissue, arguing against a chronic low-grade tissue inflamma-
tion, which has been associated with immunosenescence, at 
least in microglia.

Next, we aimed to investigate NOX activation in cerebral 
phagocytes during age-related neurodegenerative disease. AD, 
a fatal neurodegenerative condition, is one of the most com-
mon causes of dementia in aged. Major pathological changes 
are the deposition of extracellular amyloid β (Aβ) peptide 
plaques and formation of neurofibrillary tangles, which con-
sist of the microtubule protein tau, in the CNS tissue. In the 
patients, neuronal dysfunction progressively leads to cognitive 
impairment and loss of memory. While extensive research has 
been performed to elucidate the role of amyloid deposits in 
AD, the role of inflammation in the brain has only recently 
become appreciated. Microglia are in the focus of interest, 
especially during disease progression. Aβ not only aggregates 
in neuronal parenchyma but can also accumulate on blood 
vessel walls, this condition is named CAA and can cause 
hemorrhagic strokes and dementia. We found elevated levels 
of oxidized phospholipids by immunofluorescence in cerebral 
tissue of patients with CAA, suggesting ongoing tissue damage 
by oxidative distress in areas with pronounced astrogliosis. We 
used a mouse model of CAA in order to analyze NOX enzyme 
activity in vivo. In line with the cerebral angiopathy prevailing 
in this mouse model, we found a strong activation of NOX in 
tissue areas around the blood vessels in a typical bilayered pat-
tern. However, our analyses did not show significant elevated 
NOX enzyme activity in microglia, but rather in other CNS 
cells such as astrocytes. We could confirm this hypothesis by 
performing intravital NAD(P)H-FLIM in APPE639Q mice in 
which astrocytes were labeled by sulforhodamine 101, in which 
we found that more than a third of overactivated NOX enzymes 

are associated with astrocytes. By histology, the expression of 
the NOX1-subunit Noxo1 was partly localized in GFAP+ cells, 
underlining the role of astrocytes as contributors to the elevated 
NOX enzyme activity in the tissue. Further cellular sources of 
NOX enzyme activation may include endothelial cells that 
have been shown to express NOX4 (34) or pericytes and vas-
cular smooth muscle cells. However, these results extend our 
previous findings, which identified astrocytes as main source 
of oxidative stress in chronic neuroinflammation, especially 
when peripheral immune cells were not abundant in the CNS 
parenchyma during later stages of the disease (17). It should 
be noted that the level of NOX activation measured in the 
CAA model is around three times lower than in experimental 
autoimmune encephalomyelitis (EAE) (14) and even more in 
a murine glioblastoma model (16), where up to one-third of 
the CNS tissue shows NOX activity. This finding supports the 
idea of a rather low-grade chronic process occurring during 
neurodegenerative diseases, in contrast to an overt inflamma-
tory response. However, a continued—rather low-level—ROS 
production over time can exceed the anti-oxidative capacity of 
the tissue and lead to a slow, but progressive tissue destruction. 
Hence, we expect the ROS production in CAA to be in the 
pathologic range, i.e., >100 nM, but rather low as compared to 
the ROS concentrations found in chronic neuroinflammation 
of ~200 μM (14). Intravital NAD(P)H-FLIM reveals parallels in 
the mechanisms between autoimmune-mediated chronic neu-
roinflammation and primary neurodegenerative diseases. Our 
data point to astrocytes as important cellular players, which 
are able to maintain a state of local low-grade inflammation in 
the CNS tissue via extracellular ROS production. It should be 
emphasized at this point that by detecting NOX activity, our 
method is not suitable for measuring intracellular ROS produc-
tion (~1–10  nM), e.g., resulting from free radicals generated 
in the mitochondrial respiratory chain. Rather, it focuses on  
the massive (physiologic and pathologic) production of extra-
cellular ROS, for which the NADPH oxidase family plays a 
central role.

Interestingly, the specific pattern of NOX activation we found 
in the tissue of the CAA model differed from the one we had 
previously detected in lesions of mice with EAE or glioma.  
A specific NOX enzyme signal was present in the endothelial 
layer as well as in the vicinity of the vasculature. However, the 
latter did not originate from microglia in aged APPE693Q mice. 
There is increasing evidence in the literature that Aβ causes an 
impairment of microglia function (35). It remains to be tested 
whether our findings can be extended to other Aβ aggregation 
forms as seen, e.g., in plaques and to other microglial functions. 
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In addition, it will be important to address the question if locally 
enhanced oxidative distress precedes the formation of Aβ aggre-
gates in the tissue, or if it is a consequence of this process.
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Approximately 1.2 billion people suffer from fungal diseases worldwide. Arguably, the 
most serious manifestation occurs when pathogenic fungi infect the brain, often causing 
fatal meningoencephalitis. For most fungi, infection occurs via the vascular route. The 
organism must first be arrested in the brain microvasculature and transmigrate into the 
brain parenchyma across the blood–brain barrier. As a result, host immune cells are 
recruited into the brain to contain the fungi. However, it remains poorly understood how 
fungi traffic to, and migrate into the brain and how immune cells interact with invading 
fungi in the brain. A new era of intravital fluorescence microscopy has begun to provide 
insights. We are able to employ this powerful approach to study dynamic interactions of 
disseminating fungi with brain endothelial cells as well as resident and recruited immune 
cells during the brain infection. In this review, with a focus on Cryptococcus neoformans, 
we will provide an overview of the application of intravital imaging in fungal infections in 
the brain, discuss recent findings and speculate on possible future research directions.
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iNTRODUCTiON

Infectious meningitis and encephalitis are a major threat to human health, causing high mortality 
and morbidity throughout the world (1). Following infections, microbes including viruses, bacteria, 
fungi, and parasites can disseminate from sites of initial infection to the bloodstream. The circulat-
ing pathogens become arrested in the brain vasculature, followed by transmigration into the brain 
parenchyma across the blood–brain barrier (BBB). The BBB is a structural and functional barrier, 
which maintains the neural microenvironment by regulating the passage of molecules and cells 
into the brain (2). To date, three mechanisms have been proposed for pathogens to cross the BBB: 
transcellular migration, paracellular migration, and the Trojan horse mechanism (1). Once patho-
gens have translocated to the brain parenchyma, they proliferate and cause brain inflammation, 
often with devastating consequences. There are three fundamental questions in the field (Figure 1): 
(1) How are pathogens arrested in the brain vasculature? (2) How do pathogens migrate into the 
brain across the BBB? and (3) How do immune cells respond to the brain infection and do they 
clear the pathogen or cause inflammation in a constrained intracranial compartment that is highly 
susceptible to cellular dysfunction and increased pressure?

Modern advances in technology have provided opportunities to better understand host– 
pathogen interactions. Among them, imaging of organs in living animals, using high-resolution 
intravital microscopy (IVM), represents a major advance in the field. Using this technique, 
interactions of pathogens with brain endothelial cells, and their transmigration across the BBB can 
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FiGURe 1 | Possible mechanisms of arrest, transmigration, and 
resultant host response. The BBB is formed by brain endothelial cells, 
which are connected by tight junctions, and astrocyte foot processes that 
surround the endothelial cells and maintain the integrity of the BBB (2, 3).  
(A) Fungal cells are trapped by vascular constriction with possible sensing 
and signaling of both cell types (4, 5). This is followed by transmigration that 
could be by a trans- or paracellular mechanism (paracellular is shown in this 
panel). Immune and inflammatory cells are recruited to the vascular or 
extracellular compartment to generate host defense and inflammation.  
(B) Fungal cells adhere directly to the endothelium with possible sensing and  
 

signaling of both cell types (6–10). This is followed by transmigration that  
could be by a trans- or paracellular mechanism (transcellular is shown in this 
panel). Immune and inflammatory cells are recruited to the vascular or 
extracellular compartment to generate host defense and inflammation.  
(C) Fungal cells are internalized within a host cell (Trojan Horse) that makes 
contact with the endothelium, arrests, and generates sensing and signaling 
of all three cell types (11, 12). This is followed by transmigration that could 
be by a trans- or paracellular mechanism. Immune and inflammatory cells 
are recruited to the vascular or extracellular compartment to generate host 
defense and inflammation.

(Continued)

FiGURe 1 | Continued
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be directly assessed under flow conditions in real time. In addi-
tion, the dynamic interactions of leukocytes with pathogens 
and their behavior in the brain vasculature and parenchyma 
can be evaluated in living animals. This is of particular impor-
tance, because the extravascular migration of pathogens and 
their interactions with immune cells are transient and highly 
dynamic, and investigation of these processes by direct observa-
tion using IVM provides insights that cannot be obtained using 
other techniques.

Of the approximately 300 fungal species that have been 
reported to be pathogenic to humans (13), Cryptococcus neofor-
mans, Candida albicans, Histoplasma capsulatum, Coccidioides 
immitis, Paracoccidioides brasiliensis, Aspergillus spp., and 
zygomycetes are among the most common causes of brain 
or meningeal infections (14–21). In particular, cryptococcal 
meningoencephalitis is one of the most common infections 
of the central nervous system and a leading course of HIV-
associated mortality globally (16, 18, 22). In recent years, much 
progress has been made to understand migration of pathogens 
and immune responses induced by the invading pathogens in 
the brain using IVM. This review will discuss recent studies that 
used IVM to address brain infections by a very limited subset of 
pathogenic fungi (Table 1).

iNTRAviTAL MiCROSCOPY

Intravital microscopy was first employed by Julius Cohnheim in 
the nineteenth century to visualize leukocyte trafficking in the 
tongue and mesentery of a frog (27). In the last decade, significant 
progress has been made in imaging of live animals due to break-
throughs in microscopy. Wide-field microscopy, multiphoton 
confocal, spinning disk confocal, and multiphoton resonant 
scanning confocal microscopy have been used to image fungal 
infection in the brain. Each imaging system has its advantages 
or disadvantages depending on whether speed of image acquisi-
tion, depth into the tissue, image resolution, photobleaching and 
phototoxicity, and price are considerations (28–32).

ivM PROCeDURe

There are two major surgical methods to make the brain vascu-
lature visible under fluorescent microscopy, i.e., a thinned-skull 
cranial window and an open-skull cranial window (33). Both 
techniques have advantages and limitations. During imaging 
through the thinned-skull cranial window, the brain does not 
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TABLe 1 | Application of intravital imaging to brain infection by fungi.

Fungi Animals Nature of the work Reference

C. neoformans Mouse The fungal cell is mechanically 
trapped in the brain capillary 
and transmigrates to the brain 
parenchyma with contributions 
from urease

Shi et al. (5)

C. neoformans Mouse Neutrophils internalize the 
intravascular fungal cell that 
had been arrested in the brain 
microvasculature and return to 
the blood stream in a “vacuum-
cleaner” type of behavior

Zhang 
et al. (23)

C. neoformans Zebrafish The fungal cell was observed to 
proliferate within macrophages; 
capsule size determines early 
macrophage control of infection

Bojarczuk 
et al. (24)

C. neoformans Zebrafish The fungal cell can cross the 
zebrafish blood–brain barrier, 
which is dependent on the FNX1 
virulence gene

Tenor et al. 
(25)

C. albicans Mouse Accumulation of both yeast and 
filamentous forms of the fungal 
cells were observed in the brain 
meninges and parenchyma

Navarathna 
et al. (26)

P. brasiliensis Mouse Enhanced leukocyte recruitment 
to the brain following the fungal 
infection is associated with CXCL9

Pedroso 
et al. (20)
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need to be superfused with artificial cerebrospinal fluids because 
the brain tissue is still covered with the skull. It is well suited for 
observations over long periods of time. However, the skull thick-
ness affects the image quality and achieving optimal and uniform 
skull thickness requires a high level of surgical proficiency. By 
contrast, in an open-skull window, a portion of the skull and 
dura is removed, and the cortical surface is directly exposed to 
microscopy. Thus, a better quality of images is usually achieved 
compared with a thinned-skull window. However, it is essential 
to superfuse the brain with artificial cerebrospinal fluid during 
the period of observation, and great care must be taken to avoid 
surgical trauma and hemorrhage (33).

To facilitate intravital imaging, the organisms, brain micro-
vasculature, and leukocytes can be labeled with fluorochromes. 
For example, we labeled C. neoformans with fluorescent iso-
thiocyanate (FITC) or tetramethylrhodamine isothiocyanate 
(TRITC) to visualize the arrest and migration of the yeast 
cell into the brain (4, 5). Two colors allow comparison of two 
different virulence characteristics or wild-type and mutant 
strains. However, the yeast cell loses the fluorescent label if it 
proliferates. This disadvantage might be overcome by using 
fungi expressing green or red fluorescent proteins if sufficient 
fluorescent intensity can be achieved (26, 34, 35). To label the 
microvasculature, rat-anti-mouse PECAM-1 [CD31, a molecule 
expressed on endothelial cells (36)] can be injected intravenously 
(37, 38). Since the tight junctions of endothelial cells express 
high PECAM-1, this labeling can be used to study interactions 
of fungi or leukocytes with endothelial tight junctions (36). 
Alternatively, the vascular compartment can be illuminated by 

intravenous injection with fluorochrome-conjugated bovine 
serum albumin or dextran (39). In addition, transgenic mice 
that express fluorescent proteins in endothelial cells [for example, 
Tie-2 green fluorescent protein (GFP) mice (40)] can be used.

An expanding number of tools are becoming available to study 
the interactions of fungi with immune and inflammatory cells. 
To determine the trafficking of leukocytes in the brain, mice can 
be injected intravenously with rhodamine 6G, which is a cell-
permeant dye that is sequestered by active mitochondria (41, 42). 
However, to identify the functions of subsets of leukocytes, mAb 
or transgenic mice can be used. For example, anti-CD45 can be 
injected intravenously, which labels all leukocytes. Neutrophils 
can be labeled in vivo by intravenous injection of anti-Ly6G (23). 
Alternatively, neutrophils can be visualized in mice expressing 
enhanced GFP under the control of the endogenous lysozyme 
promoter (LysM-eGFP) (39, 43). To image monocytes, mice can 
be intravenously injected with fluorochrome-labeled anti-CCR2 
(labels proinflammatory monocytes) or anti-CX3CR1 antibody 
(labels patrolling monocytes) (44). Alternately, CX3CR1gfp/+ mice 
can be used to achieve this goal. In CX3CR1gfp/+ mice, one allele 
for the gene encoding CX3CR1, the receptor for chemokine 
CX3CL1, has been replaced with a gene encoding GFP, result-
ing in GFP expression of all circulating CD11b+F4/80+ cells. 
CX3CR1gfp/+ mice express GFP in monocytes, but not in neutro-
phils (45, 46). With time, many more mouse strains are becoming 
available that have fluorescent reporters linked to other genes that 
define different subsets of cells and allow us to study the role of 
those cells in the pathogenesis of infection.

BRAiN iNFeCTiON wiTH  
C. NEOFORMANS

Cryptococcus neoformans is an encapsulated budding yeast that 
causes a life-threatening illness in immunocompromised indi-
viduals, especially in AIDS patients. It is estimated that there are 
one million cases of cryptococcosis per year and 600,000 of these 
patients will die within 3 months of diagnosis (22). Cryptococcus 
is found in the environment and enters the body through the 
respiratory tract. Immunocompetent individuals are usually 
able to contain C. neoformans in the lung (47). In the case of an 
immunocompromised host, the yeast cells cannot be successfully 
contained and disseminate into the brain via the bloodstream, 
causing meningoencephalitis (16, 47).

Hematogenous dissemination of C. neoformans is one of the 
most critical steps in the development of meningoencephalitis. 
Prior to transmigration into the brain parenchyma, circulating  
C. neoformans must be arrested in the brain vasculature. We 
became interested in a number of questions related to the 
pathogenesis of cryptococcal meningoencephalitis. (1)  Was 
C. neoformans arrested in the brain vasculature prior to trans-
migration and did the arrest occur in venules or capillaries? 
(2) How did C. neoformans behave during arrest? and (3) What 
was the mechanism(s) underlying the arrest of C. neoformans. 
As arrest of C. neoformans is a transient and dynamic process, 
we developed an in vivo model system based on IVM to study 
these questions (4, 5). We demonstrated that C. neoformans 
appeared in the mouse brain microvasculature within a few 
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seconds after injection into the tail vein. When first seen, 
C. neoformans was moving with the same velocity as the blood, 
and no interaction of circulating C. neoformans with venular 
endothelial cells was observed. The number of yeast cells pass-
ing through postcapillary venules was greatest immediately 
after injection and gradually decreased over time. However, 
even after 18  h, rare yeast cells could still be seen moving in 
the brain venules. C. neoformans appeared to move at the same 
speed as the blood and came to a sudden stop in the capillaries 
of the brain without rolling and tethering to the endothelial 
surface. Interestingly, the yeast cells were arrested in capillar-
ies that appeared to be of the same or smaller diameter than 
the organism, often at branch points. Differences in viability, 
polysaccharide capsule (the major virulence factor), and strain 
failed to affect the deposition of the yeast cells. In particular, 
there was no significant difference in the behavior and the arrest 
of polystyrene microspheres of similar size in the brain capillary 
bed when compared with C. neoformans. These results suggest 
that C. neoformans is mechanically trapped in the brain, which 
raises novel challenges for therapies to avoid arrest.

Cryptococcus neoformans transmigrates into the brain 
parenchyma across the BBB after arrest in the brain capillaries. 
Previous studies, using in vitro techniques, have shown that C. 
neoformans can cross the endothelium of the brain via direct 
transcytosis (6, 48, 49). It was further demonstrated that trans-
cytosis is mediated by interactions between CD44 expressed on 
endothelium and cryptococcal hyaluronic acids (7, 8). A secreted 
fungal metalloprotease (9), an extracellular phospholipase B1 
(10), and brain inositol (50) are critically involved in transcytosis 
of C. neoformans. In addition, it was also reported that C. neofor-
mans invaded the brain via a “Trojan horse” mechanism with the 
help of phagocytes (11, 12). However, these studies have failed to 
determine the dynamics of BBB penetration by C. neoformans 
in the brain vasculature in  vivo. Using IVM, we have recently 
characterized the transmigration of C. neoformans in  vivo (5). 
Following arrest in the brain, C. neoformans was directly seen to 
cross the capillary wall of living animals in real time. In contrast 
to trapping, viability, but not replication, was required for C. 
neoformans to cross the BBB. Urease is critically involved in brain 
transmigration of the organism. Accordingly, a urease inhibi-
tor could ameliorate infection of the mouse brain by reducing 
transmigration of C. neoformans into the brain, suggesting that 
a therapeutic strategy aimed at inhibiting this enzyme might be 
beneficial in cryptococcal meningitis and encephalitis.

Arrest of C. neoformans in the brain vasculature led to 
questions about recognition of the organism by circulating 
leukocytes. Recently, we addressed this question with the 
use of IVM (23). Among all subsets of leukocytes in the 
circulation, neutrophils are the most abundant phagocytes 
and are usually the first immune cells to be recruited to a 
site of infection to eliminate pathogens (51). Early work had 
suggested that human neutrophils kill C. neoformans in vitro 
via an intracellular (52, 53) or extracellular killing mechanism 
(54). In particular, the capability of human neutrophils to 
kill the organism was reported to be even greater than that 
of monocytes (52, 55). In  vitro, mouse neutrophils appear to 
move toward C. neoformans and then rapidly internalize the 

yeast (56). Complement C5a–C5aR signaling was essential for 
phagocytosis of C. neoformans by neutrophils by guiding their 
migration to neutrophils and enhancing surface expression of 
CD11b (56). Furthermore, the p38 MAPK pathway, but not the 
Erk pathway, was critically involved in C5a–C5aR-mediated 
chemotaxis of neutrophils during their killing of C. neoformans 
(56). These in vitro observations encouraged us to address how 
neutrophils dynamically interact with C. neoformans which 
were arrested in the brain vasculature (23). With the use of 
IVM, we demonstrated that neutrophils crawled to the yeast 
cells that had been arrested in the brain microvasculature. 
Interestingly, crawling neutrophils recognized and interacted 
with the yeast, resulting in internalization of C. neoformans. 
During the interactions of neutrophils with the yeast, mor-
phologic alterations of neutrophils, including deploying 
pseudopodia, were observed. Internalization of C. neoformans 
by neutrophils in the brain vasculature could be completed 
within a few minutes. Following ingestion of C.  neoformans, 
neutrophils were seen to crawl again along the vessel wall and 
eventually to be released into the blood flow, resulting in a 
direct removal of the arrested C. neoformans from the brain 
vasculature. Depletion of neutrophils enhanced brain fungal 
burden (23), while enhancing the recruitment of neutrophils 
improved intravascular clearance of C. neoformans in the 
brain (57). Further studies demonstrated that C. neoformans 
infection led to enhanced expression of the adhesion molecule, 
Mac-1, on neutrophils, and ICAM-1 on brain endothelial cells. 
Complement C3 was critically involved in the recognition 
of C. neoformans by neutrophils and subsequent clearance 
of the organism from the brain (23). These results revealed 
that neutrophils are able to remove C. neoformans that had 
been arrested in the brain microvasculature in a “vacuum-
cleaner” type of behavior. Given that neutrophils are usually 
considered to kill microorganisms at the infection site, the 
finding of the direct removal of C. neoformans by neutrophils 
from its arrested site may represent a novel mechanism of host 
defense in the brain (23). In this respect, neutrophils have been 
recently shown to “sweep up” bacteria arrested on the walls of 
an infected body cavity or blood vessel, but not fluid-borne 
bacteria in a zebrafish model (58).

Recently, a live-imaging model based on zebrafish larvae 
has been established to study the interactions of C. neoformans 
with innate immune cells and its migration to the brain (24, 25). 
The zebrafish C. neoformans platform provides a visually and 
genetically accessible vertebrate model system for infection 
of C. neoformans. It was shown that zebrafish macrophages 
rapidly phagocytosed the majority of C. neoformans cells fol-
lowing injection of the yeast via the caudal vein (25). Depletion 
of macrophages significantly enhanced the fungal burden in 
zebrafish, demonstrating that macrophages are essential to 
protect zebrafish from disease progression (24, 25). However, 
macrophages preferentially ingested C. neoformans with 
smaller polysaccharide capsules, and since the capsule size 
greatly increased over 24 h of infection, this markedly limited 
further phagocytosis (24). In addition, proliferation of C. neo-
formans within macrophages and non-lytic exocytosis of the 
yeast from macrophages were observed in zebrafish (24). Live 
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imaging demonstrated that C. neoformans is able to penetrate 
the zebrafish brain. There was a positive correlation between the 
burden of organisms in cranial vessels versus invasion into the 
brain parenchyma (25). The C. neoformans fnx1Δ mutant, which 
is deficient in a multidrug resistance-like protein, was shown 
to have a deficiency in transmigration across the mouse BBB 
and reduced microvascular entrapment and transcytosis across 
immortalized human brain capillary endothelial cells in  vitro 
(59). Interestingly, the fnx1Δ mutant also demonstrated defec-
tive invasion of brain parenchyma of zebrafish (25). Using IVM, 
these studies are just beginning to enhance our understanding 
of the spacial and temporal aspects and the role of different cell 
types in pathogenesis and host defense to C. neoformans.

BRAiN iNFeCTiON wiTH C. ALBICANS

Candida albicans is a commensal organism and a common 
constituent of the normal mucosal flora. As the most common 
fungal pathogen of humans, overgrowth causes thrush. However, 
translocation of the yeast cells from the mucosal surface into the 
systemic circulation causes potentially life-threatening disease, 
particularly in post-surgical and critically ill patients, which is 
associated with approximately 35% death rate (60, 61). During 
this disease, the bloodborne organisms can spread to virtually all 
organs of the body. Although the kidney is the primary target of 
this organism during disseminated candidiasis, brain infection 
is found in approximately one-half of patients with systemic 
candidiasis at autopsy (62–64). In addition, C. albicans has also 
been reported to cause meningoencephalitis without systemic 
infection in healthy individuals (65).

To invade the brain parenchyma, circulating C. albicans cells 
must adhere and cross the BBB. Early work had shown that 
C.  albicans is able to penetrate a monolayer of human brain 
endothelial cells cultured in  vitro via a transcellular pathway 
(66). It was later demonstrated that C. albicans invasion of brain 
endothelial cells is mediated by the fungal invasins Als3 and Ssa1 
(67). Als3 binds to the gp96 heat shock protein, a unique receptor 
that is expressed specifically on brain endothelium, promoting 
endothelial transcytosis by the fungus (67).

Recently, Navarathna et  al. studied brain infection by 
C.   albicans  in a mouse model using IVM (26). They observed 
sporadic entry of C. albicans into the brain parenchyma as early as 
30 min after intravenous inoculation. In this model, the authors 
did not observe leak of gadolinium diethylenetriaminepentaacetic 
acid (Gd-DTPA) into the brain 30 min after intravenous admin-
istration as examined by MRI, suggesting that brain invasion 
by C. albicans initially occurs without gross disruption of the 
BBB. However, IVM performed 3  days post-infection revealed 
significant accumulation of both yeast and filamentous forms of 
C. albicans in the meninges and parenchyma. At that time, leak 
of Gd-DTPA was observed, indicating damage of the BBB. The 
brain became heavily inflamed at sites of C. albicans invasion. 
Thus, it is conceivable that permeability of the BBB was caused by 
leukocyte infiltration. In addition, Candida filament elongation 
was observed in the brain. Interestingly, most of the yeast cells 
outside of the vasculature showed highly dynamic movement that 
could be explained by the movement of phagocytosed organisms 

within motile phagocytic cells. By contrast, hyphal cells showed 
only slow invasion based on hyphal extension.

BRAiN iNFeCTiON wiTH P. BRASILIENSIS

Paracoccidioides brasiliensis is an etiologic agent of paracoccidi-
oidomycosis, an important systemic mycosis in Latin America, 
with the greatest number of patients in Brazil, Venezuela, and 
Argentina (68). The infection is usually acquired by the respiratory 
system probably by inhalation of airborne conidia of P. brasiliensis 
(69, 70). Following infection, the conidia transform into yeast in 
the lungs. P. brasiliensis can cause disease in immunocompetent 
hosts, although immunosuppression increases the severity of 
infection. The yeast cells can be disseminated from the infected 
lung into other organs such as adrenal glands and brain (70, 71). 
In the last decade, brain infection has been reported more com-
monly, affecting approximately 12.5% of cases (70). However, it 
is unknown how the fungus arrests and migrates into the brain 
parenchyma across the BBB.

Recently, Pedroso et  al. used IVM to examine trafficking of 
leukocytes in the brain in a murine model of neuroparacoc-
cidioidomycosis (20). Following infection with P. brasiliensis by 
the intracranial route, mice showed clinical signs of progressive 
infection starting on day 7 post-inoculation. IVM of the brain 
pial microvasculature revealed a significant increase in leukocyte 
rolling 2 and 4 weeks post-infection and in adhesion 1, 2, and 
4 weeks post-infection. The enhanced recruitment of leukocytes 
was associated with a significant increase in the brain concen-
tration of chemokines, particularly CXCL9, suggesting a role 
for these molecules in the inflammatory and immune response 
against the fungi. The lesions were not restricted to the site of 
inoculation and disseminated to other sites of the brain including 
the cerebellum. Neutrophils and macrophages were increased in 
the brain as determined by the myeloperoxidase and N-acetyl-b-
d-glucosaminidase activity in the brain tissues.

CONCLUDiNG ReMARKS

Fungal meningoencephalitis is a grave illness associated with 
high mortality, even with the best available antifungal treatment. 
Understanding the mechanisms involved in arrest and invasion 
of the brain by fungi and the interactions with immune cells is 
fundamental to our knowledge of the pathogenesis of the dis-
ease. With the use of IVM, brain infections by fungi, including 
C. neoformans (5, 23), C. albicans (26), and P. brasiliensis (20), 
have been recently investigated in real time. In particular, we have 
shown that C. neoformans is mechanically trapped in the brain 
vasculature (5). IVM may provide a powerful tool to determine 
whether in vitro findings implicating interactions between CD44 
and hyaluronic acid (7, 8), or adherence of phagocytosed cells 
(Trojan Horse) also occur (11, 12) through the use of transgenic 
mice. Although neutrophils are able to recognize and remove 
the arrested C. neoformans from the brain vasculature (23), 
organisms were seen to cross the vessel wall with contribution 
of cryptococcal urease (5). IVM may provide a powerful tool to 
investigate the role of metalloprotease (9), and phospholipase (10) 
in brain invasion via transcytosis through the use of deletion 
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Role of tumor necrosis factor
superfamily in neuroinflammation
and autoimmunity
Sandip Sonar and Girdhari Lal*

National Centre for Cell Science, Pune, India

Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activa-
tion, proliferation, differentiation, and migration of immune cells into the central nervous
system (CNS). Several TNF superfamily molecules are known to control alloimmunity,
autoimmunity, and immunity. Development of transgenic and gene knockout animals, and
monoclonal antibodies against TNFSF molecules have increased our understanding of
individual receptor–ligand interactions, and their intracellular signaling during homeostasis
and neuroinflammation. A strong clinical association has been observed between TNFSF
members and CNS autoimmunity such as multiple sclerosis and also in its animal model
experimental autoimmune encephalomyelitis. Therefore, they are promising targets for
alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are
widely distributed and have diverse functions, we have restricted the discussions in
this review to TNFSF receptor–ligand interactions and their role in the pathogenesis of
neuroinflammation and CNS autoimmunity.

Keywords: autoimmunity, blood–brain barrier, multiple sclerosis, tumor necrosis factor, neuroinflammation

Introduction

CD4+ T cells are one of the key adaptive immune cells that play an important role in several autoim-
mune diseases like multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE),
inflammatory bowel disease (IBD), and collagen-induced arthritis (CIA). Interactions between
tumor necrosis factor superfamily (TNFSF) ligands and TNF receptor superfamily (TNFRSF) recep-
tors provide the costimulatory signals that control the survival, proliferation, differentiation, and
effector function of immune cells. Therefore, signaling from these ligand–receptor pairs effectively

Abbreviations: APC, antigen-presenting cells; APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor; BBB,
blood–brain barrier; BCMA, B-cell maturation factor; CNS, central nervous system; CTLA-4, cytotoxic T-lymphocyte-
associated protein-4; DR, death domain containing receptor; EAE, experimental autoimmune encephalomyelitis; GA, glati-
ramer acetate; GITR, glucocorticoid-induced TNFR family-related gene; GITRL, glucocorticoid-induced TNFR family-
related gene ligand; gld, generalized lymphoproliferative disease; GM-CSF, granulocyte–macrophage colony-stimulating factor;
HEVM, herpes virus entry mediator; ICAM-1, intercellular adhesion molecule-1; LIGHT, homologous to lymphotoxins,
exhibits inducible expression, and competes with HSV glycoprotein D for herpesvirus entry mediator (HVEM), a receptor
expressed by T lymphocytes; lpr, lymphoproliferative; LTα, lymphotoxin alpha; LTβR, lymphotoxin receptor beta; MMP,
matrix metallopeptidase; MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; RANK, receptor activator of
NF-κB; RANKL, receptor activator of NF-κB ligand; TACE, TNF alpha converting enzyme; TACI, transmembrane activator,
calcium modulator, and cyclophilin ligand interactor; TNF, tumor necrosis factor; TNFR, TNF receptor; TNFRSF, TNF
receptor superfamily; TNFSF, TNF superfamily; TRAF, TNF receptor-associated factor; TRAIL, TNF-related apoptosis-
inducing ligand; TRAILR,TNF-related apoptosis-inducing ligand receptor; Treg, regulatoryCD4Tcells; TWEAK,TNF-related
weak inducer of apoptosis; VCAM-1, vascular cell adhesion molecule-1; VEGI, vascular endothelial cell-growth inhibitor.
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helps in maintaining immune cell homeostasis and in regulating
the pathology of autoimmune diseases (1–4).

About 19 TNFSF ligands have been identified, which include
TNF-α, TNF-β [also known as lymphotoxin alpha (LTα)],
lymphotoxin-β (LT-β), CD27L, CD30L, CD40L, FasL, 4-1BBL,
OX40L, TNF-related apoptosis-inducing ligand (TRAIL), LIGHT
(homologous to lymphotoxins, exhibits inducible expression,
and competes with HSV glycoprotein D for herpesvirus entry
mediator (HVEM), a receptor expressed by T lymphocytes),
receptor activator of NF-κB ligand (RANKL), TNF-related weak
inducer of apoptosis (TWEAK), a proliferation-inducing ligand
(APRIL), B-cell activating factor (BAFF), vascular endothelial
cell-growth inhibitor (VEGI), ectodysplasin A (EDA-A1, EDA-
A2), and glucocorticoid-induced TNFR family-related gene
ligand (GITRL) (Figure 1). While expressions of TNFSF ligands
are induced largely on professional antigen-presenting cells
(APCs; dendritic cells, B cells, macrophages), their expression
is also reported on T cells, NK cells, mast cells, eosinophils,
basophils, endothelial cells, thymic epithelial cells, and smooth
muscle cells (5).

FIGURE 1 | Interaction of TNF superfamily ligand and its receptors. The
vertical dotted lines represent the cytoplasmic membrane where receptors or
ligands are attached. The horizontal dotted line shows the receptor and its
cognate ligand interaction.

TNF receptor superfamily members are transmembrane pro-
teins having cysteine-rich motifs in their extracellular domains
that bind to their cognate ligands (Figure 1). About 30members of
TNFRSF have been identified (3, 6, 7). Depending upon the spe-
cific intracellular signal induced by TNFRSF members, they can
be categorized into three groups – death domain (DD)-containing
receptors, decoy receptors, and TNF receptor-associated factor
(TRAF)-binding receptors (8). Some TNFRSFs such as TNFR-1,
Fas, DR3, DR4, DR5, and DR6, contain their own DDs. How-
ever, they also interact with other cytoplasmic DD-containing
adaptor molecules (9). This receptor–adaptor complex acts as
a scaffold for binding of immature pro-caspase, which then
undergoes auto-cleavage, leading to the formation of the death-
inducing signaling complex (DISC) and induction of apoptosis
(9, 10). Some other TNFRSFs, such as TNFR-2, CD27, CD30,
CD40, glucocorticoid-induced TNFR family-related gene (GITR),
Fn1, lymphotoxin beta-receptor (LTβR), OX40, receptor activa-
tor of NF-κB (RANK), and XEDAR, lack a DD and contain
motifs with four to six amino acids called TRAF-interacting
motifs (TIMs) which recruits TRAF proteins. TRAF proteins are
adaptor molecules that activate multiple downstream signaling
pathways such as NF-κB, Janus kinase (JNK), ERK, p38MAPK,
and PI3K that help in cell survival, proliferation, and cytokine
production (11).

There are at least five anti-TNFmedications (Etanercept, Inflix-
imab, Adalimumab, Golimumab, and Certolizumab) approved
by the U.S. Food and Drug Administration (FDA) for the treat-
ment of rheumatoid arthritis (RA). Most of these biologics
bind to soluble TNF molecules and prevent their binding to
TNF-receptors. This blocks the production of pro-inflammatory
cytokines such as IL-1, IL-6, or IFN-γ. Anti-TNF antibodies can
also bind to surface-expressed TNF molecules and induce reverse
signaling or antibody-induced cell death (AICD) (12, 13). In
this review, we discuss the role of TNFSF–TNFRSF members
that play a role in neuronal inflammation, the possible molecu-
lar mechanisms involved, and the efficiency of these molecules
in controlling central nervous system (CNS) inflammation and
autoimmunity.

The CNS is considered as an immune-privileged site and con-
sists of a network of CNS microvessels. These microvessels are
formed by a highly specialized endothelial lining supported by
astrocytes, pericytes,microglial cells, and neurons, which together
form a very firm blood–brain barrier (BBB). The BBB restricts
entry of immune cells into the CNS, thereby actively maintain-
ing a homeostasis. However, under inflammatory conditions,
the BBB gets disrupted and immune cells migrate into the CNS
parenchyma. A disrupted BBB is one of the hallmarks of autoim-
mune demyelinating diseases like MS and EAE (14–16).

Watts et al. have reported that vascular endothelial growth
factor receptor (VEGFR) signaling activates JNK and posi-
tively regulates the angiogenesis and barrier property of BBB
endothelial cells (17). They also reported that death receptor
6 (TNFRSF21) and TROY (TNFRSF19) were regulated in the
acquisition and development of barrier property in BBB (17).
Both these TNFRSF members are downstream targets of the
Wnt/beta-catenin signaling pathway in the BBB endothelial cells.
Dysregulation of TNFRSF21/TNFRSF19 signaling leads to the
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TABLE 1 | TNF superfamily in neuroinflammation.

TNFSF receptor TNFSF ligand Blocking/genetic deficiency/over-expression Effect on neuroinflammation in EAE or MS Reference

TNFR-1 and
TNFR-2

TNFα Anti-TNFα or TNFR-1-IgG Reduced demyelination but CNS infiltration is
unaffected in EAE

(22)

TNFα−/− Severe EAE (25, 26)
Neuron-specific TNF transgenic mice Spontaneous EAE (27)
TNFR-1/2−/− Mild EAE (30)
TNFR-2−/− Hyper susceptible to EAE (30)

OX40 OX40L Anti-OX40 Substantial inhibition of EAE (81)
OX40-Ig Mild EAE (82)
Anti-OX40L Reduced infiltration in spinal cord in both active

and passive EAE
(84)

OX40L−/− Controls active EAE, but do not have effect on
passive EAE

(138)

4-1BB 4-1BBL Agonistic anti-4-1BB (2A) Reduced incidence and severity of EAE. It also
prevents the relapse of EAE

(87)

4-1BBL−/− Controls EAE by reducing VCAM-1 expression on
spinal cord endothelial vessels

(89)

GITR GITRL GITRL blocked by anti-GITRL antibody on B cells Severe passive EAE (100)

DR4/DR5 TRAIL Recombinant soluble TRAIL Delayed onset and mild EAE (102)
Anti-TRAIL antibody Severe EAE (102)
TRAIL−/− Hypersusceptibility to EAE (102)

Fn14 TWEAK TWEAK transgenic mice Hypersusceptibility to EAE (109)
Recombinant soluble TWEAK Severe demyelination (110)
Anti-TWEAK Mild EAE (116)
Fn–TRAIL fusion protein Delayed onset and mild EAE (118)

CD40 CD40L Anti-CD40L Prevents relapse when administered at acute
phase of relapsing–remitting EAE

(137)

Substantial inhibition of EAE (135)
CD40L−/− Prevents EAE (136)
CD40−/− Protects from EAE (138–140)

Fas FasL Fas−/− or FasL−/− Resistant to EAE (39, 40)
Fas (Ipr) and FasL (gld) mutant mice Spontaneous EAE (37, 38)
Recombinant FasL Reduces the incidence and severity of EAE (41, 42)
Astrocyte-specific FasL−/− Reduces the severity of EAE (45)

CD27 CD70 Anti-CD70 Suppresses EAE (121)
CD70−/− or CD27−/− Severe EAE (124)
CD70-transgenic mice Reduced demyelination and mild EAE (125)
MOG35–55-specific TCR transgenic mice
overexpressing CD70 in B cells (2D2×CD70 Tg)

Increases the incidence and severity of
spontaneous as well as MOG35–55-induced EAE

(126)

BAFF-R BAFF BAFF-R−/− Exacerbation of EAE (57)
Soluble human BCMA-Fc Delays the onset and reduces the severity of

human recombinant MOG (MOG1–121)-induced
EAE in C57BL/6 mice

(59)

Anti-BLys (Anti-BAFF) Attenuated EAE in marmoset monkeys (61)

LTβR LTα LTβR–Ig fusion protein Mild EAE (128)
LTα−/− or LTβ−/− Mild EAE (130)

HVEM LIGHT, LTα,
BTLA, and CD160

LIGHT−/− Severe EAE with high mortality (131)
HVEM−/− Hyper-susceptibility to EAE (141)

disruption of endothelial BBB. Since Wnt/beta-catenin signaling
is required for CNS angiogenesis but not for peripheral vascu-
lature (18, 19), an understanding of the molecular mechanism
of this signaling would help in designing novel therapeutics or
biologics that target TNFSF–TNFRSF interactions, to control CNS
autoimmunity.

The importance of TNF superfamily receptors and ligands in
neuroinflammation are listed in Table 1. Some of the recep-
tor–ligand interactions and their function at BBB (Figure 2)
and in the brain parenchyma (Figure 3) are depicted. The role

of important TNFSF–TNFRSF pairs in neuroinflammation and
autoimmunity are discussed in details below.

TNFR–TNFα

Tumor necrosis factor alpha (TNFα or TNFSF2) is a
homotrimeric transmembrane protein that plays an important
role in systemic inflammation. TNFα is expressed as amembrane-
bound precursor (tmTNFα), which is later cleaved between
Ala76–Val77 by a metalloproteinase known as TNFα-converting
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FIGURE 2 | TNFSF receptor–ligand interaction at endothelial BBB during
neuroinflammation. BBB endothelial cells express TNFSF receptors during
inflammatory condition, and interact with the TNFSF ligand in soluble form as
well as on infiltrating immune cells. (I) Inflamed BBB endothelial cells express
CD40. Interaction of CD40 with CD40L-expressing activated immune cells leads
to up-regulation of adhesion molecules and chemokine secretion by BBB
endothelial cells. This promotes the migration of pathogenic immune cell
subsets into the CNS parenchyma. (II) OX40 expression can be induced in BBB
endothelial cells during inflammation, which facilitates the migration of OX40L+

immune cells across the BBB. (III) Under inflammatory conditions, BBB

endothelial cells up-regulate TNFR-1, which bind to soluble TNF secreted from
various immune cells, such as activated Th1 cells, B cells, macrophages, and
NK cells. Binding of TNF with TNFR-1 increases the paracellular permeability of
BBB endothelial vessels. (IV) Inflamed BBB endothelial cells express Fn14 that
binds to soluble TWEAK molecules. This leads to the up-regulation of cytokines,
chemokines, cell adhesion molecules, and matrix metalloprotenase-9 (MMP-9).
Increased expression of CCL2 and ICAM-1 facilitates the migration of
pathogenic immune cells; whereas MMP-9 helps in the degradation of laminin
molecules present in the basement membrane, resulting in loosening of
the BBB.

enzyme (TACE), and released as soluble TNFα (sTNFα). TNFα
is produced by many cell types, including activated macrophages,
dendritic cells, monocytes, NK cells, CD4+ T cells, CD8+ T
cells, astrocytes, and microglia (20). TNFα interacts with two
receptors; TNF receptor type-1 (TNFR-1, also known as CD120a,
p55/60) and TNF receptor type-2 (TNFR-2, also known as
CD120b, p75/80). Low and constitutive expression of TNFR-1
is found on almost all nucleated cells, and can be activated by
both membrane-bound TNFα (tmTNFα) and sTNFα. However,
expression of TNFR-2 is inducible and restricted to myeloid and
lymphoid lineages. TNFα acts as a pro-inflammatory cytokine
during the early phase of EAE, but shows immunosuppressive
properties in the later phase. To be biologically functional,
tmTNFα and sTNFα monomers must form homodimers.
While both tmTNFα and sTNFα can bind to TNFR-1, sTNFα
interacts with higher affinity than TNFR-2, leading to an
inflammatory response. The tmTNFα mainly interacts with
TNFR-2 and promotes cell survival (21). Blocking of TNFα by
the administration of a soluble TNFR-1–IgG fusion protein or
neutralization of anti-TNFα antibody has been shown to control
the development of EAE (22). Interestingly, these biologics
prevented demyelination but did not control the infiltration of
immune cells into the CNS (22). Furthermore, such regimens

also reduced the activation of CD4+ T cell and microglia cells,
and prevented demyelination in CNS (23, 24). While Korner
et al. reported that a deficiency of TNFα only delays the disease
progression and resulted in disease of comparable severity (25),
others have reported that TNFα-deficient mice developed a more
severe myelin oligodendrocyte glycoprotein (MOG) peptide-
induced EAE as compared to wild-type littermate controls (26).
Expression of TNFα, specifically in neurons in the transgenic
mice led to the development of spontaneous inflammatory
demyelination (27). It has been reported that deficiency of TNFα,
LT-α, and TNFR-1 or neutralization of TNF-α and LTα with
monoclonal antibodies greatly reduced the severity of EAE
(28–30). In contrast, TNFR-2-deficient mice developed more
severe inflammation and demyelination in MOG35–55-induced
EAE (30). Specific expression of tmTNFα in the transgenic mice
showed reduced initiation and severity of the EAE, suggesting
that selective targeting of sTNFα/TNFR-1 signaling may be
helpful in controlling CNS autoimmunity.

In MS patients, TNFα were found to be expressed at very
high levels in the CNS lesions and cerebrospinal fluids, but
not in serum (23, 24), suggesting that TNFα was produced
locally in the inflamed CNS. This indicates that TNFα might
be a good target for therapy against MS. However, while TNFα
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FIGURE 3 | TNFSF receptor–ligand interaction in the CNS
parenchyma during neuroinflammation. TNFSF receptors and ligands
are expressed on both CNS infiltrating effector immune cells and
CNS-resident cells. The interaction of this receptor–ligand greatly influences
the outcome of neuroinflammatory disease like multiple sclerosis and EAE. (I)
Both neurons and oligodendrocytes express functional DR5 in the CNS
during EAE. DR5 on the neurons as well as on oligodendrocytes interacts
with TRAIL molecules present on either microglial cells or infiltrating immune
cells, leading to apoptosis of DR5-expressing cells. (II) Activated astrocytes
and microglial cells up-regulate FasL expression on their surface. The

interaction of FasL with Fas-expressing cells leads to apoptosis and
elimination of pathogenic effector immune cells. (III) Neuronal cells express
TNF and that can interact with TNFR-1 present on various CNS-resident
cells, such as astrocytes, microglial cells, and oligodendrocytes. Interactions
of TNF with TNFR-1-expressing cells lead to apoptosis of TNFR-1+ cells.
(IV) Mast cells are known to localize close to the astrocytes during EAE in the
brain. CD40L present on mast cells interact with CD40-expressing
astrocytes, which induces increased production of inflammatory cytokines
and chemokines. Local production of inflammatory molecules can augment
inflammation and tissue damage in the CNS.

inhibitors showed protection in the mouse model of EAE, adverse
effects were observed during clinical trials in MS patients (21).
Similarly, a clinical trial with TNFR-1 fusion protein in MS
patients showed disease exacerbation, and the trial was stopped
(31). This increased demyelination with TNFα antagonist might
be due to the several possible reasons such as: (a) down-regulation
of anti-inflammatory cytokine IL-10 and increased production
of inflammatory cytokine IL-12 and IFN-γ (32, 33); (b) down-
regulation of TNFR-2, which is known to regulate the proliferation
of oligodendrocytes and damage repair (34); (c) possibility of
reduced or non-permeability of the BBBs to TNFα blockers which
would prevents their direct action through these molecules could
still enhance the disease by increasing auto-reactive T cells in the
peripheral tissues, which can migrate into the CNS and damage
the tissues (35); (d) unmasking of latent infection, which is critical
for inducing the autoimmune demyelination reaction (36). Anti-
TNFα therapy has also been used to control other autoimmune
diseases such as RA. However, keeping in mind the possibility of
demyelination of the central and peripheral neuronal tissues by

such therapy, caution must be exercised, and careful monitoring
of any pre-existing neuronal disease or its development following
treatment with TNFα antagonists would be prudent.

Fas–FasL

Fas ligand (FasL, also known asCD95L, TNFSF6) is a type II trans-
membrane protein expressed on a variety of cells, includingCD8+

T cells and oligodendrocytes. It binds to the Fas receptor (Fas, also
known as CD95, TNFRSF6, apoptosis antigen 1) and the decoy
receptor 3 (DcR3). FasL–Fas interactions lead to the formation of a
DISC in the Fas-expressing cells, leading to induction of apoptosis.
The interaction of Fas with FasL on CNS infiltrating cells or
activated CNS-resident cells (microglia, astrocytes, and neurons)
also leads to the induction of apoptosis. FasL–Fas interactions play
a very important role in immune cell homeostasis, and its dysregu-
lation leads to various autoimmune diseases. Mice with autosomal
recessive mutations in Fas (lymphoproliferative, lpr mice; lack Fas
expression) and FasL (generalized lymphoproliferative disease, gld
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mice; lack FasL expression) genes develop a spontaneous autoim-
mune syndrome; produce autoantibodies and accumulate a large
number of CD4−CD8− T cells in the secondary lymphoid tissues,
leading to the progressive development of lymphadenopathy and
splenomegaly (37, 38). Fas and FasL-deficient mice are resistant
to MOG-induced EAE, compared to wild-type mice (39, 40), and
intrathecal injection of recombinant FasL protein or neutralizing
with anti-FasL antibody suppresses acute EAE (41, 42). Adoptive
transfer of myelin basic protein (MBP)-specific FasL−/− CD4
T cells in the wild-type host showed reduced EAE pathology
suggesting that FasL expression regulates the encephalitogenic
function of T cells (43). It would be interesting to study how these
auto-reactive CD4+ T cells cross BBB and cause neuronal tissue
damage. Determining the temporal and site-specific expression of
FasL in a variety of CNS-resident cells during ongoing neuroin-
flammation might provide valuable clues to address this question.
It has been also reported that Lpr mice on SJL/J background
are completely susceptible to the proteolipid protein (PLP139–51)-
induced EAE (40). This discrepancy might be due to the involve-
ment of other effector pathways mediated by various TNFRSF
members in the CNS.

Astrocytes constitutively express FasL, and they show both
positive and negative roles in the inflammation and the devel-
opment of EAE (44). Using targeted deletion of FasL, specifically
in astrocytes, Wang et al. showed that astrocytic FasL is required
for the elimination of auto-reactive T cells in the CNS (45).
Gamma-delta (γδ) T cells play a very important role in EAE
(46), and their deficiency results in chronic EAE (47). γδ T cells
were shown to regulate CNS inflammation and disease recovery
in a FasL–Fas-dependent manner by controlling the encephal-
itogenic CD4+ T cells (47). Collectively, these reports suggest
that Fas–FasL-mediated apoptosis acts as an intrinsic regulatory
mechanism to control neuroinflammation and development of
CNS autoimmunity.

BAFF-R–BAFF

The B-cell activating factor of the tumor necrosis factor family
(BAFF; also known as TNFSF13B, CD257, B lymphocyte stimu-
lator “BLys”), was originally described as a molecule secreted by
T cells and dendritic cells that provide maturation and survival
signals to peripheral B cells (48). Its expression was also reported
in other cell types such as macrophages, dendritic cells, and
neutrophils (49). BAFF transgenic mice have elevated numbers
of B cells and effector T cells, and show symptoms similar to
that seen in B-cell-mediated autoimmune diseases (50). Immature
B cells in the bone marrow express BAFF-receptor (BAFF-R),
and its expression is also up-regulated during the development
from transitional B-cell stage to mature B cell in the secondary
lymphoid organs (51, 52). BAFF also interacts with two more
known receptors expressed on the B cells; transmembrane activa-
tor calcium modulator and cyclophilin ligand interactor (TACI)
and B-cell maturation factor (BCMA) (53). TACI is known to
be expressed on marginal zone B cells, and BCMA on germinal
center B cells, plasma cells, and memory B cells (54). In addition
to BAFF, TACI andBCMAare also known to interact with another

TNFSF member known as APRIL (55, 56). Genetic deficiency
of BAFF-R in mice resulted in hyper-susceptibility to MOG35–55
peptide-induced EAE (57), suggesting that this receptor has a
regulatory function in EAE. It has been reported that defects in
the BAFF–BAFF-R signaling adversely influence the regulatory B-
cell (Breg) function, inducing early onset and severe pathology of
the disease (58). Huntington et al. showed that administration of
hBCMA–Fc fusion protein in C57BL/6 mice not only reduced the
B-cell numbers in peripheral blood, lymph nodes, and spleen, and
resulted in a reduced titer of MOG-specific antibody in the serum
but it also hampered the activation and differentiation of CD4+

T cells (59). It has also been reported that BAFF can enhance the
auto-reactive Th17 response, leading to increased progression of
EAE (60). Antibody-mediated blocking of BAFFwith anti-human
BLys attenuated the EAE in marmoset monkeys (61). Glatiramer
acetate (GA) is the approved frontline drug for the treatment
of EAE and MS, which acts on both innate as well as T and B
cells during EAE, and induces an anti-inflammatory microen-
vironment in the neuronal tissue (62–65). GA was also shown
to reduce BAFF mRNA expression in the brain, and decrease
the number of BAFF-R+ B cells, but not the TACI+ B cells in
the spleen of EAE mice (66). These reports clearly indicate that
BAFF–BAFF-R signaling contributes to the pathogenesis of EAE,
and its perturbation may provide a valuable therapeutics tool to
control CNS autoimmunity.

OX40–OX40L

The OX40 (also known as ACT35, CD134, TNFRSF4) is a type I
glycoprotein of ~50 kD, which is expressed on activated T cells,
such as Th1, Th2, Th17, Foxp3+ regulatory CD4+ T cell (Treg),
and CD8+ T cells (67). The OX40 ligand (OX40L also known
as gp34, CD252, TNFSF4) is a type II glycoprotein expressed
on APCs, such as dendritic cells, B cells, macrophages, and
endothelial cells (68). The interaction of OX40–OX40L provides
a costimulatory signal to T cells, which leads to their activation
and cytokine secretion (69). InhibitingOX40–OX40L interactions
protects from many inflammatory autoimmune diseases, includ-
ing EAE (70, 71). OX40–OX40L signaling in CD4+ T cells pro-
motes the expression of IL-12Rβ2 (72) while inhibits the expres-
sion of CTLA-4 (73), Foxp3 (74–76), and IL-10 (77). Selective
up-regulation of IL-12Rβ2 leads to the differentiation of Th1,
whereas loss of Foxp3, CTLA-4, and IL-10 inhibits the suppressive
function of Tregs. Thus, the loss of balance between pathogenic
and regulatory cells could promote autoimmune pathology. A
growing body of evidences suggests that OX40–OX40L interac-
tions regulate the differentiation of CD4+ T-cell subsets, and
deficiency of OX40 impairs Treg development (78). This might
be because the reverse signaling through OX40L in APCs leads to
the production of cytokines IL-6 and IL-12, which regulates the
differentiation of effector CD4+ T cells (68). It has been shown
that OX40L–OX40 signaling inhibits Foxp3 expression (75, 79),
and acts as a strong differentiating factor for Th9 in airway inflam-
mation (80). These studies suggest that OX40–OX40L signaling
could promote inflammatory responses, in addition to suppress-
ing anti-inflammatory responses in CD4+ T cells (68, 78). All
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these observations suggest that functional plasticity of the CD4+

T-cell subsets is also controlled by OX40L–OX40 interactions.
OX40–OX40L interactions in CD28-deficient mice initially

led to the identification of OX40–OX40L signaling as being
costimulatory in EAE, and blocking these interaction-protected
mice from EAE (71). In the rat EAE model, pathogenic OX40+

CD4+ T cells were found in CNS lesions, and neutralization of
OX40 by anti-OX40 antibody ameliorated the EAE (81). Targeting
OX40–OX40L interaction with an OX40–Ig fusion protein at the
onset of EAE greatly reduced the severity of the disease (82).
Brain endothelial cells are the central component of the BBB and
are known to express OX40L, which recruit OX40+ auto-reactive
T cells into the CNS (82). OX40 treatment of human umbilical
cord endothelial cells (HUVECs) lead to the up-regulation of
CCL5, suggesting that this signaling also modulates endothelial
cells to attract a selective population of immune cells at the BBB
(83). It would be interesting to study whether OX40 signaling
affects the expression of cell adhesion molecules, chemokines,
and integrins in the brain endothelial cells. Blocking OX40L by
anti-OX40L antibody reduces the infiltration of OX40+ myelin-
specific T cells in the spinal cord without affecting the priming of
the myelin-specific CD4+ T cells in the draining lymph nodes in
active as well as passive EAE (84). Therefore, OX40–OX40L not
only controls the activation and differentiation of CD4+ T cells,
but also potentiates their migration into the CNS. Together, these
reports indicate that OX40–OX40L supports the development of
neuroinflammation and CNS autoimmunity.

4-1BB (CD137) – 4-1BBL (CD137L)

4-1BB (TNFRSF9) is expressed on activated CD4+ T cells (Th1,
Th2, and Treg), CD8+ T cells, B cells, dendritic cells, NK cells,
NKT cells, and mast cells, whereas its ligand, 4-1BBL, is expressed
on activated APCs (macrophages, B cells, and dendritic cells),
CD4+ and CD8+ T cells, NK cells, mast cells, and smooth muscle
cells (85). Under inflammatory condition, neurons are also known
to express 4-1BBL (3). B7-deficient APCs deliver the costim-
ulatory signal to CD4+ T cells through 4-1BBL in a TRAF2-
dependent manner (86). It has been reported that stimulation
of human CD8+ T cells with 4-1BBL leads to the production of
effector molecules such as perforin and granzyme (3). Antibody
treatment with agonist anti-4-1BB (2A) in induced EAE resulted
in milder disease, but failed to control the development of passive
EAE by adoptive transfer of MOG35–55-specific CD4+ T cells
(87). Anti-4-1BB (2A) treatment induced IFN-γ and granulo-
cyte–macrophage colony-stimulating factor (GM-CSF) secretion
by MOG35–55-specific CD4+ T cells, leading to differentiation of
inflammatory Th1 (87). It has been suggested that targeting 4-1BB
or 4-1BB ligand could lead to the induction of unresponsiveness in
the CD4+ T cells during EAE (88, 89). 4-1BBL−/− mice showed
reduced expression of vascular cell adhesion molecule-1 (VCAM-
1) on spinal cord endothelial vessels, which play an important role
in the migration of immune cells in the inflamed CNS (89). 4-
1BBL downstream signaling induced the production of reactive
oxygen species (ROS) in microglia, leading to apoptosis of oligo-
dendrocytes in the EAE (85). Therefore, these studies indicate that

4-1BB–4-1BBL interactions not only promote the activation of T
cells, but also control the migration of myelin-specific CD4+ T
cells in the CNS. Furthermore, 4-1BBL signaling has a destructive
role in the inflamed CNS during EAE.

GITR–GITRL

Glucocorticoid-induced TNFR family-related gene (also known
as CD357, TNFRSF18) is expressed at the low levels in resting
mouse and human T cells, but is up-regulated on activated CD4+

and CD8+ T cells. GITR is constitutively expressed on Tregs
(90, 91). GITR–GITRL interactions inhibit the suppressive func-
tion of CD4+CD25+ Tregs and therefore, blocking these inter-
actions breaks the peripheral immune tolerance (92). GITRL is
expressed at the low levels on B cells, macrophages, bonemarrow-
derived dendritic cells, and endothelial cells (3). GITRL can act
as a costimulatory signal to CD4+CD25− and CD4+CD25+ T
cells (93), and to CD8+ T cells in the presence of suboptimal
concentrations of anti-CD3ε, in the absence of CD28-mediated
signaling (94). In addition, signaling through GITR stimulates the
production of cytokines such as IFN-γ, IL-2, IL-4, and IL-10 in
CD4+ T cells (95).

Regulatory B cells are known to produce anti-inflammatory
cytokine IL-10 (96) and suppress CNS autoimmunity (97).
Transgenic mice constitutively expressing GITRL on B cells
(GITRL+ B cells) showed a significantly higher numbers of
peripheral Tregs, suggesting that GITRL+ B cells might play a
role in the homeostasis of Tregs (99). Animals that received, B
cells pre-treated with anti-mouse GITRL antibody showed sig-
nificantly decreased Tregs induction and severe EAE, suggesting
that GITRL+ B cells support the proliferation and homeostasis of
Tregs (100). Treatment with Rituximab, a monoclonal antibody
that depletes B cells, including Bregs, leads to severe exacerbation
of human ulcerative colitis, suggesting that Bregs play an impor-
tant role in controlling CNS autoimmunity (98). A peripheral
increase in Treg frequency can inhibit the proliferation of myelin-
specific effector CD4+ T-cell subsets in the secondary lymphoid
organs, and can therefore control CNS autoimmunity. This clearly
indicates that B cells, through the expression of GITRL, pro-
mote and maintain the expansion of Tregs and contribute to the
maintenance of immune tolerance.

DR4/5–TRAIL

TNF-related apoptosis-inducing ligand (also known as CD253,
TNFSF10) is a type II membrane protein that binds to two death
receptors, DR4 (TRAIL-RI) and DR5 (TRAIL-RII). These recep-
tors are known to induce apoptosis in various cell types in a
caspase-dependent manner. Both DR4 and DR5 are known to
be expressed in humans, whereas mice express only DR5 (101).
TRAIL also binds to the decoy receptors, DcR1 (lack cytoplas-
mic domain) and DcR2 (truncated DD). Rather than inducing
apoptosis, binding to these receptors induces NFκB activation.
TRAIL receptors are expressed in neurons and oligodendrocytes,
but TRAIL is completely undetected in a healthy CNS. Signal-
ing from TRAIL–DR4/5 is implicated in the pathogenesis of
MS and EAE (101). TRAIL is generally found on infiltrating
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immune cells and activated microglia in the MS lesions. The
DR4/DR5–TRAIL interaction seems to induce oligodendrocyte
and neuronal death during ongoing EAE. TRAIL-induced apop-
tosis of neurons and oligodendrocytes contribute to the devel-
opment of brain inflammation. Blocking brain-specific TRAIL
leads to a reduction in the severity of EAE. Similarly, thera-
peutic treatment with soluble TRAIL delays the onset of the
disease and reduces its severity (102). TRAIL is also reported
to inhibit Th1 response and promote the suppressive function
of Tregs (103). Genetically modified dendritic cells (ES-DCs),
which can simultaneously present MOG peptides in association
with MHC-II and express TRAIL, cause a reduction in the sever-
ity of EAE induced by both MOG35–55 and MBP (104, 105).
One of the mechanisms through which these ES-DCs controls
EAE is by promoting the proliferation of CD4+CD25+ Tregs,
which suppress myelin-specific effector CD4+ T-cell responses.
It might be possible that TRAIL signaling has a dual role;
it may promote suppressive phenotype in the secondary lym-
phoid organs, whereas in local inflamed CNS, it contributes to
tissue damage. Therefore, delineating the role of TRAIL sig-
naling in a spatio-temporal manner during the neuroinflam-
matory events might help in understanding the complexity of
CNS autoimmunity. Osteoprotegerin (OPG), a secreted protein
under physiological conditions, shows a lower binding affin-
ity for TRAIL (106); however, its role in CNS inflammation
and autoimmunity is not well studied. All these studies sug-
gest that, the apoptosis-inducing property of TRAIL in inflamed
CNS contributes to the development of inflammation and CNS
autoimmunity.

TWEAK–Fn14

TNF-like weak inducer of apoptosis (TWEAK; TNFSF12) is a
pro-inflammatory and pro-angiogenic cytokine synthesized as a
type II transmembrane protein. However, it can be cleaved to
give rise to soluble cytokine (107). Both membrane-bound and
soluble TWEAK bind to the only known receptor, fibroblast
growth factor-inducible 14 (Fn14; also known as TNFRSF12A).
TWEAK is expressed on monocytes, microglia, and astrocytes
in the healthy CNS. Its expression goes up during CNS inflam-
mation. Fn14 is also expressed on CNS-resident cells such as
brain endothelial cells, astrocytes, and neurons (108, 109). Over-
expression of soluble TWEAK by injecting TWEAK-encoding
recombinant plasmid (110), or in TWEAK transgenic animals
resulted in increased severity of EAE (109). These studies indicate
that local expression of TWEAK and Fn14 in the CNS could
be a critical contributing factor to the pathology of neuroin-
flammation. One of the mechanisms by which TWEAK elevates
CNS inflammation is by inducing CCL2 secretion from brain
endothelial cells and astrocytes. CCL2 is a potent activator of
neuroinflammation, and plays an important role in the pathogen-
esis of EAE and MS (111, 112). TWEAK–Fn14 signaling in BBB
endothelial cells compromises its barrier property in the mouse
models of cerebral ischemia. Therefore, it is possible that during
neuroinflammation such interactions can affect the BBB, allowing
the myelin-specific cells and soluble mediators to enter into the
CNS parenchyma (113, 114).

TWEAK–Fn14 binding does not induce ligand-activated
kinase signaling due to lack of cytoplasmic DD, but it triggers the
engagement of the TRAF, an adaptor protein that activates the
ERK1/2, PI3K/Akt, and NF-κB signaling pathways. Membrane-
bound TWEAK is a more powerful inducer of the classical NF-
κB signaling pathway than its soluble forms (115). It has been
shown that inhibition of TWEAK–Fn14 signaling decreases the
severity of EAE (110, 116) and CIA (117). Neutralization of
TWEAK after the priming phase with monoclonal antibody con-
trols immune cell infiltration into the neuronal tissues and reduce
the pathology of EAE (116). An immunotherapeutic fusion pro-
tein, Fn14–TRAIL consists of a portion of Fn14 receptor fused
with the TRAIL ligand, which blocks the function of TWEAK.
In vivo expression of this soluble functional chimera was shown
to control the EAE (118). A functional analysis of T-cell response
in these mice showed decreased effector Th1 and Th17 responses,
and increased number of suppressive Tregs, suggesting that the
balance was shifted more toward immune tolerance, which con-
trols the EAE (119). These studies suggest that TWEAK is a
very good therapeutic target to control neuroinflammation and
autoimmunity. Currently, several TWEAK-targeting therapeutic
agents are in clinical trials for autoimmunity and cancer (107).

CD70–CD27

The CD70 (CD27L, also known as TNFSF7) is a homotrimeric
type II transmembrane glycoprotein, and known to express on B
cells, T cells, mast cells, NK cells, and activated dendritic cells. It
is also expressed on epithelial cells in the thymic medulla. CD70
mainly resides in the endosomal compartment. Its expression is
activation-dependent, and controlled by the master transcription
regulator of MHC class II gene, CIITA. CD70 binds to its receptor
CD27 (TNFRSF7) expressed on CD4+ and CD8+ T cells, and
provides a costimulatory signal, which leads to the proliferation
and survival of activated B and T cells. The CD27–CD70 interac-
tion also controls effector and memory responses, and prevents
the induction of tolerance (120). Treatment of animals with anti-
CD70 antibody suppresses the EAE, possibly by inhibiting the
TNF-α production by draining lymph node cells (121). CD70-
transgenic mice showed increased numbers of IFN-γ-producing
CD4+ and CD8+ T cells, suggesting that CD70–CD27 signal-
ing controls Th1 (120). It has been reported that CD27+ γδ
T cells express high levels of IFN-γ and lower levels of IL-17,
whereas CD27− γδ T cells express lower levels of IFN-γ and
high levels of IL-17, suggesting that CD27 essentially controls
the differentiation of γδ T cells, which gives rise to two differ-
ent effector subsets of γδ T cells (46, 122, 123). The deficiency
of CD27 and CD70 in animals leads to significantly increased
EAE. In contrast, CD70-Tg mice showed reduced EAE pathology
(124, 125). Furthermore, Coquet el al. reported increased Th17
response in CD27−/− and CD70−/−, and reduced Th17 in CD70-
Tg mice (124). They concluded that this increased Th17 differen-
tiation in CD27−/− and CD70−/− animals were due to increased
phosphorylation of the JNK and epigenetic modification at IL-
17 locus, suggesting that CD70–CD27 signaling directly controls
the Th17 response in CD4+ T cells (124). Interestingly, anti-
CD70 antibody-mediated blocking of CD70 prevented EAE in
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SJL/J mice (121), and over-expression of CD70 on the B cells
enhanced EAE (126). This is in contrast to what is reported
by Coquet et al. (124). These discrepancies might be due to
the differences in the mouse strains used or in the cell types
where CD70-Tg was over expressed, since over-expression of
CD70 in B cells leads to hyper-activation of T cells and a grad-
ual loss of B cells (127). CD70 signaling affects the expression
of IL-17F and CCR6 but not other Th17-associated molecules
such as RORs, BATF, and IL-23R (124), suggesting that target-
ing CD27 may be beneficial in controlling effector CD4+ T-cell
differentiation and its migration into the inflamed tissues during
autoimmunity.

LTβR–LTα

Lymphotoxin alpha (also known as TNFSF1) exists as a secreted
homotrimeric molecule produced by lymphocytes. LTα also
forms a membrane-anchored heterotrimer with LTβ (Figure 1).
LTα homotrimer (LTα3) interacts with TNFR-1, TNFR-2, and
herpes virus entry mediator (HEVM), whereas the heterotrimer
molecule (LTα1β2) interacts with the LTβR (also known as
TNFRSF3) (Figure 1). LTβR is expressed on most cell types,
including epithelial cells, endothelial cells, and cells of themyeloid
lineages, but not on B and T lymphocytes. LT levels were known
to increase in the CNS before the onset of clinical signs of
EAE, suggesting a role in the pathogenesis of CNS inflammation.
Treatment with LTβR–Ig fusion protein alters the localization of
leukocytic infiltration into the CNS and controls the EAE (128).
LTα−/− mice have developmental defects in the lymph node
formation, and lack Peyer’s patches (129). LTα−/− mice show
reduced demyelination and CNS inflammation in MOG35–55-
induced EAE. However, adoptive transfer of MOG35–55-specific
wild-type T cells induces EAE (130). This indicates that LT–LTβR
signaling mainly regulates the priming phase of myelin-specific
T-cell activation and development, but not the actual homing
of these auto-reactive cells into the inflamed CNS. In contrast,
LTβ−/− mice developMOG35–55-inducedEAE, but to a somewhat
lesser extent as compared to wild-type animals. These results
suggest that LTα plays a very important role in the development
of EAE (130). LIGHT (CD258, also known as TNFSF14) is a
potent, CD28-independent costimulatory molecule expressed on
T cells that are involved in initial T-cell priming and expansion.
LIGHT can interact with both LTβR and HEVM. Interaction of
LIGHT with HVEM has a costimulatory function, whereas its
interaction with LTβR induces apoptosis. LIGHT-deficient mice
develop more severe MOG35–55-induced EAE due to intensive
activation of microglia/macrophages and increased frequency of
apoptotic cells within the CNS parenchyma, as compared to
wild-type animals (131). Expression of LIGHT on CNS-resident
cells rather than myelin-specific CD4+ T cells is the most cru-
cial factor in the pathogenesis of EAE. This also suggests that
LIGHT expression plays an important role in controlling the acti-
vated microglia/macrophages during CNS inflammation. There-
fore, selective targeting of LIGHT–HVEM signaling may provide
protection against neuroinflammation and CNS autoimmunity.
However, the involvement of LIGHT–HVEM interactions with
other CNS-resident and infiltrating cells is not well characterized.

It would be interesting to study these interactions in different
stages of neuroinflammation.

CD40–CD40L

The CD40 ligand (CD154, also known as TNFSF5) is expressed
on activated T cells, and binds to its cognate receptor CD40
(TNFRSF5) on APCs. CD40L–CD40 interactions lead to the
activation of B cells, their differentiation into plasma cells, and
immunoglobulin class switching. The CD40L–CD40 interactions
play a very important role in many autoimmune diseases. The
disruption or blocking of this interaction inhibits clinical man-
ifestation and ameliorates the EAE in mice and monkeys (132,
133). In the CNS, various cells, including astrocytes and glial cells
express CD40, and expression of this molecule is required for
the development of EAE (133, 134). It has been reported that
blocking of CD40L–CD40 interaction controls the development
of EAE (135, 136). Treatment of animals with remitting EAE in
this manner not only controls the EAE, but also inhibits the long-
term delayed type hypersensitivity (DTH) response (137). One
study has reported that mast cells and astrocytes are localized
together in the inflamed CNS, and they have potential to interact
with each other via CD40L on mast cells and CD40 on astrocytes
(134). In vitro studies have shown that this interaction activates
astrocytes leading to the secretion of cytokines. These cytokines
act in an autocrine manner, and potentiate multiple signaling
via the JAK-STAT-1 (Tyr701) pathway in the astrocytes (134).
Therefore, a contributing signaling event that can enhance the
function of infiltrating effector immune cells as well as CNS-
resident cells may also promote axonal damage. These reports
suggest that CD40–CD40L costimulatory signaling contributes to
neuroinflammation and CNS autoimmunity.

Future Perspective

The growing body of evidence demonstrated that TNF–TNFR
interactions are involved in the pathogenesis of EAE and MS.
These interactions control the disease outcome by fine-tuning
the peripheral immune response as well as interactions between
CNS-resident cells and effector immune cells in the CNS. Several
reports suggest that the TNFSF–TNFRSF pairs that signal the
promotion of inflammation are OX-40–OX40L, sTNFα–TNFR-
1, CD27–CD70, 4-1BB–4-1BBL, Fn14–TWEAK, CD40–CD40L,
andLT-α/LTβ–LTβR;whereas the ones that showaprotective role
are tmTNFα–TNFR-2, DR4/DR5–TRAIL, and HVEM–LIGHT.
Conflicting results have been reported in the literature about
some of the interactions and their importance in CNS autoim-
munity. These discrepancies in the results reported by different
investigators may be due to the differences in the animal models
used or immunization strategies employed to induce the EAE.
Furthermore, cross-talks between the signaling induced by vari-
ous TNFSF–TNFRSF may also contribute to the pathogenesis of
disease. Keeping in mind that the combination therapy is cen-
tral to immunotherapeutic approaches, understanding how and
when to block TNFSF–TNFRSF interactions, individually or in
combination with other targets, depends on our in-depth knowl-
edge of their expression patterns and molecular mechanisms.
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Since, there are several TNF superfamily members that have the
ability to influence neuroinflammation one way or another, reach-
ing a decision about targeting one ormore receptor–ligand pairs at
a given time for clinical application requires further investigation.
A better understanding of their expression profile, and kinetics
of expression, and interactions between TNF ligands and their
TNFRs on various CNS residents and infiltrating immune cells at
different stages of the diseasewould help to design better strategies
to control neuroinflammation and CNS autoimmunity.
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